Westermann Tables For The Metal Trade 9788122417302, 8122417302

Materials Numerical Quantities-Forms Tables Compiled For The Metal Trade Are Dedicated To Vocational Schools As Well As

6,078 587 25MB

English Pages 160 [156] Year 2006

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

Westermann Tables For The Metal Trade
 9788122417302, 8122417302

Table of contents :
front.pdf
w2 1.pdf
w2 2.pdf
w2 3.pdf
w2 4.pdf
w2 5.pdf
w2 6.pdf
w2 7.pdf
Binder1.pdf
w3 1.pdf
w3 2.pdf
w3 3.pdf
w3 4.pdf
w3 5.pdf
w3 6.pdf
w3 7.pdf
w3 8.pdf
w3 9.pdf
w3 10.pdf
w3 11.pdf
w3 12.pdf
13.pdf
w3 14.pdf
w3 15.pdf
w3 16.pdf
17.pdf
Binder2.pdf
w4 1.pdf
w4 2.pdf
w4 3.pdf
w4 4.pdf
w4 5.pdf
w4 6.pdf
w4 7.pdf
w4 8.pdf
w4 9.pdf
w4 10.pdf
w4 11.pdf
w4-(12).pdf
w4 13.pdf
w4 14.pdf
w4 15.pdf
w4 16.pdf
w4 17.pdf
w4 18.pdf
w4 19.pdf
w4 20.pdf
Binder3.pdf
w5 1.pdf
w5 2.pdf
w5 3.pdf
w5 4.pdf
w5 5.pdf
w5 6.pdf
w5 7.pdf
w5 8.pdf
w5 9.pdf
w5 10.pdf
w5 11.pdf
w5 12.pdf
w5 13.pdf
w5 14.pdf
w5 15.pdf
w5 16.pdf
w5 17.pdf
w5 18.pdf
w5 19.pdf
w5 20.pdf
w5 21.pdf
22.pdf
w5 23.pdf
24.pdf
w5 25.pdf
26.pdf
w5 27.pdf
28.pdf
w5 29.pdf
w5 30.pdf
w5 31.pdf
w5 32.pdf
w5 33.pdf
w5 34.pdf
w5 35.pdf
w5 36.pdf
w5 37.pdf
Binder4.pdf
w6 1.pdf
w6 2.pdf
3.pdf
w6 4.pdf
5.pdf
w6 6.pdf
w6 7.pdf
w6 8.pdf
w6 9.pdf
w6 10.pdf
w6 11.pdf
w6 12.pdf
w6 13.pdf
w6 14.pdf
w6 15.pdf
w6 16.pdf
w6 17.pdf
w6 18.pdf
w6 19.pdf
w6 20.pdf
w6 21.pdf
w6 22.pdf
w7.pdf
w8.pdf
back.pdf

Citation preview

.'""

WESTERMANN

TABLES Forthe MetalTrade Materials· NumericalOuantities· Forms

REVISEDTO INDIAN STANDARDS

REVISEDSECONDEDITION

Edited by Hermann Jiitz and Eduard scharkus

PUBLISHING

FOR ONE

WORLD

NEW AGE INTERNATIONAL (P).LIMITED, PUBLISHERS . (formerlY Wiley Eastern

Limited)

New Delhi. Bangalore . Chennai . Cochin . Guwahati . Hyderabad Jalandhar . Kolkata . Lucknow . Mumbai . Ranchi Visit us at www.newagepublishers.com

.yright~ 2006, 1966, New Age International (P) Ltd., Publishers lished by New Age International (P) Ltd., Publishers t English Edition : 1966 'ised Second Edition : 2006 'ised to Indian Standard by SKIP : 1976

rights reserved. part of this book may be reproduced in any form, by photostat, microfilm, xerography, or other means, or incorporated into any information retrieval system, eh:ctronic or :hanicai, without the written permission of the copyright owner.

IN: 81-224-1730-2

. 125.00 06-03-659

peset at Le-Studio, Gurgaon. nted in India at MehraOffset. BLiSHING FOR ONE WORLD

!:WAGE INTERNATIONAL(P) LIMITED, PUBLISHERS 71IergWi/!)' &/em Lif11ileJ) 35/24, Ansari Road, Daryaganj, New Delhi sit us at www.newagepublishers.com

- 110002

Materials-Numerical Q\ vocational schools as well for use primarily by the af been made to shorten the I that its contents are readil) Much painstaking eff( selected that the reader can decision of either selecting compilations can be as har Not only the selectior contents of the tabular COI decide where to look for p The authors and publi~ suggestions for improving

Braunschweig and Northeim

Preface Materials-Numerical Quantities-FonnsTables compiled for the metal trade are dedicated to vocational schools as well as to practical usage at the job site. Although the tables have been compiled for use primarily by the apprentice, the specialized worker will also find them useful. Every effort has been made to shorten the sometimes tedious operations and the arrangement of subject matter is such that its contents are readily available to the practical man. Much painstaking effort must go in compiling and arranging such tables. Infonnation must be so selected that the reader can, from the bulk of material, easily find out the subject of his interest. Often, a decision of either selecting an item or rejecting it proves difficult. Too much material packed into tabular compilations can be as hannful a~ the omission of some vital pieces of infonnation. Not only the selection but also the arrangement of material requires considerable thought if the contents of the tabular compilations have to be offered for ready reference. Only then can the reader decide where to look for proper infonnation. The principle of order must be evident at once. The authors and publishers hope that they have succeeded in fulfilling their special tasks. However, suggestions for improving the tabular compilations are welcome.

Braunschweig and Northeim

HERMANN J(JTz EDUARD SCHARKUS

Table of Contents SECTION ONE Materials

1-27 SECTION Two

Numbers

28-63 -. SECTION THREE

Mechanics

64-75 SECTION FOUR 76-93

EngineeringComponents SECTION FIVE

94-127

MetalCutting Operations SECTION SIX EngineeringDrawings

128-147

Index

148-150

Measures and Weights

151

Westermann Tables

Materials Classificationand categories

0

0

Ferrousmetals

Structural steel

Tool steel

CaIbon steel

CaIbon tool steel

Grey cast iron

Alloy steel

Alloy tool steel

Alloy cast iron

General

properties Chemical

Specific weight-Melting Symbol

Element

Specific weight

-gflemJ Ag AI Au Ba Be Bi C

Ca Cd Ce Co Cr Cu Fe 1r K La Li Mg Mn Mo Na Nb

Silver Aluminium Gold Barium Beryllium Bismuth Carbon Graphite Diamond Calcium Cadmium Cerium Cobalt Chromium Copper Iron Iridium Potassium Lanthanum Lithium Magnesium Manganese Molybdenum Sodium Niobium

Melting or solidi-

Coefficient

fication

point °C

expansion a

961 660 1063 704 1283 271

2.25 3.52 1.55 8.64 6.9 8.8 7.1 8.9 7.86 22.42 0.86 6.18 0.53 1.74 7.3 10.21 0.97 8.55

3550 3600 850 321 775 1492 1800 1083 1535 2443 63 826 180 650 1244 2610 98 2415

0.000 020 0.000 024 0.000 014

Symbol

0.000 0.000 0.000 0.000 0.000 0.000

013 007 017 012 006 084

0.000 0.000 0.000 0.000 0.000 0.000

058 026 023 005 071 007

Hg CI H He N Ne 0

0.000 008 0.000 001 0.000 029

Copper alloys AI alloys Zinc alloys Solders

PVC

Vulcanized fibre Aminoplasts Phenolplasts

elements

Ni P Pb PI Ra S Sb Se Si Sn Ta Th Ti U V W Zn Zr

0.000 012 0.000 013

Copper, Lead Zinc, Tin, Nickel. AI

E?

of materials

points-Coefficient

of linear (thermal)

10.5 2.7 19.3 3.74 1.85 9.75

Malleable iron Whiteheart malleable iron Blackheart malleable iron

Cast iron

steel

9 ferrous metals

of linear (thenna\) Element

Nickel Phosphorus Lead Platinum Radium Sulphur Antimony Selenium Silicon Tin Tantalum Thorium Titanium Uranium Vanadium Tangsten Zinc Zirconium Mercury Chlorine Hydrogen Helium

expansion

weight

Melting or solidi-

gflemJ

fication

(thermal)

point °C

expansion a

Specific

8.9 1.82 11.35 21.45 5.00 2.06 6.69 4.5 2.4 7.3 16.6 11.2 4.52 18.7 5.96 19.27 7.13 6.5 13.5

1453 44 327 1769 700 113 630 217 1410 232 3030 1827 1812 1132 1730 3380 420 1852 - 39

- 101

Nitrogen Neon

- 259 -272 -210 ..:.249

Oxygen

- 219

Coefficient of linear

0.000 0.000 0.000 0.000

013 124 029 009

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

064 011 037 008 023 007 011 009

0.000 004 0.000 026 0.000 005

2

Westermann Tables SpecificWeigbt-MeltingPoint--Coeffidentof ThennalExpansioo--Shrie Specific weight

EO

it

- - -.

-r

=Weight per unit volume (gf/cm'

Melting point (Fusion point)

or kgf/dm3)

= Temperature at which particular material starts melting

Coefficient of linear (thermal) expansion a

=Increase in length of unit length of a solid for temperature rise of 1°C.

Materials Material Steel Cast steel Grey cast iron High-speed steel Tungsten carbide Constantan Invar (36% Ni) Brass AI bronze AI cast bronze Tin bronze Lead bronze AI-alloy (AI, Cu, Mg) Mg-alloy Babbitt metal Plexiglass

Specific weight gflem'

Melting point °C

7.85 7.85 7.2 9.0 14.75 8.89 8.7 8.5 8.4 7.6 8.6 9.5 2.8 1.8 7.5...10.1 1.2

1350...1450 1150...1250

= 2000

= 2000 = 1600

=

1450 900

=

900

= 650

=

650

300...400

Alcohol at 18°C Petrol at 15°C Copper sulphate Water at 4°C

0.79 0.72 1.11 1.0

-110 -150

Acetylene at O°C Carbon dioxide at O°C Air at O°C

1.17 kglm3 1.90 kglm3 1.29 kglm3 2.00 kglm3

-84 -78 -194 -43

, ,Propane at O°C

Shrinkage

0

Material Iron and Steel Chrome steel Nickel steel Tungsten carbide Invar Chromium Constantan Electron Aluminium Magnesium Gold Silver Zinc Tin Lead Nickel Platinum Brass Brouce Plexiglass Glass I Porcelain

Coefficient of linear expansion 0.000 012 0.000 010 0.000 012 0.000 006 0.000 0015 0.000 007 0.000 015 0.000 024 0.000 023 0.000 026 0.000 014 0.000 019 0.000 030 0.000 023 0.000 029 0.000 013 0.000 009 0.000 018 0.000 017 0.000 010 0.000 008 0.000 003

Grey cast iron Cast steel Malleable iron Brouce Gun metal

1% 2% 1.6% 1.5% 1.5%

I

I I

i

=difference in volume of the mould compared with the Shrinkage

I I

I

, I

volume of the casting after cooling, in percent Material

j

Material Brass Copper Tin, lead Zinc alloys AI, Mg alloys

Shrinkage 1.5% 1% 1% 1.5% 1.25%

I I

Westennann Tables System

of Designation

or Iron

18:1762-1961

and Steel

18:4843-1968 Steel I

-< 0.5% Plain carbon steels

I-

-

Silicon

>0.5% >0.8%

0.25%

-

I

Steels not required to receive heat treatment

I

Steels required to receive heat treatment

H

Alloysteels

-

I

Low aUoy steels < 5% special alloying element

Carbon tool steels

I

High alloy steels > 5% special alloying element

The System of Designation is as follows 1. Letter St 2. Minimum tensile strength in kgf/mm'

I. Letter C for Carbon 2. Index number for carbon following letter C, denoting average Carbon content in hundredths of a percent

e.g. SI. 42 Steel having a minimum tensile strength of 42 kgf/mm'

e.g. C 35 Carbon steel having an average of 0.35% Carbon

Applicable for steels which are standardized on the basis of their tensile strength without detailed chemical composition

Letter T for Tool steels Index number for Carbon following letter T, denoting average Carbon content in hundredths of a percent e.g. T 90 Tool steel having an average of 0.90% Carbon

Steels with special limits for maximum S & P, receive the suffix "K", e.g. C35K

e.g. 15 Cr 65 Chrome steel with average percentages of C = 0.15 and Cr = 0.65

To indicate.the treatment given to the steel, symbols are used, e.g. T 90a, "a" is used to indicate annealing (ref. Page 4, Add. symbols)

System of Designation of Plain Castings

I. Symbols indicating the type of castings 2. Symbol for chemical composition similar to the designation of steels

CS-Steel Castings

FG-Grey Iron Castings

CS 125-Unalloyed steel castings with minimum tensile strength 125 kgf/mm' CSM 35-Unalloyed special steel castings with minimum tensile strength 35 kgflmm' OS 50 Cr IV 20--Alloy steel castings with average percentage

FG 15-Grey iron castings with minimum tensile strength 15 kgflmm' FG 35 Si 15-Special grey iron castings with minimum total

=0.50;

Cr

= 1.00;

V

=2.20

CSH-Heat resistant steel castings CSC-Corrosion resistant steel castings

System of Designation of Alloy Castings I. Symbols indicating the type of castings 2. Average carbon content in hundredths of a percent following the type symbols of castings 3. Chemical symbols for the significant elements arranged in descending order 4. Alloy index number for the average percentages of alloying elements

OR

carbon percentage

e.g. 20 Cr 18 Ni 2 Chrome Nickel Steel with average percentages of C = 0.20; Cr= 18 and Ni= 2.00

Alloy index number is assigned as follows: Nominalor Alloy index number averagealloy content i. Up to I percent. Averagealloy contentup to 2 decimal places underlinedby a bar Roundedto the nearestwholenumber. 2. I percentand over. Up to 0.5 roundeddown,0.5 and over roundedup.

I Castings I

I. Symbols indicating the type of castings 2. Symbol for mechanical properties

of C

I. Average C content in hundredths of a percent without prefix C and with prefix T for Alloy Tool Steels 2. Chemical symbols of the significant elements arranged in descending order of percentage contents 3. Alloy Index indicating the average percentage of each alloying element

=3.5

and

average Silicon percentage

= 1.50

AFG-Austenitic flake graphite iron castings

SG-Spherical or Nodular Graphite Iron Castings

Malleable Iron Castings

BM 35-Black heart malleable SG 8012-Spheroidal or Nodular graphite iron castings with iron castings with minimum minimum Tensile strength 80 tensile strength 35 kgf/mm' kgf/mm' and minimum elongatio PM 70--Pearlitic malleable iron 2% on gauge length equal to five castings with minimwn tensile times the diameter of test bar strength 70 kgf/mm' WM 42-White heart malleable: iron castings with miniBrIIm tensile strength 42 kgfImm' ASG-Austenitic spheroidal or nodUlargraphite iron castings

Tensile strengths are on 30 nun Dia Test Bars as-cast.

ABR-AbrasiOll resistant iron castings

3

4

Westermann Tables Additional symbols Denoting special properties Steel quality

Treatment given

A-Non-ageing quality E-Stabilized against stress corrosion L-Control cooled to ensure freedom from flakes

R-Rimming quality Grmnsizecontrolled H-Hardenability controlled I-Inclusion controlled

D-Fully killed D,-Senti killed

M-Structural homogeneity guaranteed by Macro-etch test

e.g., St 42 An-Non-ageing steel with 42 kgf/mm' Ipinimum

a-Annealed or softened c-Case carburized .d-Hard drawn, cold reduced h-Hot-rolled n-Normalized

tensile

strength-normalizedof

C

=0.15.

o-Spherodized p-Patented q-Hardened and tempered s-Stress relieved t-Tempered

15 Cr 3c-Chrontium steel with average percentages Cr

=3.0

and case

carburized

E-Electric Furnace Steel; R-Open Hearth Steel; BO-Basic Oxygen IS:210-1970

Grey iron castir1p Tranwerse test Codefor designation

Grades

Tensile strength Min. kgflmm'

Breaking load Min. kgf

Corresponding tranwerse rupture stress kgflmm'

Deflection Min, mm

FG 15 FG20 FG25 FG30 FG35 FG40

15 20 25 30 35 40

15 20 25 30 35 40

800 900 1000 lloo 1350 1500

34.0 38.2 42.4 46.7 57.3 63.7

4.0 4.5

Typical applications Parts requiring no special gmdes for geneml structural purposes Parts subjected to severe strmns such as cylinder parts, etc.

5.0} 5.5 5.5 5.5

}

For extraordinary use IS:2108-1962 IS:2640-1964 IS:2107-1962

Malleable iron castir1p Codefor designation

Grades Tensile strength. Min. kgflmm'

BM35 BM30 PM 70 PM 45 WM42 WM35

A C A E A B

test bar..) Min

Brinell hordness HBMax

Phosphorous contact % Max

14 6 2 7 4 3

149 163 241 to 285 149 to 201 217 217

0.12 0.20 0.12 0.12 0.15 0.15

0.5% Proof stress. Min. kgflmm'

Elongation % (gauge

21

35 30 70 45 42 35

length

= 3 dia

-

55 28 26 -

of

Typical applications

Thin walled castings; mass production parts wheels, keys, Parts for locks and sewing machine parts.

IS:1030-1962

Steel castir1p Codefor designation

Grades

Tensile strength Min, kgflmm'

Elongation % on gauge length 5.65 . Min.

S%Max

P%Max

CS 55 CS47 CS41

I 2 3

55 47 41

12 17 18

0.060 0.060 0.060

0.060 0.060 0.060

Used for general engineering purposes instead of grey iron castings if greater strength and tenacity are to be met.

CS65 CS85 CS 125

I 2 3

65 85 125

17 12 5

0.050 0.050 0.050

0.050 0.050 0.050

High strength, good toughness and high abrasion resistance properties; used in transportation equipment and agricultural machinery parts.

Alloy steeI castir1p for high temperature Grades

Typical applications

IS:3038-1965 IS:2856-1964

service

Tensile strength Min, kgflmm'

Elongation % on 5.56 gauge length. Min

Yield stress or 0.5% proof stress Min. kgflmm'

C%

Si%

Mn%

S% Max

P% Max

Typical application..

I 2 3 4 5 6 7

55 47 52 49 52 63 63

17 17 15 17 17 15 15

35 25 31 28 31 43 43

0.20-0.25 0.25 Max 0.15 Max 0.20 Max 0.08-0.15 0.20 Max 0.20 Max

0.1.40 0.20-0.50 0.40 Max 0.60 Max 0.35 Max 0.75 Max 1.00 Max

1.25-1.45 0.50-1.00 0.40-0.80 0.50-0.80 0.30-0.70 0.40-0.70 0.30-0.70

0.050 0.050 0.050 0.050 0.050 0.050 0.050

0.050 0.050 0.050 0.050 0.050 0.050 0.050

Cast parts which preferably are to withstand tempemtures between 300°C to 525°C

CSN-C20 CS.-C25

42 49

20 18

21 25

0.25 Max 0.30 Max

0.60 Max 0.70 Max 0.60 Max 1.00 Max

0.050 0.050 0.050 0.050

Parts which to be fusion welded

Westermann Tables

5

Specification on Structura1 and Heat treatable Steels General

structural

Designation of steel

steels

Tensile .rtrength kgflnun'

IS: 1977-1969; IS:2062-1969 IS: 226-1969' IS: 961-1962

Yield strength for thicknesses upto 20 nun 20-40 mm 26.0 26.0 24.0

St 32-0 St42-O St42-5

32-44 42-54 42-54

St42-W St 58-HT

42-54 58 Min

26.0 36.0

St55-HTW

55 Min

36.0

C% Max

Elongation %

S% Max

P% Max 0.07 0.07 0.055

-

26 23 23

0.25

0.07 0.07 0.055

24.0 35.0

23 20

0.20 0.27

0.055 0.055

0.055 0.055

35.0

20

0.20

0.055

0.055

o

Standard lS Number

,2 4 ,2

.2

i5 i4

Intended for general engineering purposes. Intended for all types of structures weldable upon certain conditions. Can be subjected to fusion welding. Intended for use in structures where fabrication is done by methods other than welding. Intended for use in structures where welding is employed for fabrication and where guaranteed weldability is required.

sizes of bot-rolled products made of general structural

Product

808 1173

Typical applications

5.65 So> Min on ga"jf;length

Beam, channel and angle sections Tee bars

Page

IS Number

21 22

1732 1863 1864 3954

1252

Bulbangles

-

1730 1731

Plates, sheet and strip Flat.

20 20

Product Round and square bars Bulb plates Unequal angles Channel sections for general engineering purposes

19

-

21 22 IS: 4432-1967

Case hardening Case hardened Ten.rilestrength Elongation %Min Min kgflmm'

Designation of steel CIO, CI4, 19S11 14MnlSH,IIMn2 15Cr 17Mn I Cr 20 Mn Cr I 16Ni &! Cr!iQ 16Ni I Cr Jill 13Ni 3 Cr &! 15Ni4Cr I 20 Ni 2 Mo 2.l 20 NilS. CQ!! Mo 2!l

15Ni Cr I Mo.lZ 15Ni 2 Cr I Mo l5. 16Ni Cr2 Mo2!l

50 60 60 80 100 70 85 85 135 85 90 100 110 135

17 17 13 10 8 15 12 12 9 12 II 9 9 9

Temperalllresfor Carburizing Softening 20 900--930 900--930 900--930 900--930 880-920 900--930 900-930 900--930 880-920 880-920 900--930 900--930 900--930

650-680 650-680 650-680 650-680 650-680 650-680 650-660 620-650 600-630 650-660 650-660 630-650 630-650 630-650

Case hardening 760-780 760-780 770--800 810-840 810--840 780-820 780--820 760-780 760-780 760-780 780--820 780-82() 780--820 800--820

°C Annealing 800-920 870-900 850-880 850-880 850-880 850-880 860-880 860-880 860-880 860-880 850-880

Properties in quenched and tempered cO/u/itiolls Tensile range 0.2% proof Izod impact Surface hardness stress, Min kgflmm' Min. kgfm obtainable kgf/mm' HRC

Designation of steel

C30 C45 T70 37Mn2 40 Mn 2S .lZ 35Mn2Mo 50Cr I 50 r:r I V2J. 4ONi3

2a

31 Ni3CrMolS.

60 to 75 70 to 85 70 to 85 60 to 75 70 to 85 80 to 95 80 to 95 80 to 95 80 to 95 90 to 105 90 to 105

Typical applications

These steels are used for components requiring high wear resistant surfaces, coupled with tough cores to resist shock IClads and strength to give longer service life.

IS: 3930-1966

Flame and induction hardening

40 Ni2 Cr I Mo

Page

36 44 40 40 46 56 48 48 56 66 66

5.5 3.5 2.8 4.8 4.8 5.5 2.8 2.8 5.5 5.5 5.5

45-50 55-61 60-63 53-59 53-59 53-59 57-62 57-62 54-60 54-60 49-54

Hardenillg temperature For oil For water quench quench

860--890 830--860 810-840 850-870 850-870 840--860 850--870 850--870 830--860 830--840 850--880

860-890 820--850 78J--810 840-860 840--860 830-850 840-860 840--860 840--870 810-830 820-840

Typical applications

These wrought unalloyed and alloyed steels for flame and induction hardening are used when higb cold strength and good inlpact properties are requited.

6

Westermann Tables IS: 5517-1969

Steeb for hardening mId tempering Properties in hartkned and tempered condition Tensile strength kgflmm'

Designation of steel

Yield Normalizing stress Min, temperatllre .C kgJ/mm'

C30 C35Mn']j. C40 C45 C50 C 55 Mn ']j. 4OS.l!i 40 Mn 2 S12 20Mn2 27 Mn 2 35 Mn 2 Mo 55 Cr Z!l 40Cr I 40 Cr 1 Mo Z!i 40 Cr All Mo.l!i 4ONi3 35 Ni 1 Cr!2!l 30Ni4 Cr I 40Ni 2 Cr 1 Mo Z!i

60 to 75 60 to 75 60 to 75 60 to 75 80 to 95 80 to 95 70 to 85 60 to 75 60 to 75 70 to 85 100 to 115 90 to 105 80 to 95 80 to 95 90 to 105 90 to 105 90 to 105 120 to 135 120 to 135

40 40 38 38 54 54 48 40 44 46 80 66 60 60 70 70 70 DO 130

31Ni3 Cr65 Mol5.

120to 135

10 0 130

40 Ni 3 Cr 65

120to 135

Mol5.

Hardening temperature .C

Quenching medium

Tempering temperature .C

Typical applications

Water or oil Water or oil Water or oil Water or oil Oil Oil Oil Oil Water or oil Water or oil Oil Oil Oil Oil Oil Oil Water or oil Air or oil

550 to 660 530 to 760 550 to 660 530 to 670 550 to 660 550 to 660 550 to 660 550 to 660 550 to 660 550 to 660 550 to 660 5l'O to 700 550 to 700 550 to 720 550 to 700 550 to 650 550 to 660 >250

These wrought unalloyed and alloyed steels in the fonn of billets and bars for general engineering purposes are intended to be used in the hardened and tempered condition

-

860 to 890 840 to 880 830 to 860 830 to 860 810 to 840 810 to 840 830 to 860 840 to 870 860 to 900 840 to 880 840 to 860 800 to 850 850 to 880 850 to 880 850 to 900 850 to 860 820 to 850 810 to 830

-

830to 850 830to 850

Oil Oil

550to 660 upto660

830to 850

Oil

upto660

860 to 890 850 to 880 830 to 860 830 to 860 810 to 840 810 to 840 830 to 860 840 to 870 860 to 900 840 to 880

-

800 to 850 850 to 880 850 to 880 830 to 860

830to 850

Cold roIled carbon steel sheets S: 513-1963

Tensile strength (for design purpose only) kgf/mm2 28 28

C% Max

Mn% Max

S% Max

P% Max

0.15 0.12

0.50

0.060 0.050

0.060 0.050

DD: Deep drawing

28

0.10

0.50

0.040

EDO: Extra deep drawing

28

0.10

0.50

0.035

Types

0: Ordinary D: Drawing

For all types Delivery Surface condition finish

Typical applications

(l) Scale-free

Coare or rough

0.040

(2) Improved surface

Medium or dull

0.035

(3) Best surface

Fine or bright

Course or rough for enamelling and lacquering Medium or dull for general purposes (not suitable for plating) Fine or bright for electroplating

«

Note: Sheet conforming to this standard are of weldable quality and are suitable both for fusion and spot welding. Hot roUed carbon steel sheet and strip

Grade 0-1079 0-1079 00-1079 EOO-1079 St 34-1079 St 42-1079 St 50-1079 5t 52-10'19

Tensile strength kgf/mm2

Yield stress kgf/mm2

Elongation %Min

-

-

-

27-40 27-39 34-42 42-50 50-60 52-62

-

-23 25 25 22 20 20

21.0 24.0 30.0 36.0

C% Max

0.12 0.10 0.10 0.15 0.25 0.30 0.22

Mn% Max

0.50 0.50 0.50

-

S% Max

P% Max

Delivery condition

0.060 0.050 0.040 0.035 0.050 0.050 0.050 0.050

0.060 0.050 0.040 0.035 0.050 0.050 0.050 0.050

Hot-rolled Annealed Normalized and Oescaled

1079-1968

Typical applications

Used for cold formed structural members and for other general engineering purposes

,9

Westermann Tables Spring steel

al )r

V%

Grade

C%

Mn%

Si%

S%max

P%max

Cr%

I 2

0.45-{).55 0.50-{).60

0.50-{).80 0.80--1.00

0.10-{).35 1.50--2.00

0.050 0.050

0.050 0.050

0.90--1.20

50 Cr IV 55 Si 2 Mn 21!

Designation of steel C45 C65 C75 C98

I 3 5 8 9 10 11

55 Si 2 Mn 21!

50Crl 50 CrIV

C%

Tensile strength kgJ/mm2 Hardened Annealed max and tempered 120--145 120--145 I.lO--I60 160--180 160--200 170--230 190--240

Si%

Hardened in oil at °C

Typical applications

0.1-{).30 Steels in the fonn of Bann and flats for manufacture of volute, helical and laminated springs for automative suspension. IS: 2507-1965

-

Cold-rolled steel strip for springs Grade

Annealed atOC

Typical applications ..,

60 60 65 70 80 80 80

0.4O-{).50 0.6O-{).70 0.70-{).80 0.90--1.05 0.50-{).60 0.45-{).55 0.45-{).55

0.10-{).35 0.10-{).35 0.10-{).35 0.10-{).35 1.50--2.00 0.10-{).35 0.10-{).35

830--860 810--840 780--810 770--800 830--860 830--860 830--860

600--650 600--650 600--650 620--660 640--680 640--680 600--680

Cold rolled steel strip for the manufacture of springs for various purposes.

IS:4454-1967

Spring steels for use under elevated temperatures Grades

Classification

Tensile strength (for wire dia lip to 7 mm) min

C%

Si%

Cr%

Va%

150 145 175 175

0.45-{).55 0.45-{).55 0.50-{).60 0.50-{).60

0.15-{).35 0.15-{).35 1.20--1.60 1.20--1.60

0.90--1.20 0.90--1.20 0.50-{).80 0.50-{).80

0.15-{).30 0.15-{).00 -

IS IV 2S 2D

S denotes static stressed springs; D denotes dynamic stressed springs Steels for Screws Manufacture

Typical applications Used for manufacturing cold formed helical springs, volute springs, etc. working under elevated temperatures.

Carbon steel wire for the manufacture of machine screws

,3

,8

IS:343 1-1965

Hot-rolled spring steel

Designation of steel

Designation

Grade I 2

7

IS: 1976-1960

Tensile strength

C%max

Mn%

S%max

P%max

Typical applications

44-55 kgflmm2 55-71 kgflmm2

0.15 0.15

0.30-{).65 0.30-{).65

0.065 0.065

0.060 0.060

Used for the manufacture of machine screws by the cold readinl! process.

of steel

-

Carbor. steel wire for the manufacture -

CIO C 15 IOSn

460 N/mm2 460 N/mm2 460 N/mm2

-

DoilorSteel Plates Grades Tensile strength kgJ/mm' min I 2A 2B

0.17 0.22 0.17

0.30-{).65 0.30-{).65 0.6O-{).95

%

min 26 25 20

C% max

Si%

0.18 0.20 0.22

0.10-{).35 0.10-{).35 0.10-{).35

Seamless Steel Pipes

10Cr 5 Mo 14CrMo!i!lVn

C%

Tensile strength Elongation %min (normalised and tempered) N/mm' min 22 22 16 15

of steel YStO Y St32 YSt37

P%max

0.040 0.050 0.050

0.040 0.050 0.050

Tensile strength min kgJlmm2 42.2 44.3 46.4

Si%

S% max

0.12-{).20 (I.12-{).35 0.040 0.10-{).20 0.10-{).35 0.040 0.15 max 0.55 max 0.030 0.10-{).35 0.10-{).35 0.040

IS: 1673-1960

Used for the manufacture of wood screws by the cold heading process.

Typical applicarions Plates which are required to be either welded, flanged or flame cut plates of non-flanging quality (low tensile) Plates of non-flanging quality (high tensile) IS: 2002-1962 P% max

0.040 0.040 0.030 0.040

Typical applications

Used when the wall of pipes reach lemperatwes up to 580° C and are exposed to high pressure; can be fused and are welded; can be bent or foldt:d in cold state. IS: 1979-1971

For high test line pipes

Seamles.sSteel Pipes Designation

S%max

For high-temperature service

440--590 440--590 490--640 460-610

16Mo JIl 15 Cr 21! Mo

0.055 0.055 0.055

IS: 2002-1962 Elongarion

37-45 42-50 52-62

Designation of steel

of wood screws

0.055 0.055 0.08-{).J5

Yield strength min kgJ/mm2 29.5 32.3 36.6

C% max

C% max

S% max

P% max

Typical applications

0.29 0.31 0.29

1.25 1.35 1.25

0.04 0.04 0.04

0.05 0.05 0.05

Cover pipes intended for use in oil industry.

For dimensional requirements IS: 4431; 2507; 2591; 2002; 6630; 1979 may be referred

8

Westermann Tables

Cold RoBed Steel Strips for general engineering Rockwell hard-

Temper of strips

ness (B Scale) Min Max

IS:4030-1967

purposes

C% max

Mn% max

S% max

P% max

Surface finish

Typical applications

No. I-Hard

90

-

0.25

0.60

0.050

0.040

(a) Coarse or rough

Coarse or rough for enamelling and lacquering

No.2-Half Hard

70

90

0.25

0.60

0.050

0.040

(b) Medium or dull

Medium or dull tor general purpose

No. 3--Quarter Hard

60

75

0.25

0.60

0.050

0.040

No. 4-Skin Rolled

-

65

0.15

0.60

0.050

0.040

(c) Fine or bright

Fine or bright for electroplating

No.5-Dead Soft

-

55

0.15

0.60

0.050

0.040

Steels for Rivet Bars

IS: 1148-1973 IS: 1149-1973 Tensile

Designation of steel

8t42R 8t47

Elongation %min

C% max

S% max

P% max

42 to 54

23

0.23

0.055

0.055

For manufacture of hot forged rivets for structural purposes.

47 min

22

0.23

0.055

0.055

High tensile steel rivet bars for structural purposes

strength kgf/mm'

R

Typical applications

Free Cutting Steels Designation of steel

IOSll 14Mn tSH 25Mn ISH 40SU t3SZS 40 Mn 2 S 11

18:4431-1967

Tensile strength kgf/mm'

Elongation %min

37-49 44-54

24 22

50-60 55-65

20 17 22 15

37-49 60-70

C%

Si%

Un%

S%

0.15 max 0.05-{).30 0.60 to 0.90 0.08 to 0.13 0.10-{).18 0.05-{).30 1.20 to 1.50 0.10 to 0.t8 0.20-{).30 0.25 max 1.00 to 1.50 0.10 to 0.18 0.35-{).45 0.25 max 0.80 to 1.20 0.14 to 0.22 0.08-{).18 0.10 max 0.80 to 1.20 0.22 to 0.30 0.35-{).45 0.25 max 1.30 to 1.70 0.08 to 0.t5

P% max 0.060 0.060 0.060

These have good machinability and satisfactory chip-break

0.060 0.060

(Rapid machining steel for repetition work) 18:2073-1970

Tensile strength kgflmm'

Elongation %min

C%

Si%

CI4

37-45 44-52 50-60

26 24

0.10-{).18 0.15-{).25

-

C20

21

58

18

0.25-{).35 0.35-{).45

C30 C40

Mn%

S% mux

0.40-{).70

0.055 0.055

0.05-{).35 0.05-{).35

0.60-{).9O 0.6O-{).9O

0.055 0.055

P% mux 0.055

These types are carbon steel black bars for production of machined parts for general engineering purposes

0.05-{).35

0.6O-{).90

0.05-{).35

0.6O-{).90

0.05-{).35

0.60-{).90

0.055 0.055

0.055

13 10

0.6O-{).70

0.05-{).35

0.50-{).80

0.055

0.055

63-71

15

72 min

C65

75 min

Typical applications

0.055 0.055 0.055

0.4O-{).50 0.50-{).60

C45 C 55 Mn

Suitable also for case hardening

0.060

Black Bars for production of machined parts Designation of steel

Typical application.r

0.055

Westermann Tables Symbolic Designation of essential properties of materials (iron and steel)

967

Examples and Explanations IS No.

973 973

Title

See Page

Designation (example)

Explanation.s

1977 1977

Structural steels -do-

5 5

St 32-0 St 42-0

St 0

= Steel; 32 kgflmm2 minimum tensile strength

226 226 226

-do-do-do-

5 5 5

St42-S St 42-Sc St 42-Kw

= Standard = Copper

2062 961

-do-do-

5 5

St42-W St 55-lffw

1148 2002 2002 2002 5517 5517 5517

Rivet steels Boiler plates -do-doHeat-treatable steels -do-do-

8 7 7 7 6 6 6

St 42-R Grade 1 Grade 2 A Grade2B C30 T50a C35Mn

S e K w W Iff w R

Ordinary quality 42 kgf/mm2 minimum tensile strength quality bearing

= Special

quality

limits

for max P and S

= Weldable = Fusion = High

= Fusion = Rivet

welding tensile

quality

steel

weldable

bars

Plates required to be welded, flanged or flame-out Non-flanging quality (low tensile) -do(high tensile) C T C35

= Carbon 30 = Average C contents = Tool steel; a = annealed = Average

carbon

Mn

= Average

manganese

content

0.30%

0..35%

of 0.75%,

represented

without decimal point, underlined by a bar. (Applicable for alloying element upto 1%)

= case

Case-hardening steels -do-

5 5

C lOe 11 Mn 1

C

3431

Hot Rolled steels

7

h

= Hot

7

55 Si 2 Mn 2!lh C45q

q

= Hardened

7

IS; 1D

S

= Static stressed springs; D =Dynamic stressed

6

0; D;DD; EPD

0

= Ordinary;

2507 4454 1079 513 513

for springs Cold rolled steels strips for springs High temperature steels for springs Hot rolled carbon steel sheet and strip Cold rolled carbon steel sheets -do-

6 6

c

carburized

Carbon average 0.11 %; Manganese average 1.5%. (Average alloy content more than 1% is rounded to the nearest whole number, upto 0.5 rounded down; 0.5 and over rounded up.

~67

no

= Carbon;

4432 4432

rolled and

tempered

1; 12 13; 14

1

D =Drawn; DD =Deep drawn =Extra deep drawn = Bright drawn or bright rolled; 12 = Precision

F; F2 F3; F7

F

= Black

EDD

ground; 13 = desca11ed; 14 = shot blast sheet; F3 Pickled surface; F7

=

=Cold

finished; F2 = Black sheet for enamelling and galvanizing

1030

Steel castings

4

CS 125

CS

= Cast

210

Grey iron castings

4

FGI5

FG

=Grey iron castings; 15 =Minimum tensile

2108

Malleable iron castings -do-do-

4

BM35

BM

= Black

4 4

PM 70 WM42

PM WM

= Pearlitic malleable iron castings = White heart malleable iron casting.

steel-unalloyed; 125 strength 125 kgf/1IlIIC

= Minimum

tensile

strength 15 kgf/mm2

2640 2107

heart

malleable

iron castings

For castings

tensile strengths are on 30 mm dia test bars as cast

9

10

Westermann Tables

Tool and dye steels 18:3748-1966

Tool and dye steels for hot work C%

Designation of steel

Si%

Mn%

Cr%

Mo%

V%

W%

Brinell hardness

Typical application

.fannealed) HB, max 0.25--{).4O 0.10-0.35

T33W9Cr3VJ!I

0.30-0.40

T35Cr5MoIVJ!l T35CrSMoVI T35CrSMoWI VJ!l T55WI4Cr3V

0.30-0.40 0.30-0.40 0.50-0.60

0.20-0.40

-

2.80-3.30

0.25--{).50 8.00-10.0

241

Used for exlrusion dyes.

229

hot swaging dyes, forging dye inserts, brass

0.80-1.20 0.80-1.20

0.25--{).50 4.75-5.25 0.25--{).50 4.75-5.25

1.20-1.60 1.20-1.60

0.20-0.40 1.00-12.0

-

0.80-1.20

0.25--{).50 4.75-5.25

0.20-0.40

1.20-1.60

229

forging dyes, hot shear

0.10-0.35

0.20-0.40

1.20-1.60 -

0.30-0.40

13.0-15.0

248

blades, trimmer dyes, dye-casting dyes for

2.80-3.30

229

copper etc. 18:3749-1966

Tool and dye steels for cold work 0.45--{).55 0.10-0.35

0.6O--{).9O

-

-

-

-

240

Covers the requirements

T60 T70Mn T80Mn T90 Tl03 TI33 T90V

0.50-0.60 0.10-0.35 0.65--{).750.10-0.35 0.75--{).850.10-0.35 0.85--{).950.10-0.30 0.95-1.10 0.10-0.30 1.25-1.40 0.10-0.30 0.85--{).950.10-0.30

0.6O--{).9O 0.50-0.80 0.50-0.80 0.2O--{).35

-

-

-

-

-

-

240

for plain carbon and

-

-

-

0.2O--{).35

-

-

-

-

0.20-0.35 0.20-0.35

-

-

-

-

-

-

0.15--{).30 -

TlI8Cr

1.10-1.25

0.10-0.30

0.20-0.35

0.30-0.60

-

0.30 max

Tl05CrIMn{i!l Tl4OW4CrSl

0.90-1.20

0.10-0.35

0.4O--{).80 1.00-1.60

-

T50

T55Ni2CoJ!l Tl05W2Ctfi!lV TlIOW2Crl T90Mn2WSC

T215Crl2 T45CrlSi2S T55CJ2IlV,lS T55Si2Mn,2!1Mo;U

T4OW2CrlVlIi T50W2CrlVlIi

1.30-1.50 0.50-0.60

0.10-0.35 0.10-0.35

0.25--{).50 0.30-0.70 0.50-0.80 0.50-0.80

0.90-1.20

0.10-0.35

0.25--{).50 0.4O--{).80 0.25 max 0.25--{).50 0.90-1.30

0.25--{).35

240

-

in theformof bars,

200

shapes for cold work,

210

capable of being

200

hardened and tempered. Tbese are used for the

200

blanks, rings, and other

-

-

230

making tools and dyes

3.50-4.20

250

-

-

for blanking, trimming. shaping and shearing.

255

0.2O--{).30 1.25-1.75

230

1.25-1.75 1.25-1.75 0.30-0.60 0.25max 0.40-0.60 2.00-2.30 0.10-0.35 0.25--{).50 11.0-13.0 0.80max 0.80max 0.4O--{).500.80-1.10 0.55--{).75 1.20-1.60 0.50-0.60 0.10-0.35 0.6O--{).800.6O--{).80 0.10-0.20 0.50-0.60 1.50-2.00 0.80-1.00 0.25--{).4O0.12--{).20 0.10-0.25 1.75-2.25 0.35--{).45 0.50-1.00 0.20-0.40 1.00-1.50 0.45--{).550.50-1.00 0.20-0.40 1.00-1.50 0.10-0.25 1.75-2.25

1.00-1.20 0.10-0.35 0.85--{).95 0.10-0.35

alloy tool and dye steels

240 200

230

-

230 260

230 230

230 230 230

Steels for dye blocks for drop forgings Designation of steel

C%

Si%

Mn%

Ni%

Cr%

Mo%

Brinell hardness HB Annealed max

T60

0.55--{).65

0.15--{).35

0.50-0.80

Typical applications

Hardened and tempered

-

-

209

212-269

-

Steel for dye blocks in

1.0-1.4

-

209

sections for drop forgings.

-

T60NiI

0.55--{).65 0.15--{).35 0.50-0.80

T55NiC

0.50-0.60

0.15--{).35

0.50-0.80

1.25-1.65

0.50-0.80

-

230

212-269 235-302

T50NiCr

0.48--{).53

0.15--{).35

D.45--{).65

0.80-1.00

0.80-1.00

0.30-0.40

255

269-477

square, rectangular and

yes, r;s :ar

66

Westermann Tables Classification Designation Identification colour

tips according

Increasing direction of the characteristic of Carbide

Cutting

(IS: 2428-1964) Range of application

Material to be machined

Machining conditions

tip Steel, steel casting

Precision turning and fine boring Cutting speed: high, Feed: low

PIO

Steel, steel casting

Turning, threading and rnilIing Cutting speed: high. Feed: low or medium

P20

P30

ra

. " '" '" B "

(.)

P40

"

+n xA" I

'j),

Regularpolygonof n sides Lateral V=Ao

0"-

I

I

E3I

V=Axh

xh I

AL

I

area of the cylinder

I

=tr X D x h

I

V=!!..xD2xh 4

A

I

Volume

= Base

x height 3

Surface I

IAo= A" +4A.t>,1 V=Acxh

Iv = A; h I

A = Squarebase 3 IAo =Ac

V = [xbxh 3

A = Rectangle base

I

Pyramid

+ 2A.t>.+ 2A.t>,I

IAo =A.t>+ 3A.1.,I A = Equilateral triangle base A.t>x h

A

-(

V=- 3

h

----

Iv = A; h

I

v=

I

IAo =A.t>+ A.1.,+ A.t>2 + A.t>.I

A = Scalenetrianglebase

I x h' x h 3

IAo=A.t> + n x A.t>,I

'¥' Cone

Regularpolygonof n sides I

I IAo =D2(D+2S)1 V = Ao x h

Lateral surface

I

Iv = A; h I

V=!!..D2x!!.

4

3

I

AL= I

A"1

I

trxDxS

I I

AL

= tr X r X

r2 + h21

32

Westennann Tables for A = square

Surfacearea Ao = sum of individual

areas

V.. (a; b

I

Lateral

AI. I

= "3h (AI

V

r x h;

for A = square

+.j'A;XA;

+ A2

Frustum of a cone

XS

IV=fixh(D2+DXd+d2)

S =.Jh2+(R-rf

.!!...

12

Surface

I

=0261

Sphere

V=~x~XD3 3 4

I

= lr~3 V =05236D3 V

I

Lateralarea

[

AI.

Spherical segment

=2lrrh

or

Lateral area 1

Ar.

Pappus

=I x lr X d S21

dSI = diameter

= CA, X lr X dSI

C. = circumference of cross-section Lateral

surface

Solids of revolution

theorem:

5, = centre of gravity cross-section A = cross-section

Surface 1 Ao

) lforA=n sided polygon

area of frustum

= lr X ~ D+d

Frustum of a Pyramid

centres

I

of

of circle of of gravity

V = A x lr X dSI

I

area Ring of circular cross-section

IAo=A=CXlrXD Ao=lrxDxlrxds

~

Westermann Tables Numericaltables

33

How to use these tables

.

Example for the use of data tabulated: Values found under 376 can be used for following calculations

8

C=1rxd

I+- n-+l A = !!...Xd2 4

A=n

OJ I+- n-+l

2

V=n

Number d or n

3

1181.2 Circumference of a circleif

III 036 Areaofa circleif

141 376 Areaofa squareif

53 157 376 Volumeof a cubeif

d= 376 (mm,cm)

d= 376 (mm,cm)

n = 376 (mm,cm)

n = 376 (mm,cm)

376

EJ

[3]

.rn

if;;

19.3907 Sidelengthof a squareif

7.2177 Sidelengthof a cubeif

A = 376 (mm',cm')

V= 376 (mm',cm')

Shifting the decimal point. . . In case the basic number for a calculation is not 376 but 37.6 or 3.76 or 3760 the result can be found by appropriately shifting the decimal point of the value found in the table. If the decimal point ofa number is I decimal off (left or right) the number which is tabulated, the decimal point of the values found on the table must be shifted by: I Decimal

8

2 Decimals

C=1rxd

A = !!...Xd2 4

I

2

.

2 Decimals

3 Decimals

Number

I+- n-+l

OJ I+- n-+l

or

A =n2

V=n3

n

2

3

d Not applicable

1

Number of decimals to be shifted for 10 n or 0.1 n.

1181.2

111 036

141 376

53 157 376

118.12 11.812 11812

1110.36 11.1036 1\ 103600

1413.76 14.1376 14137600

53157.376 53.157376 53157376000

376 Examples 37.6 3.76 3760

As compared to the table value 376 is shifted by the decimal point 1 Decimal (to the left) 2 Decimals (to the left) ) Decimal (to the right)

Shiftingthe decimal point while extracting the root for values not tabulated

m=? =? Example: (I) Shift the decimal point of the basic number

Number d or n

(a) By 2 decimals when extracting square root (e.g., 3.7 changes to 370). (b) By 3 decimals when extracting cube root (e.g. 0.64 changes to 640) in order to arrive at a number which can be found in the table.

I

EJ

[3]

,r,;

if;;

1/2

1/3

(2) The decimal point of the result found must be shifted back by I decimal to correct the change made.

m (I) 2 decimals to the right: 3.7 changes to 370 (2) I decimal to the left: 19.2354 becomes 1.92354 m = 1.92354 'i./M4 (I) 3 decimals to the right: 0.64 changes to 640 (2) I decimal to the left: 8.6177 becomes 0.86177 =0.86177

---+

370

---+

640

19.2354

8.6177

34

Westermann Tables Usage of numerical tables

Logarithms Taking the logarithm is another inversion, so called the 2nd inversion of the process of raising a number to a power

First inversion: Extracting the root of a number

Raising a number to a higher power 5'= 125

Second inversion: Taking the logarithm of a number

V125 = 5

125

log 125 = 3

3 = the logarithm of the number 125 to !he base 5 The column headed log in the table gives the Briggsian (or common) logarithms (log) to the base 10. Thc logarithm of a number here is the index to the base 10 e.g., log 1000 = 3.0000, since 10,.0000 = 1000 3.0000 = the logarithm of 1000 Every logarithm ofa number consists of the characteristic and the mantissa Number Logarithm The mantissa can be taken from a logarithm table. Thecharacteristicis to be addedfiomcasetocase.It is obtainedby ,-L-, r..L.,

log483

=

antilogarithm

2.6839

merelycountingthenumberof placesof a givennumber,startingto the

Issa

left fiom the decimal point onwards. Integral numbers from I to 1000, as listed in the column headed log have the characteristic added already.

Characteristic

Finding the characteristic Let the number n has 4 3 2 I

The corresponding characteristic is then

Example number n

4830

places places places place

O. ... I naught 0.0... 2 naughts 0.00 ... 3 naughts

483 48.3 4.83

2. ... I. ... O. ... 3.m}

number of digits to the left of the decimal point .. "'" 1 0

With chamfer (Type B)

Type B

12 min

b

IS: 2473-1963

Type A ../'... d,

width

\0 .9

Dimensions of centre holes inmm

Type A

P for

N ""

CentreHoles Without chamfer (T.vpe A)

Pitch

12.7

1.2 10

14

20

1.8

22.4 15.8

Type B

I

16

.Parting off dimension, if the centre hole is to be removed from the finished workpiece. Designation: A centre hole of Type A and diameter, d, is designated as Centre Hole A x 4 IS: 2473

=4 mm

Westennann Tables

=Revolutions per min--Cutting

n

101

speed v-Diameter d

Cuttingspeed v in m/min t/J in

8

10

15

20

25

30

35

40

50

80

100

150

mmd Revolutionsper min 5 6 7 8 9 10

510 425 364 318 283 255

636 531 455 400 354 318

955 797 683 597 530 478

1272 1060 910 796 708 637

1590 1325 1136 996 886 796

1912 1593 1365 1194 1060 956

2230 1856 1593 1393 1240 1125

2548 2124 1820 1592 1415 1274

3180 2650 2275 1990 1770 1590

5095 4240 3630 3180 2830 2550

6360 5300 4550 3980 3540 3180

9550 8000 6800 6000 5200 4800

11 12 14 16 18 20

231 212 182 159 142 128

289 265 228 199 177 159

434 398 341 298 265 239

580 53] 455 398 354 319

724 663 568 . 497 443 398

868 796 682 597 530 478

1013 928 796 695 620 558

1157 1060 910 796 708 637

1445 ]325 1136 995 885 795

2310 2130 1820 1590 1420 1270

2890 2660 2280 1990 ]770 1590

4350 4000 3410 2980 2660 2390

22 25 28 32 36 40

]16 102 91 80 71 64

145 128 114 100 89 80

217 192 171 149 133 119

290 255 227 199 177 159

362 319 284 249 22] 199

434 383 341 298 265 239

506 446 398 348 310 278

579 510 455 398 354 318

723 638 568 498 442 393

1150 1020 910 800 710 640

1450 1280 1140 1000 890 800

2170 1910 1710 1490 1330 1200

45 50 55 60 70 80

57 51 46 43 36 32

7] 64 58 53 46 40

106 96 87 80 68 60

142 127 116 106 91 80

177 159 145 133 144 100

214 191 174 159 136 119

248 223 203 186 169 139

283 255 23] 212 182 159

354 318 298 265 227 199

570 510 460 420 360 320

7]0 640 580 530 450 400

1060 950 870 800 680 600

90 100 110 125 140 160

28 26 23 20 18 16

35 32 29 26 23 20

53 48 43 38 34 30

71 64 58 51 46 40

89 80 73 64 57 50

106 96 87 76 68 60

124 III 101 89 80 70

142 127 116 102 91 80

177 159 145 127 114 100

285 255 232 200 180 160

355 320 290 255 228 200

530 480 435 380 340 300

180 200 220 250 275

14 12 11.6 10.2 9.2

17 16 14 12.7 11.6

27 24 22 19 17

35 32 29 25 23

44 40 36 32 29

53 48 43 38 35

53 62 50 44 40

71 64 57 51 47

88 80 71 64 58

140 125 114 100 93

175 160 143 125 115

265 240 210 190 175

300 350 400 450 500

8.5 7.2 6.3 5.6 5

10.6 9.1 7.9 7.1 6.4

16 14 12 10.6 9.5

2] 18 16 14 13

26 22 20 18 16

32 28 24 21 19

37 32 28 24 22

43 36 32 28 26

53 45 40 36 32

85 73 64 57 51

105 91 80 71 64

160 135 120 105 95

I

v=7rXdXn

I

n= 7rxd

d=

7rXn

put d in metre in the fonnula

102

Westermann Tables Calculating the machining time

To enable proper estimation of the time required for openlting machine tools, the following distinctions are made Setting time

Setting up the machine: Getting tools, study of dmwings

Machining

Delay time

Auxiliary time '.

time 1m

Actual time in which the

Lubricant machine trouble

Clamping job, setting the tool, measuring, checking

tool is cutting

shooting or repair work, short break.~

Longitudinal turning rpm known I

= length

rpm

IUlknOll'1I

=

d diameter (m) v cutting speed m/min s, = feed mm/rev I = length to be turned

to be turned

=

s, = feed mmlrev

n = rpm Feed per minute:

V 11=1rxd

, = ~(min) III

''',. XII

Machining time

length 10 he IUrned

n = 50 rpm 600 0101

1 = m 05 mm/rev x 50 rpm

.t;,.X \'

feed per minute

Example: I = 600 mm .~,= 0.5 nun/rev

IX1rxd

'm= --(minI

Note: The rpm calculated will be different from the rpm availahlc with a particular machine.

Exumple: d = U.J25 m ,. = 2U m/min .\ = 0.5 mm/rev

I = 600mm 600mm x 3.14 x 0.125m

= 24 min

1m = 05mm/rev

X 20m/Olin

= 23.5 min Facing v

n=1rxd r lm=-

s, XII In order to obtain a uniform cutting speed, the rpm should be varied. For a constant rpm an average cutting speed should be considered.

For facing the mdius r can be considerell, as the length to be turned

Example: d = 0.250 01

I' = 20 m/min s, = 0.5 mm/rev v 20m/min

1/=-=

1r X d

= 25 rpm r

1--..,

3.14 x 0.2501

125mm

- S, X 1/ - 05mm x 25rpm

= 10min

Westermann Tables

103

Drills Twist drill with taper shank

Neck

Land

Tang Drill Axis Shank

---1

Body clearance

L

Dead centre Normal cutting angle 01 a drill

Recommended drills Material to be drilled Steel and cast steel up to 70 kgf/mm2 strength Gray cast iron Malleable cast iron Brass

Point angle

Helix angle d 3.2 ... 55-10

=

10

Material to be drilled

Point angle

I

Helix allgle d 3.5 ... 5 Inm

5mm

Copper (up to 30 mm drill diameter)

30°

AI-alloys, forming curly chips; Celluloid

13°

Austenitic

40°

German silver, nickel B['"dSs,CuZn 40

steels

Magnes;um-alloys Steel and cast steel 70 ... 120 kgf/mm2

Moulded plastics

30°

Stainless steels;

40°

Moulded plastics, with thickness s ~ d.

Copper (drill diameter more than 30 mm) AI-alloy. forming short broken chips

(with thickness s ~ d)

30°

Laminated plastics. hard rubhcr (cbonitc) marble, slate, coal

13°

Zinc-alloys

40°

104

Westermann Tables Cutting

,

v---Cutting speed: Peripheral speed in mlmin. [The speed depends on the material which is to be processed

II.. :/

."

%'

as well as the type of drill to be used; it further depends on the rate of feed and the depth of the hole to be drilled.] s Feed. Cutting speed and feed values are taIc.:non the basis of a tool life for drilling a depth of 2000 mm. assuming that the depth to be drilled in one single hole is approximately twice the diameter.

=

.

Q)

s-Coolents

speed v-Feed

/.

.

Feed s (mmlrev)

Material

Cutting speed using tool steel drilb

Steel up to

Cutting speed v in m/min with low-alloy high speed steel

Cooling and lubricating agent.\'

Diameter of drill 5

lO

15

20

25

30

35

0.1

0.18

0.25

0.28

0.31

0.34

0.36

40 kgf/mnr

...20

15

18

22

26

29

32

35

Up to 60 kgf/mm2

...14

13

16

20

23

26

28

29

0.07 Up to 80 kgflmm2 Up to 100 kgf/mnr

...10 -

0.13

0.16

0.19

100 kgf/mm2

0.25

14

16

18

21

23

24

8

19

13

15

17

18

19

6...

0.15

Grey cast iron

0.23

12

0.015...0.17 Beyond

0.21

0.24

0.3

0.32

0.35

0.38

0.4

24

28

32

34

37

39

40

Up to 22 kgflmm2

...10

16

18

21

24

26

27

28

Up to 30 kgf/mm2 Brass

...8

Up to 40 kgflmm2

.. .40

12 0.1

...25

Up to 30 kgf/mm2

...15

Up to 70 kgf/mm2

...12

Aluminium (pure)

0.15

16 0.22

0.1

0.12

0.18

0.15

0.22

0.05

0.08

0.12

0.05

0.12

0.2

...15

0.3

21

0.3 22

0.32

0.36

0.24

0.25

0.28

0.32

0.27

0.3

0.32

0.36

0.22

0.26

0.4

0.46

213lardoil 1/3 kerosene

0.18

0.2

0.3

0.35

213lardoil

80 ... 120 mlmin. 0.2

0.3

0.4

0."6

1/3kerose..

0.5

0.6

0.45

0.5

Dryor specialoil

0.15

0.17

Compresso air

100 ... 150 mlmin. 0.15

Moulded plastics Pressed materials

0.27

20

0.3

25 ... 35 mlmin.

...40

...80

18

0.28

30 ... 40 mlmin.

...50

Magnesium alloys

0.24

40 ... 60 mlmin.

0.12 Aluminium alloys

14

0.2

Dryor plenly solubleoil

60 ... 70 mlmin. 0.07

Up to 60 kgf/mm2 Bronze

0.16

oil

12 mlmin.

...14

0.1

Sulphurized and chlorinate(

mmlrev

Up to 18 kgf/mm2

Grey cast iron

Solubleoil mineraloil

0.2

0.3

0.38

0.4

200 ... 250 mlmin. 0.04

0.05

0.07

0.1

0.12

35 ... 45 mlmin

105

Westermann Tables Drill diameter for

,

L....

.,

i Threaded holes

i

Throughholes

--1--< £ L-b

I I

& t--d-.

(core diameter d)

For Whitworth threads

For metric threads Threaded hole

Through hole Thread size

Fine

Medium

Ml M1.2 M1.6 M2 M2.5 M3 M4 M5 M6 M8 MIO M12 M16 M20 M24 M30 M36 M42 M45 M48 M52 M56 M60 M64 M68

1.1 1.3 1.7 2.2 2.7 3.2 4.3 5.3 6.4 8.4 10.5 13 17 21 25 31 37 43 46 50 54 58 62 66 70

1.3 1.5 1.8 2.4 3.0 3.6 4.8 5.8 7 9.5 11.5 14 18 23 27 33 39 45 48 52 56 62 65 70 74

Through hole

Steel cast steel malleable iron

Grey cast iron brass bronze

Thread size

0.75 0.95 1.3 1.6 2.1 2.5 3.3 4.2 5 6.7 8.4 10 13.75 17.25 20.75 26 31.5 37 40 42.5 46.5

0.7 0.91 1.2 1.5 2.0 2.4 3.2 4.1 4.8 6.5 8.2 9.9 13.5 17.5 20.5 25.75 31 36.5 39.5 42 46

1/4" 5/16" 3/8" 7/16" 1/2" 5/8" 3/4" 7/8" I"

1lISII 1114" 131H"

}112II ]51811 131411

pIS" 2" 211411

2,n" 23/411

3" 3"4" 31/211 331411

4"

Fine

Medium

6.7 8.4 10 12 13.5 17 20 23 26 30 33 36 40 43 46 53 54 60 66 72 78 85 92 98 105

7.4 9.5 11.5 13 15 18 22 25 28 32 35 38 42 45 48 52 55 62 68 74 82 88 95 102 108

Threaded hole Steel cast steel malleable iron

Grey cast iron brass bronze

5.0 6.4 7.7 9.25 10.25 13.25 16.25 19 22 24.75 27.75 30.5 33.5 35.5 39 41.5 44.5

4.8 6.2 7.5 9.0 10.0 13.0 16.0 18.75 21.5 24.25 27.5 30 33 35 38 41 44

Conversion of drill sizes inches-mm Fractions of inch

Inches

mm

Fractions of inch

Inches

mm

1/32 3/64 1/16 5/64 3/32 7/64 1/8 9/64 5/32 11/64

0.031 0.042 0.063 0.078 0.094 0.109 0.125 0.141 0.156 '0.172

0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4

3/16 7/32 1/4 9/32 5/16 11/32 3/8 13/32 7/16 1/2

0.188 0.219 0.25 0.281 0.313 0.344 0.375 0.406 0.437 0.5

4.8 5.6 6.4 7.1 7.9 8.7 9.5 10.3 11.3 12.7

Fractions of inch

Inches

mm

17/32 9/16 19/32 5/8 11/16 3/4 13/16 7/8 15/16 1

0.531 0.562 0.594 0.625 0.678 0.75 0.813 0.875 1.938 1.000

13.5 14.3 15.1 15.9 17.5 19.1 20.6 22.2 23.8 25.4

106

Westennann Tables Calculatingmachiningtime for drilHngoperations The machining (drilling) time is the period of time in which the machine perfonns the actual drilling operation

rpm-known

rpm-unknown

t:t-i

L =length of drill travel in mm

L d

L =I + 0.3 d d

= diameter

of the drill in mm

s, = feed in mmlrevolution

n = revolutions per minute s,

S

= feed

8={ T;Z.?// ./ JJ. 0/Z /"/:%

= feed per minute

1m=

"',

minI

I

ac mmgume= M h'"

L sr x n

44 0.2 x 300

a.

in mImin

1000

v x 1000 n=-min trXd

-

1m= machining time

'"

1m =

feedoftooltravel per min length

Lxtrxd

min

s, x V x 1000

d = 30 mm Example: I = 35 mm v = 28 mImin s, = 0.2 mmlrev L = 1+ 0.3d = 35 + 9 = 44 mm Lxtrxd = 44 x tr X 30 1m = sr X V X 1000 02 x 28 x 1000 = 0.73 min

d= 30 mm Example: 1= 35 mm s, = 0.2 mmlrev, n = 300 rpm L = 1+ 0.3d = 35 + 0.3 x 30 = 35 + 9 = 44 mm 'm =

,/,/l/

...

1m= machining time

I

= cutting speed trxdXn v=

v

in mmlrevolution

sr x n

=I + 0.3 d =diameter of the drill in mm

0.73 min

Machining time in minutes per 10 mm length of tool travel Feed S in mm/rev 0./

0./2

0./6

11.2 14 18 22.4 28

8.93 7.15 5.56 4.47 3.57

7.44 5.95 4.36 3.71 2.97

5.85 4.46 3.47 2.79 2.23

4.46 3.57 2.77 2.23 1.78

3.57 2.85 2.22 1.78 1.42

35.5 45 56 71 90

2.82 2.22 1.79 1.41 1.11

2.34 1.85 1.31 1.17 0.92

1.76 1.39 1.12 0.88 0.69

1.40 1.11 0.89 0.70 0.55

112 140 180 224 280

0.89 0.71 0.55 0.45 0.36

0.74 0.59 0.43 0.37 0.29

0.58 0.44 0.35 0.28 0.22

355 450 560 710 900

0.28 0.22 0.18 0.14 0.111

0.23 0.18 0.13 0.117 0.092

1120 1400 1800 2240 2800

0.089 0.071 0.055 0.045 0.035

0.074 0.059 0.043 0.037 0.029

rpmn

0.4

0.5

0.65

2.79 2.23 1.73 1.39 1.11

2.23 1.78 1.39 1.11 0.88

1.78 1.43 1.11 0.89 0.71

1.38 1.09 0.85 0.68 0.55

1.12 0.88 0.71 0.53 0.44

0.86 0.69 0.55 0.44 0.34

0.70 0.55 0.44 0.35 0.28

0.56 0.44 0.36 0.28 0.22

0.43 0.34 0.27 0.21 0.17

0.44 0.36 0.28 0.22 0.18

0.36 0.28 0.22 0.18 0.14

0.28 0.22 0.17 0.13 0.111

0.22 0.18 0.14 0.111 0.088

0.18 0.14 0.111 0.081 0.071

0.14 0.109 0.085 0.068 0.055

0.17 0.14 0.112 0.088 0.069

0.14 0.111 0.089 0.070 0.055

0.112 0.088 0.071 0.053 0.044

0.086 0.069 0.055 0.044 0.034

0.070 0.055 0.044 0.035 0.028

0.056 0.044 0.036 0.028 0.022

0.043 0.034 0.027 0.021 0.017

0.058 0.044 0.035 0.028 0.022

0.044 0.036 0.028 0.022 0.018

0.036 0.028 0.022 0.018 0.014

0.028 0.022 0.017 0.013 0.011

0.022 0.018 0.014 0.011 0.009

0.018 0.014 0.011 0.009 0.007

0.014 0.011 0.008 0.007 0.006

0.2 Machining

0.25

0.32

time 1min min/JO mm

Westermann Tables

107

Milling Suggested number of teeth and angles of high-speed steel cutters

--

/////

".-

r

-L

t

/'

d= clearance

-, angle A-

r = radical rake angle

= helix

Conventional milling (up-milling)

angle

Plain carbon steels up to 75 kgf/mm2 strength Type of cutter

d

Cylindrical cutter or slab milling cutter

Tough materials up to 100 kgf/mm2 .vtrength

Number

Angles

Number

of teeth

L-

of teeth

z

40 6

a

50

6



63

Climb milling (down-milling)

r

A-

d

up-milling 40

z

Light alloys Number

Angles

Lr

a

A-

d

z

40

4

50

4

50

10 10

6

63

10

63

5

80

8

80

12

80

5

100 125

8

100

16

100

6

10

160 40

10

I wo I 38°

up-milling 4°

I 5°

135°

down-milling

125

16

down-milling

125

6

I J60 I W

160

20

I 12° I30°

160

8

40

40

4

50

12 14

50

5

63

14

63

6

80

18

80

6

12°



50

8 10

63

10

80

12

100

12

100

20

100

7

125

14

125

22

125

8

160

16

24 16

10

10

160 50

160

50

50

4

63

10

I r I A- 63

16

a

63

6

80

12

80

18



80

6

100

14

100

20

100

8

125

16

125

22

160

18

a

Sideand face

180

18

12°

milling cutter

200 10

20 4

12

4

16

5

20

6

25

Shell end mill (face milling cutter)

:. End milling cutter

up-milling

I 10° I 20°



up-milling a 7°

1

12°

1

w

down-milling

I r 1

18°

r 6°

I

A-

I we

A.

up-milling 8°

I 25° IW

down-milling W 130° 145°

up-milling 8°

I 25° I35°

up-milling

air

I A-

8° 25° I30° 1

8

down-milling

160

a I r I A-

180

12

W 130° I 30°

30

200

12

10 12

6 6

10

3

12

3

200

16 20

8

6

25

32

6

40

5

I 8° I w

1

r

10

24 26

8



1

up-milling

I

La

125

I A- 160 I W 180

up-milling

up-milling 4° 5° 20°

I

Angles

of teeth

down-milling

a I r I A8° w Ilr 1

up-milling

16

3

up-milling



20

4

8° 20° 25°

8

25

4

32

10

32

4

40

10

40

5



1

1

15°

1

1

108

WestermannTables Maximum chip removal rate

The max. chip removal V in cm3 per kW/min

Carbon steel 35... 60

Alloy .fteel (annealed)

Alloy steel (heat treated)

kgf/mm1 strength

60...80 kgflmm! strength

up to a strength of 100 kgf/mm!

I

I

8

I

I

cm3lkW min

Method of

milling

I

I

I

f-

Slab milling

I

I

12

I

I

10

I 15

I

12

I

10

Grey cast

hard) metal (moderately I gun Brassand

I

I

light alloys metal light

22

I

30

I

60

28

I

40

I

75

Face millin Calculating the rate of feed The maximum chip removal V can be found by multiplying the cutting capacity V with the rated power P of the machine

Max. chip removal/min

= cutting

capacity x rated power of the machine

Iv=V'xpl The chip removal can be found by multiplying

M et al remova I rate

=

the depth of cut a by the width of cut b by the rate of feed s

Depth of cut x width of cut x rate of feed

1000

(volume of chips produced per minute) axbxs V = 1000

The maximum permissable rate of feed s thus becomes

s=

V x 1000 I axb

mm/min

Example: A workpiece made of St 50 is to be milled. The driving power of the milling machine is 2.5 kW. Depth of cut a width of cut b = 100 mID. Maximum chip removal

per minute

= V =V

Find the max. pennissable rate of feed s miD-value taken from table)

x p (V

V = 12 x 2.5 V = 30 cm3/min

= 12 cm3lkW

The rate of feed = V x 1000 a xb

30 x 100 = 60 mmlm 5 x 100

=5 mm,

109

Westermann Tables Feed rate s based on the permissiblequantity V' of chips produced s with a machine

Permissible chip removal V' cmJ/kW min

Depth of cut amm

drive power

P

= 1 kW

Width b of cut in mm 40

50

60

80

100

120

140

160

180

8

3 5 8

66 40 25

53 32 20

44 27 16

33 20 12

26 16 10

22 13 8

19 11 7

16 10 6

15 9 5.5

10

3 5 8

83 50 31

66 40 25

55 33 21

41 25 15

33 20 12.5

27 16 10

23 14 9

20 12 8

18 11 7

12

3 5 8

100 60 37

80 48 30

67 40 25

50 30 19

40 24 15

33 20 12

29 17 10

25 15 9

22 13 8

15

3 5 8

125 75 47

100 60 37

84 50 31

62 37 21

50 30 19

42 25 15

36 21 13

31 19 11

28 16 10

22

3 5 8

184 110 69

146 88 55

121 73 46

92 55 34

73 44 27

61 37 23

52 31 19

46 27 17

41 24 15

28

3 5 8

230 140 87

185 110 70

155 93 58

116 70 44

94 56 35

78 47 29

67 40 25

58 35 22

52 31 19

60

3 5 8

500 300 185

400 240 150

335 200 125

250 150 94

200 120 75

165 100 62

142 86 53

125 75 47

110 67 42

75

3 5 8

625 375 235

500 300 185

415 250 155

310 185 115

250 , 150 94

205 125 78

178 105 67

156 94 58

140 83 52

* Calculated values shown in the table are to be multiplied by the factors 2.5 or 5 in case the machine drive power P is 2.5 or 5 kW respectively. Estimation of machining time Mac hi"nmg tune

=

Total length of travel Rate offeed

[3] m

S

The total length of travel depends on the length of the workpiece, the size of cutter used and the method of milling employed. Travel L

c.--t OJ

,I. t

t---; /---L: ):-----1' I

I. 1",....... I

Slab milling Roughing and finishing cutters L

= length

,t:::d-1

of workpiece

L = I + la+ I.

, I

':Ck----

/

L,

-1 , "Jr.

1

L-...t

'-If4 I

.

/

- ----r'I

1171_ /' 14 !

/;

1...2mm L

I

Face milling Finish cut

Roughing cut

+ approach

+ over travel L=I+!!..+2 2

?-

r;;t;f)(----,.---

;

L=I+d+,4

/

..I

110

Westermann Tables Suggested

cutting speed and feed. Shell-end mill

Slab milling

b=IOOmm

Width of cut b

Roughing V Depth of cut a

Carbon steel up to 63 kgf/mm'

b = 10 mm

Finishing VV

a=5mm Cutting speed v m/min

Roughing V

a = 0.5 mm Feed

s' mm/min

Cutting speed v m/min

11

100

Alloy steel annealed up to 18 kgflmm'

14

Alloy steel heat treated up to 100 kgf/mm'

Site and face-mill

Feed s' mm/min

22

60

80

18

Roughing V

FInishing VV

a=0.5 mm

a=5mm Cutting speed v mlmin

b=20mm

Finishing VV

Feed s' mm/min

Cutting speed v m/min

11

100

50

14

Feed

a= 10mm

s' mm/min

Cutting speed v mlmin

22

10

90

18

Feed

Feed

s' mmlmin

Cutting speed v mlmin

s' mmlmin

18

100

22

40

55

14

80

18

30

10

50

14

36

10

55

14

42

12

50

14

25

Grey cast iron up to HB 180

12

120

18

60

12

140

18

10

14

120

18

40

Brass (Cu Zn 40)

35

10

35

50

36

190

55

150

36

150

55

15

Light alloy

200

200

250

100

200

250

250

110

200

200

250

100

ti

b=25mm

Width of cut b

Roughing V' Depth of cut a

a=5mm Cutting speed v m/min

Carbon steel up to 63 kgflmm'

b= 180mm

Finishing VV

Roughing V

a=0.5mm Feed

s' mm/min

Cutting speed v m/min

11

50

Alloy steel annealed up to 18 kgf/mm'

15

Alloy steel heat treated up to 100 kgflmm' Grey cast iron uptoHB 180

a=5mm Feed

s' mm/min

Cutting speed v m/min

22

120

40

19

13

20

15

80

Brass (Cu Zn 40)

35

·

160

Light alloys

Circular saw

Insened tooth face milling cutter

End miiling cuner

b= 2.5 mm

Finishing VV

Roughing V

a = 0.5 mm Feed

s' mm/min

Cutting speed v m/min

20

65

100

16

11

65

19

120

80

55

90

180

Feed

a= IOmm Feed

s' mm/min

Cutting speed v m/min

s' mm/min

30

50

45

50

36

23

40

35

40

14

20

18

30

25

30

16

100

24

90

35

50

120

50

200

60

120

350

200

120

250

250

300

90

320

180

Values to be adjusted against available machine power (refer page 109).

Westermann

Tables

111

Simple indexing B

b

A typical set of plates has the following number of holes 18 19 I 17 15 16 20

= Workpiece

= Dividing head

spindle Qndexing spindle) .C= Worm wheel (nonnally 40 teeth) d= S01gJe thread work

D

21

23

27

19

31

33

m

37

39

41

43

47

49

= Index crank

To turn a workpiece once, turn the index crank 40 times. 40

f= Index plate (remains stationary)

For N equal divisions, make given division.

8

N

turns with the indexing spindle to get a

Number of teeth of worm wheel

=

Number of crank turns for a particular indexing

Number of equally spaced divisions

Index crank Example:

N

= 16; Zw =

40

Example:

n =~ c N

number of

n =~ c

N

= 40

16

= 2~ holes turns 16 hole circle

available

= 45;

= 40 =! 45

9

Zw

= 40

.extended to an

hole circle!

9

= ! x 3. = 9

2

16

18

16 holes on the hole circle 18

2 complete cranks and 8 more holes on the l6-hole circle Differential

indexing

Differential indexing is made possible by connecting the index plate to the head stock spindle by means of a gear train. The index plate can be made to move either in the same direction (positive) or in the opposite direction (negative) to the index crank. This causes the movement of the index plate to be either faster or slower, travelling either more or less than the movement of the index crank

8, b, cand dinterchangeable gears s Intermediate gear (Idlergear) /=!

N

1

= Number

N

of divisions required to be indexed per one complete revolution of the work piece n = Replacement for the number N. [n must be chosen such that it can be used in the simple indexing method]

. Number of crank turns required

=

Inc Number of teeth (gear teeth) x gear ratio

24

44

48

100

L Example:

= 53;

Zw

N = 40

I

I

=Number

of crank turns (number of equal divisions required minus selected number of equal divisions)

Change gears:

Selected change gear sets

N

Number of teeth 40 Selected number of equal divisions

Z = -;;(n 40 - N)

I

If the number chosen for n is greater than the number of

are said torequired move in(N) thethe same direction (positive motion). divisions index crank and the index plate If the number chosen for n is less than the number N; the opposite direction results (negative motion).

= 40

n = 56 crank turns nc = Change gears

40

=-(n -n

Change gears; Z.

40

.

15

-56 = -,21 40

15 holes on the hole circle 21

- N) =-(56-53)

= 72;.Zb

56

45

9

5

72

40

= -21 =-3 x -7 =-24 x-56

= 24; Zc = 40; Zd = 56

112

Westermann Tables Milling helical slots and keyways The workpiece is moved along its longitudinal

axis ~

while simultaneously

radial motion Q:J

is

also given resulting in the cutter generating helical grove. Both motions ---'7+ are given by the table feed screw. It causes workpiece to move along its longitudinal axis while at the same time a set of change gears is allowed to operate the index spindle. The index plate is to be loosened such that it can rotate. The table must be set to the angle f3 of adjustment. Nomenclature:

MiRingcutter

P, lead of helix on workpiece P, lead of the table feed spindle d diameter of workpiece f3 helix angle (table angle)

r leadangle nc number of crank turns required to turn the workpiece through one complete turn (i=nc:

1=40:1)

Lead Pz = tanr x 1rd

p

=~lrxd

Leadangletan r

Gear ratio Ii

=~

. Z) = p,nc = Lead

Z2 Z4

P,

of table feed spindle x number of crank turns (40)

Lead of helix required on workpiece

1

A typical set of change gears consists of gears having the following number of teeth: 24 24 28 32 36 40 44 48 56 64 72 86 100

:'... :

'~~

i= 1:1

~ ~~ .y,.~ ~ .."',.~...,,~~...,.." ~.' -::; : ~.........

/ J~~' j

z, Example:

~

Z2~

V

~1JO~ ~ ",

.... ."'" z.

"-

Z. Check:.

d = 40 mm; P, = 450; P, = 6 mm; nc = 40

.. , SoluDon: Helix angle:

tan f3=

1rd

-

Pz

=

3.14x 40

450

'

=

= O.2791; f3 15"36

p = Z2 X Z4 X Pz X nc z ZI x ~

100x 24 x 6 x 40 40x22 = 450 mm

Changegears= ~ x Z) = Pz nc = 6 x 40 = 2 x 4 = 40 x 32

~

Z4

Pz

450

5x 3

100 x 24

Example: d = 42mm; p. = 26f

"'667mm; Pz = 4 threadsper inch =

. . SoIUDon: Helix angle tan f3=

d

Change gears:

~

Z2

lr X

-

Pz

=

3.14x 42

f

= 0.1977;f3 = 11°11'

667

x Z) = Pz nc = t" x 70 = I x 40 x 4 = .!. = 2 x 4 Z4 Pz 105/4 4 x 105 21 3x 7 24 x 32

=-

36 x 56

Check: p = Z2 X Z4 X Pz X nc z ZIXZ) = 36x54 X.!.X40 24 x 32 4 = 210 = 26~H 8 4

Westermann Tables

113

Shaping and planning Cutting speed and feed Caststeel Steel

Steel

Typeof tool

Gunmetal

Grey casting

Light alloy

Cutting speed v in mlmin

Tool steel 10 ... 15 High speedsteel 15... 20

Roughing

V

9... 12 12... 16

8... 12 12... 16

15...20 20...25

Tool steel

15...20

12... 16

12... 16

14... 18

20... 25

High speed steel

20...25

16...20

16...20

18...22

30...40

Finishing

VV

8... 12 12... 16

30... 35

50...60

Feed s in mmper stroke

Tool steel High speed steel

0.1 ... 1

0.2...6 0.6...12 Calculating the required machining time

L= s

Length

= Return

Time taken by cutting stroke

=

_ R

-

la

speed

=

in mImin

L Ve x 1000

min

Length of stroke Cutting stroke speed L

t= R

min

VR X 1000

Length of stroke Return stroke speed

-

L

t=

Time taken by one complete stroke

L

+

Ve x 1000 VR X 1000

t = Time for cutting-stroke plus time for return stroke

Z=£' S

Number of complete stroke

Z=

la and

stroke speed in mImin stroke

te

Time taken by return stroke t

I plus

=

VR

e

of workpiece

(approach and overtravel) Feed per stroke in mm

Vc = Cutting

t

= Length

of stroke

Width of work Feed

Required machining time tm= Number of complete strokes x time taken by one complete stroke

t =-x m b S Average speed VA

2V

xV

+

(LVe x 1000 VRXL)1000 .

or

inmin

= Vee + VRR m/mm

b 2L t =- X m s Vmx 1000

When n, the number of complete strokes per min is known, the average speed VAcan be calculated using the formula V

A

Example:

Width of workpiece b Vc

=200, Length = 10 m/min

of workpiece plus over travel L VR

tm = -; b( Ve xL1000 + VR xL)1000

=20 m/min

inmin

= 400

= 2L

x n m/min

1000

mm

s=5mm

=""5 2oo( 10,000 400 + 20,000 400) =""5 200 x 2000 1200 = 2.4mm.

114

Westermann Tables Grinding Hardness and granulation of the grinding wheel Granulation

.

Hardness of the Grinding wheel is the hardness of the bonding agent. Bonding agent (determines the hardness of the grinding wheel)

2.4mm

Abrasive grain (grinding agent)

Sieves are used to sort out grains by their size.

Sieve mesh number size number

= abrasives

O.6mm

Grade code

Grade of the grinding wheel

is the grain size distribution.

Grain size (grit)

Code grit

Soft

ABCDEFGH

Coarse

10, 12, 14, 16, 20, 24

Medium

IJKLMNOP

Medium

30, 36, 46, 54, 60

QRSTUVWXYZ

Fine

80, 100, 120. 150. 180

Hard

Very fine

220,240,280,320,400,500,600

Properties of material to be ground and kind of abrasive to be used Hard materials above 35 kgf/mm2,

Aluminium

oxide

e.g. steel, malleable iron cast steel Soft and brittle materials up to 35 kgf/mm2,

Silicon carbide

e.g. grey cast iron, brass, bronze, copper, aluminium,

plastic

Grinding and types of bonds Vitrified bond

General grinding of various materials Face grinding with large area of wheel in contact.

Silicate bond

Grinding of items sensitive to heat, such as cutters and precision tools Super finish grinding of chill castings, cast iron rollers, hardened steel cams, Aluminion

Rubber bond

pistons

Structure of grinding wheel Finish grinding and polishing

Dense structUre

Hard and brittle materials

(Low porosity)

Rough grinding

Coarse structure (High porosity)

Materials and hardness of the grinding wheel

Material and grit size

Soft materials-hard

Soft material--coarse grains

wheels

Hard materials-soft wheels

Hard material-fine

grains

grain

Westermann Tables

115

Peripheral speeds of grinding wheels Type of grinding

Peripheral speed Use higher values to grind workpieces from steel

Cylindrical

25... 30 mls

grinding

/

/

)

Internal grinding

15 ... 20 mls

Surface grinding

20...25

Tool grinding

18 ... 20 mls

Parting-off

mls

Use lower values to grind workpieces from grey cast iron

...80 mls

grinding

Longitudinal feed s

~

b"5('

Rate of feed s per revolution of the workpiece in fraction of the breadth (width) b of the grinding wheel

"

"""

',".

..n

,

;,

" ~...:..

5

Cylindrical

Steel Rough grinding

2 3'

Finish grinding

I 4''''

Internal grinding

grinding

Steel

Grey cast iron

Grey cast iron

3

3 4''''

5 '6

I '2'"

3 4'

2 3'"

I '3

I '3'"

I '2

I 4''''

I 4'

1 1 4 .. . 3

"4'

4 '5

Depth of cut

Material

Finish grinding

Rough grinding 0.01 mm...

Steel

0.005 mm ... 0.01 mm

0.06 mm

Peripheral speed of the workpiece; Hardness and grit of the grinding wheel Internal grinding

Cylindrical grinding Material

I I

Peripheral speed v m/min

Annealed Steel

rough gr. finish gr.

12 ... 15 9... 12

Hardened

rough gr.

14... 16

roughgr. finishgr.

9... 12 12... 15 9... 12 18...20 14... 16

Aluminium I roughgr.

40... 50

finish gr.

28... 30

Steel Greycast iron Brass

Peripheral

v grinding Typeqf

finishgr. roughgr. finishgr.

,-

Grain/Hardness 46L...M 46K

46K 36K... 46J 30K ... 40J

Face grinding

(t(e?

speed v m/min

Grain/Hardness

16...21

45... 50J ... 0

~

Grain/Hardness

30... 60J

-

18...23 18... 23

25...30 32...35

I

46K... 60H

I

40... 46K ... M

I

36K...46J

I

308

30...608... 16...3OJ...K

-

-

K

116

WestermannTables Number of revolutions for grinding wheels

Grinding wheel

Peripheral speed in mIs 15m

20m

25m

= nnp

n

Grinding wheel

30m

35m

Peripheral speed in mIs 15m

qJ

20m

25m

30m

35m

mm

0 mm

rmp of the wheel

rmp of the wheel

10 15 20

28600 19100 14300

38200 25500 19100

47700 31800 23900

57300 38200 23900

68600 44600 33400

130 150 175

2200 1900 1635

2950 2550 2200

3670 3200 2730

4400 3800 3270

5150 4450 3800

25 30 35

11500 9500 8100

15300 12700 10900

19100 15900 13600

23000 19100 16300

26750 22200 19100

200 225 250

1440 1275 1150

1910 1700 1525

2390 2100 1900

2875 2550 2300

3350 2975 2675

40 45 50

7160 6300 5730

9550 8490 7650

11940 10600 9550

14320 12740 11450

16700 14860 13400

275 300 350

1030 950 820

1400 1275 1090

1700 1590 1370

2060 1900 1640

2400 2230 1900

60 65 70

4750 4400 4050

6350 5900 5450

7950 7350 6800

9950 8800 8150

11100 10300 9550

400 450 500

725 635 575

960 850 770

1200 1060 960

1450 1275 1150

1675 1485 1340

75 80 90

3825 3580 3185

5100 4775 4245

6380 5970 5300

7650 7160 6370

9000 8350 7430

550 600 650

515 475 440

700 640 590

850 800 730

1030 950 875

1200 1110 1030

100 115 125

2865 2490 2300

3825 3320 3015

4775 4150 3800

5730 4980 4600

6700 5815 5300

700 750 800

405 380 360

540 510 475

675 635 600

810 765 715

950 890 835

Number of revolutions for workpiece Workpiece d

n=nnp

Peripheral speed of the workpiece in mImin

6m

8m

10m

12m

382 238 191 159 136 119 106 95 87 76 68 59 53 47 42 38 34 30 27 23 21 19 17 15 13 12

510 318 255 212 182 159 141 128 115 102 99 79 71 63 56 51 45 40 36 31

636 396 318 265 227 199 177 159 145 127 114 99 88 79 70 63 57 51 45 39

764 477 382 318 273 239 212 191 174 153 136 119 106 95 85 76 68 61 55 47

28 25 23 20 18 16

35 31 29 25 23 19

42 38 35 30 27 24

15m

18m

20m

24m

28m

32m

1148 716 574 477 409 358 318 287 260 229 205 179 159 143 127 115 102 99 82 71 63 57 52 45 41 36

1280 797 640 631 455 398 354 319 289 225 228 199 177 159 141 127 114 101 91 79 71 63 58 51 45 39

1528 955 764 637 546 477 424 382 347 306 273 239 212 191 170 153 136 121 109 95 85 76 69 61 55 48

1784 1114 892 743 637 557 495 446 405 357 318 279 247 223 198 178 159 141 127 III 99 89 81 71 64 56

2038 1273 1019 849 728 637 566 509 459 408 364 318 283 254 226 204 182 162 145 125 112 102 93 81 73 64

0 mm 5 8 10 12 14 16 18 20 22 25 28 32 36 40 45 50 56 63 70 80 90 100 110 125 140 160

rpm of workpiece

956 597 478 398 341 298 265 239 217 190 171 149 132 119 106 95 85 76 68 59 53 47 43 38 34 29

Machining time in grinding Machining time for surface grinding

Machining time for cylindrical and internal grinding

L

I ,.

~J I

'" (h

/'

~

I = Length of workpiece to be ground b Width of workpiece to be ground v Velocity of table in mlmin s =Feed in mmlstroke

= =

t

m

Ixbxx =vxlOOOxs

118

Westermann Tables Folding, edging and cold bending

Smallest allowable radius of bend r bending angles a ~ 120° (for a>

I

1.5

2.5

3

4

Up to thickness s of 5 6 7 8

Up to 40 kg/mm2

I

1.6

2.5

3

5

6

8

10

from 40 to 50 kg/mm2

1.2

2

3 4

4

5

8

10

8

10

1.6

2.5

5

6

The flat bank length can be calculated as follows:

---~

-1-1 T

Steel quantities having a tensile strength of

from 50 to 65 kg/mm2

~

120° take

.the next following greater computed value from the tables; the same rule stands if the folding and/or bending is to take place along the axis the material had been rolled during the production).

10

12

14

16

18

20

12

16

20

25

28

36

40

12

16

20

25

28

36

40

45

12

16

25

32

36

45

60

20

Correction factor q Ratio R:s

0.5

Correction factor

0.5

Examples

for computing

the length before bending

~~ d

Length of legs

a

=50,

b

=130,

c = 240,

d=50, Bend radius L

= Flat

R,=20, blank

length

a, b = Length of legs R = Bend radius q = Correction factor s = Material thickness

a = Bendangle L = a + (R + q x s/2) 1Ca 180 +b+...

R3= 32, R2=20

Bend angles at =90°, a2 =45°, a3 = 135° Correction factors q, = 0.8, q2= 0.8, % = 0.96 na na 1Ca L = a + (R. + q. x sl2)---1.. + b + (R2 + q2 x sl2) 1. + c + (R3 + q3 x s/2)--1- + d ISO ISO 180 10 22 90 10 22 45

= 50+ (20+ 0.8x -)x - + 130+(20+0.8x -)x2 7 180 2 7 180 II

= 50 + (24)- 7

+ 130 + (24)-

10 22 135 + 240+ (32 + 0.96x -)x - +50 2 7 ISO II 13 + 240 + (36.8)-

+ 50

14 14 = 50 + 24 x 1.57 + 130 + 12 x 1.57 + 240 + 36.8 x 2.35 + 50

= 50 + 37.68 = 613.00 mm 166 R2=20

+ 130 + 18.84 + 240 + 86.48 straight

unbent

a=4O,b=

Bend radius:

R. = 6, R2= 20 s=4.0

thickness:

166,c=56

a. = a2 = 900

Bend angle: Correction

factor:

na. na2 L = a.+ (Rt + q. x s/2)+ b + (R2 + q2 x sl2)+ c ISO 180 = 40 + 11.618 + 166.0 + 34 - 54 + 56.0 mm straight unbent length

+ 50

length

Length the legs: Material

= 308.15

R2=20 s= 10

q, = 0.7 q. = I

119

Westermann Tables Presstool operations Punching operations

Forming operations

Piercing

Bending

.

Cutting a required shape in a

Forming with a bending tool.

.'

strip of blank. Punchings are

i. .

considered as waste.

Cutting required profile of a Punchings

.:\.:.T.""O'

.

Bending operation done by

are

.'>'''''.

the products.

.,'

.

'

Curling

Blanking

component.

.., """".'::.:

1)".,,,:..

"(.".;..

..;:.!:..;:f',:,,

beading

....

-" ....... '. ..:';

dyes

or sliding