The use of heavy oils as fuels for diesel engines

660 100 4MB

English Pages 134

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

The use of heavy oils as fuels for diesel engines

Citation preview

THE USE OF HEAVY OILS AS FUELS FOR DIESEL ENGINES

A Thesis Presented to the Faculty of the School of Engineering The University of Southern California

In Partial Fulfillment of the Requirements for the Degree Master of Science in Engineering

by Robert Thomas Holmes June 1950

UMI Number: EP60495

All rights reserved INFO RM ATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete m anuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

U

M

I

Dissertation Publishing

UMI EP60495 Published by ProQ uest LLC (2014). Copyright in the Dissertation held by the Author. M icroform Edition © ProQ uest LLC. All rights reserved. This w ork is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 4 8 1 0 6 - 1346

,V\

^

This thesis, w ritten by .................. £DJB£ET..TiiCMAS..ii£}LiM£S............................... under the guidance of h .^ .... F a c u lty Com m ittee, and app ro ved by a l l its members, has been presented to and accepted by the C o u n cil on G ra duate S tudy and Research in p a r t ia l f u l f i l l ­ ment o f the requirements f o r the degree of

.............. .................... IH..ME.CliJLN2I2ALL..E]!JGIEEERlKQ.................

Da^....JJLmE..17.*-.195 Q........

Faculty Commit

Chairman

TABLE OF CONTENTS CHAPTER I.

PAGE

THE PROBLEM AND IT'S I M P O R T A N C E ............... Statement of the problem

II.

1

.................

1

Importance of the s t u d y ...................

1

REVIEW OF PREVIOUS RELATED SUBJECTS ..........

7

Belton Light and Power Company, Belton, S. C ...................................... The Tacubaya Power Plant III.

10

.................

11

THE EFFECTS OF THE FUEL ON THE E N G I N E ........

14

F u e l s ........................................

15

Manufacture of fuel o i l s .................

16

Physical properties .......................

22

Availability of the f u e l s .................

29

Purification of f u e l .....................

32

The fuel-injection system ...................

34

A t o m i z a t i o n ................................

35

Injection timing

.........................

37

C o m b u s t i o n ..................................

39

Ignition lag and knocking combustion

...

42

Combustion chambers .........................

48

Pre-combustion chambers ...................

49

Turbulence, auxiliary or separate combustion c h a m b e r .................................. Energy cell, or lanova chamber

..........

49 50

iii CHAPTER

PAGE Open c h a m b e r .............................. S m o k e ........................................ Effect of fuel-air ratio

51 51

.................

51

Deposits and w e a r ............................

53

IV.

THE METHOD OP T E S T I N G ..........................

56

V.

DISCUSSION OP THE T E S T S ........................

64

Preliminary tests .........................

64

Tests on Bunker C o i l .....................

69

Tests on Thermally Cracked Residuum . . . .

86

SUMMARY AND C O N C L U S I O N S ........................

107

S u m m a r y ....................................

107

C o n c l u s i o n s ................................

109

VI.

B I B L I O G R A P H Y ...........................................

112

A P P E N D I X ...............................................

115

LIST OP TABLES TABLE I.

PAGE Properties of Unflashed Unblended Chamber Residue from 100$ Straight Run Residue Shipping Sample ..............................

II.

Properties of Bunker C Oil PS 400 or Bunker

C

.

III.

Properties of A.S.T.M. Classification 1-D Oils.

IV.

Relation of Engine Performance Characteristics to Variations in the Fuel Properties

V. VI.

. . . .

Properties of Reference F u e l ..........

75

80

Data from Tests Using Thermally Cracked Timing Position#4 ................

92

Data from Tests Using Thermally Cracked Residuum,

XII.

70

Data from Tests Using Bunker C Fuel

Residuum, XI.

65

Data from Tests Using Bunker C Fuel

Timing Position # 4 ......................... X.

24

Data from Tests Using Bunker C Fuel

Timing Position # 3 ......................... IX.

23

Data from Tests Using 51*5 Cetane Reference

Timing Position # 2 .......................... VIII.

18

63

F u e l ........................................ VII.

17

Timing Position#5 ................

97

Data from Tests Using Thermally Cracked Residuum,

Timing Position #6 ................

102

LIST OF FIGURES FIGURE 1.

PAGE Energy Distribution for a Typical Diesel Installation

2.

................................

Comparison of Fuel Consumption Rates for Various Types of Prime Mover

3.

1932-1950 . .

1949-1950

4

5

1932-1950

5

Flow Diagram of the Units in a Typical Refinery Used in Making Residual F u e l s ...............

6.

4

Price Schedule for Bunker C Oil and Diesel Oil, New York Harbor

7.

1949-1950 . .

Price Schedule for Bunker C Oil and Diesel Oil, New York Harbor

6.

2

Price Schedule for Bunker C Oil and P.S. 200 Diesel Oil, Los Angeles Harbor

5.

...............

Price Schedule for Bunker C Oil and P.S. 200 Diesel Oil,, Los Angeles Harbor

4.

2

20

Net Heat of Combustion of Oils vs A. P. I. G r a v i t y ......................................

30

9.

Viscosities of the Test F u e l s .................

31

10.

Effect of Pump Speed on Injection L a g ........

38

11.

Effect of Fuel Quantity on Injection Lag

...

38

12.

Combustion Diagram for a Diesel Engine

. . . .

41

13.

Effect of Injection Advance Angle on the ..............................

45

Ignition Point

vi FIGURE 14.

PAGE Effect of Crank Angle on the Spontaneous Ignition Temperature of a Fuel and the Temperature of the Air C h a r g e ...............

15.

46

Effect of Compression Ratio on Air Temperature at T.D.C. and on Minimum Auto-ignition Tem­ perature

....................................

46

16.

Effect of Fuel-Air Ratio on S m o k e ............

52

17-

Exploded View of Timing Equipment Added to Test E n g i n e ..................................

18.

Brake Horsepower vs. B.S.F.C. for Tests Using 51 •5 Cetane Reference F u e l ..........

19.

59

66

Brake Horsepower vs. B.S.F.C. and Exhaust Temperature for Tests Using Bunker C Fuel, Timing Position # 2 .........................

20.

74

Brake Horsepower vs. B.S.F.C. and Exhaust Temperature for Tests Using Bunker C Fuel, Timing Position # 3 .........................

21.

79

Brake Horsepower vs. B.S.F.C. and Exhaust Temperature for Tests Using Bunker C Fuel, Timing Position # 4 .........................

22.

Pitting of the Piston Crown Due to the Im­ pingement of Raw F u e l .......................

23.

84

89

View of the Piston Indicating the Extent of the Deposits Formed During the Tests

...........

90

vii FIGURE 24.

PAGE Brake Horsepower vs. B.S.F.C. and Exhaust Temperature for Tests Using Residuum Timing Position # 4 .........................

25.

96

Brake Horsepower vs. B.S.F.C. and Exhaust Temperature for Tests Using Residuum Timing Position # 5 .........................

26.

101

Brake Horsepower vs. B.S.F.C. and Exhaust Temperature for Tests Using Residuum Timing Position # 6 .........................

106

27.

Generator Efficiency

- 1000 R.P.M..............

117

28.

Generator Efficiency

- 1300 R.P.M..............

118

29.

Generator Efficiency

- 1600 R.P.M..............

119

30.

Right Side View of the TestE n g i n e ............

120

31.

Front View of the Test E n g i n e .................

121

32.

Left Side View of the Test E n g i n e ............

122

33.

View of Control P a n e l .........................

123

CHAPTER I

THE PROBLEM AND IT'S IMPORTANCE Statement of the problem.

It is the purpose of this

study to (l) investigate the use of common low grade resid­ ual oils as fuels for diesel engines and if this is possible (2) to further investigate the necessary changes in the en­ gine and fuel system to enable the engine to run efficiently on these fuels. Importance of the study.

The modern diesel engine

as used in large power generating plants and for ship pro­ pulsion, is the most efficient source of power used today. Figure 2 illustrates the fuel consumption of this engine as compared with other forms of mechanical power.9

However, a

comparison of the diesel engine and the steam turbine on an economic basis may show an advantage in favor of the steam turbine.

This is a result of the prices of the fuels used

in each installation.

The average diesel engine requires

distilled fuels with definite limits set for several of the physical properties.

Manufacturing oils within these pre­

scribed limits requires special processes and frequent test­ ing and as a result the price is high.

Whereas, the oil

used in boilers need only have a reasonable heat content and be fluid enough to allow pumping and atomization in the

100 X 0N 80

vO oe Uj e ki

60

33%

ZO 0 WATER AND OIL DISTRIBUTION EN G INE.

IN F U E L F IG U R E

'C I 0.*X3

/

HEAT

HEAT

ENERGY

ENERGY DIESEL

RADI ATI ON

EXHAUST FOR

A

TYPICAL

. 90

6A5 TURBIN'E 1600’ E .S

.80

'Q

VS00 H R REGENERATOR

70

* o k-

CL

S T E A M TURBIN VS0 0 H P 6 S O PS I S 8 Z S ~F

.60

£

STEAM

TURBI NE SO

O vj

S

H I - S P E E D OIESE ISO H P -

B Z S P H 9 0 0 *F

.HO SLOW S P E E D !S

u.

SUPERCHARGED

DIESEL

IOOO H R

.30 ZS PERCENT

FIG U R E

Z

is. 000 KW.

56

7S OF

FULL

IOC LOAD

3 furnace.

Furnace oils are generally manufactured from the

residues of the distillation processes, to less definite limits of the physical properties. Figures 4 and 6 indicate the prices of fuels of each group for the past eighteen years.

io

These prices are for

the Los Angeles and New York harbor areas, as loaded inships bunkers.

Prices elsewhere will vary by approximate­

ly the same amount.

As shown in Figure 3 the price of the

furnace oil has dropped considerably in the Los Angeles area in the past year.

This decrease is due to the rapid

decrease in shipping since the end of World War II, result­ ing in an oversupply of heavy fuel oil in the area. A slight advantage is found in the higher heat con­ tents of heavier oils as shown in Figure 8, on a volumetric basis.^

Although the heat content of the furnace oils is

lower on weight basis, the increase in specific gravity is greater than the decrease in heat of combustion, resulting in an increase on a volumetric basis.

Since oils are nor­

mally purchased on a volumetric measure a further economic advantage is gained. The future trend in the use of petroleum products indicates a greater supply of the residual oils.

The pro­

duction of greater amounts of high octane gasolines as well as the increasing demand of high grade fuel for high-speed diesel engines will leave an increasing surplus of these

BARREL PER

3 .50 DI ESEL

PRICE-DOLLARS

3.Q0

2 .5 0

2.00

/.30 BUNKER C

/.00 MAP

F I 6 URE

3.

MAY JULY 1 9 *-9

SEPT

NOV

JAN

MAR I9 S 0

PER

BARREL

JAN

PRICE-

DOLLARS

2.00

DI ESEL

1.00 BU NK E R

/ S32

193*

FIGURE

1936

1938

19*0

19*2

1 9 **

C

19*6

19*8

PRICE SCHEDULES FOP B U N K E R OI L A N D P 5 2 0 0 Ol E 5 E L OI L LOS A N G E L E S H A R B O R

1930

C

BARREL PER - DOLLARS PRICE

+ 00 3 .5 0

D IE S E L

3.00 2.5Q 2.0Q

1.50 LOO JAN

MAR

MAY JULY 19+9

SEPT

NOV

JAN

MAR 1950

3 00

DI ESEL

1 . 50

BUNKER C

PRICE

- DOLLARS

PER

BARREL

F IG U R E 5.

.5 0 1932

1939-

FIGURE

1936

6

1938

19+0

1992

19+9

P R I C E S C H E D U L E S F OR OIL AN D D I E S E L OI L N E W YO RK H A R B O R

19+6

/9 + Q

BUNKER C

1950

6 heavy oils.

The conversion of the nations railroads to

diesel power has further resulted in increasing demands for distilled diesel fuels while decreasing the use of residual oils from 112,000 barrels per day in 19^6 to 50,000 barrels per day in 19^9 *^ The successful solution of the problem prescribed in this study will create a new market for these heavy residues as well as presenting a further economic incentive toward the use of diesel power.

CHAPTER II

REVIEW OF PREVIOUS RELATED SUBJECTS Rudolph Diesel first conceived the idea of the engine, which was later to bear his name, in the year 1892.

He vis­

ualized an adiabatic compression of an air-fuel mixture to a point where the high temperature developed would ignite the fuel.

Combustion was expected to take place at a constant

temperature.

This engine was constructed with the coopera­

tion of the two German firms, Krupp and M.A.N.

The original

engine was designed to operate with coal dust as a fuel and to be started by an explosive charge.

The first attempt at

operating the engine resulted in i t ’s complete destruction, apparently as a result of too large an explosive charge. Further development was continued by Rudolph Diesel and others interested in the engine.

Constant pressure com­

bustion and the use of oil instead of coal dust as a fuel was suggested.

Using these ideas, M.A.N. built the first

successful engine in 1897* horsepower engine.

It was a single cylinder, 25

This unit, as well as others built for

many years following, was designed to operate on heavy resid­ ual oils.

These oils were easy to manufacture and their cost

was low.

It was usually necessary to heat the fuel for prop­

er injection but due to the large cylinder bores and the

8 long time available for burning, these early engines oper­ ated quite well on this fuel. The oil used at that time was much better than the residual oils available today.

The crude was processed in

a single low pressure distillation unit, leaving all of the heavier distillation products normally removed in modern re­ fining. Recent developments in the use of residual fuels have, for the most part, originated in Europe where the greater cost of fuels relative to labor and equipment has given added encouragement to this work.

In a report given

before The Institute of Marine Engineers in London, Lamb described his findings in studying the use of certain boil­ er fuels in the Motorship "Auricula."^5 Original tests were conducted on a single-cylinder engine which corresponded to one of the motorship!s eight cylinders.

The tests on the experimental engine resulted

in fuel consumption rates of .468 to .498 Lbs./B.H.P.-hr. on the boiler fuel as compared with .458 on the regular diesel fuel.

Tests on the ability to purify the fuel by

means of two specially adapted centrifuges, proved satis­ factory as did the ability to operate without abnormal de­ posit.

The use of the fuel oil showed the following changes

in operation: 1.

The mean indicated pressure was reduced indicating

9 a reduction in combustion efficiency.

A 7 degree C in­

crease in exhaust temperature confirmed this. 2.

The indicated horsepower decreased.

3.

The maximum cylinder pressure decreased indicat­

ing slower burning of the fuel. 4.

The increase in fuel consumption was due to the

decrease in combustion efficiency. As a result of the tests on the model engine * the motorship "Auricula" was converted to the use of the boiler fuel.

The ships engine was an 8 cylinder Werkspoor rated

at 4000 indicated horsepower at 113 R.P.M.; a type commonly used in marine service.

Following the conversion, sea

trials were conducted for several days after which the en­ gine was dismantled and examined. The only deposit present in the cylinder, was a fine coating of soft carbon around the exhaust valve and near the nozzle.

Valves, nozzles and all other parts were in

excellent condition.

As a result of this inspection, the

ship was returned to regular duty on the run to the West Indies using the boiler fuels. The "Auricula" has been in regular service for a peri­ od of more than three years and is at present burning fuel of 3*000 seconds Redwood I viscosity with complete satis­ faction. normal.

Wear rates have been only slightly higher than Fouling at idling and slow speed operation has

10 been greatly reduced by increasing the injection fuel tem­ perature while at these conditions.

The grade of fuel used

varies with the ports at which it is obtained, however the fuel is generally loaded in Dutch West Indian ports. The cost of converting the "Auricula” for heavy oil use was 7259 Pounds Sterling, slightly higher than might be expected, due to the wartime shortages existing at the time, however the savings in fuel costs in the first year alone repayed this amount.

To date, 20 ships of the Anglo-Saxon

Oil Co. Ltd. have been converted to the use of bunker fuel oils. The use of these oils in diesel engines received little attention in the western world before 19^0.

Better

fuels were available and their cost was not prohibative. In the past ten years a few power plants have considered the conversion and the following are examples of the results that were obtained. Belton Light and Power Company, Belton, S . C_.1 ^ This municipal power plant, operating on bunker "C" fuel oil since 19^1 * illustrates the advantages of using such fuels.

The designers reasoned that with proper maintenance,

the efficient life of the equipment can be held to twenty years or more.

By periodic inspections, it was found ad­

visable to replace rings every six months, allowing a reg­ ular maintenance program and the maximum efficiency of the

11 equipment.

Lubricating oil was carefully filtered and

tested to prevent contamination. The equipment consists of a 5 cylinder 17 x 25 inch, 1250 horsepower air injection Nordberg diesel oper­ ating at 257 R.P.M. Steam generated in an exhaust boiler is used for heating the fuel to l80 degrees F. for filter­ ing in the centrifuge and edge type filter and for use in the engine.

The engine is operated 16 hours daily, hence

number 5 diesel oil is used before stopping the engine and when starting, to prevent clogging of the fuel lines. This installation proves the ability to obtain nor­ mal life from engines operating on these fuels when proper precautions are observed.

Several other air injection en­

gines are known to be operating on heavier fuels, however this type of engine is rapidly becoming obsolete due to the high cost of the compressors. The Tacubaya Power Plant.^ * 1^

This plant, a base

station of the Mexican Light and Power Co. Ltd., is the most recent installation using heavy oil.

The station is

located in suburban Tacubaya near Mexico City.

It has a

sea level rating of 51-900 horsepower, making it the largest diesel-power plant in the world. The fuel used is a Mexican Bunker Fuel with the fol­ lowing properties:

12 Specific gravity 68 deg. F ......... Flash p o i n t .......................

O .98 230

F.

Viscosity, Saybolt Sec. Universal 212 deg.

F ...........160

Conradson carbon ....................

11%

Sulphur

3.2 %

Hard a s p h a l t u m ..................... nil Calorific value B.T.U./lb............ 18,500 The installation was designed for the use of this 011 for the present and the use of natural gas when avail­ able . A bank of de Laval centrifuges in series with fullers earth filters purify the 51*000 gallons of fuel used daily. Both the filters and centrifuges can be purged and pressure release valves on the filters by-pass the fuel in case the pressure drop becomes excessive. The fuel is heated to 210 deg. F. to obtain the de­ sired viscosity of 400 Saybolt Universal Seconds for in­ jection.

Steam generated in exhaust boilers is used in heat­

ing and maintaining the fuel at the desired temperatures. mechanical injection system designed for the heated oil by the American Bosch Company is used very successfully. The six Nordberg engines used in the plant, are the largest diesel units built in the United States.

They are

12 cylinder, 2 stroke-cycle supercharged diesels operating

A

13 at 167 R.P.M. The plant began operation in 19^9 and as yet, results of the use of the heavy oil have not been published.

How­

ever, the Nordberg Engine Company reports slightly higher wear rates for the rings than expected.^

They also in­

dicate that the filtering plant is removing less sediment from the oil than might be expected.

There is a possibility

that the two may be the same problem, that is that the fil­ tering plant is not removing all of the abrasive forming materials present in this particularly poor grade of oil.

CHAPTER III

THE EFFECTS OF THE FUEL ON THE ENGINE The use of grades of fuel other than those specified by the manufacturer of the engine, requires changes of vari­ ous types in adjustments and operating conditions of the en­ gine.

Before attempting tests of the fuel, It is advisable

to understand the function of each change in operation of the engine and the adjustments that are necessary. The following pages include a discussion of these top­ ics under the headings: Fuel Manufacture Physical properties Availability Purification Fuel Injection Atomization Timing Combustion Ignition lag and knocking combustion Combustion Chambers Pre-combustion chamber Turbulence chamber Air cell Energy cell Open chamber

15 Smoke Effect of fuel-air ratio Deposits and wear

FUELS In an attempt to find the least expensive fuels for diesel engines, we must turn to the oils which are commonly known as Bottoms or Residues.

These oils are generally the

combined residues of various processes, hence the sediment and sulphur contents are expected to be high.

It is pos­

sible to remove the sediment by proper filtration and the corrosive effect of the sulphur compounds can be minimized by properly controlled combustion and by the use of addative-type lubrication oils. The oil samples used in these tests were chosen on the basis of low cost, availability in large amounts and properties which suggested their successful use in the en­ gine . A straight run, thermally cracked, unflashed residue from Los Angeles Basin Crude Stock was chosen as the lowest grade oil that might be readily available.

The sample was

obtained from the Thermal Cracking Unit (Dubbs Process) at the Dominguez Refinery of the Shell Oil Company.

The oil

used in the test is a representative sample of the residue

16

from this unit during normal operation.

The laboratory

test on the following page, Table I, indicates the physical properties of this fuel.

In appearance, it Is black, prac­

tically solid at temperatures of 60 to 70 degrees P. and is similar to common road tar.

It is used for fuel in the re­

finery furnaces by heating to 2k0 degrees F. and atomizing to a fine

mist with a patented oil burner.

out smoke

or ash when properly handled.

Itburns

with­

A very common grade of heavy fuel oil, "Bunker C" was chosen as the second fuel for the tests.

This fuel is

obtained by blending similar or the same residue with suf­ ficient gas oil (less viscous, lighter grade fuels) to low­ er the viscosity.

This sample has a higher A.P.I. gravity,

is black and is fluid at 60 to 70 degrees P. making it more desirable as a fuel than the unflashed residue; however, it is more expensive.

It is readily available in all parts of

the world, especially near marine shipping ports. The sample of "Bunker C" fuel was obtained for the Crescent Oil Company of Los Angeles.

A laboratory report

of its physical and chemical properties II on the

is shown

inTable

following pages.

Manufacture of fuel oils.1

Crude oils are commonly

classified according to their composition with respect to the paraffin, napthene and aromatic groups.

All crudes are

17 TABLE I (Copy) Laboratory Report

Shell Oil Company, Inc.

PROPERTIES OF UNFLASHED UNBLENDED CHAMBER RESIDUE FROM 100# STRAIGHT RUN RESIDUE SHIPPING SAMPLE Reference:

W -5683

Date:

February 7, 1950

Gravity, °API @ 60°F

3.3

Specific gravity

1.050

Flash, Pensky Martins, c.c.,°F

110

Viscosity, @ 210°F, SSF

41

Sulfur, # wt.

1.53

Water & sediment, # vol.

trace

BTU/lb.

17,800

L L B :a j

(Chart), gross

18 TABLE II (Copy) PROPERTIES OF BUNKER C OIL PS 400 or BUNKER C

Gravity A.P.I. - - - - - - - - - 8.3 Base Sediment & Moisture - - - - 0.1$ Flash, Pensky-Martin - - - - - -

190°F

Viscosity, Saybolt Furol @ 122 - 140 sec. Sulphur

-

-

-

-

-

-

-

-

-

-

-

-

1

.

3$

Pour point - - - - - - - - - - - 3 5 B T U per gallon - - - - - - - -

154,000

Sulphates as Na2S04

0.02$

Chlorides as NaCl

- - - - - -

- - - - - - - 20 . 9 4

Paraffin Wax, Kansas City Method

1.30$

Ash by weight

- - - - - - - - -

0 .05$

Carbon - - - - - - - - - - - - -

87-74$

Hydrogen - - - - - - - - - - - -

9 .87$

Nitrogen - - - - - - - - - - - -

0.64$

Oxygen, by difference - - - - C Carbon Ratio H - - - - - - - - -

0 .63$ 8.89

Specific gravity 60° - - - - - -

1.013

lbs./lOOO Bbls.

a mixture of the three, the percentages of each varying with the geographical location of the fields from which the stock was obtained.

California crudes are rich in

napthenes, have a relatively high sulphur content, are tarry in appearance and contain considerable sediment and water.

Pennsylvania crudes are of a paraffin base.

They

are more oily in appearance, not quite black, have a higher A.P.I. gravity and may have wax deposits at low tempera­ tures.

Mid-continent oil is of a mixed base, varying from

napthenic to paraffenic.

The properties of petroleum pro­

ducts and the percentages of each product that can be ob­ tained, is dependent on the type of crude stock used. Figure 7 is a flow diagram of the units used in a typical oil refinery to produce residual fuel oils.1

Upon

entering the refinery the crude oil is passed through set­ tling tanks where free salt water is settled out.

The oil

is then pumped through a crude distilling unit where the various grades of light oil are separated by means of frac­ tional distillation, leaving what is known as straight-run residue as a bottom product. in two steps.

In the diagram this was done

The gasoline was removed in the primary col­

umn and the naphtha and heavy gas oils were removed in the secondary column.

The bottom product from the secondary

column is the straight-run residue. The second unit is a flashing unit wherein the

SR

G ASO LIN E

CRUDE H Y sa 6AS OIL

GASOLINE FRACTION

¥L .

Accumulator LT CAS OIL N r

O

G a s

il

VA c u u m fla s h

SPHERE to p p e d STORAGE

c g y p c

residue

EEED r-Tiynaii

fr o m

TO JTOfiAGE

to

3 > to to

> >

*T! to *T5 > to to to

>

K o

io H

8,

to

> x

* o fri

o

s 3

COMBUSTION

(X o

OF

(> o

HEAT

H

/V£;T

Lr Oi

r

FI 6URE

> to r m 0 r~ > > nr, to to e r r to O o ? ^ 5 to * * to to o w ««•* 2- to o e* n r to to Hi i t G* to to to x iA o -1 Cl CD to £ m to o O r to £ to to > m > > to $

£ to

£

OF

*«L -e> y

D CD ec 0) to to rv r> ? 5: X r r n r r m m £ * rn rr\

fc to to

£

HEAT

>5000

ZOOO

/OOP

1

300

300

20 0

/oo

/20

/6 K ^ a :^ :r-.': 4 ^ r ■ f,.; ;a

• : ! : . ; -jj,

j-

..

4

4

f.-;' 'tt1:h{ 5p iiit Ttft

-.;tftr-; :l^tjjtj.ir|J;v3.-., ri

: : i r . r ra k ' ! - c k L p : f t i ! t ^ . r 4 T l‘'s

;.Th ;

..'....I ...... .i-...Jj■r-\ .4 l+f1 -1-.:ia.,/!r;xa^f"-^p"..'•[;;;' , - . . j . ... : u -ft | -f.: ; J4 r+

4

^

4

„ .,...

irtji: FtjltH rtit ..t,iij^i iif:: r J:;--i

f •;:}.: ::.:r:.-;:t:;-q-,...r.-.fr:.r ■..: f;:ic

:jta' .i+::.ri'■

J". :".r;ar4p‘-' ■^r-L:.!4-r, |., J-nli-r: T. .4 ! : ^r*.,;1\ : V : i : .:!. •i ,-4_rtrJ r -n-*r.:; ~ t r - ~ rr 'r k tffj..rffr r;‘:r;-t.;.tt-. j-irtilt-l L|.:..~:, ::f . -r H -T R _;LJrfclK " 4 ;-^-;pn_‘:..|.r f r f . 't b l i i : , f v::- u U l i a ' F H i ; ;.; ■n i r : ; T r ’ i: • '_ .: t. : j / r 4 ^ : r r --| i * r f e t ', t i U .T.UtiT -: \y.-t _T.a —il.;;-!.. ".J h t:. zr' - !ar n r: “-.f-.r:rr:--*ir.-r^Irirh-^h:!:.krrr-ti^“.."tf! -a~;.r-;.;}.:trt^ rr '■ , * ♦“ i *"1*r *••*'»■— >--* -r .-- -»-!**-

r-^-^‘k ’i-uxT 'iiii^iit-^

*~

•-*-*

- .j

4 +^•-'S' JiHrii—*fz^xh--::-i~'..:.:■■:

_-

- It

-.

:’..

j-

, 4.^, 4-♦-

.- •

f .-r

;

i



a

f t;•;rr".tBf’l

'; f

{

'

^.6 0 f 6 R £ E 5

J X C J

FUEL

C O N S U M P T IO N

7oa IS

j6*P u. o UJ

600

5 h

sso