Toxic Chemical and Explosives Facilities. Safety and Engineering Design 9780841204812, 9780841206267, 0-8412-0481-0

Content: Safety design considerations in munition plants layout / Richard M. Rindner and Irving Forsten -- Shielding of

629 106 13MB

English Pages 346 Year 1979

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

Toxic Chemical and Explosives Facilities. Safety and Engineering Design
 9780841204812, 9780841206267, 0-8412-0481-0

Citation preview

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.fw001

Toxic Chemical and Explosives Facilities

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.fw001

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Toxic Chemical and Explosives Facilities Safety and Engineering Design

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.fw001

Ralph A.Scott, Jr.,

EDITOR

Department of Defense Explosives Safety Board

Based on a symposium sponsored by the Division of Chemical Health and Safety at the 176th Meeting of the American Chemical Society, Miami Beach, Florida, September 11-13, 1978.

96

ACS SYMPOSIUM SERIES

AMERICAN

CHEMICAL

SOCIETY

WASHINGTON, D.C. 1979

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.fw001

Library of Congress CIP Data Toxic chemical and explosives facilities. (ACS symposium series; 96 ISSN 0087-6156) Includes bibliographies and index. 1. Explosives—Safety measures—Congresses. 2. Chemicals—Safety measures—Congresses. I. Scott, Ralph A., 1930. II. American Chemical Society. Division of Chemical Health and Safety. III. Series: American Chemical Society. ACS symposium series; 96. TP295.T69 ISBN 0-8412-0481-0

614.8'32 ASCMC 8

79-9760 96 1- 352 1979

Copyright © 1979 American Chemical Society All Rights Reserved. The appearance of the code at the bottom of the first page of each article in this volume indicates the copyright owner's consent that reprographic copies of the article may be made for personal or internal use or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to copying or transmission by any means—graphic or electronic—for any other purpose, such as for general distribution, for advertising or promotional purposes, for creating new collective works, for resale, or for information storage and retrieval systems. The citation of trade names and/or names of manufacturers in this publication is not to be construed as an endorsement or as approval by ACS of the commercial products or services referenced herein; nor should the mere reference herein to any drawing, specification, chemical process, or other data be regarded as a license or as a conveyance of any right or permission, to the holder, reader, or any other person or corporation, to manufacture, reproduce, use, or sell any patented invention or copyrighted work that may in any way be related thereto. PRINTED IN T H E UNITED

STATE

OF

AMERICA

American Chemical Society Library 1155 16th St. N. W. Washington D. C. 20036

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.fw001

ACS Symposium Series Robert F. Gould, Editor

Advisory Board Kenneth B. Bischoff

James P. Lodge

Donald G. Crosby

John L. Margrave

Robert E. Feeney

Leon Petrakis

Jeremiah P. Freeman

F. Sherwood Rowland

E. Desmond Goddard

Alan C. Sartorelli

Jack Halpern

Raymond B. Seymour

Robert A. Hofstader

Aaron Wold

James D. Idol, Jr.

Gunter Zweig

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.fw001

FOREWORD The A C S S Y M P O S I U M SERIES was founded in 1 9 7 4 to provide

a medium for publishing symposia quickly in book form. The format of the Series parallels that of the continuing A D V A N C E S IN C H E M I S T R Y SERIES except that in order to save time the papers are not typeset but are reproduced as they are submitted by the authors in camera-ready form. Papers are reviewed under the supervision of the Editors with the assistance of the Series Advisory Board and are selected to maintain the integrity of the symposia; however, verbatim reproductions of previously published papers are not accepted. and

Both reviews

reports of research are acceptable since symposia may

embrace both types of presentation.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

PREFACE Since W o r l d W a r II the development and use of new chemicals, chemical processes, environment.

and chemical products have

created

a new industrial

Technology, which gave us progress, also has supplied

some techniques for identifying those substances that are hazardous and for protecting workers who use the hazardous materials.

T o understand

the threat posed to employees by explosives and toxic substances, it is necessary to understand the proliferation of chemicals, the difficulties of

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.pr001

identifying illnesses caused by exposure to toxic substances,

and the

ways of controlling and quantitatively measuring these hazards so that the risk to employees is minimized.

The establishment of multilevel

regulatory controls depending upon the estimated degree of exposure risk and the amount of toxicological information available is presented. The symposium papers provide a means for developing and subsequently implementing relevant engineering design criteria which are the most efficient and cost effective for explosives and toxic chemical facilities. F o r both facilities, the series of papers provide the means for classification, measurement, and control of inherent hazards.

Practical examples

are

provided on specific work practices and engineering controls for propellant and propulsion facilities, and for the production, storage, maintenance, surveillance, and demilitarization of explosives. Practical examples of the engineering design criteria used in the design of new university chemical laboratories, in handling and transportation of toxic chemicals, and in the National Cancer Institute's Chemical Carcinogen Facilities are included in this symposium series.

This symposium series also provides design

criteria needed for both explosives and toxic chemical facilities, examples of which are the design of lightning prediction and protection systems, and electrical requirements in hazardous locations. Department of Defense

R . A. SCOTT, JR.

Explosives Safety Board Alexandria, Virginia December, 1978

ix

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

1 Safety Design Considerations in Munition Plants Layout R I C H A R D M . R I N D N E R and

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

ARRADCOM,

IRVING F O R S T E N

Dover, NJ 07801

Criteria and methods "based on r e s u l t s of a c c i d e n t a l explosions have been used until the m i d - s i x t i e s f o r the design of h i g h e x p l o s i v e manufacturing and storage facilities. These criteria, however, d i d not i n c l u d e a d e t a i l e d or r e l i a b l e q u a n t i t a t i v e b a s i s f o r assessing a degree of p r o t e c t i o n a f f o r d e d by the protective facility, and as a r e s u l t P i c a t i n n y A r s e n a l (nov p a r t of ARRADCOM) in the e a r l y 60's entered i n t o a broad tri-service program o f a n a l y s i s , t e s t i n g , and e v a l u a t i o n of s t r u c t u r e s designed t o a f f o r d p r o t e c t i o n against the e f f e c t s of a c c i d e n t a l explosions. The experimental work i n v o l v e d model and full s c a l e t e s t i n g of r e i n f o r c e d concrete s t r u c t u r e s and t h e i r components. New designs were conceived and the t h r e s h o l d c a p a c i t i e s of various s t r u c t u r a l c o n f i g u r a t i o n s were determined. The validity o f the use of s c a l e d model t e s t i n g t o r e p l a c e full s c a l e t e s t s was demonstrated. The product o f t h i s 8 year systematic study was the p u b l i c a t i o n of the s a f e t y design manual e n t i t l e d , " S t r u c t u r e s t o R e s i s t the E f f e c t s o f A c c i d e n t a l E x p l o s i o n s " (Army's P u b l i c a t i o n TM5-1300). An o u t l i n e o f s t u d i e s l e a d i n g t o p u b l i c a t i o n o f t h i s manual is shown in F i g 1. The manual contains procedures, c h a r t s , and t a b l e s r e q u i r e d t o e s t a b l i s h the environment of an e x p l o s i o n and its output i n terms of b l a s t and fragments. The r e l a t i o n s are presented i n such a manner t h a t the type of p r o t e c t i v e s t r u c t u r e may be s e l e c t e d , analyzed, and designed t o provide a safe level o f p r o t e c t i o n f o r personnel, equipment, and f o r s e p a r a t i o n of p o t e n t i a l l y mass detonating m a t e r i a l s . In the course o f the a p p l i c a t i o n o f the manual t o the ArmyWide Munition Plant Modernization Program, p o t e n t i a l areas f o r improving and r e f i n i n g the manual appeared. Whenever s p e c i f i c information was not a v a i l a b l e , the most conservative approach was used. Consequently an extensive program, i n c l u d i n g t e s t i n g , was initiated t o e s t a b l i s h data and procedures t o supplement and/or modify the e x i s t i n g r e g u l a t i o n s and t o a s s i s t designers i n developing the most economical and safe facilities.

This chapter not subject to U.S. copyright. Published 1979 American Chemical Society In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

2

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

1.

RINDNER AND FORSTEN

Munition

Plant

Layout

3

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

The o v e r a l l program was d i v i d e d i n t o s e v e r a l separate "but i n t e r r e l a t e d phases, which w i l l "be presented i n t h e f o l l o w i n g d i s c u s s i o n as shown i n F i g 2. These a r e : (a)

TNT Equivalency I n v e s t i g a t i o n

(b)

Safe Separation Distance

(c)

E x p l o s i v e S e n s i t i v i t y t o Impact by Primary and Secondary Fragments

(d)

B l a s t E f f e c t s and S t r u c t u r a l Response Studies

(e)

Hazard C l a s s i f i c a t i o n S t u d i e s o f In-Process Hazardous Materials

(f)

Development o f S p e c i a l Purpose Water Deluge Systems

Determination

In the f o l l o w i n g pages the i n d i v i d u a l phases w i l l be d i s cussed i n some d e t a i l . TNT Equivalency Study The purpose o f t h i s study i s t o generate peak pressure and impulse data on e x p l o s i v e s , p r o p e l l a n t s , and other hazardous m a t e r i a l s which are compared t o s i m i l a r parameters obtained from a hemispherical surface b u r s t o f TNT ( F i g 3). The r e s u l t s are reduced t o a TNT equivalency v a l u e , which i s d e f i n e d as the weight r a t i o o f TNT t o t e s t m a t e r i a l f o r a given output c o n d i t i o n . Various f a c t o r s i n f l u e n c e t h e magnitude o f TNT equivalency. These i n c l u d e ; charge geometry, c r i t i c a l mass/dimensions, confinement, distance from t h e charge b u r s t , and method o f i n i t i a t i o n . Measurements o f a i r b l a s t overpressure and impulse were made at 12 gage l o c a t i o n s along a double b l a s t l i n e ( F i g h). The gages were spaced at s e l e c t e d s c a l e d distances ranging from a p p r o x i mately 2 - 2 0 f t / l b s / 3 . The pressure transducers were i n s t a l l e d f l u s h e d with the top surface o f a concrete s l a b i n mechanically i s o l a t e d s t e e l p l a t e s . The t e s t item was p l a c e d on a s t e e l witness p l a t e l o c a t e d on the surface o f the s l a b . Fastax motion p i c t u r e s were taken o f a l l t e s t s . On the b a s i s o f experimental data on a v a r i e t y o f explosives, p r o p e l l a n t s , and p y r o t e c h n i c s , we have observed t h a t these mater i a l s f a l l i n t o two c a t e g o r i e s , which can be described i n terms of t h e i r TNT equivalency-distance curves. The two c a t e g o r i e s are c h a r a c t e r i z e d as marginal e x p l o s i v e s and high e x p l o s i v e s . The shape o f these curves f o r m a t e r i a l s t h a t we c a l l marginal explos i v e s , such as Black Powder, can be seen i n F i g 5. The TNT equivalency i n c r e a s e s with s c a l e d d i s t a n c e t o approximately 10 f t / l b ! / 3 and then decreases. In a l l cases, however, the maximum value o f TNT equivalency i s w e l l below 100 percent. Materials, 1

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

4

OBJECTIVES •

SUPPORT MODERNIZATION & EXPANSION

PROGRAM



MODIFY OR SUPPLEMENT S A F E T Y M A N U A L & DESIGN

GUIDES

PURPOSE •

U P G R A D E PROTECTIVE S T R U C T U R E S , PROCESSES & FACILITIES DESIGNS AGAINST A C C I D E N T A L

EXPLOSIONS

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

PROJECTS •

T N T EQUIVALENCY TESTS



SAFE SEPARATION DISTANCE



PRIMARY A N D SECONDARY FRAGMENTS INVESTIGATIONS



BLAST E F F E C T S A N D S T R U C T U R A L RESPONSE STUDIES



IN-PROCESS M A T E R I A L



DELUGE SYSTEM DEVELOPMENT Figure 2.

DETERMINATIONS

HAZARDS

CLASSIFICATION

Protective technology for accidental explosions

OBJECTIVE •



D E T E R M I N E E X P L O S I V E O U T P U T (PEAK P R E S S U R E & IMPULSE) •

EXPLOSIVES



PROPELLANTS



OTHER HAZARDOUS MATERIALS

TNT EQUIVALENCY V A L U E =

W

T

0

F

T

N

T

(%)

W T O F MAT'L * * G I V E S S A M E E X P L O S I V E O U T P U T A T S A M E D I S T A N C E AS T N T AIRBLAST CHARACTERISTICS •

D E P E N D E N T UPON M A N Y V A R I A B L E S •

SPECIFIC F O R M O F M A T E R I A L

#



Q U A N T I T Y ( C H A R G E WEIGHT)

#



PHYSICAL S T A T E (DENSITY, T E M P , C O N C E N T R A T I O N . )

#



GEOMETRY DISTANCE STIMULI ( M E T H O D O F BOOSTERING)

CONFINEMENT

TESTS •

V A R I E T Y O F T E S T S E T U P S ( I N - P R O C E S S & E N D ITEM) Figure 3.

TNT equivalency

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

RINDNER AND FORSTEN

Munition

Plant

Layout

MESS PLATE

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

IAL MARKERS

Figure 4.

Typical test setup, equivalency tests

IMPULSE TNT EQUIVALENCY, PERCENT

PRESSURE TNT EQUIVALENCY, PERCENT

102-

10

3

PRESSURE

-102

10IMPULSE

10O-

10

10-' 10°

10 SCALEDvDISTANCE, A, F T / L B

Figure 5.

10°

1 10 1

/

2

3

TNT equivalency (black powder weights of 500-4500 pounds)

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

6

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

that we c l a s s i f y as high e x p l o s i v e , such as N i t r o g l y c e r i n e , have a TNT equivalency (as shown i n F i g 6) w e l l above 100$ at c l o s e d i s t a n c e s , and decreasing t o l e s s than 100$ a t f a r - o u t d i s t a n c e s . F i n a l l y F i g 7 summarizes r e s u l t s o f the TNT equivalency studies f o r a few s e l e c t e d e x p l o s i v e s , p r o p e l l a n t s , a n d p y r o t e c h n i c s .

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

Safe Separation Distance

Determination

The purpose o f t h i s program i s t o e s t a b l i s h safe separation distances r e l a t i v e t o e x p l o s i v e end-items and in-process materials, as w e l l as c r i t i c a l and safe depths o f bulk explosives on conveyors, hoppers, tubes, o r other t r a n s f e r l i n e s . Safe separation s t u d i e s were conducted t o achieve increased production and cost e f f e c t i v e n e s s with improved s a f e t y . A t y p i c a l ammunition production l i n e flow diagram ( i n t h i s case f o r the manu f a c t u r e o f 105 mm p r o j e c t i l e ) c o n s i s t s o f s e v e r a l work areas as shown i n F i g 8. ( ( l ) Receiving and storage, (2) Box open and i n s p e c t (3) Melt Pour (k) Cool (5) Hold (6) Funnel P u l l and (T) R i s e r Preparation.) E x p l o s i v e m a t e r i a l i s t r a n s f e r r e d by automatic conveyor between these work areas. The requirement was t o e s t a b l i s h safe separation between e x p l o s i v e boxes, p a l l e t s with and without f u n n e l s , buckets, and t o determine c r i t i c a l height o f continuous feed f l a k e Comp B and TNT. The o b j e c t i v e o f these t e s t s was t o e s t a b l i s h minimum nonpropagation distances between these items so t h a t an explosion chain r e a c t i o n w i l l be prevented. The next few photos i l l u s t r a t e the t e s t set-up f o r v a r i o u s t e s t c o n f i g u r a t i o n s s i m u l a t i n g , as c l o s e l y as p o s s i b l e , t h e p l a n t o p e r a t i o n a l l i n e . F i g 9 shows a t e s t set-up f o r e s t a b l i s h i n g c r i t i c a l height o f Comp B f l a k e u t i l i z i n g a commercially a v a i l a b l e corrugated rubber conveyor. F i g 10 shows a t y p i c a l set up f o r establishment o f safe s e p a r a t i o n d i s t a n c e between p a l l e t s c o n t a i n ing s i x t e e n (l6) 105 mm s h e l l , and F i g 11 shows a t e s t set-up t o e s t a b l i s h safe separation between t h e t o t e b i n s t r a n s p o r t i n g 165 l b o f Comp AT i n a t u n n e l s t r u c t u r e s i m u l a t i n g a p l a n t t u n n e l o r ramp. The t e s t s c o n s i s t e d o f an e x p l o r a t o r y phase t o e s t a b l i s h the safe non-propagation d i s t a n c e , and a confirmatory phase t o confirm s t a t i s t i c a l l y the v a l i d i t y o f the e x p l o r a t o r y t e s t results. Along with the safe separation distance c r i t e r i a , an attempt i s made t o evaluate, by s t a t i s t i c a l a n a l y s i s , t h e p r o b a b i l i t y o f an explosion propagation o c c u r r i n g . The p r o b a b i l i t y o f the occurrence o f an e x p l o s i o n propagation,is dependent upon t h e confidence l e v e l i n v o l v e d and has a lower and upper l i m i t . The lower l i m i t f o r a l l confidence l e v e l s i s zero; whereas, t h e upper or p r a c t i c a l l i m i t i s a f u n c t i o n o f the number o f observations o r acceptors t e s t e d . F i g 12 represents a f a m i l y o f curves r e l a t i n g the number o f t e s t s t o t h e p r o b a b i l i t y o f the occurrence o f e x p l o s i o n propagation f o r acceptable l e v e l s o f confidence.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

RINDNER AND FORSTEN

Munition

Plant

Layout

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

1.

Figure 6.

TNT equivalence of nitroglycerine

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

7

8

TOXIC CHEMICAL A N D EXPLOSIVES FACILITIES

IMPULSE EQUIV M A X I M U M (%)

MATERIAL

PRESS E Q U I V M A X I M U M (%)

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

B L A C K POWDER •

L A R G E SCALE TESTS

50

40



SMALL SCALE TESTS

24 (30 R E C O M M E N D E D FOR DESIGN)

11

N-5 PROPELLANT #

S L U R R Y (88% W A T E R )

0

0



P A S T E (30% W A T E R )

2

4



P A S T E (10% W A T E R )

70

90

NITROGUANIDINE

80

100

GUANIDINE NITRATE

85

55

GUANIDINE NITRATE REACTOR

55

85

190

240

NITROGLYCERINE PYROTECHNICS •

105MM I L L U M I N A N T

70

60



M49A1 T R I P F L A R E

80

78



105MM F I R S T F I R E

100

60

Figure 7.

TNT equivalency results

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

RINDNER AND FORSTEN

Munition

Plant

Layout

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

1.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

9

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

Figure 9.

Figure 10.

Test set-up to establish crit. ht. of comp B

Test arrangement with 16 projectiles primed

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

RINDNER AND FORSTEN

Munition

Plant

Layout

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

1.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

11

12

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

Primary and Secondary Fragments Impact I n v e s t i g a t i o n The purpose o f t h i s experimental program i s t o e s t a b l i s h a fragment mass-velocity r e l a t i o n s h i p below which no detonation propagation w i l l . o c c u r . By d e f i n i t i o n , primary fragments are those t h a t r e s u l t from a break-up o f t h e explosive casing i n t h e event o f a detonation. U s u a l l y these fragments are c h a r a c t e r i z e d by having high v e l o c i t y and b e i n g comparatively small i n s i z e . The experimental set-up i s shown s c h e m a t i c a l l y i n F i g 13. The s t e e l fragment impacting the acceptor charge simulates a fragment r e s u l t i n g from the break-up o f the s h e l l c a s i n g . The e n t i r e e x p l o s i v e t r a i n , i n c l u d i n g a booster charge, was p l a c e d on top o f a 5" square L u c i t e b u f f e r p l a t e o f v a r y i n g thickness which c o n t r o l l e d the fragment v e l o c i t y . Glued t o t h e L u c i t e was t h e s t e e l fragment o f d e s i r e d t h i c k n e s s and f r o n t a l area. Two types of t a r g e t s were used, namely; s o l i d and molten explosives with the acceptor cover p l a t e o f v a r y i n g t h i c k n e s s over t h e e x p l o s i v e . A h i g h speed camera was the only instrumentation used t o r e c o r d fragment v e l o c i t y data. Fragment v e l o c i t y was computed by d i v i d ing the distance t r a v e r s e d by the time i t took t o t r a v e l that d i s t a n c e . F i g ik i s a g r a p h i c a l r e p r e s e n t a t i o n f o r both s o l i d and molten Comp B. As expected, the molten Comp B i s more s e n s i t i v e t o fragment impact than s o l i d Comp B, however t h e d i f f e r e n c e i n s e n s i t i v i t y i s not very s i g n i f i c a n t . By d e f i n i t i o n , secondary fragments are those other than primary fragments that r e s u l t from the detonation o f e x p l o s i v e charges, such as w a l l break-up, pieces o f equipment^ e t c . They are u s u a l l y c h a r a c t e r i z e d by having a lower v e l o c i t y than primary fragments (seldom exceeding 1,000 f t / s e c ) and having large mass. A s e r i e s o f experiments were- conducted at the I l l i n o i s I n s t i t u t e of Technology Research I n s t i t u t e (IITRI) Test F a c i l i t y t o d e t e r mine e x p l o s i v e s e n s i t i v i t y t o impact by concrete fragments. F i g 15 simulates a s i t u a t i o n where w a l l fragments r e s u l t i n g from donor detonation impact the acceptor. The concrete fragments u t i l i z e d i n t h i s program were launched from a 12" gun as shown i n F i g 16. This a i r gun i s capable o f launching fragments at a wide range o f weights and v e l o c i t i e s . The experiments u t i l i z e d both s o l i d concrete c y l i n d e r s as w e l l as concrete rubble packed i n t o a cardboard container t o simulate a fragment from a concrete w a l l . T y p i c a l test, r e s u l t s (of t h e " j u s t f i l l e d " c o n f i g u r a t i o n r e p r e s e n t i n g a 155 mm s h e l l f i l l e d with molten Comp B) are shown i n F i g IT. As can be seen, h i g h order detonations were recorded at fragment v e l o c i t i e s o f approx. 1,100 f t / s e c and fragment s i z e o f 50 l b s . Other t e s t s i n the same s e r i e s i n v e s t i g a t e d s e n s i t i v i t y o f v a r i e t y o f items, e x p l o s i v e s , and p r o p e l l a n t s t o fragment impact. I t i s expected t h a t these and f u t u r e t e s t s w i l l p r o v i d e e m p i r i c a l r e l a t i o n s h i p s between fragment-mass/velocity, f o r v a r i o u s casing thicknesses and other chemical and p h y s i c a l c h a r a c t e r i s t i c s o f e x p l o s i v e

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

RINDNER AND FORSTEN

Munition

Plant

Layout

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

1.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

13

14

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

2.0

-

^

-

SOLID COMP B

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

• M O L T E N COMP B —

N O T E : A L L D A T A FOR 0.125 N C H THICK A C C EPTOR PL A T E S

0 0

1000

2000

3000

4000

5000

6000

F R A G M E N T V E L O C I T Y (FPS)

Figure 14.

Minimum velocity for detonation—molten and solid comp B

Secondary Fragment

Figure 15.

Secondary fragment effect

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

7000

RINDNER AND FORSTEN

Munition Plant Layout

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

1.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

15

16

TOXIC CHEMICAL AND EXPLOSIVES

JUST FILLED

FACILITIES

CONFIGURATION

155 M M H O W I T Z E R P R O J E C T I L E , C O M P B A T 2 0 0 ° F; L O A D I N G F U N N E L IN P L A C E ; I M P A C T E D B Y 12 IN D I A M E T E R C O N C R E T E

FRAGMENT

CONCRETE FRAGMENT TEST

TYPE

LENGTH

WEIGHT

(IN)

(LB)

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

NO

A

B

VELOCITY (FPS)

KINETIC ENERGY

3

RESULTS'

JS - 1

SOLID

6

70

181

JS - 2

SOLID

6

50

1100

C

1.5

C

JS - 3

SOLID

6

50

1100

C

1.5

C

JS - 4

SOLID

6

53.5

800

0.86

NO GO

JS - 5

SOLID

6

52

900

1.1

NO GO

JS - 6

SOLID

6

53.5

869

1.0

NO GO

JS - 7

SOLID

6

53.5

1065

1.5

NO GO

1.2

NO GO HO HO

5

O N E E N E R G Y U N I T = 6.2 X 1 0 F T L B NO GO = NO REACTION HO = HIGH O R D E R

C

DESCRIPTION

DETONATION

ESTIMATED Figure 18.

Summary of pre-engineered building test results

TEST NO.

PRESSURE (PSD

1

0.27

MINOR D A M A G E T O W A L L & R O O F P A N E L S

2

0.55

SIMILAR T O T E S T 1

3

0.74

F U R T H E R D A M A G E TO W A L L P A N E L S & D A M A G E T O GIRTS

4

1.00

F U R T H E R D A M A G E T O W A L L P A N E L S & GIRTS

5

1.20

F U R T H E R D A M A G E T O W A L L P A N E L S & GIRTS, & MINOR D A M A G E T O F R A M E S

6

1.30

SIMILAR T O T E S T 5

DAMAGE

Figure 17.

Summary of test results

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

3

1.

RINDNER AND FORSTEN

Munition

Plant

17

Layout

m a t e r i a l s . T h i s could l e a d t o a b e t t e r understanding o f the phenomena governing s e n s i t i v i t y and i g n i t i o n mechanisms f o r detonation propagation. B l a s t E f f e c t s and S t r u c t u r a l Response f o r Acceptor S t r u c t u r e s In my i n t r o d u c t o r y p o r t i o n o f t h i s paper I mentioned t h a t i n the 60 s we developed a s a f e t y design manual (TM5-1300) which deals p r i m a r i l y with the design of p r o t e c t i v e s t r u c t u r e s l o c a t e d i n the h i g h pressure r e g i o n c l o s e - i n t o a detonation. At present, the work i n t h i s area i s d i r e c t e d towards d e v e l opment of design c r i t e r i a and procedures f o r acceptor s t r u c t u r e s l o c a t e d i n low and intermediate pressure ranges. In g e n e r a l , acceptor s t r u c t u r e s r e l a t e t o b u i l d i n g s l o c a t e d i n pressure range o f 10 p s i or l e s s . These buildings o f t e n contain personnel and equipment which r e q u i r e p r o t e c t i o n against the b l a s t and fragment output from a donor b u i l d i n g where hazardous operations are i n v o l v e d . The s e l e c t i o n of. the appropriate s t r u c t u r a l system and m a t e r i a l s f o r acceptor s t r u c t u r e design depends on over-pressure l e v e l , degree o f fragment hazard, contents of the acceptor b u i l d i n g and normal operations involving personnel. I t i s common i n the e x p l o s i v e i n d u s t r y t o be separated by e i t h e r "barricaded or unbarricaded i n t r a l i n e d i s t a n c e " ( c o r r e sponding t o b l a s t loadings of 10 and 3.,5 p s i r e s p e c t i v e l y ) or " i n h a b i t e d b u i l d i n g d i s t a n c e " (corresponding t o b l a s t l o a d i n g of 1.2 p s i ) . These distances are p u b l i s h e d i n the DARCOM Safety Manual (DRCR 385-100) based upon proven s c a l i n g laws. Conventional pre-engineered s t r u c t u r e s , i f used f o r b l a s t r e s i s t a n t design, would not cover pressure l e v e l s r e q u i r e d since t h e i r c a p a c i t y t o r e s i s t b l a s t overpressure (designed f o r snow and winds loads) seldom exceed 0.2 p s i . To design a p p r o p r i ate acceptor s t r u c t u r e s , t e s t s have been conducted t o evaluate the b l a s t c a p a c i t y o f t h e i r v a r i o u s components, namely, the s t e e l frames, g i r t s , p u r l i n s , s i d e panels and windows. The b l a s t r e s i s t a n t c a p a c i t i e s of pre-engineered b u i l d i n g s can be i n c r e a s e d by decreasing the spacing of frames or i n c r e a s ing the s i z e o f i n d i v i d u a l members while s t i l l r e t a i n i n g standard pre-engineered b u i l d i n g elements. Although these m o d i f i c a t i o n s w i l l u s u a l l y r e q u i r e a cost i n c r e a s e , the added costs are u s u a l l y more than o f f s e t by the cost savings achieved by b u i l d i n g separation r e d u c t i o n . A s e r i e s of t e s t s , a d e q u a t e l y instrumented, were performed t o v e r i f y those m o d i f i c a t i o n s , which w i l l produce increased c a p a c i t y and t o i d e n t i f y unknown shortcomings o f p r e engineered b u i l d i n g s . F i g 18 summarizes the pre-engineered b u i l d i n g t e s t r e s u l t s i n c l u d i n g the f r e e - f i e l d pressures, frame, g i r t a n d panel displacement and a b r i e f d e s c r i p t i o n o f t y p i c a l damage f o r each test. The c o l d formed s t e e l panels ( F i g 19) are widely used f o r

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

f

v

9

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

18

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

1.

RINDNER AND FORSTEN

Munition

Plant

19

Layout

r o o f i n g d e c k i n g , a n d s i d i n g i n the c o n s t r u c t i o n o f s t e e l s t r u c t u r e s and pre-engineered b u i l d i n g s at e x p l o s i v e manufacturing f a c i l i t i e s . Tests were performed at Dugway Proving Grounds, F i g 2 0 , s u b j e c t i n g the panels to overpressures ranging from 0 . 3 - 1 . 5 p s i which were produced by a detonation o f 2 , 0 0 0 l b s o f HE. The t e s t r e s u l t s i n d i c a t e d that the panels e x h i b i t e d considerably greater strength than p r e d i c t e d which u t i l i z e d the minimum y i e l d strength o f about 3 6 , 0 0 0 p s i . However t e s t s i n d i c a t e d that the a c t u a l y i e l d strength o f the panel averaged about 40% higher than the minimum. Glass used i n the b l a s t r e s i s t a n t s t r u c t u r e s can be separated into 2 categories. (1) r e g u l a r glass and (2) tempered g l a s s which c o n s i s t s o f r e g u l a r glass that has been r a p i d l y cooled from i t s near s o f t e n i n g p o i n t to increase i t s mechanical and thermal endurance. Tempered g l a s s i s commonly r e f e r r e d to as " s a f e t y g l a s s . " Tests have been conducted to evaluate the b l a s t r e s i s t a n t c a p a c i t i e s o f both r e g u l a r and tempered g l a s s . The r e s u l t s o f the t e s t s are summarized i n F i g 2 1 . As may be seen from the t a b l e the tempered glass can withstand s e v e r a l times the load o f r e g u l a r glass. Based upon r e s u l t s obtained i t was showi\ that the use o f preengineered b u i l d i n g s to provide p r o t e c t i o n at over-pressure ranges corresponding to i n h a b i t e d b u i l d i n g distances ( P Q = 1 . 2 p s i ) i s practical. I t should be understood that some b u i l d i n g m o d i f i c a t i o n s w i l l be needed to insure that the b l a s t r e s i s t a n t c a p a c i t y o f i n d i v i d u a l b u i l d i n g components are c o n s i s t e n t . T h i s may r e q u i r e the s u b s t i t u t i o n o f l a r g e r members used f o r conventional loads, spacing o f members may have to be reduced, and the number o f i n d i v i d u a l components may have to be increased.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

f

S

Hazard C l a s s i f i c a t i o n Studies For In-Process Hazardous M a t e r i a l s Hazards c l a s s i f i c a t i o n i s the assignment of a m a t e r i a l or an end item ( i n t h i s case only in-process m a t e r i a l s ) to a p a r t i c u l a r hazard c l a s s which best describes the t h r e a t presented by the m a t e r i a l . This r e q u i r e s the use o f a hazards c l a s s i f i c a t i o n procedure which provides the g u i d e l i n e s and c r i t e r i a on which the choice o f the hazards c l a s s i s based. The assigned hazards c l a s s o f the m a t e r i a l i s then used as the b a s i s f o r s e l e c t i n g the proper q u a n t i t y - d i s t a n c e r e l a t i o n s h i p . Thus, i f the hazards c l a s s i f i c a t i o n procedure erroneously assigns a m a t e r i a l to the wrong c l a s s , e i t h e r s a f e t y i s compromised or excessive s a f e t y requirements are imposed. Both poss i b i l i t i e s are expensive. The o b j e c t i v e o f t h i s program i s to e s t a b l i s h hazard c l a s s i f i c a t i o n procedures, as a supplement t o the e x i s t i n g r e g u l a t o r y manual, f o r in-process m a t e r i a l s used during the v a r i o u s stages o f p r o p e l l a n t and e x p l o s i v e manufacture. To accomplish t h i s o b j e c t i v e , a review o f the current hazard c l a s s i f i c a t i o n schemes was conducted. Major d e f i c i e n c i e s were uncovered. They r e l a t e d to the c l a s s i f i c a t i o n procedures, to the implementation o f the procedures, and to the f i n a l usage o f the

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

20

to C

o o CO

to to o

to

to v.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch001

1.

RINDNER AND FORSTEN

Munition

Plant

Layout

21

assigned c l a s s i f i c a t i o n ( q u a n t i t y - d i s t a n c e ) . As an i n i t i a l s t e p , the r e p o r t s o f 180 in-process a c c i d e n t s were viewed. A summary o f the type o f i n f o r m a t i o n obtained i s shown i n F i g 22. The process o p e r a t i o n and the probable causa t i v e s t i m u l i which l e d t o the accident are given i n terms o f the number o f accidents and the percentage o f the t o t a l number. Thus the most probable causes o f an accident were i d e n t i f i e d i n an accident a n a l y s i s . The causes v a r i e d by process o p e r a t i o n and m a t e r i a l type. However f r i c t i o n , impact, e l e c t r o s t a t i c discharge (ESD), and h e a t i n g were the most commonly i d e n t i f i e d c a u s a t i v e stimuli. The s t r u c t u r e o f the hazard c l a s s i f i c a t i o n procedure i s shown i n F i g 23. The procedure i s designed t o evaluate s e n s i t i v i t y and e f f e c t s independently. The s e n s i t i v i t y e v a l u a t i o n w i l l c o n s i s t of s p e c i f i e d t e s t s r e q u i r e d f o r a given process o p e r a t i o n . The t e s t s w i l l determine the m a t e r i a l ' s i g n i t i o n energy which w i l l be compared t o the energy developed by the s t i m u l i o c c u r r i n g i n the system. The r a t i o o f the m a t e r i a l s e n s i t i v i t y energy t o the p r o cess p o t e n t i a l energy w i l l give a s a f e t y f a c t o r f o r a s p e c i f i c process o p e r a t i o n . A t e n t a t i v e scheme i s t o c l a s s i f y a m a t e r i a l as h i g h l y s e n s i t i v e (Category A) i f i t s s a f e t y f a c t o r i s l e s s than 1.0; as s e n s i t i v e (Category B) i f the s a f e t y f a c t o r i s between 1 and 10; and not s e n s i t i v e (Category C) i f the s a f e t y f a c t o r is g r e a t e r than 10.0*: Hence,a s e n s i t i v i t y category w i l l be obtained f o r each stimulus w i t h i n a given o p e r a t i o n . The s e n s i t i v i t y c l a s s i f i c a t i o n w i l l be combined with the e f f e c t s e v a l u a t i o n t o determine the m a t e r i a l hazard c l a s s i f i c a t i o n . The e f f e c t s e v a l u a t i o n w i l l determine the l i k e l i h o o d o f a t r a n s i t i o n t o propagation and the consequences t h a t can occur. C r i t i c a l height/depth and c r i t i c a l diameter t e s t s w i l l be performed t o determine the d e t o n a b i l i t y of a m a t e r i a l i n bulk or l a y e r form (on a conveyor). Based on the t r a n s i t i o n r e s u l t s , a d e c i s i o n i s made t o complete one of the f o l l o w i n g e f f e c t s evaluat i o n t e s t s such as: a) f i r e s p r e a d t e s t which w i l l i n c l u d e r a t e o f flame spread, heat of f l u x , and occurrence of f i r e brands and b) a i r b l a s t t e s t s i n c l u d i n g fragment t e s t s . The r e s u l t s o f the e f f e c t s t e s t i n g w i l l be used t o p l a c e the m a t e r i a l i n a hazard category based on NATO-UN c l a s s i f i c a t i o n scheme and when combined w i t h the s e n s i t i v i t y data w i l l give the m a t e r i a l an o v e r a l l hazard c l a s s i f i c a t i o n . For example, a m a t e r i a l which i s found t o be an intense f i r e hazard (consequence 1.3) and s e n s i t i v e (Category B) t o i n i t i a t i o n by rubbing f r i c t i o n would be placed i n c l a s s 1.3B. The r e s u l t s o f the t e s t s w i l l be i n c l u d e d as a supplement t o the NATO-UN hazard c l a s s i f i c a t i o n manual f o r in-process hazardous materials. Water Deluge System A p p l i c a t i o n In Munition P l a n t s A s e r i e s o f p r o j e c t s have been c a r r i e d out t o develop water

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

22

P E A K PRESSURE (PSI) L O A D D U R A T I O N (MSEC)

1/8 IN. T E M P E R E D

>100

3.0 PSI

2.00 PSI

1.0 PSI

1/4 IN. T E M P E R E D

6.0

4.00

2.5

3/8 IN. T E M P E R E D

8.0

6.00

4.0

1/8 IN. R E G U L A R

0.4

0.25

0.1

1/4 IN. R E G U L A R

0.7

0.50

0.3

3/8 IN. R E G U L A R

0.9

0.70

0.5

O O

DC Q

LL

(j CO

9E

0 0 00 O co z > u LL UJ o

RCEN L PRC ERAT

UJ QC

(J z

V7

V7

WHIT

IR CAMERAS 20 LB CHARGE - 30 FT. MINIMUM C O V E R A G E 30 LB CHARGE - 40 FT. MINIMUM C O V E R A G E 50 LB CHARGE - 60 FT. MINIMUM C O V E R A G E

Figure 13.

Free field illuminant test configuration

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

KATSANIS

Work

with Explosive

Material

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch002

2.

Figure 14.

Shield Group 5 typical test set up

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

51

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch002

52

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

0

1

2

3

4

5

6

time (seconds) Figure 15.

Heat flux as a function of time

T A B L E IV.

RESEARCH NEEDED

hazard definition improved t h e r m a l suppression t e c h n i q u e s suppressed f i r e b a l l c h a r a c t e r i s t i c s diameter b u r n i n g time radiant

flux

effect o f non-uniform venting

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

7

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch002

2.

KATSANis

Work with Explosive

Material

53

measurements about 1 0 f e e t from charges burned i n the open. T h i s i s the same t o t a l d i s t a n c e from the charge as f o r the s h i e l d tests. Comparison between open a i r and s h i e l d e d heat f l u x shows 8 5 ^ r e d u c t i o n i n peak r a d i a n t f l u x f o r a s h i e l d e d 5 0 pound charge. P r e l i m i n a r y p r o p e l l a n t t e s t s using a maximum charge weight of 5 9 ° pounds of M-10 s i n g l e base m u l t i p e r f o r a t e d p r o p e l l a n t i n bulk with O . O I 8 5 inch web r e s u l t e d i n no pressure r i s e i n the shield. High r a d i a n t heat f l u x outside the s h i e l d w a l l i n d i c a t e d a need f o r improved thermal suppression. This work i s not f i n i s h e d . More study i s needed i n the areas l i s t e d i n Table IV. An exhaustive search of the l i t e r a t u r e to i d e n t i f y hazards and improved thermal suppression techniques has revealed a need f o r more r e s e a r c h i n suppression techniques. Methods do e x i s t f o r estimating f r e e f i e l d r a d i a n t f l u x , f i r e b a l l diameter, and burning time f o r unconfined p y r o t e c h n i c m a t e r i a l , but there i s , a t present, no method to compute a t t e n uated thermal e f f e c t s when a suppressive s h i e l d i s used. P r e d i c t i v e models are needed (6). I n v e s t i g a t i o n of nonuniform venting has been i n i t i a t e d , but that work i s not complete. Much work i s r e q u i r e d to develop the b a s i c technology necessary to design optimal s h i e l d s f o r flame suppression. As a r e s u l t of extensive i n v e s t i g a t i o n of b l a s t and fragment e f f e c t s , the technology f o r those hazards i s w e l l understood (2, 7-1*0 • P r e d i c t i v e techniques f o r suppressive s h i e l d performance i n a t t e n u a t i n g b l a s t and fragment hazards have been developed ( 1 , 1 5 - 2 0 ) . The f o l l o w i n g d i s c u s s i o n of s a f e t y approved s h i e l d s and technology summary b r i e f l y i n d i c a t e s the scope and r e s u l t of the i n v e s t i g a t i o n . S a f e t y Approved

Shields

To insure that Department of Defense s a f e t y o f f i c e s approve s i t e plans which incorporate suppressive s h i e l d s , we have designed, f a b r i c a t e d , and proof tested s e v e r a l designs as l i s t e d i n Table V. The c h a r a c t e r i s t i c s of the s h i e l d s approved by the Department of Defense E x p l o s i v e s S a f e t y Board are summarized i n t h i s table. They i n c l u d e s i z e s and charge weights t y p i c a l to munit i o n s manufacturing, but they can be s c a l e d up or down i n size or charge weight to meet s p e c i a l l a b o r a t o r y requirements. As t h i s t a b l e i n d i c a t e s , suppressive s h i e l d s are approved f o r use i n hazardous operations i n v o l v i n g e x p l o s i v e charge weights up to the e q u i v a l e n t of 37 pounds 5 0 / 5 0 p e n t o l i t e f o r Group 3 and 30 pounds of i l l u m i n a n t mix f o r Group 5 . Approved s h i e l d s i z e s range from the 2 foot diameter s p h e r i c a l s t e e l s h e l l of Group 6 to the ll£ foot diameter c y l i n d r i c a l Group 3 s h i e l d . The operator safe d i s t a n c e shown i s the distance from the

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

CO

GROUP

Lf)

CO

GROUP

1.84 LB OF C-4 CM

EIGHT

14 x 18.7 x 12.4 HEIGHT

EIGHT

I

TWO 81 mm ROUNDS 2.8 LB OF C-4

10 HEIIGHT I

2 DIAMETER

10.4 x 10.4 x 8.5

9.2 x 13.1 x 9.3

11.25 DIAMETER

FT

SIZE

X

13.6 OZ OF PENTOLITE

CO

1.30 LB OF ILLUMINANT MIX

f

9 LB OF PENTOLITE

FT

OPERATOR SAFE DISTANCE

o

37 LB OF PENTOLITE

MATERIAL LIMIT

CM CO

GROUP

YPE

SAFETY-APPRO ;D SUPPRESSIVE CO

GROUP

r—

SHIELD

TABLE V

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch002

54 TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

as

CO

CO

E E

r— CO

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

2.

KATSANIS

Work

with Explosive

Material

55

e x t e r i o r w a l l that an operator can be l o c a t e d and not be i n j u r e d by b l a s t overpressure or flame venting from the s h i e l d when detonation or d e f l a g a t i o n occur w i t h i n the s h i e l d ( 1 ) .

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch002

Technology Summary The suppressive s h i e l d designs that we have been d i s c u s s i n g are based on a major four-year technology development e f f o r t by organizations l i s t e d i n Table VI. The r o l e s they played i n developing suppressive s h i e l d technology are i n d i c a t e d i n the t a b l e . The lead o r g a n i z a t i o n f o r suppressive s h i e l d technology development was Edgewood Arsenal, now c a l l e d Chemical Systems Laboratory. Recent Army r e o r g a n i z a t i o n has reassigned r e s p o n s i b i l i t y f o r suppressive s h i e l d i n g to Large C a l i b e r Weapons Systems Laboratory, ARRADCOM, a t Dover, New Jersey. Technology development has proceeded along the l i n e s i l l u s t r a t e d i n the technology flow chart, Figure l 6 . Hazards i d e n t i f i e d are c l a s s i f i e d as b l a s t , fragment, and fireball. D e s c r i p t i o n of each of these hazards i s e s s e n t i a l to design of a s h i e l d . Each of these hazards poses a s p e c i a l problem to the designer and r e q u i r e s c o n s i d e r a t i o n not only i n terms of i t s own features, but a l s o i n terms of combined e f f e c t s of a l l hazards a c t i n g together. The next step i s to develop procedures to p r e d i c t suppress i o n of b l a s t , fragment, and flame hazards. The nature of the suppression governs the magnitude of the loads imposed on the s t r u c t u r e . A safe, economical s h i e l d must be designed to withstand loads imposed. Suppression and design t r a d e o f f s are made to o b t a i n the best s h i e l d which s a t i s f i e s hazard suppression requirements to provide a safe environment a t minimal cost. On b l a s t environment, a p r e d i c t i v e c a p a b i l i t y f o r charact e r i s t i c s of free a i r b l a s t i s a v a i l a b l e i n the l i t e r a t u r e (2, 7 ) • Techniques have been developed f o r d e f i n i n g i n t e r n a l t r a n s i e n t and q u a s i - s t a t i c b l a s t overpressures (_21, 22), pressure loads on the s h i e l d (2, 23, _24-, 2 5 , 2 6 ) and attenuated pressure e x t e r n a l to the s h i e l d ( 1 , 1 5 , l C ] J 7 2 0 , 2 7 ) . The second major element to be considered i n the design of a suppressive s h i e l d i s the fragment t h r e a t . As we i n i t i a t e d our technology s t u d i e s we found much was known about primary fragment hazards but l i t t l e was known about secondary fragment hazards ( 8 , 12, 13, 28, 2$). Primary fragments are those from m a t e r i a l i n d i r e c t contact with detonating composition. Secondary fragments are from surrounding equipment, not i n d i r e c t contact with the composition that detonates. I t was necessary to e s t a b l i s h a methodology to p r e d i c t secondary fragment hazards and fragment suppression characteri s t i c s of the composite s t r u c t u r a l s t e e l w a l l s of a suppressive shield ( 1 2 ) . As a r e s u l t of the Suppressive S h i e l d i n g Program,

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

DIRECTION

•PRESSION

AAI CORPORATION

ENGINEERING SUPPORT

COST EFFECTIVENESS ANALV 'SIS

FABRICATION AND TESTING

U.S. ARMY MATERIAL SYSTEMS ANALYSIS ACTIVITY

DUGWAY PROVING GROUND

DYNAMIC STRESS ANALYSIS

— STRUCTURE

ANALYSIS - SCALING LAWS

EN"r ATION

U.S. ARMY CORPS OF ENGINEERS

ITHWEST RESEARCH INSTITUTE

FABRICATION AND TESTING

ROLE

D cn

NA\ /AL SURFACE WEAPONS CENTER COMPUTER CODES - BLAST 1

nos

NASA - NATIONAL SPACE TECHNOLOGY LABORATORY

BAL.LISTICS RESEARCH LABORATORY MODELING - BLAST, FRAGM

CHI EMICAL SYSTEMS LABORATORY TECHNICAL

ORGANIZATION

APPLIED TECHNOLOGY PARTICIPANTS

SUPPRESSIVE SHIELDING

TABLE VI

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch002

56 TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

CO

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

2.

KATSANIS

Work

with Explosive

57

Material

SCENARIO DEFINITION

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch002

HAZARD DEFINITION

I

HAZARD S JPPRESSION

I BLAST ATTENUATION

FRAGMENT CONTAINMENT

FIREBALL SUPPRESSION

STRUCTURAL LOADING AND RESPONSE

DESIGN SELECTION

Figure 16.

Technology flow chart

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

SAFETY APPROVED SUPPRESSIVE SHIELDS

CHAPTER II,

- MATERIAL PROPERTIES AND ACCEPTABLE RESPONSI

APPENDIX

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979. - SAMPLE ECONOMIC ANALYSIS

- ENGINEERING DESIGN CHARTS

SUPPRESSIVE SHIELDS

- ENGINEERING DRAWINGS OF SAFETY APPROVED

- QUALITY ASSURANCE

METHODS

ASSURING STRUCTURAL QUALITY

CHAPTER VIII,

-

ECONOMIC ANALYSIS

CHAPTER VII,

- DOORS, PENETRATIONS, LINERS

STRUCTURAL DETAILS

- DESIGN PROCEDURES

- METHODS FOR DYNAMIC STRESS ANALYSIS

STRUCTURAL DESIGN AND ANALYSIS

CHAPTER VI,

CHAPTER V,

SUPPRESSION

SUPPRESSIVE SHIELD STRUCTURAL BEHAVIOR

CHAPTER IV,

- METHODS FOR COMPUTATION OF HAZARDS AND

EXPLOSIVE ENVIRONMENTS

CHAPTER III,

- DESCRIPTION AND USE OF APPROVED SHIELDS

- USE OF HANDBOOK

- HISTORY OF THE PROJECT

INTRODUCTION

CHAPTER 1,

TABLE VII SUPPRESSIVE SHIELDING ENGINEERING DESIGN HANDBOOK

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch002

58 TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch002

2.

KATSANIS

Work

with Explosive

Material

59

engineering methodology is available for modifying or scaling approved designs to meet specific munitions plant requirements. Where approved designs do not exist to meet certain requirements there is an engineering methodology for design and proof test of new shields. This methodology is presented in an engineering design handbook for suppressive shields, published by the US Army Corps of Engineers, Huntsville Division, Huntsville, Alabama (50). Table VII is a list of the chapter titles in the handbook. The information contained in each chapter is also shown. Methods for modifying suppressive shields to meet specific production line requirements are given in Chapter II - Safety Approved Shields. If a new shield must be designed, information in Chapters III, IV and V are used. Chapter VI - Structural Details, has recommended designs for personnel doors, conveyor doors, as well as other penetrations for utilities and the like. Economic analysis methods and quality assurance factors are included. With this handbook, scientists or engineers requiring hazardous operation protection can select, modify, or design a suppressive shield for their required use. This handbook is available through DDC or National Technical Information Service and provides an alternative protective method previously not available to provide increased protection to personnel involved in hazardous operations. Additional information on this subject is contained in references 51 - 90. Abstract A relatively new concept is presented for protection to the area surrounding hazardous work with explosives. Suppressive shields are vented composite steel structures which are designed to confine a l l fragments from an accidental detonation and to suppress hazardous blast and flame effects to a safe level. Department of Defense Explosives Safety Board has approved five groups of suppressive shields for protection of munitions production operations in US Army Ammunition Plants. Safety approved shields encompass seven different designs which range in size from a two foot diameter steel shell (Shield Group 6) to a ten foot diameter steel cylinder (Shield Group 3). Studies have been conducted to develop a technological base for accurate determination of shield performance parameters. It was found early in the program that the available data base was inadequate for accurately predicting the blast, fire, and fragment effects that would occur as a result of an accidental detonation of an explosive in a shield environment. Indepth studies resulted in development of suppressive shield design procedures

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

60

published in the Suppressive Shield Design Handbook which provides information needed for design of facilities where explosive materials are used in hazardous operations. Details on safety approved shields will be presented with technology study results. Literature Cited 1.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch002

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12. 13.

Katsanis, D . J . , Safety Approval of Suppressive Shields, EM-TR-76088, Edgewood Arsenal, Aberdeen Proving Ground, Md., August 1976. (U) Structures to Resist the Effects of Accidental Explosions, TM5-1300, Department of the Army Technical Manual, NAVFAC P-397, Department of the Navy Publication, AFM 8 8 - 2 2 , Department of the A i r Force Manual, Washington, D . C . , June 1969. (U) Nelson, K . P . , Spherical Shields for the Containment of Explosions, EM-TR-76096, Edgewood Arsenal, Aberdeen Proving Ground, Md., March 1977. (U) Koger, D.M. and McKown, G . L . , Category 5 Suppressive Shield Test Report, EM-TR-76001, Edgewood Arsenal, Aberdeen Proving Ground, Md., October 1975. (U) Wilcox, W.R., Shield Group 5 Suppressive Shield Plastic Liner and Propellant Testing, Contractor Report AR-TSD-CR-78OO1, NASA National Space Technology Laboratories, February 1978. (U) Rakaczky, J . A . , The Suppression of Thermal Hazards from Explosions of Munitions: A Literature Survey, BRL Interim Memorandum Report No. 377, Aberdeen Proving Ground, Md., May 1975. (U) Engineering Design Handbook: Explosions in A i r , Part I, AMC Pamphlet 706-181, Headquarters U.S. Army Materiel Command, Latest Edition. (U) Headey, John, et a l , Primary Fragment Characteristics and Impact Effects on Protective Barriers, PA TR 4903, Picatinny Arsenal, Dover, N . J . , December 1975. (U) Henry, I . G . , The Gurney Formula and Related Approximations for the High Explosive Deployment of Fragments, PUB-189, Hughes Aircraft Co., A D 8 1 3 3 9 8 , A p r i l 1967. (U) Kingery, C . N . , A i r Blast Parameters Versus Distance for Hemispherical TNT Surface Bursts, BRL Report No. 1344, Aberdeen Proving Ground, Md., September 1966. (U) Levmore, S., A i r Blast Parameters and Other Characteristics of Nitroguanidine and Guanidine Nitrate, PA TR 4865, Picatinny Aresenal, Dover, N . J . , November 1975. (U) Mott, N . F . , A Theoretical Formula for the Distribution of Weights of Fragments, AC 3742 (British) March 1943. (U) Mott, N . F . , The Theory of Fragmentation, AC 3348 (British) January 1943. (U)

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

2.

14.

15.

16.

17.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch002

18.

19.

20.

21.

22.

23.

24.

25.

26.

KATSANIS

Work

with Explosive

Material

61

Petes, J., "Blast and Fragmentation Characteristics," Annals of the New York Academy of Sciences, Vol. 152, Article 1, October 1968, pp. 283-317. (U) Esparza, E . D . , Baker, W.E., and Oldham, G.A., Blast Pressures Inside and Outside Suppressive Structures, EM-CR-76042, Report No. 8, Edgewood Arsenal, Aberdeen Proving Ground, Md., December 1975. (U) Keenan, W.A. and Tancreto, J.E., Blast Environment from Fully and Partially Vented Explosions in Cubicles, Technical Report R828, C i v i l Engineering Laboratory, Naval Construction Battalion Center, Port Hueneme, Ca., November 1975. (U) Oertel, F . H . , Jr., Evaluation of Simple Models for the Attenuation of Shock Waves by Vented Plates, BRL Report No. 1906, Aberdeen Proving Ground, Md., August 1976. (U) Proctor, J.F., Blast Suppression/Predictive Model, WBS 4333, Monthly Technical Report, November 1975, Naval Surface Weapons Center, White Oak, Silver Spring, Md. (U) Ricchiazzi, A . J . and Barb, J . C . , A Tentative Model for Predicting the Terminal B a l l i s t i c Effects of Blunt Fragments Against Single and Spaced Targets, A Comparison of Predicted and Experimental Results, BRL Memorandum Report 2578, Aberdeen Proving Ground, Md., January 1976. (U) Schumacher, R.N. and Ewing, W.O., Jr., Blast Attenuation Outside Cubical Enclosures Made Up of Selected Suppressive Structures Panel Configurations, BRL Memorandum Report No. 2537, Aberdeen Proving Ground, Md., September 1975. (U) Baker, W.E. and Oldham, G.A., Estimates of Blowdown of Quasi-Static Pressures in Vented Chambers, EM-CR-76029, Report No. 2, Edgewood Arsenal, Aberdeen Proving Ground, Md., November 1975. (U) Kingery, C.N., Schumacher, R.N. and Ewing, W.O., Jr., Internal Pressures from Explosions in Suppressive Structures, BRL Interim Memorandum Report No. 403, Aberdeen Proving Ground, Md., June 1975. (U) Gregory, F . H . , Analysis of the Loading and Response of a Suppressive Shield When Subjected to an Internal Explosion, Minutes of the 17th Explosive Safety Seminar, Denver, Colorado, September 1976. (U) Newmark, N.M., "Computation of Dynamic Structural Response in the Range Approaching Failure," Proceedings of the Symposium on Earthquake and Blast Effects on Structures, Los Angeles, Ca., 1952. (U) Proctor, J . F . and F i l l e r , W.S., A Computerized Technique for Blast Loads from Confined Explosions, 14th Annual Explosives Safety Seminar, New Orleans, Louisiana, 8-10 November 1972, pp. 99-124. (U) Schumacher, R.N., Kingery, C.N., and Ewing, W.O., Jr., A i r blast and Structural Response Testing of a 1/4 Scale Category I Suppressive Shield, BRL Memorandum Report No. 2623, Aberdeen Proving Ground, Md., May 1976. (U)

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

62

27.

28.

29. 30.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch002

31.

32. 33.

34.

35. 36. 37.

38. 39.

40.

41.

42.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

Kinney, G.F. and Sewell, R.G.S., Venting of Explosions, Naval Weapons Center, NWC Technical Memorandum 2448, China Lake, California, July 1974. (U) Hoggatt, C.R. and Recht, R.F., Fracture Behavior of Tubular Bombs, J. Appl. Physics, Vol. 39, No. 3, February 1968, pp. 1856-l862. (U) Joint Munitions Effectiveness Manual, FM101-62-3, Manual of Fragmentation Data, 15 September 1973. (C-XGDS-3) Suppressive Shields, Structural Design and Analysis Handbook, HNDM-1110-1-2, US Army Corps of Engineers, Huntsville Division, Huntsville, Alabama, 18 Nov 77. (U) Ammunition and Explosives Ashore, Department of the Navy Publication, OP-5, including Volume 1, NAVSEA OP-5/1 "Safety Regulations for Handling, Storing, Renovation and Shipping", Volume II, NAVORD OP-5/2, "Storage Data", Volume III, NAVSEA OP-5/3, "Advance Bases", and all revisions thereto. (U) Ammunition and Explosives Safety Standards, DOD 5154-4S, Department of Defense, Office of the Assistant Secretary of Defense (Installations and Logistics), March 1978. (U) Baker, W.E., The Elastic Plastic Response to Thin Spherical Shells to Internal Blast Loading, Paper No. 59-A-95, Applied Mechanics Division, American Society of Mechanical Engineers, February 1959. (U) Baker, W.E., et a l , Analysis and Preliminary Design of a Suppressive Structure for a Melt Loading Operation, EM-CR-76056, Edgewood Arsenal, Aberdeen Proving Ground, Md., May 1976. (U) Beedle, L . S . , Plastic Design of Steel Frames, John Wiley and Sons, Inc., New York, N.Y., 1958. (U) Biggs, J . M., Introduction to Structural Dynamics, McGraw-Hill Book Co., New York, N.Y., 1964. (U) Building Code Requirements for Reinforced Concrete, ACI Standard 318-71, American Concrete Institute, Detroit, Michigan, 1971. (U) Building Construction Cost Data, Robert Snow Means Co., Inc., 100 Construction Plaza, Duxbury, Mass., Latest Edition. (U) Crawford, R . E . , Higgins, C . J . and Bultmann, E . H . , The A i r Force Manual for Design and Analysis of Hardened Structures, AFWL TR 74-102, A i r Force Weapons Laboratory, Kirtland AFB, N.M., October 1974. (U) Dede, M., et a l , Preliminary Estimate of Concrete Thicknesses and Construction Costs of Laced Reinforced Concrete Structures, Technical Report No. 4441, Picatinny Arsenal, Dover, N . J . , October 1972. (U) Design of Structures to Resist the Effects of Atomic Weapons, Structural Elements Subjected to Dynamic Loads, US Army Corps of Engineers Manual TM5-856-4, December 1965. (U) Design of Structures to Resist Nuclear Weapons Effects, American Chemical Society of C i v i l Engineers Manual of Engineering Practice No. 42, ASCE, New York, N.Y. (U)

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

2.

KATSANIS

43. 44.

45.

46.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch002

47.

48.

49.

50.

51.

52.

53.

54.

55.

56. 57.

58.

Work

with Explosive

Material

63

Explosive Safety Manual, AFM 127-100, Department of the A i r Force, Washington, D . C . , 2 December 1971. (U) Final Report Application of Suppressive Structure Concepts to Chemical Agent Munition Demilitarization System (CAMPS), Report EA-FR-2B02, Edgewood Arsenal, Aberdeen Proving Ground, Md., 27 July 1973. (U) Gray, B . H . , Williamson, G.R., and Batson, G.B., Fibrous Concrete Construction Material for the Seventies, Construction Engineering Research Laboratory, Champaign, Ill., May 1972. (U) Harris, C.M., and Crede, C . E . , Shock and Vibration Handbook, McGraw-Hill Book Co., New York, N.Y., 1961. (U) Healey, John, et a l , Design of Steel Structures to Resist the Effects of HE Explosions, Technical Report 4837, Picatinny Arsenal, Dover, N . J . , August 1975. (U) Hubich, H.O. and Kachinski, R . L . , Explosive Waste Removal Systems for Suppressive Shields, EM-CR-76002, Edgewood Arsenal, Aberdeen Proving Ground, Md., August 1975. (U) Johnson, C. and Moseley, J.W., Preliminary Warhead Terminal B a l l i s t i c Handbook Part I, Terminal B a l l i s t i c Effects, NWL Report No. 1821, NAVWEPS Report No. 7673, US Naval Weapons Laboratory, Dahlgren, Virginia, March 1964. (U) Kennedy, J.E., Explosive Output for Driving Metal, in Behavior and U t i l i z a t i o n of Explosives in Engineering Design, ASME and Univ. of New Mexico, March 1972, Albuquerque, N.M. (U) Kennedy, R.P., A Review of Procedures for the Analysis of Design of Concrete Structures to Resist Missile Impact Effects, Nuclear Engineering and Design, V o l . 37, 1976, pp. 183-203. (U) Lasseigne, A . H . , Static and Blast Pressure Investigation for the Chemical Agent Munition Demilitarization System: Sub-Scale, Rpt. EA-FR-4C04, November 30, 1973. (U) Malvern, L.E., Propagation of Longitudinal Waves of Plastic Deformation in a Bar of Material Exhibiting a Strain-rate Effect, J . App. Mech., V o l . 18, pp. 203-8. Manual of Steel Construction, Seventh Edition, American Institute of Steel Construction, Inc., New York, N.Y., 1970. (U) Melin, J.W., Numerical Integration by Beta Method, ASCE Conference on Electronic Computation, Kansas City, Mo., 1968. (U) Nagy, J., Et a l , Explosibility of Miscellaneous Dusts, United States Department of the Interior, Bureau of Mines, Report of Investigations 7208, December 1968. (U) Napadensky, H. and Swatosh, J., TNT Equivalency of Black Powder, IITRI TR J6289-4, IIT Research Institute, Chicago, Ill., September 1972. (U) Napadensky, H. and Swatosh, J., TNT Equivalency of Large Charges of Black Powder, IITRI TR J6289-4, IIT Research

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

64

59.

60.

61.

62.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch002

63. 64. 65. 66. 67. 68.

69. 70. 71.

72.

73.

74.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

Institute, Chicago, Ill., February 1974 (U) Napadensky, H . , Swatosh, J., Humphreys, A . , and Rindner, R., TNT Equivalency Three Pyrotechnic Composition, PA TR 4628, Picatinny Arsenal, Dover, N . J . , June 1974. (U) Nelson, K . P . , The Economics of Applying Suppressive Shielding to the M483A1 Improved Conventional Munition LAP F a c i l i ty EM-TR-76087, Edgewood Arsenal, Aberdeen Proving Ground, Md., January 1977. (U) Proctor, J.F., Internal Blast Damage Mechanisms Computer Program, 61 JTCG/ME-73-3, Joint Technical Coordinating Group for Munitions Effectiveness, A p r i l 1973. (U) Roark, R . J . and Young, W.C., Formulas for Stress and Strain, McGraw-Hill Book Co., New York, N.Y., 5th Edition, 1975. (U) Safety Criteria for Modernization and Expansion Projects, DRCPM-PBM Memorandum No. 385-3, Latest Edition. (U) Safety Manual, AMCR 385-100, Hq, US Army Materiel Command, Alexandria, Va., Latest Edition. (U) Salmon, C.G. and Johnson, J.E., Steel Structures-Design and Behavior, Intext Educational Publishers, Scranton, Pa., 1971. (U) Seely, F.B. and Engisn, N . E . , Analytical Mechanics for Engineers, John Wiley & Sons, Inc., New York, N.Y., 3rd Edition, 1948. (U) Seely, F . B . , and Smith, J . O . , Advanced Mechanics of Materi a l s , Second Edition, John Wiley and Sons, Inc., New York, N.Y., August 1961. (U) Schroeder, F.J., Kachinski, R . L . , Schnapfe, R.W., Koger, D.M., McKivrigan, J . L . and Jezek, B.W., Engineering Design Guidelines, Drawings, and Specifications for Support Engineering of Suppressive Shields, EM-CR-76097, Edgewood Arsenal, Aberdeen Proving Ground, Md., December 1976. (U) Shear and Diagonal Tension, Report of ACI-ASCE Committee 326, ACI Manual of Concrete Practice-Part 2, American Concrete Institute, Detroit, Mich., 1968. (U) Shelter Design and Analysis, TR-20 (Vol.4), Defense C i v i l Preparedness Agency, Washington, DC, July 1972. Shields, Operational for Ammunition Operations, Criteria for Design of, and Tests for Acceptance, Mil Std 398, US Government Printing Office, Washington, DC, 5 November 1976. (U) Study of Suppressive Structures Application to an 81 mm Automated Assembly F a c i l i t y , Report EA 1002, Edgewood Arsenal, Aberdeen Proving Ground, Md., 16 A p r i l 1973. (U) Swatosh, J., Cook, J., and Price, P., Blast Parameters of M26E1 Propellant, PA TR 4901, Picatinny Arsenal, Dover, N . J . , December 1976. (U) Swatosh, J., et a l and Levmore, S., Blast Parameters of Lead Azide, and Tetracene, PA TR 4900, Picatinny Arsenal, Dover, N. J., December 1974. (U)

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

2.

KATSANIS

75.

76.

77.

78.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch002

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

Work

with Explosive

Material

65

Swatosh, J. and Napadensky, H . , TNT Equivalency N-5 Slurry and Paste, IITRI TR J6278, IIT Research Institute, Chicago, Ill., September 1972. (U) Swatosh, J . and Napandensky, H . , TNT Equivalency of Nitroglycerine, IITRI TR J6512, IIT Research Institute, Chicago, Ill., September 1973. (U) Swatosh, J., et a l , and Price, P., TNT Equivalency of M1 Propellant (Bulk), PA TR 4885, Picatinny Arsenal, Dover, N . J . , December 1975. (U) Swisdak, M.M., Jr., Explosion Effects and Properties Part I Explosion Effects in Air, NSWC/WOL/TR 75-116, Naval Surface Weapons Center, White Oak, Silver Spring, Md., October 1975. (U) Symonds, P.S., ASME Colloquium on Behavior of Materials Under Dynamic Loading, E d . , N . J . Huffington, November 1965. (U) System Safety Program for Systems and Associated Subsystems and Equipment Requirements for, Mil Std 882, US Government Printing Office, Washington, D . C . , 15 July 1969. (U) Tanner, W.S. and Warnicke, C . H . , Support Test for the Fabrication of a Suppressive Shield for a Naval Ordnance Disposal F a c i l i t y , DPG-DR-74-304, US Army Dugway Proving Ground, Dugway, Utah, December 1973. (U) Tomlinson, W.R., Jr., and Sheffield, O . E . , Engineering Design Handbook, Properties of Explosives of Military Interest, AMC Pamphlet No. 706-177, Headquarters, US Army Materiel Command, January 1971. (U) Trott, B. Dale, et a l , Design of Explosion Blast Containment Vessels for Explosive Ordnance Disposal Units, Picatinny Arsenal, Dover, N . J . , June 1975. (U) Trott, B. Dale, et a l , The Blast and Fragment Containment Capability of Portable Chambers, N00174-74-C-0219, Naval Explosive Ordnance Disposal F a c i l i t y , Indian Head, Md., September 1975. (U) Warnicke, C . H . , Added Support Tests of the Suppressive Shield for Naval Ordnance Disposal F a c i l i t y , DPG-DRI-74313, US Army Dugway Proving Ground, Dugway, Utah, September 1974. (U) Weibull, H.R.W., Pressures Recorded in Partially Closed Chambers at Explosion of TNT Charges, Annals of the New York Academy of Sciences, 152, Art. 1, pp. 356-361, October 1968. (U) Wenzel, A . B . , et a l , An Economic Analysis of the Use of Suppressive Structures in the Lone Star Army Ammunition Plant 105-mm High Explosive Melt-Pour F a c i l i t y , EM-CR-76032, Edgewood Arsenal, Aberdeen Proving Ground, Md., November 1975. (U) Winter, G . , et a l , Design of Concrete Structures, McGraw-Hill Book Co., New York, N.Y., 1964. (U)

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

66

89.

90.

Z i l l i a c u s , S., Phyillaier, W.E. and Shorrow, P.K., The Response of Clamped Circular Plates to Confined Explosive Loadings, Naval Ship R&D Center Report 3987, NSRDC, Bethesda, Md., February 1974. (U) 81 mm Suppressive Shielding Technical Data Package, Report EA-4E33 Edgewood Arsenal, Aberdeen Proving Ground, Md., January 1974. (U)

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch002

RECEIVED November 22, 1978.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

3 Newly

D e v e l o p e d T e c h n o l o g y for Ecological

D e m i l i t a r i z a t i o n of

Munitions

F. H. CRIST

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch003

Ammunition Equipment Office, Tooele Army Depot, Tooele, UT 84074

The Army, in its role as storekeeper of munitions for a l l DoD services, has a continuing requirement to demilitarize unserviceable or obsolete munitions. H i s t o r i c a l l y , demilitarization of munitions was accomplished by such expedients as sea dump or open a i r destruction. In 1970, the President signed Executive Order 11507 (later superseded by Executive Order 11752 dated 17 December 1973) directing that Federal Agencies set the example in abating pollution of the environment. This paper addresses some of the engineering efforts being expended to develop ecologically clean demilitarization technology that is safe for personnel handling this dangerous commodity. The candidate technology must also be affordable within the austere funding available for this important, but nevertheless, lower p r i o r i t y program that contributes relatively little to our defense posture. The demilitarization workload includes small arms ammunition, small to large caliber a r t i l l e r y ammunition, mines, mortar ammunition, rockets, bombs and myriad quantities of components that are used in the assembly of conventional munitions. Chemical munitions have received more intensified engineering and s c i e n t i f i c effort to insure absolute safety of operators and positive retention of effluents generated by disposal operations. Figure 1 shows a cross section of a rotary k i l n type deactivation furnace developed to demilitarize small arms ammunition and various munition components. This equipment was designed to either burn or detonate the energetic material as i t is moved by the helix flight from the cool feed end through the constantly increasing temperature of the 20-foot long retort. The deactivation furnace has proven to be an extremely cost effective system with all or much of the operating expense defrayed by the salvage value of decontaminated metals recovered by the process. Unfortunately, the high process feed rate generated large amounts of pollution to the atmosphere, A very high p r i o r i t y was therefore assigned to the development of emission controls for this process. This chapter not subject to U.S. copyright. Published 1979 American Chemical Society

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Figure 1.

Furnace deactivation

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch003

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch003

3.

CRIST

Ecological

Demilitarization

of

Munitions

69

E a r l y i n the emission c o n t r o l development program, i t was recognized that the burning o f myriad types o f munitions and munition components could generate a horrendous number of chemi c a l compounds i n the e f f l u e n t produced by the process. A thermochemistry computer program, developed at Edwards A i r Force Base to d e s c r i b e the burning o f rocket motors, was m o d i f i e d and implemented to p r e d i c t products to be found i n the e f f l u e n t when burning d i f f e r e n t munition items. T h i s program, through constant improvement and c o r r e l a t i o n with a c t u a l stack sampling during operations, proved to be extremely b e n e f i c i a l i n o p t i m i z i n g the furnace o p e r a t i o n to minimize p o l l u t a n t s o f concern. A f t e r n e a r l y one year o f t e s t burning with stack sampling accomplished by both p r i v a t e c o n t r a c t o r s and Government personnel, i t was concluded that only p a r t i c u l a t e emission c o n t r o l was r e q u i r e d to f u l l y comply with a l l EPA and S t a t e standards. The c o n t r o l equipment s e l e c t e d c o n s i s t e d o f a cyclone separator intended to remove large combustible p a r t i c u l a t e s and sparks, spark a r r e s t o r screen and a standard bag house f o r removal o f f i n e p a r t i c l e s . The i n i t i a l success o f t h i s system was marred by infrequent bag house f i r e s . An i n t e n s i v e engineering i n v e s t i g a t i o n of these f i r e s d i s c l o s e d that the instrumentation used i n p r e f a t o r y and developmental t e s t i n g was incapable of r e c o g n i z i n g and responding to short d u r a t i o n , high temperature, exhaust gas excursions. The system was modified to permit a g r e a t e r q u a n t i t y o f d i l u t i o n a i r and a c o n t r o l system more responsive to short d u r a t i o n , high temperature surges. T h i s m o d i f i e d system has proven to be extremely e f f e c t i v e i n abating p o l l u t i o n o f the environment with no f i r e s i n the bag house. Most noteworthy i s the f a c t that no a d d i t i o n a l operators were r e q u i r e d and only one 25 hp motor was added to the t o t a l system consumption of energy. The system was designed so that a d d i t i o n a l c o n t r o l such as N0 can be provided i f r e q u i r e d i n the f u t u r e . X

A program to expand the a p p l i c a t i o n o f the d e a c t i v a t i o n furnace f o r items with g r e a t e r amounts o f e n e r g e t i c m a t e r i a l was undertaken simultaneously with the development of emission cont r o l equipment. Army engineers p o s t u l a t e d and proved by t e s t s that munitions could be degraded to expose e n e r g e t i c m a t e r i a l s so that these m a t e r i a l s would burn r a t h e r than detonate when introduced i n t o the d e a c t i v a t i o n furnace. Figure 2 d e p i c t s l i v e , high e x p l o s i v e , hand grenades degraded by the a p p l i c a t i o n of a small vent punched i n t o i t s s i d e w a l l and munitions i n e r t e d by punching and p r o c e s s i n g them through the d e a c t i v a t i o n furnace. Munitions c o n t a i n i n g i n excess of 1/2 pound of high e x p l o s i v e have been s u c c e s s f u l l y sheared and burned i n the d e a c t i v a t i o n furnace. Avoiding the cost o f r e v e r s i n g the manufacturing process by r e c o v e r i n g salvage metals that would have been l o s t i n the open a i r d e s t r u c t i o n o f these items provide major monetary b e n e f i t s o f t h i s new technology. Shearing equipment, capable of matching the grenade burning r a t e of 22 rounds per minute, i s now being completed to permit f u l l s c a l e p r o d u c t i o n

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch003

70

Figure 2.

M26 grenades, sheared and burned

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch003

3.

CRIST

Ecological

Demilitarization

of

Munitions

71

t e s t i n g and operation. Some time back, the Ammunition Equipment O f f i c e was tasked to develop a safe and e c o l o g i c a l l y c l e a n d e m i l i t a r i z a t i o n system f o r unserviceable nerve gas f i l l e d chemical munitions. Following the time-proven s a f e t y concept of having the l e a s t q u a n t i t y o f explosive f i l l e d munitions and the l e a s t number of operators present at the operation f o r the s h o r t e s t p o s s i b l e time, Ammun i t i o n Equipment O f f i c e designed and developed the system shown at Figure 3. The machine developed to d e m i l i t a r i z e the munitions i s housed i n a very s u b s t a n t i a l e x p l o s i v e containment v e s s e l . T h i s v e s s e l was designed and has proven by dynamic t e s t s u i t a b l e f o r c o n t a i n i n g a l l fragments, gases and overpressures produced by a munition f u n c t i o n that could occur during the d e m i l i t a r i z a t i o n process. The equipment i s designed to be monitored and t o t a l l y c o n t r o l l e d by computer. A manual o v e r r i d e of some f u n c t i o n s f a c i l i t a t e d by c l o s e d c i r c u i t TV has a l s o been provided. The only entry by personnel i n t o the e x p l o s i v e containment c u b i c l e w i l l be f o r maintenance o f the system. Work done w i t h i n the explosive containment c u b i c l e i s shown i n Figure 4. An M55 rocket contained i n i t s shipping container i s r e c e i v e d on the i n s i d e of the e x p l o s i v e containment c u b i c l e . A l l openings of the c u b i c l e are c l o s e d , sealed and locked before the rocket i s punched and drained o f l i q u i d nerve agent. A f t e r removal and t r a n s f e r of the nerve agent by appropriate p i p i n g , the rocket, s t i l l i n i t s c o n t a i n e r , i s clamped i n the machine, submerged under decon s o l u t i o n and severed i n t o seven p i e c e s by saws with six s p e c i a l c i r c u l a r blades. Major advantages o f t h i s technology development are the avoidance of a l l unpacking and disassembly operations, the e l i m i n a t i o n of personnel from the immediate demili t a r i z a t i o n area and the r e l a t i v e l y short (approximately f o u r minutes) c y c l e time. The severed s e c t i o n s produced by t h i s system are i n d i v i d u a l l y fed i n t o the d e a c t i v a t i o n furnace where burning of the e n e r g e t i c m a t e r i a l and intense heating by the burner w i t h i n the r e t o r t guarantee t o t a l decontamination o f the residue. The technology developed f o r d e m i l i t a r i z a t i o n o f nerve agent f i l l e d rocket munitions has a l s o been e x p l o i t e d i n the d e m i l i t a r i z a t i o n of conventional a r t i l l e r y p r o j e c t i l e s . P r o j e c t i l e s are severed i n s u i t a b l e length p i e c e s to permit burning of the unconfined e n e r g e t i c m a t e r i a l i n the d e a c t i v a t i o n furnace. More importantly, Ammunition Equipment O f f i c e engineers have p o s t u l a t e d that 5 p s i steam heating of the e x t e r i o r casing o f sectioned p r o j e c t i l e s would melt the i n t e r f a c e m a t e r i a l between the s t e e l s i d e w a l l and the explosive charge t o permit the e x p l o s i v e charge to s l i p from the c a s i n g . F i g u r e 5 d e p i c t s sample TNT and Composition B p r o j e c t i l e s that were severed and steam heated f o r removal of the e x p l o s i v e charges. Explosive charges thus removed have been analyzed and found to be e n t i r e l y s u i t a b l e f o r r e c y c l i n g i n the manufacture of new munitions. An explosive washout process was developed s e v e r a l years

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch003

O

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch003

3.

CRIST

Ecological

Demilitarization

Figure 4.

of

Munitions

M55 rocket before and after sectioning

Figure 5. TNT and composition B severed projectiles before and after melt out

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

73

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch003

74

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

ago f o r d e m i l i t a r i z a t i o n o f l a r g e c a l i b e r a r t i l l e r y p r o j e c t i l e s and bombs that could not be open a i r detonated at depots i n c l o s e p r o x i m i t y to p o p u l a t i o n c e n t e r s . In the washout process, hot water at high pressure melted and h y d r a u l i c a l l y eroded b i n a r y e x p l o s i v e from the i n t e r i o r o f l a r g e c a l i b e r p r o j e c t i l e s and bombs. The e x p l o s i v e was then recovered through a p e l l e t i n g process f o r s a l e as a b l a s t i n g agent. Contamination picked up i n the washout process precluded r e c y c l i n g o f the e x p l o s i v e f o r f u r t h e r m i l i t a r y use. Treatment f a c i l i t i e s were a l s o provided to optimize the r e c y c l i n g o f waters used i n the process. U n f o r t u n a t e l y , the system uses c o n s i d e r a b l e energy f o r the accomplishment o f i t s purpose. Recent, more s t r i n g e n t , regul a t i o n o f the q u a l i t y o f l i q u i d waste e f f l u e n t would mandate a considerable investment t o upgrade the p o l l u t i o n c o n t r o l equipment. A new method f o r removal o f e x p l o s i v e from bombs and l a r g e c a l i b e r p r o j e c t i l e s was s o r e l y needed. The use o f microwave energy was one o f the candidate systems evaluated by Ammunition Equipment O f f i c e engineers. A small 5 kw microwave u n i t was rented and used f o r a s e r i e s o f melting t e s t s . The t e s t proved the v a l i d i t y o f the system with two major bonuses: (1) Less than 20 kwhr o f e l e c t r i c energy was consumed i n the removal of e x p l o s i v e s from a 750 pound bomb as compared t o over 975 kwhr of equipment energy consumed by the washout process and (2) no l i q u i d or gaseous e f f l u e n t were produced by the microwave melt out o f the e x p l o s i v e from the bombs. A production f a c i l i t y that w i l l c o r r e c t some problems encountered during t e s t i n g and o p t i mize the s a t i s f a c t o r y t e s t r e s u l t s i s now being developed. Figure 6 d e p i c t s the u l t i m a t e f a c i l i t y v i s u a l i z e d by the Ammun i t i o n Equipment O f f i c e engineers. It has been common p r a c t i c e over the years to decontaminate downloaded ammunition p a r t s or u n s e r v i c e a b l e machinery potent i a l l y contaminated with e x p l o s i v e s by open a i r burning. Both the Clean A i r Act and S u b t i t l e C under the Resource Recovery Act preclude c o n t i n u a t i o n o f t h i s procedure. A s p e c i a l l y designed f l a s h i n g furnace was procured and has been very s u c c e s s f u l l y t e s t e d f o r the accomplishment o f t h i s work. The furnace was designed with workload c a p a c i t y adequate t o handle the products of s e v e r a l d i f f e r e n t d e m i l i t a r i z a t i o n methods. The e f f l u e n t s generated by operation o f t h i s equipment are very s i m i l a r t o those generated by the d e a c t i v a t i o n furnace, t h e r e f o r e , i t can share u t i l i z a t i o n o f the same p o l l u t i o n c o n t r o l system. When operation o f both the f l a s h i n g furnace and the d e a c t i v a t i o n furnace i s r e q u i r e d , f l a s h i n g furnace operation can be performed during an o f f s h i f t i f necessary. White phosphorus f i l l e d munitions are a major item i n the current Army d e m i l i t a r i z a t i o n inventory. Ammunition Equipment O f f i c e engineers are developing methods to punch a s i z e d hole i n t o the white phosphorus f i l l e d munition t o c o n t r o l the r a t e at which burning occurs when the munition i s processed through the d e a c t i v a t i o n furnace. By c o n t r o l l i n g the burning r a t e , the

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Figure 6.

Facility concept for meltout and recovery of explosive by microwave energy

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch003

o

o 3

o QH5

ft

g

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979. Figure 7.

White phosphorus munitions disposal plant

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch003

>

f O

o

r >

1

M

X

O

3 X

OS

CRIST

Ecological

Demilitarization

of Munitions

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch003

3.

Figure 8.

Industrial robot

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

77

TOXIC CHEMICAL

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch003

78

AND EXPLOSIVES FACILITIES

e f f l u e n t can be processed through a hydrator and v e n t u r i scrubber f o r the production o f r e l a t i v e l y low grade phosphoric a c i d . T h i s process would t o t a l l y e l i m i n a t e the need f o r open a i r burning o f t h i s item and i s expected to net a s l i g h t p r o f i t over operating expenses. Figure 7 shows the Ammunition Equipment O f f i c e engineer's concept f o r the f a c i l i t y . The d e m i l i t a r i z a t i o n o f munitions introduces some unusual hazards t o operators performing the v a r i o u s t a s k s . Considerable e f f o r t has been expended t o separate the operator from the immed i a t e v i c i n i t y where the munition i s being processed. Figure 8 d e p i c t s an i n d u s t r i a l robot configured by Ammunition Equipment O f f i c e engineers s p e c i f i c a l l y f o r the accomplishment o f v a r i o u s ammunition handling operations. The robot i s computer c o n t r o l l e d with f o u r separate computer programs, each capable o f executing 128 d i s c r e t e steps. Since procurement o f the robot, a system u t i l i z i n g very s e n s i t i v e p r o x i m i t y sensors has been developed t o recognize the geometry o f a p r o j e c t i l e at the pickup p o i n t and determine whether i t i s o r i e n t e d c o r r e c t l y f o r placement i n a machine f o r disassembly. I f orientation i s incorrect, binary s i g n a l s from the p r o x i m i t y sensors t r i g g e r a subroutine of the robot program to r o t a t e the p r o j e c t i l e a f t e r pickup t o c o r r e c t i t s r e l a t i o n s h i p with the disassembly machine. Many d i f f e r e n t a p p l i c a t i o n s o f the robot have proven i t t o be extremely v e r s a t i l e and r e l i a b l e f o r the performance of r e p e t i t i v e operations. The robot not only has the c a p a b i l i t y o f handling munitions t o and from disassembly equipment, but a l s o monitors and c o n t r o l s the equipment. Most o f the d e m i l i t a r i z a t i o n workload accommodated by new processes discussed i n t h i s paper i n c l u d e munitions developed during the Korean c o n f l i c t . Many newer munitions now i n storage are more s o p h i s t i c a t e d and complex i n t h e i r assembly. Development of s a f e , cost e f f e c t i v e and e c o l o g i c a l l y c l e a n d e m i l i t a r i z a t i o n c a p a b i l i t y f o r these items w i l l be a keen challenge t o the m i l i t a r y and c i v i l i a n engineering and s c i e n t i f i c community i n v o l v e d i n t h i s work. RECEIVED November 22,

1978.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

4 Lightning

a n d t h e H a z a r d s It P r o d u c e s f o r E x p l o s i v e

Facilities

RODNEY B. BENT

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

Atlantic Scientific Corp., P.O. Box 3201, Indialantic, FL 32903

Lightning is a natural phenomenon which poses a potential hazard to people, structures, and equipment unless adequate protection is provided. The type of protection required is r e lated to the nature and function of the facility. The decision making process involves a number of interrelated factors which should be considered when determining the need for protection. A knowledge of the basic lightning process can lead to a much better understanding of these lightning protection techniques and the resulting level of protection. The design of satisfactory lightning protection systems can, therefore, only be achieved with a knowledge of the mechanism and characteristics of a lightning strike and the related problems that a steep voltage wavefront has on inadequate bonding and grounding. Lightning induced line surges can also cause major damage to electrical or electronic systems. A considerable proportion of the damage caused by such surges can be eliminated with careful planning of protection equipment. These line surges can also cause extra bits in computer software, which may lead to false decision making by the computer. The

Lightning P r o c e s s in a Cloud-to-Ground A

Discharge

c l o u d - t o - g r o u n d l i g h t n i n g d i s c h a r g e i s m a d e u p of o n e o r

m o r e intermittent partial discharges.

T h e total d i s c h a r g e ,

w h o s e t i m e d u r a t i o n i s o f t h e o r d e r of 0. 5 s e c o n d s , flash; each component discharge,

m e a s u r e d i n t e n t h s of m i l l i s e c o n d s , a r e u s u a l l y three or four

is called a stroke.

strokes per flash,

s e p a r a t e d b y t e n s of m i l l i s e c o n d s .

is called a

whose luminous phase is There

the s t r o k e s b e i n g

Often lightning as

observed

0-8412-0481-0/79/47-096-079$12.25/0 ©

1979 A m e r i c a n C h e m i c a l Society

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

80 b y the e y e a p p e a r s

to f l i c k e r .

In t h e s e c a s e s t h e e y e

t i n g u i s h e s the i n d i v i d u a l s t r o k e s lightning stroke

dis-

which make up a flash.

Each

begins with a weakly luminous p r e d i s c h a r g e ,

the l e a d e r p r o c e s s ,

which propagates

f r o m c l o u d - t o - g r o u n d and

w h i c h is f o l l o w e d i m m e d i a t e l y by a v e r y l u m i n o u s r e t u r n which propagates

stroke

from ground-to-cloud.

It h a s b e e n f o u n d t h a t t h e e l e c t r o s t a t i c f i e l d t a k e s a b o u t 7 seconds

to r e c o v e r

to i t s p r e d i s c h a r g e v a l u e a f t e r t h e

of a l i g h t n i n g f l a s h at a d i s t a n c e

occurrence

but w h e n the f l a s h

i s v e r y n e a r , t h e r e c o v e r y t i m e m a y b e d i f f e r e n t d u e t o the

pre-

s e n c e of s p a c e

field

takes

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

beyond 5 k m ,

place

charge.

In b o t h c a s e s ,

regeneration

of the

exponentially.

Stepped L e a d e r .

The usual cloud-go-ground discharge

bably begins as a l o c a l d i s c h a r g e the c l o u d b a s e a n d the N - c h a r g e discharge frees

electrons

zed by attachment

pro-

region in

r e g i o n a b o v e it ( F i g u r e

1).

This

i n the N - r e g i o n p r e v i o u s l y i m m o b i l i -

to w a t e r

o v e r r u n the p - r e g i o n ,

b e t w e e n the p - c h a r g e

or ice p a r t i c l e s .

n e u t r a l i z i n g its

The free

electrons

s m a l l positive charge,

then continue their t r i p toward g r o u n d , w h i c h takes

about

msec.

to e a r t h

T h e v e h i c l e f o r m o v i n g the n e g a t i v e

charge

and

20 is

the s t e p p e d l e a d e r w h i c h m o v e s f r o m c l o u d - t o - g r o u n d i n r a p i d l u m i n o u s s t e p s a b o u t 50 m l o n g , leader

step o c c u r s

in less

as

shown in F i g u r e

than a m i c r o s e c o n d ,

1.

Each

a n d the t i m e

be-

t w e e n s t e p s i s a b o u t 50 Jj s e c . Return Stroke.

W h e n the s t e p p e d l e a d e r

relatively large negative tive c h a r g e

is near

surface

attract each other,

j o i n the l a r g e n e g a t i v e going d i s c h a r g e s .

(Figure

2).

Since

negative

charges

ground,

causing large propagates

100 M s e c .

W h e n the l e a d e r

to

determines

is attached

currents

to g r o u n d ,

to f l o w at g r o u n d a n d c a u s i n g

g r o u n d to b e c o m e v e r y l u m i n o u s .

The channel

c o n t i n u o u s l y u p the c h a n n e l a n d out

at a v e l o c i t y s o m e w h e r e b e t w e e n

the s p e e d of l i g h t . ctrons

attempts

and i n doing so initiates u p w a r d -

a t t h e b o t t o m o f t h e c h a n n e l m o v e v i o l e n t l y to

channel branches about

pro-

O n e of t h e s e u p w a r d - g o i n g d i s c h a r g e s

the l i g h t n i n g s t r i k e p o i n t .

the c h a n n e l n e a r

its

of p o s i -

opposite

the l a r g e p o s i t i v e c h a r g e

charge,

c o n t a c t s the d o w n w a r d - m o v i n g l e a d e r a n d t h e r e b y

luminosity

ground,

induces large amounts

o n the e a r t h b e n e a t h it a n d e s p e c i a l l y o n o b j e c t s

j e c t i n g a b o v e the e a r t h ' s charges

charge

1/2

T h e t r i p between ground and cloud

W h e n the l e a d e r

initially touches

f l o w to g r o u n d f r o m t h e c h a n n e l b a s e

and as

s t r o k e m o v e s u p w a r d , l a r g e n u m b e r s of e l e c t r o n s

the

and

1/10

takes

ground, the

f l o w at

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

ele-

return

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

4.

BENT

Lightning

and the Hazards

• • 7 / • • / • / 7 • • Figure 1.

Produces

81

/ s * s ss S > S ' * > y ^

V*">

Stepped leader initiation, (a) Cloud charge prior to p-N discharge, (b) stepped leader moving downward in 50-m steps.

*s s S ottom) normalized waveforms of the return stroke magnetic field for individual storms. ( ) Average of all storms, ( ) extreme average storm values.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

4.

BENT

Lightning

and the Hazards

It

Produces

87

gap s p a c i n g i n m e t e r s

Figure 6.

Switching impulse breakdown voltage for H/D

i 0

I 20

1 40

I 60

: 80

i 100

i 120

= 1, which is average

I 140

— I 160

current, kA Figure 7.

Variation of striking distance with current amplitude

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

88 m e t e r s above ground.

These results,

therefore,

provide

q u a n t i t a t i v e e v i d e n c e a g a i n s t the b e l i e f i n l i g h t n i n g

concentration

areas. The

L i g h t n i n g R o d a n d Its The

Lightning Rod.

Conductors It i s a c o m m o n m i s c o n c e p t i o n t h a t

l i g h t n i n g r o d s d i s c h a r g e c l o u d s a n d thus p r e v e n t l i g h t n i n g . rod only serves

as a m e a n s

g r o u n d b y d i v e r t i n g the l i g h t n i n g w h e n i t a p p r o a c h e s d i s t a n c e d i s c u s s e d i n the p r e v i o u s s e c t i o n . years

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

the

striking

In t h e t w o h u n d r e d

since B e n j a m i n F r a n k l i n investigated lightning,

manufacturers

many

h a v e t r i e d t o i n f l u e n c e t h e p u b l i c i n the

dissi-

p a t i o n p r i n c i p l e of l i g h t n i n g p r o t e c t i o n o r e l i m i n a t i o n . technique m o s t

The

to r o u t e t h e l i g h t n i n g h a r m l e s s l y to

c e r t a i n l y d o e s not w o r k a n d the

p h y s i c i s t s ' thoughts on this subject a r e f a s h i o n b y G o l d e i n the f o l l o w i n g

This

lightning

discussed in masterly

statement:

"It i s a m a n i f e s t a t i o n o f h u m a n w e a k n e s s

that a

pre-

j u d i c e o n c e a c q u i r e d t e n d s to b e r e t a i n e d e v e n i n t h e f a c e of o v e r w h e l m i n g f a c t u a l e v i d e n c e c o n t r a d i c t i n g the b a s i s o n w h i c h i t w a s f o u n d e d .

In t h e r e a l m o f

s c i e n c e a p r e j u d i c e m a y be t e r m e d a m i s c o n c e p t i o n . Such a m i s c o n c e p t i o n w h i c h has p e r s i s t e d for over hundred years

l i e f that a l i g h t n i n g c o n d u c t o r h a s the p u r p o s e ,

the a b i l i t y ,

There are

charge building

struck". several manufacturers

or lightning d i s s i p a t i o n s y s t e m s . belief,

be-

or indeed

of d i s s i p a t i n g s i l e n t l y the e l e c t r i c

i n a t h u n d e r c l o u d thus p r e v e n t i n g the " p r o t e c t e d " being

two

a n d w h i c h i s s t i l l w i d e s p r e a d i s the

however,

of e i t h e r r a d i o a c t i v e

lightning

The predominant scientific

i s that n e i t h e r of t h e s e s y s t e m s

are

any bene-

f i t o v e r the c o n v e n t i o n a l l i g h t n i n g p r o t e c t i o n s y s t e m .

Extensive

studies have been p e r f o r m e d r e c e n t l y on d i s s i p a t i o n a r r a y s which only serve

to e n h a n c e what s c i e n t i s t s

F r a n k l i n o v e r 200 y e a r s arrays

do no m o r e

p r o b a b l y do l e s s .

ago have

d a t i n g b a c k to

said; namely,

that t h e s e

than a c o n v e n t i o n a l lightning r o d and i n d e e d T h e s e s t u d i e s h a v e e x a m i n e d the h i s t o r i c a l ,

t h e o r e t i c a l a n d e x p e r i m e n t a l a s p e c t s of the a r r a y s i n v e s t i g a t e d the a r r a y s The arrays

are

and have

b e l i e v e d b y m a n y n o n - s c i e n t i s t s to g i v e o f f

significant corona discharge under thundercloud conditions that the e l e c t r i c a l c h a r a c t e r i s t i c s changed.

of the s t o r m a r e

because

this s o - c a l l e d e x c e s s i v e

so

drastically

T h e c l a i m s i n d i c a t e that a l a r g e a r e a a r o u n d the

is protected

also

o n s i t e at s e v e r a l i n s t a l l a t i o n s .

ionization

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

array

either

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

4.

BENT

Lightning

and

the

Hazards

It

Produces

89

r e a c h e s the c l o u d and l o w e r s i t p o t e n t i a l below the d i s c h a r g e l e v e l or p r o v i d e s a p r o t e c t i v e i o n c l o u d o v e r the p r o t e c t e d a r e a . T h e s e c l a i m s cannot be so as s u c h a p r o t e c t i v e c l o u d would have to c o n t a i n enough c h a r g e to m a k e i t m o r e d a n g e r o u s to the ground than the t h u n d e r c l o u d i t s e l f . Secondly, c o r o n a ions d i s s i pated f r o m an a r r a y would r e c o m b i n e i n n o r m a l a i r when o n l y a few h u n d r e d feet above the ground, and t h e r e would a l s o be l e s s ions f r o m an a r r a y than f r o m a single c o n v e n t i o n a l r o d or even a few t r e e s . A l l f a c t o r s r e l a t e d to these a r r a y s i n d i c a t e that they a r e not as good a l i g h t n i n g p r o t e c t o r as a c o n v e n t i o n a l s i n g l e c o n d u c t o r . A U.S. N a v y r e p o r t (4) and F A A r e p o r t (5) d i s c u s s both s i d e s of the topic. In o r d e r to e x a m i n e the c l a i m s r e l a t e d to r a d i o a c t i v e l i g h t n i n g r o d s , i t i s n e c e s s a r y to c o n s i d e r the p h y s i c a l p r o c e s s of a d i s c h a r g e to a c o n v e n t i o n a l r o d . When a l i g h t n i n g r o d i s i n the a r e a of a l i g h t n i n g l e a d e r the e l e c t r i c f i e l d a r o u n d i t s t i p would be e x t r e m e l y h i g h and the a i r i n this r e g i o n would be i n glow d i s c h a r g e w h i c h i n d i c a t e s m i l l i o n s of f r e e e l e c t r o n s m o v i n g at the point. A s the e l e c t r i c f i e l d i n c r e a s e s , this i o n i z a t i o n p r o c e s s or c o r o n a c u r r e n t a l s o i n c r e a s e s to a r c d i s c h a r g e and a s p a r k r e a c h e s out to m e e t the d o w n w a r d c o m i n g l e a d e r , f o r m i n g a path f o r e n o r m o u s c u r r e n t s to flow. Radioactive rods contain a c e r t a i n amount of radioactivity in the a r e a n e a r the t i p of the r o d , s u p p o s e d l y to enhance the i o n i z a t i o n and hence a t t r a c t the l i g h t n i n g l e a d e r o v e r l a r g e r d i s t a n c e s . T h e s e c l a i m s have been e x a m i n e d e x p e r i m e n t a l l y and t h e o r e t i c a l l y by m a n y s c i e n t i s t s with n e g a t i v e r e s u l t s . In effect, the a n a l y s i s shows the c o r o n a c u r r e n t f r o m the r a d i o a c t i v e r o d i s s l i g h t l y h i g h e r than that f r o m the c o n v e n t i o n a l r o d , as the m a n u f a c t u r e r c l a i m s , only when e l e c t r i c fields a r e low s u c h as u n d e r a f a i r sky. When a t h u n d e r h e a d a p p r o a c h e s and the e l e c t r i c f i e l d s b u i l d up, h o w e v e r , the r a d i o a c t i v e r o d gives off l e s s c o r o n a c u r r e n t than the c o n v e n t i o n a l r o d and i s , t h e r e f o r e , l e s s l i k e l y to be s t r u c k . T h i s c a n be e x p l a i n e d by the fact that the i o n i z a t i o n c l o u d p r o d u c e d a r o u n d the r o d by the r a d i o a c t i v e s o u r c e p r o v i d e s an i o n s h i e l d a r o u n d the t i p r e d u c i n g i t s e f f e c t i v e n e s s i n sending up the n e c e s s a r y u p w a r d l e a d e r s p a r k . T h e c o r o n a d i s c h a r g e f r o m a c o n v e n t i o n a l r o d was found to e x c e e d that f r o m a r a d i o a c t i v e r o d by an o r d e r of m a g n i t u d e u n d e r l i g h t n i n g - l i k e e l e c t r i c f i e l d s i n d i c a t i n g that r a d i o a c t i v e r o d s a r e m u c h l e s s c a p a b l e of i n f l u e n c i n g the path of a l i g h t n i n g d i s c h a r g e than a c o n v e n t i o n a l r o d . A n e x a m p l e of f a i l u r e of r a d i o a c t i v e l i g h t n i n g r o d s was i l l u s t r a t e d on the V a t i c a n ' s B e r n i

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

90

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

Colonade building in R o m e which is protected the 6th of M a r c h ,

1976,

the

Papal C r e s t was

by such r o d s .

a n d k n o c k e d o f f i n d i c a t i n g f a i l u r e of s u c h a p r o t e c t i v e T h e lightning r o d has lightning rods are common-sense

system.

the p u r p o s e of i n t e r c e p t i n g a

s t r i k e a n d d e f l e c t i n g i t f r o m the

structure.

to b e p u t o n a b u i l d i n g ,

On

struck by lightning

When

lightning

several

one s h o u l d d e v e l o p a

solution which will strike a reasonalble

balance

between protection and cost. It i s p o s s i b l e , w i t h c a r e ,

to u s e

existing gutter and r a i n

p i p e s to o b t a i n p r o t e c t i o n at r e d u c e d c o s t s , taken when i n c o r p o r a t i n g m o d e r n m e t a l i c p a r t of the s y s t e m .

Lightning can penetrate

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

1 m m thickness or m o r e , m i g h t be a c c e p t a b l e . tain codes

but c a r e m u s t metal

sheets

a n d p e r h a p s the c o s t of s u c h

to b e 0. 3 m m f o r c o p p e r ,

repair

a n d 0. 5 m m f o r o t h e r thickness.

Down Conductors.

When lightning strikes an air

some

terminal

b y the s h o r t e s t

possible but

the i n d u c t a n c e of t h i s d o w n c o n d u c t o r i s a m a j o r of the d a n g e r o u s

i n t e r n a l grounded object,

pedence

cause

effects.

T h e down conductor has this function,

i n d e t e r m i n i n g the o c c u r r e n c e

strike

but c a n

l a r g e a r e a s of f o i l to be t o r n o f f d u e to the m e c h a n i c a l

the i n j e c t e d c u r r e n t m u s t be t r a n s f e r r e d

metals.

A lightning

to t h i s t y p e of r o o f w i l l n o t o n l y b u r n a l a r g e h o l e ,

because

to b e

of

The m i n i m u m thickness is defined in cer-

S o m e r o o f s u s e m e t a l f o i l s of l e s s

p a t h to g r o u n d .

be

roofing materials

factor

s i d e - f l a s h to

it m u s t a l s o h a v e the l o w e s t i m -

that c a n be a f f o r d e d .

T h e i n d u c t a n c e of a d o w n c o n d u c t o r i s d i r e c t l y p r o p o r t i o n a l to i t s h e i g h t .

B y p a r a l l e l i n g two d o w n c o n d u c t o r s

their combined

i n d u c t a n c e i s r e d u c e d to a p p r o x i m a t e l y o n e - h a l f that of a

single

conductor and so on.

spaced

too c l o s e

together

accurate.

The down conductors

however,

The importance

is therefore

otherwise

s h o u l d not be

the a b o v e r u l e i s not

of h a v i n g at l e a s t

a considerable advantage

two d o w n

i n r e d u c i n g the

s i d e - f l a s h , the a c t i o n of w h i c h i s d i s c u s s e d l a t e r . bends in a down conductor also i n c r e a s e s

conductors dangerous

Right angle

the i n d u c t a n c e a n d

such

a design needs careful consideration. Once a lightning strike has the s u r f a c e discharge are

of the e a r t h , the c u r r e n t

been intercepted and passed

i n t o the g r o u n d .

the g r o u n d r e s i s t a n c e ,

Two important

ground resistivity is high, ground.

to

factors

which plays a part in side-flashing,

a n d the p o t e n t i a l d i s t r i b u t i o n o v e r the g r o u n d s u r f a c e . the d o w n c o n d u c t o r s

to

i t i s the f u n c t i o n of e a r t h e l e c t r o d e s

advantages

to w a t e r

If t h e

c a n be a c h i e v e d b y b o n d i n g

p i p e s to l o w e r the r e s i s t a n c e

T h e r i s k i n s i d e - f l a s h i n g is thus d e t e r m i n e d

to

exclusively

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

4.

BENT

b y the

Lightning

and

the Hazards

It

91

Produces

inductance.

Side-flashing can also occur

b e l o w t h e g r o u n d to

buried

m e t a l p i p e s o r w i r e s a n d c a r e m u s t be t a k e n i n the d e s i g n a n d p o s i t i o n i n g of the g r o u n d i n g e l e c t r o d e s .

Typical values

pulse breakdown in soil are

2 to 5 k V / c m ,

flashes

In a i r

of s e v e r a l m e t e r s .

which leads

the v a l u e i s 9 k V / c m

and c o n c r e t e has a slightly lower b r e a k d o w n It i s i n t e r e s t i n g to n o t e much more

of i m -

to

side-

and b r i c k

strength.

t h a t t h e l e n g t h of a g r o u n d r o d h a s

significant effect

o n the r e s i s t a n c e

C u r v e s d e m o n s t r a t i n g this effect are

than its

s h o w n i n F i g u r e 8,

which

a l s o i m p l i e s that l i t t l e b e n e f i t i s a c h i e v e d b y e x t e n d i n g the beyond 2 or

3 meters

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

Strip electrodes

are

exists below a layer Materials. ductors

or i n c r e a s i n g its d i a m e t e r

T h e t y p e of m a t e r i a l u s e d f o r r o o f a n d d o w n c o n -

to w h e t h e r

stranded f o r m .

the c o d e s code.

the m a t e r i a l

Stranded copper

C o p p e r or copper

A

strong corrosive off c o p p e r

be a v o i d e d a s

Copper,

but t h e r e a r e

aluminum conflicting

s h o u l d b e of r o d ,

tube,

strip

is not d e e m e d a c c e p t a b l e

although it is accepted

a l l o y s m u s t not be u s e d on a

in

i n the U S A building

fittings,

lead which are

effect

c a n be c a u s e d

conductors

onto s o m e

often u s e d on b u i l d i n g s . f a r as

stranded materials solid

a l l acceptable

of s e v e r a l c o u n t r i e s ,

with a l u m i n u m dripping

cm.

of l o w r e s i s t i v i t y .

and g a l v a n i z e d steel are or

rod

b e y o n d 1. 25

beneficial where high resistivity ground

s e e m s to be g o v e r n e d b y t r a d i t i o n .

opinions as

a

radius.

possible, are

more

by

rainwater

metals

such as

zinc or

Dissimilar metals

a n d one

s h o u l d be a w a r e

severely attacked

should

that

by c o r r o s i o n

than

conductors. C o r r o s i o n plays a high risk underground, in particular

a l u m i n u m which is totally unacceptable. perties

of s o m e

stray currents systems

where

The• e l e c t r o l y t i c

s o i l s c a u s e c o r r o s i o n to a l l t h e s e m e t a l s , p r o d u c e d by D C r a i l w a y l i n e s on D C h i g h the

earth is u s e d as

a return path.

to

proas

do

voltage

Cathodic pro-

t e c t i o n c a n h e l p e l i m i n a t e t h i s t y p e of p r o b l e m . The

Basic Requirements

of L i g h t n i n g

Protection

T h e r e l a t i v e n e e d f o r l i g h t n i n g p r o t e c t i o n at a f a c i l i t y i s pendent on m a n y f a c t o r s as or usage

indicated by Smith

(a)

Type

(b)

Personnel

safety;

(c)

Prevalence

of l i g h t n i n g ;

(d)

T y p e of

(6):

of f a c i l i t y ;

construction;

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

de-

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

92

0

I 1

| 2

I 3

i 4

L 5

length, m Figure 8.

Variation of ground resistance of rod electrodes of different diameter with length (British code)

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

4.

BENT

Lightning

and the

(e)

Contents;

(f)

Economic

(g)

Degree

Hazards

It

Produces

93

risks;

of i s o l a t i o n ( r e l a t i v e

h e i g h t of s u r r o u n d i n g

structures); (h)

T y p e of t e r r a i n ;

(i)

H e i g h t of

and

structure.

T h e d e c i s i o n to p r o v i d e p r o t e c t i o n m a y be b a s e d p r i m a r i l y on one f a c t o r sonnel meet

alone.

S o m e p o s s i b l e s i n g l e f a c t o r s c a n be

safety r e q u i r e m e n t s ,

an imposed lightning protection Three basic

requirements

tection against direct

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

reduced insurance

rates,

per-

or

m u s t be f u l f i l l e d to p r o v i d e p r o -

lightning

strikes

to a

structure:

(a)

A c o n d u c t i v e o b j e c t m u s t be p r o v i d e d to i n t e n t i o n a l l y

(b)

A p a t h m u s t be e s t a b l i s h e d that j o i n s t h i s o b j e c t

a t t r a c t the l e a d e r

stroke;

e a r t h w i t h s u c h a l o w i m p e d e n c e that the f o l l o w s it i n p r e f e r e n c e (c)

A low resistance b o d y of the

epted

set

codes

protection The

s t r i k e to e a r t h .

United States has

and that is

T h e p r i m a r y d i f f e r e n c e i n the

requirements

two n a t i o n a l l y a c c e p t e d

Protection Association's

( A N S I C 5 . 1),

Lightning

a n d the U n d e r w r i t e r ' s Protection

effective

of t h e s e two c o d e s

are

codes;

the

Protection

Laboratories

S y s t e m (Standard

b a b l y e q u a l l y u t i l i z e d on s t r u c t u r e s

Master

U L 96A).

The

quite s i m i l a r and are

pro-

t h r o u g h o u t the n a t i o n .

The

d i f f e r e n c e b e t w e e n the t w o i s that the M a s t e r

Label can

c e r t i f i e d u p o n b o t h a f a c t o r y i n s p e c t i o n a n d l a b e l i n g of the ing protection m a t e r i a l s

and upon p e r f o r m a n c e

spection by an authorized Lightning

be

lightn-

of a f i e l d i n -

inspector.

Protection by O v e r h e a d W i r e

D a n g e r f a c i l i t i e s of l a r g e

d i m e n s i o n s r e q u i r i n g the

p o s s i b l e p r o t e c t i o n s h o u l d be p r o v i d e d w i t h a s y s t e m pass

acc-

es-

guidelines.

one t h i n g i n c o m m o n

i s the p h i l o s o p h y u s e d i n a c h i e v i n g a n

Labeled Lightning

major

have been

system.

National Fire Code

s h o u l d c o n f o r m to a n

to p r o v i d e t h e n e c e s s a r y

requirement has

diverting a direct various

system

C o d e s and standards

tablished in many countries or

and

earth.

of g u i d e l i n e s .

E v e r y code

to a n y o t h e r ;

to

discharge

c o n n e c t i o n m u s t be m a d e w i t h the

The lightning protection

aries

to

code.

suspended f r o m tall masts. to g r o u n d s o m e d i s t a n c e

These

catenary

best

of

caten-

wires

a w a y f r o m the p r o t e c t e d

must

structure

s o t h a t t h e l i g h t n i n g c u r r e n t m a y g o to g r o u n d a t a d i s t a n t p o i n t .

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

94 The grounding wires strip conductors

should radiate

a w a y f r o m the s t r u c t u r e ,

overhead wires

s h o u l d be f a r

e n o u g h f r o m the

nate s i d e - f l a s h i n g w h i c h was d e s c r i b e d e a r l i e r t e c t i v e a n g l e s f r o m the w i r e s m u s t c o v e r Theoretical investigations vated

grounded structures are

figures. elevated

Figures

to

a n d the

pro-

the b u i l d i n g

of t h e e l e c t r i c

structure.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

Hence,

such leader

a n d the

field

thunderstorm. leader

if two w i r e s w e r e

thus p r o t e c t i n g

the s t r u c t u r e

p r o t e c t i o n a r e a i s a f u n c t i o n of w i r e Figure

spaced

160

att-

feet a p a r t

a p p r o a c h i n g g r o u n d i n that r e g i o n w o u l d be

to t h e w i r e s ,

three

9 a n d 10 s h o w t h e e q u i p o t e n t i a l l i n e s a r o u n d a n

10 i t c a n b e s e e n t h a t i f a w e a k l i g h t n i n g

to i t .

ele-

s u m m a r i z e d i n the f o l l o w i n g

c a m e t o w a r d g r o u n d w i t h i n 8 0 f e e t o f t h e w i r e i t w o u l d be racted

elimi-

field around

grounded w i r e as d r a w n by a c o m p u t e r ,

Figure

The

structure

l i n e s a r o u n d a g r o u n d e d w i r e a t 2 50 f e e t d u r i n g a From

be

a n d s h o u l d n o t be b o n d e d to the s t r u c t u r e .

under them.

size and height,

any

attracted The

as

shown in

11.

Photographs

t a k e n of l i g h t n i n g s t r i k i n g a w i r e s t r e t c h e d

a canyon in N e w M e x i c o by D r .

over

M o o r e , v e r i f y that it d i d i n d e e d

s t r i k e the w i r e u n d e r n e a t h o n v a r i o u s

occasions.

a strong lightning leader

t h e f u n c t i o n of t h e w i r e ,

approaches,

in a high corona discharge thereby attracting

state,

At times

i s to p r o v i d e t h e u p w a r d

the d o w n w a r d s t r o k e

to the

when then

leader

wire.

If t h i s t y p e of l i g h t n i n g p r o t e c t i o n i s c a r e f u l l y p l a n n e d , c h a n c e s of f a i l u r e w i l l be e x t r e m e l y stallation and maintenance

small,

however,

the i n -

p r o b l e m s of s u c h a s y s t e m m a y

be

considerable. Electrical,

M e c h a n i c a l and T h e r m a l

Electrical Effects. attracted m o r e side-flash.

N o l i g h t n i n g s t r i k e to a s t r u c t u r e

a t t e n t i o n i n the l a s t d e c a d e s

It h a s

provided in order

t h a n the

has

so-called

been e x a m i n e d r e p e a t e d l y and its d a n g e r s

i l l u s t r a t e d i n the t e c h n i c a l l i t e r a t u r e . has

Effects

Its

prevention must

to s t o p i n c i d e n t s i n w h i c h a p r o t e c t e d

been struck and a p e r s o n in

are

be

building

such a building injured.

A n i l l u s t r a t i o n o f t h e p r i n c i p l e s o f t h e c o n d i t i o n s l e a d i n g to the r i s k of a s i d e - f l a s h a r e

shown in a simple example

in F i g u r e

12. T h e i l l u s t r a t i o n s h o w s t h e o u t l i n e s of a b u i l d i n g w i t h a lightning conductor highest point.

p r o t e c t i n g the c h i m n e y w h i c h c o n s t i t u t e s

In t h e a t t i c i s a n e l e c t r i c a l

point or a w a t e r

w h i c h i n t u r n i s c o n n e c t e d d i r e c t l y o r i n d i r e c t l y to g r o u n d . i n m i n d that a n e l e c t r i c a l

supply is

the pipe Bear

s t i l l a l m o s t at g r o u n d p o t e n -

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

BENT

Lightning and the Hazards It Produces

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

4.

Figure 9. Equipotential lines around an elevated grounded wire

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

95

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

96

Figure 10.

Electric field lines in the vicinity of an elevated grounded wire

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

4.

BENT

Lightning

and the Hazards

It

Produces

97

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

height of wire (ft)

0

20

40

60

collection region radius Figure 11.

80

100

120

(ft)

Field line collection area as a function of wire size and height

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

98 tial as

f a r as

the e x t r e m e l y

high lightning voltages

are

con-

cerned. Let us now assume

t h a t the l i g h t n i n g c o n d u c t o r

c h i m n e y is struck by a lightning c u r r e n t current

on the

of a m p l i t u d e i .

i s t h e n d i s c h a r g e d a l o n g the r o o f c o n d u c t o r ,

down conductor

a n d i n t o the e a r t h

stitutes an inductance ctrode m a y

L,

electrode.

T h e t o p of the l i g h t n i n g - p r o t e c t i v e

single

T h i s path

w h i l e the i m p e d a n c e

be d e s c r i b e d b y its e f f e c t i v e

The

the

con-

of t h e e a r t h

ele-

ground resistance

system

R.

i s t h u s r a i s e d to a

p o t e n t i a l w i t h r e s p e c t to t r u e e a r t h w h i c h i s g i v e n b y : u = iR + For

the p u r p o s e

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

an intense

Ldi/dt

of a n u m e r i c a l e s t i m a t e ,

lightning current

g r o u n d r e s i s t a n c e of R =

10Q.

tical conductor

160 (j H p e r

is about

The inductance

of t h e f r o n t o f t h e l i g h t n i n g , a s be t a k e n a s above

50k a m p / / ^

g r o u n d is

10 m ,

100

assume

k a m p and a

of a s i n g l e

ver-

m a n d t h e r a t e of

reported

\j s e c .

1

we m a y

o f c r e s t v a l u e i = 100

rise

b y L l e w e l l y n (_1),

If t h e h e i g h t o f t h e

may

chimney

t h e t o p o f the l i g h t n i n g c o n d u c t o r

is

r a i s e d t o a p o t e n t i a l w i t h r e s p e c t to t r u e e a r t h w h i c h a m o u n t s = 10

u

= 10

6

5

10 + 10 "

x

+ 3. 2

x 10

6

X

1.6

x

x

10"

4

10

x

6

2 x 10

x

V = 4. 2 M V n e g l e c t i n g

to:

V

S

phase

differences. In c o n t r a s t ,

the i n t e r n a l g r o u n d e d w i r e o r p i p e r e m a i n s

g r o u n d p o t e n t i a l e v e n w h e n the h o u s e i s s t r u c k tial difference

of 4 . 2 M V i s s u d d e n l y i m p r e s s e d

lightning-conductor potential difference, lightning conductor

an electric breakdown occurs f r o m

The breakdown strength

voltage

c a n be t a k e n a s

900

elethat the

to t h e w a t e r t a n k ; a n d t h i s i s t e r m e d

flash.

the

If t h e

of the c l e a r a n c e D i s l e s s t h a n

at

poten-

between

s y s t e m a n d the i n t e r n a l p o i n t .

ctric breakdown strength

materialize.

s o t h a t the

a

side-

of a i r f o r a c h o p p e d i m p u l s e

k V / m , hence

S i m i l a r situations m a y

a 5m flash could

occur

if people a r e

standing

between a grounded a i r - t e r m i n a l lead and a grounded i n s t r u m e n t i n the b u i l d i n g . surface

great distances. ductor

Side-flashes may also occur

a n d i n the p r o c e s s c a n t h r o w u p r o c k s

Thermal Considerations. return

many

stroke 1-2

current

problems.

The lightning leader

cone w h i c h is s u r r o u n d e d by m u c h l a r g e r

is about

the

over

T h e s i m p l e s o l u t i o n of b o n d i n g the d o w n c o n -

to the g r o u n d e d o b j e c t w i l l a l l e v i a t e

narrow

under

and soil

is concentrated

centimeters diameter

stroke

corona.

in this c e n t r a l

and a m a x i m u m

has

a

The

cone which

temperature

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

4.

BENT

Lightning

and the Hazards It

Produces

99

Lightning Conductor

E l e c t r i c a l Supply

Water

Pipe

Figure 12.

Lightning strike to house and conductor showing distance to interior grounded unit

fi 6t, 2

Figure 13.

2

A s

Temperature rise in copper conductors (after Golde (3))

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

100

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

of a b o u t 60, 000

°F is reached after

T h e effects serious,

although there

w i l l be p e n e t r a t e d . i t, 2

a few m i c r o s e c o n d s .

of t h i s t e m p e r a t u r e

on m e t a l s

is u s u a l l y not

is a p o s s i b i l i t y that a thin m e t a l

The temperature

rise

sheet

i s p r o p o r t i o n a l to

w h e r e a m a x i m u m v a l u e o f ^ i t d t i s a b o u t 10 ^ a m p 2

2

sec.

N e g l e c t i n g d i s s i p a t i o n a n d r e f e r r i n g to F i g u r e

13,

the t e m p e r a t u r e

specified in most

lightning codes

rise as

the t e m p e r a t u r e

of c o p p e r c o n d u c t o r s ,

30 t o 50 m m

2

,

as

is m o d e r a t e .

v a l u e s c a n be t a k e n as

1.5

one s e e s

For

that

aluminum

times those

for

copper. T h e r e is one a s p e c t sideration.

of h e a t d i s s i p a t i o n that n e e d s

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

through a high resistance lapping metal sheets, sparking.

con-

W h e r e the l i g h t n i n g c u r r e n t is b e i n g d i s c h a r g e d joint,

the h e a t

such as a poor contact

or

over-

g e n e r a t e d m a y g i v e r i s e to h e a v y

P e n e t r a t i o n m a y o c c u r i n t h e c a s e of t h i n m e t a l

such as u s e d in roofing m a t e r i a l or a i r c r a f t the h o l e i s a f u n c t i o n o f l i g h t n i n g c h a r g e , thickness.

For

20 m i l c o p p e r ,

skin.

sheets

The size

of

the m a t e r i a l a n d i t s

the h o l e c o u l d be u p to 300 m m

2

.

W h e n l i g h t n i n g s t r i k e s a n i n s u l a t i n g m a t e r i a l the p o i n t of contact

c o u l d be r a i s e d to a h i g h t e m p e r a t u r e

could result.

B y these

means

and penetration

c l e a n h o l e s of 2 c m d i a m e t e r

been punched i n glass by lightning d i s c h a r g e s .

have

If t h i s i n s u l a n t

c o n t a i n s m o i s t u r e the c u r r e n t w i l l f l o w p r e f e r e n t i a l l y a l o n g the p a t h of best c o n d u c t i v i t y . and explosions o c c u r .

M o i s t u r e c a n be c o n v e r t e d into

E n o r m o u s b l o c k s of c o n c r e t e

have

steam been

d e m o l i s h e d this w a y and on one o c c a s i o n r o c k y g r o u n d w a s r o w e d f o r 800

f e e t a n d 75 t o n s

explosive effect was

e q u i v a l e n t to 6 0 0

Mechanical Considerations. shock wave and bending f o r c e s . creases discussed earlier, pands extremely wave.

Figure

central cone, for thunder,

14 as

fur-

of r o c k a n d s o i l d i s l o d g e d .

The

l b s of T N T .

M e c h a n i c a l effects

concern

W i t h the r a p i d t e m p e r a t u r e

the a i r

s u r r o u n d i n g the c h a n n e l

rapidly and produces a supersonic

ex-

pressure

shows how this wave is propagated f r o m c a l c u l a t e d b y H i l l (7_).

the in-

the

It i s r e s p o n s i b l e n o t

b u t a l s o f o r w i d e s p r e a d l i f t i n g of t i l e s o n the

only

roofs

of b u i l d i n g s . Two parallel conductors s u b j e c t to a t t r a c t i v e

caught in a lightning d i s c h a r g e

f o r c e s and these f o r c e s are

are

responsible for

t h e f u s i n g of s t r a n d e d c o n d u c t o r s a n d f o r s q u a s h i n g h o l l o w c o n ductors. T h e r e i s one m o r e m e c h a n i c a l f o r c e w o r t h c o n s i d e r i n g . a lightning conductor follows a right-angle

If

bend on a b u i l d i n g and

t h i s c o n d u c t o r h a s to d i s c h a r g e a l i g h t n i n g c u r r e n t ,

it w i l l be

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

4.

BENT

Lightning

and the Hazards

1

0

It

Produces

2

3

101

5

4

radius, cm Development of pressure from lightning channel

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

Figure 14.

D

J

F

M

A

M

J

J

A

S

O

N

D

MONTHS

Figure 15.

Annual variation of thunderstorm activity in terms of flashes to ground in Orlando, Florida

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

102 subject

to a m e c h a n i c a l f o r c e

attempting

p r o p o r t i o n a l to t h e strokes

t r y i n g to s t r a i g h t e n i t a n d

to b e n d i t o u t w a r d . square

of t h e c u r r e n t ,

i t c a n o n l y r e a c h a b o u t 5, 000

bends i n conductors

3 per minute.

Sharp

rectangular

T h e d u r a t i o n of a

of 30 m i n u t e s ,

thunder-

with a flashing rate

Since a s t o r m contains

c e l l s at a n y i n s t a n t ,

is

large

be a v o i d e d .

F r e q u e n c y of S t r i k e s to G r o u n d . 2 or

but e v e n f o r

lbs.

should, therefore,

s t o r m c e l l i s of the o r d e r

thus,

T h e m a g n i t u d e o f the f o r c e

one o r two

3 to 4 f l a s h e s p e r m i n u t e i s n o t

unreason-

a b l e a s a n a v e r a g e w i t h a s t o r m d u r a t i o n of a p p r o x i m a t e l y hour.

T h e p r o p o r t i o n of d i s c h a r g e s

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

storm.

follows,

over

therefore,

intracloud discharges

a possible occasional increase in a s e v e r e c a s e . Pierce

1 to 4 .

of

It

Figure

rate for flashes

round

to g r o u n d w i t h

to one e v e r y t h r e e o r f o u r

15 i l l u s t r a t e s

to g r o u n d f o r O r l a n d o ,

as

seconds

the a n n u a l v a r i a t i o n

calculated

of

by Cianos and

(8).

The

s p a t i a l d i s t r i b u t i o n of f l a s h e s

in lightning p r o b l e m s . well separated, observer

c a n be a s i g n i f i c a n t f a c t o r

T h e f a c t that c o n s e c u t i v e

often q u a s i - r a n d o m l y ,

of t h u n d e r s t o r m s .

c e p t that the d i s c h a r g e s still

is

that one p e r m i n u t e i s a n a p p r o p r i a t e

f i g u r e e s t i m a t e of t h e o c c u r r e n c e

discharges

o f the

T y p i c a l l y w i t h i n the U n i t e d S t a t e s the r a t i o

cloud-to-ground

one

that go to g r o u n d i s q u i t e

v a r i a b l e f r o m s t o r m to s t o r m a n d a l s o d u r i n g p h a s e s same

of

active

Nevertheless,

progress

flashes

are

i s f a m i l i a r to a n y

careful

the e r r o n e o u s

in a steady

con-

orderly pattern

is

prevalent. The only thunderstorm

statistics which are

a b l e i s the t h u n d e r s t o r m d a y .

readily avail-

A day is defined m e t e o r o l o g i c a l l y

a s a t h u n d e r s t o r m d a y i f t h u n d e r is h e a r d ; t h i s i m p l i e s the currence

of l i g h t n i n g w i t h i n a b o u t

No account

15 k m o f t h e o b s e r v i n g

oc

site.

i s t a k e n i n the t h u n d e r s t o r m d a y s t a t i s t i c of the

n u m b e r of t i m e s

thunder is h e a r d ,

t h u n d e r s t o r m events

per

n o r the n u m b e r of

thunderstorm day.

Figure

discrete 16

illus-

t r a t e s t h e n u m b e r of t h u n d e r s t o r m d a y s r e c o r d e d i n t h e U S A , a n d s h o w i n g a n e x c e s s of 100 s u c h d a y s i n t h e S t .

Petersburg

O r l a n d o r e g i o n o f F l o r i d a w i t h a v a l u e o f a b o u t 80 a t

to

Cape

Canaveral. C i a n o s and P i e r c e

give a useful relationship for d e t e r m i n i n g

the f r e q u e n c y o f s t r i k e s u n d e r a t h u n d e r s t o r m . a v a i l a b l e by w h i c h data for T of Q , n

n

the f l a s h i n c i d e n c e p e r k m

2

per month,

g r o u n d f l a s h i n c i d e n c e (pO ) p e r k m m

b y the p r o p o r t i o n p of f l a s h e s

Two methods

c a n be c o n v e r t e d 2

are

estimates

and hence,

per month,

that go to e a r t h .

into

the

by multiplying T h e two

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

methods

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

4.

BENT

Lightning

Figure 16.

and the Hazards

It

Produces

103

The average number of days per year on which thunder is heard in various parts of the USA

M o n t h l y Dependence

of T h u n d e r s t o r m

Activity

C a p e K e n n e d y 195 7- 1962 (P = 0.

Month T January

P CT

m

. 5

li n

. 12

. 02

February

1.8

.25

. 05

March

3, 7

. 53

. 10

April

3. 3

.45

. 08

May

6.7

1.42

. 26 1. 06

June

14. 0

5.91

July

13.8

5 . 75

1. 04

15. 8

7 . 52

1. 35

10. 5

3 . 35

.60

August September October

3.8

. 55

. 10

November

0. 7

. 15

. 03

December

0. 7

. 15

. 03

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

104

d o not d i f f e r g r e a t l y i n the r e s u l t s t h e y y i e l d n e a r (2 t o 10)

of T

m

of m o s t p r a c t i c a l i m p o r t a n c e .

the

Pierce

range concludes

that:

where a equals 3 x

10

2

= a T

2

a

.

B

+ a

T*

2

T a b l e 1 i l l u s t r a t e s these

C a p e K e n n e d y w h e r e the v a l u e s of p a r e

taken as

results

0.

at

18.

U s i n g t h e s e f o r m u l a s we c o n c l u d e that a p p r o x i m a t e l y f i v e discharges

come

to g r o u n d e a c h y e a r p e r

square k m .

F r e q u e n c y of S t r i k e s to T a l l S t r u c t u r e s * s t r i k e s to t a l l s t r u c t u r e s

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

t r o l l e d by two f a c t o r s .

O n e i s the a t t r a c t i v e

i s the t r i g g e r i n g f a c t o r . these

factors

cussed here.

T h e i n c i d e n c e of

e l e c t r i c a l l y c o n n e c t e d to g r o u n d i s P i e r c e and P r i c e

(9) h a v e

attractive

area A

height h.

The attractive

(= TTr

radius,

) are

r„ ,

and its

dis-

associated

p r i m a r i l y f u n c t i o n s of

r a d i u s is defined as

other

investigated

i n d e t a i l a n d a f e w of t h e i r f i n d i n g s w i l l b e The attractive

con-

r a d i u s a n d the

structure

the a v e r a g e

radius

at w h i c h a d o w n w a r d l e a d e r f r o m the c l o u d i s j u s t a b l e to i n d u c e an upward streamer

f r o m the s t r u c t u r e

that w i l l u n i t e w i t h

the

d o w n w a r d l e a d e r a n d t h u s d i v e r t t h e f l a s h t o the s t r u c t u r e . triggering factor

represents

t i a t e d at the t i p of the s t r u c t u r e ; but a s h i n c r e a s e s , c o m m o n and for

m

the t r i g g e r e d v a r i e t y of d i s c h a r g e

It i s p o s s i b l e to c a l c u l a t e

sentations

r

.

However,

the

calculations

c a n be c r i t i c i z e d i n m a n y r e s p e c t s .

Cianos

(8) h a v e g i v e n a c o m p l i c a t e d e x p r e s s i o n f o r r

f u n c t i o n of h .

m,

increasingly

important.

that h a v e b e e n m a d e and P i e r c e

ini-

i t i s n e g l i g i b l e f o r h ^ 100

triggered flashes become

h ^250

i s b y f a r the m o r e

The

the i n c l i n a t i o n of f l a s h e s to be

T h i s i s b a s e d b o t h o n the m a t h e m a t i c a l

emerging f r o m theoretical analysis,

p i r i c a l f i t w e i g h t e d a c c o r d i n g to t h e d e g r e e v a r i o u s data s o u r c e s . N o t e that a b o v e about

Table 2 shows r 150 m ,

l a t i o n s i n d i c a t e t h a t f o r h ^ 150 m ,

a

and on an

em-

of r e l i a b i l i t y of the

a s a f u n c t i o n of h .

the a t t r a c t i v e

change with a further height i n c r e a s e . t w e e n the t i p of the s t r u c t u r e

a

as

repre-

radius does

not

T h i s is because

calcu-

the f i e l d d i s t r i b u t i o n b e -

a n d the d o w n c o m i n g l e a d e r i s n o t

m u c h i n f l u e n c e d b y the p r e s e n c e

of the g r o u n d .

P i e r c e h a s p o i n t e d out that r e p o r t e d i n s t a n c e s

of t r i g g e r e d

l i g h t n i n g o c c u r w h e n the a m b i e n t g e n e r a l e l e c t r i c f i e l d E b e t w e e n 3 a n d 30 k V / m a n d t h e v o l t a g e d i s c o n t i n u i t y V

lies

,

b e t w e e n the t i p of the c o n d u c t o r c a u s i n g the t r i g g e r i n g a n d the unperturbed atmosphere,

i s 0. 3 t o 6 M V .

t h a t f o r t h e l o w e r v a l u e s of E

or V ^ there a D

It s e e m s p l a u s i b l e i s a s m a l l but f i n i t e

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

4.

BENT

chance

Lightning

and the Hazards

It

of l i g h t n i n g b e i n g t r i g g e r e d ;

be g r e a t e r t h e l o n g e r t h e v a l u e s As

E

a

Produces

and Vj^ increase

lightning,

this chance

of E

so w i l l the p r o b a b i l i t y of

but the c h a n c e

Table height. cations

3 summarizes

T h e data

base

in C o l u m n

is

so scanty

Also

of E

d u e to H o r v a t h (10).

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

overestimates

lightning as

h ^ 150

m,

that s u b s t a n t i a l future

by P i e r c e

b e c o m i n g b e t t e r f o r h*%/400 As

an example,

Cape Canaveral.

theoretical expressions

Horvath's work much of h ,

and

E x p r e s s i o n (1) f i t s w e l l for large

(2) u n d e r e s t i m a t e s

h.

throughout,

but the a g r e e m e n t

is

m.

let u s c o n s i d e r a 260

foot o r 80 m

a n d T a b l e 3 i n d i c a t e s a n a v e r a g e v a l u e o f . 16 f o r t h e t r i g g e r e d to n a t u r a l l i g h t n i n g . Thus,

gives

for

tower

T a b l e 2 g i v e s the a t t r a c t i v e r a d i u s as

g r o u n d at the C a p e h a s

modifi-

the i n f o r m a t i o n

and some

the i n c i d e n c e at l o w e r v a l u e s

but o v e r e s t i m a t e s

Expression

avail-

a f u n c t i o n of

N o n e of the t h e o r e t i c a l

for high h.

length

exist.

1 thelbest presently

a g r e e w e l l w i t h the e x p e r i m e n t a l d a t a . underestimates

and

shown in Table 3 are

d e r i v e d f r o m two e x p r e s s i o n s results

maintained. triggered

w i l l a g a i n be d e p e n d e n t on the

on the i n c i d e n c e of t r i g g e r e d

could occur.

will obviously

a n d V-p a r e

a

of t i m e f o r w h i c h a n y s p e c i f i c v a l u e s able data

105

310

ratio

T h e i n c i d e n c e of f l a s h e s

b e e n s h o w n i n T a b l e 1 to be 4 .

the a n n u a l i n c i d e n c e of n a t u r a l l i g h t n i n g to the

should be,

at m

of

to

7/km . 2

tower

, 4. 7

TT

x

x

(310)

2

10'

x

=1.42

T r i g g e r e d lightning should contribute a further

incidence

of

some, 0. 16 x 1 . 4 2 T h e t o t a l n u m b e r of s t r i k e s the o r d e r

o f 1. 65 p e r

= . 23 to the t o w e r

Lightning and Switching Surges and Surge elements

will,

or transient voltages of e l e c t r i c a l

are

o n e of the l e a s t

transients

The random characteristics

appear

that

of p o s s i b l y

can exist

even after component damage

or

of t h e i r m a g n i t u d e a n d is still

software

They

unsuspected,

default.

c a n be a r a p i d c o m p o n e n t f a i l u r e o r t r a n s i e n t s the c o m p o n e n t c a u s i n g d e g r a d a t i o n ,

several

in all

d i f f i c u l t to i d e n t i f y a n d a n a l y z e .

unexpedtedly and their p r e s e n c e

very

These unwanted sub-

thousand volts and s e v e r a l hundred amps them

understood

simple reason

subject.

m i c r o s e c o n d t i m e - t o - p e a k voltage systems.

be o n

Transients

e n e r g y f o r the

l i t t l e d a t a i s a v a i l a b l e on the

duration make

therefore,

year.

can

The

damage

slowly attack

which can produce

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

random

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

106

T a b l e II.

Relation Between

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

H e i g h t (h) a n d

h

r

(m)

III.

)

~

150

50

~

250

100

~350

150

~

400

~

400

P r o p o r t i o n of T r i g g e r e d to N a t u r a l L i g h t n i n g

Structure

Actual

Height

Data

(m)

Expression (1)

50

~

0

~

0

100

~

0

~

0

0. 3

~ 0

150

a

(m)

a

25

>150

ble

Structure

A t t r a c t i v e R a d i u s (r

Expression (2)

Horvath Theory 0. 1

~0

0. 2 0. 5

0.4 0. 7

200

1

0. 1

2. 8

300

4

1. 3

16

1.4

400

10

6

38

3. 0

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

4.

BENT

Lightning

erroneous failure

and

the Hazards

signals for

It

Produces

107

s e v e r a l weeks until total

T h e e l i m i n a t i o n of t h i s r a p i d e n e r g e t i c special devices or

overvoltage

power

surge

protectors

and

C o n s i d e r a b l e problems exist with filtering

unless they are

expected

insulation requirements

especially made and are

with m u c h higher

e x i s t s that t r a n s i e n t s

software

than

used in conjunction

specifically designed overvoltage

often c a u s e

gas d i o d e s ,

c o m m o n l y found in c o m p u t e r s

devices,

Evidence

requires

a n d c a n n o t be p r e v e n t e d b y c r o w b a r s ,

supplies.

with fast,

protectors.

entering computer

systems

p r o b l e m s b y c a u s i n g b i t s to be c h a n g e d

b i t s to b e a d d e d t o m e m o r y l o c a t i o n s . a l s o b e e n s h o w n to b e c a u s e d

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

component

occurs.

These transients

by c o m p u t e r

and

have

tape r e c o r d e r s

pro-

v i d i n g the i n d u c t i v e i m p u l s e . There are

three specific reasons

suppression requirements: lightning on s o l i d - s t a t e world weather semiconductor

(1)

components

pattern).

(2)

technology,

by a d e g e n e r a t i n g

in voltage

effect

of i n d u c e d

(also enhanced by a changing

M o r e and m o r e

sophistication in

s i m p l y s m a l l e r and s m a l l e r

(3) T h e v e r y m o n u m e n t a l e f f e c t caused

f o r the c h a n g e

The increased

of s w i t c h i n g

s u p p l y of c o m m e r c i a l p o w e r .

demand upon power companies

increases,

another,

loads are

constantly being

causing "surges"

short duration transients little as

one

same

cause high

speed,

o f e n e r g y a p p l i e d to

c a n c a u s e a s h u t d o w n of o p e r a t i o n s .

can either

rate.

s w i t c h e d f r o m one l i n e to

(which in turn,

i s a c o m p u t a t i o n b y O d e n b e r g (1JJ of e n e r g y

the

rate,

to p r o c e e d d o w n the p o w e r l i n e ) .

(1) n a n o j o u l e (1 x 10"^)

semiconductor

As

at a g e o m e t r i c

the a b i l i t y to p r o d u c e p o w e r d o e s n o t i n c r e a s e at the Therefore,

devices.

transients/surges

upset

As

the

Figure

17

showing how a s m a l l amount

or d e s t r o y a t r a n s i s t o r ,

I. C .

or

semiconductor. The major due

sources

of l i g h t n i n g

surges

in conductors

are

to a)

Ground potentials

b)

Induced effects a

caused

caused

by n e a r b y lightning

by lightning c u r r e n t

on

shield;

c)

Direct strikes

d)

S i d e - f l a s h e s to the c o n d u c t o r f r o m a n e a r b y

e)

A straight

to a w i r e ;

conductor

antenna for lightning f)

strokes;-

flowing

A looped conductor for lightning

acting as

strike;

an electrical field

change

effects;

a c t i n g as

a magnetic

field

antenna

effects.

B u r y i n g the c a b l e d o e s not r e m o v e

lightning effects,

c a b l e i s t h e n a n i d e a l g r o u n d p a t h f o r the c u r r e n t .

The

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

as

the

lightning

108

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

current may

s i d e - f l a s h s e v e r a l m e t e r s to the c o n d u c t o r

the g r o u n d ,

where

the d i s t a n c e

r e s i s t i v i t y a n d the r e s i s t a n c e of the c o n d u c t o r The largest line r e a c h e d

lightning voltage

recorded

i n F i g u r e 18, a n d t h e s t r i k e o c c u r r e d It i s

on a

The resulting oscilloscope

suggested

that c l o s e r

to the

solid

to g r o u n d . transmission

a p e a k v a l u e of 5 m i l l i o n v o l t s i n l e s s

microseconds.

under

is p r i m a r i l y a f u n c t i o n of

than

two

r e c o r d i n g is

shown

s o m e 4 m i l e s u p the

s t r i k e p o i n t the c u r r e n t

of r i s e w a s p r o b a b l y of the o r d e r

line. rate

o f 10 m i l l i o n v o l t s p e r

micro-

second. R e s i d e n t i a l 120V lightning associated

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

transients nature, hertz

A C lines are

voltages

u p to 3 k V .

f o u n d to e x p e r i e n c e

peak

of u p to 6 k V a n d i n t e r n a l s w i t c h i n g

The transients

w i l l be o s c i l l a t o r y i n

w i t h a f u n d a m e n t a l f r e q u e n c y f r o m a f e w t e n s of k i l o -

to s e v e r a l m e g a h e r t z

h u n d r e d s of m e g a h e r t z . 100 m i c r o s e c o n d s

with components

ranging into

T h e y w i l l l a s t f r o m 100 n a n o s e c o n d s

a n d c a n be c l a m p e d w i t h i n a f e w c y c l e s .

grounding and bonding m a y reduce

the t r a n s i e n t s

to

Good

significantly.

I n t r a c l o u d l i g h t n i n g c a u s e s a c o n s i d e r a b l e n u m b e r of i n duced effects in cables hundred amps, discharge

of s e v e r a l t h o u s a n d v o l t s a n d

e v e n t h o u g h the

separation distance

m a y be s e v e r a l m i l e s .

e f f e c t i s that the p o w e r , antenna.

Shorter

f l e c t i o n s at the c a b l e

The main reason

telephone or data

cables

give rise

surges

heaters, Force

can cause several

such as

53,000 damaging surges

A n example nautical Radio,

i.e.,

solenoids

conditioners per day.

over

and At an A i r

1 joule were

of w h i c h 10, 000

re-

occurred

of i n d u c e d v o l t a g e s 1967).

w o u l d be a p e a k of

30 v o l t i n d u c t i v e l o a d

in

systems.

T h i s w o u l d be g e n e r a t e d

like elevators

in hospitals.

s a y s t h a t 110

transients.

"3900

(Aero-

T h e N a v y r e g a r d a 2. 5 t h o u s a n d v o l t p e a k

as a m a x i m u m i n d u c t i v e s w i t c h i n g t r a n s i e n t

Institute

re-

(Odenburg).

v o l t s " p r o d u c e d by a 4. 0 a m p , voltage

air

thousand surges

c o r d e d d u r i n g a one m o n t h p e r i o d , one d a y

an

due to

ends.

and local m o t o r s ,

site over

to

for such an

cable acts as

to l a r g e r

Transients f r o m switching inductive leads, and r e l a y s ,

several

of c a b l e

by large

o n 110 V A C

inductive switching,

The A m e r i c a n National Standards

volt line faults can cause six thousand volt

Sparks f r o m a charged human can also reach

two

t h o u s a n d v o l t s i n one n a n o s e c o n d a n d s e v e r a l t e n s of t h o u s a n d s volts

shortly

of

after.

T h e utilitie's induce. surges gizing transformers

while e n e r g i z i n g and

i n a n e f f o r t to m a n a g e

utilitie's p r o v i d e p r i m a r y p r o t e c t i o n ,

loads.

de-ener-

Although

the f r o n t e n d of s u r g e s

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

may

BENT

Lightning

and the Hazards

MOST SUSCFPTIBLE-JO 9 10

8

10

7

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

IJKJ

1 0

6



10

4

10

3

10'

D I G I T A L IC's

2

10

HIGH SPEED T R A N S I S T O R S . IC's

-B •

10

4

10

3

10

2

10

1

-

+

UPSET

LOW-POWER TRANSISTORS SIGNAL DIODES

_ M E D I U M POWER TRANSISTORS ZENERS AND RECTIFIERS _ HIGH-POWER TRANSISTORS _ POWER SCR's, POWER D I O D E S

1

1

1

LEAST SUSCEPTIBLE

LOW-NOISfc — TRANSISTORS AND DIODES

u

5

10-

Produces

10 '

10" 10-

1 —

It

10

+ 1

10

+ 2

-

BURNOUT

N o t e : f o r t r a n s i e n t s i n the m i c r o s e c o n d r e g i o n

Figure 18.

Oscillogram of voltage surge on a HOW transmission line

50

\00

300

TIME (^sec)

Figure 17.

Upset and burnout energies for various semiconductors

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

110 not be e l i m i n a t e d .

Also,

the e n e r g y

stored in transformers

e n e r g i z e d a f t e r the p o w e r c o m p a n y ' s a r r e s t o r s f i r e a n d power for

1/2

also appears

cycle can also cause damaging surges.

A

surge

at p o w e r r e - i n i t i a l i z a t i o n .

Another important source a t t e m p t i n g to w i r e , ients are

de-

remove

adjust or

of s u r g e s service

is human error.

systems,

While

unwanted

trans-

p r o d u c e d w h i c h m a y p r o v e to be d e t r i m e n t a l to

semi-

conductors. Insulation Effects.

T h e e f f e c t of h i g h v o l t a g e s

c a n be q u i t e l a r g e a n d w h e r e a s s u l a t o r m a y n o t be c a t a s t r o p h i c ,

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

voltage transients

the r e p e t i t i v e

effects

w i l l p r o d u c e b r e a k d o w n at the

u n t i l the i n s u l a t o r c a n n o t e v e n s t a n d the s t e a d y electric

clock manufacturer

on i n s u l a t i o n

the i n i t i a l b r e a k d o w n of a n i n of h i g h

same

place

state voltage.

r e d u c e d h i s f a i l u r e r a t e to

An

one

h u n d r e d t h of h i s e a r l i e r f a i l u r e r a t e b y i n c r e a s i n g the i n s u l a t i o n l e v e l f r o m 2 to 6 k V .

S u r g e p r o t e c t i o n w o u l d h a v e the s a m e

Breakdown will also occur along a surface circuit board.

In t h i s c a s e ,

a p a t h of s l i g h t l y c o n d u c t i v e

bonized insulation will occur vaporized metal.

Steep wavefront voltages

m a y l e a d to

grounded object.

or it m a y

enclosure are

where a cable

(12).

s h o u l d be kept as

w h i c h a l l o w s the c u r r e n t enclosure.

This example

possible.

enclosure

to f l o w r a d i a l l y f r o m t h e (Figure

This indicates

s h i e l d to

If a s e p a r a t e g r o u n d l e a d i s u s e d t o c a r r y

it w i l l have an inductance o f o n e i n c h o f 0. 0 3 4 "

diameter

a n d w i t h a r a p i d c u r r e n t p u l s e of 100 d e v e l o p e d w i l l be

1340

volts.

v o l t s to d e v e l o p b e t w e e n over

1 c m long.

19b) w h i c h w i l l l e a d

amp/nsec,

T e n inches

should,

The in-

w i r e i s a b o u t 0. 0 1 3 4 JJh the

voltage

of w i r e w i l l e n a b l e

shield and e n c l o s u r e ,

The wire

the

surge

to a p o t e n t i a l d i f f e r e n c e b e t w e e n s h i e l d a n d e n c l o s u r e . ductance

effects

shield and an

s h o r t and d i r e c t as

19a s h o w s a s h i e l d b e i n g t e r m i n a t e d o n a n

current,

grounds

m u s t be c a r r i e d out w i t h c a r e

19,

connected together

that g r o u n d l e a d s

deve-

of t h i s

The inductive

s t i l l l e a d to h a z a r d o u s p o t e n t i a l d i f f e r e n c e s .

p r o b l e m is i l l u s t r a t e d in F i g u r e

Figure

T h e effects

B o n d i n g the

w o u l d h a v e r e m o v e d the p r o b l e m .

of s u c h b o n d i n g b e t w e e n t w o o b j e c t s

is

large potentials m a y

p r o b l e m have been illustrated e a r l i e r . together

break-

coil.

W h e n one g r o u n d e d c o n d u c t o r

conducting a steep wavefront current, l o p b e t w e e n it a n d a n o t h e r

car-

w h i c h m a y a l s o be i n f l u e n c e d b y

d o w n o f i n s u l a t i o n b e t w e e n the w i n d i n g s of a Grounding and Bonding.

effect.

s u c h as a p r i n t e d

therefore,

implying a be k e p t as

possible.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

13k

spark short

as

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

(a)

Figure 19.

DAOIAI FLOW OF CURMMT

1

(b)

coNCiMTAATto FLOW or CUMCNI

Connections between shield and enclosure; (a) good, (b) bad

CNCLOSUiC

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

I

vvC

crc> 3-

H

w w

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

112

It i s a l s o a b s o l u t e l y e s s e n t i a l t h a t a s h i e l d b e g r o u n d e d a t both ends in short l i n e s .

The magnetic fields caused

by

lightning can induce voltages around open c i r c u i t loops and currents

around short circuit loops.

hardly ever

cause damage,

c e s s i v e l y high and will cause Ideally,

one m u s t

The induced

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

crowbar.

devices are

for

the

separate

point.

of two b a s i c t y p e s ,

state v o l t a g e ,

will conduct v e r y heavily.

voltage

This

i s b r o u g h t to a l o w l e v e l .

will never reduce

very

but a b o v e a c e r t a i n v o l t a g e

A c r o w b a r device in effect,

c i r c u i t s a h i g h v o l t a g e to g r o u n d . the c u r r e n t

constant

T h e constant voltage devices will conduct

l i t t l e at the s t e a d y

but

ex-

Devices

Protector and

systems

of a s y s t e m a n d c o m b i n e these

g r o u n d s at o n l y one c o m m o n r e f e r e n c e Protector

c a n be

damage.

set u p s e p a r a t e g r o u n d i n g

various electrical parts

currents

but the i n d u c e d v o l t a g e s

level

short

short w i l l continue until

A constant voltage unit

the l i n e v o l t a g e b e l o w i t s s t e a d y s t a t e v a l u e ,

the c r o w b a r d e v i c e o f t e n w i l l .

there is a continuing follow

T h i s c o u l d be a p r o b l e m i f

current.

Constant voltage devices in everyday use are zener diodes and v a r i s t o r s ,

avalanche and

or voltage dependent

S p a r k gaps and gas d i s c h a r g e tubes a r e

resistors.

the m o s t c o m m o n type of

crowbar. Low

pass filters are

capacitor filter,

often used as

suppression devices.

p l a c e d a c r o s s the t e r m i n a l s i s the s i m p l e s t f o r m

w h e r e t h e i m p e d e n c e i t s h o u l d p r e s e n t to t h e

w i l l be m u c h l o w e r t h a n the t r a n s i e n t

A of

transient

source

impedence.

a p p r o a c h w i l l w o r k w e l l u n l e s s the c a p a c i t o r

loads down

This the

d e s i r e d voltage and does not c r e a t e c u r r e n t i n - r u s h p r o b l e m s . A

resistor

in series

of t h e f i l t e r .

will help,

A capacitor

but w i l l r e d u c e

transient has high energy i n either p o l a r i t y . come

the

effectiveness

n e t w o r k i s a l s o i n e f f e c t i v e i f the F i l t e r s can

be-

e x p e n s i v e a n d m u s t be v e r y c a r e f u l l y d e s i g n e d .

Isolation t r a n s f o r m e r s

m a y allow surges

c o u p l e d a c r o s s the w i n d i n g s , system.

to b e c a p a c i t i v e l y

t h e r e b y p a s s i n g t h e m i n t o the

A t t i m e s the l o a d m a y be s u c h that the i n p u t s u r g e

d i f f e r e n t i a t e d at the i s o l a t i o n t r a n s f o r m e r , rapid r i s e t i m e and hence,

causing a much

m a k i n g it m o r e d a n g e r o u s .

Con-

s i d e r a b l e thought a n d c a l c u l a t i o n m u s t be p e r f o r m e d b e f o r e c i d i n g to p r o t e c t The

by such a

de-

transformer.

l e a d l e n g t h of s u p p r e s s i o n d e v i c e s c a n c a u s e

overshoot voltages

is more

d e p e n d i n g on the r a t e of r i s e

of the

large current.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

4.

BENT

It w a s

Lightning

and the

discussed earlier

overshoot

of o v e r

chase most

1300

Hazards

It

that a one i n c h w i r e c a n l e a d to a

volts.

It i s p o s s i b l e ,

protection devices

voltage

components most

overshoot

be k n o w n o r

for lightning transient from manufacturers

levels.

the

circuit

estimated.

standards

Therefore,

m u s t be o b t a i n e d ,

f o r m e d or conservative c o m m o n types

conservatively

and c i r c u i t components,

and

and devices,

w i t h s t a n d l e v e l of e q u i p m e n t s a n d

must

equipment

voltage

to p u r -

w i l l be n e g l i g i b l e .

s e l e c t i o n of p r o t e c t i o n c o m p o n e n t s

transient

however,

in d i s c f o r m without w i r e s ,

w i t h c a r e f u l m o u n t i n g the v o l t a g e For

113

Produces

For

do not

exist

information available

laboratory

testing

engineering estimates used.

of e q u i p m e n t s a n d c o m p o n e n t s

are

per-

Limits for

provided for

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

guidance. Transistors

and Integrated C i r c u i t s :

2 times

normal

times

voltage.

voltage. Diodes:

1.5

Small motors, 10 t i m e s

their

n o r m a l operating

Large motors, 20 t i m e s

large

In a d d i t i o n t o t h e a b o v e ,

voltage As power

is

and light m a c h i n e r y :

voltage.

transformers

n o r m a l operating

and heavy

are

many times

punch-through voltage

limiting transients

to

1. 5 t i m e s

overlooked

for

transients

the D C w o r k i n g

recommended.

a n i n d i c a t i o n of l i n e t r a n s i e n t / s u r g e s , l i n e of 480

monitored for

v o l t s to a s a t e l l i t e

a

tracking

commercial

station

was

s p i k e s g r e a t e r than one j o u l e b y O d e n b u r g

T h e n u m b e r of s u r g e s

recorded

i n t e r e s t i n g to n o t e that the have

is d i s p l a y e d in F i g u r e

53, 020

alone is in keeping with other transients

machinery:

voltage.

capacitors

and unless their d i e l e c t r i c is known,

peak inverse

small transformers

been r e c o r d e d

surges

monitored in

published data.

It

is

September

At times

i n a 24 h o u r p e r i o d ,

(11).

20. 10,

000

m a n y of t h e m

occurring within m i l l i s e c o n d periods. A v a l a n c h e Diodes and Z e n e r s . istics

of a s e m i c o n d u c t o r

there are

diode are

three principle regions

The volt-ampere

of o p e r a t i o n .

b i a s e d r e g i o n i s l i m i t e d b y the e x t e r n a l region is where

the v o l t a g e

is r e v e r s e d ,

circuit,

W h e n the r e v e r s e v o l t a g e

this c r i t i c a l v a l u e ,

the r e v e r s e c u r r e n t

diodes are region,

made

increases

i n the b r e a k d o w n r e g i o n . suppressor

a n d the

increases

to o p e r a t e i n the f o r w a r d a n d

but t r a n s i e n t

The forward leakage

but it is s t i l l l e s s

the c r i t i c a l v a l u e .

the d i o d e i s o p e r a t i n g

character-

shown in F i g u r e 2 1 in which

than

beyond

s h a r p l y and

Normal

rectifier

reverse-biased

o p e r a t e a r o u n d the

breakdown

region.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

114

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

at times over 10,000 surges in a 24 hour period

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

30k

25k

20k

1

Feb 1976

Figure 20.

M a r A p r M a y Jun July Aug Sept

Oct Nov Dec Jan !977

Surges greater than one joule suppressed at a USAF site, Odenburg

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

4.

BENT

Lightning

and

the

Hazards

It

115

Produces

A v a l a n c h e d i o d e s e x h i b i t a s h a r p t u r n at the k n e e , d i o d e s go t h r o u g h t h i s t r a n s i t i o n m o r e that the a v a l a n c h e than z e n e r

diode is a better

These devices

are

the m o s t

"constant

where

the e n e r g y

silicon avalanche

a junction area diode.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

over

use

larger

size,

to s e v e r a l h u n d r e d k W f o r a capacitance,

however,

devices

small volume

b y the

transient

Special suppression

w i l l c l a m p at

d e p e n d i n g on the

within a v e r y

technique are

ten t i m e s

These devices

and,

transients

voltage"

or heat generated

c a n c a u s e f a i l u r e at the j u n c t i o n . u s i n g the

for

zener

implies

i s o n l y s l i g h t l y d e p e n d e n t o n the

T h e operation takes place

of s i l i c o n ,

sec

suppressor

but

This

diodes.

a v a i l a b l e a n d the v o l t a g e current.

gradually.

that

have

than a one watt z e n e r speeds

i n e x c e s s of

the p e a k p o w e r

1 |d s e c

devices

manufactured

pulse.

^

10

r a t i n g c a n be u p

T h e y do have a

small

but w i t h c a r e f u l d e s i g n it i s p o s s i b l e

them in protection circuits

at f r e q u e n c i e s

in excess

to

of

100 M H z .

V a r i s t o r s - V o l t a g e Dependent Resistors. bulk semiconductor

device whose

A varistor

resistance varies

m a g n i t u d e but n o t the p o l a r i t y of the a p p l i e d v o l t a g e . are

composed

and

heating

of a p o l y c r y s t a l l i n e m a t e r i a l m a d e

special mixtures

(SiC) or oxides

containing either

of z i n c a n d b i s m u t h .

( M O V ' s ) have a m o r e better c l a m p i n g . surges.

silicon carbide

Metal-oxide

devices

of m a g n i t u d e , a

therefore developed

i n the

resistance d i m i n i s h e s by s e v e r a l

t h u s a b s o r b i n g the e n e r g y

voltage

the M O V p r e s e n t s

a v e r y h i g h r e s i s t a n c e at i t s t e r m i n a l s ; h o w e v e r , its

varistors

f r o m induced

In the a b s e n c e o f a b n o r m a l v o l t a g e s ,

s e n c e of a s u r g e ,

Varistors

highly nonlinear elements

r e c e n t l y f o r p r o t e c t i o n of e l e c t r i c

a

by p r e s s i n g

nonlinear V - I relationship and

They are

is

w i t h the

preorders

of the t r a n s i e n t

above

specified value. MOV's

current

provide low voltage

characteristics worse

nonlinear elements than z e n e r

diodes,

with

b i - p o l a r p r o p e r t y and high energy d i s s i p a t i o n / s i z e These devices, power

lines,

p r i m a r i l y intended for

step response

Typical V - I curves Gas edness

are

the

O n the

available.

50 n a n o s e c o n d

shown in F i g u r e

Breakdown Devices.

signal line

of M O V b e c o m e

of a n M O V i s i n the

spectrum are

(GDT's).

types

capability.

p r o t e c t i o n of A C

w i l l be a l s o a p p l i c a b l e to l o w v o l t a g e

protection when lower voltage The

surge

voltage-

but w i t h a

region.

22.

o p p o s i t e e n d of the

s p a r k gaps and g a s - d i s c h a r g e

T h e s e d e p e n d o n the f o r m a t i o n of a n i o n o i z e d

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

ruggtubes gas

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

116

Figure 21.

10

FORWARD

BIAS

REVERSE

BIAS

+

Schematic volt-ampere characteristic curve for a semiconductor diode

10

10 "

10*

10

C u r r e n t (A) Figure 22.

Volt-intensity curve for MOV

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

4.

BENT

Lightning

and the Hazards

between m e t a l electrodes. s e v e r a l other f a c t o r s an arc

is formed,

currents

T h e gap length,

(~

are

state p o w e r

reaches

tant g l o w a n d a r c

response

a high voltage

Druyvesteyn and Penning

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

source

is frequently

Many

time,

discharge

w h e r e one c a n see The arc

discharge

of a G D T a r e

(14),

here.

Its u s e i n t h e

s u r g e is shown i n F i g u r e 25,

r e g i o n c a n be s u s t a i n e d a t a l o w v o l t a g e ,

but

d e p e n d i n g o n the p o w e r

f i c a n t a n d m a y be s u f f i c i e n t to c a u s e As

the v o l t a g e p a s s e s

because

gas

ionized,

This

m a y be

to the

if the e l e c t r o d e s

are

It i s o f t e n a n a d v a n t a g e

p r o t e c t i o n to c l a m p t h e i n i t i a l v o l t a g e not c a p a b l e of p r o t e c t i n g a g a i n s t .

to p r o v i d e a d d e d

o v e r s h o o t that the G D T i s

This

c a n be d o n e i n

b y d e s i g n i n g h y b r i d c i r c u i t s w i t h the g a s

current protector initial

The

current

b u t c a n n o t be u s e d e f f e c t i v e l y i n p r o t e c t i n g l o w i n p u t

impedance circuits.

ways

hot

it m a y r e - i g n i t e o n the n e x t h a l f c y c l e .

tube is a n e x c e l l e n t d e v i c e f o r p r o t e c t i n g a g a i n s t h i g h

surges,

signi-

electrodes.

t h r o u g h z e r o at the e n d of e v e r y h a l f c y c l e ,

the G D T w i l l e x t i n g u i s h but at t i m e s , a n d the g a s

source,

damage

24

pro-

the A C v o l t a g e

m a y be s u f f i c i e n t to a l l o w a f o l l o w o r h o l d o v e r c u r r e n t . holdover current,

use

and

shown in F i g u r e

indicating an initial high c l a m p i n g voltage. t e c t i o n of a n A C l i n e

passing

A n e x c e l l e n t d e s c r i p t i o n of the

t h e i r m a i n c o n c l u s i o n s w i l l be b r i e f l y d e s c r i b e d

the a r c

gas

the i m p o r -

of s p a r k g a p s i s g i v e n i n a r e p o r t b y H a r t a n d H i g g i n s Typical volt-time curves

can

volts.

(1_3) d e s c r i b e t h e a c t i o n o f a

regions.

at l o w v o l t a g e .

such

s u c h that a

b e f o r e the a r c

n o t g e n e r a l l y f e a s i b l e b e l o w 90

d i s c h a r g e d e v i c e i n F i g u r e 23, high currents

and When

conducting until current and voltage

t e m p o r a r i l y d i s a b l i n g the s u p p l y .

fast-rising transient GDT's

pressure,

100V).

the s t e a d y

s u p p r e s s o r s also have a noticeable form.

gas

the s u p p r e s s o r i s c a p a b l e of c o n d u c t i n g h i g h

c a p a b l e of k e e p i n g the a r c reduced,

117

Produces

d e t e r m i n e the b r e a k d o w n v o l t a g e .

at a l o w v o l t a g e

Unfortunately, are

It

tube as

a n d a s o l i d - s t a t e d e v i c e to p r o t e c t

several the

initial

against

the

overshoot.

Results from

Protected

Systems

D u r i n g the l a s t two y e a r s

Atlantic Scientific Corporation

have been working with a large factures

O h i o b a s e d c o m p a n y that m a n u -

brain and body scanners

commonly called C A T scanners graphy),

and e a c h c o n s i s t s

microprocessor It w a s

for hospitals.

These

(Computerized Axial

of a l a r g e

are

Tomo-

computer and several

other

systems.

c o m m o n for some

systems

to h a v e o c c a s i o n a l b a d l y

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

118

10"

w*

w

6

w TIME

Figure 24.

s

70

10*

(SECONDS)

Small spark gap characteristics, Joslyn, 2301-14.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

10

BENT

Lightning

and the Hazards

It Produces

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

4.

Figure 25.

Volt-time curves of transient with and without spark gap protection

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

119

120

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

formed images

o r f o r the c o m p u t e r

s t r u c t i o n s d u r i n g the c o u r s e vided with solid-state

to s u d d e n l y i s s u e f a l s e i n -

of a s c a n .

S e v e r a l units were

surge and transient

suppression.

pro-

Those

r a n g e d f r o m f r o n t e n d d e v i c e s c a p a b l e of c o n t r o l l i n g s u r g e s 2 5 , 000

A,

to l o w v o l t a g e c i r c u i t p r o t e c t o r s

in picosecond times Surprising time,

(10"^

Denver,

sec).

results were

system damage

obtained in terms

costs and s c a n q u a l i t y .

of s y s t e m

problems

T h e s e w e r e f a l s e i n d i c a t i o n s that a s c a n had been

c o m p l e t e d and a l s o o c c a s i o n a l automatic patient table

movement

when not a s k e d f o r .

the i m -

A more

r e m a r k a b l e feature was

proved performance in s y s t e m downtime and electrical

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

down-

One hospital in

C o l o r a d o i n d i c a t e d t h a t m a n y of t h e i r s o f t w a r e

dissappeared.

of

c a p a b l e of c l a m p i n g

savings.

The graphs

t i m e f o r two F l o r i d a since kit installation. one of t h e s e s i t e s w a s over

190

tection.

systems

s h o w n i n F i g u r e 26 systems,

cost

s h o w the p e r c e n t

The P. C .

b o a r d r e p a i r c o s t s a v i n g s on

o v e r $ 4 , 000

per month.

S i n c e that t i m e ,

have been retrofit with solid-state

surge

built c o n n e c t o r / p r o t e c t o r Unfortunately, and p o w e r

pre-

c o m b i n a t i o n to b e i n c o r p o r a t e d .

the p r o t e c t o r

provided in many O E M c o m -

supplies is for overvoltage or

overcurrent

p r o t e c t i o n f o r f a i l i n g components, and its r e s p o n s e too l o n g f o r the r a p i d l y r i s i n g the

pro-

M a n y o f the u n i t s w e r e d e s i g n e d f o r e a s e o f i n s t a l l a t i o n

a n d n e e d e d o n l y s e p a r a t i o n o f a p l u g a n d s o c k e t to a l l o w a

puters

down-

with virtually zero downtime

surges

time is

and transients

far

entering

system. T h e r e s u l t s f r o m t h i s s t u d y o n the C A T s c a n n e r s

that s y s t e m s

c a n be a d e q u a t e l y p r o t e c t e d ,

indicates

but c a u t i o n m u s t

p l a c e d on the p e r f o r m a n c e of a n y o f f - t h e - s h e l f b l a c k b o x . k n o w l e d g e of its c o n t e n t s

be A

i s a m u s t i n o r d e r to a l l o w c o r r e c t

d e v i c e s e l e c t i o n a n d p r o v i d e the a d e q u a t e p r o t e c t i o n r e q u i r e d .

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

4.

BENT

Lightning

and

the

Hazards

It

Lightning W a r n i n g and T r a c k i n g Most instruments

and techniques

for

lightning warning,

r a n g e or

o c c u r r i n g and an excellent

comprehensive

One The

l o c a t i o n at w h i c h l i g h t n i n g i s

justifiably acceptable approaches

f i r s t d e s i g n of a w a r n i n g d e v i c e b u i l t i n 1962;

until

c o m b i n i n g t h e s e two

this e m p l o y e d a corona

i s n e c e s s a r y as

tech-

p o i n t to

l i g h t n i n g w a r n i n g that a r e i s t i n g l i g h t n i n g , a n d the

important.

measure

i t s e l f to g r o u n d f o r the f i r s t

c h a r g e b u i l d u p i n a c l o u d i s to u s e

of

of

of a c h a r g e d

m o d e r n and satisfactory method

e l e c t r i c field below it.

The

two a s p e c t s

O n e i s the d e t e c t i o n

o t h e r i s the d e t e c t i o n

t h a t i s a b o u t to d i s c h a r g e most

there are

re-

recordings.

a n d a c i r c u i t to d e t e c t e l e c t r i c f i e l d c h a n g e s .

combination approach

The

the

(8).

b e e n a c o m b i n a t i o n of f i e l d a n d f i e l d c h a n g e

niques was the f i e l d ,

d e s c r i p t i o n of

given by C i a n o s and P i e r c e

of t h e m o r e

cently has

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

Instrumentation

f u n c t i o n b y m o n i t o r i n g the m a j o r i t y of t h e m i s

121

Produces

time.

of m o n i t o r i n g

a f i e l d m i l l to m e a s u r e

When lightning develops

i n the

is affected Field

by wind Mill.

cloud,

current

to

indication

speed.

Fair

weather

a t a l o w p o s i t i v e v a l u e o f + 100 commonly produce

A n y corona

electric fields are V / m ,

and s t o r m

h i g h f i e l d s i n the r a n g e

a s t o r m is m o v i n g in,the v e r y

of - 5, 000

sudden excursions

is building up in a cloud overhead,

typically

measured

conditions

to c l o u d d i s c h a r g i n g c a n b e e a s i l y r e c o g n i z e d .

V / m .

When

i n the f i e l d W h e n the

due

charge

a c h a n g e i n the p o l a r i t y of

e l e c t r i c f i e l d c a n b e o b s e r v e d f r o m the p o s i t i v e f a i r

weather

value

a field

- 2 , 000

to a h i g h n e g a t i v e

value.

V / m c a n be u s e d as

is possible.

However,

For

a first

such

accurate information.

peculiarities make

of s t o r m

development

a p e r i o d of t i m e

There are

can

problems

give

with

f i e l d s and c o n c e a l i n g of true f i e l d s

that

a fixed value warning unreliable.

Considering negative

overhead

and m o r e

distant

c h a r g e c e n t e r i n the l o w e r p a r t

relative

clouds,

the

distances

and angular

o f the c l o u d .

relationships

field

strong

though,

Depending the

p o s i t i v e c h a r g e c e n t e r at the v e r y b a s e of the c l o u d c o u l d times

of

s h o u l d not be r e l i e d o n

s t u d y i n g the

m i l l r e a d i n g r e s p o n d s m o s t l y to t h e f i e l d s d u e to t h e on

the

e s t i m a t e that l i g h t n i n g

such a fixed value

b u i l d u p of the e l e c t r i c f i e l d o v e r

much more

situations,

order

solely for determining warning levels; and

the

the

t h e r e i s a n e l e c t r o s t a t i c f i e l d c h a n g e that c a n be m o n i t o r e d g i v e a n e s t i m a t e of f l a s h d i s t a n c e .

ex-

cloud

have a dominating effect,

c h a r g e i n the u p p e r p a r t

a n d s o c o u l d the

of a m o r e

distant

cloud.

large Such

small some-

positive variable

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

122

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Melbourne, Florida

aver. per month

$39,000

$3,714 $

0

$65,000

$4,062

$

0

costs since kit

kit installed



40 -

costs before kit

20 -

o

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

40.

• Nov

V i " i — May Jan Mar

:\

J

r 0

40-

1 Mar

1 Sept

July

1 Nov

i Jan

Mar

'!

Temple University

20.

^\

\

kh Ml

J

f May

/

kit installed

\

— r — Jul y Sept Nov

Jan

i Mar

St. Petersburg, Florida kit installed

20. 0

^

\

—i Aug Figure 26.

Figure 27.

/

y

1 Oct

, 1 Dec 1

,

,

i

\ i

,

i Feb Apr Jun Aug

Advantages of surge protection on large system

Electrostatic field change from lightning as a function of flash distance

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

4.

BENT

Lightning

and the Hazards

c o n d i t i o n s h a v e to

It

Produces

be r e c o g n i z e d i n o r d e r

i n t e r p r e t a t i o n s of the f i e l d m i l l

123

to a c h i e v e

The major problem in determining correct caused by space

charge

screening.

by c o r o n a g i v e n off f r o m vegetation sources fumes,

etc.

sharp points on structures

r e l i a b l e d e t e r m i n a t i o n of c h a r g e

round structure

s u c h as a water

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

Field Change Equipment. i n the e l e c t r i c the r e c e i v e r

tower.

build up,

T h e f i e l d at of

T h e i n s t r u m e n t counts

f i e l d c a u s e d b y l i g h t n i n g to the d i s t a n c e

a n t e n n a a n d the l i g h t n i n g f l a s h .

3 V / m a t 4 0 m i l e s a n d 5, 0 0 0 o c c u r at a g r e a t d i s t a n c e ,

somewhat closer selectiveness

change

between

It a l s o t e n d s t o

Flashes

current

t h e n a f a l s e i n d i c a t i o n of a Considering however

of the e q u i p m e n t a n d the p h y s i c s of the

it i s s h o w n b y the f o l l o w i n g a r g u m e n t s

t h a t the u n c e r t a i n t y i n the

great.

i n s t r u m e n t s h o u l d be d e s i g n e d to o p e r a t e 0 t o 100 m i l e s .

i n the

fre-

T h i s d e t e r m i n e s that the

m e n t r e s p o n d s e s s e n t i a l l y to the n e a r f i e l d e l e c t r o s t a t i c p o n e n t of the e l e c t r i c

field change,

the d i s t a n c e d e t e r m i n a t i o n i s q u i t e r e l i a b l e .

3

and hence,

The 1/d

relation-

3

s h i p i s b a s e d o n the a p p r o x i m a t i o n that t h e l e n g t h of the c h a n n e l i s s m a l l c o m p a r e d w i t h i t s d i s t a n c e f r o m the Within a

deviations f r o m

10km range,

Figure 27illustrates

the

com-

The radiation component

of the e l e c t r i c f i e l d c h a n g e v a r i e s w i t h ( 1 / d i s t a n c e )

hence,

over

equip-

which for these conditions is

d o m i n a n t o v e r the r a d i a t i o n c o m p o n e n t .

point.

the

problem,

q u e n c y r a n g e b e l o w 1 k H z , a n d t h u s be s e n s i t i v e to l i g h t n i n g a distance f r o m

dis-

T h i s f i e l d change i s on

V / m at 3 m i l e s .

s t r o k e w i l l be g i v e n .

d i s t a n c e d e t e r m i n a t i o n is not so

such a

lightning

not of i d e n t i c a l i n t e n s i t y , a n d i f s o m e v e r y l a r g e

The

a

3.

e s s e n t i a l l y b y r e l a t i n g the s i z e of the

c r i m i n a t e i n f a v o r of g r o u n d d i s c h a r g e s .

strokes

mask

and produce false field indications.

s h o u l d b e p l a c e d a b o v e m u c h o f the c o r o n a o n t o p o f a

flashes and operates

are

and natural

also by ions in exhaust

l o c a t i o n w o u l d o n l y be e n h a n c e d b y a b o u t a f a c t o r

average,

is

S u c h c h a r g e d r e g i o n s c l o s e to a f i e l d m i l l c a n

T o obtain a m o r e large

field values

Ion c l o u d s c a n be f o r m e d

under high fields,

the e f f e c t of the c l o u d o v e r h e a d , field m i l l

accurate

data.

lightning

observation

this does not a l w a y s hold true and

1/d

3

r e l a t i o n c a n be

some electrostatic

m e n t s w h i c h f o l l o w the t h e o r e t i c a l c u r v e U s i n g t h i s t y p e of e q u i p m e n t a s

expected.

field change

measure-

closely.

the b a s i c

sensor,

Atlantic

S c i e n t i f i c C o r p o r a t i o n d e v e l o p e d a n e w i n s t r u m e n t that

integrates

the n u m b e r of l i g h t n i n g c o u n t s o v e r a v a r i a b l e t i m e i n t e r v a l f r o m 10 t o 6 0 counts

seconds and presents

a d i g i t a l d i s p l a y of the n u m b e r of

separated in four distance

ranges,

0-5

miles,

5-10

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

miles,

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

124

Electric Field (V/m) 105786

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

n

— c

21

S I o * ; ; u&b

• ; ;

16**5

1

;

,\i*tsx

tUal;TJimle!(h*$)! j | < • fiif-- -i- '

v ct

d v.

I -t— • T • -

mm

1

^IK! *: :fti :

:

TT

| ...j:

I I If

1

1

1 1

|;;.jvl::;j!k:LL:L:fel: "11 r

Figure 28. Results for lightning warning instrumentation at a naval station. The top three graphs are of electric field and the lower three of electric field change excursions greater than three preset values.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

4.

BENT

Lightning and the Hazards It Produces

125

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

10-20 miles and 20-100 miles. An integration time of one minute makes erroneous distance readings easier to recognize, since the integrated count at the incorrect distance is much smaller than the simultaneous count in the correct distance range. An audible warning that can be set at any range level is also included. In addition, an output of each lightning strike separated into the four distance ranges was provided for the recorder. Figure 28 illustrates some results of this equipment showing electric field charge build up and warning several minutes prior to close lightning. Lightning Position and Tracking. An extremely sophisticated Lightning Position and Tracking System (LPATS) has been designed to locate and track thunderstorms out to 300 or 400 miles with an accuracy of better than 3 degrees. Lightning location techniques by triangulation beyond 15 0 km have been in existance around the globe since World War II which provide good accuracy, but for close lightning the tortuous channel as well as ionospheric reflections lead to large errors. LPATS relies on being able to detect the cloud to ground discharge by its unique broadband magnetic field waveform. Once detected, this waveform is sampled for the part of the return stroke that is within 100 feet of the ground. It is well known that this part of the discharge is almost always vertical and carries the greatest energy, implying that we have a vertical amni-directional radiating antenna and a powerful transmitter The system monitors ground stroke location, storm center and speed and direction of movement, as well as storm intensity and its variations. It can resolve multiple storms and is capable of displaying the information in map form on a TV screen. Additional advantages of the system are its capability of monitoring "hot" lightning which is known to start forest fires, and its ability to investigate its own performance and malfunctionso 0

ABSTRACT A general understanding of the basic lightning process can lead to a much better understanding of lightning protection techniques and the resulting level of protection. The design of satisfactory lightning protection systems can only be achieved with a thorough knowledge of the mechanism and characteristics of a lightning strike, and the related problems that a steep voltage wavefront has on inadequate bonding and grounding.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

126

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

Lightning induced line surges can also cause major damage to electrical or electronic systems such as computers, and it may also change data or programs without any permanent damage. The resulting effects can be disastrous where chemical mixing is governed by electronic techniques. A considerable portion of the damage caused by such transients and surges can be eliminated with careful planning of protection equipment, but the advent of solid-state components has placed considerable emphasis on the term "careful planning". This paper discusses a l l these points and also attempts to educate the reader in lightning protection and statistics as well as lightning warning systems.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

References 1.

Llewellyn, S. K., Broadband magnetic waveforms radiated from lightning, M.S. Thesis, Florida Institute of Technology, Melbourne, F l o r i d a , 1977.

2.

Anderson, J. G. and K . O. Tangen, Insulation of switchingsurge voltages, in E H V Transmission Line Reference Book, Edison E l e c t r i c Inst., New York, 1968.

3.

Golde, R. H., Lightning protection, Edward Arnold Ltd, London, 1973.

4.

Office of Naval Research, Code 450, Review of lightning protection technology for tall structures, Conference proceedings, 1975.

5.

Bent, R. B.and S. K . Llewellyn, A n investigation of the lightning elimination and strike reduction properties of dissipation a r r a y s , Report No. FAA-RD-77-19, 1976.

6.

Smith, R. S., Lightning protection for facilities housing electronic equipment, F A A - R D - 7 7 - 8 4 , May, 1977.

7.

H i l l , R. D., Thunderbolts, Endeavour, 31, No. 112, 1972.

8.

Cianos, N . and E. T. Pierce, Methods for lightning warning and avoidance, SRI Tech. Report 1, 1974.

9.

Pierce, E . T . and P r i c e , G . H., Natural electrical effects on the operation of tethered balloon systems. Stanford Research Institute Project 3058, M a r c h , 1974.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

3-9,

4.

BENT

Lightning

and the Hazards

It

Produces

127

10. Horvath, T., Gleichwertige Fläche und relative Einschlagsgefahr als charakteristische Ausdrücke des Schutzeffektes von Blitzableitern. Int. Blitzschutzkonferenz, Munich, 1971. 11. Odenberg, R., Protecting facilities from induced lightning and power line switching transients, F A A - R D - 7 7 - 8 4 , May, 1977. 12. F i s h e r , F . A., Instruction Bulletin 53E 9007, Fischer and Porter Co., Warminster, Penn., 1970. 13. Druyvesteyn, M. J. and F. M. Penning, E l e c t r i c a l discharges in gases , Rev. Mod Physics, 12, p. 87, 1940. Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch004

a

14. Hart, W. C., and D . F . Higgins, A guide to the use of spark gaps for electromagnetic pulse (EMP) protection, Report No. JES-198-1M-11/75, Joslyn Electronic Systems, Goleta, Ca., 1972. RECEIVED November 22,

1978.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

5 A Modern Propellant and Propulsion Research and Development Facility

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch005

WALTER W. WHARTON U.S. Army Missile Research and Development Command (MIRADCOM), Redstone Arsenal, AL 35809 Modern propulsion and propellant systems require high performance. High performance usually precludes the use o f d o c i l e , safe chemicals. Strong oxidizers, strong reducing agents, toxic and flammable substances, and explosive compositions are standard fare. Ammonium perchlorate, n i t r o g l y c e r i n , RDX and HMX (explosive nitramines), and nitrocellulose are typical ingredients used as oxidizers that also have explosive c h a r a c t e r i s t i c s . Trichloroethylene, benzene, red fuming nitric a c i d , unsymmetrical dimethyl hydrazine and selected boron hydrides are examples o f toxic chemicals that must be used i n the development and production o f rocket motors. The key word for most ingredients i s reactive. Thus, i n addition to being explosive and toxic, the substances generally w i l l have other characteristics such as being corrosive, flammable, possibly carcinogenic, and a general tendency to be incompatible with other ingredients and materials o f construction. To produce effective propulsion systems, facilities and procedures must be developed to synthensize, characterize and process such ingredients safely. A description o f such facilities and procedures is given in the following paragraphs. The Work Flow

Process

F i g u r e 1 o u t l i n e s t h e work f l o w p r o c e s s . E a c h b l o c k r e p r e s e n t s one o f t h e m a j o r t o p i c s a d d r e s s e d i n p r o p u l s i o n s y s t e m d e v e l o p m e n t . In e a c h b l o c k i s l i s t e d key c o n s i d e r a t i o n s o r o p e r a t i o n s t h a t must be c o n s i d e r e d . Ingredient Selection. Safety enters into consideration b e f o r e t h e new m o l e c u l e i s s y n t h e s i z e d . A new s u b s t a n c e whose s t r u c t u r e i s known t o be e x t r e m e l y s e n s i t i v e , h i g h l y c a r c i n o g e n i c o r f l a m m a b l e t o t h e e x t e n t o f b e i n g p y r o p h o r i c w o u l d n o t be considered s e r i o u s l y i f any other molecule w i l l s u f f i c e . P o t e n t i a l l y a p p l i c a b l e new m o l e c u l e s a r e s u b m i t t e d t o t h e Army Environmental Hygiene Agency f o r t o x i c i t y e v a l u a t i o n . Several This chapter not subject to U.S. copyright. Published 1979 American Chemical Society

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979. FINAL INSPECTION

• •

Figure 1.

TRIM

CLEANING

DEGREASING

CDATINGS

LINING

#

t



t

PREPARATION

STABILITY

REACTIONS

COMATIBILITY

Work flow process

ASSEMBLY

DISASSEMBLY



HARDWARE





t

COMPUNDING

PREPARATION

CASTING

t

OVEN

MOTOR

UP TO I 6 0 ° F

t

VOIDS

CURING

t

ANALYSIS

GRINDING

DISTILLATION

PREPARATION



CORROSIVE

FLAMMABLE

t







INGREDIENT

CASTING

CARCINOGENIC

OXIDIZER

t

SELECTION

t

TOXIC

EXPLOSIVE

t

t

INGREDIENT

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch005

FRICTION

VIBRATION

• •

TEST



CYCLE

LONG T E R M STORAGE

FIRING

TEMPERATURE

EVALUATION

HEAT

t

MOTOR



t

PROPELLANT

MIXING

B

H

P

O

*1

M


a w

o X w

O

3

o

5.

WHARTON

Propellant

and Propulsion

R&D

Facility

131

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch005

s t a n d a r d t e s t s a r e u t i l i z e d e a r l y i n t h e e v a l u a t i o n phase t o e v a l u a t e f l a m m a b i l i t y , i g n i t i o n and e x p l o s i v e c h a r a c t e r i s t i c s . T h e s e i n c l u d e d i f f e r e n t i a l t h e r m a l a n a l y s i s , thermo g r a v o m e t r i c a n a l y s i s , d r o p w e i g h t t e s t s , f r i c t i o n t e s t s , c a r d gap (shock i n i t i a t i o n ) t e s t s , and m a t e r i a l s c o m p a t i b i l i t y t e s t s . I n f o r m a t i o n d e r i v e d f r o m t h e above t e s t s s e r v e as a b a s i s t o e s t a b l i s h s a f e p r o c e d u r e s and t e c h n i q u e s t o h a n d l e and p r o c e s s t h e c h e m i c a l s into propellants. I n g r e d i e n t P r e p a r a t i o n . S e n s i t i v e i n g r e d i e n t s s u c h as n i t r o g l y c e r i n are f r e q u e n t l y stored or shipped d i l u t e d with a s o l v e n t . B e f o r e use i n an e x p e r i m e n t a l c o m p o s i t i o n , d i s t i l l a t i o n o f t h e s o l v e n t and p r e p a r a t i o n o f t h e m a t e r i a l i s n e c e s s a r y . S o l i d o x i d i z e r s s u c h as ammonium p e r c h l o r a t e (AP) r e q u i r e g r i n d i n g to p a r t i c u l a r p a r t i c l e s i z e d i s t r i b u t i o n s i n order to achieve d e s i r e d p r o p e l l a n t c o m b u s t i o n c h a r a c t e r i s t i c s and r e q u i r e d p r o p e l l a n t m e c h a n i c a l p r o p e r t i e s . Such o p e r a t i o n s a r e p e r f o r m e d i n i s o l a t i o n . The SWECO b u i l d i n g , f i g u r e 2, h o u s e s an AP g r i n d e r , T e c h n i q u e s f o r a n a l y s i s o f t h e i n g r e d i e n t s and a s s a y o f t h e i n g r e d i e n t s when compounded i n t o p r o p e l l a n t s must be d e v e l o p e d . P r o c e s s e s f o r s a m p l i n g , h a n d l i n g and r e a c t i n g t h a t a r e s a f e and r e l i a b l e must be d e v i s e d . Compounding. Modern s o l i d p r o p e l l a n t s a r e h i g h l y f i l l e d b i n d e r s ( 8 5 - 9 5 % by wt.) and c o n t a i n f r o m f i v e t o t e n c h e m i c a l compounds b l e n d e d t o g e t h e r i n a c o m p o s i t i o n w i t h a f i n a l c h a r a c t e r i s t i c somewhat l i k e an a u t o m o b i l e t i r e b u t w i t h t h e added f e a t u r e t h a t i t w i l l s u s t a i n c o m b u s t i o n i n a c l o s e d s y s t e m and u n d e r i m p r o p e r c o n d i t i o n s may d e t o n a t e . Propellants contain fuel m o l e c u l e s ( u s u a l l y a low mol. wt. l i q u i d p o l y m e r ) , o x i d i z e r m o l e c u l e s , b u r n i n g r a t e m o d i f i e r s , c h e m i c a l s t a b i l i z e r s , comb u s t i o n s t a b i l i z e r s , p l a s t i c i z e r s , c u r i n g a g e n t s and b i n d e r s ( f r e q u e n t l y t h e same as o r p a r t o f t h e f u e l m o l e c u l e s ) . They may c o n t a i n o t h e r i n g r e d i e n t s t o i m p a r t s p e c i f i c c h a r a c t e r i s t i c s s u c h as e n h a n c e d t e n s i l e s t r e n g t h , r e d u c e d f l a s h and c o n t r a i l e m i s s i o n , or i n h i b i t o r s to circumvent the e f f e c t s of slow long term decomposition of unstable molecules. The o b j e c t i v e s i n t h i s p h a s e o f t h e e f f o r t a r e t o i n v e s t i g a t e and u n d e r s t a n d t h e i n t e r a c t i o n s between t h e v a r i o u s components o f t h e p r o p e l l a n t , u n d e r s t a n d t h e i r c o m p a t i b i l i t y w i t h m a t e r i a l s o f c o n s t r u c t i o n , and u n d e r s t a n d t h e i r l o n g t e r m s l o w i n t e r a c t i o n s w h i c h may l e a d t o p r o p e l l a n t d e t e r i o r a t i o n and h a z a r d o u s s i t u a t i o n s . G r o s s incomp a t i b i l i t y ( e . g . immediate o b v i o u s r e a c t i o n s , e x p l o s i o n s , i g n i t i o n ) a r e i m m e d i a t e l y d i s c o v e r e d and a v o i d e d . A c o n t i n u o u s e f f o r t i s m a i n t a i n e d t o i n v e s t i g a t e t h e c h e m i s t r y p r o p e l l a n t s undergo d u r i n g p r o c e s s i n g , c u r i n g , long term s t o r a g e , exposure to t e m p e r a t u r e c y c l i n g , and t o a l i m i t e d e x t e n t e x p o s u r e t o h u m i d i t y and o t h e r w e a t h e r c o n d i t i o n s . Such l o n g t e r m r e a c t i o n s l e a d t o c a s e d e b o n d i n g , p r o p e l l a n t c r a c k i n g , a change i n i g n i t i o n o r burning r a t e c h a r a c t e r i s t i c s , s e p a r a t i o n o f the p l a s t i c i z e r or

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch005

TOXIC C H E M I C A L A N D EXPLOSIVES

Figure 2.

MIRADCOM

propulsion facility

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

FACILITIES

5.

WHARTON

Propellant

and Propulsion

R&D

Facility

133

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch005

a change i n p h y s i c a l p r o p e r t i e s . Such phenomena p r o d u c e s h a z a r d s by c h a n g i n g the c o m b u s t i o n c h a r a c t e r i s t i c s w h i c h l e a d s to explosions at launch. I n v e s t i g a t i o n o f the long term c h e m i s t r y b e g i n a t t h e i n g r e d i e n t s e l e c t i o n s t a g e and c o n t i n u e s as l o n g as t h e m i s s i l e i s i n t h e i n v e n t o r y . Propellant Mixing. P r o p e l l a n t m i x i n g i s t h e most h a z a r d o u s o p e r a t i o n i n p r o p e l l a n t d e v e l o p m e n t ; however, m i x e r t e c h n o l o g y i s now h i g h l y d e v e l o p e d . M i x i n g i s a l w a y s p e r f o r m e d r e m o t e l y . P r o p e l l a n t m i x i n g i s s c a l e d f r o m 50 g r a m s / b a t c h m i x e s f o r e x p e r i m e n t a l p r o p e l l a n t s t h r u s t a n d a r d s i z e s o f one p i n t , one q u a r t , one g a l l o n , f i v e g a l l o n s , f i f t y g a l l o n s , and f o u r hundred and f i f t y g a l l o n s . P r o p e l l a n t s t h a t a r e n o t f u l l y c h a r a c t e r i z e d a r e a l m o s t n e v e r m i x e d i n q u a n t i t i e s l a r g e r than one g a l l o n . M i x i n g i s a p r o c e s s where some f r i c t i o n between i n g r e d i e n t s and f r i c t i o n between t h e p r o p e l l a n t and t h e m i x e r b l a d e s i s i n e v i t a b l e . H e a t i s p r o d u c e d by t h e s t i r r i n g p r o c e s s and i s removed by w a t e r c o o l i n g . M i x i n g i s g e n e r a l l y done u n d e r vacuum t o a v o i d a i r entrapment i n t o the p r o p e l l a n t . Designs to prevent p r o p e l l a n t mix f r o m g e t t i n g i n t o b e a r i n g s ( v e r t i c a l sigma b l a d e m i x e r s ) , s a f e t y f e a t u r e s to prevent mixer blades from c o n t a c t i n g mixer bowls ( p e r i o d i c a l l y c h e c k e d f o r c l e a r a n c e ) , n o n - s p a r k i n g p a r t s , a u t o m a t i c d e l u g e s y s t e m s (mounted i n s i d e as w e l l as o u t s i d e o f l a r g e m i x e r s ) , a u t o m a t i c i n g r e d i e n t f e e d e r s , and t e c h n i q u e s t o r e m o t e l y c a s t t h e p r o p e l l a n t i n t o m o t o r s a r e f e a t u r e s employed r o u t i n e l y . A l l equipment i s e l e c t r i c a l l y grounded. Process v a r i a b l e s s u c h as m i x e r s p e e d , mix t e m p e r a t u r e , mix t i m e , and on l a r g e r b a t c h e s mix v i s c o s i t y a r e m o n i t o r e d c o n t i n u o u s l y . C a s t i n g . C a s t i n g i s the f i n a l phase o f the mixing process. The p r i m a r y s a f e t y c o n s i d e r a t i o n i n c a s t i n g i s t o f i l l t h e r o c k e t m o t o r w i t h p r o p e l l a n t mix f r e e o f v o i d s . V o i d s p r o d u c e i n c r e a s e d b u r n i n g s u r f a c e w h i c h can l e a d t o motor c a s e r u p t u r e when f i r e d o r p o s s i b l y a t r a n s i t i o n f r o m d e f l a g r a t i o n t o d e t o n a t i o n (DDT). Gas f i l l e d v o i d s can p r o d u c e s u b s u r f a c e i g n i t i o n from a d i a b a t i c compression d u r i n g i g n i t i o n load shocks o r i n v i b r a t i o n t e s t i n g . Such i g n i t i o n w i l l l e a d t o o v e r p r e s s u r i z a t i o n , m o t o r r u p t u r e and p o s s i b l y d e t o n a t i o n . F o r t h e s e r e a s o n s most c a s t i n g as w e l l as m i x i n g i s done u n d e r a vacuum. C u r i n g . A p r o p e l l a n t mix i s s i m i l a r t o any o t h e r f o r m u l a t i o n i n t h a t many c h e m i c a l r e a c t i o n s must o c c u r t o r e a c h t h e f i n a l d e s i r e d " i n e r t " s t a t e with the a p p r o p r i a t e p h y s i c a l p r o p e r t i e s . T h i s p r o c e s s o f p o l y m e r i z a t i o n and c r o s s l i n k i n g o f t h e b i n d e r , b o n d i n g t o t h e m o t o r c a s e , and f o r m a t i o n o f a p p r o p r i a t e i n t e r n a l s t r u c t u r e i s c a l l e d c u r i n g . The c u r e r e a c t i o n s a r e done a t t e m p e r a t u r e s f r o m a m b i e n t t o a b o u t 160°F o v e r a p e r i o d o f a few h o u r s t o two weeks d e p e n d i n g on t h e p r o p e l l a n t and t h e d e s i r e d end p r o p e r t i e s . Oven t e m p e r a t u r e s a r e c l o s e l y c o n t r o l l e d and

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

134

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

m o n i t o r e d c o n t i n u o u s l y . The s a f e t y a p p r o a c h i s t o a v o i d c o n t a c t d u r i n g t h e c u r e p r o c e s s and t o c o n d u c t t h e c u r i n g i n i s o l a t e d b a r r i c a d e d b u i l d i n g s (see f i g u r e 2 ) .

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch005

Motor P r e p a r a t i o n . A f t e r c u r i n g , the c a s t i n g f i x t u r e s are removed from t h e m o t o r . M a j o r i t e m s such a s r e m o v i n g t h e c o r e a r e done r e m o t e l y , i f t h e r e a r e any r o u g h edges o n t h e p r o p e l l a n t w h i c h r e q u i r e t r i m i n g t h e o p e r a t i o n i s done r e m o t e l y . T h e m a j o r h a z a r d i s f i r e . A p p r o p r i a t e p r o t e c t i v e c l o t h i n g , nons p a r k i n g t o o l s , a u t o m a t i c d e l u g e s y s t e m s , and p r o t e c t i v e s h i e l d s a r e u s e d . F i n a l a s s e m b l y o f s u c h i t e m s a s i g n i t e r s and n o z z l e s a r e r e l a t i v e l y r o u t i n e . Screw t h r e a d a t t a c h m e n t s a r e u s u a l l y a v o i d e d . Snap r i n g s and o t h e r t e c h n i q u e s a r e u s e d . I n s p e c t i o n o f s m a l l e x p e r i m e n t a l m o t o r s i s v i s u a l . L a r g e r m o t o r s and production items are x-ray i n s p e c t e d . M o t o r E v a l u a t i o n . Many d i f f e r e n t o p e r a t i o n s a r e p e r f o r m e d i n p r o p e l l a n t and m o t o r e v a l u a t i o n . The main s a f e t y p r e c a u t i o n i s t o keep p e r s o n n e l c o n t a c t t o a n a b s o l u t e minimum. Most o p e r a t i o n s are performed remotely, the o n l y c o n t a c t r e q u i r e d b e i n g d u r i n g a s s e m b l y and i n s t a l l a t i o n o r removal o f t h e t e s t d e v i c e . The most h a z a r d o u s o p e r a t i o n , t e s t f i r i n g s , a r e p e r f o r m ed r e m o t e l y i n r e i n f o r c e d c o n c r e t e b a r r i c a d e d c e l l s ( s e e f i g u r e 2 ) . The t e c h n i c i a n who c o n n e c t s t h e i g n i t i o n c i r c u i t , t h e l a s t o p e r a t i o n b e f o r e f i r i n g , r e t a i n s t h e key t o t h e f i r i n g c i r c u i t s u c h t h a t i t c a n n o t b e a c t i v a t e d u n t i l he r e t u r n s t o t h e c o n t r o l room. Hardware P r e p a r a t i o n . M o t o r p r e p a r a t i o n and m o t o r e v a l u a t i o n r e s u l t i n used hardware t o be r e c y c l e d , a l o n g w i t h new h a r d w a r e , i n t o t h e p r o p e l l a n t and p r o p u l s i o n s y s t e m d e v e l o p m e n t p r o c e s s . C l e a n i n g used hardware i n c l u d e s removal o f r e s i d u a l p r o p e l l a n t f r o m c a s t i n g f i x t u r e s w h i c h can be a s e r i o u s f i r e h a z a r d . A p p r o p r i a t e p r o t e c t i v e g e a r and d e l u g e s y s t e m s a r e e m p l o y e d . C l e a n i n g and d e g r e a s i n g u t i l i z e u l t r a s o n i c c l e a n e r s and d e g r e a s i n g v a t s w h i c h c o n t a i n t o x i c f l u i d s such a s t r i c h l o r o e t h y l e n e i n l a r g e q u a n t i t y . A d e q u a t e p r o t e c t i v e e q u i p m e n t and v e n t i l a t i o n a r e r e q u i r e d . C o a t i n g s , i n s u l a t o r s , and l i n e r s such a s t e f l o n , e p o x y and RTV a r e done r o u t i n e l y w i t h p r o p e r p r e c a u t i o n s f o r v e n t i l a t i o n and p r o t e c t i v e c l o t h i n g a d d r e s s e d . The M i s s i l e R e s e a r c h and D e v e l o p m e n t Command (MIRADCOM) Propulsion Facility" F i g u r e 2 shows t h e MIRADCOM f a c i l i t y i n c l u d i n g a n a d d i t i o n i n p r o g r e s s t o m o d e r n i z e and c o n s o l i d a t e o p e r a t i o n i n t o one l o c a t i o n . B u i l d i n g 7120 h o u s e s t h e p r o p e l l a n t c h e m i s t r y l a b o r a t o r i e s . The b a r r i c a d e d n o r t h w i n g h o u s e s t h e h a z a r d o u s o p e r a t i o n s c e l l s . These c e l l s are used t o perform such o p e r a t i o n s as experimental p r o p e l l a n t mixing thru the f i v e g a l l o n batch s i z e

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch005

5.

WHARTON

Propellant

and Propulsion

R&D

Facility

135

and i n c l u d e s m o t o r l o a d i n g . T h e s e c e l l s a r e c o n s t r u c t e d o f r e i n f o r c e d c o n c r e t e o f s u f f i c i e n t t h i c k n e s s and s t r e n g t h t o c o n t a i n d e t o n a t i o n s o f q u a n t i t i e s up t o t h e l i m i t s c i t e d w i t h o u t s p a l l i n g c o n c r e t e on t h e o u t s i d e w a l l s . F i g u r e 3 shows t h e a r r a n g e m e n t o f a segment o f t h e c e l l s . Most o p e r a t i o n s shown i n t h e work f l o w p r o c e s s a r e i d e n t i f i a b l e i n t h e f a c i l i t y , F i g u r e 2. Loaded m o t o r s f r o m t h e h a z a r d c e l l s a r e p l a c e d i n t h e b a r r i c a d e d c u r e o v e n s . The m o t o r s a r e a s s e m b l e d a n d p r e p a r e d f o r t e s t s i n t h e motor assembly b u i l d i n g , t e s t f i r e d i n bldg 7145 r e m o t e l y f r o m t h e c o n t r o l b l d g 7143. C o n d i t i o n e d s t o r a g e i s a v a i l a b l e i n t h e hot, c o l d and ambient s t o r a g e b u i l d i n g s . Ammonium p e r c h l o r a t e i s g r o u n d i n t h e SWECO b u i l d i n g . A p p r o p r i a t e s a f e t y f e a t u r e s c o n s i d e r e d a n d f o l l o w e d a r e summarized i n T a b l e s I , I I a n d I I I . V a r i o u s d i s t a n c e s between b u i l d i n g s a r e c a l c u l a t e d from e m p i r i c a l equations d e r i v e d from experimental d a t a XI)- T h e d i s t a n c e s a r e b a s e d on a l l o w a b l e o v e r p r e s s u r e s . T a b l e IV summarizes e q u a t i o n s a n d t y p i c a l c a l c u l a t i o n s used t o p l a n t h i s f a c i l i t y . F r a g m e n t a t i o n d i l u t i o n s a r e d e r i v e d by d i r e c t r a t i o t o e x p e r i m e n t a l d a t a on a 500 l b bomb f r a g m e n t a t i o n d i s t r i b u t i o n . In F i g u r e 2, d i s t a n c e s n o t e d by s o l i d l i n e a r e f r a g m e n t a t i o n d i s t a n c e s . O t h e r d i s t a n c e s a r e n o t e d by dashed lines. Safety C r i t e r i a f o r F a c i l i t y Table I 1. P e r i m e t e r f e n c e w i t h a p p r o p r i a t e s i g n s t o r e s t r i c t and l i m i t access 2. Q u a n t i t y - d i s t a n c e s e s t a b l i s h e d t o keep o v e r p r e s s u r e below window b r e a k a g e l e v e l f o r i n h a b i t e d b u i l d i n g s . 3. B a r r i c a d e s , q u a n t i t i e s , d i s t a n c e s e s t a b l i s h e d t o keep l e t h a l f r a g m e n t s below a d e n s i t y o f one p e r 600 s q f t a t p e r s o n n e l location. 4. W a r n i n g l i g h t s a n d s i r e n t o a l e r t p e r s o n n e l o f impending t e s t s o r hazardous o p e r a t i o n s 5.

Gates t o r e s t r i c t personnel and v e h i c l e flow

6.

L i g h t e n i n g p r o t e c t i o n on e a c h b u i l d i n g .

7.

Standard Operating

P r o c e d u r e f o r each o p e r a t i o n .

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

136

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch005

TOXIC C H E M I C A L A N D EXPLOSIVES

Figure 3.

Hazard cell construction

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

FACILITIES

5.

WHARTON

Propellant

and Propulsion

R&D

Facility

137

S a f e t y C r i t e r i a f o r H a z a r d Bays Table II 1. T w e l v e i n c h ( 1 2 " ) r e i n f o r c e d c o n c r e t e w a l l s f o r 15 l b s e x p l o s i v e l i m i t bays (1 g a l l o n m i x e r ) . 2. T h i r t y s i x i n c h ( 3 6 " ) r e i n f o r c e d c o n c r e t e w a l l s f o r 70 l b s e x p l o s i v e l i m i t bays (5 g a l l o n m i x e r ) .

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch005

3. L i g h t f i x t u r e s , e l e c t r i c a l o u t l e t s , e l e c t r i c a l s w i t c h e s , a l l e l e c t r i c a l connections are explosion proof. 4.

Once t h r u t e m p e r a t u r e

and humidity c o n t r o l l e d a i r .

5.

Lead l i n e d d r a i n s t o sumps.

6.

Conductive

7.

Foam i n s u l a t i o n panel e x t e r i o r w a l l s f o r " r u n t h r u " e x i t s .

8.

Light weight precast concrete "blow-off" roofs.

9.

A l l systems and d e v i c e s grounded t o standard

f l o o r s i n a l l propellant handling

bays.

grounds.

10. S t a n d a r d g r o u n d s c a l i b r a t e d a n n u a l l y . 11. A u t o m a t i c and v a l v e s .

water deluge systems w i t h f a s t a c t i n g sensors

12. S t a n d a r d o p e r a t i n g p r o c e d u r e s

cover a l l processes.

S u p p o r t i n g S a f e t y O r g a n i z a t i o n s and A g e n c i e s C o n s i d e r a b l e a s s i s t a n c e i s g i v e n by v a r i o u s s a f e t y and h e a l t h o r g a n i z a t i o n s . Some o f t h e s e a r e i n t e r n a l t o MIRADCOM and t h e i r c o u n t e r p a r t o r e q u i v a l e n t e x i s t s i n a n y m a j o r o r g a n i z a t i o n c o n d u c t i n g s i m u l a r o p e r a t i o n s . O t h e r s a r e more b r o a d b a s e d a n d t h e i r s e r v i c e b o u n d a r y l e s s w e l l d e f i n e . The f o l l o w i n g summary i s n o t a l l i n c l u s i v e b u t d e s c r i b e t h e a c t i v i t i e s t h a t have m a j o r i m p a c t on MIRADCOM o p e r a t i o n s . MIRADCOM S a f e t y O f f i c e . T h e s a f e t y o f f i c e c o n t a i n s p r o f e s sional safety engineers with considerable experience i n dealing w i t h h a z a r d o u s o p e r a t i o n s . They m a i n t a i n up t o d a t e knowledge and i n f o r m a t i o n on s a f e t y e q u i p m e n t a n d p r o c e d u r e s . Files are k e p t on a l l a c c i d e n t s a n d i n c i d e n t s . They r e v i e w and a p p r o v e a l l standard o p e r a t i n g procedures and serve as a source o f a d v i c e a n d i n f o r m a t i o n on a l l s a f e t y m a t t e r s .

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES

138

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch005

Safety C r i t e r i a f o r P r o p e l l a n t Chemistry Table III

FACILITIES

Laboratory

1.

Solvents s t o r e d i n sheds outside o f the l a b o r a t o r i e s .

2.

A c i d s s t o r e d i n sheds o u t s i d e o f t h e l a b o r a t o r i e s .

3.

Gas b o t t l e s s t o r e d i n s h e d s o u t s i d e o f t h e l a b o r a t o r i e s .

4.

Substances

5.

S m a l l s o l v e n t b o t t l e s ( ~ 1 l i t e r ) used i n l a b o r a t o r i e s .

6.

S o l v e n t s pumped i n t o c o n t a i n e r s t o a v o i d v a p o r s and d r o p p a g e .

7.

Hoods e x c e e d OSHA s t a n d a r d s

separated i n t o o x i d i z e r s , f u e l s and i n e r t s .

( > 150 f t / m i n ) .

8. E l e c t r i c h e a t used - n o open f l a m e s , matches o r smoking permitted i n laboratories. 9.

No e a t i n g o r d r i n k i n g p e r m i t t e d i n l a b o r a t o r i e s .

10. E q u i p m e n t c o n n e c t e d t o s t a n d a r d g r o u n d s and c o n d u c t i v e used i n p r o p e l l a n t h a n d l i n g l a b o r a t o r i e s .

floors

11. S a f e t y g o g g l e s , s a f e t y s h o e s , and f l a m e p r o o f c l o t h i n g required. 12. P e r s o n s n e v e r p e r f o r m l a b o r a t o r y work a l o n e . 13. D e t a c h e d o b s e r v e r p r e s e n t f o r a l l h a z a r d o u s o p e r a t i o n s . 14. S t a n d a r d O p e r a t i n g P r o c e d u r e s c o v e r g e n e r a l o p e r a t i o n and a l l s p e c i a l p r o c e s s e s .

laboratory

15. Each l a b o r a t o r y e q u i p p e d w i t h e y e wash f o u n t a i n s , manual s h o w e r s , f i r e e x t i n q u i s h e s and f i r e b l a n k e t s . 16. Minimum r e q u i r e d m a t e r i a l a l w a y s u s e d . 17. G e n e r a l l y comply w i t h c r i t e r i a and s a f e t y o u t l i n e d i n S a x ' s Danagerous P r o p e r t i e s o f I n d u s t r i a l M a t e r i a l s .

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Unbarricaded



Unbarricaded



85

43

215

121

163

82

413

304

61

206

R = 9.5 R = 19

206

R = 48

521

103

R = 24

R = 63

684

260

R = 80

868

688 543

R = 40

Formula

434

1280 TNT 1000 l b P r o p

344

640 l b TNT 500 l b P r o p

152

400

508

254

256 l b TNT 200 l b P r o p

Assume C l a s s 1, D i v i s i o n 1 P r o p e l l a n t s o f 1.28 TNT E q u i v a l e n t s R = Distance i n Feet W = W e i g h t o f TNT i n Pounds

Barricaded



Intraline

Barricaded



107

282

No Window B r e a k a g e

P u b l i c Highway

359

Unbarricaded

I

178

Barricaded

Bldg



Inhabited

90 l b TNT 70 l b Prop

Quantity - Distance Calculations T a b l e IV

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch005

140

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch005

P r e v e n t i v e M e d i c i n e A c t i v i t y (MIRADCOM). T h i s o p e r a t i o n s u r v e y s a l l p r o c e s s e s and p r o c e d u r e s f o r m e d i c a l s a f e t y . They review (and approve i n s e l e c t e d i n s t a n c e s ) standard o p e r a t i n g procedures. Laboratories a r e surveyed f o r t o x i c chemical l e v e l s . A l s o , chemical procedures a r e monitored t o determine the l e v e l o f e x p o s u r e t o t o x i c s u b s t a n c e s . They p e r f o r m a n n u a l p h y s i c a l examinations on a l l personnel i n v o l v e d i n hazardous o p e r a t i o n s or exposed t o hazardous c h e m i c a l s . Medical h i s t o r i e s a r e maint a i n e d . T e c h n i q u e s o f emergency t r e a t m e n t f o r b o t h s t a n d a r d and unusual i n c i d e n t s a r e kept updated. Army E n v i r o n m e n t a l H y g i e n e A g e n c y . T h i s Army a g e n c y , l o c a t e d a t A b e r d e e n P r o v i n g Ground, M a r y l a n d , e v a l u a t e s t h e t o x i c i t y o f new c h e m i c a l compounds. I t d e v e l o p s and m a i n t a i n s e n v i r o n m e n t a l s a f e t y s t a n d a r d s . I t i s a n o p e r a t i n g arm o f a n d r e p o r t s t o t h e Surgeon G e n e r a l o f t h e Army. Department o f D e f e n s e E x p l o s i v e S a f e t y B o a r d . T h i s a c t i v i t y r e v i e w s and a p p r o v e s a l l e x p l o s i v e s h a n d l i n g f a c i l i t i e s o p e r a t i n g f o r t h e Department o f D e f e n s e . T h i s i n c l u d e s a l l i n d u s t r i a l and government a c t i v i t i e s i n t h e U n i t e d S t a t e s a n d s e l e c t e d a c t i v i t i e s i n NATO. They a r e t h e f i n a l a u t h o r i t y on e x p l o s i v e s f a c i l i t i e s . T h e i r a p p r o v a l was r e q u i r e d on t h e f a c i l i t y d e s c r i b e d i n t h i s paper. EPA and OSHA. A l l Department o f D e f e n s e (DOD) a c t i v i t i e s a r e s u b j e c t t o EPA a n d OSHA r e g u l a t i o n s i n c l u d i n g t h e r e c e n t T o x i c S u b s t a n c e s C o n t r o l A c t . T h e r e i s a p r o v i s i o n f o r DOD t o circumvent requirements f o r purposes o f urgent n a t i o n a l defense. However, t h i s p r o v i s i o n c a n o n l y be a c t i v a t e d b y p r e s i d e n t i a l a p p r o v a l and i s u n l i k e l y t o be u t i l i z e d e x c e p t i n a n a t i o n a l emergency. S t a n d a r d O p e r a t i n g P r o c e d u r e s (SOP) E v e r y o p e r a t i o n i s c o v e r e d by a SOP. These p r o c e d u r e s d e l i n e a t e t h e s t e p b y s t e p p r o c e s s t o be f o l l o w e d i n c o n d u c t i n g a h a z a r d o u s o p e r a t i o n . T h e y i d e n t i f y and s p e c i f y t h e s a f e t y equipment and c l o t h i n g t o b e employed and t h e emergency p r o c e d u r e s t o be f o l l o w e d i f a n a c c i d e n t o c c u r s . They i d e n t i f y t h e r e s p o n s i b l e i n d i v i d u a l f o r t h e o p e r a t i o n a n d s p e c i f y t h e number o f o p e r a t i n g p e r s o n n e l t h a t c a n be p r e s e n t . The SOP i s p r e p a r e d by the o p e r a t i n g personnel, reviewed by t h e l a b o r a t o r y d i r e c t o r , r e v i e w e d by a n d c o - a p p r o v e d by t h e P r e v e n t i v e M e d i c a l A c t i v i t y when h e a l t h h a z a r d s a r e i n v o l v e d , a n d a p p r o v e d by t h e MIRADCOM safety office.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

5.

WHARTON

Propellant

and Propulsion

R&D

Facility

141

Standard operating procedures serve several purposes. F o r e m o s t , t h e y r e q u i r e t h a t t h e p r o c e s s be t h o r o u g h l y p l a n n e d , a l l known s a f e t y p r o c e d u r e s be i n c o r p o r a t e d , a n d t h e o p e r a t i o n made a s i n d e p e n d a n t a s p o s s i b l e o f p e r s o n n e l c h a n g e s . In t h e e v e n t o f an i n c i d e n t t h e y a i d i n p i n p o i n t i n g t h e s t e p r e s p o n s i b l e f o r t h e a c c i d e n t ( i . e . i t helps i d e n t i f y t h e unsafe a c t ) . In t h e e v e n t o f i n j u r y o r l o s s o f e q u i p m e n t , i t s e r v e s a s a l e g a l document t o show t h a t a l l known p r e c a u t i o n s were employed. I t s e r v e s a s a t e a c h i n g a i d f o r new e m p l o y e e s .

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch005

Summary T h i s p a p e r d e s c r i b e s t h e MIRADCOM P r o p u l s i o n F a c i l i t y P l a n , t h e work f l o w p r o c e s s , t h e s a f e t y f a c t o r s t h a t must be c o n s i d e r e d and t h e p r i m a r y o r g a n i z a t i o n s t h a t a s s i s t i n i n s u r i n g t h a t h a z a r d s a r e k e p t t o an a b s o l u t e minimum. S a f e t y c o n s i d e r a t i o n s become a c o n s i d e r a t i o n a t t h e i n i t i a t i o n o f a c o n c e p t a n d i s a c o n s t a n t p a r t n e r u n t i l t h e m i s s i l e i s phased o u t o f t h e i n v e n t o r y . I t i s o n l y by such c o n s t a n t a t t e n t i o n t h a t o p e r a t i o n s w i t h s u c h m a t e r i a l s a n d d e v i c e s c a n be p e r f o r m e d w i t h o u t i n c u r r i n g d i s a s t e r . Literature Cited 1.

Chemical Rockets/Propellant Hazards, Vol I , General S a f e t y E n g i n e e r i n g Design Criteria, Chemical P r o p u l s i o n Information Agency Publication 194, Johns Hopkins A p p l i e d P h y s i c s L a b o r a t o r y , Laurel, MD (1971).

RECEIVED November 22, 1978.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

6 Prevention of Propellant Flame Propagation through Conveyors Using the Primac/Telemac Sprinkler System

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch006

T. W. EWING, F. T. KRISTOFF, and W. T. BOLLETER Hercules Incorp., Radford Army Ammunition Plant, Radford, VA 24141

As part of the overall Army Modernization Program, a new continuous automated facility is being constructed at Radford Army Ammunition Plant (RAAP) for manufacturing single-base cannon propellants. When completed, this new production plant will be capable of manufacturing 2.5 million pounds per month of single-base propellant. In this plant, new equipment and manufacturing technology have been advanced to produce propellants more economically and with less personnel exposure than in the conventional batch process. This modularly constructed plant houses the equipment for each major processing operation within bays segregated by twelve-inch thick, steel-reinforced concrete walls. However, the continuous processing concept requires that operations be interconnected with vibratory conveyors passing through holes in the fire walls, see Figure 1. The conveyor design includes a nitrogen purge and oxygen level monitor to preclude hazardous vapor/air mixtures where solvent-wet in-process material is being conveyed. Fast-acting fire gates were initially designed to prevent propagation of fire between adjacent operating bays. As a cost savings measure, alternatives to the fire gates were considered. A study was initiated to determine if the existing highspeed sprinkler system in the conveyors could detect and quench a fire and prevent flame propagation between bays. The effectiveness of this system was determined by establishing the minimum number of sprinklers and water needed to prevent a dry MlSP, 105mm propellant fire from propagating through a typical, full-scale conveyor. A concurrent study developed a flexible seal to prevent flame from propagating through fire wall openings around the outside of the conveyor. Equipment and process design avoided process c o n d i t i o n s which could r e s u l t i n an explosive r e a c t i o n by preventing unnecessary and p o t e n t i a l l y explosive accumulations o f in-process and f i n i s h e d m a t e r i a l s and o f f e r i n g minimum confinement to the p r o p e l l a n t by i n c o r p o r a t i n g pressure relief venting. This chapter not subject to U.S. copyright. Published 1979 American Chemical Society

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch006

144

Figure 1.

Typical conveyor/fire wall arrangement

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

6.

EWING E T A L .

Primac/Telemac

Sprinkler

System

145

DISCUSSION

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch006

Process D e s c r i p t i o n Figure 2 shows the major manufacturing operations i n the continuous automated single-base l i n e (CASBL). The process begins by pumping a 90/10 w a t e r / n i t r o c e l l u l o s e (NC) s l u r r y to a thermal dehydration u n i t . The NC i s d r i e d , sprayed with a l c o h o l and conveyed to the compounding operation v i a a v i b r a t o r y conveyor. The compounder combines the NC with other p r o p e l l a n t i n g r e d i e n t s , ether and a d d i t i o n a l a l c o h o l to form a 26 percent solvent-wet paste. Other p r o p e l l a n t i n g r e dients include d i n i t r o t o l u e n e (DNT) and potassium s u l f a t e . The paste i s conveyed to a r o t a t i n g screw type mixer f o r f u r t h e r solvent a d d i t i o n , a d d i t i o n a l mixing and c o n s o l i d a t i o n i n t o pellets. The p e l l e t s are conveyed to a v e r t i c a l screw extruder and extruded i n t o solvent-wet p e r f o r a t e d strands. The strands are conveyed v i a water i n tubes to the strand c u t t e r and cut i n t o short, uniform lengths (granules). The solvent-wet granules are mixed with water and pumped to the f i r s t o f three drying operations. Most of the free solvent i s removed from the granules by hot a i r i n the solvent recovery operation. The remaining solvent i s extracted by hot water sprayed over the granules. Drying of the water-wet granules i s completed using f l u i d i z e d bed type hot a i r d r i e r s . A f t e r drying, the granules are weighed i n t o drums and transported to a storage area. During the drying operations, v i b r a t o r y conveyors are used to convey solvent-wet, water-wet and dry p r o p e l l a n t granules from one operation to another. Dry p r o p e l l a n t operations are p o t e n t i a l l y the greatest f i r e hazard because they i g n i t e more e a s i l y and burn more v i g o r o u s l y than solvent-wet or water-wet p r o p e l l a n t s . Sustained Burning

Tests

I t was a n t i c i p a t e d that the solvent-wet m a t e r i a l i n a n i t r o gen purged atmosphere and water-wet m a t e r i a l s would not s u s t a i n a burning r e a c t i o n , or would burn at a comparatively slow rate and be quenched by the s p r i n k l e r system with l i t t l e d i f f i c u l t y . The absence of a p p l i c a b l e data required that t e s t s be conducted to a f f i r m which materials would s u s t a i n a burning r e a c t i o n under processing c o n d i t i o n s . These t e s t s were conducted by p l a c i n g a one-inch deep l a y e r of water-wet or solvent-wet p r o p e l l a n t or p r o p e l l a n t i n g r e d i e n t w i t h i n a twelve-inch wide closed conveyor up to t h i r t e e n feet i n length. When solvent-wet p r o p e l l a n t was t e s t e d , the conveyor was purged using nitrogen gas u n t i l the oxygen l e v e l was below the lower explosive l e v e l . A s i n g l e p e r f o r a t e d p r o p e l l a n t granulation (M1SP, 105mm) was s e l e c t e d f o r a l l subsequent t e s t s because i t i s the f a s t e s t burning p r o p e l l a n t planned to be manufactured i n the CASBL.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

ETHER

ALC

HaO

STRAND

I |

C

_

TO

E T H E R

2

H0 ALC

2

TO

AUy%TMER

HaO

20% 10%

50%

CUTTER

Z|

S-B(5TRAHDS)

Q V E Y E P

h

p^ CQtgVEVEP* TO SB

CUTTER

* VIBRATORY CONVEYOR

S-»(GRA»N5) TVasl%

SCREEN

DEWATERING

20%

IO%

50% >20%

Figure 2.

I

S-B(GRAINS)

HVPBOVEVEPTOSB FEED

ALCOHOL SPRAY

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch006

H W

P

Q



w en

r o

> o

s

a

H O

4^

6.

EWING E T A L .

PrimacITelemac

Sprinkler

System

147

One end of the p r o p e l l a n t bed was i g n i t e d with an A t l a s match. A f t e r burning was complete, the p r o p e l l a n t was examined v i s u a l l y to determine i f burning propagated the e n t i r e length of the p r o p e l l a n t bed (sustained burning) or s e l f - e x t i n g u i s h e d (no sustained burning). The r e s u l t s of these t e s t s are summarized i n Table I and show that sustained burning w i l l not occur f o r dry DNT; > 23 percent alcohol-wet NC; > 12 percent waterwet (surface wet) M1SP granules i n a c l o s e d conveyor; or > 14 percent alcohol/ether-wet M1SP granules. A d d i t i o n a l t e s t s determined that > 18 percent water-wet (surface wet) granules i n an open conveyor w i l l s u s t a i n a burning r e a c t i o n .

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch006

Table I - Summary of Sustained Burning Test Results

Material DNT

Dry, Ground

NC

Sustained Burning Threshold, % U

Physical State

Alcohol

W i l l not burn i n conveyor

2/ Wet-

M1SP F i n i s h e d Granules

H2O Wet

M1SP Green Granules

Alcohol/Ether Wet U

(Surface)

23 >18 (open conveyor) 12 (closed conveyor) 14

1/

Sustained burning at next lower t e s t

level

2/

Nitrogen purged atmosphere during t e s t s

A p p l i c a t i o n of these data to CASBL show that most water and/ or solvent-wet p r o p e l l a n t and p r o p e l l a n t i n g r e d i e n t s w i l l not s u s t a i n a burning r e a c t i o n f o r the c o n d i t i o n s which w i l l e x i s t i n CASBL (Figure 2). These t e s t s demonstrated that the e x i s t i n g conveyor s p r i n k l e r system i s more than adequate to prevent between bays flame propagation i n most CASBL l o c a t i o n s . Minimum Water to Quench F i r e s As a n t i c i p a t e d , sustained burning t e s t s showed that dry M1SP, 105mm p r o p e l l a n t (granules) i s the most e n e r g e t i c burning m a t e r i a l w i t h i n CASBL conveyors. A t y p i c a l CASBL conveyor conf i g u r a t i o n f o r handling dry p r o p e l l a n t i s shown i n Figure 3. In t h i s o p e r a t i o n , d r i e d p r o p e l l a n t i s discharged from dryers i n t o a feed hopper. The p r o p e l l a n t i s fed at a uniform r a t e from the hopper to a v i b r a t o r y feed conveyor and then to a v i b r a t o r y c o l l e c t i o n conveyor. The c o l l e c t i o n conveyor moves the p r o p e l l a n t through a f i r e w a l l and to the next operation. Flame quench t e s t s were conducted by i g n i t i n g a uniform one-inch deep l a y e r

American Chemical Society Library 1155 16th St. N. W. Washington, D. C. Facilities; 20036 Scott, R.; In Toxic Chemical and Explosives ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979. —

CONCRETE FIRE WALL

29" LONG RUBBER SLEEVE

WIDE VIBRATORY CONVEYOR

25'

IR DUKTOR

(D -

PROPELLANT FLOW

CONCRETE FIRE WALL

SPRIHKLER NOZllt

(§)-

LIGtHD

6" DEEP x 12'WIDE VIBRATORY CONVEYOR

VENTED FEED HOPPER

DRY PROPELLANT FROM DRIERS

Typical dry propellant conveyor configuration

^ 6" DEEP x 12"

T —

Figure 3.

10" LONG x 7.5" ID RUBBER SLEEVE

®

© — .

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch006

O

a w x

> >

o

I—I

a w

o

o

8

0 0

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch006

6.

EWING

ET AL.

Primac/Telemac

Sprinkler

System

149

of M1SP p r o p e l l a n t w i t h i n a f u l l - s c a l e simulated CASBL conveyor. The minimum s p r i n k l e r / f l a m e detector arrangement and s p r i n k l e r water necessary to prevent flame propagation were determined. The setup used f o r these t e s t s i s shown i n Figures 4 and 5. The t e s t conveyor was t h i r t e e n feet long and open at each end. A f o u r - f o o t long s e c t i o n of conveyor was connected to the i g n i t i o n end of the t e s t conveyor by a rubber boot to simulate v i b r a t o r y feeder connectors normally found on CASBL conveyors. Four s p r i n k l e r nozzles were welded at three-foot i n t e r v a l s i n t o the conveyor l i d and canted 45 degrees toward the i g n i t i o n end of the conveyor. In t e s t s r e q u i r i n g fewer than four n o z z l e s , one or more nozzles were blocked using pipe n i p p l e s . Water pressure was v a r i e d between 25 and 90 p s i g using a pressure r e g u l a t o r i n the supply l i n e . One i n f r a r e d detector was used to detect p r o p e l l a n t burning and a c t i v a t e the s p r i n k l e r system v i a a Primac v a l v e . [ I n f r a r e d (IR) detectors manufactured by ADT f o r use with the Primac valve are manufactured and s o l d by G r i n n e l (Telemac U l t r a High Speed F i r e Detection System). The Primac valve c o n s i s t s of two primer caps a c t i v a t e d e l e c t r i c a l l y when an IR d e t e c t o r r e sponds to a f i r e . ] This detector was l o c a t e d approximately two feet i n front of the f i r s t a c t i v e s p r i n k l e r n o z z l e f o r a l l but confirmatory t e s t s . I g n i t i o n of the p r o p e l l a n t was accomplished remotely using two A t l a s matches l o c a t e d at the bottom of the conveyor (submerged i g n i t i o n ) . I n f r a r e d detectors were a l s o used to detect the presence of flame at various conveyor l o c a t i o n s i n c l u d i n g the end of the conveyor. High-speed c o l o r movies (200 frames per second) monitored each t e s t to v e r i f y that flame propagation d i d , or d i d not, occur at the end of the conveyor. Rupture vents, determined to have l i t t l e e f f e c t upon t e s t r e s u l t s i n p r e l i m i n a r y t r i a l s , were blanked o f f using s t e e l p l a t e s f o r some of the quench t e s t s . T e s t i n g was conducted i n two stages. Stage one i n v o l v e d t e s t i n g a one-inch deep uniform l a y e r of p r o p e l l a n t and simulates one-inch deep p r o p e l l a n t l a y e r s expected during normal operations. Stage two t e s t s were conducted using a one-inch deep p r o p e l l a n t l a y e r i n most of the conveyor , and a s i x - i n c h deep by twelveinch long l a y e r i n the i g n i t i o n end of the conveyor. Stage two t e s t s simulated the worst case i n v o l v i n g dry p r o p e l l a n t . The r e s u l t s of each t e s t stage are discussed s e p a r a t e l y below. Stage One - Quench Tests Twenty-five quench t e s t s were conducted with a one-inch l a y e r of M1SP, 105mm p r o p e l l a n t i n the simulated CASBL conveyor. Approximately f o r t y - e i g h t pounds of M1SP was used during each t e s t . Pressure r e l i e f vents were blanked o f f . As can be seen from t e s t r e s u l t s i n Table I I and summarized i n Figure 6, a s i n g l e water nozzle spraying 17 gpm of water at > 55 p s i g p r e s sure at any of the f i r s t three n o z z l e l o c a t i o n s t e s t e d w i l l

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch006

150

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

FACILITIES

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

5-3/4

Figure 5.

i n ID o p e n i n g

locations

(exit)

Simulated CASBL conveyor. (V) Locations of 6 in ID conveyor pressure relief vents (when used); (S) locations of sprinkler nozzle fittings welded to top of conveyor.

IR d e t e c t o r

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch006

152

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

120

100

80 NO

HAM

PROPAGATION

60

REGION

40-

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch006

HAM 20

PROPAGATION

REGION

-

10 SPRINKLER NOZZLE LOCATIONS FROM IGNITION

Figure 6.

Minimum quench requirements. One-inch bed dry M1SP, 105 mm.

32.5

26.0

19.5

&

13.0

OUST,

6.5

I 1-2

2-3

I 3-4

IR DETECTOR INTERVAL

Figure 7.

Flame velocities in CASBL conveyors. Test conditions: dry M1SP, 105 mm; 1-in. bed depth; no sprinklers, no vents; ends open.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

6.

EWING E T A L .

Primac IT'elemac

e f f e c t i v e l y quench burning M1SP i n the t e s t c o n f i g u r a t i o n .

Sprinkler

System

and prevent flame

153

propagation

Table II - Minimum Water to Quench Burning One-Inch Layer of Single-Base P r o p e l l a n t i n a Conveyor Threshold* Water Pressure psig

Detector Location

Flame Propagation Stopped

No. of Trials

1

45

// 1

Yes

8

2

55

# 2

Yes

7

3

55

# 3

Yes

10

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch006

Sprinkler Location

*Defined as minimum H2O pressure r e q u i r e d to quench a f i r e . Water pressure t e s t e d below t h i s value r e s u l t e d i n flame propagation. A minimum of three t r i a l s were conducted at i n d i c a t e d pressure. Table I I data also show that a s l i g h t l y greater water pressure i s needed f o r quench as the nozzle i s moved f u r t h e r away from the i g n i t i o n l o c a t i o n . This d i f f e r e n c e i n water r e q u i r e ments i s apparently caused by increased flame v e l o c i t y achieved during longer run-up distances to the s p r i n k l e r n o z z l e s . Increased flame v e l o c i t y represents a more severe burning r e a c t i o n and i s more d i f f i c u l t to quench. Figure 7 shows the average flame v e l o c i t i e s between detectors f o r three t r i a l s conducted without s p r i n k l e r s . These data show that burning v e l o c i t y i n creases as burning progresses down the conveyor and i n d i c a t e that e a r l y flame d e t e c t i o n and r a p i d s p r i n k l e r a c t i v a t i o n are necessary to prevent flame propagation i n conveyors. Stage Two

- Quench Tests

Tests conducted with the p r o p e l l a n t build-up c o n f i g u r a t i o n i n the i g n i t i o n end of the conveyor r e s u l t e d i n more e r r a t i c and aggressive burning r e a c t i o n s than observed i n Stage one t e s t s . Approximately 60 pounds of M1SP was used f o r each t e s t . For these t e s t s , aluminum rupture d i s c s 0.0008-inch t h i c k were used on each pressure r e l i e f vent. One IR detector a c t i v a t i n g the s p r i n k l e r system was l o c a t e d i n No. 1 (see Figure 4) position. As can be seen from data i n Table I I I , a simultaneous a c t i v a t i o n of two water nozzles spaced s i x feet apart and spraying water at 90 p s i g i s r e q u i r e d to quench and prevent propagation of flame through the conveyor f o r the p r o p e l l a n t build-up c o n d i t i o n . The two water nozzles operated at 90 p s i g provide

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

154

a water flow of 21 gpm (each nozzle) which i s a minimum value f o r t h i s severe process s i t u a t i o n . Table I I I - Minimum Water to Quench Built-Up S i n g l e Base P r o p e l l a n t Layer i n a Conveyor

Sprinkler Location

Threshold* Water Pressure psig

Flame Propagation Stopped

No, of Trials

Single Nozzle Tests

1,2

or 3

>105

No

4

< 95

Yes

1

90

Yes

7

No

2

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch006

Multiple Nozzle Tests

1,2,3

& 4

1 & 3 1,2

& 3

^75

^Defined as minimum H2O pressure needed to quench a f i r e . Water pressures t e s t e d below t h i s value r e s u l t e d i n flame propagation. Single water nozzles l o c a t e d i n conveyor p o s i t i o n s 1, 2 or p o s i t i o n number 3 and spraying water at 105 p s i g f a i l e d to quench the f i r e and prevent flame propagation. A l s o , m u l t i p l e water nozzle t e s t s i n v o l v i n g simultaneous a c t i v a t i o n of three or four nozzle combinations were only p a r t i a l l y s u c c e s s f u l when lower water pressures were t e s t e d . I t i s noted that the threewater-nozzle t e s t combination operated at 75 p s i g d e l i v e r e d 39 percent more water i n terms of gpm than the two-water-nozzle t e s t at 90 p s i g . Therefore, water pressure, number of nozzles and nozzle l o c a t i o n are important f a c t o r s i n preventing flame propagation through the conveyor. Confirmatory Tests Seven confirmatory t e s t s were conducted using the modified t e s t setup shown i n Figure 8. These t e s t s were conducted to assure that a d d i t i o n a l p r o p e l l a n t w i t h i n a conveyor feed hopper would not r e s u l t i n a more severe burning c o n d i t i o n than prev i o u s l y t e s t e d . Three nozzles with 90 p s i g water pressure were used f o r these t e s t s since there were at l e a s t three nozzles on a c t u a l CASBL conveyors. One-hundred ten pounds of M1SP p r o p e l l a n t was used f o r each t e s t . I n i t i a l t e s t s used two IR detect o r s i n the upper conveyor. Table IV shows that two of four t e s t s stopped flame propagation.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Figure 8.

IGNITION LEADS

Confirmatory flame quench test setup. \Sy sprinkler nozzle location,\Dj telemac IR detector location, (."/;•) dry M1SP, 105 mm propellant.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch006

w

TOXIC C H E M I C A L A N D EXPLOSIVES

156

FACILITIES

Table IV - Confirmatory Flame Quench Trials Test Conditions

Water Pressure psig

3 Nozzles; IR Detectors in Conveyor only

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch006

3 Nozzles; IR Detectors in Conveyor and Hopper

Flame Propagation Stopped

90

Yes

90

No

90

Yes

No. of Trials

A review of the data and high-speed movies taken of the tests indicated that smoke may have prevented IR detectors from seeing the fire soon enough to prevent flame propagation. A detector was added within the hopper, and this sprinkler system arrangement effectively prevented propagation in three consecutive trials. CONCLUSIONS For most dry M1SP propellant (one-inch bed depth) and other wet and dry in-process propellant states, a single water nozzle spraying 17 gpm of water at 55 psig pressure is sufficient to prevent flame propagation in conveyors. The propellant build-up condition presents more severe burning. Therefore, two water nozzles spaced six feet apart and spraying 21 gpm (each) of water at 90 psig pressure are required to prevent flame propagation in conveyors. Adaptation of these test results successfully demonstrated effective detector response and fire quench in confirmatory tests simulating a feed hopper/conveyor arrangement. These study findings were employed to optimize Primac/ Telemac sprinkler systems in a l l CASBL vibratory conveyors. Design optimization studies provided a fire detection system employing minimum water which will effectively prevent betweenbay flame propagation in the event of a process fire. The cost of installing quick-acting mechanical fire gates was avoided without affecting system safety of the CASBL. ABSTRACT Safety testing established the minimum Primac/Telemac sprinkler system design and operating requirements for preventing a fire from propagating through a bed of granulated cannon propellants in conveyors. Simulated test configurations involved several propellant thicknesses. Test results are applicable for assessing safety and optimizing sprinkler designs

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

6.

EWING E T A L .

Primac/Telemac

Sprinkler

System

157

in manufacturing operations involving single-base cannon propellants. Application of these test results to the design of a modern continuous automated cannon propellant manufacturing facility at Radford Army Ammunition Plant resulted in the substitution of Primac/Telemac sprinkler systems for quickacting mechanical fire gates and optimizing the Primac/Telemac sprinkler design to achieve a high level of system reliability for preventing flame propagation between adjacent bays via conveyors. November

22,

1978.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch006

RECEIVED

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

7 Design Criteria for Mobile Ammunition Surveillance Shop Including Personnel Protection Consideration

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch007

R. N. HUDDLESTON DARCOM Ammunition Center, SARAC-DEN, Savanna, IL 61074

Materiel readiness i s a primary consideration and a key element of National Defense. Consequently, the timely detection and correction o f deficiencies i s essential to assure material readiness and to preclude the corresponding economic loss that would accrue should deficiencies remain undetected. Supply Bulletin 742-1 describes the type o f inspections performed and procedures to be utilized i n the surveillance o f ammun i t i o n . Review o f the variety of ammunition storage locations has indicated that in overseas areas many of the storage sites are remote from base depots and a surveillance workshop (Figure 1). Due to the lack o f facilities, inspections were being accomplished by transporting samples to be tested from storage to the depot and then returning them to the storage s i t e . In some cases the inspections could be performed at the storage location but necessitated the movement o f appropriate tools and equipment to the site by whatever means was available and on many occasions required the use of privately owned vehicles. This procedure r e sulted in an uneconomical operation at best. The transportation of the ammunition samples from the storage s i t e to the base depot and return through civilian domain also resulted in additional liability potential should an incident occur as well as exposing the ammunition to an added security r i s k from dissident groups. TASK: To r e s o l v e t h e s e p r o b l e m s , t h e DARCOM Ammunition C e n t e r was t a s k e d t o d e s i g n a M o b i l e S u r v e i l l a n c e I n s p e c t i o n Shop t h a t would p r o v i d e a s u i t a b l e work l o c a t i o n and c o n t a i n a l l o f t h e n e c e s s a r y t o o l s and e q u i p m e n t t o accommodate t h e v a r i e t y o f i n s p e c t i o n s when c o n d u c t e d a t t h e s t o r a g e s i t e . T h i s m o b i l e shop was t o be t r a n s p o r t a b l e a n d s e l f s u s t a i n i n g . I t w o u l d be d e s i g n e d t o i n s u r e ease o f o p e r a t i o n , s e r v i c e and storage o f t h e u n i t , as w e l l as t o p r o v i d e an e f f i c i e n t work a r e a w i t h a maximum c o n s i d e r a t i o n f o r This chapter not subject to U.S. copyright. Published 1979 American Chemical Society In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

160

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

the p r o t e c t i o n o f personnel exposed t o both t h e i n d u s t r i a l and exp l o s i v e hazards inherent t o the i n s p e c t i o n f u n c t i o n . Safety c r i t e r i a associated with t h i s design includes a l l o f the requirements a p p l i c a b l e t o a f i x e d f a c i l i t y as well as those p e c u l i a r t o the required mobility o f the unit.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch007

SAFETY GUIDANCE: B r i e f l y , e x p l o s i v e s a f e t y c o n s i s t s o f minimizing and/or e l i m i n a t i n g c o n d i t i o n s which might lead t o t h e a c c i d e n t a l detonation of explosives and/or p r o v i d i n g necessary p r o t e c t i o n t o operating personnel t h a t would minimize and/or e l i m i n a t e personal i n j u r y a s sociated with an explosive i n c i d e n t . Army e x p e r i e n c e s a s w e l l a s t e c h n o l o g i c a l a d v a n c e s have r e s u l t e d i n t h e a c c u m u l a t i o n o f s u b s t a n t i a l d a t a , w h i c h has been u s e d t o d e v e l o p t h e f u n c t i o n a l c r i t e r i a , t h a t must be r e c o g n i z e d i n d e s i g n and d e v e l o p m e n t o f e q u i p m e n t a n d a s s o c i a t e d f a c i l i t i e s u s e d - f o r ammunition o p e r a t i o n s . Primary g u i d e l i n e s a r e found i n t h e Army M a t e r i e l D e v e l o p m e n t a n d R e a d i n e s s Command S a f e t y Manual (DARCOMR 3 8 5 - 1 0 0 ) , Ammunition a n d E x p l o s i v e S t a n d a r d s (TM 9-1300206) a n d O c c u p a t i o n a l S a f e t y a n d H e a l t h A c t S t a n d a r d s , a s w e l l a s o t h e r l a w s , r u l e s and r e g u l a t i o n s . A l l o f t h e s e c r i t e r i a have been r e c o g n i z e d and c o n s i d e r e d i n t h e d e v e l o p m e n t o f t h e M o b i l e S u r v e i l l a n c e I n s p e c t i o n Shop. APPLICATION OF DESIGN CRITERIA: A v a r i e t y o f common a n d b a s i c t r a n s p o r t a t i o n u n i t s were s t u d i e d t o d e t e r m i n e w h i c h u n i t c o u l d b e s t be u t i l i z e d t o house t h e M o b i l e S u r v e i l l a n c e I n s p e c t i o n Shop. T h e Army MILVAN c o n t a i n e r ( F i g u r e 2 ) , was d e t e r m i n e d t o be t h e most c a p a b l e o f b e i n g a d a p t e d f o r t h e intended purpose and t o provide t h e g r e a t e s t b e n e f i t . A d d i t i o n a l l y , t h e c a p a b i l i t y t o t r a n s p o r t and handle t h e b a s i c MILVAN u n i t i s u n i v e r s a l a t a l l i n s t a l l a t i o n s w i t h i n t h e Army. The m a j o r i t y o f s u r v e i l l a n c e o p e r a t i o n s p l a n n e d t o be accommodated i n t h e m o b i l e shop i n v o l v e i t e m s where t h e e x p l o s i v e s a r e c o n t a i n e d w i t h i n p r o j e c t i l e s , c a r t r i d g e c a s e s , f u z e s , g r e n a d e s and a r e n o t n o r m a l l y e x p o s e d t o c o n d i t i o n s t h a t w o u l d be c o n s i d e r e d a s b e i n g c o n d u c i v e t o a n e x p l o s i v e i n c i d e n t . Due t o t h e e x i s t e n c e o f t h e e x p l o s i v e p o t e n t i a l , however, f a c i l i t i e s d e s i g n and s a f e t y c o n s i d e r a t i o n s a s w e l l a s i n t e r n a l f e a t u r e s and e q u i p m e n t were d e veloped t o c r i t e r i a normally a s s o c i a t e d with exposed e x p l o s i v e c o n d i t i o n s . E l e c t r i c a l w i r i n g , c o n t r o l s , l i g h t i n g and other e l e c t r i c a l d e v i c e s i n s i d e t h e m o b i l e shop ( F i g u r e 3) were housed i n e n c l o s u r e s s e l e c t e d t o meet t h e r e q u i r e m e n t f o r h a z a r d o u s l o c a t i o n s a s a d v i s e d i n t h e N a t i o n a l E l e c t r o n i c s Code f o r C l a s s 1, Group D and C l a s s 2, Groups E , F, a n d G c o n d i t i o n s . T h e s e p r e cautions included t h e thermostat u t i l i z e d t o c o n t r o l t h e temperat u r e i n s i d e t h e shop. Compressed a i r c a p a b i l i t y was p i p e d t o a c o n v i e n i e n t l o c a t i o n

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch007

7.

HUDDLESTON

Figure 1.

Figure 2.

Mobile

Ammunition

Surveillance

Shop

161

Ammunition surveillance being performed under field condition at an Ammunition Supply Point (ASP)

U.S. Army MILVAN's, at Transportation Testing Area, Ammunition Center, Savanna, IL

DARCOM

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch007

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

Figure 3. Interior view of Mobile Surveillance Inspection Shop showing explosion proof electrical switches mounted on forward bulkhead, explosion proof light enclosures, office and grenade disposal barricade

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch007

7.

HUDDLESTON

Mobile

Ammunition

Surveillance

Shop

163

I n s i d e t h e f a c i l i t y work a r e a t o p r o v i d e a n o n - s p a r k i n g power s o u r c e f o r power t o o l s a n d e q u i p m e n t . A u x i l l i a r y and support equipment, r e q u i r e d t o s u s t a i n t h e ope r a t i o n and not e a s i l y adapted t o use i n t h e e x p l o s i v e environment, was l o c a t e d i n an e q u i p m e n t module ( F i g u r e 4) a t t a c h e d t o t h e e n d o f t h e shop a n d s u f f i c i e n t l y i s o l a t e d t o p r e c l u d e a n y h a z ard t o o p e r a t i o n s conducted t h e r e i n . The g a s o l i n e d r i v e n e l e c t r i c g e n e r a t o r s u p p o r t i n g t o t a l e l e c t r i c power r e q u i r e m e n t , a h e a t pump, a i r c o m p r e s s o r a n d h y d r a u l i c pump a r e a l l l o c a t e d w i t h i n t h i s e q u i p m e n t m o d u l e . A s e c t i o n i z e d r o d w i t h s e l f - c o n t a i n e d hammer i s p r o v i d e d a n d s t o r e d i n t h e e q u i p m e n t m o d u l e . T h i s r o d i s d r i v e n i n t o t h e g r o u n d a t e a c h work l o c a t i o n a n d c o n n e c t e d t o t h e shop frame t o i n s u r e e l e c t r i c a l g r o u n d i n g a n d p r e v e n t i o n o f a n y buildup o f s t a t i c e l e c t r i c i t y t h a t could produce a spark w i t h i n the shop. T h i s b a s i c MILVAN u n i t h a s been e q u i p p e d w i t h f o u r h y d r a u l i c a l l y o p e r a t e d l e g s ( F i g u r e 5) t h a t c a n be e x t e n d e d f r o m p o c k e t s on t h e s i d e s o f t h e m o b i l e s h o p . T h e l e g s were p r o v i d e d a s a s e l f - c o n t a i n e d means o f l o a d i n g a n d u n l o a d i n g t h e shop f r o m t h e MILVAN c h a s s i s o r f l a t b e d t r a i l e r u t i l i z e d t o t r a n s p o r t t h e i t e m . D u r i n g f i e l d t r i a l s , t h e c a p a b i l i t y o f s e t t i n g t h e shop a t g r o u n d l e v e l a s compared t o when i t was mounted o n a c h a s s i s o r f l a t b e d t r a i l e r , was p r o v e n t o e l i m i n a t e many o f t h e h a z a r d s a s s o c i a t e d w i t h t h e movement o f a m m u n i t i o n i n a n d o u t o f t h e work l o c a t i o n . WORK AREA LAYOUT: The Army MILVAN has d o u b l e c a r g o d o o r s i n one e n d w h i c h a r e s e c u r e d w i t h c a m l o c k h a r d w a r e . T h e l o c k i n g mechanism was a l t e r e d t o p r o v i d e a p a n i c b a r ( F i g u r e 6) t o p e r m i t r a p i d e v a c u a t i o n s h o u l d i t become n e c e s s a r y . A p e d e s t r i a n d o o r w i t h p a n i c hardware was i n s t a l l e d i n t h e s i d e o f t h e shop p e r m i t t i n g an u n o b s t r u c t e d escape route from the opposite end o f the o p e r a t i n g area. ARMED GRENADE DISPOSAL: One o f t h e most p o t e n t i a l l y h a z a r d o u s o p e r a t i o n s i n t h e Shop i s t h e s u r v e i l l a n c e i n s p e c t i o n s p e r f o r m e d o n e x p l o s i v e t y p e hand g r e n a d e s . T h e p o s s i b i l i t y t h a t t h e s a f e t y p i n c a n become d i s e n gaged, t h e handle r e l e a s e d and t h e e x p l o s i v e t r a i n i n i t i a t e d t o f i r e t h e grenade i n 5 t o 7 seconds, represents a s i g n i f i c a n t haza r d . S a f e t y C r i t e r i a r e q u i r e s a b a r r i c a d e be p r o v i d e d f o r ammun i t i o n o p e r a t o r s t o d i s p o s e o f g r e n a d e s t h a t become armed o r a r e s u s p e c t e d o f b e i n g armed. T h e Ammunition P e c u l i a r E q u i p m e n t P r o gram d e s i g n s a n d p r o v i d e s s u c h e q u i p m e n t f o r ammunition o p e r a t i o n s a n d has a s t a n d a r d " p i t c h - i n " b a r r i c a d e d e s i g n e d f o r t h i s p u r p o s e . T h e b a s i c d e s i g n o f t h e s t a n d a r d i t e m s , however, was t o o l a r g e f o r t h e s p a c e a v a i l a b l e . A d d i t i o n a l l y , t h e d e s i g n was such t h a t pressures and h o t gases generated through a grenade d e t o n a t i o n c o u l d n o t be h a r m l e s s l y d i s s i p a t e d i n t h e r e l a t i v e l y

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch007

164

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Figure 4. Equipment compartment with doors open. Electrical generator is in the upper right-hand corner. Heat pump is upper left and air compressor in the lower left. The three ground rods, driver, and cable are in the center with fire hazard signs storage in lower right.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch007

7.

HUDDLESTON

Figure 5.

Mobile

Ammunition

Surveillance

Shop

Mobile Shop at ground level with hydraulically operated lifting legs extended to operating position

Figure 6. Interior view of rear exit door showing panic hardware. Pitch-in-barricade for disposing of suspect grenades is shown to right of exit door.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

165

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch007

166

Figure 7. Phantom view of pitch-in-barricade showing operation of blast door and vent

1.0 PSI r

-.87 PSI

L

Figure 8. Pressure time trace of data Channels 2 and 3. Shot number 1. Data from instruments at approximate location of operator (2) at side of hopper (3) on pitch-in side of hopper.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

HUDDLESTON

Mobile

Ammunition

Surveillance

167

Shop

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch007

7.

Figure 9.

Mobile Surveillance Inspection Shop mounted on MILVAN ready for movement

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

chassis

168

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

l i m i t e d volume o f t h e M o b i l e Shop. T o p r o v i d e a n a c c e p t a b l e b a r r i c a d e , m e e t i n g t h i s c r i t e r i a d i c t a t e d d e v e l o p m e n t o f a new des i g n . Because the b a r r i c a d e i s c l a s s i f i e d a s an o p e r a t i o n a l s h i e l d , i t s d e s i g n had t o meet t h e c r i t e r i a i n M i l i t a r y S t a n d a r d 398. A p r o t o t y p e had t o be t e s t e d i n a c c o r d a n c e w i t h p r o c e d u r e s i n t h i s standard t o i n s u r e compliance with the c r i t e r i a , which r e q u i r e s t h a t o p e r a t i n g personnel not r e c e i v e a heat f l u x exposure

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch007

7 4 2 3

2

g r e a t e r than 0 . 6 2 t * ° * c a l / c m / s e c , where " t " i s t i m e o f e x p o s u r e i n s e c o n d s , o r be s u b j e c t t o more t h a n 2.3 pounds p e r s q u a r e i n c h peak p o s i t i v e i n c i d e n t p r e s s u r e , and t h a t a l l f r a g m e n t s must be c o n t a i n e d . The a c c e p t a b l e " p i t c h - i n b a r r i c a d e " , d e v e l o p e d f o r t h e Shop, c o n t a i n e d a b l a s t d o o r t h a t c l o s e s a u t o m a t i c a l l y when a g r e n a d e i s tossed i n t o the opening (Figure 7 ) . Supressive s h i e l d i n g p r i n c i p l e s were u s e d t o c o n t r o l f r a g m e n t s w h i l e v e n t i n g t h e h o t g a s e s t o t h e o u t s i d e o f t h e Shop. When t h e p r o t o t y p e b a r r i c a d e was t e s t e d w i t h a l i v e g r e n a d e , u n d e r c o n d i t i o n s s i m u l a t i n g t h e M o b i l e Shop, t h e b l a s t p r e s s u r e s i n s i d e t h e Shop, a d j a c e n t t o t h e b a r r i c a d e , were w e l l w i t h i n t h e 2.3 pounds p e r s q u a r e i n c h p e r m i t t e d b y t h e M i l i t a r y S t a n d a r d c r i t e r i a ( F i g u r e 8 ) . The h e a t f l u x was i n s i g n i f i c a n t and c o u l d n o t be m e a s u r e d w i t h t h e i n s t r u m e n t s n o r m a l l y u s e d d u r i n g t h i s t y p e o f t e s t i n g . No f r a g m e n t s f r o m t h e e x p l o d ing grenade reached the o u t s i d e o f the b a r r i c a d e . In s h o r t , an o p e r a t o r i n s i d e t h e M o b i l e Shop, u s i n g t h e b a r r i c a d e t o d i s p o s e o f an armed g r e n a d e , w o u l d n o t be i n j u r e d . FIRE SYMBOLS: On e a c h o f t h e f o u r s i d e s o f t h e Shop, a h o l d e r was p r o v i d e d so t h a t t h e a p p r o p r i a t e f i r e h a z a r d s y m b o l , r e f l e c t i n g t h e most h a z a r d o u s m a t e r i a l i n t h e Shop, c o u l d be p o s t e d . F i r e s y m o b l s f o r e a c h o f t h e c l a s s e s o f ammunition t h a t would be e n c o u n t e r e d i n p e r f o r m i n g f i e l d s u r v e i l l a n c e o p e r a t i o n s a r e p r o v i d e d and s t o r e d i n the equipment module. SUMMARY: The a v a i l a b i l i t y o f t h e M o b i l e Ammunition S u r v e i l l a n c e I n s p e c t i o n Shop w i l l s u b s t a n t i a l l y b e n e f i t t h e i n s p e c t i o n f u n c t i o n t h r o u g h a more e f f e c t i v e c a p a b i l i t y t o d e t e r m i n e ammunition s e r v i c e a b i l i t y a t remote s t o r a g e l o c a t i o n s a s w e l l a s a c c o m p l i s h i n g t h i s i n s p e c t i o n f u n c t i o n a t a s u b s t a n t i a l l y reduced c o s t . A g r e a t e r d e g r e e o f s a f e t y w i l l be a f f o r d e d t o t h e o n - s i t e o p e r a t i o n . Exposures o f c i v i l i a n population i n h a b i t i n g the area t h r o u g h w h i c h m u n i t i o n s were t r a n s p o r t e d t o a b a s e d e p o t a c t i v i t y w i l l be e l i m i n a t e d . Ammunition p a c k a g i n g can be r e s t o r e d t o i t s o r i g i n a l c o n f i g u r a t i o n through the ready a v a i l a b i l i t y o f equipment c o n t a i n e d w i t h i n t h e M o b i l e Shop. The a v a i l a b i l i t y o f t h i s Shop w i l l s u b s t a n t i a l l y increase the confidence l e v e l a s s o c i a t e d with

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

7.

HUDDLESTON

Mobile

Ammunition

Surveillance

Shop

169

an o n - s i t e i n s p e c t i o n o f t h e a m m u n i t i o n commodity. T h i s M o b i l e Shop a s f i e l d e d ( F i g u r e 9) p r o v i d e s a f u l l y e q u i p p e d , s a f e work e n v i r o n m e n t t h a t c a n be e a s i l y t r a n s p o r t e d t o r e m o t e s i t e s t o f u l f i l l t h e ammunition s u r v e i l l a n c e m i s s i o n r e s p o n s i b i l i t y as an a d j u n c t t o t h e o v e r a l l m a t e r i e l r e a d i n e s s o b j e c t i v e o f t h e Army.

Literature Cited: 1. Ammunition Surveillance Procedures, SB 742-1, Hq. Department of the Army, Washington, DC, May 1976.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch007

2. Safety Manual, AMCR 385-100, Hq. US Army Materiel Command, Alexandria, VA, Latest E d i t i o n . 3. Ammunition and Explosive Standards, TM 9-1300-206, Hq. Department o f the Army, Washington, DC, June 1977. 4. Shields, Operational for Ammunition Operations, C r i t e r i a for Design of, and Tests for Acceptance, MIL STD 398, US Government Printing Office, Washington, DC, 5 November 1976. RECEIVED

November 22, 1978.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

8 Safety Design Criteria for the BALL P O W D E R Process

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch008

BILL CARROLL and JOHN J. NICHOLS Olin Corp., P.O. Box 222, St. Marks, FL 32355

The explosives industry offers a great challenge to the safety conscious designer. The general safety rules and regulations utilized by the explosives industry for basic design criteria are also used as the guidelines for design in the BALL POWDER process. However, many of the traditional process procedures of the explosives industry have not been retained or have been modified for the BALL POWDER process. The manufacture of BALL POWDER involves hazards, with added hazard due to the explosive nature of the material processed. Pumps, pipes, tanks, equipment, etc. are veritable bombs if handled improperly. As a result, there are certain safety design requirements unique to the process. The intention of this paper is to describe some of the more unusual safety design requirements. In order to better understand these requirements, a brief history of the type of process utilized in the manufacture of BALL POWDER is presented. Next those safety advantages internal to the process are summarized. Specific requirements in the areas of grain formation, nitroglycerine manufacture and transfer, and continuous drying are discussed. Finally, the basic fire protection system utilized is described. One of the most significant developments in the manufacture of any gunpowder in the last 60 years has been the development of the BALL POWDER process. BALL POWDER was originally produced in a batch method, but an alternate method was developed to overcome the problem of difference in particle size distribution required versus product distribution produced. The new process involved mechanical graining and batch hardening. While this overcame the size distribution problems, the capital cost was much greater than a regular batch plant. Development work was then directed to reducing the investment. The process developed consisted of continuous mechanical graining and continuous hardening. The continuous process exhibited superiority over conventional methods in both performance and process advantages. Increased safety was combined with rapid means of stabilization, 0-8412-0481-0/79/47-096-171$05.00/0 © 1979 American Chemical Society In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch008

172

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

g r a i n formation, and solvent removal. The b a s i c raw m a t e r i a l i n the production of BALL POWDER i s n i t r o c e l l u l o s e . Two d i f f e r e n t forms of n i t r o c e l l u l o s e can be used, v i r g i n n i t r o c e l l u l o s e or FNH ( f l a s h l e s s , non-hygroscopic, single-base, extruded powder). The d i b u t y l p h t h a l a t e and d i n i t r o toluenes i n the FNH g r a i n must be extracted before being used i n the BALL POWDER process. The f i r s t stage i n the manufacture of BALL POWDER i s g r a i n formation. This operation includes four s e q u e n t i a l operations, c o n s i s t i n g of (1) lacquer preparation, (2) mechanical g r a i n i n g , (3) g r a i n shaping, and (4) g r a i n hardening. Lacquer p r e p a r a t i o n i s the operation which converts the base n i t r o c e l l u l o s e stock to a v i s c o u s dough-like lacquer. This i s accomplished by the a d d i t i o n of e t h y l acetate and v a r i o u s a d d i t i v e s to the n i t r o c e l l u l o s e i n a mixing v e s s e l where intimate mixing produces the lacquer. In the g r a i n i n g operation, the lacquer i s converted from a "doughy" mass to i n d i v i d u a l lacquer p a r t i c l e s by e x t r u s i o n through a mechanical p e l l e t i z e r . Shaping i s performed by t r a n s f e r r i n g a s l u r r y of lacquer p a r t i c l e s through a s e r i e s of jacketed tubes. The combination of l i q u o r ( t r a n s f e r f l u i d ) flow, l i q u o r composition, temperature, and s l u r r y v e l o c i t y i n the shapers causes the lacquer to round up i n t o b a l l s and give up i t s i n t e r n a l water. The lacquer grains a r e hardened without deformation of shape by removal of solvent i n a s e r i e s of evaporators. The l i q u o r i s removed from the powder, and the powder i s washed. The powder i s separated i n v a r i o u s s i z e s by a screening operation. Coating s t i l l s are used to impregnate the hardened powder with n i t r o g l y c e r i n e (increases energy p o t e n t i a l ) and coat i t with deterrent (modifies burning rate). The main f u n c t i o n of the dryers i s to dry the powder to a uniform moisture and v o l a t i l e content. Here the powder i s a l s o "glazed" with graphite (improves flow c h a r a c t e r i s t i c s ) and s a l t coated (to adjust b a l l i s t i c s performance). The powder i s then blended to improve b a l l i s t i c s u n i f o r m i t y and to meet b a l l i s t i c requirements of the s p e c i f i c products r e q u i r e d . Inherent

Process

Safety Advantages

One of the main advantages of the continuous process i s increased s a f e t y . There are c e r t a i n design requirements i n the continuous process which have r e s u l t e d i n an i n h e r e n t l y safe operation. (1) To reduce the hazard created by handling dry n i t r o c e l l u l o s e o r powder, a l l operations up to the f i n a l dry processing (75% of the handling) are c a r r i e d out under water. (2) To f u r t h e r reduce handling hazards, a l l t r a n s f e r s of powder throughout the wet stages are c a r r i e d out by pumping a water s l u r r y of the m a t e r i a l . (3) One of the p r i n c i p a l problems i n the development of n i t r o c e l l u l o s e smokeless powder i s that of s t a b i l i z i n g n i t r a t e d cotton so as to prevent spontaneous i g n i t i o n during storage. A s u p e r i o r chemical s t a b i l i t y i s a t t a i n e d by the a d d i t i o n of a s t a b i l i z e r to solvated n i t r o c e l l u l o s e . Since the

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch008

8.

CARROLL AND NICHOLS

Ball Powder

Process

173

molecular d i s p e r s i o n of n i t r o c e l l u l o s e i n a solvent i s an essent i a l step i n the g r a i n formation process, i t can be seen that (by using solvent c o n t a i n i n g the s t a b i l i z e r ) s t a b i l i z a t i o n i s a n a t u r a l consequence and that i t i s not necessary to supply completely p u r i f i e d ( s t a b l e ) n i t r o c e l l u l o s e f o r the BALL POWDER process. The p u r i f i c a t i o n and s t a b i l i z a t i o n of n i t r o c e l l u l o s e i n the BALL POWDER g r a i n i n g operation make i t p o s s i b l e to rework and r e s t a b i l i z e d e t e r i o r a t e d smokeless powder stocks. (4) The p o t e n t i a l energy of BALL POWDER i s adjusted i n the coating operation by the a d d i t i o n of n i t r o g l y c e r i n e . The n i t r o g l y c e r i n e i s added to the p r o p e l l a n t i n ranges of 10 to 40 percent. An emulsion of n i t r o g l y c e r i n e , solvent and water i s added and the powder absorbs the n i t r o g l y c e r i n e and s o l v e n t . N i t r o g l y c e r i n e i s a v i o l e n t e x p l o s i v e and i s s e n s i t i v e to heat and shock. In order to reduce the s e n s i t i v i t y and decrease the hazards of handling n i t r o g l y c e r i n e , i t i s used i n s o l u t i o n s with an equal quantity of s o l v e n t . A 50% n i t r o g l y c e r i n e and 50% e t h y l acetate s o l u t i o n when i g n i t e d u s u a l l y burns r a t h e r than detonates and cannot be detonated with a b l a s t i n g cap. The c h i e f danger i n the handling of t h i s s o l u t i o n i s that e t h y l acetate i s v o l a t i l e and upon evaporation w i l l leave a r e s i d u e of n i t r o g l y c e r i n e having i t s o r i g i n a l s e n s i t i v i t y . (5) Drying, which i s accomplished q u i c k l y i n a continuous dryer, e n t a i l s a minimum amount of powder i n process a t any time and a minimum exposure of o p e r a t i o n personnel a t t h i s stage of the process. S l u r r y Pump Design

Criteria

In the pumping of powder s l u r r i e s as i s performed throughout the wet stages of the process, c e r t a i n design requirements must be met. I t i s necessary when pumping s l u r r i e s of e x p l o s i v e s or l i q u i d s with a p o s s i b l e e x p l o s i v e containment to avoid c i r c u l a t i n g e x p l o s i v e s behind the i m p e l l e r o r running the pump with inadequate water flow. For t h i s reason open i m p e l l e r s without balance holes are r e q u i r e d . A l s o , a s p e c i a l t e f l o n l a n t e r n r i n g i s used. Seal water i s introduced a t a minimum r a t e of 1 gpm through a thermal flow switch, along the i m p e l l e r s h a f t , and i n t o the c a s i n g . The flow switch i s i n t e r l o c k e d with the motor s t a r t e r f o r the pump so that i n the event of low s e a l water flow, the pump w i l l be a u t o m a t i c a l l y shut o f f . The flow switch i s c a l i b r a t e d with an i n - l i n e rotameter which can a l s o be used to troubleshoot o p e r a t i o n a l problems. The r e a r s e a l r i n g on the pump i s removeable so that the e n t i r e area behind the i m p e l l e r may be f l u s h e d . Heavy duty thrust bearings are r e q u i r e d f o r a l l pumps. Pump design i s back-pull-out to avoid d i s c o n n e c t i n g p i p i n g when removing the pump i m p e l l e r . Equipment F a i l u r e P r o t e c t i o n Although the BALL POWDER process i s a simple one, a c e r t a i n

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch008

174

TOXIC C H E M I C A L

A N D EXPLOSIVES FACILITIES

amount of mechanical equipment i s necessary. Mechanical f a i l u r e i n equipment i n many cases can c r e a t e a s a f e t y hazard by generating heat which i n turn can cause i g n i t i o n or detonation. By sensing temperature and i n t e r l o c k i n g the sensor to sound an alarm and shut down the equipment, i t i s p o s s i b l e to e l i m i n a t e some hazards a s s o c i a t e d with mechanical failure. Examples of such i n t e r l o c k s i n the g r a i n formation stage of the process are: (1) high temperature shutdowns on lacquer pumps, (2) low flow alarms on mixer j o u r n a l s , and (3) c e n t r i f u g e bearing alarms. A continuous mixer i s used to d i s s o l v e n i t r o c e l l u l o s e i n e t h y l acetate to form lacquer. Lacquer pumps t r a n s f e r lacquer from the continuous mixer to the g r a i n e r s . The temperature of the lacquer i s already above ambient and any unwanted f r i c t i o n a l heat can cause a temperature excursion and p o s s i b l e i g n i t i o n . The p o s s i b i l i t y of i g n i t i o n w i l l be e l i m i n a t e d by p l a c i n g a temperature probe a t the packing gland assembly which w i l l shut down the pump when over-temperature i s reached. Similarly, the c e n t r i f u g e , which separates powder and water, has bearings which on f a i l u r e could overheat and i g n i t e the powder. A temperature sensor can shut down the c e n t r i f u g e when the bearing temperature r i s e s . The mixer bearings are handled i n a s l i g h t l y d i f f e r e n t way. The bearings are cooled by flowing water past them from a constant head water supply tank. I f water flow was l o s t i t would be p o s s i b l e f o r the bearings to overheat, thus c r e a t i n g a very hazardous c o n d i t i o n . To e l i m i n a t e t h i s p o s s i b i l i t y , a flow switch i s i n s t a l l e d i n the water l i n e to the mixer bearings. When flow i s i n t e r r u p t e d , an alarm i s sounded so that an operator can take c o r r e c t i v e a c t i o n before bearings overheat. As p r e v i o u s l y s t a t e d , the purpose of the solvent evaporation systems i s to remove the solvent from the lacquer p a r t i c l e without deforming the s p h e r i c a l shape of the p a r t i c l e . The l o s s of the l i q u i d l e v e l i n the evaporators w i l l r e s u l t i n a very s e n s i t i v e lacquer and could r e s u l t i n thermal i g n i t i o n of any r e s i d u e on the evaporator w a l l s . L e v e l c o n t r o l s are i n t e r l o c k e d with the steam supply to the evaporators to prevent thermal i g n i t i o n from o c c u r r i n g . In v a r i o u s a p p l i c a t i o n s i n BALL POWDER f a c i l i t i e s , non-explosion-proof v i b r a t i n g feeders are used to convey powder. At the present time, i t i s impossible to o b t a i n an explosion-proof feeder. The feeder's e l e c t r i c c o i l can burn out causing sparking w i t h i n the enclosure and p o s s i b l y i g n i t i n g powder or solvent vapors that have accumulated. To avoid t h i s p o s s i b i l i t y , a i r purge systems are i n s t a l l e d to prevent the buildup of e x p l o s i v e or flammable m a t e r i a l . The a i r purge systems a r e also i n t e r l o c k e d with the equipment so that i n the event of l o s t a i r flow, the v i b r a t o r w i l l be shut down and an alarm sounded.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

8.

CARROLL AND NICHOLS

Ball Powder

Process

175

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch008

Manufacture and T r a n s f e r of N i t r o g l y c e r i n e As defined i n the c o a t i n g o p e r a t i o n , n i t r o g l y c e r i n e i s added to the hardened BALL POWDER to increase i t s energy p o t e n t i a l . N i t r a t i o n i n the n i t r o g l y c e r i n e f a c i l i t y i s accomplished by drawing g l y c e r i n e to an i n j e c t o r , the motive f l u i d f o r which i s n i t r a t i n g a c i d . The a c i d i s precooled to approximately 0°C upstream of the i n j e c t o r and serves as both a reactant and a heat s i n k f o r the exothermic r e a c t i o n . Even with the c o o l i n g provided by the a c i d , the n i t r a t i o n temperature i s r e l a t i v e l y high, 47°C. At t h i s temperature, the r e a c t i o n i s e s s e n t i a l l y completed i n the i n j e c t o r . The r e a c t i o n temperature i s maintained at about 47°C v i a a pneumatic c o n t r o l v a l v e , which modulates the flow of g l y c e r i n e to the i n j e c t o r . I n s u f f i c i e n t a c i d flow to the i n j e c t o r w i l l r e s u l t i n a temperature excursion ( l o s s of heat sink) and a l o s s of vacuum i n the n i t r a t o r . The temperature excursion may r e s u l t i n pressure rupture o f e i t h e r an a c i d rotameter, an i n j e c t o r l i n e , or the n i t r o g l y c e r i n e c o o l e r due to the r a p i d e v o l u t i o n of decomposition gases. A vacuum breaker valve i s provided to vent the i n j e c t o r vacuum and thus stop the flow of g l y c e r i n e i n the event the vacuum drops too low. The i n j e c t o r i s a l s o equipped with a high and low temperature c o n t r o l loop which w i l l stop the n i t r a t i o n i n the event of a temperature excursion. However, the p o t e n t i a l f o r detonation may also e x i s t i n the area of the c o o l e r downstream of the i n j e c t o r due to a gradual l o s s i n a c i d flow r e s u l t i n g i n the l o s s of turbulence i n the i n j e c t o r t h r o a t . This l o s s of turbulence w i l l i n turn r e s u l t i n an inadequate mixing of r e a c t a n t s and i n l o c a l i z e d "hot spots." The p o t e n t i a l e x i s t s i n t h i s s i t u a t i o n f o r thermal i n i t i a t i o n of c o a l e s c i n g n i t r o g l y c e r i n e d r o p l e t s as e i t h e r a fume-off or detonation. The temperature sensors l o c a t e d here w i l l a l e r t the operator that the a c i d flow has decreased before i t can be sensed a t the i n j e c t o r . A f t e r the n i t r o g l y c e r i n e i s manufactured, i t i s combined q u i c k l y with e t h y l acetate to reduce the s e n s i t i v i t y and decrease the hazards of handling n i t r o g l y c e r i n e . Therefore, only a small amount of detonable n i t r o g l y c e r i n e i s i n the system a t any one time. The t r a n s f e r of n i t r o g l y c e r i n e presents s e v e r a l p o t e n t i a l l y hazardous c o n d i t i o n s f o r which design c r i t e r i a has been e s t a b l i s h e d . For example, no screwed connections f o r f i t t i n g s are allowed i n n i t r o g l y c e r i n e s e r v i c e and a l l welds are inspected f o r cracks. This reduces the p r o b a b i l i t y of detonation by e l i m i n a t i n g pinch p o i n t s . The handling hazards of n i t r o g l y c e r i n e a r e f u r t h e r reduced by educting, r a t h e r than pumping, the s o l u t i o n i n t o the c o a t i n g s t i l l with water. Further, the eduction l i n e i s equipped with a flow switch so that i n the event that water flow i s i n t e r r u p t e d and s u c t i o n i s l o s t , the l i n e w i l l be a u t o m a t i c a l l y f l u s h e d .

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L

176

A N D EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch008

Continuous P r o p e l l a n t Drying The dry processing of the powder i s more hazardous than those described p r e v i o u s l y f o r the wet stages of the process. In the continuous d r y i n g of BALL POWDER, dewatered powder i s fed i n t o a s e r i e s of v i b r a t i n g pan conveyors. Fresh a i r i s preheated and blown i n t o an a i r d i s t r i b u t i o n manifold where tubes d i r e c t the a i r flow i n t o the powder. An aerated bed i s obtained by c o n t r o l l i n g the powder flow r a t e , the pan conveyor v i b r a t i o n speed, and the heated a i r supply. The a i r s u p p l i e s the heat f o r evaporating the water. The water vapor i s removed with the exhaust a i r by vacuum t r a n s f e r . The a i r and water temperatures are c o n t r o l l e d a t 77°C to prevent high temperature which could cause i g n i t i o n of the powder. The instantaneous f l a s h point of the powder i s about 165°C. Only the steam i n the heating c o i l s exceeds 160°C. Therefore, i t i s a standard p r a c t i c e to l o c a t e the heating c o i l s and a i r blowers a t a safe d i s t a n c e from the dryer i n l e t to prevent the p o s s i b i l i t y of high temperature steam from coming i n t o contact with the powder. As an a d d i t i o n a l safeguard, f u s i b l e l i n k devices i n s t a l l e d i n the exhaust ducts w i l l automati c a l l y a c t i v a t e the c l o s i n g of the c o n t r o l v a l v e i n the steam l i n e feeding the a i r supply u n i t before the a i r temperature becomes excessive. A l s o , the temperature c o n t r o l s f o r the supply u n i t s are i n t e r l o c k e d to prevent the supply blower motors from s t a r t i n g i f there i s steam i n the heating c o i l s . This prevents an i n i t i a l high r a t e of r i s e of temperature. A normal problem encountered i n the manufacture of BALL POWDER i s the generation of a c e r t a i n quantity of " f i n e s " ( l e s s than 0.009" diameter). In order to supply enough heat to maintain the e s t a b l i s h e d drying temperature of 77°C, a c e r t a i n quantity of " f i n e s " and low d e n s i t y powder may become entrained i n the exhaust a i r . A s e r i o u s hazard w i l l e x i s t i f the entrained powder f a l l s out of the exhaust a i r stream and accumulates i n the ducts or the exhaust fan shroud. To prevent t h i s problem, the exhaust manifold of each dryer u n i t has a l a r g e cross sect i o n a l area a t the e x i t port. This reduces the e x i t v e l o c i t y of the exhaust a i r , minimizing entrainment of s o l i d s . As the exhaust a i r leaves the e x i t p o r t , the cross s e c t i o n a l area of the duct decreases, which increases the a i r v e l o c i t y above the minimum t r a n s p o r t v e l o c i t y . This prevents s o l i d s from f a l l i n g out of the a i r stream and s e t t l i n g i n the duct. The a i r i s then p u l l e d i n t o high e f f i c i e n c y cyclones which separate any entrained powder from the a i r . In order to insure high s e p a r a t i o n e f f i c i e n c y , f r e s h bleed a i r i s added to the exhaust a i r to maint a i n a constant a i r flow (the pressure drop across the cyclone v a r i e s as the square of volume handled). The a i r exhausted from the cyclones feeds i n t o a s i n g l e wet scrubber which scrubs the exhaust a i r with water to remove any g r a p h i t e or t r a c e s of powder not removed by the cyclone. T h i s type of system allows

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch008

8.

CARROLL AND NICHOLS

Ball Powder

Process

177

high volumes of drying a i r to be s a f e l y and e f f i c i e n t l y used f o r both high d e n s i t y and low d e n s i t y powder. (Low d e n s i t y powders are more e a s i l y entrained i n the exhaust a i r . ) The f r e s h bleed a i r introduced i n t o the dryer exhaust ducts i s heated to prevent the condensation of any n i t r o g l y c e r i n e vapors i n the exhaust a i r (a small amount of n i t r o g l y c e r i n e evaporation from the powder i n the l a t t e r dryer zones i s not unusual). The heated a i r assures that any n i t r o g l y c e r i n e i n the exhaust a i r remains i n the vapor s t a t e u n t i l i t can be removed by the wet scrubber. In areas where dry powder i s handled, the buildup of s t a t i c e l e c t r i c i t y presents a s a f e t y hazard. A s t a t i c charge could p o s s i b l y i g n i t e or detonate p r o p e l l a n t i n the dry s t a t e . For t h i s reason, m a t e r i a l s used i n these areas are conductive and p r o p e r l y grounded. F l o o r i n g and footwear must a l s o be conductive as o u t l i n e d i n the Department of Defense Safety Manual. Conduct i v i t y t e s t s are made p e r i o d i c a l l y to insure that there i s proper p r o t e c t i o n against s t a t i c charge b u i l d u p . N i t r o c e l l u l o s e smokeless powder i s an extremely e l e c t r o negative m a t e r i a l , and t h e r e f o r e , produces s t a t i c e l e c t r i c i t y when brought i n t o contact and separated from almost any other m a t e r i a l . During the course of d r y i n g , and handling the powder a f t e r d r y i n g , BALL POWDER could a c q u i r e a c o n s i d e r a b l e charge. To prevent t h i s from o c c u r r i n g , BALL POWDER i s "glazed" with g r a p h i t e and handled i n grounded c o n t a i n e r s so that i t cannot accumulate an a p p r e c i a b l e s t a t i c charge. Fire Protection The f i r e water d i s t r i b u t i o n system i s kept p r e s s u r i z e d by means o f a jockey pump. In the event of a s p r i n k l e r t r i p , three l a r g e d i e s e l d r i v e n pumps come on l i n e as needed to supply the tremendous q u a n t i t y of water which may be r e q u i r e d . In order to prevent the water pressure from dropping, which would r e s u l t i n low water flow to the s p r i n k l e r n o z z l e s immediately a f t e r they are opened, an e l e c t r i c switch panel allows the d i e s e l s to be s t a r t e d d i r e c t l y from an e l e c t r i c n o t i f i e r system. This permits the d i e s e l s to get the s t a r t s i g n a l about the same time water begins to flow which reduces the unwanted i n i t i a l pressure drop. In areas where the p o s s i b i l i t y of f i r e i s the g r e a t e s t , a high speed u l t r a v i o l e t d e t e c t i o n system i s employed. The u l t r a v i o l e t "eyes" detect the presence of a flame and are interconnected with a high speed water deluge system. In some areas the f i r e d e t e c t i o n devices have process shutdown c a p a b i l i ties. The d e t e c t o r s are s i t u a t e d such that the e n t i r e hazardous area can be monitored a t a l l times. They are equipped with a i r s h i e l d s that not only c o o l the d e t e c t o r but a l s o blow clean a i r across the face o f the l e n s , keeping any dust from accumulating on the l e n s , which assures d e t e c t i o n c a p a b i l i t y . Further, the d e t e c t o r s have a b u i l t - i n t e s t lamp which serves as a check of

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch008

178

TOXIC CHEMICAL AND EXPLOSIVES

FACILITIES

the detector tube module and a l s o makes i t p o s s i b l e to check f o r lens obscuration. The system i s one that i s h i g h l y r e l i a b l e and which w i l l sound an alarm i n case of a broken wire or m a l f u n c t i o n of any c r i t i c a l component of the system. The f i r e p r o t e c t i o n system c o n s i s t s not only of a deluge system a c t i v a t e d by the u l t r a v i o l e t sensors, but a l s o of f u s i b l e l i n k type f i r e systems. The deluge system has a t r i p mechanism from mercury checks a c t i v a t e d by h e a t - a c t i v a t e d - d e v i c e s , a manual r e l e a s e on the deluge v a l v e , a pneumatic remote t r i p s t a t i o n , and an e l e c t r i c a l push button along with the e l e c t r i c a l t r i p mechanism from the U/V d e t e c t o r s . The remote t r i p s t a t i o n s are l o c a t e d by escape routes so i t i s p o s s i b l e f o r the operator to t r i p the systems as he e x i t s the b u i l d i n g without exposing himself to f u r t h e r danger. Also used to help c o n t a i n p o t e n t i a l f i r e i s f i r e p r o o f i n g of s t e e l tanks. Any s t e e l tank c o n t a i n i n g flammable l i q u i d s has the s t e e l supporting members covered with f i r e p r o o f i n g m a t e r i a l having an underwriter's l a b o r a t o r y r a t i n g of at l e a s t two hours. T h i s w i l l prevent a tank from c o l l a p s i n g and f u e l i n g a fire. Any areas which have flammable l i q u i d s are equipped with a foam f i r e f i g h t i n g system. The foam system i s a c t i v a t e d by f u s i b l e l i n k s or manually. The f i r e truck has a foam eductor system which can be used to e x t i n g u i s h flammable l i q u i d , or Class I I f i r e s . The foam i s educted out of f i v e g a l l o n buckets and mixed with the water stream i n the eductor. Summary Prevention of l o s s of personnel or property i s more than j u s t a s o c i a l or moral o b l i g a t i o n . Safety i s as c r i t i c a l to the e f f i c i e n t operation of a chemical plant as any other f u n c t i o n . The manufacture of e x p l o s i v e s i n v o l v e s s p e c i a l hazards which must be minimized through i n t e l l i g e n t s a f e t y engineering. RECEIVED November 22,

1978.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

9 Explosion Suppression of Large Turbulent Areas

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch009

WILLIAM A. CROSLEY Detector Electronics Corp., 7351 Washington Avenue South, Minneapolis, MN 55435

Explosions have been occurring since the world was formed. In the last century explosions of man-made origins have been more common and most costly. To many people it is a disaster such as an earthquake or a tornado, and the only protection is to hope it doesn't happen - and feeling there is no way to stop the disaster once it starts. There is enough knowledge and equipment available today to react and stop certain explosions even after they have begun. An explosion that is preceeded by an ignition is a candidate for an explosion that can be suppressed before major harm is done. Explosion suppression systems are and have been used in all parts of the world for some time, but these systems are usually protecting very small and unobstructed areas, where a mechanical pressure sensor can be used successfully to detect the initial pressure from an explosion. Large-scale suppression tests in obstructed areas had never been tested until the U.S. Coast Guard conducted tests in the tanker S.S. Texaco at Mobile Bay, Alabama utilizing ultraviolet detection to actuate the suppression systems. So that you can better visualize the types of explosions we were attempting to suppress, we have a movie film of several unsuppressed explosions. These are slow motion pictures taken through the port hole at a camera speed of 64 frames per second, looking at the tanker's pump room where 12 pounds of liquid propane were allowed to vaporize and mix with the air to form a stoichiometric mixture. The fuel was then ignited by means of an electric arc or a hot wire. Note the blue flame front i n d i c a t i n g the air f u e l mixture was t r u l y a s t o i c h i o m e t r i c one. The flame f r o n t reaching the obstruct i o n s moves f a s t e r around the o b s t r u c t i o n s than the unobstructed p o r t i o n s of the flame f r o n t . This v i s u a l l y d i s p l a y s the f a c t that the flame front of an explosion moves f a s t e r when obstructed than i n an empty volume. We will see a s l i d e a f t e r the movie showing the over-pressure developed f a s t e r i n t h i s obstructed area opposed to the pressures developed i n a considerably l e s s obstructed area. 0-8412-0481-0/79/47-096-179$05.00/0 © 1979 A m e r i c a n C h e m i c a l Society

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch009

180

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

The s i z e of the compartment was approximately 32 feet wide, 16 feet long and 40 feet high. The t o t a l volume was approximately 18,000 cubic f e e t . The over-pressure of the unsuppressed explosions was 12 p s i . These unsuppressed t e s t s were conducted to develop data such as over pressures developed when a s t o i c h i o m e t r i c mixture of propane i s i g n i t e d as w e l l as how f a s t the flame f r o n t advanced i n an obstructed area. These next scenes are not sequences of an e x p l o s i o n , but of a burning torch being thrown i n t o an open c u b l i c l e with an open pan of g a s o l i n e on the f l o o r . In the c u b i c l e i s a UV f i r e detector and a 10-pound b o t t l e of Halon 1301, an e x t i n g u i s h i n g agent. The purpose of t h i s scene i s to b e t t e r acquaint you with the speed of the system v i s u a l l y , so that you can b e t t e r understand the r e s t of t h i s speech today. The UV detector i s i n the upper l e f t corner of the c u b i c l e , viewing only the area i n s i d e the c u b i c l e . The 10-pound b o t t l e of Halon i s i n the opposite corner. When the flames from the t o r c h enter the 90° viewing cone of v i s i o n of the detector i n s i d e the c u b i c l e , the detector i n s t a n t l y s i g n a l s a r e l a y i n i t s c o n t r o l l e r which closes and causes a detonator cap to rupture the d i s c on the Halon b o t t l e - r e l e a s i n g the Halon. The Halon suppresses the flames on the torch and the u n l i g h t e d torch f a l l s harmlessly i n t o the pan of g a s o l i n e . The purpose of the explosion-suppression t e s t s at Mobile Bay was to determine (1) i f i t was p o s s i b l e to suppress an e x p l o s i o n i n such a large volume, (2) to determine the most s u i t a b l e type of d e t e c t i o n and (3) to evaluate various types of e x t i n g u i s h i n g agents. The t e s t s proved an explosion could be suppressed i f detected i n i t s e a r l y stages with e x t i n g u i s h i n g agents i n s u f f i c i e n t quant i t y , reaching the flame f r o n t i n l e s s than 100 m i l l i s e c o n d s a f t e r ignition. Pressure sensors were used i n i t i a l l y but were not s u c c e s s f u l because of t h e i r slow response and the r a p i d pressure buildup due to the speed of the flame propagation. U l t r a v i o l e t (UV) detectors were determined to be the only type s u i t a b l e f o r t h i s purpose. Of the e x t i n g u i s h i n g agents, Halon 1211, 2402 and 1301 were s u c c e s s f u l , but i n f a i r l y high concentrations. Water was p a r t i a l l y s u c c e s s f u l and dry chemical was the most s u c c e s s f u l on a concentration basis. I w i l l now describe how the t e s t s were conducted and the i n formation obtained from these t e s t s . F i r s t , l e t ' s discuss the detector p o r t i o n of the system. The f o l l o w i n g c o n s i d e r a t i o n s are of utmost importance f o r the d e t e c t i o n p o r t i o n of the system: 1. In a l a r g e obstructed area where there w i l l be turbulence, the only type sensor a v a i l a b l e i s a r a d i a t i o n type sensor because of the increased speed of the flame propagation. It was proven during these t e s t s that pressure sensors

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

9.

CROSLEY

Explosion

Suppression

of Turbulent

Areas

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch009

1.

181

Continued. are not s u i t a b l e . 2. Once the detector s i g h t s the f i r e b a l l , i t must respond i n milliseconds. 3. To suppress an e x p l o s i o n , the detectors must be p o s i t i o n ed so that a f i r e b a l l o c c u r r i n g anywhere w i t h i n the protected space w i l l be detected by at l e a s t one detector i n l e s s than 75 m i l l i s e c o n d s a f t e r i g n i t i o n . I f i t takes longer, the explosion w i l l be f u l l y developed before the e x t i n g u s i h i n g agent can reach i t , and the r e s u l t w i l l be a p a r t i a l suppression, or very l i k e l y , no suppression. 4. The d e t e c t i o n system must be protected from f a l s e or spurious s i g n a l s . 5. The d e t e c t i o n system must incorporate safeguards against system f a i l u r e and provide an e a r l y warning system to i n d i c a t e i f the detector i s becoming l e s s s e n s i t i v e , due to an e l e c t r o n i c malfunction or contamination of the viewing window. The detector best s u i t e d to meet these conditions i s a r a d i a t i o n type sensor. U l t r a v i o l e t (UV), i n f r a r e d and v i s i b l e r a d i a t i o n are generated when combustion produces a flame and a l l three types of r a d i a t i o n sensors respond to the r a d i a t i o n from the flame. The v i s i b l e and i n f r a r e d sensors are f a s t , but are subject to many f a l s e s i g n a l s from a r t i f i c i a l l i g h t , s u n l i g h t , hot bodies and other heat producing bodies. The u l t r a v i o l e t (UV) sensor i s f a s t i n response and i s a f f e c t e d by few extraneous s i g n a l s which are c o n t r o l l a b l e . The UV sensor must be the type that only responds to a narrow band of UV, from 1850 Angstroms to 2450 Angstroms. This i s considerably below the UV r a d i a t i o n wavelengths from the sun and a r t i f i c i a l l i g h t s . A b a s i c UV d e t e c t i o n system c o n s i s t s of these three b a s i c components: A UV detector having a 90° cone of v i s i o n . The UV generated i n that viewing area w i l l cause the UV detector to send a voltage pulse to the s i g n a l i n g process s e c t i o n o f the e l e c t r o n i c amplifier/controller. Once UV from the exploding f i r e b a l l enters the sensor's 90° cone of v i s i o n , the s o l i d - s t a t e switch w i l l c l o s e i n l e s s than 10 m i l l i s e c o n d s , which w i l l actuate the e x t i n g u i s h i n g system. The UV d e t e c t i o n system l i k e any man-made product, i s subject to f a i l u r e . These f a i l u r e s could be detector tube f a i l u r e s , e l e c t r o n i c or w i r i n g f a i l u r e s , or o p t i c a l system f a i l u r e or contamination. There are UV f i r e d e t e c t i o n systems a v a i l a b l e that have the c a p a b i l i t y of self-examination f o r f a i l u r e s . This supervisory c i r c u i t i s r e f e r r e d t o as Automatic O p t i c a l I n t e g r i t y . Let's examine a b a s i c UV system that incorporates t h i s Automatic self-examination f e a t u r e . UV from an exploding f i r e b a l l w i l l enter the o p t i c a l surface of the UV sensor and generate a voltage s i g n a l to cause the c o n t r o l l e r ' s r e l a y to actuate and

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch009

182

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

r e l e a s e the e x t i n g u i s h i n g agent to suppress the explosion. Also, a UV s i g n a l generator, i n t h i s case a very small UV source lamp, screened from the sensor w i l l pulse b r i e f l y every few seconds. This small l e v e l of UV r a d i a t i o n can only reach the sensor by passing out through the viewing window and r e f l e c t i n g o f f a beveled r i n g and then r e - e n t e r i n g the detector housing i n the same l o c a t i o n where the UV from a f i r e b a l l would enter. The momentary r e a c t i o n of the sensor from the UV source lamp i s a s i g n a l to the system that everything i s i n operation from the detector window through the UV sensor and through the e l e c t r o n i c s . I f the UV from the source lamp f a i l s to pass through or the sensor f a i l s to respond, a f a u l t r e l a y de-energizes, warning the operator of a m a l f u n c t i o n which w i l l normally be a contaminated viewing window. Once the window i s wiped clean the f a u l t r e l a y can be c l e a r e d i n d i c a t i n g the system i s no longer sub-marginal. This type of self-examination i s known as Automatic O p t i c a l I n t e g r i t y . This i s a cut-away view of the detector i n s i d e i t s e x p l o s i o n proof housing. The UV source lamp generates UV which i s i s o l a t e d by t h i s b a r r i e r from the detector tube. The UV cannot pass through t h i s b a r r i e r but must pass through the quartz viewing window, and at that point s t r i k e the UV detector sensor. I f the quartz window e v e n t u a l l y becomes contaminated, a l l of the UV from t h i s source w i l l not be able to penetrate the surface of the quartz window, thus reducing the s i g n a l to the detector, causing the system to go i n t o a f a u l t alarm c o n d i t i o n . Now I w i l l d e s c r i b e the U.S. Coast Guard t e s t s i t e and the e x p l o s i o n suppression systems used. The pump room measured 40 feet from the b i l g e l e v e l to the top hatch, and 32 feet from port s i d e to starboard, and 16 feet from fore to a f t . The t o t a l volume, i n c l u d i n g two f i r s t l e v e l wings, minus the space consumed by the pumps and other o b s t r u c t i o n s , was 18,000 cubic f e e t . Two explosion suppression systems were t e s t e d . They were based on the f o l l o w i n g p r i n c i p l e s : 1. UV detector sees i n c i p i e n t explosion. 2. I t s i g n a l s the c o n t r o l c i r c u i t r y which f i r e s an e l e c t r i c a l l y actuated b l a s t i n g device. 3. The b l a s t i n g device ruptures a r e s t r a i n i n g diaphragm, causing the r e l e a s e of suppression agent which i s under 600 p s i dry n i t r o g e n pressure. 4. The d r i v i n g force of the n i t r o g e n forces the agent out of the container and propels i t toward the flame f r o n t . 5. The flame i s extinguished; the explosion suppressed. One system c o n s i s t e d of c y l i n d r i c a l cannons to contain the agent. The d r i v i n g force was provided by p r e s s u r i z i n g the charged cannon to 600 p s i with dry n i t r o g e n . Again, UV detectors were used to sense the f i r e b a l l , and the suppression agent used was the dry chemical known as Purple K. The other system consisted of s p h e r i c a l high-rate discharge e x t i n g u i s h e r s to contain the agent. The d r i v i n g force was provided by p r e s s u r i z i n g the charged e x t i n g u i s h e r to 325 p s i with

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch009

9.

CROSLEY

Explosion

Suppression

of Turbulent

Areas

183

dry n i t r o g e n . The UV sensor was used f o r the d e t e c t i o n of the f i r e b a l l , and various suppression agents were used i n these ext i n g u i s h e r s . They included water, Halon 2402, Halon 1211 and Halon 1301. Nine UV detectors were i n s t a l l e d throughout the e n t i r e pump room, the same as would be necessary i n an a c t u a l i n s t a l l a t i o n . I f any one of these detectors sees UV r a d i a t i o n , i t w i l l f i r e a l l of the cannons. The c i r c u i t r y was designed to i n d i c a t e at any time i f there was an e l e c t r i c a l malfunction i n the w i r i n g to any of the cannon detonators. The e x t i n g u i s h i n g cannons or spheres were l o c a t e d throughout the e n t i r e pump room above and below the deck p l a t e s as were the nine UV d e t e c t o r s . In t h i s manner a growing f i r e b a l l could be detected at any point w i t h i n the e n t i r e pump room w i t h i n m i l l i seconds a f t e r i g n i t i o n . Two cannons were l o c a t e d i n the top hatch p r o p e l l i n g dry chemical down. At the t h i r d deck l e v e l there were two cannons on the port s i d e and two on the starboard bulkheads. At the second l e v e l there were four a d d i t i o n a l cannons with the nozzles at a 45° angle f i r i n g d i r e c t l y over the pumps i n the pump room. There were s e v e r a l cannons on the bottom l e v e l f i r i n g below the deck and j u s t above the b i l g e water. The pump room was obstructed with the normal equipment, pumps, v a l v e s , pipes and l a d d e r s , the same as when i t was i n service. I f the e n t i r e pump room were f i l l e d with a s t o i c h i o m e t r i c mixture of propane and a i r throughout the e n t i r e volume, unsuppressed explosions would produce pressure of approximately 120 p s i , enough pressure to blow the ship out of the bay. N a t u r a l l y , we could not run t e s t s that could develop these pressures. Based on the design l i m i t a t i o n s of the pump room bulkheads, i t was decided that the bulkheads could e a s i l y withstand 15 p s i . C a l c u l a t i o n s show that i f the s t o i c h i o m e t r i c mixture of a hydrocarbon f u e l were placed i n 10% of the volume and i g n i t e d , expans i o n of the e x p l o s i o n i n t o the remaining 90% of the volume would l i m i t the t h e o r e t i c a l maximum pressure to 12 p s i , and not a f f e c t the bulkheads. With t h i s reasoning 12 pounds of propane were used. A l s o , a s u c c e s s f u l suppression should hold the maximum exp l o s i o n pressure to l e s s than 1 p s i . Thus, i t was reasoned that the t o t a l volume would produce r e a l i s t i c r e s u l t s f o r e x p l o s i o n suppression purposes. The a c t u a l s u c c e s s f u l suppressions that followed were a l l l e s s than 1 p s i and as low as .2 p s i . The f i r s t t e s t s used pressure sensors f o r the d e t e c t i o n s y s tem, but they f a i l e d to respond f a s t enough to suppress the explosion. I t was suspected that the o b s t r u c t i o n s i n the pump room increased the speed of the flame propagation beyond the c a p a b i l i ty of a pressure sensor.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch009

184

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

To prove t h i s , the b i l g e water was allowed to r i s e above the top of the pumps and other major o b s t r u c t i o n s . A d d i t i o n a l unsuppressed t e s t s were conducted and the pressure r i s e was much slower as suspected i n an unobstructed area. This proved that pressure sensors can be used i n empty spaces but not i n obstructed l a r g e spaces. At t h i s point the pressure sensors were no longer used and the UV f i r e d e t e c t i o n systems were now used. During the explosion suppression t e s t s , the UV detector r e sponded between 18 and 25 m i l l i s e c o n d s a f t e r i g n i t i o n . The f i r s t contact of the e x t i n g u i s h i n g agent w i t h a f i r e b a l l occurred i n l e s s than 100 m i l l i s e c o n d s a f t e r i g n i t i o n , and the peak of the suppressed curve occurred w i t h i n 150 m i l l i s e c o n d s at an over-pressure as low as .2 p s i . In analyzing these t e s t s , the f o l l o w i n g f a c t o r s were cons i d e r e d : Size of f i r e b a l l at agent contact, degree of agent breakdown, amount of burning a f t e r the i n i t i a l suppression, and maximum pressure developed. The a n a l y s i s i n d i c a t e s that successf u l suppression requires the l i s t e d minimum a p p l i c a t i o n d e n s i t i e s f o r the suppression of explosion of a propane/air mixture i n obs t r u c t e d spaces s i m i l a r to a ship's pump room. In summary, the amount of agent required to s u c c e s s f u l l y suppress the explosion i n the pump room or s i m i l a r 18,000 cubic foot obstructed area, i s as f o l l o w s : Water r e q u i r e d a concentration of more than .15 pounds per cubic f o o t . Halon 2402 r e q u i r e d more than .12 pounds per cubic f o o t . Halon 1211 required between .06 and .09 pounds per cubic foot. Halon 1301 required between .05 and .08 pounds per cubic foot. Purple K (dry chemical) r e q u i r e d more than .007 pounds per cubic f o o t . This i l l u s t r a t e s that the dry chemical was more than 10 times as e f f e c t i v e as the most e f f i c i e n t Halon. Water was the l e a s t e f f i c i e n t and was the only t e s t that was not completely s u c c e s s f u l . There were not enough containers to be able to reach a .15 pounds per cubic foot d e n s i t y , but there was a p a r t i a l suppression at .066 pounds per cubic foot d e n s i t y . The .15 pounds per cubic foot was determined by e x t r a p o l a t i o n . When the Halon density was not s u f f i c i e n t to suppress the e x p l o s i o n , there was agent breakdown evidenced by the observation of orange-yellow smoke and severe a f t e r b u r n i n g . In c o n c l u s i o n , these t e s t s i n d i c a t e that i t i s p o s s i b l e to suppress c e r t a i n explosions i n l a r g e obstructed areas. Pressure sensors are not s u i t a b l e as explosion suppression systems i n l a r g e obstructed areas, but the b a s i c u l t r a v i o l e t (UV) d e t e c t i o n system a v a i l a b l e today as a f i r e detector i s capable of being used as an explosion detector, p r o v i d i n g the exploding f i r e b a l l i s i n the cone of v i s i o n of one of the detectors w i t h i n the f i r s t 75 m i l l i s e c o n d s . The e x t i n g u i s h i n g agent used must make

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

9.

CROSLEY

Explosion Suppression of Turbulent Areas

185

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch009

contact with the fireball within 100 milliseconds after ignition. The density of the extinguishing agent required will vary with agent used. In these particular tests, dry chemical was far superior on a weight per unit volume basis by a magnitude of 10 times or greater. The movie film that now follows shows several unsuppressed tests where data was recorded and then a suppression by each of the 5 agents used for suppression. Abstract Explosion suppression for large volumes in which turbulence can be expected is one of the greatest challenges in the fire protection field today, and the need for such a system is great. There are explosion suppression systems in service throughout the world, but in almost every case they are in very small volumes of unobstructed areas, where the mechanical pressure sensor can be used successfully to detect the explosion. Large-scale suppression tests in obstructed areas have never been tested until recent U.S. Coast Guard tests were conducted on an ocean oil tanker utilizing ultraviolet detection systems to actuate dry chemical, Halon and water suppression systems. The purpose of these tests was to determine the most suitable type of detection, and to evaluate various types of extinguishing agent. Pressure sensors were tried initially, but were not successful because of their slow response, and ultraviolet (UV) dectors were finally determined to be the only type that were suitable for this purpose. Of the extinguishing agents, Halon 1211, 2402 and 1301 were successful, but in fairly high concentrations. Water was partially successful and dry chemical was the most successful on a concentration basis. Emphasis should be made that this was a research program to gain additional information for the design of a complete suppression system with a capability of suppressing explosions in large areas as well as small enclosures. Work is continuing in our company to develop these systems. The ultraviolet explosion detectors and the suppression systems are commercially available but must be engineered and designed for each hazardous application. RECEIVED

November 22,

1978.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

10 Rapid Suppression of Explosive and Incendiary Fires

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch010

CHRIS C. ELKINS Day & Zimmermann, Inc., Operating Contractor of Lone Star Army Ammunition Plant, Texarkana, TX 75501

In 1951 Day & Zimmermann, Inc. was awarded an initial contract to operate the Lone Star Army Ammunition Plant. Fire protection systems for equipment and processes consisted of fuzeable links and quartzoid bulbs for sensing fires. In the early 1950's, a plan was initiated to replace the existing systems with the improved Heat Actuating Device. The H-A-D greatly improved the effectiveness of the deluge systems and was considered adequate at the time. Introduction of new materials and processes created new problems due to the frequent fires and explosions. These problems surfaced in the late1960'sand early 1970's. A search for an ultra-high speed fire protection system was begun during this period. Ultra-high speed is a term that measures in milliseconds as compared to high speed, such as the H-A-D which measures in seconds. It has been said that necessity is the Mother of Invention, but at Lone Star Army Ammunition Plant, it was the Mother of Motivation. The cost of repair of fire damage was running high and our people had become very skittish. The feeling of urgency compelled us to find or design a better fire protection system. In 1972, Day & Zimmermann engineers started a test program. One of the first steps was to select the type of sensor or detector. Consideration was given to infra-red, ultraviolet, and audio signals. After careful study of the alternatives, the ultraviolet was chosen, primarily because of available components and that it would not be affected by sunlight. Audio was discarded because of frequent thunderstorms during the rainy season. The second major component selected was the deluge valve. It was to be a fast-operating valve located as close to the nozzle as practical. Automatic Sprinkler had such a valve that was built into the nozzle. This would provide a wet system in close proximity of the fire initiation point. It would be pilot-operated for fast response.

0-8412-0481-0/79/47-096-187$05.00/0 © 1979 American Chemical Society

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

188

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch010

The t h i r d m a j o r component w o u l d be t h e c o n t r o l l e r t h a t t a k e s the s i g n a l from t h e u l t r a v i o l e t s e n s o r and a m p l i f i e s i t t o a power v o l t a g e t h a t o p e r a t e s t h e v a l v e . The c o n t r o l l e r was c o n s t r u c t e d o f s t a n d a r d e l e c t r i c a l components t h a t were on h a n d . In a d d i t i o n t o o p e n i n g t h e v a l v e , i t w o u l d s h u t o f f t h e power t o t h e m a c h i n e s t o p r e v e n t a d d i t i o n a l damage and w o u l d a l s o s o u n d an alarm. T h e s e components were a s s e m b l e d , and a t e s t was c o n d u c t e d t o compare t h e new s y s t e m w i t h t h e H - A - D and q u a r t z o i d s y s t e m s . The f i r s t s e r i e s o f t e s t s u s e d v a r i o u s t e s t m a t e r i a l s s u c h as T N T , p r o p e l l a n t p o w d e r s , d e l a y c o m p o s i t i o n s , and b l a c k p o w d e r . E l e c t r i c m a t c h e s were t i e d i n t o a common power s o u r c e t o give simultaneous i g n i t i o n o f the t e s t samples. M o v i e f i l m was used to r e c o r d the t e s t r e s u l t s . Frames o f t h e s l o w m o t i o n f i l m were c o u n t e d t o d e t e r m i n e t h e a p p r o x i m a t e r e s p o n s e t i m e o f t h e systems. The r e s u l t s o f t h e f i r s t s e r i e s o f t e s t s i n d i c a t e d t h a t t h e u l t r a v i o l e t s e n s o r d e l u g e s y s t e m was c o n s i d e r a b l y f a s t e r t h a n t h e H - A - D and the o l d e r s e n s o r , t h e q u a r t z o i d . In f a c t , t h e q u a r t zoid sensor never actuated during these t e s t s . The r e s p o n s e t i m e f r o m i n i t i a t i o n o f t h e t e s t s a m p l e u n t i l d e l u g e w a t e r was on t h e f i r e r a n g e d f r o m 300 t o 400 m i l l i s e c o n d s f o r t h e u l t r a v i o l e t system. T h i s r e s p o n s e t i m e was a d e q u a t e t o s u p p r e s s f i r e s f r o m most o f o u r c h e m i c a l s and e x p l o s i v e s . T h e one e x c e p t i o n d i s c o v e r e d d u r i n g t h e t e s t s was a b l a c k powder f i r e . U n l i k e a l l the o t h e r m a t e r i a l s , t h e b l a c k powder s a m p l e was c o m p l e t e l y consumed by the f i r e . Even though the system f a i l e d f o r b l a c k powder, the s e r i e s o f t e s t s gave m e r i t t o t h e u l t r a v i o l e t s e n s o r d e l u g e and provided a d d i t i o n a l v a l u a b l e i n f o r m a t i o n which approximated the r e s p o n s e t i m e o f t h e c o n t r o l s and v a l v e . A s e c o n d s e r i e s o f t e s t s was c o n d u c t e d s p e c i f i c a l l y t o i m p r o v e t h e r e s p o n s e t i m e o f t h e s y s t e m and e x t i n g u i s h t h e b l a c k powder f i r e . T h e o n l y c h a n g e i n t h e t e s t s e t - u p was t h e u s e o f s o l i d s t a t e c o n t r o l s i n l i e u o f the c o n v e n t i o n a l ones u s e d d u r i n g the f i r s t t e s t s . T h e r e t e s t s were made and t h e r e s p o n s e t i m e was r e d u c e d i n h a l f ; b u t a g a i n t h e e n t i r e s a m p l e was consumed and t h e s y s t e m was n o t c o n s i d e r e d t o be e f f e c t i v e . B e f o r e t h e t h i r d s e r i e s o f t e s t s was made, a d d i t i o n a l r e s e a r c h was r e q u i r e d t o f i n d o r d e v e l o p an u l t r a - f a s t o p e n i n g valve. T h i s was t h e o n l y m a j o r component t h a t c o u l d be r e p l a c e d to f u r t h e r reduce the response t i m e . Information from Detector E l e c t r o n i c s C o r p o r a t i o n i n t r o d u c e d us t o a v a l v e m a n u f a c t u r e d b y G r i n n e l l , c a l l e d t h e P r i m a c v a l v e , w h i c h seemed t o f i t t h e b i l l . The v a l v e u s e s a p r i m e r d e t o n a t i n g d e v i c e w i t h r e d u n d a n t d e t o n a t o r s t o blow the v a l v e open. The same e l e c t r i c a l s i g n a l i n i t i a t e d b y t h e u l t r a v i o l e t s e n s o r c o u l d now be u s e d t o a c t u a t e the d e t o n a t o r s , thus f u r t h e r r e d u c i n g l o s t m o t i o n . T h e t e s t s e t - u p was m o d i f i e d s l i g h t l y f r o m t h e p r e v i o u s t e s t i n t h a t t h e b l a c k powder was s p r e a d a l o n g a p a t h one i n c h w i d e and 30 i n c h e s l o n g w i t h t h e e l e c t r i c match a t one end and a c u p

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch010

10.

ELKINS

Rapid

Suppression

of

Fires

189

with s e v e r a l ounces of powder at the other. The i n t e n t i o n was to measure the d i s t a n c e the f i r e burned before or i f the f i r e was extinguished. The t e s t s were recorded on Fastex f i l m taken at 4200 frames per second. The reponse time from i g n i t i o n u n t i l water was on the f i r e was 62 m i l l i s e c o n d s . The response time had again been cut i n h a l f . Nineteen inches o f black powder were consumed i n the t e s t . In order to get the water on the f i r e a l i t t l e f a s t e r , the l i n e pressure (approximately 75 p s i ) was increased to 100 p s i and the system was r e t e s t e d . T h i s time, only s i x inches of powder were consumed. This system i s considered h i g h l y e f f e c t i v e and i s i n use today at our b l a c k powder loading o p e r a t i o n . Day § Zimmermann has i n s t a l l e d approximately 90 u l t r a v i o l e t sensor deluge systems i n the Lone S t a r and Kansas Army Ammunition P l a n t s . The Primac valve i s only used i n the b l a c k powder opera t i o n because o f i t s higher c o s t . A l l other m a t e r i a l s use the system as d e s c r i b e d i n the second s e r i e s o f t e s t s and i s considered highly e f f e c t i v e . Because o f the nature o f our business, we continue to have the f i r e s but the cost i s g e n e r a l l y n e g l i g i b l e i n comparison to the cost o f f i r e damage when the o l d systems were i n use. Production downtime has been g r e a t l y reduced, and the operators working the l i n e s f e e l much s a f e r . C e r t a i n l y the u l t i m a t e f i r e p r o t e c t i o n system has not been achieved, but we f e e l at t h i s time that we are pushing the s t a t e of-the-art . RECEIVED November 22,

1978.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

11 L a b o r a t o r y D e s i g n a n d O p e r a t i o n Procedures for Chemical Carcinogen Use

MANUEL S. BARBEITO

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

National Cancer Institute, Office of Research Safety, Bldg. 13, Room 2E47, 9000 Rockville Pike, Bethesda, MD 20014

Interim safety standards (1) were developed by the National Cancer Institute (NCI) for the intramural laboratories for research work involving chemical carcinogens regulated by the Department of Labor (2). The standards are also used as guidelines for suspected chemical carcinogens and other toxic substances. The interim standards were issued to comply with the policy of the NCI that a l l of i t s research programs be planned and implemented to prevent exposure of personnel to hazardous material, minimize environmental contamination and provide product protection when required. The NCI standards are based on the proposed Department of Health, Education, and Welfare Laboratory Chemical Carcinogen Safety Standards, prepared by the DHEW Committee to Coordinate Toxicology and Related Programs. When DHEW issues the standards, they w i l l supersede these interim NCI standards. A summary of these interim standards for research involving chemical carcinogens follows: Medical S u r v e i l l a n c e Program A preassignment p h y s i c a l examination i s provided each person planning to work with chemical carcinogens. No employee i s r e quired to p a r t i c i p a t e i n the Medical S u r v e i l l a n c e Program; i t i s s t r i c t l y v o l u n t a r y . T h i s examination e s t a b l i s h e s a b a s e l i n e against which changes can be measured or to determine i f there e x i s t s any medical or other c o n d i t i o n that could compromise the employee's h e a l t h i n the work s i t u a t i o n . A p e r i o d i c examination based on age i s a l s o provided f o r employees using chemical carcinogens. Frequency of Medical Examination f o r Employees Working with Chemical Carcinogens AGE

(yrs)

20-30 31-40 over 40

FREQUENCY (yrs) 5 2 1

This chapter not subject to U.S. copyright. Published 1979 American Chemical Society

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L

192

A N D EXPLOSIVES FACILITIES

These examinations seek to determine any changes i n the medical s t a t u s of employees as the r e s u l t of h i s / h e r work.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

Personnel P r a c t i c e s Protective Clothing. Protective clothing for laboratory personnel i s provided d a i l y . As a minimum, i t c o n s i s t s of a f u l l y fastened, long l a b o r a t o r y coat. The p r o t e c t i v e c l o t h i n g (laboratory coat, jumpsuit or p a n t s / s h i r t , smock, and gown) i s not to be worn outside of the work area, F i g u r e 1. If c l o t h i n g i s contaminated with chemical carcinogens, i t i s not sent to commercial or in-house laundry f a c i l i t i e s u n t i l decontaminated, i f f e a s i b l e , or i t i s discarded i n a safe manner. Disposable l a b o r a t o r y garments are o f t e n p r e f e r r e d f o r use i n l a b o r a t o r i e s engaged i n research using chemical carcinogens. Gloves are worn that meet the s p e c i f i c research needs and are r e s i s t a n t to solvents (3) and impermeable to the chemical c a r cinogens i n use. I t i s recommended that animal handlers or others entering areas where animals are t r e a t e d with carcinogens or fed d i e t s c o n t a i n i n g chemical carcinogens be provided d a i l y with a complete c l o t h i n g change, i n c l u d i n g shoes, boots, head cover, and gloves. Personnel p r o t e c t i v e equipment may be used i n c e r t a i n c i r cumstances where exposure to a i r b o r n e p a r t i c u l a t e s contaminated with chemical carcinogens could occur. In those s i t u a t i o n s , personnel should be equipped with a complete c l o t h i n g change, as w e l l as r e s p i r a t o r y p r o t e c t i o n s e l e c t e d on the b a s i s of work performed, type of chemical used, and containment equipment. The r e s p i r a t o r y p r o t e c t i o n may be a face mask, r e s p i r a t o r [selected from those approved by the N a t i o n a l I n s t i t u t e f o r Occupational Safety and Health (NIOSH)] ( 4 , 5 ) , or emergency b r e a t h i n g a i r system. In the l a t t e r case, a head hood or a complete p r o t e c t i v e s u i t may be used with a b r e a t h i n g a i r supply system, Figure 2. When r e s p i r a t o r y p r o t e c t i o n i s used, i t should be decontaminated d a i l y . However, the use of r e s p i r a t o r y p r o t e c t i o n as the primary means of preventing exposure of l a b o r a t o r y personnel should be avoided whenever p o s s i b l e . Research work should be conducted i n primary containment safety equipment, such as Class I or Class I I (Type B) b i o l o g i c a l s a f e t y c a b i n e t s , a chemical fume hood, a g a s t i g h t glove box, or other s p e c i a l l y designed equipment. Research work with chemical carcinogens on l a b o r a t o r y bench tops with the use of p r o t e c t i v e c l o t h i n g , i n c l u d i n g r e s p i r a t o r s , i s not a good a l t e r n a t i v e to conducting a l l work i n primary enclosures. The major problems a r i s e from contamination of the e n t i r e l a b o r a t o r y and from exposure of personnel when d i s r o b i n g f o l l o w i n g the use of p r o t e c t i v e equipment. Showers. When personnel may be exposed to a i r b o r n e p a r t i c u l a t e s contaminated w i t h chemical carcinogens, they should shower a f t e r e x i t from the work area. A l s o , a l l personnel should shower

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

11.

BARBEITO

immediately

Chemical

Carcinogen

Use

193

a f t e r an overt exposure to a chemical carcinogen.

P i p e t t i n g . A l l l i q u i d t r a n s f e r operations are performed with mechanical p i p e t t i n g a i d s , F i g u r e 3; a l s o see the "Source table (6). O r a l p i p e t t i n g i s not performed i n a l a b o r a t o r y engaged i n research work with chemical carcinogens, suspect carcinogens, or other t o x i c substances ( 7 ) . 11

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

E a t i n g , D r i n k i n g , Smoking. There should be no e a t i n g , d r i n k i n g , smoking, chewing of gum or tobacco, a p p l i c a t i o n of cosmetics, or storage of food i n areas where chemical carcinogens are used. Personal Hygiene P r a c t i c e s . A l l personnel should wear d i s posable or other type gloves r e s i s t a n t to research m a t e r i a l s (3) and wash t h e i r hands immediately a f t e r removing gloves f o l l o w i n g the completion of any procedure i n which chemical carcinogens are used. A hand washing f a c i l i t y should be made a v a i l a b l e w i t h i n the laboratory. Operational Practices Access C o n t r o l . A s i g n should be posted at entrances to a l l work areas where carcinogens are present (2). The N a t i o n a l Cancer I n s t i t u t e uses a s i g n : "DANGER, CHEMICAL CARCINOGEN, AUTHORIZED PERSONNEL ONLY." G e n e r a l l y , access i s authorized by the l a b o r a tory s u p e r v i s o r . In a d d i t i o n , entrance procedures and c l o t h i n g requirements should be permanently d i s p l a y e d at the main access p o i n t . To prevent any untoward i n c i d e n t , a l l v i s i t o r s should be escorted i n l a b o r a t o r i e s engaged i n research work i n v o l v i n g known or suspect chemical carcinogens or other t o x i c substances. Work Surfaces. A l l h o r i z o n t a l work surfaces (bench tops, containment cabinets or fume hoods) should be protected with impervious m a t e r i a l to prevent contamination of the work surfaces with chemical carcinogens. One of the systems that has proved u s e f u l i s to use the dry, absorbent polyethylene-backed paper (Benchkote, VWR S c i e n t i f i c Co., Cat. No. 52855', Continuous Sheet Type, S c i e n t i f i c Products Co., Cat. No. P1180). Following contamination, or upon completion of an experiment, or at the end of the day, t h i s p r o t e c t i v e cover can be r o l l e d up, packaged f o r safe removal, and disposed of i n an appropriate manner. Primary Containment Cabinets. Primary containment cabinets should be a p p r o p r i a t e l y l a b e l e d with the warning: "DANGERCHEMICAL CARCINOGEN." Procedures r e q u i r i n g the use of containment cabinets are: 1) when using v o l a t i l e or suspected chemical c a r cinogens; 2) when procedures r e s u l t i n the formation of a e r o s o l s , such as from opening c l o s e d v e s s e l s , t r a n s f e r r i n g operations, weighing, preparing of feed mixtures, i n j e c t i n g and i n t u b a t i n g experimental animals w i t h chemical carcinogens.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

194

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Figure 1.

Types of laboratory clothing. (Top left) simple cap, (top right) bouffant cap, (bottom) hooded cap.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

BARBEITO

Chemical

Carcinogen

Use

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

11.

Figure 1. Types of laboratory clothing. (Left to right, top to bottom) Fully huttoned laboratory coat, wraparound smock, solid front gown, one-piece laboratory suit, two-piece laboratory suit, heavy duty coverall, simple cap, bouffant cap, and hooded cap.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

195

196

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Figure

2.

Respiratory protective equipment. Full-mask facepiece, half-mask facepiece, air - supplied head hood. Mine Safety Appliances Company

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

BARBEITO

Chemical

Carcinogen

Use

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

11.

Figure 2. Respiratory protective equipment. One-piece positive pressure ventilated suits. Mine Safety Appliances Company

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

197

TOXIC C H E M I C A L A N D EXPLOSIVES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

198

FACILITIES

1

Clinac Safety Pipettor

8

Clay Adams-Micro Selectapette

14

O x f o r d Sampler Ultramicropipette

2

Sargent-Welch Pipette Syringe

9

Lancer Precision Pipettor

15

3

Drummond Dialamatic Micro Dispenser

10

M L A Pipettor

Elkay " S o c o r e x " Micro Pipette (Swiss manufactured)

11

Eppendorf Microliter Pipet (West German manufactured)

16

Centaur Pipet

12

Pipetman Ultra Micro Pipette (French manufactured)

17

O x f o r d Sampler Pipette, Model Q

18

Gilson/Rainin Pipetman, Digital Dispensing Pipette (French manufactured)

4

Hamilton Ultra Micro Syringe Pipet

5

Unimetrics Micropipettor

6

Finnpipette (Finnish manufactured)

7

Helena Quickpette

13

O x f o r d Sampler Pipette (8000 Series)

Ultramicro Pipetting Aids

19

Biopipette Automatic Pipette

20

Gilson/Rainin Pipetman, Digital Dispensing Pipette (French manufactured)

23 24

Pumpett 18 (Swedish manufactured)

27

A n a l y t i c Products Safety Bulb

28

Clay Adams Pipet Suction Apparatus

Curtin Matheson Rubber Pipet Bi

21

Manostat Vari-Pet

25

Demuth Safety Pipet

22

Spectroline Pipette Filler

26

Nalgene Pipetting A i d

29

Manostat Accropet Filler

30

Cornwall Continuous Pipetting Outfit

Micro Pipetting Aids Figure 3.

Pipetting aids

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

BARBEITO

31

Chemical

Carcinogen

Use

National Instrument Micropipet Pipettor (French manufactured)

32

Pumpett 25, Original (Swedish manufactured)

33

Spectroline Pipette Filler

37

Labindustries Micro/Mac Pipet

38

Centaur

39

Interex Rubber Transfer Bulb

40

Volac Universal Pipette Controller (British manufactured)

34

Manostat Accropet Filler (Macro)

35

Oxford Macro Set Transfer Pipetting System

41

Nalgene Pipetting A i d

36

Lab Industries Repipet Jr Sampler

42

Pi Pump (West German manufactured)

Macro Pipetting Aids

43

M L A Inc. Pipetting System

44

Clay Adams Selectapette Pipet System

46

45

Centaur Pipet System Pipetting Aid Systems

Drummond Pipet-Aid

Pipetting Aid System Figure 3.

Pipetting aids

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

200

Figure 3.

Pipetting aids

SOURCES OF PIPETTING AIDS Figure Legend Numbers

Item / Source

Price Range*

27

Analytic Products Safety Bulb Analytical Products, Inc. P.O. Box 845 Belmont, C A 94002

Biopipette Automatic Pipette

19

Schwartz/Mann Division of Becton, Dickinson & Co. Orangeburg, N Y 10962

Centaur Pipet

16, 38

Price Range*

Drummond Pipet-Aid

46

J

Elkay "Socorex" Micro Pipette (Swiss manufactured)

15

Elkay Products, Inc. 95 Grand Street Worcester, MA 01610

Eppendorf Microliter Pipet (West German manufactured)

11

Brinkman Instruments, Inc. Cautrague Road Westbury, N Y 11590

Centaur Chemical Company 180 Harvard Avenue Stanford, CT 06902

Centaur Pipet System

45

Clay Adams-Micro Selectapette

Finnpipette (Finnish manufactured)

6

Variable Volumetrics, Inc. 1 7 Cummings Park Woburn, M A 01801

Clay Adams Division of Becton, Dickinson & Co. Parsippany, NJ 07054

Clay Adams Pipet Suction Apparatus

Figure Legend Numbers

Item / Source

28

Gilson/Rainin Pipetman, Digital Dispensing Pipette (French manufactured)

18, 20

Rainin Instrument Company, Inc. 94 Lincoln Street Brighton, M A 02135

Clay Adams Selectapette Pipet System Clinac Safety Pipettor

Hamilton Ultra Micro Syringe Pipet

LaPine Scientific Company 6001 South Knox Avenue Chicago, IL 60629

Cornwall Continuous Pipetting Outfit

4

Hamilton Company P.O. Box 7500 Reno, N V 89502

30 Helena Quickpette

Curtin Matheson Scientific Co. P.O. Box 1546 Houston, Texas 77001

7

Helena Laboratories P.O. Box 752 Beaumont, T X 77704

Figure 3, cont'd.

Sources of pipetting aids

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

11.

BARBEITO

Chemical

Carcinogen

Use

201

SOURCES OF PIPETTING AIDS (Continued)

Item / Source Curtin Matheson Rubber Pipet Bulb

Figure Legend Numbers

Price Range*

24

A

Figure Legend Numbers

Demuth Safety Pipet

25

A

3

H

Demuth Glass Division Brockway Glass Company, Inc. Route 1, Box 13 Parkersburg, WV 26101

39

Interex Rubber Transfer Bulb

B (glass) A (rubber)

Labindustries Micro/Mac Pipet Labindustries 1802 Second Street Berkeley, C A 94710

36

Labindustries Repipet Sampler

Drummond Dialamatic Micro Dispenser

Lancer Precision Pipettor

9

Sherwood Medical Industries 1831 Olive Street St. Louis, MO 63103

Drummond Scientific Company 500 Parkway Broomall, PA 19008

29, 34

Manostat Accropet Filler

Pi Pump (West German manufactured)

Manostat Corporation 519 Eighth Avenue New York, N Y 10018

42

Bel Art Products Pequannock, NJ 07440

Pipetman Ultra Micro Pipette (French manufactured)

Manostat Vari-Pet

Analtech, Inc. 75 Blue Hen Drive Newark, DE 19711

MLA Pipettor & Pipettor System Medical Laboratory Automation, Inc. 520 Nuber Avenue Mount Vernon, N Y 10550

Pumpett 18 (Swedish manufactured)

Nalgene Pipetting Aid (West German manufactured)

23

LaPine Scientific Company 6001 South Knox Avenue Chicago, IL 60629

Nalgene Labware Division Nalge Sybron Corporation P.O. Box 365 Rochester, N Y 14602

Pumpett 25, Original (Swedish manufactured) Sargent-Welch Scientific Co. 7300 North Linder Avenue Skokie, IL 60076

National Instrument Co., Inc. 4119 Fordleigh Road Baltimore, MD 21215

Spectroline Pipette Filler

Oxford Macro Set Transfer Pipetting System

32

Sargent-Welch Pipette Syringe

National Instrument Micropipet Pipettor (French manufactured)

33, 22

Arthur H. Thomas Company Vine Street at 3rd P.O. Box 779 Philadelphia, PA 19105

35

Oxford Laboratories 1149 Chess Drive Foster City, C A 94404

Unimetrics Micro-pipettor

Oxford Sampler Pipette (8000 Series)

13

Oxford Sampler Pipette, Model Q

17

Oxford Sampler Ultramicropipette

14

Unimetrics Corporation 1853 Raymond Avenue Anaheim, C A 92801

Volac Universal Pipette Controller (British manufactured)

40

Cole-Parmer Instrument Company 7425 North Oak Park Avenue Chicago, IL 60648

' P R I C E RANGES A B C D

$ 5.00 or less $ 1.00 $10.00 $ 5.01 $10.00 $10.01 - $20.00

Price Range*

Interex Corporation 3 Strathmore Road Natick, M A 01760

Curtin Matheson Scientific Co. P.O. Box 1546 Houston, Texas 77001

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

Item / Source

E $10.01 $25.00 F $20.01 - $30.00 G $25.01 - $50.00

H I J

Figure 3, cont'd.

$ 30.01 - $ 50.00 $ 50.01 $100.00 $100.00 or more

Sources of pipetting aids

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L

202

A N D EXPLOSIVES FACILITIES

Control Practices L a b e l i n g . A l l containers of chemical carcinogens should be l a b e l e d : "DANGER— CHEMICAL CARCINOGENS. 11

Storage/Inventory. The s u p e r v i s o r should maintain an inventory of stock q u a n t i t i e s of chemical carcinogens, record the date of purchase, the d i s p o s a l date ( i f a p p l i c a b l e ) , s t o r e a l l materi a l s i n a s p e c i f i c area, and secure the area a t a l l times. Only working q u a n t i t i e s of chemical carcinogens should be present i n the work area.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

I n t e r l a b o r a t o r y Transport. I f i t i s necessary to t r a n s p o r t chemical carcinogens from one l a b o r a t o r y to another, a l l m a t e r i a l should be placed i n a s e a l e d , unbreakable outer c o n t a i n e r . Housekeeping. Housekeeping p r a c t i c e s used i n the l a b o r a t o r y must be capable of suppressing the formation of a e r o s o l s ( 6 ) . To accomplish t h i s , wet mopping or the use of vacuum cleaners equipped with a c e r t i f i e d HEPA and/or c h a r c o a l f i l t e r on the exhaust should be used. Dry sweeping or dry mopping are proh i b i t e d to prevent formation of an a e r o s o l . Vacuum L i n e . Vacuum s e r v i c e should be protected by a d i s posable HEPA f i l t e r and a l i q u i d trap to prevent entry of the chemical carcinogens i n t o the c e n t r a l vacuum system, F i g u r e 4 (8). A commercial system i s a v a i l a b l e from Vacuum Guard I I , Model VG201, Spectroderm I n t e r n a t i o n a l , Inc., F a i r f a x , V i r g i n i a 22030. I f v o l a t i l e chemical carcinogens are used, a separate vacuum pump or vacuum system should be used i n conjunction with an appropriate l a b o r a t o r y - t y p e containment c a b i n e t . Packaging and Shipping. Methods used f o r packaging and shipping e t i o l o g i c agents according to 42 CFR 72.25 1972 (9), DHEW, should be adapted f o r the t r a n s p o r t a t i o n o f chemical carcinogens. Packages complying with these r e g u l a t i o n s were tested and proven to remain i n t a c t a f t e r r e c e i v i n g excessive s t r e s s beyond that normally encountered i n s h i p p i n g . I f chemical carcinogens a r e p h y s i c a l l y or chemically unstable, c o r r o s i v e , e x p l o s i v e , or flammable, the Department of T r a n s p o r t a t i o n regul a t i o n s i n 49 CFR 173 1973 (10) s h a l l be followed. Other shipping r e g u l a t i o n s are a p p l i c a b l e , such as A i r Transport A s s o c i a t i o n ' s (ATA s) R e s t r i c t e d A r t i c l e s T a r i f f 6-D (11) and the U. S. P o s t a l S e r v i c e r e g u l a t i o n s 39 CFR 124 (12). 1

Decontamination/Collection. Research operations should be analyzed to determine the types of waste, q u a n t i t i e s of c a r c i n o genic m a t e r i a l , and handling procedures to be employed. A l l chemical carcinogens, i n c l u d i n g those contained i n animal c a r casses, should be d e a c t i v a t e d , degraded i f f e a s i b l e , or packaged

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Figure 4.

COLLECTION FLASK

TISSUE C U L T U R E FLASK

Two techniques for protecting vacuum system from contamination

OVERFLOW FLASK

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

204

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

i n impermeable, sealed containers f o r d i s p o s a l (13, 14). A l l d i s c a r d m a t e r i a l should be p r o p e r l y packaged and be compatible with other discarded chemicals before combining i n common waste containers f o r d i s p o s a l . Before they are removed, the e x t e r i o r of each container i s to be l a b e l e d with both the name of the carcinogen and a s i g n : "DANGER-CHEMICAL CARCINOGEN." Temporary storage space w i t h i n the primary containment space or l a b o r a t o r y area should be designated f o r holding wastes. C o l l e c t i o n of chemical carcinogens, a l l waste products, animal carcasses and other m a t e r i a l s from the l a b o r a t o r y should be performed by designated personnel on a scheduled b a s i s or when necessary. The suspect or c a r c i n o g e n i c m a t e r i a l s should not be placed on u n c o n t r o l l e d loading docks f o r pickup by general refuse c o l l e c t i o n personnel. At the N a t i o n a l I n s t i t u t e s of Health, the s p e c i a l c o l l e c t i o n of hazardous m a t e r i a l s , i n c l u d i n g chemical carcinogens, i s done by personnel of the F i r e Department. In the instance of one of the NCI contractor s i t e s , F r e d e r i c k Cancer Research Center, l o c a t e d a t a m i l i t a r y post, personnel from the s a f e t y o f f i c e s perform t h i s s e r v i c e . D i s p o s a l . One system developed to dispose of aqueous waste c o n t a i n i n g suspect or known c a r c i n o g e n i c m a t e r i a l i s to p l a c e i t i n a burnable, one g a l l o n p l a s t i c container f i l l e d with expandable cushioning absorbent m a t e r i a l (K-61-Kimberly-Clark Corp. or equal, Arnold Factory Supply, Inc., 1800 S. Hanover St., Baltimore, Maryland 21230), Figure 5. The type of p l a s t i c container used must not be a f f e c t e d by the chemicals placed i n i t . As a guide, the q u a n t i t y of f r e e aqueous l i q u i d showing i n the container should not exceed about one i n c h i n the bottom of the c o n t a i n e r . A f t e r f i l l i n g , the container i s placed i n a double-sealed p l a s t i c bag f o r pickup and d i s p o s a l by i n c i n e r a t i o n . Contaminated flammable solvent waste may be packaged i n the same manner or c o l l e c t e d i n s t a i n l e s s s t e e l pressure cans f o r l a t e r d i r e c t i n j e c t i o n i n t o an approved i n c i n e r a t o r system. I f flammable solvent waste i s not contaminated, i t can be c o l l e c t e d i n s u i t a b l e containers and recovered f o r reuse or s o l d to scavengers. A l l other combustible suspect or known contaminated waste can be packaged i n sealed p l a s t i c bags placed i n taped, durable cardboard boxes f o r d i r e c t transport to the i n c i n e r a t o r . Carcinogenic m a t e r i a l c o n t a i n i n g noncombustible m a t e r i a l i s to be degraded or d e a c t i v a t e d , i f f e a s i b l e , before d i s p o s a l . An a l t e r n a t e procedure would be to use a surface a c t i v e wetting agent to p h y s i c a l l y remove the m a t e r i a l . Then a l l s o l u t i o n s containing the c a r c i n o genic m a t e r i a l and c l e a n i n g m a t e r i a l s used must be packaged and disposed of by i n c i n e r a t i o n . S p e c i f i c temperatures f o r the i n c i n e r a t i o n of a l l known or suspected chemical carcinogens have not been determined. Work conducted at the N a t i o n a l Center f o r T o x i c o l o g i c a l Research L a b o r a t o r i e s (NCTRL), Food and Drug A d m i n i s t r a t i o n , J e f f e r s o n , Arkansas 72079 has shown that 2-Acetylaminofluorene may be

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

11.

BARBEITO

Chemical

Carcinogen

Use

205

destroyed by i n c i n e r a t i o n at 1500 F measured i n the secondary chamber with a minimum r e t e n t i o n time of two seconds (personal communication with Mr. Edward J . Treglawn, Safety O f f i c e r , NCTRL). Degradation temperatures f o r other s p e c i f i c carcinogenic materi a l s may r e q u i r e temperatures i n excess of 1500 F f o r complete d e s t r u c t i o n . Although c e r t a i n r e g u l a t o r y o r g a n i z a t i o n s may r e q u i r e the use of scrubbers on i n c i n e r a t o r s , these must be used with d i s c r e t i o n . Scrubbers may prevent the r e l e a s e of hazardous m a t e r i a l to the atmosphere, but t h e i r a c t i o n deposits these m a t e r i a l s i n the waste water that then must be handled s e p a r a t e l y . I f the i n c i n e r a t o r i s equipped f o r the i n j e c t i o n of l i q u i d s i n t o the f i r e b o x , s i m i l a r to one developed f o r handling b i o l o g i c a l m a t e r i a l (15), i t may be f e a s i b l e to have a closed system and e l i m i n a t e the need to t r e a t the waste water from the exhaust scrubber by yet some other method. A system f o r the removal of a carcinogen, 2-Acetylaminofluorene, at l e s s than one part per b i l l i o n l e v e l by non-ionic adsorption from waste water was developed f o r use at the NCTRL (16). I f permitted by r e g u l a t o r y o r g a n i z a t i o n s , i n l i e u of using a scrubber to prevent the r e l e a s e of c a r c i n o g e n i c m a t e r i a l to the atmosphere, increase the operating temperatures, i n c r e a s e r e t e n t i o n time by i n s t a l l i n g i n t e r n a l b a f f l e s , or i n s t a l l an a f t e r b u r n e r i n the exhaust stack. To minimize handling by personnel of waste containers from c a r c i n o genic l a b o r a t o r i e s , the U. S. Army, F o r t D e t r i c k developed an automatic system f o r dumping waste cans i n t o an i n c i n e r a t o r , F i g u r e 6. Normally, containers from the carcinogenic l a b o r a t o r i e s are taken d i r e c t l y to the i n c i n e r a t o r and immediately placed i n a p r e v i o u s l y heated f i r e b o x of the i n c i n e r a t o r operating at sustained temperatures. I f a b s o l u t e l y necessary, wastes can be transported d i r e c t l y to a designated b u r i a l s i t e . The u n s a t i s f a c t o r y r e s u l t s experienced i n the d i s p o s a l of "properly packaged" r a d i o a c t i v e waste by b u r i a l i n d i c a t e that extreme caution should be used when r e s o r t i n g to t h i s method f o r d i s p o s a l of chemical carcinogens. In January, 1976, the Environmental P r o t e c t i o n Agency (17, 18) reported that r a d i o a c t i v e m a t e r i a l migrated from a surface b u r i a l f a c i l i t y and extended to the surrounding environment f o r s e v e r a l hundred f e e t from i t s o r i g i n a l s i t e . Radioactive m a t e r i a l was detected i n surface s o i l samples, i n s o i l cores, i n sediments from deep monitoring w e l l s , and i n sediments from i n t e r m i t t e n t streams which drained the b u r i a l s i t e s . Again, whenever p o s s i b l e , i f carcinogenic m a t e r i a l cannot be rendered harmless, i t should be disposed of by i n c i n e r a t i o n . Emergency Procedures In the event of an overt accident i n the l a b o r a t o r y , personn e l should: 1) leave the area; 2) a l e r t other personnel i n the immediate v i c i n i t y ; and 3) n o t i f y the s a f e t y o f f i c e , f i r e department, medical s t a f f , or other designated personnel who w i l l

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

206

Figure 5.

Plastic bottle with absorbent material used for the disposal of liquid carcinogenic wastes

Figure 6.

Automatic incinerator charge system

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

11.

BARBEITO

Chemical

Carcinogen

Use

207

respond to a s s i s t and d i r e c t the cleanup o p e r a t i o n s . I f f e a s i b l e , when e x i t i n g the l a b o r a t o r y , open flames should be turned o f f . I f the a c c i d e n t occurred w i t h i n a c a b i n e t , the sash should be placed i n an almost c l o s e d p o s i t i o n , to i n c r e a s e the a i r v e l o c i t y through the opening and r e s t r i c t the spread of contamination. However, personnel s a f e t y i s not to be j e o p a r d i z e d f o r the sake of saving experimental m a t e r i a l s or the p r o t e c t i o n of the f a c i l i t y . Personnel i n v o l v e d d i r e c t l y with an overt accident should remove c l o t h i n g as near as p o s s i b l e to the accident s i t e i n order to prevent contamination of other areas. They should immediately shower. The primary a c t i o n i s to minimize personnel exposure and prevent personnel i n j u r y . Before e n t e r i n g the a c c i d e n t s i t e allow 30 minutes to elapse w h i l e the a e r o s o l i z e d p a r t i c l e s s e t t l e out or are removed by the forced v e n t i l a t i o n system. The area may be entered by personnel i n a p p r o p r i a t e p r o t e c t i v e c l o t h i n g equipped with necessary cleanup m a t e r i a l . P r o t e c t i v e c l o t h i n g , as a minimum, should c o n s i s t of a complete s e t of d i s p o s a b l e outer garments, shoes or boots with outer shoe covers, gloves, head cover, and appropriate r e s p i r a t o r y p r o t e c t i o n . I f f e a s i b l e , the s p i l l e d c a r c i n o g e n i c m a t e r i a l i s to be degraded or d e a c t i v a t e d by gently covering the s p i l l e d m a t e r i a l with a s u i t a b l e chemical. F o r c i b l e spraying of l i q u i d s i s to be avoided to prevent the c r e a t i o n of a e r o s o l s . I f the c a r c i n o g e n i c m a t e r i a l s p i l l e d i s aqueous, i t i s to be absorbed i n t o combustible m a t e r i a l and p r o p e r l y packaged f o r d i s p o s a l . I f the c a r c i n o g e n i c m a t e r i a l i s a s o l i d or powder, i t i s to be c o l l e c t e d and packaged f o r d i s p o s a l . Immediately f o l l o w i n g a cleanup, a l l personnel should d i s c a r d p r o t e c t i v e c l o t h i n g and shower. Personnel i n v o l v e d i n cleanup operations must avoid contaminating other areas because of wearing contaminated outer c l o t h i n g when p a s s i n g through the b u i l d i n g to the shower. To prevent t h i s , double garments should be donned before e n t e r i n g the a c c i d e n t area; the outer s e t i s l e f t behind at the accident s i t e when l e a v i n g a f t e r the cleanup. An a l t e r n a t e method i s to d i s r o b e a t the accident s i t e and put on c l e a n c l o t h i n g to walk to the shower area. A l l m a t e r i a l s used i n the cleanup operation are to be discarded immediately by procedures p r e v i o u s l y o u t l i n e d f o r d i s p o s a l of contaminated wastes. F a c i l i t y Design

Features

Design f e a t u r e s of f a c i l i t i e s used f o r research on r e g u l a t e d chemical carcinogens or suspect chemicals are g e n e r a l l y s i m i l a r to those used f o r work w i t h i n f e c t i o u s microorganisms or the requirements r e c e n t l y promulgated f o r recombinant DNA r e s e a r c h ( 8 ) . Entrances to f a c i l i t i e s used f o r research w i t h chemical carcinogens must be c o n t r o l l e d at p o i n t s of access. Access p o i n t s where chemical carcinogens or suspect chemicals are used must be posted with appropriate s i g n s : "DANGER—CHEMICAL CARCINOGENAUTHORIZED PERSONNEL ONLY. A shower should be a v a i l a b l e w i t h i n the f a c i l i t y to personnel working with known or suspect chemical 11

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

208

CHEMICAL

A N D EXPLOSIVES FACILITIES

carcinogens. V e n t i l a t i o n of the l a b o r a t o r y area should have no r e c i r c u l a t i o n of exhaust a i r from the work area. Exhaust a i r should be discharged outdoors and d i s p e r s e d to the atmosphere i n a manner that prevents reentrainment i n t o the supply of the f a c i l i t y or of adjacent f a c i l i t i e s . The v e n t i l a t i o n system should be capable of maintaining d i r e c t i o n a l a i r f l o w from areas of l e s s e r to more hazardous areas. For example, a i r d i r e c t i o n a l flow s h a l l be from c o r r i d o r to l a b o r a t o r y to fume hood to atmosphere. Exhaust a i r from primary containment devices (fume hoods, s a f e t y cabinets or other) s h a l l be a p p r o p r i a t e l y t r e a t e d by f i l t r a t i o n u s i n g a h i g h e f f i c i e n c y p a r t i c u l a t e a i r f i l t e r (HEPA), or by a d s o r p t i o n , a b s o r p t i o n , r e a c t i o n , i n c i n e r a t i o n , or d i l u t i o n used i n d i v i d u a l l y or i n an a p p r o p r i a t e combination. I f HEPA or c h a r c o a l f i l t e r s are used, these must be i n s t a l l e d and operated to permit decontamination, maintenance, and replacement without exposing personnel or causing contamination of the environment. A f i l t e r system and o p e r a t i o n a l procedure developed to meet these s p e c i f i c requirements i s the U l t r a l o k bag-in bag-out r e t a i n i n g system. On i n i t i a l s t a r t - u p , a f i l t e r i s i n s t a l l e d i n the system and a p l a s t i c bag i s placed on the o u t l e t of the housing. When the f i l t e r i s to be r e p l a c e d , i t i s moved from the housing i n t o the p l a s t i c bag. Subsequently, the bag i s heat s e a l e d . A heat s e a l of s u f f i c i e n t width w i l l permit c u t t i n g a t midpoint and removal of the f i l t e r enclosed i n the bag l e a v i n g the remaining closed stub of the p l a s t i c bag on the f i l t e r housing. Then a new p l a s t i c bag c o n t a i n i n g a p r e v i o u s l y c e r t i f i e d f i l t e r i s placed over the stub and attached to the second r e t a i n i n g r i n g on the f i l t e r housing. Next, the f i r s t p l a s t i c stub i s released from the f i r s t r e t a i n i n g r i n g and l e f t i n the new p l a s t i c bag. The new f i l t e r i s i n s t a l l e d i n the f i l t e r housing, t e s t e d , and c e r t i f i e d . A f t e r the a i r f l o w i s measured and other o p e r a t i o n a l aspects are v e r i f i e d to f u n c t i o n p r o p e r l y , the cabinet i s ready f o r reuse. Procedures f o r the c e r t i f i c a t i o n of HEPA f i l t e r s are d e t a i l e d i n N a t i o n a l S a n i t a t i o n Foundation Standard No. 49 (19). R

Laboratory Containment

Cabinets

In g e n e r a l , four types of cabinets are used f o r work with research q u a n t i t i e s of chemical carcinogens. These are the conventional fume hood; a C l a s s I b i o l o g i c a l s a f e t y c a b i n e t ; a C l a s s I I (Type B) b i o l o g i c a l safety c a b i n e t ; and a Class I I I c l o s e d glove box system ( 8 ) . Chemical Fume Hood. The chemical fume hood should have an average l i n e a r face v e l o c i t y of 100 l i n e a r f e e t per minute (lfpm). The window sash height that gives t h i s measured i n f l o w should be marked on the edge w a l l of the c a b i n e t . The i n f l o w v e l o c i t y to a fume hood w i t h the sash f u l l y opened should be 85 lfpm or more, F i g u r e 7.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

11.

BARBEITO

Chemical

Carcinogen

Figure 7.

Use

Chemical fume hood

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

209

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

"it

.1

1

Figure 8.

CLASS

C L A S S IIB

Biological safety cabinets and methods for handling cabinet exhaust air

CLASS I

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

III

11.

BARBEITO

Chemical

Carcinogen

Use

211

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

Class I Cabinet. The Class I cabinet i s a v e n t i l a t e d cabinet that o f f e r s personnel p r o t e c t i o n only. S i n g l e pass, u n f i l t e r e d a i r from the l a b o r a t o r y room enters the cabinet and, a f t e r flowing across the work s u r f a c e , i s f i l t e r e d through a HEPA and/or a c h a r c o a l f i l t e r ( s ) or may be i n c i n e r a t e d before discharge to the atmosphere. The f r o n t access opening i s u s u a l l y f i x e d at eight inches. This cabinet may be used i n three o p e r a t i o n a l modes: with a f u l l - w i d t h open f r o n t , with an i n s t a l l e d f r o n t c l o s u r e panel without gloves, and with an i n s t a l l e d f r o n t c l o s u r e panel equipped with arm length rubber gloves (20). I f used with the f u l l - w i d t h open f r o n t , the average inward a i r f l o w should be 100 lfpm (1), Figure 8. Class II (Type B). The Class I I (Type B) cabinet has a v e r t i c a l s l i d i n g sash with a minimum work opening of eight inches and i n f l o w v e l o c i t y of 100 lfpm (+10%). I t i s a l s o equipped with a HEPA f i l t e r p o s i t i o n e d so that only f i l t e r e d a i r enters the work zone. Approximately 30% of the a i r i s r e c i r c u l a t e d a f t e r f i l t r a t i o n to permit i t s use w i t h research q u a n t i t i e s of suspect or known carcinogens and t i s s u e c u l t u r e c e l l l i n e s . This cabinet i s not to be used with e x p l o s i v e or flammable s o l v e n t s unless explosion-proof motors are provided. Again, the exhaust from t h i s type of cabinet may be f i l t e r e d through a HEPA and/or a charcoal f i l t e r ( s ) or i n c i n e r a t e d before discharge to the atmosphere. M a n i f o l d i n g exhaust ducts from other Class I I cabinets i s p e r m i s s i b l e provided a i r balance i s maintained, F i g u r e 8. Class I I I . The Class I I I cabinet system i s u s u a l l y of modular design, made of s t a i n l e s s s t e e l , g a s t i g h t , and operated under negative pressure of at l e a s t a h i n c h water gauge. I t i s equipped with arm length neoprene gloves. Both supply and exhaust a i r are HEPA f i l t e r e d . O c c a s i o n a l l y , the exhaust a i r may be treated before r e l e a s e to the atmosphere by i n c i n e r a t i o n . A i r v e n t i l a t i o n i s u s u a l l y e s t a b l i s h e d at ten a i r changes per hour to remove contaminants from the work environment; a higher exchange r a t e may be necessary to c o n t r o l temperature r i s e w i t h i n the cabinet below 10 F or to meet other requirements. A dunk tank or attached decontamination a i r l o c k system may be used to introduce or remove m a t e r i a l from the Class I I I system, Figure 8. A l l primary containment devices s h a l l be c e r t i f i e d to meet performance c r i t e r i a on i n i t i a l i n s t a l l a t i o n , f o l l o w i n g any move or maintenance, and at l e a s t annually. Other s a f e t y f e a t u r e s of f a c i l i t y design i n c l u d e : nonporous surfaces on f l o o r s , w a l l s , and c e i l i n g ; s e l f - c l o s i n g doors that must remain closed to maintain a i r balance and d i r e c t i o n a l a i r f l o w s . I f f l o o r d r a i n s are present, t h e i r traps should be f i l l e d with water weekly.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L

212

A N D EXPLOSIVES FACILITIES

Summary

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

Three key p r i n c i p l e s to p r o t e c t employees performing work with known or suspect chemical carcinogens o r other t o x i c substances, and to minimize or, i d e a l l y , prevent environmental contamination, i n c l u d e proper use of equipment, establishment of good personnel p r a c t i c e s , and employment of safe l a b o r a t o r y techniques. Poor l a b o r a t o r y procedures cannot be o f f s e t by s p e c i a l equipment o r f a c i l i t y design f e a t u r e s . Personnel p r a c t i c e s i n c l u d e p r o t e c t i v e c l o t h i n g ; a v a i l a b i l i t y of showers; mechanical p i p e t t i n g devices; p r o h i b i t i o n of e a t i n g , d r i n k i n g , and smoking; and adoption o f acceptable p e r s o n a l hygiene p r a c t i c e s . Medical s u r v e i l l a n c e may be a d v i s a b l e . O p e r a t i o n a l p r a c t i c e s must encompass a p o l i c y t o : •

prevent contamination of work s u r f a c e s ;



r e q u i r e use of primary containment



s a f e l y package, transport and ship m a t e r i a l ;



maintain p r o p e r l y secured storage areas;



l a b e l a l l containers and c o n t r o l inventory f o r timely d i s p o s a l of unstable m a t e r i a l s ;



use good housekeeping



e s t a b l i s h decontamination procedures; and



have a v a i l a b l e emergency personnel and cleanup procedures i n the event o f an overt a c c i d e n t .

devices;

practices; degradations and d i s p o s a l

The f a c i l i t y must be designed t o c o n t r o l access. Signs should designate r e s t r i c t e d areas. C l o t h i n g requirements f o r entry should be i d e n t i f i e d . There should be d i r e c t i o n a l a i r c o n t r o l with adequate v e n t i l a t i o n r a t e s . Primary containment equipment such as chemical fume hoods, a Class I or Class I I (Type B) b i o l o g i c a l s a f e t y cabinet, o r a glove box system should be a v a i l a b l e f o r use with known or suspect chemical carcinogens or other t o x i c substances.

"Literature Cited" 1.

2.

3.

U.S. Department of Health, Education, and Welfare, National Cancer Institute, Office of Research Safety. "Safety standards for research involving chemical carcinogens." DHEW Publication No. (NIH) 76-900. Bethesda, MD 20014. 1975. U.S. Department of Labor. "Toxic and hazardous substances." Current Issue 29 Code of Federal Regulations - Section 1910.1000 - 1910.1029, Subpart Z. Sansone, E . B . , and Tewari, Y.B. "The permeability of laboratory gloves to selected solvents." Amer Ind Hyg Assoc J (1978) 39:169-174.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

11.

4.

5.

6.

7.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

8.

9.

10.

11. 12.

13.

14.

15.

16.

17.

18.

BARBEITO

Chemical

Carcinogen

Use

213

U.S. Department of Labor. "Personal protective equipment." Current Issue 29 Code of Federal Regulations - Part 1910, Subpart I. U.S. Department of Health, Education, and Welfare, Center for Disease Control. "Cumulative supplement of NIOSH certified equipment." Atlanta, GA 30333. 1977. U.S. Department of Health, Education, and Welfare, National Cancer Institute, Office of Research Safety. "Biological safety manual for research involving oncogenic viruses." DHEW Publication No. (NIH) 76-1165. Bethesda, MD 20014. U.S. Department of Labor, Occupational Safety and Health Administration. "Carcinogens." Federal Register (Jan 29, 1974) 39 (20):3755-3797. U.S. Department of Health, Education and Welfare, National Cancer Institute, Office of Research Safety. "Laboratory safety monograph - a supplement to the NIH guidelines for recombinant DNA research." Bethesda, MD 20014. 1978. U.S. Department of Health, Education and Welfare. "Shipment of certain things." Current Issue 42 Code of Federal Regulations - Section 72.25, Subpart C. U.S. Department of Transportation. "Packaging requirements for etiologic agents." Current Issue 49 Code of Federal Regulations - Section 173.387, Subpart G. Air Transport Association. "Restricted articles t a r i f f 6-D." Amendment June 25, 1977. U.S. Postal Service. "Domestic mail - non-mailable matter germs." Current Issue 39 Code of Federal Regulations Section 124.2. U.S. Department of Health, Education, and Welfare, National Institutes of Health. "Disposal of refuse: laboratory waste, dead animals, glassware and similar items." Manual Issuance 3032. NIH - 1511-1. U.S. Department of Health, Education, and Welfare, National Institutes of Health. "Disposal of suspected or known chemical carcinogenic material at NIH." Manual Issuance 3032-2. NIH - 1511-1. Barbeito, M.S., and Shapiro, M. "Microbiological safety evaluation of a solid and liquid pathological incinerator." J Med Primatol (1977) 6:264-273. Nony, C . R . , Treglawn, E.J., and Bowman, M.C. "Removal of trace levels of 2-Acetylaminofluorene (2AAF) from wastewater." The Science of the Total Environment (1975) 4:155-163. Elsevier Scientific Publishing Co, Amsterdam. Environmental Health Letter. (Jan 1976) 15:2 Gershon W. Fishbein Publisher. 1097 National Press Building, Washington, DC 20045. Environmental Health Letter. (September 1976) 15:17. Gershon W. Fishbein Publisher. 1097 National Press Building, Washington, DC 20045.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

214

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

19.

National Sanitation Foundation. "Class II (laminar flow) biohazard cabinetry." Standard No. 49. Ann Arbor, MI 48105. 1976. Barbeito, M . S . , and Taylor, L . A . "Containment of microbial aerosols i n a microbiological safety cabinet." Appl Microbiol (1968) 16 (8):1225-1229.

20.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch011

RECEIVED November 22, 1978.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

12 Concepts a n d M e t h o d o l o g y for Toxicological Testing

B. P. McNAMARA

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch012

Department of the Army, U.S. Army Armament Research and Development Command, Chemical Systems Laboratory, Aberdeen Proving Ground, MD 21010

Numerous laws and g u i d e l i n e s d i c t a t e that all chemicals to which men are exposed be evaluated f o r short-term (ST) and l o n g term (LT) toxicity hazards. The National Environmental P o l i c y A c t (Table I) s t a t e s that nothing will be put i n t o the environment which has an adverse e f f e c t on the health o f man, domestic animals, wildlife, vegetation, property o r c u l t u r a l v a l u e s . Table I.

National Environmental Policy Act of 1969 (PL 91-190)

N o t h i n g w i l l be p u t i n t o t h e e n v i r o n m e n t w h i c h w i l l s h o r t - and l o n g - t e r m a d v e r s e e f f e c t s o n :

have

Man Domestic Animals Wildlife Property Recreational Values C u l t u r a l Values

The Clean Air Act Amendment (Table I I ) states that adverse effects on health includes the e n t i r e gamut o f ST and LT toxicological effects. Table II.

Clean A i r Act Amendment of 1970 (PL 91-604)

Adverse s h o r t -

or long-term effects

Toxicological Behavioral Biochemical Immunological

on h e a l t h

include:

Physiological Teratogenic Mutagenic Carcinogenic

This chapter not subject to U.S. copyright. Published 1979 American Chemical Society

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

216

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

The Occupational S a f e t y and Health Act (Table I I I ) extends these e f f e c t s to include diminished h e a l t h , functional c a p a c i t y and life expectancy. Table III.

Occupational Safety and Health Act of 1970 (PL 91-596)

No employee will suffer d i m i n i s h e d h e a l t h , f u n c t i o n a l c a p a c i t y o r life e x p e c t a n c y a s a result o f t h e work experience.

The Toxic Substance Control Act (Table IV) states that all chemicals w i l l be tested f o r their safety to man and their environment. Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch012

Table IV.

Toxic Substance Control Act of 1976

C h e m i c a l s w i l l be t e s t e d f o r s a f e t y t o man a n d t h e e n v i r o n m e n t , by t h e producer.

To implement these laws, guidelines (Table V) for testing (by all routes o f administration for all acute, subchronic and chronic toxicological effects) have been described by the Food and Drug Administration (FDA), Environmental Protection Agency (EPA), National Institute o f Occupational Safety and Health (NIOSH), Department of Transportation (DOT), Consumer Products Safety Commission (CPSC), National Cancer Institute (NCI), National Academy o f Sciences (NAS), and various industrial groups. These tests appear in the Code o f Federal Regulations (CFR), Federal Register (FR), and other official or quasi-official publications. These laws and guidelines indicate that a toxicological testing program should monitor the integrity o f every organ or system o f organs to indicate the presence or absence o f ST or LT toxicological effects. Testing a single compound for all effects requires the expenditure o f hundreds o f thousands o f dollars and commits many research workers, many laboratory facilities, and much animal holding space for prolonged periods o f time. In view o f the vast number o f chemicals to be tested it i s necessary that more economical testing systems be adopted. Much o f t h e p r e s e n t d a y s a f e t y e v a l u a t i o n f o l l o w s p r e c e p t s ( T a b l e V I ) w h i c h were p r o m u l g a t e d b y FDA f o r new d r u g s . T h i s r e q u i r e s t h a t t h e r a p e u t i c a n d t o x i c d o s e s be s t u d i e d f o r a l l t o x i c e f f e c t s , s i t e o f a c t i o n , mechanism o f a c t i o n , r a t e s o f a b s o r p t i o n , d i s t r i b u t i o n i n t h e body, m e t a b o l i s m , e x c r e t i o n , time o f o n s e t and d u r a t i o n o f e f f e c t s . B e c a u s e o f t h e v a s t numbers o f commercial c h e m i c a l s i t may be n e c e s s a r y t o base r e g u l a t o r y c o n t r o l s on much l e s s e x p e r i mental i n f o r m a t i o n . In some s i t u a t i o n s , i t may be s u f f i c i e n t t o d e m o n s t r a t e t h a t a g i v e n d o s e p r o d u c e s "no e f f e c t " . T h e r e may

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

M C NAMARA

12.

Toxicological

Table V .

Testing

Guidelines for Toxicological Testing

1.

CFR 16, CPSC FED HAZARDOUS SUBST ACT. REGULATIONS, PL 92-573. OCT 27, (FR. V O L 38, NO. 187, SEPT 27, 1973)

2.

PRINCIPLES AND PROCEDURES FOR EVALUATION TOXICITY OF HOUSEHOLD

3.

CFR 21, FDA, JAN 1,

4.

CFR 46, SHIPPING, JAN 1,

5.

CFR 49, TRANSPORTATION, JAN 1,

6.

GRAZIANO TARIFF, NO. 25, APR

SUBSTANCES. NAS-NRC PUBL. 1138,

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch012

217

1972

1977

1972 1972 1972

1972

7.

CFR 40, PART 162, EPA, PESTICIDE

8.

CFR 40, NO. 123, EPA, JUNE 25, 1975

PROGRAM

9.

ASSOC, F&D OFFICIALS OF U.S.,

(PESTICIDES)

1959

10.

NAS-NRC, PRINCIPLES

11.

NCI, GUIDELINES

FOR E V A L U A T I N G CHEMICALS IN THE ENVIRONMENT,

12.

FDA ADVISORY COMMITTEE ON PROTOCOLS FOR S A F E T Y E V A L U A T I O N ; PANEL ON

13.

EPA, CRITERIA FOR EVALUATING THE MUTAGENICITY

14.

BARNES & DENZ, PHARMACOLOGICAL REVIEW (6:191-242, 1954) EXPERIMENTAL METHODS USED IN DETERMINING CHRONIC TOXICITY WEIL & McCOLLISTER, A G R . & FOOD CHEMISTRY (11:486-91, 1963)

REPRODUCTION (TAP 16:264-299,

15.

1975

FOR CARCINOGEN BIOASSAYS IN SMALL RODENTS

Table VI.

1970) OF CHEMICALS, MAR 24,

Philosophies of Safety Evaluation NEW DRUG

APPLICATION

DETAILED INFORMATION ON THE N A T U R E OF A L L EFFICACIOUS AND TOXIC EFFECTS. NO E F F E C T LIMITS DEMONSTRATE THAT A SPECIFIED DOSE PRODUCES NO E F F E C T . ARBITRARY CONTROLS IN ABSENCE OF DETAILED D A T A , BASE CONTROL LIMITS ON SMALLER V A L U E OF A C U T E LD50/1000 OR ACCEPTED LIMIT FOR A STRONG CARCINOGEN (E.G., BIS-CHLOROMETHYL

ETHER)

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

1977

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch012

218

be s i t u a t i o n s where s i m p l e LD50 d a t a o r a r b i t r a r y c o n t r o l v a l u e s may s u f f i c e . In t h e p r e d i c t i o n o f l o n g - t e r m "no e f f e c t " d o s e s t h e r e a r e two i m p o r t a n t c o n c e p t s t o c o n s i d e r . One i s t h a t t h e r e a r e p r e d i c t a b l e d o s e r e l a t i o n s h i p s between a c u t e , s u b c h r o n i c and c h r o n i c t o x i c e f f e c t s . Acute t o x i c i t y t e s t s r e f e r s t o studies wherein s i n g l e o r r e p e a t e d d o s e s a r e s t u d i e d 14 days o r l e s s . S u b c h r o n i c (subacute) t e s t s r e f e r s t o s t u d i e s wherein the doses are given f i v e - s e v e n d a y s per week f o r 90 d a y s . S u b c h r o n i c s t u d i e s a r e a l s o r e f e r r e d t o a s 13-week, t h r e e - m o n t h o r s h o r t - t e r m t e s t s . This i s in contrast to chronic, long-term, l i f e - t i m e tests w h e r e i n t h e e x p o s u r e i s r e p e a t e d d a i l y f o r two y e a r s . The s e c o n d c o n c e p t i s t h a t r e p e a t e d d o s e s o f any s u b s t a n c e w i l l produce i t s t o x i c e f f e c t s (with the exception o f c a r c i n o g e n i c i t y ) i n 90 days o r n o t a t a l l . T h u s , t h e l i f e t i m e "no e f f e c t " dose can be d e r i v e d from t h e 90-day "no e f f e c t " d o s e . T h e r e a r e i n d i c a t i o n s t h a t even c a r c i n o g e n i c " a c t i v i t y " may be d e t e c t e d i n sboiet-term s t u d i e s . W. H a y e s ^ ' a n d C. W e i r - e t a l _ . , have shown ( T a b l e V I I ) t h a t t h e r e a r e u s e f u l r e l a t i o n s h i p s between LD50's, ST, L T o r l i f e t i m e "no e f f e c t " d o s e s . ;

Table VII.

Comparison of Single Dose with 7-Day and 90-Day " N o Effect" Doses (2)

LD50/6 = 7 day "no e f f e c t " dose f o r 75% o f compounds t e s t e d LD50/20 - 7 day "no e f f e c t " d o s e f o r 95% o f compounds t e s t e d 7-day "no e f f e c t " / 6 = 90-day "no e f f e c t " dose f o r 95% o f compounds t e s t e d LD50/120 = 90-day "no e f f e c t " d o s e f o r 95% o f compounds t e s t e d There i s extensive information (Table VIII) which i n d i c a t e s t h a t 1/1000 o f t h e a c u t e LD50 o r 1/10 o f t h e 3-month "no e f f e c t " can be g i v e n r e p e a t e d l y t h r o u g h o u t a l i f e t i m e w i t h o u t p r o d u c i n g effects. Table VIII.

Prediction of Long-Term " N o Effect" Doses

Dose LD50/100 LD50/1000 3-Month "no e f f e c t " Dose/10

(2)

R e p e a t e d Doses Which W i l l P r o d u c t "No E f f e c t " i n : T h r e e months Lifetime Lifetime

C. Weil e t a l _ . , d e t e r m i n e d t h e e f f e c t i v e and "no e f f e c t " d o s e s o f 33 compounds i n r a t s a t t h r e e months and two y e a r s (LT) ( T a b l e I X ) . T h e s e compounds were d i v e r s e i n c h e m i c a l s t r u c t u r e , p h a r m a c o l o g i c t y p e , and t o x i c i t y as j u d g e d by LD50's o r S T and LT '-no e f f e c t " d o s e s .

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

12.

MCNAMARA

Toxicological

Table IX.

Testing

219

Summary of Information of Weil et al. ( 3 )

33 Compounds

Agriculture chemicals, pesticides, vete r i n a r y products, thickeners, s t a b i l i z e r s , a d d i t i v e s , antimycotics, water treatment, food packaging m a t e r i a l s

Species

Rat and

dog

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch012

Dose Ranges LD50

17 - 31 ,000 mg/kg

Short-term "no e f f e c t " dose

2.25

- 1,750

Long-term "no e f f e c t " d o s e

2.25

- 3,750 mg/kg

mg/kg

In t h e above s t u d y a n i m a l s were o b s e r v e d f o r 36 c r i t e r i a o f t o x i c i t y ( T a b l e X) i n c l u d i n g m o r t a l i t y , f o o d i n t a k e , w e i g h t , p a t h o l o g y , h e m a t o l o g y , b l o o d c h e m i s t r y , CNS e f f e c t s , f e r t i l i t y , c h o l i n e s t e r a s e , and n e o p l a s i a . The most s e n s i t i v e c r i t e r i a were body w e i g h t g a i n , l i v e r and k i d n e y w e i g h t r a t i o s , and l i v e r and k i d n e y p a t h o l o g y . T h e s e i n v e s t i g a t o r s b e l i e v e t h a t o n l y t h e s e p a r a m e t e r s need be f o l l o w e d i n t h e 13-week t e s t . I t was t h e i r o p i n i o n t h a t t h e r a t was a more s e n s i t i v e i n d i c a t o r o f t h e "no e f f e c t " l e v e l t h a n t h e dog. Table X.

Summary of Information of Weil et al. ( 3 )

36 T o x i c i t y C r i t e r i a I n c l u d i n g : M o r t a l i t y , food i n t a k e , weight, p a t h o l o g y , hematology, blood chemistry, c e n t r a l nervous system, f e r t i l i t y Most E f f e c t i v e C r i t e r i a : Body w e i g h t g a i n , l i v e r and k i d n e y w e i g h t / b o d y w e i g h t , l i v e r and k i d n e y p a t h o l o g y The s a f e t y f a c t o r s f o r t h e 33 compounds i n r a t s a r e shown i n T a b l e XI. T h i s t a b l e shows t h a t : (1) f o r 27% o f t h e compounds t h e L T "no e f f e c t " d o s e was t h e same a s , o r g r e a t e r t h a n ( t o l e r a n c e ) t h e S T "no e f f e c t " d o s e ; (2) f o r 51% o f t h e compounds t h e LT "no e f f e c t " was l e s s t h a n t h e S T "no e f f e c t " d o s e by a f a c t o r o f o n l y 2 o r l e s s and (3) t h e S T "no e f f e c t " d o s e d i v i d e d b y f a c t o r s o f 5, 10 o r 12 would encompass t h e L T "no e f f e c t " d o s e f o r 91, 97 and 100% o f t h e compounds, r e s p e c t i v e l y .

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

220

Table XI.

Safety Factors for 3 3 Compounds in Rats ( 3 )

P e r c e n t o f compounds No. o f compounds influenced i n f l uenced 1 27 9 51 2 17 5 91 30 97 10 32 100 12 33 * S h o r t - t e r m no e f f e c t d o s e / f a c t o r - l o n g term no e f f e c t dose

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch012

Factors*

The i m p o r t a n t f e a t u r e o f t h e s e d a t a i s t h a t t h e r e i s a 27% c h a n c e t h a t t h e ST g i v e n r e p e a t e d l y w i l l n o t p r o d u c e t o x i c e f f e c t s i n a l i f e t i m e and a 95% t o 100% l i k e l i h o o d t h a t 1/10 t o 1/12 o f t h e ST "no e f f e c t " d o s e can be g i v e n r e p e a t e d l y t h r o u g h ­ out a l i f e t i m e without producing t o x i c e f f e c t s . To t e s t t h e c o n c e p t s a d v a n c e d by W e i l et^ a K * 82 s t u d i e s c o v e r i n g 122 compounds and 566 dose l e v e l s were c o l l e c t e d from the l i t e r a t u r e . These s t u d i e s were a n a l y z e d f o r e f f e c t s o b t a i n ­ ed a t 13 weeks and a t two y e a r s . The a n a l y s i s i s shown i n Table X I I .

Table XII.

Summary of Data from Various Literature Sources

Number o f s t u d i e s 82 Number o f compounds 122 Number o f d o s e s * 566 No. o f c o m p o u n d s / d o s e s * No p o s i t i v e d o s e s a t t h r e e 3/122 months but some p o s i t i v e d o s e s a t two y e a r s . Some p o s i t i v e d o s e s a t t h r e e months but more p o s i t i v e d o s e s a t two y e a r s .

Percent 2.5

5/122

4.1

A l l d o s e s w h i c h were "no e f f e c t " 114/122 a t t h r e e months were a l s o "no e f f e c t " a t two y e a r s .

93.4

Doses* w h i c h were "no e f f e c t " t h r e e months and two y e a r s .

97.4

at

551*/566*

The s t u d i e s o f W e i l et_ a l _ . , were c o n d u c t e d by t h e same i n v e s t i g a t o r s u s i n g a r e l a t i v e l y homogenous g r o u p o f r a t s and c o n s i s t a n t c r i t e r i a f o r t o x i c o l o g i c a l measurements. The "no e f f e c t " d o s e s were d e t e r m i n e d w i t h p r e c i s i o n . The l i t e r a t u r e r e v i e w i n c l u d e d compounds, i n v e s t i g a t o r s , a n i m a l s p e c i e s , and c r i t e r i a o f t o x i c i t y w h i c h v a r i e d g r e a t l y . D e s p i t e t h e w e l t e r o f i n f o r m a t i o n , an agreement w i t h t h e d a t a o f

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

12.

MCNAMARA

Toxicological

Testing

221

Weil et_ a K s c o n c e r n i n g r e l a t i o n s h i p s o f LD50*s, ST, and L T "no e f f e c t " d o s e f o r i n d i v i d u a l compounds c o u l d be s e e n . J.P. F r a w l e y ( i ) c o l l e c t e d t w o - y e a r t o x i c i t y d a t a o n 2 2 0 s u b s t a n c e s . A d i s t r i b u t i o n o f t h e "no e f f e c t " l e v e l s i s shown in Table XIII. Table XIII.

Summary of Distribution of the " N o Effect" Level

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch012

"No e f f e c t " L e v e l (PPM)

o w

>

g

w

o

H O X — i i n

to ox oo

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch015

15.

GARN

Flexible

Lab

259

Design

Figure 4. View of overhead facilities showing exhaust and electrical service channel

Figure 5. "Exterior view" gained by use of an 8 X 12 foot mural—temporarily mounted for this photograph

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch015

260

TOXIC

C H E M I C A L A N D EXPLOSIVES FACILITIES

s o l v e n t s w i t h i n apparatus b u t t h e f l e x i b l e exhausts w i l l t a k e c a r e o f t h e s e uses. One use here w i l l be f o r a c o n t r o l l e d atmosphere thermobalance I am b u i l d i n g . Some o f the atmospheres I p l a n t o use w i l l be q u i t e n o x i o u s . I ' l l need exh a u s t some o f t h e time b u t I do n o t want the thermobalance i n a hood. A n o t h e r s t u d y , e l e c t r o c h e m i c a l t h i s time, i n t r o duces t h e p o s s i b i l i t y o f g e n e r a t i n g c h l o r i n e gas i f t h e m i c r o p r o c e s s o r c o n t r o l apparatus f a i l s o r i f t h e s o f t ware i s n o t adequate. Not y e t b e i n g p r o f i c i e n t i n such programming, I am d e s i g n i n g f o r a m o b i l e system I can p u t i n the w a l k - i n hood. A m o b i l e apparatus i s a l s o p l a n n e d f o r some work u s i n g carbon monoxide. Alarms i n c l o s e t , l a b , and hood s h o u l d g i v e adequate n o t i c e o f any e s c a p e . I n t h e p r e s e n t l a b o r a t o r y , t h e exhaust stream has been through copper t u b i n g t h r u s t almost a meter i n t o one o f t h e f l e x i b l e e x h a u s t s . The gas s e r v i c e s w i l l a g a i n come from c l o s e t s b u t t h i s time each c y l i n d e r - t o - a p p a r a t u s c o n n e c t i o n w i l l be made w i t h t u b i n g — made by t h e s t u d e n t — o r me — when i t i s needed. F o r n e a t n e s s t h e t u b i n g w i l l be s u p p o r t e d by hangers dropped down from t h e c e i l i n g . I p l a n t o go back t o c o l o r e d p l a s t i c t u b i n g f o r those uses f o r which i t i s adequate. Where t h e t u b i n g must pass o v e r o r through t h e graduate s t u d e n t ' s o f f i c e s I p l a n f o r i t t o go through p l a s t i c d r a i n p i p e . Where i t must pass o v e r a p a r t i t i o n a c o u p l e o f c o u p l e d elbows w i l l g u i d e i t . I have a l r e a d y found one r e s u l t o f i n a d e q u a t e comm u n i c a t i o n between u s e r and d e s i g n e r . The e l e c t r i c a l s e r v i c e c h a n n e l i s n o t j u s t overhead — i t i s a t c e i l i n g h e i g h t . I w i l l have t o d e c i d e whether t o r e c r u i t graduate s t u d e n t s from b a s k e t b a l l teams, buy a l a d d e r i f t h e r e i s money l e f t , o r have t h e c h a n n e l s lowered. A s i m i l a r p l a n w i l l be used f o r gases i n t h e anal y t i c a l teaching laboratory. There a r e o c c a s i o n a l needs f o r gases f o r chromatographs and such b u t s e v e r a l c l a s s e s use t h e l a b . We a l r e a d y use i n s t r u m e n t s on c a r t s f o r t h e c h e m i s t r y majors t o a v o i d t a k i n g up l a b space d u r i n g o t h e r c l a s s e s . Hooking up one o r two gas l i n e s t a k e s o n l y a few minutes. In a few c a s e s , I w i l l run l i n e s t o v a l v e s s e c u r e d t o t h e s e r v i c e s t r i p t o a v o i d t h e need t o f l u s h o u t l o n g l i n e s . F i n a l l y , t h e p r o s p e c t o f an i n s i d e o f f i c e f a i l e d t o i n t r i g u e me, b u t n e i t h e r d i d t h e i d e a o f l o o k i n g a t the w a l l o f t h e a d j a c e n t b u i l d i n g . A t B e l l Labs one summer, I c o u l d watch a hummingbird c a r e f o r h e r young. S i n c e I c o u l d n ' t go t o t h e mountain I am b r i n g i n g t h e mountain t o me by p u t t i n g up a g i a n t mural w i t h a few

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

15.

GARN

Flexible

Lab

Design

261

meters o f m a t e r i a l t o s i m u l a t e drapes ( F i g u r e 5 ) . I toyed w i t h the i d e a o f draw drapes u n t i l I checked prices. T h i s i s our c h e m i c a l s t o r e s manager l i f t i n g up h i s eyes unto the h i l l s — which were t a p e d t o the w a l l s f o r the photograph.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch015

To

Summarize;

L a b o r a t o r y d e s i g n needs t o take a c c o u n t o f v a r i e d uses even a t the i n i t i a l s t a g e s . F o r example, to move i n t o an a l r e a d y f i t t e d l a b would r e q u i r e r e moval o f some f a c i l i t i e s — an a d d i t i o n a l c o s t . Instrument rooms need f l o o r space more than service islands. The s e r v i c e s can as w e l l be b r o u g h t down i n d i v i d u a l l y from overhead. F l e x i b i l i t y o f use i s e a s i l y a c h i e v e d i f t h e r e are not t o o many permanent f i x t u r e s i n the way. To move i n t o an a l r e a d y f i t t e d lab would have r e q u i r e d removal o f some f a c i l i t i e s — an a d d i t i o n a l and unnecessary c o s t . W i t h the p r e s e n t arrangement, I can i n t e r change the s e v e r a l f u r n a c e a s s e m b l i e s I use w i t h the d i f f e r e n t i a l t h e r m a l a n a l y s i s ; I can move a d a t a a c q u i s i t i o n system from a p p a r a t u s t o a p p a r a t u s ; I can put r e a c t i o n a p p a r a t u s i n p o s i t i o n f o r d i r e c t m o n i t o r i n g by mass s p e c t r o m e t r y ; and I can use the exhaust f a c i l i t i e s effectively. In a d d i t i o n , I saved money w h i c h can be put t o b e t t e r use. RECEIVED November 22,

1978.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

16 Handling

a n d T r a n s p o r t of H a z a r d o u s M a t e r i a l s

HOWARD H. FAWCETT Equitable Environmental Health, 6000 Executive Blvd., Rockville, MD 20852

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch016

WILLIAM S. WOOD 1076 Dunvegan West, West Chester, PA 19380

Abstract The design of l o a d i n g and unloading facilities is critical to the safe t r a n s p o r t a t i o n o f hazardous chemical cargo. Adequate l o a d i n g racks and t r a n s f e r equipment, designed to p r o t e c t employees and the cargo during pumping o p e r a t i o n s , are being built by some com­ panies. Advances i n u l l a g e c o n t r o l , fire p r o t e c t i o n , r e s p i r a t o r y p r o t e c t i v e equipment, safety showers and other equipment and facil­ ities c o n t r i b u t e to personnel s a f e t y , property conservation and economic e f f i c i e n c y i n o p e r a t i o n s . Tank v e h i c l e c l e a n i n g and i n s p e c t i o n operations frequently can be improved by b e t t e r methods and s u p e r v i s i o n . Handling and ware­ housing o f drummed and packaged goods have been upgraded by modern methods, but e d u c a t i o n , s u p e r v i s i o n and c o n t r o l o f the human e l e ­ ment is still a s u b s t a n t i a l c h a l l e n g e .

H a n d l i n g and T r a n s p o r t o f H a z a r d o u s M a t e r i a l s T r a n s p o r t a t i o n o f hazardous m a t e r i a l s i s a v i t a l f u n c t i o n o f o u r economy and o u r way o f l i f e . Most s h i p m e n t s r e a c h t h e i r u l t i m a t e d e s t i n a t i o n s w i t h o u t i n c i d e n t , b u t t h e few t h a t d e r a i l , s p i l l , e x ­ p l o d e o r d r i v e p e o p l e from t h e i r homes have become f r e q u e n t news i t e m s , e s p e c i a l l y i n t h e p a s t few y e a r s . (The o p i n i o n s e x p r e s s e d by t h e a u t h o r s a r e b a s e d on p e r s o n a l o b ­ s e r v a t i o n s a n d do n o t n e c e s s a r i l y r e f l e c t t h e O r g a n i z a t i o n s ' w i t h which they are a f f i l i a t e d . ) 0-8412-0481-0/79/47-096-263$05.00/0 ©

1979 A m e r i c a n C h e m i c a l Society

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

264

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

H o w e v e r , t h e o p e r a t i o n s o f l o a d i n g , u n l o a d i n g , s t o r i n g and samp­ l i n g have more a c c i d e n t p o t e n t i a l t h a n t h e movement o f c a r g o i n c l o s e d t a n k s once t h e y a r e l o a d e d .

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch016

Tank c a r and t a n k t r u c k l o a d i n g and u n l o a d i n g , g a g i n g and s a m p l i n g o f l i q u i d c a r g o i n h e r e n t l y r e q u i r e s t h a t p e r s o n n e l work on t o p o f the t a n k c a r s o r t r u c k s . T h e r e a r e numerous c a s e s o f f a l l s from t o p dome l o c a t i o n s due sometimes t o e x p o s u r e t o t h e m a t e r i a l b e i n g t r a n s f e r r e d , o r t o t h e w e a t h e r c o n d i t i o n s , s u c h as r a i n o r i c e . A few t a n k c a r s a r e f i t t e d w i t h p l a t f o r m s s u r r o u n d i n g t h e dome. A w e l l d e s i g n e d f i x e d r a c k w i t h a s w i n g p l a t f o r m and g u a r d r a i l i s h i g h l y d e s i r a b l e , but often not a v a i l a b l e . The M a n u f a c t u r i n g C h e m i s t s A s s o c i a t i o n has p u b l i s h e d g u i d e l i n e s f o r s u c h f a c i l i t i e s (1). S i m i l a r r a c k s w i t h p l a t f o r m s a r e needed f o r t a n k t r u c k s . S w i n g l i n e s made up o f p i p e w i t h f l e x i b l e j o i n t s and p r o v i d e d w i t h a c o u n t e r b a l a n c e i s t h e p r e f e r r e d method o f t r a n s f e r r i n g h a z a r d o u s c h e m i c a l s i n t o o r from a t a n k v e h i c l e . H o s e s , no m a t t e r how t h o r ­ o u g h l y r e i n f o r c e d , have l o w e r p r e s s u r e c a p a b i l i t y and a r e e a s i l y damaged i n u s e . R u p t u r e o f t r a n s f e r hose i s a n o t uncommon c a u s e o f employee i n j u r y o r s p i l l o f p r o d u c t . M e t a l l i c tubing with b r a i d e d e x t e r i o r has a d m i r a b l e q u a l i t i e s , b u t a s h a r p b e n d , p a r ­ t i c u l a r l y n e a r t h e e n d , c a u s e s w e a k e n i n g and f a i l u r e , w h i c h i s often n e g l e c t e d before the f a i l u r e . E n v i r o n m e n t a l s t a n d a r d s p r o h i b i t s p i l l a g e t h a t can r e a c h a w a t e r ­ way; h e n c e , l o a d i n g and u n l o a d i n g a r e a s must be p a v e d o r o t h e r w i s e s e c u r e d and d r a i n e d t o r e c o v e r o r c o n t r o l any l o s s e s . Flushing of t h e s i t e w i t h w a t e r t o wash o f f s p i l l e d m a t e r i a l may t a x r e c o v e r y c a p a c i t y o r c o m p l i c a t e s u b s e q u e n t t r e a t m e n t and d i s p o s a l . Tank t r u c k t e r m i n a l s have a r e a l p r o b l e m i n t r e a t m e n t and d i s p o s a l o f d r a i n i n g s and w a s h i n g s d e r i v e d from t a n k e r c l e a n i n g o p e r a t i o n s , as do t a n k c a r s ( r a i l ) and t a n k e r - b a r g e o p e r a t i o n s ( w a t e r w a y s ) . (2) A s p e c i a l a c c i d e n t p o t e n t i a l e x i s t s i n t h e manual c l e a n i n g o f tank v e h i c l e s o f a l l t y p e s and s i z e s , due t o t h e use o f g a s e s o t h e r than a i r used f o r p r e s s u r e u n l o a d i n g . L i q u i d c a r g o , whether haz­ a r d o u s o r n o t , i s o f t e n u n l o a d e d by a p p l y i n g n i t r o g e n o r o t h e r " i n e r t " gas t o t h e tank i n o r d e r t o d i s p l a c e o r push o u t t h e c o n ­ tents. An u n s u s p e c t i n g t a n k c l e a n e r who e n t e r s s u c h a v e s s e l to c l e a n i t i s l i k e l y t o s u f f o c a t e and d i e w i t h o u t k n o w i n g he was i n trouble. In many r e c o r d e d i n c i d e n t s , h i s w o u l d - b e r e s c u e r , e n t e r ­ i n g w i t h o u t r e s p i r a t o r y p r o t e c t i o n , s u c h as s e l f - c o n t a i n e d b r e a t h ­ i n g a p p a r t u s , o r a s s i s t a n c e , meets a s i m i l a r f a t e . The h a z a r d s o f e n t e r i n g any e n c l o s e d s p a c e a r e r e c o g n i z e d i n most p l a n t s and p r o p ­ e r p r e c a u t i o n s a r e t a k e n (3), b u t t h e s e f a t a l i t i e s c o n t i n u e t o occur.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

16.

FAWCETT AND WOOD

Transport

of Hazardous

Materials

265

How does t h e pumper know when t h e t a n k v e s s e l i s f u l l ? Tank c a r s and t r u c k s f o r v o l a t i l e l i q u i d s may have p e r m a n e n t l y a t t a c h e d f i t t i n g s and no p r o v i s i o n f o r o p e n i n g t h e dome.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch016

I f any means o f g a g i n g i s p r o v i d e d , i t i s a d i p t u b e t h a t b l o w s o f f vapor u n t i l the l i q u i d l e v e l reaches i t . The p o s s i b i l i t y o f error is significant. O v e r f i l l i n g frequently occurs. Two f e a s i b l e methods o f s u p p l e m e n t a r y g a g i n g a r e s u g g e s t e d . Load c e l l s ( s t r a i n g a g e s ) p l a c e d under t h e t r u c k o r u n d e r t h e t r u c k w h e e l s can be u s e d t o i n d i c a t e the w e i g h t o f c o n t e n t s c o n t i n u o u s l y and t o s o u n d an a l a r m when the d e s i r e d w e i g h t has been l o a d e d . A n o t h e r a r r a n g e m e n t c o n s i s t s o f a r a d i a t i o n s o u r c e and a g e i g e r c o u n t e r mounted on an arm t h a t c o u l d be l o w e r e d a c r o s s the t o p o f a vessel being loaded. When l i q u i d r e a c h e s t h e h e i g h t o f the s o u r c e and c o u n t e r , i t s mass w i l l a t t e n u a t e the r a d i a t i o n and a s i g n a l can be d i s p l a y e d o r made a u d i b l e . The r a d i o a c t i v e s o u r c e , u s u a l l y an i s o t o p e , r e q u i r e s l i c e n s i n g and may n o t be s u i t a b l e f o r some u s e r s . L o c a t i o n s where f l a m m a b l e l i q u i d s a r e l o a d e d o r u n l o a d e d s h o u l d have a d e q u a t e f i r e p r o t e c t i o n . A w a t e r s p r a y s y s t e m o p e r a t e d man­ u a l l y and a u t o m a t i c a l l y i s t h e most e c o n o m i c a l and b e s t f o r most materials. Where w a t e r s u p p l y i s i n a d e q u a t e o r u n a v a i l a b l e , a d r y c h e m i c a l s y s t e m can be e n g i n e e r e d . U l t r a v i o l e t ray d e t e c t o r s are recommended f o r s p e e d o f o p e r a t i o n and a u t o m a t i c d i s c h a r g e o f the agent. Minimal personal p r o t e c t i o n f o r l o a d i n g racks w i l l i n c l u d e safety shower o r s h o w e r s , eye wash f a c i l i t i e s , and emergency r e s p i r a t o r y protection. A t l e a s t two s e l f - c o n t a i n e d b r e a t h i n g a p p a r a t u s , p r e f ­ e r a b l y o f the p r e s s u r e - d e m a n d t y p e , s h o u l d be a v a i l a b l e a t t h e s i t e , and e m p l o y e e s s h o u l d be t h o r o u g h l y t r a i n e d i n i t s u s e . Where c o r r o s i v e m a t e r i a l s o r c h e m i c a l s t o x i c by s k i n a b s o r p t i o n a r e b e i n g t r a n s f e r r e d , a f u l l s u i t o f p r o t e c t i v e c l o t h i n g s h o u l d be available. C a r e must be t a k e n t o i n s u r e t h a t t h e p r o t e c t i v e c l o t h i n g , s u c h as g l o v e s , a c t u a l l y i s i m p e r v i o u s t o t h e s u b s t a n c e t o be h a n d l e d ; many e l a s t o m e r s i n use a r e n o t i m p e r v i o u s to c e r t a i n s u b ­ stances. In n o r t h e r n c l i m a t e s , s a f e t y showers and e y e - w a s h e q u i p ­ ment must be p r o t e c t e d from f r e e z i n g . One a p p r o a c h i s t o use low v o l t a g e i n d u c t i o n h e a t i n g on a l l e x p o s e d p i p i n g . I n some i s o l a t e d l o c a t i o n s , no w a t e r i s a v a i l a b l e , and p r o v i s i o n o f a s a f e t y shower r e q u i r e s use o f a t a n k o f p r e s s u r i z e d w a t e r , p r e f e r a b l y t e m p e r e d f o r c o m f o r t and t o p r e v e n t f r e e z i n g . In t h e p e t r o l e u m i n d u s t r y , u n a t t e n d e d b u l k s t a t i o n s e x i s t where the t a n k t r u c k d r i v e r i s a l o n e when he s e l e c t s c a r g o , c o n n e c t s l i n e s , s t a r t s p u m p i n g , gages c o n t e n t s , s t o p s pump, d i s c o n n e c t s , and d r i v e s away. I f an e r r o r o r a c c i d e n t o c c u r s , he i s on h i s own. Some t y p e o f a l a r m o r c l o s e d c i r c u i t t e l e v i s i o n m o n i t o r e d a t a

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

266

nearby o f f i c e o r communications c e n t e r would be i n v a l u a b l e i n case o f a n emergency. P l a c a r d and l a b e l r e q u i r e m e n t s f o r i n t e r s t a t e s h i p m e n t were c h a n g e d by t h e U. S. Department o f T r a n s p o r t a t i o n e f f e c t i v e J a n u a r y 3, 1977

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch016

One for The may

(3).

o f t h e o b j e c t i v e s was t o a c c o m o d a t e t o U n i t e d N a t i o n s l a b e l i n g i n t e r n a t i o n a l s h i p p i n g u s i n g s y m b o l i c r e p r e s e n t a t i o n o f hazard. new l a b e l s and p l a c a r d s o v e r c o m e any l a n g u a g e b a r r i e r s t h a t exist.

Drum and p a c k a g e s h i p m e n t o f h a z a r d o u s m a t e r i a l s i n v o l v e a number o f hazard p o t e n t i a l s . For example: What c a r g o iterns can be s a f e l y s h i p p e d i n t h e same c a r o r t r u c k ? (2) Can s a l a m a n d e r s used t o p r e v e n t f r e e z i n g b e used when h a z a r d o u s c h e m i c a l s a r e on b o a r d ? What l i m i t a t i o n s a p p l y t o r a d i o a c t i v e c a r g o ? How must heavy iterns s u c h a s gas c y l i n d e r s be s e c u r e d in the truck o r car? How i s t h e van p l a c a r d e d when m i x e d c a r g o such a s f l a m m a b l e , t o x i c , r e a c t i v e , e t c . , a r e s h i p p e d t o g e t h e r ? (2a) How

s h o u l d m a t e r i a l s be s e g r e g a t e d i n t e r m i n a l s ?

A r e o r d i n a r y f o r k t r u c k s s u i t a b l e f o r drums o f f l a m m a b l e liquids? Do t e r m i n a l s have s u i t a b l e f i r e p r o t e c t i o n f o r f l a m m a b l e liquids, orventilation suitable for toxic volatiles? What q u a n t i t i e s o f c h e m i c a l s may b e s h i p p e d b y t h e v a r i o u s modes, ( i . e . , t r u c k , b a r g e , r a i l , p a s s e n g e r a i r c r a f t , cargo a i r c r a f t ) ? C o n s i d e r t h e p l i g h t o f s h i p p i n g c l e r k , o r dock w o r k e r o r t r u c k d r i v e r who may be c a l l e d upon t o make some o f t h e d e c i s i o n s i n d i c a t e d . With l i m i t e d e d u c a t i o n , sometimes i n a d e q u a t e i n f o r m a t i o n , v o l u m i n o u s r e g u l a t i o n s , and u n d e r time p r e s s u r e , m i s t a k e s o c c a s i o n a l l y occur. F o r t u n a t e l y , DOT r e q u i r e s t h a t p e r s o n s r e s p o n s i b l e f o r s u c h s h i p p i n g o p e r a t i o n s be t r a i n e d and a number o f t r a i n i n g programs have become a v a i l a b l e . One o f t h e most r e c e n t i s a s e m i n a r p r e s e n t e d

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

16.

FAWCETT AND WOOD

by t h e O p e r a t i o n s Inc. (4) ( 4 a )

Transport

Council

of Hazardous

Materials

267

o f the American T r u c k i n g A s s o c i a t i o n s ,

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch016

Much d i s c u s s i o n has e v o l v e d a b o u t t h e r e g r e t t a b l e c o n d i t i o n o f t h e r a i l b e d s o f our country. Derailments occur d a i l y . Much o f t h e r o l l i n g s t o c k i s a l s o s e r i o u s l y i n need o f r e p a i r . Essentially a l l t a n k c a r s a r e owned o r l e a s e d by s h i p p e r s ; h e n c e , can be i m ­ proved at i n d u s t r y expense. Boxcars, gondolas, e t c . , are u s u a l l y owned by t h e r a i l r o a d s ( o r C o n r a i l ) and a b r o k e n a x l e , h o t b o x o r o t h e r f a i l u r e o f any c a r can c a u s e a p i l e - u p , p o s s i b l y i n v o l v i n g tank equipment o r t r a c k s i d e h a z a r d s . In a d e r a i l m e n t t h e r e i s a t e n d e n c y f o r c o u p l e r s t o move v e r t i c a l l y and come a p a r t . The f r e e c o u p l e r t h e n becomes a b a t t e r i n g ram t h a t can e a s i l y b r e a c h a t a n k c a r . Shelf couplers prevent s e p a r a t i o n , and e n d s h i e l d s on tank c a r s can p r e v e n t p e n e t r a t i o n and s p i l l , and a r e now r e q u i r e d by DOT under r e c o m m e n d a t i o n o f t h e N a t i o n a l T r a n s p o r t a t i o n S a f e t y B o a r d . (5) Such i m p r o v e m e n t s were d e v e l o p e d by the A s s o c i a t i o n o f A m e r i c a n R a i l r o a d s i n 1970, b u t i m p l e m e n t a ­ t i o n has n o t been p u s h e d . Flammable l i g u i d s p i l l e d i n a w r e c k sometimes c a u s e s o v e r h e a t i n g and f a i l u r e ( o r BLEVE) o f tank c a r s . (6) I n s u l a t i o n to r e t a r d h e a t t r a n s f e r g i v e s emergency crews t i m e t o e f f e c t c o n t r o l b e f o r e overheating f a i l u r e . A l l three o f these measures--shelf c o u p l e r s , end s h i e l d s and i n s u l a t i o n - - w i 1 1 soon be r e q u i r e d on t a n k c a r s . Our highway s y s t e m i s n o t q u i t e p e r f e c t , e i t h e r . Have y o u e v e r n e g o t i a t e d a c l o v e r l e a f i n y o u r c a r a t the recommended s p e e d and wondered i f y o u were g o i n g t o make i t ? C o n s i d e r then a t r u c k w i t h h i g h c e n t e r o f g r a v i t y and maybe a s l o s h i n g p a r t i a l l o a d . H i g h crown s e c o n d a r y r o a d s and n a r r o w b r i d g e s a r e o n l y a c o u p l e o f more a c c i d e n t p o t e n t i a l s f a c e d by t h e d r i v e r s . Speed l i m i t s a r e n o t a l w a y s o b s e r v e d , and t r u c k s o v e r t a k i n g a p a s s e n g e r c a r c r e a t e a d d i t i o n a l hazards, e s p e c i a l l y i n inclement weather. P o l i c e and f i r e m e n a r e c a l l e d whenever an a c c i d e n t o r s p i l l o c c u r s i n the t r a n s p o r t a t i o n network. They d e s p e r a t e l y need i d e n t i f i c a ­ t i o n and s p e c i f i c o n - s c e n e c o o r d i n a t i o n o f a c t i v i t i e s i n v o l v i n g c a r g o e s and m a t e r i a l s ( 7 ) , o f i n v o l v e d c a r g o and h a z a r d p r o p e r t i e s of m a t e r i a l s . E i g h t y e a r s a g o , the M a n u f a c t u r i n g C h e m i s t s A s s o c i a t i o n o r g a n i z e d CHEMTREC ( C h e m i c a l T r a n s p o r t a t i o n Emergency C e n t e r ) on t h e r e c o m ­ m e n d a t i o n o f t h e NAS-NRC Committee on H a z a r d o u s M a t e r i a l s t o r e ­ s p o n d t o c a l l s from emergency p e r s o n n e l w i t h i n f o r m a t i o n r e g a r d i n g h a z a r d s and recommendation f o r c o n t r o l l i n g t h e emergency and e v a c ­ uating residents. The t o l l f r e e number i s 8 0 0 / 4 2 4 - 9 3 0 0 . Over 3 , 5 0 0 c h e m i c a l s a r e i m m e d i a t e l y "on c a l l " , w i t h a r e f e r r a l t o t h e manufacturer i f a d d i t i o n a l help i s needed.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

268

In a d d i t i o n t o CHEMTREC, o t h e r emergency a i d s a r e f i n d i n g w i d e use. The U . S. C o a s t Guard CHRIS ( C h e m i c a l H a z a r d Response I n f o r ­ m a t i o n System) i s a v a i l a b l e t h r o u g h t h e C o a s t G u a r d H e a d q u a r t e r s , and r e g i o n a l o f f i c e r s , and i t s p u b l i s h e d m a t e r i a l i s o f v a l u e i n water-borne s p i l l responses. (8)

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch016

The EPA-OHM-TADS ( O i l and H a z a r d o u s M a t e r i a l s T e c h n i c a l A s s i s t a n c e Data System) i s an o n - l i n e c o m p u t e r i z e d s y s t e m c o n t a i n i n g 126 p a r a m e t e r s f o r o v e r 1,000 c h e m i c a l s , and i n c l u d e s r e c o m m e n d a t i o n s f o r emergency c o n t r o l , a m e l i o r a t i o n , c l e a n - u p and d i s p o s a l . It is a l s o a u s e f u l d a t a s o u r c e f o r nonemergency u s e . (9) O v e r 500 P o i s o n C o n t r o l C e n t e r s these centers provide s p e c i f i c s u r e s f o r p h y s i c i a n s and o t h e r they are l o c a t e d i n the l a r g e r S t a t e H e a l t h D e p a r t m e n t s . (10)

o p e r a t e i n the U . S. and C a n a d a ; r e c o m m e n d a t i o n s on emergency mea­ medical personnel. In g e n e r a l , h o s p i t a l s and c o o r d i n a t e d by t h e

The U . S . Army T e c h n i c a l E s c o r t C e n t e r , a t Edgewood A r s e n a l , w i l l d i s p a t c h a s s i s t a n c e i f r e q u e s t e d by t h e Department o f T r a n s p o r t a ­ t i o n o r by t h e G o v e r n o r o f a s t a t e . Q u i t e r e c e n t l y the N a t i o n a l F i r e P r o t e c t i o n A s s o c i a t i o n under a DOT c o n t r a c t , a s e l f - s t u d y c o u r s e f o r f i r e m e n on to t r a n s p o r t a t i o n emergencies. The f i r e s e r v i c e s s h o u l d c o u r a g e d t o i n c l u d e t h i s and r e l a t e d m a t e r i a l i n t o t h e i r (11)

developed, responding be e n ­ training.

The Department o f T r a n s p o r t a t i o n p u b l i s h e s "Emergency A c t i o n G u i d e f o r S e l e c t e d Hazardous M a t e r i a l s " , which d e s c r i b e s h a z a r d s , recom­ mended a c t i o n and e v a c u a t i o n d i a g r a m s f o r 42 common b u l k c a r g o e s . T h i s b o o k l e t s h o u l d be i n e v e r y f i r e c h i e f ' s c a r , and d e s e r v e s a v e r y w i d e d i s t r i b u t i o n . (12) Tank t r u c k d r i v e r s have been o b s e r v e d l o a d i n g o r d i s c h a r g i n g t h e i r cargoes o c c a s i o n a l l y with inadequate t r a i n i n g or i n s t r u c t i o n . A t r u e s t o r y i l l u s t r a t e s what can h a p p e n : A d r i v e r h a v i n g w o r k e d s i n c e 7 A . M . was a s s i g n e d t o p i c k up 11 t o n s o f 93% s u l f u r i c a c i d l a t e i n t h e a f t e r n o o n and d e l i v e r i t t o a p l a n t t h i r t y m i l e s away. The d r i v e r had no t r a i n i n g w i t h s u l f u r i c a c i d e x c e p t t h a t he had s e r v e d as h e l p e r on one p r e v i o u s d e l i v e r y . H i s h e l p e r had no experience with t h i s cargo. The p i c k u p and t r a n s p o r t went s m o o t h l y and the men d i s c h a r g e d the a c i d i n t o t h e c u s t o m e r ' s t a n k by p r e s s u r i z i n g t h e t r a i l e r w i t h a p l a n t air line. A t a b o u t 8 o ' c l o c k ( 1 3 - h o u r day) t h e men d i s ­ c o n n e c t e d t h e l i n e s w i t h o u t r e l e a s i n g a l l p r e s s u r e from their trailer. B o t h men were s p r a y e d w i t h a c i d a n d , s i n c e t h e i r p r o t e c t i v e s u i t s and f a c e s h i e l d s were n e a t l y

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

16.

F A W C E T T AND WOOD

Transport

of Hazardous

269

Materials

s t o r e d i n the t r u c k c a b , both r e c e i v e d severe b u r n s . They r a n p a s t t h e s a f e t y shower 15 f e e t from t h e i r t r u c k t o g e t h e l p a t a b o i l e r room a h u n d r e d f e e t d i s t a n t . The men were tired. They had n o t been t r a i n e d i n use o f p r o t e c t i v e c l o t h ­ ing. They d i d n o t know p r o p e r u n l o a d i n g p r o c e d u r e s and t h e y d i d n o t know the s i m p l e f i r s t a i d f o r a c i d s p l a s h . (13) In

summary, i n s o f a r as h a n d l i n g and t r a n s p o r t a t i o n

are

considered:

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch016

E x c e l l e n t designs f o r l o a d i n g racks are r e a d i l y a v a i l a b l e - t h e y need more e f f e c t i v e a p p l i c a t i o n . E n v i r o n m e n t a l needs must be s a t i s f i e d . Many f r e i g h t t e r m i n a l s need u p g r a d i n g f o r h a n d l i n g o f hazardous packaged goods. Tank c a r s integrity

and tank t r u c k s a r e i n an a c c i d e n t .

b e i n g improved to

preserve

R a i l l i n e s and h i g h w a y s need more improvement t o i m p r o v e their utility. B a r g e and s h i p t e r m i n a l s and b u l k - s t o r a g e f a c i l i t i e s s h o u l d be c o n t i n u a l l y r e e v a l u a t e d from t h e s a f e t y and e f f i c i e n c y a s p e c t , s i n c e even l a r g e r p o t e n t i a l f o r d i s ­ a s t e r accompany l a r g e r amounts o f h a z a r d o u s m a t e r i a l s . C o u r s e s a r e a v a i l a b l e t o t r a i n warehouse and s h i p p i n g p e r ­ sonnel r e g a r d i n g compliance w i t h hazardous m a t e r i a l s r e g u ­ l a t i o n s . (11) R a i l , t r u c k i n g and o t h e r t r a n s p o r t a t i o n employees need more than minimal o n - t h e - j o b t r a i n i n g f o r h a n d l i n g hazardous cargo and d e a l i n g w i t h e m e r g e n c i e s . R e t r a i n i n g and r e o r i e n t a t i o n i s e s s e n t i a l t o u p d a t e i n s t r u c t i o n s and t o i n c r e a s e s a f e t y awareness. Emergency r e s p o n s e p e r s o n n e l now have a c c e s s t o e x c e l l e n t training for controlling transportation accidents. Hardware improvements b e i n g d e v e l o p e d , b u t a p p l i c a t i o n i s often not r a p i d . S o f e w a r e improvements a r e a v a i l a b l e now through t r a i n i n g . Chemi c a ! I n c o m p a t a b i 1 i t y When two o r more c h e m i c a l s a r e m i x e d o r a l l o w e d t o come i n t o c o n ­ t a c t , the p o s s i b i l i t y o f c h e m i c a l r e a c t i o n g e n e r a t i n g g a s e s , fumes, f i r e s o r e x p l o s i o n s must a l w a y s be c o n s i d e r e d . (14) In b u l k t r a n s p o r t a t i o n , where l a r g e q u a n t i t i e s a r e h a n d l e d , and t h e p o s s i b l e l o a d i n g o r u n l o a d i n g o f a c a r g o i n t o a t a n k w h i c h may have

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

270

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

or s t i l l contains another product, i s extremely s e r i o u s . a few e x a m p l e s f r o m t h e r e c e n t p a s t :

To c i t e

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch016

A tank s h i p l o a d e d a cargo o f l i q u i d s u l f u r (temperature 2 6 0 ° - 2 8 0 ° F ) ( 1 2 7 ° - 1 3 8 ° C ) on t o a h e e l o f c r u d e o i l . The r e a c t i o n between l i q u i d s u l f u r and p e t r o l e u m g e n e r a t e s t o x i c g a s e s , i n c l u d i n g h y d r o g e n s u l f i d e , c a r b o n d i s u l f i d e and s u l ­ fur dioxide. The s h i p ' s crew was h o s p i t a l i z e d and t h e s h i p , s e e k i n g a p o r t o f r e f u g e , was d e n i e d e n t r a n c e t o s e v e r a l h a r b o r s u n t i l t h e r e a c t i o n had run t o c o m p l e t i o n as t h e s u l f u r c o o l e d and e v e n t u a l l y s o l i d i f i e d . On t h r e e s e p a r a t e i n c i d e n t s s i n c e 1 9 7 1 , t a n k t r u c k d r i v e r s attempted to d i s c h a r g e t h e i r cargo o f sodium h y d r o s u l f i t e to a manufacturing p l a n t . The u n l o a d i n g p o r t i n t o t h e b u i l d i n g was n e x t t o an u n l o a d i n g p o r t f o r a c i d . No m a r k i n g o r o t h e r i d e n t i f i c a t i o n s were o b v i o u s on t h e two c o n n e c t i o n s . The d r i v e r a t t a c h e d t h e h y d r o s u l f i d e t o t h e a c i d c o n n e c t i o n . In e a c h c a s e , t h e g e n e r a t i o n o f h y d r o g e n s u l f i d e c a u s e d t h e e v a c u a t i o n o f the f a c i l i t y , b u t , u n f o r t u n a t e l y , not i n time t o p r e v e n t f a t a l e x p o s u r e and s e r i o u s i n j u r i e s . A s i m i l a r i n c i d e n t o c c u r r e d some y e a r s ago a t an e l e c t r o n i c s p l a n t i n B r o o k l y n ; t h e c h e m i c a l s were n i t r i c a c i d b e i n g pumped t h r o u g h an unmarked p i p e i n t o an e t h a n o l s t o r a g e t a n k . P e r h a p s t h e most t r a g i c u n c o n t r o l l e d r e a c t i o n , and c e r t a i n l y p o t e n t i a l l y one o f t h e most s e r i o u s f o r s o c i e t y , o c c u r r e d i n 1972 as a r e s u l t o f i m p r o p e r p a c k i n g o f c h e m i c a l s t o be shipped by a i r . A s h i p p e r i n Los A n g e l e s had a s s e m b l e d a m i x e d c a r g o o f c h e m i c a l s f o r s h i p m e n t t o an e l e c t r o n i c s p l a n t i n Germany. The s h i p m e n t w e n t by c a r g o a i r c r a f t t o New York ( J F K ) , where i t was t r a n s f e r r e d t o a Pan Am B o e i n g 707 c a r g o p l a n e . The t h r e e crew members t o o k o f f f o r E u r o p e , b u t o v e r C o n n e c t i c u t , n o t i c e d brown fumes i n t h e c a r g o com­ partment. By the t i m e B o s t o n was r e a c h e d , t h e fumes a n d , by t h e n f i r e , had become so g r e a t t h a t an emergency c r a s h l a n d i n g was made a t B o s t o n Logan A i r p o r t . The t h r e e crew members were e i t h e r k i l l e d ( o r p o s s i b l y dead b e f o r e t h e c r a s h ) ; t h e a i r c r a f t was d e s t r o y e d . Investigation dis­ c l o s e d t h a t o v e r 1,000 pounds o f r e a g e n t g r a d e n i t r i c a c i d had been p a c k e d i n wooden b o x e s , u s i n g s a w d u s t as t h e f i l l e r around the g l a s s b o t t l e s . The b r e a k a g e o f one o r more b o t t l e s a p p a r e n t l y t r i g g e r e d the r e a c t i o n s t h a t caused the plane to be f i l l e d w i t h brown o x i d e s o f n i t r o g e n and o t h e r v a p o r s from p l a s t i c b o t t l e s o f s o l v e n t s ; many u n l a b e l e d . A n o t h e r common c h e m i c a l w h i c h has c a u s e d s e r i o u s p r o b l e m s i n h a n d l i n g and t r a n s p o r t i s c a l c i u m h y p o c h l o r i t e . When d r y and u n c o n t a m i n a t e d , t h e c h e m i c a l i s s a f e , b u t even s m a l l

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

16.

F A W C E T T AND WOOD

Transport

of Hazardous

Materials

271

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch016

amounts o f c o n t a m i n a t i o n on a p l a s t i c s c o o p o r from a s o f t d r i n k b o t t l e has been known t o c a u s e i g n i t i o n . An e x t e n s i v e l i t e r a t u r e search o f t h i s c h e m i c a l ' s i n s t a b i l i t y i s a v a i l a b l e . (15) The a f o r e m e n t i o n e d e x a m p l e s w i l l s e r v e t o i l l u s t r a t e t h a t c h e m i s ­ t r y — e v e n e l e m e n t a r y c h e m i s t r y - - h a s an i m p o r t a n t r o l e i n t h e t r a n s ­ p o r t , h a n d l i n g and emergency c o n t r o l o f h a z a r d o u s m a t e r i a l s , and t h a t t h e t r a f f i c , s h i p p i n g and d i s t r i b u t i o n d e p a r t m e n t s o f even t h e l a r g e r companies w i l l b e n e f i t b o t h i n d e c r e a s e d l o s s e s due t o a c c i d e n t s and from p r o t e c t i o n a g a i n s t p e n a l t i e s due t o s p i l l s , i f more a t t e n t i o n i s g i v e n t o p r o p e r l y and c o n t i n u o u s l y t r a i n i n g personnel at a l l l e v e l s . Such t r a i n i n g , w h e t h e r i n - h o u s e o r on t h e j o b , o r a t s e m i n a r s and c o n f e r e n c e s , i s a c r i t i c a l l y needed component i n o u r c o m p l e x w o r l d . T h e r e i s no l a c k o f i n f o r m a t i o n r e s o u r c e s — b u t t h e d a y - b y - d a y u t i l i z a t i o n o f t h a t d a t a base needs increased attention. (16)

References 1.

Manual Sheet TC-7, "Tank Car Approach Platforms", Manu­ f a c t u r i n g Chemists A s s o c i a t i o n , 1825 Connecticut A v e . , N.W., Washington, DC 20009 (1974).

2.

49CFR, Parts 171-177, "Hazardous M a t e r i a l s Regulations", Federal R e g i s t e r ; V o l . 4 1 , No. 188; Sept. 27, 1976; pp. 42364 to 42638. Federal R e g i s t e r ; V o l . 43, No. 49; March 13, 1978; Part I I ; Environmental P r o t e c t i o n Agency; pp. 10474 to 10508 ("Penalties f o r A c c i d e n t a l Discharge Into Waterways"). See a l s o : "Proceedings of the 1978 National Conference on Control of Hazardous M a t e r i a l Spills", Miami Beach; A p r i l 11 - 13, 1978; a v a i l a b l e from Information T r a n s f e r , I n c . , 1160 R o c k v i l l e P i k e , R o c k v i l l e , MD 20852.

2a.

An e x c e l l e n t w a l l p l a c a r d which describes the l a b e l s ; p i c t u r e s them; and, suggests b a s i c emergency a c t i o n i s a v a i l a b l e from JODY, I n c . , P. O. Box 88884, A t l a n t a , GA 30338.

3.

Safety Guide SG-10, "Entering Tanks and Other Enclosed Spaces", Manufacturing Chemists A s s o c i a t i o n . (1961) (Under r e v i s i o n . )

4.

Contact National Tank Truck C a r r i e r s A s s o c . , c/o American Trucking A s s o c . , 1616 "P" S t r e e t , N.W., Washington, DC 20036.

4a.

"18 Wheelers Create Instant Inferno", by P e i g e , J. D., Maryland F i r e and Rescue I n s t i t u t e Bulletin; V o l . 7, No. 8; Aug. 1978; College Park, MD 20742.

5.

National Transportation Safety Board Report No. NTSB, SEE 78-2; June 23, 1978.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch016

272 6.

BLEVE - boiling liquid expansion vapor e x p l o s i o n . The National F i r e P r o t e c t i o n A s s o c i a t i o n , 470 Atlantic A v e . , Boston, MA 02210, has comprehensive literature and t r a i n i n g aids on t h i s subject and r e l a t e d problems i n handling of hazardous cargoes.

7.

National Transportation Safety Board, Safety Recommendation I-78; pp. 14 to 16; August 30, 1978.

8.

"CHRIS Response Methods Handbook", Department o f Transporta­ tion, Coast Guard, CG-446-4; January 1975. See a l s o : CG446-1, a condensed guide to Chemical Hazards; CG-446-2, "Hazardous Chemical Data", and, CG-446-3, "Hazard Assessment Handbook".

9.

OHM-TADS System i s a v a i l a b l e to subscribers who finish t h e i r own terminal software. For d e t a i l s on OHM-TADS and avail­ ability, contact I n f o r m a t i c s , I n c . , 6011 Executive Blvd., Rockville, MD 20852, a t t n : E . P a s c a l .

10.

"Directory o f Poison Control Centers", August 1978, National Clearinghouse f o r Poison Control Centers, U. S. Department of of H . E . W . , Food and Drug Admin., 5401 Westbard A v e . , Bethesda, MD 20016.

11.

Contact the National F i r e P r o t e c t i o n A s s o c . , 470 A v e . , Boston, MA 02210, f o r d e t a i l s .

12.

A v a i l a b l e from U. S. Department o f T r a n s p o r t a t i o n , National Highway Traffic Safety A d m i n i s t r a t i o n and M a t e r i a l s Trans­ p o r t a t i o n Bureau, 400 Seventh S t r e e t , S.W., Washington, D.C. 20590.

13.

See the Manufacturing Chemists A s s o c i a t i o n ' s "Safety Data Sheet on S u l p h u r i c Acid", SD-20, and other chemicals, 1825 Connecticut A v e . , N . W . , Washington, DC 20009. See a l s o , National Safety Council's Chemical Data Sheets, i n c l u d i n g , "Opening P i p e l i n e s and Connected Equipment", a v a i l a b l e from Chemical S e c t i o n , National Safety C o u n c i l , 444 N . Michigan A v e . , Chicago, IL 60611; and, Chemical Safety References, Data Sheet 486 ( R e v i s e d ) .

14.

F l y n n , J. P. and M o r r i s e t t e , M. D . , "Development of a C o m p a t i b i l i t y Guide f o r the Water Transport o f Bulk Chemical Cargoes", Journal of Hazardous M a t e r i a l s , Vol. 1, No. 4. See a l s o , NFPA No. 491-M, "Hazardous Chemical Reactions", National F i r e P r o t e c t i o n A s s o c . , 470 Atlantic A v e . , Boston, MA 02210.

15.

Clancy, V. J., "Fire Hazards o f Calcium Hypochlorite", Journal o f Hazardous M a t e r i a l s , Vol. 1, No. 1, pp. 83 to 94, (Sep. 1975).

16.

Fawcett, H. H. and Wood, W. S . , "Safety and Accident Preven­ tion in Chemical Operations", W i l e y - I n t e r s c i e n c e , 1965. (New e d i t i o n i s i n p r e p a r a t i o n . )

Atlantic

RECEIVED December 1, 1978.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

17 Concept Design Criteria for Standard Chemical Maintenance Facility

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

JAMES P. HENDRICKSON DARCOM Ammunition Center, SARAC-DEV, Savanna, IL 61074

Toxic chemical munitions, as well as other munitions within the stockpile, require periodic surveillance together with care and preservation, to be maintained i n a serviceable and issuable condition. TASKING: With limited facilities currently available f o r chemical maintenance, the DARCOM Ammunition Center, Savanna, I L , at the direction of the US Army Materiel Development and Readiness Command, was tasked to develop a concept design f o r a Standard Maintenance Facility f o r Toxic Chemical Munitions. The transportation r e s t r i c t i o n s prohibiting the movement o f toxic chemical munitions together with establishing that most maintenance and surveillance requirements are typically the same at storage i n s t a l l a t i o n s , resulted i n developing a standard modular facility design which could be sited at more than one installation. FACILITY OBJECTIVES: The primary objective and approach i n developing a total functional facility was (Figure 1) to provide a safe and secure environment i n which maintenance, preservation, and packaging, together with surveillance and assembly of chemical munitions, could be performed i n an e f f i c i e n t and productive manner. Facility design criteria was developed based on a variety of considerations, that would both satisfy operational and processing requirements, and comply with safety, security, and surety regulatory guidance. It i s important to note that demilitarization of chemical munitions was not considered as a requirement f o r this facility.

This chapter not subject to U.S. copyright. Published 1979 American Chemical Society

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Figure 1.

Standard chemical maintenance facility. Artist's concept,

DARCOM A m m u n i t i o n Center

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

bo

p

a

^

w

o

o w

>



g

o o X w

a

H O

2

17.

HENDRICKSON

Standard

Chemical

Maintenance

Facility

275

FACTORS INFLUENCING DESIGN: M a j o r f a c t o r s i n f l u e n c i n g d e s i g n ( F i g u r e 2) were i d e n t i f i e d as: regulatory c r i t e r i a , operational c a p a b i l i t i e s , current state of the a r t , and agent c r i t e r i a .

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

REGULATORY CRITERIA: R e g u l a t o r y c r i t e r i a a s p r o v i d e d i n t h e DARCOM S a f e t y M a n u a l , DARCOM S a f e t y R e g u l a t i o n s f o r C h e m i c a l A g e n t s , DOD Ammunition a n d S a f e t y S t a n d a r d s a n d t h e Army C h e m i c a l S u r e t y P r o g r a m were f o u n d to have a s i g n i f i c a n t i m p a c t on f a c i l i t y d e s i g n . I t s h o u l d be n o t e d t h a t r e g u l a t o r y a n d e n v i r o n m e n t a l g u i d a n c e was f o u n d p r i m a r i l y p e r t i n e n t t o s t o r a g e a c t i v i t i e s o r d e m i l i t a r i z a t i o n o p e r a t i o n s with l i m i t e d guidance r e l e v a n t t o maintenance operations. The S a f e t y Manual AMCR 385-100 p r e s c r i b e s g e n e r a l s a f e t y r u l e s f o r t h e US Army M a t e r i e l Command i n c l u d i n g t h o s e r e l e v a n t t o f a c i l i t y c o n s t r u c t i o n f o r e x p l o s i v e m a t e r i e l o p e r a t i o n s and storage requirements, personal p r o t e c t i v e c l o t h i n g and equipment t o g e t h e r with quantity distance standards o f e x p l o s i v e s . S a f e t y R e g u l a t i o n s f o r C h e m i c a l A g e n t s a s c o v e r e d i n DARCOM-R 385-102 a n d AMCR 385-31 e s t a b l i s h e s minimum s a f e t y c r i t e r i a f o r use i n p r o c e s s i n g , h a n d l i n g , s t o r a g e , t r a n s p o r t a t i o n , d i s p o s a l and d e c o n t a m i n a t i o n o f a g e n t s GB, VX, H, HD, a n d HT. T h e s e r e g u l a t i o n s a l s o p r o v i d e more s p e c i f i c g u i d a n c e r e l e v a n t to d i s a s s e m b l y a n d remote o p e r a t i o n s , t o g e t h e r w i t h many s p e c i f i c s for personnel p r o t e c t i o n as a i r monitoring, p r o t e c t i v e c l o t h i n g , showers, and communications. The requirements are a l s o i d e n t i f i e d f o r v e n t i l a t i o n a n d f i l t e r i n g o f e x h a u s t a i r t o i n s u r e no d i s charge o r escape o f agent t o the atmosphere. The DOD Ammunition a n d E x p l o s i v e s S a f e t y S t a n d a r d s DOD 5154.4S d e s c r i b e s s t a n d a r d s a p p l y i n g t o combined t o x i c c h e m i c a l a n d e x p l o s i v e h a z a r d s t o a maximum c r e d i b l e e v e n t a n d i t s e f f e c t on h a z a r d zone d i s t a n c e c a l c u l a t i o n s . A l s o w i t h i n t h e s t a n d a r d s a r e f o u n d safety c r i t e r i a r e l a t i n g t o s e l e c t i o n o f the type o f o p e r a t i o n a l containment r e q u i r e d , t o t a l versus vapor containment. The C h e m i c a l S u r e t y P r o g r a m R e g u l a t i o n AR 50-6 p r e s c r i b e s p r o c e d u r e s f o r t h e s a f e , s e c u r e a n d r e l i a b l e l i f e c y c l e management o f chemical agents and m u n i t i o n s . The chemical s u r e t y program i n c l u d e s both p h y s i c a l and s e c u r i t y d e s i g n requirements f o r chemical security structures. OPERATIONAL C A P A B I L I T I E S : F a c i l i t y o p e r a t i o n a l c a p a b i l i t i e s a n d r e q u i r e m e n t s were e s t a b l i s h e d with review o f the chemical munitions i n v e n t o r y i d e n t i f y i n g both c u r r e n t and f u t u r e maintenance r e q u i r e m e n t s . In i d e n t i f y i n g o p e r a t i o n a l c r i t e r i a , p r o c e s s f l o w s were d e v e l oped f o r e a c h i t e m t o be p r o c e s s e d . T y p i c a l l y , p r o c e s s f l o w s f o l -

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

D A R C O M A m m u n i t i o n Center

Figure 2.

Standard chemical maintenance facility. Factors affecting design.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

17.

HENDRICKSON

Standard

Chemical

Maintenance

Facility

277

lowed much t h e same p a t t e r n f o r t h e m a j o r i t y o f t h e i t e m s . P r o c e s s f l o w c h a r t s f u r t h e r i d e n t i f i e d both s p e c i f i c a n d u nique o p e r a t i o n a l and equipment requirements o f each item f o r r e c e i v i n g , u n p a c k i n g , removal o f e x p l o s i v e c o m p o n e n t s , c l e a n i n g , and r e c o a t i n g o f i n t e r i o r s u r f a c e s , a b r a s i v e c l e a n i n g , a n d r e p a i n t i n g o f e x t e r i o r s u r f a c e s . T h i s was f o l l o w e d b y t h e r e a s s e m bly o f e x p l o s i v e components, r e p a c k i n g , and s h i p p i n g . O p e r a t i o n a l l a y o u t s were d e v e l o p e d p r o v i d i n g p h y s i c a l c a p a b i l i t i e s t o accommodate t h o s e r e q u i r e m e n t s a s d e f i n e d by t h e process f l o w c h a r t s . O p e r a t i o n a l l a y o u t s i d e n t i f i e d both space r e q u i r e m e n t s a n d r e q u i r e m e n t s f o r Ammunition P e c u l i a r E q u i p m e n t ( A P E ) , t o meet i n d i v i d u a l i t e m c o n f i g u r a t i o n s . In d e v e l o p i n g c o n c e p t u a l d e s i g n s f o r p r o c e s s e q u i p m e n t , i t s h o u l d be n o t e d e v e r y e f f o r t was t a k e n t o p r o t e c t w o r k e r s f r o m agent exposure. Operational philosophy d i c t a t e d that a l l operations i n v o l v i n g t h e o p e n i n g o r d i s a s s e m b l i n g o f m u n i t i o n s , which c o u l d r e l e a s e o r e x p o s e a g e n t v a p o r , would be p e r f o r m e d r e m o t e l y w i t h i n a v a p o r c o n t a i n m e n t chamber. P r i o r t o removal o f i t e m s f r o m v a p o r c o n t a i n m e n t c h a m b e r s , t h e y w o u l d be m o n i t o r e d a n d v e r i f i e d f r e e o f agent. F o l l o w i n g t h e o p e r a t i o n a l p h i l o s o p h y a s d e s c r i b e d , would p r o vide a safe working environment r e q u i r i n g only Level D o r E prot e c t i v e c l o t h i n g ( e x p l o s i v e h a n d l e r s c o v e r a l l s w i t h a s l u n g mask) (Figure 3). The f a c i l i t y r e q u i r e m e n t s f o r b o t h s e r v i c e a n d s u p p o r t e l e m e n t s , a s u t i l i t y a n d e n v i r o n m e n t a l systems t o g e t h e r w i t h t h e p e r s o n n e l s u p p o r t a r e a (change h o u s e ) , c h e m i c a l l a b o r a t o r y and s u r v e i l l a n c e a r e a were i d e n t i f i e d a n d i n c l u d e d w i t h i n t h e f r a m e work o f t h e d e s i g n . CURRENT STATE OF THE ART: The c u r r e n t s t a t e o f t h e a r t i n terms o f e q u i p m e n t and s u p p o r t m e a s u r e s h a d a s i g n i f i c a n t e f f e c t on f a c i l i t y d e s i g n . O f m a j o r i m p o r t a n c e was t h e a v a i l a b i l i t y o f a g e n t m o n i t o r i n g a n d d e t e c t i o n d e v i c e s , p r o t e c t i v e uniforms f o r personnel, and acceptable exhaust a i r f i l t e r s , together with the c a p a b i l i t y t o handle d i f f e r e n t t y p e s o f decon s o l u t i o n s . A g e n t e x p o s u r e l i m i t s a s e s t a b l i s h e d b y t h e Army Surgeon General ( F i g u r e 4) f o r unprotected p e r s o n n e l , d i c t a t e d the r e q u i r e ment f o r m o n i t o r i n g a n d d e t e c t i o n systems w i t h a f a s t r e s p o n s e time. The use o f t h e r e a l t i m e m o n i t o r (RTM) w i t h l o w l e v e l s e n s i t i v i t y c a p a b i l i t y (0.0001 mg/m f o r GB) a n d r e s p o n s e t i m e o f t e n m i n u t e s t o g e t h e r w i t h t h e M-8 A l a r m w i t h a h i g h e r l e v e l s e n s i t i v i t y (0.2 mg/m f o r GB) a n d r e s p o n s e t i m e o f o n e m i n u t e a r e p l a n n e d f o r use w i t h i n t h e f a c i l i t y . The r e q u i r e m e n t f o r use o f L e v e l A c l o t h i n g i s a n t i c i p a t e d t o be a t v e r y i n f r e q u e n t i n t e r v a l s , p r i m a r i l y , f o r h a n d l i n g o f l e a k 3

3

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

278

D A R C O M A m m u n i t i o n Center

Figure 3.

AGENT

Personnel protective clothing

DURATION

CONCENTRATION O

GB

1 hour

0.001 mg/m 3

GB

0.0003 mg/m

GB

0.0001 mg/m

8 hours 8 hours/day, indefinitely 3

VX

0.00005 mg/m

1 hour

o o

VX

0.00002 mg/m

8 hours

0

VX

0.00001 mg/m

8 hours/day, indefinitely

0

Mustard

0.01 mg/m

Mustard

0.005 mg/m

3 hours 8 hours

o

Mustard

0.003 mg/m

8 hours/day, indefinitely

D A R C O M A m m u n i t i o n Center

Figure 4.

Unprotected personnel exposure limits. Production worker exposure levels.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

17.

HENDRICKSON

Standard

Chemical

Maintenance

Facility

279

e r s d i s c o v e r e d on t h e l i n e a n d f o r a r e a d e c o n t a m i n a t i o n . To p r o v i d e personnel with both i n c r e a s e d agent p r o t e c t i o n , m o b i l i t y , and c o m f o r t , t h e u s e o f t h e new d i s p o s a b l e p r o t e c t i v e ensemble (DPE S u i t ) ( F i g u r e s 5, 6, 7, 8, a n d 9) d e v e l o p e d f o r c h e m i c a l d e m i l i s planned f o r use. At present, a i r f i l t e r s capable o f meeting c u r r e n t p o l l u t i o n a b a t e m e n t r e q u i r e m e n t s a r e l i m i t e d t o c h a r c o a l o r p a c k e d column s c r u b b e r s . These f i l t e r s are bulky and expensive, and r e q u i r e c o n t i n u a l m a i n t e n a n c e t o meet o p e r a t i o n a l r e q u i r e m e n t s . I n a d d i t i o n , problems e x i s t w i t h the d i s p o s a l o f spent c h a r c o a l and b y p r o d u c t s f r o m t h e packed column s c r u b b e r s .

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

AGENT CRITERIA: M a i n t e n a n c e o p e r a t i o n s i n v o l v e d w i t h i t e m s c o n t a i n i n g an a gent, present the p o t e n t i a l use o f decontamination s o l u t i o n s . These s o l u t i o n s are h i g h l y c o r r o s i v e and present h a n d l i n g , mixing, and s t o r a g e p r o b l e m s . T h e r e i s no one s o l u t i o n t h a t can be u t i l i z e d f o r t h e d e c o n t a m i n a t i o n o f a l l a g e n t s . T h e decon s o l u t i o n s a r e n o t c o m p a t i b l e w i t h e a c h o t h e r a n d r e q u i r e methods o f a s s u r i n g t h e p r o p e r decon s o l u t i o n i s a v a i l a b l e f o r t h e commodity b e i n g worked. The c h e m i c a l a g e n t s a l s o d i c t a t e t h e r e q u i r e m e n t f o r t h e u s e o f n o n - p o r o u s c o n s t r u c t i o n m a t e r i a l s , t o g e t h e r w i t h epoxy c o a t i n g s f o r the f l o o r and w a l l s o f o p e r a t i o n a l bays. O p e r a t i o n a l equipment with a p o t e n t i a l f o r agent exposure, r e q u i r e s a design capable o f decontamination and r e p a i r . FACILITY DESIGN: The f a c i l i t y d e s i g n c o n c e p t a s d e v e l o p e d , p r o v i d e s an o p e r a t i o n a l c a p a b i l i t y which s a t i s f i e s both p r o c e s s i n g and r e g u l a t o r y requirements as i d e n t i f i e d . An a r t i s t ' s c o n c e p t o f t h e c o m p l e t e d f a c i l i t y a s shown ( F i g u r e 10) c o n t a i n s f o u r m a j o r a r e a s . The p e r s o n n e l s u p p o r t a r e a , p r i m a r i l y a change house a n d t h e p e r s o n n e l c o n t r o l c e n t e r , i s c o n n e c t e d t o t h e main b u i l d i n g by a c o v e r e d walkway. The s e r v i c e a n d s u p p o r t a r e a , c e n t r a l l y l o c a t e d i n t h e main b u i l d i n g , p r o v i d e s f o r o p e r a t i o n a l c o n t r o l and support f u n c t i o n s such a s : s u r v e i l l a n c e , d e c o n t a m i n a t i o n f a c i l i t i e s , u t i l i t y a n d e n v i r o n m e n t a l systems a n d c h e m i c a l l a b o r a t o r i e s . The e x p l o s i v e w i n g c o n s i s t s o f i n d i v i d u a l o p e r a t i o n a l bays providing separation o f d i s s i m i l a r operations with explosive d i v i d i n g w a l l s , f o r the r e n o v a t i o n and maintenance o p e r a t i o n s r e q u i r i n g disassembly o r assembly o f e x p l o s i v e components. The n o n - e x p l o s i v e w i n g s u p p o r t s t h e m a i n t e n a n c e a n d r e n o v a t i o n of items not having e x p l o s i v e components. The f a c i l i t y ' s g e n e r a l a r r a n g e m e n t i s a s shown ( F i g u r e 1 1 ) . The l a y o u t shows t h e g e n e r a l c o n f i g u r a t i o n o f t h e main b u i l d i n g

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

280

DARCOM A m m u n i t i o n Center

Figure 5.

Disposable protective ensemble (DPE suit)

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

FACILITIES

Standard

Chemical

Maintenance

Facility

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

HENDRICKSON

DARCOM A m m u n i t i o n Center

Figure 6.

Disposable protective ensemble (DTE suit)

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

282

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

TOXIC C H E M I C A L A N D EXPLOSIVES

DARCOM A m m u n i t i o n Center

Figure 7.

Disposable protective ensemble (DPE suit)

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

FACILITIES

Standard

Chemical

Maintenance

Facility

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

HENDRICKSON

DARCOM A m m u n i t i o n Center

Figure 8.

Disposable protective ensemble (DTE suit)

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

284

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

TOXIC C H E M I C A L A N D EXPLOSIVES

DARCOM A m m u n i t i o n Center

Figure 9.

Disposable protective ensemble (DPE suit)

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

FACILITIES

HENDRiCKsoN

Standard Chemical Maintenance Facility

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

17.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

285

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

1 2 3 4 5 6 7 8

Figure 11.

9 10 11 12 13 14 15 16

Air Compressor Room Facility Equipment Storage Paint Area - Dunnage Chemical Laboratory Decontamination Area Surveillance Area Decon Storage & Mixing Room Decon Sump Room

1 1

17 18 19 20 21 22 23 24

\

DARCOM Ammunition Center

Decon Dryer Room Incinerator Boiler Room Scrubber Systems Electrostatic Precipitators Explosive Operational Area Explosive Containment Chamber (ECC) Non-Explosive Operational Area

Standard facility for maintenance, preservation and packaging, surveillance and assembly of chemical munitions

Protective Clothing - Doffing Area Protective Clothing - Donning Area Office Control Center Observation Area Control Center Air Conditioning Equipment Room Emergency Generator Room Facility & Equipment Support Area

r

1 1 1 1 1 11 1 1 L—|

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

H

>

o


F

o >

o w

X

3

bo oo

17.

HENDRICKSON

Standard

Chemical

Maintenance

Facility

287

w i t h t h e e x p l o s i v e w i n g on t h e r i g h t , t h e n o n - e x p l o s i v e w i n g on the l e f t , and the support area i n the c e n t e r . PERSONNEL SUPPORT AREA: The p e r s o n n e l s u p p o r t a r e a l a y o u t i s a s shown ( F i g u r e 1 2 ) . The l a y o u t o f t h e change house p r o v i d e s f o r an o r d e r l y f l o w a n d c o n t r o l o f p e r s o n n e l h a v i n g a s e c u r i t y c o n t r o l p o i n t , l o c k e r room w i t h shower f a c i l i t i e s , l u n c h room, c l o t h i n g / e q u i p m e n t i s s u e , a n d storage a r e a . In a d d i t i o n , medical f a c i l i t i e s r e q u i r e d t o support a chemical o p e r a t i o n i n c l u d e an ambulance.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

SERVICE & SUPPORT AREA: The s e r v i c e a n d s u p p o r t a r e a a s shown ( F i g u r e 13) i s l o c a t e d i n t h e c e n t e r o f t h e main f a c i l i t y p r o v i d i n g s e r v i c e t o b o t h o p e r a t i o n a l wings. Within the s e r v i c e and support area are found a personnel s e r v i c e area which i n c l u d e s : f a c i l i t i e s f o r donning and d o f f i n g o f DPE s u i t s , o f f i c e a n d o p e r a t i o n a l c o n t r o l c e n t e r , a i r c o n d i t i o n i n g system, emergency g e n e r a t o r and a i r compressors f o r p l a n t and l i f e s u p p o r t a i r s y s t e m s . The p a i n t a r e a p r o v i d e s n e c e s s a r y e q u i p m e n t f o r r e n o v a t i o n , p a i n t i n g , a n d r e s t e n c i l l i n g o f dunnage a n d p a c k a g i n g m a t e r i a l s , s e p a r a t i n g t h i s work a r e a f r o m p o t e n t i a l l y more h a z a r d o u s a r e a s . The f a c i l i t y e q u i p m e n t s u p p o r t a n d s t o r a g e a r e a s a r e p r o v i d e d for s e r v i c e and r e p a i r o f o p e r a t i o n a l and m a t e r i a l handling equipment. The c h e m i c a l l a b o r a t o r y , d e c o n t a m i n a t i o n a n d s u r v e i l l a n c e a r e a s a s shown have a p o t e n t i a l f o r a g e n t e x p o s u r e a n d t h e r e f o r e are provided with a i r lock s e p a r a t i o n . The d r y e r room, i n c i n e r a t o r a n d d e c o n t a m i n a t i o n f a c i l i t i e s provide the c a p a b i l i t y f o r d e t o x i f i c a t i o n and d i s p o s a l o f spent decon. The p o l l u t i o n a b a t e m e n t s y s t e m s , i n c l u d i n g s c r u b b e r s a n d e l e c t r o - s t a t i c p e r c i p i t a t o r s , e t c . , a s s u r e t h a t no a g e n t o r h a z a r d o u s m a t e r i a l s are r e l e a s e d t o the atmosphere. EXPLOSIVE WING: The e x p l o s i v e w i n g i s a s shown on t h e r i g h t s i d e o f t h e g e n e r a l arrangement ( F i g u r e 11). The e x p l o s i v e w i n g u t i l i z e s i n d i v i d u a l bays f o r m a i n t e n a n c e o p e r a t i o n s t h a t can i s o l a t e an a r e a c o n t a m i n a t e d by a l e a k e r o r a g e n t s p i l l . A l t h o u g h no e x p l o s i o n s a r e e x p e c t e d t o o c c u r i n t h i s f a c i l i t y , explosive b l a s t walls are incorporated t o permit f a c i l i t y u t i l i z a t i o n d u r i n g i t s 25 y e a r l i f e e x p e c t a n c y . T h e design o f the e x p l o s i v e b l a s t w a l l s i s i n accordance with TM 5-1300 f o r 1,000 pounds o f n e t e x p l o s i v e w e i g h t (NEW) p e r b a y r e q u i r i n g a w a l l t h i c k n e s s o f 30 i n c h e s .

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Figure 12.

Standard chemical maintenance facility. Change house.

D A R C O M A m m u n i t i o n Center

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

190-0

to

Q F H W

w

O

w x

u

>

w §

n n

00 00

HENDRICKSON

Standard

Chemical

Maintenance

Facility

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

17.

SCRUBBER SYSTEMS

ELECTROSTATIC PRECIPITATORS

DARCOM Ammunition Center

Figure 13.

Standard chemical maintenance facility.

Service and support area.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

289

TOXIC C H E M I C A L A N D EXPLOSIVES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

290

FACILITIES

An e x p l o s i v e c o n t a i n m e n t chamber ( E C C ) , i s a s shown a t t a c h e d to the e x p l o s i v e wing t h a t w i l l permit c o n t i n u i t y t e s t i n g o f r o c k e t s , a s w e l l a s t h e d i s a s s e m b l y o f e x p l o s i v e components f r o m a g e n t f i l l e d m u n i t i o n s r e q u i r i n g undue f o r c e . The o p e r a t i o n a l sequence c y c l e o f t h e ECC p r o v i d e s f o r t o t a l i n t e r l o c k c o n t r o l a s s u r i n g c o m p l e t e v a p o r and e x p l o s i v e c o n t a i n m e n t d u r i n g p e r f o r m a n c e o f r e m o t e o p e r a t i o n s . P r i o r t o t h e s t a r t o f any o p e r a t i o n o r t e s t t h e i n t e r l o c k c o n t r o l r e q u i r e s c l o s i n g , s e a l i n g and l o c k i n g o f t h e d o o r i n c l u d i n g c l o s i n g and s e a l i n g o f f o f t h e v e n t i l a t i o n system. F o l l o w i n g completion o f an o p e r a t i o n c y c l e i n t e r l o c k c o n t r o l r e q u i r e s opening o f the v e n t i l a t i o n system, purging and m o n i t i r i n g t h e a t m o s p h e r e p r i o r t o o p e n i n g o f t h e d o o r and removal o f m a t e r i a l s . Vapor containment o n l y i s p r o v i d e d f o r a l l o p e r a t i o n s performed w i t h i n t h e e x p l o s i v e w i n g a s s u r i n g no e s c a p e o f a g e n t vapor to the o u t s i d e atmosphere. The g e n e r a l l a y o u t o f t h e e x p l o s i v e w i n g i s a s shown ( F i g u r e 1 4 ) . The l a r g e bays o n t h e l e f t a r e f o r unpack and r e p a c k o p e r a t i o n s with i n d i v i d u a l maintenance o p e r a t i o n s being performed i n the s m a l l e r bays. A t y p i c a l l a y o u t o f t h e unpack bay i s a s shown ( F i g u r e 1 5 ) . The a r e a t o t h e l e f t p r o v i d e s f o r t h e c o n t r o l and c o n t a i n m e n t o f a g e n t t h r o u g h t h e use o f a i r l o c k s , w h i l e t h e r e m a i n i n g a r e a o f t h e bay i s d e v o t e d t o u n p a c k i n g e q u i p m e n t . P e r s o n n e l w o r k i n g i n t h i s a r e a may work i n L e v e l D o r E p r o tective clothing. T y p i c a l m a i n t e n a n c e o p e r a t i o n s p e r f o r m e d under c o n t r o l l e d e n v i r o n m e n t s a r e a s shown ( F i g u r e s 16, 17, 18, 19, and 2 0 ) . NON-EXPLOSIVE WING: The n o n - e x p l o s i v e w i n g i s a s shown o n t h e l e f t s i d e o f t h e g e n e r a l a r r a n g e m e n t ( F i g u r e 1 1 ) . T h i s wing i s d e s i g n e d p r i m a r i l y to h a n d l e l a r g e b u l k y i t e m s h a v i n g no e x p l o s i v e s a s s e m b l e d . The l a y o u t o f t h e n o n - e x p l o s i v e wing i s a s shown ( F i g u r e 2 1 ) . The power and f r e e c o n v e y o r s y s t e m p r o v i d e s p r o c e s s o p e r a t i o n a l f l e x i b i l i t y f o r maintenance o p e r a t i o n s a s s o c i a t e d with a b r a s i v e c l e a n i n g , i n s p e c t i o n , p a i n t i n g and s h i p p i n g o f l a r g e i t e m s . The d e s i g n and l a y o u t o f t h e c h e m i c a l m a i n t e n a n c e f a c i l i t y p r o v i d e s f o r b o t h o p e r a t i o n a l f l e x i b i l i t y and a c a p a b i l i t y t o support process requirements as i d e n t i f i e d together with a safe working environment. The p r o t e c t i o n o f w o r k e r s f r o m a g e n t e x p o s u r e i s p r o v i d e d w i t h a n a i r l o c k s e p a r a t i o n between o p e r a t i o n a l areas, preventing spread o f agent vapor together with agent detect i o n equipment p o s i t i o n e d throughout the f a c i l i t y to monitor the environment. FACILITY COST ESTIMATE: The f a c i l i t y ( F i g u r e 1) was s i t e d a d j a c e n t t o t h e c h e m i c a l

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Figure 14.

Standard chemical maintenance facility. Explosive wing.

DARCOM Ammunition Center

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

HENDRICKSON

Standard

Chemical

Maintenance

Facility

293

DARCOM A m m u n i t i o n Center

Figure

16.

Standard chemical maintenance facility. concept.

Fiber

container unpack

DARCOM A m m u n i t i o n Center

Figure 17.

Standard chemical maintenance facility. Lid removed in vapor containment chamber.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

294

TOXIC C H E M I C A L A N D EXPLOSIVES

FACILITIES

D A R C O M A m m u n i t i o n Center

Figure 18.

Standard chemical maintenance facility. M-23 mine unpack station.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

HENDRICKSON

Standard

Chemical

Maintenance

Facility

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

17.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

295

TOXIC C H E M I C A L A N D EXPLOSIVES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

296

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

FACILITIES

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

B.

A.

906.7 40.00 228.17 5,172.2 16.90 383.1 285.07 6,462.0

SF SF SF SF

8,393.8

1,887.6 5,529.7 976.5

TOTALS ($000) C.

GRAND TOTAL

TOTAL

CHANGE HOUSE MAGAZINES (40 X 25) MAGAZINE (2240 SF) ECC STRUCTURE

SF EA EA EA

SF

86.00 152,000 286,720 L. S.

44.65 45.60 32.80

UNIT PRICE

DARCOM A m m u n i t i o n Center

14,971 4 1 1

102,178

SF

56,650

SUBTOTAL TOTAL MAIN. BLDG.

SF SF SF

UNIT

56,650 56,650 56,650

QUANTITY

SERVICE & SUPPORT AREA GENERAL CONST. MECHANICAL ELECTRICAL

DESCRIPTION

Standard facility for maintenance, preservation and packaging, surveillance and assembly of chemical munitions. Cost estimate.

22,668

SUBTOTAL

Figure 22.

22,668 22,668 22,668

346.83

SF

24,200

SUBTOTAL

NON-EXP AREA GENERAL CONST. MECHANICAL ELECTRICAL

78.00 228.48 40.35

UNIT PRICE

SF SF SF

UNIT

24,200 24,200 24,200

BUILDING

QUANTITY

EXPLOSIVE AREA GENERAL CONST. MECHANICAL ELECTRICAL

l.MAIN.

DESCRIPTION

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

$24,258.7

2,432.2

1,287.5 608.0 286.7 250.0

21,826.5

6,970.7

2,529.4 2,583.0 1,858.1

TOTALS ($000)

TOXIC C H E M I C A L

298

A N D EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

TOTALS

TOTALS

DESCRIPTION

($000)

DESCRIPTION

1.

STRUCTURES

24,258.7

d.

DRAINAGE PIPE (48" )

24.0

2.

CLEARING & GRUBBING

84.0

e.

H E A D W A L L S OR

76.8

3.

EARTHWORK

398.4

7.

GRASSING

57.6

4.

FLEXIBLE

8.

WATERLINE

349.4

a.

SURFACE COURSE

134.4

9.

SEPTIC

b.

BASE COURSE ( 6 " )

94.5

10.

RAILROAD

c.

SUBBASE

100.8

11.

150,000 G A L WATER

5.

RIGID

12.

FENCING

a.

P.

193.2

13.

M E C H A N I C A L EXT

257.1

b.

SUBBASE (6" )

35.9

14.

E L E C T R I C A L EXT

876.1

6.

STORM

15.

HELI P A D

a.

D R A I N A G E P I P E ( 18" )

9.4

TOTAL S I T I N G

b.

DRAINAGE PIPE ( 3 0 ' )

2.9

TOTAL F A C I L I T Y

c.

DRAINAGE PIPE (42" )

PAVEMENT

(6

M

( 2" )

)

PAVEMENT

C. CONCRETE

( 7" )

DRAINAGE

($000)

INLETS

TANK

16.0 224.0 TANK

348.0 99.0

28.8 COST

3,441.1

COST

$27,697.8

28.8

D A R C O M A m m u n i t i o n Center

Figure 23. Standard facility for maintenance, preservation and packaging, surveillance and assembly of chemical munitions. Site preparation cost estimate.

$ FACILITY A N N I S T O N A R M Y DEPOT

EQUIPMENT

THOUSAND TOTAL

21235.8

7996.6

29232.4

29629.6

10508.8

40138.4

LEX-BLUE G R A S S

22638.6

4868.1

27506.7

P I N E BLUFF A R S E N A L

26743.8

5971.1

32714.9

P U E B L O DEPOT A C T IVITY

25989.8

4778.1

30767.9

TOOELE A R M Y D E P O T

29322.0

7292.3

36614.3

UMATILLA

30692.1

6243.1

36935.2

156622.1

37149.3

1 93771.4

165015.9

3 9661.5

204677.4

TOTAL

D E P O T A C T IV ITY

Figure 24. Standard facility for maintenance, preservation and packaging, surveillance and assembly of chemical munitions including support and process equipment. Total cost estimate.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

17.

HENDRICKSON

Standard

Chemical

Maintenance

Facility

299

storage area a t i n s t a l l a t i o n s involved. S p e c i f i c s i t i n g r e q u i r e ments were i d e n t i f i e d w h i c h c o n s i d e r e d : t h e a v a i l a b i l i t y a n d e x tension o f u t i l i t y s e r v i c e s , roads and r a i l r o a d s i t i n g s . Siting i n f o r m a t i o n was p r o v i d e d t o t h e H u n t s v i l l e D i s t r i c t C o r p s o f E n g i neers which served as a b a s i s f o r d e v e l o p i n g s i t e p r e p a r a t i o n costs. Based on t h e d a t a p r o v i d e d by t h e i n s t a l l a t i o n s i n v o l v e d a n d the design data developed f o r the f a c i l i t y , the H u n t s v i l l e D i s t r i c t Corps o f E n g i n e e r s a s s e m b l e d a team o f e s t i m a t o r s a t t h e DARCOM Ammunition C e n t e r a n d p r e p a r e d f a c i l i t y c o s t e s t i m a t e s . The b a s i s f o r c o n s t r u c t i o n c o s t e s t i m a t e s were f o r t h e f a c i l i t y t o be i n t h e FY80 MCA p r o g r a m , w i t h c o n s t r u c t i o n c o s t s e s c a l a t e d t o r e f l e c t J a n u a r y 1971 t i m e f r a m e , a s t h e m i d p o i n t o f c o n struction. A l l e s t i m a t e s f o r t h e f a c i l i t y were b a s e d on u n i t p r i c i n g a t Anniston and f a c t o r e d f o r other s i t e s . The c o s t e s t i m a t e s were d e v e l o p e d a s shown ( F i g u r e 2 2 ) : t h e e x p l o s i v e w i n g $8,400,000; a n o n - e x p l o s i v e w i n g $6,500,000; a n d t h e s e r v i c e a n d s u p p o r t a r e a a p p r o x i m a t e l y $7,000,000 f o r a t o t a l o f $21,900,000 f o r t h e main b u i l d i n g . T h e change h o u s e , f o u r s e r v i c e magazines and a l a r g e c o n d i t i o n i n g b u i l d i n g add another $2,400,000 f o r a t o t a l o f $24,300,000. The s i t e p r e p a r a t i o n c o s t , a s d e v e l o p e d f o r d a t a p r o v i d e d , f o r A n n i s t o n i s $3,400,000 ( F i g u r e 2 3 ) . The t o t a l e s t i m a t e d c o s t f o r t h e p r o p o s e d f a c i l i t y s i t e d a t A n n i s t o n Army Depot i n c l u d i n g e q u i p m e n t i s $27,700,000. W i t h t h e d e v e l o p m e n t o f a m o d u l a r d e s i g n e d f a c i l i t y , i t was p o s s i b l e t o t a i l o r t h e f a c i l i t y t o meet t h e i n d i v i d u a l r e q u i r e ments o f e a c h i n s t a l l a t i o n . T h i s c h a r t ( F i g u r e 24) r e f l e c t s the combination o f the f a c i l i t y c o s t estimate together with the equipment c o s t estimate t a i l o r e d t o stocks c u r r e n t l y l o c a t e d a t the i n s t a l l a t i o n s . The del e t i o n o f the non-explosive wings from the A n n i s t o n , L e x i n g t o n Blue Grass and Pueblo f a c i l i t i e s i s r e f l e c t e d i n the f a c i l i t y and e q u i p m e n t c o s t s . The t o t a l e s t i m a t e d c o s t f o r t a i l o r e d s t a n d a r d c h e m i c a l m a i n tenance f a c i l i t i e s c o n s t r u c t e d a t each i n s t a l l a t i o n i s $193,700,000 w i t h o n e e x p l o s i v e wing a t A n n i s t o n o r $204,700,000 f o r two e x p l o s i v e w i n g s a t A n n i s t o n . CONCLUSIONS: The d e v e l o p m e n t o f t h e s t a n d a r d m a i n t e n a n c e f a c i l i t y d e s i g n as p r e s e n t e d ( F i g u r e 1) c o n c l u d e s t h a t b o t h o p e r a t i o n a l a n d e n v i r o n m e n t a l r e q u i r e m e n t s c a n be accommodated. I t s a t i s f i e s a r e a l need f o r a f a c i l i t y t h a t w i l l p r o v i d e a s a f e a n d p r o d u c t i v e e n v i ronment f o r t h e m a i n t e n a n c e o f t o x i c c h e m i c a l m u n i t i o n s . A l s o that s a f e t y , s e c u r i t y , and environmental c r i t e r i a are s t r i n g e n t b u t t h e f a c i l i t y d e s i g n a s p r e s e n t e d w i l l comply w i t h t h o s e known requirements.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

300

Literature Cited: 1. S a f e t y Manual, AMCR 385-100, HQ US Army M a t e r i e l Command, Alexandria, VA, DARCOM Change 3 , 11 January 1977. 2. Safety Regulations f o r Chemical Agents GB and VX, DARCOM-R 385-102, HQ US Army M a t e r i e l Development and Readiness Command, Alexandria, VA, 28 February 1977. 3. Safety Regulations f o r Chemical Agents H , HD, and HT, AMCR 385-31, HQ US Army M a t e r i e l Command, A l e x a n d r i a , VA, 26 September 1975.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch017

4. DOD Ammunition and Explosives Safety Standards, 5154.4S, Interim Change 2 - 1 , 15 July 1976. 5. Chemical Surety Program, AR 5 0 - 6 , HQ Department o f the Army, Washington, DC, 5 November 1976. 6. S t r u c t u r e s to R e s i s t the E f f e c t s o f A c c i d e n t a l E x p l o s i o n s , TM 5-1300, Department o f the Army, Washington, DC, 15 June 1969. RECEIVED

November 22, 1978.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

18 D e v e l o p m e n t of

Highly

Sensitive M o n i t o r s f o r t h e

D e t e c t i o n of A n t i c h o l i n e s t e r a s e C o m p o u n d s

DONALD C. BEHRINGER, FREDERICK C. BALADUF, and VINCENT N. CAMMARATA

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch018

Chemical Systems Laboratory, Aberdeen Proving Ground, MD 21010

Two highly sensitive monitors for the detection of anticholinesterase compounds were developed. One monitor was specifically developed to meet stringent time concentration requirements established by the Surgeon General of the Public Health Service and provides rapid and continuous detection of trace quantities of compounds of the type noted in Figure 1. As will be seen, however, the monitors could be useful devices for other enzyme-inhibiting compounds. The monitors will be evaluated by the Army's Project Manager for Chemical Demilitarization and Installation Restoration at the new Chemical Agent Munitions Disposal System (CAMDS), Tooele Army Depot, Utah, during execution of the program to destroy obsolete stocks of toxic compounds. The rapid monitor was developed to automatically monitor exhaust stacks and work areas while the other monitor is a personal dosimeter to be worn by plant workers. The well-known enzyme colorimetric method of analysis is employed as the basis for the determination of the anticholinesterase compound. The enzyme selected for determination of the presence of the compound is an acetylcholinesterase. As shown in Figure 2, without an inhibitor present, the series of reactions are: The acetylthiocholine (ATCI) is hydrolyzed by the enzyme acetylcholinesterase to produce acetic acid and thiocholine. The thiocholine then reacts with 5,5'-dithio-bis-2,2'-nitrobenzoic acid (DTNB) to form the colored anion, 5-thio-2-nitrobenzoate, production of which is monitored colorimetrically. With an inhibitor present, the enzyme hydrolysis of the ATCI does not occur resulting in a reduction or loss of color which is the basis of the sensitivity of the monitor. As such, this device is a measure of the toxicity of the enzyme inhibitors. A small amount of a highly toxic compound or a larger amount of a less toxic compound will produce similar results. As shown in Figure 3, the analytical reactions are performed in two glass coils immersed in a water bath at 32°C. In the first coil, the sample, enzyme, and segmentation air are introduced. If agent is present in the sample, inhibition will occur. The contact time is about 3 minutes. The stream then flows to the second coil where the substrate, ATCI, and the color developer, DTNB, are introduced. The hydrolysis of the substrate proceeds to yield acetic acid and thiocholine iodide (TCI). As the TCI is produced, it reacts with the DTNB to form the colored anion, 5-thio-2-nitrobenzoate. The reaction stream is then pumped to the colorimeter. The time for this stage is 2 minutes 40 seconds. The total time from This chapter not subject to U.S. copyright. Published 1979 American Chemical Society In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

302

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

0

R

0

\

// P

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch018

Figure 1.

Anticholinesterase nant

contami-

/

\

R

F

"INHIBITOR" /

/ / / (CH )-N-CH -CH -S-C-CH3 3

2

U

h '

2

ACETYLTHIOCHOLINE (ATCI)

I

ENZYME

COO

"

[(CH^g-NL

/

-CH -CH -S 2

2

1

W-DITHIO BIS-2,2' NITRO BENZOIC ACID -

COO N0

3

-

3

COO

3

COO

+ CH -C-OH

THIOCHOLINE

(CH )

-

2

0 N 2

N-CH -CH -S-S 2

2

5-THIO-2-NITRO BENZOATE COLORED SPECIES 420 mji Figure 2.

Monitor detection concept

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

1

REFRIGERATOR

TO STACK.32

AIR

HO

Figure 3.

C5

Monitor system

GRAVITY DEBUBBLER

FLOWCELL

TO WASTE

AUX. DEBUBBLER .23

1.20

:OLORIM\ETER

REACTION COIL

Dl

REACTION COIL

TEMPERATURE BATH (32°C)

CELL PULL THRU

PROPORTIONING PUMP

DTNB .32

.32

ATCI

ENZ

.6

HCI

.6

SAMPLE

SCRUBBER-CONC.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch018

RECORDER

ALARM HORN

L2

ALARM LIGHT

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch018

304

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

probe inlet to colorimeter is about 7 minutes. The agent response time varies from 8-1/2 to 11-1/2 minutes depending upon at what point in the 3-minute cycle the agent is first absorbed. The analysis is completed by a colorimeter that electronically compares the color intensity of the analytical stream against an air reference. The ratio signal is sent to a strip chart recorder and to a counter and logic card. Activation of visual and audible alarms will occur if predetermined agent levels exist. The analytical precision and accuracy are controlled by a peristaltic pump that meters out exact amounts of the various reagent solutions. The flow rates for the absorbent liquid, probe sample, enzyme, acid, ATCI, and DTNB, as well as the waste products, are all precisely controlled so the analytical process can be continually repeated. The color thus formed in the absence of inhibitor and the color loss when inhibitor is present are always predictable (±1%). A timer-activated solenoid valve replaces the enzyme with dilute acid (HCI) for 27 seconds during each 180-second cycle. The use of the acid wash removes all residual color that was produced during the previous 3-minute cycle. We found that this step was necessary to avoid the troublesome color "buildup" that is encountered in most automated continuous systems where color is formed. A block diagram of the system is shown in Figure 4 to further indicate the air, solution, and readout processes. A typical recorder printout is shown in Figure 5. Color is produced by uninhibited enzyme and extinguished by acid during each cycle. The colorimeter converts the color into an electric signal which is received by the record where the signals are manifested as a series of dark and light peaks. The counter and logic electronics evaluate the signals and will activate the alarm systems if the amount of color does not meet a preset level during any cycle. The color of the solution resulting from the reaction is inversely proportional to the concentration of inhibitor in the air sample. Three typical responses resulting from three exposures of the system to an inhibitor are shown in Figure 5. It should be noted that very good baseline stability has been demonstrated during evaluation of the system in the polluted atmospheres found in plant exhaust stacks. We have demonstrated the sensitivity of the system by introducing the low levels of the inhibitor while the system has sampled plant or stack atmospheres. Calibration of the monitor is performed using standard solutions of the compounds of interest. Reagents utilized in the system are shown in Figure 6. Servicing on 7-day intervals is possible using the amounts as indicated. The solutions are kept in a refrigerator which is part of the system. The solutions are stable and usable for periods of at least 2 weeks after preparation if kept cold. With this capability, the monitor can be operated intermittently without the need to continually prepare fresh solutions. A feature of the device is that the refrigerator continues to operate and maintain temperature even when the monitoring functions are not operating. The system as developed is shown in Figure 7. The device operates from standard 110 v ac; it weighs 450 pounds and measures 6 by 2.5 by 2.5 ft. Shown is the strip chart recorder, refrigerator, and alarm-light indicator. A unique air-sampling probe shown in Figure 8 was developed to eliminate sampling problems. The absorption and concentration of low volatile compounds had been a particular problem due to the propensity of the materials to adhere to

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

BEHRINGER ET AL.

Anticholinesterase

Compounds

ABSORBER PROBE

AIR EXHAUST-

-ABSORBENT

(H 0) 2

AIR/LIQUID SEPARATOR

INCUBATION OF SAMPLE A N D ENZYME (5MIN.)

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch018

HYDROLYSIS OF SUBSTRATE (ATCI) AND COLOR DEVELOPMENT (2 MIN.)

COLOf UMETER RECORDER

DIRECT & REMOTE ALARM SYSTEMS

Figure 4.

Monitor block system

100 MAX. ENZ. R A N G E -

80 A. 2ppt ENZ. INHIBITION60 O > ^

B. 4 p p t 40 C. 6 ppt

20

ACID BASELINE0

30

60

90

120

OPERATING TIME (MINUTES)

Figure 5.

Inhibitor response

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

DISTILLED

WATER

DTNB

WATER

( p H 8.4)

FEED

BUFFER

FOR PROBE

IN .05 M T R I S

50/i/«

0.2N

7.4)

ENZYME

HCI

(pH

. 0 0 0 4 M IN . 0 5 M T R I S

BUFFER

2.00

Monitor reagents

2.880

0.734

0.60

0.461

0.461

0.130

Figure 6.

DAILY REQUIREMENT

0.60

0.32

0.32

.0008MIN

ATCI

RATE

(mls/min)

REAGENT

FLOW

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch018

(liters)

D A Y WEEK

20.160

5.141

0.907

3.226

3.226

REQUIREMENT

7

(liters)

Anticholinesterase

Compounds

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch018

BEHRINGER E T A L .

Figure 7.

Work area monitor

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch018

308

Figure 8.

Monitor and sample probe

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch018

18.

BEHRINGER E T A L .

Anticholinesterase

Compounds

309

sampling lines or any internal equipment involved in the transfer of the vapor to the monitor. The air-sampling device used with the subject monitor minimizes the above problems. The device is simply two flexible tubes: one tube draws the air sample and the other tube supplies an absorbent liquid at the air inlet of the first tube. The air and liquid make contact and are drawn concurrently along the inside wall where absorption occurs. The air/liquid stream then empties into a calming chamber which reduces the velocity, allowing the liquid to gravitate into a reservoir where it is available for continuous analysis. In practice, the air/liquid contact is achieved as the liquid "wets" the tube wall surface with a thin-moving liquid layer. The large surface area of the liquid layer presents adequate opportunity for intimate contact and efficient absorption. The development of the personal dosimeter involved the design, construction, testing, and performance evaluation of a system which fulfills these specific requirements: (1) designed for lightweight and unencumbered attachment to the worker; (2) presents no danger to the health, safety, or welfare of the worker; (3) samples ambient air in the worker's breathing zone in the temperature range of 32° to 105°F for 8 hours; and (4) generates quantitative determinations of individual exposures. The requirement for sensitivity of the dosimeter system is to detect a concentration of 18 parts per trillion in 8 hours. At this safe limit concentration, the bubbler will collect 1.5 X 10~ g of contaminant when sampling air at 30 cc/min for an 8-hour period. A sufficient amount of contaminant in solution must be retained for analysis. The dosimeter design concept follows the principle of commonly used sampling devices which extract trace amounts of toxic substances from air samples drawn through a liquid absorber by solution. The sample collected is sent to the laboratory and the liquid is analyzed by a suitable quantitative procedure such as the colorimetric method just described. The essential components of the dosimeter are an aeration bubbler, a sampling pump, and an interconnecting plastic sampling line. Miniature connectors at each end provide a positive air seal and a "quick-disconnect" feature. A carrier is provided for wearing the dosimeter. The pump is located on the waist belt and the shoulder strap contains a pouch for placing the bubbler in the breathing zone. The dosimeter configuration is shown in Figure 9. Figure 10 shows the dosimeter on the wearer. The bubbler is a miniaturized two-piece glass unit. The lower piece is the aeration chamber containing the absorbent solution which is pH 3.7 distilled water and sulfuric acid, unbuffered. The top piece is an air chamber designed to prevent migration of the solution from the aeration chamber. A "trap" feature built into the air chamber provides confinement of the solution within the bubbler in any position or attitude. The two-piece construction facilitates the loading and unloading of the absorbent and simplifies the handling and analytical procedures in the laboratory. Extensive field testing determined that the most suitable and accurate pump for the dosimeter application was one designated "Accuhaler 808," which is manufactured by MDA Corporation. The principle of operation is based upon an aspiration cycle which draws a constant volume of sample air through a limiting type of orifice for each stroke of the pump. A counter reads out the pump strokes and the total sample volume is computed for a given sampling period. The dosimeter 9

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch018

310

Figure 9.

Personal dosimeter system

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Anticholinesterase

Compounds

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch018

BEHRINGER E T A L .

Figure 10.

Dosimeter in wearing mode

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES

FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch018

312

Figure 11.

Bubbler influence of airflow rate on collecting efficiency as a function of temperature for low concentrations .07 to .10 ng/L

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch018

BEHRINGER E T A L .

Figure 12.

Anticholinesterase

Compounds

313

Bubbler average collection efficiency as a function of temperature for 30 cm /min sampling rate and low generated concentrations 3

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch018

314

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch018

18.

BEHRINGER E T A L .

Anticholinesterase

Compounds

315

samples at a very low flow of 30cc/min or 14.4 liters of air for an 8-hour period, which is 500 times less than the average breathing rate of a man at 15 £/min. The collection efficiency for the bubbler design maximizes at approximately 30 cc/min as shown in Figure 11. A data base for predicting the chemical behavior of the bubbler was established. The generated data base is used to characterize the sensitivity and stability of the bubbler in the presence of known quantities of toxic vapors under ambient stress conditions. The data base is used to correlate the exact relationship between field sampling results and a worker's daily exposure. The chemical characterization work included the following essential determinations: 1. The experimental data permitted the prediction that the average collection efficiency for the aerated bubbler system will be above 90% for the temperature range sampled. This is shown in Figure 12. 2. The desorption of the bubbler was quantified as a function of sample volume and temperature as shown in Figure 13. Retention of the contaminant in the bubbler after 8 hours of aeration is sufficient for analytical evaluation. 3. The optimum pH of the absorbent was found to be in the range of 3.7 to 4.5 where the absorbed contaminant is most stable over the sampling temperatures of 32° to 105°F. 4. The colorimetric method of enzymatic analysis was found to be specific and sensitive to the levels of absorbed contaminant collected when sampling around the limit concentration of 10" g/m . 5. A statistical analysis indicated a high confidence level in the relevancy of the data regarding reliability and reproducibility. The system inaccuracy results from agent desorption at elevated temperatures as shown in Figure 13. These devices are now being tested in demilitarization plants as monitors of stack exhaust atmospheres and work areas. We have not had the opportunity to determine the sensitivity of the devices to the numerous enzyme-inhibiting compounds which would be of interest to others. Generally, however, it is reasonable to expect, for instance, less sensitivity to P=S and P—S linkages and conversely better sensitivity to compounds where the sulfur is replaced by oxygen due to greater toxicity of these compounds. Such compounds as the carbamates, due to their inhibiting qualities, would also be expected to be detected with these systems. It is expected that these systems could find application as highly sensitive monitors during manufacturing, filling, and storage of specific compounds. 8

RECEIVED November 30,

3

1978.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

19 Safety D e s i g n C r i t e r i a

Used

f o r D e m i l i t a r i z a t i o n of

Chemical Munitions

ROBERT P. WHELEN

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

DRC PM-DRD, Aberdeen Proving Grounds, MD 21010

This paper is intended to provide a brief h i s t o r i c a l overview of the Army's chemical demilitarization program and provide some insight to the types of disposal processes, procedures, and equipment employed. Background In the f a l l of 1968, the Department of the Army directed the disposal of certain chemical munitions which were obsolete and excess to the National deterrent stockpile. The proposed-disposal plan, designated Operation Chase, provided for these munitions to be transported across country (Denver, Colorado, to the East Coast), be loaded on excess freighter type boats and taken under US Coast Guard escort to a previously designated explosives dumping site beyond the Atlantic Continental Shelf and sunk. This operation was suspended because of public concerns expressed over the transportation of hazardous materials through the various states, and criticism by environmentalists concerning potential impacts on marine life. In May 1969, the National Academy of Sciences (NAS) was requested by the Department of Defense to provide an assessment of the Operation Chase disposal plan. An Ad Hoc Advisory Committee of the Academy, composed of 12 experts from leading industrial, educational, and research institutions, submitted a report to Department of Defense in June 1969 from which the guidance shown on inclosure 1 has been extracted. The obvious intent of the NAS study was to avoid sea dumping in the future by providing readily available, ecologically safe means of destroying lethal chemical munitions by current or developed techniques. Prior to 1969, the methods for disposing of obsolete or unserviceable chemical munitions were those l i s t e d on Inclosure 2. However, based on the NAS recommendations, the Army developed a program with two main objectives: F i r s t , to develop the procedures, construct the facilities/equipment, and

This chapter not subject to U.S. copyright. Published 1979 American Chemical Society

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

318

TOXIC C H E M I C A L A N D EXPLOSIVES

FACILITIES

t o d i s p o s e o f t h e c h e m i c a l m u n i t i o n s i d e n t i f i e d as o b s o l e t e and e x c e s s f o r O p e r a t i o n Chase a t t h e s t o r a g e s i t e , w h i c h was R o c k y Mountain A r s e n a l , Denver, C o l o r a d o ; and second, t o develop a prototype f a c i l i t y for d e m i l i t a r i z a t i o n of a l l types of chemical m u n i t i o n s i n t h e s t o c k p i l e as w e l l as s t o r a g e containers, i n c l u d i n g d e t o x i f i c a t i o n o f nerve agents and mustard f i l l s .

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

S u b s e q u e n t l y , t h e C o n g r e s s p a s s e d t h r e e P u b l i c Laws w h i c h impact on l e t h a l d e m i l i t a r i z a t i o n programs ( i n c l o s u r e 3). In summary, t h e P u b l i c Laws p l a c e s t r i n g e n t c o n t r o l s on t r a n s p o r t a t i o n of l e t h a l chemical m a t e r i e l from present storage l o c a t i o n s , requires d e t o x i f i c a t i o n of c h e m i c a l - b i o l o g i c a l agents p r i o r to d i s p o s a l and r e q u i r e s the p r e p a r a t i o n and c o o r d i n a t i o n o f e n v i r o n m e n t a l impact s t a t e m e n t s and d i s p o s a l p l a n s w i t h v a r i o u s government and l o c a l agencies. Since that time the obsolete/excess chemical munitions s t o r e d a t R o c k y M o u n t a i n A r s e n a l (RMA) a n d o r i g i n a l l y s c h e d u l e d f o r d i s p o s a l b y s e a dump h a v e b e e n d e s t r o y e d o n s i t e i n c o m p l i a n c e w i t h the s t r i n g e n t guidance of the NAS, Department of the Army, a n d t h e P u b l i c L a w s , w i t h t h e e x c e p t i o n o f some b u l k c a r b o n y l c h l o r i d e (phosgene) w h i c h i s c u r r e n t l y b e i n g removed by an industrial buyer. D u r i n g t h e s e o p e r a t i o n s , t h e Army h a d s u c c e s s f u l l y d i s p o s e d o f a p p r o x i m a t e l y 15 m i l l i o n p o u n d s o f l e t h a l c h e m i c a l nerve and mustard a g e n t s , i n excess o f 800,000 pounds o f e x p l o s i v e s , and v a r i o u s m u n i t i o n s components, i n c l u d i n g i n excess of 1.6 m i l l i o n f u z e s . Most i m p o r t a n t l y , these d i s p o s a l o p e r a t i o n s have been conducted w i t h o u t s e r i o u s i n j u r i e s to personnel or i n s u l t to the environment. In a d d i t i o n , the p r o t o t y p e d e m i l i t a r i z a t i o n f a c i l i t y has been d e s i g n e d and c o n s t r u c t e d at T o o e l e Army D e p o t , U t a h , and i s c u r r e n t l y being operated i n a series of t e s t programs. These t e s t programs are d e s i g n e d t o develop and r e f i n e the v a r i o u s d e m i l i t a r i z a t i o n p r o c e s s t e c h n o l o g i e s t h a t w o u l d be r e q u i r e d f o r the eventual d i s p o s a l of the current s t o c k p i l e of chemical munitions. The f a c i l i t y w i l l a l s o a c c o m p l i s h t h e d i s p o s a l o f t h e u n s e r v i c e a b l e m u n i t i o n s at the Depot. Design Philosophy The Army g u i d a n c e on c h e m i c a l d e m i l i t a r i z a t i o n , b a s e d on t h e NAS r e c o m m e n d a t i o n s , i s s u m m a r i z e d i n I n c l o s u r e k. In response t o t h i s g u i d a n c e , e x t e n s i v e e f f o r t has been expended i n the development of l a r g e s c a l e process t e c h n o l o g y and concept designs, i n c l u d i n g e x p l o s i v e c o n t a i n m e n t , remote m e c h a n i c a l process c o n t r o l , l a r g e volume chemical agent treatment, and advanced p o l l u t i o n c o n t r o l systems. Worker exposure s t a n d a r d s and e n v i r o n m e n t a l e m i s s i o n standards have a l s o been established. I n a d d i t i o n , s i g n i f i c a n t a d v a n c e s h a v e b e e n made i n t h e "stateo f - t h e - a r t " f o r c h e m i c a l agent d e t e c t i o n and m o n i t o r i n g equipment, a n a l y t i c a l p r o c e d u r e s , and p r o t e c t i v e c l o t h i n g , ( i n c l o s u r e 5) In general, d e m i l i t a r i z a t i o n of a chemical munition involves these four steps: (a) s e p a r a t i o n o f t h e chemical agent from e x p l o s i v e components; (b) d e t o x i f i c a t i o n o f

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

19.

WHELEN

of Chemical

Munitions

319



ASSUME A L L SUCH AGENTS AND MUNITIONS WILL REQUIRE EVENTUAL DISPOSAL AND THAT DUMPING AT SEA SHOULD BE AVOIDED.



UNDERTAKE A SYSTEMATIC STUDY OF OPTIMAL METHODS OF DISPOSAL ON APPROPRIATE MILITARY INSTALLATIONS INVOLVING NO HAZARDS TO GENERAL POPULATION OR POLLUTION OF ENVIRONMENT.



ADOPT TECHNIQUES SIMILAR TO THOSE USED BY THE ATOMIC ENERGY COMMISSION IN DISPOSING OF RADIOACTIVE WASTE.



REGARD LARGE SCALE DISPOSAL FACILITIES AS A REQUIRED COUNTERPART TO EXISTING STOCKS AND PLANNED MANUFACTURING OPERATIONS. igure 1.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

Demilitarization

Extracts from recommendations by National Academy of Sciences on disposal of chemical warfare agents and munitions

%

OPEN PIT

BURNING



LAND



O C E A N DUMPING

BURIAL Figure

2.

Disposal methods prior 1969

to

A R M E D FORCES APPROPRIATION A C T OF 1970 (ESTABLISHED STRINGENT CRITERIA FOR T R A N S P O R T A T I O N A N D OPEN AIR TESTING OF L E T H A L C H E M I C A L - B I O L O G I C A L AGENTS) •

91-441

A R M E D FORCES APPROPRIATION A C T OF 1971 (REQUIRED C H E M I C A L - B I O L O G I C A L A G E N T S TO BE DETOXIFIED OR M A D E H A R M L E S S T O MAN PRIOR TO DISPOSAL E X C E P T IN EXTREME EMERGENCY)



91-190

N A T I O N A L E N V I R O N M E N T A L POLICY A C T OF 1969 (REQUIRED PREPARATION A N D COORDINATION OF EIS, PRIOR TO CONDUCTING DEMIL OPERATIONS) Figure 3.



EIA

Public laws governing chemical demilitarization

A B S O L U T E S A F E T Y AND SECURITY

R A T H E R T H A N COST

OR TIME. •

MAXIMUM PROTECTION



A B S O L U T E A S S U R A N C E OF T O T A L C O N T A I N M E N T AGENT.



I N C O N T R O V E R T I B L E D A T A TO JUSTIFY P E R S O N N E L S A F E T Y , S E C U R I T Y , A N D COMMUNITY S A F E G U A R D ASPECTS.

Figure 4.

FOR OPERATING P E R S O N N E L . OF

Army guidance on chemical demilitarization based on NAS recomendations

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

320

TOXIC

CHEMICAL

A N D EXPLOSIVES FACILITIES

the agent; (c) thermal d e s t r u c t i o n of the e x p l o s i v e s , and (d) decontamination of the residue (Inclosure 6 ) . Design C r i t e r i a The t e c h n i c a l approach t o the d e m i l i t a r i z a t i o n programs i s a t o t a l systems approach t o the p o t e n t i a l personnel s a f e t y and environmental problems a s s o c i a t e d with l e t h a l chemical agents and e x p l o s i v e s . The general areas o f c o n s i d e r a t i o n are i l l u s t r a t e d i n Inclosure 7T o t a l Containment and V e n t i l a t i o n ( i n c l o s u r e 8) The term " t o t a l " containment i n t h i s d i s c u s s i o n means containment of the l e t h a l chemical agent w i t h i n the approved environmental emission standards. Toxic m a t e r i a l c o n t r o l or minimizing contamination, i s accomplished by equipment design and process techniques such as minimizing exposed surfaces during the agent d r a i n i n g process, employing a c l o s e d system f o r t r a n s f e r of t o x i c m a t e r i a l s and f o r storage tanks or r e a c t o r s with process scrubbers f o r v e n t i n g . In a d d i t i o n , procedures are e s t a b l i s h e d t o chemically decontaminate agent wetted surfaces (equipment or munition components) as soon as p o s s i b l e i n the o p e r a t i o n a l sequence t o minimize evaporation. E x p l o s i v e containment i s provided f o r a l l operations i n which the e x p l o s i v e and/or fuze components are being processed other than by normal handling methods. An example o f both e x p l o s i v e containment and remote c o n t r o l operations i s i l l u s t r a t e d i n I n c l o s u r e s 9-13. The f a c i l i t y used t o dispose o f the M3^, 1000 pound nerve agent c l u s t e r bomb at Rocky Mountain A r s e n a l i n Denver was the same f a c i l i t y used t o assemble the munition i n the e a r l y 1950s (inclosure 9 ) . E x p l o s i v e containment was provided f o r by a twofoot t h i c k , s t e e l r e i n f o r c e d concrete b u i l d i n g with an overhead plenum of approximately ^00,000 f t . This f a c i l i t y was r e f u r b ished t o s a t i s f y the maximum c r e d i b l e e x p l o s i v e accident (MCEA) which was considered t o be the detonation of an e n t i r e M3^ c l u s t e r or 76 i n d i v i d u a l M125 bombs. This r e s u l t e d i n a design for 52 l b s o f e x p l o s i v e and 200 l b s of nerve agent GB. The redesigned i n v o l v e d : b l a s t doors, b l a s t v a l v e s , a i r l o c k s , showers-suits, and the e n t i r e v e n t i l a t i o n system. There were over 21,000 M3^ c l u s t e r s as shown i n Inclosure 10 i n storage. The c l u s t e r contained 76 M125 bombs ( i n c l o s u r e 11) with 1/2 pound of e x p l o s i v e and 2.6 pounds of nerve agent. The d i s p o s a l process i n v o l v e d separating the bombs from the c l u s t e r ( i n c l o s u r e 12), s a f i n g the f u z e , punching the c a n i s t e r and d r a i n i n g the l i q u i d nerve agent, c u t t i n g the e x p l o s i v e away from the fuze, and burning the e x p l o s i v e and other combustible components. The nerve agent was subsequently n e u t r a l i z e d chemically with NaOH. Each of these operations were conducted remotely with c l o s e d c i r c u i t t e l e v i s i o n observation t o provide the r e q u i r e d personnel s a f e t y . The c l u s t e r case was removed exposing the M125 bombs shown i n Inclosure 13. One of the remote operations i s i l l u s t r a t e d on the next s l i d e . That i s the removal o f each o f the 76 bombs from the c l u s t e r by a programmed manipulator. This

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

WHELEN

19. •

Demilitarization

Munitions

321

UNDERTAKE LARGE SCALE PROCESS TECHNOLOGY STUDIES AND CONCEPT DESIGNS •

REMOTE MECHANICAL PROCESSES



LARGE VOLUME LIQUID TREATMENT PROCESSES



ADVANCED POLLUTION CONTROL SYSTEMS



DEVELOP WORKER AND ENVIRONMENTAL



DEVELOP MONITORING EQUIPMENT Figure 5.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

of Chemical

STANDARDS

Actions in response to guidance



SEPARATE AGENT FROM EXPLOSIVE



CHEMICAL DETOXIFICATION OF AGENT



THERMAL DEACTIVATION



DECONTAMINATION OF RESIDUAL Figure 6.

TOTAL

COMPONENTS

OF EXPLOSIVES MATERIAL

Chemical demilitarization process

CONTAINMENT

VENTILATION MONITORING/DETECTION SAFETY/MEDICAL

Figure 7. Safety design criteria for demilitarization of chemical munitions

TOTAL

CONTAINMENT



TOXIC MATERIAL



ACCIDENTAL EXPLOSION

CONTROL CONTROL



REMOTE CONTROL



OPERATING AND MAINTENANCE

EQUIPMENT PROCEDURES

VENTILATION

Figure 8.



VOLUME FLOW/FACE VELOCITY



AIR LOCKS/BUFFER ZONES



LOCALIZED VENTILATION



FILTERS, AFTERBURNERS, SCRUBBERS

Safety design criteria for demilitarization of chemical munitions

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

322

Figure 9.

FACILITIES

Chemical demilitarization facility at Rocky Mountain Arsenal

Figure 10.

M34, Nerve Agent GB Cluster, 1000 LB Class

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

WHELEN

Demilitarization

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

19.

of Chemical

Munitions

Figure

Figure 12.

11.

M125 Nerve Bomblet

323

Agent

M34 Cluster with case removed

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

GB

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

324

Figure 13.

Figure 14.

M34 Cluster dissambly programmed manipulator

Chemical agent munitions disposal system (CAMDS) Depot

at Tooele Army

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

19.

WHELEN

Demilitarization

of

Chemical

Munitions

325

operation was c o n t r o l l e d and monitored i n a c e n t r a l c o n t r o l room u t i l i z i n g CCTV. Some other types of e x p l o s i v e containment and remote c o n t r o l equipment are i l l u s t r a t e d i n Inclosures lU-19 showing p o r t i o n s of the prototype f a c i l i t y at Tooele Army Depot i n Utah. The overview ( i n c l o s u r e ik) i l l u s t r a t e s the remoteness of the s i t e approximately 6 0 miles southwest of S a l t Lake C i t y . Inclosure 1 5 shows the use o f s t e e l r e i n f o r c e d concrete f o r explosive containment i n the e x p l o s i v e d e a c t i v a t i o n furnace operation. Inclosure 1 6 i l l u s t r a t e s the use of a 1 0 foot diameter s t e e l c y l i n d e r f o r e x p l o s i v e containment of the M55 Rocket d e m i l i t a r i z a t i o n process. Inclosures IT and l 8 i l l u s t r a t e the M55 Chemical Rocket i n t a c t and cut i n t o seven s e c t i o n s . The c u t t i n g process i s accomplished with the equipment i l l u s t r a t e d i n Inclosure 1 9 which i s housed i n the e x p l o s i v e containment c y l i n d e r . The c o n t r o l room f o r t h i s and other operations at the d i s p o s a l s i t e at Tooele Army Depot i s shown i n Inclosure 2 0 . P r o v i s i o n s have "been made f o r a remote c o n t r o l l e d computer programmed operation i n c l u d i n g c l o s e d c i r c u i t t e l e v i s i o n of a l l c r i t i c a l / h a z a r d o u s operations. Another type o f remote operation i s i l l u s t r a t e d i n Inclosure 2 1 . T h i s armored personnel c a r r i e r was designed f o r recovery of M55 Rockets t h a t had been burned and b u r i e d i n p r i o r operations at Dugway Proving Ground. The armored personnel c a r r i e r i s equipped with a c h a r c o a l f i l t e r system and a remote c o n t r o l manipulator f o r handling the rockets that s t i l l contained chemical agent and/or e x p l o s i v e s . The unit, a l s o i n c l u d e s c l o s e d c i r c u i t t e l e v i s i o n cameras f o r observation by the operator as w e l l as at the c e n t r a l c o n t r o l room. Some o f the rockets that were recovered are i l l u s t r a t e d i n Inclosure 2 2 . This program i s a l s o complete. With respect t o v e n t i l a t i o n systems, we employ standard design c r i t e r i a f o r volume flow r a t e , negative p r e s s u r e , and face v e l o c i t y requirements i n contaminated and p o t e n t i a l l y contaminated areas. In contaminated p l a n t areas, we employ a minimum of 2 0 a i r changes per hour, while i n c l e a n operating areas we use a minimum of 6 a i r changes per hour. A l l e n t r i e s t o the contaminated areas incorporate a i r l o c k s t o prevent migration i n t o the c l e a n areas. In a d d i t i o n , l o c a l i z e d v e n t i l a t i o n i s used i n operations that have a high p o t e n t i a l f o r contamination such as agent d r a i n s t a t i o n s . A l l of our v e n t i l a t i o n sources are processed through charcoal f i l t e r s , a f t e r b u r n e r s , and/or wet chemical scrubbers. Inclosures 2 3 - 2 7 i l l u s t r a t e a t y p i c a l f i l t e r i n s t a l l a t i o n and an afterburner-wet scrubber i n s t a l l a t i o n at the Tooele s i t e . We have 1 2 separate f i l t e r systems at the s i t e ranging from 3 3 3 t o 1 5 , 0 0 0 CFM (Inclosure 2 3 ) . A t y p i c a l a p p l i c a t i o n i s the ADS - the f a c i l i t y used to destroy the nerve agents GB & VX by chemical n e u t r a l i z a t i o n ( i n c l o s u r e 2k) \ GB with NaOH and VX by an a c i d c h l o r i n a t i o n process. The a c t u a l f i l t e r system i n s t a l l a t i o n i s shown i n Inclosure 25 and has a c a p a c i t y of 1 5 , 0 0 0 CFM. These f i l t e r u n i t s c o n s i s t o f a low e f f i c i e n c y p a r t i c u l a t e p r e f l i t e r , a high e f f i c i e n c y p a r t i c u l a t e HEPA f i l t e r ,

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

326

Figure 15.

Figure 16.

Explosive deactivation furnace facility

Explosive containment cubicle with projectile saw machine with burster pull and size reproduction station

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

WHELEN

Demilitarization

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

19.

of Chemical

Figure 17.

Figure 18.

Munitions

M55 chemical rocket

M55 chemical rocket—launching tube after sawing

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

327

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

TOXIC C H E M I C A L A N D EXPLOSIVES

ure 19.

Rocket demilitarization machine

Figure 20.

CAMDS

control system

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

FACILITIES

WHELEN

Demilitarization

of Chemical

Munitions

329

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

ARMORED PERSONNEL CARRIER MODIFIED FOR CHEMICAL MUNITION HANDLING

Figure 21.

Armored personnel carrier modified for chemical munition

handling

GROUND

Figure 22.

M55 rocket recovery at Dugway Proving Ground

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

oixox

0££ Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

s a i x n i D v a s a A i s c r i c i x a QNV ' i v o m a r o

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

WHELEN

Demilitarization

of Chemical

Munitions

CAMDS AGINT DISTINCTION S t S U M

Figure 24.

Figure 25.

CAMDS chemical agent destruct facility filter system

Chemical filter installation at CAMDS agent destruct facility

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

332

TOXIC C H E M I C A L

A N D EXPLOSIVES FACILITIES

and an a c t i v a t e d carbon f i l t e r f o r agent adsorption. In order to insure t o t a l containment, we normally employ two sets of f i l t e r s i n s e r i e s and monitor between f i l t e r banks t o insure that a breakthrough i s detected when the f i r s t bank i s breached. Some operations d i c t a t e a separate set of double f i l t e r s i n p a r a l l e l i f we choose not t o shutdown the operation while a f i l t e r change i s being made. We also monitor on the stack t o v e r i f y that emission standards are being met. A t y p i c a l afterburner-wetscrubber system i s that used on the explosive d e a c t i v a t i o n furnace at Tooele ( i n c l o s u r e 26). In t h i s case we have a v a r i e t y of combustion products from the e x p l o s i v e p r o p e l l e n t burning as w e l l as r e s i d u a l chemical agent. The system employs a cyclone ( p r i m a r i l y f o r f i b e r g l a s s ) , an a f t e r burner operating at l600°F with a 1 second residence time, a quench, a v e n t u r i scrubber, and a packed column scrubber ( p a l l r i n g s ) c u r r e n t l y operating with a c a u s t i c scrubber media. The a c t u a l i n s t a l l a t i o n i s shown i n Inclosure 27. The remaining two general areas of concern are monitoring and safety-medical aspects ( i n c l o s u r e 2 8 ) . In the area o f chemical monitors and detectors we employ a combination o f alarms or monitors and chemical bubbler systems i n the p l a n t , on s t a c k s , and at perimeters. Our o b j e c t i v e i s t o provide adequate warning of process upsets - e i t h e r major or minor that could a f f e c t workers, surrounding p o p u l a t i o n s , or the environment. We have developed exposure and emission standards for each o f the chemical agents being disposed of and these standards d i c t a t e d that we advance the s t a t e - o f - t h e - a r t f o r detectors and a n a l y t i c a l procedures. The standards f o r GB nerve agent f o r example are: 3 x 10 ^ mg/m^ -h

1 x 10

- stack 3

mg/m

-6

- i n p l a n t worker TLV 3

3 x 10 mg/m - amb. a i r qual. During our RMA operations the only a v a i l a b l e monitoring systems were a plant alarm used i n the ' 50's and 6 0 s r e f e r r e d t o as the M5 and a new f i e l d alarm r e f e r r e d t o as the M8 which can detect 0.1 - 0.3 mg/m^ w i t h i n one minute. The response time i s more than adequate, however, the d e t e c t i o n l e v e l i s 3 logs above the 1 x 10" i n p l a n t TLV. So we used these alarms f o r upset c o n d i t i o n s and employed chemical bubblers with a two hour sampling time t o detect at the 0.0001 l e v e l . The bubbler however i s cumbersome, r e q u i r e s r e f r i g e r a t i o n during sampling and with the time f o r a n a l y s i s , has a turnaround time of 3-^ hours depending on the number of bubblers being processed. The RMA workload was s u b s t a n t i a l i n that a 3 s h i f t , 7 day work schedule was maintained f o r 3 years with i n excess of 13,000 bubblers/month processed. Since that time we have developed an automated enzymatic d e t e c t o r that i s capable o f d e t e c t i n g the !

f

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Figure 26.

Afterburner—wet scrubber system at CAMDS

explosive deactivation facility

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Figure 27.

CAMDS

explosive deactivation facility

MONITORING AND DETECTION •

IN-PLANT



EXHAUST STACKS



PERIMETER

SAFETY/MEDICAL •

PROCEDURES/TRAINING



PROTECTIVE CLOTHING



PHYSICAL EXAMINATIONS/PERIODIC



AID STATION, MEDICAL TECHNICIANS, AMBULANCES

Figure 28.

CHECKUPS

Safety design criteria for demilitarization of chemical munitions

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

19.

WHELEN

Demilitarization

of

Chemical

Munitions

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

3

335

i n p l a n t TLV o f 1 x 10"" mg/m" i n 8-10 minutes. Inclosure 29 d e p i c t s the general detector p l a n f o r the Tooele plant with a combination of "bubblers and chemical alarms l o c a t e d i n a l l work areas, a i r l o c k s , and stacks. Inclosure 30 shows the M55 GB Nerve Agent Rocket unpack area. In t h i s area the i n d i v i d u a l rockets are removed from t h e i r packing of 15 r o c k e t s . The rockets are t r a n s p o r t e d i n the s t e e l container shown i n the center of the room. This operation i s monitored by one o f the new alarms - r e f e r r e d t o as an RTM f o r Real Time Monitor and two bubbler s t a t i o n s . The d e t e c t i o n systems are p o s i t i o n e d t o provide as r e p r e s e n t a t i v e a sample as p o s s i b l e (with a p o i n t sampling system). In a d d i t i o n one of the bubblers samples the room exhaust. The RTM i s being evaluated i n the Tooele operation and i f s u c c e s s f u l could r e p l a c e some of the bubbler requirements. We use the same type o f d e t e c t o r s on our exhaust s t a c k s , however, the s p e c i f i c a p p l i c a t i o n s and s e n s i t i v i t y l e v e l s have t o be t a i l o r e d due t o i n t e r f e r e n c e s by v a r i o u s combustion products. Perimeter monitoring s t a t i o n s are a l s o employed during our operations. At the Tooele s i t e we have 8 s t a t i o n s around the perimeter of the d i s p o s a l p l a n t ( i n c l o s u r e 3 1 ) . This i s the South Area of Tooele Army Depot. I n c l o s u r e 32 i l l u s t r a t e s one of the i n d i v i d u a l s t a t i o n s which monitor f o r CO^, NOp, t o t a l oxidants, p a r t i c u l a t e ; chemical agent p l u s wind speed and direction. Our s a f e t y and medical programs are designed t o supplement the p l a n t and equipment designs. Extensive o p e r a t i o n s , maintenance, and emergency t r a i n i n g i s accomplished with i n e r t munitions and e x p l o s i v e l y configured munitions with simulant chemical f i l l before f u l l s c a l e chemical agent operations are s t a r t e d . D e t a i l e d procedures are developed, reviewed, and p r a c t i c e d f o r each operation by a l l personnel i n c l u d i n g c l a s s room as w e l l as "hands-on" t r a i n i n g . Developing procedures i n v o l v e s i d e n t i f y i n g the maximum hazards, making every e f f o r t t o minimize these p o t e n t i a l hazards and developing the procedures a c c o r d i n g l y . One o f our primary areas of concern i s the p r o t e c t i v e c l o t h i n g used - p a r t i c u l a r l y the l e v e l A c l o t h i n g used f o r maximum p r o t e c t i o n i n areas of known or having a high p o t e n t i a l f o r being contaminated. During the RMA operations we used the Army's f i e l d type, (M3) l e v e l A c l o t h i n g shown i n Inclosure 33. It i s basically a b u t y l rubber s u i t designed f o r p r o t e c t i o n against l i q u i d contamination and uses the M9 p r o t e c t i v e mask with carbon f i l t e r f o r vapor p r o t e c t i o n . This s u i t has been used e x t e n s i v e l y over the y e a r s , however, i t does not s a t i s f y the OSHA requirement f o r an a i r s u p p l i e d s u i t . Based on t h i s requirement we developed a new a i r s u p p l i e d s u i t ( i n c l o s u r e 3*0 and are i n the f i n a l stages o f t e s t i n g p r i o r t o use at Tooele. This s u i t i n c o r p o r a t e s a reusable r e s p i r a t o r with an emergency s e l f - c o n t a i n e d a i r supply

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979. Figure 29.

CAMDS chemical agent monitoring—detector plan

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

C/D

o

> a w



§

o X w

X

8

CO CO

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

WHELEN

Figure 30.

Demilitarization

CAMDS

of Chemical

Munitions

munition unpack area with chemical detector and bubbler stations

Figure 31.

Perimeter monitoring stations. South area.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

337

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

338

Figure 32.

Perimeter monitoring station at

Figure 33.

CAMDS

M3 protective suit

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

WHELEN

Demilitarization

of Chemical

Munitions

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

19.

Figure 34.

New chemical agent protective suit

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

339

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

340

Figure 35.

New chemical agent protective suit

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ch019

19.

WHELEN

Demilitarization

of

Chemical

Munitions

341

and a disposable outergarment made of two-ply c h l o r i n a t e d p o l y ethylene ( i n c l o s u r e 35). With respect t o the medical aspects, we develop a d e t a i l e d medical plan f o r each program that i s coordinated through the Army's medical community and DHEW. The plans i n c l u d e : (1) Preassignment p h y s i c a l s f o r a l l personnel. (2) P h y s i c i a n t r a i n i n g i n chemical agent treatment. (3) Personnel t r a i n i n g t o recognize symptoms every 6 months. (k) S p e c i a l a t t e n t i o n t o red blood c e l l c h o l i n e s t e r e s e . S u r v e i l l a n c e - b a s e l i n e , p e r i o d i c checks. (5) Emergency a i d s t a t i o n , ambulances, e t c . (6) P h y s i c i a n s and/or t r a i n e d medical t e c h n i c i a n s o n s i t e during a l l operations. As s t a t e d at the outset, t h i s paper i s intended to provide a h i s t o r i c a l overview and some i n s i g h t as t o the types of operations, procedures and equipment used i n the Army's D e m i l i t a r i z a t i o n Program f o r Chemical Munitions. In each of the areas discussed there has been a considerable amount of study, l a b o r a t o r y experimentation and p i l o t t e s t i n g accomplished t o define the s p e c i f i c design c r i t e r i a . RECEIVED November 22,

1978.

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

INDEX

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ix001

A Acceptor structures 17-19 Acceptor tote bin 11/ Access control 193 Accidents, probable causative stimuli for 22/ Accumulator deluge test set-up 27/ Accumulator fire after ignition 27/ Acetic acid 301 2-Acetylaminofluorene 205 Afterburner-wetscrubber system .332,333/ Agent criteria 279 detection devices 277 detectors 231 monitoring 277 Air-sampling device 309 Air-sampling probe 304 Alabama 179 Aluminum 91,100 Ames Test 222,232 Ammonium perchlorate 131,135 Ammunition peculiar equipment 277 safety program DOD chemical... 237-242 surveillance 161/ Anniston Army Depot 299 Anticholinesterase compounds 301-315 Anticholinesterase contaminant 302/ Army Chemical Agent Munitions Disposal System (CAMDS) 241 environmental hygiene agency 140 guidance on chemical demilitarization 319/ munition plant modernization program 1 Surgeon General 277 Atlantic Scientific Corporation 117 Avalanche diode 112 B

BALL POWDER process, safety design criteria for Barricaded intraline distance Barricades concrete Bending forces Black Powder

171-178 17 35 35 100 3

Blast criteria for glass door and vent effects overpressure transient B L E V E of tank cars Blood chemistry Bomblet, nerve agent Bombs, M125 Bonding Bubbler average collection efficiency chemical behavior of the desorption curves for aerated influence of airflow rate stations Building design, general designing a safe academic chemistry test results Burning tests, sustained Burning time

37 22/ 166/ 17-19 46,55 46 267 224 323/ 320 110-112 313/ 315 314/ 312/ 237/ 244-247 243-251 16/ 145,147t 46

C

C 0 extinguishers 246 Carcinogenic wastes, disposal of liquid 206/ Carcinogenicity 233/, 234/ Cardiovascular system 229 CASBL conveyor 151-152/ Casting 133 Causative stimuli for accidents, probable 22/ Cell transformation 222 Cerebral function 227/ Chemical Agent Munitions Disposal System (CAMDS) 301 chemical agent destruct facility filter system 331/ chemical agent monitoringdetector plan 236/ control system 328/ explosive deactivation facility .... 334/ munition unpack area 237/ site chemical filter system 330/ carcinogens 191 2

345

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ix001

346

Demilitarization Army guidance on chemical 319/ machine, rocket 328/ of munitions, technology for ecological 67-78 process, chemical 321/ programs, lethal 318 public laws governing chemical 319/ Department of Defense 140, 317 Ammunition and Explosives Safety Standards 275 chemical ammunition safety program 237-242 Explosives Safety Board 53,140,237 evaluation process 238 model for chemical hazard prediction 238 quantity-distance standards 238 safety manual 177 Department of H E W Committee to Coordinate Toxicology and Related Programs 229 Department of H E W Laboratory Chemical Carcinogen Safety Standards 191 Department of Labor 191 Department of Transportation 216 Derailment 267 Design within the constraints of safety, flexible laboratory 253-261 criteria 320 application of 160-163 for mobile ammunition surveillance shop 159-169 safety 317-341 slurry pump 173 for standard chemical maintenance facility 273-299 facility 279,285-287 factors influencing 275 features, facility 207 general building 244-247 manual, safety (TM5-1300) 17 philosophy 318 of specific areas 247-250 Designing afluorinelaboratory 254 Designing a safe academic chemistry building 243-251 Desorption curves for aerated bubbler 314/ Detection concept, monitor 302/ Detector Electronics Corporation 188 Detonation, minimum velocity for ... 14/ Detoxification 223/ Dinitrotoluene (DNT) 145 Diode 67,68/ avalanche 112 202, 204 semiconductor 116/ 279 zener 112

Chemical (continued) controls and costs for commercial .. 221i Dimilitarization and Installation Restoration 301 incompatability 269-271 stores 249-250 Surety Program Regulation 275 Transportation Emergency Center 267 on vision, toxicological effects of .... 224* Chromosome damage 222 Classification procedure, hazard 21, 23/ Classification studies, hazard 19-21 Clean Air Act Amendment 215f Clean room 249 Clothing, protective 192,265 Cloud-to-ground discharge, lightning process in a 79-88 Cluster, nerve agent 322/ Code of Federal Regulations (CFR) .. 216 Collection 202,204 Committee on Hazardous Material .... 267 Compounding 131-133 Computer program, thermochemistry 69 Computerized axial tomography scanners 117,120 Conductors copper 99/, 100 down 90 lightning rod and its 88-91 sources of lightning surges in 107 Consumer Products Safety Commission (CPSC) 216 Containment 320 cabinets, laboratory 208-211 cabinets, primary 193 explosive 320 total 240 vapor 240 Contamination, protecting vacuum system from 203/ Conveyor continuous automated single-base line (CASBL) 151/, 152/ fire wall arrangement 144/ test set-up 150/ Copper 91 conductors 99/ Corona discharge 88, 89,94 Cost estimate, facility 290 Crowbar 112 Cubicles, typical concrete 36/ Curing 133 D Deactivation furnace Decontamination solutions

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

347

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ix001

INDEX

Disposal 204-205 Disposal of chemical warfare agents and munitions 319/ Dissipation principle of lightning protection 88 Distance barricaded intraline 17 inhabited building 17 unbarricaded intraline 17 5,5'-Dithio-bid-2,2'-nitrobenzoicacid .. 301 DNA repair 222 Dose, long-term no effect 218* Dose, single 218* Dosimeter system 309 personal 310/ Dosimeter in wearing mode 311/ Drosophila 222 Drosophila Test 232 Drinking 193 Dugway Proving Ground 325

Explosion (continued) suppression of large turbulent areas 179-185 -suppression tests 180-185 Explosive containment chamber 290 containment cubicle 72/, 241, 326/ deactivation facility, CAMDS 334/ deactivation furnace facility 326/ and incendiaryfires,rapid suppression of 187-189 material 35 shielding of facilities for work with 35-60 safety standards 237 simulated conveyor line for 26/ wing 287,290 Exposure limits, unprotected personnel 278/ Extinguishers, C 0 246 Eyes and skin, effects on 225/ 2

E Eating 193 Electric field lines 96/ Electrical effects 94, 98 Emergency Action Guide for Selected Hazardous Materials 268 Emergency procedures 205, 207 Endocrine system 226/ Energies for semiconductors, upset and burnout 109/ Energy, microwave 74, 75/ Engineering design handbook, shielding 58* Environmental Protection Agency (EPA) 140,216,243 Enzyme colorimetric method of analysis 301 Equipment compartment 164/ Equipment failure protection 173-174 Equivalence of nitroglycerine, T N T .. 7/ Equivalency tests, typical test set-up .. 5/ Equivalency, TNT 4-5/ results 8/ study 306 Evaporation systems, solvent 174 Excretory processes 223/ Exhaust air 208 cabinet 210/ filters 277 and electrical service channel 259/ system 246 Explosion propagation, probability of an 6 protective technology for accidental 4/

F Facility design 279,285-287 Facility objectives 273 Federal Register (FR) 216,238 Field change equipment 123,125 line collection area 97/ mill 121,123 Filter systems 325 Fines 176 Fire blanket 246 minimum water to quench 147-149 protection 177-178,265 rapid suppression of explosive and incendiary 187-189 suppression systems, deluge 21-28 symbols 168 wall arrangement, conveyor 144/ water distribution system 177 Flame 37 quench test set-up 155/ quench trials 156* Flash distance 122/ Flash point 176 Flashes, spatial distribution of 102 Florida 101/, 102 Flow charts, process 277 Flow chart, technology 57/ Fluorine laboratory, designing a 254 Food and Drug Administration (FDA) 216 Fragment 37 effect, secondary 14/ hazards 55

American Chemical Society Library 1155 16th St. N. w. Washington, D. C.Facilities; 20036Scott, R.; In Toxic Chemical and Explosives ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC C H E M I C A L A N D EXPLOSIVES FACILITIES

348 Fragment (continued) impact investigation impact test, secondary primary secondary suppression Fragmentation effects Furnace, deactivation

I 12-17 15/ 35 35 55 35 67, 68/

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ix001

G Gaging, supplementary Gas breakdown devices discharge tubes facilities lines, paths of supply closets Glass blast criteria for regular tempered Grain formation Grenade(s) disposal, armed hand sheared and burned Grounded unit, interior Grounding Group 3 shield Group 5 shield Group 6 shield Guinea pigs Gunpowder

265 115,117 118/ 112 254 258/ 255/ 22/ 19 19 172 163 69 70/ 99/ 110-112 53 40-53 37-40 224, 227/ 171

H Hardware, panic 165/ Hazard classification procedure 21, 23/ Hazard classification studies 19-21 Hazardous materials, handling and transport of 263-271 Hazardous materials, transportation of 317 Hazardous Substance Labeling Act.... 224 Heat actuating device 187 Heat flux as function of time 52/ Heat flux, radiant 46 Hematology 224 Hematopoietic system 226/ Hoods 258/ canopy 246 chemical fume 208, 209/ Housekeeping 202 Huntsville District Corps of Engineers 299 Hygiene practices, personal 193

Illuminant material 46 mix 53 test configuration, free field 50/ Impact investigation, fragments 12-17 Impact test, secondary fragments 15/ Incinerator charge system, automatic 206/ Inhabited building distance 17 Inhibitor response 305/ Institute of Rubber Research 243 Instrumentation for Group 5 shield tests 49* layout 46 lightning tracking 121 lightning warning 124/ Insulation effects 110 Inventory 202

J Jockey pump

177 K

Kidney function Kidneys, tumors of the

223/, 226/ 234/

L Laboratory analytical chemistry 248 analytical teaching 260 biochemistry 248 clothing, types of 194-195/ design within the constraints of safety, flexible 253-261 designing a fluorine 254 differences between industrial and academic 257 faculty office 249 garments, disposable 192 general plan of office and research 258/ graduate research 248-249 introductory chemistry 247 organic 247-248 physical chemistry 248 service drops in instrumental 256/ Lacquer 174 Landsteiner technique 224 Laws governing chemical and demilitarization, public 319/ Lead 91 Leader process 80 Learned performance tests 224 Lightning breakdown voltage 85 channel, pressure from 101/

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

349

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ix001

INDEX

Lightning (continued) current 82 amplitudes 84/ dissipation system 88 down conductors 90 and the hazards 79-126 intracloud 108 discharge 82 leader 83/ position and tracking 125 process in a cloud-to-ground discharge 79-88 protection, basic requirements 91, 93 protection by overhead wire 93, 94 radioactive 88 return stroke 80, 83/ initiation 81/ rod and its conductors 88-91 stepped leader 80 initiation 81/ striking distance 85 surges in conductors, sources of 107 and switching surges and transients 105-112 tracking instrumentation 121 warning instrumentation 121, 124/ Liver function 223/, 226/ Loading racks, personal protection for 265 Loading and unloading 264 Lone Star Army Ammunition Plant.... 187 M

Mammalian Lymphoma Test 232 Manufacturing Chemists' Association 264,267 Maximum credible event 238 Mechanical considerations 100-102 Medical programs 335 Medical surveillance program 191-192 Metabolism 222,223/ Micronucleus Test 232 Missile Research and Development Command (MIRADCOM) preventive medicine activity 140 propulsion facility 134 safety office 137 Mobile ammunition surveillance shop, designs criteria for 159-169 shop 165/ surveillance inspection shop ... 162/, 167/ Monitor block system 305/ and detectors, chemical 332 reagents 306/ and sample probe 308/ system 303/ work area 307/

Monitoring station, perimeter 237-238/ Motor 134 Mouse 223/ Munitions disposal plant, white phosphorus .74, 76/ disposal system, chemistry agent 324/ nerve agent filled rocket 71 plant layout, safety design considerations in 1-29 plants, water deluge system application in 21-28 technology for ecological demilitarization of 67—78 Mutagenicity 231/

N National Academy of Sciences (NAS) 216 National Cancer Institute 191,216 National Center for Toxicological Research Laboratories 204 National Environmental Policy Act .... 215* National Fire Protection Association .. 268 Lightning Protection Code 93 National Institute for Occupational Safety and Health (NIOSH) 192,216,243 National Technical Information Service 59 Naval Surface Weapons Center 238 Neoplasia 226/ Nerve agent bomblet 323/ Nerve agent cluster 322/ Neuromuscular system 229 New Mexico, lightning in 94 Nitrocellulose 172-173 smokeless powder 177 Nitroglycerin 131,173 manufacture and transfer of 175 TNT equivalence of 7/ Non-explosive wing 290 Nozzle system 26/

Occupational Safety and Health Act 140, 216*, 243 Oil and Hazardous Materials Technical Assistance Data System 268 Operation Chase 317 Operational capabilities 275-277 Operational layouts 277 Operations Council of the American Trucking Associations, Inc 267 Overhead facilities 259/

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

350 Overpressure blast internal transient quasi-static static

46 55 55 46

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ix001

P Packaging 202 Panel section, Group 5 44/ Pathology 224 Pentolite 53 Personnel support area 287 Phosphorus filled munitions, white .... 74 Phosphorus munitions disposal plant, white 76/ Pipetting 193 aids 198-201/ Poison Control Centers 268 Potassium sulfate 145 Pour flow diagram, projectile melt 9/ Precancerous indicators 232* Pressure from lightning channel 101/ relief venting 143 wave, supersonic 100 PRIMAC/TELEMAC sprinkler system 143-157 Primac valve 188 Probability of an explosion propagation 6 Propagation and tests 11/ Propellant(s) 3 conveyor configuration, dry 148/ drying, continuous 176 flame propagation 143-157 layer, minimum water to quench 153-154* mixing 133 and propulsion research and development facility 129-141 single-base cannon 143 Protection considerations, personnel 159-169 fire 265 respiratory 264 Protective clothing 192,265 personnel 278/ ensemble, disposable 180-284/ equipment, respiratory 196-197/ suit 238/ chemistry agent 239-240/ technology for accidental explosions 4/ uniforms 277 Protector devices 112-117 Pump design criteria, slurry 173 Pump, jockey 177 Public access exclusion distance 231

Pyrophoric Pyrotechnic material Pyrotechnics

129 35 3

Q Quartzoid sensor Quench requirements tests set-up, trials,

188

flame flame

152/ 149-154 155/ 156*

R

Radford Army Ammunition Plant 143 Radiation type sensor 181 Railbeds 267 Rats 220*, 229 reproduction study in 231/ Receptor and effector systems 230/ Regulatory criteria 175 Reproduction 229 study in rats 231/ test, one-generation 229* Research needed 52* Resistance of rod electrodes, ground .. 87/ Resistors, varistors-voltage dependent 115 Respiratory protection 192, 264 protective equipment 196-197/ system 229 Reticuloendothelial system .224, 226/, 227/ Return stroke magnetic waveforms ... 86/ Robot, industrial 77/ Rocket 325 chemical 327/ demilitarization machine 72/, 328/ M55 73/, 335 motors, burning of 69 munitions, nerve agent filled 71 recovery 329/ Rocky Mountain Arsenal 320, 322/ Rod electrodes, ground resistance of .. 92/ Rods, radioactive 89 Roof panel, damage to 20/ S

Safe separation distance determination Safety advantages, inherent process approved shields criteria for facility for hazard bays for propellant chemistry laboratory

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

6-11 172-173 53-55 135* 137* 138*

351

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ix001

INDEX

Safety (continued) design considerations in munition plant layout 1-29 criteria 321/, 334/ for the BALL POWDER process 171-178 for demilitarization of chemical munitions 317-341 manual (TM5-1300) 17 evaluation, philosophies of 217/ guidance 160 organizations and agencies 137 programs 335 Regulations for Chemical Agents .... 275 standards, explosives 237 Sand 246 Sea dumping 317 Sensor locations for shield tests 48/ Separation distance determination, safe 6-11 Service and support area 287 Set-up, experimental 13/ Shearing equipment 69 and enclosure 111/ Group 5 40-53 panels 43/ summary of tests 47* suppressive 45/ tests, instrumentation 49* typical test set-up 51/ Group 6 37-40 cart 39/ suppressive 38/ performance, predictive techniques for 53 safety approved 53—55 suppressive 35 designs 55 groups 38/ schematic 36/ technology 55 utility 40 tests, sensor location for 48/ transportable laboratory 35 Shielding applied technology participants, suppressive 56* engineering design handbook 58* of facilities for work with explosive material 35-60 principles, suppressive 168 Shipping 202 Shock wave 100 Showers 192-193 Side-flashing 90-91,94 Single-base line process 146/ Smoking 193

Spark gaps 112 characteristics 118/ protection 119/ Sprinkler system, PRIMAC/TELEMAC 143-157 Sprinkler system, water 25 S.S. Texaco 179 Standard Chemical Maintenance Facility (SCMF) artist's concept 274/, 285/ change house 288/ cost estimate 297/, 298/ explosive unpack bay 292/ explosive wing 291/ factors affecting design 276/ fiber container unpack concept 293/ fiber container unpack station 295/ Fuze and Burster removal station .. 294/ general arrangement 286/ lid removal concept 293/ mine unpack station 294/ non-explosive wing 296/ service and support area 289/ Standard Operating Procedures (SOP) 140-141 State Health Departments 268 Steel galvanized 91 panels, cold formed 17 test panels 18/ Storage 202 Strikes to ground, frequency of 102-104 Strikes to tall structures, frequency of 104-105 Stroke 79 "Structures to Resist the Effects of Accidental Explosions" (TM5-1300) 1 Supersonic pressure wave 100 Suppression, thermal 53 Suppressive shields 35 Surge(s) 114/ protection 122/ voltage 105 Surgeon General 301 T

Tank cars, B L E V E of Tank vehicles, cleaning of Technology for ecological demilitarization of munitions Test arrangement with 16 projectiles fixture proof propellant

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

267 264 67-78 10/ 41/ 40 46

Publication Date: April 6, 1979 | doi: 10.1021/bk-1979-0096.ix001

352

TOXIC CHEMICAL AND EXPLOSIVES FACILITIES

V Test (continued) results, summary of 16/ Vacuum line 202 set-up, accumulator deluge 27/ Vacuum system from contamination, set-up, equivalency tests, typical .... 5/ protecting 203/ summary of proof 42t Valve, deluge 187 Thermal considerations 98,100 Valve, Primac 188 Thermobalance, controlled Varistors 112 atmosphere 260 Vatican Berni Colonade building 89-90 Thiocholine 301 Velocity for detonation, minimum .... 14/ 5-Thio-2-nitrobenzoate 301 Ventilation 320 Thunder heard in parts of USA 103/ system 231,246,325 Thunderstorm activity 101/ Venturi scrubber 78 Thunderstorm day 102 Vision, toxicological effects of TM5-1300, studies leading to 2/ chemicals on 224* TNT 73/ Voltage equivalency 4/, 5/ constant 112,115 of nitroglycerine 7/ dependent resistors 112 results 8/ suppression requirements 107 study 3-6 surge 109/ set-up 10/ switching impulse breakdown 87/ Toxic Substance Control Act 140,216* transient 105 Toxicity tests, acute 218 Toxicological W effects, general 223/ Warfare agents and munitions, studies 235* disposal of chemical 319/ testing 215-236 Water guidelines for 217/ deluge 27/ Transient voltages 105 system application in munition Transport, interlaboratory 202 plants 21-28 Tumors of the kidney 234/ to quench fires, minimum 147-149 to quench propellant layer, minimum 153*, 154* sprayer, emergency 246 U sprinkler system 25 95/, 96/ UV detection 179 Wire, elevated grounded 93 system 181 Wires, catenary 245 UV sensor deluge system 188 Work areas 193 Unbarricaded intraline distance 17 Work surfaces Underwriter's Laboratories Master Z Labeled Protection System 93 112 U.S. Department of Transportation .... 266 Zener diode Zeners, avalanche 113,115 U.S. Coast Guard Chemical Hazard 91 Response Information System .... 268 Zinc

In Toxic Chemical and Explosives Facilities; Scott, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.