CRC Handbook of Laser Science and Technology Supplement 2: Optical Materials 9781003067955, 0849335078, 9780849335075

In the CRC Handbook of Laser Science and Technology: Supplement 2, experts summarize the discovery and properties of new

1,039 157 38MB

English Pages 848 [847] Year 1994

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

CRC Handbook of Laser Science and Technology Supplement 2: Optical Materials
 9781003067955, 0849335078, 9780849335075

Table of contents :
Cover......Page 1
Title Page......Page 4
Series Page......Page 3
Copyright Page......Page 5
Preface......Page 6
The Editor......Page 7
Contributors......Page 8
Table of Contents......Page 14
Section 1: Optical Crystals......Page 18
Section 2: Optical Glasses......Page 84
Section 3: Optical Plastics......Page 100
Section 4: Optical Liquids......Page 112
Section 5: Filter Materials......Page 130
Section 6: Linear Electrooptic Materials......Page 148
7.1. Organic and Inorganic Materials......Page 162
7.2. Cluster-Insulator Composites......Page 265
8.1.1. Inorganic Materials......Page 284
8.1.2. Organic Materials......Page 304
8.2.1. Inorganic Materials......Page 314
8.2.2. Organic Materials......Page 344
8.3. Stimulated Raman and Brillouin Scattering......Page 349
9.1. Crystals and Glasses......Page 382
9.2. Organic and Inorganic Liquids......Page 418
Section 10: Elastooptic Materials......Page 430
Section 11: Photorefractive Materials......Page 446
Section 12: Nonlinear Optical Phase Conjugation Materials......Page 482
Section 13: Gradient-Index Materials......Page 514
Section 14: Liquid Crystals......Page 524
Section 15: Diamond Optics......Page 596
Section 16: Laser Crystals......Page 610
17.1. Bulk Glasses......Page 634
17.2. Waveguide Glasses......Page 650
18.1. Crystals......Page 686
18.2. Glasses......Page 706
18.3. Plastic Optical Fibers......Page 765
Section 19: Optical Coatings for High Power Lasers......Page 782
Appendix 1: Abbreviations, Acronyms, Initialisms, and Mineralogical or Common Names of Optical Materials......Page 830
Appendix 2: Abbreviations for Methods of Preparing Optical Materials and Thin Films......Page 836
Appendix 3: Designations of Russian Optical Glasses......Page 838
Index......Page 842

Citation preview

The CRC Press Laser and Optical Science and Technology Series Editor-in-Chief: Marvin J. Weber

Handbooks of Laser Science and Technology Edited by Marvin J. Weber Volume I: Lasers and Masers Volume II: Gas Lasers Volume III: Optical Materials, Part 1 Volume IV: Optical Materials, Part 2 Volume V: Optical Materials, Part 3 Supplement I: Lasers Supplement II: Optical Materials Thermodynamic and Kinetic Aspects of the Vitreous State, Sergei V. Nemilov

Forthcoming Handbook Titles Handbook of Laser Wavelengths

CRC HANDBOOK of LASER SCIENCE and TECHNOLOGY Supplement 2: Optical Materials

Editor

Marvin J. Weber, Ph.D. Lawrence Livermore National Laboratory University of California Livermore, California

CRC Press Boca Raton Ann Arbor London Tokyo

Library of Congress Cataloging-in-Publication Data CRC handbook of laser science and technology / editor, Marvin J. Weber. p. cm. — (CRC handbook of laser science and technology. Supplement 2) Includes bibliographical references and index. ISBN 0-8493-3507-8 (acid-free paper) 1. Optical materials—Handbooks, manuals, etc. 2. Lasers—Handbooks, manuals, etc. I. Weber, Marvin J. 1932. II. Series. QC374.C73 1995 621.36’6—dc20 94-27487 CIP This book represents information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the valid­ ity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or me­ chanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of specific clients, may be grantedby CRC Press, Inc., provided that $.50 per page photocopied is paid directly to Copyright Clearance Center, 27 Congress Street, Salem, MA 01970 USA. The fee code for users of the Transactional Reporting Service is ISBN 0-8493-3507-8/95 $0.00 + $.50. The fee is subject to change without notice. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. CRC Press, Inc.’s consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press for such copying. Direct all inquiries to CRC Press, Inc., 2000 Corporate Blvd., N. W., Boca Raton, Florida 33431.

(c) 1995 by CRC Press, Inc. No claim to original U. S. Government works International Standard Book Number 0-8493-3507-8 Library of Congress Card Number 94-27487 to be supplied Printed in the United States of America 2 3 4 5 6 7 8 9 0 Printed on acid-free paper

PREFACE As noted in the preface to Supplement I on lasers, although the laser is more than 30 years old, new lasers, new laser operating schemes, and new applications of lasers continue to proliferate. The need for improved optical materials for lasers and laser systems has also continued. In re­ cent years many new materials have been discovered which have extended the capabilities of laser systems. Data on a wide variety of optical materials of interest for lasers are presented in Volumes III, IV, and V of the Handbook of Laser Science and Technology. This Supplement extends and updates these Volumes by covering developments that have occurred since their publication. The objective of Supplement 2, combined with Volumes III-V, is to provide background and resource information, extensive data tabulations, and references to the properties of optical materials of interest to scientists and engineers working in the fields of lasers and optical systems. The type of materials covered in these volumes include various forms of condensed matter— crystals, glasses, polymers, and liquids. Both linear and nonlinear optical properties and many special properties are tabulated. In addition to sections on transmissive optics and laser host ma­ terials, there are additional sections on electrooptic, magnetooptic, acoustooptic, photorefractive, and optical waveguide materials. The treatment and format of the information is similar to that of the previous volumes; however, the style of presentation varies depending of the material and its application and the stage of their development. For many materials whose general features are well known and described elsewhere, such as laser host materials or nonlinear crystals, it is only necessary to tabulate the properties of new materials that have appeared. For other materials whose properties are less well understood, such as photorefractive materials or nonlinear materials based on semiconductor nanoclusters, more discussion and description of their physical and chemical properties are given. In some cases, this Supplement includes more thorough coverage or pre­ sents other aspects of materials not presented previously. For example, there is a more compre­ hensive listing of optical crystals grouped by symmetry type and composition and additional formulae and data for both stimulated Raman and Brillouin scattering are given. Several types of optical materials and properties not covered in previous volumes of the Handbook of Laser Science and Technology have been added to this Supplement. These in­ clude optical liquids, magnetooptical properties of liquids, gradient index materials, diamond optics, and thin film coatings for high power lasers. Because of the increasing activity on op­ tical waveguide materials for optoelectronic applications, this section has also been expanded and divided into crystals, glasses, and polymeric materials. The discovery of new optical materials has been accompanied by a somewhat bewildering and befuddling proliferation of abbreviations and acronyms. An appendix has therefore been added to decode several hundred of these terms. Common or mineralogical names for optical materials are also included. Methods of preparing optical materials have developed their own terminology; many of these abbreviations are given in another appendix. Because the designation of optical glasses varies with producer and country, equivalent designations for optical glasses are included in Section 2. Designations for Russian optical glasses are presented in a separate appendix. This Supplement is the result of the efforts of many authors. I am indebted to these contrib­ utors for the time and talents they devoted to the preparation of the text and data tabulations, many of which are quite extensive. I have also benefited from other comments and contribu­ tions of John Bierlein, Larry DeShazer, Monis Manning, Roch Monchamp, Robert Sigler, and Stephen Velso; these are gratefully acknowledged. Finally, I appreciate the excellent help pro­ vided by the staff of the CRC Press and by the Project Editor, Carol Whitehead, and by Betsy Winship, Production Manager, Innodata, during the course of preparing this Supplement.

Marvin J. Weber Danville, California

THE EDITOR Marvin J. Weber received his education at the University of California, Berkeley, and was awarded the A.B., M.A., and Ph.D. degrees in physics. After graduation, Dr. Weber continued as a postdoctoral Research Associate and then joined the Research Division of the Raytheon Company where he was a Principal Scientist working in the areas of spectroscopy and quan­ tum electronics. As Manager of Solid State Lasers, his group developed many new laser ma­ terials including rare-earth-doped yttrium orthoaluminate. While at Raytheon, he also discovered luminescence in bismuth germanate, a scintillator crystal widely used for the de­ tection of high-energy particles and radiation. From 1966 to 1967, Dr. Weber was a Visiting Research Associate with Professor Arthur Schalow’s group in the Department of Physics, Stanford University. In 1973, Dr. Weber joined the Laser Program at the Lawrence Livermore National Laboratory. As Head of Basic Materials Research and Assistant Program Leader, he was re­ sponsible for the physics and characterization of optical materials for high-power laser sys­ tems used in inertial confinement fusion research. From 1984 to 1985, he accepted a transfer assignment with the Office of Basic Energy Sciences of the U.S. Department of Energy in Washington, D.C. where he was involved with planning for advanced synchrotron radiation fa­ cilities and for atomistic computer simulations of materials. Dr. Weber returned to the Chemistry and Materials Science Department at LLNL in 1986 and served as Associate Division Leader for condensed matter and as spokesperson for the University of California/National Laboratories research facilities at the Stanford Synchrotron Radiation Laboratory. He retired from LLNL in 1993 but continues as a Participating Guest in the Physical Sciences Department. He is presently a physicist with the Center for Functional Imaging at the Lawrence Berkeley Laboratory and a consultant for several government and industrial laboratories. Dr. Weber is Editor-in-Chief of the multi-volume CRC Handbook Series of Laser Science and Technology, Regional Editor of the Journal of Non-Crystalline Solids, Associate Editor of the Journal of Luminescence and the Journal of Optical Materials, and a member of the International Editorial Advisory Boards of the Russian journals Kvantovaya Elektronika (Journal of Quantum Electronics) and Fizika i Khimiya Stekla (Glass Physics and Chemistry). Dr. Weber has received several awards including an Industrial Research IR-100 Award for research and development of fluorophosphate laser giass, the George W. Morey Award of the American Ceramics Society for his basic studies of fluorescence, stimulated emission, and the atomic structure of glass, and the International Conference on Luminescence Prize for his re­ search on dynamic processes affecting luminescence efficiency and the application of this knowledge to laser and scintillator materials. Dr. Weber is a Fellow of the American Physical Society, the Optical Society of America, and the American Ceramics Society, and a member of the Materials Research Society, the American Association for Crystal Growth, and the American Association for the Advancement of Science.

CONTRIBUTORS B. James Ainslie, Ph.D. British Telecom Research Laboratories Marthesham Heath Ipswich, United Kingdom Allan J. Bruce, Ph.D. AT&T Bell Laboratories Murray Hill, New Jersey Lee L. Blyler, Ph.D. AT&T Bell Laboratories Murray Hill, New Jersey Hans Brusselbach, Ph.D. Hughes Research Laboratories Malibu, California Bruce H. T. Chai, Ph.D. Center for Research in Electro-Optics and Lasers University of Central Florida Orlando, Florida Lloyd Chase, Ph.D. Lawrence Livermore National Laboratory University of California Livermore, California Robert Chow, Ph.D. Lawrence Livermore National Laboratory University of California Livermore, California Lee M. Cook, Ph.D. Galileo Electro-Optic Corp. Sturbridge, Massachusetts Steven T. Davey, Ph.D. British Telecom Research Laboratories Marthesham Heath Ipswich, United Kingdom Gordon W. Day, Ph.D. National Institute of Standards and Technology Boulder, Colorado

James W. Fleming, Ph.D. AT&T Bell Laboratories Murray Hill, New Jersey Anthony F. Garito, Ph.D. Department of Physics University of Pennsylvania Philadelphia, Pennsylvania Leonid B. Glebov, Ph.D. S. I. Vavilov State Optical Institute St. Petersburg, Russia Milton Gottlieb, Ph.D. Westinghouse Science and Technology Center Pittsburgh, Pennsylvania Peter Gunter, Ph.D. Institute of Quantum Electronics Swiss Federal Institute of Technology Zurich, Switzerland William R. Holland, Ph.D. AT&T Bell Laboratories Princeton, New Jersey Patricia A. Morris Hotsenpiller, Ph.D. Central Research and Development E. I. du Pont de Nemours and Co. Wilmington, Delaware Stephen D. Jacobs, Ph.D. Laboratory for Laser Energetics University of Rochester Rochester, New York Ivan P. Kaminow, Ph.D. AT&T Bell Laboratories Holmdel, New Jersey Donald Keyes U.S. Precision Lens, Inc. Cincinnati, Ohio

Merritt N. Deeter, Ph.D. National Institute of Standards and Technology Boulder, Colorado

Marvin Klein, Ph.D. Hughes Research Laboratories Malibu, California

Albert Feldman, Ph.D. National Institute of Standards and Technology Washington, DC

Mark R. Kozlowski, Ph.D. Lawrence Livermore National Laboratory University of California Livermore, California

Mark Kuzyk, Ph.D. Department of Physics Washington State University Pullman, Washington Kenneth L. Marshall, Ph.D. Laboratory for Laser Energetics University of Rochester Rochester, New York Carolina Medrano, Ph.D. Institute of Quantum Electronics Swiss Federal Institute of Technology Zurich, Switzerland Monica Minden, Ph.D. Hughes Research Laboratories Malibu, California Duncan T. Moore, Ph.D. University of Rochester and Gradient Lens Corporation Rochester, New York Egberto Munin, Ph.D. Instituto de Fisica Universidade de Campinas Campinas, Brazil O. Romulo Ochoa, Ph.D. Department of Physics Trenton State College Trenton, New Jersey David M. Pepper, Ph.D. Hughes Research Laboratories Malibu, California

Robert Sacher R. P. Cargill Laboratories, Inc. Cedar Grove, New Jersey William Sacher R. P. Cargill Laboratories, Inc. Cedar Grove, New Jersey Ansgar Schmid, Ph.D. Laboratory for Laser Energetics University of Rochester Rochester, New York Joseph H. Simmons, Ph.D. Advanced Materials Research Center University of Florida Gainesville, Florida Shobha Singh, Ph.D. Polaroid Corporation Cambridge, Massachusetts David S. Sumida, Ph.D. Hughes Research Laboratories Malibu, California Ian M. Thomas, Ph.D. Lawrence Livermore National Laboratory University of California Livermore, California Mikhail N. Tolstoi, Ph.D. S. I. Vavilov State Optical Institute St. Petersburg, Russia

Barrett G. Potter, Jr., Ph.D. Sandia National Laboratories Albuquerque, New Mexico

Eric W. Van Stryland, Ph.D. Center for Research in Electro-Optics and Lasers University of Central Florida Orlando, Florida

Charles F. Rapp, Ph.D. Owens Coming Fiberglass Granville, Ohio

Barry A. Wechsler, Ph.D. Hughes Research Laboratories Malibu, California

John F. Reintjes, Ph.D. Naval Research Laboratory Washington, DC

Richard Wyatt, Ph.D. British Telecom Research Laboratories Marthesham Heath Ipswich, United Kingdom

Allen H. Rose, Ph.D. National Institute of Standards and Technology Boulder, Colorado

HANDBOOK OF LASER SCIENCE AND TECHNOLOGY VOLUME I: LASERS AND MASERS FOREWORD—Charles H. Townes SECTION 1: INTRODUCTION 1.1 Types and Comparisons of Laser Sources—William F. Krupke SECTION 2: SOLID STATE LASERS 2.1 Crystalline Lasers 2.1.1 Paramagnetic Ion Lasers—Peter F. Moulton 2.1.2 Stoichiometric Lasers—Stephen R. Chinn 2.1.3 Color Center Lasers—Linn F. Mollenauer 2.2 Semiconductor Lasers—Henry Kressel and Michael Ettenberg 2.3 Glass Lasers—Stanley E. Stokowski 2.4 Fiber Raman Lasers—Roger H. Stolen and Chinlon Lin 2.5 Table of Wavelengths of Solid State Lasers SECTION 3: LIQUID LASERS 3.1 Organic Dye Lasers—Richard Steppel 3.2 Inorganic Liquid Lasers 3.2.1 Rare Earth Chelate Lasers—Harold Samelson 3.2.2 Aprotic Liquid Lasers—Harold Samelson SECTION 4: OTHER LASERS 4.1 Free Electron Lasers 4.1.1 Infrared and Visible Lasers—Donald Prosnitz 4.1.2 Millimeter and Submillimeter Lasers—Victor L. Granatstein, Robert K. Parker, and Phillip A. Sprangle 4.2 X-Ray Lasers—Raymond C. Elton SECTION 5: MASERS 5.1 Masers—Adrian E. Popa 5.2 Maser Action in Nature—James M. Moran SECTION 6: LASER SAFETY 6.1 Optical Radiation Hazards—David H. Sliney 6.2 Electrical Hazards from Laser Power Supplies—James K. Franks 6.3 Hazards from Associated Agents—Robin DeVore

VOLUME II: GAS LASERS SECTION 1: NEUTRAL GAS LASERS—Christopher C. Davis SECTION 2: IONIZED GAS LASERS—William B. Bridges SECTION 3: MOLECULAR GAS LASERS 3.1 Electronic Transition Lasers—Charles K. Rhodes and Robert S. Davis 3.2 Vibrational Transition Lasers—Tao-Yaun Chang 3.3 Far Infrared Lasers—Paul D. Coleman; David J. E. Knight SECTION 4: TABLE OF LASER WAVELENGTHS—Marvin J. Weber

VOLUME III: OPTICAL MATERIALS PART 1: NONLINEAR OPTICAL PROPERTIES/RADIATION DAMAGE SECTION 1: NONLINEAR OPTICAL PROPERTIES 1.1 Nonlinear and Harmonic Generation Materials—Shohba Singh 1.2 Two-Photon Absorption—Walter L. Smith 1.3 Nonlinear Refractive Index—Walter L. Smith 1.4 Stimulated Raman Scattering—Fred Milanovich SECTION 2: RADIATION DAMAGE 2.1 Introduction—Richard T. Williams and E. Joseph Friebele 2.2 Crystals—Richard T. Williams 2.3 Glasses—E. Joseph Friebele

VOLUME IV: OPTICAL MATERIALS PART 2: PROPERTIES SECTION 1: FUNDAMENTAL PROPERTIES 1.1 Transmitting Materials 1.1.1 Crystals—Perry A. Miles, Marilyn J. Dodge, Stanley S. Ballard, James S. Browder, Albert Feldman, and Marvin J. Weber 1.1.2 Glasses—James W. Fleming 1.1.3 Plastics—Monis Manning 1.2 Filter Materials—Lee M. Cook and Stanley E. Stokowski 1.3 Mirror and Reflector Materials—David W. Lynch 1.4 Polarizer Materials—Jean M. Bennett and Ann T. Glassman SECTION 2: SPECIAL PROPERTIES 2.1 Linear Electro-Optic Materials—Ivan P. Kaminow 2.2 Magneto-Optic Materials—Di Chen 2.3 Elasto-Optic Materials—Milton Gottlieb 2.4 Photorefractive Materials—Peter Gunter 2.5 Liquid Crystals—Stephen D. Jacobs

VOLUME V: OPTICAL MATERIALS PART 3: APPLICATIONS, COATINGS, AND FABRICATION SECTION 1: APPLICATIONS 1.1 Optical Waveguide Materials—Peter L. Bocko and John R. Gannon 1.2 Materials for High Density Optical Data Storage—Alan E. Bell 1.3 Holographic Parameters and Recording Materials—K. S. Pennington 1.4 Phase Conjugation Materials—Robert A. Fisher 1.5 Laser Glass—Charles F. Rapp 1.6 Laser Crystals—L. G. DeShazer, S. C. Rand, and B. A. Wechsler 1.7 Infrared Quantum Counter Materials—Leon Esterowitz SECTION 2: THIN FILMS AND COATINGS 2.1 Multilayer Dielectric Coatings—Verne R. Costich 2.2 Graded-Index Surfaces and Films—W. Howard Lowdermilk

SECTION 3: OPTICAL MATERIALS FABRICATION 3.1 3.2

Fabrications Techniques—G. M. Sanger and S. D. Fantone Fabrication Procedures for Specific Materials—G. M. Sanger and S. D. Fantone

SUPPLEMENT 1: LASERS SECTION 1: SOLID STATE LASERS 1.1 Crystalline Paramagnetic Ion Lasers—John A. Caird and Stephen A. Payne 1.2 Color Center Lasers—Linn F. Mollenauer 1.3 Semiconductor Lasers—Michael Ettenberg and henryk Temkin 1.4 Glass Lasers—Douglas W. Hall and Marvin J. Weber 1.5 Solid State Dye Lasers—Marvin J. Weber 1.6 Fiber Raman Lasers—Roger H. Stolen and Chinlon Lin 1.7 Table of Wavelengths of Solid State Lasers—Farolene Camacho SECTION 2: LIQUID LASERS 2.1 Organic Dye Lasers—Richard N. Steppel 2.2 Liquid Inorganic Lasers—Harold Samelson SECTION 3: GAS LASERS 3.1 Neutral Gas Lasers—Julius Goldhar 3.2 Ionized Gas Lasers—Alan B. Petersen 3.3.1 Electronic Transition Lasers—J. Gary Eden 3.3.2 Vibrational Transition Lasers—Tao-Yuan Chang 3.3.3 Far-Infrared CW Gas Lasers—David J. E. Knight 3.4 Table of Wavelengths of Gas Lasers—Farolene Camacho SECTION 4: OTHER LASERS 4.1 Free-Electron Lasers—William B. Colson and Donald Prosnitz 4.2 Photoionization-Pumped Short Wavelength Lasers—David King 4.3 X-Ray Lasers—Dennis L. Matthews 4.4 Table of Wavelengths of X-Ray Lasers 4.5 Gamma-Ray Lasers—Carl B. Collins SECTION 5: MASERS 5.1 Masers—Adrian E. Popa 5.2 Maser Action in Nature—James M. Moran

HANDBOOK OF LASER SCIENCE AND TECHNOLOGY SUPPLEMENT 2: OPTICAL MATERIALS TABLE OF CONTENTS SECTION 1. SECTION 2. SECTION 3. SECTION 4. SECTION 5. SECTION 6. SECTION 7.

SECTION 8.

SECTION 9.

SECTION 10. SECTION 11. SECTION 12.

SECTION 13.

OPTICAL CRYSTALS......................................................................... 3 Bruce H.T. Chai OPTICAL GLASSES ........................................................................... 69 James W. Fleming OPTICAL PLASTICS........................................................................... 85 Donald Keyes OPTICAL LIQUIDS............................................................................. 97 Robert Sacher and William Sacher FILTER MATERIALS ......................................................................... 115 Lee M. Cook LINEAR ELECTROOPTIC MATERIALS ............................................133 William R. Holland and Ivan P. Kaminow NONLINEAR OPTICAL MATERIALS 7.1. Organic and Inorganic Materials...................................................147 Shobha Singh 7.2. Cluster-Insulator Composites ...................................................... 250 Joseph H. Simmons, Barrett G. Potter, Jr., and O. Romulo Ochoa NONLINEAR OPTICAL PROPERTIES 8.1. Nonlinear Refractive Index 8.1.1. Inorganic Materials.................................................................... 269 Lloyd Chase and Eric W. Van Stryland 8.1.2. Organic Materials...................................................................... 289 Anthony F. Garito and Mark Kuzyk 8.2. Two-Photon Absorption 8.2.1. Inorganic Materials.................................................................... 299 Eric W. Van Stryland and Lloyd Chase 8.2.2. Organic Materials...................................................................... 329 Anthony F. Garito and Mark Kuzyk 8.3. Stimulated Raman and Brillouin Scattering ................................ 334 John F. Reintjes MAGNETOOPTIC MATERIALS 9.1. Crystals and Glasses .................................................................... 367 Merritt N. Deeter, Gordon W. Day, and Allen H. Rose 9.2. Organic and Inorganic Liquids.................................................... 403 Egberto Munin ELASTOOPTIC MATERIALS.............................................................. 415 M. Gottlieb and N. B. Singh PHOTOREFRACTIVE MATERIALS................................................... 431 Carolina Medrano and Peter Gunter NONLINEAR OPTICAL PHASE CONJUGATION MATERIALS .. 467 David M. Pepper, Monica Minden, Hans Brusselbach, and Marvin Klein GRADIENT-INDEX MATERIALS....................................................... 499 Duncan T. Moore

SECTION 14. LIQUID CRYSTALS ............................................................................ 509 Stephen D. Jacobs, Kenneth L. Marshall, and Ansgar Schmid SECTION 15. DIAMOND OPTICS..............................................................................581 Albert Feldman SECTION 16. LASER CRYSTALS..............................................................................595 Barry A. Wechsler and David S. Sumida SECTION 17. LASER GLASSES 17.1. Bulk Glasses .............................................................................. 619 Charles F. Rapp 17.2. Waveguide Glasses .................................................................... 635 Steven T. Davey, B. James Ainslie, and Richard Wyatt SECTION 18. OPTICAL WAVEGUIDE MATERIALS 18.1. Crystals ...................................................................................... 671 Patricia A. Morris Hotsenpiller 18.2. Glasses........................................................................................ 691 Allen J. Bruce 18.3. Plastic Optical Fibers ................................................................ 750 Lee L. Blyler, Jr. SECTION 19. OPTICAL COATINGS FOR HIGH POWER LASERS....................... 767 Mark R. Kozlowski, Robert Chow, and Ian M. Thomas APPENDIX 1.

ABBREVIATIONS, ACRONYMS, INITIALISMS, AND MINERALOGICAL OR COMMON NAMES OF OPTICAL MATERIALS ........................................................................................ 815

APPENDIX 2.

ABBREVIATIONS FOR METHODS OF PREPARING OPTICAL MATERIALS AND THIN FILMS ...................................... 821

APPENDIX 3.

DESIGNATIONS OF RUSSIAN OPTICAL GLASSES...................... 823 Leonid B. Glebov and Mikhail N. Tolstoi

INDEX

827

Section 1 : Optical Crystals

Section 1 Optical Crystals Brace H.T Cftai INTRODUCTION Optical windows and lens are most frequently made of amorphous materials, such as glasses and plastics, because these materials are relatively inexpensive and can be made in large quantities with excellent reproducibility of material properties. Moreover, for many types of applications it is necessary to retain optical isotropy. Both glass and plastics are isotropic materials. In the case of crystalline solids only those with cubic symmetry are op­ tically isotropic. They are rare compared with most known crystalline materials, which have lower crystallographic symmetry and therefore are optically anisotropic. The optical crystals, by the conventional definition, are transparent with respect to vis­ ible light (380 to 780 nm). However, modem optical detectors can cover a far broader op­ tical range than the naked eye. At the same time, high-intensity light sources (coherent or incoherent) are also available well beyond the visible region at both longer and shorter wavelengths. It is necessary, therefore, to redefine optical materials to include all crys­ talline materials that have a transparent region somewhere within the range from the ul­ traviolet (from « 100 nm) to the infrared (up to 100 pm) portion of the electromagnetic spectrum. Optically isotropic crystals are used most frequently for windows and lenses. Similar uses of anisotropic crystals are very rare unless for special purposes. One such exception is their use in polycrystalline form as optical coatings or windows. Another one is their use as a precisely oriented uniaxial single crystal (such as sapphire) along the optical axis as window material. The choice of sapphire is attractive because of it high mechanical strength and thermal conductivity. Another example is a Faraday rotating crystal which must be cubic or uniaxial and can not be biaxial. Anisotropic single crystals are widely used for many other specific optical applications. In fact, it is precisely the anisotropic properties that are needed for applications such as the polarizers, optical wave plates, and wedges. * At present, a large portion of research on optical crystals is devoted to host materials for solid-state lasers and nonlinear frequency conversion. Although the most widely used solidstate laser crystal, YAG, is cubic and isotropic, the current trend is to look for linearly po­ larized laser sources generated from anisotropic hosts such as YLF, YA103, and others. This is because linearly polarized light is needed for any nonlinear wavelength conversion such as harmonic generation, sum frequency mixing, optical parametric oscillation, etc. In non­ linear frequency conversion, all the optical materials used at present must be not only crys­ talline but also highly anisotropic and noncentrosymmetric. Stress-induced nonlinear optical activities observed from optical fibers and amorphous glass surfaces have been reported. So far none of them have proven to be efficient or reproducible in a quantitative manner. Another field of growing interest is scintillation on which crystalline materials thus far have shown response superior to amorphous materials. Using this broad definition of optical crystals, virtually all known crystals can be in­ cluded. Clearly, this is not our intention. We will limit our scope to those crystals which either occur in nature or are produced in the laboratory for optical use or with potential for such use. For this very reason we purposely avoid hydrate or hydroxide crystals, be­ cause they are thermally less stable and have limited tranmission range due to OH ab­

0-8493-3507-8/95 /$0.00 + $.50 (c) 1995 by CRC Press, Inc.

3

4

CRC Handbook of Laser Science and Technology

sorption. There are, nevertheless, hydrated crystals, such as KBS, which have been used for second harmonic generation. However, their use is greatly reduced due to the dis­ covery of many nonhydrated crystals with better properties. We also avoid highly hy­ groscopic materials because of the obvious difficulty ofhandling, unless they have already been used, such as urea, KDP, CD*A, etc. In addition, we will consider only the pure compound. Any doping or solid solution will not be considered as an independent com­ pound and thus will not be listed. However, there are a few exceptions which include those that are either listed previously in Volume IV of the Handbook of Laser Science and Technology (these are denoted by an asterisk *) or have been used in solid solution forms such as SBN. Optical and physical properties of solid solutions are expected to change “continuously” between the pure end members. Therefore, to a first approxima­ tion, it is possible to estimate the solid solution properties with reasonable accuracy if the amount of substitution is not too large. Because the crystals listed here are intended for optical applications, the crystal sym­ metry plays a critical role in selection of material. For the simplicity of crystal orientation and fabrication, materials with highest symmetry are preferred. It is fairly easy to orient crystals with cubic (isometric), tetragonal, and hexagonal (uniaxial) symmetries. For the biaxial crystals, orthorhombic symmetry is still relatively easy to orient because all the crystallographic axes are still orthogonal and in alignment with the optical indicatriz axes. In monoclinic crystals, the crystallographic a- and oaxes are no longer orthogonal. With the exception of the b-axis, two of the optical indicatrix axes are no longer aligned with the crystallographic ones. This adds great difficulty for crystal fabrication. With a few excep­ tions, we will avoid all the crystals with triclinic symmetry, since they are just too difficult to orient and have too many parameters to define (no degeneracy at all). Another critical issue is the solid-state phase transitions of a compound as a function of both temperature and pressure. We would usually consider only the form of a compound at room temperature and pressure condition. However, many optics are needed to operate under ^xtreme conditions with very high or low temperatures and/or pressures. Special care must be taken to assure that no phase transition occurs in bringing the material from ambient to operating condition. If a phase transition is desired at operating condition, it is necessary to assure that the material can withstand the phase change without damage. Highpressure structure of compounds is obviously avoided because it will be difficult to pro­ duce. One exception is the diamond structure compounds because the high-pressure forms are metastable at ambient condition and they obviously have great potential in many ap­ plications. Temperature-dependent phase transitions are also serious problems when try­ ing to produce large, high-quality single crystals. Compounds which have a very limited stability field or serious phase transition problems will have limited use as optical mateials. There are again exceptions such as KNb03 which can be used as a frequency doubler for 980-nm cw laser diodes. The final issue is the polymorphism of a crystalline compound. Generally, we should list only the “thermodynamically” stable structure at room temperature and pressure. However, for kinetic reasons, a compound may undergo major rearrangement of atoms during phase transition, such as the case of diamond to graphite, or need impurity to help stabilize the structure such as the case of Y or Ca substituted cubic zirconia, the high-temperature or high-pressure form of a crystal can be very stable at room conditions for infi­ nite amount of time. More frequently, the crystal grown at high temperature will simply survive without the phase transition under normal cooling rate to room temperatures. In these cases, we will list all the “metastable” forms of such compound. Compounds which have naturally occurring polymorphic forms will be included. Some of the best examples are calcium carbonate (CaC03), titanium dioxide (Ti02) and aluminum silicate (Al2S i05). In other cases, we simply list only the stable phase, such as quartz (a-Si02).

Section 1: Optical Crystals

5

Crystals with wide band gaps will be transparent from the UV through the visible re­ gion, whereas crystals with a narrower band gap appear opaque but are transparent in the infrared region. We will only include crystals with visible absorption purely due to the ab­ sorption edge. We purposely avoid compounds made of elements having intrinsic absorp­ tions due to incompletely filled d or f shell electrons. Compounds having more than one type of visible or invisible absorption due to different impurities or defect (color) centers will not be considered as separate entities. We will not discuss any of these changes and will consider the unaltered parent compound as a single entry to the list. In this section, we provide a greatly expanded list of optical crystals as compared with that published in Volume IV, section 1.1.1. We believe that this expansion is necessary to provide readers with the basic crystal parameters before handling the actual materials. We attempt to list the compounds through chemical affiliation so that the crystal isomorphs are listed close together. We believe that this is the best way to provide information for any attempt of material engineering to create new compounds or to optimize material prop­ erties. However, in the process of filling out the tables, we were surprised to find how lit­ tle work had been done regarding the basic properties of these materials, even including crystals which have been studied extensively as good laser hosts. We decided to list all the compounds that we have gathered. We have reviewed each one and have considered that the compounds are appropriate as entries of optical materials regardless of the amount of information available. We find that by merely showing the existence of a compound with its chemical constituents can help tremendously to estimate the stability of its isomorphs and the structural tolerance of doping or other modifications. By grouping them chemi­ cally and structurally, we can have a better view of all the related compounds. Moreover, most of the basic material properties such as optical transparency and the refractive in­ dices of an unstudied compound can then be estimated with reasonable accuracy based on its better studied isomorphs which have the measured properties listed in the Table. Therefore, a skillful reader can extract more information from these tables than what is actually listed. The grouping also shows the compatibility in terms of fabricating epitax­ ial layers or other composite structures for optical applications. In other words, the pur­ pose of these tables is not just to list the material properties but to link the optical properties of a crystal to both its chemical composition and crystal structure. With respect to the miss­ ing blanks, they are partially due to the incompleteness of the literature search but mostly due to the non-existence of such data. We will continue the effort of both adding new com­ pounds and filling the missing material properties.

CLASSIFICATION OF OPTICAL CRYSTALS Classification of crystalline materials based on optical properties is well established in the field of optical mineralogy. Only natural occurring crystals that are transparent in the visible region of the electromagnetic spectrum are considered. Here we will adopt this basic framework of classification of optical materials with some modifications to include all man-made materials and to broaden the optical spectrum including both UV and IR transparent materials. All the optical crystals are classified into three categories: Isotropic crystals (category I) include materials through which monochromatic light travels with the same speed, regardless of the direction of vibration. In an isotropic medium, the vibration direction of a light ray is always perpendicular to the ray path. All amor­ phous materials such as glasses and plastics are isotropic. In crystalline materials, only those with cubic symmetry are isotropic. Anisotropic crystals (category II) include materials through which a light ray may travel with different speeds for different directions of vibration, and the angle between the vi­

6

CRC Handbook of Laser Science and Technology

bration directions and ray path may not always be 90°. Moreover, the index of refraction varies according to the vibration direction of the light. The optical indicatrix is no longer a sphere but an ellipsoid. Depending on the geometry of the ellipsoid, it is necessaary to divide the class of the anisotropic materials further into two subgroups. Crystals with tetragonal, hexagonal, and trigonal (or rhombohedral) symmetry exhibit a unique index of refraction (symbolized as e) when light vibrates parallel to the c-axis (the extraordinary ray). For light vibrating at 90° to the c-axis (the ordinary ray), the re­ fractive indices are the same (symbolized as co) in all 360° directions. Crystals with these types of optical properties are called uniaxial crystals, [category 11(A)]. Crystals with orthorhombic, monoclinic, and triclinic symmetry possess three signifi­ cant indices of refraction, commonly symbolized as a, p, and yin the order from smallest to largest. The shape of the indicatrix is a three-dimensional ellipsoid with all central sec­ tions being ellipses, except for two. These two are circular sections with a radius of p. The normal of the two circular sections are called the optical axes. Crystals with these types of optical properties are called biaxial crystals, [category 11(B)].

TABLE ARRANGEMENT Traditional table arrangements are generally based on the alphabetical order of the chem­ ical formulas. This can provide only isolated data of a compound without the sense of the structural and chemical relationships. We decided to break this tradition and formulate a new set of tables based on the structures and chemical relationships of the listed com­ pounds following the sequence of elements in the periodic table. It may feel a little strange initially, but this arrangement provides far more information on the material of interest as well as its closely related compounds for cross-reference. In this way, one can obtain a better insight into the relationship of structure and chemistry to the optical properties of a compound. To simplify the searching process for the reader, we constructed Table 1.1 based on the alphabetical order of the chemical formula for each compound listed. It serves as a gen­ eral index table for all the compounds found in the subsequent tables. This table includes chemical name (with mineral name and acronym in parentheses), chemical formula, and a reference number in the form of x-zzz, where x = I, U, or B stands for isotropic, uniax­ ial, and biaxial crystal and the number zzz is the sequencial number of the compound listed in Tables 1.2,1.3, and 1.4. The general properties of the optical crystals are listed in three tables: isotropic crystals (Table 1.2), uniaxial crystals (Table 1.3.), and biaxial crystals

(Table 1.4.). In each of the property tables, the compounds are arranged by chemical grouping, based on the sequence of elements appearing in the periodic table. We use the anion groups as the primary basis for the grouping, starting from group VII elements down the column and then moving to the left to group VI, etc. Compounds are also arranged from simple to complex for each of the anion groups. In the case of oxides, the list is not only based on oxygen but also on the sequence of the ions forming the structural framework of the compounds, such

as sulfates (S04), phosphates (P04), silicates (Si04), etc. Once the anion group is identi­ fied, the cation group will be arranged starting from group I down the column and to the right to group II, etc. On this basis, the first compound in our case is LiF because HF is a gas and not a crystal at room temperature. Moreover, because the anionic charge for the group A and group B elements are similar (except in the cases with multiple valences) and these elements can also form compounds with identical structures, we list them in sequen­ tial order with group A elements listed first followed by group B. The lanthanides are group IIIB elements. Here, we only consider the elements with large ranges of transparency in the visible: La, Gd, and Lu. At a given electric charge, the crystal structure is determined strictly

Section 1: Optical Crystals

7

by the compatibility of ionic sizes. The readers may find that in numerous cases, for a given form of formula, there are compounds which are missing in one table but appear in a dif­ ferent table by simply replacing one element to the next one up and down the same peri­ odic column. A good example of this is the alkali earth fluorides with the general formula of AF2. The cubic (isotropic, Table 1.2) fluorite structure is stable for Ba, Sr, and Ca. MgF2 changes to tetragonal (uniaxial, Table 1.3) rutile structure. BeF2 (not listed in the table be­ cause amorphous and glass forming) has the smallest cation belonging to cubic (3-cristobalite structure. This is the essence of crystal chemistry, that the ionic size plays a critical role in determining crystal structure. The result also shows that Ca, Sr, and Ba fluorides can have extensive substitution or solid solutions, whereas MgF2 only forms a simple eutectic with CaF2 and virtually no solid solution at all. Although the purpose of these tables is to correlate the crystal structure to optical properties, the implication is much beyond that.

GENERAL PROPERTIES The following general properties are compiled in Tables 1.3, 1.4, and 1.5.

CRYSTAL SYSTEM We include the space group, if available, in the table because it is vital to the selection of a compound for nonlinear wavelength conversion. Assigning an accurate space group to a compound is not easy. Although there is rarely any error in the determination of the basic symmetry of a crystal, a substantial problem is determining the absence of centrosymmetry. This is because conventional x-ray diffraction result based on intensity al­ ways shows center of symmetry and can not distinguish the phases of the structure factor. Determination of the center of symmetry requires independent tests such as the piezo­ electric effect or optical second harmonic generation. Numerous misassignments still exist in the literature. We can only quote the space group based on our best judgment and rec­ ognize that mistakes can still occur. In the space group notation, we will encounter a neg­ ative number indicating inversion symmetry. The conventional notation is to put a bar on top of the number. TRANSMISSION RANGE OR BAND GAP Electronic and lattice absorption edges are given in terms of the wavelengths between which the transmission of a 1-mm-thick sample at 300 K is > 10%. For many applications the transmission at longer wavelengths is more important than the transmission at short wavelengths. The values cited are approximate and are intended to as a general guide be­ cause many factors such as impurities, imperfections, temperature, crystallographic ori­ entations, and compositional variations can affect the values. The band gap only provides the absorption edge at the short-wavelength side. We limit the band gap data to transitions at 300 K. REFRACTION INDEX (n) AND BIREFRINGENCE (An) Refraction index is one of the fundamental properties of optical crystals measured by Snell’s law, but, it is wavelength dependent and governed by the dispersion. Unless speci­ fied, the refraction indices quoted here refer to the average values for standard daylight. However, almost all modem measurement is conducted with cw laser light. We quote the values measured with He-Ne laser at 632.8 nm at room temperature. The differences in the daylight and He-Ne values are within 0.1%, which is frequently smaller than the values quoted by different source of references. In a few instances, e.g., tellurides, these materials are opaque to visible light so that the refractive indices are measured with an IR light source. In these cases, the wavelength used is listed with parentheses. We feel that this level of ac­

8

CRC Handbook of Laser Science and Technology

curacy is adequate as a general reference for readers. Those who require more accurate val­ ues should refer to Sellmeier or other dispersion equations to calculate the refractive in­ dices. This is beyond the scope of our tables. (See section 1.1.1.2 of the Handbook of Laser Science and Technology, Vol. IV.) For isotropic crystals, there is only one refractive index. Uniaxial crystals have two refractive indices; biaxial crystals have three. The birefringence is a measure of the maximum difference of the refraction indices within a crystal for a given wavelength. Large birefringence is useful as a polarizer for centrosymmetric crystals. It is also a critical value to provide phase-matching condition for nonlinear harmonic conver­ sion in noncentrosymmetric bulk crystals.

DENSITY Data are quoted at room temperatures in grams per cubic centimeter. HARDNESS Average Knoop hardness numbers or range of values at room temperature are given when available. In many cases only Vicker (V) or Moh hardness are known. They are listed with (Moh) after the value. Hardness of a crystal varies with orientation. This is even true for cubic symmetry crystals. For example, the (111) surface of a diamond is the hardest one among all the surface orientations. It can not be polished even with diamond itself. For this reason, for a typical brilliant cut diamond, none of the 58 facets is parallel to the (111) face. CLEAVAGE Cleavage is the tendency of a crystal to break in a certain direction yielding a relatively smooth surface. It depends on the internal structure of a crystal and can be problematic in material fabrication. The ease of cleavaging varies greatly depending on the crystal qual­ ity and the nature and direction of stress applied. In many crystals there can be more than one set of cleavage planes. However, in almost all cases only the weakest cleavage plane dominates. We use Miller indices to denote the cleavage planes. One should also note that the actual number of cleavage planes depends on the plane orientation relative to the sym­ metry of the crystal. For example, in the cubic system, the (100) cleavage plane has three orientations and the (111) cleavage plane has four. In the hexagonal system, there is only one (0001) cleavage plane, but three (lO ll) ones. In the monoclinic system, there is only one (010) cleavage plane but two (110) ones. We list only the easiest cleavage plane for each crystal. We rank them qualitatively as perfect (p) or imperfect (i). This definition is very loose. A crystal listed with a perfect cleavage plane can crack along that direction with a smooth surface if a stress is applied. The imperfect cleavage plane means that the crack does not easily move along the plane. However, a small area of oriented flat surfaces can form along the cracking surface when the crystal is fractured. SOLUBILITY Solubility is defined as the weight loss in grams per 100 g of water. The dissolution temperature in °C is given in parentheses. If the solubility is less than 10'3 g/100 g, the material is generally considered to be insoluble. If a crystal is listed as insoluble, it means that, when submerged in water with a reasonable amount of time (a day or so), no noticable loss of weight nor visible surface erosion of the crystal is observed. In more simple terms, it means that the material can be cut and polished with water-based slurry rather than oil- or alcohol-based solvents.

Section 1: Optical Crystals

9

Table 1.1 Names, chemical formulas, and classifications of optical crystals Name

Aluminum arsenate Aluminum arsenide Aluminum borate Aluminum fluoride Aluminum fluorosilicate (topaz) Aluminum gall ate Aluminum germanate Aluminum germanate Aluminum hafnium tantalate Aluminum molybdate Aluminum niobate Aluminum niobate Aluminum nitride *Aluminum oxide (corundum, sapphire, alumina) *Aluminum phosphate (berlinite) Aluminum silicate (andalusite) Aluminum silicate (kyanite) Aluminum silicate (sillimanite) *Aluminum silicate (mullite) Aluminum tantalate (alumotantite) Aluminum titanium tantalate Aluminum tungstate Amino carbonyl (urea) Ammonium aluminum selenate Ammonium aluminum sulfate Ammonium gallium selenate Ammonium gallium sulfate *Ammonium dihydrogen phosphate (biphosphamite, ADP) Arsenic antimony sulfide (getchellite) Arsenic oxide (arsenolite) Arsenic sulfide (realgar) Arsenic sulfide (orpiment) Antimony niobate (stibiocolumbite) Antimony oxide (senarmontite) Antimony oxide (valentinite) Antimony tantalate (stibiotantalite) Barium aluminate Barium aluminate Barium hexa-aluminate Barium aluminum borate Barium aluminum fluoride Barium aluminum germanate Barium aluminum silicate (celsian) Barium antimonate Barium beryllium fluorophosphate (babefphite) Barium beryllium silicate (barylite) Barium borate (p-BBO) Barium borate Barium cadmium aluminum fluoride Barium cadmium gallium fluoride Barium cadmium magnesium aluminum fluoride Barium calcium magnesium aluminum fluoride (usovite) Barium calcium magnesium silicate Barium calcium silicate (walstromite) Barium carbonate (witherite)

Formula

A1As0 4 AlAs Ai4B2o 9 a if 3 Al2Si04F2 AlGa03 Al2Ge20 7 A 1 6G e 2 ° l 3

AlHfTa06 A12(Mo0 4)3 AlNb04 AlNbn0 29 AIN A 12 ° 3

a ip o 4

Al2Si05 Al2Si05 Al2Si05 Al6Si20 13 AlTa04 AlTiTa06 A12(W04)3 (NH2)2CO NH4Al(Se04)2 NH4A1(S04)2 NH4Ga(Se04)2 NH4Ga(S04)2 n h 4h 2p o 4 AsSbS3 A

s2

°3

AsS A

s 2S

3

SbNb04 sb2o 3 sb2o 3 SbTa04 BaAl2G4 B a 3A I 2 ° 6

BaAl,20 19 BaAl2B20 7 Ba3A12F|2 BaAl2Ge2Og BaAl2Si20 8 BaSb2G6 BaBe(PG4)F BaBe2Si2G7 BaB2G4 Ba2B2Os Ba€dAlF? BaCdGaF? Ba2CdMgAl2F14 Ba2CaMgAl2F14 BaCa2Mg(Si04)2 BaCa2Si30 9 BaC03

Classification

U-173 1-171 B-459 U-051 B-046 U-372 B-391 B-372 B-254 B-097 B-230 B-231 U-418 U-352 U-163 B-341 B-343 B-342 B-344 B-250 U-212 B-125 U-213 U-118 U-110 U-121 U-114 U-160 B-528 1-077 B-526 B-527 B-235 1-089 B-267 B-257 U-363 1-132 U-364 B-453 B-032 B-387 B-338 U-192 U-059 B-335 U-338 B-452 B-030 B-031 B-026 B-025 B-337 B-336 B-279

10

CRC Handbook of Laser Science and Technology

Table 1.1—continued Names, chemical formulas, and classifications of optical crystals Name

Barium chloroarsenate (moveiandite) Barium chloroborate Barium chlorophosphate (alforsite) Barium chlorovanadate *Barium fluoride (frankdicksonite) *Barium fluoride - calcium fluoride (T-12) Barium fluoroarsenate Barium fluorophosphate Barium fluorovanadate Barium gallium fluoride Barium germanate Barium germanate Barium germanate Barium germanium aluminate Barium germanium gallate Barium lithium niobate Barium magnesium aluminum fluoride Barium magnesium fluoride Barium magnesium fluoride Barium magnesium germanate Barium magnesium silicate Barium magnesium tantalate Barium magnesium vanadate Barium molybdate Barium niobate Barium nitrate (nitrobarite) Barium scandate Barium scandate Barium scandate Barium silicate (sabbomite) Barium sodium niobate Barium sulfate (barite) Barium strontium niobate Barium strontium tantalate Barium tantalate Barium tin borate Barium tin silicate (pabstite) *Barium titanate Barium titanium aluminate Barium titanium aluminate Barium titanium borate Barium titanium gallate Barium titanium oxide Barium titanium silicate (fresnoite) Barium titanium silicate (benitoite) Barium tungstate Barium vanadate Barium yttrium fluoride Barium yttrium oxide Barium zinc aluminum fluoride Barium zinc fluoride Barium zinc fluoride Barium zinc fluoride Barium zinc gallium fluoride Barium zinc germanate

Formula

Ba^AsO^Cl Ba2B50 9Cl Ba5(P04)3Cl Ba5(V04)3Cl BaF2 BaF2-CaF2 Ba5(As04)3F Ba5(P04)3F Ba5(V04)3F BaGaF5 BaGe03 BaGe20 5 BaGe40 9 BaGeAl60 ,2 BaGeGa60 12 Ba^iNbgO^ Ba2MgAlF9 BaMgF4 Ba2MgF6 Ba?MgGe20 ? Ba2MgSi20 7 Ba3MgTa,09 BaMg2(V04)2 BaMoG4 BaNb20 6 Ba(N03)2 Ba2Sc40 9 BajS c40 9 Ba6Sc60 !5 P-BaSi20 5 Ba2NaNb50 15 BaS04 Ba3SrNb20 9 Ba3SrTa20 9 BaTa206 BaSnB20 6 BaSnSi30 9 BaTi03 BaTiAl60 ,2 B a 3T i A 1 1 0 ° 2 0

BaTiB20 6 BaTiGa60 |2 BaTi40 9 BajTiSiPg BaTiSi30 9 BaW04 Ba3(V04)2 BaY2Fg BaY20 4 Ba2ZnAlF9 BaZnF4 Ba2ZnF6 Ba2Zn3F10 Ba2ZnGaF9 BaZnGe04

Classification U-082

U4B2 U-077 U-088 1-033 1-034 U-062 U-057 U-066 B-033 B-385 B-386 U-296 B-486 B-501 B-221 U-048 B-024 U-044 U-306 U-264 1-099 U-186 U-135 B-220 1-071 U-380 U-381 U-382 B-334 B-222 B-079 U-205 U-211 B-248 U-339 U-271 U-320 B-487 B-488 U-338 B-502 B-408 U-267 U-268 U-150 U-185 B-034 B-517 B-028 B-027 U-045 B-035 B-029 B-315

Section 1: Optical Crystals

11

Table 1,1—continued Names, chemical formulas, and classifications of optical crystals Name Barium zinc germanate Barium zinc silicate Barium zinc silicate Barium zirconium silicate Barium zirconium silicate (bazirite) Barium zirconium silicate ^Beryllium aluminate (chrysoberyl) Beryllium aluminate ^Beryllium aluminum silicate (beryl) Beryllium fluoroborate (hambergite) ^Beryllium germanate Beryllium magnesium aluminate (taaffeite) ^Beryllium oxide (bormellite) Beryllium scandium silicate (bazzite) *Beryllium silicate (phenakite) Bismuth aluminate Bismuth antimonate Bismuth borate Bismuth germanate Bismuth germanate *Bismuth germanate (BGO) *Bismuth germanate Bismuth molybdate Bismuth molybdate Bismuth niobate Bismuth oxide (bismite) Bismuth silicate Bismuth oxymolybdate (koechlinite) Bismuth silicate (eulytite) Bismuth oxytungstate (rusellite) Bismuth silicate (sillenite, BSO) Bismuth tantalate Bismuth tin oxide Bismuth titanate Bismuth titanium niobate Bismuth titanium oxide Bismuth vanadate (dreyerite) Bismuth vanadate (pucherite) Bismuth vanadate (clinobisvanite) *Boron nitride *Boron phosphide Cadmium antimonade Cadmium borate Cadmium borate Cadmium borate Cadmium borate Cadmium carbonate (otavite) *Cadmium chloride Cadmium chloroarsenate Cadmium chlorophosphate Cadmium chlorovanadate *Cadmium fluoride Cadmium fluorophosphate Cadmium gallate Cadmium germanium arsenide

Formula Ba2ZnGe20 7 BaZnSi04 Ba2ZnSi2G7 Ba2ZrSi2Og BaZrSi3G9 Ba2Zr2Si3G12 BeAl20 4 BeAl6O,0 Be3Al2Si60 lg Be2BG3F Be2GeG4 BeMg3Al80 16 BeO Be3Sc2Si60 lg Be2Si04 Bi2Al40 9 BiSb04 Bi4B20 9 B *2G e 3 ° 9

Bi2GeOs Bi4Ge30 12 Bil2Ge°20 Bi2Mo2G9 B *2M 0 3 ° 1 2

BiNb04 B i2 °3

Bi2Si05 y-Bi2MoG6 B i 4S i 3 ° 1 2

Bi2W 06 Bi,2Si°20 BiTaO„ Bi2Sn20 7 B i 4T > 3 ° l 2

Bi3TiNb09 Bii2TiO20 BiVO, BiV04 BiVO, BN BP Cd2Sb20 7 CdB20 4 C d 2B 6 ° U

Cd2B2Os CdB40 7 CdC03 CdCl2 Cd5(As04)3Gl Cd5(P04)3Cl Cd5(V04)3Cl CdF2 Cd5(P04)3F CdG^O,, CdGeAs2

Classification U-308 U-265 U-266 U-269 U-270 1-103 B-477 B-478 U-246 B-047 U-298 U-354 U-394 U-247 U-245 B-493 B-273 B-475 B-320 B-402 1-116 1-117 B-110 B-111 B-243 B-274 B-357 B-109 1-105 B-138 1-106 B-266 U-316 B-411 B-244 1-124 U-191 B-208 B-209 1-166 1-167 1-091 1-128 B-458 B-457 B-456 U-222 U-093 U-079 U-074 U-085 1-035 U-054 1-143 U-428

12

CRC Handbook of Laser Science and Technology Table 1.1—continued Names, chemical formulas, and classifications of optical crystals Name

Cadmium germanium phosphide Cadmium germanate Cadmium indium oxide spinel *Cadmium iodide Cadmium niobate Cadmium oxide (monteponite) Cadmium scandium germanate *Cadmium selenide (cadmoselite) Cadmium silicon arsenide Cadmium silicon phosphide *Cadmium sulfide (greenockite) *Cadmium tellurite (Irtran 6) Cadmium tin borate Cadmium tin arsenide Cadmium tin phosphide Cadmium titanate Cadmium tungstate Cadmium vanadate Cadmium vanadate Calcium aluminate Calcium aluminate (mayenite) Calcium aluminate Calcium aluminate Calcium aluminate (brownmillerite) Calcium aluminate Calcium hexa-aluminate Calcium aluminum borate Calcium aluminum borate Calcium aluminum borate (johachidolite) Calcium aluminum fluoride Calcium aluminum fluoride (prosopite) Calcium aluminum germanate Calcium aluminum germanate Calcium aluminum oxyfluoride Calcium aluminum silicate (gehlenite, CAS) Calcium aluminum silicate (anorthite) Calcium aluminum silicate (grossularite) Calcium antimonate Calcium antimonate Calcium barium carbonate (alstonite) Calcium beryllium fluorophosphate (herderite) Calcium beryllium phosphate (hurlbutite) Calcium beryllium silicate (gugiaite) Calcium borate (calciborite) Calcium borate Calcium borate Calcium borate Calcium borate Calcium boron silicate (danburite) *Calcium carbonate (calcite) Calcium carbonate (aragonite) Calcium carbonate (vaterite) Calcium chloroarsenate Calcium chloroarsenate

Formula

CdGeP2 Cd2Ge04 Cdln20 4 Cdl2 Cd2Nb20 7 CdO Cd3Sc2Ge30 j2 CdSe CdSiAs2 CdSiP2 CdS CdTe CdSnB20 6 CdSnAs2 CdSnP2 CdTiG3 CdW04 CdV20 6 Cd2V20 7 CaAl20 4 Ca,2Al140 33 Ca5A16°14 Ca3Al20 6 Ca2Al2Os CaAl40 7 CaAl12G19 CaAlBG4 CaAl2B20 7 CaAlB30 7 Ca2AlF7 CaAl2Fg Ca2Al2GeO? Ca3Al2Ge30i2 CajA^OgF Ca2Al2Si07 CaAl2Si2Og Ca3Al2Si30 12 Ca2Sb20 7 Ca2Sb20 7 CaBa(C03)2 CaBe(P04)F CaBe2(P04)2 Ca2BeSi20 7 CaB20 4 Ca2B2G5 Ca3B20 6 CaB4G7 Ca2B6On CaB2Si2Og CaC03 CaC03 CaC03 Ca2As04Cl Ca5(AsG4)3Cl

Classification

U-423 B-388 1-154 U-101 1-097 1-068 1-107 U-416 U-427 U-422 U-409 1-163 U-340 U-429 U-424 U-321 B-124 B-202 B-203 B-479 1-134 B-483 B-481 B-480 B-482 U-355 B-448 U-329 B-447 B-022 B-023 U-300 1-108 U-070 U-252 B-326 1-102 1-090 B-268 B-278 B-043 B-162 U-249 B-442 B-443 U-328 B-445 B-444 B-325 U-217 B-276 U-218 B-060 U-080

Section 1: Optical Crystals

13

Table 1.1—continued Names, chemical formulas, and classifications of optical crystals Name Calcium chloroborate Calcium chloroborate Calcium chlorophosphate Calcium chlorophosphate (chlorapatite) Calcium chlorovanadate Calcium chlorovanadate *Calcium fluoride (fluorite, fluorspar, Irtran 3) Calcium fluoroarsenate (svabite, CAAP) Calcium fluoroborate (fabianite) Calcium fluorophosphate (spodiosite) Calcium fluorophosphate (apatite, FAP) Calcium fluorovanadate (VAP) Calcium gadolinium aluminate Calcium gadolinium oxysilicate Calcium gadolinium phosphate Calcium gallate Calcium gallate Calcium gallate Calcium gallium germanate Calcium gallium germanate Calcium gallium germanium garnet Calcium gallium silicate (CGS) Calcium germanate Calcium germanate Calcium indate Calcium indium germanate Calcium iodate (lautarite) Calcium lanthanum aluminate Calcium lanthanum borate Calcium lanthanum phosphate Calcium lanthanum oxyphosphate Calcium lanthanum oxysilicate Calcium lithium magnesium vanadate Calcium lithium zinc vanadate Calcium lutetium germanate Calcium magnesium borate (kurchatovite) Calcium magnesium carbonate (dolomite) Calcium magnesium carbonate (huntite) Calcium magnesium fluoroarsenate (tilasite) Calcium magnesium fluorophosphate (isokite) Calcium magnesium germanate Calcium magnesium silicate (monticellite) Calcium magnesium silicate (diopside) Calcium magnesium silicate (akermanite) Calcium magnesium silicate (merwinite) Calcium magnesium vanadate Calcium molybdate Calcium niobate (rynersonite) Calcium niobate Calcium niobium gallium garnet *Calcium oxide (lime) Calcium phosphate Calcium scandate Calcium scandium germanate

Formula Ca2BQ3Cl Ca2B50 9Cl Ca7P04Cl C a/P O ^C l Ca2V04Cl Ca5(V04)3Cl CaF2 Ca5(As04)3F CaB30 5F Ca2(P04)F Ca5(P04)3F Ca5(V04)3F CaGaA104 CaGd4(Si04)30 Ca3Gd(P04)3 CaGa20 4 Ca3Ga40 9 Ca5Ga60i4 Ca0Ga2GeO? Ca3Ga2Ge40 ,4 Ca3Ga2Ge30 |2 Ca2Ga2Si07 CaGe20 5 CaGe40 9 Caln20 4 Ca3In2Ge30 |2 Ca(I03)2 CaLaA104 CaLaBG4 Ca3La(P04)3 Ca4La(P04)30 CaLa4(Si04)30 Ca3LiMgV30 12 Ca3LiZnV30 12 Ca3Lu2Ge30 12 CaMgB20 5 CaMg(C03)2 CaMg3(C03)4 CaMgAs04F CaMgP04F CaMgGe20 6 CaMgSi04 CaMgSi20 6 Ca2MgSi20 7 Ca3MgSi2Og CaMg2(V04)2 CaMo04 CaNb20 6 Ca2Nb2Ov Ca3(Nb,Ga)2Ga3Ol2 CaO p-CaP20 7 CaSc20 4 Ca3Sc2Ge30 12

Classification B-058 U-090 B-059 U-075 B-061 U-086 1-031 U-060 B-050 B-041 U-055 U-064 U-358 U-257 1-074 B-497 B-498 B-499 U-301 U-302 1-109 U-253 B-379 U-290 B-511 1-111 B-073 U-357 U-330 1-073 U-161 U-256 1-085 1-086 1-112 B-446 U-219 U-220 B-045 B-042 B-38G B-321 B-322 U-250 B-323 U-181 U-133 B-214 B-215 1-144 1-060 U-161 B-506 1-110

14

CRC Handbook of Laser Science and Technology Table 1.1—continued Names, chemical formulas, and classifications of optical crystals Name

Calcium scandium silicate Calcium silicate (wollastonite) Calcium silicate (lamite) Calcium silicate (rankinite) Calcium sodium magnesium vanadate Calcium sodium zinc vanadate Calcium sulfate (anhydrite) Calcium tellurate (denningite) Calcium tantalate Calcium tin borate (nordenskioldine) Calcium tin oxide Calcium tin silicate (malayaite) Calcium titanate (perovskite) Calcium titanium germanate Calcium titanium silicate (sphene) ♦Calcium tungstate (scheelite) Calcium vanadate Calcium vanadate Calcium vanadate Calcium yttrium aluminate Calcium yttrium borate Calcium yttrium oxysilicate (SOAP) Calcium yttrium oxysilicate Calcium yttrium magnesium germanium garnet (CAMGAR) Calcium zinc fluoride Calcium zinc germanate Calcium zinc silicate (esperite) Calcium zinc silicate (hardystonite) Calcium zirconium boron aluminate (painite) Calcium zirconium silicate (gittinsite) Calcium zirconium titanate (zirkelite) Calcium zirconium titanium silicate (baghdadite) ♦Carbon (diamond) Cesium aluminum sulfate Cesium beryllium fluoride Cesium borate ♦Cesium bromide Cesium cadmium bromide Cesium cadmium bromide Cesium cadmium chloride Cesium cadmium fluoride Cesium cadmium zinc fluoride Cesium calcium fluoride ♦Cesium chloride Cesium dideuterium arsenate Cesium dideuterium phosphate Cesium dihydrogen arsenate Cesium dihydrogen phosphate ♦Cesium fluoride Cesium gadolinium molybdate Cesium gallium sulfate ♦Cesium iodide Cesium lanthanum tungstate Cesium lithium aluminum fluoride Cesium lithium aluminum fluoride

Formula

Ca,Sc,SLO„ CaSi03 |3-Ca2Si04 Ca3Si20 7 Ca2NaMg2V30 12 Ca2NaZn2V30 12 CaS04 C a 2T e 2 ° 5

C aT a^ CaSnB20 6 CaSn03 CaSnSiOs CaTiD3 CaTiGe04 CaTiSiOs CaW04 CaV20 6 Ca2V2°7 Ca3(V04)2 CaYA104 CaYB04 CaY4(Si04)30 Ca4Y6(Si04)6 CaY2Mg2Ge30 12 CaZnF4 CaZnGe20 6 CaZnSi04 Ca2ZnSi20 ? CaZrBAl90 ,g CaZrSi20 7 CaZrTi20 ? Ca3(Zr,Ti)Si20 9 C CsA1(S04)2 Cs2BeF4 C

sB

3°5

CsBr CsCdBr3 Cs2CdBr4 Cs2CdCl4 CsCdF3 Cs2CdZnF6 CsCaF3 CsCl CsD2A s0 4 CsD2P 04 CsH2As0 4 CsH2P 04 CsF CsGd(MoQ4)2 CsGa(S04)2 Csl C La(W04i2 C 2LiA1F6 Cs2LiAi3F12

Classification

1-104 B-318 B-319 B-320 1-087 1-088 B-077 U-122 B-247 U-331 B-403 B-330 B-405 B-382 B-327 U-148 B-197 B-198 B-199 U-356 B-449 U-254 U-255 I -113 U-042 B-381 B-324 U-251 U-359 B-328 B-406 B-329 I-176 U-108 B-019 B-433 1-053 1-054 B-067 U-073 1-028 U-031 1-029 1-043 U-172 U-159 U-171 U-158 1-025 B-054 U-112 1-063 U-147 U-032 U-033

Section 1: Optical Crystals

15

Table 1.1— continued Names, chemical formulas, and classifications of optical crystals Nam®

Cesium lithium beryllium fluoride Cesium lithium gallium fluoride Cesium lithium gallium fluoride Cesium lithium sulfate Cesium magnesium chloride Cesium mercury iodide Cesium niobium borate (CNB) Cesium niobium sulfate Cesium potassium aluminum fluoride Cesium potassium lanthanum fluoride Cesium scandium molybdate Cesium scandium tungstate Cesium silver fluoride Cesium sodium aluminum fluoride Cesium sodium aluminum fluoride Cesium sodium gallium fluoride Cesium sodium yttrium fluoride Cesium strontium fluoride Cesium tin germanate Cesium titanium germanate Cesium titano arsenate (CTA) Cesium zinc aluminum fluoride Cesium zinc bromide Cesium zinc chloride *Copper bromide (cuprous) *Copper chloride (cuprous, nantokite) Copper iodide (cuprous, marshite) Cuprous oxide (cuprite) Gadolinium aluminate Gadolinium aluminate Gadolinium aluminum borate Gadolinium aluminum germanate Gadolinium borate Gadolinium borate Gadolinium gallium borate *Gadolinium gallium garnet (GGG) Gadolinium gallium germanate Gadolinium germanate Gadolinium germanium beryllate Gadolinium indate Gadolinium magnesium borate Gadolinium molybdate Gadolinium niobate Gadolinium niobate Gadolinium oxide Gadolinium oxymolybdate Gadolinium oxysulfate Gadolinium oxytungstate Gadolinium phosphate Gadolinium pentaphosphate Gadolinium scandate Gadolinium scandium aluminum garnet (GSAG) Gadolinium scandium gallium garnet (GSGG) Gadolinium orthosilicate Gadolinium strontium borate

Formula CsLiBeF4 Cs0LiGaF6 CsjLiGajFjj CsLiS04 Cs2MgCl4 Cs2HgI4 CsNbB20 6 CsNbO(S04)2 Cs2KA13F,2 Cs2KLaF6 CsSc(Mo04)2 CsSc(W04)2 Cs2AgF4 Cs2NaAlF6 Cs2NaAl3F12 Cs2NaGaF6 Cs2NaYF6 CsSrF3 Cs2SnGe30 9 Cs2TiGe30 9 CsTiOAs04 CsZnAlF6 Cs2ZnBr4 Cs2ZnCl4 CuBr CuCl Cul Cu20 GdA103 Gd4Al20 9 GdAl3(B03)4 GdAlGe20 7 GdB03 Gd(B02)3 GdGa3(B03)4 Gd3Ga50 12 GdGaGe20 ? Gd2Ge05 Gd2GeBe20 ? GdInOs GdMgB5O10 Gd2(MoG4)3 GdNbG4 Gd3NbO? Gd2G3 Gd2MoG6 Gd2G2S04 Gd2WG6 GdPG4 GdPsO|4 GdSc03 Gd3Sc2Al3Ol2 Gd3Sc2Ga30 |2 Gd2Si05 Gd2Sr3(B03)4

Classification

B-020 U-037 U-038 B-074 B-053 B-069 B-434 B-075 U-036 1-027 U-132 U-146 U-030 U-034 U-035 U-039 1-026 1-030 U-295 U-294 B-178 B-021 B-066 B-053 1-055 1-044 1-064 1-069 B-492 B-491 U-347 B-399 U-346 B-467 U-348 1-148 B-401 B-398 U-399 U-388 B-474 B-103 B-241 B-242 B-519 B-107 B-083 B-137 B-170 B-171 B-510 1-138 1-149 B-355 B-473

16

CRC Handbook of Laser Science and Technology Table 1.1—continued Names, chemical formulas, and classifications of optical crystals Name

Gadolinium tantalate Gadolinium titanate Gadolinium tungstate Gadolinium vanadate ♦Gallium antimonide ♦Gallium arsenide Gallium germanate Gallium molybdate Gallium niobate ♦p-Gallium oxide Gallium phosphate ♦Gallium phosphide Gallium selenide Gallium tungstate ♦Germanium ♦Germanium oxide (argutite) Hafnium oxide Hafnium silicate (hafnon) ♦Indium antimonide ♦Indium arsenide Indium borate Indium cadmium borate Indium calcium borate Indium gallate Indium molybdate Indium niobate Indium oxide Indium phosphate ♦Indium phosphide Indium tantalate Indium tungstate Indium vanadate Iodic acid Lanthanum aluminate Lanthanum aluminum germanate Lanthanum antimonade Lanthanum antimonade Lanthanum barium borate Lanthanum barium gallate ♦Lanthanum beryllate (BEL) Lanthanum borate Lanthanum meta-borate Lanthanum boron germanate Lanthanum boron molybdate Lanthanum boron silicate (stillwellite) Lanthanum boron tungstate Lanthanum calcium aluminate Lanthanum calcium borate Lanthanum calcium gallate Lanthanum chloride ♦Lanthanum fluoride (tysonite) Lanthanum gallate Lanthanum gallium germanate Lanthanum gallium germanate

Formula

Gd3TaO? Gd2Ti20 7 Gd2(W04)3 GdV04 GaSb GaAs oc-Ga4GeOg Ga2(Mo04)3 GaNb04 P-Ga20 3 GaP04 GaP GaSe Ga2(W04)3 Ge Ge02 Hf02 HfSi04 InSb InAs InB03 InCdB04 InCaB04 InGa03 In2(Mo04)3 InNb04 ln ,0 3 InP04 InP InTa04 In2(W04)3 InV04 h io 3 LaA103 LaAlGe20 ? LaSb04 La3SbO? La2Ba3(B03)4 BaLaGa30 ? La2Be20 5 LaB03 La(B02)3 LaBGe05 LaBMo06 LaBSi05 LaBW06 LaCaAl30 7 La2Ca3(B03)4 LaCaGa3G7 LaCl3 LaF3 LaGa03 LaGaGe20 ? La3Ga5G e014

Classification

B-264 1-122 B-132 U-189 1-174 1-172 B-394 B-098 B-232 B-494 U-164 1-168 U-415 B-126 1-178 U-279 B-413 U-277 1-175 1-173 U-341 B-462 B-463 B-504 B-099 B-234 U-383 B-166 1-169 B-256 B-127 B-206 B-072 U-368 B-294 B-271 B-272 B-471 U-375 B-526 B-465 B-466 U-312 B-106 U-274 B-135 U-370 B-470 U-373 U-095 U-052 B-505 B-400 U-313

Section 1: Optical Crystals

17

Table 1.1—continued Names, chemical formulas, and classifications of optical crystals Name

Lanthanum gallium silicate Lanthanum germanium beryllate Lanthanum indate Lanthanum lutetium gallium garnet (LLGG) Lanthanum magnesium hexa-aluminate (LMA) Lanthanum magnesium borate Lanthanum molybdate Lanthanum niobate Lanthanum niobate Lanthanum niobate Lanthanum niobogallate Lanthanum oxide Lanthanum oxybromide Lanthanum oxymolybdate Lanthanum oxysulfate Lanthanum oxysulfide Lanthanum oxytungstate Lanthanum phosphate (monazite) Lanthanum pentaphosphate Lanthanum scandate Lanthanum scandium borate Lanthanum silicate Lanthanum strontium borate Lanthanum strontium gallate Lanthanum tantalate Lanthanum tantalogallate Lanthanum titanate Lanthanum titanate Lanthanum tungstate Lathanium vanadate Lanthanum yttrium tungstate Lead antimonade Lead hexa-aluminate (magnetoplumbite) Lead bismuth niobate Lead bromide Lead cadmium niobate Lead calcium chloroarsenate (hedyphane) Lead carbonate (cerussite) *Lead chloride (cotunnite) Lead chloroarsenate (mimetite) Lead chlorophosphate (pyromorphite) Lead chlorovanadate (vanadinite) *Lead fluoride Lead fluoroarsenate Lead fluorophosphate Lead fluorovanadate Lead germanate Lead germanate Lead germanate Lead indium niobate Lead magnesium niobate *Lead molybdate (wulfenite) Lead niobate (changbaiite) Lead nitrate

Formula

La3Ga5SiOj4 La2GeBe20 ? Laln03 La3Lu7Ga30 ,2 LaMgAlnO,9 LaMgB5O10 La2(Mo04)3 LaNb04 LaNb50 14 La3NbO? La20 3 LaOBr La2Mo06 La20 2S04 La2°2S La2W 06 LaP04 L a P 5°14

LaScG3 LaSc3(B03)4 La2Si05 La2Sr3(B03)4 LaSrGa30 ? La3TaO? La3Ta05Ga55O14 La2Ti05 La2Ti2G7 La2(W04)3 LaV04 LaY(W04)3 Pb2Sb20 7 PbAl120 19 PbBi2Nb20 9 PbBr2 Pb3CdNb,09 Pb3Ca2(As04)3Cl PbC03 PbCl2 Pb5(As04)3Cl Pb5(P04)3Cl Pb5(V04)3Cl PbF2 Pb5(As04)3F Pb5(PG4)3F Pb5(V04)3F PbGe03 Pb3Ge20 7 Pb3Ge05 Pb2InNb06 Pb3MgNb20 9 PbMo04 PbNb20 6 Pb(NQ3)2

Classification

U-275 U-398 B-513 1-147 U-369 B-468 U-099 B-238 B-239 B-240 U-376 U-389 U-098 U-137 B-082 U-402 U-152 B-168 B-169 B-509 B-472 B-354 B-470 U-374 B-263 U-377 B-409 B-410 B-130 B-207 B-131 1-093 U-365 B-229 B-068 B-228 U-084 B-280 B-056 U-083 U-078 U-089 1-036 U-063 U-058 U-067 B-389 U-311 B-390 U-207 B-226 U-136 B-223 1-072

18

CRC Handbook of Laser Science and Technology Table 1.1—continued Names, chemical formulas, and classifications of optical crystals Name

*Lead oxide (litharge) Lead phosphate Lead potassium niobate Lead scandium niobate Lead selenate (kerstenite) *Lead selenide (clausthalite) Lead selenite (molybdomenite) Lead silicate (alamosite) Lead sodium niobate Lead sulfate (anglesite) *Lead sulfide (galena) Lead tantalate *Lead telluride (altaite) Lead titanate (macedonite) Lead titanium phosphate *Lead tungstate (stolzite) Lead vanadate Lead vanadate (chervetite) Lead zinc niobate Lead zinc silicate (larsenite) Lead zinc silicate Lithium aluminate Lithium aluminate spinel Lithium aluminate Lithium aluminum borate Lithium aluminum fluorophosphate (amblygonite) Lithium aluminum germanate Lithium aluminum germanate Lithium aluminum molybdate Lithium aluminum silicate (eucryptite) Lithium aluminum silicate (spodumene) Lithium aluminum silicate (petalite) Lithium barium aluminum fluoride (LiBAF) Lithium barium fluoride Lithium barium gallium fluoride Lithium beryllium fluoride Lithium beryllium silicate (liberite) Lithium borate Lithium triborate (LBO) Lithium tetraborate (diomignite) *Lithium bromide Lithium cadmium borate Lithium cadmium chloride Lithium cadmium indium fluoride Lithium calcium aluminum fluoride (colquiriite, LiCAF) Lithium calcium gallium fluoride (LiCGaF) Lithium calcium germanate Lithium calcium indium fluoride Lithium calcium silicate Lithium carbonate (zabuyelite) *Lithium chloride *Lithium fluoride (griceite) Lithium gadolinium borate Lithium gadolinium borate Lithium gadolinium molybdate

Formula

PbO Pb,(P04)2 Pb2KNb56 15 Pb2ScNbQ6 PbSe04 PbSe PbSe03 PbSi03 PbNaNb-O.PbS04 PbS PbTa20 6 PbTe PbTiG3 PbTiP2Og PbW04 Pb3(V04)2 Pb2V20 7 Pb3ZnNb20 9 PbZnSi04 Pb2ZnSi20 7 y-LiA102 LiAl50 8 Li5A104 Li6Al2(BG3)4 LiAl(P04)F LiAlGe04 LiAlGe20 6 LiAl(MoG4)2 LiAlSiG4 LiAlSi20 6 LiAlSi4OI0 LiBaAlF6 LiBaF3 LiBaGaF6 Li2BeF4 Li2BeSi04 LiB02 LiB30 5 Li2B4G7 LiBr LiCdB03 Li2CdCl4 LiCdInF6 LiCaAlF6 LiCaGaF6 Li2CaGeG4 LiCaInF6 Li2CaSiG4 Li2C 03 LiCl LiF Li3Gd2(B03)3 Li6Gd(BG3)3 LiGd(MoG4)2

Classification

U-401 B-163 B-225 U-206 B-085 1-161 B-086 B-339 B-224 B-002 1-158 B-252 1-165 U-322 B-164 U-151 B-205 B-204 B-227 B-340 U-273 U-360 1-129 B-476 B-419 B-037 U-281 B-360 B-088 U-225 U-274 B-275 B-001 1-003 B-002 1-002 B-282 B-414 B-415 U-324 1-049 U-325 1-039 U-007 U-004 U-005 U-280 U-006 U-224 B-275 1-037 1-001 B-422 B-424 B-122

Section 1: Optical Crystals

19

Table 1.1—continued Names, chemical formulas, and classifications of optical crystals Name

Lithium gadolinium oxide Lithium gadolinium tetrafluoride (GLF) Lithium gadolinium tetraphosphate Lithium gadolinium tungstate Lithium gallate Lithium gallate Lithium gallate spinel Lithium gallium germanate Lithium gallium germanate Lithium gallium silicate Lithium gallium silicate Lithium gallium tungstate Lithium germanate Lithium indium germanate Lithium indium molybdate Lithium indium oxide Lithium indium oxide Lithium indium silicate Lithium indium silicate Lithium indium tungstate ♦Lithium iodide ♦Lithium iodate Lithium lanthanum borate Lithium lanthanum molybdate Lithium lanthanum oxide Lithium lanthanum tetraphosphate Lithium lanthanum tungstate Lithium lutetium borate Lithium lutetium fluoride Lithium lutetium germanate Lithium lutetium oxide Lithium lutetium silicate Lithium lutetium tetraphosphate Lithium lutetium tungstate Lithium magnesium aluminum fluoride Lithium magnesium borate Lithium magnesium borate Lithium magnesium chloride Lithium magnesium gallium fluoride Lithium magnesium germanate Lithium magnesium indium fluoride ♦Lithium niobate Lithium phosphate (lithiophosphate) Lithium scandate Lithium scandium germanate Lithium scandium germanate Lithium scandium silicate Lithium scandium silicate Lithium scandium tungstate Lithium silicate Lithium strontium aluminum fluoride (LiSAF) Lithium strontium gallium fluoride (LiSGF) Lithium tantalate (LT) Lithium vanadate Lithium vanadate

Formula

LiGd02 LiGdF4 LiGdP40 12 LiGd(W04)2 LiGa02 Li5Ga04 LiGa5Og LiGaGeO,4 LiGaGe20 6 LiGaSi04 LiGaSi20 6 LiGa(W04)2 Li2G e03 LiInGe20 6 LiIn(MoQ4)2 Liln02 Li3In03 LiInSi04 LiInSi20 6 LiIn(W04)2 Lil LiI03 Li3La2(B03)3 LiLa(Mo04)2 LiLa02 LiLaP40 ,2 LiLa(W04)2 Li6Lu(B03)3 LiLuF4 LiLuGe04 LiLu02 LiLuSi04 LiLuP40 ,2 LiLu(W04)2 LiMgAlF6 LiMgBG3 Li2MgB2Os Li2MgCl4 LiMgGaF6 Li2MgGe04 LiMgInF6 LiNbG3 Li3P 04 LiScG2 LiScGe04 LiScGe20 6 LiScSi04 LiScSi2G6 LiSc(W04)2 Li2Si03 LiSrAlF6 LiSrGaF6 LiTa03 LiV03 L i 3V ° 4

Classification

B-521 U-112 B-142 U-139 B-495 B-496 1-140 U-282 B-350 U-226 B-285 B-112 B-358 B-364 B-089 U-384 U-385 B-286 B-287 B-114 1-059 U-104 B-421 B-090 B-518 B-141 U-138 B-425 U-013 B-366 U-392 B-290 B-143 B-116 U-001 B-416 B-417 1-038 U-002 B-359 U-003 U-193 B-140 U-378 B-362 B-363 B-288 B-289 B-113 B-281 U-008 U-009 U-209 B-183 B-184

20

CRC Handbook of Laser Science and Technology Table 1.1—continued Names, chemical formulas, and classifications of optical crystals Name

Lithium yttrium borate Lithium yttrium borate ♦Lithium yttrium fluoride (YLF) Lithium yttrium germanate Lithium yttrium oxide Lithium yttrium silicate Lithium yttrium tungstate Lithium zinc borate Lithium zinc indium fluoride Lithium zinc niobate Lutetium aluminum borate Lutetium aluminum garnet Lutetium borate Lutetium calcium borate Lutetium gallium garnet Lutetium molybdate Lutetium orthosilicate Lutetium oxide Lutetium oxymolybdate Lutetium oxysulfate Lutetium oxytungstate Lutetium phosphate Lutetium pentaphosphate Lutetium scandium aluminum garnet (LSAG) Lutetium scandate Lutetium tantalate Lutetium titanate Lutetium tungstate Lutetium vanadate ♦Magnesium aluminate (spinel) Magnesium aluminum borate (sinhalite) Magnesium aluminum borosilicate (grandidierite) Magnesium aluminum silicate (cordierite) Magnesium aluminum silicate garnet (pyrope) Magnesium aluminum silicate (sapphirine) Magnesium pyroarsenate Magnesium borate (suanite) Magnesium borate (kotoite) Magnesium carbonate (magnesite) Magnesium chloroborate (boracite) ♦Magnesium fluoride (sellaite, Irtran 1) Magnesium fluoroborate Magnesium fluoroborate Magnesium fluorophosphate (wagnerite) Magnesium gallate spinel Magnesium gallium borate Magnesium gallium germanate Magnesium germanate Magnesium germanate Magnesium molybdate ♦Magnesium oxide (periclase, Irtran 5) Magnesium phosphate (farringtonite) Magnesium silicate (enstatite) Magnesium silicate (forsterite)

Formula Li3Y2(B03)3 Li6Y(B03)3 LiYF4 LiYGe04 LiY02 LiYSi04 LiY(W04)2 LiZnB03 LiZnInF6 LiZnNb04 LuAl3(B03)3 L U 3A 1 5 ° 1 2

LuBOj LuCaB04 L u 3G a 5 ° 1 2

Lu2(Mo0 4)3 Lu2Si05 L

u

2°3

LuM06 Lu20 2S04 Lu2WOs LuP04 L

u

P 5 °I4

Lu3Sc2A130 12 LuSc0 3 LuTa04 Lu2Ti20 3 Lu2(W04)3 LuV 04 MgAl20 4 MgAlBO, MgAl3BSiO, Mg2Al3(Si5A l)0|8 Mg3Al2Si30 |2 ^ 84AlgSi2O20 Mg2As20 7 Mg2B2° 5 Mg3B2°6 MgC03 Mg3B70 ,3Cl MgF2 Mg2B03F Mg5(B03)3F Mg2P04F M g G a 2°4

MgGaB04 Mg4GagGe2O20 MgGe03 Mg2Ge04 MgMo04 MgO Mg3(P04)2 MgSi03 Mg2SiQ4

Classification B-420 B-423 U-011 B-365 B-514 B-291 . B-115 B-418 U-010 U-194 U-350 1-139 U-349 B-464 1-150 B-104 B-356 1-156 B-108 B-084 B-137 U-167 B-172 1-151 1-153 B-265 1-123 B-133 U-190 1-130 B-429 B-317 U-248 I-101 B-316 B-179 B-437 B-438 U-216 B-057 U-041 B-048 B-049 B-040 1-141 B-440 B-378 B-376 B-377 B-096 1-065 B-161 B-314 B-315

Section 1: Optical Crystals

21

Table 1.1—continued Names, chemical formulas, and classifications of optical crystals Name Magnesium titanate (geikielite) Magnesium titanate Magnesium titanate Magnesium titanum borate (warwickite) Magnesium titanium sulfate Magnesium tungstate Magnesium vanadate Magnesium vanadate Magnesium vanadate ^Manganese fluoride ^Manganese oxide (manganosite) Mercurous bromide (kuzminite) Mercurous chloride (calomel) Mercurous iodide (moschelite) Mercury antimonade Mercury chloride Mercury iodide *Mercury selenide (tiemannite) *Mercury sulfide (cinnabar) *Mercury tellurite (coloradoite) Niobium phosphate Potassium aluminum fluoride Potassium aluminum tetrafluoride Potassium aluminum germanate Potassium aluminum molybdate Potassium aluminum silicate (kaliophilite) Potassium aluminum silicate (leucite) Potassium aluminum silicate (orthoclase) ^Potassium aluminum silicate hydroxide (muscovite, mica) Potassium aluminum sulfate Potassium beryllium fluoride Potassium beryllium fluoroborate (KBBF) Potassium bismuth niobate Potassium boron fluoride (avogadvite) ^Potassium bromide Potassium cadmium fluoride Potassium calcium fluoride Potassium calcium silicate Potassium calcium zirconium silicate (wadeite) ^Potassium chloride (sylvite) Potassium dideuterium phosphate (KD*P) *Potassium fluoride (carobbiite) Potassium gadolinium niobate Potassium gadolinium tungstate Potassium gadolinium vanadate Potassium gallium germanate Potassium gallium silicate Potassium gallium silicate ^Potassium dihydrogen phosphate (KDP) Potassium indium molybdate Potassium indium tungstate ^Potassium iodide Potassium lanthanum molybdate Potassium lanthanum niobate

Formula MgTiQ3 Mg,Ti04 MgTi2Os Mg3TiB2Og MgTi(S04)2 MgWO, MgV20 6 Mg2V20 7 Mg3(V04)2 MnF2 MnO Hg2Br, Hg2Cl2 Hg2I2 Hg2Sb20 7 HgCl2 Hgl2 HgSe HgS HgTe NbOPO.4 I^AIF, k a if 4 KAlGe04 KA1(Mo0 4)2 KAlSi04 KAlSi20 6 KAlSi3Og KAl3Si3O10-(OH)2 KA1(S04)2 K.BeF, KBe2B 0 3F2 KBiNb50 15 kbf4 KBr KCdF3 KCaF3 K2CaSi04 K,CaZr(Si03)4 KC1 k d 2p o 4 KF ^GdNbgOjg KGd(W04)2 K3Gd(V04)2 KGaGe04 KGaSi04 KGaSi3Og k h 2p o 4 KIn(Mo04)2 KIn(WG4)2 KI KLa(MoG4)2 KjLaNbjOjg

Classification U-318 1-119 B-404 B-441 B-076 B-122 B-194 B-195 B-196 U-049 1-067 U-097 U-094 U-102 1-092 B-055 U-103 1-163 U-410 1-164 U-168 1-016 U-021 U-288

U-127 U-236 U-237 B-311 B-071 U-106 B-017 U-069 U-198 B-014 1-051 1-015 1-014 B-310 U-239 1-041 U-156 1-012 U-197 B-119 B-192 U-289 U-238 B-312 U-155 B-092 U-143 1-061 U-129 U-196

22

CRC Handbook of Laser Science and Technology Table 1.1—continued Names, chemical formulas, and classifications of optical crystals Name

Potassium lanthanum phosphate Potassium lanthanum tetraphosphate Potassium lanthanum tungstate Potassium lithium beryllium fluoride Potassium lithium gadolinium fluoride (KLGF) Potassium lithium niobate (KLN) Potassium lithium yttrium fluoride (KLYF) Potassium lutetium tungstate Potassium lutetium vanadate Potassium magnesium chloride Potassium magnesium fluoride Potassium magnesium fluoride Potassium magnesium sulfate (langbeinite) Potassium niobate (KN) Potassium niobium borate Potassium nitrate (nitre) Potassium scandium molybdate Potassium scandium tungstate Potassium scandium vanadate Potassium sodium aluminum fluoride (elpasolite) Potassium sodium gallium fluoride Potassium sodium lithium niobate Potassium strontium sulfate (kalistrontite) Potassium tantalate Potassium tantalum borate Potassium tin germanate Potassium tin silicate Potassium titanium germanate Potassium titanium niobate Potassium titanium niobate Potassium titanum silicate Potassium titano arsenate (KTA) Potassium titano phosphate (KTP) Potassium vanadate Potassium yttrium fluoride Potassium yttrium tetrafluoride (KYF) Potassium yttrium molybdate Potassium yttrium tungstate Potassium yttrium vanadate Potassium zinc fluoride Potassium zinc fluoride Rubidium aluminum tetrafluoride Rubidium aluminum selenate Rubidium aluminum silicate Rubidium aluminum silicate Rubidium aluminum sulfate Rubidium beryllium fluoride Rubidium bismuth molybdate ♦Rubidium bromide Rubidium cadmium fluoride Rubidium calcium fluoride ♦Rubidium chloride Rubidium fluoride Rubidium gadolinium vanadate Rubidium gallium selenate

Formula K3La(P04)2 KLaP40 |2 KLa(W04)2 KLiBeF4 KLiGdF5 K,Li2Nb5° 15 KLiYFj KLu(W04)2 ^LuCVO,), KjMgCl, KMgF3 KjMgF, K2Mg,(S04)3 KNb03 KNbB,0, kno3 KSc(Mo0 4)2 KSc(W04)2 KSc(V04)2 KjNaAlFj K2NaGaF6 KNaLi2Nb50 ]5 K,Sr(S04)2 KTa03 KTaB20 6 K2SnGe30 9 l^SnS^Og K2TiGe30 9 KTiNbOs KTi3Nb09 I ^ T iS i^ KTiOAs04 KTiOPO, kvo3 k y 3f 10 kyf4 KY(Mo0 4)2 k y (W04)2 k 3y (v o 4)2 KZnF3 K.ZnF, RbAlF4 RbAl(Se04), RbAlSi04 RbAlSi20 6 RbAl(S04)2 Rb2BeF4 RbBi(Mo04)2 RbBr RbCdF3 RbCaF3 RbCl RbF RbGd(V04)2 RbGa(Se04)2

Classification B-152 B-155 B-118 U-017 B-016 U-199 B-015 B-120 B-193 U-071 1-013 U-018 1-070 B-211 B-429 B-139 U-128 U-142 U-176 1-017 1-018 U-201 U-105 B-246 B-430 U-291 U-241 U-290 B-212 B-213 U-240 B-176 B-159 B-190 1-013 U-022 B-093 B-117 B-151 U-019 U-020 U-G26 U-116 B-313 U-242 U-107 B-018 B-094 1-052 U-025 1-024 1-042 1-020 U-179 U-119

Section 1: Optical Crystals

23

Table 1.1—continued Names, chemical formulas, and classifications of optical crystals Name

Rubidium gallium sulfate Rubidium dihydrogen arsenate (RDA) Rubidium dihydrogen phosphate (RDP) Rubidium indium molybdate Rubidium indium tungstate *Rubidium iodide Rubidium lanthanum tungstate Rubidium lithium aluminum fluoride Rubidium lithium gallium fluoride Rubidium lanthanum niobate Rubidium lutetium vanadate Rubidium magnesium chloride Rubidium magnesium fluoride Rubidium niobium borate Rubidium potassium gallium fluoride Rubidium scandium molybdate Rubidium scandium tungstate Rubidium scandium vanadate Rubidium sodium beryllium fluoride Rubidium sodium indium fluoride Rubidium tantalum borate Rubidium tin germanate Rubidium tin silicate Rubidium titanium germanate Rubidium titanium silicate Rubidium titano arsenate (RTA) Rubidium titano phosphate (RTP) Rubidium yttrium vanadate Rubidium zinc bromide Rubidium zinc chloride Rubidium zinc fluoride Rubidium zinc fluoride Scandium aluminum beryllate (SCAB) Scandium borate Scandium calcium borate Scandium gallate Scandium germanate Scandium magnesium borate Scandium molybdate Scandium niobate Scandium oxide Scandium phosphate Scandium metaphosphate Scandium orthosilicate Scandium silicate Scandium tantalate Scandium titanate Scandium tungstate Scandium vanadate Scandium yttrium silicate (thortveitite) *Selenium Selenium dioxide (downeyite) ^Silicon *Silicon carbide (carborundum, moissanite) ^Silicon dioxide (quartz)

Formula

RbGa(S04)2 RbH2As04 RbH2P 04 RbIn(Mo04)2 RbIn(W04)2 Rbl RbLa(W04)2 Rb2LiAlF6 Rb2LiGaF6 Rb2LaNb50 15 RbLu(V04)2 Rb2MgQ4 Rb2MgF4 RbNbB,06 Rb2KGaF6 RbSc(Mo04)2 RbSc(W04)2 RbSc(V04)2 Rb3NaBe0Fg Rb2NaInF6 RbTaB20 6 Rb2SnGe30 9 Rb2SnSi30 9 Rb2TiGe30 9 Rb2TiSi30 9 RbTiOAs04 RbTiOP04 RbY(V04)2 Rb2ZnBr4 Rb2ZnCl4 RbZnF3 Rb2ZnF4 ScAlBe04 ScB 03 ScCaBG4 ScGa03 Sc2GeOg ScMgB04 Sc2(Mo0 4)3 ScNbQ4 S c2°3

ScP04 Sc(P03)3 Sc2SiOg Sc2Si20 7 ScTa04 Sc2T i05 Sc,(W04)3 ScVO, (Sc,Y)2Si20 7 Se Se02 Si SiC Si02

Classification

U -lll U-170 U-157 U-131 U-145 1-062 B-121 U-027 U-028 U-202 U-180 U-072 U-073 B-431 1-022 U-130 U-144 U-177 U-029 1-021 B-432 U-293 U-244 U-292 U-243 B-177 B-160 U-178 B-065 B-052 1-023 U-024 B-524 U-342 B-461 B-503 B-395 B-460 B-100 B-233 1-152 U-165 B-165 B-345 B-346 B-255 B-408 B-128 U-187 B-347 U-414 U-115 1-177 U-432 U-223

24

CRC Handbook of Laser Science and Technology Table 1.1—continued Names, chemical formulas, and classifications of optical crystals Name

^Silicon nitride Silver antimony sulfide (pyrargyrite) Silver arsenic selenide *Silver arsenic sulfide (proustite) *Silver bromide (bromyrite) *Silver chloride (cerargyrite) Silver gallium selenide Silver arsenic sulfide (trechmannite) Silver gallium sulfide Silver iodide (iodargyrite) Silver mercury iodide Sodium aluminum borate Sodium aluminum chlorosilicate (sodalite) *Sodium aluminum fluoride (cryolite) Sodium aluminum fluoride (chiolite) Sodium aluminum fluoroarsenate (durangite) Sodium aluminum fluorophosphate (lacroixite) Sodium aluminum germanate Sodium aluminum silicate (nepheline) Sodium aluminum silicate (albite) Sodium antimony beryllate (swedenburgite) Sodium barium phosphate Sodium barium titanium silicate (batisite) Sodium beryllium fluoride Sodium beryllium phosphate (beryllonite) Sodium beryllium silicate (chkalovite) Sodium bismuth magnesium vanadate Sodium bismuth zinc vanadate Sodium boron fluoride (ferruccite) *Sodium bromide Sodium cadmium magnesium fluoride Sodium cadmium phosphate Sodium cadmium zinc fluoride Sodium calcium fluorophosphate (nacaphite) Sodium calcium fluorophosphate (arctite) Sodium calcium magnesium phosphate (brianite) Sodium calcium phosphate (bushwaldite) Sodium calcium yttrium fluoride (a-gagarinite) Sodium calcium silicate Sodium calcium silicate (combeite) Sodium carbonate (natrite) *Sodium chloride (halite) *Sodium fluoride (villiaumite) Sodium gadolinium arsenate Sodium gadolinium germanate Sodium gadolinium germanate Sodium gadolinium magnesium vanadate Sodium gadolinium molybdate Sodium gadolinium oxide Sodium gadolinium phosphate Sodium gadolinium pyrophosphate Sodium gadolinium tetraphosphate Sodium gadolinium silicate Sodium gadolinium silicate

Formula Si3N4 Ag3SbS3 Ag3AsSe3 Ag3AsS3 AgBr AgCl AgGaSe2 AgAsS2 AgGaS2 Agl Ag2HgI4 Na2Al2B20 7 N a 8A 1 6S i 60 24C 1 2

Na3A1F6 Na5Al3F14 NaAl(As04)F NaAl(PG4)F NaAlGe04 NaAlSi04 NaAlSi30 8 NaSbBe40 7 NaBaP04 Na2BaTi2Si40 |4 Na2BeF4 NaBeP04 Na2BeSi20 6 Na2BiMg2V30 12 Na2BiZn2V30 12 NaBF4 NaBr NaCdMg2F7 NaCdP04 NaCdZn2F7 Na2CaP04F Na2Ca4(P04)3F Na2CaMg(PG4)2 NaCaP04 a-NaCaYF6 Na2CaSi04 Na2Ca2Si3G9 Na2C 03 NaCl NaF Na3Gd(AsG4)2 NaGdGe04 Na5GdGe4Oj2 Na2GdMg2V30 12 NaGd(Mo04)2 NaGd02 N a ^ P O ,) , NaGdP20 7 NaGdP40 12 NaGdSi04 Na3GdSi30 9

Classificatioi U-431 U-404 U-412 U-403 1-056 1-045 U-411 U-305 U-304 U-099 U-100 U-426 1-048 B-007 U-015 B-044 B-038 B-368 U-228 B-298 U-395 U-154 B-308 B-004 B-144 B-296 1-081 1-082 B-003 1-050 1-005 B-146 1-006 B-039 U-053 B-147 B-145 U-014 I-100 U-118 U-214 1-040 1-004 B-174 B-374 U-286 1-079 U-126 U-391 B-157 B-150 B-154 B-304 B-305

Section 1: Optical Crystals

25

Table 1.1—continued Names, chemical formulas, and classifications of optical crystals Name Sodium gadolinium silicate Sodium gadolinium tungstate Sodium gadolinium vanadate Sodium gallium borate Sodium gallium germanate Sodium gallium germanate Sodium gallium silicate Sodium germanate Sodium indate Sodium indium germanate Sodium indium molybdate Sodium indium silicate *Sodium iodide Sodium lanthanum arsenate Sodium lanthanum borate Sodium lanthanum borate Sodium lanthanum borate Sodium lanthanum molybdate Sodium lanthanum oxide Sodium lanthanum phosphate Sodium lanthanum pyrophosphate Sodium lanthanum tetraphosphate Sodium lanthanum tungstate Sodium lanthanum vanadate Sodium lithium aluminum fluoride Sodium lithium aluminum fluorogamet (cryolithionite) Sodium lithium gallium fluorogamet (GFG) Sodium lithium indium fluorogamet Sodium lithium niobate Sodium lithium scandium fluorogamet Sodium lithium vanadate Sodium lithium yttrium silicate Sodium lithium zirconium silicate (Zektzerite) Sodium lutetium arsenate Sodium lutetium germanate Sodium lutetium germanate Sodium lutetium magnesium vanadate Sodium lutetium oxide Sodium lutetium pyrophosphate Sodium lutetium phosphate Sodium lutetium silicate Sodium lutetium silicate Sodium lutetium vanadate Sodium magnesium fluoride (neighborite) Sodium magnesium aluminum fluoride (weberite) Sodium magnesium carbonate (eitelite) Sodium magnesium gallium fluoride Sodium magnesium indium fluoride Sodium magnesium scandium fluoride Sodium magnesium silicate Sodium niobate (natroniobite) *Sodium nitrate (soda-nitre) Sodium potassium titanoniobosilicate (shcherbakovite) Sodium scandium germanate

Formula Na5GdSi40 12 NaGd(W04)2 Na3Gd(V04)2 Na2Ga2B0O7 NaGaGe64 NaGaGe20 6 NaGaSi04 NajGeOj Naln02 Na5InGe40 12 NaIn(Mo04)2 Na5InSi40 ,2 Nal N a^afA sO ^ Na3La(B03)2 Na3La2(B03)3 NalgLa(B03)7 NaLa(Mo04)2 NaLa02 Na3La(P04)2 NaLaP20 7 NaLaP40 12 NaLa(W04)2 Na3La(V04)2 Na^iAlFg A12F 12 Na3Li3Ga2F|2 Na3Li3In2F|2 NajLi2Nbj015 NajLijSCjF^ NaLiV20 6 Na,LiYSi60 |5 Na2LiZrSi60 15 Na3Lu(As04)2 NaLuGe04 Na5LuGe40 12 Na2LuMg2V3G12 NaLu02 NaLuP20 7 Na3Lu(P04)2 NaLuSi04 Na5LuSi40 ,2 Na3Lu(V04)2 NaMgF3 NaMgAlF? Na2Mg(C03)2 NaMgGaF? NaMgInF? NaMgScF? Na2MgSi04 NaNb03 NaNG3 Na2KTiNbSi4Q14 NaScGe04

Classification U-233 U-141 B-188 U-327 B-369 B-370 B-299 B-367 U-386 U-284 B-091 U-230 1-060 B-173 B-426 B-427 B-428 U-125 U-390 B-156 B-149 B-153 U-140 B-187 B-008 1-007 1-008 1-009 U-200 I -010 B-186 B-294 B-295 B-175 B-375 U-287 1-080 U-393 B-151 B-158 B-306 U-234 B-189 B-005 B-009 U-215 B-010 B-011 B-012 B-297 B-210 U-153 B-309 B-371

26

CRC Handbook of Laser Science and Technology Table 1.1—continued Names, chemical formulas, and classifications of optical crystals Name

Sodium scandium germanate Sodium scandium germanate Sodium scandium indium vanadate Sodium scandium oxide Sodium scandium silicate (jervisite) Sodium scandium silicate Sodium scandium silicate Sodium scandium vanadate Sodium silicate Sodium silicate (natrosilite) Sodium strontium aluminum fluoride (jarlite) Sodium strontium barium phosphate (olgite) Sodium tantalate Sodium titanium silicate (natisite) Sodium titanium silicate (lorenzenite) Sodium vanadate Sodium yttrium fluoride Sodium yttrium fluorosilicate Sodium yttrium tetrafluoride Sodium yttrium germanate Sodium yttrium germanate Sodium yttrium magnesium vanadate Sodium yttrium molybdate Sodium yttrium oxide Sodium yttrium silicate Sodium yttrium silicate Sodium yttrium silicate Sodium yttrium silicate Sodium zinc chloride Sodium zinc fluoride Strontium aluminate Strontium aluminate Strontium aluminate Strontium hexa-aluminate Strontium aluminum fluoride Strontium aluminum germanate Strontium aluminum silicate Strontium aluminum silicate Strontium barium niobate (SBN) Strontium borate Strontium borate Strontium borate Strontium bromovanadate Strontium carbonate (strontianite) Strontium chloroborate Strontium chloroarsenate Strontium chloroarsenate Strontium chlorophosphate Strontium chlorovanadate Strontium chlorovanadate ^Strontium fluoride Strontium fluoroarsenate Strontium fluorophosphate (SFAP, strontium-apatite) Strontium fluorovanadate (SVAP) Strontium gadolinium aluminate

Formula NaScGe20 6 Na5ScGe40 ,2 N a 3 S c i.5I n 0.5V 3 ° l 2

NaSc02 NaScSi20 6 N a ^ c S i^ Na5ScSi4G12 ^ a 3 ^ C2A^ 3 ^ 1 2

Na2Si03 Na2Si2° 5 NaSr3Al3F16 Na(Sr,Ba)PG4 NaTa03 Na2TiOSiG4 Na/TLSLOo NaV03 5NaF*9YF3 Na5Y4(Si04)4F NaYF4 NaYGe04 Na5YGe40 12 Na2YMg2V30 12 NaY(Mo04)2 NaY02 NaYSi04 Na3YSi20 7 N a jY S i^ Na5YSi40 12 NaZnF3 N a^nC ^ SrAl20 4 Sr3Al20 6 SrAl40 7 S rA 1 l2 °1 9

SrAlF5 SrAl2Ge2Og Sr2Al2SiO? SrAl2Si2Og Sr06Ba04Nb2O6 SrB2G4 Sr3B20 6 SrB40 7 Sr2V04Br SrC03 Sr2B50 9Cl Sr2As04Cl Sr5(As04)3Cl Sr5(P04)3Cl Sr2V04Cl Sr5(V04)3Cl SrF2 Sr5(As04)3F Sr5(P04)3F Sr5(V04)3F SrGdA104

Classification B-372 U-283 1-084 U-279 B-300 B-301 U-229 1-083 B-292 B-293 B-013 B-148 B-245 U-235 B-307 B-185 1 -0 1 1

U-068 U-016 B-373 U-285 1-078 U-124 B-515 B-302 U-231 B-303 U-232 B-006 B-051 B-484 1-131 B-485 U-360 U-046 B-384 U-260 B-332 U-203 B-450 U-332 B-451 B-070 B-278 U-091 B-062 U-081 U-076 B-063 U-087 1-032 U-061 U-056 U-065 U-362

Section 1: Optical Crystals

27

Table 1.1—continued Names, chemical formulas, and classifications of optical crystals Name

Strontium gadolinum oxide Strontium gadolinium phosphate Strontium gallate Strontium gallium fluoride Strontium gallium germanate Strontium gallium silicate Strontium gallium silicate Strontium indium germanium garnet Strontium indium oxide Strontium lanthanum aluminate Strontium lanthanum borate Strontium lanthanum gallate Strontium lanthanum oxysilicate Strontium lanthanum phosphate Strontium lutetium oxide Strontium magnesium germanate Strontium magnesium silicate Strontium magnesium vanadate Strontium molybdate Strontium niobate Strontium niobate Strontium niobate Strontium niobate Strontium potassium niobate Strontium potassium tantalate Strontium scandate Strontium scandium germanium garnet Strontium silicate Strontium sodium niobate Strontium sulfate (celestite) Strontiun tantalate Strontiun tantalate Strontiun tantalate Strontiun tantalate Strontium tin borate Strontium tin oxide *Strontium titanate (tausonite) Strontium titanate Strontium titanium borate Strontium tungstate Strontium vanadate Strontium vanadate Strontium vanadate Strontium vanadate Strontium yttrium oxide Strontium yttrium oxysilicate Strontium zinc fluoride Strontium zinc germanate Strontium zinc germanate Strontium zinc silicate Strontium zirconium borate Tantalum borate (behierite) ^Tantalum oxide (tantite) Tantalum oxyphosphate ^Tellurium

Formula

SrGd20 4 Sr3Gd(P04)3 SrC^C^ SrGaF5 Sr3Ga2Ge40 14 S^G^SiOy S rG a^O g Sr3In2Ge30 12 Srln20 4 SrLaA104 SrLaB04 SrLaGa04 SrLa4(Si04)30 Sr3La(P04)3 SrLu20 4 Sr2MgGe20 ? Sr2MgSi20 ? SrMg2(V04)2 SrMo04 SrNb20 6 Sr2Nb20 7 Sr6Nb2°ll Sr5Nb40 |5 Sr2KNb5Ol5 Sr2KTa50 15 SrSc20 4 Sr3Sc2Ge30 12 SrSi03 Sr2NaNb50 15 SrS04 SrTa206 Sr6Ta20 „ Sr5Ta40 ,5 Sr2Ta20 7 SrSnB20 6 SrSn03 SrTiOs Sr3Ti20 7 SrTiB-O* SrW04 SrV03 SrV20 6 p-Sr2V20 7 Sr3(V04)2 SrY20 4 SrY4(Si04)30 SrZnF4 SrZnGe20 6 Sr2ZnGe2G7 Sr2ZnSi20 ? SrZrB.O, TaBO, TaOP04 Te

Classification

B-522 1-076 B-500 U-047 U-305 U-261 B-333 1-115 B-512 U-361 U-334 U-371 U-263 1-075 B-523 U-303 U-258 U-184 U-134 B-216 B-217 1-096 U-204 B-219 B-250 B-507 1-114 B-331 B-218 B-078 B-248 1-098 U-210 B-249 U-234 1-118 1-120 U-319 U-334 U-149 1-095 B-200 U-182 U-183 B-516 U-262 U-043 B-383 U-304 U-259 U-336 U-351 U-208 U-169 U-417

28

CRC Handbook of Laser Science and Technology Table 1.1—continued Names, chemical formulas, and classifications of optical crystals Name

^Tellurium oxide (tellurite) Thallium aluminum tetrafluoride Thallium aluminum selenate Thallium aluminum sulfate Thallium arsenic selenide Thallium arsenic sulfide (ellisite) *Thallium bromide *Thallium bromoiodide (KRS-5) ^Thallium chloride ^Thallium chlorobromide (KRS-6) Thallium gallium selenate Thallium gallium sulfate Thallium niobium borate Thallium oxide (avicennite) Thallium tantalium borate Thallium tin germanate Thallium titanium germanate *Thorium oxide (thorianite) Thorium silicate (thorite) *Tin dioxide (cassiterite) *Titanium dioxide (rutile) Vanadium oxide (shcherbinaite) *Yttrium aluminate (YAP, YALO) *Yttrium aluminum garnet (YAG) Yttrium aluminate Yttrium antimonade Yttrium arsenate (chemovite) Yttrium aluminum borate (YAB) Yttrium beryllate Yttrium beryllium aluminate Yttrium borate Yttrium calcium aluminate Yttrium calcium gallium beryllium silicate Yttrium chlorosilicate Yttrium fluoride Yttrium gadolinium antimonade Yttrium gadolinium niobate Yttrium gadolinium tantalate Yttrium gallium borate Yttrium gallium garnet (YGG) Yttrium germanate Yttrium germanium beryllate Yttrium hafnium tantalate Yttrium indate Yttrium indium gallium garnet Yttrium magnesium beryllium silicate (gadolinite) Yttrium molybdate Yttrium niobate (fergusonite) *Yttrium oxide (yttralox) Yttrium oxychloride Yttrium oxymolybdate Yttrium oxysulfate Yttrium oxytungstate Yttrium phosphate (xenotime) Yttrium pentaphosphate

Formula TeG2 t ia if 4

TlAl(SeG4)2 T1A1(S04)2 Tl3AsSe3 TLAsS3 TIBr Tl(Br,I) T1C1 Tl(Cl,Br) TlGa(Se04)2 TlGa(S04)2 TlNbB20 6 t i 2o 3 TlTaB20 6 Tl2SnGe30 9 Tl2TiGe30 9 Th02 ThSi04 Sn02 Ti02

v2o5 YAlOj y 3a i 5o 12 y 4a i 2o 9 Y3Sb07 YAs0 4 yai3(b o 3)4 YBeBO.4 Y2BeAl20 7 ybo3 YCaAl30 7 YCaGaBe2Si2O10 Y3(SiG4)2Cl yf3 Y,GdSbO? YGd2NbO? Y,GdTaO? YGa3(B03)4 Y3Ga5Oi2 Y2Ge05 Y2GeBe20 7 YHfTa06 YInG3 Y3In2Ga30i2 Y2MgBe2Si2O10 Y2(Mo0 4)3 YNb04 y 2o 3 YOC1 Y2MoG6 y 2o 2s o 4 y 2w o 6 ypo4 y p 5o 14

Classification B-087 U-040 U-117 U-109 U-413 U-407 1-057 1-058 1-046 1-047 U-120 U-113 B-435 1-094 B-436 U-297 U-296 1-126 U-278 U-315 U-317 B-182 B-489 1-135 B-490 B-269 U-174 U-344 B-525 U-366 U-343 U-367 B-352 B-064 B-036 B-270 B-237 B-260 U-345 1-145 B-396 U-397 B-262 U-387 1-137 B-350 B-101 B-236 1-155 U-096 B-125 B-081 B-134 U-166 B-167

Section 1: Optical Crystals

29

Table 1.1—continued Names, chemical formulas, and classifications of optical crystals Name Yttrium scandate Yttrium scandium aluminum garnet (YSAG) Yttrium scandium gallium garnet (YSGG) Yttrium silicon beryllate Yttrium orthosilicate (YOS, YSO) Yttrium silicate (keiviite) Yttrium tantalate (formanite) Yttrium tantalate Yttrium titanate Yttrium titanium silicate (trimounsite) Yttrium titanium tantalate Yttrium tungstate *Yttrium vanadate (wakefieldite) Yttrium zinc beryllium silicate Zinc aluminate (gahnite) Zinc antimonate (ordonezite) Zinc pyroarsenade Zinc arsenide (reinerite) Zinc borate Zinc borate Zinc borate Zinc carbonate (smithsonite) Zinc gallate Zinc germanate *Zinc fluoride Zinc germanium arsenide Zinc germanium phosphite *Zinc oxide (zincite) *Zinc selenide (stilleite, Irtran 4) Zinc silicate (willemite) Zinc silicon arsenide Zinc silicon phosphite *Zinc sulfide (sphalerite, Irtran 2) Zinc sulfide (wurtzite) *Zinc telluride Zinc tin antimonide Zinc tin arsenide Zinc tin phosphite Zinc tungstate Zinc vanadate *Zirconium oxide (cubic zirconia, CZ) Zirconium oxide Zirconium oxide ^Zirconium silicate (zircon)

Formula YSc03 y 3sc2a i 3o 12

Y3Sc2Ga30 I2 Y9SiBe70 7 Y2SiG5 Y2Si2G7 YTaO, Y3TaG7 Y2Ti20 7 Y2Ti9Si09 YTiTa06 Y2(W04)3 yvo4 Y2ZnBe2Si2O10 ZnAl20 4 ZnSb20 6 Zn2As20 ? Zn3(As03)2 Zn3(B03)2 ZnB40 7 Z n 4B 6 ° 1 3

ZnC03 ZnGa2G4 Zn2Ge04 ZnF2 ZnGeAs2 ZnGeP2 ZnO ZnSe Zn2Si04 ZnSiAs2 ZnSiP2 ZnS ZnS ZnTe ZnSnSb2 ZnSnAs2 ZnSnP2 ZnW04 ZnV20 6 Zr02 ZrCL Zr02 ZrSi04

Classification

B-508 1-136 1-146 U-396 B-348 B-349 B-258 B-259 1-121 B-353 B-261 B-129 U-188 B-351 1-133 U-175 B-180 B-181 B-454 B-455 1-127 U-221 1-142 U-310 U-050 U-425 U-420 U-400 1-159 U-272 U-170 U-419 1-157 U-408 1-162 U-430 U-426 U-421 B-123 B-201 1-125 U-323 B-412 U-276

Note: I = isotropic; U = uniaxial; B = biaxial. Crystals marked with an asterisk (*) are included in the tables in Volume IV of the Handbook of Laser Science and Technology.

Transmission (pm)

0.10-7 0.13-12 0.15-13 0.15-13 0.15-13 0.15-13 016-15 0.27->15 -

Crystal System (Space Group)

Cubic (Fm3m) Cubic (Fd3m) Cubic (Pm3m) Cubic (Fm3m) Cubic (Fd3m) Cubic (Fd3m) Cubic (Ia3d) Cubic (Ia3d) Cubic (Ia3d) Cubic (Ia3d) Cubic (Fm3m) Cubic (Fm3m) Cubic (Pm3m) Cubic (Pm3M) Cubic (Pm3m) Cubic (Pm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Pm3m) Cubic (Pm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m)

Material

LiF Li2BeF4 LiBaF3 NaF NaCdMg2F? NaCdZn2F? Na3Li3Al2F12 Na3Li3Ga2F12 Na3Li3In2F12 Na3Li3Sc2F12 5NaF-9YF3 KF KMgF3 KCaF3 KCdF3 k 3aif 6 KjNaAlFg K2NaGaF6 k y 3f 10 RbF Rb2Na!nF6 Rb2KGaF6 RbZnF3 RbCaF3 CsF Cs2NaYF6 Cs2KLaF6 1.48 -

10 -

1.376 -

_

1.3395 1.470 1.362 1.404 -

_

_

2.635 2.289 5.242 2.588 3.968 4.838 2.77 3.20 3.54 2.66 4.22 2.48 3.15 2.709 4.264 2.99 3.34 4.312 4.302 3.751 5.007 3.632 4.638 4.397 3.95

1.3912 1.544 1.326

_

Density (g/cm3)

Refraction Index (#?)

13.6 10.5 10.9 10 -

Band Gap (eV) 110(600) 60 2 (Moh) 2 (Moh) 2 (Moh) 2 (Moh) 2 (Moh) 2 (Moh) 2.5 (Moh) 2.5 (Moh) 4.5 (Moh) -

Hardness (kg/mm2)

Table 1.2 Properties of isotropic crystalline materials

(100)-p None None

_

(100)-p (100)-p (Oll)-i None None None None (100)-p None None None None None (100)-p None None -

Cleavage Plane

367(18) sl.s sl.s

367(18)

0.27(18) 4.2(18) Insoluble 92.3(18) Insoluble s. sl.s sl.s Insoluble

Solubility (g/lOO g H20)

1-017 1-018 1-019 1-020 1-021 1-022 1-023 1-024 1-025 1-026 1-027

1-016

1-014 1-015

1-013

1-001 1-002 1-003 1-004 1-005 1-006 1-007 1-008 1-009 1-010 1-011 1-012

Ret

CRC Handbook of Laser Science and Technology

CsCdF3 CsCaF3 CsSrF3 CaF2 SrF2 BaF2 BaF2-CaF2 CdF2 PbF2 LiCl Li2MgCl4 Li2CdCl4 NaCl KC1 RbCl CsCl CuCl AgCl T1C1 Tl(Cl,Br) Na8Al6Si6024Cl2 LiBr NaBr KBr RbBr CsBr CsCdBr3 CuBr AgBr TlBr Tl(Br,I) Lil

Cubic (Pm3m) Cubic (Pm3m) Cubic (Pm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fd3m) Cubic (Fd3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Pm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m) Cubic (Fm3m)

0.12-10 0.13-12 0.14-13 0.15-12 0.13-12 0.29-11.6 0.19-17 0.18-25 0.2-30 0.19-30 0.4-19 0.4-28 0.4-30 0.4-32 0.2-30 0.25-26 0.23-40 0.21-50 0.45-26 0.45-35 0.45-45 0.6-40 6

_

3.0 4.3 3.1

_

10 9.4 9.1 6 5.0 9.3 9.0 8.5 8.3 8.1 3.3 5.1 3.6 7.95 7.5 7.6 7.2 6.9

1.466 1.433 1.4371 1.4733 1.562 1.7611 1.66 1.531 1.4879 1.49 1.64 1.97 2.0568 2.223 2.329 1.483 1.78 1.64 1.5566 1.55 1.6929 2.117 2.242 2.384 2.573 1.95

5.62 4.123 4.299 3.180 4.24 4.83 4.89 6.64 8.24 2.068 2.119 2.956 2.165 1.984 2.80 3.9 4.14 5.56 7.604 7.192 2.27 3.464 3.203 2.75 3.35 4.44 4.77 6.473 7.557 7.371 4.076 158 130 82(500) 200 18(200) 9.3(200) 2.5 (Mob) 9.5 13(500) 39(500) 5.5 (Mob) 7.0(200) 19.5 21 7 12(500) 40(500) None None None (100)-p

-

(lll)-p (lll)-p (lll)-p (lll)-p (lll)-p (lll)-p (100)-p (100)-p (100)-p (100)-p None (110)-p None None None (H0)-i (100)-p (100)-p (100)-p (100)-p None -

-

-

sl.s 1.6xl0~3(18) 0.012(20) 0.12 0.16 4.4(20) 0.064(20) 63.7(0) 39.8(0) 34.7(20) 77(0) 186(20) 6.1xl0'3 1.5x10^(20) 0.32(20) i 13 FA

1.4

FB

1.3

1.2

• B®Ft 1 100

j

_ l 80

I

1____— L,____ 1 60 40

_l

L 20

Abbe number

FIGURE 2.1. Abbe diagram for a wide range of glass compositions (from Ref. 2).

FLUORIDE GLASSES In the original publication, two heavy metal fluoride glass compositions were mentioned. Early exploration into these new glasses was based on the opportunity for developing longer wavelength optics and on the potential of exceptional transparency for applications such as fiber optics. When the first article was published, it seemed that these new glasses were on the edge of commercial viability and the listed compositions could be purchased from a few com­ panies. Since then, very little has happened to improve the commercial availability of fluoride glasses. There have been additional compositions fabricated in laboratories around the world and further understanding of their properties,3 but these glasses have yet to achieve commer­ cial significance. This is probably because, compared with silicates, they have very poor re­ sistance to moisture, low mechanical strength, and tend to crystallize if cooled slowly which is typically necessary for stress reduction in the production of reasonable-size optics. Commercialization of fluorides depends on solutions to these problems.

UV-TRANSMITTING GLASSES In the area of oxide glasses, some notable additions have been made to the previous list. Schott has developed multicomponent fluorophosphate glasses that feature good transmission at wavelengths in the ultraviolet range compared with other multicomponent oxide glasses. Schott researchers have reported on several such glass compositions.4,5One, Ultran 30, is cur­ rently commercially available. A 25-mm-thick sample of this glass exhibits an internal trans-

Section 2: Optical Glasses

Table 2.1 Designation, type, and major compositional components of optical glasses2 Designation FB FA FP(FK) FZ FK(FC) BK(BSC) PK(PC) PSK(DPC, PCD) K(C) ZK(ZC, ZnC) BaK(BaC, LBC) SK(DBC, BCD) SSK(EDBC, BCDD) LaK(LaC, LaCL) LaSK LgSK TiK TiF TiSF(FF) KzF(CHD, SbF) KzFS(ADF) KF(CF, CHD) LLF(BLF, FEL) LF(FL) F(DF, FD) SF(EDF, FDS) SFS BaLF(LBC, BCL) BaF(BF, FB) BaSF(DBF, FBD) LaF(LaFL) LaSF TaK TaF TaSF NbF NbSF

Glass Type Fluoroberyllate Fluoroaluminate Fluorophosphate Fluorozirconate Fluorocrown Borosilicate crown Phosphate crown Dense phosphate crown Crown Zinc crown Barium crown Dense barium crown Extra-dense barium crown Lanthanum crown Dense lanthanum crown Special long crown Titanium crown Titanium flint Dense titanium flint Short flint Dense short flint Crown flint Extra light flint Light flint Flint Dense flint Special dense flint Light barium flint Barium flint Dense barium flint Lanthanum flint Dense lanthanum flint Tantalum crown Tantalum flint Dense tantalum flint Niobium flint Dense niobium flint

Composition0 BeF2-AF3-RF-MF2 AlF3-RF-MF2-(Y,La)F3 P20 5-A1F3-RF-MF2 ZrF4-RF-MF2-(Al,La)F3 SiO ^B ^-K jO -K F j Si02(P20 5)-B20 3-R20-B a0 P20 5-(B,Al)20 3-R20-MO Si02-R20-(Ca,Ba)0 Si02(B20 3)-Zn0 SiO^BjCy-BaO-RjO 1I SiO,-B,03-BaO 2 2 3 J BjOjCSiO^-LajOj-ZnO-MO b 2o 3-ai2o 3-mf 2

\ Si02(B20 3)-Ti02-AI20 3-KF SiOj-BjOj-RjO-SbjOj B20 3(A120 3)-Pb0-M0 1 • SiOj-RjO-PbO-MO a

SiO2-R20-MO-TiO2 | SiOj-BjOj-BaO-PbO-RjO 1 BjOjCSiO^-LajOj-MO-PbO

1 I B20 3-La20 3-(Gd,Y)20 3-(Ta,Nb)20 5 B20 3-La20 3-Zn0-Nb20 5 B20 3(Si02)-La20 3-Zn0-(Ti,Zr)02

aR and M denote one or more alkali or alkaline earth elements, respectively.

71

72

CRC Handbook of Laser Science and Technology

Table 2.2 Designations for equivalent optical glasses Mil spec

Schott Type

Hoya Type

Corning Type

465-657 486-817 487-704 510-635 511-604

FK 3 FK 52 FK 5 BK 1 K7

FC FFC FC BSC C

A63-65 A86-82 A87-70 B 10-63 B 11-60

517-642 518-603 518-651 523-594 529-518

BK 7 BaLK N3 PK 2 K5 KzF 2

BSC C BSC C CHD

B 16-64 B 18-60 B 18-65 B23-59 B29-52

540-597 548-457 548-535 564-609 569-560

BaK 2 LLF 1 BaLF 5 SK11 BaK 4

BCL FeL FBL BCD BCL

B39-59 B48-46 B48-53 B64-61 B69-56

573-575 581-408 589-612 604-381 606-439

BaK 1 LF 5 SK 5 F5 BaF 4

BCL FL BCD FD FB

B72-57 B81-41 B89-61 C04-38 C06-44

607-566 609-590 613-443 613-585 614-564

SK 2 SK 3 KzFS N4 SK4 SK 6

BCD BCD FSB BCD BCD

C07-57 C09-59 Cl 3-44 C13-58 C 13-56

618-551 620-363 620-603 623-531 623-569

SSK4 F2 SK 16 SSK2 SK 10

BCD FD BCD BCDD BCD

C 17-55 C20-36 C20-60 C23-53 C23-57

623-581 624-469 626-356 637-353 639-555

SK 15 BaF 8 F1 F6 SKN18

BCD FB FD FD BCD

C23-58 C24-47 C26-36 C37-35 C39-56

Section 2: Optical Glasses

73

Table 2.2—continued Designations for equivalent optical glasses Mil spec

Schott Type

Hoya type

Corning Type

641-601 648-339 650-392 651-559 652-585

LaK 21 SF 2 BaSF 10 LaK22 LaK N7

BCS FDD FBD BCS BCS

C41-60 C48-34 C51-39 C51-56 C52-58

658-572 659-510 667-331 667-484 670-471

LaK 11 SSK N5 SF 19 BaF N il BaFNIO

BCS BCDD FDD FB FB

C57-57 C58-51 C67-33 C67-48 C70-47

673-323 678-555 689-312 689-496 691-548

SF 5 LaK N12 SF 8 LaF 23 LaK N9

FeD BCS FeD FBS BCS

C72-32 C78-56 C89-31 C90-50 C90-55

697-554 699-301 702-411 713-538 717-295

LaK N14 SF 15 BaSF 52 LaK 8 SF 1

BCS FeD FBD BCS FeD

C97-55 C99-30 D01-41 D 13-54 D 17-29

717-480 720-503 724-380 728-284 734-514

LaF N3 LaK 10 BaSF 51 SF 10 LaK N16

FBS BCS FBD FeD BCS

D17-48L D20-50 D23-38 D28-28 D34-51

740-281 744-448 755-276 762-269 785-258

SF 3 LaF N2 SF 4 SF 55 SF 11

FeD FBS FeD FeD FeD

D40-28 D44-45 D56-27 D62-27 D85-25

785-259 788-474 803-464 805-255 878-385

SF 56 LaF 21 LaSFN30 SF 6 LaSF 15

FeD FBS FBS FeD FBS

D85-26 D88-47 E03-47 E05-25 E78-38

74

CRC Handbook of Laser Science and Technology

mittance of 99.5% at 365 nm and better than 80% internal transmittance at 300 nm. It has a refractive index of 1.5483 and Abbe number of 74.25. Other properties are given in Tables 2.3 and 2.4. Ultran 30 transmits further into the UV than any other commercially available glass except for vitreous silica. Recently, Schott has improved the manufacturing of BK 7 to pro­ duce another glass called UBK 7, which has properties similar to BK 7 but exhibits superior UV transmittance. This glass is reported to have the best UV transmittance of the multicom­ ponent silicates.6Because the properties of BK 7 were included in the first article on optical glasses, the properties of UBK 7 are not listed here. Coming also has entrees in the area of ultraviolet-transmitting glasses. Their glass codes are 9741 and 9742. These glasses are alkali borosilicates, and, at 254 nm, the reported mini­ mum internal transmission is 80% for a 1-mm-thick piece. They are made principally for ap­ plications requiring UV-transmitting windows. Few data are available for designing lenses and other optical systems. Data on 9741 appear on Tables 2.3 and 2.4.

VITREOUS SILICA A glass type for which expansion of our previously reported data is important is pure vit­ reous silica, Si02. Recent advances in fiber optics, high-power laser technology, large optics, microlithography, and space exploration have increased the demand for high-quality vitreous silica optics because they are uniquely suited for these applications. For some time, different types of silica have been commercially available from several suppliers (Coming Glass Works, Hereaus Amersil [Sayreville, NJ], Thermal Syndicate Ltd. [Montville, NJ], General Electric Co. [Cleveland, OH], Quartz et Silice [France], Dynasil Corp. of America [Berlin, NJ], NSG Quartz [Japan], Westdeutsche Quartzschmelze Gmbth, Nippon Glass [Japan]). The distinction between these is based principally on the manufacturing method. The glasses are compositionally the same except for metallic impurities, structural defects, and water content, but these differences and fabrication variations cause the properties of the silicas to differ significantly. Property distinctions can be seen most readily in thermal and optical properties.8-16 Reported thermal properties, for example, can differ by more than 10%. Hetherington et al.,8 in an in­ vestigation of the viscosity of vitreous silica, divided the different silicas into four types based on manufacturing method. Metallic impurities, hydroxyl content, and thermal history were found to be mainly responsible for property dissimilarities. These four types and the different manufacturing methods are discussed below. The vitreous silicas can be distinguished by the source of raw material used and the process of melting or consolidating the raw material into bulk vitreous silica. It is commercially pro­ duced from naturally occurring quartz of high purity and from silicon tetrachloride liquid or vapor or from tetraethyl orthosilicate liquid. These precursors are processed in several different ways. In one method, naturally occur­ ring quartz is purified to varying degrees by preselection of clean crystalline material (gener­ ally selected by hand), fragmented to a fine powder, and fused to bulk glass. The fusion is performed by electric melting in a refractory crucible or container under vacuum, an inert at­ mosphere, or a hydrogen atmosphere. This produces a type of vitreous silica designated by Hetherington as type I. If the same raw material is fused using an oxyhydrogen torch or an isothermal plasma torch, then the resultant vitreous silica is designated type II. The principal differences between these are the lower hydroxyl content and different impurities of type I. The oxidation state of the silica is also changed. Melting atmosphere will influence the glass structure and properties. After fusion, various amounts of hot working are performed to homogenize the resultant silica glasses. The syn­ thetic precursors, mainly SiCl4, are fused to a solid glass with an oxyhydrogen torch produc­ ing a very pure but wet material denoted type III. These precursors also can be used to produce vitreous silica under relatively dry conditions such as those present using an oxygen or argon

0.25-2.5 0.25-3.3 0.28-2.7 0.4-5. 0.4-5. 0.4-4.4 0.4-4. 0.8-12

1.8-13

0.4 0.35

Vycor ULTRANBCP 9741 IRG2 IRG11 IRGN6 IRG3 Ig 2n2919

Ig 3n2930

ULE Zerodur Pyrex 0213 ATF4

flBubble class: 0/100 cm3.

0.21-2.8 0.19-3.5 0.17-2.2 0.18-3.5 0.18-3.5 0.17-3.5

(pm)

Type

Si02P Si02II Si02III Si02IV Si02Vfl Si02VI

Transmission Range

Glass

1.474 1.5281 1.65376

^4jim 2.8034 1.484

56.8 44.72 1.67957

1.64218

164

153

2.7870

2.4967

v lOjim

1.5971 1.8925

v4jim

1.53559

1.44437

1.44457 1.44447 1.44437

WI.S2

v lOjim 105

82.76

54.86

54.86 54.86 54.86

V1.06

1.8526 1.6581 1.5716 1.8089

1.860 1.660 1.570 1.815

1.53962

1.4499

1.4500 1.4499 1.4499

n \M

51.81 62.86 62.63 50.93

1.8692 1.6686 1.5807 1.8249

1.54211

1.45246

1.45247 1.45247 1.45246

FI§

30.0 44.2 54.6 32.5 V4jim 202 1.9462

1.46961

1.56074

67.7 66.4-67.8

1.45847 1.4581.463 1.458 1.54830 1.468 1.8918 1.6809 1.5892 1.8449 nA 4fim 2.5129

1.46981 1.46971 1.46961

nh

74.3

67.56 67.6 67.7

V4

1.45867 1.45857 1.45847

W4

Table 2 3 Optical properties of glasses for laser optics

-6.6

-6.2

9.9

9.9

10.5

K '1

dn/dT x m -6

Section 2: Optical Glasses

Si02I Si02II Si02III Si02IV Si02V Si02VI Vycor ULTRAN30 9741 IRG2 IRG11 IRGN6 IRG3 Ig2n2919 Ig2n2930 OLE Zerodur Pyrex 0213 ATF4

Glass Type

0.55 0.55 0.60 0.55 0.60 0.2 0.75 13.9 3.80 8.8 8.2 6.3 8.1 13.0 14.1 0.03 0.10 3.25 7.4 12.9

a (10“VK)

gHoya Glass Works Ltd., Japan.

aHereaus Amersil, Sayreville, NJ. ^Thermal Syndicate Ltd., Montville, NJ. cGeneral Electric Co., Cleveland, OH. ^Coming Glass Works, France. ^Nippon Sheet Glass, Japan. ^Schott Optical Glass Inc., Duryear, PA.

654447

891300 680442 589546 844325

548743

458676 458677

Mil spec

Table 2*4

1683 1727 1590 1650 1590 1510 600 705

1500 821 718 630

890 513 460 700 800 713 787 368 279 1000

560 554 585

Ts (°C)

1215 1175 1080 1110 1080

(°C)

P (g/cm3) 2.203 2.203 2.201 2.201 2.201 2.2 2.18 4.02 2.17 5.00 3.12 2.81 4.47 4.41 4.48 2.21 2.53 2.23 2.6 3.76

k (W/m*K) 1.4 1.38 1.38 1.38 1.38

0.67 0.75 0.74 0.75 0.74

1.42

0.794 1.13 0.95

0.91 1.13 1.36 0.87

0.452 0.749 0.808 0.481

0.753 0.741

1.38 0.667

0.75 0.58

C jKJ/gfK)

64 73.7 59.1

67.5 76 50 96 107 103 100 21.5 22 69

72 70 70 70 70

(103M/m m2)

E

0.20 0.224 0.288

0.19 0.297 0.23 0.282 0.284 0.276 0.287 0.25 0.21 0.17

0.17 0.17 0.17 0.17 0.17

\i

355

480 610 620 540 141 136 460 630 418

487 380

570 600 610 600 600

Knoop hardness

Thermal, mechanical, and chemical properties of glasses for laser optics

1

1

1 4 1 1

1

1 1 1 1 1

Clim. Resist.

4.0 3.0 3.9

3.5

K (Tpa)"1

f d d 8

d

e Ref. 7 d f d f f f f Ref. 20 Ref. 20

a, b a, d a

a, b, c

Source

Os

CRC Handbook of Laser Science and Technology

Section 2: Optical Glasses

77

plasma torch. This material has been designated type IV. The principal difference between types III and IV fused silica is OH content. Using similar torches but depositing on a cooler bait, the synthetic material can also be formed into a porous boule that is subsequently consolidated to a fully dense silica boule in a furnace. Whether a porous or fully dense material is made depends on temperature control of the torch and bait surface. Consolidation of the porous silica body can involve firing in different atmospheres and can be achieved at a temperature several hundred degrees below that used for fusion of the type III and type IV silica. The commercialization of this latter technology has occurred principally in the fabrication of optical fibers based on vitreous silica which is, by volume, the dominant con­ stituent. It has been commercially available in this form since the early seventies, and certain manufacturers are currently using this technology for the fabrication of bulk silica. This vitre­ ous silica is similar to type III or IV depending on the method of consolidation, but the pro­ cessing is sufficiently different that it should be considered in a class by itself, and its designation is uncertain. Most authors who have written about the variations in properties of vitreous silica continue the classification of the first four types as originally set by Hetherington. Today, however, there is varied opinion on what kind of silica should be designated type V, although there is general agreement that there are many types of vitreous silica which, because of the dependence on fabrication, do not fall into the earlier established four types. This author views the consoli­ dated soot sufficiently close to type III and IV that it should receive the designation type V. Additionally, it is the next vitreous silica fabrication technology in line to receive important commercialization. Fabrication parameters such as Cl content, oxygen stoichiometry, and sintering temperature can cause such variation in properties that type V will be impossible to characterize in a very general way.17 It is available and offers some additional property related choices. The synthetic material also can be turned into powder and treated like the natural mater­ ial. This involves hydrolysis of vapor or liquid silicon containing precursors followed by con­ densation to form siloxane bonds, or direct oxidation of the precursors to silica soot as discussed above. The resultant material tends to behave like synthetically obtained material. Synthetic vitreous silica is also hydrolyzed and condensed to form a gel which can be cast to desired shape and then fused to a state approaching full density without losing its cast shape.7,18 This material has been designated type V by its manufacturer.7but it is called type VI. This gelderived silica is also available in unconsolidated form. Another type of silica glass that is often considered in the same class as those discussed above is Coming’s Vycor. This glass is made through melting an alkali borosilicate which is subsequently heat treated to cause phase separation. The sodium borate phase is acid leached, leaving a porous glass that is 96% Si02 and 4% B20 3. This material is reheated and thus con­ solidated to form a substantially dense glass. The presence of boron oxide does alter its prop­ erties, and Vycor is significantly different from any of the above-processed silica glasses. It too is sold in consolidated and unconsolidated form. A list of the brand names of the various commercially available vitreous silica is given in Table 2.5. The different processes employed create vitreous silicas that have disparate struc­ tures with respect to thermal history, impurity content, and stmctural defects. These variations result in glasses exhibiting different properties. In Tables 2.3 and 2.4 the reported characteris­ tics for the various types of vitreous silica are expanded and refined. Previously silica was ad­ dressed as a single material. Here the properties of seven types of vitreous silica, where available, are listed. Important property variations are principally optical and thermal. The transmission characteristics of the silica glasses in the ultraviolet and infrared vary measurably. The vis­ cosity, thermal expansion, and annealing characteristics are also significantly different. However other properties, such as density and heat capacity, are not significantly changed.

78

CRC Handbook of Laser Science and Technology

Table 2 3 Glass Type

Brand Name

Pursil 453, Ultra

a b c

GE 104, 105, 201, 204, 124, 125

d

Herasil, Homosil, Ultrasil, Optosil

b a

Si021

IR-Vitreosil Infrasil

Si02 II

Source

Vitreosil 055, 066, 077 Si02 III

7940

b a e

Dynasil

/

Tetrasil

c g d h

Suprasil Spectrosil

NSG-ES GE 151 Synsil

Spectrosil WF

b a

Si02V

Nippon Sheet Glass

i

Si02VI

Gelsil

Ref. 7

Si02IV

Suprasil W

“Thermal Syndicate Ltd., Montville, NJ. ^Hereaus Amersil, Sayreville, NJ. cQuartz et Silice, France. ^General Electric Co., Cleveland, OH. ''Coming Glass Works, France. ^Dynasil Corp. of America, Berlin, NJ. ^NSG Quartz, Japan. ^Westdeutsche Quartzschmelze GmbH. 'Nippon Sheet Glass, Japan.

Further distinctions can be made on the basis of manufacturing method but an extensive cri­ tique is beyond the scope of this manuscript. The properties of vitreous silicas are reviewed in detail by Hetherington et al.,21 Dumbaugh and Schultz10, and Brueckner, and have been up­ dated recently by Scherer and Schultz12 and Kreidl13.

MIRROR SUBSTRATE MATERIALS Given the importance of mirrors and their increased size in optical systems, we also con­ sider glasses for mirror substrates.2 The most important criterion for choice of a mirror sub­ strate glass is its thermal expansion coefficient. Mirrors must maintain their optical figure precisely during use. The choice of glass will depend on the available degree of control of the

Section 2: Optical Glasses

79

temperature of the operating environment. If there is very little variability in temperature, glasses with only moderately low thermal expansion coefficients such as borosilicates (Pyrex and BK 7) are adequate. However, if the temperature of the environment is not controllable, then more exotic compositions having very low or zero thermal expansion in the operating temperature range must be used to maintain optical performance. Such materials are silica, silica with about 7.5 wt% titanium dioxide (ULE, Coming 7971) or other metal oxides, and glass ceramics such as lithium aluminosilicates (Schott Zerodur) that form solid solutions of glass and crystalline material. Other important properties for mirror substrates are high homogeneity and low de­ fects such as bubbles. Properties of Pyrex, Zerodur, and ULE are listed in Tables 2.3 and 2.4.

INFRARED-TRANSMITTING GLASSES As mentioned above, the fluorides have not achieved the commercial significance that ap­ peared on the horizon when the previous section was prepared in the mid1980s. An important advance in optical properties provided by these glasses is an extension of optical transmission into the infrared range beyond the 3-prn limit of silicate glasses. Other glass compositions have been developed and marketed commercially which extend the long wavelength trans­ mission of oxide glasses and approach transmission to 5 |im.18Four of these have been intro­ duced by Schott: a germanate glass IRG2, a calcium aluminosilicate IRGN6, a calcium aluminate IRG 11, and a dense lanthanum flint IRG3. IRGN6 and IRG11 have particularly good mechanical properties and have been used as IR windows and domes on missiles. It is worth noting is that although Ultran 30 is used significantly in optical systems because of its UV transmission, it also provides long-wavelength transmission superior to most con­ ventional optical glasses. Chalcogenides and halides are still the only glasses commercially available for IR transmission beyond 5 jam.19Included in the tables are the properties of two glasses available from Jenaer Glaswerke GmbH: IG2N2919 and IG3N2920.20

OTHER NOVEL GLASSES Hoya has recently introduced another multicomponent glass that has a negative thermal co­ efficient of refractive index, dn/dT. The objective of this glass engineering was to make a glass having a zero coefficient of optical pathlength change with temperature or an athermal glass. In most optical glasses this quantity is positive and large because it is the sum of the thermal expansion effect (n- l)a and dn/dT, both of which are positive. In the new athermal glasses, dn/dT is negative and engineered to cancel the thermal expansion effect. Optics made of the athermal glasses have relatively low wavefront distortion when subjected to ambient temper­ ature variations. One of these compositions, ATF4, is included in the property tables. Another interesting new glass with optical window applications is Coming 0213, a Cedoped borosilicate. Because of the location of its absorption edge, it can be used to protect op­ tics, sensors, solar cells, etc. from ultraviolet radiation. The properties of the glasses above are included in Tables 2.3 and 2.4.

OTHER GLASS PROPERTIES Additional properties of optical glasses are discussed in other sections of this volume. These include the nonlinear refractive indices and two-photon absorption coefficient in Section 8, Verdet constants in Section 9, and acoustooptic properties in Section 10. Electric-field-induced birefringence, the DC electrooptic Kerr effect, is given by n = tt|| - nj_= ABE2

(2)

where X is the wavelength in centimeters, E is the applied electric field strength in volts per centimeter, and nLare the refractive indices in the directions parallel and perpendicular to

80

CRC Handbook of Laser Science and Technology

Table 2.6 DC electrooptic Kerr constants nD Commercial glasses SF 6 Schott SF 58 Schott Schott SF 59 Schott LASF9 Coming Coming Coming Coming Coming Coming

1.805 1.918 1.962 1.850 8310 8363 8391 8393 8427 8463

Experimental glasses (mol %): 40 Si02 - 60 Pb O 60 SiO2-40Tl2O 54 Si02 - 41 T120 - 5 PbO 76 Si02-9T120 - 15K20 73 Si02- 141^0- 13 T a ^ 85 Te02 - 7.5 BaO - 7.5 ZnO 60 Te02 - 20 BaO-20 ZnO 36 Te02 - 51 PbO - 12 Si02 32 T120 - 28 Bi20 3- 40 Ge02 57 PbO - 25 Bi20 3 - 18 G a ^ 34 Nb20 5 - 36 Si02 - 30 Na20 70 PbO - 12 G a ^ - 6 T120 - 12 CdO 57 PbO - 18 Bi20 3 - 18 G a ^ - 7 T120 48 PbO - 14 Bi20 3 - 10 G a ^ - 14T120 - 14 CdO 43 Si02- 15.5 Li20 -11.5 K^O -4A l20 3 -31 Ta20 s 1.81 20 Si02 - 20 B20 3 - 20 N^O - 20 Na20 - 20 Nb20 5 - 20 Ti02 41 B20 3- 10 ZnO - 11 La20 3 -22Th02-5Ta20 5- llN b 20 5 23 PbO - 22 Si02 - 11 MgO -14 BaO - 16Ti02-4A l20 3- 8Nb20 5

0.08 0.16 0.30 -0.22

1.97

0.07 0.2 0.06 0.08 0.09 0.36

2.48

8.7

2.06 2.0

0.38 1.10 0.96 0.30 -0.57 0.7 0.5 1.1 1.15 1.4 -2.80

1.94

A S 2S 3

B(m~u m fV2)

2.17 2.02

2.46

2.31

1.6

2.30

1.4

2.27

1.4

-0.8 1.93

-1.23

1.94

-0.18 -0.4

Measured at 633 nm [from D. W. Hall and N. E Borrelli, Nonlinear optical properties of glasses, In Optical Properties of Glass, ed. N. Kreidl and D. R. Uhlmann, American Ceramic Society (1991), pp 87-125].

the electric field, and B is the Kerr constant in centimeters per volt squared. In terms of the third-order nonlinear susceptibilities [in electrostatic units (esu )], X eff (-G>>

0 ,0 ) = X f t J - X H22 = ( 9XBn 124 n>x 104

(3 )

A positive electrooptic constant is obtained when the induced index change in the direction of the applied field is larger than the induced index change for the perpendicular direction. A negative sign for B implies that the major effect is a large decrease in the refractive index in the direction of the electric field.

Section 2: Optical Glasses

81

Borrelli and co-workers have measured B and Xeff for a wide variety of glass compositions.2122 The results are summarized in Table 2.6. There is a general qualitative correlation between the magnitude of the Kerr electrooptic constant and the density of heavy polarizable ions such as Nb, Ta, Tl, and Pb. The wavelength dispersion of B is similar to that of n, that is, glasses having ab­ sorption edges near the blue are more dispersive than glasses whose edges are in the ultraviolet.22 The temperature dependence of the Kerr effect has been measured for a glass with a high Pb con­ tent, and a value of d(\nB)/dT = 1.4X 10~3 K_1 was reported (where B was expressed in esu).23

ACKNOWLEDGMENT The author thanks M. J. Weber for his helpful suggestions and contributions to the manuscript.

REFERENCES 1. Trotti, P. L., ed., The Photonics Design and Applications Handbook Book 3, Glass Reference Index, Laurin Publishing Co., 286-291, 1991. 2. Weber, M. J., Optical Properties of Glass, In Glasses and Amorphous Materials, Zarzycki, J., ed., VCH Verlagsgesellschaft, p. 619, 1991. 3. Lucas, J., and Adam, J-L., Optical properties of halide glasses, In Optical Properties of Glass, Uhlmann, D. R., and Kreidl, N. J., ed., The American Ceramic Society Inc., Westerville, OH, 37-85, 1991. 4. Liepmann, M. J., Marker, A. J., and Melvin, J. M., Optical and physical properties of UV-transmitting fiuorocrown glasses, Glasses for Optoelectronics, SPIE 1128, 213-224, 1989. 5. Ehrt, D., and Seeber W., Glass for high performance optics and laser technology, JNonCryst. Solids., 129, 19, 1991. 6. Gerth, K., Kloss, Th., and Pohl H. J., Optical and physical properties of a boron crown glass transmitting in the ultraviolet region B, J. Non-Cryst. Solids, 129, 12-18, 1991. 7. Hench, L. L., Wang, S. H., and Nogues, J. L., Gel-silica optics, SPIE 878, 76, 1988. 8. Hetherington, G., Jack, K. H., and Kennedy, J. C., The viscosity of vitreous silica, Phys. Chem. Glass, 5(5), 130, 1964. 9. Fleming, J. W., and Shiever, J. W., Thermal history dependence of refractive index dispersion of fused silica, J. Am. Ceram. Soc., 62(9-10), 526, 1979. 10. Dumbaugh, W. H., and Schultz P. C., Kirk Othmer, Encycl. Chem. TechnoL, 18, 73-103, 1969. 11. Brueckner, R., Properties and structure of vitreous silica: I, J. Non-Cryst. Solids, 5(2), 123-175, 1970. 12. Scherer G. W., and Schultz, P. C., Unusual methods of producing glass, In Glass Science and Technology I, Uhlmann, D. R., and Kreidl, N. J., ed., Academic Press, 1983. 13. Kreidl, N. J.,Inorganic glass-forming systems, Glass Science and Technology I, Uhlmann, D. R., and Kreidl, N. J., ed., Academic Press, 1983. 14. Rodney W. S., and Spindler, R. J., Index of refraction of fused-quartz glass for ultraviolet, visible, and infrared wavelengths, J. Res. NBS, 53(3), 185-189, 1954. 15. Brixner, B., Refractive-index interpolation for fused silica, J. Opt. Soc. Am., 57(5), 674, 1967. 16. Malitson, I. H., Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am., 55(10), 1205, 1965. 17. Awazu, K., Characterization of silica glasses sintered under Cl2 ambients, J. Appl. Phys. 69(4), 1849, 1991. 18. Uhlmann, D. R., Zelinski, B. J. J., Teowee, G., Boulton, J. M., and Koussa, A., Wet chemical synthesis of bulk optical materials, J. Non-Cryst. Solids, 129, 76, 1991. 19. Savage, J. A., Infrared Optical Materials and Antireflection Coatings, Adam Hilger Ltd, Bristol and Boston, 1985. 20. Feltz, A., Burckhardt, W., Voigt, B., and Linke, D., Optical glasses for IR transmittance, J. Non-Cryst. Solids, 129,31-39, 1991. 21. Borrelli, N.F., Electric field induced birefringence in glass, Phys. Chem. Glass, 12, 93, 1971. 22. Borrelli, N.F., Aitken, B.G., Newhouse, M.A., and Hall, D.W., Electric-field induced birefringence properties of high refractive under glasses exhibiting large Kerr nonlinearaties, J. Appl. Phys., 70, 2774, 1991. 23. Paillette, M., Temperature dependent behavior of the Kerr constant in the vitreous state, J. Non-Cryst. Solids, 91, 253,1987.

Section 3: Optical Plastics

Section 3 Optical Plastics Donald Keyes INTRODUCTION Since the last edition, the table of optical plastics (Table 3.1) of the Handbook of Laser Science and Technology, Volume IV, has been completely revised. Some of the previously listed polymers are no longer available and new ones have been added. More importantly, an increased number of the polymers have good clarity compared to 10 years ago. The table is not exhaustive, but includes most transparent polymers that are used for optics. Included are materials that may be useful for some optical applications, because they have excellent mechanical, chemical, or thermal properties but tend to be hazy and contain significant color. Where a specific grade of a plastic has been used and is known to be particularly use­ ful optically, it is listed. However, there is more than one grade available in almost all cases, and the plastics industry continues changing and upgrading its products, especially the op­ tical materials. Therefore, it is always prudent to review requirements with a manufacturer who makes a product matching your needs. Current manufacturers of plastics are listed at the end of this section. In addition, there are other manufacturers who make plastics similar to the types listed. The reasons for not listing them vary from disinterest in the optics industry on the part of the manufacturer (e.g., small volume) to simply lack of product information on the part of the author. Table 3.2 includes a more complete list of manufacturers along with the designations for generic material. This list originally was created by The Dow Chemical Company and is recreated here with modifications after omitting some trade names and manufacturers which are no longer available. The newer polymers listed in Table 3.1 are the “low moisture acrylics” and the amor­ phous poly olefins. These materials have unique and generally very good optical charac­ teristics of their own but are often compared with polymethylmethacrylate (PMMA) (acrylic) because of similar refractive index and dispersion (Abbe) numbers. Their out­ standing feature, improved stability due to lower moisture absorption, is currently obtained at a premium. Whereas PMMA molding compound normally sold for $1 to $2 per pound in 1992, the newer materials typically sell for $3 to $6 per pound for the low-moisture acrylics and for as much as $10 to $35 per pound for the amorphous poly olefins. The cost may not be as high as it seems, however, because the material cost can be as little as 10% of the cost of a small optical component produced in high volume. It is important to note that materials suppliers or custom compounders, while unlikely to create a new polymer for your application, can often blend materials for improved properties. Optical plastics differ from the optical glasses in ways that make them uniquely well suited to certain tasks. For example, because plastics are normally formed in molds, nonspherical (aspheric) surfaces and nonrotationally symmetric surfaces are nearly as easy to produce as spherical surfaces provided the molds can be made.

0-8493-3507-8/95 /$0.00 + $.50 (c) 1995 by C R C Press, Inc.

85

86

CRC Handbook of Laser Science and Technology

PHYSICAL PROPERTIES Some physical characteristics of interest are: Coefficient of linear expansion with temperature1: Typical optical polymer CTE = 6-7 x 10“5/°C Typical optical glass CTE = 6-8 x 10~f/°C The temperature dependence for refractive index (which may be approximated from the Lorentz-Lorenz equation)2: -dn/dT = 1-2 x lO'YX -dn/dT = 3-5 x lO ^ C dn/dT = 3 x 10"6/°C

for glassy polymers; for amorphous polymers above the glass transi­ tion temperature; and

for a typical optical glass.

It is clear that with such large temperature dependencies, thermal changes must be con­ sidered in any plastic optical design. However, many optical applications use plastic ma­ terials without difficulty. Note the negative temperature dependency of refractive index for polymers. This makes possible the design of thermally compensated glass/plastic dou­ blets. A more comprehensive study of refractive index change with temperature for acrylic and polycarbonate can be found in Refs. 3 and 4.

POLYMER TRANSMITTANCE AND COLOR The useful transmittance range for most polymers is 380 to 1000 nm, except where in­ trinsic yellowness may partially obscure the 380- to 450-nm region (see Fig. I, ref. 5). The C-H vibrational overtone and combination bands block significant portions of the near-IR above 1000 nm, except for “windows” around 1300 and 1500 nm. Users of plastic fiber in the 1300-nm communication range must be concerned with the possibility of reduced transmission if the fiber is allowed to absorb moisture. Dyes and pigments are used to provide transparent colors. Some have sharp absorption edges so that they can act as acceptable optical filters. Manufacturers typically have a range of colors available; however, the darker colors may significantly increase haze. Some clear resins are supplied with a blue “toner” as an optical brightener. This color additive permits the manufactured part to appear “water clear” instead of slightly yellow­ ish in color, even if the manufacturing process overheats or otherwise discolors the poly­ mer. The color is achieved with only a few percent reduction in transmission in the green portion of the color spectrum which is acceptable to most users. It is recommended that resin with no blue toner be specified for the best and most predictable optical results. The transmittance of polycarbonate in the transmission curve of Figure 3.1 is lower from 400 nm to 600 nm and then increases. This dip is probably the result of blue toner. There are polystyrenes and polycarbonates available with higher transmittance at 450 nm than is shown in Figure 3.1.

HAZE As a consequence of the plastic fiber and entertainment disk industry, some polymers have significantly lower haze and particulate contamination than any plastic available 10 years ago.

Manufacturer G.E. Plastics

Ultem

Polyetherimide

Polyarylsulfone

1.633 1.61 1.61 1.61 1.590

Dow Amoco Performance Hoecsht Celanese Amoco Performance Amoco Chemical Miles Inc. (Bayer AG)

Udel P-1700

Durel 400 Ardel D-100

Resin 18

Durethan T40

Polysulfone

Polyarylate

1.567 1.566 1.564 1.54 1.536

Eastman Huls-America Novacor Mitsui Petrochem. G.E. Plastics

Kodar 6763

Trogamid T

NAS 30

APO

Cycolac CTBZ

Polyamide, amorphous (nylon type 6/3)

Polystyrene co-methylmethacrylate (2:1) (SMMA)

Amorphous polyolefin from dicyclopentadiene

Acrylonitrile-butadienestyrene terpolymer (ABS)

35

35

82-110 123

Colorless Colorless

Low

Slight

1.07

1.05

1.09

79

Yellow Noticeable

Tg = 141 n/a

n/a

98

Straw Colorless

70 124

Light straw

95-96 93 104

76

Slight

Noticeable

1.27 1.12

Slight Slight Slight

Light straw Light straw Light straw

Slight Noticeable

96

Colorless Light straw Light straw

Slight

107

132 132 129

Light straw Light straw Light straw

Slight Slight Slight

Noticeable

110

Light straw

n/a

158 173

174

Slight

1.07 1.07 1.07

1.57 1.57 1.57

Monsanto Monsanto Dow

1.08

Lustran Lustran Sparkle Tyril 990

K Resin

Polyester (PETG)

Polystyrene-coacrylonitrile (SAN)

31.8 1.01

Lexan SP

1.20 1.20 1.2

1.571

1.586

Arco

Dylark 232

Polystyrene co-maleic anhydride (SMA)

Modified polyestercarbonate Polystyrene-butadiene copolymer

30 30.3 30

1.18

1.04-1.09

1.18

1.586 1.586 1.586

Dow G.E. Plastics Miles Inc.

Calibre Lexan Makrolon

Polycarbonate

31

Colorless

Slight

1.075 1.185

Yellow Light straw Light amber

Light Noticeable Noticeable

88

1.21 1.21

204

Yellow Colorless

1.24

Light

1.37

200

264 psi Heat Deflection Temp (°C)

Amber

Light

Light

1.27

Hueb (Yellow)

1.2

Relative Haze8

Density (g/cm3)

1.582

1.588

22.5

Abbe (v)

G. E. Plastics Phillips 66

1.589

Dow DuPont

Styron

Zytel 330

Polystyrene

Polyamide, amorphous nylon

Polyamide, amorphous nylon Aliphatic/aromatic

Poly a-methylstyrene

1.651 1.64-1.65

Amoco Performance

Radel

Isoplast 301

1.658

nD

Polyurethane

Polymer

TVade Name

Table 3.1 Optical plastics

Tough

Optical quality, very low moisture

Optical quality

Good abrasion resistance Moisture sensitive

Film extruding

Tougher than polystyrene

Tough

Processes at lower temperature

Brittle

Very tough, high impact

Good abrasion resistance, moisture sensitive

Low haze grades available

Tough, hard

Brittle, can be modifier for K resin

High temperature, good UV resistance

Good thermal and moisture stability

Can be custom tailored, good chemical resistance

Good thermal and chemical resistance, high color but good in near IR Tough

Notes

Section 3: Optical Plastics

Plexiglas

Polymethylmethacrylate

DuPont

1.491

1.463

1.49 1.49

1.491 1.491 1.491 1.491

1.35 at 546 nm

1.46-1.49

aRelative haze estimates: low (< 0.7%); slight (to 1.5 %); light (to 3%); noticeable (>3%). bHue (yellowness) estimates: colorless, light straw, straw, yellow, amber.

Teflon AF

Tenite

Cellulose acetate butyrate (CAB)

Fluoropolymer (TPFE)

Mitsui Plastics

TPXRT-18

Poly (4-methylpentene-1) Eastman

Rohm and Haas Rohm and Haas

MI-7 DR-G

Cyro ICI ICI Mitsubishi Rayon

Polymethylmethacrylate Impact modified, 20% Impact modified, 40%

PMMA, acrylic

Rohm and Haas

CR-39

Allyl diglycol carbonate

57

92

56.3

1.8

1.15-1.2

0.833

1.17 1.15

1.19 1.19 1.18 1.18 1.19

57.4 57.4 57.4 57.4

1.32

57.4

59.3

1.16

II PQ

58

II

Acrylite CP Perspex Shinkolite P

PPG Industries

WF-201

1.35

1.0

1.01

1.13

1.06


r * (NJ

Low moisture acrylic

Tricyclodecyl co-methacrylate (TCDMA)

1.52 A =1.563 B = 1.565 1.500

Dexter Corp. (Hysol)

Epoxy casting resin

Dexter Corp. (Hysol)

MG-18

OS-4GOO

Epoxy molding compound

1.528

B F Goodrich

1.528

Zeon Chemicals

Telene

Amorphous polyolefm (APO)

1.535

Novacor

1.535

n D

ZEONEX

NAS-55

Polystyrene co-methylmethacrylate (1:2) (SMMA)

EMS-America-Grilon

Manufacturer

Dicyclopolyolefin

Grilamid

Name

Polyamide, amorphous (nylon type 12)

Polymer

Abbe

Straw Colorless Light straw Light straw Colorless

Noticeable Slight Slight Slight Slight

Noticeable

Noticeable

Slight

Colorless

Light straw

Colorless

Colorless Colorless

Colorless Slight Light Light

to

Light straw

Light straw

Light straw

to

Low

Low

Sligth

Colorless

(Yellow)

Haze8

Low

Hueb

Relative

120

107

123

99

150

Temp (°C)

264 psi Heat Deflection

154

43-88

90 at 66 psi

85 79

to 102

72

All

55-65

91

103

II

Trade

©

Table 3.1—continued Optical plastics

New material

Tough

Unusual properties, lowest density of all thermoplastics, has some IR transmission

Tougher than PMMA Tough but will creep with mild force

Optical quality, hard, widely used

Cast thermoset, hard Ophthalmic use

Lower moisture than PMMA (1.2%) Optical quality

Two-part casting resin

Semiconductor embedment

Very low moisture (0.01%)

Optical quality

Optical quality

Good abrasion resistance Moisture sensitive

Notes

CRC Handbook of Laser Science and Technology

Dow GE Plastics Rohm & Haas ICI CYRO Dupont

Magnum Cycolac

Plexiglas CP Acrylite Lucite

Transparent ABS

Acrylic (PMMA)

Ultem

TPX

Radel

Polyphenylsulfone

Victrex

Poly-4-methylpentene-1

Polyethersulfone

Lexan PPC

Polyetherimide

Polyester (polypthalate) carbonate

Calibre Markrolon Lexan

Durel Arylon Ardel

Polyarylate

Polycarbonate

Eastman

Kodar

PETG

Amoco Performance

Mitsui Plastics

ICI

GE Plastics

GE Plastics

Dow Miles Inc. (Bayer) GE Plastics

Hoescht Celanese Dupont Amoco Performance

Eastman Miles Inc. Dupont

Kodapak Petlon Selar

Dupont EMS America-Grilon Huls America

Eastman

PET

Zytel 330 Grilamid Trogamid T

Tenite

Cellulosics (acetate, butyrate, proponiate)

Nylon, amorphous

CR-39

Allyl diglycol carbonate PPG

Manufacturer

Trade Name

Generic Family

10400

3000

12200

9500

15200

9000-10500

9500-10500

7100

8500-10500

9800-11000

2000-7800

5500

(1/411)

9400-10800

7300

Tensile Strength Yield psi

3.1

2

n/a

n/a

4.3

3.4

2.9-3.05

2.5

4-6

4. 05

0.6-2.15

3

4.5-4.7

3.8

0.124

n/a

3.73

2.94-3.38

4.8

3.5

3.3

2.9

3.5-4.5

3.86

1.5-3.4

2.5-3.3

2.5-4.5

4.2

12

2.0-3.0

1.6

10

0.6-1.0

14-18

4.2-5.5

1.7

0.25-0.7

1.8-2.8

1.5-7.8

0.2-0.4

0.4-1.2

2

Physical Properties Flexural Notched Tensile Modulus Modulus Izod E + 05, psi E + 05, psi ft-lb/in

Table 3.2 Transparent polymers engineering data

G

F

G

F

EX

F

P/F

G

G

EX

F

G

G

F

HC

Aliph

P

P

F

F/P

EX

P

P

P/F

P/F

EX

P

G

P

P

G

EX

G

P

N/A

P

P

P

P

G

P

G

F/P

G

G

EX

G

F

N/A

P/F

N/A

F

F

EX

F

G

G

G

N/A

EX

G

F

EX

F

F

G/F

G/F

P

P

G

P

P

Chemical Resistance Cone Arom Cone Dilute Inorg HC Base Base Acid

N/A

EX

G

G

EX

G

G

G

G

F

F

G

G

G

Dilut Inorg Acid

Section 3: Optical Plastics

Dylark

NAS

Styrene maleic anhydride (SMA)

Styrene methylmethacrylate (SMMA) Dow

Novacorp 9000

9000

1.8

7400

Arco

2.6

4.5-5.0

4.4

4000

Phillips

3.6-3.7

3.6

4-5

4-5.6

6000-7700

10200

5000-12000

9000-1200

Dow Monsanto BASF GE Plastics

B.F. Goodrich Georgia Gulf Occidental Colorite

Amoco Performance

Dow BASF Hoescht Celanese Bamberger Chevron Dart, Mobil Amoco, Novacor Huntsman

Manufacturer

3.4

3.5-3.9

4.6-4.9

2.4

5-5.5

3.6-5

3.9

4-4.7

1.5

0.2-0.3

0.4

0.25-0.40

0.35-0.5

0.5-1.6

1.3

0.25-0.4

Physical Properties Tensile Flexural Notched Modulus Modulus Izod E + 05, psi E + 05, psi ft-lb/in

EX

F/P

F/G

P

G

G

P/F

P

HC

Aliph

EX

P

P

P

P

P

P

P

EX

F

G

P

G

EX

EX

G

EX

G

P

F/G

G

EX

EX

G

F/G

F

F

P

G

G

EX

EX

Chemical Resistance Cone Arom Cone Dilute Inorg Base HC Base Acid

EX

G

G

F/G

G

EX

EX

G

Dilut Inorg Acid

Chemical resistance codes: Aliphatic hydrocarbons; aromatic hydrocarbons; concentrated base; dilute base; concentrated inorganic acid; dilute inorganic acid. Excellent; Good; Fair; Poor.

Isoplast 301

K Resin

Styrene butadiene

Thermoplastic polyurethane, rigid

Tyril Lustran Luran Blendex

Udel

Geon PVC, rigid Oxyblend Unichem

Polysulfone

PVC, rigid

Styrene acronylitrile (SAN)

Styron Polystyrol Hostyren Bapolan polystyrene polystyrene polystyrene polystyrene

TVade Name

Polystyrene

Generic Family

Tensile Strength Yield psi

Table 3.2—continued Transparent polymers engineering data

©

so

CRC Handbook of Laser Science and Technology

Section 3: Optical Plastics

91

Wavelength (nm)

FIGURE 3.1. Transmission of representative optical plastics.

Haze is judged qualitatively in Table 3.1 because it is process and thickness dependent. However, it is now reasonable to expect several of the polymers to provide haze levels well below 0.5% for 6-mm thicknesses. Some polymer suppliers can provide reduced haze at the expense of other properties such as resistance to ultraviolet degradation. Lower haze is often achievable in casting materials because they can be filtered more easily than molding compounds. Very low haze has been achieved in cast PMMA. The typical loss in a plastic fiber of 400 to 500 dB/km was reduced to about 13 dB/km.6

COATINGS Many of the optical plastics have had reflective, antireflective, and dichroic coatings applied successfully. However, there are some silicones and other additives which will pre­ vent adhesion of coatings. A manufacturer of plastic optics will usually be familiar with the necessary precautions to permit coating adhesion.

LASER APPLICATIONS Research7-9 has demonstrated that damage to polymers from pulsed, high-power lasers can be understood and improved. The process of “blooming,” which is the spreading of a laser beam as a result of thermally induced index changes, has been observed. Tests have been conducted on commercial acrylic using a pulsed (20 kHz rep rate) and continuous wave laser at an average power level of 7.4 W/cm2 with no evidence of blooming. It is es­ timated that a continuous 20 W/cm2can be tolerated by commercial acrylic without bloom­ ing. However, it has been demonstrated that neither commercial acrylic nor polycarbonate will handle 200 W/cm2 without some degree of blooming.10

92

CRC Handbook of Laser Science and Technology

PART MANUFACTURING Plastic parts are made in several ways. Thermoplastics (which can be reheated to a vis­ cous state and re-formed) are generally processed by injection or compression molding. Very high volume or large fiat parts may be extruded onto formed rollers. Thermoset plas­ tics can be formed only once. The resins are usually received from the vendor in monomer form or in a partially polymerized state. The material is then cast or heated by compres­ sion or transfer molding to complete the polymerization. The classical injection molding process typically leaves some inhomogeneities in the material due to shear and cooling stresses. Improved molding techniques and compres­ sion molding and casting can significantly reduce variations. The thermoset materials CR-39 and epoxy are usually cast. Acrylic (PMMA), (poly)styrene and the (poly)urethanes can be purchased in monomer form for casting. Small volume or prototype optical parts can often be machined from cast or molded and annealed blanks. The improvement of diamond-turning technology has increased the number of polymers which can be machined into optics, because polishing is often no longer necessary. Acrylic and polycarbonate sheet can be purchased in thicknesses suit­ able for machining into optics.

MATERIAL SELECTION The polymers in Table 3.1 are listed in order of decreasing refractive index «(D). These values are obtained from manufacturers’ data and other collected sources. They are not all well documented and should be checked if third place accuracy is necessary. Further, some manufacturers have additional data which they will share on request but not pub­ lish. Where they are missing, Abbe values can be estimated from the proximity of n^D) val­ ues to neighboring entries. The other material properties in Table 3.1 are provided to give general guidance for optical quality and thermal stability. The notes are for characteris­ tics which are unique or for which the material is generally known. Table 3.2, in addition to listing manufacturers, is a generic table of values for mechanical and chemical properties. A more complete listing of material properties is available in the commercial literature.1,11 The Modem Plastics Encyclopedia and the Plastics Technology, Manufacturing Handbook and Buyers Guide are published annually as part of the re­ spective magazine subscriptions. In addition to materials charts, the Modern Plastics Encyclopedia contains excellent text sections on commercial polymers. Mechanical and chemical resistance properties should be checked with the material supplier because they can vary widely within a polymer group.

PLASTIC RESIN MANUFACTURERS Amoco Chemical Co. 200 East Randolph Drive Chicago, IL 60601 (312)586-3200

Arco Chemical Co. 3801 West Chester Pike Newtown Square, PA 19073 800-321-7000

Amoco Performance Products Inc. 4500 McGinnis Ferry Road Alpharetta, GA 30202 (404)772-8200

BASF Corp. Plastic Materials 100 Cherry Hill Road Parsippany, NJ 07054 (201)316-3480

Section 3: Optical Plastics BF Goodrich Co. Specialty Polymers and Chemicals Division 9911 Brecksville Road Cleveland, OH 44141 (216)447-5000

Georgia Gulf Corp. PVC Div. P.O. Box 629 Plaquemine, LA 70765 (504)685-1200

Bamberger Polymers Inc. 3003 New Hyde Park Road New Hyde Park, NY 11042 (516)328-2772

Hitachi Chemical Co. 4 International Drive Rye Brook, NY 10573 (914)934-2424

Chevron Chemical Co. P.O. Box 3766 Houston, TX 77253 (713)754-2000 Colorite Plastics Co. 101 Railroad Ave. Ridgefield, NJ 07657 (201)941-2900 CYRO Industries 100 Valley Road P.O. Box 950 Mt. Arlington, NJ 07856 (201)770-6103 Dart Polymers Inc. 2400 Harbor Road P.O. Box 990 Owensboro, KY 42301 (502)926-3434

Hoechst Celanese Corp. 51 JFK Parkway Short Hills, NJ 07078 (201)912-4941 Huls America 80 Centennial Ave. Piscataway, NJ 08855 (908)980-6800 Huntsman Chemical Corp. 6 Riverside Industrial Park Rome, GA 31061 (804)494-2500 ICI Acrylics Inc. 10091 Manchester Rd. St. Louis, MO 63122 800-325-9577

Dexter Corporation Dexter electronics materials division 211 Franklin Street Olean, NY 14760 (716)372-6300

Miles Inc. Mobay Road Pittsburgh, PA 15205 (412)777-2000

Dow Chemical Co. Plastics Dept. 1020 Dow Center Midland, MI 48640 (517)636-1000

Mitsubishi Rayon America Inc. 520 Madison Ave., 17th floor New York, NY 10022 (212)759-5605

Dupont Engineering Polymers P.O. Box 80713 Chestnut Run Plaza Bldg. 713 Wilmington, DE 19880 (302)999-4592 Eastman Chemical Co. P.O. Box 431 Kingsport, TN 37662 800-327-8626 EMS-America-GriIon Inc. P.O. Box 1717 Sumter, SC 29151 (803)481-9173 G.E. Plastics 1 Plastics Avenue Pittsfield, MA 01201 (413)448-7110

Mitsui Plastics Inc. 11 Martine Ave. White Plains, NY 10606 (914)287-6800 Mitsui Petrochemicals (America), LTD. 250 Park Avenue Suite 950 New York, NY 10177 (212)682-2366 Monsanto Chemical Co. 800 N. Lindbergh Blvd. St. Louis, MO 63167 (314)694-1000 Mobil Chemical Co. Polystyrene Business Group P.O. Box 3029 Edison, NJ 08818 (908)321-6630

94

CRC Handbook of Laser Science and Technology

Novacor Chemicals Inc. Plastics Division 345 Morgan Lane West Haven, CT06516 (203)934-6315 Occidental Chemical Corp. Vinyls Div. 300 Berwyn Park, Suite 300 P.O. Box 1772 Berwyn, PA 19312 (215)251-1000 Phillips 66 Co. P.O. Box 58966 Houston, TX 77258 800-231-1212

PPG Industries Inc. 1 PPG Place Pittsburgh, PA 15272 (412)434-3131

Rohm and Haas Independence Mall West Philadelphia, PA 19105 (215)592-3000 Zeon Chemicals Inc. Three Continental Towers 1701 Golf Rd., Suite 1012 Rolling Meadows, IL 60008 (800)735-3388

REFERENCES 1. Modem Plastics Encyclopedia, McGraw-Hill, New York, 68, 11, 1991/92. 2. Bohn, L., Refractive indices of polymers. In The Polymer Handbook, 2nd ed., Brandrup, J. and Immergut, E. H., ed., John Wiley and Sons, New York, 241, 1975. 3. Waxier, R. M., Horowitz, D., and Feldman, A., Optical and physical parameters of Plexiglas 55 and Lexan, Appl Opt. 18, 1 January 1979. 4. Cariou, J. M., Dugas, J., Martin, L., and Michel, P., Refractive-index variations with temperature of PMMA and polycarbonate, Appl Opt. 25, 1 February 1986. 5. Wolpert, H. D., Optical plastics: properties and tolerances, In Photonics Design and Applications Handbook, 37th inti ed., Laurin Publishing, 1991. 6. Koike, Y., Tanio, N., and Ohtsuka, Y., Light scattering and heterogeneities in low-loss poly (methylmethacrylate) glasses. American Chemical Society, Macromolecules, 22, 3, 1989. 7. O’Connell, R. M., and Saito, T. T., Plastics for high-power laser applications: a review, Opt. Eng. 22(4), 393, 1983. 8. Romberger, A. B., Saito, T. T., Siegenthaler, K. B., Mullins, B. W., Shaffer, A. A., Hilbing, J. F., and Adams, C. D., Damage resistant plastics: widened application possibilities, Trans. SPIE, Vol. 505, Adv. Opt. Materials, 209, 1984.

9. O’Connell, R. ML, Deaton, T. F., and Saito, T. T., Single and multiple-shot laser-damage properties of commer­ cial grade PMMA, Appl. Opt. 23,1 March 1984. 10. Larson, D., private communication LTV Aerospace and Defense Co., Missiles Division, PO Box 650003, MSF43, Dallas, TX 75265-0003. 11. Plastics Technology, Manufacturing Handbook and Buyers Guide, Bill Communications Inc, New York, 37, 8, 1991/92.

Section 4: Optical Liquids

Section 4 Optical Liquids R obert Sacher and William Sacher INTRODUCTION An optical liquid is a liquid whose optical properties are critical to an application. Microscope immersion oil is a good example of an optical liquid. A drop of it is applied between the objective lens and the slide. The refractive index and refractive dispersion of immersion oil must have certain specific values that the microscope manufacturer in­ corporates into the microscope design, resulting in a brighter and sharper image than a design not using immersion oil. The drop of immersion oil becomes part of the optical path of the microscope; and, in addition to the refractive index and dispersion, it is es­ sential that the oil does not dry, has a certain range of viscosity, transmits well at all vis­ ible wavelengths, does not affect microscope parts it contacts, and has low fluorescence, low toxicity, etc. The properties to be considered when choosing an optical liquid are usually more extensive than when choosing optical glasses because liquids are more ac­ tive, requiring properties such as viscosity, toxicity, and compatibility to be considered. In laser applications an optical liquid can be used to minimize reflection losses between two glass components. In this case, the optical liquid may be required to match the re­ fractive index of one of the glass components and have very high transmittance at a laser wavelength.

OPTICAL PROPERTIES OF LIQUIDS The optical properties of liquids are calculated as if they were homogeneous solids like optical glasses using the same mathematical formulas. REFRACTIVE INDEX A refractive index value has little meaning unless the wavelength and temperature are specified. In this chapter, when wavelength and temperature are not specified, the refractive index value is at 589.3 nm and 25°C. Most liquids have refractive indices ranging from 1.45 to 1.55 with the number of liquids with refractive indices outside this range becoming increasingly more scarce as you move further away from the range. Between 1.45 and 1.55 there are usually only a few liquids that have properties suitable for most applications. Outside this range suitable liquids are extremely rare. The refractive index of liquids is less stable than for solids because of two factors: tem­ perature and evaporation. The temperature coefficient (the change in refractive index for a given change in temperature) for liquids is always negative and almost always much larger than for solids. The accuracy of the refractive index value for a liquid is dependent on the accuracy and control of its temperature. The relatively large temperature coefficient of liquids can be used advantageously to “tune” the refractive index of a liquid to a de­ sired value by changing its temperature. Temperature gradients that cause refractive index gradients, often seen as waviness or swirls in the liquid, can be avoided by keeping the environment at the same temperature as the liquid or by continuous mixing. Evaporation of a pure substance will not change its refractive index, however, liquids that are mixtures of substances with different refractive indices and different volatilities

0-8493-3507-8/95 /$ 0 .0 0 + $.50 (c) 1995 by C R C P ress, Inc.

97

98

CRC Handbook of Laser Science and Technology

do change their refractive indices through evaporation. As the more volatile ingredient evaporates, the refractive index of the mixture changes because the proportion of the mix­ ture's components is changing. To obtain a stable refractive index one can select a pure substance, but finding one with the exact refractive index desired is often not practical. An alternative and more successful approach is to select liquid mixtures that contain compo­ nents of very low and balanced volatility. Water-based liquids, such as sugar in water, are generally unsatisfactory because the evaporation of water is too quick causing the refrac­ tive index of the liquid to rise rapidly.

DISPERSION The wavelength dispersion of the refractive index of optical liquids can be described mathematically by a Cauchy, Sellmeier, or by a dispersion equation generated from re­ fractive index values measured at several wavelengths. Useful dispersion curves can be drawn using refractive index values at two wavelengths using specially designed graph paper called Hartmann Dispersion Nets. Dispersion for a liquid can also be expressed in terms of the Abbe value v = (nD-l)/(n F-n c), where D, F, and C denote the wavelengths of 589.3, 486.1, and 656.3 nm. Liquids generally have much higher dispersion than solids which can make them useful additions to a glass optical lens system (See Figures 4.1 and 4.2.) TRANSMITTANCE AND COLOR Most optical liquids are used in the visible spectrum between 400 and 700 nm; near­ ultraviolet (UV) and especially near-infrared (IR) applications also use optical liquids. Although colorless liquids are usually preferred, many otherwise desirable optical liquids will absorb slightly in the blue wavelength region giving the liquid a slight yellow color. Typically, optical liquid transmission is greatest from 500 to 800 nm; at blue wavelengths less than 500 nm and extending into the UV, they typically begin to absorb and reach a cutoff in the near-UV. Transmittance in the near-IR is typically characterized by a series of peaks and valleys from 800 to 1600 nm (0.8 to 1.6 pm) followed by very low trans­ mittance to 10.6 pm. A remarkable exception to this pattern are Cargille Laser Liquids Code 433 and Code 3421 (See Table 4.3) which do not reach a UV cutoff until below 240 nm and which are highly transparent, without peaks and valleys in the IR out to 2500 nm (2.5 pm). When working at a particular wavelength, especially if it is a high-power laser, it is important to select a liquid with very good transmittance at that wavelength. Absorption can cause the liquid to heat and form a lower refractive index tunnel along the light path, distorting the beam of light. If enough energy is absorbed, it can cause vaporization or thermal breakdown of the liquid or adjacent components. Path length is also important. For example, a liquid that transmits 90% through a 1-cm path will nearly approach 100% when used in a very thin layer; conversely, the transmission will drop to 7% for a 25-cm path. Absorption of light, especially UV light as in sun light, will cause some liquids to yellow and others to eventually become dark. Often, however, even light-sensitive liquids will re­ main unaffected if stored in a dark place or in dark-amber glass bottles and if used under low power or at wavelengths that do not affect it. There are liquids that are unaffected by UV. FLUORESCENCE Fluorescence caused by the liquid absorbing at shorter, usually UV, wavelengths can be a problem in some applications.

Section 4: Optical Liquids

99

Abbe number v 0 '13 '11 0 '23 '21

0

r 23

0

r3 \

0

'33

*41

0

'43

0

>42

0

0

r 52

0

0

'53

0

'63,

'si 1°

2

-C 2

0

rs\

/ (2 fe )

(«)

(1 0 )

oj

r62

Orthorhombic

mm2 - C2v 0 '13 fo

222 - D2 0^ 0 0 0

0

0

0

0

'23

0

0

0

0

0

'33

'41

0

0

0

'4 2

0

0

'52

0

'51

0

0

0

0

'63 ,

0

0

(3)



(s)

Tetragonal

4 -C 4

4 -5 4

\

422 - D 4

\

0

0

'13

f 0

0

'13

'o

0

0

0

'13

0

0

- '1 3

0

0

0

0

0

'33

0

0

0

0

0

0

0

'41

-'51

0

r41

0

0

'41

0

0

- r41

0

'41 '51 0

'51 _r41 0

0 0 ,

'51 M

1 °

0

'63 J

M

l o

0

°1

0>

(■)

135

136

CRC Handbook of Laser Science and Technology Table 6.1—continued Electrooptic matrixes

42 m —D 2d

4mm - C4v \

0

0^

0

0

0

>33

0

0

0

>51

0

>41

0

0

0

0

0

>41

0

0

0 ,

0 f ° 0

>13

0

>13

0

0

0 >51 l o

( o

0

lo

>63,

(2)

Trigonal

3 - C3 >ii

~ r22

->ii 0

r22

>51

>51

->ii

32 - D3 ~ 0 0^ >11 0 0 ->11

0

>33 0

0

0

>41

0

0

0

0

0

->41

0

0

->ii

Oj

o j

(6 )

\

'o

0

=

3 m - C3v

/ A

0

“ >41 ~

/

>13

0

>41

K ~ r22

\\ >13

y r22

>13

>22 0

>13 >33 0

>51

0

>51 (2)

—>22

=

0

0 =

oj

Hexagonal

6-Q 0 0

l

0

0

0

0

>i3

>13

>33 >41 >51 0 >51 “ >41 0 0 o 0;

6 —C3h

/

\

M

°1

>ii

_ >22

->ii 0

>22 0

0

f° 0

0

0

0

0

0

0

0

V- >22

6mm - C,6v

=

->11

6m2 - D

0

0

0

0

>41 0

0

0

->41 0

0

0

>22

0^

>13

0

>22

0

0

>33

0

0

0

0

>51

0

0

0

0

>51

0

0

0

0

0

0

0 ;

'o

0

>i3

0

0

0

l o

'

(3)

v- >22

=

Cubic

0

=

3 /2

\

=

°]

0

l o

==

622 - D6 0

°2

w

-= 0>

(4)

Section 6: Linear Electrooptic Materials

137

Table 6.1—continued

Electrooptic matrixes

432 - O

8.

23 and 43m - T and Td

^0

0

0^

^0

0

0 ^

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

>41

0

0

0

0

0

0

*41

0

,0

0

oj

(«)

If the principal refractive indexes are

= rap£j} = A

9.

^41J

= e in the presence of an applied electric field then

]

J

fA e J

1 ^e0t>

14

2Ann

for Aea ea. The relations between the tensor elements ABij and Anij for general con­ ditions of crystal class and orientation, and electric field directions, which involve off-diagonal elements (i ^ j) are given in Reference 11. For applications of the electrooptic effect to modulation of light, afigure of merit F may be defined for a particular substance by12 _ [ 2e0

F_

10.

0

^ 0

where £pis the dielectric constant at the modulating frequency, Xis the optical wave­ length, A f is the modulating bandwidth, P is the modulating power, and r\a is the phase modulation index. The half-wave voltage of an electrooptic crystal, [Ek • €]^2 is the product of applied electric field strength, Ek, and propagation distance, €, required to produce a phase difference of n between orthogonal polarizations, i.e., a half-wave retardation. In the case of uniaxial crystals in which the optic axis is the z (or 3) axis, and the propa­ gation direction is normal to this axis, X/2

n 3r33

■n\ rn

Here, rc = r33 - (n\lrfyriv

TABLES OF COEFFICIENTS The tables are divided according to the general structure of the electrooptic materials. Table 6.2 contains AB03-type crystals, which are ferroelectric or pyroelectric. Table 6.3 contains tetrahedrally coordinated binary AB compounds, which are semiconductors. Table 6.4 contains the remaining miscellaneous materials that do not fit the previous categories. Properties of organic compounds are included in Table 6.5.

4mm

4mm

4mm

T/S

La(Sr 5Ba0 5 )1_1 Nb2O6 (0,0),(0) (m2V 2) 2.65 x 10_2° 8.4 x lO 20 2.8 x lO 20

Reference jc3(-3©;co,co,co) for fused Silica = 1.95 x 1 0 22 m 2V 2 at X = 1.907 pm

232

CRC Handbook of Laser Science and Technology Photon Energy (eV)

3.0

2.5

2.0

1.6

Wavelength [pm]

FIGURE 7.1.71. Absorption spectra of PTV films in a doped and nondoped state (----- ) iodine-doped PTV(nondoped PTV.

Table 7.1.74 Refractive indices of tetrakis(terf-butyl) phthalocyanine films Film

X (pm)

n

TBH2Pc

0.635 1.907

2.08 1.71

TBVOPc

0.635 1.907

1.76 1.71

TBNiPc

0.635 1.907

1.76 1.78

TiOPc Titanyl phthalocyanine (Ref. 75) Table 7.1.75 NLO coefficients of titanyl phthalocyanine films Film

X (pm )

x3(-3o);co,co,co)(m2V 2)

As prepared

1.543 1.907

(3.77 ± 0.6) x 10 20 (1.4 ± 0.08) x 10 19

Annealed

1.543 1.907

(1.95 ± 0.3) x-10-'9 (6.4±0.8) x l O 19

Reference jc3(-3ol);co,co,(o) = 2 x 10 22m2V 2 at X= 1.543 pm = 1.95 x 10 22 m2V 2at X= 1.907 pm for fused silica

Section 7: Nonlinear Optical Materials

500

600

700

800

900

233

1000

Wavelength [nm]

FIGURE 7.1.72. Electronic absorption spectra of (f-Bu),, VOPc; (----- ) in chloroform solution,-(----- ) as prepared film (9.8 wt % in PMMA), (------------) dichloroethane vapor treated for 5 h, ( ___ ) dichloroethane vapor treated for 20 h.

Table 7.1.76 Refractive indices of titanyl phthalocyanine films Film

A (p m )

n a>

As prepared

1.543 1.907

1.76 1.57

1.93 1.81

Annealed

1.543 1.907

1.74 1.64

1.92 1.77

VOPc Vanadyl phthalocyanine

Table 7.1.77 NLO coefficients of vanadyl phthalocyanine Film

A (p m )

jc3(-3co;co,co,co)(m2V"2)

As prepared

1.543 1.907

(5.72 ± 0.7) x 10“20 (5.3 ± 0.07) x 1 0 '19

Annealed

1.543 1.907

(1.26 ± 0.14) x 10 19 (1.13 ± 0.1) x 10 18

Reference jt3(-3co;co,(D,(D) for fused silica = 2 x 10 22m2V 2 at X = 1.543 (im = 1.95 x 1(T22m V 2 at X= 1.907 (tm

234

CRC Handbook of Laser Science and Technology

Wavelength [nm]

FIGURE 7.1.73. Electronic spectra of the tetrakis(terf-butyl)phthalocyanine films obtained by spin coating of chlo­ roform solutions: (a) TBH2Pc; (b) TBVOPc; (c) TBNiPc. T a b l e 7.1.78 Refractive indices of vanadyl phthalocyanine

film s

X

X (p m )

^ co

W3co

As prepared

1.543 1.907 1.543 1.907

1.84 1.36 1.80 1.34

2.38 2.17 2.52 2.25

Annealed

Wavelength [nm]

FIGURE 7.1.74. Electronic spectra of vanadyl phthalocyanine thin films; (-------) as prepared film, (— ) annealed at 125°C for 1.5 h, (----- ) annealed at 125°C for 15 h.

Section 7: Nonlinear Optical Materials

235

PART II Table 7.1.79 SHG coefficients du (pm/V)

Antimony triiodide sulfur SbI3.3S8

3m

1.064

4 a -5 .2 d33 = 7.23 J 3 I = 4 .8

4-Bromo-4'methoxychalcone (BMC)

m

1,064

^i3 ~ 90

Dicyanovinylazo dimethyl methacrylate DCV-MMA

1.58

^ 33

DCV-PMMA

1.58

1.58

DR1/PMMA

1.58

4'-DimethylaminoZV-methyl-4stilbazolium tosylate (DAST) 4-(CH3)2N-C6H4

m

1.064

2.209 ±0.036

Ref.

2.2332 ±0.025 77

78

1.58 at X=

79 pm

0 .8

79

* = 31

d3l = 10.47

II 0

DR 1/PMMA corona poled

4

= 21.4

#i 2(B

» 10_12-1 s), Raman-active optical phonons (10“12 s), electrostriction (>10-9 s), and thermal excitation (~10_9-1 s). The bulk of the theoretical work is concerned with the bound electron contribution to n2or %(3). On the other hand, the effects of optical phonons and libration or reorientation of molecular units can occur on such a short time scale that they con­ tribute fully to nearly all of the measurements of n2. Very little experimental or theoretical work has been done to distinguish between these contributions. It has been shown that in glasses the optical phonon contribution is -20% as large as that of the bound electrons.4’5 In some cubic crystal systems, such as the rocksalt or perovskite structures, there are no firstorder Raman active phonons, and the “fast” n2 response is almost of purely electronic origin. The earliest theoretical work on n2 has been cited by Smith,1and we will mention only the work that has had a major influence on experimental and theoretical work since 1983. Building on some earlier work by Langhoff et. al.6and Wang,7Boling, Glass, and Owyoung (BGO)8 derived an empirical formula relating n2 at wavelengths much longer than the in­ terband absorption to the linear refractive index and its dispersion. Recent work has shown that this BGO formula, which is now widely accepted as a method for estimating n2, is ac­ curate to within about 25% for a wide range of crystals and glasses.9'10Figure 8.1.1 shows a large set of n2 measurements for crystals plotted against the n2 values calculated from the BGO formula for two values of an arbitrary multiplicative constant. The third-order polarizabilities (also called hyperpolarizabilities) of isolated atoms and molecules act as the sources of nonlinear refraction. A similar concept is useful for solids. Recently, ab initio calculations of ionic hyperpolarizabilites were made for alkali halide

272

CRC Handbook of Laser Science and Technology

LLGG 100

K = 48 —

GGG LAP(y) L A P (x&z) CdF,

3

m m 10

K T P (x&y)

■m o h m 3 m m m A Fluoride ■ Chloride a

Brom ide

• O xide

o Sulfide 1

10

100

Calculated n2 (10-13 esu)

FIGURE 8.1.1. Measured nonlinear refractive indices of optical crystals versus the values of n2calculated from the BGO formula, using K= 6 8 (solid line) and K - 48 (dashed line) . 10

crystals,11 and it was shown that the anions were the dominant source of %°\ although this anion hyperpolarizability is strongly dependent on the size of the coordinating cation, so hyperpolarizabilities are not uniquely defined in solids. Adair et. al.10compared the calcu­ lated hyperpolarizabilities with those values derived from n2 measurements and found rea­ sonably good agreement. The experimentally obtained hyperpolarizabilities for fluorine and oxygen ions were found to scale in a simple way with cation radius, and evidence was ob­ tained for the additivity of anion-cation pair hyperpolarizabilities for crystals of different structures and compositions. There have also been studies of the dependence of n2 on com­ position for a variety of high-index glasses, and it is found that certain constituents, such as Pb, Ti, and Te produce very high values of n2 in the region of optical transparency.9,12,13 The wavelength dependence of n2 is of considerable interest, particularly for optically transmissive materials in the UV and for semiconductors at wavelengths near and below the two-photon absorption edge. Sheik-Bahae et. al.14-17 have shown that the anomalous dispersion of n2, which changes sign in many semiconductors at wavelengths below the two-photon interband absorption threshold, can be accounted for by a Kramers-Kronig transformation of the calculated nonlinear absorption spectrum including two-photon ab­ sorption, Raman scattering, and the AC Stark effect. They have also shown that the value of n2 scales as the inverse fourth power of the energy gap. Figure 8.1.2 shows a plot of the value of n2 calculated from this formula as a function of the ratio of the photon energy to the band gap energy. For comparison, measurements of n2 for some insulator and wide band gap semiconductors are plotted on the same scale. Bassani et. al.18 have also shown how the Kramers-Kronig transformation concept applies to arbitrary orders of optical nonlinearity. Adair et. al. measured the ratios of n2 for a number of cry stals to that of fused sil-

Section 8: Nonlinear Optical Properties

0

0.2

0.4

0 .6

0 .8

273

1.0

Frequency, T\u /E % FIGURE 8.1.2. Dispersion of the nonlinear refractive index. The solid line is the Kramer-Kronig transformation of the calculated two-photon loss spectrum from a two-band model. 15

ica at 1064, 532, and 355 nm and found that this ratio changes very little over this wave­ length range.19They suggested a perturbation theory expression to relate the dispersion of n2 at wavelengths much longer than the TPA threshold to the dispersion of the linear re­ fractive index. For wide band gap insulators, it is not likely that any model will provide usefully accurate estimates of the dispersion of n2 at wavelengths near and below the twophoton interband absorption threshold. As is the case for the linear refractive index, this dispersion is generally determined by the detailed energy band parameters for several va­ lence and conduction bands, and each material is a potentially different case. Far from the TPA threshold wavelength, the dispersion of n2 predicted by the Kramers-Kronig and per­ turbation theory models is too small compared with the uncertainty in the measurements to be able to judge the accuracy of the models.19 Some recent theoretical work on nonlinear refraction and its consequences includes ab initio calculations of %(3) for third harmonic generation in semiconductors,20two-beam selffocusing,21 and the effects of n2 on the performance of optical coatings and filters.22 There have also been several reviews of nonlinear refraction and its applications in optical switch­ ing and propagation in fibers.23”32

MEASUREMENT OF n2 Several methods have been employed to measure n2. It is beyond the scope of this ar­ ticle to discuss them and their relative merits at length. The reader is cautioned, however, that the details of the measurements determine the relative contributions to the measured n2 from the various possible physical mechanisms for nonlinear polarization. For exam­ ple, the laser pulse duration is the significant experimental time scale for measurements where a single laser frequency is employed. On the other hand, for nondegenerate fourwave mixing (NDFWM) experiments, the reciprocal of the frequency difference of the laser beams provides this time scale, which may be in the femtosecond regime even for

274

CRC Handbook of Laser Science and Technology

nanosecond laser pulse widths. In general, experiments done with picosecond pulses and nondegenerate mixing are less likely to be affected by the “slow” electrostrictive or ther­ mal effects than those done in the nanosecond pulse regime and with degenerate mixing. Most of the measurements include the effects of both electronic and vibrational (Raman) contributions to nr A recent experiment where these contributions were separately mea­ sured using temporal resolution is discussed in Refs. 33 and 34. Since the article by Smith was written, a versatile new method for n2 measurements has been developed.35 37 This method, called Z-scan, is performed by moving a sample along the focal axis of a focused laser beam while the light transmitted through an aperture is recorded. This experiment allows the sign and magnitude of n2 to be measured if the spa­ tial and temporal characteristics of the laser beam are well characterized. Many of the data points in Figure 8.1.2 were obtained with the Z-scan method. Several other new or modi­ fied measurement techniques have been discussed in the literature,38-44 and several papers discuss experiments that can distinguish between the nonlinear responses from bound and free carriers in semiconductors.45"49The anisotropy of n2has also been measured for a num­ ber of crystals.10,50 Some recent measurements of “%(3)”were done using third harmonic generation.51"53 Because this technique yields a value of %(3) with different frequency arguments than n2, the reported values are not included in the data tables. A list of the measurement tech­ niques, their abbreviations used in the data tables, and references that describe the meth­ ods are given in Table 8.1.1.

DATA TABLES Measurements of nonlinear refraction are tabulated in three tables: Table 8.1.2 for in­ sulators, Table 8.1.3 for wide band gap semiconductors, and Table 8.1.4 for glasses. The entries preceded by an asterisk are the new measurements that have been reported since the earlier article by Smith was written.1The only change to Smith’s table is the change of notation from “TWM” (three-wave mixing) to “NDFWM” (nearly degenerate four-

Table 8.1.1 Techniques for measuring the nonlinear refracting index Method DFWM DHG DTLC ER KE NDFWM OKE PDF PST RSS SFL SPA SPM SSMG TBI Til

TRI TWR WFC ZS

Degenerate four-wave mixing Dynamic holographic grating Damage threshold for linear vs. circular polarization Ellipse rotation “DC” Kerr effect Nondegenerate four-wave mixing Optical Kerr effect Power-dependent focus Power for self-trapping Raman scattering spectroscopy Self-focal length Spatial profile analysis Self-phase modulation Small-scale modulation growth Two-beam interferometry Time-integrated interferometry Time-resolved interferometry Temporal waveform reshaping Wavefront conjugation Z-scan

R ef 23 54 55 56 57 10,69 58 59 60 61 62 63 64 65 66 67 68 70 71 37

3 3 3 0.17

NDFWM NDFWM NDFWM PDF ZS ZS ZS TRI NDFWM PDF DFWM ZS ZS PDF ZS ZS ZS NDFWM NDFWM TRI NDFWM OKE NDFWM NDFWM NDFWM NDFWM NDFWM PDF NDFWM NDFWM

*AgCl *A120 3 (B_Lc) *A120 3 (EIIc) *ai 2o 3 *ai 2o 3 *ai2o 3 *ai 2o 3 Al20 3:Cr A120 3 a i 2Q3 *BaF2 (100) *BaF2 *BaF2 *BaF2 *BaF2 (100) *BaF2 (100) *BaF2 (100) BaF2 BaF2 BaF2 *BeAl20 4 *Bi12SiO20 C(diamond) *CaC03(E_Lc) *CaC03(Ellc) CaC03 *CaF2 (100) *CaF2 CaF2 CaF2

0.016 4 4 0.125 3 1.5 ¥ 10^* 4 3 3 3 3 0.017 4 4

0 .0 2

3 0.030 .3 0.027 0.027 0.017 0.028

~1

0.028 0.016

0 .0 2

(ns)

Method

Crystals

Pulse Duration 1064 1064 1064 308 532 1064 355 1064 560,590 1064 1064 532 532 308 1064 532 355 592,575 575,575-e 1064 1064 532 545,545-e 1064 1064 560, 590 1064 308 592,575 575,575-e

(nm)

Wavelength

0.46 (0.048) (0.033) (0.14) (0.016) (0.026) 0.04 0.043

(2.42) 1.643 1.48 ( 1 .6 6 ) 1.429 (1.453) (1.43) (1.43)

1 .8

1.75

1 .8

1.75 1.75 (1.814)

1.76 (1.76) (1.76) 1.468 (1.476) (1.476) (1.500) 1.47 1.48 1.5 (1.47) (1.47) 1.47 1.73

Xini (1.25) (0.057) (0.060) (0.088) (0.066) (0.056) (0.076) (0.069) (0 . 1 1 ) (0.060) (0.026) (0.035) (0.031) (0.077) 0.019 0.029 0.039 0.069 0.083 (0.39) (0.67)

2 .0 2

Linear Refractive Index

0 .0 2 0

0.18

0.013 0.019 0.026 0.040

X 1122

0.017 0.019

0.17

0.036 0.034

X1221

Table 8.1.2 Measured nonlinear refractive parameters for insulating crystals

0.83 3.2 0.43 (0.67) (1 .1 ) (1 .1 )

1 .1 1

(1.94) (0.5) (0.73) (0.97) ( 1 .8 ) (2 . 1 ) ( 1 .0 0 ) 1.46 5 (7.2)

0 .8

0.67 0.9

1.3

( 1 .2 ) ( 1 .6 ) 1.48 2.4

(1.4)

(1.82)

1.3

23.3 1.23

( 1 2 .6 ) (2.83) (2.35) (8 . 1 ) (1.26) 1.92 (3.1) (3.3)

2.7 (5.0) (6 . 1 ) 2.85 (3.54)

2 .1

(48.3) (2.94) (3.11) 4.2 3.3 2.9 3.7 (3.52) (5.7) (3.1) (1.91) (2.55) (2.27) 5.42 1.4

Yu> ( i r 16 cm 2/W)

b

72 85 81

10

69,76£

10

10

73 81c

10

86

37 35 72 113 113 113 85 81

10

72 113 113 113 83 69 84

10

10

10

Ref.

Section 8: Nonlinear Optical Properties 275

0.006 0.006 3 3

NDFWM NDFWM NDFWM NDFWM TRI

0 .1 0

3 0.125 0.030 3 3 3 3 3 4 4 0.125 3 0.125 0.006 0.006 3 3 3 3 3 3 0.030 3 0.030

NDFWM TRI PDF NDFWM NDFWM NDFWM NDFWM NDFWM NDFWM NDFWM TRI NDFWM TRI NDFWM NDFWM NDFWM NDFWM NDFWM NDFWM NDFWM NDFWM PDF NDFWM PDF

CaF2 CaF2 CaF2 *CaMg2Si20 6 *CaO (100) *CaW04(EJLc) *CaWO(EI!c) *CdF2 (100) CdF2 CdF2 CdF2 *CeF3 CeF3 CsC! CsCl *Er20 3 *Ga20 3 *Gd3Ga50 12 *Gd3Sc2Al30 12 *Gd3Sc2Ga30 12 *KBr KBr *KC1 KC1 *KF KF KF *KH2PG4 (llc) *KH2PQ4(±c) k h 2po 4

(ns)

Method

Crystals

Pulse Duration

1064,532 1064,532 1064 1064 1064

560,590 1064 1064 1064 1064 1064 1064 1064 592,575 575,575-e 1064 1064 1064 1064,532 1064,532 1064 1064 1064 1064 1064 1064 1064 1064 1064

(nm)

Wavelength

1.460 1.494 (1.49)

1.96 1.96 1.945 1.891 1.943 1.544 1.544 1.479 1.479 1.358 (1.36)

(1.43) 1.43 1.43 1.67 1.83 1.89 1.91 1.56 (1.57) (1.57) 1.57 - 1 .6 - 1 .6 (1.64)

Linear Refractive Index

(0.028) (0.031) (0.040)

0 .0 2 0

(0.055) (0.025) 0.105 (0.077) (0.25) (0.25) (0.28) (0.16) 0.149 0.145 (0.061) (0.055) (0.066) 0.086 0.029 (0.24) (0.30) (0.30) (0 .2 0 ) (0.28) (0 .1 2 ) 0.58 (0.079) 0.13 (0.027) 0.014

Xml

0.048

X 1122

0.041 0.047

X 1221

Table 8.1.2—continued Measured nonlinear refractive parameters for insulating crystals

1 .0

0.72 0.78

3.3 (0.75) (0.39)

2 .0 1

4.53 5.8 5.8 4.0 5.5 2.93 14.2

1.73 5.2 4.2 5.6 3.95 (3.58) (3.48) (1.46) 1.3 (1.55) (2 .0 )

2 .8

1.46 0.65

(2 . 1 ) (2 .2 ) (2 .8 )

(9.7) (12.4) (12.5) (8.9) (11.9) (8 .0 ) (38.5) (5.7) (9.3) (2.31) ( 1 .2 )

(4.3) 1.90 (8 .1 ) (4.34) (11.9) (9.3) (12.3) ( 1 0 .6 ) (9.55) (9.29) 3.87 (3.4) 4.06 (5.1)

Ylp

( i r 16cm /w)

e

e

87

10

10

88

88

10

59

10

59

10

10

10

10

10

10

88

88

86

10

86

85 81

10

10

10

10

10

69 86,87 59

R ef

276 CRC Handbook of Laser Science and Technology

Section 8: Nonlinear Optical Properties

oo

^

fsi

no

p ^

^ r-

©

on

\o ^

c

on

no

r ^ i n N Q N O ’—i o o n c ^ o i ^-NOr^r-NONONOONON d d d d d d ‘ ' '

O N fO o mn m o JQmin m

o NO d ^

0{"--c^^no 0c^0 © 0— 0*— 0.(Na20). ^Silicate 8463

*Silica, Si0 2 Silica, Si02 Silica, Si02 Silica, Si02

Phosphate:Nd LHG- 6 ^Phosphate Q- 8 8 ^Phosphate P-108 ^Phosphate 5037 ^Phosphate 5038 Silica (Dynasil 4000) Silica (fiber) Silica (Suprasil II) Silica (Suprasil II) *Silica, Si02 *Silica, Si0 2 Silica, Si02 *Silica, Si0 2

Phosphate :Nd LHG-5

PosphaterNd LHG- 6

TRI

Phosphate:Nd LHG-5 ^Phosphate LHG- 6

DFWM TRI TRI RSS NDFWM 3

0.09 -1 -1

0.17 13 3 20 0.08

MG PDF ER NDFWM DTLC DFWM

GKE TII

TII/SPM/SS

1.1

0.125 3 0.125 0.030 0.030 3 3 3 3 0.125 -0.15 0.17

(ns)

3 IQ"4 20. 0.004

NDFWM

TRI PDF PDF NDFWM NDFWM NDFWM NDFWM TRI SPM TRI SSMG

NDFWM

Method

Crystals

Pulse Duration

1064 1064 1064 647 1064

308 694 560,590 1064 1064

1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 514 355 351 1064 620 1064 249

(nm)

Wavelength

1.94 1.50 1.50 1.51 (1.5418)

(1.489) 1.45 1.46 1.45 1.56-1.95

1.54 (1.53) 1.53 1.54 1.53 (1.5449) (1.5312) (1.5772) (1.5915) 1.46 (1.47) 1.50 1.50 (1.46) 1.4519 (1.46) (1.508)

Linear Refractive Index

1.0 (0.073) (0.073) (0.060) (0.063)

(0.042) (0.039) (0.070) (0.036) (0.072-0.97)

(0.047) (0.045) (0.040) (0.061) (0.061) (0.052) (0.052) (0.065) (0.072) (0.037) (0.044) (0.036) (0.024) (0.033) .024 0.044 (0.06-0.08)

Xim ( I 0"° cm3erg)

Xim

Table 8.1.4—continued Measured nonlinear refractive parameters for glasses

0.26

0.010

Xmi Ylp

(19.4) 1.83 1.83 1.5 1.54

1.8 0.93 1.75-18.8

1 .0 0

(1.07)

1.16 1.12 1.01 1.5 1.5 1.27 1.28 1.56 1.71 0.95 1.14 0.9 0.6 0.85 0.62 (1.1) 1.5-2.0

(42) (5.1) (5.1) (4.2) (4.18)

(4.7-40)

3.0 (2.88) (5.2) (2.7)

3.15 (3.07) 2.76 (4.1) (4.1) (3.44) (3.50) (4.14) (4.50) 2.73 (3.2) 2.5 1.7 (2.44) (1.80) (3.3) (4.2-5.6)

( i r 16 cm 2/W )

77 83 83 61j 9

12

55b

72 56° 69

108 9 108 84 84 9 9 9 9 68 64 104 65 9 78 111 79

Ref.

CRC Handbook of Laser Science and Technology

Silicate LGS-1 Silicate LGS-247 Silicate LSO *Silicate Q-246 ♦Silicate “QR” ♦Silicate S7606

Silicate KGSS-1621

Silicate C2828 ^Silicate E-0525 ^Silicate E-l ^Silicate ED-2 Silicate ED-2 Silicate ED-2 Silicate ED-2:Nd Silicate ED-2:Nd Silicate ED-2:Nd ^Silicate ED-3 Silicate ED-4 Silicate ED-4 Silicate ED-4 ^Silicate ED- 8 Silicate EY-1 Silicate EY-1 ^Silicate FD- 6 ^Silicate FD-60 ^Silicate FD-60 *Silicate FDS-9 ^Silicate FR-5 Silicate GLS-1 Silicate GLS-1 Silicate GLS-2 Silicate GLS- 6 ^Silicate La SF30 ^Silicate LG-650 Silicate K-108 Silicate K- 8

TRI OKE DFWM NDFWM TRI TRI TRI RSS TRI NDFWM NDFWM PDF ER NDFWM ER TRI DFWM DFWM OKE DFWM NDFWM PDF ER ER ER OKE NDFWM ER TII PDF ER PDF ER NDFWM DFWM NDFWM

-1

3 29 10 ~1 29 ~1 13 3 0.09 3

10-*

0.08 3 ~1 29 29 29

1 0 -4

0.15 3 3 0.030 13 3 13 0.15 0.08 0.08

0.08 3 ~1 0.125 0.125

ur*

1064 620 1064 1064 1064 1064 1064 647 1064 1064 560,590 1064 694 1064 694 1064 1064 1064 620 1064 1064 1064 1064 1064 1064 620 1064 1064 694 1064 1064 1064 694 1064 1064 1064 1.51 (1.558) 2.02 (1.5224)

0.12 (0.058)

1.8032 (1.5214)

(0.058) (0.054) 1.1 (0.063)

1.5

(0.084) 0.48 (1.16) (0.066) (0.064) (0.059) (0.059) (0.075) (0.063) (0.064) (0.011) (0.086) (0.072) (0.072) (0.088) (0.076) (0.61) (0.39) 0.42 (0.46)

1.53 1.8050 1.93 (1.57) (1.57) 1.57 1.57 (1.57) (1.57) (1.5714) 1.55 1.55 1.56 (1.6008) 1.61 (1.61) 1.77 1.77 1.8052 1.81

0.29

0.023

0.018

0.017 0.019 0.026

1.17 1.44 1.31 (20.7) 1.57

1.07

(2.51) 1.44

2.08 (10.0) (22.6) 1.58 1.53 1.41 1.41 1.8 1.52 1.53 2.6 2.1 1.73 1.69 2.06 1.77 (13.1) (8.4) (8.77) (9.5) 1.93 1.16

(3.25) (4.0) (3.52) (43) (4.32)

(5.83) (3.96)

(5.7) (23.) 49 (4.22) (4.1) 3.77 3.77 (4.8) (4.1) (4.08) (7.0) (5.7) (4.6) (4.42) (5.4) (4.6) 31 20 (20) 22

110 109 56c 9 77 9

109

83 78 23 9 83 110 68 61j 90 9 69 84 56c 9 106° 100 23 23 78 23 9 109 110 110 110 78 9 110 80

Section 8: Nonlinear Optical Properties 283

ER TRI Til

NDFWM

NDFWM

1064 1064 620 1064 1064 1064 1064 620 620 1064 1064 620 1064 694 1064 694 1064 532 1064 1064

Wavelength (nm)

2.05 2.05

1.9176 1.9525 (1.77) 1.77 1.8052 1.77 1.67

1.91

1.8467 1.88 1.88 1.91

1.81

1.75

Linear Refractive Index

(1.25)

(1.31)

(0.38) 0.44 0.45 (0.42) (0.093)

1.11

0.75 (1.57) 0.78

(1.10)

(0.51) (0.85) 0.51 0.52

Xim

Xim (KT13cm3erg)

0.025

0.13

0.23

0.17

Xmi

Ylp

0.7 24 23

(10.9) (17.7) (10.4) (10.3) (22) (14.6) (31) (15.3) (21.4) 8.0 (9.3) (9.40) 9.0 5.9 2.1

(49.) (47.)

26 41 (23.6) (23) 49 (32) 68 (33.5) (46.) (18.9) (22) (21.8) (21.) (15.) 5.2

(1 0 ’“ cm2/W)

n2 ,J

a10 13cm3/erg; btotal n2; c“electronic” assumption; d2.766; e2.833; f2.817; g2.812; h2.813; ‘2.730; Jalso nuclear/electronic ra; k“low frequency assumption.”

^Tellurite 3151 ♦Tellurite K-1261

Til 3 3

TRI

ER

~1 20 0.125 10 29

DFWM DFWM OKE DFWM DFWM DFWM DFWM OKE OKE NDFWM DFWM OKE

*Silicate SF-56 *Silicate SF-57 ^Silicate SF-57

^Silicate SF-58 ^Silicate SF-58 *Silicate SF-59 *Silicate SF-59 ^Silicate SF-59 ^Silicate SF-59 ^Silicate SF- 6 ^Silicate SF- 6 *Silicate SF- 6 Silicate SF- 6 Silicate SF-7 SilicateiTB FR-5 Silicate TF-7 Silicate TF-7 Silicate ZF-7

0.08 0.08 10" 0.09 0.08 0.09 0.08 10" 10" 3 0.09 10"

Method

Crystals

Pulse Duration (ns)

Table 8.1.4—continued Measured nonlinear refractive parameters for glasses

23 23 78k 77 23 77 23 78k 78k 9 77 78k 83 82° 68 80 110 107 9 9

Ref.

284 CRC Handbook of Laser Science and Technology

Section 8: Nonlinear Optical Properties

285

wave mixing) to reflect the nomenclature currently used in the literature. The values of the parameters contained in parentheses have been calculated by the present authors from the quantities reported in the original references. Similarly, refractive indices (in parentheses) were obtained from available data compilations, often with the aid of extrapolation to the measurement wavelength. For noncubic crystals, or for cubic crystals where the polariza­ tion is not along a cube axis or is not specified in the original reference, the value tabu­ lated for “X(3)(l111)” is an effective value of %(3) obtained from Equation 5.

ACKNOWLEDGMENTS The authors are grateful to Donna Baker and Karen Clark for their assistance with the man­ uscript. L.L. Chase acknowledges research support of the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy and of Lawrence Livermore Laboratory under Contract No. W-7405-ENG-48.

REFERENCES 1. Smith, W. L., Nonlinear refractive index, Handbook ofLaser Science and Technology, Vol. Ill, Chemical Rubber Company Press, Boca Raton, FL, 1986, pp. 259-281. 2. See, Singh, S., Section 7.1, and Garito, A.F., and Kuzyk, M., Section 8.2. 3. Heliwarth, R. W., Third order optical susceptibilities of liquids and solids, Prog. Quantum Electron 5,1-68,1977. 4. Heliwarth, R. W., Cherlow, J., and Yang, T. T., Origin and frequencydependence of nonlinear optical sus­ ceptibilities of glasses, Phys. Rev. B11, 964, 1975. 5. Heiman, D., Heliwarth, R. W., and Hamilton, D. S., Raman scattering and nonlinear refractive index mea­ surements of optical glasses, J. Non-Cryst. Solids 34, 63, 1979. 6 . Langhoff, P. W., Epstein, S. T., and Karplus, M., Aspects of time-dependent perturbation theory. Rev. Mod. Phys. 44, 602, 1972. 7. Wang, C. C., Empirical relation between the linear and the third-order nonlinear optical susceptibilities, Phys. Rev. B2, 2045, 1970. 8 . Boling, No L., Glass, A. J., and Owyoung, A., Empirical relationships for predictingnonlinear refractive index changes in optical solids, IEEE J. Quantum Electron. QE-14, 601, 1978. 9. Adair, R., Chase, L .L., and Payne, S. A., Nonlinear refractive index measurements of glasses using three-wave frequency mixing, J. Opt. Soc. Am. B4, 875, 1987. 10. Adair, R., Chase, L. L., and Payne, S. A., Nonlinear refractive index of optical crystals, Phys. Rev. B39, 3337, 1989. 11. Johnson, M. D., Subbaswamy, K. R., and Senatore, G., Hyperpolarizabilities of alkali halide crystals using the local density approximation, Phys. Rev. B36, 9202-9211, 1987. 12. Vogel, E. Mo, Kosinski, S. G., Krol, D. M., Jacket, J. L., Friberg, S. R., Oliver, M. K., and Powers, J. D., Structural and optical study of silicate glasses for nonlinear optical devices, J. Non-Cryst. Solids 107,244, 1987. 13. Vogel, E. Mo, Krol, D. M., Jackel, J. L., and Aitchison, J. S., Structure and nonlinear optical properties of glasses for photonic switching, Mater. Res. Symp. Proc. 152, 83, 1989. 14. Sheik-Bahae, M., Hagan, D. J., and Van Stryland, E. W., Dispersion and band gap scaling of the electronic kerr effect in solids associated with two-photon absorption, Phys. Rev. Lett. 65, 96-99, 1990. 15. Sheik-Bahae, M., Hutchings, D. C., Hagan, D. J., and Van Stryland, E. W., Dispersion of bound electronic nonlinear refraction in solids, IEEE J. Quantum Electron. 27, 1296-1309, 1991. 16 . Sheik-Bahae, M., Hagan, D. J., Said, A. A., Young, J., Wei, T. H., and Van Stryland, E. W., Kramers-Kronig relation between n2and two-photon absorption, SPIE. 1307, 395, 1990. 17. Hutchings, D. J., Sheik-Bahae, M., Hagan, D. J., and Van Stryland, E. W., Kramers-Kronig relations in non­ linear optics, Opt. Quantum Electron. 23, 1991, in press. 18. Bassani, F., and Scandolo, S. Dispersion relations and sum rules in nonlinear optics, Phys. Rev. B44,8446,1991. 19. Adair, R., Chase, L. L., and Payne, S. A., Dispersion of the nonlinear refractive index of optical crystals, Opt. Mater. 1, 185, 1992. 20. Moss, Do Jo, Ghahramani, E., and Sipe, J. E., Semi ab initio tight binding band-structure calculaions of X(3) (-3(0,0),co,co) in C, Si, Ge, SiC, BP, A1P, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb, Phys. Stat. Sol. (b) 164,587, 1991. 21. Aggrawal, G. P., Induced focusing of optical beams in self-defocusing nonlinear media, Phys. Rev. Lett. 64, 2487, 1990.

286

CRC Handbook of Laser Science and Technology

22. Bovard, B. G., and Macleod, H. A., Nonlinear behavior of optical coatings subjected to intense laser irradia­ tion, J. Mod. Opt. 35, 1151, 1988. 23. Friberg, S. R., and Smith, P. W., Nonlinear optical glasses for ultrafast optical switches, IEEE J. Quantum Electron. QE-23, 2089, 1987. 24. Hayden, Y. T., and Marker, A. J., Ill, Glass as a nonlinear optical material, SPIE 1327, 132, 1990. 25. Altshuler, G. B., Vasilenko, V. V., Nazarov, L. M., Studenikin, L. M., and Khramov, V. Yu, Nonlinearity of refractive index of laser glasses, Sov. J. Opt. Technol. 57, 221, 1990. 26. Nasu, Ho, Lin, J. S., Lau, J., and Mackenzie, J. D., Glasses with high nonlinear refractive indices, SPIE 505, 75, 1984. 27. Newhouse, M. A., Weidman, D. L., and Hall, D. W., Enhanced-nonlinearity single-mode lead silicate optical fiber, Opt. Lett. 15, 1185, 1990. 28. Sudo, So, and Itoh, H., Efficient nonlinear optical fibers and their applications, Opt. Quantum Electron. 22,187, 1991. 29. Morioka, T., and Saruwatari, M., All-optical ultrafast nonlinear switching utilizing the optical Kerr effect in optical fibers, Opt. Eng. 29, 200, 1990. 30. Williams, W. E., Soileau, M. J., and Van Stryland, E. W., Optical switching and n2 measurements in CS2, Opt. Commun. 50, 256, 1984. 31. Vogel, E. Mo, Weber, M . J., and Krol, D. M ., Nonlinear optical phenomena in glass, Phys. Chem. Glass, in press. 32. Van Stryland, E. W., Vanherzeele, H., Woodall, M. A., Soileau, M. J., Smirl, A. L., Guha, S., and Boggess, T. E, Two-photon absorption, nonlinear refraction, and optical limiting in semiconductors, Opt. Eng. 24, 613, 1985. 33. Rhee, B. K., Bron, W. E., and Kuhl, J., Determination of third-order nonlinear susceptibility %(3) through mea­ surements in the picosecond time domain, Phys. Rev. B30, 7358, 1984. 34. Kuhl, Jo, Rhee, B. K., and Bron, W. E., Measurement of the third-order electronic susceptibility of GaP by pi­ cosecond CARS spectroscopy, Springer Proceedings in Physics, vol. 4, Springer-Verlag, Berlin, 1986, p. 30. 35. Sheik-Bahae, M. Said, A. A., and Van Stryland, E. W., High-sensitivity, single-beam n2measurements, Opt. Lett. 14, 955, 1989. 36. Sheik-Bahae, M., Said, A. A., Wei, T. H., Wu, Y. Y., Hagan, D. J., Soileau, M. J., and Van Stryland, E. W., Z-scan: a simple and sensitive technique for nonlinear refraction measurements, SPIE 1148, 41, 1989. 37. Sheik-Bahae, M., Said, A. A., Wei, T. H., Hagan, D. J., and Van Stryland, E. W., Sensitive measurement of optical nonlinearities using a single beam, IEEE J. Quantum Electron. 26, 760, 1990. 38. Adolf, Ao, Chatrefou, D., Euzenne, D., and Morbieu, B., Spatial frequencies generation in an optical nonlin­ ear medium, J. Appl. Phys. 55, 4116, 1984. 39. Klein Koerkamp, H. M. M., Hoekstra, T. H., Krijnen, G. J. M., Driessen, A., and Lambeck, P. V., A sim­ ple method for determination of %(3) coefficients based on the DC Kerr effect, Institute of Physics Conference Series no. 103: Section 2.2, Institute of Physics, Bristol, 1989, p. 151. 40. Saltiel, S. M., Van Wonterghem, B., and Rentzepis, P. M., Measurement of %(3) and phase shift of nonlinear media by means of a phase conjugate interfometer, Opt. Lett. 14, 183, 1989. 41. Le, H. Q., Bossi, D. E., Nichols, K. B., and Goodhue, W. D., Observation of Maker fringes and estimation of X(3) using picosecond nondegenerate four-wave mixing in AlGaAs waveguides, Appl. Phys. Lett. 56,1008,1990. 42. Horan, P., Blau, W., Byrne, H„, and Berglund, P., Simple setup for rapid testing of third-order optical materi­ als, Appl. Opt. 29, 31, 1990. 43. Ding, Y. J., Guo, C. L., Swartzlander, G. A., Jr., Khurghin, J. B., and Kaplan, A. E., Spectral measurement of the nonlinear refractive index in ZnSe using self-bending of a pulsed laser beam, Opt. Lett. 15, 1431, 1990. 44. Ma, H., Acioli, L. H., Gomes, A. S. L., and de Araujo, C. B., Method to determine the phase dispersion of the third-order susceptibility, Opt. Lett, 16, 630, 1991. 45. Dubenskaya, M. G., Zadoyan, R. S., and Zheluder, N. I., Nonlinear polarization spectroscopy in GaAs crys­ tals: one- and two-photon resonances, excitonic effects, and saturation of nonlinear susceptibilities, J. Opt. Soc. Am. B2, 1174, 1985. 46. Akhamanov, S. A., Zheludev, N. L, and Zadoyan, R. S., Picosecond spectroscopy of nonlinear optical activ­ ity and nonlinear absorption in gallium arsenide, Sov. Phys. JETP 64, 579,1976. 47. Mileva, G. M., and Pavlov, L. I., Third order optical polarizability of ZnS at low temperature, Phys. Stat. Sol. (a) 92, 603, 1985. 48. AFtshuler, G. B., Borshch, A. A., Brodin, M. S., and Inochkin, M. V., Dynamics of self-interaction of pi­ cosecond light pulses in semiconducting cadmium sulfide, Sov. J. Quantum Electron. 17, 1600, 1987. 49. Fox, E. C. Canto-Said, E. J., and Van Driel, H. M. Femtosecond time-resolved refractive index changes in CdS075, Se0 25, and CdS, Appl. Phys. Lett. 59, 1878, 1991. 50. Borshch, A. A., Brodin, M. S., and Semioshko, V. N., The anisotropy of refraction nonlinearity and vector dif­ fraction in wide-gap semiconductors of CdS type, Phys. Stat. Sol. (a) 91, 135, 1985. 51. Thalhammer, M., and Penzkofer, A., Measurement of third-order nonlinear susceptibilities by non-phase matched third-harmonic generation, Appl. Phys. B32, 137, 1983. 52. Nasu, H., Ibara, Y., and Kubodera, K., Optical third-harmonic generation from some high-index glasses, J. Non-Cryst. Sol. 110, 229, 1989.

Section 8: Nonlinear Optical Properties

287

53. Kubodera, K., Measurements of third-order nonlinear optical efficiencies, Nonlinear Opt. 1, 71, 1991. 54. Odulov, S.G., Reznikov, Y. A., Soskin, M. S., and Khizhnyak, A. I., Photostimulated transformation of mol­ ecules—A new type of ‘giant’ optical nonlinearity in liquid crystals, Sov. Phys. JETP 55(5), 854, 1982. 55. Feldman, A. Horowitz, D., and Waxier, R. M., Mechanisms for self-focusing in optical glasses, IEEEJ. Quantum Electron. QE-9, 1054, 1973. 56. Owyoung, A., Ellipse rotation studies in laser host materials, IEEE J. Quantum Electron. QE-9(11), 1064,1973. 57. Heliwarth, R. W., and George, N., Nonlinear refractive indices of CS2-CC14 mixtures, Opt. Electron. 1, 213, 1969. 58. Ho, P. P., and Alfano, R. R., Optical Kerr effect in liquids, Phys. Rev. A 20(5), 2170, 1979. 59. Smith, W. L., Bechtel, J. H., and Bloembergen, N., Dielectric-breakdown threshold and nonlinear-refractiveindex measurements with picosecond laser pulses, Phys. Rev. B 12, 706, 1975. 60. Wang, C. C., Nonlinear susceptibility constants and self-focusing of optical beams in liquids, Phys. Rev. 152(1), 149, 1966. 61. Yang, T. T., Raman scattering and optical susceptibilities of Nd-doped glasses, Appl. Phys. 11,167, 1976. 62. Hongyo, M., Sasaki, T., and Yamanaka, C., Nonlinear effects of POCl3 liquid laser, Technol. Rep. Osaka Univ. 23(1121-1154), 455, 1973. 63. Bjorkholm, J. E. and Ashkin, A., cw self-focusing and self-trapping of light in sodium vapor, Phys. Rev. Lett. 32(4), 129, 1974. 64. Stolen, R. H., and Lin, C., Self-phase-modulation in silica optical fibers, Phys. Rev. A 17(4), 1448, 1978. 65. Smith, W. L., Warren, W. E., Vercimak, C. L., and White, W. T., Ill, Nonlinear refractive index at 351 nm by direct measurement of small-scale self-focusing, Paper FB4, in Digest of Conference on Lasers and Electro Optics, Optical Society of America, Washington, DC, 1983, p.17. 6 6 . Owyoung, A., and Peercy, P. S., Precise characterization of the raman nonlinearity in benzene using nonlinear interferometry, J. Appl. Phys. 48(2), 674, 1977. 67. Witte, K. J., Galanti, M., and Volk, R., ^-measurements at 1.32 pm of some organic compounds usable as sol­ vents in a saturable absorber for an atomic iodine laser, Opt. Commun. 34(2), 278, 1980. 6 8 . Milam, D., and Weber, M. J., Measurement of nonlinear refractive-index coefficients using time-resolved in­ terferometry: application to optical materials for high-power neodymium laser, J. Appl. Phys. 47(6), 2497,1976. 69. Levenson, M. D., Feasibility of measuring the nonlinear index of refraction by third-order frequency mixing, IEEEJ. Quantum Electron. QE-10(2), 110, 1974. 70. Hanson, E. G., Shen, Y. R., and Wong, G. K. L., Experimental study of self-focusing in a liquid crystalline medium, Appl. Phys. 14, 65, 1977; Self-focusing: from transient to quasi-steady-state, Opt. Commun. 20(1), 45, 1977; Wong, G. K. L., and Shen, Y. R., Transient self-focusing in a nematic liquid crystal in the isotropic phase, Phys. Rev. Lett. 32(10), 527, 1974. 71. Grischkowsky, D., Shiren, N. S., and Bennett, R. J., Generation of time-reversed wave fronts using a reso­ nantly enhanced electronic nonlinearity, Appl. Phys. Lett. 33(9), 805, 1978. 72. Kim, Y. P., and Hutchinson, M. H. R., Intensity-induced nonlinear effects in UV window materials, Appl. Phys. B49,469, 1989. 73. Le Saux, G., Salin, F., Georges, P., Roger, G., and Brun, A., Measurement of the nonlinear index n2of BSO crystals, Appl. Opt. 27, 2812, 1988. 74. Mansour, N., Soileau, M. J., and Van Stryland, E. W., Picosecond damage in Y20 3 stabilized zirconia, in LaserInduced Damage in Optical Materials, National Bureau of Standards Special Publication 727, National Bureau of Standards, Washington, DC, 1984, p. 31. 75. Guha, S., Mansour, N., and Soileau, M. J., Direct n2 measuremtn in yttria stabilized cubic zirconia, in LaserInduced Damage in Optical Materials, National Bureau of Standards Special Publication 746, National Bureau of Standards, Washington, DC, 1985, p.80. 76. LaGasse, M. J., Anderson, K. K., Wang, C. A., Haus, H. A., and Fujimoto, J. G., Femtosecond measure­ ments of the nonresonant nonlinear index in AlGaAs, Appl. Phys. Lett. 56,417, 1990. 77. Hall, D. Wo, Newhouse, M. A., Borelli, N. E, Dumbaugh, W. H., and Weidman, D. L., Nonlinear optical sus­ ceptibilities of high-index glasses, Appl. Phys. Lett. 54, 1293, 1989. 78. Thomazeau, I., Etcheparre, J., Grillon, G., and Migus, A., Electronic nonlinear optical susceptibilities of sil­ icate glasses, Opt. Lett. 10, 223, 1985. 79. Ross, I. No, Toner, W. C., Hooker, C. J., Barr, J. R. M., and Coffey, I., Nonlinear properties of silica and air for picosecond ultraviolet pulses, J. Mod. Opt. 37, 555, 1990. 80. Veduta, A. P., and Kirsanov, B. P., Variation of refractive index of liquids and glasses in a high intensity field of a ruby laser, Sov. Phys. JETP 27(5), 736, 1968. 81. Levenson, M. D., and Bloembergen, N., Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media, Phys. Rev. B10(10), 4447, 1974. 82. Owyoung, A., Heliwarth, R. W., and George, N., Intensity-induced changes in optical polarizations in glasses, Phys. Rev. B5(2), 628, 1972. 83. Moran, M. J., She, C. Y., and Carman, R. L., Interferometric measurements of the nonlinear refractive index coefficient relative to CS2 in laser-system-related materials, IEEE J. Quantum Electron. QE-11(6), 159, 1975.

288

CRC Handbook of Laser Science and Technology

84. Smith, W. L., and Bechtel, J. H., Laser-induced breakdown and nonlinear refractive index measurements in phosphate glasses, lanthanum beryllate, and A120 3, Appl. Phys. Lett. 28, 606, 1976. 85. Lynch, R. T., Jr., Levenson, M. D., and Bloembergen, N., Experimental test for deviation from Kleinman’s symmetry in the third order susceptibility tensor, Phys. Lett. 50A(1), 61, 1974. 8 6 . Milam, D., Weber, M. J., and Glass, A. J., Nonlinear refractive index of fluoride crystals, Appl. Phys. Lett. 31(12), 822, 1977.

87. Milam, D., and Weber, M. J., Time-resolved interferometric measurements of the nonlinear refractive index in laser materials, Opt. Commun. 18(1), 172, 1976. 8 8 . Penzkofer, A., Schmailzi, J., and Glas, H., Four-wave mixing in alkali halide crystals and aqueous solutions, A p p l Phys. B 29, 37, 1982.

89. Wynne, J. J., Nonlinear optical spectroscopy of in LiNbOs, Phys. Rev. Lett. 29(10), 650, 1972. 90. Bliss, E. S., Speck, D. R., and Simmons, W. W., Direct interferometric measurements of the nonlinear refrac­ tive index coefficient n2in laser materials, Appl. Phys. Lett. 25(12), 728, 1974. 91. Borshch, A. A., and Brodin, M. S., Nonlinear polarizability of some binary and mixed semiconductors, Bull. Acad. Sci. USSR, Phys. Ser. (USA) 43(2), 98, 1978; Borshch, A.A., Brodin, M.S., Krupa, N.N., Lukomiskii, V.P., Pisarenko, V.G., Petropaviovskii, A.I., and Chemyi, V.V., Determination of the coefficients of the non­ linear refractive index of a CdS crystal by the nonlinear refraction method, Sov. Phys. JETP 48(1), 41, 1978. 92. Kremenitskii, V., Odulov, S., and Soskin, M., Backward degenerate four-wave mixing in cadmium telluride, Phys. Stat. Sol. (A) 57, K71, 1980.

93. Kramer, S. D., Parson, F. G., and Bloembergen, N., Interference of third-order light mixing and second-har­ monic exciton generation in CuCl, Phys. Rev. B9(4), 1853, 1974. 94. Wynne, J. J., Optical third-order mixing in GaAs, Ge, Si, and InAs, Phys. Rev. 178(3), 1295, 1969. 95. Watkins, D. E., Phipps, C. R., and Thomas, S. J., Determination of the third-order nonlinear optical coeffi­ cients of germanium through eclipse rotation, Opt. Lett. 5(6), 248, 1980. 96. Wood, R. A., Kahn, M. A., Wolff, P. A., and Aggarwal, R. L., Dispersion of the nonlinear optical susceptibil­ ity of N-type germanium, Opt. Commun. 21(1), 154, 1977. 97. Depatie, D., and Haueisen, D., Multiline phase conjugation at 4 mm in germanium, Opt. Lett. 5(6), 252, 1980. 98. Hill, J. R., Parry, G., and Miller, A., Nonlinear refractive index changes in CdHgTe at 175K with 10.6 mm ra­ diation, Opt. Commun. 43(2), 151, 1982. 99. Weaire, D., Wherrett, D. S., Miller, D. A. B., and Smith, S. D., Effect of low-power nonlinear refraction on laser-beam propagation in InSb, Opt. Lett. 4(10), 331, 1979. 100. Miller, D. A. B., Seaton, C. T., Prise, M. E., and Smith, S. D., Band-gap-resonant nonlinear refraction in IIIV semiconductors, Phys. Rev. Lett. 47(3), 197, 1981. 101. Yuen, S. Y., and Wolff, P. A., Difference-frequency variation of the free-carrier-induced, third-order nonlinear susceptibility in n-InSb, Appl. Phys. Lett. 40(6), 457, 1982. 102. Borshch, A. A., Brodin, M. S., and Volkov, V. I., Self-focusing of ruby-laser radiation in single-crystal silicon carbide, Sov. Phys. JETP 45(3), 490, 1977. 103. Weber, M. J., Cline, C. F., Smith, W. L., Milam, D., Heiman, D., and Hellwarth, R. W., Measurements of the electronic and nuclear contributions to the nonlinear refractive index of beryllium fluoride glasses, Appl. Phys. Lett. 32(7), 403, 1978.

104. White, W. T., Ill, Smith, W. L., and Milam, D., Direct measurement of the nonlinear refractive index coeffi­ cient y at 355 nm in fused silica and in BK-10 glass, Opt. Lett. 9, 10, 1984. 105. Newnham, B. E., and DeShazer, L. B., Direct nondestructive measurement of self-focusing in laser glass, NBS Spec. Publ. 356, 113, 1971.

106. Owyoung, A., Nonlinear refractive index measurements in laser media, NBS Spec. Publ. 387, 12, 1973. 107. Chi, K., Interferometric measurement of nonlinear refractive index of ZF-7 glass, Laser J. (China) 8(4), 48,1981. 108. Milam, D., and Weber, M. J., Nonlinear refractive index coefficient for Nd phosphate laser glasses, IEEE J. Quantum Electron. QE-12, 512, 1976. 109. Bondarenko, N. G., Evemina, I. V., and Makarov, A. L, Measurement of the coefficient of electronic linear­ ity in optical and laser glass, Sov. J. Quantum Electron. 8(4), 482, 1978. 110. Garaev, R. A., Vlasov, D. V., and Korobkin, V. V., Need to allow for slow nonlinearity in measurements of n2, Sov. J. Quantum Electron. 12(1), 100, 1982. 1 1 1 . Altshuler,G.B.,Barbashev,A.L ,Karasev,V.B.,Krylov,K .I.,Ovchinnikov,V.M.,andSharlai,S.F.,Direct measurement of the tensor elements of the nonlinear optical susceptibility of optical materials, Sov. Tech. Phys. Lett. 3(6), 213, 1977.

112. DeSalvo, R., Hagan, D. J., Sheik-Bahae, M., Stegeman, G., and Van Stryland, E. W., Self-focusing and selfdefocusing by cascaded second-order effects in KTP, Opt. Lett. 17, 28, 1992. 113. Sheik-Bahae, M., DeSalvo, J. R., Said, A. A., Hagan, D. J., Soileau, M. J., and Van Stryland, E. W., Nonlinear refraction in UV transmitting materials, Laser-Induced Damage in Optical Materials: 1991, SPIE, 1624, 25,1992. 114. Van Stryland, E. W., Dispersion of M2 in solids, Laser-Induced Damage in Optical Materials: 1990, SPIE 1441, 430, 1991.

115. Canto-Said, E .J., Hagan, D. J., Young, J., and Van Stryland, E. W., Degenerate four-wave mixing measure­ ments of high-order nonlinearities in semiconductors, IEEE J. Quantum Electron. 27, 2274, 1991.

8.1. Nonlinear Refractive Index

8.1.2.

Organic Materials

Anthony F. Garito and M ark G. Kuzyk

INTRODUCTION In this section, we have added nonlinear refractive index measurements for organic bi­ nary liquids, crystals, guest-host polymers, amorphous polymers, polymeric crystals, dyedoped glasses, organic metals, and dye solutions. Older tables have been updated with recent measurements. In recent years, there has been extensive work in time-domain studies. To simplify the cataloging of the nonlinear refractive index, however, we have preserved the format of only listing temporal pulsewidths. (The reader can find details of the transient response in the references.) In pump-probe measurements where more than one beam is used, we list the shortest pulse. When the dispersion of the nonlinear refractive index (n2) is reported, we list only those discrete wavelengths over which the nonlinear refractive index changes appreciably. When data on dispersions are reported as in figures, our tabulated values are estimates as read from the figure. The accuracy of such transcription usually greatly exceeds the quoted ex­ perimental uncertainties. Because some measurement techniques only determine the mag­ nitude of n2, the values listed in the tables may have a significant contribution for the imaginary part of the susceptibility. Many of the materials reported are two-component systems. The notation for describ­ ing the composition of these systems is left as reported in the original work. Solute con­ centrations are therefore given in terms of the optical density of the material, absorbance in a standard cell, weight concentration, or molar concentration. Both the solid and liquid solution materials are interesting because they have a third-order susceptibility that is gen­ erally linear in dye density for low concentrations. This allows for the nonlinearity to be adjusted in solution. We note that, because of the complexity of many organic systems, the nomenclature may sometimes be ambiguous. We have left the names of most materials in the form re­ ported by the authors of the original work. The reader should consult the references for more detailed information. Abbreviations for materials and measurement methods used are given in Tables 8.1.5 and 8.1.6.

ACKNOWLEDGMENT We thank C. W. Dirk, F. Ghebremichael, and C. Poga for their help in proofreading, lit­ erature searches, and editing.

0-8493-3507-8/95 /$0.00 + $.50 © 1995 by C R C P ress, Inc.

289

290

CRC Handbook of Laser Science and Technology

Table 8X5 Abbreviations for materials Abbreviations 3-BCM U r 3-DDCTP 4-BCM Ur 4-BCM Uy 4A BP a -B E T T AO AY BBB BBL BBPEN BEED T BEPEN BP4B BPDDT BSQ BTM SF DAN DCM DCV DEANS DEANS DM F DM F DM SM DM SO DNBA DNTA DPA DQCI

DR1 ISQ LTFPG M DCB MDNB Mg:OPTAP MNA M NTPM M N TPM P M OM T

mon BCMU MV757 NFAI NPCV OMPS P(4ABP) P(DPA) PBPC PBT PBTABQ PBTBQ PC

Material Red form of poly-3-BCMU Poly(3-dodecylthiophene) Red form of poly-4-BCMU Yellow form of poly-4-BCMU 4-Aminobiphenyl a-[Bis(ethylenedithio)tetrathiofulvene]triiodide Acridine orange Acridine yellow Poly(6,9-dihydro-6,9-dioxobisbenzimidazo[2,l£:r,27]benzo[lm«] [3,8]phenanthroline-3,12-diyl) Poly{(7-oxo-7,10H-benz[de]imidazo[4',5/:5,6]benzimidazo[2,l-fl]isoquinoline 3,4:10,11-tetrayl)-10-carbonyl} Bis[/z-butyl, 2-phenyl-1,2-ethenedithiolato(2-)-S,S'] nickel Bis( 1,2-diethyl-1,2-ethenedithiolato(2-)-S,S') nickel Bis[l-ethyl, 2-phenyl-1,2-ethenedithiolato(2-)-S,S'] nickel Benzopurpurin 4B trans-(Bis-( 1 -decyl-2 -phenylethenedithiolato-S,S/) nickel l,3-Bis(4'-A,A-dibutylamino-2'-hydroxyphenyl)-cyclobutene-2,4-dione Bis (trimethylsilyl) ferocene 4-(N, A-Dimethylamino)-3-acetamidonitrobenzene Dichloromethane 4-A,iV-Diethylamino-4'-p,p-dicyanovinyl (azobenzene) 4-Diethylamino-4/-nitrostilbene 4-Diethyl amino-4'-n itrostilbene Dimethylformamide Formamide A,A-dimethyl 4'-Dimethylamino-A-methyl-4-stilbazolium methylsulfate Dimethylsulfoxide 4-Nitrobenzylidenyl (4'-A,A-dimethylaminoanilide) 4-Nitrothenylidenyl (4'-A,A-dimethylaminoanilide) Diphenyl amine 1,3'-Diethyl 1-2,2-quinolythiacarbocyanice iodide Disperse red 1 l,3-Bis(3/,3/-dimethyl-2'-indoleninylidenyl)-cyclobutene-2,4-dione Lead-tin fluorophosphate glass m-Dicyanobenzene m-Dinitrobenzene Magnesium octaphenyl tetraazaporphyrin 2-Methyl-4-nitroaniline Zinc meso-tetra-(p-methoxphenyl) tetrabenzporphyrin Zinc meso-tetra-(p-methylphenyl) tetrabenzporphyrin Magnesium octamethyltetrabenzporphyrin Monomer of 4-BCMU MV757 commercial epoxy resin 5-Nitro(2-furanacroleindenyl (4/-N,N-dimethylaminoanilide) 4 -N,N -Dibutylamino-4/-(p-cyano-p-(4//-nitrophenyl) vinyl) (azobenzene) Poly(/i-octylmethylpolysilane Poly(4-amino biphenyl) with 1.5% tetrafluoroborate doping Poly(diphenyl amine) with 1.5% tetrafluoroborate doping Pb-phthalocyanine Poly-p-phenylenebenzobisthiazole Poly(a-[5,5'-bithiophenediyl] p-acetoxybenzy lidene-block-a- [5,5'- bithiophenequinodimethanediyl]) PolyCa-lS^'-bithiophenediyqbenzylidene-block-a-fS^'bithiophenequinodimethanediyl]) Polycarbonate

Section 8: Nonlinear Optical Properties

291

Table 8.1.5—continued Abbreviations for materials Material

Abbreviations

Polydiethynylsilane

PDES

PDTT

Polydithieno(3,2-&,2',3'-&)thiophene

PMMA PMTBQ PPMS PPV PS PT PTCDA

Poly(methyl) methacrylate Nonconjugated derivative of a polythiophene (see Jenekhe (1989) for structure) Polyphenylmethylsilane Poly (/7-phenylene vinylene) Polysilane Polythiophene Perylene tetracarboxylic dianhydride Pt-phthalocyanine Single crystal poly bis(/?-toluene sulfonate) of 2,4-hexadiyne-l,6 diol polydiacetylene

PTPC PTS-PDA

Polythieno(3,2-^)thiophene Poly-iV-ninyl carbazole

PTT PVK rB

Rhodamine B rra/w-Retinal, malononitrile Knoevenagel adduct Silicon naphthalocyanine Silicon phthalocyanine Tetrabenzporphyrin 4-A,Af-Diethylamino-4,-tricyanovinyl (azobenzene) Tetrahydrofuran Tetrakis(cumylphenoxy)phthalocyanines 2,4,7-Trinitrofluorenone Thiophene oligomer with N units Tetraphenyl porphorin Zinc hexadecafluorotetrabenzporphyrin Zinc meso-tetramethyltetrabenzporphyrin Zinc meso-tetra-(m-fluorophenyl) tetrabenzporphyrin Zinc meso-tetraphenyltetrabenzporphyrin Zinc meso-tetra-(p-dimethylaminohenyl) tetrabenzporphyrin

retinal SiNc SiPc TBPP TCV THF TKCPPC TNF TPO-N TPP ZHDFT ZMTM ZMTMF ZMTP ZMTPDMAP

Table 8.1.6 Measurement methods Abbreviation

Method

Ref.

Modified Sagnac Interferometry Optical Limiting Polarization Spectroscopy Saturated Absorption Spectral Broadening Two-beam Coupling

MSI OL PS SA SB

TBC

17 28 50 15 46 15

Table 8.1.7 Nonlinear refraction data for organic metals

Material a-BETT a-BETT

Pulse Linear (J) Duration Wavelength Refractive X im Index (I©-13 cm3/erg) R ef Method (ns) (nm) DFWM DFWM

0.5 0.5

635 675

1.9 1.9

81000 40000

1 1

292

CRC Handbook o f Laser Science and Technology

Table 8.1.8 DC Kerr response of binary liquids Material

Weight Percent of A

Wavelength

A

B

(%)

(nm)

Lutidine Lutidine Lutidine Lutidine Lutidine Lutidine Lutidine

h 2o h 2o h 2o h 2o h 2o h 2o h 2o

0 35 35 35

632.8 632.8 632.8 632.8 632.8 632.8 632.8

100

100 100

Linear w(2 ) _ n (2) Refractive Temperature "1111 "1122 (ID20m2/V2) Index (°C) 1.33

24.0 10.2 21.9 38.0 8.76 8.76 8.76

23-32.8 23 32 32.8 32 32.8 23

1.495

Ref. 2 2 2 2 2 2 2

Table 8X9 DC Kerr Response of binary liquids

Material A Benzene Benzene Benzene Benzene Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Nitromethane Nitromethane Nitromethane Nitromethane Pyridine Pyridine Pyridine

Linear n (2) - . "1122 W Molar Wavelength Refractive Temperature "1111 Index (°C) (102° m2/V2) Ref. Material B Fraction of A (nm) Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene 2,6-Lutidine 2,6-Lutidine 2,6-Lutidine

632.8 632.8 632.8 632.8 632.8 632.8 632.8 632.8 632.8 632.8 632.8 632.8 632.8 632.8 632.8 632.8

0 0.3 0.6 1.0 0 0.2 0.4 0.8 1.0 0 0.4 0.7 1.0 0 0.6 1.0

1.524

1.501 1.556

1.427 1.524

1.382 1.495 1.509

25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

9.15 6.21 3.28 0 28.2 16.4 9.32 1.41 0 9.15 10.7 12.3 8.28 8.28 11.9 14.5

Table 8.1.10 Nonlinear refraction data for dye solutions

Dye

0. 1- 1.0 0. 1- 1.0 0. 1- 1.0 0. 1- 1.0 0. 1—1.0

Q.l-1.0 0. 1 - 1.0 0. 1- 1.0 0

THF THF THF THF THF THF THF THF THF

II 0

MNTPM MNTPMP MOMT TBPP ZHDFT ZMTM ZMTMF ZMTP ZMTPDMAP

Dye Pulse Linear (3) Concentration Duration Wavelength Refractive (nm) Index (KT12cm3/ Solvent (ir4g/ml) Method (ns) DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM

17 17 17 17 17 17 17 17 17

532 532 532 532 532 532 532 532 532

14000 12000 8000 3000 2000 15000 13000 3000 28000

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Section 8: Nonlinear Optical Properties

293

Table 8.1.11 Nonlinear refraction data for dye solutions

Dye BDN CoTPP h 2tpp IR5 S501 ZTPP

Solvent

Dye Pulse Duration Concentration Method (ns) (KT4 M/1)

Toluene Toluene Toluene 1,2-Dichloroethane 1,2-Dichloroethane Toluene

Wave­ Linear (3) length Refractive M ill (nm) Index (10-20m2/V2) Ref.

* 0.727 3.86 *

DFWM DFWM DFWM DFWM

0.18 0.08-0.2 0.08-0.2 0.18

1064 532 532 1064

1.45

91 10 40 62

*

DFWM

0.18

1064

1.45

59

4

2.29

DFWM

0.08-0.2

20

4

1.5

532

4 4

4 4

*Dye concentration adjusted for 50% transmission in a 2-mm cell.

Table 8.1.12 Nonlinear refraction data for dye solutions

Dye

Solvent

WaveDye Pulse Linear X uu Concentration Duration length Refractive (1022cm ^ MethodI (ns) (nm) Index (10"2Om2/V2) Ref.

A9860

1,2-dichloroethane p-Carotene EtOH BDN Toluene BEEDT Dichloromethane BPDDT Dichloromethane DNTPC MtOH MtOH DTTC IR5 1,2-Dichloroethane Nigrosine H20 o-DichS501 lorobenzene

DFWM

0.16

532

1.45

1.8

4,5

0.16 0.16 0.1

532 532 1064

1.3 1.49

0.0001

DFWM DFWM DFWM

0.2 1.7 0.36

3,5 4,5 6

0.0001

DFWM

0.1

1064

1.36

6

4.3 25 1

DFWM DFWM DFWM

0.16 0.16 0.16

532 532 532

1.3 1.3 1.45

1.0 0.8 2.1

4,5 4,5 4,5

42 0.5

DFWM DFWM

0.16 0.16

532 532

1.33 1.55

2.6 1.25

4,5 4,5

0.58 20 1.6

Table 8.1.13 Nonlinear refraction data for dye solutions

Dye BP4B BP4B BP4B BP4B Chrysoidin Chrysoidin Chrysoidin" DQCI DQCI DQCI Malachite green Malachite green Malachite green

Wave­ Absorption Pulse (3) „ (3) (3) X1212 + Xl221 lu ll Duration length Coefficient a(cm_1) Method (ns) (nm) (10~20 m2/V2) (10~12cm3/erg) Ref. Solvent Acetone Ethanol Glycerol Methanol Acetone Ethonal Methonal Acetone Acetone Acetone Acetone Acetone Acetone

“Linear refractive index = 1.33.

0.39 0.67 2.28 0.74 0.21 0.67 0.66 92 16.1 267 27.6 82.8 175

DFWM DFWM DFWM DFWM DFWM DFWM DFWM PS PS PS PS PS PS

20 20 20 20 20 20 20 6 6 6 6 6 6

532 532 532 532 532 532 532 590 590 590 610 610 610

y 7 7 7 7

89 151 130 146 83.1 113 146

y 8000 1600 20000 8800 4000 7000

7 8 8 8 8 8 8

294

CRC Handbook o f Laser Science and Technology

Table 8.1.14 Nonlinear refraction data for solutions

Material

4-BCMUy DEANS DMSM DMSM MNA P(4ABP) P(DPA) PBPC“ PMTBQ“ PTPC“ Retinal TKCPPCT

Solvent DMF DMF Ethanol Formamide Ethanol

DMF DMF CHCI3

DCM CHCI3

DMSO CHCI3

Dye

Pulse

Weight

Duration

Fraction(%) Method 14 3 5

20 5 10 2-10 3M/1 10“2-10“3M/1 0.73 M/1 100 0.73 M/1 10~3M/1 0.73 M/1

DFWM OKE OKE OKE OKE DFWM DFWM DFWM DFWM DFWM DFWM DFWM

(ns)

Linear WaveA/(3) V/ f\S(3) \ / length Refractive Xllll >3Cl212 Index (10'12cm3/erg) Ref (nm)

0.033 6 6 6 6 0.040 0.040 0.035 0.030 0.035 6 0.035

1064 700, 830 700, 830 700, 830 700, 830 1064 1064 1064 532 1064 532 1064

1.43

1.43 1.43

1.4 -0.2 0.46 3 -0.2 0.31,0.17 0.48, 0.22 200 4600 20 4.3 4.0

9

10 10 10 10 11

11 12 13 12 14 12

“Extrapolated from solution measurement.

Table 8.1.15 Nonlinear refraction data for solid solutions and copolymers Pulse Duration

Wave­ length

Method

(es)

(nm)

SA TBC SA TBC DFWM DFWM MSf KE KE KE KE KE KE KE KE KE KE KE KE KE KE KE KE KE DFWM

15,000 15,000 15,000 15,000 0.1 0.1 0.06 8 kHz 8 kHz 8 kHz 8 kHz 500 Hz 8 kHz 8 kHz 8 kHz 8 kHz 8 kHz 8 kHz 8 kHz 8 kHz 8 kHz 8 kHz 8 kHz 8 kHz

Number Density of Dye Dye

AO AO AY AY BBPEN BEPEN BSQ BSQ DCV DCV DCV DEANS DNBA DNTA DR1 DR1 DR1 ISQ ISQ ISQ ISQ ISQ MDCB MDNB Mg:OPTAP MNA NFAI NPCV PPV PPV PPV rB

Host

LTFPG LTFPG LTFPG LTFPG PMMA PMMA PMMA PMMA PMMA PMMA PMMA PC PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA PMMA

(I©22cm'3) 0.00008 0.00008 0.000077 0.000077 Saturation Saturation

0.0028 0.0028

0.0148 0.0148 0.0148 17 0.0137 0.0276 0.01 0.0244 0.04 0.0019 0.0019 0.0019

0.0019 0.0019 0.109 0.124 5 wt% 0.143 0.0240 0.0119

0 .0 0 1

OKE*

KE KE Sol-gel silica 1:1 by weight DFWM Sol-gel silica 1:1 by weight DFWM Sol-gel silica 1:1 by weight OKE DFWM 0.0077 Mil MV757

8 kHz 8 kHz 0.00006 0.0004 0.00006 0.00035

514 514 514 514 1064 1064 1064 799 632.8 676 799 597 632.8 632.8 632.8 632.8 632.8 479 570 632.8 680 799 632.8 632.8 598 1064 632.8 632.8 620 608 620 595

Linear Refractive Index

1.77 1.77 1.77 1.77 1.49 1.49 1.48 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.48 1.5 1.5 1.5

1.81

X llll (HT12cm3/erg)

Ref.

30,OCX),OCX),000 40,(XX),000,000 60,OCX),000,000 20,000,000,000 29.9 131 2.8 0.97“ 1.8“ 0.53“ 0.156“ 6 0.093“ 0.282“ 0.23“ 0.51“ 0.84“ 0.263“ 0.341“ 0.155“ 0.418“ 0.387“ 0.0274“ 0.0205“ 11.7 2.08 0.471“ 0.315“ 45 91 38 10.7

15 15 15 15 16 16 17 18 19 19 19 20 19 19 19 19 19 19 19 19 19 19 19 19 21 22 19 19 23 23 23 24

Section 8: Nonlinear Optical Properties

295

Table 8.1.15— continued Nonlinear refraction data for solid solutions and copolymers

Dye SiNc SiPc'

TCV TNF TNF TNF TNF TNF

Pulse Number Duration Density of Dye (ns) (10“ cm'3) Method Host

PMMA PMMA PMMA PVK PVK PVK PVK PVK

DFWM DFWM KE 0.0218 DFWM 1 :2 molar ratio 1:4 molar ratio DFWM DFWM 1:8 molar ratio 1:16 molar ratio DFWM 1:32 molar ratio DFWM 30 wt% 10 wt%

0.001 0.001

8 kHz 0.002 0.002 0.002 0.002 0.002

Linear Wave­ (3) X1111 length Refractive Index (10 12cm3/erg) (nm) 1.434 20.9 598 1.42 94 598 3.9“ 632.8 1.5 20 602 602 12 7.4 602 3.4 602 602 2.0

Ref.

21 21 19 25 25 25 25 25

“Assumes Xnn —3%^33 . ^Waveguide measurement; 'Copolymer. All measurements are at room temperature.

Table 8.1.16 Nonlinear refraction data for liquids

a-Picoline Benzene Benzene Benzene Benzene Benzene Benzene Benzene chloride

“Refractive index of probe beam.

&

1

1064 532 1064,459 1064, 472 1064,496 1064,517 1064, 590 532 1064 1060 532 532 532 1064 10600 532 10600 532 1064 1064 1060 1064, 459 1064,472 1064, 496 1064,517 1064, 590 1060 532 1064 1064 602,580 532

Xim ’X1212

JM 3) ill

(tO'12on7erg) Ref.

= 3

1.52“ 1.52“ 1.51“ 1.51“ 1.50“ 1.51

0.05

0.045 0.057 0.057 0.068 0.059 0.070 0.036

0.049

X12^12 = ^-ll

1.55 1.45 1.45 1.63 1.63 1.63 1.43

0.008 0.009 0.015 Xf2i2 =0.32

0.20 0.009 0.010 0.019 8.75 0.68 0.83 0.009

0.60 0.007 *1212 = ° - 033

1.55 1.58“ 1.58“ 1.57“ 1.56“ 1.55“ 1.56 1.55

= 3

1.49

0.17

0.13 0.168 0.146 0.132 0.084 0.11 = 100 II

0.040 0.025 0.03 0.03 0.03 0.03 0.03 0.025 0.033 10 0.025 0.025 0.025 0.033 130 0.025 3 0.025 0.033 0.040 10 0.03 0.03 0.03 0.03 0.03 10 0.025 0.040 0.040 0.0004 0.025

f\a J \3)/ J>\ff \ 3)/

400 0.018

0.20 0.13

© ©

(nm)

Linear Refractive Index

V

(ns)

Method

DFWM RTI OKE OKE OKE OKE OKE RTI DFWM OL BTMSF RTI CC14 CH3COCH3 RTI RTI Chloroform DFWM c s2 PST c s2 RTI c s2 SFL c s2 RTI Cyclohexane DFWM DMF DFWM DPA Molten ferrocene OL OKE Nitrobenzene OKE Nitrobenzene OKE Nitrobenzene OKE Nitrobenzene OKE Nitrobenzene OL Nitrobenzene RTI Nitrobenzene DFWM P(4ABP) DFWM P(DPA) DFWM PPV RTI Toluene 4ABP

Wavelength

©

Liquid

Pulse Duration

0.038

11 26 27 27 27 27 27 26 9 28 26 26 26 9 29 26 30 26 9 11 28 27 27 27 27 27 28 26 11 11 31 26

296

CRC Handbook o f Laser Science and Technology

N o n lin e a r

Table 8.1.17 refraction data for polymers

Linear v(3) J3) J3) Xllll M i l l M122 Wavelength Refractive (nm) Index (KT12cm3/erg) (KT12cm3/erg)

Material

Pulse Duration Method (ns)

3-DDCTP 3-DDCTP 3-DDCTT 3-DDCTF 3-DDCTT 3-DDCTP* 3-DDCTP* 3-ddctp * 4-BCMUr 4-BCMUy 4-BCMUy

DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM

.0004 .00006 0.00035 0.00035 0.00035 0.00035 0.00035 0.00035 0.0005 0.0005 0.033

620 620 590 602 705 590 602 705 605 605 1064

4-BCMUy

DFWM

0.033

1064

4-BCMUy BBB BBL BBL BBLC ' OMPS PBT PDES PDTT PDTT PDTT PDTT PDTT Poly(4-BCMU) PPMS PS PT PT PT PT PT PTS-PDA PTS-PDA PTS-PDA PTS-PDA PTS-PDA PTS-PDA PTS-PDA PTS-PDA^ TPO-1 TPO-2 TPO-3 TPO-4 TPO-5 TPO-6

DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM RTI OKE OKE DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM MSI RTI DFWM DFWM DFWM DFWM DFWM DFWM

0.033 0.035 0.025 0.035 0.035 10 0.0005 0.00009 0.008 0.008 0.008 0.008 0.008 0.06 0.003 0.008 0.008 0.008 0.008 0.008 0.008 0.006 0.006 0.006 0.006 0.006 0.006 0.06 0.1 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

1064 1064 532 1064 1064 532 585-604 620 530 585 605 630 1060 1319 1060,532 1060,532 530 585 605 630 1060 651.5 661 671 681 691 701.5 1060 1060 602 602 602 602 602 602

1.585 1.585 1.585 1.61

1.61 1.61

2 2

2 2

2

2 2 2

2 2 3 3 3 3 3 3 3 3 1.529 1.562 1.581 1.600 1.623

330 55 450 330 40 700 500 40 400 25

5.5 2000 15 20 2.9 9 3000 11,400 7,700 5,500 1,300 30 0.456 2.0 2 6,680 5,000 3,000 700 30 9,000 7,275 2,317 1,025 380 500 1250 6840 0.14 0.50 2.6 11 30 100

Ref.

I l 2 1 2 = 1 -4

32 32 33 33 33 33 33 33 34 34 9

xf2)i 2= 9.0

9

Xl212=13 3.7 1300 10 13

9 35 35 35 35 36 37 38 39 39 39 39 39 40 41 42 39 39 39 39 39 43 43 43 43 43 43 17 44 45 45 45 45 45 45

“Chemically prepared;bElectrochemically prepared;c' Electrochemically doped; dSingle crystal waveguides.

Section 8: Nonlinear Optical Properties

297

Table 8.1.18 Nonlinear refraction data for crystalline ordered materials

Material

Method

DANa PBTABQ'’ PBTBQ* PDTT SiPc6'

SB DFWM DFWM DFWM DFWM

Linear Pulse y(3) J?) _ J3 ) X llll *1111 *1122 Duration Wavelength Refractive (nm) Index (1012cm3/erg) (10~12cm3/erg) Ref (ns) 0.00025 0.025 0.025 0.0004 0.0004

625 532 532 602 602

1.778 1.762 1.811

100

45000 270000 200

1800

46 47 47 48 49

“Crystal; 'superlattice; Tangmuir-Blodgett film or vacuum-deposited film.

R E F E R E N C E S

1. Huggard, P. G., Blau, W., and Schweitzer, D., Large third-order optical nonlinearity of organic metal a-[bis(ethylenedithio) tetrathiofulvene] triiodid, Appl. Phys. Lett. 51 (26), 2183, 1987. 2. Piazza, R., Degiorgio, V., and Bellini, T., Kerr effect in binary liquids, J. Opt. Soc. Am. B 3 (12), 1642, 1986. 3. Rao, D. V. G. L. N., Aranda, F. J., Roach, J. F., and Remy, D. E., Third-order, nonlinear optical interactions of some benzporphyrins, Appl. Phys. Lett. 58 (12), 1241, 1991. 4. Maloney, C., Byrne, H., Dennis, W. M., and Blau, W., Picosecond optical phase conjugation using conjugated organic molecules, Chem. Phys. 21, 21, 1988. 5. Maloney, C., and Blau, W., Resonant third-order hyperpolarizabilities of large organic molecules, J. Opt. Soc. Am. B 4 (6), 1035, 1987. 6 . Winter, C. S., Hill, C. A. S., and Underhill, A. E., Near resonance optical nonlinearities in nickel dithiolene complexes, Appl. Phys. Lett. 58 (14), 107, 1991. 7. Mailhot, S., Galarneau, P., Lessard, R. A., and Denariez-Roberge, M.-M., Degenerate four-wave mixing in organic azo dyes chrysoidin and benzopurpurin 4B, Appl. Opt. 27 (16), 3418, 1988. 8. Marcano, A., and Aranguren, L., Absolute values of the nonlinear susceptibility of dye solutions measured by polarization spectroscopy, J. Appl. Phys. 62 (8 ), 3100, 1987. 9. Nunzi, J. Mo, and Grec, D., Picosecond phase conjugation in polydiacetylene gels, J. Appl. Phys. 62 (6 ), 2198, 1987. 10. Kanabara, H., Kobayashi, H., and Kubodera, K., Optical Kerr shutter performance of a solution of organic nonlinear optical materials, IEEE Phot. Tech. Lett. 1 (6 ), 149, 1989. 11. Chandrasekhar, P., Thorn, J. R. G., and Hochstrasser, R. M., Third-order nonlinear-optical properties of poly(diphenyl amine) and poly(4-amino biphenyl), novel processible conducting polymers, Appl. Phys. Lett. 59 (14), 1661, 1991. 12. Shirk, J. S., Lindle, J. R., Bartoli, F. J., Hoffman, C. A., Kafafi, Z. H., and Snow, A. W., Off-resonant thirdorder optical nonlinearities of metal-substituted phthalocyanines, Appl. Phys. Lett. 55 (13), 1287, 1989. 13. Jenekhe, S. A., Lo, S. K., and Flora, S. R., Third-order nonlinear optical properties of a soluble conjugated polythiophen derivative, Appl. Phys. Lett. 54 (25), 2524, 1989. 14. Sakai, T., Kawabe, Y., Ikeda, H., and Kawasaki, K., Third-order nonlinear optical properties of retinal deriva­ tives, Appl. Phys. Lett. 56 (5), 411, 1990. 15. Tompkin, W. R., Boyd, R. W., Hall ,D. W., Tick, P. A., J. Opt. Soc. Am. B 4 (6 ), 1030, 1987. 16. Winter, C. S., Oliver, S. N., Rush, J. D., Hill, C. A. S., and Underhill, A. E., Large third-orderoptical nonlin­ earities of nickel-dithiolene-doped polymethylmethacrylate, J. Appl. Phys. 71 (1), 512, 1992. 17. Gabriel, M. C., Whitaker, Jr., N. A., Dirk, C. W., Kuzyk, M. G., and Thakur, M., Measurement of ultrafast optical nonlinearities using a modified Sagnac Interferometer, Opt. Lett. 16 (17), 1334, 1991. 18. Kuzyk, M. G., Paek, U. C., and Dirk, C. W., Appl. Phys. Lett. 59 (8), 902, 1991. 19. Kuzyk, M. G., Sohn, J. E., and Dirk, C. W., Mechanisms of quadratic electrooptic modulationof dye-doped polymer systems, J. Opt. Soc. Am. B 5 (5), 842, 1990. 20. Uchiki, H., and Kobayashi, T., New determination method of electro-optic constants and relevant nonlinear sus­ ceptibilities and its application to doped polymer, J. Appl. Phys 64 (5), 2625, 1988. 21. Norwood, R. A., and Sounik, J. R., Third-order nonlinear-optical response in polymer thin films incorporating porphyrin derivatives, Appl. Phys. Lett. 60 (3), 295, 1992. 22. Goodwin, M. J., Edge, C., Trundle, C., and Bennion, I., Intensity-dependent birefringence in nonlinear organic polymer waveguides, J. Opt. Soc. Am. B 5 (2), 419, 1988.

298

CRC Handbook o f Laser Science and Technology

23. Pang, Y., Samoc, M., and Prasad, P. N., Third-order nonlinearity and two-photon-ionduced molecular dynam­ ics: femtosecond time-resolved transient absorption, Kerr gate, and degenerate four-wave mixing studies in poly (p-phenylene vinylene)/sol-gel silica film, J. Chem. Phys. 94 (8 ), 5282, 1991. 24. Rossi, B., Byrne, H. J., and Blau, W., Degenerate four-wave mixing in rhodamine doped epoxy waveguides, Appl. Phys. Lett. 58 (16), 1712, 1991. 25. Ghoshal, S. K., Chopra, P. C., Singh, B. P., Swiatklewicz, J., and Prasad, P. N., Picosecond degenerate fourwave mixing study of nonlinear optical properties of the poly-TV-vinyl carbazole: 2,4,7-trinitrofluorenone com­ posite polymer photoconductor, J. Chem. Phys. 90 (9), 5078, 1989. 26. Xuan, N. P., Ferrier, J-L, Gazengel, J., and Rivoire, G., Picosecond measurements of the third order suscepti­ bility tensor in liquids, Opt. Commun. 51 (6 ), 433, 1984. 27. Kuzyk, M. G., Norwood, R. A., Wu, J. W., and Garito, A. F., Frequency dependence of the optical Kerr effect and third-order electronic nonlinear-optical processes of organic liquids, J. Opt. Soc. Am. B 6 (2), 154, 1989. 28. Winter, C. S., Oliver, S. N., and Rush, J. D., n2measurements on various forms of ferrocene, Opt. Commun. 69 (1), 45, 1988. 29. Mohebi, M., Aiello, P. F., Reali, G., Soileau, M. J., and Van Stryland, E. W., Self-focusing in CS2 at 10.6 mm, Opt. Lett. 10 (8 ), 396, 1985. 30. Golub, I., Beaudoin, Y., and Chin, S. L., Nonlinear refraction in CS2 at 10.6 pm, Opt. Lett. 13 (6 ), 488, 1988. 31. Bhanu, Singh, P., Prasad, P. N., and Karasz, F. E., Third-order non-linear optical properties of oriented films of poly(p-phenylene vinylene) investigated by femtosecond degenerate four wave mixing, Polymer 29, 1949, 1988. 32. Pang, Y., and Prasad, P. N., Photoinduced processes and resonant third-order nonlinearity in poly(3-dodecylthiophene) studied by femtosecond time resolved degenerate four wave mixing, J. Chem. Phys. 93 (4), 2201,1990. 33. Singh, B. P., Samoc, M., Nalwa, H. S., and Prasad, P. N., Resonant third-order nonlinear optical properties of poly(3-dodecylthiophene), J. Chem. Phys. 92 (5), 2756, 1990. 34. Rao, D. N., Chopra, P., Goshal, S. K., Swiatkiewicz, J., and Prasad, P. N., Third-order nonlinear optical in­ teraction and conformational transition in poly-4-BCMU polydiacetylene studied by picosecond and subpi­ cosecond degenerate four wave mixing, J. Chem. Phys. 84 (12), 7049, 1986. 35. Lindle, J. R., Bartoli, F. J., Hoffman, C. A., Kim, O.-K., Lee, Y. S., Shirk, J. S., and Kafafi, Z. H., Nonlinear optical properties of benzimidazobenzophenanthroline type ladder polymers, Appl. Phys. Lett. 56 (8 ), 712,1990. 36. McGraw, D. J., Siegman, A. E., Wallraff, G. M., and Miller, R. D., Resolution of the nuclear and electronic contributions to the optical nonlinearity in polysilanes, Appl. Phys. Lett. 54 (18), 1713, 1989. 37. Rao, D. N., Swiatkiewicz, J., Chopra, P., Ghoshal, S. K., and Prasad, P. N., Third order nonlinear optical in­ teractions in thin films of poly-p-phenylenebenzobisthiazole polymer investigated by picosecond and subpi­ cosecond degenerate four wave mixing, Appl. Phys. Lett. 48 (18), 1187, 1986. 38. Wong, K. S., Han, S. G., Vardeny, Z. V., Shinar, J., Pang, Y., Ijadi-Maghsoodi, S., Barton, T. J., Grigoras, So, and Parbhoo, B., Femtosecond dynamics of nonlinear optical response in polydiethynylsilane, Appl. Phys. Lett. 58(16), 1695, 1991. 39. Dorsinville, R., Yang, L., Alfano, R. R., Zamboni, R., Danieli, R., Ruani, G., and Taliani, C., Nonlinear-op­ tical response of polythiophene films using four-wave mixing techniques, Opt. Lett. 14 (23), 1321, 1989. 40. Rochford, K., Zanoni, R., Stegeman, G. I., Krug, W., Miao, E., and Beranek, M. W., Measurement of nonlin­ ear refractive index and transmission in polydiacetylene waveguides at 1.319 pm, Appl. Phys. Lett. 58 (1), 13,1991. 41. Yang, L., Wang, Q. Z., Ho, P. P., Dorsinville, R., Alfano, R. R., Zou, W. K., and Yang, N. L., Ultrafast time response of optical nonlinearity in polysilane polymers, Appl. Phys. Lett. 53 (14), 1245, 1988. 42. Yang, L., Dorsinville, R., Wang, Q. Z., Zou, W. K., Ho, P. P., Yang, N. L., and Alfano, R. R., Third-order op­ tical nonlinearity in polycondensed thiophene-based polymers and polysilene polymers, J. Opt. Soc. Am. B 6 (4), 753,1989. 43. Carter, G. M., Thakur, M. K., Chen, Y. J., and Hryniewicz, J. V., Time and wavelength resolved nonlinear op­ tical spectroscopy of a polydiacetylene in the solid state using picosecond dye laser pulses, Appl. Phys. Lett. 47 (5), 457, 1985. 44. Krol, D. M., and Thakur, M., Measurement of the nonlinear refractive index of single-crystal polydiacetylene channel waveguides, Appl. Phys. Lett. 56 (15), 1406, 1990. 45. Zhao, M.-T., Singh, B. P., and Prasad, P. N., A systematic study of polarizability and microscopic third-order optical nonlinearity in thiophene oligomers, J. Chem. Phys. 89 (9), 5535, 1988. 46. Yamashita, M., Torizuka, K., and Uemiya, T., Femtosecond-response, highly third-order nonlinear 4-(N, N-dimethylamino)-3-acetamidonitrobenzene crystal cored fiber, Appl. Phys. Lett. 57 (13), 1301, 1990. 47. Jenekhe, S. A., Chen, W.-C., Lo, S., and Flom, S. R., Large third-order optical nonlinearitiesin organic poly­ mer superlattices, Appl. Phys. Lett. 57 (2), 126, 1990. 48. Samoc, M., and Prasad, P. N., Dynamics of resonant third-order optical nonlinearity in perylene tetracarboxylic dianhydride studied by monitoring first- and second-order diffractions in subpicosecond degenerate four-wave mixing, J. Chem Phys. 91 (11), 6643, 1989. 49. Casstevens, M. K., Samoc, M., Pfleger, J., and Prasad, P. N., Dynamics of third-order nonlinear optical processes in Langmuir-Blodgett and evaporated films of phthalocyanines, J. Chem. Phys. 92 (3), 2019, 1990. 50. Marcano O., A., Abreu, R. A., and Garcia-Golding, F., Electronic and thermal contributions to the polariza­ tion spectrum of DQCI, J. Phys. B: At. Mol. Phys. 17, 2151, 1984.

8 .2 .

T w o -P h o to n A b s o rp tio n

8.2.1.

In o rg a n ic M a te ria ls

Eric W . Van Stryland and Lloyd L.

C h a se

IN T R O D U C T IO N

Two-photon absorption (2PA) is a loss mechanism occurring in all materials at suffi­ ciently high irradiance when the combined energy of two quanta of light matches a tran­ sition energy between two states of the same parity.1The fact that states are coupled that have the same parity makes 2PA transitions complementary to one-photon absorption where states of opposite parity are coupled by electric-dipole allowed transitions. The combination of one- and two-photon transitions thus allow all possible states of a mate­ rial to be accessed. The fundamental equation describing this loss of irradiance I with depth z in a material is ^ = p / 2, dz

(i)

where p is a material parameter called the 2PA coefficient that can be a function of wave­ length, temperature, pressure, etc. It is related to the imaginary part of the third order sus­ ceptibility x (3>, as the linear absorption a is related to the imaginary part of the linear susceptibility. As such the real and imaginary parts of %(3) are related by causality (i.e., Kramers-Kronig relations) in a manner similar to the way the real and imaginary parts of %(1) are related.2 The solution to Equation 1 is

,(z )= n

i ^

“ 7i ) =1+p,(0)z’

z) = / s (r>°)exP

0



(31)

The profile of a Gaussian beam is described by a lie field radius, w, given by (32) where wo is the radius of the beam waist, £ = 2 zJb, and b = 2 nw2J \ is the confocal para­ meter. When b » L the pump beam is collimated over the interaction length and the pri­ mary effect of the Gaussian profile is to produce gain narrowing, effectively confining the Stokes intensity near the beam axis. When the beam is tightly focused so that b « L, the integrated gain is independent of the interaction length and depends only on the total pump power: G = g \ I Ldz = g4P/bX,

(33)

where P is the total beam power. Amplification or generation with focused beams can re­ sult in changes of the Stokes beam divergence and displacements of the apparent source point for divergence of the Stokes beam. RAM AN SUSCEPTIBILITIES Although the Raman polarizability given in Equation 1 is cast in a classical wave for­ malism, the normal mode coordinate Q must be regarded as a quantum mechanical vari­ able. Thus if one considers the classical vibrational or rotational motion of a molecule,

344

CRC Handbook o f Laser Science and Technology

larger values of the amplitude Q are not associated with larger rotational or vibrational amplitudes, but rather with the excitation of more vibrating or rotating molecules. For gases the Raman polarizability is commonly given on a per molecule basis and the total polarizability is simply N (da/dq ), where N is the difference in number density of the mol­ ecules in the ground state and final states. The Raman interaction can also be analyzed within the framework of the density ma­ trix. In that case the material excitation Q is identified with the off diagonal matrix ele­ ment p02. For steady state interactions, the Raman polarization can also be derived within the framework of nonlinear susceptibilities, in a manner similar to other nonlinear inter­ actions.46 In this formalism the nonlinear polarization is defined as a power series expan­ sion in the optical fields: P = e0x (1)£ + e0X{2)E2 + e0%(3)£ 3 + ...

(34)

The amplitude of the Raman polarization is

= | £oX'f(- k^

ES (iO = \ [ As(z’t) e ^ ° s‘~ks^ + ccj

(42b)

p(£,f) = Po + ^ {Ape't^-??) + cc),

(42c)

where AL, As, and Ap are the amplitudes of the laser, scattered optical wave, and sound wave respectively, and coL, co5, and Q and kL, ks, and q are the frequencies and k vectors of the various waves. The scattered optical wave propagates along the direction £ and the sound wave propagates along direction £, neither of which is required to coincide with z. The frequencies and k vectors obey the following relations:

coL - c% = Q

(43a)

kL ~ k s = q

(43b)

q = — = Q /v5

(43c)

As

where A s is the wavelength and v5is the sound velocity. The k vectors of the various waves are arranged according to the following diagram

FIGURE 8.3.1. Wave vector diagram for stimulated Brillouin scattering.

The sound frequency is typically of the order of .1-100 GHz, much less than the optical frequency. As a result \kL\ ~ \ks\ and q = 2fct sin(0/2)

(4 4 )

The acoustic frequency can then be written as Q B =2nL(0L ^ - sin(0/2)

(45>

The Brillouin interactioninvolves both electrostrictive and thermaleffects. The low fre­ quency acoustic and thermal response of liquids and gases tooptical irradiation is de­ scribed by the equations 1-3: _ g ^ P + z i V 2 (Ap) + 2 % + % V 2 jA p

dt2

y +

K

Po

a*

V2(Ar) = ~ c m ole V2(£ tot2)

(46a)

354

CRC Handbook of Laser Science and Technology

where y= CJCvis the ratio of specific heats at constant pressure and volume, r\s is the co­ efficient of shear viscosity, J\h is the coefficient of bulk viscosity, is the thermal expan­ sion coefficient at constant pressure, ye = p0£/3p) is the electrostrictive constant, a is the absorption coefficient, k is the thermal conductivity, Elot = EL + Es is the total optical field, and AT is the change in temperature. Equations 40a-40c along with the assumed form for the temperature (47) can be used to reduce Equations 46a and 46b to first order, giving the following equations for Brillouin scattering for waves propagating in the ± z direction: 3Ac . 1 dAs dz v g dt

. CQc Ap* 4nsc e p0

(48a)

(48b)

+

4?—

+ Kq2{AT*} = ^ c t e 0aA*LAs ,

(48c)

PP D

where (49)

T|5 is the coefficient of shear viscosity, r|fcis the coefficient of bulk viscosity, K is the ther­ mal conductivity, cp is the specific heat at constant pressure, and cvis the specific heat at constant volume.

The Brillouin equations can be solved under various approximations. Because the sound waves are heavily damped, it is common to neglect the propagating terms in 3Ap/3z and 9AT/dz. The steady state solution for the scattered wave intensity can then be written as Is (z) = Is (0)eSIL

(50)

where the gain coefficient g is given by g = ge + g a

(51a)

Section 8: Nonlinear Optical Properties

355

In Equation 51a B

ge =

(51b)

nSn Lc \ p o r Bv S , ( 28C2 1+

is the electrostrictive Brillouin gain coefficient and -a 8

~

^ s le J a ^ B ~2 „ „ r ' ..2 2nsnLc £0PcF bvs

48a/rB /„ c ^ \2 ’ 1+

(51c)

25Q

where ya = 2anv2Pp/CpQB, (52)

^ B - VS9

is the Brillouin frequency shift, and

r B = q ‘ — (2 % + % ) + — P cp

'*P

'

:q2r "

(53)

is the Brillouin damping constant. The gain due to the electrostrictive interaction is peaked about the Brillouin frequency shift Q. = Qs with a linewidth (FWHM) of Av8 = TJ2%. The acoustic energy damping time is given by XB= 1/2jiAvb. The electrostrictive gain coefficient g can also be written as

ge =

sJekL

-sin( 0 / 2 )-

n s n LC e 0Por Bv s

(54a) 8£2 a2

1+

r fl/2

a>sY2___________ 1__________ 1

f

2coLn5n£ce0por"vs sin(6/2)

(54b)

+ Tb/2_ These relations indicate certain scaling relations and common geometries. The maximum steady state gain is ___C0 8 b , m ax

3

f55) A

™sc e0p0v A v SB

and occurs for backward scattering (0 = 180°). The frequency shift for backward scattering QB(180°) = 2na>i — c

(56)

356

CRC Handbook of Laser Science and Technology

is also maximum. Since the Brillouin frequency shift is small, cos « coL, and the maximum Brillouin gain apparently scales as coL2. However, the linewidth also scales as coL2 (see Equation 53) leav­ ing the maximum Brillouin gain independent of wavelength. In gases the combination of the pressure dependencies of the gain coefficient, the electrostrictive constant, and the linewidth gives a gain coefficient that scales as the square of the pressure. The dependence of the linewidth on q causes the steady state gain in the forward di­ rection to go to infinity (Equation 54b) rather than to zero (Equation 54a). However, the forward interaction is always transient because the steady state time for forward scatter­ ing also goes to infinity (see Equations 44,53, and 58). As a result the forward gain is zero. Brillouin scattering at 90° is important in propagation ofhigh-power laser radiation through large diameter optics.51,52 Transient Brillouin scattering has been described by Kroll6 and Faris et al.53 The tran­ sient solution to the stimulated Brillouin scattering are formally similar to those for Raman scattering and the Stokes field can be written as asM

= a 5 (o , 0

__________

+^ BgB/cvLe0AL(t)j

te - (t - 1' ) / T2 t (t')As(0,t)it ^

p(t') ] /cvLe0j

^p(t')-p(t")

dt

(57)

where p(t) is given in Equation 15. Again the transient gain depends on the time integral of the laser intensity and the scattered intensity grows as a Bessel function. The steady state solution of Equation 50 applies when the pulse duration is greater than the steady state time given by

where Gss= gILL. Brillouin scattering in solids has been discussed in Refs. 54-57. The formal equations for electrostrictive Brillouin scattering are similar to those for liquids and gases. However, the gain coefficient depends on the polarization of the laser and scattered light, and Brillouin res­ onances exist for both longitudinal and shear acoustic waves. The Brillouin gain is given by &sQ Bnjn4Lp '2 nsnLc2e0p0TBv2 ^ + ( 2§Q \2 ^

(59)

j

where p is the photoelastic constant appropriate for the specific combination of polariza­ tions for the optical and acoustic waves. For longitudinal acoustic waves in isotropic ma­ terials57

P' = Pn(tp £ s ) + pdfcp *a)(zp £ s ) + ( v e a ) ( e s -«

(60)

while for transverse acoustic waves P' = />44[(vKJ ( eS'e«) + ( v eJ ( £S'K«)]’

(61)

Section 8: Nonlinear Optical Properties

357

where £p(S)(a) is the unit polarization vector of the pump (Stokes) (acoustic) wave, and Kais the unit vector of propagation of the acoustic wave. Buildup from noise in a generator with Brillouin scattering is similar in principle to buildup with Raman scattering. However, the primary noise source for Brilluoin scattering is the thermally excited acoustic phonons. As a result the equivalent noise level for Brillouin can be several orders of magnitude larger than for Raman.72-74The noise power into a given solid angle dQ = n02/4 is given by72 / Pnoise

kgTAVg

0 20 D.

(62)

where 0D= X/2nD is the diffraction angle that can be resolved by gain column of diame­ ter D. Brillouin scattering with broad band radiation was discussed in Refs. 67 and 75. Multiline Brilluoin scattering was treated in Ref. 81. As with backward Raman scattering, the gain decreases when the bandwidth becomes comparable to or wider than the interac­ tion length. Thermal Brillouin scattering is driven by non uniform heating due to absorption, and the gain coefficient is given in Equation 51b. The gain shows a dispersive behavior with frequency, with zero gain at the Brillouin frequency, gain for frequencies less than QBand has loss for frequencies greater than QB. Brillouin scattering parameters for various materials are given in Tables 8.3.7-8.3.10.

358

CRC Handbook of Laser Science and Technology

Table 83 J Brillouin gain parameters for selected liquids Pump Material Acetone

Benzene Benzyl alcohol Butyl acetate CS2 cci4 Chloroform Cyclohexane N,N Dimethyl formamide Dichloromethane 6>-Dichlorobenzene Ethanol Ethylene glycol Freon 113 «-Hexane Nitrobenzene Methanol Pyridine Tin tetrachloride Titanium Tetrachloride Toluene Trichloroethylene Water Xylenes

Wave­ length (nm) 1059 532 532 1059 532 532 532 1060 532 1060 532 532 532 532 532 532 532 532 532 532 1060 532 530 532 1064 532 1060 532 532 1060 532 532

Freq­ uency Shift (GHz) 2.987 5.93 6.0 4.124 8.33 9.38 6.23 3.761 7.7 2.772 5.72 5.75 7.19 7.93

Av (MHz)

(ns)

119 ±5 361 320 228 515 2120 575 50 120 528 890 635 1440 615

1.34 0.44 0.497 0.7 .31 .08 0.28 3.2 1.9 0.3 0.18 0.25

5.92 255 8.03 1340 5.91 546 3630 10.2 865 3.72 5.64 580 396 4.255 5.47 325 5.6 210 8.92 746 2.21 ± .02 182 ±12 357 4.71 216 3.070 7.72 5.94 3.703 7.4 7.74

1314 765 170 607 1211

0.11

0.26

Density

&B (cm/GW) 15.8 12.9 20 9.6 12.3 5.75 9.13 68 130 3.8 8.77 11.7 5.8 7.8 16.8 4.7

n

(g/cm3)

Ref.

1.355 1.359 (Na-D)

0.791

1.4837 1.501 (Na-D) 1.54 (Na-D) 1.394 (Na-D) 1.595

0.879 0.874 1.045 0.882 1.262

1.452 1.4595 1.446 (Na-D) 1.426 (Na-D) 1.431 (Na-D)

1.595 1.594 1.492 0.779 0.944

65 66 67 65 66 66 66 65 67 65 66 66 66 66

1.424 1.551 1.36 1.431 1.3578 1.379 1.5297 1.329

1.325 1.306 0.785 1.113 1.575 0.67 1.206 .791

1.51 1.36

0.978 2.226

0.62 0.12 0.29 0.04 0.18 0.27 0.4 0.49 .334 0.21 0.874 0.45 0.735

14.2

1.577

1.73

66 66 66 66 66 66 65 66 67 66 71 66 65

0.12 0.21 0.935 0.26 0.13

8.4 12 3.8 2.94 9.3

1.496 1.4755 1.324 1.333 1.497

0.867 1.464 1 1 0.86

66 66 65 66 66

0.85 5.5 8.8 7.2 10.6 13 14 11.2 ±0.5

P in atmospheres; p in kg/m3.

sf 6

Gas

CC1F3 3310 kPa (liquid) 3860 3950 32 atm (liquid)

Xenon 7599 torr 6840 torr

Material

1060 1060 1060

532 532

0.654 ± 0.024 0.627 ±0.03

Shift

(GHz)

(nm)

Frequency

Pump Wavelength

Table 83.8

305 155 200

98.1 ±.8.9 107.4 ±.16.9

(MHz)

Linewidth

I

--------r— + 3.25 x 105 p ^ i2 )

f 4.78x109

6.2 ±0.4

0.65 X2lP

%

(its)

8b

1.38 ±.19

(cm/GW)

Stimulated Brillouin gain parameters—gases

1.0069 1.0062

n

0.05767 0.05159

(g/cm3)

Density

68 68

69 69 69 70

57 57 68

Ref.

Section 8: Nonlinear Optical Properties

KDP, THG LAA BK3 LHG-8 BK7 CaF2 Plexiglass GGG

KD*P

Fused silica

d- LAP

Material

y

x - c =Z z z

THG

z z

y y

X

X

P

b

z

X

z =Y

y

X

z

X

y = b= Y z

k

Polarization

1053 1053 532 532 351 351 532 532 532 532 532 532 532 532 532 532 532

532 532 532 532 532 532 532 351

1053

(nm )

Pump Wavelength

29.763 ± .06 27.627 ± .087 30.525 ±0.156 28.554 ± .036 20.892 ± .009 31.383 ±.036 27.786 ± .024 34.65 ± .039 37.164 ±1.185 15.687 ± .036 26.283 ± .0051

32.65 ± .054 32.62

25.374 ±.051 25.206 ± .042 19.59 ±.087 26.415 ±.009 19.644 ± .048 26.709 ± .03925 25.149 ±.072

(G H z )

Shift

Frequency

28.9 (0 = 180°) 14.4 (0 = 90°) 84.1 ±3.5 100.4 ± 7.5 79.8 ±6.3 104.1 ±5.2 82.3 ±6.2 91.9 ± 5.1 94.8 ± 8.4 261 (0= 180°) 132 (0 = 90°) 40.8 (0= 180°) 20.4 (0 = 90°) 163 ±7.6 167.6 ±13.5 370 (0 = 180°) 185 (0 = 90°) 101.5 ±7.5 120.0 ±6.9 107.4 ±7.2 72.9 ±5.7 100.4 ± 7.6 198.6 ±6.6 219 ±6.2 165 ± 8.6 45.6 ±8.8 253.7 ± 12.6 12.5 ±6.9

(M H z )

Linewidth (ns)

0.43 (0= 180°) 0.86 (0 = 90°)

0.61 (0= 180°) 1.2 (0 = 90°) 3.9 (0= 180°) 7.8 (0 = 90°)

5.5 (0=180°) 11(0 = 90°)

Table 8.3.9 Brillouin parameters—solids Sb

1.02 ±0.5

18(0= 180°) 26 (0 = 90°) 20.7 ± 2.99 10.99 ± 1.88 27.96 ± 2.85 12.25 ±0.93 29.85 ± 2.4 24.33 ± 3.26 17.45 ±3.41 22 (0 = 180°) 31 (0 = 90°) 4.8 (0= 180°) 6.8 (0 = 90°) 2.9 ±.015 2.69 ± 0.22 5.4 (0= 180°) 7.6 (0 = 90°) 3.53 ±.31 4.57 ± 0.38 5.09 ±0.4 6.5 ± .95 24.9 ± 3.75 1.78 ±0.13 2.74 ± .23 2.15 ±.21 4.11 ±0.65

(cm /G W )

1.5008 1.5316 1.5195 1.4354 1.4938 1.9788

1.4683 1.5073 1.5073 1.5073

1.4607

1.5090 1.5090 1.5764 1.5764 1.5847 1.5847

n

2.83 2.51 3.179 1.19 7.09

2.37

2.355 2.355 2.355 2.355

2.202

1.600 1.600 1.600 1.600 1.600 1.600

(g/cm3)

Density

57 57 57 57 57 57 57

57 57 57 52 52 52 52 57 57 52 52 57 57 57 57

57 57 57

52 52 57

Ret

360 CRC Handbook of Laser Science and Technology

Section 8: Nonlinear Optical Properties

o \ in

a o

ON

O nO n

M M c o oo r> O C O'NhoO*-Ni o ' On^co NOI' ' ^-Oqoo oouo O h NO »-* 04 ^t

is set to ± 45°. Alternatively, a polarizing beam splitter may be used in place of the analyzer so that the responses for both analyzer settings (that is, § = +45° and $ = -45°) can be measured simultaneously. Taking the ratio of the difference to the sum of these two signals reduces the sensor’s sensitivity to source intensity fluctuations and optical cou­ pling losses through the device. This technique, known as differential detection, results in the function ~ sin(20F).

(35)

396

CRC Handbook of Laser Science and Technology

Linear birefringence in the magnetooptic material complicates the response function but generally reduces the sensitivity, which is defined as the derivative of R ^ J ^ f) with re­ spect to h .146,147 In addition, the temperature dependence of the birefringence also affects the sensor’s overall temperature dependence. In some sensor arrangements, the tempera­ ture dependence of the birefringence can actually compensate for the temperature depen­ dence of the Verdet constant. However, the optimum way to reduce the temperature dependence of the sensitivity is to reduce both the birefringence in the material and the temperature dependence of the Verdet constant.24,148,149In some instances, the material tem­ perature dependence can be reduced by changing the material composition.150-152 Characteristics of magnetooptic sensors are their sensitivity, minimum detectable mag­ netic field (or current), linear operating range, thermal stability, and mechanical isolation. Current sensors are also characterized by the isolation they have from other currents flow­ ing near the device. MISCELLANEOUS APPLICATIONS The preceding applications account for the vast majority of uses of magnetooptic ma­ terials. On the other hand, magnetooptic effects are employed in many other less common specialized scientific and practical applications. For example, in the scientific arena, magnetooptic techniques are used to characterize free carriers in semiconductors,153 the Meissner effect and magnetic flux patterns in su­ perconductors, 154,155 and domain properties in ferrimagnets and ferromagnets.156,157 Specialized practical applications of magnetooptic materials usually take advantage of the nonreciprocal polarization rotation provided by magnetooptic materials. This property has been exploited in circulators for laser amplifiers158,159 and in ring laser gyroscopes.160 In fiber optic sensors, Faraday rotators have been used to overcome problems with polariza­ tion drift.161,162 Finally, magnetooptic diffraction gratings have been employed for mag­ netic material characterization,156 beam deflection,163 and even magnetic holography.164

REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

Jenkins, F. A., and White, H. E., Fundamentals of Optics, 4th ed., McGraw-Hill, New York, 1976, p. 686. Freiser, M. J., A survey of magnetooptic effects, IEEE Trans. Magn., MAG-4, 152, 1968. Pershan, P. S., Magneto-optical effects, J. Appl. Phys., 38, 1482, 1967. Suits, J. Co, Faraday and Kerr effects in magnetic compounds, IEEE Trans. Magn., MAG-8, 95, 1972. Dillon, Jo E, Jr., Origin and uses of the Faraday rotation in magnetic crystals, J. Appl. Phys., 39, 922, 1968. Muller, R. H., Definitions and conventions in ellipsometry, Surf. Sci., 16, 14, 1969. Cho, K., Bush, S. P., Mazzoni, D. L., and Davis, C.C., Linear magnetic birefringence measurements of Faraday materials, Phys. Rev. B., 43, 965, 1991. Suits, Jo Co, Argyle, B. E., and Freiser, M. J., Magneto-optical properties of materials containing divalent eu­ ropium, J. Appl. Phys., 37, 1391, 1966. Tabor, W. J. and Chen, F. S., Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite, J. Appl. Phys., 40, 2760, 1969. Van der Ziel, J. P., Pershan, P. S., and Malmstrom, L. D., Optically-induced magnetization resulting from the inverse Faraday effect, Phys. Rev. Lett., 15, 190, 1965. Pershan, P. S., Van der Ziel, J. P., and Malmstrom, L. D., Theoretical discussion of the inverse Faraday ef­ fect, Raman scattering, and related phenomena, Phys. Rev., 143, 574, 1966. Genkin, G. M., and Tokman, I. D., Inverse Faraday effect in ferromagnetic semiconductors, Sov. Phys. Solid State, 25, 155, 1983. Tucciarone, A., Photoinduced phenomena in garnets, In Physics of Magnetic Garnets, A. Paoletti, Ed., NorthHolland, New York, 1978, p. 320. Nagaev., E. L., Photoinduced magnetism and conduction electrons in magnetic semiconductors, Phys. Stat. Sol. B, 145,11,1988.

Section 9: Magnetooptic Materials

397

15. Schiitz, W.,HandbuchderExperimentalphysikAkademische Verlagsgesellschaft, Vol. 16: Magnetooptik, Leipzig, 1936. 16. See for example: Sommerfeld, A., Lectures on Theoretical Physics, Vol. IV: Optics, Academic Press, 1964. 17. Becquerel, H., The Faraday and Zeeman effects, Comptes Rendu, 125, 679, 1897. 18. Cole, H., Magneto-optic effects in glass, part 1, J. Soc. Glass Tech., 34, 220, 1950. 19. Faraday effect in optical glass — the wavelength dependence of the Verdet constant, Tech. Information No. 17, Schott Glaswerke, Postfach 2480, D-6500 Mainz, Germany. 20. Weber, M. J., Faraday rotator materials for laser systems, Proc. Soc. Photo Opt. Instrum. Eng., 681, 75, 1986. 21. Weber, M. J., Faraday Rotator Materials, Lawrence Livermore Laboratory Report M-103, 1982. 22. Darwin, C. G., and Watson, W. BL, The constants of the magnetic dispersion of light, Proc. Royal Soc., 114A, 474, 1927. 23. Baer, W. S., Intraband Faraday rotation in some perovskite oxides, J. Phys. Chem. Solids, 28, 677, 1977. 24. Williams, P. A., Rose, A. BL, Day, G. W., Milner, T. E., and Deeter, M. N., Temperature dependence of the Verdet constant in several diamagnetic glasses, Appl. Opt., 30, 1176, 1991. 25. Khalilov, V. Kh., Malyshkin, S. F., Amosov, A. V., Kondratev, Yu. N., and Grigoreva, L. Z., Faraday effect in crystalline and vitreous Si02, Opt. Spectrosc., 38, 665, 1975. 26. Ramaseshan, S., Determination of the magneto-optic anomaly of some glasses, Proc. Ind. Acad. Sci. A, 24,426, 1946. 27. Herlack, F., Knoepfel, BL, Luppi, R., and Van Montfoort, J. E., Proceedings of the Conference on Megagaus Magnetic Field Generation by Explosives and Related Experiments, 1965. 28. Garn, W. B., Caird, R. S., Fowler, C. M., and Thomson, D. B., Measurement of Faraday rotation in mega­ gauss fields over the continuous visible spectrum, Rev. Sci. Instrum., 39, 1313, 1968. 29. George, N., Waniek, R. W., and Lee, S. W., Faraday effect at optical frequencies in strong magnetic fields, Appl. Opt., 4, 253, 1965. 30. Pye, L. D., Cherukuri, S. C., Mansfield, J., and Loretz, T., The Faraday rotation in some non-crystalline flu­ orides, J. Non-Cryst. Solids, 56, 99, 1983. 31. Borelli, N. F., Faraday rotation in glasses, J. Chem. Phys., 41, 3289, 1964. 32. Haussiihl, S., and Effgen, W., Faraday effect in cubic crystals, Ze. Kristallog., 183, 153, 1988. 33. Ramaseshan, S., Faraday effect and birefringence, II-Corundum, Proc. Ind. Acad. Sci. A, 34, 97, 1951. 34. Ramaseshan, S., The Faraday effect in diamond, Proc. Ind. Acad. Sci. A, 24, 104, 1946. 35. Chauvin, J. Physique, 9, 5, 1890. 36. Munin, E., and Villaverde, A. B., Magneto-optical rotatory dispersion of some non-linear crystals, J. Phys. Condens. Matter, 3, 5099, 1991. 37. Gassmann, G., Negative Faraday effect independent of temperature, Ann. Phys. (Leipzig), 35, 638, 1939. 38. Villaverde, A.B., and Donnati, D. A., GaSe Faraday rotation near the absorption edge, J. Chem Phys., 72,5341, 1980. 39. Ramaseshan, S., The Faraday effect and magneto-optic anomaly of some cubic crystals, Proc. Ind. Acad. Sci. A, 28, 360, 1948. 40. Wunderlich, J. A., and Deshazer, L. G., Visible optical isolator using ZnSe, Appl. Opt., 16, 1584, 1977. 41. Villaverde, A. B., and Donnati, D. A., Verdet constant of liquids; measurements with a pulsed magnetic field, J. Chem. Phys., 71, 4021, 1979. 42. Collocott, S. J., and Taylor, K. N. R., Magneto-optical properties of erbium-doped soda glass, J. Phys. C: Solid State Phys., 11,2885, 1978. 43. Van Vleck, J. H., and Hebb, M. BL, On the paramagnetic rotation of tysonite, Phys. Rev., 46, 17, 1934. 44. Van Vleck, J. BL, The Theory of Electric and Magnetic Susceptibilities, Oxford University Press, New York, 1932. 45. Rubenstein, C. B., Berger, S. B., Van Uitert, L. G., and Bonner, W. A., Faraday rotation of rare-earth (III) bo­ rate glasses, J. Appl. Phys., 35, 2338, 1964. 46. Berger, S. B., and Rubenstein, C. B., A comparison of the optical rotation and magnetic susceptibility of cerous phosphate glass, J. Appl. Phys., 35, 1798, 1964. 47. Berger, S. B., Rubenstein, C. B., Kurkjian, C. R., and Treptow, A. W., Faraday rotation of rare-earth (III) phosphate glasses, Phys. Rev., 133, A723, 1964. 48. Davis, J. A., and Bunch, R. M., Temperature dependence of the Faraday rotation of Hoya FR-5 glass, Appl. Opt., 23,633, 1984.

398

CRC Handbook of Laser Science and Technology

49. Kohli, J. T., and Shelby, J. E., Magneto-optical properties of rare earth aluminosilicate glasses, Phys. Chem. Glasses, 32, 109, 1991. 50. Kohli, Jo T., and Shelby, J. E., Magnetic and magneto-optical properties of high-rare earth glasses, In Ceramics Transactions, Vol. 28: Solid State Optical Materials, A. J. Bruce and B. V. Hiremath, Eds., American Ceramics Society, Cincinnati, 1992. 51. Shafer, M. W., and Suits, J., Preparation and Faraday rotation of divalent europium glasses, J. Am. Ceram. Soc., 49,261,1966. 52. Robinson, C. C«, and Graf, R. E., Faraday rotation in praseodymium, terbium, and dysprosium alumina sili­ cate glasses, Appl. Opt., 3, 1190, 1964. 53. Rubenstein, C. B., Van Uitert, L. G., and Grodkiewicz, W. H., Magneto-optic properties of rare earth (III) aluminum garnets, J. Appl. Phys., 35, 3069, 1964. 54. See, for example, Semiconductors and Semimetals, R. K. Willardson and A. C. Beer, Eds., Vol. 25: Diluted Magnetic Semiconductors, J. K. Furdyna and J. Kossut, vol. Eds., Academic Press, 1988; Nikitin, P. I., and Savchuk, A. I., The Faraday effect in semimagnetic semiconductors, Sov. Phys. Usp., 33, 974, 1990. 55. Furdyna, J. K., Diluted magnetic semiconductors: An interface of semiconductor physics and magnetism, J. Appl. Phys., 53, 7637, 1982. 56. Vatamanyuk, P. P., Savitskii, A. V., Savchuk, A. I., and Ul’yanitskii, K. S., Faraday effect in semimagnetic semiconductor Cd, JM nle: anomalies of the spectral, magnetic-field, and temperature dependence, Sov. Phys. JETP, 67, 2084, 1988. 57. Lullendorff, N., and Hok, B., Temperature independent Faraday rotation near the band gap in Cd,_^MnxTe, Appl. Phys. Lett., 46, 1016, 1985. 58. Kahn, F. J., Pershan, P. S., and Remeika, J. R, Ultraviolet magneto-optical properties of single-crystal orthoferrites, garnets, and other ferric oxide compounds, Phys. Rev., 186, 891, 1969. 59. Feil, H., and Haas, C., Magneto-optical Kerr effect, enhanced by the plasma resonance of charge carriers, Phys. Rev. Lett., 58, 65, 1986. 60. Schoenes, J., and Reim, W., Comment on ‘magneto-optical kerr effect, enhanced by the plasma resonance of charge carriers’, Phys. Rev. Lett., 60, 1988, 1989. 61. Dillon, J. E, Jr., Magneto-optical properties of magnetic garnets, In Physics of Magnetic Garnets, A. Paoletti, Ed., North-Holland, New York, 1978. 62. Chen, D.-X., Brug, J. A., and Goldfarb, R. B., Demagnetizing factors for cylinders, IEEE Trans. Magn. 27, 3601, 1991. 63. Robinson, C. C., Longitudinal Kerr magneto-optic effect in thin films of iron, nickel, and permalloy, J. Opt. Soc. Am., 53,681, 1963. 64. Martin, D. H., Doniach, S., and Neal, K. J., Magneto-optical behaviour of ferromagnetic metals, Phys. Lett., 9, 224, 1964. 65. Krinchik, G. S., and Artem’ev, V. A., Magneto-optical properties of Ni, Co, and Fe in the ultraviolet, visible, and infrared parts of the spectrum, Sov. Phys. JETP, 26, 1080, 1968. 66. Buschow, K. H. J., Van Engen, P. G., and Jongebreur, R., Magneto-optical properties of metallic ferromag­ netic materials, J. Magn. Magn. Mater., 38, 1, 1983. 67. Clemens, K. H., and Jaumann, J., Magnetooptische und optische eigenschaften von ferromagnetischen schichten im ultraroten, Z. Phys., 173, 135, 1963. 68. Tanaka, S., Longitudinal Kerr magneto-optic effect in permalloy film, Jpn. J. Appl. Phys., 2, 548, 1963. 69. Egashira, K., and Yamada, T., Kerr-effect enhancement and improvement of readout characteristics in MnBi film memory, J. Appl. Phys., 45, 3643, 1974. 70. Dekker, P., Manganese bismuth and other magnetic materials for beam addressable memories, IEEE Trans. Magn., MAG-12,311,1976. 71. Van Engen, P. G., Buschow, K. H. J., and Jongebreur, R., PtMnSb, a materialwithvery high magneto-opti­ cal Kerr effect, Appl. Phys. Lett., 42, 202, 1983. 72. Reim, W., Schoenes, J., Hulliger, E, and Vogt, O., Giant Kerr rotation and electronic structure of CeSbxTe,_A ., J. Magn. Magn. Mater., 54-57, 1401, 1986. 73. Bell, A. E., Materials for high-density optical data storage, In CRC Handbook on Laser Science and Technology, Vol. V, M. J. Weber, Ed., CRC Press, Boca Raton, 1986. 74. Dimmock, J. O., Optical properties of the europium chalcogenides, IBM J. Res. Dev., 14, 301,1970, and refer­ ences therein. 75. Guntherodt, G., Schoenes, J., and Wachter, P., Optical constants of the Eu chalcogenides above andbelow the magnetic ordering temperatures, J. Appl. Phys., 41,1083, 1970.

Section 9: Magnetooptic Materials

399

76. Reim, W., Hisser, O. E., Schoenes, J., Kaldis, E., Wachter, R, and Seiler, K., W. Reim,, First magneto-op­ tical observation of an exchange-induced plasma edge splitting, J. Appl Phys., 55, 2155, 1984. 77. Reim, W., and Schoenes, J., Magneto-optical study of the 5f2 —>5f' 6d 1 transi tion in U02, Solid State Commun., 39,1101,1981. 78. Reim, W., Schoenes, J., and Vogt, O., Magneto-optics and electronic structure of uranium monochalcogenides, J. A ppl Phys., 55, 1853, 1984. 79. Wittekoek, S., and Rinzema, G., The magneto-optic Kerr effect and Faraday rotation of CdCr2S4 for radiation between 0.1 and 4 eV, Phys. Status Solidi B, 44, 849, 1971. 80. Ahrenkiel, R. K., Moser, E, Carnall, E., Martin, T., Pearlman, D., Lyu, S. L., Coburn , T., and Lee, T. H., Hot-pressed CdCr2S4: an efficient magneto-optic material, Appl. Phys. Lett., 18, 171, 1971. 81. Jacobs, S. D., Faraday rotation, optical isolation, and modulation at 10.6 mm using hot-pressed CdCr2S4 and CoCr2S4, J. Electron. Mater., 4, 223, 1975. 82. Ahrenkiel R. K., and Coburn, T. J., Hot-pressed CoCr2S4: a magneto-optical memory material, Appl. Phys. Lett., 22, 340, 1973. 83. Golik, L. L., Kun’kova, Z. E., Aminov, T. G., and Kalinnikov, V. T., Magnetooptic properties of CdCr2Se4 single crystals near the absorption edge, Sov. Phys. Solid State, 22, 512, 1980. 84. Brandle, BL, Schoenes, J., Wachter, P., Hulliger, E, and Reim, W., Large room-temperature magneto-optical Kerr effect in CuC^Se^Br^, x = 0 and 0.3, J. Magn. Magn. Mater., 93, 207, 1991. 85. Dillon, J. E, Jr., Kamimura, H., and Remeika, J, P., Magneto-optical studies of chromium tribromide, J. Appl. Phys., 34, 1240, 1963. 86. Dillon, J. E, Jr., and Olson, C. E., Magnetization, resonance, and optical properties of the ferromagnet Crl3, J. A ppl Phys., 36, 1259,1965. 87. Tabor, W. J., Anderson, A. W., and Van Uitert, L. G., Visible and infrared Faraday rotation and birefringence of single-crystal rare-earth orthoferrites, J. Appl. Phys., 41, 3018, 1970. 88. Kurtzig, A. J., Wolfe, R., LeCraw, R. C., and Nielsen, J. W., Magneto-optical properties of a green room-tem­ perature ferromagnet: FeB03, Appl Phys. Lett., 14, 350, 1969. 89. Scott, G. S., and Lacklison, D. E., Magnetooptic properties and applications of bismuth substituted iron gar­ nets, IEEE Trans. Magn., MAG-12, 292, 1976. 90. LeCraw, R. C., Wood, D. L., Dillon, J. E, Jr., and Remeika, J. P., The optical transparency of yttrium iron garnet in the near infrared, Appl. Phys. Lett., 7, 27, 1965. 91. Scott, G. B., Lacklison, D. E., Ralph, H. I., and Page, J. L., Magnetic circular dichroism and Faraday rotation spectra of Y3Fe5Ol2, Phys. Rev. B, 12, 2562, 1975. 92. Crossley, W. A., Cooper, R. W., Page, J. L., and Van Stapele, R. P., Faraday rotation in rare-earth iron gar­ nets, Phys. Rev., 181, 896, 1969. 93. Wemple, S. H., Dillon, J. E, Jr., Van Uitert, L. G., and Grodkiewicz, W. H., Iron garnet crystals for magneto­ optic light modulators at 1.064 mm, Appl. Phys. Lett, 22, 331, 1973. 94. Booth, R. C., and White, E. A. D., Magneto-optic properties of rare earth iron garnet crystals in the wavelength range 1.1-1.7 pm and their use in device fabrication, J. Phys. D., 17, 579, 1984. 95. Gomi, M., Satoh, K., Furuyama, BL, and Abe, M., Sputter deposition of Ce-substituted iron garnet films with giant magneto-optical effect, IEEE Transl. J. Magn. Jpn., 5, 294, 1990. 96. Dillon, J. E, Jr., Albiston, S. D., and Fratello, V. J., Magnetooptical rotation of PrIG and NdIG, in Advances in Magneto-Optics, The Magnetics Society of Japan, Tokyo, 1987, p. 241. 97. Takeuchi, H., Ito, S., Mikami, I., and Taniguchi, S., Faraday rotation and optical absorption of a single crys­ tal of bismuth-substituted gadolinium iron garnet, J. Appl. Phys., 44, 4789, 1973. 98. Okada, M., Katayama, S., and Tominaga, K., Preparation and magneto-optic properties of Bi-substituted yttrium iron garnet thin films by metalorganic chemical vapor deposition, J. Appl. Phys., 69, 3566, 1991. 99. Okuda, T., Katayama, T., Satoh, K., and Yamamoto, H., Preparation of polycrystalline Bi3Fe5Ol2 garnet films, J. Appl. Phys., 69, 4580, 1991. 100. Tamaki, T., Tsushima, K., and Kaneda, H., Magneto-optical properties of (GdBi)3(FeAl)5Ol2 single crystals and their application to a 1.3 pm optical isolator, IEEE Transl. J. Magn. Jpn., TJMJ-2, 632, 1987. 101. Hansen, P., Enke, K., and Winkler, G., Iron garnets, In Landolt-Bomstein, New Series, Vol. 12a, K.-H. Hellwege, Ed., Springer, Berlin, 1977. 102. Hansen, P., and Witter, K., Magneto-optical properties of gallium-substituted yttrium iron garnets, Phys. Rev. B, 27, 1498, 1983. 103. Hansen, P., Witter, K., and Tolksdorf, W., Magnetic and magneto-optical properties of bismuth-substituted gadolinium iron garnet films, Phys. Rev. B, 27, 4375, 1983.

400

CRC Handbook of Laser Science and Technology

104. Hansen, P., Witter, K., and Tolksdorf, W., Magnetic and magneto-optic properties of bismuth- and aluminumsubstituted iron garnet films, J. Appl Phys., 55, 1052, 1984. 105. Krumme, J.-P., Doormann, V., and Klages, C.-P., Measurement of the magnetooptic propertiesof bismuthsubstituted iron garnet films using piezobirefringent modulation, Appl. Opt., 23, 1184, 1984. 106. Gualtieri, D. M., and Tbmelty, P. F., Magneto-optical garnet films with high Faraday rotationand controlled coercivity, J. Appl. Phys., 57, 3879, 1985. 107. Honda, Y., Hibiya, T., and Shiroki, K., DyBi garnet films with improved temperature dependence of Faraday rotation, IEEE Transl. J. Magn. Jpn., TJMJ-2, 680, 1987. 108. Kamada, O., Minemoto, H., and Ishizuka, S., Application of bismuth-substituted iron garnet films to magnetic field sensors, In Advances in Magneto-Optics, The Magnetics Society of Japan, Tokyo, 1987, p. 401. 109. Watanabe, T., Aono, T., Tamaki, T., and Tsushima, K., Magneto-optical properties of (RBi)3Fe50 12at 0.8 pm wavelength band, IEEE Transl. J. Magn. Jpn., 4, 221, 1989. 110. Doormann, V., Krumme, J.-P., and Lenz, H., Optical and magneto-optical tensor spectra of bismuth-substi­ tuted Yttrium-iron-gamet films, J. Appl. Phys., 68, 3544, 1990. 111. Guillot, M., LeGall, H., and Artinian, M., Magnetic and magneto-optical properties of bismuth substituted gadolinium iron garnets, Proc. Soc. Photo Opt. Instrum. Eng., 1266, 64, 1990. 112. Hansen, P., and Tolksdorf, W., Magnetic and magneto-optic properties of bismuth-substituted thulium irongarnet films, J. Appl. Phys., 69, 4577, 1991. 113. Martens, J. W. D., Magneto-optical properties of substituted cobalt ferrites: CoFe2__(Mejc0 4, Me = Rh3+, Mn3+, Ti4+, + Co2+, J. Appl. Phys., 59, 3820, 1986. 114. Ostorero, J., Guillot, M., and Artinian, M., Faraday rotation of a cadmium doped spinel ferrite single crystal, IEEE Trans. Magn., 24, 2560, 1988. 115. Simsa, Z., Gornert, P., Pointon, A. J., and Gerber, R., Polar Kerr rotation in Co-doped hexagonal ferrites, IEEE Trans. Magn., 26, 2789, 1990. 116. Pincus, P., Magnetic properties of liquid crystals, J. Appl. Phys., 41, 974, 1970. 117. Chen, S.-H., and Amer, N. M., Observation of macroscopic collective behavior and new texture in magneti­ cally doped liquid crystals, Phys. Rev. Lett., 51, 2298, 1983. 118. Chen, S.-H., and Liang, B. J., Electro-optical effect of a magnetically biased ferronematic liquid crystal, Opt. Lett, 13,716, 1988. 119. Schenz, A. F., Neff, V. D., and Schenz, T. W., Faraday rotation in nematic liquids, Mol. Cryst. Liq. Cryst., 23, 59, 1973. 120. Rousan, A. A., EI-Ghanem, H. M., and Yusuf, N. A., Faraday rotation and chain formation in magnetic fluids, IEEE Trans. Magn., 25,3121, 1989. 121. Davies, H. W., and Llewellyn, J. P., Magneto-optic effects in ferrofluids, J. Phys. D: Appl. Phys., 13, 2327, 1980. 122. Taketomi, S., Magnetic fluid’s anomalous pseudo-Cotton Mouton effects about 107 times larger than that of ni­ trobenzene, Jpn. J. Appl. Phys., 22,1137, 1983. 123. Yusuf, N. A., Rousan, A. A., and El-Ghanem, H. M., The wavelength dependence of Faraday rotation in mag­ netic fluids, J. Appl. Phys., 64, 2781, 1988. 124. Taketomi, S., Ogawa, S., Miyajima, H., Chikazumi, S., Nakao, K., Sakakibara, T., Goto, T., and Miura, N., Dynamical properties of magneto-optical effect in magnetic fluid thin films, J. Appl. Phys., 64, 5846, 1988. 125. Ando, K., Okoshi, T., and Koshizuka, N., Waveguide magneto-optic isolator fabricated by laser annealing, Appl. Phys. Lett., 53, 4, 1988. 126. Lord Rayleigh, On the rotation of magnetic rotation of light in bisulphide of carbon, Phil. Trans. R. Soc. London, 176,343, 1885. 127. Geusic, J. E., and Scovil, H. E. D., A unidirectional traveling-wave optical maser, Bell Sys. Tech. J., 41, 1371, 1962. 128. Wolfe, R., Lieberman, R. A., Fratello, V. J., Scotti, R. E., and Kopylov, N., Etch-tuned ridged waveguide magneto-optic isolator, Appl. Phys. Lett., 56,426, 1990. 129. Wolfe, R., Dillon, J. E, Jr., Lieberman, R. A., and Fratello, V. J., Broadband magneto-optic waveguide iso­ lator, Appl. Phys. Lett., 57, 960, 1990. 130. Wilson, D. K., Optical isolators cut feedback in visible and near-IR lasers, Laser Focus, 24, 103, 1988. 131. Klein, C. A., and Dorschner, T. A., Power handling capability of Faraday rotation isolators for C0 2 laser radars, Appl. O pt, 28, 904, 1989.

Section 9: Magnetooptic Materials

401

132. Milani, E., Intrinsic limit of magnetooptical isolators because of magnetic circular dichroism, Appl. Opt., 32, 5217, 1993. 133. Chang, K. W., and Sorin, W. V., High-performance single-mode fiber polarization-independent isolators, Opt. Lett., 15, 449, 1990. 134. Shirasaki, M., and Asama, K., Compact optical isolator for fibers using birefringent wedges, Appl. Opt., 21, 4296, 1982. 135. Neite, B. and Dotsch, H., Optical mode conversion in magnetic garnet films, Proc. Soc. Photo Opt. Instrum. Eng., 1018, 115, 1988. 136. Tien, P. K., Martin, R. J., Wolfe, R., Le Craw, R. C., and Blank, S. L., Switching and modulation of light in magneto-optic waveguides of garnet films, Appl. Phys. Lett., 21, 394, 1972. 137. Pearson, R. E, Application of magneto-optic effects in magnetic materials, Contemp. Phys., 14, 201, 1973. 138. Young, D., and Tsai, C. S., X-band magneto-optic Bragg cells using bismuth-doped yttrium iron garnet wave­ guides, Appl. Phys. Lett., 55, 2242, 1989. 139. Fisher, A. D., Lee, J. N., Gaynor, E. S., and Tveten, A. B., Optical guided-wave interactions with magnetostatic waves at microwave frequencies, Appl. Phys. Lett., 41, 779, 1982. 140. Ishak, W. S., Magnetostatic wave technology: a review, Proc. IEEE, 76, 171, 1988. 141. Davis, J. A., and Waas, J. M., Current status of the magneto-optic spatial light modulator, Proc. Soc. Photo Opt. Instrum. Eng. 1150, 27, 1989. 142. Kirsch, J. C., and Gregory, D. A., Video rate optical correlation using a magneto-optic spatial light modulator, Opt. Eng., 29, 1122, 1990. 143. Hartman N. E, and Gaylord, T. K., Coherent optical characterization of magnetooptical spatial light modula­ tors, Appl. Opt., 29, 4372, 1990. 144. Verdet, M., Recherches sur les proprietes optiques developpees dans les corps transparents par faction du magnetisme, Ann. Chim., 41, 370, 1854; ibid., 43, 37, 1855; ibid., 52, 129, 1858; ibid., 69, 415, 1863. 145. Massey, G. A., Erickson, D. C., and Kadlec, R. A., Electromagnetic field components: their measurement using linear electrooptic and magnetooptic effects, Appl. Opt., 14, 2712, 1975. 146. Day, G. W., and Rose, A. H., Faraday effect sensors: the state of the art, Proc. Soc. Photo Opt. Instrum. Eng., 985, 138, 1988. 147. Rogers, A. J., Optical-fibre current measurement, Int. J. Optoelec., 3, 391, 1988. 148. Tang, D., Rose, A. H., Day, G. W., and Etzel, S. M. Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors, J. Lightwave Tech., 9, 1031, 1991. 149. Williams, P. A., Day, G. W., and Rose, A. H., Compensation for the temperature dependence of Faraday effect in diamagnetic materials: application to optical fibre sensors, Electron. Lett., 27, 1131, 1991. 150. Deeter, M. N., Rose, A. H., and Day, G. W., Faraday-effect magnetic field sensors based on substituted iron garnets, Proc. Soc. Photo Opt. Instrum. Eng., 1367, 243, 1991. 151. Kamada, O., Minemoto, H., and Ishizuka, S., Mixed rare-earth iron garnet, TbYIG for magnetic field sensors, J. Appl. Phys., 61, 3268-3270, 1987. 152. Kullendorff, N., and Hok, B., Temperature independent Faraday rotation near the band gap in Cd,_JV!n,Te5 Appl. Phys. Lett., 46, 1016, 1985. 153. Smith, S. D., Magneto-optics, In Optical Properties of Solids, S. Nudelman and S. S. Mitra, Eds., Plenum Press, New York, 1969. 154. Yuan, Y., Theile, J., and Engemann, J., Measurement of the Meissner effect by a magneto-optic ac method using ferrimagnetic garnet films, J. Magn. Magn. Mater., 95, 58, 1991. 155. Raider, S. L, Gupta, A., Hussey, B. W., Oh, B., Batalla, E., Zwartz, E. G., and Wright, L. S., Magneto-op­ tical characterization ofYBa2Cu30 7 film uniformity, Appl. Phys. Lett., 58, 1676, 1991. 156. Henry, R. D., Bubble materials characterization using spatial filtering techniques, IEEE Trans. Magn., MAG13, 1527, 1977. 157. Argyle, B. E., Jantz, W., and Slonczewski, J. €., Wall oscillations of domain lattices in underdamped garnet films, J. Appl. Phys., 54, 3370, 1983. 158. Krasinski, J., Heller, D. E, and Band, Y. B., Multipass amplifiers using optical circulators, IEEE J. Quantum Electron., 26, 950, 1990. 159. Koga, M., and Matsumoto, T., Polarization-insensitive high-isolation nonreciprocal device for optical circula­ tor application, Electron. Lett., 27, 903, 1991. 160. Chow, W. W., Gea-Banacloche, J., Pedrotti, L. M., Sanders, V. E., Schleich, W., and Scully, M. O., The ring laser gyro, Rev. Mod. Phys., 57, 61, 1985.

402

CRC Handbook of Laser Science and Technology

161. Enokihara, A., Izutsu, M., and Sueta, T., Optical fiber sensors using the method of polarization-rotated re­ flection, J. Lightwave Tech., LT-5, 1584, 1987. 162. Kersey, A. D., Marrone, M. J., and Davis, M. A., Polarization-insensitive fiber optic Michelson interferome­ ter, Electron. Lett., 26, 518, 1991. 163. Johansen, T. R., Norman, D. I., and Torok, E. J., Variation of stripe-domain spacing in a Faraday effect light deflector, J. Appl. Phys., 42, 1715, 1971. 164. Haskal, H. M., Polarization and efficiency in magnetic holography, IEEE Trans. Magn., MAG-6, 542, 1970.

9.2. Organic and Inorganic Liquids Egbert© Mimin

Since the discovery of the Faraday effect, the phenomenon has been studied extensively in a large number of liquids of different types. This includes the works of Perkin,1"3 Broersma et al.,4 Lowry,5 and Foehr and Fenske,6 this last reporting extensive measurements of the Faraday effect in a wide variety of hydrocarbons. These authors have inves­ tigated the dependence of the magnetooptic rotatory power on structure and chemical composition of organic compounds. Broersma and his collaborators4 concluded that for pure substances, a magnetooptic rotation constant defined as

(1)

could be built up additively from the contribution of atomic groups and other characteris­ tics of the molecule. In the above relation, n is the refractive index, M is the molecular weight, d is the density, and V is the Verdet constant. When comparing different liquids, most investigators find it more convenient to use water as a basis of comparison, instead of using the absolute magnitude of the effect rep­ resented by the Verdet constant. A quantity known as specific magnetooptic rotation is then defined as the ratio co/co^, where co and &w are the rotation for the substance and for water, respectively, measured under the same conditions. The dependence of the specific magnetooptic rotation on the molecular weight for various types of hydrocarbons series is given in Figure 9.2.1. It illustrates the relationships between homologous series and the effect of increasing molecular weight by the addition of methylene groups. The magnetooptic rotation in liquids usually shows a positive sign, with the exceptions of a few titanium compounds listed in Table 9.2.1. The effect of temperature on rotation of diamagnetic molecules is small, and an increase in the temperature invariably causes a decrease in the magnetooptic rotation. Rodger and Watson7 have shown that for water be­ tween 4°C and 98°C v l = 290.9 (0.01311 - 4.00 x 10“7 T - 4.00 x 10“8 T2),

(2)

and for carbon disulfide between 0°G and its boiling point, v l = 290.9 (0.04347 - 7.37 x 10“5 t ),

(3)

where Vj is the Verdet constant in rad-T~!*m~!, at the Na D line (589.3 nm) and at the tem­ perature T in °C. Data on the wavelength dispersion of V in the ultraviolet and visible and in the infrared are given in Tables 9.2.2 and 9.2.3, respectively. Figure 9.2.2 shows a plot of V(X) for a few common liquids. Table 9.2.4 lists the Verdet constant of organic liquids at 589 or 578

nm.

0-8493-3507-8/95 /$ 0 .0 0 + $.50 © 1995 by C R C P ress, Inc.

403

CRC Handbook of Laser Science and Technology

SPECIFIC MAGNETO-OPTIC ROTATION (co/cow)

404

MOLECULAR WEIGHT FIGURE 9.2.1. Relationship between specific magnetooptic rotation and molecular weight for various types of hy­ drocarbon series (from Foehr and Fenske6).

Section 9: Magnetooptical Materials

t

— - f—

r

o Carbon d i s u lf i d e v T o lu e n e

30

o Carbon t e t r a c h l o r i d e 25

-

20

-

a

Water



M eth an ol

H

d S m a

15

o

Q

5

-

300

400

500

600

700

W a v e le n g th ( n m )

FIGURE 9.2.2.

Dispersion of the Verdet constant for some of the liquids listed in Table 9.2.2.

405

406

CRC Handbook o f Laser Science and Technology

Table 9.2.1 Verdet constant of inorganic liquids Liquid

X(mm)

AsC13 COCl2 d 2o

589 589 578 589 578 589 589 578 589 589 578 578 589 589 589 578 589 578 589 578 589 578 578 578

h 2o n2 nh3 o2 r

PBr3 PCL P4S Sa SO, SbCl5 S2C12 SiCl4 SnCl4 TiBr4 TiCl4

T(°C) 3 19.7 19.7 11.5 10 -195.5 -40 -182.5 33 20 26 16 114 -10 18 16 26 16 20 16 28 46 17

n

F(rad/Tm)

Ref.

1.60

12.4 3.93 3.819 3.656 3.971 3.811 1.21 5.47 2.27 38.7 17.6 8.78 32.0 23.5 5.23 21.7 20.5 12.6 12.2 5.93 5.50 13.0 -15.4 -4.80

1 1 1 1 1 1 2 3 2 1 1 1 2 1 2 1 2 1 2 4 2 1 5 6

1.35 2.07 1.70 1.511 1.93 1.39 1.587 1.66 1.416 1.516 1.612

“Fused.

Table 9.2.2 Dispersion of the Verdet constant through the visible and near UV region Formula

F (\)

Name 347.1

ch 3no 2

CH3OH ch 3co 2h c 2h 5oh ch 3coch 3 h 2o CC14 c 6h 5no 2 c 6h 5ch 3 c 6h 6 CS2

Nitromethane Methanol Acetic acid Ethanol Acetone Water Carbon tetrachloride Nitrobenzene Toluene Benzene Carbon disulfide

8.46 9.75 10.5 10.5 12.4 15.4 31.4

457 .9

488.0

4.07 4.68 5.29 5.61 5.64 6.78 8.03 10.7 14.3 16.0 22.2

3.58 4.16 4.65 4.95 4.95 5.85 7.04 9.60 12.2 13.6 19.2

Liquids are listed in increasing order of the Verdet constant.7

(rad/T*m), \(nm) 514.5 580.0 032.8 3.26 3.69 4.13 4.45 4.45 5.24 6.31 8.41 10.7 12.1 16.8

2.60 3.00 3.29 3.49 3.46 4.10 4.95 6.66 8.09 9.13 12.9

2.15 2.40 2.71 2.90 2.84 3.35 4.04 5.41 6.60 7.39 10.4

6943 1.67 1.88 2.09 2.30 2.79 2.66 3.23 4.33 5.24 5.93 8.26

Section 9: Magnetooptical Materials

407

Table 9.23 Dispersion of the Verdet constant in the near infrared2 V(X} Name

Formula h 2o

SnCL4 TiCl4 CC14 CS2 CHC1, CH,I ch 2i2 ch 4o c 2h 5i c 2h 6o c 3h 6o c 4h 10o c 4h I0o C6H6 C6H5N02 c 7h 8 C7H16 QH10 C10H7Br

Water Tin tetrachloride Titanium tetrachloride Carbon tetrachloride Carbon disulfide Chloroform Methyl iodide Methylene iodide Methyl alcohol Ethyl iodide Ethyl alcohol Acetone Ethyl ether w-Butyl alcohol Benzene Nitrobenzene Toluene w-Heptane Xilene a-Bromonaphthalene

0.6

0,8

3.67 11.9 -3.81 4.68 11.5 4.51 9.25 13.8 2.71 8.12 3.23 3.00 2.97 3.49 8.17 6.08 7.50 3.46 6.75 13.4

2.04 6.31 -1.45 2.59 6.23 2.50 5.18 7.80 1.48 4.39 1.75 1.77 1.69 1.95 4.45 3.32 3.99 1.92 3.72 7.13

(rad/T-m), 1.0 1.28 3.93 -0.756 1.66 3.93 1.63 3.26 4.92 0.931 2.82 1.11 1.16 1.05 1.25 2.76 2.12 2.53 1.25 2.33 4.42

\(pm) 1.5

2.0

(0.844 at 1.25pm) 1.75 0.902 -0.291 -0.145 0.727 0.378 1.69 0.902 0.698 0.378 1.40 0.785 2.12 1.16 0.553 0.378 0.698 1.19 0.553 0.291 0.495 0.262 0.465 0.233 0.524 0.407 1.13 0.640 0.902 0.524 1.02 0.582 0.524 0.262 1.02 0.553 1.83 1.02

Temperature = 23°C.

Table 9.2.4 Verdet constant of organic liquids, in units of rad-T ^m '‘(from Ref. 8) Formula CC14 CHC13 CHBr3 ch 2o 2 ch 2ci2 CH2Br2 ch 2i2 ch 3ci CH3Br CH3I ch 4o ch 3o 2n C2H3Br c 2h 4o c 2h 4o c 2h 4o 2 c 2h 4o 2 c2h 4ci2 c 2h 4ci2 C2H4Br2 C2H5C1 C2H5Br C2H5I c 2h 6o c2h 6o 2 c 2h 6s

Name Tetrachloromethane Trichloromethane Tribromomethane Formic acid Dichloromethane Dibromomethane Diiodomethane Monochloromethane Monobromomethane Monoiodomethane Methyl alcohol Mononitromethane Vinylbromide Ethyleneoxide (1,2-epoxiethane) Acetaldehyde (ethanal) Acetic acid Methylformate 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dibromoethane Monochloroethane Monobromoethane Monoiodoethane Ethyl alcohol Glycol (1,2-ethanediol) Ethylmercaptan

X(nm)

J(°C)

V

589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 578

25.1 20.0 17.9 20.8 11.9 15.9 15.0 23 1.5 19.5 18.7 9.9 7.8 8.0 16.3 21.0 16.5 14.4 14.4 15.2 5.0 19.7 18.1 16.8 15.1 16.0

4.65 4.72 9.10 3.04 4.65 7.97 4.39 3.99 5.93 9.74 2.79 2.40 6.11 2.68 2.91 3.04 2.79 4.39 4.80 7.74 3.96 5.29 8.58 3.29 3.64 5.38

408

CRC Handbook of Laser Science and Technology Table 9.2.4—continued Verdet constant of organic liquids, in units of rad-T'1 m_1(from Ref. 8)

Formula

c2H2o2a 2 c 2h 3o 2q

ca

®“cl,

c2 "h 5o 2n c 3h 4o c 3h 4o 3 c 3h 6o c 3h 6o c 3h 6o c 3h 6o 2 c 3h 6o „

'

c 3h a c 3h 7ci c 3h 7ci

C3H7Br C3H7Br C3H7I CAI c 3h 8o c 3h 8o

C3H80 3 c 3h 9n c 3h 5o 9n 3 c 3h 7o 2n

CA CA c a

CA c4h 10 c 4h I0 c4h 4o c4h 4s CA ° 3 c4h 8o 2 c 4h 8o 2 c 4h 80 2 C4H10O c 4h 10o C4Hi0O C4HioO CA CA CA CA CA0 CA0 c 5h 10 c 5h 12 c 5h 12 c 5h 4o 2 CAN CAA c 5h ,a c 5h 14n 2 CA C6HI2

Name Dichloroacetic acid (dichloroethanoic acid) Chloroacetic acid (cloroethanoic acid) Chloralhydrate (2-2-2-trichloro-1,1-ethanediol) Mononitroethane Acrolein (propenal) Pyruvic acid (2-oxopropanoic acid) Allyl alcohol Propyl alcohol(1-propanol) Acetone (2-propanone) Propionic acid (propanoic acid) Formic acid ethyl ester (ethylmethanoate) Acetic acid methyl ester (methyl acetate) Propylchloride (1-chloropropane) Isopropylchloride (2-chloropropane) Propylbromide (1-bromopropane) Isopropylbromide (2-bromopropane) Propyliodide (1-iodopropane) Isopropyliodide (2-iodopropane) n-Propyl alcohol (1-propanol) Isopropyl alcohol (2-propanol) Glycerine (1,2,3,-propanetriol) n-Propylamine Nitroglycerine 1-Nitropropane 1,3-Butadiene (erythrene) 1-Butene (a-butylene) cw-2-Butene ((3-butylene) fra/25-2-Butene Butane Isobutane (2-methylpropane) Furan (furfuran) Thiophene (thiofuran) Acetic anhydride (ethanoic anhydride) w-Butyric acid (butanoic acid) Ethyl acetate (ethyl ethanoate) Propionic acid methyl ester (methylpropanoate) Ethyl ether (ethoxyethane) /2-Butyl alcohol (1-butanol) Isobutyl alcohol (2-methyl-1-propanol) sec-Butyl alcohol (methylethylcarbinol) Cyclopentadiene 1,3-Pentadiene Isoprene (2-methyl-1,3-butadiene) Cyclopentene 1-Pentene Isopentane (2-methyl-1-butane) Cyclopentane Pentane Isopentane (2-methylbutane) Furfural (2-furancarbonal) Pyridine Propionic acid ethyl ester Acetic acid propylester Cadaverine (1,5-pentanediamine) Benzene Cyclohexane

X(nm)

T(°C)

V

589 589 589 589 578 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 578 589 589 589 589 589 589

13.5 64.5 54.6 10.2 20.0 14.5 18.3 13.6 20 20.3 18.8 20.0 16.1 17.2 19.2 17.1 18.1 26.3 15.6 20.0 16.0 9.6 13.5 18.9 15.0 15.0 15.0 15.0 15.0 15.0 20.0 20.0 20.0 18.8 20.0 20.0 20.0 20.0 17.7 20.0 15.0 15.0 15.0 15.0 15.0 15.0 20.0 15.0 15.0 20.0 11.9 20.0 15.7 14.7 15.0 20.0

4.42 3.87 4.80 2.75 5.12 3.52 4.65 3.17 3.24 3.20 3.05 3.00 3.90 3.90 5.21 5.15 7.82 7.65 3.49 3.58 3.87 3.87 2.62 2.96 6.28 4.04 4.01 3.75 3.17 3.23 5.18 8.23 3.24 3.35 3.14 3.11 3.17 3.58 3.69 3.69 5.88 6.05 6.05 4.42 4.04 4.04 3.58 3.35 3.40 5.99 7.50 3.29 3.29 4.45 8.73 3.61

Section 9: Magnetooptical Materials

409

Table 9.2.4—continued Verdet constant of organic liquids, in units of rad T 1 m ^from Ref. 8) Formula c 6h ,4 c 6h 4ci 2 c , h 5f C6HsC1 QH,Br QH5I cao can

c 6h „ c i c 6h , a

c6Hl4o

c 6h ,4o c 6h ,4o c a o 4n 2 c a o 2n C7H8 C7H I4 C7H 16 c 7h 3n c 7h 7ci c 7h 7ci C7H7Br C7H7Br c 7h 8o c 7h 8o c 7h 8o c 7h ,n c 7h 9n c 7h ,n c 7h ,4o c 7h ,6o c 7h I6o c 7h ,6o c 7h 7o 2n c 7h 7o 2n C8Hio c 8h ,0 c 8h 10 c 8h i0 c 8h i6 C8H I6 C8H ,8 c 8h ,8o c 8h 18o c 8h ,8o C,H 12 c 9h ,2 c 9h ,2 c 9h ,2 C9H20 c 10h 8 ^-'10-^20 c 10h 22 CioH7C1 C10H7Br c I0h 8o

Name Hexane 1,4-DichIorobenzene (p-dichlorobenzene) Fluorobenzene (phenylfluoride) Chlorobenzene (phenylchloride) Bromobenzene (phenylbromide) Iodobenzene (phenyliodide) Phenol (hydroxibenzene) Aniline (aminobenzene) Chlorocyclohexane (cyclohexylchloride) Paraldehyde (paraacetaldehyde) 2-Hexanol (butylmethylcarbinol) 3-Hexanol (ethylpropylcarbinol) 2-Methyl-3-pentanol (ethylisopropylcarbinol) 1,3-Dinitrobenzene (m-dinitrobenzene) Nitrobenzene Toluene (methylbenzene) 1-Heptene (a-heptylene) Heptane Benzonitrile (benzenecarbonitrile) o-Chlorotoluene (2-chloro-1-methylbenzene) p-Chlorotoluene (4-chloro-1-methylbenzene) o-Bromotoluene (2-bromo-1-methylbenzene) p-Bromotoluene(4-bromo-1-methylbenzene) o-Cresol (o-methylphenol) m-Cresol (m-methylphenol) p-Cresol (p-methylphenol) o-Toluidine (o-methylaniline) m-Toluidine (m-methylaniline) p-Toluidine (p-methylaniline) Enanthaldehyde (heptanal) 1-Heptanol (n-heptylalcohol) 2-Heptanol (amylmethylcarbinol) 3-Heptanol (butylethylcarbinol) o-Nitrotoluene p-Nitrotoluene Ethylbenzene (phenylethane) o-Xilene (1,2-dimethylbenzene) m-Xilene (1,3-dimethylbenzene) p-Xilene (1,4-dimethylbenzene) 1 -Octene (a-octylene) 2-Octene ((3-octylene) Octane 1 -Octanol (n-octyl alcohol) 2-Octanol (methylhexylcarbinol) 3-Octanol (ethylamylcarbinol) o-Ethyltoluene (l-ethyl-2-ethylbenzene) m-Ethyltoluene (1-ethyl-3-ethylbenzene) p-Ethylbenzene (1-ethyl-4-ethylbenzene) Mesitylene (1-3-5-trimethylbenzene) Nonane Naphthalene 1-Decene («-decylene) Decane 1-Chloronaphthalene (ot-chloronaphthalene) 1-Bromonaphthalene (a-bromonaphthalene) p-Naphthol (2-hydroxinaphthalene)

X(nm)

T(°C)

589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 589 578 578 578

15.0 64.5 19.0 15.0 15.0 15.0 39.0 15.0 13.0 17.3 20.0 20.0 20.0 17.1 15.0 15.0 18.0 15.0 15.7 15.4 15.2 16.7 39.0 16.0 17.9 17.0 17.3 15.0 50.0 16.2 12.6 20.0 20.0 18.0 54.3 15.0 15.0 15.0 15.0 15.0 15.0 15.0 20.0 20.0 20.0 15.0 15.0 15.0 15.0 15.0 89.5 21.0 15.0 18.0 20.0 136

V 3.49 7.82 7.30 8.49 9.48 11.8 9.34 12.2 4.25 3.46 3.81 3.78 3.84 6.31 6.31 7.88 4.16 3.58 7.97 8.58 7.71 8.96 8.38 8.93 8.41 8.46 11.0

10.4 9.80 3.67 3.87 3.84 3.99 6.28 5.73 8.14 7.62 7.18 7.16 4.19 4.16 3.67 3.87 3.90 3.87 6.75 8.46 6.89 6.63 3.72 13.0 4.22 3.78 14.3 15.1 14.0

410

CRC Handbook of Laser Science and Technology Table 9.2.4—continued Verdet constant of organic liquids, in units of rad-T^m'^from Ref. 8)

Formula CioH9N C.oH.A C.oH.A C.oH.A C.oH.A c I0h 12o 2 ^10^12^2

C.oH.A c ioh 15n c 10h 18o

C|0Hl8O c I0h I8o 4 C10HI0O6 C I0H 2 0 °

c „h 24 c I2h 26 CI4H10 C 16H34 c 18h 14 C|8^22

Name 1-Naphthylamine (a-naphthylamine) Isoeugenol (4-propenylguaiacol) Eugenol (4-allylguaiacol) Benzoic acid propylester (w-propylbenzoate)