Practical examples on traceability, measurement uncertainty and validation in chemistry Vol 1 [Vol 1, Second edition] 9789279120213

Case studies on traceability, measurement uncertainty and validation for measurements of gold in gold alloys, calcium in

740 83 4MB

English Pages 221 Year 2010

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

Practical examples on traceability, measurement uncertainty and validation in chemistry Vol 1 [Vol 1, Second edition]
 9789279120213

Table of contents :
TABLE OF CONTENTS
Introduction
How to use the Book
About the Authors
Chapter 1 Analysis of Gold Alloys by Flame AtomicAbsorption Spectrometry
Chapter 2 Determination of Calcium in Serum bySpectrophotometry
Chapter 3 Determination of Radium in Waterby a-Spectrometry
Chapter 4 Determination of Polar Pesticides by LiquidChromatography Mass Spectrometry
Chapter 5 Determination of Ammonium in Water by ContinuousFlow Analysis (CFA) and Spectrometric Detection
Appendix 1 TrainMiC® Exercises (‘white pages’)
Appendix 2 Briefing of the trainees on the example session

Citation preview

Producing reliable measurements in analytical chemistry can be rather demanding. Some would say an uphill struggle. Comparable to mountain walking. Hard work, but then the satisfaction of reaching the top is absolutely great. And so is the view. As with all human endeavour, it always helps to know what you are doing, thus theoretical knowledge forms the basis. Likewise in analytical chemistry. Understanding the measurement science, the metrology, is important. That is why in the international standard ISO/IEC-17025 “General requirements for the competence of testing and calibration laboratories” section five deals with technical requirements such as traceability, validation and uncertainty. The European Life Long Learning Programme TrainMiC®, created in 2001, produced material for teaching the theory. As excellence in theory does not necessarily mean mastering practice, a need for developing practical examples later arose. This is what you can find in this book, which is intended as a first of a series of such compilations. Inspired by the NORDTEST “Trollbook”, we also decided to have a mascot. For each volume, a different one, which would be taken from the treasure of European fairy tales and legends. For this first volume, the fairy tale character of Kekec (pronounced as Kekets) was chosen. Kekec is a brave, clever and cheerful shepherd boy who lives in Slovenian mountains. He always brings good to the people that surround him and he helps those that are in trouble. And in that sense, that is what is the intention of this book. We hope it succeeds in doing so. Nineta Majcen Philip Taylor

ISBN 978-92-79-12021-3

PRACTICAL EXAMPLES ON TRACEABILITY, MEASUREMENT UNCERTAINTY AND VALIDATION IN CHEMISTRY

/$1(1&

The mission of the JRC is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of EU policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national.

Practical Examples on

Traceability, Measurement Uncertainty and Validation in Chemistry Volume 1

Edited by Nineta Majcen, Philip Taylor Authors: Ljudmila Benedik Steluta Duta Koit Herodes Monika Inkret Veselin Kmetov Allan Künnapas Ivo Leito Bertil Magnusson

Urška Repinc Philip Taylor Emilia Vassileva

EUR22791/2 EN - 2010

Practical Examples on

Traceability, Measurement Uncertainty and Validation in Chemistry Volume 1 Second edition

Edited by Nineta Majcen, Philip Taylor Authors: Ljudmila Benedik Steluta Duta Koit Herodes Monika Inkret Veselin Kmetov Allan Künnapas

Ivo Leito Bertil Magnusson Urška Repinc Philip Taylor Emilia Vassileva

The mission of the JRC-IRMM is to promote a common and reliable European measurement system in support of EU policies.

European Commission Joint Research Centre Institute for Reference Materials and Measurements Contact information Address: Retieseweg 111, B-2440 Geel, Belgium E-mail: [email protected] Tel.: +32 (0)14 571 605 Fax: +32 (0)14 571 863 http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. (XURSH'LUHFWLVDVHUYLFHWRKHOS\RX¿QGDQVZHUV WR\RXUTXHVWLRQVDERXWWKH(XURSHDQ8QLRQ Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

More information on the European Union is available on the Internet (http://europa.eu). Cataloguing data can be found at the end of this publication. /X[HPERXUJ3XEOLFDWLRQV2I¿FHRIWKH(XURSHDQ8QLRQ

JRC 59026 EUR 22791/2 EN ISBN 978-92-79-12021-3 ISSN 1018-5593 doi: 10.2787/10402 © European Union, 2010 Reproduction is authorised provided the source is acknowledged Printed in

TABLE OF CONTENTS INTRODUCTION ..................................................................................................................5 HOW TO USE THE BOOK ...................................................................................................6 ABOUT THE AUTHORS .....................................................................................................11 CHAPTER 1..........................................................................................................................17 Analysis of Gold Alloys by Flame Atomic Absorption Spectrometry Veselin Kmetov, Emilia Vassileva CHAPTER 2..........................................................................................................................51 Determination of Calcium in Serum by Spectrophotometry Steluta Duta, Philip Taylor

CHAPTER 3..........................................................................................................................81 Determination of Radium in Water by α-Spectrometry Ljudmila Benedik, Urška Repinc, Monika Inkret

CHAPTER 4....................................................................................................................... 121 Determination of Polar Pesticides by Liquid Chromatography Mass Spectrometry Allan Künnapas, Koit Herodes, Ivo Leito

CHAPTER 5....................................................................................................................... 157 Determination of Ammonium in Water by Continuous Flow Analysis (CFA) and Spectrometric Detection Bertil Magnusson

APPENDIX 1 ..................................................................................................................... 193 TrainMiC® Exercises (‘white pages’) APPENDIX 2 ..................................................................................................................... 209 Briefing of the trainees on the example session

3

Practical examples on traceability, measurement uncertainty and validation in chemistry

Abbreviations

4

CRM

CHUWL¿HGUHIHUHQFHPDWHULDOV

RM

RHIHUHQFHPDWHULDOV

QC

QXDOLW\FRQWURO

PT

PUR¿FLHQF\WHVWLQJ

ILC

IQWHUODERUDWRU\FRPSDULVRQV

Introduction If you will tell it to me, I will forget If you will show it to me, I will forget If you involve me, I will remember. Xun Zi

Chinese philosopher 310-237 BC

CKHPLFDO DQG ELRDQDO\WLFDO PHDVXUHPHQWV DUH RPQLSUHVHQW DQG RIWHQ YHU\ LPSRUWDQW LQRXUVRFLHW\-XVWWKLQNRIWKHTXDOLW\RIWKHIRRGZHHDWWKHDLUZHEUHDWKHWKHUROH RIWKHVHPHDVXUHPHQWVLQKHDOWKFDUHLQWUDGHDQGLQUHVHDUFKIQDOOWKHVHFDVHVSHRSOH VWULYHWRJHWUHOLDEOHGDWDTKHUHLVDQLQWHUQDWLRQDOVWDQGDUGIRUDVVXULQJWKHTXDOLW\RI PHDVXUHPHQWGDWDQDPHO\(1I62I(CIWFRQWDLQVSDUWLFXODUPDQDJHPHQWDVZHOO DVWHFKQLFDOUHTXLUHPHQWVTKHVHWHFKQLFDOUHTXLUHPHQWVDUHOLQNHGWRWKHVFLHQFHEHKLQG WKHPHDVXUHPHQWVPHDQLQJWKDWPHWURORJLFDOLVVXHVVXFKDVWUDFHDELOLW\XQFHUWDLQW\DQG YDOLGDWLRQDUHDWWKHKHDUWRIWKLV TKLVERRNZLOOKHOS\RXPRYLQJIURPWKHWKHRU\RI(1I62I(CWRWKHSUDFWLFH E\ VKDULQJ SUDFWLFDO H[DPSOHV LQ D GHWDLOHG ZD\ RHDGLQJ WKH ERRN PLJKW JLYH \RX LQVSLUDWLRQRQKRZWRGHPRQVWUDWHWKHWUDFHDELOLW\RI\RXUUHVXOWVWRDWHFKQLFDODVVHVVRU LQDQDFFUHGLWDWLRQDXGLW2U\RXFDQPD\EHXVHWKLVPDWHULDOWRH[SODLQWRVWXGHQWVZKDW LVDQDSSURSULDWHZD\WRWDFNOHYDOLGDWLRQRIDFHUWDLQPHDVXUHPHQWSURFHGXUH"PHUKDSV \RXZLOO¿QGLQWKHERRNWKHFRQ¿UPDWLRQRI\RXUDSSURDFKRIXQFHUWDLQW\HVWLPDWLRQ" IQ VKRUW WKLV ERRN LV LQWHQGHG IRU DQDO\WLFDO FKHPLVWV SHUIRUPLQJ PHDVXUHPHQWV LQ ODERUDWRULHVRUIRUWKRVHUHVSRQVLEOHIRUVXFKPHDVXUHPHQWVTKRVHOHFWXULQJDQDO\WLFDO FKHPLVWU\PLJKWDOVR¿QGLWXVHIXODVZHOODVWKHVWXGHQWVWKHPVHOYHV TKHERRNLVDSURGXFWRIWKHTUDLQMLC®SURJUDPPH>ZZZWUDLQPLFRUJ@TKLVSURJUDPPH ZDVFRQFHLYHGLQE\WKHIQVWLWXWHIRURHIHUHQFHMDWHULDOVDQGMHDVXUHPHQWVRI WKH(XURSHDQCRPPLVVLRQ-RLQWRHVHDUFKCHQWUHWRDGGUHVVDQHHGDULVLQJZLWKWKRVH FRXQWULHV ZDQWLQJ WR HQWHU WKH (8 DW WKDW WLPH RDWKHU WKDQ DSSURDFKLQJ WKLV WUDLQLQJ LQ DQ DQHFGRWDO ZD\ DQG RUJDQL]LQJ DG KRF HYHQWV D SURJUDPPH ZDV VHW XS ± FDOOHG TUDLQMLC®±WRFUHDWHKDUPRQLVHGWUDLQLQJPDWHULDODVZHOODVWRGLVVHPLQDWHNQRZOHGJH LQWKHYDULRXVFRXQWULHVYLDDQHWZRUNRIDXWKRULVHGTUDLQMLC®WUDLQHUV$IWHUZDUGVWKH TUDLQMLC®SURJUDPPHZDVVSUHDGDOVRLQWKHUHVWRIWKH(8DQG(XURSH¶VODUJHVWLLIH LRQJLHDUQLQJSURJUDPPHLQWKLVDUHDZDVFUHDWHG8SWRQRZQDWLRQDOTUDLQMLC® WHDPVKDYHEHHQVHWXSDQGPRUHWKDQSHRSOHKDYHEHHQWUDLQHGDOODFURVV(XURSH %\VKDULQJWKHUHVRXUFHVLQDSUHGH¿QHGPDQQHUDWWKH(XURSHDQOHYHODEHWWHUWUDLQLQJ WRWKHQDWLRQDOFRPPXQLWLHVFDQEHSURYLGHGWKDQLIWKH\ZRXOGRQO\UHO\RQWKHPVHOYHV

5

How to use the Book )URPH[SHULHQFHJDLQHGGXULQJVHYHUDOTUDLQMLC®FRXUVHVLQYDULRXV(XURSHDQFRXQWULHV DVWDQGDUGLVHGDSSURDFKRIWKHTUDLQMLC®H[DPSOHVHVVLRQKDVEHHQGHYHORSHGWR ‡ ‡ ‡

I DFLOLWDWHH[FKDQJHRIWUDLQLQJPDWHULDOWKDWKDVEHHQSUHSDUHGDQGFROOHFWHGE\ WKHYDULRXVWUDLQHUV IDFLOLWDWHH[FKDQJHRIIHHGEDFNIURPWKHSDUWLFLSDQWVDVZHOODVIURPWKHWUDLQHUV LPSURYHWHDFKLQJLPSDFWRIWKHFRXUVH

TKHUHIRUHDVWUXFWXUHIRUDTUDLQMLC®H[DPSOHKDVEHHQGHYHORSHGDQGVRPHJXLGHOLQHV RQKRZWRFRQGXFWDW\SLFDOTUDLQMLC®H[DPSOHVHVVLRQKDYHEHHQGUDIWHG$VWKLVLV FUXFLDOIRUSURSHUXQGHUVWDQGLQJDQGFRQGXFWLQJRIWKHTUDLQMLC®H[DPSOHVHVVLRQVD GHWDLOHGGHVFULSWLRQLVJLYHQEHORZ

How does a standardised TrainMiC® example look like? (DFKTUDLQMLC®H[DPSOHLQFOXGHVDSDUWRQ D  WKH LQSXW LQIRUPDWLRQ GHVFULSWLRQ RI WKH DQDO\WLFDO SURFHGXUH FXVWRPHU¶V UHTXLUHPHQWDQGPHDVXUHPHQWGDWD E  WKH TXHVWLRQV UHJDUGLQJ WUDFHDELOLW\ YDOLGDWLRQ DQG PHDVXUHPHQW XQFHUWDLQW\ WKLVSDUWLVWKXVVXEGLYLGHGLQWKUHHexercisesZKLFKDUHNQRZQDVµTUDFHDELOLW\ H[HUFLVH¶µ9DOLGDWLRQH[HUFLVH¶DQGµMHDVXUHPHQWXQFHUWDLQW\H[HUFLVH¶ F  WKHVROXWLRQVIRUWKHH[HUFLVHV TRHDVLO\GLVWLQJXLVKEHWZHHQGLIIHUHQWSDUWVRIDQH[DPSOHFRORXUVKDYHEHHQDVVLJQHG WRHDFKSDUWDVVKRZQLQ)LJXUH TKHLQSXWLQIRUPDWLRQ¿OHVZKLFKLQFOXGHDGHVFULSWLRQRIWKHDQDO\WLFDOSURFHGXUHWKH FXVWRPHU¶VUHTXLUHPHQWDQGPHDVXUHPHQWGDWDDOOQHHGHGIRUWKHWKUHHH[HUFLVHVDUH UHIHUUHG WR DV ‘yellow pages’ 'XULQJ WKH TUDLQMLC® H[DPSOH VHVVLRQ WKH\ DUH JLYHQ WR HDFK SDUWLFLSDQW DV ZHOO DV D ERRNOHW RI H[HUFLVHV RQ WUDFHDELOLW\ YDOLGDWLRQ DQG PHDVXUHPHQWXQFHUWDLQW\TKHODWWHUDUHUHIHUUHGWRDV‘white pages’DQGWKHTXHVWLRQV WKDWDUHWREHDQVZHUHGE\WKHWUDLQHHVDUHIXOO\DOLJQHGZLWKWKHWKHRUHWLFDOSUHVHQWDWLRQV 2QWKHRWKHUVLGHWKH\DUHFRPSOHPHQWDU\WRWKHPLQDVHQVHWKDWE\SUHVHQWLQJWKHRU\DV ZHOODVGRLQJWKHH[DPSOHVHDFKRIWKHWRSLFVLVDSSURSULDWHO\DGGUHVVHGDQGVXI¿FLHQWO\ FRYHUHG

6

How to use the Book

6WUXFWXUHRID7UDLQ0L& H[DPSOH

6XPPDU\ ILFKH

,QWURGXFWRU\ VOLGHV

ವ *HQHUDOLQIRUPDWLRQ DERXWWKHH[DPSOH

ವ $ERXWWKHDQDO\WLFDO SURFHGXUH

ವ &KHFNOLVWRQZKDW H[DFWO\LVLQFOXGHGIRU WKHSDUWLFXODU H[DPSOH

'DWD VKHHW

([HUFLVHV

ವ ([WUDFW IURP WKH DQDO\WLFDO SURFHGXUH

‡ Traceability

ವ &XVWRPHUಬV UHTXLUHPHQWV ವ 5HOHYDQW HTXDWLRQVDQG PHDVXUHPHQW GDWD

‡ Validation ‡ Measurement uncertainty

6ROXWLRQV ‡ Traceability ‡ Validation ‡ Measurement uncertainty

Figure 1. Harmonised TrainMiC® example TKHVRFDOOHG‘green pages’SURYLGHDQVZHUVWRWKHTXHVWLRQVDVNHGLQDOOWKUHHH[HUFLVHV LHWUDFHDELOLW\YDOLGDWLRQDQGPHDVXUHPHQWXQFHUWDLQW\IGHDOO\IRUWKHPHDVXUHPHQW XQFHUWDLQW\H[HUFLVHWKUHHGLIIHUHQWDSSURDFKHVWRWKHPHDVXUHPHQWXQFHUWDLQW\HYDOXDWLRQ DUHSUHVHQWHGDVLPSOHDULWKPHWLFDSSURDFKDVSUHDGVKHHWVROXWLRQDQGUHVXOWREWDLQHG E\XVLQJGHGLFDWHGSURIHVVLRQDOVRIWZDUH 2QWRSDVDTXDOLW\PDQDJHPHQWWRRODVXPPDU\IRUP ‘blue page’ LVZUDSSLQJXS HDFKH[DPSOHIWFRQWDLQVDOOWKHHVVHQWLDOLQIRUPDWLRQDERXWHDFKH[DPSOHHJDQDO\WLFDO SURFHGXUHW\SHRIWKHVDPSOHDQDO\WHVPHDVXUHPHQWPHWKRGFXVWRPHU¶VUHTXLUHPHQWV DQGVRPHRWKHUZKLFKKHOSLQPDQDJLQJDQGVHOHFWLQJWKHH[DPSOHV

What is a recommended approach of conducting a TrainMiC® example session? TKHTUDLQMLC®QDWLRQDOWHDPOHDGHUZKRLVRUJDQLVLQJDTUDLQMLC®HYHQWGHFLGHVRQ WKHH[DFWIRUPDWRIWKHTUDLQMLC®H[DPSOHVHVVLRQWDNLQJLQWRDFFRXQWWKHNQRZOHGJH DQGQHHGVRIWKHWUDLQHHVDVZHOODVVSHFL¿FDUHDVWKDWDUHDGGUHVVHGGXULQJWKHWUDLQLQJ FRXUVHHJHQYLURQPHQWDODQDO\VLVDQDO\VLVRIIRRGRUFOLQLFDODQDO\VLV

7

Practical examples on traceability, measurement uncertainty and validation in chemistry

IQSUDFWLFHWKLVPHDQVWKDWDTUDLQMLC®H[DPSOHVHVVLRQDWDFHUWDLQTUDLQMLC®HYHQW FDQEHFRQGXFWHGLQRQHRIWKHIROORZLQJIRUPV ‡ 2QHH[DPSOHDOOWKUHHH[HUFLVHV ‡ 2QHH[DPSOHRQHRUWZRH[HUFLVHVRQO\ ‡ MRUHWKDQRQHH[DPSOHDOOH[HUFLVHVIRUHDFK ‡ MRUHWKDQRQHH[DPSOHRQHRUWZRH[HUFLVHVRQO\ ‡ 2QHH[DPSOHMHDVXUHPHQWXQFHUWDLQW\H[HUFLVHFRPSDULQJGLIIHUHQWWRROVIRU LWVHYDOXDWLRQ :KHQ GHFLGLQJ RQ ZKLFK IRUPDW WR FKRRVH LW LV HVVHQWLDO QRW WR IRUJHW DERXW WKH WLPH FRQVWUDLQWVRIDFHUWDLQWUDLQLQJHYHQWDVLWLVFUXFLDOWKDWWKHWUDLQHHVKDYHHQRXJKWLPH WRGRWKHH[HUFLVHVDVZHOODVWRGHGLFDWHHQRXJKWLPHWRDSURSHUO\OHGGLVFXVVLRQDIWHU FRPSOHWLQJWKHH[HUFLVHV%DVHGRQRXUH[SHULHQFHZHVXJJHVWWRGHGLFDWHDERXWPLQXWHV IRUHDFKRIWKHH[HUFLVHV JURXSZRUN DQGDERXWPLQXWHVIRUDIROORZXSGLVFXVVLRQTKH JURXSVVKRXOGQRWEHELJJHUWKDQ¿YHSDUWLFLSDQWVDQGHDFKJURXSVKRXOGLQWKHEHJLQQLQJ RIHDFKH[HUFLVHnominate a rapporteur ZKRDIWHUZDUGVUHSRUWVRQWKHUHVXOWVDQGRQWKH TXHVWLRQVDQGWKHGLVFXVVLRQWKHJURXSKDGGXULQJWKHH[HUFLVH1RPLQDWLQJDUDSSRUWHXU LPSURYHVWKHUHSRUWLQJVLJQL¿FDQWO\VRLWLVKLJO\UHFRPPHQGHGWRJLYHHDFKJURXSDFDUG µUDSSRUWHXU¶DWWKHVWDUWIWLVRIDYLWDOLPSRUWDQFHWKDWWKHWUDLQHHVDUHSURSHUO\EULHIHG EHIRUHVWDUWLQJZLWKWKHH[DPSOHVHVVLRQTKHVOLGHVZKLFKFDQEHXVHGIRUWKLVSXUSRVH DUHLQ$SSHQGL[DQGDG\QDPLFSURFHVVRIFRQGXFWLQJDTUDLQMLC®H[DPSOHVHVVLRQLV VFKHPDWLFDOO\VKRZQLQ)LJXUH

About the structure of this handbook IQ WKLV KDQGERRN ¿YH GLIIHUHQW DQDO\WLFDO SURFHGXUHV DUH ZRUNHG RXW DV TUDLQMLC® H[DPSOHV)ROORZLQJWKHDERYHGHVFULEHGVWDQGDUGLVHGDSSURDFKHDFKRIWKHPFRQWDLQV D  $VXPPDU\IRUP µEOXHSDJH¶ E  $VKRUWLQWURGXFWLRQWRWKHDQDO\WLFDOSURFHGXUH DVDPRZHUPRLQWSUHVHQWDWLRQ  WKDWLVJLYHQE\WKHWUDLQHU F  $OOLQSXWQHHGHGWRGRWKHWKUHHH[HUFLVHV µ\HOORZSDJHV¶ DQG G  TKHVROYHGH[HUFLVHV µJUHHQSDJHV¶  Nineta Majcen and Philip Taylor

Acknowledgment TKHMHWURORJ\IQVWLWXWHRIWKHRHSXEOLFRI6ORYHQLDLVJUDWHIXOO\DFNQRZOHGJHGIRULWVFRQWULEXWLRQWRWKH JUDSKLFLOOXVWUDWLRQVLQWKLVERRN

8

Figure 2. A process of conducting a completeTrainMiC® example

How to use the Book

9

About the Authors Introduction Philip Taylor PURIPKLOLSTD\ORUKDVEHHQLQDQDO\WLFDOFKHPLVWU\VLQFH+HPDGHKLVPK'DWWKH 8QLYHUVLW\RI*HQW %HOJLXP DQGVWDUWHGKLVFDUHHULQR 'LQLQGXVWU\EHIRUHPRYLQJ WR WKH PHWURORJ\ LQVWLWXWH RI WKH (XURSHDQ CRPPLVVLRQ WKH IQVWLWXWH IRU RHIHUHQFH MDWHULDOVDQGMHDVXUHPHQWVZKLFKLVSDUWRIWKH-RLQWRHVHDUFKCHQWUH TKHUHKHLVKHDGLQJDXQLWGHDOLQJZLWKUHIHUHQFHLVRWRSHPHDVXUHPHQWV LQFOXGLQJ WKH$YRJDGUR SURMHFW  DQG LV LQYROYHG LQ DFWLYLWLHV RI WKH CRQVXOWDWLYH CRPPLWWHH RI CKHPLVWU\ CCQM DSSOLHGLVRWRSHPHDVXUHPHQWVLQWKHIRRGDQGHQYLURQPHQWDODUHD LQWHUODERUDWRU\FRPSDULVRQVDQGWUDLQLQJUHODWHGWRPHWURORJ\LQFKHPLVWU\ TUDLQMLC®  WRVXSSRUWWKH(XURSHDQPHDVXUHPHQWLQIUDVWUXFWXUH+HKDVDERXWUHVHDUFKSDSHUV WRKLVQDPH +HLVNHHQLQHQVXULQJWKDWPHWURORJ\LVUHOHYDQWIRUWRGD\¶VQHHGVLQVRFLHW\IRU LQVWDQFHWRKHOSLPSOHPHQWLQJ(XURSHDQOHJLVODWLRQTKLVLQYROYHVWUDLQLQJDQGHGXFDWLRQ DFWLYLWLHV+HKDVDOVREHHQYHU\LQYROYHGLQWHFKQLFDODVVLVWDQFHSURMHFWVUHODWHGWRWKH HQODUJHPHQWRIWKH(8 +HLQLWLDWHGWKHTUDLQMLC®SURJUDPPHDQGLVFKDLULQJWKHTUDLQMLC®MDQDJHPHQW %RDUG

Nineta Majcen 1LQHWDMDMFHQVWDUWHGDVDUHVHDUFKHUDWWKH8QLYHUVLW\RILMXEOMDQD 6ORYHQLD ZKHUH VKHREWDLQHGKHUPK'RQYDOLGDWLRQRIQHZO\GHYHORSHGPHWKRGVDQGFKHPRPHWULFV6KH KDVFRQWLQXHGKHUDQDO\WLFDOZRUNLQWKHTXDOLW\FRQWUROODERUDWRULHVLQLQGXVWU\EHIRUH VWHSSLQJLQWRPHWURORJ\DFWLYLWLHVDWWKHQDWLRQDODQG(XURSHDQOHYHOIQPHWURORJ\VKH KDVEHHQPDLQO\LQYROYHGLQWRSLFVUHODWHGWRPHWURORJ\LQFKHPLVWU\DQGLQLVVXHVUHODWHG WRPHDVXUHPHQWLQIUDVWUXFWXUH6KHLVDOVRFORVHO\FROODERUDWLQJZLWKDFFUHGLWDWLRQERGLHV DQGVKHLVOHFWXULQJDWWKH8QLYHUVLW\RIMDULERU 6KHLVWKH6ORYHQLDQTUDLQMLC®WHDPOHDGHUPHPEHURIWKHTUDLQMLC®MDQDJHPHQW %RDUGDQGLVFKDLULQJWKHTUDLQMLC®(GLWRULDO%RDUG6KHLVFXUUHQWO\ZRUNLQJDWWKH MHWURORJ\LQVWLWXWHRIWKHRHSXEOLFRI6ORYHQLD

Chapter 1 Veselin Kmetov +HREWDLQHGKLVPDVWHUGHJUHHLQFKHPLVWU\DWWKH8QLYHUVLW\RIPORYGLY %XOJDULD DQG WKHUHKHWRRNWKHSRVLWLRQRIDUHVHDUFKFKHPLVWDWWKHCHQWHURI$QDO\WLFDOCKHPLVWU\ DQG$SSOLHG6SHFWURVFRS\+HPRYHGWRDVVLVWDQWSURIHVVRUSRVLWLRQLQWKH'HSDUWPHQW RI$QDO\WLFDOCKHPLVWU\ZKHUHKHUHFHLYHGKLVPK'GHJUHH+HEHFRPHDKHDGRIWKH UHVHDUFK JURXS RI DWRPLF VSHFWURPHWU\ WKDW DFFRPSOLVKHG D QXPEHU RI UHVHDUFK DQG DSSOLHGSURMHFWVLQWKH¿HOGRIWKHLQVWUXPHQWDODQDO\VLVZLWKDWRPLFVSHFWURPHWU\PHWKRGV

11

Practical examples on traceability, measurement uncertainty and validation in chemistry

$$6 ICP2(6 DQG ICPM6  IRU WUDFH HOHPHQWV GHWHUPLQDWLRQ LQ HQYLURQPHQWDO FOLQLFDO DQG LQGXVWULDO PDWHULDOV TKH JURXS PDLQWDLQV H[FHOOHQW FROODERUDWLRQ ZLWK D UHVHDUFKWHDPIURPWKH8QLYHUVLW\RI$OLFDQWH6SDLQ +LVUHVHDUFKLQWHUHVWVDUHVDPSOHSUHSDUDWLRQXVHRIPLFURZDYHUDGLDWLRQDQDO\VLV RI KHDY\ PDWULFHV E\ GLVFUHWH VDPSOH LQWURGXFWLRQ ÀRZ LQMHFWLRQ HOHFWURWKHUPDO YDSRULVDWLRQPHWURORJ\LQFKHPLVWU\GDWDDFTXLVLWLRQDQGWUHDWPHQWPHWKRGRORJ\RI WHDFKLQJ $WWKHPRPHQWKHLVOHFWXULQJ³IQVWUXPHQWDODQDO\VLV´³6WDWLVWLFVDQGPHWURORJ\´ DQG³CRPSXWHUQXDOLPHWU\´ +H MRLQHG WKH TUDLQMLC® SURJUDP LQ  DV D PHPEHU RI %XOJDULDQ WHDP RI DXWKRULVHGTUDLQMLC®WUDLQHUV

Emilia Vassileva (PLOLD 9DVVLOHYD LV D UHVHDUFK VFLHQWLVW DQG LQRUJDQLF FKHPLVWU\ JURXS OHDGHU LQ WKH 81I$($(QYLURQPHQWDOLDERUDWRULHVLQMRQDFR6KHUHFHLYHGKHUPDVWHUGHJUHHDW WKH8QLYHUVLW\RI*HQHYD 6ZLW]HUODQG DQGKHUPK'GHJUHHDWWKH8QLYHUVLW\RI6R¿D %XOJDULD ZKHUHVKHVWDUWHGDVDVVLVWDQWSURIHVVRU+HUPDLQUHVHDUFKLQWHUHVWVDUHLQWKH DUHDRIWUDFHDQGXOWUDWUDFHLVRWRSHDQGHOHPHQWDODQDO\VLVXVLQJICPMDVV6SHFWURPHWU\ DQGRWKHUDGYDQFHGLQVWUXPHQWDOWHFKQLTXHV6KH LV DXWKRUDQGFRDXWKRURI DERXW VFLHQWL¿F SDSHUV DQG UHSRUWV IQ WKH FRQWH[W RI PHWURORJ\ LQ FKHPLVWU\ VKH KDV EHHQ ZRUNLQJIRUVHYHQ\HDUVDWWKHDWIQVWLWXWHIRURHIHUHQFHMDWHULDOVDQGMHDVXUHPHQWV ZKHUHVKHZDVLQYROYHGLQUHIHUHQFHLVRWRSHPHDVXUHPHQWVIRUFHUWL¿FDWLRQSXUSRVHV IPSRUWDQWSDUWRIKHUSUHVHQWDFWLYLWLHVLVWKHWUDLQLQJIRU81MHPEHU6WDWHVDQDO\WLFDO ODERUDWRULHVLQQ$QC 6KHLVTUDLQMLC®FRRUGLQDWRUPHPEHURIWKHTUDLQMLC®(GLWRULDODQGMDQDJHPHQW %RDUGVDQG1DWLRQDOTUDLQMLC®WHDPOHDGHUIRU%XOJDULD

Chapter 2 Steluta Duta 6WHOXWD 'XWD ZRUNV DW 1DWLRQDO IQVWLWXWH RI MHWURORJ\ ± RRPDQLDQ %XUHDX RI LHJDO MHWURORJ\ LQ %XFKDUHVW RRPDQLD I1M%RML  LQ WKH ¿HOG RI 6SHFWURPHWU\ DQG RHIHUHQFH MDWHULDOV +HU PK' RQ CKHPLFDO MHWURORJ\ WRSLF ZDV GHIHQGHG DW WKH PROLWHFKQLFIQVWLWXWH%XFKDUHWLQRRPDQLD6KHLVLQYROYHGLQGHYHORSPHQWFRRUGLQDWLRQ RI I1M%RML UHVHDUFK SURJUDPPHV DQG KHU SHUVRQDO UHVHDUFK LQWHUHVWV DUH UHODWHG WR WKH GHYHORSPHQW RI SULPDU\UHIHUHQFH PHDVXUHPHQW PHWKRGV PDLQO\ 899I6IR )$$6(T$$6ICPM6DQGPHDVXUHPHQWVWDQGDUGVLQWKH¿HOGRISK\VLFRFKHPLFDO TXDQWLWLHV 6KH LV DFWLYH LQ LQWHUQDWLRQDO UHVHDUFK QHWZRUNV DQG LQ WKH GLVVHPLQDWLRQ RI NQRZOHGJH RQ LVVXHV UHODWHG WR PHWURORJ\ LQ FKHPLVWU\ XQFHUWDLQW\ WUDFHDELOLW\ YDOLGDWLRQCRMVHWF  6KHLVDPHPEHURIWKHTUDLQMLC®MDQDJHPHQW%RDUGDQG1DWLRQDOTUDLQMLC® WHDPOHDGHUIRURRPDQLD

12

About the Authors

Philip Taylor VHHDERYH

Chapter 3 Ljudmila Benedik LMXGPLOD %HQHGLN VWDUWHG KHU SURIHVVLRQDO FDUHHU LQ WKH ¿HOG RI UDGLRFKHPLVWU\ LQ ZKHQVKHMRLQHGWKH'HSDUWPHQWIRU1XFOHDUCKHPLVWU\DW-RåHI6WHIDQIQVWLWXWH LMXEOMDQD 6ORYHQLD  6KH ¿QLVKHG PK' VWXG\ LQ  DW )DFXOW\ IRU CKHPLVWU\ DQG CKHPLFDOTHFKQRORJ\8QLYHUVLW\RILMXEOMDQDZLWKWKHVLV'HYHORSPHQWRIPHWKRGVIRU GHWHUPLQDWLRQ RI ORZOHYHO XUDQLXP DQG WKRULXP E\ UDGLRFKHPLFDO QHXWURQ DFWLYDWLRQ DQDO\VLV +HU VFLHQWL¿F UHVHDUFK ZRUN ZDV PDLQO\ GHYRWHG WR UHVHDUFK LQ WKH ¿HOG RI GHWHUPLQDWLRQRIWUDFHHOHPHQWVE\QHXWURQDFWLYDWLRQDQDO\VLVDVZHOODVGHWHUPLQDWLRQ RI QDWXUDO DQG PDQPDGH UDGLRQXFOLGHV XVLQJ DOSKD EHWD DQG JDPPD VSHFWURPHWU\ DQG OLTXLG VFLQWLOODWLRQ WHFKQLTXH 6KH SXEOLVKHG UHVXOWV RI KHU UHVHDUFK ZRUN LQ RYHU  VFLHQWL¿F SDSHUV DQG SUHVHQWHG LW DW QXPHURXV LQWHUQDWLRQDO FRQIHUHQFHV 6KH ZDV LQYROYHGLQYDULRXVSURMHFWVFRQQHFWHGWRPHDVXUHPHQWRIHQYLURQPHQWDOUDGLRDFWLYLW\ 6KHZDVDFWLQJDVDPHQWRUIRUXQGHUJUDGXDWHDQGSRVWJUDGXDWHVWXGHQWV 6KH KDV EHHQ ZRUNLQJ DW IQVWLWXWH IRU RHIHUHQFH MDWHULDOV DQG MHDVXUHPHQWV RI WKH -RLQW RHVHDUFK CHQWUH RI WKH (XURSHDQ CRPPLVVLRQ ZKHUH VKH ZDV LQYROYHG DPRQJVWRYHULQWKHSURMHFW186IM(P 1XFOHDU6LJQDWXUHIQWHUODERUDWRU\MHDVXUHPHQW PURJUDPPH DQGLQSURMHFWUHODWHGWR(8GULQNLQJZDWHUGLUHFWLYH $W WKH SUHVHQW VKH ZRUNV DV D VHQLRU UHVHDUFK DVVRFLDWH DW WKH 'HSDUWPHQW RI (QYLURQPHQWDO6FLHQFHV-RåHI6WHIDQIQVWLWXWH 6KHLVDPHPEHURI6ORYHQLDQTUDLQMLC®WHDP

Urška Repinc 8UãND RHSLQF VWDUWHG KHU SURIHVVLRQDO FDUHHU DV UDGLRFKHPLVW DW WKH 'HSDUWPHQW RI (QYLURQPHQWDO 6FLHQFHV -RåHI 6WHIDQ IQVWLWXWH LMXEOMDQD 6ORYHQLD  LQ  +HU GLSORPDZRUNZDVGHYRWHGWRGHWHUPLQDWLRQRIRDE\OLTXLGVFLQWLOODWLRQFRXQWLQJ 6KHFRQWLQXHGWKHZRUNRQGHYHORSLQJQHZPHWKRGVEDVHGRQDOSKDEHWDVSHFWURPHWU\RU UDGLRFKHPLFDOQHXWURQDFWLYDWLRQDQDO\VLVIQVKH¿QLVKHGKHUPK'ZKLFKFRQVLVWV RIGHYHORSHGSURFHGXUHVIRUGHWHUPLQDWLRQRIYDQDGLXPXUDQLXPPDQJDQHVHDQGFREDOW YLDLQGXFHGWKHLUVKRUWOLYHGQXFOLGHV98MQDQGPCRUHVSHFWLYHO\+HU UHVHDUFK ZRUN ZDV QRW IRFXVHG RQO\ RQ D VLQJOH HOHPHQW GHWHUPLQDWLRQ EXW LPSURYHG SURFHGXUHVIRUWKHLUVLPXOWDQHRXVGHWHUPLQDWLRQ IQ)HEUXDU\VKHMRLQHGWKHIQVWLWXWHIRUTUDQVXUDQLXP(OHPHQWVRIWKH-RLQW RHVHDUFKCHQWUHRIWKH(XURSHDQCRPPLVVLRQ.DUOVUXKH*HUPDQ\DVDSRVWGRFIHOORZ

13

Practical examples on traceability, measurement uncertainty and validation in chemistry

Monika Inkret MRQLNDIQNUHWVWDUWHGKHUFDUHHUDWWKHMHWURORJ\IQVWLWXWHRIWKHRHSXEOLFRI6ORYHQLD LQLDERUDWRU\IRUPUHFLRXVMHWDOV )RUVL[\HDUVVKHKDVEHHQZRUNLQJDIWHUZDUGVDWWKHIQVWLWXWHIRURHIHUHQFHMDWHULDOV DQGMHDVXUHPHQWVRIWKH-RLQWRHVHDUFKCHQWUHRIWKH(XURSHDQCRPPLVVLRQTKHUHVKH ZDVZRUNLQJRQWKH$YRJDGURSURMHFWIRUWKHUHGHWHUPLQDWLRQRIWKH$YRJDGURFRQVWDQW +HUPDLQUHVHDUFKWRSLFZDVVLOLFRQLVRWRSHUDWLRPHDVXUHPHQWVDQGVLOLFRQPRODUPDVV GHWHUPLQDWLRQ XVLQJ GLIIHUHQW PDVV VSHFWURPHWULF WHFKQLTXHV WKHUPDO LRQL]DWLRQ DQG HOHFWURQLPSDFW  $IWHU GHIHQGLQJ KHU GRFWRUDO GLVVHUWDWLRQ LQ MDUFK  DW WKH 8QLYHUVLW\ RI LMXEOMDQD PDVV VSHFWURPHWU\ DQG PHWURORJ\ EHLQJ WKH FHQWUDO WRSLF VKH ZRUNHG DV D SRVWGRF DW 8QLYHUVLW\ RI 6LQJDSRUH )DFXOW\ RI 6FLHQFH LQ WKH LDERUDWRU\ IRU WUDFH PHWDOVGHWHUPLQDWLRQLQIRRGDQGELRORJLFDOVDPSOHV 6LQFHMD\VKHKDVEHHQZRUNLQJLQCLQNDUQDCHOMHCHOMH6ORYHQLDLQR ' 8QLWZLWKWKHUHVHDUFKIRFXVHGRQSURGXFWLRQRIQDQRWLWDQLXPGLR[LGHZKLWHSLJPHQW CXUUHQWO\ VKH LV HPSOR\HG DW .UND 1RYR PHVWR ZKHUH VKH LV GHDOLQJ ZLWK WKH TXDOLW\LVVXHVUHODWHGWRSKDUPDFHXWLFDOV 6KHLVDPHPEHURI6ORYHQLDQTUDLQMLC®WHDP

Chapter 4 Allan Künnapas $OODQ.QQDSDVUHFHLYHGKLVM6FLQDW8QLYHUVLW\RITDUWX(VWRQLDIQMDVWHUV WKHVLV KH VWXGLHG WKH LPSOHPHQWDWLRQ RI QX(CK(R6 PHWKRG LQ LCM6 LQ )LQQLVK CXVWRPV LDE (VSRR )LQODQG  TKH H[DPSOH ³'HWHUPLQDWLRQ RI PRODU PHVWLFLGHV E\ LLTXLGCKURPDWRJUDSK\MDVV6SHFWURPHWU\´ZDVFRPSLOHGLQFRQMXQFWLRQZLWKKLV%6F ZRUNLQYROYLQJWKHGHYHORSLQJDSHVWLFLGHUHVLGXHVDQDO\WLFDOPHWKRG +HLVFXUUHQWO\DGRFWRUDOVWXGHQWDW8QLYHUVLW\RITDUWXDQGLQKLVGRFWRUDOWKHVLV KH ZLOO VWXG\ LVRWRSH GLOXWLRQ PDWUL[ HIIHFW DQG VXSSUHVVLRQ LQ LCM6 DQDO\VLV +H KDVEHHQLQYROYHGLQSURMHFWVFRQFHUQLQJIXUWKHUZLGHQLQJSHVWLFLGHUHVLGXHVDQDO\WLFDO PHWKRGLPSOHPHQWLQJQX(CK(R6LQJRYHUQPHQWDOODERUDWRULHVDQDO\VLVRIDQWLELRWLFV LQVHZDJHVOXGJH+LVUHVHDUFKLQWHUHVWVLQFOXGHFKURPDWRJUDSKLFVHSDUDWLRQPHWKRGV HVSHFLDOO\ LC DQG LCM6 PDVV VSHFWURPHWU\ UHVLGXHV DQDO\WLFDO PHWKRGV I'M6 PHWKRGGHYHORSPHQWVDPSOHSUHSDUDWLRQ

Koit Herodes .RLW +HURGHV UHFHLYHG KLV PK' LQ  DW 8QLYHUVLW\ RI TDUWX (VWRQLD +H KDV LQYHVWLJDWHG ELQDU\ SURSHUWLHV RI VROYHQW PL[WXUHV E\ PHDQV RI LRQLF HTXLOLEULD DW 8QLYHUVLW\ RI %DUFHORQD 6SDLQ  DQG (T   SDUDPHWHUV $W 8QLYHUVLW\ RI )UHLEXUJ *HUPDQ\ KHDFTXLUHGVNLOOVRIV\QWKHVL]LQJSKRVSKD]HQHVXSHUEDVHVLQVWULFWO\QRQ DTXHRXVFRQGLWLRQV

14

About the Authors

+HLVFXUUHQWO\ZRUNLQJDVDVVRFLDWHSURIHVVRURIDQDO\WLFDOFKHPLVWU\DW8QLYHUVLW\ RITDUWXTRJHWKHUZLWKKLVVWXGHQWVKHLVGHYHORSLQJDQGYDOLGDWLQJVDPSOHSUHSDUDWLRQ DQGOLTXLGFKURPDWRJUDSKLF LCM6 DQDO\VLVPHWKRGVIRUVPDOOPROHFXOHVLQGLIIHUHQW PDWULFHV HJ SHVWLFLGH UHVLGXHV LQ IRRG SKDUPDFHXWLFDO UHVLGXHV LQ VHZDJH VOXGJH DPLQR DFLGV LQ KRQH\ SKDUPDFHXWLFDOV LQ ELRORJLFDO ÀXLGV HWF MRUH IXQGDPHQWDO UHVHDUFKWRSLFVLQFOXGHHOHFWURVSUD\LRQL]DWLRQSURFHVVDQGHI¿FLHQF\VWXGLHVDQGQRYHO EXIIHUFRPSRXQGVIRULCM6 $W8QLYHUVLW\RITDUWXKHLVKHDGRI8QLYHUVLW\THVWLQJCHQWUHDXQLWWKDWSURYLGHV DQDO\WLFDOVHUYLFHVWRLQGXVWU\DQGRWKHUODERUDWRULHV

Ivo Leito PURIIYRLHLWRUHFHLYHGKLVPK'LQDW8QLYHUVLW\RITDUWX(VWRQLD+HKDVZRUNHG DWVHYHUDOXQLYHUVLWLHVDQGUHVHDUFKLQVWLWXWHVLQ)UDQFH6SDLQ-DSDQDQG%HOJLXPDQG LV FXUUHQWO\ ZRUNLQJ DV SURIHVVRU RI DQDO\WLFDO FKHPLVWU\ DW 8QLYHUVLW\ RI TDUWX +LV UHVHDUFK LQWHUHVWV LQFOXGH H[SHULPHQWDO DQG WKHRUHWLFDO VWXGLHV RI DFLGEDVH HTXLOLEULD DQGVROYHQWHIIHFWVLQQRQDTXHRXVVROYHQWVDQGLQWKHJDVSKDVHPHWURORJ\LQFKHPLVWU\ PHDVXUHPHQW XQFHUWDLQW\ LQ FKHPLVWU\ DQDO\WLFDO FKHPLVWU\ LQVWUXPHQWDO DQDO\WLFDO PHWKRGV IR VSHFWURVFRS\ *CM6 LCM6 6(M ('6 HWF  DSSOLHG WR DQDO\VLV RI PDWHULDOVDQGREMHFWVRIFXOWXUDOKHULWDJHDQGPHWKRGLFDODVSHFWVRIWHDFKLQJDQDO\WLFDO FKHPLVWU\ DQG PHWURORJ\ LQ FKHPLVWU\ KWWSWHUDFKHPXWHHaLYRR'KWPO  1XPEHU RI LQWHUQDWLRQDO VFLHQWL¿F SXEOLFDWLRQV  DOO LQ MRXUQDOV LQGH[HG E\ I6I  +H KDV VXSHUYLVHG  PK' VWXGHQWV PRUH WKDQ  M6F DQG PRUH WKDQ  %6F VWXGHQWV +H LV FXUUHQWO\VXSHUYLVLQJPK'VWXGHQWVM6FVWXGHQWVDQG%6FVWXGHQW+HKDVVHWXS DQGLVWKHSURJUDPGLUHFWRURIWKHLQWHUQDWLRQDOMDVWHUCXUULFXOXP$SSOLHGMHDVXUHPHQW 6FLHQFH KWWSZZZXWHHDPV  DQG LV WKH FRRUGLQDWRU RI WKH (XURPDVWHU FRQVRUWLXP MHDVXUHPHQW6FLHQFHLQCKHPLVWU\ KWWSZZZPVFHXURPDVWHUHX 

Chapter 5 Bertil Magnusson %HUWLOMDJQXVVRQVWDUWHGDVDPDULQHFKHPLVWORRNLQJIRUWUDFHVRIPHWDOVLQWKHRFHDQV ULYHUVODNHVDQGUDLQLQWKH¶V$IWHUPK'KHMRLQHGDFKHPLFDOFRPSDQ\(NDCKHPLFDOV ZLWKLQ$.=212%(LDQGZRUNHGWKHUHDVDVSHFLDOLVWLQDQDO\WLFDOFKHPLVWU\PDLQO\ ZLWKVSHFWURVFRS\ ;R);R'DQGICP DQGZHWFKHPLVWU\ IQKHMRLQHGWKH6PTHFKQLFDORHVHDUFKIQVWLWXWHRI6ZHGHQDQGLVFXUUHQWO\ ZRUNLQJ ZLWK TXDOLW\ LQ PHDVXUHPHQWV MHWURORJ\ LQ CKHPLVWU\ D UHVHDUFK DUHD RQ LQWHUQDWLRQDOFRPSDUDELOLW\DQGWUDFHDELOLW\RIFKHPLFDOPHDVXUHPHQWUHVXOWV$PDMRU SDUW LV WHDFKLQJ DQG ZULWLQJ JXLGHOLQHV DQG UHVHDUFK SDSHUV UHJDUGLQJ PHDVXUHPHQW TXDOLW\IPSRUWDQWSDUWRIKLVZRUNLVHGXFDWLRQIRUDQDO\WLFDOODERUDWRULHVLQQ$QC IQ 1RUGLF FRRSHUDWLRQ KH KDV ZULWWHQ D +DQGERRN RQ MHDVXUHPHQW 8QFHUWDLQW\ IRU (QYLURQPHQWDOLDERUDWRULHV 1RUGWHVWWHFKQLFDOUHSRUW DQGD+DQGERRNIRUIQWHUQDO

15

Practical examples on traceability, measurement uncertainty and validation in chemistry

QXDOLW\CRQWUROIRU(QYLURQPHQWDOLDERUDWRULHV UHSRUW +HLVDOVRZRUNLQJZLWK SULPDU\PHDVXUHPHQWVXVLQJIVRWRSH'LOXWLRQICPM6;R)DQGFRQGXFWLYLW\ +HLVDPHPEHURIWKHTUDLQMLC®(GLWRULDO%RDUGDQGDWHDPOHDGHURIWKH1RUG %DOWLFTUDLQMLC®WHDP

16

Chapter 1

Analysis of Gold Alloys by Flame Atomic Absorption Spectrometry Veselin Kmetov, Emilia Vassileva u u u u

TrainMiC example summary form (‘blue page’) A short introduction to the analytical procedure (‘slides’) All input needed to do the three exercises (‘yellow pages’) The solved exercises (‘green pages’) 17

Practical examples on traceability, measurement uncertainty and validation in chemistry

TrainMiC example summary form

I. General information about the example

18

Measurand

Mass fraction of Au in gold alloys (‰)

Example number

Ex-06

Authors of the example

Veselin Kmetov, Emilia Vassileva

Analytical procedure

Determination of gold in jewellery gold alloys by flame atomic absorption spectrometry

Customer’s requirement

U = 9 ‰ (k = 3)

Analysis of Gold Alloys by Flame Atomic Absorption Spectrometry

II. Attached files

2 - Yellow

1-I

File number, type and name Ex-06-1-I-Aualloys-FAAS-2006Ver1.ppt

About the analytical procedure: short introduction

9

PART I

9

PART II Ex-06-2-Y-Aualloys-FAAS-2006Ver1.doc

PART III

3 - Green

PART IV

EX-06-3-G-Aualloys-FAAS-2006Ver1.doc

File is attached Yes No

Content of the file

Description of the analytical procedure The customer’s requirements concerning the quality of the measurement result Validation of the measurement procedure – relevant equations and measurement data Measurement uncertainty of the result – relevant equations and measurement data

Each participant receives own copy and may keep it

9 9

Establishing traceability in analytical chemistry

9

PART II

Single laboratory validation of measurement procedures

9

Building an uncertainty budget

9

Addendum 1: By spreadsheet approach

9

Addendum 2: By dedicated software

Given by the lecturer

9

PART I

PART III

Remark

9

III. History of the example Version

Uploaded on the webhotel

Short description of the change

0

April 2007

-

1 2

19

Practical examples on traceability, measurement uncertainty and validation in chemistry

A short introduction to the analytical procedure

$QDO\VLVRI*ROG$OOR\VE\)$$6 6FRSHRIWKHSUHVHQWDWLRQ ‡ 7KHDQDO\WLFDOSURFHGXUHDQGWKHFXVWRPHU¶VUHTXLUHPHQWV ‡ $ERXWµWKHFKHPLVWU\¶ DQGWKHPHDVXUHPHQWPHWKRG ‡ 0RGHOHTXDWLRQ

7KHDQDO\WLFDOSURFHGXUHDQGWKH FXVWRPHU¶VUHTXLUHPHQWV

20

‡

7KHWUDGLWLRQDOLQWHUQDWLRQDOO\UHFRJQLVHGPHWKRGLVEDVHGRQFXSHOODWLRQ ILUH DVVD\ ,62 6WDQGDUG 

‡

7KHILQHQHVVRISUHFLRXVPHWDODOOR\VDUHVSHFLILHGLQ,62 DFFRUGLQJWRWKHSXULW\RIJROGDVÅDQG DQG NDUDWVUHVSHFWLYHO\ 2QHNDUDWLVHTXDOWRÅ

‡

7KH$XDQDO\VLVKDVWRNHHSWKHH[SDQGHGXQFHUWDLQW\ N  OHVVWKDQÅ

Analysis of Gold Alloys by Flame Atomic Absorption Spectrometry

×

21

Practical examples on traceability, measurement uncertainty and validation in chemistry

0RGHOHTXDWLRQ *ROGFRQWHQW Å LQMHZHOOHU\JROGDOOR\V

: B R

22

9B  *YLDOV B   u u u &[ u  PB  *3 B  5

Analysis of Gold Alloys by Flame Atomic Absorption Spectrometry

6RPHPRUHHTXDWLRQV  &DOFXODWLRQRIVLJQDOVWDQGDUGXQFHUWDLQW\ 5HFRYHU\FRUUHFWLRQ

: B : B UHI B 

5

X B $ B RQH B VHW

XB $

1

%UDFNHWLQJFDOLEUDWLRQ

‡ 7KHVHOHFWHGFDOLEUDWLRQUDQJHFRUUHVSRQGVWR WKH UDQJH ± NW UHFDOFXODWHG IRU DQDO\]HGDOOR\ ‡ ,W LV SURYHG WKDW WKH 61 UDWLRQ LV PLQLPXP DQG WKH FDOLEUDWLRQ LQWHUYDO EHORQJV WR WKH OLQHDUUDQJH

&[

&  VW $B 6W   $;  &  VW  $ [  $ 6W



$ 6W   $ 6W \ [ 

5  

 $EVRUEDQFH

‡ 7ZR FDOLEUDWLRQ VWDQGDUG VROXWLRQV XVHG DUH ZLWK $X FRQFHQWUDWLRQ  DQG  PJ NJ UHVSHFWLYHO\LQ1+&O

              $XPJNJ

23

Practical examples on traceability, measurement uncertainty and validation in chemistry

All input needed to do the three exercises ‘yellow pages’

Analytical procedure Determination of gold in jewellery gold alloys by Flame Atomic Absorption Spectrometry

PART I ...................................................................................................................................25 Description of the analytical procedure PART II .................................................................................................................................33 The customer’s requirements concerning the quality of the measurement result PART III ................................................................................................................................34 Validation of the measurement procedure – relevant equations and measurement data PART IV ................................................................................................................................35 Measurement uncertainty of the result – relevant equations and measurement data

24

Analysis of Gold Alloys by Flame Atomic Absorption Spectrometry

PART I. Description of the analytical procedure

Task description TKH¿QHQHVVRIMHZHOOHU\JROGDOOR\VGHSHQGVIURPWKH$XFRQWHQGLQWKHXVHGPDWHULDO WKDWPXVWEHVWULFWO\PDUNHGTKLVPDUNLVJLYHQE\WKHMLQLVWU\RI)LQDQFHVDIWHUWHVWLQJ LQDFFUHGLWHGIRUWKHVFRSHODERUDWRULHVTKHVHWRIPDUNVRISUHFLRXVPHWDODOOR\VDUH VSHFL¿HGLQISO 9202:1991DQGDUHQRPLQDWHGDFFRUGLQJWRWKHSXULW\IRUJROGmm DVÅDQGZKLFKFRUUHVSRQGWRDQGFDUDWVUHVSHFWLYHO\ 2QH FDUDW LV HTXDO WR  Å IQ D FRPPRQ SUDFWLFH  Å  FDUDWV  JROG DOOR\VDUHXVHGIRUMHZHOOHU\WKHUHIRUHVXFKVDPSOHVDUHPRUHRIWHQDVXEMHFWRIDQDO\VHV IPSRUWDQWFRQFOXVLRQVDQGGHFLVLRQVOLQNHGWRWKHFXVWRPHULQWHUHVWSURWHFWLRQVSKHUH GHULYHIURPPHDVXUHPHQWUHVXOWVWKDWKDYHWREHEDVHGRQUHOLDEOHGDWDRIJRRGTXDOLW\ HJ VXI¿FLHQWO\ VPDOO XQFHUWDLQW\  TKH OHJLVODWLRQ UHTXLUH WKH DFWXDO ¿QHQHVV RI MHZHOOHU\ DOOR\V VKDOO QRW EH OHVV E\ PRUH WKDQ WKUHH RQHWKRXVDQGWK SDUWV WKDQ WKH ¿QHQHVV LQGLFDWHGE\ WKH PDUN VWDPSHGTKHUHIRUH WKH WHVWLQJ PHWKRG VKRXOG EH DEOH WR SURYLGH UHVXOWV ZLWK KLJK DFFXUDF\ DQG ORZ XQFHUWDLQW\ OHVV than  Å k    RI DQDO\WLFDO PHDVXUHPHQWV TKH FDOFXODWHG H[SDQGHG XQFHUWDLQW\ IRU $X PDVV IUDFWLRQ VKRXOGEHOHVVWKDQÅ k   TKHWUDGLWLRQDODQGLQWHUQDWLRQDOO\UHFRJQLVHGPHWKRGIRUJROGDOOR\DQDO\VLVLVEDVHG RQWKHFXSHOODWLRQ ¿UHDVVD\  I626WDQGDUG . RHFHQWO\RWKHUDOWHUQDWLYHPHWKRGV EDVHGRQDWRPLFVSHFWURPHWU\KDYHEHHQVXJJHVWHG 1. ISO/TC 174. rev.N71. Gouda 1992 Determination of gold in gold jewelry allows – ICP solution spectrometric method using yttrium as internal standard 2. CNR-PRO Art Project (1998) Tecniche spettrometriche alternative alla copellazione per il saggio delle leghe dioro

Scope TKLVH[DPSOHGHVFULEHVDODERUDWRU\GHYHORSHGPHWKRGIRUGHWHUPLQDWLRQRIJROGDIWHUaqua regiaVROXELOLVDWLRQDQGPHDVXUHPHQWVE\ÀDPHDWRPLFDEVRUSWLRQVSHFWURPHWU\ )$$6  TKHUDQJHRIDSSOLFDWLRQLVMHZHOOHU\DOOR\VFRQWDLQLQJJROG“Å “ FDUDWV TKHSURFHGXUHLVRSWLPLVHGWR¿WIRUSXUSRVHE\PHDQVRIDV\VWHPIRUDLUVHJPHQWHG GLVFUHWHLQWURGXFWLRQ $6'I WKDWDOORZVVLJQDOVWREHDFFXPXODWHGZLWKRXWGULIW([WHUQDO SURFHGXUHIRUSVHXGRVWHDG\VWDWHVLJQDOVPRRWKLQJDQGHQVHPEOHVXPPDWLRQLVXVHGIRU EHWWHULQJWKHUHSHDWDELOLW\RIWKHLQVWUXPHQWDOSHUIRUPDQFH TKHH[SHULPHQWDOSURWRFROLVVKRZQLQWKH)LJXUH

25

Practical examples on traceability, measurement uncertainty and validation in chemistry



Figure 3. Flow chart of the analytical procedure for determination of gold in gold alloys

26

Analysis of Gold Alloys by Flame Atomic Absorption Spectrometry

Reagents  (MHUFNFODVVSD−YY+12IUHVKO\SUHSDUHGaqua regia1+CO±VDOW  PXUH$XFHUWL¿HGIURP1RQ)HUURXVMHWDOOXUJLFDOPODQWPORYGLY

Apparatus  )ODPH$WRPLF$EVRUSWLRQ6SHFWURPHWHUHTXLSSHGZLWKKROORZFDWKRGHODPSIRU JROG  'LVFUHWHVDPSOHLQWURGXFWLRQV\VWHP $6'I   %DODQFHd J FHUWL¿HG±%'6(1  +RWSODWH  PLSHWWHYDULDEOH−—LJUDYLPHWULFDOO\FKHFNHG FHUWL¿HGd LQ− —LUDQJH  9ROXPHWULFÀDVNPL ODERUDWRU\JODVVZDUHFODVV$FHUWL¿HGd PLIRU ƒC  9ROXPHWULFÀDVNPL ODERUDWRU\JODVVZDUHFODVV$FHUWL¿HGd PLIRU ƒC  PRO\SURS\OHQHYLDOVJ $6'IDXWRVDPSOHUNLW

Description of the analytical procedure Sample preparation procedure *ROG DOOR\ VDPSOHV DUH VWUHWFKHG WR IROLR ZLWK − PP WKLFNQHVV TKH VXUIDFH LV ZDVKHG E\   YY +12$ GU\ SLHFH RI  J DFFXUDWHO\ ZHLJKHG WR “ J LV GLUHFWO\GLVVROYHGLQWRDYROXPHWULFÀDVNRIPLE\PLIUHVKO\SUHSDUHGaqua regia TKHÀDVNLVKHDWHGRQFHUDPLFKRWSODWHIRUPLQ'XULQJWKLVSURFHVV$JSUHFLSLWDWHV DV$JCO$JCOLVGLVVROYHGE\DGGLQJRIJ1+COWRWKHFRROHGVROXWLRQDQGYROXPH LVPDGHXSWRWKHPDUN PL ZLWKXOWUDSXUHZDWHUDW ƒC  TKHVROXWLRQLVGLOXWHGDGGLWLRQDOO\E\WUDQVIHUULQJJZLWKPLFURSLSHWWHWRDFRQLFDO YLDODGGLQJ1+COLQRUGHUWRNHHSWKHVROXWLRQKRPRJHQHRXVZLWK¿QDOZHLJKWRI JJUDYLPHWULFDOO\FRQWUROOHG PURFHGXUDO EODQN LV VXEMHFW WR H[DFWO\ WKH VDPH VDPSOH SUHSDUDWLRQ SURFHGXUH DV WKH DQDO\VHGVDPSOH

Calibration 6WRFNVWDQGDUGVROXWLRQZDVPDGHLQODERUDWRU\E\GLVVROXWLRQRIJ$XZLWKSXULW\ ZLWKPLaqua regiaDQG¿OOHGXSWRJZLWK1+COTZRFDOLEUDWLRQ

27

Practical examples on traceability, measurement uncertainty and validation in chemistry

VWDQGDUGVDUHREWDLQHGLQSRO\SURS\OHQHYLDOVDIWHUIXUWKHUGLOXWLRQRIJDQGJ IURPVWRFNVWDQGDUGVROXWLRQZLWKSURFHGXUDOEODQNVROXWLRQWRJ JUDYLPHWULFDOO\ FRQWUROOHG  TKHVHOHFWHGFDOLEUDWLRQUDQJHUHFDOFXODWHGIRUDQDO\VHGDOOR\FRUUHVSRQGVWRWKHUDQJH ±FDUDWV TKHFDOLEUDWLRQVWDQGDUGVDUHVXEMHFWWRWKHVDPHVDPSOHSUHSDUDWLRQSURFHGXUHDVWKH DQDO\VHGVDPSOHTKHH[DFWPDWFKLQJRIVDPSOHDQGVROXWLRQXVHGIRUFDOLEUDWLRQDOORZV WRDYRLGWKHLQÀXHQFHRIPDWUL[HIIHFWRQREWDLQHGVLJQDOV

Atomic absorption measurement *ROG LV GHWHUPLQHG E\ DLU VHJPHQWHG GLVFUHWH LQWURGXFWLRQ ÀDPH DWRPLF DEVRUSWLRQ VSHFWURPHWU\ $6'I)$$6  XVLQJ EUDFNHWV FDOLEUDWLRQ IQ RUGHU WR LPSURYH WKH UHSHDWDELOLW\ RI DEVRUSWLRQ PHDVXUHPHQWV WKH IROORZLQJ H[SHULPHQWDO FRQGLWLRQV DUH UHVSHFWHG  :RUNLQJ ZLWK WKH EHVW 6I*1$L12I6( UDWLR DFFRUGLQJ WKH VFHGDVWLF FXUYHV VLJQDOVQHDUDEVRUEDQFHXQLWV DQGLQYHU\QDUURZFRQFHQWUDWLRQLQWHUYDO − ȝJJ ZLWKOLQHDUUHVSRQVHDFFRUGLQJWKH%HHU¶VORZ  RHPRYLQJ  WKH GULIW E\ DVSLUDWLRQ ZDVKLQJ VROXWLRQ EHWZHHQ LQMHFWLRQV DQG DSSOLFDWLRQRIVWDQGDUGVDPSOHVWDQGDUGVHTXHQFH 6WBVDPSOHB6W   $XWR]HURSHUIRUPDQFHEHIRUHHYHU\LQMHFWLRQ  $SSO\LQJVLJQDOVPRRWKLQJDQGHQVHPEOHVXPPDWLRQ IQVWUXPHQWDOSDUDPHWHUVDUHGHVFULEHGLQTDEOH 6LJQDOVDUHDFFXPXODWHGLQWKHVDPSOLQJVHW 6WBVDPSOHB6W E\SUHFLVHWLPHFRQWURO V DQGDUHVPRRWKHGE\PHDQVRIH[WHUQDOGDWDWUHDWPHQWVRIWZDUH6LJQDOSUR¿OHV DUHVXPPDWHGDVHQVHPEOHVIURP1UHSOLFDWHVRIWKHVDPSOLQJVHWIRUWKH6WVDPSOHDQG 6WUHVSHFWLYHO\DQGIRUHDFKRIWKHPDQHQVHPEOHSVHXGRSODWHDXSUR¿OHLVREWDLQHG TKHVWDEOHSODWHDXSDUW V RIVXPPDWHGHQVHPEOHVLVXVHGIRUFDOLEUDWLRQDQGTXDQWLWDWLYH FDOFXODWLRQV6WDQGDUGXQFHUWDLQW\RIWKHVLJQDOVUHSHDWDELOLW\ZDVFDOFXODWHGDVVWDQGDUG GHYLDWLRQRIDEVRUEDQFHPHDVXUHGLQWKHSODWHDXSDUW V 

28

Analysis of Gold Alloys by Flame Atomic Absorption Spectrometry

Table 1. Instrumental parameters for ASDI-FAAS determination of Au FAAS parameters

Values

ASDI parameters

Au spectral line [nm] Au spectral slit [nm]

242.8 0.7

Ql- aspiration rate 6.4 mL min-1 checked by BDW Injection time 5 s; Injection volume ≈ 0.530 μL

Au hollow cathode lamp current [mA]

10

Washing time 10 s; Total replicate time 15 s

Air/C2H2 units Observation high [mm]

50/18 6

Smoothing Savitzky-Golay 24 points Ensemble summation N signal profiles

Working range μg g-1 Deuterium BG corrector

37−43 OFF

Pseudo plateau 3 s Sampling mode (St1 _ sample _ St2 ) × N

Readings – points [s]

50

Total time for one set 66 s

29

Practical examples on traceability, measurement uncertainty and validation in chemistry

Calculations Concentration of initial standard solution made up from pure gold C_ Au 999.9 =

m_ pureAu × Au_ purity G _100

× 104

C_ Au 999.9

FRQFHQWUDWLRQRILQLWLDOVWDQGDUGVROXWLRQPDGHXSIURPSXUHJROG>μJJ@

m_ pureAu

PDVVZHLJKHGRISXUHJROG>J@

GB

PDVVRIWKHVROXWLRQLQWKHYROXPHWULFÀDVNPDGHXSWRJZLWK 1+CO>J@

Au− purity

WKHSXULW\RIJROGVWDWHGLQWKHFHUWL¿FDWH>@



FRQYHUVLRQ IDFWRU IURP  WR ȝJ J ȡ §  HTXDOLVHG IRU VWDQGDUG DQG VDPSOHVLQ1+CO

Concentration of calibration standard solutions C _ St1 = C Au _999.9 ×

G _100

C _ St 2 = C Au _999.9 ×

G_0.43 G _100

C _ St1 C _ St 2

CRQFHQWUDWLRQRI$XZRUNLQJVWDQGDUGVROXWLRQV>ȝJJ@ CBStIRUORZ ȝJJ DQGCBStIRUKLJK ȝJJ 

C Au _999.9

CRQFHQWUDWLRQRI$XVWDQGDUGVROXWLRQ$X>ȝJJ@SUHSDUHGIURP SXUHJROG

G_0.37 G_0.43 G_100

30

G_0.37

MDVVHVRIWKHLQLWLDO$XVWDQGDUGVROXWLRQWUDQVIHUUHGIRUWKHSUHSDUDWLRQ RIFDOLEUDWLRQVROXWLRQVCBSt ȝJJ RUCBSt ȝJJ >J@JRU JUHVSHFWLYHO\ MDVV RI JUDYLPHWULFDOO\ FRQWUROOHG FDOLEUDWLRQ VWDQGDUG VROXWLRQV DIWHU DGGLQJ1+COLQSRO\SURS\OHQHYLDOV>J@

Analysis of Gold Alloys by Flame Atomic Absorption Spectrometry

Bracketing calibration Cx =

C− st1 ( A_ St 2 − A _ X ) + C− St 2 ( A− x − A− St1 ) A− St 2 − A− St1

CRQFHQWUDWLRQRI$XLQWKHDQDO\VHGVROXWLRQ>ȝJJ@

Cx

C− St 2

CRQFHQWUDWLRQ RI WKH ORZHU FDOLEUDWLRQ VWDQGDUG VROXWLRQ XVHG IRU EUDFNHWLQJFDOLEUDWLRQ>ȝJJ@ CRQFHQWUDWLRQ RI WKH KLJKHU FDOLEUDWLRQ VWDQGDUG VROXWLRQ XVHG IRU EUDFNHWLQJFDOLEUDWLRQ>ȝJJ@

A− St1

$EVRUEDQFHPHDVXUHGIRUWKHORZHUFDOLEUDWLRQVWDQGDUGVROXWLRQCB6W

A_ St 2

$EVRUEDQFHPHDVXUHGIRUWKHKLJKHUFDOLEUDWLRQVWDQGDUGVROXWLRQCB6W

C− St1

$EVRUEDQFHPHDVXUHGIRUWKHDQDO\VHGVDPSOHVROXWLRQ

A_ X

Calculation of Au mass fraction (W_‰) in analysed sample WBÅ=

1 V_ 50 1 Gvials _12 × × × Cx 1000 m_ 0.1 R GP _ 0, 4

WBÅ

¿QDOFRQFHQWUDWLRQRI$XLQWHVWHGMHZHOOHU\JROGDOOR\ZZ>Å@ YROXPHRIWKHVROXWLRQLQWKHYROXPHWULFÀDVN>PL@

V_ 50

PDVVRIDQDO\VHGDOOR\VDPSOH>J@

m_ 0.1 Gvials _12

ZHLJKWRI¿QDOVDPSOHVROXWLRQSUHSDUHGLQYLDOV>J@

GP _ 0.4

PDVVRI$XVDPSOHVROXWLRQWDNHQIURPVB>J@

R

FRUUHFWLRQIRUUHFRYHU\

Combined model equation for calculation of Au content (‰) WBÅ =

(

)

1 ⎛ V _ 50 Gvials _ 12 ⎞ CAu_999.9 GP _0.37 ( A_ St 2 − A _ X ) + GP _0.43 ( A− X − A− St1 ) 1 × × × × A− St 2 − A− St1 R G_10 1000 ⎜⎝ m _ 0.1 GP _ 0.4 ⎟⎠

31

Practical examples on traceability, measurement uncertainty and validation in chemistry

Calculation of signal standard uncertainty estimated as standard deviation u_ A =

u_ A _ one _ set N

u_ A

u_ A _ one _ set

N

32

FDOFXODWHG VWDQGDUG XQFHUWDLQW\ IURP WKH SODWHDX SDUW  V  RI WKHDEVRUEDQFHVLJQDODIWHUHQVHPEOHDYHUDJLQJRINVHWVRIVDPSOLQJ 6WBVDPSOHB6W FDOFXODWHG VWDQGDUG XQFHUWDLQW\ IURP WKH SODWHDX SDUW  V  RI WKH DEVRUEDQFH VLJQDO REWDLQHG IURP RQH VHW RI VDPSOLQJ 6W B VDPSOH B6W QXPEHURIVHWVSHUIRUPHGDQGVXPPDWHGDVHQVHPEOH

Analysis of Gold Alloys by Flame Atomic Absorption Spectrometry

PART II. The customer’s requirements concerning quality of the measurement result ([SDQGHGPHDVXUHPHQWXQFHUWDLQW\Å k 

33

Practical examples on traceability, measurement uncertainty and validation in chemistry

PART III. Validation of the measurement procedure – relevant equations and measurement data TKHSURFHGXUHKDVEHHQGHYHORSHGLQWKHODERUDWRU\WKXVDIXOOYDOLGDWLRQPXVWEH SHUIRUPHG +RZHYHUIRUWKHSXUSRVHVRIWKLVH[HUFLVHUHFRYHU\ R DQGUHSHDWDELOLW\ZLOOEH FDOFXODWHGRQO\ (TXDWLRQV See Part I MHDVXUHPHQWGDWD Recovery: CXSHOODWLRQPHWKRGÅ $'I)$$6Å Repeatability: Å Å Å Å Å Å

34

Analysis of Gold Alloys by Flame Atomic Absorption Spectrometry

PART IV. Measurement uncertainty of the result – relevant equations and measurement data CDOFXODWH FRPELQHG DQG H[SDQGHG XQFHUWDLQW\ k    IURP WKH IROORZLQJ PHDVXUHPHQWGDWD Input quantity

Value

Unit

Standard uncertainty

Remark

V_ 50

50

mL

0.0379

Volume of analysed solution

V_100

100

mL

0.0697

Volume of stock standard solution

m_0.1

0.1001

g

0.0002

Mass of analysed alloy sample

Gvials _12

12.0030

g

0.0008

Mass of sample solution prepared in vials

GP _ 0.4

0.4015

g

0.0009

Mass of Au sample solution taken from V_50 flask

m_ pureAu

0.1004

g

0.0002

Mass weighed of pure gold

Au_ purity

99.99

%

0.0058

The purity of gold stated in the certificate

G p _0.37 G p _0.43

0.3701 0.4302

g

0.0006

Masses of the stock Au standard solution transferred for the preparation of calibration solutions C_St1 and C_St2

G_10

10.0321

g

0.0008

Mass of calibration standard solutions

A− St1 A_ St 2

0.5203 0.6041

AU

0.0010 0.0011

Absorbance measured for calibration standard solutions

AX

0.5488

AU

0.0011

Absorbance measured for the analysed sample solution

R

1.002

-

0.0025

Recovery

35

Practical examples on traceability, measurement uncertainty and validation in chemistry

The solved exercises ‘green pages’

TrainMiC Exercises Analytical procedure Determination of gold in jewellery gold alloys by flame atomic absorption spectrometry

EXERCISE 1: Establishing traceability in analytical chemistry EXERCISE 2: Single laboratory validation of measurement procedures Part I: General issues Part II: Parameters to be validated Part III: Some calculations and conclusions

EXERCISE 3: Building an uncertainty budget Addendum I: By spreadsheet approach Addendum II: By dedicated software

36

Analysis of Gold Alloys by Flame Atomic Absorption Spectrometry

ESTABLISHING TRACEABILITY IN ANALYTICAL CHEMISTRY EXERCISE 1. Specifying the analyte and measurand Analyte

Gold

Measurand

Gold mass fraction in jewellery alloys after aqua regia dissolution

Units

‰ (g/1000 g)

2. Choosing a suitable measurement procedure with associated model equation Measurement procedure Type of calibration

standard addition

standard curve

internal standard

Model equation 1. Standard solutions 1.1. Stock standard solution - prepared from pure gold C Au _999.9 =

m− pureAu × Au_ purity G _100

× 104

1.2. Calibration standard solutions C _ St1 = C Au _999.9 ×

G p_0.37 G_ 100

C _ St 2 = C Au _999.9 ×

G p_0.43 G_ 100

2. Bracketing calibration Cx =

C− St1 ( A_ St 2 − A_ X ) + C− St 2 ( A− x − A− St1 ) A− St 2 − A− St1

3. Calculation of Au content (W_‰) in analysed sample W _0 =

1 V_ 50 Gvials _12 1 × × Cx × 1000 m_ 0.1 GP _ 0.4 R

4. Calculation of signal standard uncertainty u_ A =

u_ A _ one _ set N

37

Practical examples on traceability, measurement uncertainty and validation in chemistry

5. Calculation of recovery R=

Wobserved Wref

6. Combined model equation for calculation of Au mass fraction (‰) WBÅ =

1 ⎛ V_ 50 Gvials _ 12 ⎞ m− pureAu × Au purity × × 104 × × 1000 ⎜⎝ m_ 0.1 GP _ 0.4 ⎟⎠ G_100 × V _100 ×

(G

P _0.37

( A_ St 2 − A _ X ) + GP _0.43 ( A− X − A− St1 ) A− St 2 − A− St1

)× 1

R

V _ 50

YROXPHRIDQDO\VHGVROXWLRQ>PL@

V _100

YROXPHRIVWRFNVWDQGDUGVROXWLRQ>PL@

m_ 0.1

PDVVRIDQDO\VHGDOOR\VDPSOH>J@

Gvials _12

PDVVRIVDPSOHVROXWLRQGLOXWHGLQYLDOV>J@

GP _ 0.4

PDVVRI$XVDPSOHVROXWLRQWDNHQIURPVBÀDVN>J@

m_ pureAu Au_ purity G p _0.37 or G p _0.43 G_100

PDVVZHLJKHGRISXUHJROG>J@ WKHSXULW\RIJROGVWDWHGLQWKHFHUWL¿FDWH>@ PDVVHV RI WKH VWRFN $X VWDQGDUG VROXWLRQ WUDQVIHUUHG IRU WKH SUHSDUDWLRQRIFDOLEUDWLRQVROXWLRQV6WDQG6W>J@ PDVVRIFDOLEUDWLRQVWDQGDUGVROXWLRQV>J@

A− St1 DQG A_ St 2 AX

DEVRUEDQFHPHDVXUHGIRUFDOLEUDWLRQVWDQGDUGVROXWLRQVDQG

R

UHFRYHU\

DEVRUEDQFHPHDVXUHGIRUWKHDQDO\VHGVDPSOHVROXWLRQ

3. List the input quantities according to their influence on the uncertainty of the result of the measurement (first the most important ones). At this point, your judgement should be based on your previous experience only.

38

1

Recovery – 28.5 % to the expanded uncertainty

2

Absorption of analysed gold sample − contributing 19.8 % to the expanded uncertainty

3

Mass of analysed gold sample − contributing 11.8 % to the expanded uncertainty

Analysis of Gold Alloys by Flame Atomic Absorption Spectrometry

4

Mass of stock solution taken for the preparation of first standard solution − contributing 12.1 % to the expanded uncertainty

5

Volume of the analysed solution – contributing 3.4 % to the expanded uncertainty

4. List the reference standards needed and give also the information regarding traceability of the reference value For the analyte 1

Name/Chemical Formula/Producer:

2

Name/Chemical Formula/Producer:

Pure Gold − certified by Non-Ferrous Metallurgical Plant Plovdiv − Bulgaria

For the other input quantities 1

Quantity/Equipment/Calibration: e.g. mass/balance/calibrated by NMI, U = xx (k = 2), see also data yellow sheet

Balance – calibrated by NMI

2

Quantity/Equipment/Calibration:

Volumetric flask − class A quality

3

Quantity/Equipment/Calibration:

Absorbance − relative measurement. Not direct part of the traceability chain.

5. Estimating uncertainty associated with the measurement Are all important parameters included in the measurement equation?

Yes

Other important parameters are:

Within-lab reproducibility

No

6. How would you prove traceability of your result? 1

Comparing the results with independent method (cupellation)

39

Practical examples on traceability, measurement uncertainty and validation in chemistry

7. Any other comments, questions…

40

Analysis of Gold Alloys by Flame Atomic Absorption Spectrometry

SINGLE LABORATORY VALIDATION OF MEASUREMENT PROCEDURES EXERCISE

PART I: GENERAL ISSUES 1. Specify the measurement procedure, analyte, measurand and units The measurement procedure

Analysis of gold alloys by AAS

Analyte

Gold

The measurand

Gold in jewellery alloys containing gold 14 ± 0.5 carats after aqua regia dissolution

Unit



2. Specify the Scope Matrix

Gold in 5 % NH4Cl

Measuring range

37-43 μg g-1

3. Requirement on the measurement procedure Intended use of the results:

Quality of products from precious metals alloys LOD LOQ Repeatability

Mark the customer’s requirements and give their values

Within-lab reproducibility Measurement uncertainty

9‰

Trueness Other-state

4. Origin of the measurement procedure VALIDATION New in-house method

Full

Modified validated method

Partial

Official standard method

Confirmation/Verification

41

Practical examples on traceability, measurement uncertainty and validation in chemistry

PART II: PARAMETERS TO BE VALIDATED

5. Selectivity/Interference/Recovery Where yes, please give further information e.g. which CRM, reference method CRM/RM: analysis of available CRM or RM Further information: Spike of pure substance Pure gold 99.99 % certified from non-ferrous metallurgical plant Plovdiv, Bulgaria Compare with a reference method Comparison with cupellation method Selectivity, interferences

Test with different matrices

Other – please specify Test for recovery with RM jewellery gold alloy marked 585

6. Measuring range Linearity Upper limit LOD LOQ

7. Spread – precision Repeatability Reproducibility (within lab) Reproducibility (between lab)

8. Robustness Variation of parameters

42

Analysis of Gold Alloys by Flame Atomic Absorption Spectrometry

9. Quality control Control charts Participation in PT schemes

10. Other parameters to be tested Working range and testing of homogeneity of variances Recovery Residual standard deviation Standard deviation of the method Coefficient of variation of the method

43

Practical examples on traceability, measurement uncertainty and validation in chemistry

PART III: SOME CALCULATIONS AND CONCLUSIONS

11. Calculation of parameters requested by the customer Parameters requested to be validated

Calculations

LOD LOQ Repeatability

2.4 ‰

Within-lab reproducibilty Trueness Measurement uncertainty

8.3 ‰ (k = 3)

Other - please state Recovery

1.0002 ± 0.0025

12. Does the analytical procedure fulfil the requirement(s) for the intended use? Parameter

(the same as stated in question 3)

Value obtained during validation

The requirement is fulfilled Yes/No

9 ‰ (k = 3)

8.3 ‰ (k = 3)

yes

Value requested by the customer

LOD LOQ Repeatability Within-lab reproducibility Trueness Measurement uncertainty Other

The analytical procedure is fit for the intended use: Yes

No

For measurement uncertainty and traceability refer to the corresponding reportsheets

44

Analysis of Gold Alloys by Flame Atomic Absorption Spectrometry

BUILDING AN UNCERTAINTY BUDGET EXERCISE 1. Specify the measurand and units Measurand

Gold mass fraction in jewellery alloys after aqua regia dissolution

Unit

‰ (g/1000 g)

2. Describe the measurement procedure and provide the associated model equation Measurement procedure: *ROG DOOR\ VDPSOHV DUH VWUHWFKHG WR IROLR ZLWK − PP WKLFNQHVV TKH VXUIDFH LV ZDVKHG E\   YY +12$ GU\ SLHFH RI  J DFFXUDWHO\ ZHLJKHG WR  J LV GLUHFWO\GLVVROYHGLQWRDYROXPHWULFÀDVNRIPLE\PLIUHVKO\SUHSDUHGaqua regia TKHÀDVNLVKHDWHGRQFHUDPLFKRWSODWHIRUPLQ'XULQJWKLVSURFHVV$JSUHFLSLWDWHV DV$JCO$JCOLVGLVVROYHGE\DGGLQJRIJ1+COWRWKHFRROHGVROXWLRQDQGYROXPH LVPDGHXSWRWKHPDUN PL ZLWK%':DW ƒC  TKH VROXWLRQ LV GLOXWHG DGGLWLRQDOO\ E\ WUDQVIHUULQJ  PL ZLWK PLFURSLSHWWH WR D FRQLFDOYLDODGGLQJ1+COLQRUGHUWRNHHSWKHVROXWLRQKRPRJHQHRXVZLWK¿QDO ZHLJKWRIJJUDYLPHWULFDOO\FRQWUROOHG PURFHGXUDO EODQN DQG JROG UHIHUHQFH PDWHULDO DUH VXEMHFW WR H[DFWO\ WKH VDPH VDPSOH SUHSDUDWLRQDQGPHDVXUHPHQWSURFHGXUHVDVWKHDQDO\VHGVDPSOH

Model equation: 1. Concentration of initial standard solution made up from pure gold C Au 999.9 =

m pureAu × Au purity G _100

× 104

C _ St 2 = C Au _999.9 ×

G_0.43 G _100

2. Concentration of calibration standard solutions C _ St1 = C Au _999.9 ×

G_0.37 G _100

3. Bracketing calibration Cx =

C− St1 ( A_ St 2 − A_ X ) + C− St 2 ( A− x − A− St1 ) A− St 2 − A− St1

4. Calculation of Au mass fraction (W_‰) in analysed sample WBÅ =

1 V_ 50 1 Gvials _ 12 × × × Cx 1000 m_ 0.1 R GP _ 0.4

45

Practical examples on traceability, measurement uncertainty and validation in chemistry

5. Calculation of signal standard uncertainty u_ A =

u_ A _ one _ set N

6. Calculation of recovery R=

Wobserved Wref

7. Combined model equation for calculation of Au mass fraction (‰) WBÅ =

(

)

1 ⎛ V _ 50 Gvials _ 12 ⎞ CAu_999.9 GP _0.37 ( A_ St 2 − A _ X ) + GP _0.43 ( A− X − A− St1 ) 1 × × × × A− St 2 − A− St1 R G_100 1000 ⎜⎝ m _ 0.1 GP _ 0.4 ⎟⎠

3. Identify (all possible) sources of uncertainty Uncertainty of concentration of reference solutions Uncertainty of measurements of absorption of standard and sample solutions Mass of analysed gold sample Volume of the analysed solution Recovery Other: Other:

4. Evaluate values of each input quantity

46

Input quantity

Value

Unit

Remark

V _ 50

50

mL

Volume of analysed solution

V _100

100

mL

Volume of stock standard solution

m_ 0.1

0.1001

g

Mass of analysed alloy sample

Gvials _12

12.0030

g

Mass of sample solution prepared in vials

GP _ 0.4

0.4015

g

Mass of Au sample solution taken from V_50 flask

m− pureAu

0.1004

g

Mass weighed of pure gold

Au_ purity

99.99

%

The purity of gold stated in the certificate

G p _0.37 ; G p _0.43

0.3701; 0.4302

g

Masses of the stock Au standard solution transferred for the preparation of calibration solutions C_St1 and C_St2

Analysis of Gold Alloys by Flame Atomic Absorption Spectrometry

G_100

10.0321

AU

A− St1 ; A_ St 2

0.5203; 0.6041

AU

AX

0.5488

AU

R

1.002

-

Mass of calibration standard solutions Absorbance measured for calibration standard solutions Absorbance measured for the analysed sample solution Recovery

5. Evaluate the standard uncertainty of each input quantity Input quantity

Standard uncertainty

Unit

Remark

V _ 50

0.0379

mL

Volume of analysed solution

V _100

0.0697

mL

Volume of stock standard solution

m_ 0.1

0.0002

g

Mass of analysed alloy sample

Gvials _12

0.0008

g

Mass of sample solution prepared in vials

GP _ 0.4

0.0009

g

Mass of Au sample solution taken from V_50 flask

m− pureAu

0.0002

g

Mass weighed of pure gold

Au_ purity

0.0058

%

The purity of gold stated in the certificate

G p _0.37 ; G p _0.43

0.0006; 0.0006

g

Masses of the stock Au standard solution transferred for the preparation of calibration solutions C_St1 and C_St2

G_10

0.0008

g

Mass of calibration standard solutions

A− St1 ; A_ St 2

0.0010; 0.0011

AU

AX

0.0011

AU

R

0.0025

Absorbance measured for calibration standard solutions Absorbance measured for the analysed sample solution Recovery

6. Calculate the value of the measurand, using the model equation Å

7. Calculate the combined standard uncertainty (uc) of the result and specify units Using:

MDWKHPDWLFDOVROXWLRQ

6SUHDGVKHHWDSSURDFK

CRPPHUFLDOVRIWZDUH

47

Practical examples on traceability, measurement uncertainty and validation in chemistry

Input quantity

Value

Standard uncertainty

Unit

Remark

W_‰

583.5

2.8



Au mass fraction in jewellery alloys

8. Calculate expanded uncertainty (Uc) and specify the coverage factor k and the units Å k 

9. Analyse the uncertainty contribution and specify the main three input quantities contributing the most to Uc 1

Recovery – contributing 37.6 % to the expanded uncertainty

2

Absorption of analysed gold sample − contributing 26.1 % to the expanded uncertainty

3

Mass of analysed gold sample − contributing 14.9 % to the expanded uncertainty

10. Prepare your uncertainty budget report “ Å k  WKHUHSRUWHGXQFHUWDLQW\LVDQH[SDQGHGXQFHUWDLQW\FDOFXODWHGXVLQJDFRYHUDJHIDFWRURI k ZKLFKJLYHVDOHYHORIFRQ¿GHQFHRIDSSUR[LPDWHO\

48

Analysis of Gold Alloys by Flame Atomic Absorption Spectrometry

Further readings

I62-HZHOOHU\±)LQHQHVVRISUHFLRXVPHWDODOOR\V CI%-2PUHFLRXVPHWDOVFRPPLVVLRQThe Precious Metals Book   I62'HWHUPLQDWLRQRIJROGLQJROGMHZHOOHU\DOOR\VCXSHOODWLRQPHWKRG ¿UHDVVD\   I62 -HZHOOHU\ ± 'HWHUPLQDWLRQ RI SUHFLRXV PHWDOV LQ  R JROG SODWLQXPDQGSDOODGLXPMHZHOOHU\DOOR\V'LIIHUHQFHPHWKRGXVLQJLQGXFWLYHO\FRXSOHG SODVPDRSWLFDOHPLVVLRQVSHFWURVFRS\ ICP2(6  RMDXUL(+XHUWDDQGMGHOD*XDUGLD)ODPHDWRPLFDEVRUSWLRQDQDO\VLVRIJROG LQMHZHOU\VDPSOHVFresenius J. Anal. Chem.  − MMRRLPDQ'-.LQQHEHUJL:6LPSVRQPCHWWRXDQGPRDPRQL+LJKSXULW\ SUHFLRXVPHWDOVTM6$QQXDOMHHWLQJ  − I(UXVDOLPVKLNDQG6MRLVHHY(OHFWURFKHPLFDODQGFRUURVLRQSURSHUWLHVRIJROGDQG LWVDOOR\V9I-HZHOU\JROGDOOR\VRISXULW\VWDQGDUGLQK\GURFKORULFDFLGVROXWLRQV Protect. Metals    −  * *DOEiFV 1 -HGOLQV]NL * CVHK = *DOEiFV DQG L T~UL$FFXUDWH TXDQWLWDWLYH DQDO\VLV RI JROG DOOR\V XVLQJ PXOWLSXOVH ODVHU LQGXFHG EUHDNGRZQ VSHFWURVFRS\ DQG D FRUUHODWLRQEDVHG FDOLEUDWLRQ PHWKRG Spectrochim. Acta B Atom. Spectrosc.      − $ MDUXFFR C MDUFROOL DQG R MDJDULQL ICP2(6 DQDO\VLV RI JROG DOOR\V XVLQJ \WWULXPRULQGLXPDVLQWHUQDOVWDQGDUGAtom. Spectrosc.    −  9 6WHIDQRYD 9 .PHWRY DQG L )XWHNRY$LU VHJPHQWHG GLVFUHWH LQWURGXFWLRQ LQ LQGXFWLYHO\ FRXSOHG SODVPD PDVV VSHFWURPHWU\ J. Anal. Atom. Spectrom.    − 9.PHWRY'+ULVWR]RY96WHIDQRYD6THQHYDQGL)XWHNRYCRPSXWHUDXWRPDWHG V\VWHP IRU PLFURVDPSOLQJ LQ )$$6 VRIWZDUH IRU VLJQDO DFTXLVLWLRQ DQG WUHDWPHQW 8QLYHUVLW\RIPORYGLY³P+LOHQGDUVNL´Scienti¿c Works-Chem.    − 9.PHWRY96WHIDQRYD'*HRUJLHYDDQGL)XWHNRY$QDO\VLVRIMHZHOOHU\JROG DOOR\V E\ PLFURVDPSOLQJ RI FRPSOH[ VROXWLRQV LQWR )$$6 DQG ICPM6 LQ Forth National Conference of Chemistry So¿a −6HSWHPEHU P -.UDJWHQCDOFXODWLQJVWDQGDUGGHYLDWLRQVDQGFRQ¿GHQFHLQWHUYDOVZLWKDXQLYHUVDOO\ DSSOLFDEOHVSUHDGVKHHWWHFKQLTXHAnalyst  −

49

50

$/3 0$+$,2

 6   7

%"" .,-/ ) 2 2

/ 

 

 

3 

 



/ 

+



+  

(  

 ',"-,203!32-012-"-+! ',$#3,"$02 ',27

 8

!*1!-4

,.323 ,2

*'0(!*")'4.! 0.*'0/%*) #*' +%!(.. !%#$/*"1%'. ..*"0.*'0/%*) *)!)/-/%*)/*"./*&./) - .*'0/%*) !%#$/*""'.& ..*"./*&.*'0/%*)0.! "*-+-!+-/%*)*"/ ..*"./*&.*'0/%*)0.! "*-+-!+-/%*)*"/ .*-).!*"$%#$/ .*-).!*"/$!.(+'! -*-)!*"/$!'*2/





      

    &-/



 

) 

     

  

$13*2



+ 

     

 

+  

                   

 

 

  + 4' *1 . 3  .  .

2 6 2  

 0")

                      

 

# # # # 8# # # #    )0(

,'21



  ( 1%'. + 0  +  +

/ 3 /  

8

3 "

 

.                      

 

&





             

 0&$2 

 

               4' *1 .

 

4' *1                      

 

   

                     

 

 *3$1



 

3 

     

  

        

            

 

3

                     

3 "

                         

                      



   

$2$0+', 2'-,-%&-*#',($5$**$07&-*# **-71!7* +$2-+'"!1-0.2'-,.$"20-+$207  -+!',$#+-#$*$/3 2'-, ,#',.32/3 ,2'27#$1"0'.2'-,

 

  

.                       

 

 

.

                     

 

 

2                      

 

6

  

                     

 



 



 



      

                     .  .

2 6

   

                      

 









    2

 

2                        



 

 

 

   

                     

 





 

  

 

                     

  

Practical examples on traceability, measurement uncertainty and validation in chemistry

Addendum I. Measurement uncertainty calculation: spreadsheet approach (Excel)

Chapter 2

Determination of Calcium in Serum by Spectrophotometry Steluta Duta, Philip Taylor u u u u

TrainMiC example summary form (‘blue page’) A short introduction to the analytical procedure (‘slides’) All input needed to do the three exercises (‘yellow pages’) The solved exercises (‘green pages’) 51

Practical examples on traceability, measurement uncertainty and validation in chemistry

TrainMiC example summary form

I. General information about the example

52

Measurand

Concentration of calcium in human serum (mg dL-1)

Example number

Ex-10

Authors of the example

Steluta Duta, Philip Taylor

Analytical procedure

Standard WHO procedure

Customer’s requirement

Standard WHO procedure

Determination of Calcium in Serum by Spectrophotometry

II. Attached files

3 - Green

2 - Yellow

1-I

File number, type and name Ex-10-1-ICa-serumPhotometry2006-Ver1.ppt

Ex-10-2-YCa-serumPhotometry2006-Ver1.doc

Ex-10-3-GCa-serumPhotometry2006-Ver1.doc

File is attached Yes No

Content of the file

About the analytical procedure: short introduction

9

PART I

Description of the analytical procedure

9

PART II

The customer’s requirements concerning the quality of the measurement result

9

PART III

Validation of the measurement procedure – relevant equations and measurement data

9

PART IV

Measurement uncertainty of the result – relevant equations and measurement data

9

PART I

Establishing traceability in analytical chemistry

9

PART II

Single laboratory validation of measurement procedures

9

Bulding an uncertainty budget

9

Addendum 1: By spreadsheet approach

9

PART III

Addendum 2: By dedicated software

Remark

Given by the lecturer

Each participant receives own copy and may keep it

9

III. History of the example Version

Uploaded on the webhotel

0

April 2007

Short description of the change

1

53

Practical examples on traceability, measurement uncertainty and validation in chemistry

A short introduction to the analytical procedure

'HWHUPLQDWLRQ RI FDOFLXPLQVHUXP E\ VSHFWUR SKRWRPHWU\

6FRSHRIWKHSUHVHQWDWLRQ ‡ 7KHDQDO\WLFDOSURFHGXUHDQGWKHFXVWRPHU¶VUHTXLUHPHQWV ‡ $ERXWµWKHFKHPLVWU\¶ DQGWKHPHDVXUHPHQWDVSHFWV ‡ 0RGHOHTXDWLRQDQGPRUHDERXWWUDFHDELOLW\YDOLGDWLRQDQG XQFHUWDLQW\H[HUFLVHV

7KHDQDO\WLFDOSURFHGXUHDQGWKH FXVWRPHU¶VUHTXLUHPHQWV $QDO\WLFDOSURFHGXUH ‡ *XLGHOLQHRQ6WDQGDUG2SHUDWLQJ3URFHGXUHIRU&OLQLFDO&KHPLVWU\ &DOFLXP2&UHVROSKWDOHLQ FRPSOH[RQH PHWKRG 6WDQGDUG0HWKRGV ‡ KWWSZZKRVHDRUJ &XVWRPHU¶VUHTXLUHPHQWV ‡ $QDO\WLFDOUHSURGXFLELOLW\ &9  :+2  DFWXDO VWDWHRIDUW ‡ ,QWHQGHGXVHFOLQLFDOLQWHUSUHWDWLRQ

54

Analysis of GoldofAlloys Determination Calcium by Flame in Serum Atomic by Spectrophotometry Absorption Spectrometry

([SHULPHQWDOSURWRFRO SUHSDUHEXIIHUUHDJHQWV S+  DQG FRORXUUHDJHQWV SUHSDUH&DVWRFN VROXWLRQÎ FDOLEUDQWV 6DPSOH VHUXP QRVDPSOHWUHDWPHQW  0,;ZDWHUVWGFRORXU UHDJ VDPSOH LQFXEDWHDWƒ&IRUPLQ &DOLEUDWLRQFKHFNOLQHDULW\ EODQNWR]HUR LQWHUSRODWLRQÎ 2QHSRLQWFDOLEUDWLRQ FKHFN4& EHWZHHQGD\VSUHFLVLRQ

55

Practical examples on traceability, measurement uncertainty and validation in chemistry

All input needed to do the three exercises ‘yellow pages’

Analytical procedure Determination of concentration of calcium in serum by molecular absorption spectrometry. The quality of the results should comply with the requirements in the WHO procedure

PART I ...................................................................................................................................57 Description of the analytical procedure PART II .................................................................................................................................60 The customer’s requirements concerning the quality of the measurement result PART III ................................................................................................................................61 Validation of the measurement procedure – relevant equations and measurement data PART IV ................................................................................................................................62 Measurement uncertainty of the result – relevant equations and measurement data

56

Determination of Calcium in Serum by Spectrophotometry

PART I. Description of the analytical procedure

Laboratory task COLQLFDO ODERUDWRU\ KDV WR GHWHUPLQH FDOFLXP FRQFHQWUDWLRQ LQ KXPDQ VHUXP VDPSOH DULYLQJLQWKHLUODERUDWRU\IWLVWKHFDVHZKHQRQO\WKHDQDOLWLFDOSDUWLVFRQVLGHUHGWKH ODERUDWRU\KDVQRWUHVSRQVLELOLW\KRZVDPSOHLVWDNHQSUHSDUHGWUDQVSRUWHG TKH ODERUDWRU\ VKRXOG HYDOXDWH WKH DQDO\WLFDO SURFHGXUH UHOLDELOLW\ ZLWKLQ ODERUDWRU\ UHSURGXFLELOLW\ TKHUHSRUWHGUHVXOWVVKRXOGFRPSO\ZLWKWKHFOLQLFDOLQWHUSUHWDWLRQWKH H[SHFWHGQRUPDOUDQJHRIFDOFLXPFRQFHQWUDWLRQLQVHUXPLV±PJGL

Principle of the measurement method TH[WH[WUDFWIURP:RUOG+HDOWK2UJDQL]DWLRQ :+2 −6WDQGDUG2SHUDWLQJPURFHGXUHV IRU COLQLFDO CKHPLVWU\ 'HWHUPLQDWLRQ RI FDOFLXP FRQFHQWUDWLRQ E\ FDOFLXP2 FUHVROSKWKDOHLQFRPSOH[RQHPHWKRG KWWSZZKRVHDRUJ  'HWHUPLQDWLRQRIFDOFLXPLQKXPDQVHUXPLVSHUIRUPHGE\PROHFXODUDEVRUSWLRQ VSHFWUR SKRWRPHWU\PHWKRGCDOFLXPIRUPVDSXUSOHFRORXUHGFRPSOH[ZLWKRUWRFUHVROSKWKDOHLQ FRPSOH[RQH LQ DQ DONDOLQH PHGLXP TKH LQFOXVLRQ RI +CO KHOSV WR UHOHDVH FDOFLXP ERXQGWRSURWHLQVDQGK\GUR[\TXLQROLQHHOLPLQDWHVWKHLQWHUIHUHQFHE\PDJQHVLXP $GGLWLRQDOUHDJHQWVDVDPLQRPHWK\OSURSDQRO $MP SURYLGHVWKHSURSHUDONDOLQH PHGLXPIRUWKHFRORXUUHDFWLRQTKHLQWHQVLW\RIWKHFRORXULVPHDVXUHGDWQP

Analytical procedure Serum sample preparation and storage 1RVHUXPSUHSDUDWLRQLVSHUIRUPHGE\WKHODERUDWRU\LQFKDUJHZLWKWKHDQDO\WLFDOZRUN 6HUXP VDPSOH DULYHV LQ WKH ODERUDWRU\ DIWHU VHSDUDWLRQ IURP WKH EORRG FHOOV GXULQJ WKHSUHDQDO\WLFDOVWHSSHUIRUPHGE\DQRWKHUGHSDUWPHQW+DHPRO\VHGDQGKHSDULQLVHG VDPSOHVDUHXQVXLWDEOHIRUWKLVPHWKRG CDOFLXPLQVHUXPLVVWDEOHIRUKDWURRPWHPSHUDWXUH −°C RQHZHHNDW−°C DQGIRUDORQJHUSHULRGXSWRPRQWKVDW−°C

Reagents $MP%XIIHUS+ IQPLRI$MPUHDJHQWDGGPLRIGLVWLOOHGZDWHUDQGPL[$GMXVWWKHS+WR ZLWK+CO1DQGPDNHXSWRPLZLWKGLVWLOOHGZDWHU6WRUHLQWKHUHIULJHUDWRULQD EURZQFRORXUHGJODVVERWWOH6WDEOHIRUWKUHHZHHNV

57

Practical examples on traceability, measurement uncertainty and validation in chemistry

CRORXUUHDJHQWV $GG  PL FRQFHQWUDWHG +CO WR D  PL YROXPHWULF ÀDVN FRQWDLQLQJ DERXW  PL RIGLVWLOOHGZDWHUTUDQVIHUPJ2FUHVROSKWKDOHLQFRPSOH[RQHSRZHULQWRLWPL[WR GLVVROYHTKHQDGGPJRIK\GUR[\TXLQROLQHGLVVROYHDQGWKDQPDNHXSWR PLZLWKGLVWLOOHGZDWHU6WRUHLQDEURZQFRORXUHGJODVVERWWOHDWURRPWHPSHUDWXUH − °C 6WDEOHIRUDERXWRQHPRQWK CDOFLXPVWDQGDUGVROXWLRQV Stock calcium standard solution CDOFLXPFDUERQDWHLVGULHGDW°CIRUK$OORZWRFRROLQDGHVLFDWRU'LVVROYH PJRIGULHGFDOFLXPFDUERQDWHLQPLRIGLVWLOOHGZDWHUWDNHQLQDPLYROXPHWULF ÀDVNDQGDGGPL+COFRQFML[WRGLVVROYHDQGPDNHXSWRPLZLWKGLVWLOOHG ZDWHU6WRUHLQEURZQERWWOHDWURRPWHPSHUDWXUH −°C 6WDEOHIRUPRQWKVTKH FDOFLXPFRQFHQWUDWLRQLQWKLVVROXWLRQLVPJGL Calibration calcium standard solutions TKH FDOLEUDWLRQ FDOFLXP VWDQGDUG VROXWLRQV DUH SUHSDUHG E\ GLOXWLRQ RI VWRFN FDOFLXP VWDQGDUGVROXWLRQLQWRIRXUPLYROXPHWULFÀDVNVWUDQVIHUDQGPLRI VWRFNFDOFLXPVWDQGDUGVROXWLRQDQGGLOXWHHDFKWRPLZLWKEHQ]RLFDFLGTKHZRUNLQJ VWDQGDUGVFRQWDLQ666DQG6PJGLFDOFLXPUHVSHFWLYHO\ 6WRUHLQEURZQERWWOHVDWURRPWHPSHUDWXUH −°C 6WDEOHIRUPRQWKV

Instrumentation $SKRWRPHWHURUVSHFWURSKRWRPHWHULVXVHGLQWKHYLVLEOHUDQJHLQWH[WLWLVFDOOHG VSHFWUR SKRWRPHWHUTKH LQVWUXPHQWDO SHUIRUPDQFHV VSHFWUDO UDQJH − QP DEVRUEDQFH DFFXUDF\DW$TKHLQVWUXPHQWKDVWKHDEVRUEDQFHVFDOHDVDFRQFHTXHQFHIRU FRQFHQWUDWLRQPHDVXUHPHQWVWKHFDOLEUDWLRQJUDSKVKRXOGEHHVWDEOLVKHGE\ODERUDWRU\ LWVHOI

Experimental protocol TKHH[SHULPHQWDOVWHSVRIWKHPHDVXUHPHQWSURFHGXUHDUHGHVFULEHGLQWKHWDEOHEHOORZ DGH¿QHGYROXPHVRIFDOLEUDWLRQVROXWLRQVDQGVHUXPVDPSOH PL DUHPL[HGZLWK PLRIFRORXUUHDJHQWML[HGWKDQZLWKPLRIEXIIHUVROXWLRQ

58

Blank

S5

S7.5

S10

S12.5

Serum

QC

Distilled water (mL)

0.1

-

-

-

-

-

-

Standard (mL)

-

0.1

0.1

0.1

0.1

-

-

Serum/QC (mL)

-

-

-

-

-

0.1

0.1

Determination of Calcium in Serum by Spectrophotometry

Colour reagent (mL)

Buffer solution (mL)

2.0

2.0

2.0

2.0

Mix

well

2.0

2.0

Mix

well

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

$IWHUPLQLQFXEDWLRQDWURRPWHPSHUDWXUH −°C WKHDEVRUEDQFHLVPHDVXUHGDW QPDJDLQVWGLVWLODWHGZDWHUDVSURFHGXUDOEODQN%\SORWWLQJWKHDEVRUEDQFHRIWKH VWDQGDUGVDJDLQVWWKHLUUHVSHFWLYHFRQFHQWUDWLRQVWKHFDOLEUDWLRQJUDSKLVSORWWHG2QFH OLQHDULW\LVSURYHGLWLVMXVWHQRXJKLIDVLQJOHVWDQGDUGDV6 PJGL LVXVHGWR GHWHUPLQHWKHFDOFLXPFRQFHQWUDWLRQLQWKHVDPSOH TKHPHDVXUDEOHUDQJHZLWKWKLVJUDSKLVIURPWRPJGLIWLVDGYLVDEOHWRSORW DFDOLEUDWLRQJUDSKZKHQHYHUWKHUHDJHQWVDUHIUHVKO\SUHSDUHG

Calculation of result TKHIROORZLQJHTXDWLRQLVLQGLFDWHGLQ:+2SURFHGXUH cCa = ( Ax A−10 ) × 10 >PJGL@

ZKHUHcCD−FRQFHQWDWLRQRIFDOFLXPLQVHUXPVDPSOH  Ax−DEVRUEDQFHRIVHUXPVDPSOH A−−DEVRUEDQFHRIWKHFDOLEUDWLRQVROXWLRQ PJGL

Analytical reliability IQFOXGH RQH LQWHUQDO TXDOLW\ FRQWURO VDPSOH QC  LQ HYHU\ EDWFK RI VDPSOHV DQDO\VHG HDFKGD\LUUHVSHFWLYHRIWKHQXPEHURIVDPSOHVLQDEDWFK6LQFHFDOFLXPLVDQDO\VHG VLQJOH EDWFK LQ D GD\ LQ DQ LQWHUPHGLDWH ODERUDWRU\ LW ZLOO QRW EH SRVVLEOH WR DQDO\VH VHYHUDOQCVDPSOHVDQGFDOFXODWHZLWKLQGD\SUHFLVLRQ+RZHYHUHYHQLIRQO\DVLQJOH QCVDPSOHLVDQDO\VHGLQDGD\WKLVYDOXHFDQEHSRROHGZLWKWKHSUHFHGLQJRU YDOXHVREWDLQHGLQWKHSUHYLRXVGD\VDQGEHWZHHQGD\SUHFLVLRQFDQEHFDOFXODWHGDQG H[SUHVVDVC9(QVXUHWKDWWKLVLVZHOOZLWKLQWKHDFFHSWDEOHOLPLW LHDFWXDO SHUIRUPDQFHHYHQ  $WOHDVWRQFHDZHHNDQDO\VHDQRWKHUQCVHUXPIURPHLWKHUDORZRUKLJKQCSRRO

59

Practical examples on traceability, measurement uncertainty and validation in chemistry

PART II. The customer’s requirements concerning quality of the measurement result according to WHO* Clinical interpretation:1 CDOFLXPFRQFHQWUDWLRQLQVHUXP−PJGL−QRUPDOUDQJH CDOFLXPFRQFHQWUDWLRQLQVHUXP−PJGL−SDWKRORJLFDOUDQJH



:RUOG+HDOWK2UJDQL]DWLRQ

60

Determination of Calcium in Serum by Spectrophotometry

PART III. Validation of the measurement procedure – relevant equations and measurement data Within-laboratory reproducibility (between day precision) Model equation CRHI¿FLHQWRIYDULDWLRQ C9 5

∑ (c

i , obs

1

CV =

− cQC

)

2

n ( n − 1)

× 100

cQC

CV

FRHI¿FLHQWDVYDULDWLRQ>@

cREV

REVHUYHGFDOFLXPFRQFHQWUDWLRQLQQCVHUXPLQiWKGD\ i − >PJGL@

cQC

WDUJHWFDOFLXPFRQFHQWUDWLRQLQQCVHUXP>PJGL@

n

QXPEHURIUHSURGXFLEOHPHDVXUHPHQWV

Measurement data Input quantity

Value ± standard deviation (3 replicates) 1st day:

ci,obs (i = 1−5) day 3 replicates/day

8.990 ± 0.057

rd

3 day:

9.210 ± 0.105

4th day:

9.230 ± 0.086

5th day:

9.110 ± 0.120

cQC

8.24−10.52

n

5

Unit

9.16 ± 0.05

mg dL-1

9.280 ± 0.021

nd

2 day:

Mean value ± standard deviation

9.38 ± 0.38

mg dL-1 no units

CV = 

61

Practical examples on traceability, measurement uncertainty and validation in chemistry

PART IV. Measurement uncertainty of the result: relevant equations and measurement data2 IV.1. Preparation of standard solutions2 IV.1.1 Preparation of calcium stock standard solution, cstock

(

cstock = ( m × M Ca × P ) × 100 / V500 × M CaCO3

)

cVWRFN

FRQFHQWUDWLRQRIFDOFLXPVWRFNVROXWLRQ>PJGL@

m

PDVVRICDC2>PJ@

MCD

PRODUPDVVRIFDOFLXP>JPRO@

P

SXULW\RICDC2>PDVVIUDFWLRQ@

V

¿QDOYROXPHRIFDOFLXPVWRFNVROXWLRQ>PL@

MCDC2

PRODUPDVVRICDC2>JPRO@

MHDVXUHPHQWGDWD Input quantity

Value

Standard uncertainty

Unit

m

625.0

0.2

mg

MCa

40.078

0.002

g mol-1

P

0.9999

0.0058

mass fraction

V500

500.00

0.15

mL

MCaCO3

100.0869

0.0024

g mol-1

IV.1.2 Preparation of calibration standard solutions, ci: ⎛ V ⎞ ci = cstock × ⎜ i ⎟ ⎝ V100 ⎠

cVWRFN

CRQFHQWUDWLRQRIFDOFLXPVWRFNVROXWLRQ>PJGL@

Vi

IQWDNHVWRFNVROXWLRQIRUGLOXWLRQ Vi VFRUUHVSWRc >PL@

V

9ROXPHRIFDOLEUDWLRQVROXWLRQ>PL@

ZKHUH Vi VVVVFRUUHVSRQGLQJWRci = cccc

+HUH\RXPD\DOVRZDQWWRLQFOXGHWKHUHOHYDQWFHUWL¿FDWHV



62

Determination of Calcium in Serum by Spectrophotometry

MHDVXUHPHQWGDWD Input quantity

Value

Standard uncertainty

Unit

cstock

50.05

0.02

mg dL-1

Vi

20.000

0.043

mL

V100

100.000

0.058

mL

IV.2 Calibration – one point calibration MRGHOHTXDWLRQ c±WKHSRLQWRIFDOLEUDWLRQVWDQGDUGVROXWLRQ 

(

)

cx = c−10 Ax − Ablank / ( A−10 − Ablank )

cx c Ax A AEODQN

CRQFHQWUDWLRQRIVHUXPVDPSOHIURPFDOLEUDWLRQGDWD>PJGL@ CRQFHQWUDWLRQRIFDOFLXPFDOLEUDWLRQVROXWLRQ PJGL >PJGL@ $EVRUEDQFHFRUUHVSRQGLQJWRVHUXPVDPSOH $EVRUEDQFHFRUUHVSRQGLQJWRFDOLEUDWLRQVROXWLRQ PJGL $EVRUEDQFHFRUUHVSRQGLQJWREODQNVROXWLRQ

MHDVXUHPHQWGDWD Input quantity

Value

Standard uncertainty

Unit

c_10

10.000

0.023

mg dL-1

Ax

0.323

0.004

no units

A-10

0.338

0.002

no units

Ablank

0.052

0.004

no units

IV.3 Calculation of calcium concentration in serum sample cCD V ⎛ ⎞ c cCa = cx × ⎜ f V ⎟ x ⎝ int ⎠ VI VLQW

FDOFLXPFRQFHQWUDWLRQLQVHUXPVDPSOH>PJGL@ FRQFHQWUDWLRQRIVHUXPVDPSOHIURPFDOLEUDWLRQGDWD>PJGL@ YROXPHRIVHUXPVDPSOHXQGHULQYHVWLJDWLRQ>PL@ LQWDNHYROXPHIURPVHUXPVDPSOH>PL@

MHDVXUHPHQWGDWD Input quantity

Value

Standard uncertainty

Unit

cx

9.486

0.303

mg dL-1

Vf

0.100

0.002

mL

Vint

0.100

0.002

mL

63

Practical examples on traceability, measurement uncertainty and validation in chemistry

The solved exercises ‘green pages’

TrainMiC Exercises Analytical procedure Determination of calcium concentration in human serum by molecular absorbtion (spectro)photometry The quality of results should comply with WHO procedure requirements

EXERCISE 1: Establishing traceability in analytical chemistry EXERCISE 2: Single laboratory validation of measurement procedures Part I: General issues Part II: Parameters to be validated Part III: Some calculations and conclusions

EXERCISE 3: Building an uncertainty budget Addendum I: By spreadsheet approach Addendum II: By dedicated software

64

Determination of Calcium in Serum by Spectrophotometry

ESTABLISHING TRACEABILITY IN ANALYTICAL CHEMISTRY

1. Specifying the analyte and measurand Analyte

Calcium

Measurand

Total concentration of calcium in human serum

Units

mg dL-1

2. Choosing a suitable measurement procedure with associated model equation Measurement procedure

To determine the calcium concentration in human serum, a serum sub-sample is mixed with reagent colour and buffer solution, according to WHO standard operation procedure. The absorbance of calcium calibration solutions and serum sample are measured by visible spectrophotometry at 540 nm. From the calibration data the concentration of calcium in human serum is calculated.

Type of calibration

standard curve

standard addition

internal standard

Model equation: calcium concentration in serum ⎛V ⎞ cCa = ⎡⎣( m × M Ca × P ) × 100 / V500 × M CaCO3 ⎤⎦ × (Vi / V100 ) × ⎡⎣( Ax − Ablank ) / ( A−10 − Ablank )⎤⎦ × ⎜ f V ⎟ ⎝ int ⎠

(

)

cCD M

WRWDOFDOFLXPFRQFHQWUDWLRQLQVHUXPVDPSOH>PJGL@ PDVVRICDC2>PJ@

MCD

PRODUPDVVRIFDOFLXP>JPRO@

P

SXULW\RICDC2>PDVVIUDFWLRQ@

V

¿QDOYROXPHRIFDOFLXPVWRFNVWDQGDUGVROXWLRQ>PL@

MCDC2

PRODUPDVVRICDC2>JPRO@

Vi

LQWDNHVWRFNVROXWLRQIRUGLOXWLRQ Vi = VFRUUHVSWRc- >PL@

V

¿QDOYROXPHRIFDOLEUDWLRQVROXWLRQ>PL@

Ax

DEVRUEDQFHFRUUHVSRQGLQJWRVHUXPVDPSOH

A

DEVRUEDQFHFRUUHVSRQGLQJWRFDOLEUDWLRQVROXWLRQ PJGL

AEODQN

DEVRUEDQFHFRUUHVSRQGLQJWREODQN

VI

YROXPHRIVHUXPVDPSOHXQGHULQYHVWLJDWLRQ>PL@

VLQW

LQWDNHYROXPHIURPVHUXPVDPSOH>PL@

65

Practical examples on traceability, measurement uncertainty and validation in chemistry

3. List the input quantities according to their influence on the uncertainty of the result of the measurement (first the most important ones). At this point, your judgement should be based on your previous experience only. 1

Matrix effect - recovery

2

Instrumental signal (absorbance)

3

Concentration of standard solutions - purity of CaCO3

4

Volume of the glassware (pipettes, volumetric flasks)

5

Mass

4. List the reference standards needed and state the information regarding traceability of the reference value For the analyte 1

Name/Chemical Formula/Producer:

CaCO3 purity, Merck, min. 99.99 %

2

Name/Chemical Formula/Producer:

CaCO3 molar masses/IUPAC

For the other input quantities 1

Quantity/Equipment/Calibration: e.g. mass/balance/calibrated by NMI, U = xx (k = 2), see also data yellow sheet

Absorbance/(Spectro)photometer/Calibrated against traceable optical standard (i.e. PTB)

2

Quantity/Equipment/Calibration:

Volume/Laboratory glassware (pipettes, volumetric flasks/calibrated by manufacturer (i.e. Hirschmann Laborgerate )

3

Quantity/Equipment/Calibration:

Mass/Analytical balance/calibrated by manufacturer against traceable mass standards

5. Estimating uncertainty associated with the measurement

66

Are all important parameters included in the model equation?

Yes

Other important parameters are:

Matrix effect

No

Determination of Calcium in Serum by Spectrophotometry

6. How would you prove traceability of your result? 1

Via traceable calibration data

2

Via traceable volumetric measurements

3

Via traceable mass measurements

7. Any other comments, questions…

67

Practical examples on traceability, measurement uncertainty and validation in chemistry

SINGLE LABORATORY VALIDATION OF MEASUREMENT PROCEDURES PART I: GENERAL ISSUES 1. Specify the measurement procedure, analyte, measurand and units

The measurement procedure

To determine the calcium concentration in human serum, a serum sub-sample is mixed with reagent colour and buffer solution, according to WHO standard operation procedure. The absorbance of calcium calibration solutions and serum sample are measured by visible spectrophotometry at 540 nm. From the calibration data the concentration of calcium in human serum is calculated.

Analyte

Calcium

The measurand

Total calcium concentration in human serum

Unit

mg dL-1

2. Specify the scope Matrix

Human serum

Measuring range

1.0−12.0 mg dL-1

3. Requirement on the measurement procedure Intended use of the results

Calcium concentration in serum result is intended to be used for clinical interpretation Parameters to be validated

Value requested by the customer

LOD LOQ Repeatability Mark the customer’s requirements and give their values

Within-lab reproducibility Trueness Measurement uncertainty Other-state

68

8 % as CV, by WHO procedure 2 % as CV, the actual state-of-art

Determination of Calcium in Serum by Spectrophotometry

4. Origin of the measurement procedure VALIDATION New in-house method

Full

Modified validated method

Partial

Official standard method

Confirmation/Verification

69

Practical examples on traceability, measurement uncertainty and validation in chemistry

PART II: PARAMETERS TO BE VALIDATED

5. Selectivity/Interference/Recovery Where yes, please give further information e.g. which CRM, reference method CRM/RM: analysis of available CRM or RM Further information: ROCHE-Control serum type Precipath U Spike of pure substance

Compare with a reference method

Selectivity, interferences

Test with different matrices

Other – please specify

6. Measuring range Linearity Upper limit LOD LOQ

7. Spread – precision Repeatability Reproducibility (within lab) Reproducibility (between lab)

8. Robustness Variation of parameters

70

Determination of Calcium in Serum by Spectrophotometry

9. Quality control Control charts Participation in PT schemes

10. Other parameters to be tested Working range and testing of homogeneity of variances R squared Residual standard deviation Standard deviation of the analytical procedure Coefficient of variation of the analytical procedure Measurement uncertainty

71

Practical examples on traceability, measurement uncertainty and validation in chemistry

PART III: SOME CALCULATIONS AND CONCLUSIONS

11. Calculation of parameters requested by the customer Parameters requested to be validated

Calculations

LOD LOQ Repeatability 5

∑ (c

i , obs

1

Within-lab reproducibilty

CV =

− cQC

)

2

n ( n − 1) cQC

× 100 = 1.27 %

Trueness Measurement uncertainty Other - please state

12. Does the analytical procedure fulfil the requirement(s) for the intended use? Parameter

Value requested by the customer (the same as stated in question 3)

Value obtained during validation

The requirement is fulfilled Yes/No

1.27 %

YES

LOD LOQ Repeatability Within-lab reproducibility

8 % as CV, by WHO procedure 2% as CV, the actual state-of-art

Trueness Measurement uncertainty Other

The analytical procedure is fit for the intended use: Yes

No

For measurement uncertainty and traceability refer to the corresponding sheets 72

Determination of Calcium in Serum by Spectrophotometry

BUILDING AN UNCERTAINTY BUDGET

1. Specify the measurand and units Measurand

Total calcium concentration in human serum

Unit

mg dL-1

2. Describe the measurement procedure and provide the associated model equation Measurement procedure TRGHWHUPLQHWKHFDOFLXPFRQFHQWUDWLRQLQKXPDQVHUXPDVHUXPVXEVDPSOHLVPL[HG ZLWKUHDJHQWFRORXUDQGEXIIHUVROXWLRQDFFRUGLQJWR:+2VWDQGDUGRSHUDWLRQSURFHGXUH TKH DEVRUEDQFH RI FDOFLXP FDOLEUDWLRQ VROXWLRQV DQG VHUXP VDPSOH DUH PHDVXUHG E\ YLVLEOH VSHFWURSKRWRPHWU\ DW  QP )URP WKH FDOLEUDWLRQ GDWD WKH FRQFHQWUDWLRQ RI FDOFLXPLQKXPDQVHUXPLVFDOFXODWHG

Model equation: calcium concentration in serum ⎛V ⎞ cCa = ⎡⎣( m × M Ca × P ) × 100 / V500 × M CaCO3 ⎤⎦ × (Vi / V100 ) × ⎡⎣( Ax − Ablank ) / ( A−10 − Ablank )⎤⎦ × ⎜ f V ⎟ ⎝ int ⎠

(

)

cCD

WRWDOFDOFLXPFRQFHQWUDWLRQLQVHUXPVDPSOH>PJGL@

m

PDVVRICDC2>PJ@

MCD

PRODUPDVVRIFDOFLXP>JPRO@

P

SXULW\RICDC2>PDVVIUDFWLRQ@

V

¿QDOYROXPHRIFDOFLXPVWRFNVWDQGDUGVROXWLRQ>PL@

MCDC2

PRODUPDVVRICDC2>JPRO@

Vi

LQWDNHVWRFNVROXWLRQIRUGLOXWLRQ Vi = VFRUUHVSWRc >PL@

V

¿QDOYROXPHRIFDOLEUDWLRQVROXWLRQ>PL@

Ax

DEVRUEDQFHFRUUHVSRQGLQJWRVHUXPVDPSOH

A

DEVRUEDQFHFRUUHVSRQGLQJWRFDOLEUDWLRQVROXWLRQ PJGL

AEODQN

DEVRUEDQFHFRUUHVSRQGLQJWREODQN

VI

YROXPHRIVHUXPVDPSOHXQGHULQYHVWLJDWLRQ>PL@

VLQW

LQWDNHYROXPHIURPVHUXPVDPSOH>PL@

73

Practical examples on traceability, measurement uncertainty and validation in chemistry

3. Identify (all possible) sources of uncertainty Uncertainty of concentration of reference solutions Uncertainty of measurements of peak area Method bias Matrix effect Other: Uncertainty of absorbance measurements Other: Uncertainty of volume measurements

4. Evaluate values of each input quantity Input quantity

Value

Unit

m

625.0

mg

MCa

40.078

g mol-1

P

0.9999

mass fraction

V500

500.00

mL

MCaCO3

100.0869

g mol-1

Vi

20.000

mL

V100

100.000

mL

Ax

0.323

no units

A-10

0.338

no units

Ablank

0.052

no units

Vf

0.100

mL

Vint

0.100

mL

Remark

5. Evaluate the standard uncertainty of each input quantity

74

Input quantity

Standard uncertainty

Unit

m

0.2

mg

MCa

0.002

g mol-1

P

0.0058

mass fraction

V500

0.15

mL

MCaCO3

0.0024

g mol-1

Remark

Determination of Calcium in Serum by Spectrophotometry

Vi

0.043

mL

V100

0.058

mL

Ax

0.004

no units

A-10

0.002

no units

Ablank

0.004

no units

Vf

0.002

mL

Vint

0.002

mL

6. Calculate the value of the measurand, using the model equation ⎛V ⎞ cCa = ⎡⎣( m × M Ca × P ) × 100 / V500 × M CaCO3 ⎤⎦ × (Vi / V100 ) × ⎡⎣( Ax − Ablank ) / ( A−10 − Ablank )⎤⎦ × ⎜ f V ⎟ ⎝ int ⎠

(

)

cCD PJGL

7. Calculate the combined standard uncertainty (uc) of the result and specify units Using:

MDWKHPDWLFDOVROXWLRQ

6SUHDGVKHHWDSSURDFK

Input quantity

Value

Standard uncertainty

Unit

m

625.0

0.2

mg

MCa

40.078

0.002

g mol-1

P

0.9999

0.0058

mass fraction

V500

500.00

0.15

mL

MCaCO3

100.0869

0.0024

g mol-1

Vi

20.000

0.043

mL

V100

100.000

0.058

mL

Ax

0.323

0.004

no units

A-10

0.338

0.002

no units

Ablank

0.052

0.004

no units

Vf

0.100

0.002

mL

Vint

0.100

0.002

mL

CRPPHUFLDOVRIWZDUH

Remark

u cCD  PJPRO

75

Practical examples on traceability, measurement uncertainty and validation in chemistry

8. Calculate expanded uncertainty (Uc) and specify the coverage factor k and the units U(cCa) = k u (cCa) = 0.606 [mg dL-1], k = 2

9. Analyse the uncertainty contribution and specify the main three input quantities contributing the most to Uc 1

Volume serum measurements

2

Concentration of serum sample from calibration data

10. Prepare your uncertainty budget report

76

Determination of Calcium in Serum by Spectrophotometry

Further readings

 Guide to the Expression of Uncertainty in Measurement *8M  VW HG   *HQHYH6ZLW]HUODQG  EurachemCitac Guide C* Qualtifying Uncertainty in Analytical Measurement QGHG    6WDQGDUG RSHUDWLRQ SURFHGXUH IRU COLQLFDO FKHPLVWU\ 'HWHUPLQDWLRQ RI FDOFLXP E\ FDOFLXPRFUHVROSKWDOHLQFRPSOH[RQHPHWKRGKWWSZZKRVHRUJ  6 LLQNR 8 gUQHPDUN DQG R .HVVHO (YDOXDWLRQ RI PHDVXUHPHQW XQFHUWDLQW\ LQ FOLQLFDOFKHPLVWU\*(RIMIRMM   -.UDJWHQCDOFXODWLQJVWDQGDUGGHYLDWLRQVDQGFRQ¿GHQFHLQWHUYDOVZLWKDXQLYHUVDOO\ DSSOLFDEOHVSUHDGVKHHWWHFKQLTXHAnalyst  −

77

Practical examples on traceability, measurement uncertainty and validation in chemistry

Addendum I: Measurement uncertainty calculation: spreadsheet approach (Excel) Preparation of the standard solution

78

Determination of Calcium in Serum by Spectrophotometry

+#* 



   









()*% ')            



')       

()&"     

+#* ()*% (* ()&"   

     



 

 

  







        

 





 " 

 

 

 



*%)!&%   !



 

   ! 

  (*$!    

()&"

      

+#*

     



()*%      

79

Practical examples on traceability, measurement uncertainty and validation in chemistry

Calibration

Calculation of calcium concentration in serum sample   )"( *   $'



80

   



#

&'($  *   $'     

    

   

 

    

 ! 



    



   

 ($' %$        

  &(#  

 

 

 $*  &(# $*

&

Chapter 3

Determination of Radium in Water by a-Spectrometry Ljudmila Benedik, Urška Repinc, Monika Inkret u u u u

TrainMiC example summary form (‘blue page’) A short introduction to the analytical procedure (‘slides’) All input needed to do the three exercises (‘yellow pages’) The solved exercises (‘green pages’) 81

Practical examples on traceability, measurement uncertainty and validation in chemistry

TrainMiC example summary form

I. General information about the example

82

Measurand

Activity concentration of Ra-226 in water (Bq L-1) (by α-spectrometry)

Example number

Ex-08

Authors of the example

Ljudmila Benedik, Urška Repinc, Monika Inkret

Analytical procedure

Determination of radium isotopes by BaSO4 coprecipitation for the preparation of alpha-spectrometric sources J.C. Lozano, F. Fernandez and J.M.G. Gomez, Journal of Radioanalytical and Nuclear Chemistry 223 (1997) 1−2, 133−137

Customer’s requirement

Directive 98/83/EC on the quality of water intended for human consumption

Determination of Radium in Water by α-Spectrometry

II. Attached files

1-I

File number, type and name EX-08-1-I-Ra226-waterAS-2006-Ver1.ppt

Content of the file About the analytical procedure: short introduction

2 - Yellow

PART I

PART II EX-08-2-Y-Ra226-waterAS-2006-Ver1.doc PART III

3 - Green

PART IV

Description of the analytical procedure The customer’s requirements concerning the quality of the measurement result Validation of the measurement procedure – relevant equations and measurement data Measurement uncertainty of the result – relevant equations and measurement data

File is attached Yes No

9 9 9 9

Establishing traceability in analytical chemistry

9

PART II

Single laboratory validation of measurement procedures

9

Building an uncertainty budget

9

Addendum 1: By spreadsheet approach Addendum 2: By dedicated software

9

PART III

Given by the lecturer Each participant receives own copy and may keep it

9

PART I

EX-08-3-G-Ra226-waterAS-2006-Ver1.doc

Remark

9

III. History of the example Version

Uploaded on the webhotel

0

April 2007

Short description of the change

1

83

Practical examples on traceability, measurement uncertainty and validation in chemistry

A short introduction to the analytical procedure

'HWHUPLQDWLRQ RI 5DLQZDWHU E\ DVSHFWURPHWU\

6FRSHRIWKHSUHVHQWDWLRQ ‡ 7KHDQDO\WLFDOSURFHGXUHDQGWKHFXVWRPHU¶VUHTXLUHPHQWV ‡ $ERXWµWKHFKHPLVWU\¶ DQGWKHPHDVXUHPHQWPHWKRG ‡ 0RGHOHTXDWLRQ

7KHDQDO\WLFDOSURFHGXUHDQGWKH FXVWRPHU¶VUHTXLUHPHQWV ‡ 'HWHUPLQDWLRQRIUDGLXPLVRWRSHVE\%D62 FRSUHFLSLWDWLRQ IRUWKHSUHSDUDWLRQRIDOSKD VSHFWURPHWULFVRXUFHV -&/R]DQR))HUQDQGH]DQG-0**RPH] -RXUQDORI5DGLRDQDO\WLFDO DQG1XFOHDU&KHPLVWU\    ‡ 7KHTXDOLW\RIWKHUHVXOWVVKRXOGFRPSO\ZLWKWKH UHTXLUHPHQWLQWKHUHYLVHGGLUHFWLYH(&RQWKH TXDOLW\RIZDWHULQWHQGHGIRUKXPDQFRQVXPSWLRQ LQSUHSDUDWLRQ

84

Analysis of GoldofAlloys by in Flame Atomic Absorption Spectrometry Determination Radium Water by α-Spectrometry

5D ‡ 6LPLODU FKHPLFDO SURSHUWLHV DV&D ‡ NQRZQ LVRWRSHV ZLWK PDVV ± ‡ DUHIRXQG LQQDWXUH ‡ (PLWWHG DOSKD SDUWLFOHV KDYH KLJK SRWHQWLDO IRU FDXVLQJ ELRORJLFDO GDPDJH

85

Practical examples on traceability, measurement uncertainty and validation in chemistry

3UHSDUDWLRQ RI VWDQGDUGV DQG VDPSOHV $QDO\WLFDOSURFHGXUH 5DVWDQGDUGGLVF

6DPSOH

%DVWDQGDUGGLVF

$GGLWLRQRI%DWUDFHU 3E 5D %D 62 SUHFLSLWDWLRQ

)RUGHWHUPLQDWLRQRI HIILFLHQF\RIDOSKD VSHFWURPHWHU

:DVKLQJWKHSUHFLSLWDWH 'LVVROXWLRQ 5HSUHFLSLWDWLRQ 0LFURILOWUDWLRQ

)RUGHWHUPLQDWLRQ UHFRYHU\RI UDGLRFKHPLFDO VHSDUDWLRQ

*DPPDFRXQWLQJ IRUGHWHUPLQDWLRQRI UHFRYHU\ $OSKDFRXQWLQJIRU GHWHUPLQDWLRQRI5D

DVSHFWURPHWU\  

+H 

DSDUWLFOH

‡ $ YHU\ ODUJH PDVV ‡ $ KLJK FKDUJH

‡ DSDUWLFOHVDUHHDVLO\ VWRSSHGE\DIHZ PLFURQVRIDLU ‡ $ YHU\ WKLQ VRXUFH DOORZV DGHTXDWH WUDQVPLVVLRQ RI WKH DSDUWLFOHVWRWKH GHWHFWRUVXUIDFH

86

Analysis of GoldofAlloys by in Flame Atomic Absorption Spectrometry Determination Radium Water by α-Spectrometry

0RGHOHTXDWLRQ 0HDVXUDQG

$FWLYLW\FRQFHQWUDWLRQ RI5DLQZDWHU $5D

8QLW

%T /

$ 5D

W5D

35D  u 5FKHP u İDGHW u 9VDPSOH

3%D VDPSOH

5FKHP

W %D VDPSOH u P%D VDPSOH

İ Į GHW

W 5D  6WG

u

W %D 6WG u P%D 6WG 3%D 6WG

35D  6WG u P5D  66 u $5D  66

u

55D  6WG

0RGHOHTXDWLRQ DQG HTXDWLRQ IRU PHDVXUHPHQWXQFHUWDLQW\FDOFXODWLRQ $ 5D 

X $5D $5D

8

W 5D 

35D  u İD GHW u 9VDPSOH

§ X 35D · § X İDGHW · X 9 · ¨¨ ¸¸  ¨¨ ¸¸  §¨ ¸ 3 9 İ © ¹ © 5D ¹ © ĮGHW ¹ 





u

 5FKHP 

§ X 5 ·  ¨¨ FKHP ¸¸ © 5FKHP ¹

N u X $5D 

87

Practical examples on traceability, measurement uncertainty and validation in chemistry

All input needed to do the three exercises ‘yellow pages’

Analytical procedure Determination of activity concentration of Ra-226 in drinking water. The quality of the results should comply with the requirements in the revised Directive 98/83/EC on the quality of water intended for human consumption

PART I ..................................................................................................................... 89 Description of the analytical procedure PART II .................................................................................................................... 96 The customer’s requirements concerning the quality of the measurement result PART III ................................................................................................................... 97 Validation of the measurement procedure – relevant equations and measurement data PART IV ................................................................................................................... 98 Measurement uncertainty of the result – relevant equations and measurement data

88

Determination of Radium in Water by α-Spectrometry

PART I. Description of the analytical procedure

)RUWKHGHWHUPLQDWLRQRIRDLQZDWHUWKHIROORZLQJSXEOLVKHGSURFHGXUHLVXVHG Determination of radium isotopes by BaSO4 coprecipitation for the preparation of alpha-spectrometric sources -CLR]DQR))HUQDQGH]DQG-M**RPH] -RXUQDORIRDGLRDQDO\WLFDODQG1XFOHDUCKHPLVWU\223  −−

1. Scope 1.1 General TKH SURFHGXUH LV VSHFL¿HG IRU WKH GHWHUPLQDWLRQ RI RD LQ ZDWHU ZLWK DFWLYLW\ FRQFHQWUDWLRQ GULQNLQJZDWHUUDLQZDWHUJURXQGZDWHUDQGVXUIDFHZDWHU LQUDQJHRI −%TL IQFHUWDLQFDVHVWKHUDQJHRIDSSOLFDWLRQPD\EHFKDQJHGE\YDULDWLRQVLQWKHZRUNLQJ FRQGLWLRQV HJ VDPSOH YROXPH SUHFRQFHQWUDWLRQ WHFKQLTXHV VHQVLWLYLW\ UDQJHV RI GHWHFWRUVHWF 

1.2 Interferences IQ WKH FDVH RI RD PHDVXUHPHQW E\ ĮVSHFWURPHWU\ H[WHQVLYH FKHPLFDO VHSDUDWLRQ SULRUWRFRXQWLQJWRUHPRYHSHDNLQWHUIHUHQFHVIURPRWKHUDOSKDHPLWWHUVLVUHTXLUHG

2. Principle $ FRSUHFLSLWDWLRQ SURFHGXUH IRU WKH SUHSDUDWLRQ RI DOSKD VSHFWURPHWULF VRXUFH IRU UDGLXPXVLQJ%D62DVFDUULHUIRUGHWHUPLQDWLRQRIRDLQZDWHULVXVHGTKHXVHRI %DDVDVXLWDEOHWUDFHUIRUGHWHUPLQDWLRQRIUHFRYHU\RIWKHUDGLRFKHPLFDOSURFHGXUH E\ JDPPD VSHFWURPHWU\ LV DSSOLHG ([SHULPHQWDO SURWRFRO LV VFKHPDWLFDOO\ VKRZQ LQ )LJXUH

89

Practical examples on traceability, measurement uncertainty and validation in chemistry

Figure 4. Experimental protocol for determination Ra-226 in water

3. Apparatus             

90

$OSKDVSHFWURPHWHUZLWKORZEDFNJURXQGVLOLFRQVXUIDFHGHWHFWRU +P*HJDPPDGHWHFWRU $QDO\WLFDOEDODQFHd =0.001 CHQWULIXJHDQGPLFHQWULIXJHWXEV )XPHKRRG +RWSODWH MDJQHWLFVWLUUHUSODWHEDUVDQGUHWULHYHU )LOWHUDSSDUDWXV *ODVVEHDNHUVYROXPHWULFÀDVNDQGJUDGXDWHGF\OLQGHUVDVVRUWHGVL]HV PLSHWWHVDVVRUWHGVL]HV —PPPGLDPHWHUSRO\SURS\OHQH¿OWHUV 6WDLQOHVVVWHHOGLVNV PHWULVOLGHVZDWFKJODVVHV

Determination of Radium in Water by α-Spectrometry

4. Reagents              

ML[HGĮVWDQGDUGVRXUFHIRUGHWHFWRUFDOLEUDWLRQGSP“ k  RDVWDQGDUGVROXWLRQ1I6T6RM $FWLYLW\%TJ“ RYHUDOOk  %DWUDFHU $FWLYLW\N%TJ“ k  :RUNLQJVROXWLRQ%TJ +62FRQFHQWUDWHG PEVROXWLRQ PJPL %DFDUULHUVROXWLRQ PJPL M('T$M1D2+ 1D62VROXWLRQ VDWXUDWHG IQGLFDWRUS+− $FHWLFDFLG %D62VHHGLQJVXVSHQVLRQ

5. Sample preparation procedure The radiochemical separation procedure of Ra-226 with lead coprecipitation  MHDVXUHPLRIWKHZDWHULQWRDEHDNHU *UDGXDWHGF\OLQGHU1000 mL ± 5 mL %L$8%R$1'®WROHUDQFH  $GGJRI%DWUDFHU ZRUNLQJVROXWLRQ   $GGPLRI%DFDUULHUVROXWLRQ  $GGPLRIFRQF+62  PUHFLSLWDWHPE RD %D 62E\DGGLQJPLPEVROXWLRQWKURXJKDGULSSHUZKLOH VWLUULQJ.HHSVWLUULQJIRU−KRXUV  RHPRYHVWLUUHUEDUFRYHUEHDNHUZLWKZDWFKJODVVDQGDOORZWRVHWWOHRYHUQLJKW  'HFDQW VXSHUQDWDQW OLTXRU WR DV ORZ YROXPH DV SRVVLEOH 'LVFDUG GHFDQWHG VXSHUQDWDQW  :DVKSUHFLSLWDWHLQWRPLFHQWULIXJHWXEHDQGFHQWULIXJHDWUSPIRU¿YH PLQXWHV  PRXURXWVXSHUQDWDQW  RHSHDWVWHSVDQGRQFH  :DVKVLGHVDQGWKHZDOOVRIWKHFHQWULIXJHWXEHZLWKMLOLQDQGFHQWULIXJHDW USPIRUPLQ  PRXURXWVXSHUQDWDQW WDNHFDUHQRWWRGLVWXUEWKHSUHFLSLWDWH  $GGPLM('T$M1D2+  9RUWH[WRGLVVROYHWKHSUHFLSLWDWH  $GGDFHWLFDFLGWRDGMXVWS+ − PELRQVUHPDLQLQVROXWLRQ  $GGPLRIVDWXUDWHG1D62  $GGPLRI%DVHHGLQJVROXWLRQ

91

Practical examples on traceability, measurement uncertainty and validation in chemistry

 $OORZWRVLWDWOHDVWPLQ  )LOWHUWKHFROORLGDOVXVSHQVLRQRI RD %D 62WKURXJKDSUHZHWWHG—PSRUH VL]HPPSRO\SURS\OHQH¿OWHU  $IWHUWKHVDPSOHKDV¿OWHUHGULQVHWKHFHQWULIXJHZDOOVDQGWKH¿OWHUKROGHUZLWK XOWUDSXUHZDWHU  RHPRYH¿OWHUDQGDOORZWRDLUGU\  MRXQWWKH¿OWHURQDVWDLQOHVVVWHHOGLVFXVLQJGRXEOHVLGHGWDSHRUJOXHVWLFNRU FRYHUWKHVRXUFHZLWK9J@ SHDNDUHDRI%DLQEDULXPVWDQGDUGGLVF WLPHRIPHDVXUHPHQWRI%DLQEDULXPVWDQGDUGGLVF>V@ PDVVRIDGGHG%DLQEDULXPVWDQGDUGGLVF>J@ PRa-226Std × mRa-226SS × ARa-226SS

×

RRa-226Std

9.2 Alpha spectrometer efficiency determination İĮGHW RRD6WG PRD6WG tRD6WG mRD66 ARD66

94

HI¿FLHQF\RIDOSKDGHWHFWRU UDGLXPVWDQGDUGGLVFUHFRYHU\ SHDNDUHDRIRDLQVWDQGDUGGLVF WLPHRIPHDVXUHPHQWRIVWDQGDUGGLVF>V@ PDVVRIDGGHGRDLQVWDQGDUGVROXWLRQ>J@ DFWLYLW\FRQFHQWUDWLRQRIRDLQVWDQGDUGVROXWLRQ>%TJ@

Determination of Radium in Water by α-Spectrometry

9.3 Activity concentration of Ra-226 in the sample (Bq L-1) A Ra-226

ARD PRD tRD VVDPSOH İĮGHW RFKHP

=

tRa-226

× eα det

PRa-226 × Vsample

×

Rchem

$FWLYLW\FRQFHQWUDWLRQRIRDLQWKHVDPSOHLQ>%TL@ SHDNDUHDRIRD WLPHRIPHDVXUHPHQW>V@ YROXPHRIWKHVDPSOH>L@ FRUUHFWHGHI¿FLHQF\RIDOSKDGHWHFWRU UDGLRFKHPLFDO\LHOG UHFRYHU\

95

Practical examples on traceability, measurement uncertainty and validation in chemistry

PART II. The customer’s requirements concerning quality of the measurement result Extract from the Directive 98/83/EC, Draft annex 2005/04/20 on the quality of water intended for human consumption Reference concentration for radioactivity in drinking water* Origin

Nuclide

Reference concentration

Natural

Ra-226

0.5 Bq L-1

 This table includes the most common natural and arti¿cial radionuclide Reference concentrations for other radionuclides can be calculated using the dose coef¿cients for adults laid down in Annex III Table A of Directive 96/29/Euratom or more recent information recognised by the competent authorities in the Member State, and by assuming an intake of 730 litres per year.

Performance characteristics and methods of analysis )RU WKH IROORZLQJ UDGLRDFWLYLW\ SDUDPHWHUV WKH VSHFL¿HG SHUIRUPDQFH FKDUDFWHULVWLFV DUH WKDW WKH PHWKRG RI DQDO\VLV XVHG PXVW DV D PLQLPXP EH FDSDEOH RI PHDVXULQJ FRQFHQWUDWLRQVHTXDOWRWKHSDUDPHWULFYDOXHZLWKDOLPLWRIGHWHFWLRQVSHFL¿HG Parameter

Limit of detection

Notes

Ra-226

0.04 Bq L-1

Note 1 Note 2

Note 1: the limit of detection should be calculated according to ISO 11929-7, Determination of the detection limit and decision thresholds for ionizing radiation measurements - Part 7: Fundamentals and general applications, with probabilities of errors of 1st and 2nd kind of 0.05 each Note 2: measurement uncertainties should be calculated and reported as complete standard uncertainties, or as expanded standard uncertainties with an expansion factor of 1.96, according to the ISO Guide for the Expression of Uncertainty in Measurement (ISO, Geneva 1993, corrected reprint Geneva, 1995)

96

Determination of Radium in Water by α-Spectrometry

PART III. Validation of the measurement procedure – relevant equations and measurement data IQ WKH SUHVHQW FDVH VWXG\ PHWKRGRORJ\ IRU YDOLGDWLRQ RI PHDVXUHPHQW SURFHGXUH IRU GHWHUPLQDWLRQ RI RD LQ ZDWHU E\ ĮVSHFWURPHWU\ LV SUHVHQWHG )RU WKH FDOFXODWLRQ SDUWWKHHPSKDVLVLVRQWKHSDUDPHWHUVWKDWDUHUHTXLUHGE\WKHFXVWRPHUIQWKLVSDUWLFXODU FDVHWKHVHSDUDPHWHUVDUH  L2'  ZLWKLQODERUDWRU\UHSURGXFLELOLW\ )RUWKHSXUSRVHRIWKLVH[HUFLVHL2' LL' ZLOOEHFDOFXODWHGRQO\

Equation LLD =

tBkg

2.71 + 4.65 Bkg × ε α det × Rchem × Vsample

Measurement data Input quantity

Unit

Value

Rchem

radiochemical yield (recovery)

-

0.803

εα det

efficiency of alpha detector

-

0.2453

Bkg

peak area of background of alpha detector at the Ra-226 alpha energy

-

tBkg

time of measurement of background

s

Vsample

volume of the sample

L

97

Practical examples on traceability, measurement uncertainty and validation in chemistry

PART IV. Measurement uncertainty of the result – relevant equations and measurement data IQ WKH SUHVHQW FDVH VWXG\ PHWKRGRORJ\ IRU HYDOXDWLRQ RI PHDVXUHPHQW XQFHUWDLQW\ RI UHVXOWRIRDGHWHUPLQDWLRQLQGULQNLQJZDWHULVSUHVHQWHGRDZDVGHWHUPLQHG XVLQJĮVSHFWURPHWU\TKHQHFHVVDU\UHOHYDQWLQIRUPDWLRQZDVREWDLQHGIURPWKHPHWKRG YDOLGDWLRQ GDWD WKH TXDOLW\ FRQWURO GDWD DQG HTXLSPHQW FDOLEUDWLRQ FHUWL¿FDWHV  TKH PHWKRGRIPHDVXUHPHQWLVGHVFULEHGWRJHWKHUZLWKWKHPHDVXUHPHQWHTXDWLRQVHOHFWHG WUDFHDEOH UHIHUHQFH VWDQGDUGV DQG WKH DVVRFLDWHG PHDVXUHPHQW XQFHUWDLQW\TKH PDMRU VRXUFHVRIXQFHUWDLQW\RIWKHUHVXOWRIPHDVXUHPHQWZHUHLGHQWL¿HGDQGWKHFRPELQHG XQFHUWDLQW\ZDVFDOFXODWHGIGHQWL¿FDWLRQRIWKHPDLQXQFHUWDLQW\VRXUFHVUHSUHVHQWEDVLV IRUWDUJHWRSHUDWLRQIRUUHGXFLQJWKHPHDVXUHPHQWXQFHUWDLQW\RIWKLVGHWHUPLQDWLRQ

Equations u ( ARa-226 ) ARa-226 u ( Rchem ) Rchem

u ( eαdet ) eαdet

⎛ u (Vsample ) ⎞ ⎛ u (PRa-226 ) ⎞ ⎛ u ( eα det ) ⎞ = ⎜ +⎜ + ⎜ ⎟ ⎟ ⎟ ⎝ PRa-226 ⎠ ⎝ eα det ⎠ ⎝ Vsample ⎠ 2

⎛ u (PBa-133Std ) ⎞ = ⎜ ⎟ + ⎝ PBa-133Std ⎠

2

⎛ u (mBa-133Std ) ⎞ ⎜ ⎟ ⎝ mBa-133Std ⎠

⎛ u (mRa-226SS ) ⎞ ⎛ u (PRa-226Std ) ⎞ = ⎜ + ⎜ ⎟ P ⎝ mRa-226SS ⎟⎠ ⎝ Ra-226Std ⎠

u (ARa-226 ) = k × (ARa-226 )

98

2

2

2

2

2

⎛ u (Rchem ) ⎞ +⎜ ⎝ Rchem ⎟⎠

(

⎛ u PBa-133sample + ⎜ ⎜⎝ PBa-133sample

⎛ u (ARa-226SS ) ⎞ +⎜ ⎟⎠ ⎝ A Ra-226SS

2

)⎞⎟ ⎟⎠

2

2

(

⎛ u mBa-133sample +⎜ ⎜⎝ mBa-133sample

⎛ u ( RRa-226Std ) ⎞ +⎜ ⎟⎠ ⎝ R Ra-226Std

2

)⎞⎟ ⎟⎠

2

peak area of Ra-226 in standard disc

radiochemical yield (recovery)

efficiency of alpha detector

radium standard disc recovery

PRa-226 Std

Rchem

εα det

RRa-226Std -

-

-

-

-

peak area of Ba-133 in barium standard disc

PBa-133 Std

-

peak area of Ba-133 in the sample

PBa-133 sample

-

peak area of Ra-226

s

s

s

Bq g-1

g

g

g

L

Unit

PRa-226

time of measurement of Ba-133 in barium standard disc

time of the sample measurement (s)

tBa-133 sample

tBa-133Std

time of measurement

activity concentration of Ra-226 in standard solution

tRa-226

ARa-226 SS

mRa-226 SS

mass of added Ba-133 in barium standard disc mass of added Ra-226 in standard solution

mass of added Ba-133 in the sample

mBa-133 sample

mBa-133Std

volume of the sample

Vsample

Input quantity

Measurement data

-

-

-

12 785

5090

10 914

7516

3000

3000

300 000

2729

0.010

0.112

0.301

1.0

Value

-

-

-

113

71

104

87

-

-

-

-

0.001

0.001

0.001

0.002

(u)

Standard uncertainty

A

A

A

A

A

A

A

-

-

-

B

B

B

B

B

Type of uncertainty

X

X

X

X

X

X

X

X

normal

-

-

-

X

X

X

rectangular

Type of distribution

X

triangular

Determination of Radium in Water by α-Spectrometry

99

Practical examples on traceability, measurement uncertainty and validation in chemistry

The solved exercises ‘green pages’

TrainMiC Exercises Analytical procedure Determination of activity concentration of Ra-226 in drinking water. The quality of the results should comply with the requirement in the revised Directive 98/83/EC on the quality of water intended for human consumption

EXERCISE 1: Establishing traceability in analytical chemistry EXERCISE 2: Single laboratory validation of measurement procedures Part I: General issues Part II: Parameters to be validated Part III: Some calculations and conclusions

EXERCISE 3: Building an uncertainty budget Addendum I: By spreadsheet approach Addendum II: By dedicated software

100

Determination of Radium in Water by α-Spectrometry

ESTABLISHING TRACEABILITY IN ANALYTICAL CHEMISTRY

1. Specifying the analyte and measurand Analyte

Ra-226

Measurand

Activity concentration of Ra-226 in water (drinking, surface, waste, …)

Units

Bq L-1

2. Choosing a suitable measurement procedure with associated model equation Measurement procedure

Determination of radium isotopes by BaSO4 coprecipitation for the preparation of alpha-spectrometrical sources Lozano et al., Journal of Radioanalytical and Nuclear Chemistry

Type of calibration

mixed standard source

standard addition

internal standard

Model equation TKHDFWLYLW\FRQFHQWUDWLRQRIRDLQVDPSOH %TL LVFDOFXODWHGE\ A Ra-226 =

tRa-226

× eα det

PRa-226 × Vsample

×

Rchem

ARD

DFWLYLW\FRQFHQWUDWLRQRIRDLQWKHVDPSOH>%TL@

PRD

SHDNDUHDRIRD

tRD

WLPHRIPHDVXUHPHQW>V@

V

YROXPHRIWKHVDPSOH>L@

İĮGHW

FRUUHFWHGHI¿FLHQF\RIDOSKDGHWHFWRU

RFKHP

UDGLRFKHPLFDO\LHOG UHFRYHU\

Rchem =

PBa-133sample tBa-133sample × mBa-133sample

×

tBa-133Std × mBa-133Std PBa-133Std

RHFRYHU\REWDLQHGE\JDPPDVSHFWURPHWU\LVFDOFXODWHGDVIROORZV RFKHP

UDGLRFKHPLFDO\LHOG UHFRYHU\ 

P%DVDPSOH

SHDNDUHDRI%DLQWKHVDPSOH

t%DVDPSOH

WLPHRIWKHVDPSOHPHDVXUHPHQW>V@

m%DVDPSOH

PDVVRIDGGHG%DLQWKHVDPSOH>J@

P%D6WGD

SHDNDUHDRI%DLQEDULXPVWDQGDUGGLVF

101

Practical examples on traceability, measurement uncertainty and validation in chemistry

t%D6WG

WLPHRIPHDVXUHPHQWRI%DVWDQGDUGGLVF>V@

m%D6WG

PDVVRIDGGHG%DLQEDULXPVWDQGDUGGLVF>J@

$OSKDVSHFWURPHWHUHI¿FLHQF\LVFDOFXODWHGDVIROORZV İĮGHW =

tRa-226Std

PRa-226Std × mRa-226SS × ARa-226SS

×

RRa-226Std

İĮGHW

HI¿FLHQF\RIDOSKDGHWHFWRU

RRD6WG

UDGLXPVWDQGDUGGLVFUHFRYHU\

PRD6WG

SHDNDUHDRIRDRIVWDQGDUGGLVF

tRD6WG

WLPHRIPHDVXUHPHQWRIRDVWDQGDUGGLVF>V@

mRD66

PDVVRIDGGHGRDVWDQGDUGVROXWLRQ>J@

ARD66

RDDFWLYLW\FRQFHQWUDWLRQLQVWDQGDUGVROXWLRQ>%TJ@

3. List the input quantities according to their influence on the uncertainty of the result of the measurement (first the most important ones). At this point, your judgement should be based on your previous experience only. 1

Uncertainty of concentration of reference solutions

2

Uncertainty of volumes

3

Uncertainty of weighing

4

Uncertainty of measurement, using alpha and gamma detectors

4. List the reference standards needed and state the information regarding traceability of the reference value For the analyte

102

1

Name/Chemical Formula/Producer:

Standard Radionuclide Source, Analytics, SRS 67978-121

2

Name/Chemical Formula/Producer:

Ba-133 standard solution, Czech Metrological Institute, Cert. No: 931-OL-137/99

2

Name/Chemical Formula/Producer:

Ra-226 standard solution, NIST SRM 4967

Determination of Radium in Water by α-Spectrometry

For the other input quantities 1

Quantity/Equipment/Calibration: e.g. mass/balance/calibrated by NMI, U = xx (k = 2) see also data yellow sheet

Graduated and mixing cylinders, volumetric flask/with established traceability BLAUBRAND® tolerance

2

Quantity/Equipment/Calibration:

Mass/calibrated balance/with established traceability Sartorius

5. Estimating uncertainty associated with the measurement Are all important parameters included in the model equation?

Yes

Other important parameters are:

Uncertainty of measured background of detector, uncertainty of measured blank reagents (minor contributions)

No

6. How would you prove traceability of your result? 1

Analysis of matrix CRM

2

Participation in a proficiency testing scheme

3

-

7. Any other comments, questions…

103

Practical examples on traceability, measurement uncertainty and validation in chemistry

SINGLE LABORATORY VALIDATION OF MEASUREMENT PROCEDURES PART I: GENERAL ISSUES 1. Specify the measurement procedure, analyte, measurand and units The measurement procedure

Determination of radium isotopes by BaSO4 coprecipitation for the preparation of alpha-spectrometric sources J.C. Lozano, F. Fernandez and J.M.G. Gomez Journal of Radioanalytical and Nuclear Chemistry 223 (1997) 1−2, 133−137.

Analyte

Ra-226

The measurand

Activity concentration of Ra-226 in drinking water

Unit

Bq L-1

2. Specify the scope Matrix

Drinking water

Measuring range

0.01–10 Bq L-1

3. Requirement on the measurement procedure Intended use of the results

Compliance to the requirements in the revised water directive 98/83/EC on the quality of water intended for human consumption Parameters to be validated

Value requested by the customer 0.04 Bq L-1

LOD LOQ Mark the customer’s requirements and give their values

Repeatability Within-lab reproducibility Trueness Measurement uncertainty Other-state

4. Origin of the measurement procedure VALIDATION

104

New in-house method

Full

Modified validated method

Partial

Official standard method

Confirmation/Verification

Determination of Radium in Water by α-Spectrometry

PART II: PARAMETERS TO BE VALIDATED

5. Selectivity/Interference/Recovery Where yes, please give further information e.g. which CRM, reference method CRM/RM: analysis of available CRM or RM Further information: Spike of pure substance spiking of samples with pure substances and calculation of recovery Compare with a reference method

Selectivity, interferences

Test with different matrices

Other – please specify

6. Measuring range Linearity Upper limit LOD LOQ

7. Spread – precision Repeatability Reproducibility (within lab) Reproducibility (between lab)

105

Practical examples on traceability, measurement uncertainty and validation in chemistry

8. Robustness Variation of parameters

9. Quality control Control charts Participation in PT schemes

10. Other parameters to be tested Working range and testing of homogeneity of variances R square Residual standard deviation Standard deviation of the analytical procedure Coefficient of variation of the analytical procedure Measurement uncertainty

106

Determination of Radium in Water by α-Spectrometry

PART III: SOME CALCULATIONS AND CONCLUSIONS

11. Calculation of parameters requested by the customer Parameters requested to be validated

Calculations LLD =

LOD

2.71 + 4.65 14.26092744 = 0.000245 Bq L-1 420 730 × 0.2453 × 0.803 × 1

LOQ Repeatability Within-lab reproducibilty Trueness Measurement uncertainty Other - please state

12. Does the analytical procedure fulfil the requirement(s) for the intended use? Parameter

Value requested by the customer (the same as stated in question 3)

LOD

0.04 Bq L-1

LOQ



Repeatability



Value obtained during validation

The requirement is fulfilled Yes/No

0.00025 Bq L-1

YES

Within-lab reproducibility



Trueness Measurement uncertainty



Other

The analytical procedure is fit for the intended use: Yes

No

For measurement uncertainty and traceability refer to the corresponding sheets

107

Practical examples on traceability, measurement uncertainty and validation in chemistry

BUILDING AN UNCERTAINTY BUDGET

1. Specify the measurand and units Measurand

Activity concentration of Ra-226 in water (drinking, surface, waste, …)

Unit

Bq L-1

2. Describe the measurement procedure and provide the associated model equation

Measurement procedure 'HWHUPLQDWLRQRIUDGLXPLVRWRSHVE\%D62FRSUHFLSLWDWLRQIRUWKHSUHSDUDWLRQRIDOSKD VSHFWURPHWULFVRXUFHV -CLR]DQR))HUQDQGH]DQG-M**RPH] -RXUQDORIRDGLRDQDO\WLFDODQG1XFOHDUCKHPLVWU\223  −−

Model equation: TKHDFWLYLW\FRQFHQWUDWLRQRIRDLQWKHVDPSOH %TL LVFDOFXODWHGE\ A Ra-226 =

108

tRa-226

×

α det

PRa-226 × Vsample

×

Rchem

ARD

$FWLYLW\FRQFHQWUDWLRQRIRDLQWKHVDPSOH>%TL@

PRD

SHDNDUHDRIRD

tRD

WLPHRIPHDVXUHPHQW>V@

V

YROXPHRIWKHVDPSOH>L@

İĮGHW

FRUUHFWHGHI¿FLHQF\RIDOSKDGHWHFWRU

RFKHP

UDGLRFKHPLFDO\LHOG UHFRYHU\ 

Determination of Radium in Water by α-Spectrometry

RHFRYHU\PHDVXUHGE\JDPPDVSHFWURPHWU\LVFDOFXODWHGDVIROORZV Rchem =

PBa-133sample tBa-133sample × mBa-133sample

×

× mBa-133Std

tBa-133Std

PBa-133Std

RFKHP

UDGLRFKHPLFDO\LHOG UHFRYHU\

P%DVDPSOH

PHDNDUHDRI%DLQWKHVDPSOH

t%DVDPSOH

WLPHRIWKHVDPSOHPHDVXUHPHQW>V@

m%DVDPSOH

PDVVRIDGGHG%DLQWKHVDPSOH>J@

P%D6WG

SHDNDUHDRI%DLQEDULXPVWDQGDUGGLVF

t%D6WG

WLPHRIPHDVXUHPHQWRI%DLQEDULXPVWDQGDUGGLVF>V@

m%D6WG

PDVVRIDGGHG%DLQEDULXPVWDQGDUGGLVF>J@

$OSKDVSHFWURPHWHUHI¿FLHQF\GHWHUPLQDWLRQLVFDOFXODWHGDVIROORZV İĮGHW =

tRa-226Std

PRa-226Std × mRa-226SS × ARa-226SS

×

RRa-226Std

İĮGHW

HI¿FLHQF\RIDOSKDGHWHFWRU

RRD6WG

UDGLXPVWDQGDUGGLVFUHFRYHU\

PRD6WG

SHDNDUHDRIRDLQVWDQGDUGGLVF

tRD6WG

WLPHRIPHDVXUHPHQWRIRDVWDQGDUGGLVF>V@

mRD66

PDVVRIDGGHGRDVWDQGDUGVROXWLRQ>J@

ARD66

RDDFWLYLW\FRQFHQWUDWLRQLQVWDQGDUGVROXWLRQ>%TJ@

3. Identify (all possible) sources of uncertainty Uncertainty of concentration of reference solutions Uncertainty of measurements of peak area (alpha and gamma detectors) Method bias Matrix effect Other: Uncertainty of volume measurements Other: Uncertainty of weighing Other: Uncertainty of measured background of alpha and gamma detectors Other: Uncertainty of measured blank reagents, filters, discs

109

Practical examples on traceability, measurement uncertainty and validation in chemistry

4. Evaluate values of each input quantity Input quantity

Value

Unit

PRa-226

7516

-

tRa-226

300 000

s

εαdet

0.2453

-

Vsample

1.0

L

Rchem

0.803

-

Remark

5. Evaluate the standard uncertainty of each input quantity Input quantity

Standard uncertainty

Unit

PRa-226

87

-

tRa-226

0

s

εαdet

0.01392

-

Vsample

0.0020

L

Rchem

0.0142

-

Remark

Constant

6. Calculate the value of the measurand, using the model equation A Ra-226 =

A Ra-226 =

tRa − 226

PRa-226 × eα det × Vsample

7516 × 300 000 × 0.2453 × 1

×

1 Rchem

1 = 0.127 Bq L-1 0.803

7. Calculate the combined standard uncertainty (uc ) of the result and specify units Using:

110

MDWKHPDWLFDOVROXWLRQ

6SUHDGVKHHW$SSURDFK

Input quantity

Value

Standard uncertainty

Unit

PRa-226

7516

87

-

tRa-226

300 000

0

s

εαdet

0.2453

0.01392

-

Remark

CRPPHUFLDO6RIWZDUH

Determination of Radium in Water by α-Spectrometry

Vsample

1.0

0.0020

L

Rchem

0.803

0.0142

-

u ( ARa-226 ) ARa-226 u ( ARa-226 ) ARa-226

⎛ u (Vsample ) ⎞ ⎛ u (PRa-226 ) ⎞ ⎛ u ( eαdet ) ⎞ = ⎜ +⎜ + ⎜ ⎟ ⎟ ⎟ ⎝ PRa-226 ⎠ ⎝ eαdet ⎠ ⎝ Vsample ⎠ 2

2

2

2

⎛ 87 ⎞ ⎛ 0.01392 ⎞ ⎛ 0.0020 ⎞ = ⎜ + + ⎜ ⎝ 7516 ⎟⎠ ⎜⎝ 0.2453 ⎟⎠ ⎝ 1 ⎟⎠

2

2

⎛ u (Rchem ) ⎞ +⎜ ⎝ Rchem ⎟⎠

2

2

⎛ 0.0142 ⎞ +⎜ = 0.00806 ⎝ 0.803 ⎟⎠

8. Calculate expanded uncertainty (Uc) and specify the coverage factor k and the units u (ARa-226 ) = k × (ARa-226 ) U = 2 × 0.00806 = 0.016 Bq L-1

9. Analyse the uncertainty contribution and specify the main three input quantities contributing the most to uc 1

Mass of Ra-226 standard solution

2

Peak area of Ba-133 in the standard disc

3

Peak area of Ra-226 of the sample

10. Prepare your uncertainty budget report See the attached Excel calculations and calculations done using the software GumWorkbench

111

Practical examples on traceability, measurement uncertainty and validation in chemistry

Further readings

(CCRXQFLO'LUHFWLYHRI-XO\UHODWLQJWRWKHTXDOLW\RIZDWHULQWHQGHG IRUKXPDQFRQVXPSWLRQOf¿c. J. Eur. Commun.L   (CCRXQFLO'LUHFWLYH(CRI1RYHPEHUTKHTXDOLW\RIZDWHULQWHQGHG IRUKXPDQFRQVXPSWLRQOf¿c. J. Eur. Commun.L    (8R$T2M  CRXQFLO RHJXODWLRQ (XUDWRP  1R  RI  -XO\  DPHQGLQJRHJXODWLRQ (XUDWRP 1ROD\LQJGRZQPD[LPXPSHUPLWWHGOHYHOV RI UDGLRDFWLYH FRQWDPLQDWLRQ RI IRRGVWXIIV DQG RI IHHGLQJVWXIIV IROORZLQJ D QXFOHDU DFFLGHQW RU DQ\ RWKHU FDVH RI UDGLRORJLFDO HPHUJHQF\ Of¿c. J. Eur. Commun. L    (8R$T2M  (XURSHDQ CRPPLVVLRQ RHFRPPHQGDWLRQ (8R$T2M Of¿c. J. Eur. Commun. L    Guidelines for Drinking Water Quality, Recommendation YRO  QG HG   :+2*HQHYD  Guidelines for Drinking Water Quality, Recommendation YRO  UG FXUUHQW  HG LQFOXGLQJWKH¿UVWDGGHQGXP  :+2*HQHYD$YDLODEOHIURPKWWSZZZZKRLQW ZDWHUBVDQLWDWLRQBKHDOWK -CLR]DQR))HUQDQGH]DQG-M**RPH]'HWHUPLQDWLRQRIUDGLXPLVRWRSHVE\ %D62FRSUHFLSLWDWLRQIRUWKHSUHSDUDWLRQRIDOSKDVSHFWURPHWULFVRXUFHVJ. Radioanalyt. Nucl. Chem. −   −