Operations research handbook: Standard algorithms and methods with examples [Reprint 2019 ed.] 9783111506975, 9783110070552

296 105 13MB

English Pages 398 [400] Year 1977

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

Operations research handbook: Standard algorithms and methods with examples [Reprint 2019 ed.]
 9783111506975, 9783110070552

Table of contents :
Preface
Contents
Definitions and Symbols
0. Summary of Matrix Algebra and Allied Topics
1. Linear Programming
2. Integer Programming
3. Theory of Graphs
4. Planning Networks
5. Game Theory
6. Dynamic Programming
7. Queueing Models
8. Nonlinear Programming
9. Generation of Random Numbers (Simulation)
10. Replacement Models
11. Inventory Models
12. Sequencing Models
13. Plant Location Models
Appendix
Bibliography

Citation preview

Eiselt • von Frajer Operations Research Handbook

Horst A. Eiselt • Helmut von Frajer

Operations Research Handbook Standard Algorithms and Methods with Examples

W DE

G Walter de Gruyter • Berlin • New York • 1977

CIP-Kurztitelaufnähme

der Deutschen

Bibliothek

Eiselt, Horst A. Operations research handbook: Standard algorithms and methods with examples/Horst A. Eiselt; Helmut von Frajer. — 1. Aufl. — Berlin, New York: de Gruyter. 1977. ISBN 3-11-007055-3 NE: Frajer, Helmut von:

Library of Congress Cataloging in Publication Eiselt, Horst A.

Data

1950-

Operations research handbook. Bibliography: p. 1. Operations research — Handbooks, manuals, etc. I. Frajer, Helmut von, 1948 — joint author. II. Title. T 57.6.E37 001.4'24 77-5572 ISBN 3-11-007055-3

© Copyright 1977 by Walter de GruyterA Co., Berlin 30. All rights reserved, including those of translation into foreign languages. No part of this book may be reproduced in any form - by photoprint, microfilm, or any other means - nor transmitted nor translated into a machine language without written permission from the publisher. Printing: Karl Gerike, Berlin. - Binding: Lüderitz & Bauer, Buchgewerbe GmbH, Berlin. - Cover design: Armin Wernitz, Berlin. - Printed in Germany.

Preface In writing this handbook the authors had in mind not only the students of economics, social sciences, and mathematic but also the professionals in all fields engaging in optimization problems and the control of projects. The most important and most often utilized algorithms for the solution of these problems have been collected and described in a uniform and hopefully understandable manner. With this goal set, each section was divided as follows: a)

Hypotheses:

Here the problem i s formulated and the prerequis i t e s are explained.

b)

Principle:

Briefly the general concept i s presented.

c)

Description: In this section each step of the algorithm or method i s explained in a standard format.

d)

Example:

For each paragraph an example i s completely solved. An effort has been made in selecting the examples to find those which i l l u s t r a t e even the special properties of certain algorithms and methods.

The reader should already be familiar with the basic concepts of differentiation, integration, and s t a t i s t i c s . A summary of the topics in Linear Algebra that are necessary is provided at the beginning of the book. Because this book was conceived as a desk reference, the corresponding theory and necessary proofs which are found in the myriad of textbooks in Operations Research have been omitted. For details concerning the material in each chapter, beyond the outright applications, i t is essential that the reader becomes familiar with the technical

literature.

6

Preface

To this purpose a selection of the standard literature and advanced research studies is also included in the bibliography. The solid arrows in the sketch below indicate the relationships of the chapters of the book to each other, as well as the minimum mathematics suggested for full understanding of each chapter. The dotted arrows show other relationships that exist between the material in each chapter although they will not be expounded upon further. It was never the intension of the authors to convey through this sketch exactly how the field of Operations Research is structured either in theory or practice. Nevertheless it does illustrate certain general relationships between the various areas of Operations Research. The authors are very grateful to Prof. Dr. H. Noltemeier, University of Goettingen, for the many invaluable suggestions that he has offered from time to time during the formulation of this book. The authors also thank Cpt. Lee Dewald, who devoted much of his last semester in Goettingen assisting in the translation of the original manuscript; and Mrs. Schillings, who arduously sorted through the translation and typed the final copy. Last but not least the authors acknowledge Walter de Gruyter & Co. as partners in publishing.

Goettingen, in spring 1977

Horst A. Eiselt Helmut von Frajer

Contents D e f i n i t i o n s and Symbols 0.

15

Summary of Matrix Algebra and A l l i e d Topics

0.1

Definitions

17

0.2

Elementary Operations

18

1.

Linear Programming

1.1

General Methods

1.1.1

The Primal Simplex-Algorithm

22

1.1.2

The Two-Phase Method

25

1.1.3

The Primal Simplex-Algorithm without E x p l i c i t I d e n t i t y Matrix

30 34

1.1.4

The Dual Simplex-Algorithm

1.1.5

S e n s i t i v i t y A n a l i s y s and Parametric Programming (S.A. and P.P.)

38

1.1.5.1

S.A. and P.P. with Expected A l t e r a t i o n s

39

1.1.5.2

S.A. and P.P. with Unexpected A l t e r a t i o n s

1.1.5.2.1

Subsequent A l t e r a t i o n s of the R e s t r i c t i o n Vector

1.1.5.2.2

43

Subsequent A l t e r a t i o n s of C o e f f i c i e n t s of the Objective Function

45

1.2

Shortened Methods

1.2.1

The Transportation Problem

48

1.2.1.1

The Northwest-Corner Rule

49

1.2.1.2

The Row Minimum Method

51

1.2.1.3

The Column Minimum Method

54

1.2.1.4

The Matrix Minimum Method

57

1.2.1.5

The Double Preference Method

60

1.2.1.6

VOGEL's Approximation Method (VAM)

66

1.2.1.7

The Frequency Method

71

1.2.1.8

The Stepping-Stone Method

72

1.2.2

The Hungarian Method (Kuhn)

75

10

1.2.3

1.2.4

Contents

The Decomposition Principle (Dantzig; Wolfe)

81

FLOOD'S Technique

89

1.3

Theorems and Rules

1.3.1

The Dual Problem

91

1.3.2

Theorems of Duality

93

1.3.3

The Lexicographic Selection Rule

94

2.

Integer Programming

2.1

Cutting Plane Methods

2.1.1

The G0M0RY-I-Al1

2.1.2

The GOMORY-II-Al1

Integer Method

2.1.3

The GOMORY-III-Mixed Integer Method

2.1.4

The GOMORY-III-Mixed Integer Method

Integer Method

with Intensified Cuts 2.1.5

96 100 103

106

The Primal Cutting Plane Method (Young; Glover; Ben-Israel; Charnes)

108

2.2

Branch and Bound Methods

2.2.1

The Method of LAND and DOIG

Ill

2.2.2

The Method of DAKIN

118

2.2.3

The Method of DRIEBEEK

122

2.2.4

The Additive Algorithm (Balas)

129

2.3

Primal-Dual

2.3.1

A Partitioning Procedure for Mixed

Methods

Integer Problems (Benders) 3.

134

Theory of Graphs

3.0.1

Definitions

143

3.0.2

The Determination of Rank in Graphs

146

3.0.3

The Number of Paths in a Graph

148

3.0.4

The Determination of the Strongly Connected Components of a Graph

149

3.1

Shortest Paths in Graphs

3.1.1

The Algorithm of DIJKSTRA

151

3.1.2

The Algorithm of DANTZIG

154

Contents

3.1.3

The FORD Algorithm I

3.1.4

The FORD Algorithm II

(shortest path(s)) (longest path(s))

11

159 160

3.1.5

The Tri pel Algorithm

162

3.1.6

The HASSE Algorithm

166

3.1.7

The Cascade Algorithm

168

3.1.8

The Algorithm of LITTLE

169

3.1.9

The Method of EASTMAN

174

3.2

Flows in Networks

3.2.1

The Algorithm of FORD and FULKERSON

178

3.2.2

The Algorithm of BUSACKER and GOVJEN

183

3.2.3

The Method of KLEIN

187

3.2.4

The Out-of-Kilter Algorithm

3.3

Shortest Spanning Subtrees of a Graph

3.3.1

The Method of KRUSKAL

(Ford; Fulkerson)

191 200

3.3.2

The Method of SOLLIN

203

3.3.3

The Method of WOOLSEY

205

3.3.4

The Method of BERGE

207

3.4

Gozinto Graphs

210

3.4.1

The Method of VAZS0NYI

210

3.4.2

The Method of TISCHER

212

3.4.3

The Method of FLOYD

213

3.4.4

The Gozinto List Method

214

4.

Planning Networks

4.0.1

The Critical Path Method (CPM)

217

4.0.2

The CPM Project Acceleration

220

4.0.3

The Program Evaluation and Review Technique (PERT)

224

4.0.4

The Metra Potential Method (MPM)

227

4.0.5

The Graphical Evaluation and Review Technique (GERT)

230

12

5.

Contents

Game Theory

5.1

Non Matrix Games

5.1.1

The Normal Form

5.1.2

236

1

NASH s Solution of the Bargaining Problem

241 242

5.1.3

The Extensive Form

5.2

Matrix Games

5.2.1

A Method for Determining Pure Strategy Pairs for Two-Person Zero-Sum Games

251

5.2.2

A Method for Solving Two-Person Zero-Sum

5.2.3

An Approximization Method for Two-Person

5.2.4

The LEMKE-HOWSON Algorithm for the Solution

Games with the Simplex-Algorithm

253

Zero-Sum Games ("learning method"; Gale; Brown) of Bimatrix Games 5.3

256 260

Decisions under Uncertainty (games against nature)

264

5.3.1

The Solution of WALD

265

5.3.2

The Solution of HURWICZ

266

5.3.3

The Solution of SAVAGE and NIEHANS

266

5.3.4

The Solution of BAYES

267

5.3.5

The Solution of LAPLACE

268

5.3.6

The Solution of HODGES and LEHMANN

268

6.

Dynamic Programming

6.0.1

The n-Period Model

6.0.2

The Infinite-Period Model (policy iteration

270

routine)

276

7.

Queueing Models

7.0.1

The 1-Channel, 1-Stage Model

:

282

280

7.0.2

The 1-Channel, r-Phase Model

284

7.0.3

The k-Channel, 1-Stage Model

285

8.

Nonlinear Programming

8.1

Theorems and Special Methods

8.1.1

The Theorem of KUHN and TUCKER

288

Contents

8.1.2

The Method of LAGRANGE

8.1.3

A Method for the Optimization of Nonlinear

13

289

Separable Objective Functions under Linear Constraints

292

8.2

General Methods

8.2.1

The Method of WOLFE (short form)

296

8.2.2

The Method of FRANK and WOLFE

302

8.2.3

The Method of BEALE

307

8.2.4

An Algorithm for the Solution of Linear Complementarity Problems (Lemke)

312

8.2.5

The Gradient Projection Method (Rosen)

315

9.

Generation of Random Numbers (simulation)

321

9.0.1

The AWF-Cubes (Graf)

321

9.0.2

The Midsquare Method (J.V.Neumann)

322

9.0.3

A Mixed Congruence Method

323

9.0.4

A Multiplicative Congruence Method

324

10.

Replacement Models

10.1

Replacement Models with Respect to Gradually Increasing Maintenance Costs

10.1.1

A Model Disregarding the Rate of Interest

325

10.1.2

A Model Regarding the Rate of Interest

326

10.2

Replacement Models with Respect to Sudden Failure

10.2.1

A Model Disregarding the Rate of Interest

328

10.2.2

A Model Regarding the Rate of Interest

331

11.

Inventory Models

333

11.0.1

The Classical Inventory Model (Andler)

333

11.0.2

An Inventory Model with Penalties for Undersuppl ied Demands

334

11.0.3

An Inventory Model with Terms for Delivery

335

11.0.4

An Inventory Model with Damage to Stock

337

11.0.5

An Inventory Model with Rebates (different price intervals)

338

14

11.0.6

Contents

An Inventory Model with Respect to Transportation Capacity

340

12.

Sequencing Models

12.0.1

JOHNSON'S Algorithm for Two Machines

12.0.2

JOHNSON'S Algorithm for Three Machines (special case)

345

12.0.3

A Heuristic Solution for a Sequencing Problem

347

13.

Plant Location Models

13.1

Exact Methods

13.1.1

The Optimal Plant Location in a Trans-

13.1.2

The Optimal Plant Location in a Trans-

portation Network I

343

350

portation Network II

351

13.1.3

The Optimal Plant Location on a Straight Line

353

13.1.4

The Optimal Plant Location with Respect to

13.2

Heuristic Methods

13.2.1

The Center of Gravity-Method

13.2.2

A Solution by Vector Summation

358

13.2.3

An Iterative Method

363

Appendix

367

Rectangular Transportation Movements

Table 1 :

qk

= (1 + i) k k

Table 2 :

q~

Table 3 :

e" k

= (1 + i)"

354

356

367 k

367 368

Table 4 : Random numbers with an equal distribution

370

Table 5 : Area under the standardized normal distribution function Bibliography

372 373

Definitions and Symbols A : Aj-m

x

nj

: [m x n] - dimensional matrix

A

I : i d e n t i t y matrix e : n u l l matrix A^ : transpose o f matrix A Fn

inverse o f matrix

A A

: n-dimensional real euclidian space I f not otherwise defined, a problem P i s given as follows:

where A:A

[m x n] ;

x:x

[ n x 1] ;

b:b

[m x 1] •

x e [a;b] = a < x < b, where b > a: closed interval x e (a;b] = a < x < b, where b > a 1 x e [a ;b ) = a < x < b, where b > a

: half-closed intervals

x e (a;b) = a < x < b, where b > a : open interval a: = a + b : val uation 3 : there i s V : for a l l » E iff

... ...

: equivalence r e l a t i o n

=> : implication [a] : largest integer smaller than a : smallest integer larger than a 0 : empty set |a| : absolute value of a J M | = |{m^}| : the number of elements in M M^ U M2 : union of the sets M^ and M2 M, n M2 : intersection of the sets M^ and M2

16

Definitions

a v b :

a

or

a A b :

a

and

S

a. :

^

and

b

(alternative) b

(conjunctive)

sun over a l l elements a ^

J

J

a

j-x.-bv

Symbols

'

5as

^

c

var

for whose indices j

x. is J

b

ia le

: partial derivative o f f(x) with respect to

x

3X

grad f(x) : gradient o f f(x) = vector o f the partial f i r s t derivatives o f the function f(x) = total derivative o f f(x) with respect to the \ector A vector

a: = ( a ^ ; . . . ;aj ; . . . ;a n ) i s lexicographically p o s i t i v e

(in symbols: A vector

a

a y 0)

«*

(a k > 0 | k = min { j | a^ * 0} ) .

i s lexicographically greater than a vector

( i n symbols: a y b) The vector

x .

**

b

(a-b) y 0 .

(rl a v ' i s the lexicographic maximum of a set of vectors

in symbols:

= lex max { a ^ } i

) »

a ^ y a^ 1 ^ V i * r .

(The d e f i n i t i o n for " l e x i c o g r a p h i c a l l y smaller" and the lexicographic minimun are equivalent) . k-min: the k-th smallest element of a set for k = 1 , 2 , . . . rk(A) : rank o f the matrix

A

bv

: basic variable

nbv

: non-basic variable

inf

: infimun

sup

: supremim

q.u.

: quantity unit ( i . e .

ea.; doz.; gal. etc)

m.u.

: monetary unit ( i . e .

$; C

d.u.

: distance unit ( i . e .

m i . ; km.; i n . ; ft. etc)

t.u.

: time unit

(i.e.

etc)

h r . ; min.; sec. etc)

0. Summary of Matrix Algebra and Allied Topics

0.1 Definitions Definition

1: A vector in which all elements belong to one row is called a row vector and written a:=(aj):=(aj,...a n ). A column vector is defined in the corresponding manner and written a: m

Definition

2: An n-dimensional vector e

n>: =(ej] is

called the i-th

unit vector, if e

Definition

. 1, if

j :=

3: An n-dimensional vector e:=(ej) is called a summing vector, if

Definition

J = i

0 V j = l,...,n ; j * l

e. = 1 v j = 1,... ,n .

4: An (m * n) - dimensional matrix A is an ordered set of m-n elements. It can be represented as an m-dimensional column vector, whose elements are n-dimensional row vectors, or as an n-dimensional row vector, whose elements are m-dimensional column vectors. '11

In

ml

mn

A:: - (a i d , :

Definition

5: Let A ^

: =

be the transpose of the matrix A, then

(aij)''': = (aj1-)» i- e -

row

~

an

d column-indices

18

Matrix

Algebra

are exchanged. The transpose of a column vector is a row vector and vice versa. Definition

6: An (m x n) - dimensional matrix A is called quadratic, if m = n

Definition

.

7: A quadratic matrix A is called the identity matrix, if

a

i r

i v i

a.. = 0 v i O Definition

8: A quadratic matrix A is called a diagonal matrix, if a

Definition

ii = e i

v i

'

e

i e l R s a ij =

0

v i

* j



9: A quadratic matrix A is called triangular, if a ^ € F vi > j ;

Definition

.

= 0 V i < j.

10: An (m x n) - dimensional matrix A is called the null matrix, if

a^

= 0 V i ,j .

0.2 Elementary Operations 0.2.1

Vector Addition The vector c is the sum of two equal-dimensional vectors and

0.2.2

b , if

a

c^: = a^ + t^ V i

Vector Subtraction The vector c is the difference of two equal-dimensional vectors

0.2.3

a

and

b , if

Cji = a. - b. v i

Multiplication of a Vector with a Scalar Let

e € K

tor, then

be a scalar and let c: = e-a

a

be an n-dimensional vec-

is an n-dimensional vector, if

c i : = e-a i V i = 1,... ,n .

Section 0.2

0.2.4

Inner Vector Product The inner vector product

e 6 R

of an n-dimensional row vec-

tor a^ and an n-dimensional column vector • 0.2.5

19

:



I

v ,

b

is defined as:



Dyadic Vector Product The dyadic vector product tor

a

C

of an m-dimensional column vec-

and an n-dimensional row vector

(m x n) - dimensional matrix

b

is defined as the

C, so that C:=(c^j):=(ai-b^) v

i ,j • 0.2.6

Matrix Addition The sum

C

of two equal-dimensional matrices

defined as: 0.2.7

=

B

B

is

.

C

of two equal-dimensional matrices

is defined as:

A

and

j ) - ( a ^ - bi .) vi

Multiplication of a Scalar with a Matrix Let

e 6 ]R be a scalar and

C:=e-A, if 0.2.9

and

Matrix Subtraction The difference

0.2.8

: = (aij + b ^ ) v i

A

A

a matrix, then

C ^ c . j j r ^ e - a . j j v 1 ,j .

Multiplication of a Row Vector with a Matrix An m-dimensional row vector sional row vector if

b

n c: = ( c j : = ( z 1 j=l

c

is the product of an n-dimen-

and an (n x m) - dimensional matrix A, b,-a,,)v i = l,...,m

J

J1

.

0.2.10 Multiplication of a Matrix with a Column Vector An m-dimensional column vector

c

is the product of an

(m x n)-dimensional matrix A and an n-dimensional vector b, if

20

Matrix

AIgebra

a-j-bjJ V l = 1

c:«( Cl ):-( I

m .

0.2.11 Matrix Multiplication An (m x k) - dimensional matrix

C

(m x n) - dimensional matrix

and an (n x k) - dimensional

matrix

B, if

A

is the product of an

C:=( C i j ):=(z a i y - b y j ) v i , j .

0.2.12 Matrix Multiplication by Covering An (m x n) - dimensional matrix

C

is the "cover product"

of two (m x n) - dimensional matrices C : =

(

c

i j >

:

v

= ( W

^

A

and

B , if



0.2.13 Calculation of the Inverse As the quotient

C

of two quadratic, regular (n x n) -

dimensional matrices

A

and

B

is not defined, consider

the following equation

C:= A-B * , where B * is the inverse

of the matrix

is calculated as follows:

Step

1: Transform the (n x 2n) - dimensional matrix fe starting

Step

B .

with fe :=(B;I) and set the index T:=1.

2: Determine

b

IT

1,

if i =

0,

otherwise

v

TJ

£

T

j

TT

is. -a . £*.: = fc.. - _ L L _ I I U U I XT

and set

X:

=

T

+

1

.

Seat-ion 0.2

Step

3;

Is

T = n + 1

21

? %

If yes: Stop, now the matrix B:=(I;B the inverse of

-1

B .

If no : Set fc..:^?. . Go to step 2 .

-1 ). B

is

1. Linear Programming

1.1 General Methods 1.1.1 The Primal Simplex-Algorithm Hypotheses Given the following problem: P:

max

it

A-x

< b

= c-x

x

> e

Note: Each problem of the form min the maximization problem

max

ir = c-x

can be transformed into

-w = -c-x .

Principle The algorithm

begins with an initial feasible solution x=(0;...;0)

determining in each iteration a new basic feasible solution (graphically speaking: moving from one corner of the convex set described by the constraints to another) in which the value of the objective function increases or as a minimum does not decrease. The algorithm terminates in an optimal basic solution or an unbounded solution. Description Step

1: Add slack variables

y

to the system, so that A-x + y = b

and set up the initial tableau : x

y

1

A

I

b

-c

0

IT

For the following calculations let: ft=(A,I);c=(-c,e);fe=b .

Section 1.1.1

Step

23

2: g c, < 0 ? J If yes: Go to step 3. If no : Stop, the current solution is optimal.

Step

3: (selection of the pivot-column

s )

Determine

c := min {c. I c. < 0} . J J ^ (In principle any negative element c- will do.) •J

Step

4: 3 a i s > 0 ? If yes: Go to step 5. If no : Stop, P has an unbounded solution.

Step

5; (selection of the pivot-row Determine the pivot^row fL

b

: = min

a

r

as follows: . a r s is pivot-element.

is>°

IS

rs Step

i

r )

6: (iteration, tableau-transformation) Compute the new tableau: a) pivot-row

r :

^ a -v* ri a : j = ^ V j r a

is:"

n + m;

ft 5,* r br : = a

rs

b) pivot-column a

, = 1

fl, J 10,

rs

s : ifi=r otherwise

;

c

s:

=

u

n

c) all other rows and columns :

a

ij" = a ij

a. • a . is rj . 5 ' rs

J/ 'X/ d • a. fc* fc r IS b.:=D. i i •}> rs Go to step 2 .

c • a . _s rj C

j'=Cj "

rs

r • cs rs

24

Linear

Programming

Note: A v a r i a b l e x k or y k i s c a l l e d (bv), i f 1, aik

if

a basis variable

1 = 1

=

0, otherwise The a c t u a l v a l u e s are x k = b-| or y k = b-j . A l l v a r i a b l e s , which are not b a s i s v a r i a b l e s , are c a l l e d nonbasis v a r i a b l e s ( n b v ) . Then xJ. = 0 v x J. , nbv; or y .J = 0 v y -J, nbv. Example Given the f o l l o w i n g problem P: P: max ir = 5 - x ^ + 6 - x 2 (1)

3-xx - 2-x: < 9

(1)

(2) - 5 - x 1 + 5 - x 2 < 15

(2)

-5-x^ + 5-x2 + y 2 = 15

(3) 1 2 - x : + 3-X 2 < 12 XpX2 > 0

(3)

12-Xj + 3-X2 + y 3 = 12

3-xx - 2-x2 + yx = 9

Section 1.1.2

T^:

X

1

3

t(3).

x2

1

y

2

-2

1

0

0

T^:

X

1

9

1

X

y3

1

2/5

0

15

y

2

0

1

25

2

-5

5

0

1

0

15

-1

1

0

1/5

0

3

12

3

0

0

1

12

15

0

0

-3/5

1

3

-5

-6

0

0

0

0

-11

0

0

6/5

0

18

X

1

0

X

2

y

0

l

1

H

y

1

3

11/25 -1/15

74/5

0

1

0

4/25

1/15

16/5

1

0

0

-1/25

1/15

1/5

0

0

0

19/25 11/15 101/5

Recap of the c a l c u l a t i o n s : T^:

x = ( 0 ; 0 ) ; ir

= 0

x = (0;3); n

= 18

T ( 3 ) : x = x = 11/5; 16/5); Î = 101/5 .

1.1.2 The Two-Phase Method Hypotheses Given the following problem :

A-x I b > e x > e Principle The method s t a r t s with a non-feasible basic solution ( i . e . x = ( 0 ; . . . ; 0 ) i s not a feasible corner in the given convex s e t ) . At the end of the f i r s t phase a feasible solution i s obtained, i f one e x i s t s . Beginning with t h i s feasible s o l u t i o n , the second phase determines as in 1.1.1 an optimal basic solution.

26 Linear

Programming

Description Phase I Step

(determination of a feasible solution)

1: Transform the restrictions as follows: a-x < b

—•

a-x + y = b

a-x = b

—•

a-x + z = b

a-x > b

—*•

a-x - y + z = b

where

y

are slack variables and

z

are artificial vari-

ables. The basis variables in the last

k

rows are arti-

ficial variables . Formulate the initial tableau without the objective function. Step

2: Determine the coefficients dj of the artificial objective function as follows: m d

j

:

""I i=m-k+l

a ^ V j, nbv ;

i.e. calculate the sum of the last

k

elements in each of

the columns belonging to a nbv. The value i of this objective function is m b.

5 :

i=m-k+l The complete initial tableau is X

~T 1

' 1 A | 1

i

T 1

z

1

Lh 0 0 1 I 1 -I i'

b

! 0

TT

y 1

d Step

3: Is dj > 0

Vj

?

If yes: Go to step 5. If no : Go to step 4. Step

4: Select pivot-column and -row and do one iteration as in step 6, Primal Simplex-Algorithm. Go to step 3 .

Section 1.1.2

Step

27

5: Are all artificial variables nbv ? If yes: Go to step 7. If no : Go to step 6.

Step

6; Are all artificial variables, which are still in the basis, equal to zero

?

If yes: Eliminate all rows which have "1" in the columns of these variables and then eliminate the corresponding columns. Go to step 8, If no : Stop, P has no feasible solution . Step

7: Eliminate all columns belonging to artificial variables.

Step

8: Replace the artificial objective function in the remaining tableau with the actual objective function, in which the nbv's are retained and the

bv's are expressed as linear

combinations of nbv's. Phase I.I (determination of an optimal solution) Step

9: Apply the Primal Simplex-Algorithm to the tableau, obtained in step 8, beginning with step 2. Note: Step 8 can be omitted, when the actual objective function is added to the initial tableau at the beginning of the first phase and the coefficients are calculated in the usual manner, but they shall not determine the pivotcolumn. At the end of the first phase the artificial objective function must also be eliminated. The second phase begins with the remaining tableau. The M-Method, described in some publications, is - apart from some formal modifications - identical to the TwoPhase Method.

28

Linear

Programming

Example Given the following problem P: -6-Xj + 6-x 2 )

max ir

=

(1) 2

X

1

(2)-5

X

1

(3)-6

X

1

2-Xl + 3

X

2 +

yx

= 6

15

(2) -5-Xj + 9

X

2

+

zx

= 15

+ 3-X 2 >

3

(3) -6-Xj + 3

x

2

Xj, x 2 >

0

x

z

i > 0 v

+ 3-X 2
J i:z.,bv Step

d , so that

1J

4: Formulate the initial simplex-tableau as follows:

1 1 1 i

X y z

A

1

w e

} - — -

b

! -i

d

IT

-c Step

5: Determine the pivot-column d g := min { dj I dj so that

Step

c := ^

< 0 }, or, if

: = min

d

does not exist,

min { c. I c. < 0 } . J J

6: Determine the pivot-row rs

s , so that

b

r , so that

i

The pivot-element a r s is hereby determined.

Step

7: Exchange the variable in row lumn

s

,* _ a -

1 . _ a rj w_- . — , a - — v j * s, rJ rs rs

rs

r

for the variable in co-

and transform the tableau as follows : a * _ is , a. - - - — v i * r 1S rs

31

32

Linear

Programming

a*i= a ii "

3l

a ^ V i ^ r ; rs

b

b

r

c*= c C j CJ

rs *

it = tt -

bR • Sc a

a .•c r J s V a rs

. A*

rs

j * s; a * b is"br ?= i - ^ V l rs J

*

s;

c

* r

s= " a 5 rs

a ••c d rj s ,* s ; d = a s a rs rs

A

; d.=d. Ji i J

If the d-vector does not exist, go to step 10; otherwise go to step 8. Step

8: Is

d, > 0 J

j

?

If yes: Eliminate row

d

and all columns, belonging to

the artificial variables

z

and go to step 9 .

If no : Go to step 5 . Step

9: Are there still rows in the current tableau, corresponding to the artificial variables If yes: Stop, P

z ?

has no feasible solution.

If no : Go to step 10. Step 10: Is

Cj > 0 V j

?

If yes: Stop, the current solution is optimal. If no : Go to step 5. Example Given the following problem P: P:

max (1)

tt = ( - 6-x^ + 6-x 2 ) 2-x 1 + 3-x 2


-6-Xj + 3-X 2 - w 1 + z 2 =

XpX,, >

3 0 .

x i ,zi ,y 1 ,w 1 > 0

3

v i = 1,2.

Section 1.1.3

I*1):

T(2): w

x^

i

z

2

1

X

2

3

0

6

-5

9

0

15

Z

1

-6

3

-1

3

x

2

0

0

1

h z

i

I

6 - 6

t(3).

1

Z

1

x

Z

1/8

W

2

X

- 1 3 / 8 - 1 1 / 8 11/8

9/8

W

1/4

1/12-1/12

7/4

3/4

5/4 - 5 / 4

33/4

X

x

1 2

1

1

z

2

Z

1

1

1

11/3

0

-1/3

1

13/3

-1

1/3

2

-5/9

0

1/9

5/3

8/3

0

1/2

10

R e c a p o f the

calculations:

X = ( 0 ; 0 ) ; TT = 0 (2). x = ( 0 ; 1 ) ; tt = 6 (3). X = (3/8 ;7/4); TT = 33/4 (4).

X = (3/11 ; 2 0 / l l ) ; tt =

(5). X = ( 0 ; 5 / 3 ) ; i = 10 .

1

1 x2

t(5).

W

-1

1

3

13

-3

3

6

-2

1/3 - 1 / 3

z

3/8

2

-1/8

1

1

1/8

1

8

2

2

1

1

-2

6

T(4): h

X

z

-6

W

1

1

102/11

2

Z

1

1

3/11

0

-1/11

3/11

-13/11

-1

8/11

9/11

5/33

0

2/33 20/11

-8/11

0

10/11 1 0 2 / 1 1

33

34

Linear

Programming

1.1.4 T h e Dual Simplex-Algorithm Hypotheses Given the following problem: P:

Z y ] * - C"X maxj A-x < b x > 0 b €

All systems of constraints may be written in this form through the appropriate transformations as follows: a-x > b

—*• - a-x < - b

a-x = b

—»•

a-x < b

and

- a-x < - b

Principle The algorithm begins with a primal non-feasible basic solution x=(0;...;0). Maintaining the dual feasibility in each iteration (i.e. non-negative coefficients in the objective function row), the algorithm determines new solutions which do not decrease the value of the objective function. The first primal feasible solution discovered in this manner is necessarily an optimal solution. Description Step

1: Add the slack variables

y.

to the inequalities and set up

the initial tableau. (In a maximizing problem, the coefficients of the objective function are negated.) Step

2: Is

Cj > 0

V j

?

If yes: Go to step 5. If no : Go to step 3. Step

3: Add one column and one row to the initial tableau; the additional constraint is n z x. + y = C, where C J j=l ber and

y

is any very large positive num-

is the additional slack variable.

Section 1.1.4

Step

4: If

35

c$:= max { Cj I c^ < 0 } and the additional row is the

(m + l)-th rowj then

^ ^

the pivot-element.

Do one iteration as in step 6, Primal Simplex-Algorithm, without "go to"-statement. Result: Step

5: Is

c*>0 J

Vj

.

b. > 0 V i = l,...,m+l

?

If yes: Stop, the current solution is optimal. If no : Go to step 6. Step

6: (selection of the pivot-row r ) Select any row with b^ < 0 as the pivot-row. Note: Preferably select row

Step

r

with

b r :=min { b ^

.

7: (selection of the pivot-column s ) From all negative elements of pivot-row c

determine

larsl

: = min j:a r j 2

(2)

Xj.Xg > 0

-2-Xj - x 2 < - 4 Xl

- x2 < - 2 XpX2> 0

36

Linear

Programming

j(l) :

t (2). X

y

2

1

2

X

1

x2

*2

1

-2

-1

1

0

-4

1

1/2

-1/2

0

2

1

-1

0

1

-2

0

-3/2

1/2

1

-4

2

3

0

0

0

0

1

0

-4

t (3). X

1

x

2

y

l

y

2

1

1

0

-1/3

1/3

2/3

0

1

-1/3

-2/3

8/3

0

0

5/3

4/3 -28/3

Recap of the calculations: T ^ :

x = (0;0); tt = 0

T ( 2 ) : x = (2;0); tt =-4 T ( 3 ) : x = (2/3;8/3); i = - 28/3

2

Seat-ion 1.1.4

Example

2

Given the f o l l o w i n g P : max w = 2 - x ^ + (1)

P: P : max w = 2 - x ^ +

x2 x2 > 5

(1)

-2-x1 +

Xj + 3-X2 < 6

(2)

xx

2-Xj

(2)

problem

-

XJ.X2

x2


2

0

x.

r(2).

rd). X

1

x2

1

X

1

"u

x2

y

2

y

l

-2

1

1

0

-5

-2

1

1

0

0

-5

1

3

0

1

6

1

3

0

1

0

6

-2

-1

0

0

0

1

1

0

0

l

C

-2

-1

0

0

0

0

37

38

Linear

Programming

t(3).

X

T: x

1

y

2

l

y

2

"Vi y

y

1

X

-5+2C

0

7

1

2

0

7

6-C

0

-2

0

-1

l

C-6

1

X

y

2

2

l

0

3

1

0

2

0

2

0

1

-l

1

1

0

0

l

C

1

3

0

1

0

6

0

1

0

0

2

2C

0

5

0

2

0

12

Recap of the calculations: T ^ :

x = (0;0); TT = 0

T ^ :

x = (0;0); tt = 0

t(

3)

: x = (C;0); TT = 2C

T ^ :

x = (6;0); i = 12

1.1.5 Sensitivity Analysis and Parametric Programming (S A and P.P.) Hypotheses Given any of the following problems: P ^ :

max TT (X) = c(x)-x

P

x ^ :=

A-x < b X > 0

max tt

77 =

c where

b^x):

0, = b.

R

= c-x

A(x)•x < b X > 0

In general we examine with the sensitivity analysis how far certain elements of an optimal tableau can be changed under the assumption that the tableau remains optimal. With parametric programming we determine a new optimal tableau, when one or more elements have been changed so that the original optimal tableau no longer holds for the new optimum. Note: When changing more than one element, indexed parameters x^ must be utilized, thereby increasing considerably the difficulty of determining the intervals.

Section

1.1.5.1

39

1.1.5.1 S A a n d P.P. with Expected Alterations Hypotheses Given one of the problems P in which a subsequent alteration of one ^ A element by x

is to be accomplished.

Note: The mark "-" over an element will indicate the value of that element in the optimal tableau. Description Step

1: Solve the problem by one of the simplex-methods, complete with the parameter

x , but without influence in selecting

the pivot-column or -row. Result: For

x = 0

the computed tableau is optimal (if a

feasible solution does exist). Step

2: (sensitivity analysis) Determine the interval ^ e [ x ; x ]

Step

3: Is

[ X ; x ], so that for all

Cj(I) > 0

X * e [ X ;x ]

v j; 6 ^ 3 0 > 0 v i .

?

If yes: Stop, the optimal tableau computed in step 1 re£

mains optimal even after alteration of X parameters are calculated setting

X : = X

. The new .

If no : Go to step 4. Step

4: Is

X* >

X

?

If yes: Go to step 5. If no : Go to step 8. Step

5: Is

X

determined by the element c g (x)

If yes: Select column If no : Select row

6:3

ais > 0 ?

for pivot-column . Go to step 6 .

r , that determined

Go to step 7. Step

s

? X , for pivot-row.

40

Linear

Programming

If yes: Determine the pivot-element in column

s

as in

the Primal Simplex-Algorithm and do one iteration. Go to step 2. If no : Stop, for

x = x

there is no feasible solution

of P x . Step

7:

3

arj < 0

?

If yes: Determine the pivot-element in row

r

as in the

Dual Simplex-Algorithm and do one iteration. Go to step 2. If no : Stop, for

x

=

x*

there is no feasible solution

of P x . step

8:

Is

x_ determined by the element c $ (x)

If yes: Select column If no : Select row

s

?

for pivot-column. Go to step 9.

r , that determined x^ , for pivot-row.

Go to step 10. Step

9:

3

âis > 0

?

If yes: Determine the pivot-element in column

s

as in

the Primal Simplex-Algorithm and do one iteration. Go to step 2. If no : Stop, for

x

=

X*

there is no feasible solu-

tion of P^ . Step 10:

3 a .< 0 rj If yes: Determine the pivot-element in row

r

as in the

Dual Simplex-Algorithm and do one iteration. Go to step 2. If no : Stop, for of P x .

X

=

X * there is no feasible solution

Seat-ion 1.1.5.1

41

Example 1 Given the f o l l o w i n g problem p j ^ : P^1):

max

tt(x) = 3-Xj + (2 + x)-x 2

2-Xj +

x2 < 4

X j - 2-X 2 < 6 XpX2

> 0

r(l).

T(2).

X1

x2

y

l

H

1

X1

x2

h

1

2

1

1

0

4

2

1

l

0

4

1

-2

0

1

6

5

0

2

1

14

•3

-2-X

0

0

0

1+2X

0

2+X

0

8+4 X

[ X ; x ] = [-1/2;-) a) I f

x

= 10, then the tableau remains optimal and we have:

i ( x * ) £= c ( x * ) - x = 48 b) I f t

A

= - 1 , then the column belonging to x^ becomes pivot-column.

(3). X1

1

X2

1

1/2

1/2

0

2

0

-5/2

-1/2

1

4

0

-1/2-X

3/2

0

6

[ X;X

] = (—;-l/2]

. Then: x = ( 2 ; 0 ) ; i ( x * )

Example 2 Given the f o l l o w i n g problem P ^ :

max

tt = 3-x 1 + 2-x 2

2-Xj +

x2 < 4 + x

x 1 - 2-x 2 < 6 x, , x ,

> 0

:

= c(x*)-x = 6

42

Linear

Programming

T ^ : X

T< Z >: x

1

y

2

2

1

X

1

X

y

2

y

l

1

2

2

1

1

0

4+X

2

1

1

0

4+X

1

-2

0

1

6

5

0

2

1

14+2X

-3

-2

0

0

0

1

0

2

0

8+2 X

[

] = [-4; - )

a) If

X* = 5, then the tableau remains optimal and we have:

x(x*) = (0;9); b) If

X

i(A*) = c-x(x*) = 18 .

=-5, then the first row becomes pivot-row, but because

a,. > 0

V j no pivot-element exists. For (21 feasible solution of P* ' .

X* < -4 there is no

J

Example 3 Given the following problem P ^ = max

tt = 3-x 1 + 2-x 2

2-Xj + x-x 2 < 4 Xj - 2-x 2 < 6 XpX2

> 0 t(2).

. X

1

x

2

y

l

y

2

1

X

1

X

2

y

l

2

X

1

0

4

1

1

-2

0

1

6

0

-3

-2

0

0

0

0 -2+(3/2) X 3/2

X/2 -2-X/2

1/2 -1/2 -

y

2

1

0

2

1

4

0

6

[ X ; X ] = [ 4/3; - )

a) If

x* = 3, then the tableau remains optimal and we have:

x(X*) = (2;0); i(X*) = c-x(X*) = 6 . b) If

x* = 1/2 , then the second column becomes pivot-column.

Seation 1.1.5.2.1

t

43

(3). X

X

1

2

H

1

2/X

1

1/A

0

4/x

1+4/X

0

2/X

1

6+8/X

-3+4/X

0

2/X

0

8/X

[ A ; x ] = For

(0;4/3]

X* = 1/2 the optimal solution is x(x*) = (0;2);

i(x*) = c-x(x*) = 16

1.1.5.2 S A a n d P.P. w i t h U n e x p e c t e d A l t e r a t i o n s 1.1.5.2.1 S u b s e q u e n t A l t e r a t i o n s of t h e R e s t r i c t i o n V e c t o r Hypotheses Given a problem P, for which the optimal tableau is known, determine what subsequent alterations of the element b^ can be accomplished without destroying the optimality of the tableau. If it is not possible for a given parameter

X

, then a new restriction vector

must be calculated. The slack variable y^, belonging to the i-th restriction, can be found in the (n + i)-th column; an alteration

X*

has to be accomplished. (The mark "-" over an element will indicate the value of that element in the optimal tableau.) Description Step

1: (sensitivity analysis) Determine the interval [ A_ ; A ], so that

I 5 k,n + i > k,n+i

0

}

'

44

Linear Progranmzng

if

*

X: =

if

Step

2

2: Is

set

®k,n+i >

mi k 5

= " " i

a

Ma

k,n+i
=

0 0 0

1;

= min {10;5} = 5; '5 0 0

X =

z = (5;4;6;5);

= 10 - 5 = 5

I = {1;2;3;4>

o1 0 0 0

0 0 0 0

J = {2 ;3} ;

;

Wj = 5 - 5 = 0 ;

w =

r = min {1;2;3;4} = 1;

s = min {2 ;3} = 2 ; e = min {z^;w2> = min {5;12} = 5 ;

x

12

= 5;

X =

5 0 0 lo

Z

1

= 5 - 5 = 0 ;

I = {2;3;4} ;

0' 0 0 0

5 0 0 0

z = (0;4;6;5);

J = {2;3} ; 2 ; E = min

~ 41

X —

'5 0 0 0

5 4 0 0

0' 0 0 0

(5;12;8);

f0

J = {1;2;3}

1° Z

the demand, a dummy is introduced

reads:

The new vectors are:

{1;2;3;4}

e = min

X

(5;12;8).

w 2 = 12 - 5 = 7;

r = min {2;3;4} = 2 ;

w =

0

0 0 0

0

0 0 0

Section

z 2 = 4 - 4 = 0; I = {3;4} ;

z = (0;0;6;5);

J = {2;3} ;

w2 = 7 - 4 = 3;

1.2.1.2

w = (0;3;8);

r = min {3;4} = 3 ; s = min {2;3} = 2

e = min { Z j ì v ^ } = min {6;3> = 3 ;

x

- 332 ~

'5

5

0'

0

4

0

X-

z 3 = 6 - 3 = 3; I = {3;4} ;

0 0

3 0

0 0

z = (0;0;3;5);

J = {3};

w2 = 3 - 3 = 0 ;

r = min {3;4} = 3;

w = (0;0;8);

s = min {3}= 3;

e = min {Zgjw^} = min {3;8> = 3;

3;

33

X=

z3 = 3 - 3 = 0 ;

z = (0;0;0;5);

I = {4} ; J = { 3 } ; e = min {z 4 ;w 3 }

X

5-5=0; 9;

r = min {4} = 4 ;

s

w = (0;0;5);

min {3} = 3;

min {5;5} = 5;

X=

5;

43 =

w3 = 8 - 3 = 5;

z = (0;0;0;0) ;

w3 = 5 - 5

0;

w = (0;0;0) ;

0 = 0;

Stop, X

5 0 0 0

5 4 3 0

o) 0 is a feasible transportation plan. 3 5

1.2.1.2 The Row Minimum Method Hypotheses The index-sets I and T are defined as: I : = { i } ; T: = 0; f o r the i n i t i a l transportation matrix X : Xr

x

•> x. . = 0 V i

holds.

52

Linear

Programming

Description Step

l: Determine

r: = min

Step

2: Determine

cr$: = e: =

Step

3: Set

{i | i e 1} . min {crj- |(r,j)(ÉT}

min {z r ;w s }

xrg: = e z

r'

ws:

= ws -

e

.

I - {r} , Step

4: Define

I:

if z r = 0

I , otherwise T

T:

u {(i,s)} V

i,

if

ws = 0

T , otherwise Step

5: Is

1 = 0

?

If yes: Stop, the current matrix X yields a feasible transportation plan. If no : Go to step 1. Example Given the following problem:

C =

2

5

7

3

6

1

9

6

4

150

50

50

;

z = (10;4;6;5) ;

w = (5;12;8);

(See also the example "Northwest-Corner Rule") I = {1;2;3;4} ;

T = 0 ;

r = min {1;2;3;4} = 1; e = min { Z p W ^ } = min

X =

0 0 0 0

0 0 0 0

c^ s = min ic^-} = c ^ {10;5> = 5;

0i 0 0 0 s = 1 ;

Section 1.2.1.2

X

11

z1

5 ;

"

= 10 -

I

5 = 5;

= {1;2;3;4}

z

= (5;4;6;5);

Wj = 5 -

c

l s

e = min

x

12

Zj

I c

{1;2;3;4} {CJJ

= min

"

5 = 0;

= {2;3;4}; = min

e = min

z

f5

5

0

0 0 0

0 0 0

0 0 0

4 = 0;

= {3;4};

c3s

= min

e = min

|(2,j) = min

z

i

T} = m i n {4;7} 5 0 0 0

T = {(1,1); {c3j-

{z.,;w,}

|(3,j) = min

0 0 1° = 6 -

= min

w 2 = 12

-

5 = 7;

4 = 2;

z

{c22;c23}

= 5 ->•

s

;

w =

r

= min

= min

{6;1}

(0;7;8);

{2;3;4} = 1->•

s

= 4; 0^ 4 0 0 w3 = 8 -

4 = 4;

(2,1) ;(3,1);(4,1)} ;

£

{5;7}

5;

= (0;0;6;5);

i"5

z3

=

ic^'.c^}

= (0;4;6;5);

lO

I

= {(1,1); (2,1); (3,1); (4,1)};

T = {(1,1);(2,1) ;(3,1); (4,1)}

{c2j-

{z,;w,}

= 4 -

= min

{5;12}

("5 0 0

z2

(0;12;8)

1;

= min

X =

= 5 -

2 s

=

| ( l , j ) 2 T}

{ZpW2}

5 ;

w =

;

T = 0 U {(1,1);(2,1);(3,1);(4,1)} r = min

5 = 0;

T}

= min

{6;4}

K

3 2

;c

3 3

}

r

w =

= min

= min

(0;7;4);

{3;4}

{6;4}

= 3;

= 4 ->•

s

= 4;

5 0

0^ 4

0 0

4 oj

= (0;0;2;5);

w3

= 4 -

4 = 0;

w =

(0;7;0);

54

Linear

I = {4};

Programming

T = {(1,1);(1,3);(2,1);(2,3);(3,1);(3,3);(4,1);(4,3)}

r = min {c 4 j |(4,j) i T} = min { c ^ }} == c ci9 42 42 = m

e = min { z ^ ^ }

- 542 ~

AX

5

0

0'

0

" 0

4

2

0 z 4 = 5 - 5 = 0;

4

5

0

z = (0;0;0;0) ; f5 0 0 0

I = 0; Stop, X =

;

s = 2;

'' n i5;5} = 5;

. Step

Step

Z: Set

x

4: Define

: = e

rs

V

= zr "

e

V

= ws '

e

J: =

J - {s} , if w s = 0 J,

T: =

Step

5: Is

J = 0

otherwise

T u {(r,j)} v T,

otherwise

j, if z r = 0 .

?

If yes: Stop, the current matrix X yields a feasible

55

Section 1.2.1.3

transportation I f no

: Go t o s t e p

plan.

1.

Example Given the following f 2

5

3

6

1

9

6

4

150 v.

50

50

C =

problem:

7 ;

2 = (10;4;6;5);

w =



(See a l s o t h e example " N o r t h w e s t - C o r n e r J = { 1 ; 2 ; 3} ;

T = 0 ;

X =

s = min { 1 ; 2 ; 3 } = 1 ; C j = min { c ^

(5;12;8);

| (i,l)

I

Rule"). 0 0 0 0

[0 0 0 0

T } = min { c n ; c

0) 0 0 0 ; c 3 1 ; c 4 1 > = min

2 1

= 2

min { 1 0 ; 5 } = 5 ;

X

11 "

'5 0 0 lo

5 ;

0 0 0 0

{2;3;9;50} r = 1 ;

0" 0 0 0

2 = (5;4;6;5);

Wj = 5 - 5

= 0;

s = min { 2 ; 3 } = 2 ; "r2

.2)

i2

t T } = min

{ »

c

2 2;c

32;c42}

= 5

-v r = 1 ;

min { 5 ; 1 2 } = 5 ;

(5

x^

~ 5;

X =

0 0 lo =

J = {2; 3}; s = min { 2 ; 3 }

5 0 0 0

0' 0 0 0

(0;4;6;5);

w2 = 12 - 5

T = 0 U {(1,1) ;(1,2) ;(1,3)} = 2;

= 7;

= { ( 1 , 1 ) ; ( 1 , 2 ) ; (1,3)}

;

56

Linear Programming

cr2

= min

ici2 I i 1 ' 2 )

T } = m i n {C

12 ;C 22' C 32' C 42 }

= min

< 5 > 6 ; 6 ; 5 °}

= 5 -> r = 1 ; e = min {ZpV^} = min {5;12} = 5; 5 5 O"1 O O O X

12

"

0

5 ;

io z1 = 5 - 5 = 0 ;

0

0

0

OJ

z = (0;4;6;5);

= 12 - 5 = 7; w = (0;7;8);

J = {2;3}; T = 0 U {(1,1) ;(1,2) ;(1,3)}

= {(1,1) ;(1,2) ;(1,3)} ;

s = min {2;3} = 2; c r 2 = min i c ^ | (i >2) (• T} = min {C22ic32;c42^

= mi n

' {6;6;50} = 6 -»• r = 3 ;

e = min {z,;w,} = min {6;7} = 6; '5 0 0 z3 = 6 - 6 = 0 ;

5 0 6 0

01 0 0 0

z = (0;4;0;5);

w2 = 7 - 6 = 1 ;

w = (0;1;8);

J = {2;3} ; T = {(1,1);(1,2) ;(1,3)} U {(3,1);(3,2) ;(3,3)} = = {(1,1);(1,2);(1,3); (3,1) ;(3,2) ;(3,3)}; s = min {2;3} = 2; c r 2 = min {ci2 | ( i, 2 ) e

= min {z2;w2} = min {4;1} = 1; f

5

x

22

Ì T} = min {c 22 ;c 42 } = min {6 ; 50} = 6 + r = 2;

- 1-

'

X -

0

0 0

v.

z 2 = 4 - 1 = 3;

5 1

6 0

0' 0

0 0J

z = (0;3;0;5) ;

= 1 - 1 = 0;

w = (0;0;8);

J = {3}; T = {(1,1);(1,2);(1,3);(3,1);(3,2);(3,3)} ; s = min {3}= 3; c r 3 = min {c i3 I (i,3) (E T} = min ic 23 ;c 43 ) = min {1;50} = 1 + r = 2; E = min {z9;w,} = min {3;8} = 3;

57

Section 1.2.1.4

x

X

3 ;

23

z2

= 3 -

J

= {3};

=

3 = 0;

5 0

5 1

0 3

0 0

6 0

0 0

z =

T =

(0;0;0;5);

w3

= 8 -

3 = 5;

w =

(0 ;0 ; 5 ) ;

{(1,1);(1,2);(1,3);(3,1);(3,2);(3,3)}U{(2,1);(2,2); (2,3)} =

= s c

= min

{3}

= min

r 3

E = min

{(1,1);(1,2);(1,3);(2,1);(2,2);(2,3);(3,1);(3,2);

= 3;

{ c ^

(3,3)};

| (i ,3)

{z4;w3>

=

-

4 3

z4

J

= 0;

5 1

0 3

0

6

0

0

0

5

0

5;

= 5 - 5

= 0;

Stop,X

T}

= min

{ c ^ }J 43

= c ^ '43

= 50

r

=

4;

5;

[5 x

I

z =

(0;0;0;0) ;

'5 0

=

5 1

0] 3

0

6

0

0

0

5

1.2.1.4 T h e M a t r i x M i n i m u m

w3

is

= 5 -

5 = 0;

a feasible

w =

(0;0;0);

transportation

plan.

as:

J:

Method

Hypotheses The T:

index-sets = 0,

X^

= 0

for

V

I,

the

i ,j

J

initial

and

T

are

defined

transportation

matrix

I: X

holds.

Description

Step

1: Determine

Step

2: Set

x

c r s : = mi'n { c ^ e

: = e

: = min

| (i,j)

{zr;ws}

.

t

T}

=

{i};

: Xr jm *

n1

ni

=

{j};

58

Linear

Programming

I - {r}, if 3: Define

Step

zr = 0

I: I,

otherwise

J - {s}, if w s = 0

J: =

J, otherwise T U{(r,j)} v j, if z r = o

T: =

T U { ( i ,s)} V i, if w s = 0 Step

4: Is

(I = 0) v (J = 0)

.

?

If yes: Stop, the current matrix X yields a feasible transportation plan. If no : Go to step 1 . Example Given the following problem: 2

5

7 '

3

6

1

9

6

4

^50

50

50

;

z = (10;4;6;5);

w=(5;12;8);

(See also example "Northwest-Corner Rule") I = {1;2;3;4} ;

c

rs "

min

{C

J = {1;2;3} ;

T

X =

0 0 0 0

0 0 0 0

0 0 0 0

11'C12;C13;C21;C22;C23;C31'C32;C33;C41;C42'C43}

=

= min {2;5;7;3;6;1;9;6;4;50;50;50> = 1 ->- r = 2; s = 3; e = min {z 2 ;w 3 > = min {4;8} = 4;

x

23 "

4;

X =

z 2 = 4 - 4 = 0;

^0 0 0

0 0 0 0

0Ì 4 0 0

z = (10;0;6;5);

w

3

= 8 - 4 = 4 ;

w = (5;12;4);

Seat-Lon 1.2.1.4

I = {1;3;4}

;

J = {1;2;3}

;

T = 0 U { ( 2 , 1 ) ;(2,2) ; (2,3)} = {(2,1) ; (2,2) ; (2,3)} crs

= min

59

{C11'C12'C13;C31'C32'C33'C41'C42;C43}

= min { 2 ; 5 ; 7 ; 9 ; 4 ; 6 ; 5 0 ; 5 0 ; 5 0 }

= 2

;

=

r = 1; s = 1;

e = min { z ^ v ^ } = min { 1 0 ; 5 } = 5;

X X

11

- 5-

X * "

z, = 10 - 5 = 5;

I = {1;3;4};

'5

O

O'

0

0

4

O O

O O

o 0.

z = (5;0;6;5) ;

O = {2;3}

w, = 5 - 5 = 0 ;

w = (0;12;4);

i

T = {(2,1);(2,2);(2,3)}U{(1,1);(2,1);(3,1);(4,1)} = {(1,1);(2,1);(2,2);(2,3);(3,1};(4,1)} c r s = min Í c i 2 ' c 1 3 ; c 3 2 ' c 3 3 ' c 4 2 ; c 4 3 ^

= min

=

; í 5 ; 7 ; 6 ' 4 ' ' 5 0 ! 5 0 ^ = 4"> -*• r = 3 ; s = 3 ;

e = min { z ^ W j } = min { 6 ; 4 } = 4 ;

x 33

"

X=

4;

z3 = 6 - 4 = 2;

I = {1;3;4> ;

5 0 0 0

O 0 0 0

O*1 4 4 0

z = (5;0;2;5) ;

w3 = 4 - 4 = 0 ;

w = (0;12;0);

J = {2};

T = {(1,1);(2,1);(2,2);(2,3);(3,1);(4,1)}

U {(1,3);(2,3);(3,3);(4,3)}

= {(1,1);(1,3);(2,1);(2,2);(2,3);(3,1);(3,3);(4,1);(4,3)} c r s = min

Íci2'c32;c42't

= min

;

= 5 + r = l ; s = 2 ;

e = min {ZjjWg} = min { 5 ; 12} = 5 ;

X

- 512 '

z1 = 5 - 5

X A "

= 0;

'5

5

0

0

O O

O O

O' 4

4 0.

z = (0;0;2;5) ;

w2 = 12 - 5 = 7;

w = (0;7;0);

60

Linear

Programming

I = {3 ;4} ; T =

J = {2};

{(1,1);(1,3);(2,1);(2,2);(2,3);(3,1);(3,3);(4,1);(4,3)}U U i(l,l);(l,2);(l,3)}

= {(1,1);(1,2);(1,3);(2,1);(2,2);(2,3);(3,1);(3,3);(4,1);(4,3)} crs

*c32'c42*

=

e = min

x

{ZJÌW^}

- 232 '

= min

X -

z3 = 2 - 2 = 0;

I = {4}; T =

= 6 - + r = 3 ; s

=

{2;7}

=

'5

5

0'

0

0

4

0 0

2 0

;

= 2;

2;

4 0

z = (0;0;0;5) ;

w2 = 7 - 2 = 5 ;

w = (0;5;0);

J = {2};

{(l,l);(l,2);(l,3);(2,l);(2,2);(2,3);(3,l);(3,3);(4,l);(4,3)}u U{(3,1);(3,2);(3,3)> {(1,1);(1,2);(1,3);(2,1);(2,2);(2,3);(3,1);(3,2);(3,3);(4,1);

=

c r s = min { c 4 2 }= c 4 2 = 50

(4,3)}

r = 4; s = 2;

;

e = min { z 4 ; w 2 ) = min { 5 ; 5 } = 5 ;

x42

Ì5 0 0 0

X =

=

z4 = 5 -

5 = 0;

1 = 0;

J = 0;

5 0 2 5

0^ 4 4 0

z = (0;0;0;0) ; r5

0 0 0

Stop,

5 0 2 5

o] 4 4 0

w2 = 5 -

5 = 0;

w = (0;0;0);

is a feasible transportation plan.

1.2.1.5 T h e D o u b l e P r e f e r e n c e M e t h o d Hypotheses The i n d e x - s e t tion matrix

T X : X

i s defined as: T: = 0 , f o r the i n i t i a l [m x n]

X

ij

0 v

i ,j

holds.

transporta-

Section

1.2.1.5

Description Step

1: (determination of the row-minima) Determine

c. : = min {c..} v i IS

and set Step

IJ

Q: = {c i $ }

= l,...,m

.

2: (determination of the column-minima) Determine

c .: = min {c.. } v j = l,...,n rj ij i

and set Step

J

S: = {c •}

.

'J

3: Define M ( 2 > : = { C i j I ( C i j e Q) A (C.J e S)} M ( 1 ) : = {c.j I [ ( C i j e

Q) A (C.J I S)]

V A

M ( 0 ) : = {c i d

| (Cij

(C^

e S)]}

t Q) A ( Cl .j* S)}

and set the running indices Step

[(C.J t Q) A

k: = 1;

1: = 2 .

4: (assignment of reference numbers) Is

M ^

= 0

?

If yes: Go to step 6. If no : Go to step 5. Step ^

5: Determine define

c

rs

: = min 1{c. .1I c.. 6 M ^ } IJ

and set 6: Is

1 = 0

,

c ^ : = c rs rs M :

Step

IJ

- (c r s >

k: = k + 1 .

Go to step 4

?

If yes: Set the running index p: = 1 and go to step 7. If no : Set Step

1: = 1 - 1

7: Determine the element c ^

and go to step 4. .

62

Linear Programming

Step

8: I s

(r,s)

If yes:

(.11

Set

p:

= p + 1 and go t o s t e p

I f no : Go t o s t e p Step

9: D e t e r m i n e

e

define

x

z

.

T

=

: = Z

-

E

w„ : = W s s

e

r

r

V

W

V i ,

U {(i ,s)} p: = p + 1

j,

.

if

zr = 0

i f ws = 0

Go t o s t e p

( z = 0) a(w = 0)

If yes:

,

= e

j T u {(r,j)}

and s e t

Step 10: I s

9.

= min i z r ; w s >

rs'

10.

?

Stop, the current Matrix transportation

I f no : Go t o s t e p

10.

X

yields a

w =

(5;12;8);

feasible

plan.

7.

Example Given the f o l l o w i n g 2

5

problem:

7

3

6

1

9

6

4

[50

50

50

z = (10;4;6;5) ;

( S e e a l s o example " N o r t h w e s t - C o r n e r cls

= min t c n i c i 2 ~ min

c3s c4s

; c

13

}

=

c

c

c

= min i 4 ^ 4 2 ' 4 2

}

i 2

>

5 ; 7 }

=

2

c

min { 3 ; 6 ; 1 }

= 1

= min { 9 ; 6 ; 4 }

= 4

{c2^»^22'^23^

= min { c 3 1 ; c 3 2 ; c 3 3 }

min

Rule")

=

Q = {cn;c23;c41-,c42;c43}

min

;

M ^ }

= min Í c i 2

'rs*

=

C

U>

=

m ( 2 )

; c

= min í c 1 2 ; c 3 3 ; c 4 1 ; c 4 2 ; c 4 3 } "12 33 4 1 42 43

= 4; "

c { c

-

rs

33}

4rc42'c43

}

CL • 33' =

{ c

=

c(3> Vs

- C •! " 33

12;c41'c42'c43} {5;50;50;50}

m i n

=

' = 5;

'12:

4 2

;c

{c42;c43}; c

r

0

I ^ . e

^c41,c42'c43^ = min í c

4rc43

^

= {cn};

12;c33'c41;c42;c43} crs

c „ = c rs

c

=

= min { 5 ; 4 ; 5 0 ; 5 0 ; 5 0 } = { c

=

• 23'

}

1 = 1 ;

'

; c

= min { c i : j I C ^ . e

2 3

= min { c ^

M^ )

*

5 0

{7;1;4;50}

12'c33

^c13'c21,c22*,c31*,c32^

(2)

í2;3'.9;

*

= {cn;c

M(0)

Î C

63

=

= {c43}; k = = 0; k = 8;

4 3

'

k = 5;

}

= min { 5 0 ; 5 0 ; 5 0 }

k = 6; c

crs

= 50;

= min í c 4 2 ; c 4 3 >

cy

=

c.

= min { 5 0 ; 5 0 >

42' 7 ;

c rs = 1 = 0;

m i n

{ c

43}

=

c

43;

-(5)

=

C

43;

41 ' = 50;

64

Linear Programming

+ 0

c r s = min { c ^ j | c ^ . e M ^ }

= min{c13;c21;c22;c31;c32}

= min { 7 ; 3 ; 6 ; 9 ; 4 } = 3; c r s = c 2 1 ; M^ ^

=

ici3'c22'c31,c32^ ' ^

=

c r s = min { c 1 3 ; c 2 2 ; c 3 1 ; c 3 2 } c

rs

=

c

32;

c

rsP

=

c

c

rs

=

c

c

2 2 *'

= c21;

'

= min { 7 ; 6 ; 9 ; 4 } = 4 ; =

32'

c r s = min { c 1 3 ; c 2 2 ; c 3 1 }

=

{c

13'c22;c31}

k

'

=

10;

= min { 7 ; 6 ; 9 } = 6;

i s 1 0 ) = c22 '

m(0)

=

{c

13;c31};

k

=

11;

c r s = min { c 1 3 ; c 3 1 } = min Í 7 ; 9 > = 7; c

rs =

c

c

rs =

min

c

13'

p = 1;

isX) -

' 1S

1J

1J

( I f c ^ f c ^ ) does not e x i s t , set c ^ = 0 ( c i k = 0).) Step

2: Calculate

Step

3: Determine

(If

fi!:

= | c i k - ci

|

Vi = 1

m.

c .: = min {c. . | c . . € D} SJ 1J 1J

\ \ /v j = 1 c. = min {c-. | c.. € D;i * s}' : .: kj: = m i n { c i j l c i j

c s j (c kj .) does not e x i s t , set c s j = 0 (c k - = 0).)

Step

4: Calculate

6'!: = | c. . - c . | V j = l , . . . , n . J KJ SJ

Step

5: Determine

6: = max

Step

6: I s

6

£ {6!}

fip

.

?

I f yes: Go to step 7. I f no : Go to step 8. Step

7: Let

6

= s^ ; determine c r $ : = min { c r j | c r j 6 D} .

Go to step 9. Step

8: Let

6

=

Go to step 9.

; determine

c r s : = min {c^ s | c^ s 6 D} .

n.

nj

Section 1.2.1.6 67 e : = min {zr;ws>

Step 9: Determine

and define x

rs

ws -

D - {crj} V j, if z r = 0

D: =

Step 10: Is

D = 0

e

D - {cisJ V i, if w s = 0 .

?

If yes: Stop, the current matrix X yields a feasible transportation plan. If no : Go to step 1. Example Given the following problem:

C

=

2

5

7

3

6

1

9

6

4

50

50

50

;

z = (10;4;6;5);

w=(5;12;8);

(See also example "Northwest-Corner Rule") D = {C 11 ;C 12 ;C 13 ;C 21 ;c 22 ;C 23 ;C 31 ;C 32 ;C 33 ;C 41 ;C 42 ;C 43 }; c

ls

= min ic n ;c 1 2 ;c 1 3 } = min {2;5;7} = 2;

c

lk

= min ic 12 ;c 13 } = min {5;7} = 5;

c

2s

= c

23 ;

°2k

c

3s

= c

33'

c

5

i =

3k

c12 - c

n

= C = c

c

sl

clk = c12;

21'

32 ;

c

4s

= 5 - 2 =3;

3 ^ 6 - 4 = 2;

fi

cls = c n ;

= C

41'

c

4k

= c

42'

«¿=3-1=2;

sj = 50 - 50 = 0;

= min ic n ;c 2 1 ;c 3 1 ;c 4 1 ) = min {2;3;9;50} = 2; = min ic2i>c3i»c4i^ = min {3;9;50} = 3;

c

kl

c

s2 = c 1 2 ;

ck2 = c22;

c

s3

= c

23 ;

c

k3

= c

33'

c$1 = - 1 1 '

ckl = c21;

68 Linear Programming

6J

=

c

= max

6

=

= min

x

-

11

z,

D

=

=

c

l s

c

l k

c

3s Ì

5

3

c

s l

c

s2

-

k2

c

s3

5

c

i 2 '

=

c

1 3 '

=

=

min

{ c

13

}

c

33

c

;

13 -

= 0;

c

c

4

=

= min 23

{c

;

=

0

0

0

0

0

0

0

0

0

0

=

c

=

c

1 3

c

c e

2 s

=

c

3 2 '

3 3 '

m i n

{ 5 ;

;

c

c

-

5

c

=

c

2 2

;c

; c

3 2 '

c

4 2 =

3 2

=

k3

c

3 3

;

}

=

5;

=

c

23'

=

c

4 2 '

6

1

i

c

2

;w

3

2 3

-

4;

23^

>

X

1

=

3;

=

C j p

2

{

4

5

-

5

= 0;

w

=

(0;12;8);

' c

l s

=

c

1 2

c

2k

=

c

2 2 '

c

4k

=

c

;

4 3 '

6 - 1 = 5 ; 50

-

50

=

=

= min

m i n

{4;8}

{5;6;6;50}

{6;6;50} 0

-

0

=

=

4

-

1

=

= 5 ;

&

=

=

-

=

0;

=

6;

c

c =

k 2

s 2

=

c

;

2 2

'12'

0; 3; =

c

5;

2s

; =

c

2 3 '

4;

z x

5

min

min

= min {z

7}

=

ó!j

c

-

;

2;

=

4 3 ^

2;

{ ( 2 ; 5 ; 2 ; 0 ) ; ( 0 ; 1 ; 3 ) } 22*

w,

c

4s

=

6}

=

4

0 ;

=

2 2

6

=

5;

4 2 '

2s

= max

= min

l e t

(5;4;6;5) ;

32' 7

3;

2;

1 2 '

c

{10;5>

0

}

=

1 2

k l

{ c

=

=

= 6 - 5 = 1 ;

^ ; 5 ; 7 }

= 6 - 5 = 1 ; 6

¿2

'5

2 3 '

1 3

3k

-

c

min

c

1;

=

2

z

, c

2 2 ; c

=

2

l

5;

1 2

= 6

c

c

.

x

A

{ c

=

-

= min

min

=

3

;

n

=

=

5

c

i

5-

c

=

n

{(3;2;2;0) ;(1;1;3)}

10

i

c

min

e

X

-

2 1

2

=

4

-

4

=

0;

z

=

w3

=

8

-

4

=

4;

w

=

(5;0;6;5)

= (0;12;4);

;

Section

D =

c

13;c32;c33'c42' c43}

ls

=

min

{ c

12;c13}

c

lk

=

min

{c

13}

=

c

13'

c

2s

=

0 ;

c

3s

=

c

33

3k

=

c

32'

c

4s

=

C

=

c

13

=

6 - 4 = 2;

«3

;

c

{5;7}

m i n

sl

=

0;

c

s2

=

min { c 1 2 ; c 3 2 ; c 4 2 >

=

min { c 3 2 ; c ^ 2 }

kl =

= min { 6 ; 5 0 }

s3

=

c

2

=

6 - 5 = 1;

=

max { ( 2 ; 0 ; 2 ; 0 ) ; ( 0 ; 1 ; 3 ) }

=

min

c

x

r3

{C

k3

=

c

5 0 0 0

=

0 ;

c

2k

=

0 ;

ó j =|0 - 5|= 5; ckl

cls c

3s

c$2

= min { c 1 2 ; c 3 2 ; c ^ 2 }

c

k3 =

= 0 - 0 = 0; 5

43;

c$2 = c

12'

c^2 = c 3 2 ;

=

6 =

;

= 4; c r 3 = = min { 6 ; 4 }

w3 = 4 - 4 = 0 ;

= min ( c 1 2 } = c

32'

c

3k

=

c

\2'

0 ;

c

c

4s

ik =

w =

=

c

42;

= c 4 2 ; 5 0 0 0

X =

x 4 2 - 5;

z 4 = 5 - 5 = 0;

2s

ój

= 0;

c

2k = 0 ;

c

3s = c32'

= 0 - 0 = 0;

= min

= 5

>

¿2 = 6 - 5 = 1 ;

= max {(5;0;6;0);(0;1;0)} = 6 ;

[5 =

4s

= 0;

c

4k

=|0 - 6| = 6;

c ^ = 0;

c 3 s = min {c 32 } = c 3 2 ;

32

c l k = 0; c

3k =

w = (0;7;0);

=

0

= 0 - 0

c k l = 0;

c k 2 = min {c 32 } = c 3 2 ;

x

c

&'2 = 0 - 0 = 0;

c s 2 = min tci2*c32^

6

w 2 = 12 - 5 = 7;

c l g = min {c 12 } = c 1 2 ;

= 10 - 5|= 5;

c s l = 0;

0^ 4 4 0

z = (5;0;2;0);

D = {c 12 ;c 32 } ; c

0 0 0 5

2;

X=

z, = 2 - 2 = 0;

D = {Cj2); x^2

0 0 0

c

s2

= c

12'

cfc3 = 0; = 0 - 0 = 0; 6=6^;

e = min {z3;w2} = min {2;7} = 2; 0 0 2 5

0^ 4 4 0

z = (5;0;0;0) ; w- = 7 - 2 = 5; w = (0;5;0);

is the remaining free element, so :

e = min {z^;w2> = min {5;5} = 5;

xj2

=

5,

X =

z 1 = 5 - 5 = 0; D = 0;Stop,

X=

5 0 0 0

5 0 2 5

0 4 4 0

z = (0;0;0;0) ; w 2 = 5 - 5 = 0; w = (0;0;0); f5 0 0 [0

5 0 2 5

0] 4 is a feasible transportation plan 4 0

Section

1.2.1.7

71

1.2.1.7 The Frequency Method Hypotheses The Frequency Method generates from the cost matrix listic pseudo-cost matrix

t .

C

a more rea-

In order to formulate a feasible

transportation plan, any of the above described methods may be utilized on

t .

Description Step

1 r.: = - • n n

1: Calculate

c s

2: Is

j=1

m ^ i=l

. _ 1 j' " i '

cij: = Step

n

E

c^ > 0 V

i ,j

+

Sj)

c., u

V i = 1,... ,m

c. •

v j = 1

1J

- c.j

n

vi,j.

?

If yes: Stop, the matrix

t

is on hand. Work any other

of the above methods using

t

.

If no : Go to step 3 . Step

3: Let

crs

be the minimal element of the matrix

Construct the constant matrix K : K ^ K: = (|c Stop,

|)

t

and compute

x

= t + K .

is on hand .

Example Given the following matrix '2

5

7 '

3

6

1

9

6

4

50

50

50

C =

We find:

^

= 14/3;

s 1 = 16;

C :

r 2 = 10/3; s 2 = 67/4;

r 3 = 19/3; s 3 = 31/2;

t .

n j , so that

r 4 = 50;

72

Linear Programming 56/3

197/12

79/6

49/3

169/12

107/6

40/3

205/12

107/6

16

67/4

31/2

> 0

V i , j holds

->•

Stop

1.2.1.8 T h e S t e p p i n g - S t o n e Method Hypotheses Given a f e a s i b l e s o l u t i o n

X

to the t r a n s p o r t a t i o n problem, f i n d

an o p t i m a l (minimal c o s t ) t r a n s p o r t a t i o n p l a n . Description Step l: ( t e s t f o r o p t i m a l i t y o f t h e c u r r e n t

solution)

Compute t h e m a t r i x C* i n c l u d i n g t h e v a l u e s u, and v . . * C looks as f o l l o w s :

V1

' • •

' • •

Vj

vn U1

* C

u

ij

i

um

Consider t h e c u r r e n t t r a n s p o r t a t i o n m a t r i x If

x . j j > 0 , then

Step 2: Set v ^ : = 0 u

i

+

v

j:

= c

termine a l l element(s)

c*^: = 0

V

ui

c

ij

and

c * j : = 0,

=

0

Vj



.

.

and compute a l l o t h e r ij

X

I f

i t is

u^ not

and

v ^ , so t h a t

p o s s i b l e t o de-

i n t h i s manner, t h e n s e t t h e

so t h a t a l l

u^

and

v^

can be

computed. At t h e end o f t h i s c a l c u l a t i o n are a t l e a s t

Section

(m + n - 1) elements Step

A matrix

73

c. .: = 0 . 'j

3: Compute the remaining elements of the matrix * c..: = u. + v. - c • • . ij 1 J iJ Result:

1.2.1.8

C

as follows:

C*, which is called opportunity-cost ma-

trix . Step

4: In the transportation matrix *

with ' V

for which x i . = c ^

X

mark all elements x..

= 0 .

(If this occurs, the problem is called degenerate.) Step

5: Determine

Step

6: Is

#

c

: =

rs

c* s < 0

¥

max {c. .} . 1J i,j

?

If yes: Stop, the current transportation plan mal. The total costs

C. .: = tot

m l

n l

i=l

j=l

C.,. tot

X

is opti-

are defined as

x.c.. ij ij

m.u.

Here the costs from/to the dummies are omitted. If no : Go to step 7. Step

7: (determination of a new solution) a) Label the element x r s with "+" . b) Find an element greater than zero in row

r , in whose

corresponding column is at least one more element marked with "ft" or "greater than zero" . This element is labelled with "-" . c) In a so determined column find an element "ft" or "greater than zero", in whose corresponding row is at least one more element "greater than zero" . This element is labelled with "+" . Continue this labelling procedure, until one element in column with "-" .

s

is labelled

74

Linear

Step

Programming

8: Determine the element with minimal absolute value among those elements labelled with "-" . Let this element be x, ; kl then the new tranportation matrix reads as follows: x, . + x.,, if x. . is labelled with "+" . lJ KI 1J V

X

ij

X

ij

x

kl'

x

ij

is

labelled

w i t h

"""•

otherwise

Delete all labels and go to step 1.

Example Given three stores with the inventory of (10;4;6) units, and three places with the demand of (5;12;8) units. The transportation costs per unit matrix

C

is:

The initial feasible solution is the Northwest-Corner Solution: 5 ill)

5

0

0

3

1

+

0

0

-4

2

0

0

3

3

0

4"

0

0

3+

3"

0

0

5

C*

=

-6

0

0

3

-1

-1

0

49

* c

f(2) =

5

5

0

0

r

3+

0

6

0

0

0

+

5"

* c

rs "

0

C*

=

23

>

3

-2

0

0

-7

2

0

0

0

3

-6

0

-5

3

2

5

0

52

c

*

_

rs "

c

*

42

Section 1.2.2

x (3)

=

5

5

0

0

3

3

0

0

4

0

0

-2

2

+

-5

-5

0

-2

4"

-6

0

2

3

-3

0

0

47

0

6"

0

+

1

0

c

x (4)

=

5

5

0

*

c

rs "

0

*

33

9

3

1

0

0

4

0

0

-4

2

0

2

4

-3

-3

0

0

0

5

0

-6

0

0

3

-3

0

-2

47

c*- < 0 'J

v

75

i,j->-in X ^

the optimal

assignment of the goods to the transportation routes under the given conditions is obtained.

1.2.2 T h e H u n g a r i a n M e t h o d (Kuhn) Hypotheses Given

n

elements

elements

z^, i = l,...,n (for example workers) and

w^-, j = l,...,n (for example machines) . Exactly one

has to be assigned to each assigned to each w^. matrix

A : Aj-n

x

z^

and exactly one

zi

n w^

has to be

The cost for each assignment is given in the

n j , with

a-.: cost of assigning a 3 ij v i,j a i j > 0

z. l

to

w. j

(If necessary a "constant" matrix, one consisting of the same value in all elements, must be added to A.) The problem is to find a feasible assignment with minimal assignment costs .

76

Linear

Define

x^. , so that

.

x

Programming

1J

i 1,

if

z.j

is assigned to

^ 0,

if

z.j

is not assigned to

w^ w^ .

Now the problem formally reads: min

TI

n

n

l

i

i=l

j=l

=

n I

a.j. • x^.

n X

ij

=

i=l

x1d

=1

j=l

x.. = 0 U

V 1

.

Principle Beginning with a lower bound of assignment costs which cannot be undercut, attempt to determine a complete feasible assignment. If it is impossible, a new lower bound is established by attacking the minimal additional assignment costs to the old lower bound and trying again. Repeat the procedure as long as necessary. Description Step

l: Apply FLOOD'S Technique to the matrix Result:

Step

Step

2: Define

A

matrix

ft

.

b ^ : = (a^. | a ^

=0)

V

M :

=

P :

= Q : = S : = 0

.

{bij}

3: Cassignment) Determine row |{b r j }|

: = min

r , for which ¡{b^e

M}|

and select one element b r s .

i ,j

A .

Section

Step

Step

4: Set

5: Is

Q

= Q u{brs>

S

= {bis e

P

= P U s

M

= M - S - {b r s } .

M

=

0

M I i * r> U

1.2.2

{b . € M I j * s}

?

If yes: Go to step 6. If no : Go to step 3. Step

6: Is

|Q| = n

?

If yes: Go to step 12. If no : Go to step Step

2.

7: Define the index sets

J

J: = {i I b.j £ P}; Step

L , so that

L: = {1 |J b „ ( Q} . lj

8: (labelling of rows and columns) Define the index sets

H

H: = {h | 3 b 1 h

1€L

with

L*: = L u {1 |3b l h Step

and

9: Is

|L*| =

|L|

with

and

£

L

, so that

and

h€H}

h€J} .

?

If yes: Go to step 10. If no : Set

L: = L* and go to step 8.

Step 10: Consider the matrix

% = (a^j) and define the sets

and K^ 2 ), so that K W :

=

K:

=

i I L; j iH} U { a ^ l tf.,

i € L; j € H}

i (. L; j € H}.

Step 11: (matrix alteration) Determine

a r $ : = min {a^. | a^. (. ( K ^ U K< 2 >)}

and calculate the matrix

%* , so that

K ^

11

78

Linear

Programming

^ •U^

a

,

^

rs '

lf

-U

ij

:

a

=

e kCD

if -y

ij

+

a

-vV

. -

a

ij

I, ./ - I/(2)

6

K

a^j - a r s , otherwise

.

Set ft : = % * and go to step 2. Step 12: The optimal (minimal cost) assignment is given by the set Q

wi th :

x. .: = 1J

rl , if b. . € Q J j 'o , otherwise

The assignment costs are

IT: =

n i j=l

n 2 1=1

a. •• x.. 1J

1J

.

Note: If each assignment yields a profit, then a feasible assignment must be found that maximizes profit. In this case transform the matrix Let

A

into

akl: =

A .

max {a.j} i »J

and

A ( k l ) : = (a k l )

the appropriate "constant" matrix, then

A : =

- A .

Start the above method as explained but using A . Example Given the matrix W

Z z

A : z

Z

1 2 3 4

1 2

A : w

2

w

W

3

3

5

4 8

1

7

9

6

9

6

8

6

2

4

7

4

M = ibnib21;b32;b33;b34;b41} 1 = min {1;1;3;1} Q ={bn);

row

S = {b21;b41)

;

P =

r: = row 1; ;

Q

=

0

1

1

6

0

6

6

5

3

0

0

0

0

2

3

2

0;

brJ = b ^ ;

P = {b21;b41} ;

Section M = { i

3 3 i

b

Q = {bn;b32} i

0;

M =

L : i, * i

S = {b33;b34}

| Q | < n -*•

{1};

H =

;

3 = min { 3 } ->• row

H = {1};

L* = {1;2;4>

;

fo

0

0

5

0

5

5

4

4

0

0

0

0

1 2

= a

brr cs. = b 32' ;

;

; ;

O/ 'V % , ll*,a21'a32'a33'a34'a41 »

K(2> = { ^ 3 1 }

r

L = {2;4}

|L*| * |L|

'X.

3;

P = tb21 ;b33;b34;b41l

J = {1;3;4};

L* = { 1 ; 2 ; 4 } ;

= L* j

;

r:=row

1.2.2

ar s

=

a12

1 ;

13

1

M = ib1ilb12;b13;b21;b32;b33;b34*b41}

'

Q

=

P =

s

=

1 = min { 3 ; 1 ; 3 ; 1 } ->• row r : = row 2 ; brs

b2V

=

Q =

{b

M =

21};

S =

{b

ll;b41}

'b33'b34^ '

^

;

P =

Q = {b12;b2l}; S = {b13;b32};

M = { b

; ;

brs

b33;

=

M i 0;

{b12;b21;b33

| Q| < n

J = {1;2;3;4> ;

S =

{b34}

^

a42 =

L = {4} ;

H = {1}

;

| L * | * | Ll ->• L : = L * ;

^

a44 =

_1

P =

{b

ll;b13;b32;b 4

|L*|

I

|L|

;

- 'ai2'a13'a14'a21 'a32'a33,a34'a41 =

;

+

H = { 1 } ; L* = { 2 ; 4 } ;

ars

P =ibH^13;b32;b41}

2 = min { 2 } -»• row r : = row 3 ;

Q =

L* = { 2 ; 4 } ;

ll;b41};

{ 2 ; 3 } -+• row r : = row 1 ;

=

brs = b12; 3 3

{b

;

;

80

Linear

Programming

1

0

0

5

0

4

4

3

5

0

0

0

0

0

1

0

M = {b12;bi3;b21;b32;b33;b34:b41;b42;b44} 1 = min £ 2 ; 1 ; 3 ; 3 > b

rs

=

b

21'

Q

=

{ b

row r : 21}

;

=

{ b

41}

;

M = ibi2'b13'b32 'b33'b34'b42'b44^

b

rs

=

b

13;

Q

=

{ b

13;b21}

M = ib32ib34;b42;b44} b

rs

=

b

34;

Q

=

{ b

;

'

S

2

P = {b12;b32;b33;b41;b44}

b

rs

=

b

42;

^

=

{ b

P

=

{ b

41}

;

;

= row 1 ; =

=

{ b

m i n

13;b21;b34}

1 = min { 1 } •+• row r :

I; S = 0 ; P

Q

= row 2 ;

S

2 = min { 2 ; 3 ; 2 } -*• row r :

;

;

;

12;b33}; { 2 ; 2 }

S

=

{ b

P

r o w

32;b44}

=

{ b

r :

=

12;b33;b r o w

3 ;

;

M = {b42};

= row 4 ;

13;b21'b34'b42}

P = ibi2;b32;b33;b41;b44}

1

M

^

' 0

S ;

=

lQl

*

n

S t o p , an o p t i m a l s o l u t i o n has been f o u n d , t h e assignment 13 21 34 42

=

1

=

1

=

1

=

1

t h e assignment c o s t s a r e 16

1

-1

m.u.

"3

'

'1



is

Section

1.2.3

81

1.2.3 The Decomposition Principle (Dantzig; Wolfe) Hypotheses Given a linear programming problem of the following form: P,:

tt =

min

1

z k=l

V< k ). x( k ) = b(°)

z k=l

A (k).

x(k)

=b

(k)

>e where

y k

v k

c

min

=

k(°) '

v

k l w. u = 1 1K i=l wik > 0

v k

= 1,... ,r

V i ,k

and solve this problem by the Two-Phase Method. Step

8: Let the current optimal solution of solution u = (u';u), ^ u : U [1 x r] • Compute

Step

where

[c (k > + u'-v( k ) ] •

9: Set the index

p: = 1

u

1

P^

be

: u'r, L

Vk=

w, the dual

-i (jJ

1

r .

and

83

84

Linear

Programming

P^1^ :

Step 10: Set up the problems P3:

[c

+

u

'Vk>].x

A (k). x (k) =

x( k )

• v k = 1,... ,r .

b (k)

>

0

Step 11: Solve the problem P g ^



Result: An optimal solution Step 12: Is

d ^ :

min

x ^ .

= ([c(P) +

+ up) < 0

?

If yes: Go to step 15. If no : Go to step 13. Step 13: Is

p < r

?

If yes: Set p: = p + 1 and go to step 11. If no : Go to step 14. Step 14: Compute the optimal solution of i: = (x x:

where

;(k).: ==

z i

x w 1-|(P) e^"'

1

: = x ^

and

1 ,, : = V ^ - x ,, » q+l»p q+l,p

, „ .P [m o x 1]

be the unit vector of dimension [r x 1]

with

"1" on p-th position and B ^ the coefficient matrix of the artificial variables of the current optimal tableau of the problem

P^



Determine the column vector

B

p". e ^ )

this vector with the corresponding variable

and add and

Section

1.2.3

85

with the corresponding coefficient of the objective function

to problem

P2>

Determine the pivot-ele-

ment in this new column and do one iteration according to the Primal Simplex-Algorithm. Eliminate from the problem that variable x. which leaves the basis, along with the J

corresponding column vector.

Go to step 8 .

Example Given the following problem P^:

P^:

min w = 4-Xj + 3-x 2 + 12-x^ + 6-x^ + 10-Xj 2-x^ + x 2 + 4-x 3 + x 4 + 2-x 5 = 13 12

2-Xj + 3-X 2 + 6-X 3

4-x 1 + 10-x 2 + 14-x 3 = 28 2-x. + 4

xc 5

=

4

Xj > 0

V j = 1,.

,5 .

Me have: c { 1 ) = (4;3;12);

A

d)

.

2

3

4

10

= 13;

c ( 2 ) = (6;10); i(2)

14 12

b( l )

V ( 1 ) = (2;1;4);

(2;1)

b ( 2 > = 4;

28

;

m

l;

Solution of the first subproblem: X

1

X

2

X

3

1

X

1

X

2

X

3

1

2

3

6

12

1/3

1/2

1

2

4

10

14

28

-2/3

3

0

0

4

3

12

0

0

-3

0

-24

V ( 2 ) = (1;2);

86

Linear

1

X

x

2

X

0

1

1/2

1

1

0

9/4

9/2

0

-3

0

-24

0

0

3/2

-21

F e a s i b l e basic solutions

4

X

xgl

=

1

5

X

(9/2;l;0);

4

X

2

1

4

2

6

10

0

-14

1

5 1

X

=

1 2

;x

2 2

y W - x ^

1

1

0 -40

0

;

= (2 ; 1 ; 4 ) • SJ = i

ï k=l

= (2;1 ;4)•

J1)

2

1/2

7 -12

solutions:

= {(0;0;2) ;(0;4) ;(2;0)}

Now we s e l e c t :

V(k^-x

1

5

are:

be t h e n e c e s s a r y b a s i c }

X

(2;0);

SJ = { x ^ - . x ^ }

)

4

4

Feasible basic solutions

= (0;4);

Now we s e l e c t :

'22

are:

o f t h e second s u b p r o b l e m :

Q = ixn;x

v12

1

3

2

L e t r + mQ = 3

il

X

0

Optimal!

n

2

0

Solution

v

X

1

= (0;0;2);

S k=l

1

-9/2

n

x12

X

1

Optimal!

X

1

3

2

0

x

Programming

x

we h a v e :

+ (1 ; 2)n

'

.

w e

J

= 10 < 13

h a v e :

0] ^ = 16 > 13 ;

+ ( 1 ;2 ) -

1 K

= ( 2 ; 1 ; 4) •

= (1;2)' (o!

(0 0

8;

2

c

n

24;

= (4;3;12) •

8;

c 1 2 = (6 ; 1 0 ) •

2;

c22 = (6;10)•

^ 2]

= 40 ; = 12

;

Section

Problem W

P9

w

12

Z

22

1

z

z

2

1

3

8

8

2

1

0

0

13

1

0

0

0

1

0

1

0

1

1

0

0

1

1

-9

-9

-3

0

0

0

-15

24

40

12

0

0

0

0

W

w

W

Z

11

12

22

0

1

0

1

1/6

Z

Z

2

-4/3

3

-1/3

After three iterations we have the follwoing optimal tableau:

1 1/2

1

0

0

0

1

0

1

0

0

1

-1/6

4/3

4/3

1/2

0

0

0

1

1

0

0

0

0

1 -14/3

40/3

((4;3;12) + (-14/3)•(2 ;1;4))•x ( ! )

-8/3

X

X

1

X

2

- ( w H ' w 1 2 ' w 2 2)

=

= (1 ; 1/2 ;1/2) G = (u';u) = = (-14/3;(40/3;

-50

-8/3));

=

= ( (4;3; 12) - (28/3; 14/3;56/3) ) •( 1x) ^

p(l). 3 *

87

states as: W

11

1.2.3

= (-16/3;-5/3;-20/3)

1

3

2

3

6

12

After two iterations we have

4

10

14

28

the following optimal tableau:

-16/3

-5/3

-20/3

X

1

x

2

X

3

0

1

1

0

9/4

9/2

0

1

1/2

1

0

0

37/6

77/3

= (9/2 ; 1 ;0) ;

88

Linear

.(1)

Programming

(-16/3-9/2 - 5/3- 1 - 20/3- 0) + 40/3 = (-37/3) < 0 x 2 1 : = x ( 1 ) = (9/2;l;0);

Be

1 2 1 : = V ( 1 ) - x 2 1 = (2;1;4)-

fl"1 1 " 10

e

l

of W

W

11

W

0

1/3

1

1

21

10' 1 0

-1/3 0 4/3

^ 21

,-1

w

22

Z

1

0

1/6

0

0

0

12

W

1

P2 Z

is : z

2

-4/3

3

1

-1/3

1/2

1

0

1

-1/3

0

1

-1/6

4/3

4/3

1/2

0

-37/3

0

0

-14/3

40/3

-8/3

-50

22

Z

W

21

w

12

W

Z

1

Z

2

3

1

-1/3

0

1

0

1/6

-5/3

-1/3

1/6

1

1

0

0

0

1

0

1

1/3

0

0

1

-1/6

5/3

4/3

5/6

37/3

0

0

0

-14/3

= 10;

1/3 1 -1/3

0

11

9/2 1 0

77/3

W

~^ W 21' W 12' W 22^ =(l;l/6;5/6);

G=(-14/3;(77/3;

-8/3 -113/3

-8/3));

((4;3;12) + ( - 1 4 / 3 ) • ( 2 ; 1 ; 4 ) ) ^ = (-16/3;-5/3 ;-20/3)• '

In relation to the last iteration

P ^

is unchanged, therefore:

= (9/2; 1 ;0) ; d ^

= (-16/3-9/2 - 5/3-1 - 20/3-0) + 77/3 = 0 .

=

Section

((6;10) + (-14/3) • (1 ;1)) • x< 2 )

89

1.2.4

= ((6;10) - (14/3;14/3)) • x

(2)

= (4/3 ;16/3) l X 5] p(2)

3

.

x

*

4 2

4/3

X

1

5

x

X

4

1

5

4

1

1/2

2

16/3 0

0

14/3

8/3

1

S< 2 > = (2;0);

d ( 2 ) = (4/3-2 + 16/3-0) + (-8/3) = 0 . Computation of the optimal solution of

P^ :

x ( 1 ) : = w 2 1 - x 2 1 = 1 • (9/2 ;1;0) = (9/2;l;0); x ( 2 ) : = w 1 2 - x 1 2 + w 2 2 - x 2 2 = 1/6 • (0;4) + 5/6 • (2;0) = (5/3;2/3); x = ( S ( 1 ^ ; x ( 2 ) ) = (9/2;l;0;5/3;2/3); control : (2-9/2 + 1-1 + 4-0 + 1-5/3 + 2-2/3) = 13; (2-9/2 + 3-1 + 6-0) = 12; (4-9/2 + 10-1 + 14-0) = 28; (2-5/3 + 1-2/3) = 4; tt = (4-9/2 + 3-1 + 12-0 + 6-5/3 + 10-2/3) = 113/3

.

1.2.4 FLOOD'S Technique Hypotheses Given a matrix

A

: A

[m

x n]

» find a matrix

^

:

x

nJ

> which

contains at least one element equal to zero in each column and in each row. Description Step

(r)

1: Determine the vector of the row-minima a^ ', so that a

(r)T

: = (a, i

(r)

;...;a

(r)

m

(r)

) , where a . '

: = min {a - -} . iJ

90

Step

Linear

Programming

A (r) • AÌ r > so that n • [m x n] »

2: Determine the matrix A(r): = (a(p),

where

1J

= a | r ) V j = l,...,n; 1 V i = l,...,m,

13

and compute the matrix

A , so that

A : = A -

.

Step

3: Determine the vector of the column-minima a ^ , so that min {a.,} . a < c > : = (a} c >;...;a< c )), where a< c > : J i

Step

4: Determine the matrix

A ^

A ( c ) : = ( a ( ^ ) , where

: A ^ , so that [m x n]

a j ^ : = a ( c ) V i = l,...,m;

1J

3

V j = 1

n,

and compute the matrix

A , so that ft: A -

.

The reductionsconstant

rQ

m l i=l

n + I j=l

(r)

has the following value: (c) a.-

Example 2

4

2

CVJ

3

1

1

1

1

4

2

2

2

2

2

2

2

1

3

1

1

1

1

;

a:

1

ro

2

CVJ

5

A< r > :

;

2' 0

A: = A - A ( r ) .

(1;0;0)

0

1

0

0'

ro

2

0

2

1

0

0

0

2

0

1

0

0

l

0

0

0

0

0

0

2

;

c h = A - A< >:

((2 + 1 + 2 + i) + (1 + 0 + 0))

7

Section

1.3.1

91

1.3 Theorems and Rules 1.3.1 The Dual Problem In some cases it is convenient not to solve the given primal problem, but the corresponding dual problem. The dual problem can be determined from the primal problem as follows: Description Step

1: Transform the primal problem into the following form: P :

n £ j=l

max

it =

n z j=l

a.,-x. < b.

n z j=l

a. . •x. = b•

1J

J

1J

Xj > 0

c. -x. 3

1

3

1

3

v i = i

k

V i = k + 1,...,m , where k < m

v j = 1.....1

Xj unbounded

V j = l + l,...,n,

where 1 < n

or in matrix-notation: P :

max

tt = c-x

A'-x < b' A"-x = b" > x < e . Step

2: Construct the dual problem Pn: u

m z i=l

mi n

tt =

m i i=l

a, .-u, > c, 1J

1

Pp , so that

u. • b. 1

J

1

V j = 1

1

92

Linear

Programming

m £ i=l

a. • •u. = c• 1J

ui > 0

1

J

v j = 1 + 1

v i = 1

IK unbounded

n, where

1 < n

k

vi = k + 1

m,

where

k
0 is assigned to each type I inequality in the primal problem. b) A dual unbounded variable u^ is assigned to each equality in the primal problem. c) A dual type II inequality is assigned to each constrained primal variable

x. > 0. J

d) A dual equality is assigned to each unbounded primal variable Xj. e) The primal objective function by the dual objective function

max n = c-x

is replaced

min it = u-b

.

Note: A type I inequality is of type "" . Example Given the following p r o b l e m ? : V :

min

tt = 3 - X j

(1)

2-Xj +

-

P:

4-X£

x2 > 6

(2)

Xj - 2-X 2 < 1 0

(3)

5-x. + 7.x ? = 13

=i>

max

tT t = (-3-x^ + 4-x 2 ) T

(1)

-2-Xj -

x 2 < -6

(2)

x 1 - 2-X 2 < 10

(3)

5-x, + 7-Xp = 13

Xj > 0 x,

unbounded

x2

unbounded

93

Section 1.2.3

PD :

min

n = ( - 6 * U j + 10-u,, + 1 3 - u 3 )

(1)

- 2-Uj +

(2)

-

u 2 + 5-U 3 > - 3

u x - 2-U 2 + 7-U 3 =

4

Uj, u 2 >

0

u3 P'p :

max

n =

(1)

2-ux -

(2)

unbounded

6 - U j - 10-u 2 - 13-u^ u2 - 5-U3 < 3

- U j - 2-U 2 + 7-U 3 = 4 u^, u 2 > 0 u3

unbounded

1.3.2 Theorems of Duality The f o l l o w i n g r e l a t i o n s h i p s e x i s t between the primal problem and the dual problem that was developed i n 1 . 3 . 1 a) For each l i n e a r programming problem

. P

there e x i s t s a c o r r e s -

ponding dual problem P Q . b) c)

(PD)D=P 3 optimal s o l u t i o n of

d) P e) Pp

P

» 3

has an unbounded s o l u t i o n has an unbounded s o l u t i o n

f ) For the i n i t i a l

optimal s o l u t i o n of

» 2 » $

f e a s i b l e s o l u t i o n of f e a s i b l e s o l u t i o n of

and the optimal tableau the f o l l o w i n g

hold: 1. primal values of 2. dual values of

P P

e e

P^ .

dual values of P Q primal values of P n .

P^ . P

.

conditions

94

Linear

Programming

1.3.3 The Lexicographic Selection Rule Hypotheses Given a primal f e a s i b l e simplex-tableau with column pivot-column, we have b a

b U

r

ls

f

b

_J_= a r2s

. . . = _ E _ = min a i rps

s

selected as

b.

a• [is

| a.

>0

i . e . there i s more than one row equally e l i g i b l e for selection as the pivot-row. Description step

l: Let

a

be the r -th row vector of the above simplexu y tableau. Compute the vectors a^ , so that y r

a; : = — ar

u

Step

• ar ys

V y = l,...,p

.

y

2: Determine

a^, : = lex min {aj, } , v y y i . e . the lexicographic minimum of a l l a l t e r n a t i v e row

vectors

a^,

. The pivot-element i s given by

ar

y

s



v

Note: a) When more than one column i s equally e l i g i b l e for pivotcolumn in the dual problem, proceed in the corresponding way as described above. b) The pivot-row could also be chosen at random. (Proof of convergence in [ l . B . 7 ] )

Section

1.3.2

Example Given the following simplex-tableau: X

1

1

x

2

-1

5

1

0

0

0

2

column 1 is selected as

5

0

7/2

0

1

0

0

5

pivot-column:

3

3

2

0

0

1

0

3 1/2 0

2

X

y

3

3

1

4

1/4

0

0

0

1

-5

-2

-3

0

0

0

0

aj = (2;-l;5;l;0;0;0;2); a 2 = (5;0;7/2;0;l;0;0;5);

= a

ll

= a

21

= a

31

a[ = (1;-1/Z;5/2;1/2;0;0;0;1) = (1;0;7/10;0;1/5;0;0;1)

a 3 = (3;3;2;0;0;1;0;3);

a^ = (1;1;2/3;0;0;1/3;0;1)

ai

mum,

is the lexicographic

a-,,

is pivot-element .

j

95

2. Integer Programming

2.1 Cutting Plane Methods 2.1.1 The G O M O R Y - I - A I I Integer Method Hypotheses Given the following problem n P :

mini V maxj

P :

tt = c-x

A-x I b x

£»;

Principle Beginning with a continuous optimal solution, if it exists, new solutions are determined in each iteration by adding new restric tions (cuts) to the problem. Description Step

l: Solve the problem without the integer condition by one the simplex-methods. Result: A solution function

tt = c-x

x

Set the running index Step

2; Is

Xj £

JNq

If yes: Stop,

with the value of the objective

(if a feasible solution exists) p: = 1 .

v j = 1,... ,n x

?

is an optimal solution of

If no : Go to step 3 .

P .

.

Section

Step

3: Determine row

Step

q

r

q

o

2.1.1

: = min {r. | r. : = b- - [b.];r. i 0 o

97

> 0} ,

is called the source row .

4: Form a new restriction (a so-called cut) from the row

q

with the additional slack variable yp : r

y*P - 5 Z Z j :nbv

qj • X j = " V

Note: The summation-index

'Where j

= 3 qj " t a qj] '

V

holds for al1 nbv.

Add the cut to the current tableau; determine the pivotelement according to the Dual Simplex-Algorithm, and perform as many dual simplex-iterations as necessary. Step

5: Does a feasible solution of the expanded problem exist ? If yes: Let

x

be the solution. Set p: = p + 1 and go to

step 2 . If no : Stop, there is no feasible integer solution of Note: If a slack variable

y

is basis-variable for the second

time, then the row and column corresponding to

yp

can be elimi-

nated. Therefore the maximal size of the tableau is (m + n + 1) rows and (m + 2-n + 1) columns. Example Given the following problem P :

max (1)

it = 2-Xj + x^ Xj -

x2

(2) 4-x x + 3-x 2 x

l'

X

2


2

1

1

-1

1

0

5

0

-7/4

1

-1/4

5/2

x = (5/2 ;0);

4

3

0

1

10

1

3/4

0

1/4

5/2

tt = 5 ;

-2

-1

0

0

0

0

1/2

0

1/2

5

x^ d o e s n o t f u l f i l l t h e i n t e g e r c o n d i t i o n , t h e s e c o n d r o w is t h e s o u r c e row.

Gomory-I-cut:

y* - 3 / 4 - x ^ - l / 4 - y 2 = - 1 / 2

Section

t(3).

X

2.1.1

99

T< 4 ): X

1

y

2

y

l

y

2

*

l

1

X

1

x

y

2

*

1

2

0

-7/4

1

-1/4

0

5/2

0

0

1

1/3

1

3/4

0

1/4

0

5/2

1

0

0

0

0

-3/4

0

-1/4

1

-1/2

0

1

0

1/3

-4/3

2/3

0

1/2

0

1/2

0

0

0

0

1/3

2/3

14/3

Current solution: filled by

5

-7/3

11/3

1

2

x = (2;2/3); the integer condition is not ful-

> the third row is the source row.

Gomory-I-cut:

y* - l/3-y 2 - 2/3-y* = -2/3

.

t(5).

X

1

x

2

h

y

y

2

* l

* y

1

2

0

0

1

1/3

1

0

0

0

0

1

0

1/3

-4/3

0

2/3

0

0

0 -1/3

-2/3

1

-2/3

0

0

0

2/3

0

14/3

1/3

-7/3

11/3

0

1

2

0

Here both elements, -1/3 as well as -2/3 may be selected for pivotelement. The sixth tableau corresponds to selecting -1/3 for pivot, the seventh tableau corresponds to selecting -2/3 for pivot. t

(6). X

1

x

y

2

*

2

y

*

2

1

0

0

1

0

-3

1

3

1

0

0

0

1

0

2

0

1

0

0

-2

1

0

0

0

0

1

2

-3

2

0

0

0

0

0

1

4

First optimal integer solution: x = (2;0) ;

i = c-x = 4 .

100

Integer

Programming

T: X

1

x

y

2

2

1

0

0

1

3/2

0

-7/2

6

1

0

0

-1/2

0

3/2

1

0

1

0

1

0

-2

2

0

0

0

1/2

1

-3/2

1

0

0

0

0

0

1

Second optimal integer solution: x = (1;2) ;

it = c-x = 4 .

4

2.1.2 The G O M O R Y - I I - A I I Integer Method Hypotheses Given the following problem V: P

:

min

ir = c-x

ft-x < ft x

e

Nn o

I



JRm

.

Principle The method consists of the repeated application of the Dual

Simplex-

Algorithm on an integer tableau. If it is not guaranteed that the tableau will remain integer, a new restriction (cut) is added. Description Step

( a., e Z J

) A ( fe e z ^

If yes: Define

a^: = a^;

1: Is

) V i,j

^

b i : = bi

? V i ,j

and go to

step 3 . If no : Go to step 2 . Step

2: Consider the coefficients of the i-th restriction, V

i = l,...,m

and determine their common denominator,

Section

say

101

q.

Compute

a^.: = a ^ bi

Step

2.1.2

:

• q^ V

• q,

i,j

3: Set up a simplex-tableau for problem P :

P :

ir = c-x + e-y

min

A-x + y = b x £ Nj y

e Fj

b e ]Rm and set the running index Step

4: Is

b. > 0

V i = 1,... ,m

p: = 1 ?

If yes: Stop, the optimal integer solution for

V

has been

found. If no : Go to step 5 . Step

S: Determine the provisional pivot-element

ar>s

according

to the Dual Simplex-Algorithm . Step

6: 3

ar,s < 0

?

If yes: Go to step 7 . If no : Stop, there is no feasible solution of Step

Is

a r , s = (-1)

If yes: Set

ar,s rs If no : Go to step 8. Step

V

a

and go to step 9 .

8: Form a new restriction (a so-called cut) from the row with the additional slack variable

'J

• x. + Jy J P

b , r

y

P

:

where

r'

102

Integer

Programming

X: =

min {a ,.} r J j:nbv

and add this cut to the current tableau,

Let this be the r-th row. Disregard the provisional pivotelement

ar,s

and determine the pivot-element

ars

according to the Dual Simplex-Algorithm. Set p: = p + 1 . 9: Perform one dual simplex-iteration and go to step 4 .

Step

Example Given the following problem min

P :

it = 5-x^ + 10-x 2

min

TT = 5-Xj + 10- x

2

(1)

Xj^ + 4 •x ?

>

2

(1)

-x^ - 4-X 2




1

(2)

x^ - 3-X 2


0

2

1

X

1

X

X

2

y

3

2

1

1

4

5

i

0

9

1/4

1

5/4

1/4

0

9/4

4

0

3

0

1

10

4

0

3

0

1

10

-2

-3

-4

0

0

0

-5/4

0

-1/4

3/4

0

27/4

x

y

(3). X

1

x

2

0

1

1

0

0

0

The variable

3

11/4 3/4

2

1

-1/16

13/8

1/4

5/2

5/16

79/8

y

l

0

11/16 3/4

x = (5/2;13/8;0); if = c-x = 79/8;

x^ does not fulfill the integer condition, the second

row is the source row with Intensified Gomory-Ill-cut: - (3/4-1) •

Optimal continuous solution:

1/2-1

r

q

o

= 1/2 .

• x« - l/4-y? + y* = - 1/2 J

L

^ - 1/4-x3 - l/4-y2 + y* = - 1/2

1

108

Integer

Programming

T< 4 >: X

1

*

x2

X

1

H

3

0

1

1

1/4

-1/16

0

13/8

1

0

3/4

0

1/4

0

5/2

-1/4

1

-1/2

0

79/8

0

0

-1/4

0

0

0

11/16

3/4

5/16

t (5). X

1

*

x2

x

3

y2

1 The optimal mixed-integer

-1/4

7/4

solution is:

0

1

15/16

1/4

0

1

0

1/2

0

0

1

2

x = (2 ;7/4;0) ;

0

0

1

0

1

-4

2

tt

0

0

3/8

3/4

0

5/4 37/4

= c-x = 37/4.

2.1.5 T h e Primal Cutting Plane Method (Young; Glover; Ben-Israel; Charnes) Hypotheses Given the following problem P :

max

tt

A-x


0

v j

p: = 1 .

?

If yes: Stop, an optimal solution of

P

has been found.

If no : Go to step 3 . Step

3: Select the pivot-column pivot-row

r'

s

as well as the provisional

according to the Primal

Simplex-Algorithm.

Then the provisional pivot-element is given by Step

? V s > ° If yes: Go to step 5 .

5: Is

P

has no feasible integer solution .

ar,s = 1

If yes: Define

= a rs r s If no : Go to step 6 . Step

.

4: 3

If no : Stop, Step

ar,s

a

Go to step 7.

6: Form a new restriction (a so-called cut) from the row with the additional slack variable r j j :nbv A:

=

max j: nbv

• x. + yy = J P

b

r"

A

%

r'

yp :

where

{a i -1 a , . > 0} r j r'j

Note: The summation-index

j

holds for al1 nbv .

Add the cut to the current tableau. Let this be the r-th row, then the pivot-element Set Step

p: = p + 1

ars = 1

is uniquely defined.

.

7: Perform one primal simplex-iteration. Go to step

2.

Note: The note pertaining to the hypotheses of the G0M0RY-IIIMixed Integer Method holds in this case also.

110

Integer

Programing

Example Given t h e f o l l o w i n g problem P:

P

max ir = x^ + 3 - x ^ (1) 2 - x 1 + 5-X2




0

;

tt(2) = ( - » ) ; M : = 0 u {1} = {1}

1(2) = { x 2 }

J(2) = x 2

M * 0;

m a x tt = 2 - x 1 + 18

ï(l) = 4 4 / 3 ;

Xj(l) i N 0

J(l) = x 2

7

=

(3)

t = 3;

P(2):

m a x ir = 2 - x ^ + 6-x,, (1)

Î

0

;

1(3) = 0 ;

e(l)

w(t) = w ( l ) ; x g ( l ) = Xj(0)

;

= (-1);

e(2)

= 1

M = M - {1} = 0 ; ;

m a x tt = 2 - X j + 6-x,,

P ( 3 ) : m a x tt = 14

(1)

3 / 2 - x 1 + 4 - x 2 < 10

(1)

19/2


0

vj

= k + l , . . . , n , where k < n .

Section 2.2.2

M

and

are

IT

are defined as: M: = 0;

t: = 1;

119

IR : = (-), the running indices

p: = 1 . The problem P(0) is given by the problem

P

without the integer condition. Principle

See

2.2.1

Description Step

1: Solve the problem P(0) by one of the simplex-methods. Result: A solution x(0) with the value of the objective function

Step

2: Is

TI(0) = c-x(O) (if a feasible solution exists).

Xj(0)€

V j = l,...,k

?

If yes: Stop, x(0) is an optimal solution of

P .

If no : Go to step 3 . Step

3: Define where

Step

x(x): = x(0) ;

select the variable x s (T) (.

s € [l;k]

4: Set up the problem

P(t)

as follows:

P ( t ) : = P ( t ) U {x s < [xs(t)]} . This means: Add the restriction Tthbt"

a. .-x. - 5 1J J few

a. .-v. + y* = fx (-r)l - B. J 1 5 J 1 P

1J

to the optimal tableau of the problem

P(x)

and do as

many dual simplex-iterations as necessary. Step

5: Set up the problem P(t + 1): = P(T) U U

P(t + 1) as follows: S

> } •

This means: Add the restriction -> a -x, + > a..-y. + y* = B. - 1J J 1J J p 1 s j:nbv j:nbv to the optimal tableau of the problem P ( T ) and do as many dual simplex-iterations as necessary. Step

6: 3 feasible solutions x(l) V 1 = t, t + 1 If yes: Go to step 7.

?

120

Integer

Programving

If no : Go to step 11. Step

7: Is

i(l) > tt* V 1 = t, t + 1

?

If yes: Go to step 8. If no : Go to step 11. Step

8: Is (Xj (1 ) 6 W 0

V j = l,...,k)

V 1 = t, t t 1

?

If yes: Go to step 9. If no : Go to step 10. Step

9: Determine *

ir(r) : = max {ï(l ) | x.(l) e JL V J 1 * -

and set x : = x(r) ; Step 10: Define M: = M U { 1 Step 11: Is

M = 0

j = l,...,k}

it : = ir(r) .

|(x.(l) i y

j = 1

k)V 1= t,t + 1}.

?

If yes: Go to step 15. If no : Go to step 12. Step 12: Determine Step Id: Is

v{i): = max {ü(i)|i € M} .

ï(X) < IT*

?

If yes: Set M: = M - {T} . Go to step 11. If no : Go to step 14. Step 14: Select the variable set t: = t + 2 ; Step 15: Is

TI* = (-»)

?

If yes: Stop,

P

If no : Stop,

x*

x s (t) g

p: = p + 1.

where

se[l;k];

Go to step 4.

has no feasible solution. is an optimal solution of

of the objective function is

tt = c-x

P , the value .

Section 2.2.2

Example Given the following

problem

P: m a x ti = x^ + 3 - x 2 (1)

4-x1 -


4}, i.e., the additional

2 / 3 - x 1 + 1/3-X2 + y * = - 2/3

121

122

Integer

Programming

i—

~x12

+

y

12 =

0



+ x2

'x2

+

y

l

=

4

- l / 2 - x 1 2 + x 2 + y 2 = 5/2

1

+

"x12

12 "

+ x^

-1/2-X1q - l / 2 - x n x

x

2.2.3

y

10 =

X

+

11 y

+

12

1

ll

y

=

=

0

0

xlp, x 2 , ylf y2, ylp > 0 V p A f t e r two i t e r a t i o n s we o b t a i n t h e o p t i m a l t a b l e a u T

. ( c o n t ) o f P:

Topt(cont): X

11

x

12

X

1

0

3/4 - 1 / 2

0

1

3/8

3/4

0

0 -3/4

1/2

1

3/4 - 1 / 2

0

1

2

y

l

y

2

B

10

y

ll

y

0

12

0

3/4

0

0

27/8

0

0

1/4

1

0

3/4 0

0

0

0

-1

0

2

0

0

-1

0

0

0

0

0

1

0

0

0

9/8

1/4

0

0

0

The p a r t o f T , . ( c o n t ) , 1

y

41/8

inclosed in the dotted l i n e s ,

.

The s o l u t i o n i s :

x 1 Q = 1; x

R

= 3/4; x 1 2

= 0; x 2 = 27/8; c = 41/8.

2 X

l

:

is the matrix

=

E

X

lp

=

7 / 4

*

K

;

17

*

=

1

=

1

'

128

Integer

Programming

vai ue 1

cost penalty table: X

s 1 0 = (1/4 -

s

n

s12

2

1

1 ) • (max{ - J

1

;

2

3

0 1/8 0

} ) = (-3/4)-0 = 0;

} ) = (-1/4) • (-1/2)

= (0 - 1 ) • ( m a x { - f s1?

3

OO CO 00

= ( 3 / 4 - 1 ) • (max{

Select:

value

})

= (-l)-O = 0 AbT =

, where s= 0 ;

' 3/4

0

27/8

0

1/4

0

-

3/4 ,

o

.

= 1/8

;

.

(0;0;0;0;1); 3/4 ' 27/8 1/4

=

0

3/4

1

-1

i> is the new right-hand-side in T Q p t ( c o n t ) ; after two dual simplexiterations we obtain the following integer solution: 2 x10

= 1;

x

= 1;

n

x12

= 1;

x2 = 3/2; x ^

=

z

Xj

= 3; c(l)

= 9/2;

p=0 x* = ( 3 ; 3 / 2 ) ; Select:

s

i n

,

it* = 9 / 2 ;

i = 2 . AbT =

(0;0;1;0;0);

' 3/4

' 0

3/4 '

27/8

0

1/4

1

where s = 0 ;

-

27/8 -3/4

=

3/4

0

3/4

0

0

0

ft is the new right-hand-side in T Q p t ( c o n t ) ; after two dual simplexiterations we obtain the following integer solution: *10

=

1;

*11

=

0;

*12

=

0;

*2

=

3;

*1

=

1;

=

4;

Section 2.2.4

t h i s s o l u t i o n i s n o t as good as t h e o t h e r , so i t Select: s

,

n

where

s = 1/8;

AbT=

' 3/4

' 0

27/8

0

1/4

0

-

3/4

1

0

0

is

rejected.

(0;0;0;1;0); 3/4 ' 27/8 =

1/4 -1/4 0

ft i s t h e new r i g h t - h a n d - s i d e i n T Q p t ( c o n t ) ; a f t e r one d u a l i t e r a t i o n we o b t a i n t h e f o l l o w i n g i n t e g e r *10

=

*11

1;

=

*12 =

1;

x* = (2;3);

TT* = 5 ;

Select: s ^ ,

where

we h a v e : P

= 3;

129

simplex-

solution:

x1 = 2; c(2) = 5;

i = 3 .

s =

s > c - TT* ->• S t o p , an o p t i m a l m i x e d - i n t e g e r s o l u t i o n

of

has been f o u n d .

2.2.4 The Additive Algorithm (Balas) Hypotheses Given t h e f o l l o w i n g problem?* : Oj

P:

mm

OJ

^

IT

= c-x

^

A-x

>

b

x.

=

0 v

1

v j

= 1

n .

Principle The a l g o r i t h m e n u m e r a t e s

( a f t e r an e v e n t u a l s o r t i n g and i n d e x i n g )

l u t i o n s o f t h e p r o b l e m . As soon as a f e a s i b l e s o l u t i o n i s f o u n d ,

socer-

t a i n s e t s o f s o l u t i o n s w i t h s p e c i a l p r o p e r t i e s a r e r e j e c t e d . The r e maining set of s o l u t i o n s is s y s t e m a t i c a l l y

examined.

130

Integer

Programming

Description

Step

1: I s

c, >

If

yes:

If

no

0 Set

V j = 1 £•: = J to step

: Go

i

Step

2: D e f i n e

X

ri

cv J 2 .

h j

?

j

=

-

i f

Step

4:

C.j < Cj

If

yes:

If

no

Define

c

,

V i < j

Set

x^ : =

: Go

to

:

4




b

Xj

=

0

e =

v

I .

j

=

v

running

Q

so

>

=

that

1

r

=

1

n

=

v

if

Q:

defines

5.

P

r

is

=

l,...,n;

given

j

=

r

:

.

:

j

=

1 , . . . ,n

,

a.j

=

0

< 0

v

1:

= 0;

i

=

l,...,m;

k:

=

0;

define

the

.

rejecting)

{j n

step

l,...,n;

l,...,n;

indices

M ^ { x ^

S

to

0

1 1

>| (x^11)

S

e

n

)

A

(E

x /

1

" *

^ x ^ M x }

the

= 1

1

1 } 3 J ) . .

n-dimensional

( P )

V

i

x

l i

) = l)}-

J

j

where

Go

0

J

problem

0,

Xj :

the

(vertical

.

.

const.

set

Define

3

c-x-e

Define

,

step

.

v j

r

Now

where

Step

=

if

r-min{c.} v j

Xj-:

to

?

x^.

step

=

Go

J

^

3: I s

.

•'

= \ ^

J

Step

1 . . . . ,n

P

|x(P)eQ}

jx*11) | xj1 ^ shift-space.

=

, O v l v j }

set

Section 2.2.4

Step

7: Is M ^

= 0 ?

If yes: Go to step 13. If no : Go to step Step

8.

8: Determine x ^ : = lex max { x ^ ^ l x ^ 1 1 ^ e M^1 b . i

Step

9: Is R ^ : = A - x ^ - b > 0 ? If yes: Go to step 11. If no : Define M ^ :

Step 10: Is M ^

= M ^ - i x ^ } . Go to step 10.

= 0 ?

If yes: Set 1: = 1 + 1 ; k: = k + 1. Go to step 6. If no : Set k: = k + 1. Go to step 8. Step 11: (horizontal rejecting) Determine the index-vectors J ( k ) : = ((j a )!( x j (k) = ^ ( J ' a < V ^ » - ( ( y l i ' ^ H n ) - ^ define Md): = Step 12: Is M ^

« < 6)); » A ( x < " > = 1)A

(ja < J'e v « < ft)), Q: = Q u ; M d ) _ {x (k) } _ {x (li),j(k) _ 3 (li) , = 0

0

y

i}

?

If yes: Set 1: = 1 + 1 ; k: = k + 1. Go to step 6. If no : Set k: = k + 1. Go to step 8. Step 13: Is Q = 0

?

If yes: Stop, f* has no feasible solution. If no : Go to step 14. Step 14: Determine the solution vector x ^ , so that t t ^ : = min {ir^ j

e Q} . Return

to the form

and determine the value of the objective function a. ij r) IT = C-Xv ' . Example P:

Given the following problem x

m m n = 2-x^ -

+

(l) 5-x^ - 3-X£ +

x3 -

3

+ 5-x^ x^

>

l

132

Integer Programming

(2)

-2-x1 +

x2 + 6-x3 - 4-x4

>

1

(3)

Xj +

3-x2 - 2-X3 - 2-X4

>

0

x

x^ - x^i

x2, x3, x4

r

x2

-

c^ - c ^ ; c 2 = after P:

=

x

''

(-c2; ; c 3

x2

(2) - 2 . « ! x1

(3)

+

we

2 - X

X

1

=

x

3;

x

x

2

Cj - c 3 j c 2

l;

x

- c^»

x

4• ;

have:

3

X

4

+ 6-X3 -

- 3'*2 ~

=

4

+ 5-*4 - 3 x

' *3' X

x

- c3; c4 - c4

the transformation

5-Xj + 3

V 1

3 ~~ x 3 >

min i = 2 - 5 ^ + 3 - x 2 + (1)

0

3

X

2 '

4

>

0

>-3

"*4 v 1

0

=

4

3

2

"

>

x

4

=

c3 - c2; c4 —

x

4;

c4;

n o w p r o b l e m P is : P:

min tt = x^ + 2 - x 2 + 3 - x 3 + 5 - x 4 - 3 (1) (2)

Xj + 5 - x 2 + 3 - X 3 6-x1 - 2-x2 -

(3) - 2 - x 1 + Xj>

According

all

>

4

- 4-X4

>

0

- 3-x3 - 2-x4

x2, x3, x4

to step

variable are P:

x2

x3

x4

5

=

0 v

w e can set

(2)

1 •

x4 = 0

(the c o e f f i c i e n t s

negative); now the problem

m i n tt = x^ + 2 - x 2 + 3 - x 3 - 3 (1)

>-3

x^ + 5 - x 2 + 3 - x 3 6-x1 - 2-x2

-

x3

>

4

>

0

reads

as f o l l o w s

of :

this

Section

(3)

-2-x1 +

x 2 , x3

= 0 vl

1 = 0; k = 0; Q = 0; M ( 0 ) = { x ( 0 1 ) } ; x ( 0 1 ) (0)

=

(01)

x

M(0)

=

M^

=

=

( 0 ; 0 ; 0 ) ;

d)

x(2)

M

(

1

{

(0)

x(n);x(12);x(13)}

= M

d)

=

(12

) =

R

4 ;

O

; 3

);

x

M

_

= x(11)

= (1;0;0); R ( 1 ) = ( - 3 ; 6 ; 1 ) ;

{x(12);x(13)};

=

k

2.

=

> = (0;1;0); R ( 2 ) = (1;-Z;4);

1

(

(D}

{X

; x^ 1 1 ) = (1;0;0); x = (0;1;0);

) -

{

x (

2

) } =

{

x (

1 3

M^1) = M ( 1 ) - { x ^ 3 h = 0; 2

.

(

) } ; k = 3 ;

= x ( 1 3 ) = (0;0;1); R ( 3 ) = ( - 1 ; - 1 ; 0 ) ;

x(3)

m(

=

= (0;0;0);

{x(°)} = 0; k = 1; 1 = 1;

x ( 1 3 ) = (0;0;1); x ^ M

)=

{

x(

2 1

);X(

2 2

x = ( 0 ; l ; l ) ; R(4) q = { x

);X(

= (2;4;2) > 0; (4)

}

; M

x(31)

2 3

)

k = 4; 1 = 2; } ;

X(

2 1

)

= x -

xW

J(4)

2

= (1;1;0);X(

j(22)

4

( )=m( )-{x( )}-{X( {X(

= (1;1;1); Q * 0

31

-

)} x ^

{ x


-

1;

= 0;

:

x = ( 1 ; 1 ; 1 ;0) ; the value of the o b j e c t i v e f u n c t i o n i s tt = c- x = 0.

134

Integer

Programming

=

ees j , for which

1 •

2.3 Primal-Dual Methods 2.3.1 A Partitioning Procedure for Mixed Integer Problems (Benders) Hypotheses Given the following problem P^: P^:

where

min tt

= c-x + g-w

A-x + D-w

>

b

x

>

0

W

e

Nn-k

C

:C[1

x

k]

,

;

g:9fl

x

(n

.k)]

A:A

[ m x k]

;

D:D

[ m x (n-k)]

b:b

[ m x 1]

;

x:x

[ k x 1]

W:W

[ ( n - k ) x 1] *

;

;

;

Section

2.3.1

135

Note: The Partitioning Procedure may only be applied to mixed-integer problems ! Principle The mixed-integer problem is partitioned into a continuous problem and a pure integer programming problem by this method. Both the integer subproblem (apply the dual of the all-integer problem) and the continuous problem is solved. The solution of the original problem is the union of the two sub-solutions. Description Step

1: Determine a feasible solution u of the problem P^: '• u-A < c u > 0 (no objective function!)

Step

2: Does at least one feasible solution

u

of ?2 exist ?

If yes: Set the running index q: = 1. Go to step 3. If no : Stop, Step

3: Compute

Pj

has no finite solution.

= 9j " u-Dj V j;

z ^ :

= u-b ,

where Dj is the j-th column of the matrix Step

D .

4: Solve the problem P^: P^:

min

z

w-g( p ) - z < -z(P)

v p = 1

q

»in-k w e N z e F. Let the solutions be given by bounded from below, then set Step

5: Calculate the matrix

Step

w

and

z . If

z

is un-

z: = (-»).

b: = b - D^-w , where

D^

is the i-th row of

D .

6: Solve the problem

P^ by the Dual Simplex-Algorithm:

136

Integer

P^:

Programming

max

u-b

u-A < c u > e . Let the optimal solution of Step

7: Does

P^

P^

be

G .

have an unbounded solution ?

If yes: Formulate a new problem

P^

with the additional

restriction

E Uj < C , where i ti ve constant. Go to step 6.

C

is a large posi-

If no : Go to step 8. Step

8: Is

z = g-W + G - b

?

If yes: Go to step 9. If no : Set Step

q: = q + 1 . Go to step 3.

9: Solve the problem P^:

min

ox

A-x >

B

P^:

x > e . Let the solution of

P^

mixed-integer solution of Example Given the following problem P^:

min

TT

= x + w

(1)

4-x + 5-w > 20

(2)

5-x + 3-w > 15 x >

0

w e

W

P^:

be x . Stop, (x;w) is an optimal P^ .

Section 2.3.1

?2 '• 4 - u 1 + 5 - U 2 < 1 u^,u2 ^ 0 A feasible solution of

P^

(1/4;0) •

P^:

min

is u = ( l / 4 ; 0 ) ; (-1/4);

z(1>

q =

1;

= (1/4 ;0) •

= 5;

z

-1/4-w - z < -5 w E N

. o

The s o l u t i o n o f b = ( 2 0 ; 15) P4:

is

w = 20;

z = 0 .

(-80;-45);

max ( - 8 0 - U j - 4 5 - u 2 ) 1

min 8 0 - u ^ + 4 5 - u 2

4-Uj + 5-U2




0

u15u2

>

0

The o p t i m a l 0 I

P3

(5 ; 3 ) • 20 =

solution of

1-20 + (0;0)•

q = 2;

, ( 2 )' =- 1 -

jig (0;0)•

P^

is

20 5] 3I

u = 0 *

= 1;

(0;0);

20; z, ( 2 )

(0;0)-

20] 15

= 0;

138

Integer

P^:

min

Programming

z

T ^ :

-1/4-w - z < -5 w - z
= (0;l/5) • [20]

P^:

min

=

2.2.1

139

3;

T ^ :

z

-1/4-w - z < - 5 w - z
The set M is defined as M: = 0 .

152

Theory of Graphs

Principle Starting with the beginning node n r , the shortest paths from this node to arbitrary other nodes are determined successively until the shortest path to the terminal n $ is f o m d . Description Step

1: Determine all paths from n r to all successor nodes n^ and calculate each length c

Step

2: Let p 1 and p^ be two di fferent paths from n^ to n^ . Is

l( P l ) * l(p 2 )

?

If yes: Go to step 3. If no : Go to step 4. Step

3: Determine 1(p g ): = max {1(p^); 1(P 2 )> ; set M: = M

Step

4: Determine

Step

5: 3

l(p p )

l(p n ): = p

U

(p g ).

min i 1 (p^.)| p t t M} . t L x

?

I f yes: Go to step 6. If no : Stop, there is no cost-minimal path from n r to n $ . Step

6: Let l(p p ) be the length of the path p p = (n r Is

ni

= ns

ni) .

?

If yes: Stop, the shortest or cost-minimal path from n r to n s is given by p p with length l(p p ) • If no : Go to step 7. Step

7: Determine all paths from n. to each successor node n- , 1 J q which does not lie on the path p p and calculate its length 1 (n r > ... ,ni .n^ ): = l(p ) + c ^ Set M: = M u { p p } ;

go to step 2 .

Note: If the given graph is not a digraph, then transform it into one.

Section 3.1.1 Example Given the following graph jfr ,

M = 0; Pi = ( n i > n 2 ) »

1(PX) = 3 ;

p2 = ( n 1 ; n 4 ) ;

Pp = P l ; p3 = (n1;n2;n3);

1 (P 3 ) = 3 +

p4 = ( n 1 ; n 2 ; n 4 ) ;

l(p4) = 3 + 3

p5 = ( n i ; n 2 ; n 5 ) ;

1(p5)

M = ip1;p4)

;

4=7; = 6;

= 3 + 2 = 5 ;

pp = p 2 ;

P6 = ( n 1 ; n 4 ; n 3 ) ;

l ( p g ) = 4 + 4 = 8;

p7 = ( v n 4

i ( P 7 ) = 4 + 2 = 6;

; n

6

) ;

P8 = ( n 1 ; n 4 ; n 7 ) ;

l(pg) = 4 + 6 = 10;

M = {Pl;p2;p4;p6}

;

pp = p 5 ;

P9 = ( n 1 ; n 2 ; n 5 ; n 4 ) ;

l(pg) = 5 +

M = {p1;p2;p4;p5;p6;p9} PlO

=

P

= (n1;n4;n6;n7)

n

(

W

V

V

;

; 1

;

1=6;

pp = p 7 ;

(Pio) l(pn)

=6

+

4

=

1 0

'

= 6 + 3 = 9;

l ( p 2 ) = 4;

153

154

Theory of Graphs

M = {P1;P2;P45P5;P6;P7;P8;P10} ; Pp = P3 ; p12 = (n1 ;n2;n3;n6); 1(P12) = 7 + 6 = 13; M = {p1;p2;p3;p4;p5;p6;p7;p8;p10;p12 }; v p = p ; i n7 ^ P11 Stop ' P11 = ( n i ;n 4 ;n 6 ;l V is the shortest path from n1 to n7 with length Hp-q) = 9 . 3.1.2 The Algorithm of DANTZIG Hypotheses The same as 3.1.1; initially define the set M as M: = {nr> . Principle

See 3.1.1

Description Step 1: Formulate the following table, which will be utilized in the calculations displaying the results at each step: nj

Pj = (" r

"j>

nl

n2

nn

KPj) Ns(nj) Step

2:

Determine all nodes n. K

n. K

(j)

t

€ Ns(n.) , so that

(j)

3

M V n. * n . J

S

(The index (j) refers to the predecessor node n^..) Step

3:

Determine all paths p

k (j)

and their lengths 1 (p. k

(j)

= (p., n. )vn.e M J K (j) J ): = l(p-) + c,k 3

3

U)

Section

Step

4: Determine

): =

l(p q

write the path

(p)

min k,j

{l(p. k

)}

n

q =

n

s

and

as we11

p q = (n r ,... > n p > n q )

its

length

?

If yes: Stop, the shortest path from n r to pq

as

. Set M: = M u in ).

q

5: Is

155

(j)

l(p ) in the above table under node n Step

3.1.2

is given by

with length l(p q ) .

If no : Eliminate node

nq€

NS

(nj)

Vn

j

+

n

s



Go to step 6. Step

6: Is

N s (n.) =

"j

?

If yes: Stop, there is no cost-minimal path from n r to n s . If no : Go to step 3. Note: If the given graph is not a digraph, then transform it into one. Example Given the following graph JV ,

find out the shortest path from n^ to n l l M = {nj}; P2

(l)

=

(nl;n2);

P4

( l ) = ( n 1l ; 4r Y > ;

= 3 = : =

4

;

156

Theory

n

j

p

j

n

of

Graphs

n

l

2

n

3

n

n

6

n

4

n

5

n

6

n

4

n

5

n

7

n

7

n

7

(n 1 ;n 2 ) 3

l(pj) Ns(nj)

n

2

n

3

n

4

n

4

n

6

n

5

n

7

3

M = {nx ; n2 > ; P4 = (ni;n 4 ); l(p 4 ) = 4 =: l(p ) ; 4 1 4 4 q (1) (1) (P) Po 6

P4

= (n-, 1 ;n c ? ;n,); J

{2)

=

(2)

?r

(2)

1(p

1

n

"j

L

5

n

l

2(4)>

n

2

3

(n 1 ;n 2 )

J

=

6;

n

n

4

4

(2)

n

n

n

3

n

4

n

6

n

5

n

7

= (ni1 ;n£? ;n,); J

5

n

6

n

4

n

5

n

7

4

6

3

M = {n 1 ;n 2 ;n 4 ) ; Po

n

(iVn4)

3

KPj) N^nj)

) = 7 ;

l(p 5 ) = 5; °(2)

= (n, ;n„;iv); (2)

P

("lin2sn4>;

l(p, J

1 (p.

(2)

) = 7;

Section 3.1.2

P5 p

3

(nl 'n2

(2)

(n1;n4;n3) ;

l(p

1(P6

n

"J

) =

6;

1 (P7

) =

10;

(4)

n2

l

n

3

n

(n1 ;n2 )

J

)

n

3

n

5

4

n

( ' V ' V

3

l(Pj) ( n j

8;

(4)

=

%«> *

S

) =

;

(P)

(4)

( n i ;n4'>n7) ;

N

) q

3

(4) >

P

l(p

(2)

(n1 ; n 4 ; n 6 ) ; V

) = 5 =:

l(p5

'

5

("l

;n

6

; n

6

n

7

5)

5

4

n

2

n

n

3

n

5

n

6

n

7

"7

M = {rij;n2;n4;n5}

(n1;n2;n3) ;

(2) Pc

(4)

p7

;

=

(ni in4inf¡) » MPC 1

4

6

= (n1;n.;n7);

J

P

j

1

n

4

n j

)

(4)

l(p7

p3

= (n1;n4;n3);

l(p3

) = 6 =:

1 (p q

) =

) = (4)

(4) (p)

);

10;

(4)

7

l

n

2

n

3

n

4

(n1;n2)

(n1;n4)

3

4

MPji Ns(

) = 7; (2)

(4)

n

l(p3

n

3

n

6

n

3

6 ru / n

n

5

(n1;n2;n5)

n

6

n

(n1;n4;n6) 6

5 n

7

7

157

158

Theory

of

Graphs

M = -Cn1 ; r i 2 ; n 4 ; n 5 ; n 6 } p

3/0,= J (2)

( n i » n 2 ' n 3)' x "

(4) p7 p

x

^

1(P3

"

= (n, ; n . ; n 7 ) ; 1 4 '

(6)

= (n, ; n . ; n , ; n 7 ) ; 1 4 b /

j

p

j

n

l

1 (p7

n

= (n-,

p (6)

1

;n7); 4

n

l

( n j

3

n2

n

n

5

n

3

n

7

6

n

7

( V V V 6

5

4

1 (p,

n

7

) = 10;

1(p7

) = 9 (6)

n

3

q

n

4

n

4

7

P7 = (n1;n4;n6;n7)

with length

5

n

6

n

(nl

n

7

from n 1 t o n y i s g i v e n

l(p7)

= 9 .

7 ''n4;n6;n7) 9

6

5

7

the s h o r t e s t path

(p)

(nx ; n 2 ; n 5 )

(rij ; n ' 2 ; n 3 ) ( n x ; n 4 )

n

Stop,

4

;

)

nq = ny

n

(4)

3

l(Pj)

(P)

) = 9;

3

7

(n1;n2)

J

/(g)

7

= (n, ; n . ; n , ; n y ) ; 1 4 b '

"j

q

( n 1 ; n 2 ; n 3 ) (nx ; n 4 ) (nx ; n 2 ; n 5 )

;n2;n3;n4;n5;ng}

(4)

S

l(py

3

n

P7

KP

) = 10;

2

(n1;n2)

M=

) = 1

(4)

n

l(pj)

N

(2)

"(4)

(4)

n

P

;

by

Seat-ion 3.1.2

159

3.1.3 The F O R D Algorithm I (shortest path(s)) Hypotheses Given a valued graph #

with nonnegative arc-values

c^ • < » v

a^. £ A, determine the length of the shortest path from n^ to each other node n^, V j * r . Principle The algorithm determines in an iterative process a sequence of labels, whose value is monotonic non-increasing, to all nodes, until no new labels can be assigned. The label of a node n^ is then equal to the length of the shortest path from the beginning node n r to this node nj. Description Step

1: Define the labels

Step

2: Determine

Q: = { a ^

Step

3: Is

?

Q = 0

M(n r ): = 0; M ( n p : = » V

j * r .

| M(n -) - M(n.j) > c^.} .

If yes: Stop, M(nj) is the length of the shortest path from n r to n^

V j .

If no : Go to step 4 . Step

4: Select one arc

a ^ € Q and define

M(n t ): = M(n ) + c s t -

Go to step 2.

Hint: In step 4 select first the arcs having values similar to r . Example

a ^

with indices

s and t

160

Theory of Graphs

determine the M(nx)

=

0;

l e n g t h o f t h e s h o r t e s t p a t h s f r o m n^ t o a l l

S

a

st

=

+ 2 = 2;

Q = ia13;a24;a25}

12'

a

M(n^) = 0 ;

;

a

st

=

a

M(n3) = 0 + 3 = 3; M ^ )

Q = fa24;a25;a34}

;

M(n4) = 3 + 5 = 8 ; Q = {a24;a25;a45}

a

st

M(n3) = M(n4) = M(ng) =

13;

= 0;

=

a

M(n2) = 2; M(n4) = M(n5) = -

;

34'

M(nj) = 0 ; M(n2) = 2; M(n3) = 3; M(ng) = » ; ; a s t = a45

;

M(n5) = 8 + 4 = 12; M ^ )

= 0 ; M(n2) = 2; M(n3) = 3; M(n4) = 8;

Q = {a24;a25>

;

; a$t = a24

M(n4) = 2 + 4 = 6; M ^ )

Q

=

{a

nodes.

M(q2) = M(n3) = M(n4) = M(n5) = » ;

Q = {a12iai3>

M(n2) = 0

other

25;a45}

;

a

st

=

M(n5) = 2 + 1 = 3;

a25

= 0 ; M(nz) = 2; M(n3) = 3; M(ng) = 12;

;

Mtrij) = 0; M(n2) = 2; M(n3) = 3; M(n4) = 6 ;

i Q = 0 The ->- S tFo pO. R D Algorithm II (longest path(s)) 3.1.4 Hypotheses Given a valued graph

yr

with arc-values

c-jj

< ™V

a

ij

e

d e t e r m i n e the l e n g t h o f t h e l o n g e s t p a t h from n r t o each o t h e r n jr .i n cv i p lj e • r . P The algorithm determines

i n an i t e r a t i v e p r o c e s s a s e q u e n c e

of

node

Section 3.1.4

161

labels, whose value is monotonic non-decreasing, to all nodes, until no new labels can be assigned. The label of a node Pj is then the length of the longest path from the beginning node n f to this node

Description Step

1: Define the labels M(rij): = 0 V j = l,...,n .

Step

2: Determine Q: = { a . J M(n,) - M(n,) < c-•} .

Step

3: Is

IJ

Q = 0

J

I

' J

?

If yes: Stop, M(nj) is the length of the longest path from n r to n^

V j .

If no : Go to step 4 . Step

4: Select one arc

ast £ Q

and define M(n t ): = M(n s ) + c g t .

Go to step 2. Hint: In step 4 select first the arcs a s t

with indices s and t

having values similar to r . Example

M(n 1 ) = M(n 2 ) = M(n 3 ) = M(n 4 ) = M(n 5 ) = 0; Q = {a12;a13;a24;a25;a32;a34;a35;a45}

; ast - a12;

M(n 2 ) = 0 + 2 = 2; M(n 1 ) = M(n 3 ) = M(n 4 ) = M(n 5 ) = 0;

162

Theory of Graphs

Q =

a

M(n4

Q =

13;a24;a25'a34;a35;a45} = 2 + 4 = 6 ;

a

Q =

6 + 4 = 10;

a13}

M(n3

Q =

a

a

st

=

a

32;a34}

;

a

;

a

a

st

=

a24

;

M(n2) = 2; M(n3) = M(ng) = 0;

st "

a45

'

) = 0; M(n2) = 2; M(n3) = 0 ; M(n4) = 6;

l 3' M(nj) = 0 ; M(n2) = 2; M(n4) = 6 ; M(ng) = 10;

st "

a

32'

= 3 + 2 = 5; Minj ) = 0; M(n3) = 3; M(n4)= 6; M(n5) = 10;

a

M(n4

Q =

;

= 0 + 3 = 3 ;

M(n2

Q =

M(nx) = 0;

13;a25'a34'a35;a45}

M(n5

;

24;a34}

;

a

st

= 5 + 4 = 9 ;

a45}

M(n5

;

a

st

=

=

a24

;

M(nx) = 0 ; M(n2) = 5; M(n3) = 3; M(n5) = 10;

a

45'

= 9 + 4 = 13; M(n^) = 0 ; M(n2) = 5; M(n3) = 3; M(n4) = 9;

Q i 0

-»• S t o p .

3.1.5 T h e Tripel Algorithm Hypotheses Given a valued graph values

c^j

/T

w i t h o u t i s o l a t e d nodes, where t h e

represent the distance (cost)

from

n^ t o n .

arc, deter-

m i n e t h e s h o r t e s t p a t h f r o m e a c h node n^ t o e a c h o t h e r n o d e n^ j * i. C ( 0 )

T h i s g r a p h c a n be r e p r e s e n t e d by a d i s t a n c e :

C ( 0 )

=

0

[nx

n]

vi=l,...,n;

v

matrix

= = ° ° , i f a ^ . (. A ;

= c^. .otherwise.

Section 3.1.5

163

Principle In this algorithm a sequence of

n

matrices is constructed. In each

iteration one node is considered as a detour-node. Description Step

B^0^ : B^ 0 ^ r v n 1 , belonging Ln x nj

1: Set up the "detour-matrix" .(o) ... to with:

>

.{«."ciS ,J ' = j , otherwise

b

>

V

i,j

Initially set the running index k: = 1 . Step

2: Determine the matrices

C ^

and B ^ ,

so that

VI c g ) : = c ^ )

Vj

=l,...,n

c j r

f 0, ;

" jl , i f 1 < j

s

, where

if 1 > i

" \1, i f 1 < i

i . e . the ijjper indices r and s indicate that the elements c i 1 ) , which have already been computed, are the 1J ones used in determining the later elements. Step

2: Compute the matrix

C^.

The elements of t h i s matrix are

determined in the following sequence: c (2) c (2) nn ' n , n - l "

c< 2 ) cc c (2) nl ' n - l ,n ' • • • ' c n - l , l

J2) ci2) 11

so that r =

fl,

2,

Result: The matrix

'

c|2); = min ( c j ^ + cj?^} , where (-1 , I T I i I if 1 < j if 1 < i rl, (2, i f 1 > i . if 1 > j C ^ ) includes the length o f the shortest paths

between al1 nodes n^ and n^. Note 1: Determining the matrix

C ^ ) , the maximal nimber o f elemen3 tary operations i s approximately 4-n .

Section

Note 2: If the original distance matrix -(1) and C< 2 > are symmetric too.

C ^

3.1.8

169

is symmetric, then

Note 3: If a topologically sorted graph without cycles is given, then C ( 2 )

. C ^ .

Example C^ 0 ^, determine the total-

Given the following distance matrix distance matrix 0

1 5

oo o OO

C ^ . 4 3

00 0

1

4

OO

1

00 0

CO

oo

3

00

4

0

3

5

3

0

2

6

1

4

0

0

6

3

5

«0 2 2

4

00

c

(l)=c(2)=

3.1.8 The Algorithm of LITTLE Hypotheses Given a strongly connected simple graph 1? sisting of the arc-values

c^

>0

V

and the matrix

C

con-

i,j = l,...,n , representing

the distances (costs) between the nodes (c.. = °°

V

i = l,...,n) ,

determine a cost-minimal tour which includes all nodes only once (Hamiltonian circuit). Principle In this algorithm pairs of node-indices (direct connections) are successively determined so that the minimal detour, not using this arc is as long as possible. Allowing no subtours, more index-pairs are determined, beginning with the partial-path with minimal costs, as long as a sequence of index-pairs can be found which forms a Hamiltonian circuit and has the minimal cost.

170

Theory

of

Graphs

Description Step

l: Use FLOOD'S Technique on the matrix Result: A matrix

C

The index-set

is defined as:

Q

Q: = 0, furthermore let Step

2: Let

C .

and the reduction-constant r

o

.

R: = r Q .

c^. = 0 . Assign to this element an index

u , so

that u: = (min {c.. } + min {c,,}) . 1K IJ k*j Hi Do this step for all elements Step

3: Determine the element c

Step

rs:

=

^i?

1 v

=

crs

c^

= 0 .

, so that

max



4: (inclusion of (r,s)) Set

Q: = Q

Eliminate row

U {r} , where r

Q

and column

is the current index-set. s

and set up matrix

C^,

so that Sq: Step

=

°°

v

Sj

c

ij

otherwise.

5: Use FLOOD'S Technique on the matrix C^. Result: A matrix Set

Step

: =

C

R : = R + r^;

and the reduction-constant

r^.

eliminate all assigned indices

u

6: ((r,s) is not included = (r,s)) Set c

rs

: = °°

in the matrix

C

FLOOD'S Technique on the matrix

from step 1 and then use C .

Result: A matrix t and the reduction-constant r^ • Set ft : = R + r 2 . Result: Two more end-nodes of the solution tree with the values R

and ft .

Section 3.1.8

Step

171

7: Select that node from all end-nodes of the solution tree which has the minimal value R (either R or ft). For the index-set Q at this node is |Q| = ( n - 1 ) ? If yes: Stop, the optimal tour has been found, the n-th assignment is uniquely determined by the current matrix C. If no : Let the approriate matrix C

or

l

be the new

matrix C, and R be the current node-value. Go to step 2 . Note 1 : If a maximum problem is given, then the matrix

C

has to

be transformed using the "constant"matrix as explained in 1.2.2. The algorithm then begins with the transformed matrix. Note 2 : The algorithm is also applicable to problems concerning the working-sequence of products on machines, assuming cyclic production. Example Given the matrix graph &

C, it describes completely the corresponding

.

\ t o

1

from\

2

3

4

5

to

c(r)

f ronr

1

00

3

9

8

2

2

2

2

oo

9

4

5

2

T

2

3

4

5

• » 1 7 6 0

2

C' =

1

0

»

7

2

3 4

3

1

7

CO

9

5

1

3

0

6

»

8

4

3

5

6

00

4

3

4

0

2

3

°° 1

5

1

6

8

4

00

1

5

0

5

7

3 °°

0

1 3

1

2

3

4

5

CO

O1

4

4

O1

ro

• (c).



00

4

O1

3

R: = r

3

o4

5

00

6

4

v = 4,

4



1

04

00

1

5

1

4

4

1

CO

front-^ 1

o

2

0

reduction--constant r = 15 0 = 15 0 c

rs

= c 0 1 ; yQ = v0 31'

172

Theory

of

Graphs

stage 1

Q = 0 ; r 2 = 4 ; R = 19 V

to 2

3

4

5

1

O1

oo

4

O1

2

CO

4

o3

3

4

1

04

oo

1

5

3

3

O3

00

from\

Q = {3} ; r, = 1; R = 16;

stage 2

Q = {3}; r, = 4; ft = 20;

Q = {3;4} ; ^ R = 16; v = 3; c

rs =

c

12

= 0;

Section

3.1.8

Q = {3;4} ; r £ = 3; ft = 1 9 ; v = \ t o froiti\^ C=

2 5

stage 4 Now s e l e c t V t o fronts^ 1 2 5

C

; - crs = c52

4

5

» 0

0 »

Q = f1 ; 3 ; 4 } ; r^ = 3; R = 19; v = C

rs "

c

25

from stage 3 2

4

5

0 0 0

4 0 0

0 3

\ t o fronN^ 4 1 4 2 »

OD

\ t o from\^ 4 1 0 00 2

Q = {3 ;4} ; r ? = R =

5 0 3 5 0 0

Q = { 3 ; 4 } ; r, = 7; R=26; stage 5 Now s e l e c t C f r o m s t a g e 3 \ t os from \^ 4 2 0 C = 5 0

v

5

C =

0 »

Q = {1 ; 3 ; 4 } ; r2=«=;

ft«.;

\ t o from\^ 4 5 0 Q = {1;2;3;4} Optimal !

R=19

174

Theory

of Graphs

The optimal tour is given by n

l

n

2

n

5

n

4

n

3

n

(3,1) ;(4,3) ;(1,2) ;(2,5)-,(5,4), i.e.:

l '

The associated cost is 19 m.u. The solution tree developed the following form during the course of the algorithm:

3.1.9 The Method of EASTMAN Hypotheses See

3.1.8

. Set the running index t: = 1 and furthermore TT :=

Principle First a set of assignments is determined. If at least two subtours are produced, successively eliminate those index-pairs belonging to a subtour and determine new assignments. The method terminates when a tour is produced, using all nodes only once.

Section

3.1.9

175

Description Step

i: Completely solve the problem with the Hungarian Method. Result: An assignment

Step

2: Does the assignment

z z

with assignment costs

it .

form a tour, in which all

n

nodes

are included ? If yes: Stop,

z

is an optimal tour with costs

it .

If no : Go to step 3 . Step

3: At this point there are subtour

S-

k

subtours S^, i=l

k . Each

can be represented by an ordered set of

r^

index-pairs : V

= ( ( Jx » J2) » ( J 2

* ' ••(jr.'ûi))-

Set up the problems: = z " i ( j r J 1 + 1 ) } V i=l

k; 1=1,... ,r i ;

where (r.+l): = 1, with the appropriate matrices C ^ setting the element matrix Step

cn- . : = » in the current n 1 J 1 ' J l+1

%

C .

(t) 4: Use the Hungarian Method on the matrices C.-, -(t)

- m Result: Assignments .(0 Step

5: Define

M: = { z ^

Step

6: Is M = 0

for all

with assignment costs

tt^

forms a tour with all

n nodes,

_(T) | z^

t = 1,... ,t}. ?

If yes: Go to step 8. If no : Go to step 7. Step

7: Determine and set

» it

_(T) _(T) : = min {tt^ | z ^ € M}

* -(0 * : = ,pq ;

* 1 - v zgh '

z z

i=l,...,k; 1=1,....r.; where appropriate matrices % c. . : = °° jrj1+1

(ri + 1): = 1 , with the

, setting the element

in the current matrix

'Wt-l) CV . Go to step 4. gh

Example Given the matrix

C , it describes completely the corresponding

graph tf : \ t o from\

t=l; u* =

1

2

3

4

\ t o 1 fronN^

2

3

4

1

00

1

5

6

1

00

0

4

5

2

2

00

6

4

2

U

00

4

2

3

4

7

00

3

3

1

4

00

0

4

5

5

1

00

4

4

4

0

00

C =

with the Hungarian Method the following assignment

is found: z = ((1,2),(2,1),(3,4) ,(4,3)); i = 7; S,1 = ((1,2),(2,1)); S ? = ((3,4),(4,3)); z

(1)

11

3

two subtours:

= I - {(1,2)};

z

Seation

z &

= i - {(2,1)};

zj}> = i - {(3,4)}

\ t O 1 froirN^

2

3

4

1

oo

oo

4

5

2

0

co

4

2

3

1

4

co

0

4

4

4

0

oo

1 r(l). l 12 "

•A1) =

-12

1

2

3

4

»

0

4

5

L

21

¡5Í}=

"

2

1

00

00

0

1

2

0

00

4

2

3

1

0

00

4

4

0

\ t o 1 from-N^

2

3

11 "

3

4

0 0

CO

4

1

OO

0

4

5

2

00

00

2

0

co

00

4

2

3

1

4

co

0

3

0

4

00

0

4

4

4

0

00

4

3

4

0

co

W-

10 ;

2

3

4

\ to 1 from\^

2

3

4

4

5

1

00

0

4

3

2

0

00

4

0

3

0

3

oo

00

4

4

4

0

00

1

2

3

4

1

00

0

0

5

2

0

00

0

2 0 co

1

00

0

2

0

00

4

2 00 00

3

1

4

oo

4

4

4

0

\ t o frorrNv

22

1

? ( 1). u 12 '

MD. 21 "

= ((1,2),(2,4),(4,3),(3,1));

(1)_

;

= 15 ;

((1,2),(2,4),(4,3),(3,1));

d ) ._

177

2

\ t o 1 fronN^ c

= i - {(4,3)} \ t o

= ((1,3),(3,4),(4,2),(2,1));

from^x^

;

S. 1.9

^

= 10 ; \ to fromX.

1

2

3

4

1

oo

0

4

5

2

0

00

4

2

3

1

4

co

0

3

1

4

00

4

4

4

oo

oo

4

0

0

00

((1,2),(2,3),(3,4),(4,1));

22 "

^

=

15

ï

178

Theory

of

Graphs

M = {z[}); z M ; : % I M =

=

z ^ ;

^12)= ^21)=

0

->• Stop,

10;

z

^

= min { 1 5 ; 10; 10; 15> = 10;

10;

z

=

$

* =

((1.2),(2,4),(4,3),(3,1)); £ tt = 10 m.u.

i s an optimal t o u r w i t h costs

3.2 Flows in Networks 3.2.1 The Algorithm of FORD and FULKERSON Hypotheses Given a simple graph JiT = ( G , < ) , f i n d the maximal flow from t h e source

n, 1

to t h e sink

c a p a c i t i e s o f the arcs

n

n

. The arc values k. • e K ij o

a^j e A. Let

d e f i n e the

x . . be t h e flow i n arc a— .

The problem can be s t a t e d as one in L i n e a r Programming as f o l l o w s : max TT =

z

x-, •

j

z

=

J

J

J

i;

2 j

X-

j

lj

Jn

= 0 V i

X..

x

z

x

z

j X

-

x.

J

1J

= 2,...,n

-

1

= 0

Jn

X.. < K. • 1J

x

I n i t i a l l y set

ij

1J

t

V

i,j

e

x = ( x . ^ ) = ( 0 , . . . , 0 ) , furthermore l e t

f :

0 .

Principle The a l g o r i t h m determines in each i t e r a t i o n a set of paths from source to sink a'nd the corresponding c a p a c i t y . Superimposing the flows over the various paths, a flow p a t t e r n w i t h maximal flow i s determined.

Section

3.2.1

Description Step

1: Define

T:=0 ; R + :=R~:= 0 ; P^irij} ; M i r ^ ) : ^ ^ ,

Step

2: Define

I := {i | n i e P} ,

determine and set Step

r: max {i ] (i e ! p ) A ( i f. T)} T:=T U{r} .

3: (label 1ing phase) P + := {n. ](n.£ P) a ( k •> x .)} and set J J ^J rj

Determine

M(nj) : = ( n r . e j ) v n ^ p ' where Step

.

e.

: = min

4: Determine

; R+:=R+U{arj

| n. 6 P + } ,

and

set

M(nJ.): = ( n r , E j ) V n . e P" ; R ~ : = R ~ U { a j r | n.. 6 P"} , where Step

5: Is

min {E r ; Xj r } .

(P + U P" =

a(|T| = |P|) ?

If yes: Stop, x = ( x ^ ) is the maximal flow in JT , its value is If no : Set Step

Step

6: Is

f max (jT): = f* -

P: = P u P + u P". Go to step

6 .

np e P ?

If yes: Go to step

7 .

If no : Go to step

2 .

7: Beginning at node

nn

determine a path

p = (rip...,n., nj,...,n n ) by retracing the labels M(nj) Step

8: (flow-alteration phase) Set

e: = e n

and determine x

x.. : =

ij + e, if (a.j € p ) a (a.j e R + )

x.. - e , if ( a ^ e p j A l a . . e R x..

f*:=f*+e.'

1J

,

otherwise

;

180

Theory of Graphs

Eliminate a l l

labels M(nj).

Go t o step 1 .

Example Given the f o l l o w i n g network Jff , f i n d the maximal f l o w i n /T . Legend:

0

f * = 0; R + = R" = 0 ; P = { n ^ ; M(n 1 ) = ( n ^ - ) ; P+ = { n 2 ; n 3 ; n 3 )

I p = { 1 } ; r •= 1;T={1>

; M(n 2 ) = ( n 1 > 3 ) ; M(n 3 ) = ( n 1 > 4 ) ; M(n 4 ) = ( r i j . 4 ) ;

R + = ^ a i 2 ' a 1 3 ' a 1 4 >; P~ = 0 i R~ = 0". ( p + U P") ^ 0

+ P={n1;n2;n3;n4}

n 5 ( f P ; I p = { l ; 2 ; 3 ; 4 } ; r = 4 ; T = { 1 ; 4 } ; P + = { n 5 ) ; M(n g ) = ( n 4 ; 4 ) ; R + = { a 1 2 ; a 1 3 ; a 1 4 ; a 4 5 } ; P"=0; R"=0; (P + UP~) f 0 P={n1;n2;n3;n4;n5) x

14

=

x

45

=



; n g e P; p = ( n x ; n 4 ; n 5 ) ; e = e 5 = 4 ; ^

=

Section

3.2.1

181

T = 0; R+=R~=0 ; P = {r^} ; M(nj) = ( n ^ - ) ; I p = { 1 } ; r=l; T= { 1 } ; P+ = { n 2 ; n 3 }

; M(n2) = ( r ^ . 3 ) ; M(n3) = ( r i j . 4 ) ; R+ = { a 1 2 ; a 1 3 }

P" = 0; R" = 0; ( P + U P " ) t r=3; T = {1;3}

0

; P + = {n 4 ;n 5 }

R+ = i a 1 2 ; a 1 3 ; a 3 4 ; a 3 5 }

P = {n 1 ;n 2 ;n 3 }

;

; n^fL P;I p ={l;2;3> ;

; M(n4) = ( n 3 , 4 ) ; M(n5) = (n 3> 3) ;

; P" = 0; R" = 0; (P + U p") f 0 i

P = {n 1 ;n 2 ;n 3 ;n 4 ;ri 5 }

; rig € P; p = (r^ ;n3;n,-) ;e =

Xi n - 3, Xor - 3, f

= 1\

— = 3;

T = 0; R+ = R" = 0; P = { r ^ } ; M(nj) = ( n ^ •>); I p = { l } ; r=l; T={1}; P + = { n 2 } ; M(n2) = ( n x ; 3 ) ; R+ = { a 1 2 } ; P" = 0; (P + u P") t

0

P = { n 1 ; n 2 } ; n^t P; I p = { 1 ; 2 } ; r = 2; T = {1;2} ; P + = {rig}; M(n5) = ( n 2 ; 3 ) ; R+ = ia 1 2 "' a 25 } ; P " = 0 ; R~ = 0 ; < P+U p " ) i P = {n^;n 2 ;rig}; n 5 £ P; p = (n^;n 2 ;n 5 ); e = e 5 = 3 ; x-io

_

3, Xnr

_

3) f

— 10;

^

182

Theory

T = 0; R

of Graphs

= R~ = 0; P = { n ^ ; M ( n 1 ) = ( n j , - ) ;

P + ={n3}; M(n3)

= (n^l);

Ip={l}; r=l; T={1};

R + = { a ^ } ; P" = 0 ; R" = 0 ; ( P + u P " )

P = i n 1 ; n 3 > ; rigiP; Ip ={1;3}; r=3; T ={1;3}; P + =

/ 0

{n2;n4};

M ( n 2 ) = ( n 3 ; l ) M ( n 4 ) = ( r y . l ) ; R + = { a 1 3 ; a 3 2 ; a 3 4 } ; P" = 0 ; R" = 0 ; ( P + U P") ji 0

P = {n1;n2;n3;n4}

T = {1 ;3;4}; P + = {rig}; M ( n 5 ) P" = 0 ; R" = 0 ; ( P + U P ~ ) P = (n-,

T = 0; R

e =

; n 5 Ì P; I p ={1;2;3;4}; r = 4 ;

= (ry.l); R + =

ji 0

{a13;a32;a34;a45);

P = {n,1 ;;nn2„;;nn3 ,; ;nn4 ;. r; i ng , } ; nn^< ,€ P ; = 1 ; x13

= 4; x 3 4

= 1; x 4 5

= 5; f * =

= R~ = 0 ; P = {n,}; n ,V)11 j = (n,, « ) ; I P = { 1 } ; r = l ; I j/J Mi( i

P + = 0 ; R + = 0 ; R"

J; ( P + U P"

f m a X ( v / T ) = f * = 11

is t h e v a l u e o f t h e m a x i m a l

the corresponding

flow pattern

i 0 ) A (|T|

*

is s h o w n a b o v e .

|P|) f l o w in

T={1};

Stop, vT

,

11;

183

Section 3.2.2

3.2.2 The Algorithm of BUSACKER and G O W E N Hypotheses Given a simple graph the source

n, 1

The v a l u e s

K^ £

c^ V

€ F a^

JIT = (G,K,C), f i n d a m i n i m a l - c o s t f l o w

to the sink N

n

w i t h a g3 i v e n f l o w - v a l u e

n

d e f i n e t h e a r c - c a p a c i t i e s and t h e

are the t r a n s p o r t a t i o n costs per u n i t from

+

€ A . L e t x ^ . be t h e f l o w i n a r c a . ^

s t a t e d as o n e i n L i n e a r P r o g r a m m i n g as

m i n

X

ij

I

"

j

I

values n^ t o n^

,

. The p r o b l e m c a n be

follows:

x

=0

ji

v i

= 2

n -

1

J X

lj ij

Initially

.

a —6 f iA r ij

17 =

x

f

from

~

iJ

X .IJ. 6

K0

set

V

x = (x^j)

l,J

= (0,...,0),

furthermore let f

: = 0 .

Principi e In t h e a l g o r i t h m a sequence o f i n c r e m e n t a l which the shortest paths are determined. f e a s i b l e flow is determined.

graphs is constructed

F o r e a c h p a t h t h e maximum

Superimposing the appropriate flow

t h e c o r r e s p o n d i n g p a t h y i e l d s t h e r e q u i r e d f l o w . The a l g o r i t h m m i n a t e s , when t h e r e q u i r e d f l o w - v a l u e flows

in

i s r e a c h e d o r when no

over ter-

feasible

exist.

Description Step

1: C o n s t r u c t an i n c r e m e n t a l

graph

I(YT) = (N,A*,Y)> w h i c h

associated to the current flow pattern A*: = A1 U A'' x• • < < . . ij ij

»

, where a * , e A' ij

x , so

that

is

184

Theory

of

Graphs

x.. >

«

a

ij

'

•Cji

,

0

C Y

Step

ij

:

€ A"

if

a

if

;

ij£ a

to cost

A

' A'

i j £

2: Determine a shortest path respect

Step

ji

p =

) in

I (,/T) with

. .

3; Are there any shortest paths with respect to cost

p =

) in

I(#)

?

If yes: Go to step 4. If no : Stop, a minimal-cost flow with the given flow-value f Step

4: Let

does not exist.

6': = ^

= c

rr

11

M(n 1 ) = ( n 1 ; 0 ) ; M(n ? ) = ( n ? , - ) ; M(n,) = ( n3 'v - ) ; M(n d ) = (n d ,°°) P = { n x } ; T = 0 ; Ip = { 1 } ;

s = 1; T = {1};

M(n1)=(n1,0); M(n?)=(n1,3); M(n,)=(n,,2); 3' ^ 1 ' P = in1;n2;n3}

P

={n2;n3}

M(n4)=(n4,»)

; n r = rij ft P ; I p = { 1 ; 2 ; 3 >

; s = 3; T = {1;3}

;

P* = ( n 2 ; n 4 ) M(n1)=(n1,0); M(n?)=(nv-2); M(n,)=(ni,2); 2' 3 P = {n1;n2;n3;n4> T = {1 ;3;4}

; np = n j I P ; I p = { 1 ; 2 ; 3 ; 4 >

; P* = 0 ; I

M(n 1 ) = ( n 2 , - 5 ) ;

M ( n4 4' ) =^( n33 ', 7 )

= {1;2;3;4}

P = {n^n^n^n^

; s = 4;

; s = 2; T = { 1 ; 2 ; 3 ; 4 } ; I

; nr = n1 e

P*={1};

P*;

p = ( n ^ n ^ n ^ n ^ ; 6 ' = 2 ; 6 " = min { 1 ; 4 } = 1 ; e=min { 2 ; 1 }

= 1

Section 3.2.4

3

2

00

-3

00

4

00

-2

5

CO

5

-4

-1

-5

00

00

$ c^. < 0

-*•

C =

Stop, x = ( x ^ )

0

3

2

7

-3

0

-1

4

-2

1

0

5

-7

-4

-5

0

is a minimal-cost flow with

191

value

f = 12 . The c o s t s a r e :

it = >

c

-ij'xii

=

63

m

"u-

3.2.4 T h e O u t - o f - K i l t e r Algorithm (Ford; Fulkerson) Hypotheses Given a simple graph ^ circulation. X^

:

Define

= (G,A,;>

follows:

a.^ e A

k^j : :

minimal-cost

A , e s t a b l i s h an a r t i f i c i a l c

nl

=

arc

0 ( or set Xnj = < n l = f ,

a n ^ , so t h a t X n j = 0 ; i f a flow value f

is

192

Theory of Graphs

given). Let x ^

be the flow in arc a ^

.

The problem can be stated as one in Linear Programming as follows: min

tt = c-x I*(G)-x = e X > X X < K

Let u i € let

u.

;

W q be the values of the nodes n i , i=l,...,n . Initially =0Vi=l

*

f : = 0

m

x: = (x,,): = (0,...,0);

and set the running index t: = 1 . u^ e Z

Note: The algorithm may also start with an arbitrary an arbitrary circulation

x

with the value f

and

< °° .

Principle The algorithm determines tours using a labeling procedure, beginning with any circulation. If a tour exists, the flow is altered, if not, the "dual variables" (node-values) are altered and a test for optimality according to the complementary-slackness-theorem is performed. Description Step

1: Set up the network y T ^ = (G,x,d,z s 1 9 n ,k,u), where

d.. : U

c. . + u. - u . (V

0 )

*

( x

ij

(d,,0)A(X

J S

>A

J S

)

AND

WHERE

)

E

= M I N { £

J

; X

S

S J -

SET

X

S J

}

R+:=R+U{A

+

+

•} ^J

(ns,ej)

E J

=MIN

{ E S

;K

S J

-X

S J

}

R

(ns,ej)

E J

=MIN

{ E S

;X

J S

-X

J S

}

R":=R"U{A

J S

}

(ns,£j)

£ J

=MIN{

;X

J S

-K

J S

}

R":=R"U{A

J S

)

:=R

U{A

S J

]

) (

DEFINE

K

M(NJ)

JS)

=

(N,.^.)}

P)A(nie

IS

{(Nke

IF

YES:

GO

TO

STEP

12.

IF

NO

GO

TO

STEP

8.

:

IS

(P*

IF

YES:

GO

IF

NO

:

SET

GO

TO

STEP

5.

DEFINE

R

X

:

=

{ ^ ¡ ( N ^ P J A T N J I

PJA«!^

>

0 )

A

(

R

2

:

=

{ A ^ K N . J E P M N J . E P J A I D . J


so that two of those subgraphs are connected. Include this arc in the current subgraph. Set A':=A' u { a r $ } ; go to step 6.

Example Given the following graph Jf , find the shortest spanning subtree JV.

A' = 0, k = 1

© a

a

k l = a 1 2 ' a 21

kl=a21'

a

l2

A

'={ai2};

e

k=2;

kl=a32'

a

©

©

©

k-3;

© a

©

2 3 f- ^ ' ^ ' a \ 2 ' a 32^'

Section 3.3.3

205

rn2>

1

0

(pi

@

© a

kl

=a

45

; a

54 ^

A

'

; A

'={a12;a32;a45};

k=5;

© a

a

k l = a 5 4 ' a 45

rs

=a

e A

? ©

a ' ; A'={aT5;a12 -39'. 3 2/ic>; ' 4 5 k=n=5; |A'| t 4;

2 5 ist the arc with the least value

c

connecting the two sub-

graphs. A ' = { a 1 2 ; a 2 5 ; a 3 2 ; a 4 5 } ; |A'| ^ 4;

Stop, W

has been found, its value is

~ c i j = 8 m.u.

y a

ij

e

A

'

3.3.3 The Method of WOOLSEY Hypotheses See

a. 3.3.1 . Define N:=A':=0; set the running index t:=l.

206

Theory

of Graphs

Principle

See

3.3.1

Description Step

l: Determine

= min {c^j > and connect the nodes n^ and

n-j. Set "M:=Rf U {n |< ;n 1 }; A' : =A' U { a k l ) Step

2: Determine c. -, :=min{c.. | (n. € N)A (n. t N) }and connect the KI

IJ

1

J

nodes n^ und n^. Set Step

3: Is

Ui^h t = (n - 1)

A' : =A1 u { a k l } ; t:= t + 1 . ?

If yes: Stop, the shortest spanning subtree W found, its value is given by y

has been c^ ..

a..€ A' J

If no : Go to step 2. Example

Given the following graph jf , find the shortest spanning subtree

© c

k l = c 1 2 ; ^={n 1 ;n 2 >; A'={a 1 2 >;

©

©

Section

C

kl

c

kl=c25'

* 1 ^

c

a

1 2 '

a

1 3 '

v

kl=c45' ^={ni'»n2;n3;n4;n5};

Z.S.4

207

t-3; 3

A

'={a12'a13;a25;a45}'

Stop, v/T' has been found, its value is

t

=(n"1)=4;

c^j = 8 m.u. a

ij£

A

'

3.3.4 The Method of BERGE Hypotheses See

3.3.1 . Define "H:=l\' : = {a i .}

and set the running index t: = ;A| .

Principle Cost-maximal arcs are eliminated from the given graph as long as the subgraph remains connected.

208

Theory

of Graphs

Description 'Xj

Step

1: Determine c, , :=max{c--¡a. .6 A} . KI 1J 1J

Step

2: Is it possible to eliminate the arc a ^

from the current

subgraph without destroying its connectivity ? If yes: Go to step 3. If no : Set Step

%

A:=A-{a k l }. Go to step 1.

3: Eliminate the arc a ^

from the current subgraph. Set

A:=A - {a k l }; A':=A' - {a k l }; t:=t - 1 . Step

4: Is t = (n - 1) ? If yes: Stop, the shortest spanning subtree has been found, its value is given by ^ a

If no : Go to step 1.

c

i

A

ij *

'

Example Given the following graph vF , find the shortest spanning subtree /r.

t-8ì A-A

a

* a 13 > a 23 ' a 24 ' a 25 *,a34 'a35*'a45^ '

kl~ a 35' ^ = A ' =

{a

12;a13;a23;a24;a25;a34;a45}'

t_7;

Section

a

kl=a25'

the

arc

a

25

may

not

e1

subgraph would not be connected.

3.3.4

i m i n a t e c ' > because the resulting A^a^ja^a^ia^};

A'={a12;a13;a23;a25;a45};

Stop,

has been found, its value is

c.j = 8 m.u.

209

210

Theory

of

Graphs

3.4 Gozinto G r a p h s Hypotheses G i v e n a s i m p l e , v a l u e d g r a p h AT = ( N , A , c ) w i t h o u t c y c l e s so t h a t (n.j , r i j ) 6 A -+• i < j

( i f n e c e s s a r y t h i s can be r e a c h e d by d e t e r m i n i n g

t h e r a n k and t o p o l o g i c a l

sorting)

i n which t h e a r c values c— 6

N

i n d i c a t e how many u n i t s o f t h e i - t h p r o d u c t ( r e p r e s e n t e d by t h e node n.j) a r e n e c e s s a r y t o p r o d u c e one u n i t o f t h e j - t h

product

( r e p r e s e n t e d by t h e node n . ) , d e t e r m i n e t h e v e c t o r z : z J

s

e l

[nxl]

t h e t o t a l r e q u i r e d o f each p r o d u c t , w h i c h i s n e c e s s a r y t o a g i v e n demand v e c t o r z 0 :z zQ

[nxl]

£ N n0

O

satisfy

where t h e i - t h component o f

represents the i - t h product i n q . u . Let the m a t r i x C:Cj|nxnj

t h e d i r e c t demand-matrix ( a l s o c a l l e d t h e " n e x t assembly

be

quantity

m a t r i x " ) , so t h a t c

c. . : = U

ij



0

, i f ai • £ A

i f

a

ij

£

A

3.4.1 T h e Method of V A Z S O N Y I Description Step

l:

Formulate the matrix c

& = Step

Step

[(n+l)x(n+l)] zo

0

0

2: D e t e r m i n e ( w i t h an a p p r o p r i a t e method Gauss)) t h e m a t r i x

D:=(I -

t)"1.

3: Compute t h e m a t r i x

&:= D -

I.

Stop, the f i r s t tor of

&

, so t h a t

n

(Gauss-Jordan;

components o f t h e ( n + l ) - t h column v e c -

form the v e c t o r z $ ) the t o t a l

requirements-vector.

Section 3.4.1

Example Given the following Gozinto-graph /T and the demand vector

r

l

2

10

13

132

101,570

0

1

3

4

38

29,400

0

0

1

0

10

7,200

0

0

0

1

2

1,930

0

0

0

0

1

720

0

0

0

0

0

1

'0

2

10

13

132

101,570

0

0

3

4

38

29,400

0

0

0

0

10

7,200

0

0

0

0

2

1,930

0

0

0

0

0

720

0

0

0

0

0

0

The total requirements-vector z s is: zj = (101,570; 29,400; 7,200; 1,930; 720)

211

212

Theory

of

Graphs

3.4.2 The Method of TISCHER Hypotheses Set the running index k:=l. Description Step 1: Determine the vector z^, so that z ^ C - z ^ Step

.

2: Is z k = z |< _ 1 ? If yes: Go to step 3. If no : Set k:=k+l. Go to step 1.

Step

3: Determine z s > the total requirements-vector, so that k-1

V

z

= H r=0

r •

Example Given the following Gozinto-graph

yT

z\ = C - z Q = ( 6 , 9 3 0 ;

1,440;

1,960; 7,200;

zJ, = C - z 1 = ( 3 9 , 9 2 0 ; 2 7 , 3 6 0 ; 0 ; 0 ; Z3 = C - z 2 = ( 5 4 , 7 2 0 ; 0 ; 0 ; 0 ; z \ = C-z3 = (0; 0; 0; 0;

0)

z j = C-z4 = (0; 0; 0; 0;

0)

Zr = z . ; 3

4

z

b

=

T. z ; r=0

and the demand-vector

0)

0)

0)

z] = ( 1 0 1 , 5 7 0 ; 2 9 , 4 0 0 ;

7,200;

1 , 9 3 0 ; 720)

.

Section

3.4.3

3.4.3 The Method of FLOYD Hypotheses Set the running index k:=l . Description Step

1: Formulate the matrix

-(o) _

C^ 0 ^

» so that

fc

I Step

2: Compute the matrix C^(k)1 , so that c (k)._ c (k-l)

ik

ik

c (k)

(k-1) kj - c k j

V

i=l

n+1

v

j=l

n+1

c,c " + d

ifa

k-l( n i> 1f

i

(k)eA

..(k)ÎA

"i

=

> )

4: Compute S

k-l( n i)

+ È

Sk(ni): =

5: Is

..(k)- S k-l( n .(k))' i f U / ft

k 1

Step

i:j a

(*) Step

= 0; set

dk(ni) = 0 v

d

ki n i) < d k-l< n i>

k< n i> = < - 1 ^ :

1

(*) V

d

= (*) ni

?

If yes: Stop, z $ := S k (n^) ist the total requirementsvector. If no : Set k:=k + 1. Go to step 2.

216

Theory of Graphs

Example Given the following Gozinto-graph Jf and the demand-vector z T = (0; 80; 0; 490; 720); in this case the on-hand balance of each 0 T product is zero, i.e. L =(0;...;0), find the vector z%.

n. l n

l

n

2

n

3

n

4

n

5

j( 3 )=3

j(2>=4

jW-5

d£(n.) s 2 ( n i )

Vni>

di(nn.)

4

0

3

4,320

2

13,970

1

42,770

2

80

2

80

1

7,800

0

29,400

1

0

0

7,200

0

7,200

(*)

7,200

1

490

0

1,930

(*)

1,930

(*)

1,930

0

720

(*)

720

(*)

720

(*)

720

S

l< n 1>

W

j(4) = 2 W dj(n ) i 0 v (*) V

V

the vector

of shortages is :

A-

(101,570; 29,400; 7,200; 1,930; 720)

0

101,570

(*)

29,400

(*)

7,200

(*)

1,930

(*)

720

4. Planning Networks

4.0.1 The Critical Path Method (CPM) Hypotheses Given a simple network #

= (N,A,d) without cycles, with one source

n^ and one sink n n , where the arcs represent activities, determine the critical path(s) cp and the project duration. (If necessary add an artificial source and/or an artificial sink to the given network). The arc-values d^. 6

denote the duration of the activities

(n.j,nj) € A v i, j=1

n. If the following information is given in

a table like the one below, the corresponding network must be constructed. Description of the activity

Number of Duration the activity d.. ij

Dir ect predecessor successor activity activity

Principle In this method the longest paths from the source to the sink and, using the corresponding reverse arcs, the shortest paths from the sink to the source are determined. A "Covering" of these paths yields the critical path(s) cp. Description Step

1: Determine the longest paths from the source n^ to all other nodes n., j^l, with the FORD Algorithm II .

218

Planning

Networks

Result: Step

The labels M(n^) v j=l,... ,n.

2: Define ES(rij): = M(tij) V j = l Here

n; LS(n n ) := ES(n p ) .

ES(n^) denotes the earliest possible time, the re-

sult n^ can be obtained (the earliest event start time) and LS(nj) denotes the latest acceptable time, the result n. can be obtained (the latest allowable event start time). Step

3: Determine LS(n d ):= min{(LS(n k )-d j k )|(n k £ N s ( n j ) )

A

s

( 3 L S ( n k ) V n k £ N ( n j ) ) } vj=l,...,n-l. Step

4 : Define M: = {rij | E S ^ )

= LS(nj)}

and determine {cp} :={cp1 = (n 1

n i ,nj ,... ,nR) | (nn.e M)A(n £ M)A (ES(nj)- ES(n.) = d^.) v l = l

Here

q £W

q) .

critical paths cp exist. The project duration

is ES(n n ) t.u. Note: The slack of an activity (n^.rij) determines to what extent its beginning may be delayed without changing ES(n n ). We distinguish between the following types of slack: - total slack S ^ i n - . n j ) ^ LS(nj)-(ES(n i ) + d.j) it denotes the maximal increase of d^. .assuming that all other activities begin at the most favorable moments with respect to this activity. - free slack

S f (n i ,n.):=ES(nj) - (LS(n i ) + d i j ) ,

it denotes the maximal increase of d^^, assuming that all events n k start at ES(n k ). - independent slack

S^nc)(n^ .n^) := max {0; ES(nj)-(LS(n^ )+d^.)},

it denotes the maximal increase of d ^ , assuming that all other activities begin at the most unfavorable moments with respect

Section 4.0.1

219

to this activity. - interferring slack S. .(n.):=LS(n.) - ES(n-), 1nt j j j it denotes the interval in which the event n. can happen. Example Project: Renovation of an apartment Description of the activity

Number of the activity

d

ii 1J

Direct predecessor successor activity activity C, D, E

clear out the apartment

A

3

buy wall papers

B

2

-

F, G

take-down curtains

C

1

A

F, G

mix the paint

D

6

A

H

lay out the rug

E

9

A

I

wash the curtains

F

4

B, C

H

paper the apartment

G

3

B, C

I

paint the ceiling

H

2

D, F

I

clean the apartment;

I

8

E, H, G

-

return the furniture The corresponding network -/T is:

220

Planning

Networks

©

Legend:

dlj



ES( n i) ILS(n.j )

ES(n j )|LS(n j )

3| 3

20120

4|6 M={n 1 ;n 2 ;n 5 ;n 6 }; {cp}={p 1 ), where P 1 = ( " 1 ,n2 ,n 5 ,n 6 ); i.e. the activities A,E and I form the only critical path cp. Determine the slack for the activity F: S t o t ( F ) = 10 - (4 + 4) = 2;

S f (F) = 9 - (4 + 4) = 1;

S i n d ( F ) = max{0; 9 - (5 + 4)} = 0;

Sint(n3)

= 6 - 4 = 2 ;

4.0.2 The CPM Project Acceleration Hypotheses Given: (1)

A

CPM-Planning Network, for which the critical path(s)

cp and the project duration ES(n n ) have already been determined. (2) Costs

ac.jj > 0, which occur when the duration d ^

of the ac-

tivity (n^.n^) is shortened by one time-unit. (Note that the activity (n.,n.) needs at least x . . € W time-units, so that d..>A..). ' J 'J ® 'J ^J Accelerate the project completion with minimal costs, so that the moment of completion x < ES(n ) is realized. Define C: = 0.

Seat-ion 4.0.2

221

Principle In this method a sequence of networks is constructed in which the duration of the activities, which have not reached their lower bound A.., is reduced on all critical paths so that the reduction is cost'J

minimal. Description Step

1: Is ES(n n ) = x ? If yes: Stop, the optimal solution has been obtained.

Step

If no : Go to step 2. 2: Let {cp}: = {cp-, | 1=1,...,q}

the set of the current criMl tical paths. Determine the activity ( n r > n s ) 'v 1=1 q» so that (a)

drs > Ars ;

(b)

the number of the critical paths is not decreasing for d :=d -1; rs rs A c r s is minimal with respect to (a) and (b).

(c) Step

3: Is |{(n r ,n s ) ( 1 ) }| = q ? If yes: Go to step 4. If no : Stop, the moment of completion ES(n n ) = x can not be realized.

Step

4: Define d ^

: = d ^ -

C: = C + E

1 v

A

1=1

1=1

q ;

, r s

determine the new values ES(n,), LS(n.) v j=l,...,n the new critical paths

J

J

and

cp . Go to step 1.

Note: The number of the critical paths is monotone non-decreasing. The cost-function

C: = f(ES(n n )) is convex and piecewise linear.

222

Planning

Networks

Exampl e Given the f o l l o w i n g CPM-planning network n 6 ) ;

= (n2,n5); (nr>ns)(2) = (n2,n4); d

25)=

7

"

1

= 6;

d

24 }

Ac^

= 2;

= 6 - 1 = 5 ;

+ 2 + 3=12

ES(rig) i

16;

cp^^ = (n 1 , n 2 , n 5 , n 6 ) ;

cp 3 = ( n l s n 2 , n 3 , n 4 , n 5 , n 6 ) ; (nr,ns)(2) Ac^

cp 2 = (n 1 , n 2 , n 4 , n 5 , r i g ) ;

= 2;

(n^n^1)

= (n2,n4); (nr,ns)(3) AC= 3;

Ac^

cp 2 = (n 1 , n 2 , n 4 , n 5 , n 6 ) ;

= 1;

= (n2>n5);

= (n3,n4);

223

224

Planning

ES(rig) = 16

Nstworks

—»-

Stop, the project is terminated after

ES(rig)=x=16 t.u., the corresponding accelerations cost is C=18 m.u. The corresponding cost-function C=f(ES(rig)): C

4.0.3 The Program Evaluation and Review Technique (PERT) Hypotheses Under the same hypotheses as in 4.0.1 , determine the probability for the termination of the project after x

t.u.

Note: The difference between PERT and CPM is that in PERT the following three time-estimations are used: k ^ : duration of the activity (n^.n^.) under favorable conditions (optimistic estimation) m ^ : most probable durat ion of the activity (n_j,n.) 1 ^ : duration of the activity (n^.nj) under unfavorable conditions (pessimistic estimation), where

k-j < m.-S 1.. v

i ,j .

Principle After computing the average project duration, the method is the same as 4.0.1 . As a result we obtain the critical path with

Section 4.0.3

225

respect to time, not necessarily the actual critical path. Description Step

l: Compute the average duration d

ij:

=

^

k

ij

+4,m

ij

+

1

ij)vU

2 1 2 a ^ : = -jg-U-jj ~ k-jj) v

and the variance

i'J-

Note: Step 1 is valid under the assumption that the variables have an Euler-Beta distribution. Step

2: Using the known

Step

d.. 'J

from step 1 determine with 4.0.1 the un-

ES(nj); LS(nj) v j = l,...,n

paths {cp} . 2 3: Compute a^: =

? ' a.^

and the set of critical

v 1=1,...,q

a

and determine

Step

4: Determine

ij € c p l 2 2 a : = max {a,}. 1 1

x-ES(n ) P(ES(n n ) < x): = $ (—,, )

the appendix.

from

table 5 in

a

Example Given the following PERT-planning network JP = (N,A,k,m,l), determine the probability for the termination of the project after x = 25 (20) t.u.

226

Planning

Networks

Step 1 yields the following planning network /f' = (N,A,d,a ):

17/6,49/36

The critical path is represented by the dotted line. 313

45/2145/2

17/6

59/3 ; 59/3

43/3', 43/3

a

2

=

2

=

£

a^. = 3.0583

aij€cp1

a) P(ES(n 6 ) < 25) =

*(25 ' 2 2 ^ - ) 3.0583

ß) P(ES(n fi ) < 20) =

»(

20

=

" 22-5) = 3.0583

*(

2

- 5 _ ) « 0.7939 s 79.39 % 3.0583

~ 2 - 5 ) « 0.2061 = 20.61 %. 3.0583

Section

4.0.4

111

4.0.4 The Metra Potential Method (MPM) Hypotheses Given a node-oriented network /r' = (N',A,1 ,d) (i.e. the (n-1) activities n.,j = 1

n - 1, are represented by the nodes), determine

the minimal project duration. The arc-values

. represent the time

relations between the activities n. and n^; the following graph should be interpreted as such:

the earliest possible beginning for the activity n^ is

t.u.

after the beginning of the activity n^; the latest acceptable beginning for the activity n^ is

t.u. after the beginning of the

activity n^ . Logically no cycles with strictly positive length may occur. The node-values

d^ £

represent the duration of the ac-

tivities n^, j = 1,... ,n - 1 . Define ES(nj): earliest possible start time EF(nj): earliest possible finish time LS(n-): latest allowable start time J

— ^ L ^r/

of activity n.. J

LF(nj): latest allowable finish time

Principle In this method an artificial sink is included; then the longest paths from the source to this sink are determined as well as the longest paths from the sink to the source in the inverted graph. Description Step

1: Adjoin the node n n and the arcs ( n j , n n ) v j = 1,..., n - 1 to the given network. Let 1 - n :=dj v j = 1

n - 1;d n :=0.

228

Planning

Networks

Result: A planning network >ilf =(N,A,1). Construct the following table which will be completed during the course of the procedure: n. J

Step

n

l

n

n

d

j

ES^.)

EF(nj)

LS

v

j= 1

n

_

/

Result: The minimal project duration is LF(r>n) t.u. Step

7: Determine the total slack of each activity: S t o t ( n - ) : = LS(n.) - ES(n-)

V j=l

n .

Section

4.0.4

229

Example Given the following MPM-planning network, determine the minimal project duration.

step 1 y i e l d s the following network N

n

j

n

l

n

?

d

J

ES(nj)

EF(nj}

1

0

1

LS(nj)

:

LF(nj)

0

1

S

tot(nj) 0

7

2

9

2

9

0

n?

7

6

13

6

13

0

n

3

3

6

4

7

1

13

13

13

13

0

n

4 5

M^)

0

= 0; M(n 2 ) = 2; M(n 3 ) = 6; M(n 4 ) = 3; M(n g ) = 13;

step 4 y i e l d s the following network

fr

:

230

Planning

Networks

the minimal project duration is

LF(n,-) = 13 t.u.

4.0.5 The Graphical Evaluation and Review Technique (GERT) Hypotheses Given a GERT decision-network

/ F =(N,A,p,t), with the following

node-types, ^\0utput

Deterministic

Input\^

o o

O o

IO

K>

"AND" inclusive "OR" exclusive "OR"

Probabil istic

the arc-values are defined as: P.jj € (0;1]: probability that the activity ( n ^» n j) Note:

t

wil1

be

p^j = 1 v probabilistic nodes n^ .

J t—

£ 1R+: (constant) duration of the activity (n^.nj) ,

realized.

Section 4.0.5

231

reduce the given network to only one arc. The value of that arc indicates, with what probability the total project will be realized and what time will be required. Description The reduction of the decision-network is done by the following reduction rules (the arc-value

x

means

x = (p x ;t x )):

(1) arcs in a series:

X a

z

b



*

a

$

>

b

Pz: = Pa'Pb; V *

+

(2) parallel arcs with "AND"-relation: 3! b Pz:

=

Pa'pb;

t

z:

=

max

{

W

;

(3) parallel arcs with inclusive "OR"-relation:

b

p

z:

= Pa+b:

=

Pa

t

z:

= V

+

V

p

a

z

+

p

b

Pb " P a ' P b ; +

(min

{

W

" ^

"

t

^

W

232

Planning

Networks

(4) parallel arcs with exclusive "OR"-relation:

a Z

n • „ p z" = Pa

b

X

j

„ • t • V V

+ +

)



V

p

a + t b' p b p—Tp^

©

z

.;

(5) loops with unlimited repetition and inclusive "OR"-relation:

/"

c \1 • * ff .

.

V

Pk

z' " T

'

V

T

" ^ b

p

c

T=pc>

'

*

pb 1 - pc

'

(6) loops with unlimited repetition and exclusive "OR"-relation:

p p

z

:

= r

b ^

;

V

=

V +

p

c

;

(7) loops with limited repetition: A loop, which can be repeated at most 1 times, may be represented by the following graph, where x.j = (Px ;tx ); p b =l-p c v

i = l,...,l

:

i

i

i

i

Seation 4.0.5

233

1 -t b ' v

1

= V *

-

p

i

+

W

*

1

- o-n-pl'MPb-pl'Vd-P,,)) ;

this loop may be interpreted as follows: A product comes over arc a to the first test at node

n- . If J 1 accepted, it comes over arc c^ to node n^. If refused, it comes over arc b-, to node n. , where another test is conducted. After at most 1 J 2 1 tests, the product will be accepted or it will be rejected, i.e.

will end in node n^ or node n^ respectively. Example 1 Given the following decision-network

•ilT , reduce it to only one arc.

Legend:

©

:

:

J

> e

0.2 + 0.3 - 0.2-0.3 = 0.44; max {2;4} = 4;

Planning

234

Networks

2"" step:

3rd

(0.44,4 p z = 0.5-1 = 0.5;

1,3

t

= 1 + 3 = 4;

0.5,4

step: P z =0.44 + 0.5 - 0.44-0.5 = 0.72;

0.72,4

t

= max {4;4} = 4;

4 t h step:

©

0.72,7

p z = 1 • 0.72 = 0.72 ;

^

t z = 3 + 4 = 7;

Example 2 Given the following decision-network VT . reduce it to only one arc. 0.7,1

0.2,4 v

0.7,3

1,3

1 s t step:

2nd

step: 0.5,4

|

0.7,2 "4) 0.3,3

p z = 0.4-1 = 0.4 ;

0.4,3 t z = 1 + 2 = 3;



Section 4.0.5

235

3 r d step: 0.7,4

1,3

0.3,3 p z = 0.5 + 0.4 - 0.5-0.4 = 0.7; t z = max {4;3}= 4; 4 t h step: 0.49,6

1,3

0.3,3 P z = 0.7 • 0.7 = 0.49; t £ = 2 + 4 = 6; 5 t h step: 0.643,6

1,3

p z = 0.49 + 0.3 - 0.49-0.3 = 0.643;

t z = max {6;3} = 6;

6 t h step:

0.643,9

«3)

p z = 0.643 • 1 = 0.643;

tz = 6 + 3 = 9 .

Note: In decision-networks of the most general type, like GERTplanning networks, it is possible that the durations t of the activities are random variables with a certain density-function. Each random variable may be distributed differently. For the case when t is a variable, there are modified reduction rules which derive from "moment generating functions".

5. Game Theory

5.1 Non Matrix Games 5.1.1 The Normal Form Hypotheses Given two appliers of one product, let x^ be the quantity to be supplied with cost-function C.(x^) and L^ the maximum marketable quantity of each supplier i=l,2 . Furthermore the price-function p(x), corresponding to the supply x = x^ + x-2 is known. So a duopoly model is defined. Let i = l, then T=2 and reverse. Principle The optimal strategies of both players are computed taking into account different objectives. Description Step

1: Set up the payoff-function

A^: = p(x)-x. - C^(x^)

for each player i=l,2 . Step

2: Determine the Bayes-strategy

x..

for the player i=l,2,

so that 3A

i

0

-

x.: = f(x T ) .

and the payoff A i for the player i=l,2 , playing the Bayes-strategy A * ( X * (v X T ) ) :

v

i

i''

against i , so that

= yPv( X * , X T ) - X *

1

1'

i

-

C .v( x * ) .

i

v

Section Step

5.5.1

237

3: Determine the maximum payoff for the player i = l , 2 under the assumption that player i i s monopolist ( i . e . x=x^; XT =0), so that =0 | A i = p ( x i ) - x i - ^ ( x . )

-

x.(x7) = x.(0).

I t follows: A . ( x . ( 0 ) ) : = p ( x ) - x . ( 0 ) - C ^ x ^ O ) ) . Step

4: Determine the equilibrium-strategies

x^V

i = l,2 , solving

the system of equations, determined in step 2: x*: = f(x2);

x*: = f(Xj) .

The r e s u l t i n g payoffs for both players in the equilibriumpoint are: A ^ x ^ ) : Step

5:

Let

= p(5?)-x i - C ^ x ^ V i = l , 2 .

i n f A i ( x i ;XT) : = P ^ J L T ) ^ .

-

C^x^.

Determine the maximal guarantee for the player i = l , 2 , so that 3(inf A.(x.;x7)) 3x

i

The values

= 0

x^ represent the minimax-strategies of the two

players i = l , 2 . Assume ruinous competition of the opponent i , compute the guarantee for the player i = l , 2 , so that

Example Given two suppliers of one product, the cost-functions are Cj(x^) = 5 Xj + 8;

L 1 = 18; C 2 ( x 2 ) = 6 x 2 + 2 ;

The price-function in given by 20 - 3/4 x, p(x): =

0

if

0 < x


80/3

l_2 = 20 .

238 Game-Theory

A

l =

[20 - 3/4(Xj + x2)]-x1 - 5 Xj - 8 , if

x


80/3 ;

if

x


80/3

[20 - 3/4(x1 + x2)]-x2 - 6 x 2 - 2, a2 =

- 6 x2 - 2

The Bayes-strategies are: 3A1

3(20 X-] - 3/4 x? - 3/4 x ^ 2 - 5 x][- 8)

3X,

3 X, x*

3A ?

= 0 +

= 10 - 1/2 x 2

3(20 x ? - 3/4 x x x 2 - 3/4 x, - 6 x, - 2)

3x„

3x„ x 2 = 28/3 - 1/2 Xj

A*(x*(x2)) = [20 - 3/4(10 - 1/2 x 2 + x2)]-(10 - 1/2 x2)-5(10-l/2x2) = 67 - 15/2 x 2 + 3/16 x 2 ; is A^ maximal ? 3A —

= -15/2 + 3/8 x 2 < 0 - for x 2 < 20

.*, *

A 2 (X 2 (X 1 )) = [20 - 3/4(Xj + 28/3 - 1/2

Xl)]-(28/3

A* is maximal - 1/2 Xj)

- 6(28/3 - 1/2 Xj) - 2 = 190/3 - 7 Xj t 3/16 x^ ; is A 2 maximal ? sa! 2 — —

= -7 + 3/8 x^ < 0 •+ for x^ < 56/3

* A 2 is maximal

Section 5.5.1

239

If player 1 is monopolist: x = X p x^ = 0; A ^ x ^ O ) = (20 - 3/4 x 1 )-x 1 - 5 3

A-,

T 7 7 = " 3 / 2 X1

+

15

x ^ O ) = 10

0

=

- 8 = -3/4 x^ + 15 x 1

Aj(10;0) = [20 - 3/4(10 + 0)]-10 - 5-10 - 8 = 67. If player 2 is monopolist: x = x 2 ; x^ = 0; A 2 (0;x 2 ) = (20 - 3/4 x 2 )-x 2 - 6 x 2 - 2 = -3/4 x 2 + 14 3 A„ I T ^ = -3/2 x 2

+

14 = 0

- 2

x 2 (0) = 28/3

-

A 2 (0;28/3) = (20 -(3/4)•(28/3))•28/3 - 6-(28/3) - 2 = 190/3. The equilibrium-strategies and the equilibrium-points are: x x = 10 - 1/2 x 2 ; x 1 = 64/9 the payoffs

x 2 = 28/3 - 1/2 x 1 ;

x 2 = 52/9

in the equilibrium-point are:

A^(64/9;52/9) = [20 - 3/4(64/9 + 52/9)]-64/9 - 5-(64/9) - 8 = 29.925; A 2 (64/9;52/9) = [20 - 3/4(64/9 + 52/9)]-52/9 - 6.(52/9) - 2 =. 23.UI7. Guarantee for player 1: inf A 1 (X 1 ;X 2 ) = inf {[20 - 3/4-(x 1 + x 2 )]-x 1 - 5 XJ • 8] = = -3/4 x 2 - 8; maximal guarantee:

3 (inf A 1 (x 1 ;x 2 )) 3 x

Xj^ = 0; x 2 = 20;

1

-3/2 x 1 = 0

A 1 (0;20) = [20 - 3/4-(20)]-0 - 5-0 - 8 = -8 ;

x1 = 0

240

Game

-Theory

guarantee for player 2: inf A ^ X p X ^ = inf {[20 - 3/4(x 1 + x 2 ) ] x 2 - 6 x 2 - 2} = = 1/2 x 2 - 3/4 x 2 - 2 ; maximal guarantee:

3

(inf

A

(x

g Xg

x

)} =

^

= 0

-

x 2 = 1/3 ;

x^ = 18; x 2 = 1/3 ; A 2 (18;l/3) = (20 - (3/4)•(55/3))•1/3 - 2 - 2 = -23/12 . The guarantee point of the game i s defined by the maximum guaranteed payoffs A 1 und A2= (Aj;A 2 ) = ( - 8 ; -23/12). For each pair of strategies (x^jx,,) there exists exactly one pair of payoffs ( A p A 2 ) . These payoffs can be i l l u s t r a t e d in a payoffdiagram:

Section

In the diagram above the payoff-points A ( A p A 2 )

5.1.2

241

represent:

A(29.325 ; 23.037) the equilibrium-point; A(67 ; - 2)

the monopoly point for player 1;

A( - 8 ; 190/3) the monopoly point for player 2; A( - 8 ; - 23/12) the guarantee point; A(29.46; 35.54) Nash's solution of the bargaining problem (see 5.1.2).

5.1.2 NASH's Solution of the Bargaining Problem Hypotheses Given a duopoly model as in 5.1.1 , find a solution of a game, dividing the maximum total payoff

A as evenly as possible.

Description Step

1: Determine A: =A1-hR2:»roax{ [A 2 (0;x*) +A 1 ( 0 ) ] ; ^ ( x J ; 0 ) + A 2 ( x * ; 0 ) ] J and set: A^: = A - A 2 .

Step

2: Solve the optimization problem: max w = f(A 2 ) = ((A-A 2 -A 1 (x 1 ;L 2 ))-(A 2 -A 2 (L 1 ;x 2 )))

by

differentiation, i.e. df(A 2 ) — dA 2

, =

0 .

Result: The payoffs

A^

and

A 2 . This solution is of

course always parento-optimal. Nash's solution of the bargaining problem may also be applied to bimatrix games, using the fixed-threat point instead of the guarantee point. Example Given the example of 5.1.1 . A = A 1 + A 2 = max {[190/3 - 8] ; [67 - 2]}

= 65 + A 1 = 65 - A 2 ;

242

Game -

Theory

max tt = f(A 2 ) = (65 - A 2 ~{-8)) - (Ag-(-23/12)) = (73-A 2 )-(A 2 + 23/12); df(A 2 ) . , - = 73 - 2-A„ - 23/12 ^ 6 dA 2

0

A* = 853/24

29.46.

» 35.54;

A^

«

-

5.1.3 T h e Extensive Form

Hypotheses Given a game for a finite number of players j=2,3,...,n. Each player has at most t. < °° moves, the game so consists of n k: = I t-

j=2

J

moves, which are taken in order one after the other. Be-

fore the i-th move, that player whose turn it is, may select from s.j < °°

different strategies. After all moves have been taken, a

certain progress of the game has been determined. For each possible progress of the game a corresponding payoff-function is given.

Procedure Represent the game as a digraph

G=(N,A). The possible strategies

are the nodes, connected with a directed arc from "their" source. Starting with an artificial source n , determine the nodes (strategies) of the first move and the arcs to each of these nodes. This so defined digraph is a tree which is successively extended by considering the nodes of the i-th move as the sources for the nodes of the (i + 1)-th move, v i = l k-1. , (kl After all moves are completed, there exists a tree with N^ ':= n s. i=l 1 terminal nodes, the complete tree, which is also called a game tree, exists of

% N : =

k z x=l

x n s- nodes. i=l 1

Section

5.1.3

243

These formulas only hold, if |N s (n i )| = |Ns(rij)| for all u i * u^ which can be reached after u moves, V y = l,...,k; i.e. the game ends after exactly k moves; the resulting game tree is symmetric. Otherwise the number of nodes is

N: = 1 +

k U N-, where N. is the 1 i=l 1

set of nodes, resulting from the i-th move. For each terminal node compute for each player according to the payoff-function. Extension

(solution of a game with total information)

If each player knows the current state of the game at any time (total information), then it is possible to determine one (or more) equilibrium-point(s) of the game. Procedure The player who takes the (k - l)-th move regards each node n^e if there are alternative strategies at any node n^e N ^

N^»

, then

those strategy is selected that leads to the maximal payoff for himself (if several strategies lead to the same maximal payoff, then all these strategies are selected). All other strategies are eliminated from the current game tree and of course the successor nodes and arcs are eliminated, too. Then the player who takes the (k - 2)th move regards the nodes n^e N ^ g etc. This procedure continuous until the first player has selected the optimal strategy of the first move. Result: The remaining game tree determines a unique solution of the game (equilibrium-point) with a fixed payoff for all players. In the case of degeneration several solutions may exist, but with the same payoff.

Example 1

(game without total

Two players (i.e.

information)

n = 2) each have two cards (the seven and eight

of hearts), lying covered in front of them. Both select a card at random and place it upside down on the table before them

244

(i.e.

Game-Theory

s

i

=

s

2

=

2).

The

f i r s t player guesses how many hearts are

lying on the table, then the second player does. Let be the set of all possible numbers of hearts; M = {14; 15; 16} , then y. £ H is that number, the i-th player guessed. Double-guesses are not permitted, which means that each player must guess a different number. So we have:

y^ € {14; 15; 16

;

Sg = 3

y 2 e {{14; 15; 16} - y ^

;

s4 = 2 .

The following payoff-function is given: Whosever guess is correct, receives 1 m.u. from the pot. Whosever guess is wrong, pays 1 m.u. to the pot. If both players guess wrong, no one pays. Note: This problem can be solved by determining the maximal value.

expected

Seation 5.1.3 245

246

Game-Theory

Note: To eliminate confusion the node-numbers

have not

been included. The data in the nodes indicate the strategies selected, i.e. 1-st level: player 1 selects "7" or "8" 2-nd level: player 2 selects "7" or "8" 3-rd level: player 1 guesses

y^

4-th level: player 2 guesses

y^ •

The terminal nodes are labelled with the payoffs of player 1 and player 2, respectively. Example 2 (NIM-game with total information) Given three players and a pot with six beans. Each player may take one or two beans out of the pot when i t i s his turn. The player who takes the last bean has to pay 1 m.u. to that player who would have taken the next bean(s) i f the game had proceeded.

Seation

0 ) f—1

w CSI

Q)

O

0)

ri

Q SE

>>

>

>>

>

E p =

1.1 1 1.7

P" =

. 3.5

( -0.54 =

1.02 [

1.70]

max

is optimal according to the solution of HODGES and

6. Dynamic Programming

6.0.1 The n-Period Model Hypotheses Given the following problem: The development of an enterprise i s considered for n < °° periods. The enterprise works with only one product given in the beginning as well as at the end in a d e f i n i t e quantity. During the periods a change of the on-hand balance may occur though s a l e , purchase etc. Normally a f i n i t e storage capacity i s given and a l i m i t as to the quantity to be marketed. Under these assumptions a given (generally non-linear) objective function must be optimized. Definitions n:

number of periods to be considered, n < °°

Xj: set of f e a s i b l e states ( = warehouse storage capacity ) in the j - t h period Y .: set of f e a s i b l e actions ( = market capacity ) in the j - t h period Xj: stored products at the end of the j - t h period, x^e X^ . y . : the action taken in the j - t h period, y , - E Y . J

J

J

V j ( X j _ ^ ; y j ) : t r a n s i t i o n function ( = quantitive change in the product from the ( j - l ) - t h to the j - t h period u x ; : j ( j - i y j ) objective function. Let

xn: = 0 .

Principle In t h i s algorithm f i r s t the optimal d e c i s i o n s

(actions) are r e -

c u r s i v e l y determined by s t a r t i n g with a given f i n a l state

xn .

Section

6.0.1

271

When this is accomplished the optimal decisions are executed beginning with the given initial state; thus the various interim states are determined. Description Step

1: Set

Step

2: Compute BELLMAN's functional equation (BFE) f* for the

f*+1(xp): = xn;

j: = n .

j-th period: f * ^ . ^ ) ^ max{uj.(xj_1;yj.)+ f* + 1 (Xj)} • Result: fj( x j_i) is dependent on Xj and y^ . Step

3: Replace

x. by the transition function v.(x._,;y.). ^J J J~1 J Result: fJ. ( Jx ) J- is dependent on x._, J * and y.J .

Step

4: Determine the maximum value of BFE (if necessary by differentiating) and solve the equation for y^ . Result: The optimal decision in the j-th period, y^, has been determined, this optimal point is dependent on

Step

5: Replace y. in the current BFE by the value of the optimal point. Result:

Step

is dependent only on x . ^ .

6: Is j = 1 ? If yes: Go to step 7. If no : Set j:=j-l. Go to step 2.

Step

7: y^ is now given as a function of X q . Because x Q is known, compute y^. With the transition function compute x^. With Xj and the next optimal point, y^ is uniquely determined and so on. In general:

is known. Put in into the

according optimal point and y^ is determined, x^. is then determined by placing the values for

and y. in the

transition function. When all optimal decisions y. are executed the value of the objective function is fully determined.

272

Dynamic

Programming

Example 1 A hamster farmer must plan his breeding for the following four periods. His farm may handle a maximum of 350,000 hamsters. As he cannot buy any animals, he can at most sell as many animals as he owns. In the beginning he owns 3,000 hamsters and at the end of the four periods all the hamsters shall be sold. The hamsters will

in-

crease five-fold with births and deaths balancing out. The profit in the j-th period is

2- ]/yT

m.u. Under the neither humane nor

realistic assumption of arbitrary divisibility of an animal, determine the optimal sales-policy and the total profit over the four periods. n = 4; Xj =[0; 350,000]; vj(xj_1;yj) = U

j(xj-l;yj)

=

Yj =[0;

x^];

5.(x._1-y.)=xj; 2

'

'

x

o

=

3

'000

;

fj(x 4 ) = 0; f*(x 3 ) = max { u 4 ( x 3 ; y 4 ) + fg(x 4 )} x4 = 5 x3 - 5 y4; =

x

x4 = 0

= 2-

;

-> 5x 3 - 5y 4 = 0;

3

fj(x 3 ) = 2 - l/x^ ; f*(x 2 ) = max {u 3 (x 2 ;y 3 ) + f*(x 3 )} = max x 3 = 5 x^ - 5 y 3 3-P3

3 y

+

^ 3

f*(x 2 ) =

+ 2--|/xJ};

->• f^fxg) = max {2- -/y^ + 2- ^ 5 x 2 - 5 y 3 > = : P

-5 |/5X2 - 5y 3

= 0

y 3 = 1/6 x 2

2-1/1/6 x 2 + 2-]/5X2 - (5/6)X 2 = 2-V/6x^~

;

f 2 (Xj) = max{u 2 (x 1 ;y 2 ) + 2-]/Sx^} = max {2--|/y^ + 2-j/5x^} = max {2Yy^"

+ 2-/6(5x 1 - 5y 2 )} = max {2-]/y^ + 2-j/30x1 - 30y 2 > =: (

Section 6.0.1 273

-30

3 P 3 y

2

= 0

->•

y 2 = 1/31 xj

l/30x r 30y 2

f ^ X j ) = 2-i/(l/31)-x1 + 2-l/30x 1 - 30-(l/31)-x 1 = 2- / 3 l j Ç ;

f * ( x o ) = m a x { u 1 ( x Q ; y 1 ) + 62- 1/1/31 Xj} = m a x { 2 - y y ^ + 62- l/(l/31)-x 1 } = max{2-^+ 3 P 8 y

1

=

l

62(-5/31)

+

i h

f*(xQ)

62- ^(5/31)-x q - ( 5 / 3 1 ) ^ } =:p ;

2-/5/31 x -5/31

= 0 y

= 1/156 x Q

l

= 2-1/(1/156)-xo + 62-1/(5/31) -x q - (5/31 )-( 1/156) -x q =

determination of the sales-policy: x Q = 3,000 ;

y

l

X

1

3,000 T56 =

5(x

1Q 19

o " yl>

y 2 = 1/31 x

f

„ '23

;

=

5(3

1 4

^

«

'000

0 4

14,903.85 ;

» 480.77 ;

x 2 = 5(x : - y 2 ) « 5(14,904 - 481) « 72,115.4 ; y3 »

(1/6)-72,115.4 «

x 3 = 5(x 2 - y 3 ) «

12,019.23 ;

300,480.85 ;

y 4 « 300,480.85 ; x4 = 0 total profit: ir = 2-|/yJ +

+ 2 - ^

+

» 1,368.21 m.u.

this is equivalent to *

=

=

l^ 6 2 4

x

o

.368.21

m.u.

Example 2 A speculator wants to invest 200 m.u. in such a way that his long term profit is maximized. The following three investments are

274

Dynamic

Programming

available: (1) participation in a sky-scraper construction plan. Upon investing z^ m.u. a long term profit of tt^ = 4-z^ - 2 m.u. will be realized. (2) financiation of a very promissing film-project. When z 9 m.u.are 2 invested, a long term profit t^ = l/lS-z^ - 1 / 5 ^ + 2 m.u. will be realized. (3) buying properties in the suburban area. Investments of z 3 m.u. bring long term profits of

n 3 = 3-z 3 + 1 m.u.

In order to distribute the risk let: Zj < bj = 95 m.u. z 2 < b 2 = 50 m.u. z 3 < b 3 = 100 m.u. The problem now reads: max

u = tr^ +

+ ttj

=

= 4-z x + I/I6-Z2 - 1/5-z 2 + 3-Z 3 + 1 Z

1

+

z

2

+

Z

3

zx z2

=

^
- °° . Furthermore assume that the transition function is stationary. That is, if the process is in a state then the action

y

defines a transition to the state

x'

x ,

indepen-

dent of the period. For this reason the period-index for the set of feasible states, the set of feasible actions, the transition function and the objective function is unnecessary. Definitions X : set of feasible states, |X| < °° Y : set of feasible actions, |Y]


• y = 5 helpers;

x = 5,600 meals

->- y = 6 helpers are hired.

An average profit per day of

n = 10,310 m.u. results.

7. Queueing Models

Hypotheses Given the following situation: There exists a system with

k

parallel serving stations, having the

same function and capabilities (channels). At certain intervals customers enter the system, are served at the first available station (waiting if necessary), and depart the system. If this service is accomplished in several stages, then the customer may depart the system only after each of the stages in series has been visited. In general the system may be visualized as below:

>o

channel 1

channel 2 entry

customers • • o — oo o in a queue

exit

channel k stage

stage

stage

1

2

m

Suppose the arrival of the customers is poisson-distributed (no peak loads). The following rule pertains to all customers: First come; first served. Assume the departure of the customers is exponential-distributed. We distinguish the following models:

Section

(1)

1 - channel, 1 - stage model

(2)

1 - channel, r - phase model; r e N

(3)

k - channel, 1 - stage model

(4)

k - channel, m - stage model; k > 1; m > 1.

7.

Case (4) will not be considered here, because the mathematical

281

for-

mulas and the required calculations are beyond the scope of this book. Case (4) models are generally solved with simulation. A system has r phases iff the service is accomplished in more than one step, and the next customer may be served only after the preceding customer has completely departed the system. Special case: If the serving times are not exponential-distributed random variables but exactly determined, then the r-phase model with r = » is applicable. Definitions X: average number of customers, entering the system per time unit (arrival

rate)

u: average number of customers, departing the system per time unit (service rate) t = t a A

:

average time-interval between the arrival of two customers

t|3= ^ : average service time p=

: capacity utilization of one service station

k=

: capacity utilization of the system For 1 - channel models p < 1 must hold, for k - channel models only k < 1 must hold. Pn

: probability that the length of the queue is equal to n (persons), n = 0,1,...

P(w): probability that a customer must wait

282

Queueing

Models

ri : average length of the queue including the customer that is being served n g : average length of the queue excluding the customer that is being served t Hot

: average waiting time for a customer '

avera

9 e waiting and service time for a customer

P(t w 0: average length of the queue including the customer that is being served under the assumption that a queue with more than 0 elements (customers) exists t

|n > 0: average waiting time for a customer under the assumption that a queue with more than 0 elements (customers) exists.

Principle Formulas are given, with special states in a queueing system can be determined.

7.0.1 T h e I - C h a n n e l , l - S t a g e Model Formulas P n = P"-(1 - P) P Q = P °.(l - P ) = (1 - P )

P(t w < t) = 1 - P . e " ^ " P(t w > t) =

P-e'

(y

-

Section

P(w) = p

P(t t()t < t) = 1 - e " ( y _

" =

P ( t t n t > t) = e " ^ "

T ^ = A 1-p

S

v

y-X

tot

x

283

)-t

'

1

1-p

7.0.1

1-p

no=

J ? - = n-p

n | n > 0 -

\,= W

~yn- Xr

tWi1 n >

0

y-X

— - - y -

= y-X

H o t ~ "y-~X Example 8 customers per hour enter the shop of a retailer in a little village. The arrivals are poisson-distributed.Let the service time be exponential-distributed at 5 minutes. X = 8/hr.;

y = 12/hr.;

p = 2/3;

(a) Determine the probability that a customer must wait. P(w) = p = 2/3 = 66.6 % . (b) What is the average length of the queue including the customer that is being served ? „ .

P

_

2/3

(c) What is the average total time that a customer must spend in the shop ? i Hot

=

1

=

1 I2^r

- 1 = 4

. -

hr

=

15

lc min

-

(d) If the retailer determines that a customer must wait on the average for more than 15 minutes, then he will hire a helper to ensure that customers will not leave his shop without having bought anything. How many more customers must arrive before the

284

Queueing

Models

retailer hires help ? P

_

t. = W y - X

2 / 3 - 1

=

tw s

| hr.;

+' w "

v' y'- A' "

u

hr. = 10 min;

x'= X + AA;

y'= y;

A'

A'

A' = 9/hr.

! T2^T,= AA

increase by

1

1 4

X' 12- A' 17 " 4

= 1/hr.,

i.e. the number of customers must

customer per hour.

(e) What is the probability that a customer remains longer than minutes in the shop ? P ( t t o t > 1/4) =

e

_

(12-8)•1/4

e -l =

=

=

0-3679

36

79

%

_

(f) What is the average waiting time for a customer under the assumption that he must wait ?

l

w I" >

0

=

¿ T

=

T F 8 = "i

hr

" =

15

min

-

7.0.2 The l-Channel, r - P h a s e Model Formulas

" n s

r+1 . A2 + 2-r y (y-Ay r+1 ~Z7r

y

A y

^ _ r+1 'w " 2-r

A2 (y-A)

Note: Let the durations of the r then y: = i y • j=l J

7 tot" r

r+1 2-r

phases be

A y. (y-A)

y pj,

A (y-A)

1 y ,p

15

Section 7.0.3

285

Example 1 A small motor-vehicle repair shop receives on the average 3 cars per day. The foreman, who has no other help, must write up the defects in these cars. Because he has devised a system for this diagnosis, his job may be devided into 8 parts per car, each lasting 15 minutes, and accomplished one after the other before starting another car. The foreman works 8 hours per day. r = 8;

X = 3/day;

y' = 4/hr. s

32/day;

y =

= 4/day .

(a) How many cars (except for the one being inspected) are on the average in the repair shop ?

n

s

=

32 ' TpFSy

8+1 TTS

81 64 *

=

1

, occ, -2656 •

(b) What is the average time until a customer receives his car again ?

Hot

=

f-r4 • ^ F j y

+

i

=

M

days

=

322

-5

min

-

Example 2 A modern car wash receives on the average of one car every 5 minutes for servicing. The service time at this station is exactly 3 minutes. What is the average waiting time for a customer ? ta = r

=

" *

hr.; r+1 2^r

t =

b

=^hr.; 1 2 ;

r ^

=

A = 12/hr.; 1 12 2 • 20(20-12)

y=20/hr.; =

- 3 . W hr"

7.0.3 The k-Channel, l-Stage Model Formulas

1

= 2

„ '25

oc min

"

286

Queueing

Models

, k [vl

P(w) =

P0 0

(k-1)! (k-y - A) A

k

A -p'(p) (k-1)! • (k-p-A) -

__ S

p

-

+

2

A-p- 1 pi

.

p

(k-1)! • (k-p-A) 2

0

, k t

P' W


nr (3-1)! • (3-12 - 30)'

'

4 , 30 535 89 + 12 = " 8 ? "

6

, -0112

(c) What is the average total time that a customer must spend in the post-office ?

T t. . = tot

(30 f 12- \T21 (3-1)! • (3-12 - 30)

'

4

8TO 9

x+

1

1T5" 2

=

107 X^a 534

™-, n0-2004 ,hr.

8. Nonlinear Programming

8.1 Theorems and Special Methods 8.1.1 The Theorem of KUHN and TUCKER Hypotheses Given a convex minimization problem P: P:

min

it = f(x) i = l,... ,m

g^x)

0

V j=l

n.

The partial derivatives exist for both the (nonlinear) objective function f(x) and the restrictions g ^ x ) . The

Lagrange-function

L(x,X) is defined as: L(x,x): = f(x) +

m z x,-g,(x) . i=l 1 1

A point (x,x) is called a saddlepoint of L(x,x), if L ( x , x ) < L(x,x) < L(x,x)

or, equivalently if the following six

Kuhn-Tucker conditions are fulfilled:

(1)

L(x,x) >

(2)

(3)

0

y j

-kiAiil

< 0

v i

v j

(5)

- k Î A i A l • a, 1 0 A• 1

v j = 1,... ,n

(6)

xi > 0

• xd i 0

x, > 0

(4)

vi

v i = 1,... ,m

Seation 8.1.1

289

Theorem 1 I f (x,x) i s a saddlepoint of L(x,x), then x i s an optimal

solution

of P. Theorem 2 Let x be an optimal s o l u t i o n of P. I f there e x i s t s at l e a s t one f e a s i b l e s o l u t i o n x of P, so that g ^ x ) < 0

V

i=l,...,m

(SLATER's c o n d i t i o n ) and i f there e x i s t s an \ > 0, then ( x , x ) i s a saddlepoint of L ( x , x ) .

8.1.2 The Method of LAGRANGE Hypotheses Given the f o l l o w i n g problem P:

* A-x

= f(x) = b

where r k ( A ) < n, i . e . the system of equations must not be f u l l y determined. Principle I n t h i s method the Lagrange-function i s formulated as the sum of o b j e c t i v e f u n c t i o n and the weighted r e s t r i c t i o n s . Each p a r t i a l d e r i v a t i v e of the f u n c t i o n i s set equal to zero r e s u l t i n g in a unique system of equations. Description Step

1: Formulate the Lagrange-function L(x,A): = F(x) +

m n Ï x •( E A . i - x . - b.) 1 1 i=l j=i ^i j JJ

.

290

Step

Nonlinear

Programming

2: Determine the gradient of the Lagrange-function and set it equal to zero: grad L(x,A): =

3 L(Xj,X.) 3

Step

(X..X.)

; =

o V i,j .

3: Solve the so-determined system of equations (with one of the well-known methods (algorithm of Gauss; method of Gauss-Jordan etc.)).

Example Given the following problem P: max

2 2 tt = 3-Xj + 2-x 2 + 5-x 1 -x 2 + 3-x^ + 4-x^ - x^-x^

2-x 1 + 3-X 2 = 10 x2 +

Xj =

8

The Lagrange-function is 2

2

L(x, ) = 3-x 1 + 2-x 2 + 5-x 1 -x 2 + 3-x 1 + 4-x 3 - x^x.^ + x 1 -(2-x 1 + 3-x 2 - 10) + x 2 -(x 2 + x^ - 8)

;

6-x^ + 5-X 2 + 3 - x 3 + 2-x^ 4-X 2 + 5-x^ + 3-X^ + X 2 grad L(x,x) =

4 - x 1 + X2 2-x 1 + 3-x 2 - 10 x 2 + x^ - 8

Solution of the system of equations with the method of GaussJordan: Note: Tableau-transformations are executed, until the matrix of coefficients A is the identity matrix I.

Section 8.1.2

X

1

x

2

X

3

X

1

x2

1 -3

6

5

-1

2

0

5

4

0

3

1

0

-1

0

0

0

1

-4

2

3

0

0

0

10

0

1

1

0

0

8

1

5/6

-1/6

1/3

0

-1/2

0

-1/6

5/6

4/3

1

5/2

0

5/6

-1/6

1/3

1

-9/2

0

4/3

1/3

-2/3

0

11

0

1

1

0

0

8

1

0

4

7

5

12

0

1

-5

-8

-6

-15

0

0

4

7

6

8

0

0

7

10

8

31

0

0

6

8

6

23

1

0

0

0

-1

4

0

1

0

3/4

3/2

-5

0

0

1

7/4

3/2

2

0

0

0

-9/4

- 5/2

17

0

0

0

-5/2

-3

11

1

0

0

0

-1

4

0

1

0

0

2/3

2/3

0

0

1

0

-4/9

15 2/9

0

0

0

1

10/9

-7 5/9

0

0

0

0

-2/9

-7 8/9

292

X

Nonlinear

x

1

Programming

x

2

X

3

1

*2

1

The optimal solution is:

1

0

0

0

0

79/2

0

1

0

0

0

-23

0

0

1

0

0

31

0

0

0

1

0

-47

0

0

0

0

1

71/2

x=(79/2;-23;31); X=(-47; 71/2); the value of the objective function is Ï = 214.25

.

8.1.3 A Method for the Optimization of Nonlinear Separable Objective Functions under Linear Constraints Hypotheses Given the following problem: P:

min

} max J

f(x) = c-x e v ' A-x

| b > e

x > 0 B

6

K

the object is to linearize the nonlinear objective function and solve the corresponding problem with one of the simplex-methods. For maximization problems (minimization problems) the objective function must be concave (convex). Principle In this method the nonlinear objective function is replaced by linear parts, i.e. each variable is replaced by a set of new variables, which are valid in a specified interval. The coefficients of the new objective function are determined from the gradient of the chord of the nonlinear function in each interval. The solution of the problem is obtained with one of the simplex-methods. Description Step

l: Determine in which interval the variable x^. may assume feasible values, v j=l,...,n

(e.g. using the restrictions).

Section

8.1.3

293

Let x. € [0 ; u-], where u. is the upper bound of the feaJ

J

J

sible region of Xj . Step

2: Determine appropriate (equidistant or non-equidistant) interval of "length" a ^ intervals

and split up the variable x^. as

follows : x

i3 :

'E k

=

j

r=l

x*

v

i >J r

J=1

n

• ,

-

(The value kj for the upper summation-index is determined by Uj and the selected size of the interval. For equidistant intervals of length a ^

we have kj = u ^ / a ^ . )

Let Uj r be the upper bound of the r-th interval of the variable Xj, so that Uj Q = 0, then u. = u. , + jr jr-1

^

r

For the variables 6

V Step

U

r=l,... ,k. . J

Xj r

jr " u jr-l ]

holds: v

j=1

n

'

r=1

"--'kj •

3: Determine the coefficients Cj r of the objective function for the variable

c- : =

Xj r , so that

f(x.=u. )-f(x.=u. ,) J Jr; ^ J jr'i;

J

Step

vv

V

j=l

n;

r=l,...,k i .

" V-l)

4: Formulate the problem P: d P:

• 1i mm max J

n

f(x) = I >

n E

j=1

k Jj

s e - -x. jr jr

r=1

k. l j=l ^ x•

E a - • -x. r=l 1 J J r < o

(j) u '

r

x. > 0 jr

x




V j = l,...,n;

r=l,... ,k . . J

294

Step

nonlinear

Programming

5: Solve the problem

P

with one of the simplex-methods.

Result: The solution vector x' (if a feasible solution exists). k j z x'.

Is

r=l

k


0

0 holds .

Note: The artificial variables w are only used, if type-II inequalities appear. Step

2:

(1. phase) Minimize the sum of the artificial variables w with the first phase of the Two-Phase-Method. Result: A feasible solution of P (if one exists).

Step

3:

(2. phase) Minimize the sum of the artificial variables z with the first phase of the Two-Phase-Method. Result: An optimal solution of the problem. The value of the objective function can be determined by substituting the optimal values x for x in the objective function.

298

Nonlinear

Programming

Note: I t is important to remember that no two variables x^ and Vj are basic variables with current values greater zero. Example Given the following problem: P: min n = 1/2-x^ + 1/2-x^ - 10-x 1 - 5-x 2 (1)

xj + 2-x 2 < 12

(2)

5-Xj +

x 2 < 15

X p x2 >

0

H ro

x2

0

0 ] 1/2]

fl ;

A

~

2"

12

1

15 ;

11 .O

c =

d =

'- 10' "

5

Section

8.2.1

z

W

299

T ^ : X

x

1

V

2

1

v

2

v

3

v

4

U

1

u

2

Z

1

z

2

3

z

4

1

w

2

1

1

2

1

0

0

0

0

0

0

0

0

0

0

0

1

0

12

5

1

0

1

0

0

0

0

0

0

0

0

0

0

0

1

15

1

0

0

0

-1

0

0

0

1

5

1

0

0

0

0

0

10

0

1

0

0

0

-1

0

0

2

1

0

1

0

0

0

0

5

0

0

0

0

0

0

-1

0

1

0

0

0

1

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0 -27

0

0

0

0

0

0

0

-1

-6

-3

-1

-1

0

0

0

0

T: X

X

1

y

2

2

V

1

v

2

v

3

V

4

U

1

u

2

Z

1

Z

2

z

3

z

4

W

1

w2

1

0

9/5

1

-1/5

0

0

0

0

0

0

0

0

0

0

1- - 1 / 5

9

1

1/5

0

1/5

0

0

0

0

0

0

0

0

0

0

0

1/5

3

0 -1/5

0

-1/5 -1

0

0

0

1

5

1

0

0

0

0 -1/5

7

0

1

0

0

0

-1

0

0

2

1

0

1

0

0

0

0

5

0

0

0

0

0

0

-1

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

-1

0

1

0

0

0

1

0

0

0

1/5

0

0

0

0

0

0

0

0

0

0

0

0 -9/5 -1

6/5 -9

t(3).

X

1

x

2

h

0

1

1

0 -1/9

y

2

5/9 - 1 / 9 2/9

V

1

v

2

v

3

v

4

U

1

u

2

Z

1

z

2

z

3

Z

4

W

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 -1/9

1/9 - 2 / 9 - 1

5/9 - 1 / 9

1/9 - 2 / 9

8

0

0

0

1

5

1

0

0

0

-1

0

0

2

1

0

1

0

0 -5/9

0

0

0

0

-1

0

1

0

0

0

1

0

0

0

0

0

0

-1

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0 -5/9

0

0

0

0

0

0

H e r e the f i r s t p h a s e e n d s . T h e a r t i f i c i a l

5 2

0

0

1

2/9

1/9

0 0

w2

1/9

0

0

0

0

0

0

0

1

1

0

v a r i a b l e s w c a n be e l i m i -

n a t e d f r o m t h e t a b l e a u , as t h e y a r e b o t h nbv.

300

Nonlinear

Programming

X2

H

T< 4 >: 1

X

r

1

v2

v

3

v

4

U

1

u

2

Z

1

z

2

z

3

Z

1

4

0

1

5/9

-1/9

0

0

0

0

0

0

0

0

0

0

5

1

0

-1/9

2/9

0

0

0

0

0

0

0

0

0

0

2

0

0

1/9

-2/9

-1

0

0

0

1

5

1

0

0

0

8

0

0

-5/9

1/9

0

-1

0

0

2

1

0

1

0

0

0

0

0

0

0

0

0

-1

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

-1

0

1

0

0

0

1

0

0

0

4/9

1/9

1

1

1

1

-4

-7

0

0

0

0

-8

V2

v

{5).

X

t

V

1

X2

V

1

3

v

4

U

1

u

2

Z

1

z

2

z

3

Z

4

1

0

1

5/9

-1/9

0

0

0

0

0

0

0

0

0

0

5

1

0

-1/9

2/9

0

0

0

0

0

0

0

0

0

0

2

0

0

1/9

-2/9

-1

0

0

5

1

0

1

0

0

-5

8

0

0

-5/9

1/9

0

-1

0

1

2

0

0

1

0

-1

0

0

0

0

0

0

0

-1

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

-1

0

1

0

0

0

1

0

0

0

4/9

1/9

1

1

1

-6

-4

0

0

0

0

7

-8

3

v

1

U2

(6).

X

1

x

y2

2

V

1

v

2

v

4

U

Z

1

z

2

z

3

Z

4

1

0

1

5/9

-1/9

0

0

0

0

0

0

0

0

0

0

5

1

0

-1/9

2/9

0

0

0

0

0

0

0

0

0

0

2

0

0

26/9

-7/9

-1

5

0

0

-9

0

1

-5

0

0

8

-5/9

1/9

0

-1

0

1

2

0

0

1

0

-1

0

0

0

0

0

0

0

0

-1

0

1

0

0

0

1

0

0

0

0

-5/9

1/9

0

-1

0

0

2

1

0

1

0

0

0

0

0

-26/9

7/9

1

-5

1

0

8

0

0

6

0

1

-8

0

Seation

T: X

x

1

2

y

V

l

v

1

v

2

v

3

4

U

u

1

2

1

0

0

0

45/26

0

1

0

0

5/26 - 1 / 2 6

5/26

0

0

-9/26

0

o

o

1

-7/26 -9/26

45/26

0

0

-81/26

0

o

0

-1/26 -5/26

-1/26

0

0

-

o

0

o

o

o

0

0

0

0

o

0

Z

z

1

2

-1/26

5/26 - 2 5 / 2 6

0

0

-1/26 -5/26 0

0

z

3

-1/26

Z

0

0

0

45/13

1/26

-5/26

0

0

30/13

9/26 - 4 5 / 2 6

0

0

36/13

5/26

0

-1

20/13

1

0

0

0

1

7/26

0

0

1

0

0

7/26

1

0

-1

0

1

4

25/26

1/26

0 1

-5/26

0

1

5/26

1/26

0

0

20/13

1

1

0

1

0

t(8).

X

1

x

H

2

V

1

V

2

v

3

v

4

U

1

U

2

0

1

0

-1/26

5/26

-25/26

45/26

0

0

0

1

0

0

5/26

-1/26

5/26

-9/26

0

0

0

0

0

1

-7/26

-9/26

45/26 - 8 1 / 2 6

0

0

0

0

0

0

-1/26

-5/26

-1/26

7/26

1

0

0

0

0

0

0

0

0

-1

0

1

0

7/26

0

0

1

0

0

0

0

0

0

-1/26

-5/26

-1/26

0

0

0

0

0

0

0

8.2.1

302

Nonlinear

Programming

t(8).

Z

z

1

Z

2

Z

3

1

4

25/26 -45/26

0

45/13

The optimal solution is:

-5/26

9/26

0

30/13

X T =(30/13;45/13), with:

9/26 -45/26

81/26

0

36/13

i=x T -C-x + d T - x » -31.7 .

5/26

-7/26

-1

20/13

-5/26 1/26

1/26

0

0

1

0

0

5/26

1/26

-7/26

0

20/13

1

1

1

1

0

8.2.2 The Method of FRANK and WOLFE Hypotheses

See 8.2.1

Note: If type-II inequalities are present, start with a basic feasible solution. Principle

See

8.2.1

Description Step

1: Construct the initial tableau Z :

where

Step

X

y

V

u

w

t

A

i

0

0

0

b

2-C

e

-I

AT

I

-d

1

:

^ ( m + n)x 1]'

tT

=

2: (1.phase) Minimize the sum of the artificial variables w with the first phase of the Two-Phase Method.

Step

3: Define the vector p : Pr/2 m

+

2n}x ll'

so

Section 8.2.2

T p

303

'vT = (x; y; v; u), then the vector p

= (v; u; x; y) is ad-

junctive to p. p T -p = 0 ?

Is

If yes: Stop, the optimal solution has been obtained. If no : Go to step 4. Step

4: Let p^ e p be the basic variable in the i-th row of the current tableau, then x^ : = p^ . Determine the values x.j v i=l

Step

m + n .

5: Let the new objective function be given by: m+n V

= -^

z

ij-

x

i

m+n 1 1 T^T t.-x.

V j : nbv

,

then the initial tableau of the next phase is given by the last tableau of the preceding phase with the new objective function. Step

6: (next phase) Execute one tableau-transformation according to the Primal Simplex-Algorithm.

£ ifc * ^ Result: A solution x ; y ; v ; u

with the value

£ TT of

the objective function. Step

7: Define the vector p* : p* ^ , so that *T * * * * i» ' , * * * * . p = (x ; y ; v ; u ), then the vector p =(v ;u ;x ;y ) is adjunctive to Is p

• p

p* .

= 0 ?

If yes: Stop, the optimal solution has been obtained. If no : Go to step 8. Step

8: Is

TT* < TT/2 ?

If yes: Go to step 9.

304

Nonlinear

Programming

If no : Go to step 6. Step

9: Compute 1;

ii: = m m

(P-P ) • P (P*-P)T " (P*"P)

p: = p + y ( p -P) . Step 10: Is

v = 1 ?

*

'V

*

If yes: Set p: = p ; tt: = it /2. Go to step 6 with the current solution. If no : Set p: = p

and determine the vector p which is

adjunctive to p.

Go to step 4 with the current

solution. Note: If in step 6 more than one column may be selected as the pivot-column, then select that one, which assures the following: Xj • Vj = 0

v j=l,...,n ; y i • u i = 0

v i = l,...,m .

Example Given the following problem: P:

min tt = 1/2-x^ + 1/2-x^ - 10-Xj - 5-x 2 x1

+ 2-x 2 < 12

5-x^

+

x 2 < 15

x^, x 2 >

0

(the same as in 8.2.1) Z ^ : X

1 1

x

y

2 2

1

5

1

0

1

0

0

0

1

0

-1

-1

0

2

V

1

v

2

U

1

u

2

W

1

w2

t

0

0

0

0

0

0

12

1

0

0

0

0

0

0

15

0

-1

0

1

5

1

0

10

0

0

-1

2

1

0

1

5

0

1

1

-3

0

0

-If?

0

Section

Z( X

2

8. 2. 2

305

>: x

1

V

2

v

1

U

2

1

2

1

0

0

0

5

1

0

1

0

1/5

0

0

0

-1/5

-1/5

1

0

0

1/5

-1

1/5

-1

0

0

-1/5

1

2

U

u

1

W

2

w

1

t

2

0

0

0

12

0

0

0

0

1/5

1

0

0

15

1/5

0

2

9/5

0

-1/5

1

3

-9/5

0

6/5

0

-3

0

z (3).

X

1

X

H

2

V

v

1

1

2

1

0

0

5

1

0

1

0

1

0

-1

5

0

0

0

0

0

1

U

W

2

w

1

t

2

0

0

0

0

0

12

0

0

0

0

0

0

15

0

0

-1

2

1

0

1

5

0

1

-5

9

0

1

5

15

0

0

0

0

1

1

0

Here the first phase ends, the artificial variables w can be eliminated from the following tableaus. p T = (0; 0; 12; 15; 15; 0; 0; 5); p T -p * 0;

Xj = 0;

x 2 = 5;

p T =(15; 0; 0; 5; 0; 0; 12; 15);

x 3 = 15;

X 4 = 0;

tt = -150;

z (4): X

1

x

2

y

V

l

1

V

2

U

1

u

2

t

1

2

1

0

0

0

0

0

12

5

1

0

1

0

0

0

0

15

0

1

0

0

0

-1

2

1

5

-1

5

0

0

1

-5

9

0

15

-25

-20

0

0

0

15

-30

0

-150

306

Nonlinear

Programming

z(5).

X

x

1

y

2

V

2

1

V

U

2

0

9/5

1

-1/5

0

0

0

1

1/5

0

1/5

0

0

0

1

0

0

0

0

26/5

0

1/5

1

0

-15

0

5

0

t

n * 0;

v = min

j 1;

f 1

= min

*

IT

ir = -75

9

0

0

3

-1

2

1

5

-5

9

0

18

15

-30

0

-75

p* T = (18; 0; 0; 5; 3; 0; 9; 0);

! ^/o = TT/2;

(-3;0;3;15;-3;0;0;0)-(15;0;0;5;0;0;12;15) T ^ =• V = (3;0;-3;-15;3;0;0;0)-(3;0;0;0;3;0;-3;-15) >

{1; 5/3}

= 1;

p T = (3;0;9;0;18;0;0;5);

y i 1

p T = (3;0;9;0;18;0;0;5);

* = / / 2 = -75/2;

z(

X

t

2

0

p* T = (3; 0; 9; 0; 18; 0; 0; 5); *T p • p

u

1

-

6).

1

x

y

2

i

V

y2

1

v

2

U

U

1

t

2

0

0

1

-7/26

-9/26

45/26

-81/26

0

36/13

1

0

0

5/26

-1/26

5/26

-9/26

0

30/13

0

0

0

-1/26

-5/26

-1/26

7/26

1

20/13

0

1

0

1/26

45/26

0

45/13

0

0

0

145/26

-105/26

0

-300/13

5/26 -25/26 75/26

15/26

p* T = (30/13; 45/13; 36/13; 0; 0; 0; 0; 20/13); p* T = (0; 0; 0; 20/13; 30/13; 45/13; 36/13; 0); *T p

* -p

1

= 0

-T ->- Stop,

x

= (30/13; 45/13) is an optimal solution

with the value of the objective function

TI « -31.7.

Section

8.2.3

307

Note: In this example the pivot-elements have been selected in such a way that steps 4 - 1 0 were necessary. By selecting other pivots, an optimal solution for this problem could be obtained after step 3.

8.2.3 The Method of BEALE Hypotheses Given the following problem: P:

MIN

TT = x^-C-x + d^-x

A-x




e ,

x where

c

: c

[n

x

n]'»

d

: d

[n

x

i] J

A, x, b as defined.

The matrix C must be positive semidefinite. Principle Starting with a basic feasible solution, an alternating sequence of intermediate tableaus and end tableaus is constructed by simplexiterations. Whereas the coefficients of the "simplex"-portion of an end tableau are already computed for the next basic solution in the intermediate tableau, those of the "objective"-portion are only partially determined. They must undergo another pivoting. Description Step

l: Formulate the matrix c d/2 C =

Step

d/2

C :

+

ij x ( n

+

i)"j>

so

that

7T

2: Add slack variables y to the system of inequalities and solve the system for y.

308

Step

Nonlinear

Programming

3: Construct the initial tableau X

X

x

1

1

n

1 I

x

Z

G

n simplex-tableau -A

x

b

i objecti ve-tabl eau

x

n 1

Step

objective - row

4: Does an element c p + 1

*

0 exist in the objective-row in

a column s, corresponding to a "free" variable u ? If yes: Select this column s for the pivot-column. Go to step 6. If no : Go to step 5. Step

5: Is x or y

j > 0 v

j|column j corresponds to a variable

?

If yes: Stop, an optimal solution has been obtained. If no : Select one of these columns for the pivot-column (let this be column s). Go to step 6. Step

6: Determine the row r, so that b•

V = 7 1 {TI~;|

|c

|

"¡1,S (1 S1'9n ais=sign c n + 1 , s )^ s s >0)K

Section 8.2.2

309

Herewith is the pivot-element z r s given. Step

7: Is

zrs € A ?

If yes: Go to step 8. If no : Go to step 9. Step

8: Replace the variable at the top of column s of the tableau Z by the variable, corresponding to row r. Go to step 10.

Step

9: Replace the variable at the top of the column s of the tableau Z by a "free" variable u. (If necessary, these variables must be indexed.) *

Step 10: Construct the intermediate tableau Z , so that

Z

?J

z

i s'

: = Z

v

ij"

v i ;

z

i * r» J *

rj ' - O V J

s

* s .

*

Step 11: Consider row s in the "objective"-portion of tableau Z . (It is always determined by the intersection of column

s

with the main diagonal in the objective-tableau.) Replace the variable in row

s

at the side of tableau Z

variable, corresponding to column **

Step 12: Construct the tableau z T J: =

Zij

V

Z

by the

s .

, so that

z*. e {simplex-tableau}

z*i: _ sj

z*. sj_ zrs

z?t: = ij

z*. - z . •z** ij ri sj

v j in row s in the objective-tableau otherwise with i * s .

Set Z: = Z**; go to step 4. Note: For a problem with restrictions A-x < b start with a basic feasible solution.

310

Itonlinear Programming

Example Given the following problem: P: min tt = 1/2-x^ + 1/2->c^ - 10-Xj - 5-x, (1) (2)

Xj + 2-X 2 < 12 5-x 1 +

x 2 < 15 x^x,, >

0

(the same as in 8.2.1) X X

1

x

2

1

X

1

x

2 1

x

1

1

2

1

0

0

0

1

0

-1

-2

12

-5

-1

15

1/2

0

-5

0 -5

x

1*

1

x

2

h H

1/2 -5/2 -5/2

X

x

i

x

2 1

0

-1/5 0

2

-1/5 1

1 3 0

1/5

-9/5

9

1

0

0

-1/10

-1/10 -7/2

0

1/2

-5/2

1

-3/2

-15

(pivot-column s = column 1; 12 q r = min { (-pyj~

;

15 l-5l ~PiT[)' 172" } =

this leads to the tableau

Z

1*

)

3

pivot-row r = row 4;

Seat-ion 8.2.3

y

X

1

x

2

x2

2

-1/5 -1/5 1

0

2 1

X

1

0

X

2

9

1

0

0

y2

3

1/5 -9/5

1/50 x

1

7>* V- =

1/50 7/10

1/50 13/25 -9/5

x

7/10 -9/5 -51/2

2 1

1

1

-5/26

-5/13

30/13

-1/26

25/13

45/13

7/26

45/13

36/13

1

0

0

1/52

H

U

311

0

1/26

10/13

1

0

10/13 -45/13 -825/26

3 q I_Q/5i 45 (pivot-column s = column 2; q r = min {( -pT75T'» | - 9 / 5 | ) 1 3 / g f e > = y j -»• pivot-row r = row 6; this leads to the tableau

U

y2 X

1

X

2

U

1 1

1

-5/26

-5/13

30/13

-1/26

25/13

45/13

7/26

45/13

36/13

1

0

0

1/52

0

10/13

0

25/13

0

10/13

0

No pivot-column can be selected been obtained, function is

1

x = (30/13; 45/13);

ir = -825/26 « -31.7 .

-825/26

Stop, an optimal solution has the value of the objective

312

Nonlinear

Programming

8.2.4 An Algorithm for the Solution of Linear Complementarity Problems (Lemke) Hypotheses Given the following problem: P':

where

min u = x^-C-x + d T -x A-x

>

b

x

>

e ,

C :

x

nj;

d :

jj-

x

C must be positive semidefinite.

Principle In this algorithm a special simplex-tableau is used which derives from the formulation of the nonlinear problem as a linear complementary problem. An iterative process determines a complementary basic solution. Description Step

1: Formulate the linear complementary problem P from P 1 : P:

y = A - x - b + e - z m o v = d + 2-C-x - u-A + e -z , n o

or in matrix notation: -b

' y ' v

-

d

+

0 -A

T

A

u

2-C

X

+

or in tableau notation: y

V

u

X

i

e

0

-A

0

I

AT

-2-C

Z

o

"em

"

e

n

t

-b

d

e

n

Section 8.2.4

313

where: x

problem variables

y

slack variables

u

dual variables

v

dual slack variables

of P'; u,v > e

artificial variable, z Q > 0

z o e k 1

of P 1 ; x,y > e

k-dimensional summing vector

: l

[(m + n) x 1] ;

tT;

= (" b ;

d

>;

the variables ( y ^ u ^ ) and (VJ.XJ) are called "pairs of complementary variables". Step

2: Is

ti > 0

V i = 1,... ,m + n ?

If yes: Stop, the current solution x is optimal, the value of the objective function is tt = f(x). If no : Go to step 3. Step

3: Determine

t : = min

{t.} .

i The pivot-element is given by row r and column z Q . Execute one tableau transformation according to the Primal SimplexAlgorithm. Result:

zQ

has become a bv, one variable

y^ or

v^

has

become nonbasic. Now the following holds: (z Q > 0) A (y i -u i = 0 V i = l

rajAtv

. - x ^ O V j = l,... ,n) ,

i.e. an "almost" complementary basic solution has been obtained. Step

4: Is

ZQ = 0 ?

If yes: Stop, the current solution

x

is a complementary

basic solution, the value of the objective function is

n=

f(x) .

If no : Go to step 5. Step

5: Select that column for pivot-column, whose complementary variable became nonbasic in the last iteration. The

314

Nonlinear

Programming

pivot-row

is

determined

according

to

the

Primal

Simplex-

Algorithm.

Step

Does

6:

If

a feasible

yes:

If

no

pivot-element

Execute

: Stop,

one

P

1

tableau

has

an

still

exist

?

transformation.

unbounded

Go t o

solution.

Example Given

P':

the

following 1/2-Xj

min -

x1

-

2-x2

-5-x,

(the

same

as

-1

-2

-5

>

x1,x2

>

10-x1

-

5-x2

-15

8.2.1) -12

-1

-

> -12

x2

in

P':

+ 1/2-x^

ii .a

A =

problem

'

-10 ;

-15

problem

P

>1

H

1

0

0

0

0

1

0

0

0

0

0

0

1

0

-1

-5

0

0

0

1

-2

-1

2

U

U

2-C =

d =

1

reads:

V

V

1

1

v

V

2

U

1

u

0

1

2

X

X

2

z

0

1

2

-1

5

1

-1

15

-1

0

-1

-10

0

-1

-1

-5

1

X

z

1

0

2

1

X

2

o

12

1

1

0

-1

0

1

5

2

2

0

22

0

1

-1

0

1

5

6

1

0

25

0

0

-1

0

1

5

1

0

1

10

0

0

-1

1

-1

4

1

-1

0

5

-

5

step

4

Section 8.2.5

1

V

-1/3

-4/3

0

h

y2

l

V

U

1

X

2/3

10/3

0

5/3

0

41/3

1

25/6

U

1

X

z 0

2

2

1

2

0

1/6

-1/6

0

1/6

5/6

1/6

0

0

-1/6

-5/6

0

5/6

25/6

0

-1/6

1

35/6

0

-1/6

-5/6

1

-7/6

19/6

0

-7/6

0

5/6

V

1

v

1

U

2

u

1

4/19

Z

1

o

55/19

0

243/19

9/19

0

1

9/19

0

75/19

5/19 -25/19 45/19

0

0

26/19

1

90/19

1

0

-7/19

0

5/19

1/19

1/19

0

-1/19

-5/19

y

V

2

-7/26

2

0

0

1

x

1

0

-3/19 -26/57 -20/19 36/19

0

X

2

1

-79/78

-5/19

6/19 -7/19 v

2

U

u

1

45/26 -81/26

2 0

X

1 0

X

2

Z

o

1

0

-55/26

36/13 30/13

0

5/26

-1/26

5/26

-9/26

0

1

0

-9/26

0

1/26

5/26

-25/26

45/26

0

0

1

19/26

45/13

0

-1/26

-5/26

-1/26

7/26

1

0

0

7/26

20/13

z

M

315

+ Stop, x = (30/13; 45/13) is an optimal solution, the value

of the objective function is

IT « - 31.7 ,

8.2.5 The Gradient Projection Method (Rosen) Hypotheses Given the following problem : P: min

IT

A-x


500 + Stop, C t Q t = $ 4,000

x = 2,000;

B = 5;

is the optimal inventory policy.

Example 2 Given the example of (11.0.1) with the delivery time of 90 days (assuming 360 days per year). t d = 90/360 = 1/4;

D(trf) = (1/4)-10,000 = 2,500;

x = 2,000 < 2,500 + Stop,

x = 2,500;

Section

b = 10,000/2,500 = 4; is the optimal

C ^

= " j ^

4 0 0

+

^ ^ 0 0

=

11.0.4

$

337

^

inventory policy.

11.0.4 An Inventory Model with Damage to Stock Hypotheses Given the Classical

Inventory Model

(11.0.1) in which damages to

the stock are considered. Definitions a, D

: number of items bought per period

aD

: number of items damaged per period

p

: cost per item .

Let D: = D - AD ;

b: = D/x .

Procedure Determine the optimal number 'p 2 -AD 2 x: = / , c

+

2-D-c c

i

2_

x to order, so that

-

p-AD c

i

i

the optimal number of orders B, so that ^ B:

=

D

/ c.-x + 2•P-aD

-l/

g.c.-D.»

the corresponding total cost C^. C

tot: =

b>c

o

+

c

i"

x/2

+

so that

P'iD

Example A pocket computer company will sell 500 items per month. Because of a lack of qualified help 50 items will be damaged beyond repair in a month. The costs per order and restocking of the store are

338

Inventory

Models

$ 3506.25; the inventory costs are $ 10 per item and month; the cost for one pocket computer is $ 100. What is the optimal

number

of pocket computers to order and how many orders should be placed per month ? What is the minimum price for one pocket computer, if the company does not wish to incur any loss for the damaged items ? D

aD

500;

= 5 0 ;

10Q 2 -50 2 10

r b

=

55

+

D

=

CtQt =

=

Q

2-500-3506.25

2

3506.25;

_

100-50

10

J 10-275 + 2-100-50 V 2-3506.25-500-275 2-3506.25-500-275

°"

c

550;

c

i

=

= 1 0 ;

p

=

100;

275.

10

w

2

'

2-3506.25 + 10-275/2 + 100-50 = $ 13,387.5;

C

13,387.5 =

= 26.775

D

->- the minimum price for one pocket

500

computer is

$ 100 + 26.775 = $ 126.775 .

11.0.5 An Inventory Model with Rebates (different price intervals) Hypotheses Given the Classical

Inventory Model

(11.0.1) in which rebates are

considered. A rebate is granted on the price when an order exceeds a specified amount. Definitions rj

: minimal selling quantity at the j-th price quotation; r x < r 2 < ... < r n

Ej

: price reduction per item at the j-th price quotation; £

1
... > c. . h 7 n

Description Step

Step

1: Determine

ill

••

-i/z-co-cr°

H I

: =

+

j

.

D

V j = i,... ,n .

2: Determine ci^l: =

minimum j£[0;n]

tot

Step

e

3: Is

{C^]} . tot

s = 0 ?

If yes: Go to step 4. If no : Go to step 5. Step

4: Stop, the optimal number x to order is

-

/2-c -D

i-êr •

the optimal number of orders B is 'D-c. b =

2

"co

'

the corresponding total cost C Step

C^ ^ is

• = C(o) tot" tot '

5: Stop, the optimal number x to order is the optimal number of orders B i s the corresponding total cost C^

x: =

;

B: = D/r s ; : =

.

Example A wine bottler requires 30,000 bottles every 3 month. The supplier offers the following rebates:

340

Inventory

Models

on orders of

4,000 bottles $ 0.25 off;

on orders of

5,000 bottles $ 0.5

off;

on orders of 10,000 bottles $ 0.6

off.

The cost per order is $ 1,000. The inventory costs are $ 10 without rebate, $ 8, 6 or 5 with increasing number of bottles ordered. How many orders should be placed and what is the total cost ? D = 30,000; 1 = 4,000; 1

=

c = 1,000; o r 2 = !5,000;

1/4;

(0) tot

1/2;

1 ,000-30,000 4,000

tot ;(2) tot ;(3) tot

c. = 8 ; -\1

c. = 6; i2

c. = 5; i3

r 3 = 10,000 9 e 3 = 2/3;

'2-1,000-10 •30,000 • V

;(1)

;(S)

c. = 10; l

» $ 24,494.9

J

^

8-4,000 - (1/4)-30,000 = $ 16,000 ; 2

^

+

1 ,000-30,000 5,000

+

6-5,000 " (1/2)" 30,000 = $ 2

6,000 ;

1 ,000-30,000 10,000

, 5-10,000 " (2/3)-30,000 = $ 2

8,000 ;

B = b;

6,000 .

=

tot

tot

r 2 = 5,000;

C

tot

=

$

11.0.6 An Inventory Model with Respect to Transportation Capacity Hypotheses Given the Classical Inventory Model (11.0.1) in which the capacity of the conveyance (e.g. truck, airplane, etc.) is considered. That is because of limitations in the transporting capacity more than one vehicle, or more than one trip may be necessary to deliver one order.

Section

11.0.6

Definitions x

: capacity of the vehicle

p

: number of required trips per order

C^ : fixed transportations cost per order c

: variable transportation cost per trip

C

: transportation cost per order; C: = C f + Cy•p , if (p-l)-x

< x < p-x

.

Description Step

1: Calculate D-c v + ^ D 2 - c 2 + 2 - C i - x 2 - C f - D P

l:

=

~c

r

xJ.

p' 1 ^ : =

and set

2-C f -D

Step

2: Calculate c

and set Step

p ^ :

i'x2

= [p 2 ] ;

p ^ :

3: Calculate C ( 1 ) : = ]/ 2-c.-D-(C f + c ^ m

c' ': =

Step

C f -D T ... x* p

4: Determine and set

Step

=

c -D +

+ x

C ^ : C. tot

1

=

= C ^

minimum j=l,2,3

) )

;

crx-p(j) -J v 2

j=2,3 .

{C^}

.

5: Determine the optimal number x to order, so that x: = x - p ( j )

, if C t Q t = C ( j )

V

j=l,2,3;

the optimal number of orders is b: = D/x; per order p^ trips are required. Note: In general b

(rounding off is necessary).

342

Inventory

Models

Example A furniture company sells 400 wall cabinets yearly. The firm owns only one type of truck which can transport only 5 cabinets per trip to the company warehouse. The inventory cost per item and year is %

$ 60; the transportation cost function is : C = 1,800 + 250-p . How many orders should be placed ? How many trips are necessary ? What is the total cost ? D = 400; p 1

x = 5;

c i = 60;

C f = 1,800;

2 2 -2502 , + •2-60-5 _ 400-250 + I/400 1 • • --1,800-400 - • 60-5

/2-l,800-400'„ 3 0 - 9 8 . '

V

p (l) =

r (2) C

-(3)

C as

_ "

=

141;

1 /en m 14U. 1Q

p (2) =

30;

is;

p< 3 > = 31;

60-5

Ci 1 ) = y2-60-400-(1,800 + 250-141)

C

c y = 250;

1,800-400 5 • 30

+

1,800-400 5 • 31

+

= C ^

=

^

250-400 Z

+

^

250-400 5

+

« $ 42,171 ;

^

60-5-30 2

^

60-5-31

x = 5-31 = 155;

2

= ?

9Q

¿ 9 » J00 '»

«$29,295.16 ;

B = 400/155

«

2.58 ;

B £ M it is necessary to round off:

(1)

B = 2;

(2)

B = 3;

->• x = 200; p = 40; the total cost then is $ 29,600; 3 -»• x 1 = 135; x 2 = 135; >L = 130; l x. = 400;

3 i=l Pj = 27; p 2 = 27; p 3 = 26; p = l p. = 80; i=l 1 the total cost then is

« $ 29,450.

1

12. Sequencing Models

12.0.1 JOHNSON'S Algorithm for Two Machines Hypotheses Given a matrix

D :

x

where

d..: working time of order A. on machine M. ; 1J 1 J d—

> 0 V

i=l,...,m;

j = l,2 ;

under the scheduling rule that each order is placed on M^ first and than on l^, determine a planning schedule, so that the total duration for all orders is minimal. Principle In the algorithm a minimal element is determined in the matrix of "working time requirements" and the appropriate order is placed as close as possible at the beginning or at the end. Such orders are eliminated from the matrix and the next order is positioned in the same manner. The total time requirement is determined in a

GANTT-

diagram. Description Step

1: Define

S: = {d^ •} and set the running-indices p: = 1;

q: = m . Step

2: Determine

d r g : = min { d ^ | d ^ e S} .

Note: If more than one element d^. is minimal, select one of them at random. Step

3: Is

S = 1 ?

If yes: Set

A ^ :

= A p ; p: = p + 1. Go to step 4.

Sequencing

344

Models

I f no : S e t A ^ : Step

4: D e f i n e

Step

5: Is

= A r ; q : = q - 1 . Go t o s t e p 4 .

S : S - {drj} V j=l,2.

S = 0 ?

I f y e s : Go t o s t e p 6. I f no : Go t o s t e p 2 . Step

6: The sequence ( A ^ 1 ) , . . . 1

,

J

A ^ , K

p l a n n i n g s c h e d u l e . Determine ( e . g . total

duration f o r all

, A j m ) ) i s an optimal in a GANTT-diagram) t h e

orders.

Example Given t h e f o l l o w i n g m a t r i x D: D :

S = {dij> V i = l , . . . . 8 ;

m2

M1

j =1,2;

p = 1; q = 8; d r s = d 8 2 ; s = 2; 2

4

A?

7

5

A,

6

4

9

8

8

2

7

1

3

9

5

1

A1

A4 AS A6 A7 A8

i(8) _ A ; 8

q = 7;

S = {d.j} V 1 =1 drs

= d62;

s

7; j = l , 2 ;

=

(7)

A6

2 ;

S = {dij} V i=l,2,3,4,5,7; drs

=

d52'

s

=

A5

2;

(6)

S = {d.j} V 1=1,2,3,4,7; drs

=

d

1;

ll;

A

(1)

A,;

S = {d.j} V i=2,3,4,7; j=l,2; S = {d^.} V 1 = 2 , 3 , 4 ; S = { d ^ } V 1=2,4;

Ag;

j j

= 1,2;

= 1,2;

j=l,2; A,; q = 5; j=l,2;

p = 2; drs = d?1;

s = 1;

drs = d32; drs

¿22*

A) ' = A ? ; p = 3 ;

s = 2 ; A< 5 ) = A 3 ; q = 4 ; s

=

2i

Ai (*3J ')=. A 4 ;

A^ ^ =

S = {d41,d42} ; drs = d42; s = 2; q = 2; i S = 0 ->• t h e optimal sequence of t h e o r d e r s i s : / « ( I ) ) r\j a(2) i

a

( 3 ) » a" (24 ) » . ( 5 ) '

q = 6;

(56 ) ® „ (Q7 )

9

n(8)> 8 '

^

C]

=

3\

Section

12.0.2

345

the corresponding GANTT-diagram : m

M

2

1

b~r 1

0

S

I

7

H — h 1 4

8

12

16

20

24

28

32

36

H 40

h 44

t.u. 48

-ation for for all all orders is 48 t.u., machine M^ has an the total duration idle-time of total 14 t.u.

12.0.2 JOHNSON'S Algorithm for Three Machines (special case) Hypotheses Given a matrix

D :

x

, where

d^j: working time of order A i on machine M^; d^ > 0

V i=l,... ,m;

j=l,2,3;

each order requires all machines, the sequence is given with M^, M£, M 3 - Determine a planning schedule, so that the total duration for all orders is minimal. Principle If the maximum time requirement on the second machine is less than or equal to the minimum time requirements on the first and third machines, then the time requirements of the first and second as well as those of the second and third machine are combined and the problem is handled as in 12.0.1 . Description Step

l: Is (max{d. ? }< min{d.,}) a (max{d. ? } < min{d. ? }) ? i ' i i i If yes: Go to step 2. If no : Stop, the algorithm

can not determine an optimal

346

Sequencing

Models

solution Step

2: Set up the matrix a

u

:

= d

: =

d

++

d. i2 1

T+ u

d., i3

n

i2

for this problem. & :

2]'

x

\ > V 1=1 ^

so

that

m

and apply (12.0.1) on the problem, corresponding to the matrix D. Result: An optimal sequence of orders

..

); the

total duration for all orders is determined in a GANTTdiagram, using the data from matrix D. Example Given the following matrix D: D:

M

1

A

1 A? A

3

A4

A

6

(12.0.1)

M

2

M

3

ft:

\ 6

7

5

1 A?

10

9

4

6

A

10

10

2

4

A

4

9

6

5

3

6

A

S

8

9

5

1

5

A

6

6

6

4

2

5

6

4

6 7

A

3

applied on the matrix D yields the following optimal se-

quence of the orders: ( A } 1 ) , A £ 2 ) , A £ 3 ) , A < 4 ) , A £ 5 ) , the corresponding GANTT-diagram :

AJ6));

Section

12.0.3

347

the total duration for all orders is 39 t.u., machine M2 has an idle-time of total 19.t.u, M, has an idle-time of total 8 t.u.

12.0.3 A Heuristic Solution for a Sequencing Problem Hypotheses Given the matrix D : D ^

x

nj,

where

d 1 j : working time of order A^ on machine M^; d^ > 0

V i=l,...,m; j=l,...,n;

n > 3;

each order requires all machines, the sequence is given with M^, Determine

a

planning schedule, so that the total du-

ration for all orders is as near to the minimum time as possible. Principle In this method the following rule is obeyed: The order with the shortest working time requirement (on machine M^) comes first, the one with the second shortest comes second etc. If this rule does not lead to a unique sequence, then the time requirement on the next machine determines which order has priority. Description Step

l: Define

S: = {d^.};

Q: = S; set the running-index p: = 1.

Step

2: Set the running-index s: = 1.

Step

3: Determine

Step

4: 3 (d i s = d r s | i * r) ?

d r $ : = min { d i s | ( d i s e S)A(d i s £ Q)} .

If yes: Go to step 5. If no : Go to step 7. Step

5: Define and set

Step

6: Is

Q: = Q - { d k j | d k s > d ^ } V s: = s + 1.

S < n ?

j = l,...,n

348

Sequencing

Models

If yes: Go to step 3. If no : Go to step 8. Step

7: Set

A ^ :

= A r ; go to step 9.

Step

8: Set

A ^ :

= A r > where r: = i i | d i s e Q} .

Step

9: Define

Step

10: Is

S: = S - { d ^ } V

j=l,...,n;

Q: = S .

S = 0 ?

If yes: Go to step 11. p: = p + 1; go to step 2.

If no : Set Step 11: The sequence

(A^

..

approximates the optimal

sche-

dule for the orders. Determine the total duration for all orders in a GANTT-diagram. Note: If at some point two or more orders are waiting for the same machine, chose as next the order which has the shorter working time for that machine. To be exact, solve the remaining subproblem with one of the preceding algorithms. Example Given the following matrix D: D:

M

A

1 A?

A

3

A

4

A

5

M2

1

M

M

3

4

6

6

4

4

1

3

5

1

3

3

2

6

2

4

6

3

3

1

2

6

S = Q = { d ^ } V i=l,...,5; d

rs

=

d

21;

j=l,...,4;

A

21)=

A

2;

p = 2;

S

=

Q

j=l,...,4; =

{d

drs = d41;

S = Q = {d i j} V 1 = 1,3,5;

ij}

V

i=1

p=l; >3'4'5 i

aJ 2 > = A 4 ;

j = 1,...,4;

p = 3;

s = l;

Section 12.0.3

drs = d31 = dgl;

Q = { d ^ } V i=3,5;

j=l,...,4;

349

s = 2;

J A 3) = A ; 5 S = Q = {d i j} V i=l,3; j = l,... ,4; p = 4; rs = d E52' 5 1; = „ J4 d 4; p = 5; "rs 31; A 3 4 ) = A 3 ; S = Q = {dlj} V j = 1 i /c\ d r s = d n ; a(*> = A i ; S* 0 an approximate optimal sequence d-rs s

of orders is ( A ^ ,

AJ2), A T/2} j

increasing

(cost-minimal) location for the enterprise.

, where

T: =

J

n z x. . j=l

J

Result: The location n^ is optimal. The distances between the stations have no influence on the solution. The total transportation cost is r

n C.„. : = c.- E tot t

a., -x. jk j

m.u.

Example Given five locations, in which the supplies/ markets of an enterprise are located. The enterprise demands/supplies the following quantity in each location:

x^(50; 30; 20; 60; 40).

Let the distances between the stations be : a 1 9 = 15;

a 9 , = 20;

a,, = 10;

a,,- = 15;

and

c. = 2.5 .

354

Plant Location

Models

What is the optimal location for the enterprise ? T =

5 z x. = 200; by k = 3 (or, when beginning from the other side, j=l J

by k = 4) the half of the total quantity to be transported is exceeded; here two optimal locations exist, n^ and n^; the total transportation cost is Ctot(n3) =

2.5-(35-50 + 20-30 + 0-20 + 10-60 + 25-40) = 9,875

m.u.

Ctot(n4) =

2.5-(45-50 + 30-30 + 10-20 + 0-60 + 15-40) = 9,875

m.u.

13.1.4 The Optimal Plant Location with Respect to Rectangular Transportation Movements Hypotheses Given n locations n^, k=l,...,n , in which the suppliers and customers of an enterprise are located. The locations are identified by their co-ordinates ( y ^ ^ ^ * t o

eac

^

t

* i e s e locations corres-

ponds a known quantity x^ of sales/procurement. Find the optimal location (y^;y5j) for the enterprise under the assumption that transportation movements are only possible parallel to the two co-ordinate axes. Transportation cost c^ m.u./q.u. and d.u. are assumed. Principle The method determines an optimum with respect to each co-ordinate. The point of intersection of both optima yields the optimal station site. Description Step

1: Determine the total quantity to be transported

T: = l k=l

Step

x.. K

2: (changing the indices) Assign the index i to the y^-co-ordinate (abscissa) and the index j to the y2-co-ordinate (ordinate); the location n^ with the p-smallest y^-value receives the index i = p, V p = 1

n;

Section 13.1.4

355

the location n^ with the q-smallest y2~value receives the index j = q, V q=l,...,n . Result: The location n. is now represented by n.., the K 1J corresponding transportation amount is now x ^ . Step

3: Determine the index r, so that

z x. . > 1/2} .

r: = min {i|

Step

i

1J

4: Determine the index s, so that s: = min {j |z x,. > T/2} . J J

*

*

Result: The location n r s with the co-ordinates ( y ^ ^ ) = (y^ r ;y2 s ) is the optimal station site; the total transportation cost is c

tot : =

v

k=l

- y^h

- y2ki)-xk

m

-u-

Example Given the following five locations n k with the co-ordinates and the transportation quantity x.: n

k

n

l n? n

3

n

4

n

5

*2k

x

k

2

6

80

5

5

20

8

3

40

3

2

50

6

9

60

c t = 1; r

5 T = T. x. = 250; k=l K

(y^^k)

356

Plant

Location

Models

xx. , x, . 250 jf--- 60-L -•!- 9.

n5=n45

7190 .. 110

.80... ...6.

nrni4

nrs=n24

20....... 5.

n2=n33

4. 90 ..

40... ... 3.

50 --

50---.—

n3=n52

J 4 21

2.

12,

3,

xi • j • X x. . ++ 150 210 250 i IJ 80 130 * * r = 2; s =4; n. •24 with the co-ordinates (y1;y2) = (3;6) is the optimal location; the total transportation cost is CtQt = [(|3-2|+|6-6|)80+(|3-5|+|6-5|)20+(|13-8|+|6-3|)40 + (|3-3|+|6-2|)50+(]3-61+|6-9|)60] = 1,020 m.u. 80 50

—I 20

I-

60

40

13.2 Heuristic Methods

13.2.1 The Center of Gravity-Method Hypotheses Given n locations n^, j = l,...,n , in which the suppliers and customers of an enterprise are located. The locations are identified by their co-ordinates(y, • ;y ?i ); to each of these locations corresponds

Section

13.2.1

357

a known quantity x^ of sales/procurement; a direct connection exists between all locations. Assuming transportation cost c. m.u./q.u. and *

z

*

d.u., determine an optimal location ( y ^ ^ ) for the enterprise. Principle This method determines the "center of gravity" of the n-sided polygon. Procedure Determine n 1'

n

J

j=l n

Z

1J y

k

X.

j=l

* 2:

=

k I x -y j=l J ^ E

J

X

j=l

where

k 6 N;

K

J

the total transportation cost is C

tot: = V

l/^l " y l / + < y 2

Y

" y2j)2

m. u.

Example Given the following five locations n^ with the ( y ^ ; y 2 j ) and the transportation quantity x^ :

n

j

n

l

n

?

n

3

n

4

n

5

(a)

y

2j

x. J

2

6

80

5

5

20

8

3

40

3

2

50

6

9

60

lj

y

c t = 2.5;

k = 2; * * 80 2 -2 + 20 2 -5 + 40 2 -8 + 50 2 -3 + 60 2 -6 ? ? ? ? ? 80 + 20 + 40 + 50 + 60

«

3.9103 ;

358

Fiant Location

Models

* 80 2 -6 + 20 2 -5 + 40 2 -3 + 50 2 -2 + 60 2 -9 y? = 5 5 5 5 5 80 + 20 + 40 + 50 + 60 *

«

, ,„,, 5.6966;

*

the location with the co-ordinates ( y ^ - ^ ) = (3.9103; 5.6966) is optimal; C

tot

=

2

- 5 ' ( 8 0 - 1 - 9 2 + 20-1.3 + 40-4.91 + 50-3.81 + 60-4.79) =

= 2,135.55 m.u.; (3) k = 1; * 80-2 + 20-5 + 40-8 + 50-3 + 60-6 y. =

, ,, = 4.Jb ;

80+20+40+50+60 y„ =

80-6 + 20-5 + 40-3 + 50-2 + 60-9 80+20+40+50+60

the location with the co-ordinates ( y ^ y ^ ) C

tot

= 2

,, = cb.Jb ; =

(4.36; 5.36) is optimal;

- 5 "(80-2.47 + 20-0.72 + 40-6.1 + 5 0 - 3 . 6 1 + 60-3.94) =

= 2,183.05 m.u.

13.2.2 A Solution by Vector Summation Hypotheses See

13.2.1 . In addition, a (small) value e is given, which denotes

the tolerance distance for the solution location from the optimal location. Principle The method determines a sequence of resultants (whose length is monotone decreasing), in whose direction the current suboptimal solution is shifted. If the length of the resultant becomes less than or equal to the given value E , the current suboptimum is considered as "almost optimal".

Section 13.2.2

359

Description Step

1: Assume the convex hull of the locations has been constructed through a certain connection of the locations. Select any arbitrary point S = ( y p y 2 ) inside of the convex hull for the initial solution. Note: If there are any of the given locations inside the convex hull, it is convenient to select that location (inside of the convex hull) with the greatest transportation quantity.

Step

y M) 2i " y 2 tan a u ; : =

2: Determine

y

' Step

>

if

y

y 2 j : = y 2 + tan a.(J). ^Myjj

Step

l : = y ll

5: Is

lj< l so

>

- yj)

t iat

'

>v

j=l,... ,n ,

'

A 6 (0; 1] .

4: Determine the point y

j=l».-..n

y

S^ = ( ^ ^ j ) »

{tan a

Step

v

* /

Z: Determine the points

where

*

y^

y, 6: = 4 + 1 -i. if yl < yl

7: Determine the point

:

y[

= y*

1

+

1



S 1 = (yj;y 2 ), so that

2

V

1 + (tan B)

y'2 : = y* + tan e-(yj - yj), and the new initial solution

*

*

*

S = (yj;y 2 ), where y^: =y|;

y 2 : = y£ + 0.1 . Go to step 2. Note 1: Instead of completing step 6 and step 7, a new initial solution can be determined by selecting any point between S and P . Note 2: The vector summation can also be done graphically. This procedure is convenient, when solving smaller problems by hand. Example Given the following five locations n- with the co-ordinates J

ar|

(y-i-'.y?')

n

j

n

l

n

?

n

3

n

4

n

5

y

d the transportation quantity x.:

lj 2

y

2j

x. J

6

80

5

5

20

8

3

40

3

2

50

6

9

60

S = n 2 = (5; 5) ;

c t = 2.5 ; e

= 0.3 ;

A

= 0.1 ;

Section

-1/3;

tan tan «< Z > =

0

=

=

;

s2

= ( 5;

6

3 =

;

s3

= (8.33;

2.78)

;

5

4 = "

;

S

4 = (2.23;

0.84)

;

{

5 =

'

S

5 = (6.46;

62

tan a < 3 ) = - 2 / 3 ;

««> = 3 / 2 ;

tan

«(5> =

4

1

;

361

7.53);

s1

;

tan

(-2.59;

= " ;

6

13.2.2

5 )

;

10.82);

P = (-0.57; 6.97); y = 5.908 > e; tan ß= -0.358; 6 = -1; S' = (3.61; 5.5); S = (3.61; 5.6); 1

tan J

) = -0.248

S

= -0.432

tan 3

tan J

tan a

62 =

5 2 = ( 5.446; 4.807)

6

3 =

5 3 = ( 7.052; 3.563)

5.92

5

4 = "

5 4 = ( 2.775; 0.655);

1.423

6

5 =

5 5 = ( 7.06; 10.509);

) = -0.592

(4) v

'

S x = (-4.154; 7.525)

1 = "

tan a ^ P = (3.739; 4.659); y = 0.95 > e; tan

-7.295; 6 = 1;

S' = (3.64; 5.36); s = (3.64;5.46); = -0 3 2 9 ;

6

tan «< 2 > = - 0 3 3 8 ;

1

tan J

tan a tan a tan a

)

(3)

s1

=

S

;

s2

=

6

;

s3

=

5 406;

5

4 = " ;

s4

=

1 5

6

5 =

S

- -0 5 6 4 ;

(4) ' = (5)

1 = " ;

-

;

2 -

3 =

5 =

(- 3 . 9 5 9 ; 7 . 9 6 ) (5 . 5 3 5 ; 4 . 8 2 ) (7 . 1 2 4 ; 3 . 4 9 5 ) (2 . 7 3 1 ; 0 . 5 4 4 ) (6 . 9 6 8 ; 1 0 . 4 5 2 )

P = (3.839; 5.431); y = 0.201 < 0.3 = e an optimal C

tot

=

2

Stop, S = (3.64; 5.46) is

location for e = 0.3;

- 5 - ( 8 0 - 1 - 7 3 + 20-1.44 + 40-5.01 + 50-3.52 + 60-4.25) =

= 1,996.5

m.u.

362

Plant Loaation

Graphical solution:

1

Models

(Note: 10 q.u. are equivalent to 1 d.u.)

5

10

Section

IS.2.3

363

13.2.3 An Iterative Method Hypotheses See

13.2.1

. In addition, a (small) value

tes the minimal shift of a solution p (

i_1

e

is given, which deno-

) to P^ 1 ^. Set the running-

index k: = 0 . Principle The method determines a sequence of points in the plane, until the value of the straight line between two consecutive points becomes less than or equal to the given value

e

. The last generated co-or-

dinates are considered as "almost optimal". Description step

1: Select an arbitrary point

P ( o ) = ( y (°) ; y(°))

364

Plant Location

Models

for the initial

solution. *

*

Note: It is convenient to select the point (y^; y^) of (13.2.1) for the initial Step

2: Compute

(k-l). _

4k+1): =

step

solution.

3: IS

Yk+1

: =

;

^

1/^1

^lj'

T

n £ j=i

y K ^ i /

+

J-1

V W - y y ) '

+

J-1

^

W

+

-y[kV

+

y

"2

2j

x.

Ì

(y^Sj)'

^

(y{zM)

V

-y{2kV

If yes: Stop, the point p ( k + 1 ) = ( y j k + 1 ) ;

. e ? is opti-

mal with respect to the given value e . The total transportation cost is

If no : Set k: = k + 1; go to step 2. Example Given th the following five locations n^ with the co-ordinates (y^j-, y2j) and the transportation quantity x^:

Seat-Lon

n

j

n

1

y

y

lj 2

2j

x. J

6

80

n

5

5

20

n

3

8

3

40

n

4

3

2

50

n

5

6

9

60

?

ct

= 2.5 ;

e

= 1/20;

P(0) = ( y í 0 ) ^ 0 ) )

20-5

80-2 ^(4-2)^(3-6)'

+

J/(4-5)*+(3-5)*

80

+

|/(4-8) 2 +(3-3) Z

1/(4-2)^(3-6)^

/(4-5) ¿ í + (3-5) i í

50-3

60-6

]/(4-3)^+(3-2) ¿

|/(4-6) ¿ +(3-9) ¿

40 4-8)^(3-3)*

4.03 60

|/(4-3)^+(3-2) ¿

+

20-5

80-6

|/(4-5) Z +(3-5)' ¿

^4-2)*+(3-6)* >1»

80

^4-5)^(3-5)^

50-2 (4-3)^+(3-2)

40-3

40 |/( 4-8)

60-9 ¿

+

|/(4-6)"+(3-9)' 4.6

50 /(4-3) +(3-2)'

60

(3-3) ¿

yf 4-8)

20

^(4-2)^(3-6)^

/

^(4-6)^(3-9)'

3-3) ¿

365

= (4;3);

40-8

20

50

12.2.2

+

Plant

366

Location

Models

to simplify collect the results in a table as follows: >(k)

n

(k)

p(°)

4

3

p(l)

4.03

4.6

« 8/5

3.98

5.11

« 1/2

P(2) P

(3)

3.93

5.3

« 1/5

P

(4)

3.87

5.37

« 9/100

3.83

5.4

P(5)

1/20

y 5 = e = 1 / 2 0 - Stop, p( 5 ) = (3.83; 5.4) is an optimal location for e = 1/20; C

tnt

=

2.5-(80-1.92 + 2o-1.24 + 4-4.81 + 50-3.5 + 60-4.2) = 1,994.5 m.u.

Appendix T a b l e

1:

q

=

( k )

(1

+

i )

k

k 1

i

2

3

4

5

6

7

8

9

10

0.01

0.9901

0 9803

0 9706

0 9610

0 9515

0 9421

0 9327

0 9234

0 9143

0 9053

0.02

0.9804

0 9612

0 9423

0 9239

0 9057

0 8879

0 8705

0 8535

0 8368

0 8203

0.03

0.9709

0 9426

0 9152

0 8885

0 8626

0 8375

0 8131

0 7894

0 7664

0 7441

0.04

0.9615

0 9246

0 8890

0.8548

0 8219

0 7903

0 7599

0 7307

0 7026

0 6756

0.05

0.9526

0 9070

0 8639

0 8227

0 7835

0 7462

0 7107

0 6768

0 6446

0.6139

0.06

0.9434

0 8900

0 8396

0 7921

0 7473

0 7050

0 6651

0 6274

0 5919

0 5584

0.07

0.9346

0 8734

0 8163

0 7629

0 7130

0 6664

0 6227

0 5820

0 5439

0 5083

0.08

0.9259

0 8573

0 7938

0 7350

0 6806

0 6302

0 5835

0 5403

0 5003

0 4632

0.09

0.9174

0 8417

0 7722

0 7084

0.6499

0 5963

0 5470

0 5019

0 4604

0 4224

0.10

0.9091

0 8264

0 7513

0 6830

0 6209

0 5645

0 5132

0 4665

0 4241

0 3855

0.11

0.9009

0 8116

0 7312

0 6587

0 5934

0 5346

0 4816

0 4339

0. 3909

0 3522

0.12

0.8929

0 7972

0 7118

0 6355

0 5658

0 5066

0 4523

0 4039

0 3606

0 3220

0.13

0.8850

0 7831

0 6930

0 6133

0 5428

0 4803

0 4251

0 3762

0 3329

0 2946

0.14

0.8772

0 7695

0 6750

0 5921

0 5194

0 4556

0 3996

0 3506

0. 3075

0 2697

0.15

0.8696

0 7561

0 6575

0 5718

0.4972

0 4323

0 3759

0 3269

0 2843

0 2472

4

5

6

7

9

10

T a b l e

X

2:

q~

1

k

=

(1

2

+

i ) "

3

k

8

1 1046

0.01

1 0100

1 0201

1 0303

1 0406

1 0510

1 0615

1 0721

1 0829

1 0937

0.02

1 0200

1 0404

1 0612

1 0824

1 1041

1 1262

1 1487

1 1717

1 1951

1 2190

0.03

1 0300

1 0609

1 0927

1 1255

1 1593

1 1941

1 2299

1 2668

1 3048

1 3439

0.04

1 0400

1 0816

1 1249

1 1699

1 2167

1 2653

1 3159

1 3686

1 4233

1 4802

0.05

1 0500

1 1025

1 1576

1 2155

1 2763

1 3401

1 4071

1 4775

1 5513

1 6289

0.06

1 0600

1 1236

1 1910

1 2625

1 3382

1 4185

1 5036

1 5938

1 6895

1 7908

0.07

1 0700

1 1449

1 2250

1 3108

1 4026

1 5007

1 6058

1 7182

1 8385

1 9672

0.08

1 0800

1 1664

1 2597

1 3605

1 4693

1 5869

1 7138

1 8509

1 9990

2 1589

0.09

1 0900

1 1881

1 2950

1 4116

1 5386

1 6771

1 8280

1 9926

2 1719

2 3674

0.10

1 1000

1 2100

1 3310

1 4641

1 6105

1 7716

1 9487

2 1436

2 3579

2 5937

0.11

1 1100

1 2321

1 3676

1 5181

1 6851

1 8704

2 0762

2 3045

2 5580

2 8394

0.12

1 1200

1 2544

1 4049

1 5735

1 7673

1 9738

2 2107

2 4760

2 7731

3 1058 3 3946

0.13

1 1300

1 2769

1 4429

1 6305

1 8424

2 0820

2 3526

2 6584

3 0040

0.14

1 1400

1 2996

1 4815

1 6890

1 9254

2 1950

2 5023

2 8526

3 2519

3 7072

0.15

1 1500

1 3225

1 5209

1 7490

2 0114

2 3131

2 6600

3 0591

3 5179

4 0456

368

Appendix

e"k

T a b l e 3:

k

e

-k

k

e"k

k

e

-k

k

e

-k

.01

.9900

.26

.7711

.51

.6005

.76

.4677

.02

.9802

.27

.7634

.52

.5945

.77

.4630

.03

.9704

.28

.7558

.53

.5886

.78

.4584

.04

.9608

.29

.7483

.54

.5827

.79

.4538

.05

.9512

.30

.7408

.55

.5769

.80

.4493

.06

.9418

.56

.5712

.81

.4449

.07

.9324

.57

.5655

.82

.4404

.08

.9231

.58

.5599

.83

.4360

.09

.9139

.59

.5543

.84

.4317

.10

.9048

.60

.5488

.85

.4274

.11 .12

.31

.7334

.32

.7261

.33

.7189

.34

.7118

.35

.7047

.8958

.36

.6977

.61

.5434

.86

.4232

.8869

.37

.6907

.62

.5379

.87

.4190

.13

.8781

.38

.6839

.63

.5326

.88

.4148

.14

.8694

.39

.6771

.64

.5273

.89

.4107

.15

.8607

.40

.6703

.65

.5220

.90

.4066

.16

.8521

.41

.6637

.66

.5169

.17

.8437

.5117

.91

.4025

.67

.18

.8353

.68

.5066

.19

.8270

.69

.5016

.20

.8187

.70

.4966

.21

.42

.6570

.43

.6505

.44

.6440

.45

.6376

.8106

.46

.6313

.71

.4916

.22

.8025

.47

.6250

.72

.23

.7945

.48

.6188

.24

.7866

.49

.25

.7788

.50

.92

.3985

.93

.3946

.94

.3906

.95

.3867

.96

.3829

.4868

.97

.3791

.73

.4819

.98

.3753

.6126

.74

.4771

.99

.3716

.6065

.75

.4724

1.00

.3679

Appendix

e"k

k

e"k

k

1.1

.3329

3.1

.04505

1.2

.3012

3.2

.04076

1.3

.2725

3.3

.03688

1.4

.2426

3.4

.03337

1.5

.2231

3.5

.03020

1.6

.2019

3.6

.02732

1.7

.1827

3.7

.02472

1.8

.1653

3.8

.02237 .02024

1.9

.1496

3.9

2.0

.1353

4.0

.01832

2.1

.1225

4.1

.01657

2.2

.1108

4.2

.01500

2.3

.1003

4.3

.01357

2.4

.09072

4.4

.01228

2.5

.08208

4.5

.01111

2.6

.07427

4.6

.01005

2.7

.06721

4.7

.009095

2.8

.06081

4.8

.008230

2.9

.05502

4.9

.007447

3.0

.04979

5.0

.006738

370

Table

Appendix

4 : Random numbers w i t h an equal d i s t r i b u t i o n

2049

9135

6601

5112

5266

6728

2188

3846

3734

4017

7087

2825

8667

8831

1617

7239

9622

1622

0409

5822

6187

0189

5748

0380

8820

3606

7316

4297

2160

8973

4178

3758

0191

5361

9605

9605

1526

8370

4969

0463

3844

4187

2145

8365

5964

0501

9196

4456

6573

9751

4932

7312

3579

7867

4000

1056

8830

1662

0869

2580

7032

7117

8283

0767

1074

5571

8464

8057

1698

7343

9058

0455

2463

1812

7991

6371

6881

5540

2774

2163

8476

5802

9722

0325

1001

1337

2042

9695

5242

8808

5749

8807

5926

7406

0537

2788

4704

8574

8016

9034

4829

5817

7136

8337

9009

9304

4010

5817

7126

9175

0634

5168

4614

4769

3246

7559

8221

8030

6603

4735

2829

7794

9246

6385

4330

3750

1255

2157

9415

4161

6851

0071

7014

9558

9956

2151

9359

6002

6458

8926

4262

8457

9217

8257

5462

2705

9735

2004

2800

6913

8660

7450

8436

9606

9996

9287

0972

4065

4140

9403

1962

4877

2789

9528

4654

2356

6478

7438

6292

1122

3100

1200

2648

0649

2406

4507

4102

2498

7771

6545

4658

6444

6375

6053

4427

1425

1938

9075

2627

4471

9335

9644

5599

6565

8249

6899

8688

7347

9876

0079

5688

9609

0763

1792

4400

3490

8251

6512

1296

5359

9981

6570

9188

3064

5262

7601

4111

7835

1855

4210

2041

9584

5237

8034

5720

4701

9016

8033

5941

4710

7470

7973

3232

5128

8315

7261

5645

1775

1428

1486

Appendix

9053

1349

4317

1495

9279

0474

5898

7622

0344

2412

3358

7831

2562

1115

1940

8754

4528

0335

0755

3294

3768

2114

2675

4256

9672

9264

3236

5791

8289

0402

7082

0519

5926

7306

2429

0199

3925

7661

6604

4570

7176

1045

9291

1734

5984

3088

0943

9323

7545

8128

8817

4047

7333

7390

2280

7320

5015

7812

6053

4372

8572

8448

9060

0079

5633

0388

9623

1694

6614

2802

7245

8673

9770

8346

9333

9368

4390

5368

8324

6634

0787

2616

6460

9258

4275

9127

7982

4834

4933

7102

5476

8770

7390

2335

2677

4597

7797

8760

5522

0374

7715

3563

4950

3707

8933

3102

1587

7336

7943

2301

3454

5165

5122

7100

5089

1244

5316

2230

3731

4669

5173

2842

5529

0841

7762

4943

5279

4453

6010

7884

6982

3868

0176

8023

7819

4782

5676

7465

8792

7513

0130

3536

0034

6191

0704

7602

3990

2271

8877

6844

1198

3035

9335

9699

4403

3048

8234

1416

3706

9143

4999

4950

4053

6294

0680

3117

4294

2768

1003

1568

3922

9964

3487

8903

6533

5209

2952

5523

0274

9608

0974

3689

7763

5119

6602

4891

5275

5181

2128

5327

4153

8232

9981

9184

2291

5232

6985

4320

2048

9300

3392

6048

5311

1391

8125

9314

5933

6146

7525

2079

3621

5593

7559

8211

6141

8419

3933

7992

6591

6890

7087

2714

8663

8057

1587

7347

9831

0485

7876

3919

9456

8382

2860

2270

9033

5050

5825

5589

8277

1817

371

372

Appendix

Table

*(X)

X

=

5 : Area under the standardized normal distribution function

I

i/inr- e " ^

;

$(-x) = 1 - »(x) Ox

0

1

2

3

4

5

6

7

8

9

0

.5000

.5040

.5080

.5120

.5160

.5199

.5239

.5279

.5319

.5359

0

1

.5398

.5438

.5478

.5517

.5557

.5596

.5636

.5675

.5714

.5754

0

2

.5793

.5832

.5871

.5910

.5948

.5987

.6026

.6064

.6103

.6141

0

3

.6179

.6217

.6255

.6293

.6331

.6368

.6406

.6443

.6480

.6517

0

4

.6554

.6591

.6628

.6664.

6700

.6736

.6772

.6808

.6844

.6879

0

5

.6915

.6950

.6985

.7019

.7054

.7088

.7123

.7157

.7190

.7224

0

6

.7258

.7291

.7324

.7357

.7389

.7422

.7454

.7486

.7518

.7549

0

7

.7580

.7612

.7642

.7673

.7704

.7734

.7764

.7794

.7823

.7852

0

8

.7881

.7910

.7939

.7967

.7996

.8023

.8051

.8078

.8106

.8133

0

9

.8159

.8186

.8212

.8238

.8254

.8289

.8315

.8340

.8365

.8389

1

0

.8413

.8438

.8461

.8485

.8508

.8531

.8554

.8577

.8599

.8621

1

1

.8643

.8665

.8686

.8708

.8729

.8749

.8770

.8790

.8810

.8830

1

2

.8849

.8869

.8888

.8907

.8925

.8944

.8962

.8980

.8997

.9015

1

3

.9032

.9049

.9066

.9082

.9099

.9115

.9131.

9147

.9162

.9177

1

4

.9192

.9207

.9222

.9236

.9251

.9265

.9279

.9292

.9306

.9319

1

5

.9332

.9345

.9357

.9370

.9382

.9394

.9406

.9418

.9429

.9441

1

6

.9452

.9463

.9474

.9484

.9495

.9505

.9515

.9525

.9535

.9545

1

7

.9554

.9564

.9573

.9582

.9591

.9599

.9608

.9618

.9625

.9633

1

8

.9146

.9649

.9656

.9664

.9671

.9678

.9686

.9693

.9699

.9706

1

9

.9713

.9719

.9726

.9732

.9738

.9744

.9750

.9756

.9761

.9767

2

0

.9772

.9778

.9783

.9788

.9793

.9798

.9803

.9808

.9812

.9817

2

1

.9821

.9826

.9830

.9834

.9838

.9842

.9846

.9850

.9854

.9857

2

2

.9861

.9864

.9868

.9871

.9875

.9878

.9881

.9884

.9887

.9890

2

3

.9893

.9896

.9898

.9901

.9904

.9906

.9909

.9911

.9913

.9916

2

4

.9918

.9920

.9922

.9925

.9927

.9929

.9931

.9932

.9934

.9936

2

5

.9938

.9940

.9941

.9943

.9945

.9946

.9948

.9949

.9951

.9952

2

6

.9953

.9955

.9956

.9957

.9959

.9960

.9961

.9962

.9963

.9964

2

7

.9965

.9966

.9967

.9968

.9969

.9970

.9971

.9972

.9973

.9974

2

8

.9974

.9975

.9976

.9977

.9977

.9978

.9979

.9979

.9980

.9981

2

9

.9981

.9982

.9982

.9983

.9984

.9984

.9985

.9985

.9986

.9986

0

Bibliography A tripel [a,b,c] shall precede each reference in the bibliography, so that: a: chapter b: B, if it is a book A, if it is an article or other special research c: running-index in alphabetical order according to author. The books and articles cited the

in the general bibliography encompass

broad aspects of Operations Research and as such are not listed

according to the chapters of this handbook. The most important journals and their abbreviations are: CACM

: Communications of the Association for Computing Machinery

JACM

: Journal of the Association for Computing Machinery

MS

: Management Science

NRLQ

: Naval Research Logistics Quarterly

ORQ

: Operational Research Quarterly

ORSA

: Journal of the Operations Research Society of America

Op.Res.Verf.: Operations Research Verfahren SIAM

: Journal of the Society for Industrial applied Mathematics

Ufo

: Unternehmensforschung

ZOR

: Zeitschrift für Operations Research

Chapter 0 [O.B.I.] Ackoff, R.L., Sasieni, M.W.; Operations Research, Verlag Kunst und Wissen, Stuttgart 1970 [O.B.2.] Angermann, A.; Entscheidungsmodelle, F. Nowack Verlag, Frankfurt/Main, 1963 [O.B.3.] Brockhoff, K.; Unternehmensforschung, W. de Gruyter, Berlin - New York 1973

374

Bibliography

[O.B.4.] Churchman, C.W.; Ackoff, R.L.; Arnoff, E.L.; Operations Research, R. Oldenbourg Verlag, Wien - München 1961 [O.B.5.] Desbazeille, G.; Unternehmensforschung, Berliner Union/ Kohlhammer, Stuttgart 1970 [O.B.6.] Dück, W.; Bliefernich, M.; ( eds.) Operationsforschung, Deutscher Verlag der Wissenschaften, Berlin 1972 [O.B.7.] Henn, R. ; Klinzi, H.P.; Einführung in die Unternehmensforschung, Band I und II, Heidelberger Taschenbücher, Bde. 38 und 39, Springer Verlag, Berlin - Heidelberg New York 1968 [O.B.8.] Kaufmann, A.; Faure, R.; Methoden des Operations Research, W. de Gruyter, Berlin - New York 1974 [O.B.9.] Körth, H.; Otto, C.; Runge, W.; Schoch, M.; (Hrsg.), Lehrbuch der Mathematik für Wirtschaftswissenschaften, Westdeutscher Verlag Opladen 1973 [O.B.IQ] Kulhavy, E.; Operations Research, Betriebswirtschaftlicher Verlag Dr. Gabler, Wiesbaden 1963 [O.B.II] Kwak, N.K.; Mathematical Programming with Business Applications, Mc Graw Hill, New York 1973 [O.B.12] Mc Millan, Jr. C.; Mathematical Programming, J. Wiley & Sons, New York 1970 [0.B.13.] Mitchell, G.H.; Operational Research: Techniques and Examples, The English Universities Press Ltd., London 1972 [O.B.14.] Müller-Merbach, H.; Operations Research, Verlag F. Vahlen, München 1973 [O.B.15.] Neumann, K. ; Operations Research A - F (working papers), Karlsruhe 1972 [O.B.16.] Sasieni, M.W.; Yaspan, A.; Friedman, L.; Operations Research: Methods and Problems, J. Wiley & Sons Inc., New York 1959 [O.B.17.] Schneeweiß, H.; Entscheidungskriterien bei Risiko, in: Ökonometrie und Unternehmensforschung Band VI, Springer Verlag, Berlin - Heidelberg - New York 1967

Bibliography

375

[O.B.18.] Stahlknecht, P.; Operations Research, in: Schriften zur Datenverarbeitung, Band 3, F. Vieweg & Sohn, Braunschweig 1970 [O.B.19.] Theil, H.; Boot, J.C.G.; Kloek, T.; Operations Research and Quantitative Economics, Mc Graw - Hill, New York 1965 [O.B.20.] Weber, H.H.; Einführung ins Operations Research, Akademische Verlagsgesellschaft, Frankfurt/Main 1972 [O.B.21.] Autorenkollektiv, Mathematische Standardmodelle der Operationsforschung, Verlag Die Wirtschaft, Berlin 1972 [O.A.1.]

Stahlknecht, P.; OR - Ein Leitfaden für Praktiker, Teil 1: Input - Output - Modelle/Optimierungsverfahren, in: Elektronische Datenverarbeitung, Beiheft 6, F. Vieweg & Sohn, Braunschweig 1965

[O.A.2.]

Stahlknecht,P.; OR - Ein Leitfaden für Praktiker, Teil 2: Simulationsmethoden/Ablauf - und Terminplanung, in: Elektronische Datenverarbeitung, Beiheft 7, F. Vieweg & Sohn, Braunschweig 1966

Chapter 1 [l.B.l.]

Arrow, K.J.; Hurwicz, L.; Uzawa, H.; Studies in Linear and Nonlinear Programming, Stanford University Press, Stanford (Calif.) 1958

[I.B.2.]

Berge, C.; Ghouila-Houri, A.; Programming, Games and Transportation Networks, J. Wiley & Sons Inc. New York 1965

[I.B.3.]

Bloech, J.; Lineare Optimierung für Wirtschaftswissenschaftler, Westdeutscher Verlag Opladen 1974

[I.B.4.]

Charnes, A; Cooper, W.W.; Henderson, A.; An Introduction

[I.B.5.]

Collatz, L.; Wetterling, W.; Optimierungsaufgaben,

to Linear Programming, J. Wiley & Sons, New York 1953 Heidelberger Taschenbücher, Band 15, Springer Verlag, Berlin - Heidelberg - New York 1966 [I.B.6.]

Cooper,L.; Steinberg, D.; Introduction to Methods of Optimization, W.B. Saunders Co., Philadelphia-London-Toronto 1970

376

Bibliography

[ I . B . 7 . ] Daritzig, G.B.; Linear Programming and Extensions, Princetown U n i v e r s i t y P r e s s , Princetown N.J. 1962 [ I . B . 8 . ] Dinkelbach, W.; S e n s i t i v i t ä t s a n a l y s e n und parametrische Programmierung, i n : Ökonometrie und Unternehmensforschung, Band X I I , Springer Verlag, B e r l i n - Heideiber - New York 1969 [ I . B . 9 . ] Ferguson, R.D.; Sargent, L . F . ; Linear Programming: Fundamentals and A p p l i c a t i o n s , Mc Graw - H i l l Comp., New York 1958 [1.B.10.]Gal, T . ; Betriebliche Entscheidungen und parametrische Programmierung, W. de Gruyter, B e r l i n - New York 1972 [ l . B . l l . ] Gale, D.; The Theory of Linear Economic Models, Mc Graw H i l l Book Comp., New York - Toronto - London, 1960 [1.B.12.] Gass, S . I . ; Linear Programming, Mc Graw - H i l l Book Comp., New York 1969 [l.B.13.1 Glicksman, A.M.; An Introduction to Linear Programming and the Theory of Games, J. Wiley & Sons I n c . , New York London 1963 [ l . B . 1 4 . ] H a d l e y , G.; Linear Programming, Addison Wesley Publ.Comp., Reasing (Mass.) 1969 [ l . B . 1 5 . ] J u d i n , D.B.;

G o l s t e i n , E.G.; Lineare Optimierung

I,

Akademie - Verlag, B e r l i n 1968 [ l . B . 16.]Judin, D.B.; G o l s t e i n , E.G.; Lineare Optimierung

II,

Akademie - Verlag, B e r l i n 1970 [ l . B . 1 7 . ] K a r l i n , S . ; Mathematical Methods and Theory of Games, in: Programming and Economics, Vol. I I : The Theory of

Infinite

Games, Addison Wesley, Reading (Mass.) 1959 [l.B.18.]Kaufmann, A . ; Methods and Models of Operations Research, Prentice Hall I n c . , Englewood C l i f f s N.J. 1963 [1.B.19.]Krekö, B.; Lehrbuch der linearen Optimierung, Deutscher Verlag der Wissenschaften, B e r l i n 1964 [ l . B . 2 0 . ] Kromphard, W.; Henn, R.; Förstner, K.; Lineare Entscheidungsmodelle, Springer Verlag, B e r l i n - Göttingen Heidelberg 1962

Bibliography

.B.21.] Kuhn, H.W.; Tucker, A.W.;

377

(eds.), Linear Inequalities

and Related Systems, Annals of Mathematics Study No. 38, Princetown University Press, Princetown N.J. 1956 .B.22.] Luenberger, D.G.; Introduction to Linear and Nonlinear Programming, Addison Wesley Pubi. Comp., Reading (Mass.) 1973 .B.23.] Naylor, H.; Byrne, E.T.; Linear Programming, Wadsworth Pubi. Comp. Inc., Belmont (Calif.) 1963 .B.24.] Piehler, J.; Einführung in die lineare Optimierung, Verlag Harri Deutsch, Zürich - Frankfurt/Main 1969 .B.25.] Saaty, T.L.; Mathematical Methods of Operations Research, Me Graw - Hill Book Comp., New York 1959 .B.26.] Sakarovitch, M.; Notes on Linear Programming, Van Nostrand Reinhold Comp., New York 1972 .B.27.] Simonnard, M.; Linear Programming, Prentice Hall Inc., Englewood Cliffs N.J. 1966 .B.28.] Vajda, S.; Mathematical Programming, Addison Wesley Pubi. Comp., Reading (Mass.) 1961 .B.29.] Vajda, S.; The Theory of Games and Linear Programming, Methuen & Comp. Ltd. and Science Paperbacks, London 1970 .B.30.] Vazsonyi, A.; Scientific Programming in Business and Industry, J. Wiley & Sons, New York 1958 .B.31.] Zimmermann, H.-J.; Zielinski, J.; Lineare Programmierung, W. de Gruyter, Berlin - New York 1971 .A.I.]

Beale, E.M.L.; "An Alternate Method of Linear Programming" Proc. Cambridge Phil. Soc. 50/4; 1954

.A.2.]

Beale, E.M.L.; "Cycling in the Dual Simplex Algorithm",

.A.3.]

Dantzig, G.B.; Ford Jr., L.R.; Fulkerson, D.R.; "A Primal

.A.4.]

Dantzig, G.B.; Wolfe, P.; "Decomposition Principle for

in: NRLQ 2; 1955 - Dual Algorithm for Linear Programs" in: [1.B.21.] Linear Programs", ORSA 8/1, 1960

378

Bibliography

[I.A.5.]

Eaves, B.C.; "The Linear Complementary Problem, in: MS

[I.A.6.]

Frisch, R.; "The Multiplex Method for Linear Programming",

17/9, 1971 in: Memorandum fra Universitetets Socialtfkonomiske Instit u t e Oslo 1955 [I.A.7.]

Gal, T.; Nedoma, J.; "Methode zur Lösung mehrparametrischer

[I.A.8.]

Habr, J.; "Die Frequenzmethode zur Lösung des Transport-

linearer Programme", in: Op.Res.Verf. XII, 1972 problems und verwandter linearer Programmierungsprobleme", in: Wissenschaftliche Zeitschrift der Universität Dresden 10/5, 1961 [I.A.9.]

Hadley, G.F.; Simmonard, W.A.; "A Simplified two phase technique for the Simplex Method", in: NRLQ 6/3, 1959

[I.A.10.] Kelley, Jr. J.E.; "Parametric Programming and the PrimalDual Algorithm", in: ORSA 7/3, 1959 [I.A.11.] Kuhn, H.W.;"The Hungarian Method for the Assignment Problem", in: NRLQ 2/1; 1955 [I.A.12.] Künzi, H.P.; "Die Duoplex - Methode", in: Ufo 7/3, 1963 [I.A.13.] Künzi, H.P.; Kleibohm, K.; "Das Triplex - Verfahren", in: Ufo 12/3, 1963 [I.A.14.] Lemke, C.E.; "The Dual Method of Solving the Linear Programming Problem", in: NRLQ 1/1, 1954 [I.A.15.] Orchard - Hayes, W.; "Evolution of Linear Programming Computing Techniques", in: MS 4/2, 1958 [I.A.16.] Saaty, T.; Gass, S.; "The Computational Algorithm for the parametric objective function", in: NRLQ 2/1 & 2, 1955 [I.A.17.] Wagner, H.M.; "A Two - Phase Method for the Simplex Tableau", in: ORSA 4/4, 1956

Chapter 2 [2.B.I.]

Brauer, K.M.; Binäre Optimierung, C. Heymanns Verlag, Köln 1969

[2.B.2.]

Burkard, R.E.; Methoden der Ganzzahl igen Optimierung, Springer Verlag, Wien - New York 1972

B-ibl-iography

[2.B.3.]

Cooper, L.; Steinberg, D.; [ 1.B.6. ]

[2.B.4.]

Greenberg, H.; Integer Programming, in: Mathematics in

379

Science and Engineering, vol. 76, Academic Press, New York - London 1971 [2.B.5.]

Hu, T.C.; Integer Programming and Network Flows; Addison Wesley Publ. Co. Reading (Mass.), 1970

[2.B.6.]

Korbut, A.A.; Finkelstein, J.J.; Diskrete Optimierung, Akademie - Verlag, Berlin 1971

[2.B.7.]

Saaty, T.L.; [1.B.25.]

[2.B.8.]

Saaty, T.L.; Optimization in Integers and Related Extremal Problems, Mc. Graw - Hill Book Comp., New York 1970

[2.A.I.]

Balas, E.; "An Additive Algorithm for Solving Linear Programs with Zero - One Variables", in: ORSA 13/4, 1965

[2.A.2.]

Balas, E.; "Discrete Programming by the Filter Method", in: ORSA 15/5, 1967

[2.A.3.1

Benders, J.F.; "Partitioning Procedures for Solving Mixed - Variables Programming Problems", in: Numerische Mathematik 4, 1962

[2.A.4.]. Ben - Isreal, A.; Charnes, A.; "On some Problems on Diophantine Programming", in: Cahiers Centre Etud. Rech. Opérât. 4, 1962 [2.A.5.]

Dakin, R.J. ; "A Tree Search Algorithm for Mixed Integer

[2.A.6.]

Driebeek, N.J.; "An Algorithm for the Solution of Mixed

Programming Problems", in: The Computer Journal 8/3, 1965

Integer Programming Problems", in: MS 12/7, 1966 [2.A.7.]

Glover, F.; "A Multiphase Dual Algorithm for the Zero One Integer Programming Problem", in: ORSA 13/6, 1965

[2.A.8.3

Glover, F.; "A New Foundation for a Simplified Primal

In-

teger Programming Algorithm", in: ORSA 16/4; 1968 [2.A.9.1

Gomory, R.E.; "An all - integer programming Algorithm", in: Industrial Scheduling, Englewood Cliffs, N.J., Prentice Hall

1963

[2.A.10.] Gomory, R.E.; "Solving Linear Programming Problems in Integers", in: Proc.Sympos.Appl.Math. vol. X, 1960

380

Bibliography

[2.A.11.] Gomory, R.E.; "An Algorithm for Integer Solutions to Linear Programs", in: Graves, R.L.; Wolfe, P . ( H r s g . ) ; Recent Advances in Mathematical Programming, Mc Graw - H i l l Book Comp., New York 1963 [2.A.12.] Kolesar, P . J . ; "A Branch and Bound Algorithm for the Knapsack Problem", in: MS 13/9, 1967 [2.A.13.] Körte, B.; "Ganzzahlige Programmierung - Ein Überblick", in: Unternehmensforschung heute, Lecture Notes in Operations Research and Mathematical Systems Bd. 50, Springer Verlag, Berlin - Heidelberg - New York, 1971 [2.A.14.] Körte, B.; K r e l l e , W.; Oberhofer, W.; "Ein lexikographischer Suchalgorithmus zur Lösung allgemeiner ganzzahliger Programmierungsaufgaben", in: Ufo 13, 1969 (2 a r t i c l e s ) [2.A.15.] Land, A.H.; Doig, A.G.; "An Automatic Method of Solving Discrete Programming Problems", in: Econometrica 28/3, 1960 [2.A.16.] Lemke, C.E.; Spielberg, K.; "Direct Search Algorithm for Zero - One and Mixed - Integer Programming", in: ORSA 15/5, 1967 [2.A.17-] Noltemeier, H.; "Ganzzahlige Programme und kürzeste Wege in Graphen", in: 0p. Res. Verf. XIV, 1972 [2.A.18-] Noltemeier, H.; " S e n s i t i v i t ä t s a n a l y s e bei diskreten l i n e aren Optimierungsproblemen", in: Lecture Notes in Operations Research and Mathematical Systems vol. 30; Springer Verlag, Berlin - Heidelberg - New York, 1970 [2.A.19.] Noltemeier, H.; "Zum asymptotischen Algorithmus", in: 0p. Res. Verf. X V I I , 1973 [2.A.20.] Picard, J . - C . ; R a t l i f f , H.D.; "A Graph - Theoretic Equivalence for Integer Programs", in: ORSA 21/1; 1973 [2.A.21.] Young, R.D.; "A Simplified Primal (All Integer) Integer Programming Algorithm", in: ORSA 16/4, 1968

Bibliography

381

Chapter 3 [3.B.I.]

Bellman, R. ; Cooke, K.L.; Lockett, J.A.; Algorithms, Graphs and Computers;in: Mathematics in Science and Engineering, vol. 62, Academic Press, New York - London 1970

[3.B.2.]

Berge, C.; Ghouila - Houri, A., [I.B.2.]

[3.B.3.]

Berge, C.; The Theory of Graphs and its Applications, J. Wiley & Sons Inc.,New York 1962

[3.B.4.]

Busacker, R.G.; Saaty, T.L.; Finite Graphs and Networks, Mc Graw Hill, New York 1965

[3.B.5.]

Domschke, W.; Kürzeste Wege in Graphen: Algorithmen, Verfahrensvergleiche; Mathematical Systems in Economics, Bd. 2, Hain Verlag, Anton Hain, Meisenheim/Glan 1972

[3.B.6.]

Ford, Jr. L.R.; Fulkerson, D.R.; Flows in Networks, Princetown University Press, Princetown N.J. 1962

[3.B.7.]

Harary, F.; Graph Theory; Addison Wesley Pubi. Comp., Reading (Mass.) 1972

[3.B.8.]

Hu, T.C.; [2.B.5.]

[3.B.9.]

Kaufmann, A.; Einführung in die Graphentheorie; in: Orientierung und Entscheidung; R. Oldenbourg, München Wien 1971

[3.B.10.] Knödel, W. ; Graphentheoretische Methoden und ihre Anwendungen, in: Ökonometrie und Unternehmensforschung, Band XIII, Springer Verlag; Berlin - Heidelberg - New York 1969 [3.B.11.] König, D.; Theorie der endlichen und unendlichen Graphen, New York, Chelsea Pubi. Comp. 1950; (reprint; Leipzig, 1936) [3.B.12.] Marshall, C.W.; Applied Graph Theory; J. Wiley & Sons Inc., New York 1971 [3.B.13.] Noltemeier, H.; Graphentheorie, W. de Gruyter; Berlin New York 1975 [3.B.14.] Ore, 0.; Graphs and their Uses; Random House; The L.W. Singer Comp., New York 1963

382

[3.A.I.]

Bibliography

Breyer, F . ; " E i n Algorithmus zur Konstruktion kostenminimaler Zirkulationen in Netzen", i n : Op. Res. Verf. XV, 1973

[3.A.2.]

Busacker, R.G.; Gowen, P . J . ; "A Procedure for Determining a Family of Minimal - Cost Network Flow P a t t e r n s " ; ORO Technical Report 15, Operations Research O f f i c e , Johns Hopkins U n i v e r s i t y , 1961

[3.A.3.]

Dantzig, G.B.; "On the Shortest Route Through a Network", i n : MS 6/2, 1960

[3.A.4.]

Dantzig, G.B.; Fulkerson, D.R.; "Computation of Maximal Flows in Networks", i n : NRLQ 2/4, 1955

[3.A.5.]

D i j k s t r a , E.W.; "A Note on Two Problems in Connection with Graphs", i n : Numerische Mathematik 1, 1959

[3.A.6.]

Domschke, W.; " E i n neues Verfahren zur Bestimmung kostenminimaler Flüsse in Kapazitätendigraphen", i n : 0p. Res. Verf. XVI, 1973

[3.A.7.]

Edmonds, J . ; Karp, R.M.; "Theoretical

Improvements in A l -

gori tmic E f f i c i e n c y for Network Flow Problems", i n : JACM 19/2, 1972 [3.A.8.]

Elmaghraby, S . E . ; "Some Network Models in Management S c i e n c e " , i n : Lecture Notes in Operations Research and Mahtematical Systems, vol. 29, Springer Verlag, B e r l i n Heidelberg - New York 1970

[3.A.9.]

Farbey, B.A.; Land, A.H.; Murchland, J . D . ; "The Cascade Algorithm for Finding a l l Shortest Distances in a Directed Graph", i n : MS 14/1, 1967

[3.A.10.] Flood, M.M.; "The Traveling Salesman Problem", i n : ORSA 4/1, 1956 [3.A.11.] Floyd, R.W.; "Algorithm 97: Shortest Path", i n : CACM 5/6, 1962 [3.A.12.] Ford, J r . L . R . ; Fulkerson, D.R.; "A Simple Algorithm for Finding Maximal Network Flows and An A p p l i c a t i o n to the Hitchcook Problem", i n : Canadian Journal of Mathematics 9/2, 1957

Bibliography

383

[3.A.13.] Fulkerson, D.R.; "An out - of - kilter Method for Minimal Cost Flow Problems", in: SIAM 9/1, 1961 [3.A.14.] Hasse, M.; "Liber die Behandlung graphentheoretischer Probleme unter Verwendung der Matrizenrechnung", in: Wissenschaftliche Zeitschrift der Technischen Universität Dresden 10, 1961 [3.A.15.] Hässig, K.; "Theorie verallgemeinerter Flüsse und Potentiale", in: 0p. Res. Verf. XXI, 1975 [3.A.16.] Hoffman, A.J.; "A Generalization of Max Flow - Min Cut", in: Math. Progr. 6/3, 1974 [3.A.17.] Klein, M.; "A Primal Method for Minimal Cost Flows with Applications to the Assignment and Transportation Problems", in: MS 14/3, 1967 [3.A.18.] Kruskal Jr., J.B.; "On the Shortest Spanning Tree of a Graph and the Traveling Salesman Problem", in: Proc. Am. Math. Soc. 7, 1956 [3.A.19.] Land, A.H.; Stairs, S.W.; "The Extension of the Cascade Algorithm to Larger Graphs", in: MS 14/1, 1967 [3.A.20.] Little, J.D.C.; Murty, K.G.; Sweeny, D.W.; Karel , C.; "An Algorithm for the Traveling Salesman Problem", in: ORSA 11/5, 1963 [ 3 . A . 2 1 J Noltemeier, H.; [2.A.17.] [3.A.22.] Noltemeier, H.; [2.A.19.] [3.A.23.] Noltemeier, H.; "The Distribution of Minimal Total

Dura-

tion in Networks with high 'Arc Density" 1 , in: Op. Res. Verf. V, 1968 [3.A.24.] Noltemeier, H.; "An Algorithm for the Determination of Longest Distances in a Graph", in: Math. Progr. 9, 1975 [3.A.25. ] Picard, J.-C.-, Rati iff, H.D.

[ 2.A.20. ]

[3.A.26.] Steckhan, H.; "Güterströme in Netzen"; in: Lecture Notes in Operations Research and Mathematical Systems, vol.88, Springer Verlag, Berlin - Heidelberg - New York 1973

384

Bibliography

Chapter 4 [4.B.I.]

B e r b i g , R. ; Franke, R . ; Netzplantechnik, Verlag f ü r Bauwesen, B e r l i n 1973

[4.B.2.]

Federal E l e c t r i c C o r p o r a t i o n ; A Programmed I n t r o d u c t i o n

[4.B.3.]

Gewald, K. ; Kasper, K . ; S c h e l l e , H.; Netzplantechnik;

to PERT, J . Wiley & Sons I n c . , New York 1965 Band 2: Kapazitätsoptimierung, R. Oldenbourg, München Wien 1972 [4.B.4.] [4.B.5.]

Götzke, H.; Netzplantechnik, Fachbuchverlag L e i p z i g , 1969 Küpper, W.; Lüder, K. ; S t r e i t f e r d t , L . ; Netzplantechnik, Physica V e r l a g , Würzburg - Wien 1975

[4.B.6.]

M i l l e r , R.W.; PERT, R.v. D e c k e r ' s Verlag G. Schenk, Hamburg - B e r l i n 1965

[4.B.7.]

R i e s t e r , W.F.; Schwinn, R . ;

Projektplanungsmodelle,

[4.B.8.]

Thumb, N.; Grundlagen und P r a x i s der Netzplantechnik,

Physica V e r l a g , Würzburg - Wien 1970 Verlag Moderne I n d u s t r i e , München 1968 [4.B.9.]

V o i g t , J . - P . ; Fünf Wege der Netzplantechnik, V e r l a g s g e s e l l s c h a f t R. M ü l l e r , Köln - Braunsfeld 1971

[ 4 . B . 1 0 . ] W i l l e , H.; Gewald, K.; Weber, H.D.; Netzplantechnik, Band I : Z e i t p l a n u n g ; R. Oldenbourg, München - Wien 1967 [ 4 . B . I I J Zimmermann, H . J . ; Netzplantechnik, Sammlung Göschen, Bd. 4011, W. de Gruyter, B e r l i n - New York 1971 [4.A.I.]

C l i n g e n , C . T . ; "A M o d i f i c a t i o n of F u l k e r s o n ' s PERT A l g o r i t h m " , i n : ORSA 12/4, 1964

[4.A.2.]

Kelley, Jr. J.E.; "Critical

Path Planning and Scheduling:

Mathematical B a s i s " , i n : ORSA 9/3, 1961 [4.A.3.]

Lambourn, S . ; "Ressource A l l o c a t i o n and M u l t i p r o j e c t Scheduling (RAMPS) - A New Tool on Planning and C o n t r o l " , i n : The Computer Journal 5, 1963

[4.A.4.]

M a r t i n , J . J . ; " D i s t r i b u t i o n of the Time Through a D i r e c ted A c y c l i c Network", i n : ORSA 13/1, 1965

Bibliography [4.A.5.J

385

Meyer, H.; "Stochastische Netzwerke vom Typ GERT", in: Op. Res. Verf. X V I I , 1973

[4.A.6.]

Neumann, K.; "Entscheidungsnetzpläne", in: Op. Res. Verf. X I I I , 1972

[4.A.7.]

Noltemeier, H.; "Netzplantechnik"; in: Management Lexikon, Gabler Verlag, Wiesbaden 1972

[4.A.8.]

P r i t s k e r , A.A.B.; "GERT Networks", in: The Production En-

[4.A.9.]

van Slyke, R.W.; "Monte Carlo Methods and the PERT Problem",

gineer 1968 in: ORSA 11/5, 1963 [4.A.10.] Welsh, D.J.A.; "Super - c r i t i c a l Arcs of PERT - Networks", in: ORSA 14/1, 1966

Chapter 5 [5.B.I.]

Abt, C.C.; Serious Games, The Viking Press, New York 1970

[5.B.2.]

Berge, C.; Ghouila - Houri, A.; [ I . B . 2 . ]

[5.B.3.]

Burger, E.; Einführung in die Theorie der S p i e l e , W. de Gruyter, Berlin 1966

[5.B.4.]

C o l l a t z , L . ; Wetterling, W., [ I . B . 5 . ]

[5.B.5.]

Davis, M.D.; Game Theory, Basic Book Inc. New York London 1970

[5.B.6.]

Dresher, M.; Strategische Spiele, Verlag I n d u s t r i e l l e Organisation, Zürich 1961

[5.B.7.]

Glicksman, A.M.; [1.B.13.]

[5.B.8.]

K a r l i n , S . ; [1.B.17.]

[5.B.9.]

Kromphard, W.; Henn, R.; Förstner, K.; [1.B.20.]

[5.B.10.] Luce, R.D.; R a i f f a , H.; Games and Decisions, J. Wiley & Sons Inc.,London - Sydney 1957 [5.B.11.] Me Kinsey, J . ; Introduction to the Theory of Games, Mc Graw - H i l l , New York 1952 [5.B.12.] Morgenstern, 0 . ; Spieltheorie und Wirtschaftswissenschaft, R. Oldenbourg, Wien - München 1963 [5.B.13.] v. Neumann, J . ; Morgenstern, 0 . ; Theory of Games and Economic Behaviour, Princetown University Press, Princetown N.J. 1953

386

Bibliography

[5.B.14.] Owen, G.; Game Theory, W.B. Saunders Comp., Philadelphia 1968 [5.B.15.] Vajda, S.; [ 1.B.29. ] [5.A.I.]

Bohnenblust, H.F.; "The Theory of Games", in: Modern Mathematics for the Engineer ( ed.

Beckenbach) New York

1970 [5.A.2.]

Brown, R.H.; "The Solution of a Certain Two - Person ZeroSum Game", in: ORSA 5/1, 1957

[5.A.3.]

Lemke, C.E.; "Bimatrix Equilibrium Points and Mathematical Programming", in: MS 11, 1965 (ser. A)

[5.A.4.]

Nash, J.F.; "Equilibrium Points in N - Person Games", in:

[5.A.5.]

Nash, J.F.; "Non - cooperative games"; in: Annals of

Proc. Nat. Ac. Sc. 36; 1950 Mathematics, 54, 1951 [5.A.6.1

Neumann, K.; "Kooperative und nichtkooperative Zweipersonenspiele"; in: 0p. Res. Verf. IX, 1971

[5.A.7.]

Rosenmüller, J.; "On a Generalization of the Lemke Howson - Algorithm to noncooperative n - Person - Games"; in: SIAM 21/1, 1971

[5.A.8.]

Rosenmüller, J.; "Kooperative Spiele und Märkte", in: Lecture Notes in Economics and Mathematical

Systems,

vol. 53, 1971

Chapter 6 [6.B.U

Beckmann, M.J.; Dynamic Programming of Economic Decisions, Springer Verlag; Berlin - Heidelberg - New York 1968

[6.B.2.]

Bellman, R.; Dynamic Programming; Princetown University Press; Princetown N.J. 1962

[6.B.3.]

Bellman, R.; Dreyfus, S.; Applied Dynamic Programming; Princetown 1962

[6.B.4.]

Hadley, G.;

Non - Linear and Dynamic Programming;

Addison Wesley Publ. Comp. Reading (Mass.) 1964

Bibliography

[6.B.5.]

387

Howard, R.A.; Dynamic Programming and Markov Processes; J. Wiley & Sons Inc.; New York 1960

[6.B.6.]

Jacobs, O.L.R.; An Introduction to Dynamic Programming; The Theory of Multistage Decision Process; London 1967

[6.B.7.]

Nemhauser, G.L.; Einführung in die Theorie der dynamischen

[6.B.8.]

Neumann, K.; Dynamische Optimierung; BI Hochschultaschen-

Programmierung; R. Oldenbourg; München - Wien 1969 bücher Bd. 714a; Mannheim 1969 [6.B.9.]

Schneeweiß, C.; Dynamisches Programmieren; Physica Verlag; Würzburg - Wien 1974

[6.B.10.] Vazsonyi, A.; [6.A.I.]

1.B.30.

Bellman, R.; "Notes in the Theory of Dynamic Programming III; Equipment Replacement Policy"; RAND Report P 632; 1955

[6.A.2.]

Bellman, R.; "Dynamic Programming and the Numerical So-

[6.A.3.]

Bellman, R.; Dreyfus, S.; "Dynamic Programming and the

lution of Variational Problems"; in: ORSA 5/2; 1957 Reliability of Multicomponent Devices"; in: ORSA 6/2; 1958 [6.A.4.]

Dreyfus, S.E.; "Computational Aspects of Dynamic Programming", in: ORSA 5/3, 1957

[6.A.5.]

Ferschl, F.; "Grundzüge des Dynamic Programming", in: Ufo 3, 1959

[6.A.6.]

Held, M.; Karp, R.M.; "A Dynamic Programming Approach to Sequencing Problems", in: SIAM 10, 1962

[6.A.7.]

Künzi, H.P.; Müller, 0.; Nievergelt, E.; "Einführungskurs in die dynamische Programmierung", in: Lecture Note in Operations Research and Mathematical Systems, vol. 6, Springer Verlag, Berlin - Heidelberg - New York, 1968

[6.A.8.]

Mitten, L.G.; Nemhauser, G.L.; "Multistage Optimization", in: Chemical Engineering Progress 59, 1963

Chapter 7 [7.B.I.]

Feller, W.; An Introduction to Probability Theory and its

388

Bibliography

Applications I., J. Wiley & Sons Inc., New York 1957 [7.B.2. ]

Ferschl, F.; Zufallsabhängige Wirtschaftsprozesse, Physica Verlag, Würzburg - Wien 1964

[7.B.3. ]

Kaufmann, A.;

[7.B.4.]

Khintchine, A.Y.; Mathematical Methods in the Theory of

[1.B.18. ]

Queueing, in: Griffin's Statistical Monographs and Courses; No. 7 [7.B.5. ]

Lee, A.M.; Applied Queueing Theory, Mc Millan & Co. Ltd.,

[7.B.6.]

Morse, P.M.; Queues, Inventories and Maintenance, J. Wiley

London 1966

& Sons Inc., New York 1967 [7.B.7. ]

Newell, G.F.; Applications of Queueing Theory, London 1971

[7.B.8.]

Page, E. ; Queueing Theory in OR, London, Butterworth 1972

[7.B.9.]

Prabhu, N.U.; Queues and Inventories, J. Wiley & Sons Inc., New York 1965

[7.B.10.] Ruiz - Pala, E.; Avila - Beioso, K. ; Wartezeit und Warteschlange, Verlag Anton Hain, Meisenheim/Glan 1967 [7.B.11.] Saaty, T.L.; Elements of Queueing Theory, Mc Graw - Hill Book Comp., New York 1961 [7.B.12.] Schassberger, R.; Warteschlangen, Springer Verlag, Wien New York 1973 [7.B.13.] Takäcs, L.; Introduction to the Theory of Queues, Oxford University Press, New York 1962 [7.A.I.]

Doig, A.; "A Bibliography of the Theory of Queues", in:

[7.A.2.]

Erlang, A.K.; "Solution of some problems in the Theory of

Biometrika 44, 1957

Probabilities of Significance in Automatic Telephone Exchanges", in: The Post Office Electrical Engineer's Journal 10, 1917/18 [7.A.3. ]

Förstner, K.; "Ober das Auftreten und die Berechnung von Warteschlangen", in: Op. Res. Verf. I, 1963

[7.A.4. ]

Luchak, G.; "The Solution of the Single - Channel

Queueing

Equations Characterized by a Time - Dependent Poisson -

Bibliography

389

Distributed Arrival Rate and a General Class of Holding Times", in: ORSA 4/6, 1956 [7.A.5.]

Luchak, 6.; "The Distribution of the Time Required to Reduce to Some Preassigned Level a Single - Channel

Queue

Characterized by a Time - Dependent Poisson - Distributed Arrival

Rate and a General

Class of Holding Times", in:

ORSA 5/2, 1957 [7.A.6.]

Meisling, T.; "Discrete - Time Queueing Theory", in: ORSA 6/1, 1958

[7.A.7.]

Phipps, Jr. T.E.; "Machine Repair as a Priority Waiting -

[7.A.8.]

Saaty, T.L.;

[7.A.9.]

Scott, M.; Ulmer, M.B.; "Some Results for a Simple Queue

Line Problem", in: ORSA 4/1, 1956 "Résumé of Useful

Formulas in Queueing

Theory", in: ORSA 5/2, 1957

with Limited Waiting Room", in: ZOR 16, ser. A , 1972 [7.A.10.] Stange, K.; "Zwei in Reihe geordnete Schalter (mit einer Warteschlange dazwischen) bei Exponentialverteilung

der

AnkLinfte und Abgänge", in: Ufo 6, 1962 [7.A.ll.] Takäcs, L.; "Priority Queues", in: ORSA 12/1, 1964

Chapter 8 [8.B.I.]

Abadie, J.M. ( ed. ); Non - Linear Programming, NorthHolland Pubi. Comp. Amsterdam 1967

[8.B.2.]

Arrow, K.J.; Hurwicz, L.; Uzawa, H.;

[8.B.3.]

Coli atz, L. ; Wetterling, W.; [I.B.5.]

[8.B.4. ]

Cooper, L.; Steinberg, D.;

[8.B.5. ]

Karl in, S.;

[8.B.6.]

KLinzi, H.P.; Krelle, W. ; Nichtlineare

[I.B.I.]

[I.B.6.]

[1.B.17.] Programmierung,

Heidelberger Taschenbücher Band 172, Springer Verlag, Berlin - Heidelberg - New York 1975 (reprint; 1962) [8.B.7.]

Luenberger, D.G.; [1.B.22.]

[8.B.8.]

Mangasarian, O.L.; Nonlinear Programming, Mc Graw - Hill Book Comp., New York 1969

390

Bibliography

[8.B.9.]

Zangwill, W.I.; Nonlinear Programming: A Unified Approach, Prentice Hall Inc., Englev/ood Cliffs, N.J. 1969

[8.B.10.] Zoutendijk, G.; Methods of feasible Directions, Elsevier Publ. Comp., Amsterdam 1960 [8.A.I.]

Beale, E.M.L.; "On Quadratic Programming", in: NRLQ 6/3,

[8.A.2.]

Beale, E.M.L.; "On Minimizing a Convex Function Subject

1959 to Linear Inequalities", in: J. Roy. Stat. Soc. 17 B, 1955 [8.A.3.]

Czap, H.; Dual itat bei nichtlinearen Optimierungsproblemen und exakten Penalty - Funktionen", in: 0p. Res. Verf. XXI, 1975

[8.A.4.]

Fiacco, A.V.; Mc Cormick, G.P.; "The Sequential Unconstrained Minimization Technique for Nonlinear Programming, a Primal Dual Method", in: MS 10/2, 1964

[8.A.5.1

Frank, M.; Wolfe, P. ;"An Algorithm for Quadratic Programming", in NRLQ 3/1 & 2, 1956

[8.A.6.1

Kuhn, H.W.; Tucker, A.W.; "Non - Linear Programming", in: Proc. of the Second Berkely Symp. on Math. Stat, and Probab., Berkeley (Calif.), University Press 1950

[8.A.7.]

Lemke, C.E.; "A Method of Solution for Quadratic Programs", in: MS 8/4, 1962

[8.A.8.]

Markovitz, H.M.; "The Optimization of a Quadratic Function subject to Linear Constraints", in: NRLQ 3/1 & 2, 1956

[8.A.9.]

Moeschlin, 0.; "Zur Stützpunktwahl beim Schnittverfahren der nichtlinearen Programmierung, Teil I und II; in: Ufo 14, 1970

[8.A.10.] Rosen, J.B.; "Gradient Projection Method for Non - Linear Programming: Part I, Linear Constraints", in: SIAM 8/1, 1960 [8.A.ll.] Rosen, J.B.; "The Gradient Projection Method for Non Linear Programming: Part II", in: SIAM 9/4, 1961 [8.A.12.] Wolfe, P.; "Methods of Non - Linear Programming", in: Graves, R.L.; Wolfe, P. ( eds.); Recent Advances in Mathe-

Bibliography

391

matical Programming, Mc Graw - Hill Book Comp., New York 1963 [8.A.13.] Wolfe, P.; "The Simplex - Method for Quadratic Programming", in: Econometrica 27, 1959 [8.A.14.] Zangwill, W.I.; "Non - Linear Programming via Penalty Functions", in: MS 13/5, 1967

Chapter 9 [9.B.I.]

Buxton, J.N. (ed.); Simulation Programming Languages, in: Proceedings of the IFIP Working Conference on Simulation Programming Languages, North Holland Pubi. Comp., Amsterdam, 1968

[9.B.2.]

Hammersley, J.M.; Handscomb, D.C.; Monte Carlo Methods, Methuen,London, 1964

[9.B.3.]

Koxholt, R.; Die Simulation - ein Hilfsmittel der Unternehmensforschung, R. Oldenbourg, München - Wien 1967

[9.B.4.]

Krüger, S. ; Simulation, W. de Gruyter, Berlin - New York

[9.B.5.]

Meyer, R.C.; Newell, W.T.; Pazer, H.L.; Simulation in

1975 Business and Economics, Prentice Hall

Inc.,Englewood

Cliffs, N.J. 1969 [9.B.6.] [9.B.7.]

Mertens, P.; Simulation, Poeschel Verlag, Stuttgart 1969 Mihram, G.A. ; Simulation: Statistical Foundations and Methodology, in: Mathematics in Science and Engineering, vol. 92, Academic Press, New York - London 1972

[9.B.8.]

Naylor, T.H.; Balintfy, J.L.; Burdick, D.S.; Chu, K.; Computer Simulation Techniques, J. Wiley & Sons Inc., New York 1966

[9.B.9.]

Niemeyer, G.; Die Simulation von Systemabläufen mit Hilfe von Fortran IV, W. de Gruyter, Berlin - New York 1972

[9.B.10.] Niemeyer, G. ; Systemsimulation, Akademische Verlagsgesellschaft, Frankfurt/Main 1973 [9.B.11.] Tocher, K.D.; The Art of Simulation, The English Universities Press Ltd., London 1967

392

Bibliography

[9.A.I.]

Buxton, J.N.; Laski, J.G.; "Control and Simulation Language", in: The Computer Journal 5/3, 1963

[9.A.2J

Clark, C.E.; "The U t i l i t y of S t a t i s t i c s of Random Numbers", in: ORSA 8/2, 1960

[9.A.3.]

Clark, C.E.; "Importance Sampling in Monte Carlo Analy-

[9.A.4.]

Conway, R.W.; "Some Tactical Problems in Digital Simu-

[9.A.5.]

Dimsdale, B.; Markowitz, H.M.; "A Description of the

s i s " , in: ORSA 9/5, 1961 l a t i o n " , in: MS 10/1, 1963 SIMSCRIPT Language", in: IBM Systems Journal 3/1, 1964 [9.A.6.]

Harling, J . ; "Simulation Techniques in Operations Research: A Review", in: ORSA 6/3, 1958

[9.A.7.]

Jacoby, J.H.; Harrison, S . ; "Multi - Variable Experimen-

[9.A.8.]

Namnech, P.; "Vergleich von Zufallszahlen-Generatoren",

[9.A.9.]

Schneeweiß, H.; "Simulationstechnik", in: AKOR - S c h r i f t

tation and Simulation Models", in: NRLQ 9/2, 1962 in: Elektronische Rechenanlagen 8, 1966 Nr. 5, Berlin - Köln - Frankfurt/Main 1971 [9.A.10.]

van Slyke, R.M.; [4.A.9:]

Chapter 10 [10.B.1.]

Barlow, R.E.; Pochan, F . ; Mathematical Theory of R e l i a b i l i t y , J. Wiley & Sons I n c . , New York 1965

[10.B.2.]

Bussmann, K.F.; Mertens, P.; Operations Research und Datenverarbeitung bei der Instandhaltungsplanung, PoeschelVerlag, Stuttgart 1968

[10.B.3.]

Cox, D.R.; Renewal Theory, London 1962

[10.B.4.]

Lloyd, D.K.; Lepow, M.; R e l i a b i l i t y , Management Methods and Mathematics, Prentice Hall I n c . , Englewood C l i f f s 1962

[10.B.5.]

Proschan, F . ; Pólya Type D i s t r i b u t i o n s in Renewal Theory with an Application to an Inventory Problem, Prentice Hall I n c . , Englewood C l i f f s N.J. 1960

393

Bibliography [10.B.6.]

Roberts, N.H.; "Mathematical Methods in Reliability Engineering, New York 1962

[10.A.1.]

Bellman, R.; [6.A.I.]

[10.A.2.]

Chung - Kai Lai; Polland, H.; "An Extension of Renewal Theory", in: Proc. Am. Math. Soc. 3, 1952

[10.A.3.]

Derman, C.; Sachs, J.; "Replacement of Periodically

in-

spected Equipment", in: NRLQ 7/4, 1960 [10.A.4.]

Dreyfus, S.E.; "A Generalized Equipment Replacement Study", in: Rand Report 1957

[10.A.5.]

Ehrenfeld, S.; "Interpolation of the Renewal

Function",

[10.A.6.]

Marathe, V.P.; Nair, K.P.K. ; "Multistage Planned Replace-

in: 0RSA 14/1, 1966

ment Strategies", in: 0RSA 14/5, 1966 [10.A.7.]

Pyke, R.; "Markov Renewal Processes with Finitely many States", in: Ann. Math. Statist. 32/4, 1961

[10.A.8.]

Sasieni, N.W.; "A Markov Chain Process in Industrial Replacement", in: 0RQ 7/1, 1956

[10.A.9.]

Smith, W.L.;"Renewal Theory and its Ramifications", in: J. Roy. Statist. Soc. Ser. B. 20/2, 1958

[10.A.10.] Vergin, R.C.; "Optimal Renewal Policies for Complex Systems", in: NRLQ 15/4, 1968

Chapter 11 [ll.B.l.]

Andler, K.; Rationalisierung der Fabrikation und optimale Losgröße, Oldenbourg, München - Berlin 1929

[11.B.2.]

Baffa, E.S.; Taubert, W.H.; Production - Inventory Systems: Planning and Control, Richard D. Irwin Inc., 1972

[11.B.3.]

Kaufmann, A.;

[11.B.4.]

Müller, E.; Simultane Lagerdisposition und Fertigungsab-

[1.B.18.]

laufplanung bei mehrstufiger

Mehrproduktfertigung,

W. de Gruyter, Berlin - New York 1972 [11.B.5.]

Naddor, E. ; Lagerhaltungssysteme, Verlag Harri

Deutsch,

394

Bibliography

Frankfurt/Main - Zürich 1971 [11.B.6. ] Proschan, R.; [10.B.5. ] [11.B.7. ] Vazsonyi, A.; [1.B.30.] [11.B.8.]

Whitin, T.M.; The Theory of Inventory Management, Princetown University Press, Princetown N.J. 1953

[H.A. 1. ]

Beckmann, M.J.; "An Inventory Model for Arbitrary Interval and Quality Distributions of Demand',' MS 8/1, 1961

[11.A.2.]

Beckmann, M.J.; "An Inventory Policy for Repair Parts",

[ll.A.3.]

Bishop, J.L. Jr.; "Experience with a Successful System

in: NRLQ 6/3, 1959 for Forecasting and Inventory Control", in: ORSA 22/6, 1974 [11.A.4.]

Fromovitz, S.; "A Class of One - Period Inventory Models", in: ORSA 13/5, 1965

[11.A.5.]

Haehling von Lanzenauer, Ch.; "Optimale Lagerhaltung bei merhstufigen Produktionsprozessen", in: Ufo 11, 1967

[11.A.6.]

Henn, R.¡"Fließbandfertigung und Lagerhaltung bei mehreren Gütern", in: Ufo 9, 1965

[ll.A.7.]

Kao, E.P.C.; "A Discrete Time Inventory Model with Arbitrary Interval and Quantity Distributions of Demand", in: ORSA 23/6, 1975

[11.A.8.]

Morse, P.M.; "Solutions of a Class of Discrete - Time Inventory Problems", in: ORSA 7/1, 1959

[11.A.9.]

Ohse, D.; "Zur Bestimmung der wirtschaftlichen Bestellmenge bei Preisstaffeln", in: Ufo 14/3, 1970

[ll.A.10.] Popp, E.; "Einführung in die Theorie der Lagerhaltung", in:

Lecture Notes in Economics and Mathematical Systems,

vol. 7, Springer Verlag, Berlin - Heidelberg - New York 1968 [H.A.11.] Riepl, R.J.; "Ein deterministisches Mehrprodukt - Lagerhaltungsmodell", in: 0p. Res. Verf. XVII, 1973 [ll.A.12.] Scarf, H.; "The Optimality of (S,s) Policies in the Dynamic Inventory Problem", in: Mathematical Methods in the Social Sciences; Arrow, K.; Karlin, S.; Suppes, P.; (eds.)

Bibliography

395

Stanford University Press, Stanford ( C a l i f . ) 1960 [ l l . A . 1 3 . ] S i v a z l i a n , B.D.; "A Continous - review ( s , S ) Inventory System with Arbitrary I n t e r a r r i v a l D i s t r i b u t i o n between Unit Demand", in: ORSA 22/1, 1974 [ l l . A . 1 4 . ] Veinott, J r . A . F . ; "The Optimal Inventory Policy for Batch Ordering", in: ORSA 13/3, 1965 Chapter 12 [12.B.1.]

Baker, K.R.; Introduction to Sequencing and Scheduling, J. Wiley & Sons Inc., New York 1974

[12.B.2.]

Conway, R.W.; Maxwell, W.L.; M i l l e r , L.W.; Theory of Scheduling, Addison Wesley Publ. Comp., Reading - Palo Alto - London 1967

[12.B.3.]

Kern, W.; Optimierungsverfahren in der Ablauforganisation,

[12.B.4.]

Mensch, G.; Ablaufplanung, Westdeutscher Verlag, Köln und

Girardet Verlag, Essen 1967 Opladen 1968 [12.B.5.]

Müller, E . ; [11.B.4.]

[12.B.6.]

Müller - Merbach, H.; Optimale Reihenfolgen, in: Ökonometrie und Unternehmensforschung, Band XV, Springer Verlag, Berlin - Heidelberg - New York 1970

[12.B.7.]

Muth, J . P . ; Thompson, G.L.; Industrial

Scheduling,

[12.B.8.]

Roy, B.; Ablaufplanung, Oldenbourg Verlag, München -

Prentice Hall Inc..Englewood C l i f f s 1963 Wien 1968 [12.B.9.]

S i e g e l , T . ; Optimale Maschinenbelegungsplanung, E. Schmidt Verlag, Berlin 1974

[12.A.1.]

Bowman, E.H.; "The Schedule Sequencing Problem", in: ORSA 7/5, 1959

[12.A.2.]

Elmaghraby, S . E . ; "The Machine Sequencing Problem", in: NRLQ 15/2, 1968

[12.A.3.]

G i f f l e r , B.; Thompson, G.L.; "Algorithm for Solving Production - Scheduling Problems", in: ORSA 8/4, 1960

396

Bibliography

[12.A.4.]

Johnson, S.M.; "Discussion: Sequencing in Jobs on Two Machines with Arbitrary Time Lags", in: MS 5/3, 1959

[12.A.5.]

Johnson, S.M.; "Optimal Two and Three - Stage Production Schedules with Set Up Times Included", in: NRLQ 1/1,1954

[12.A.6.]

Korte, B.; Oberhofer, W.; "Zwei Algorithmen zur Lösung eines komplexen Reihenfolgeproblems", in: Ufo 12/4, 1968

[12.A.7.]

Lomnicki, Z.A.; "A 'branch and bound' Algorithm for the exact Solution of the Three - Machine Scheduling Problem", in: OPQ 16/1, 1965

[12.A.8.]

Manne, A.S.; "On the Job Shop Scheduling Problem", in: ORSA 8/2, 1960

[12.A.9.]

Noltemeier, H.; "Produktionsablaufplanung - ausgewählte Probleme und Methoden", in: Informationssysteme im Produktionsbereich, Oldenbourg, München - Wien 1975

[12.A.10.] Szwarc, W.; "Mathematical Aspects of the 3 x n Job - Shop Sequencing Problem", in: NRLQ 21/1, 1974 [12.A.11.] Szwarc, W.; "Optimal Elimination Methods in the m x n Flow Shop Scheduling Problem", in: ORSA 6/6, 1973

Chapter 13 [13.B.1.]

Behrens, K.C; Allgemeine Standortbestimmungslehre, Westdeutscher Verlag Köln und Opladen, 1961

[13.B.2.]

Bloech, J.; Optimale Industriestandorte, Physica Verlag, Würzburg - Wien 1970

[13.B.3.]

Bloech, J.; Ihde, G.-B.; Betriebliche Distributions-

[13.B.4.]

Christaller, W.; Die zentralen Orte in Süddeutschland,

planung, Physica Verlag, Würzburg - Wien 1972

Jena 1933 [13.B.5.]

Grundmann, W.; et. al.; Mathematische Methoden zur Standortbestimmung, Verlag Die Wirtschaft, Berlin 1968

[13.B.6.]

Lösch, A. ; Die räumliche Ordnung der Wirtschaft, Jena 1944

[13.B.7.]

Thünen, J.H.v.; Der

isolirte

Staat in Beziehung auf rd Landwirthschaft und Nationalökonomie, part 1, 3 printing,

Bibliography

397

Schumacher - Zarchl in (ed.), Berlin 1875 [13.B.8.]

Weber, A.; über den Standort der Industrien, Part 1, Reine Theorie des Standorts, Tübingen 1922

[13.A.1.]

Beckmann, M.J.; "über den optimalen Standort eines Verkehrsnetzes", in: Zeitschrift für Betriebswirtschaft 35, 1965

[13.A.2.]

Böventer, E.V.; "Die Struktur der Landschaft, Versuch einer Synthese und Weiterentwicklung der Modelle J.H. von Thünens, W. Christallers und A. Löschs, optimales Wachstum und optimale Standortverteilung", in: Schneider, E. (ed.) , Schriften des Vereins für Socialpolitik, N.F., Bd. 27, Berlin 1962

[13.A.3.]

Davis, P.L.; Ray, T.L.; "A Branch-Bound Algorithm for the Capacitated Facilities Location Problem", in: NRLQ 16/3, 1969

[13.A.4.]

Domschke, W.; "Modelle und Verfahren zur Bestimmung betribelicher und innerbetrieblicher Standorte - Ein überblick", in: Discussion Paper Nr. 24, Institut für Wirtschaftstheorie und Operations Research, Universität Karlsruhe 1973 and in ZOR 19/2, 1975 ser. B.

[13.A.5.]

Efroymson, M.A.; Ray, T.L.; "A Branch-Bound Algorithm for Plant Location", in: ORSA 14/3, 1966

[13.A.6.]

Eiselt, H.A.; von Frajer, H.; "Der optimale Industriestandort - Ein Verfahren mit den Kriterien Transportkosten, Arbeitsmarkt, Boden", in: Neues Archiv für Niedersachsen 24/4, 1975

[13.A.7.]

Feldmann, E.; Lehrer, F.A.; Ray, T.L.; "Warehouse Location under Continous Economies of Scale", in: MS 12, 1966

[13.A.8.]

Khumawala, B.M.; "An Efficient Branch and Bound Algorithm

[13.A.9.]

Kuehn, A.A.; Hamburger, M.J.; "A Heuristic Program for

for the Warehouse Location Problem", in: MS 18, 1972 Locating Warehouses", in: MS 9, 1963

398

Bibliography

[13.A.10.] Launhardt, W. ; "Die Bestimmung des zweckmäßigsten Standortes einer gewerblichen Anlage", in: Zeitschrift des Vereines Deutscher Ingenieure 26, 1882 [13.A.ll.] Manne, A.S.; "Plant Location under Economies of Scale Decentralization and Computation", in: MS 11, 1964 [13.A.12.] Müller - Merbach, H.; "Modelle der Stadtortbestimmung", in: Kosiol (ed.), Handwörterbuch des Rechnungswesens, Stuttgart 1970 [13.A.13.] Spielberg, K.; "Algorithms for the Simple

Plant-Location

Problem with Some Side Conditions", in: ORSA 17, 1969 [13.A.14.] Spielberg, K. ; "Plant Location with Generalized Search Origin", in: MS 16, 1962 [13.A.15.] Warszawski, A.; "Pseudo - Boolean Solutions to Multidimensional Location Problems", in: ORSA 22/5, 1974