The shift and shape of spectral lines

515 110 4MB

English Pages 333 Year 1961

Report DMCA / Copyright

DOWNLOAD FILE

The shift and shape of spectral lines

Table of contents :
Title page......Page 1
Copyright page......Page 2
Dedication......Page 3
CONTENTS......Page 5
Introduction......Page 9
Chapter 1. Early Line Broadening Theory......Page 11
1.1 The causes of line broadening (1895)......Page 11
1.2 The Doppler effect in line broadening......Page 12
1.3 An application of the Fourier analysis to line broadening......Page 14
1.4 The mean free path among equal spheres......Page 17
1.5 A first synthesis of Doppler and interruption effects......Page 19
1.6 The motion of a charged particle in a radiation field......Page 22
1.7 Equivalence of molecular collisions and a damping force......Page 25
1.8 Effect of collisions on the radiation absorption coefficient......Page 27
1.9 An alternate manner of obtaining the Lorentz result......Page 30
1.10 The end of the early period......Page 32
Chapter 2. Interruption Broadening......Page 34
2.1 The Lenz appeal to correspondences......Page 34
2.2 The phase shift definition of a collision and half-width......Page 36
2.3 The physical phenomenon implied by the Lenz-Weisskopf result......Page 38
2.4 Line shift inclusion......Page 39
2.5 A specific evaluation of the Lenz half-width......Page 48
2.6 Line shift without collision time......Page 49
2.7 Reason for Weisskopf theory failure to yield shift......Page 51
2.8 Lindholm general theory to include collision time......Page 54
2.9 Specification of and approximations to the general theory......Page 57
2.10 Adiabaticity in line broadening......Page 62
2.11 Spitzer's rotational adiabaticity......Page 65
2.12 The correlation function......Page 67
2.13 The density matrix......Page 74
2.14 Another quantum justification of the Lorentz equation......Page 76
2.15 The quantum intensity distribution......Page 80
2.16 Another adiabatic theory......Page 82
2.17 Review and summary......Page 84
Chapter 3. Statistical Broadening......Page 86
3.1 The Franck-Condon principle......Page 86
3.2 First application of Franck-Condon to line broadening......Page 87
3.3 Calculation of the van der Waals forces involved in broadening......Page 89
3.4 Early developments of the statistical theory......Page 94
3.5 The statistical line shape......Page 98
3.6 The statistical shift and half-width......Page 100
3.7 The Jablonski theory......Page 100
3.8 A particular probability distribution......Page 106
3.9 Review of the Jablonski theory to this point......Page 109
3.10 Limiting cases and the matrix element A......Page 110
3.11 The general system energy change probability......Page 113
3.12 Double interaction curves and reduction to the Margenau line shape......Page 117
3.13 The approximations of the Jablonski theory......Page 119
3.14 A mild controversy, Lorentz-Jablonski equivalence......Page 120
3.15 A more sophisticated statistical theory......Page 122
3.16 The reduction of the correlation function......Page 126
3.17 Review and summary......Page 126
Chapter 4. Stark Broadening......Page 128
4.1 Preliminary considerations......Page 129
4.2 The probability of an electric field strength at the emitter......Page 130
4.3 The introduction of specific field producers......Page 133
4.4 The special case of the ion......Page 136
4.5 The special case of the dipole......Page 138
4.6 The special case of the quadrupole......Page 140
4.7 The field probability function for the three special cases......Page 141
4.8 General intensity distribution in a Stark broadened line......Page 143
4.9 Line shape and half-widths according to early Stark theory......Page 145
4.10 Review of Holtsmark's early Stark broadening theory......Page 146
4.11 The field strength probability function with finite molecular diameters......Page 147
4.12 Dipole line shape from refined Stark broadening theory......Page 153
4.13 A simplified version of the Holtsmark theory......Page 154
4.14 Interaction between broadening electrons and ions......Page 154
4.15 The Stark effect in parabolic coordinates......Page 155
4.16 General treatment of the Stark effect......Page 157
4.17 Quantum ionic Stark broadening for adiabatic Case I......Page 159
4.18 The effect of a diabatic assumption......Page 167
4.19 Quantum ionic Stark broadening for adiabatic Case II......Page 171
4.20 Inclusion of different types of collisions in the ionic Stark theory......Page 175
4.21 Review and prognosis......Page 177
4.22 Quantum electron broadening of the Lyman alpha line......Page 178
4.23 Quantum electron broadening of the Balmer lines......Page 185
4.24 A classical path consideration to include degeneracy......Page 187
4.25 The applicability of the classical treatment......Page 192
4.26 Synthesis of electronic and ionic Stark broadening......Page 195
4.27 The Baranger-Mozer treatment of electron and ion broadening......Page 197
4.28 Review and summary......Page 202
Chapter 5. Resonance Broadening......Page 204
5.1 The qualitative basis of self broadening......Page 204
5.2 The Holtsmark theory of coupled oscillators......Page 205
5.3 Quantum resonance in binary interactions......Page 209
5.4 The statistical resonance result......Page 212
5.5 Resonance broadening by many molecules (Frenkel)......Page 212
5.6 A linear relation between half-width and density......Page 214
5.7 The Weisskopf resonance broadening theory......Page 215
5.8 Review of self-broadening to this point......Page 219
5.9 Qualitative consideration of the energy transfer theory......Page 220
5.10 The classical energy transfer (low pressure)......Page 222
5.11 Quantum treatment of low pressure self-broadening......Page 230
5.12 High pressure quantum resonance broadening......Page 237
5.13 Review and summary......Page 241
Chapter 6. Molecular Broadening......Page 242
6.1 Early work on broadening of rotation-vibration lines......Page 242
6.2 Interactions between rotating dipoles (directional effect)......Page 243
6.3 Rotational resonance and the case J1 = J2 = 0......Page 248
6.4 Interaction between a deformable and a rigid dipole (induction effect)......Page 254
6.5 Interaction between a deformable rotator and an isotropic harmonic oscillator......Page 255
6.6 Broadening by molecules with no permanent poles (dispersion effect)......Page 256
6.7 Broadening by linear dipole molecules......Page 259
6.8 Interactions between symmetrical top dipole molecules......Page 260
6.9 The broadening and shift due to the symmetrical top dipole interaction......Page 263
6.10 Broadening by the linear dipole molecule HCN......Page 265
6.11 Broadening in the diatomic dipole molecule HCl......Page 275
6.12 Broadening of linear dipole molecules according to Foley......Page 276
6.13 An application of symmetrical top dipole broadening. Ammonia......Page 278
6.14 Interactions between linear vibrators with mirror potentials......Page 282
6.15 Rotating linear dipoles with mirror potentials......Page 285
6.16 Three molecule interactions and the NH3 inversion line shift......Page 287
6.17 Anderson's line broadening theory......Page 290
6.18 Some applications of Anderson's theory......Page 299
6.19 A Maxwell-Boltzmann distribution of dipole moments......Page 302
6.20 The application of Boltzmann's equation to oscillator distributions......Page 305
6.21 Review and summary......Page 309
Chapter 7. The Broadening and Shift of the High Series Members......Page 310
7.1 A qualitative explanation of the high series shift......Page 310
7.2 The polarization effect......Page 311
7.3 The Potential Valley Effect......Page 312
7.4 Axially symmetric broadeners and the shift direction......Page 316
7.5 The limiting breadths of the high series lines......Page 318
Bibliography (Periodicals)......Page 323
Books......Page 327
Appendix I......Page 328

Polecaj historie