The Hydrogenation of Coal at High Temperatures

275 65 7MB

English Pages 103

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

The Hydrogenation of Coal at High Temperatures

Citation preview

PURDUE UNIVERSITY

TH IS IS TO CERTIFY THAT T H E T H E S IS P R E P A R E D U N D ER MY SU PER V ISIO N

by

Robert Eugene Howard

ENTITLED

"THE HYDROGEMTIOM OF COAL AT HIGH TEMPERATURES"

C O M PLIES W ITH T H E UNIVERSITY REG U LA TIO N S O N GRADUATION T H E S E S

AND IS A PPRO V ED BY ME AS F U LFILL IN G T H IS PA RT O F T H E R EQ U IR EM EN TS

FO R THE D EG REE OF

D octor o f P h ilosop h y

P r o f e s s o r i .v C h a r g e o f T h e s i s

H ead o f S ch o o l o r D epa r tm en t

TO T H E LIB RA R IA N :----

*» noT TH IS T H E S IS IS SSCtfcTO B E R EG A RD ED AS CON FID EN TIAL.

r;-~ vAT Ai ft m Uv-: nTrr,,rn 'jAij A i _»iwd -Ld Subm itttu to t i e F aculty o. Purdue Uni ve r icy by R o b e r t Eugeac Hco-ara

X .U

' - CXX t 1

X

_ -v. _ _

.j.

- .1 L

.*.oc ECiU C a u i v i i !

Purdue U n i v e r s i t y , V. L u i a y e l t o , I n d i a n a b. B. Cn. u », id4o — lii. S* -■--- E r g . , xd4j Processional Experitdce: Purdue U n i v e r s i t y , V. L u i a y e a t t ,

Indiana.

R e s e a r c h F e llo w R e s e a r c h A s s i s t a n t (Gas E n g i n e e r i n g ) I n s t r u c t o r in Chemical E n g i n e e r i n s

TABLE OF CCVT-aTB

P AfU

;HA?

I . Li;_t or TaOi'^b......................................................... . . . . . . .

4

II.

L i n t c l F i g u r e s .......................................................................

5

III.

Ackno-dodge.z . i t .......................................................................

I

IV.

Abo Or a c t .......................................................................................

o

V.

I n t r o d u c t i o n ..............................................................................

9

o.. o. c. d. VI.

H istorical S u g g e s t e d P o s s i o i ^ i t i r e Tor R^se. r c h E n g l i s h P e r k ot Leeds U a i v e r s i t y Purpose and eoc_.o of oho lav os t i g : , l i o n

L a b o r a t o r y E qu ip m en t...........................................................

..IS

a. A v s .ila b le Equipment o. Arrangement or App.-.raius c. C s l i o r r t i c n or Equipment 1. Thfer.roe c u s l e o n ! C o n t r o l l e r 1. P r o s o u r s Gurnee 3. V o l u m e t r ic Appo.ro.tus 4. Gas A n a l y s i s A ^ r r : bus VII.

S e l e c t i o n of RanHat or i a l s ................................................ a . Hyarcgon b. Coal Sample 1. Choice 2. S a r p i i . ^ , A n a l y s i s , aiiu S t o r a g e

VIII.

Tyr leaf. Qg^r- r i n g P r o c e d u r e ..................................... a.. o. c. u. e. f. a.

IX.

P r e p u r u t i o n or Sample Swee.,-inb end ChecL i a r f o r Leaks Time of Runs Saogling Procedure Pleasure r e n t o f Gao Volumes A b s o r p t i o n end Measuiuu e n t of Au-ionia. Ending t i n Run

Annoy ode o f Produc. a . o o. o o s

35

2

CHAPTER

'

PAGE

1 . Gin.xb.-i R e q u ir e m e n t s 2. Tn U. S. E t e e i Corpor *-t i o n Laboxnc o ry Hod e l c . Gas A n a l y s i s P r o c e d u r e Developed b. L i q u i d s 2 . Solias X. Gtioij. i t y ana P o r f o r nance of E q u ip m e n t........................ a. b. o. a.

42

Corrosion Creep Copper G a s k e ts P ressu re Fittin.no

XI. V a r i a t i o n of Gas C o up o sitio .^ bits . T in s of H y d r c n o r x .ti c n ..........................................................................

45

a. I n tro d u c tio n o. E x p e r i m e n t a l Data c. C o n c lu s io n s X I I . E f f e c t s i T e s y o x a t u r c cn F a u l t i e r iuu HotXans C o n c e n t r a t i o n u i t b Hipli Csrbc-n-Eyc.rcaeu R a t i o .

SS

a. In tr o d u c tio n o. E x p e r i m e n t a l Daxa c. C o n c lu s io n s X lii.

S u c c e s s i v e " E x t r a c t i o n " of Ccal by H y d r o u s n u t i o n .

73

a. I n t r o d u c t i o n o. S’^ nc j.us ivOs XIV. E f f e c t of V a r i a t i o n i;_ I f op ox a t u r n a i t h Lou C&rdon-Hyorogen R a t i o ........................................................

75

a. In tro d u ctio n o. E;rp::rin:snt&.l Bat-a c. C o n c lu s io n s XV. i - x f e c t o f P x s s s u x - ......................................................................

61

a. In tro d u c tio n o. tbxy e r i n o n . But a c. Co nclu sio :*4.w VI. Suruoxxv o f C o n c l u s i o n s ............................................................ XVII. L i t e r a t u r e C i t e d ..................................

65 38

3

CHAPTIE

PAGE

Ai' 0— c—

S e i c c t e a £ i d l i c . . r x - E y o_

..■ v O v ij. hyarog-vii.uti'--*-. *•••■ •..................

.

XVIII. A ^ y ix d ix I .

Su

4

I . LIST OF TABLES

TABLE SO.

PAGE

X• Hydxagonut i c n o *. Coias a

w.

g aoo

•••* • • • • • * ..............

. S c ree n Anai y s i s Vi Coc.-i Sample.............. i i i • « « • « • i • • «

i.5 &Q

0 • Sue mury of Ecit a f o r Runs Used t o E s t a b i i s it Rato Re i n t i o n s L i y e ...................................

46

4 • Summary o f Gas A n a l y s e s — Run 3 ..............

48

5. Sum...W-i

51

wi. U8-0

8. Suma a i y oi Gas A n a l y s e s — Run 5 .............. 7. SU.: mary of Gas A n a l y s e s — Run 3 ..............

i— r* wv

^ « Sue 'max';,’ ci Gas

57

Gas

53

■vjtiwvj.»t~ 1 0 . Sun; •a.O . oU*.•* Gas

60

“1-L -5 • Sue aioi'-iy jj. Gas A n a ly se s— Run 1 8 ............ ............................

62

Hydr o g e n a t i o n of Coal a t V a r io u s Tea; s r a t a r e e a n a P r e s s u r e s (High Carbon-Hyaxoge n R a t i o ) .........

37

\J %

Sum

1 c * Sum.iiCiX*v 0 j. Ran s 8-13 (Low C&rbca-Hydr 14 • Sum.^arv of Runs a t V a r i o u s P r e s s a x s s (Low Carbon- Hydros, en Rat i c ) .........................

Rat r^) • •

77 82

5

I I . LIST OF FIGURES

FIGURE

PAGE

1.

T y p ic a l Bomb « i t h Side P r e s s u r e C o n n e c t i o n .............

3.

E l e c r r i c Heating: J a c k e t , Showing: Bomb i n P l a c e . . .

19 19

3. Senemutic Diagram o f Arrangement of Hydro­ g e n a t i o n Apparatus* • • • ...................................................

53

4.

C o n t r o l A p p a r a t u s f o r t h e Hyo.rogensstixn U n i t

23

5.

The H y a r o ^ ..n a t io n Unit Shov;u in P l a c e i n t h e H e a te r J s- o h e t ................................

£3

6. Ann.U. faxy B o o ste r Compressor f o r Hag i d l y A t t a i n i n g High P r e s s u r e s ................................................

2c

7. U. £. E t e r i C o r p o r a t i o n Gas A n a l y s i s A p p a ratu s s u i Sampling D e v i c e .....................................

35

8. ComDus t i o n Appar v bus f o r Determi.v. -tie., of Carbon and Hydros, on in Coal ana Coke.....................

40

9. E g e i a a h l A^.pxrutus f o r D e t e r o u a a f i c e c f h i t rear n in Coke...................................................................

40

10. 3o:,nk of F u r n a c e s f o r D e t e r . r i u a t i- e n of m o i s t u r e , V o l a t i _ e n a t t e r , Ash, S u l f u r , £'iC* i 1 Coal (:.iio. Coke..........

...

41

s-J.t -L ' ,....aw r.«i •*/.., v;-V*v .. o... f'’ -hi. • V «G w Co.igc.. i f io n ..iol. Ti: o.x— Run 0 • «>• • • ku“^'v

V...ris t i r o i o f Go.c Compos i t io.1n •sitli Ti. ox— R un 4. .i • *

if; C

13. V a r i a t i o n o..' Gs,„e Cx ;:.v. 0 3 i 010.: - J. Ji: Tx. ...i— Run 5. . . .

54

14. V a r i a i xo-s. of Gas C - .f ^ o s i ti e r; , its: Ti. :.j — Run o • «

7O LQ

15. V n r i r t i . . - of G; s Oc.-„r.: i i h i o n h 1: T i n . — Fains V a n a o ........................................................................................

59

10.

Far is. f Aarrof Gxs Compos i t i : a , . i t h

Toss.— Hun 1 6 . . .

61

17.

V:.. r i s . f i os.of Gas Comg o j i t u s

Tx.xo— Run 1 3 . . .

62

lo.

Vex i, .t -s.-. : 1 Meat i n . Vo l u x ,u Gao w i t h r o t u r e (High CnrDsn-Hyx.rogen R a t i . . ) ............

66

..irk

\J i-j

6

F IG U R E 1 :0 .

PAG!

xu • " V x a .lc *1 o _ oflu i.or x"L?..'-i C-Uiib Ci j. or t h e h c t . c z icn C+ 2E-6 = CH,*± w i t h To -p x .ratu re. . . . . 2w

*

ou... a a r y

ui

itu x .o u * " ic

73

G-. g C o n „ u^ * 1 o Vqj.u*i*c g xijii

Log Curbu...-Hydrogen R a t i o o-t V a r io u s Xc a ;j wx uUr c-0 • • » « • • • • • * • * • • • • « • • • • • • • • * » • » • • • • • • So.. S u ^ '^ r y o f Runa - t V a r i o u s P r e s s u r e s (Lov; C^rb an-Hydros an R a t i o ) ...................................

fo 65

?

ACKHO’ XEDCS ulIT The a u t h o r

wish es t o e x p r e s s h i s t. nnks t o t h e I±:dian&

Gao

As so' o l o t t e n ,

which t h r o u g h t h e p l a n n i n g and f o r e s i g h t of

its

officers

i n c o _ i a b o r a t i c n with f a r s e e i n g members o f the

Pur cue Uurv e r e c t y s t c f i nuvu conceiv es. uhe n eed f o r unu nab© oosoicie- rhw p r o s e c u t i o n of t h i s r e s e a r c h .

He i s a e e p l y i n ­

d e b t e d t o P r o f e s s o r J . L. Drop, u n d e r whe.u guiu&nce t h e work was c o n f l i c t e d , f o r c woe t a u t sn c o u r s g cogent and u s e f u l su g g e s­ tions.

In a d d i t i o n , he voishes t o thc.uk s i n c e r e l y t h e auay

uc:v;b:rs of she U n i v e r s i t y s t u f f i n n - r . r l y a l l d e p a r t r e a t s wh" have so g r a c i o u s l y g i v e n t i n e , rusts r i a l s , a n a s u g g e s t i o n s •-hich nude t h e p r c s o c u t i . c n of c. problee, r e q u i r i n g su.cn i n the wav of d i f f i c u l t l y C i

I G 1- C i d

t J .:.

'"Z> •

a v a i l o bis n u t o r i c l s e a s i e r i n t h e s e

3£'Th ACT .ho n y a ro : on:/ v X I a V 'O u t j

a . c l Q p v i.

■ ■ * y i - h ' t l o0

..V - -■ .. - '. •-. • —- --. -.......... u ; . ^ o h o . * O vA*

oi Indian-'. i o ur oh

- . i l

d!o ei;l hv

.■_ _ '

UU

V v o'j. i. V f,* -**0 o . Jd-. Cj_ C - J _ -v -v.'.' -u -a

../..I ., o » X 'J .y

'

A 1" '1'

tw

-!--> h

r*>

V 'J »

u:.e o-' 4 5 - - oounun. o - r s u u a r : i c...

ti i . .

:ho m

ofa.m.

p! A

*J i w G *

G

d d ii* ,.

h ^ w

:....!t s

, J- •»-,»->,-'T-*-,1-, ^ i . w c* G U .

—- — Ct:U — v' uii

q u a n t i t i e s of c a r b o n ant- hydr/

. h ar _

-V : i c r

a

3:02003 0 * t h :

o r v s m u s t - ocrt-o

n o r rum t a u n

:oo::o: i f i - n o r : n n r i r n .

_ :G u s - .v

anx

2

r-

vo.r a . 0 1 0 .0. or get

■J'-i.i! -US- u-

Ll

. 'i f

A g:f;. t u s c o n - s i - t - d of

s p u e s a n a v.mfh a n . r ; . c

O'*,'g

A ii

:,. U

HyUX0’!gonu u— —

urn.., b u t c h sysoe. .th up., r e n i n : ooly -aqua!

f*/

h j.

■- j

O h-

S fU l-

o o. I * Xor gv

i v :n t c

:

shorn t h a t

x'r:r a u c e a to .no t h a n a fion. 3s

0

:.v co nbi.t.ot-on of e r a s i n g ana :.yarcgeua-

Th: o f f s e t of s u c c e s s i v e h y a ’O i o n a t i o n or a ;; iven c o a l n i t h f r e s h b a t c h e s of hyt.rcg'on i s shown to o.ecrease t h e

r a t e of r e a c t i o n , a l t h o u g h i t vloos n o t a f f e c t t h e f i n n lib r iu m concent r a t ions a t t a i n e d .

equi­

For t h e c a s e ■:!' e q u a l molar

amounts o f c a r b o n a n a hyo.ro gen r e n t i n g ,

data are presented

f o r t h e v a r i a t i o n i n methane c o n c e n t r a t i o n ,

e th a n - c o n c e n t r a ­

t i o n , h e a t i n g v a l u e o f gas, p e r c e n t s o l i a r e s i d u e , amount of ammonia i n t h e p a s ,

e t c . , a s a f u n c t i o n o f t e m p e r a t u r e and

p r e s s u r e i n t h e t e m p e r a t u r e r an ge 4efG. to 575G. and in t h e p r e s s u r e r a n g e o f 100 t o 700 po unns p e r s q u a r e i n c h ( i n i t i a l p r e s s u r e a t room t e m p e r a t u r e ) .

9

V. INTRODUCTION

a. H istorical Many of the everyday n e c e ssitie s and conveniences of American l i f e have long been accepted and enjoyed without questioning in any way the source, a v a ila b ility , or ultimate depletion.

Water power, petroleum, coal, natural gas, and

other forms of energy have a l l been tapped, transformed into usable forms, and distributed throughout the nation with l i t t l e or no emphasis on conservation.

This has been true

because for years these energy forms have been considered un­ lim ited. Occasionally, however, estimates of o il or coal reserves of the order of a few decades appear and cause momentary alarm. In most cases subsequent discoveries and improved methods of recovery extend the estimates even faster than the ever in­ creasing rat os of depletion.

Ultimately th is must end, and

eventually cheap, readily-available energy in the form of petroleum and natural gas w ill be a thing of the past. The widespread use of the internal combustion engine in automobiles and airplanes has made the a v a ila b ility of petro­ leum a question of v ita l in terest to a ll peoples.

Likewise

the use of natural gas for domestic space and water heating as well as for various industrial heat processes that require concentration of heat, f le x ib ilit y of control, and uniformity has made natural gas an almost inaiepensibie servant to a l l .

10

European countries have f e l t the pinch of dwindling petroleum and gas supplies for several decades, and during the la s t th irty years have conducted extensive research on the conversion of lower forms of energy to these more con­ venient fu e ls .

It has heen only recen tly, however, that the

depletion of natural gas f ie ld s in the Appalachian region (1) in th is country and in other section s has oocurred.

With

estim ates of the natural gas reserves in the great Texas and Oklahoma f ie ld s put at about 30 years, various steps have been taken to study the p o s s ib ility of conserving th is important resource.

The Federal Power Commission has made several sur­

veys (2) of the situ a tio n .

In addition, many s c ie n t if ic groups

(3) have considered various methods of improving on present methods of gas production from coal in order to ou tlin e re­ search designed to make availab le the necessary knowledge and technique for the conversion of coal to gaseous fu e ls to replace the large bulk of the load now carried by the natural gas f ie ld s . Many factors determine the eoonomics of gas production from ooal by various known methods, and these have been d is­ cussed in d e ta il by Odell ( l) and Barnes (5 ).

Processes

have been discussed and tr ie d (4, 5, 6) for produoing su b sti­ tu te gas of a l l imaginable combinations of s p e c ific gravity and heat content by various methods.

Included among these

are: 1.

Use o f shorter operating cycle in the operation of

water gas s e ts .

11

2. Use o f S ilfra x bottoms In retorts* 3. Carbonization of coal o il mixtures. 4. Mixing coal gas with blue gas instead of producer gas. 5* Production of butane-air mixtures. 5. Use of enriching compounds other than gas o i l ( e .g ., butane, propane, e t c .) . These and other m odifications of the operating procedure with ex istin g p lants have been brought out in the past few years in an e ffo r t to meet increased peak loads and to enable more gas to be obtained with l e s s equipment.

Ey various com­

binations of known methods, gas interchangeable with nearly any mixture now d istrib u ted may be obtained in lim ited quan­ t i t i e s for emergency and peak load use. The above-mentioned developments have come about as a re su lt of the increased use of gas of a l l kinds for indus­ t r ia l heating and to meet the greater demands for domestic gas consumption which have resulted in recent years from the development of the house heating and domestic refrig era tio n loads.

The development of these new consumers has been pos­

s ib le to a large extent because of the a v a ila b ility and low cost of natural gas to a large section of the country through the 200,000 m iles of transm ission lin e s and d istrib u tio n sys­ tems drawing on the southwestern fie ld s . But in years, not too far d ista n t, i t is estimated that cheap and p le n tifu l natural gas w ill not e x is t.

And long

before that time some means w ill be necessary for supplementing

13

these sources o f fu el which some 10,000,000 consumers have been accustomed to using. These new sources of supply must be ready for commercialsoale production before they are needed-

Whereas the im­

portant, though v a stly lim ited , means of augmenting e x is t­ ing plant capacity tr ie d to date may at best add a few per cent to the to ta l production, there w ill be a need for tre­ mendous sources of fuel to replace natural gas (which now supplies over h a lf the consumers using gaseous f u e l) .

These

enormous f a c i l i t i e s cannot be developed overnight, and i f serious consequences are to be avoided, preliminary work must be started at the e a r lie s t p o ssib le moment. b. Suggested P o s s ib ilit ie s for Research In order to f a c il it a t e wholesale replacement of natural gas,

i t is d esirab le that the su b stitu te gas have as nearly

as is commercially fe a sib le the same burning ch a ra c teristics as natural gas i t s e l f .

This involves the consideration of

such factors as heating value, sp e c ific gravity, flame v e lo c ity , etc. Although many leaders in the f ie ld have advocated the adoption of lower standards of c a lo r ific value, probably an equal number have held firm on the 6tana that the increased d istrib u tio n f a c i l i t i e s necessary and the wholesale read­ justments of appliances are more than s u ffic ie n t to account for the tio n

increased cost lik e ly to be necessary in the produc­

of a high Btu gas from coal. While there are many arguments on both sid es of th is

13

question, i t is not within the province of th is work to make the d ecision .

Therefore, at the suggestion of the

sponsors, various p o ssib le methods o f producing a high calo­ r i f i c value gas, approximating natural gas in composition, were considered. For th is process (e s s e n tia lly the production of gas with a high methane content) two methods of attack immedi­ a te ly suggest themselves.

The f i r s t , the Fischer-Tropsch

process for c a ta ly tic a lly combining carbon monoxide and hydrogen from water gas, o ffe r s a means of producing hydro­ carbons from coal and steam.

According to reports (7 ), i t

i s p o ssib le to produce nearly any hydrocarbon or combination of hydrocarbons by the proper control of temperature, pres­ sure, and s e le c t iv it y of c a ta ly sts. Another method which suggests i t s e l f for the production of methane from coal and other carbonaceous m aterial is the d irect synthesis with hydrogen.

Hydrogenation of coal has

been a su ccessful laboratory operation for nearly th ir ty years and in the la s t decade has reached commercial develop­ ment in Germany and England, where p lants producing up to 100,000 tons each per year have been in su ccessful operation. All of these European in s ta lla tio n s , and the 6emi-works scale development at the Bureau of Mines Central Experiment Station at Pittsburgh have been carried out with the aim of producing liq u id hydrocarbons for use as lubricants and fu e ls . Considerable success has been achieved in these developments, and although conditions for a d irect g a s ific a tio n process

14

would be somewhat d ifferen t than those for the optimum pro­ duction of liq u id m aterial, the plant experience gained should be valuable in any type of commercial hydrogenation process. c. English Work at Leeds University There is only one instance which has come to the atten ­ tio n of the in vestigator in which the production of gaseous fu el by the d irect hydrogenation of carbonaceous matter has been the primary object.

This work was conducted as a join t

projeot of the In stitu tio n of Gas Engineers (London) and Leeds U niversity by Dent and hie a sso c ia te s.

A number of

a r t ic le s (8) have appeared in the lite r a tu r e describing these experiments, and several patents (9) have been granted cover­ ing various phases of th eir development. A summary of the work at Leeds is given below in consider­ able d e ta il.

Sinoe p r a c tic a lly no other comparable work has

been attempted, th is i s f e l t not out of place in presenting the background of the present in v estig a tio n . A coke containing 19.8$ v o la t ile matter was heated in nitrogen at atmospheric pressure up to 300°G. over a period of i f -2 3/4 hours and maintained at that temperature for I f hours-

The resu ltin g gaseous products amounted to 23.0

therms and 14.7 therms per ton of coke for hydrogen and methane, resp ectiv ely , the to ta l y ie ld of gaseous hydrocar­ bons being 16.‘3 therms per ton. On heating a sim ilar oharge in hydrogen under the same conditions the y ie ld s of hydrogen and to ta l gaseous hydrocarbons

15 were 1 . 3 a n d 5 3 . 6 t h e r m s p e r t o n r e s p e c t i v e l y ,

in d icatin g

t h a t h y d ro g e n a tio n o f th e coke took p l a c e t o an a p p r e c i a b l e ex ten t.

In t h i s c a se th e g a seo u s p r o d u c t had a c a l o r i f i c

v a l u e o f 345 B t u p e r c u b i c f o o t . E x p e r i m e n t s c a r r i e d o u t a t h i g h e r p r e s s u r e s g a v e more e n c o u r a g i n g r e s u l t s , a s i n d i c a t e d by t h e f o l l o w i n g t a b l e f o r e x p e r i m e n t s a t 800°C. on t h e same c o k e .

Pressure -atm .

1 5 10 25 50 100

G a se o u s Hydrocar­ bons -T herm s/ton o f coke 33.3 92.1 132.3 202.5 275.0 311.3 T a b l e 1.

C alo rific Value -B tu /ft.°

Hydro g en Absorbed -Therm s/ t o n of c o k e

Coke L o s s i n We i g h t

345 429 500 589 719 914

32.9 6 0 .S 107.7 153.5 193.5

27.7 34.9 44.6 62. 4 72.0

-

f0

H y d r o g e n a t i o n o f Coke a t 8 0 0 ° C. and V ario u s P r e s s u r e s

E x p e r i m e n t s c a r r i e d o u t a t a c o n s t a n t p r e s s u r e o f 50 a t ­ mospheres i l l u s t r a t e t h e e f f e c t of t e m p e r a t u r e .

At t h i s p r e s ­

s u r e t h e h i g h e s t p e r c e n t m e t h a n e i n t h e e f f l u e n t g a s was 5 7 . 3 , 4 3 . 0 , a n d 3 8 . 3 f o r t e m p e r a t u r e s o f 8GQ°C., 8 0 0 ° C . , a n d S50°C. r e s p e c t i v e l y . Dent a s s u m e s t h e s e t o b e e q u i l i b r i u m v a l u e s a n d c a l c u ­ l a t e s t h a t a t 50 a t m o s p h e r e s : 500 B tu g a s must b e made belo w 1035°C .

15 800 7CG 500 800

Btu gas B tu g a s Btu gas Btu g a s

m u st be made be lo w must oe made b e lo w .oust oe made b e lo w m u st be i ia - e oelow *(E x tra p o la te d )

915°C. 8 1 0 / C. 70G°C. 535°C. *

I t i s a l s o s t a t e d t h a t c o a l s c a r b o n i s e d a t 4 5 V-55G°C. y i e l a e d 5 0 0 - oCG t h - r m s p e r t o n o f c o k e w i t h 7 0 - 8 5 / o f t h e c a r b o n b e i n g g a s i f i e d t o g a s e s of c a l o r i f i c v a l u e 50 a Btu or e v e r .

A l t h o u g h no d a t a -..sre g i v e n , Dent s t a t e d t h a t

c o a l s w i t h o u t c s r b o u i s s t i o n g a v e good y i e l d s a n d t h a t c a k i n g was n o t a s o u r c e o f t r o u b l e .

His p a t e n t i n d i c a t e s t h a t

b ro wn c o a l may b e h y d r o g e n a t e s , t o g i v e a g a s c o n t a i n i n g 7 5 / m ethane a n a i n v o l v i n g a

v .sighs

loss

in coal

of

50/.

d . P u r p o s e a n a Sco p e o f t h e I n v e s t i g a t i o n I n t h e l i g h t o f t h e p o s s i b i l i t i e s o f a method o f d i r e c t g a s i f i c a t i o n of co al to produce a gas having h ig h c a l o r i f i c v a l u e b r o u g h t o u t by t h e ahov • r e e u - f s ,

the p re s e n t in v e s tig a ­

t i o n was un d e rta k e.:-. A ccordingly,

i t wa* d e c i d e d t h a t an a t t e m p t wou.„d be

made t o i n v e G ti g o .s e t h e h y d r o * o u r . t i o n o f b i t u m i n o u s c o a l a t t e m p e r a t u r e s somewhat h i g h e r t h a n g e n e r a l l y u s e d , a n d t o c o ­ te., i n d a t a w h ion n i g h t p a v . t h e way t o w a r d a c l e a r e r u n d e r o t a n n i n g of t h e p r o c e s s as i n v o l v e d i n t h e hc_:,e t h a t u l t i m a t e l y some c o m m e r c i a l l y f e a s i b l e p r o c e s s f o r p r o d u c i n g l a r g e q u a n t i t i o s o f m eth an e i r o n c o a l n i g h t be d e v i s e e . . In o r a e r t o i n d i c a t e t h e r a d i c a l d e p a r t u r e o f t h e g r _ s e u t r c s ^ . r c h e s from t i e p _ w t h o r a c f i n v - c s t i g u t l o . . s w h ic h h ave b e e n c o u a u c t e d on t h e h y c , ro g e n u t i o n o f cos..*, s o n s s p a c e

17 s h o u l d o_' d e v o t e d t o o u i l i n i n g t h e r a n g e c i c o n d i t i o n s which h a v e b e e n u s e d . Xn t n e m e/ . o r r t y ox. r - o—x , or x- ee, ey-^r ->■—n . o iu :i Ox. eoox.i nos b - 0:i c a r r i c c t o u t a t r o . P --ra- t u r o s ootwoon a-C ano. 4 o ^ “'C. , a n a u t p r o s e u r o s r a n g i n g xp t o a o o u t ICO a t m o s p h e r e s :«ost e x t r e m e c a s e s .

in the

This h a s been t r u e l a r g e l y b e ca u se in

t h i s temp - r a t u r s r n c i

o ^ t i .e u n y i e l u s • or l i q u i d p r o o . u c t s

i-Xo o b t a i n e d , a nd s e c o n d a r i l y b e c a u s e a ny g r e a t e x t e n s i o n o f e i t h e r temp-, r s. f u r s or p r e s s u r e i s coy e n d t h e l i m i t s of " n o 4 - o . -g» 4 ‘..i

]

w v U w i

~

V

;•

,*■» -u ••••.

d o

h

-• v

4* •>->->,

U l u ' . V

v'

U - . ’- ' J . - ,

■, T 7 ^

- V WU

-i

a ~ -n*; o

--------- - - -

sv- fc . w

An e x o e - t i . m t o t h e s e l i m i t s in v estig atio n s



i s the a b o v e -d e s c rib e d

c a r r i : d o u t a t Leeds U n i v e r s i t y ,

t e m p : r : t u r e s up t o S5 0UC. mere u s e d .

The maximum p r e s s u r e

a t t h i s t C ' p i r o t u r e mas 51 s t oo s p h e r e s , o f ICC a t m o s p h e r e s t h e ..u: ximu.. CCC0 C.

i n which

en d a t a p r e s s u r e

tamp u r a t u r e u e e a was a b o u t

These c o n d i t i o n s r - c u i r e d u n u s u a l h i g h temp r e t u r e

creep s t r e n g t h in the a l l o y s t e e l s u se d , i.a n .i.c r

i s i n v o l v e d i n the u s e ox U:..t::ri:-d

wJ.X L'b-0

I:

c a s e s , i n s u f f i c i e n t a s s i g n date- a r e £..ve.ii£-brc, i n v e s t is a t i o n t 10- sj wv v . ; u . a r a a r .

The

from a ecu f 761GF . ha s b e e n

or a

n-.-.uc a

(400°C.)

•i- -H P—cbbU-

-~s

e

to lufC °F . to

C- O

( o 7 5 GC.) a n a

m

c..t :.C S .-her e S

e t h e r wors.s, w i t h t h e e x c e p t i o n o f t h e w o rk a t L e e d s ,

the

ea.-' —x'x.--i-x..- in. x■ — Dee:: i n oa — s e ...p . i : t u r e —_.n_-.i_. ir^-j. one x-_-p . r

i:ei o o p i - V——r — ■-0r -e : -- lOr ;i;c.or X'.—-.

—1...i

: —■e

- h e ~:e

- V "~.

e1 e

I-. — j. CX.-xl g—-eXGexxar.-e oile 1e*q-- — 1 Ce-x^perclt-U—ofc

c o v ere d , however,

t h e sa-ns ’n ig h p r e s s u r e s hav-o b e e n m a i n t a i n e d .

18

TriJ-o ri'-.w Out

tlld

trouole

£..x"fco-"j oils

I18-otl-l U » OO'yuliiOC- ii’i ’V i

-riu^oed.

j.wU-.i.t x^s ^

v iw 8 i

;.iOu'u

8-

— 0 ’-u-u' wil

t &U. X u X uhw

VI. LABORATORY EQUIPMENT

a . A v a i l a b le, E ^ i ^ a n t The h e a r t o f t h e h y d r o g e n a t i o n a p p a r a t u s was a l a b o r a ­ t o r y s c a l e ro c k i n g : comb, s i n g l e - p e d e s t a l t y p e , t h e A m e ric sn I n s t r u m e n t Company.

s u p p l i e d by

T h i s p i e c e o f e q u ip m e n t

in c lu d e d h e a t in g elem ent, h ig h - p r e s s u r e r e a c t i o n v e s s e l , and p r o v i s i o n f o r ro c k in g th e u n i t th ro u g h a sm all a n g le to secure a g it a t i o n i f req u ire d .

The f r e e volume i n s i d e

t h e bomb was s l i g h t l y o v e r one l i t e r . s i d e d ia m e te r o f fo u r and t h r e e - e i g h t h s

The bomb h a d a n o u t ­ i n c h e s an d a n i n ­

s i d e d i a m e t e r o f two a n a f i v e - s i x t e e n t h s i n c h e s . length o v erall t h a n two f e e t -

The

i n c l u d i n g t h e bomb h e a d was s l i g h t l y l e s s The a l l o y o f w h i c h i t was c o n s t r u c t e d was

a p e a r l i t i c m an g an ese s t e e l , t o t h e d e s i g n a t i o n SAE X134Q.

corresponding approxim ately D e t a i l o f t h i s u n i t i s shown

i n F i g u r e s I a n d 3.

r

Eyrbolti Oprnint

C m o r L iq uid

KoH lrotrd ctory Switch

Typical Boab with Side Pressure CMMCtiM

Electric Heeling Jacket, Showing B ea t is Place

20 High p r e s s u r e t u b i n g a n d f i t t i n g s f o r t h i s a p p a r a t u s were a i l s u p p l i e s , by t h e A m e ric an I n s t r u m e n t Company.

The

t u b i n g was a chrome-moiyodenum s t e e l , £ i n c h o. d. by 1/1 6 inch i . d . , w ith a b u r s t i n g s t r e n g t h of 95,000 pounds per square in c h . In a d u i t i - n ,

a m o tor-driven, 1 iq u id -d isp lacem en t type,

b o o s t e r c o m p r e s s o r was a v a i l e . b l e f o r q u i c k l y g e n e r a t i n g p r e s s u r e s up t c 6000 p o u n d s p e r s q u a r e i n c h . The w o r k i n g volume o f t h e c e m p r e s s i o n c ham ber on t h i s u n i t was a b o u t f . c 1 .lt e r • The u s u a l a u x i l i a r y e q u i p m e n t s u c h a s f i t t i n g s , r h e o ­ s t a t s , r e l a y s , p r e s s u r e g a u g e s , and a p o t e n t i o m e t r i e t y p e Leeds an d H o r t h r u p r e c o r d e r - c o n t r o i l e r w ere a v a i l a b l e ,

in

a d o .iti c n to th e n e c e s s a r y equipment f o r sam pling and a n a l y s ­ ing g a s e s . The h i g h p r e s s u r e e q u i p m e n t was a l l h o u s e d i n a n e s ­ p e c i a l l y c o n s t r u c t e d e x p l o s i o n - p r o o f room mrde o f o n e - h a l f inch s t e e l p l a t e . The

g a s a n a l y s i s a p p a r a t u s u s e d was a U. S. S t e e l Cor­

poration

l a b o r a t o r y m o d el.

they a re

d e s c r i b e d elsewhere

Two o f t h e s e wm-rea v a i l a b l e ,

and

in th is r e p o r t.

Coal a nd c oke a n a l y s i s was

c a r r i e d o u t a c c o r d i n g to a

m o d i f i e d A. S.T.M. m ethod w h i c h w i l l be d i s c u s s e d l a t e r . b.

A r ra n g e m e n t o f A p p a r a t u s The e q u ip m e n t a v a i l a b l e mao.e s e v e r a l modes o f o p e r a t i o n

p o s s i o i e , b u t t h e m a j o r i t y o f t h e work was done w i t h t h e

-"a * .

SI u n i t o p e r a t i n g a t c o n s t a n t vo lume 'with a c l o s e d s y s te m . The a r r a n g e m e n t o i a p p a r a t u s i s siiov.n d i a g r a m m a t i c a l l y i n F ig u re 3.

The a s s e m b l e d e q u i p m e n t i s shown i n F i g u r e s 4,

5 , a n d o. c . C a l i b r a t i o n ox E qu ip m ent I.

T herm ocou p le a n d c o n t r o l l e r .

C h r o m e l - a l u m e l c o u p l e s were u s e d i n a l l c a s e s .

In

o r d e r t o c a l i b r a t e t h e r e c o r d e r , a p o t e n t i o m e t e r was b a l a n c e d a g a in s t the instrum ent a t v a rio u s in d ic a te d tem p eratu res, a n d t h i s v a l u e was t h e n co m p a red w i t h t h e s t a n d a r d e - m . f . a s givc-n by t h e I n t e r n a t i o n a l C r i t i c a l T a b l e s .

The i n s t r u ­

ment was t h e n a d j u s t e d so t h a t i t ream c o r r e c t l y i n t h e m i d d l e o f th e s c a l e , t h e d e v i a t i o n s a t t h e e x t r e m i t i e s t h e n b ein g only about f i v e d eg rees F a h re n h e it.

C onsidering the

s e n s i t i v i t y o f t h e i n s t r u m e n t a n d t h e f a c t t h a t most r e a d ­ i n g s were t o b s t a k e n i n t h e b e s t r a n g e , no c a l i b r a t i o n c h a r t was u s e a . £. P r e s s u r e g a u g e s . Two p r e s s u r e g a u g e s were u s e d f o r t h e d i f f e r e n t p r e s ­ sure ranges of th e experim ents. 6000 p o u n d s p e r s q u a r e i n c h ,

One h a d a f u l l s c a l e o f

w h i l e t h e o t h e r r e a d o n l y up

t o 1000 p o u n d s p e r s q u a r e i n c h . Both t h e s e g a u g e s were c a l i b r a t e d a g a i n s t s t a n d a r d t e s t g a u g e s which were a v a i l a b l e

in t h e Heat T r a n s f e r Labora­

t o r y , u s i n g a h y d r a u l i c t e s t i n g m a c h in e . 1/3

h i c h t h e y were u s e d ,

t h e y c o u l d be r e a d .

In th e range in

b o t h i n s t r u m e n t s were a s a c c u r a t e a s

o

3

p

£ Pi

Vi ®

P

®

a

•H

r-C Pi

p

E

«

©

H P a

aM

m 3

p

p. Pi

®

«;

N

a

o

•H

ffl

0o> w o V i T3

3U ) 3

c5

k

1-1 O

o p a) Jd xi

CO

p

CO

Vi tf)

;d I

cn •

tii 7fc*i

>

Pi fl

o

24

3. V olumetric a x p a r s t i i s . iiiC^ ^.;X' X0 " U .ili W >0

X

CX

d -f

S? v

0

t w' . . i ' v l i i — 1

V

UX

tj

^

V. X XC- X Ox 'i* i - W -



>-. l l

wwt -— J -

d t

••

S S X Vo x

,1 s t r a t i : o.

l u r e in the la o o r: .t o r y . Saftplinr tub?? m x o t h e r v o lu m e tric a p p a r a t u s va.rc c a i i c r V t e d to t h e do s i r ad a c c u r a c y , by use o

: burette.

4. Gas a n s x y s i s a p p a r a t u s . Thw a : a r a t u s fc 'f* v.-.rious

m ix tu res

c

ox

a r . a l v s i s :••as checbed a x & isst ye

this auy v>ax sac:.!!

to ox sufx'icix-utly a c c u r a t e f o r th e p r e c i s i o n r e p a i r e d in th is investigation.

25 V II.

SELECTION OF RAW MATERIALS

a • -~Eydr o ^en A l t h o u g h t h e h y d r o g e n f o r c o m m e r c ia l &;-■p i i c a t i o n o f t h i s t y p e o f p r o c e s s w o u l d h a v e t o o e p r o d u c e d by some s o r t o f w a t e r g a s r e a c t i o n , a n d w o u i a q u i t e 1 i k a l y be s a f e l y usea

vjr t n

a cons— u e r u o r o c u r o o n ii.wiioniue cuxiixmf,

oiiis i n --

v e s t i g a t i u n h a s be on c o n d u c t e d u s i n g c o m m e r c i a l l y p u r e e l e c t r o l y t i c h y u r o g e n s u p p l i e d by L in d e A i r P r o d u c t s Com­ pan y i n c y l i n d e r s a t 1800 p o u n d s p e r s q u a r e i n c h p r e s s u r e a n d r u n n i n g 8 8 . ? p e r c e n t h y d r o g e n on t h e a v e r a g e .

The

u s e o f t h i s p u r e m a t e r i a l n o t o n l y e l i m i n a t e d many u n c e r ­ t a i n t i e s in the a n a ly sis of r e s u l t s ,

out in a d o .itio n o b v i­

a t e d t h e n e c e s s i t y f o r u s i n g t h e c o m p r e s s i o n e q u ip m e n t except in r a r e in s ta n c e s .

This f a c i l i t a t e d g r e a t l y th e

c h a r g i n g ox h y d r o g e n i n t o t h e r e a c t i o n s p a c e . o . Coal sail'd ± e 1. Choice. The c h o i c e o f c o a l l o r t h e i n v e s t i g a t i o n was d e t e r m i n e , by two o o j e c t s . Ox >jU-u m e U s

CO^x

In th e f i r s t p l a c e , o O t —* m r - b r .0

f 0 O.'-r x y

i t was d e c i d e d t h a t a

ij/iO U x d

Dv USwCi,

x ii V ioVx

o f t h e f a c t t h a t i f t h e work was s u c c e s s f u l a n d l o c a l g a s n e e d s were t o be f i l l e d ,

th e c o s t of t r a n s p o r t a t i o n of coal

o v e r l o n g d i s t a n c e s would be a c o n s i d e r a b l e i t e m .

In the

s e c o n a p l a c e , t o e l i m i n a t e some o i t h e e x p e r i m e n t a l d i x x i — cu lties,

i t was d e s i r a b l e t h a t a c o a l lo w i n s u l f u r s h o u l d

be used for the preliminary work. The c o a l m e e t i n g t h e s e r e q u i r e m e n t s most s a t i s f a c t o r i l y was I n d i a n a f o u r t h seam c o a l .

Two o r t h r e e m in es a r e now

p r o d u c i n g i n t h i s v e i n i n t h e s t a t e , a n d two o f t h e l e a d i n g p r o d u c e r s s u b m itte d sam ples. p a r a b l e b a s i s o n l y one

Tc p u t a l l r e s u l t s on a com­

c o a l was u s e d .

2. S a m p l i n g , a n a l y s i s ,

ana s to ra g e .

Two h u n d r e d p o u n d s o f u n i f o r m l y g r o u n d a n d s i a e d coal was o b t a i n e d f ro m a 300 p o u n d sam p le o f 2" x i f " c o a l su p­ p l i e d by W a l t e r B l e d s o e a n d Company ( T e r r a H a u t e ) f r o m t h e i r S a x t o n Mrne , No. 4 b e d .

The c o a l a s g i v e n by t h e i r a n a l y s i s

(Commercial T e s t i n g and E n g i n e e r i n g Company, O c t . 2 , 134 1, Lab. No. 1 4 9 , 3 8 4 ) was: As R e c e i v e d M oisture

13.53

Ash V o latile F i x e d C arbon B tu

o f Ash



5.35

7.34

32.70

37.83

47■43 100.00

54.84 100.00

11641

13462

C .5 6

0.65

Sulfur F u s i o n tem p,

Dry

275GF.

T h i s m a t e r i a l was g r o u n d t h r o u g h a g y r a t o r y c r u s h e r (Wor th­ i n g t o n rump, a n d Mach. Company, M i l w a u k e e , W i s c o n s i n , Ho. 1344) s e t a t g" a n d t h e p r o d u c t screened t h r o u g h a h a n d tromm el h a v i n g a n o p e n i n g of 1 / 6 i n c h . through a la b o ra to ry r o l l

O v ers i c e

w&s

than passed

( S t u r d a v a n t M i l l Company, B o s t o n ,

27 Ho. 555) s e t a t 1 / 3 " a n a t h e n s c r e e n e d t h r o u g h t h e same tromm el. The s i z e d c o a l was t h e n t h o r o u g h l y m in e d and a r e p r e ­ s e n t a t i v e sa m p le o b t a i n e d by a c o m b i n a t i o n o i c o n i n g a n d l o n g p i l e m e th o d s a s recommended by t h e A. 0 • T • • ( 1 0 ) . The r e m a i n d e r of t h e 300 p o un d s a m p l e was s y s t e m a t i c a l l y p l a c e d in to h a l f g a l l o n g l a s s c o n t a i n e r s , t h e atm osphere sw e p t w i t h n i t r o g e n , a n d t h e sa m p le s s e a l e d o f f i n a n i t r o ­ gen atm osphere u n t i l r e q u i r e d . Some o f t h e a d v a n t a g e s o f t h i s m eth o d a r e t h a t t h e e n t i r e c o a l s a m p le i s r e a s o n a b l y u n i f o r m a n a t h e c o n t a i n e r s a r e s m a l l eno u gh t h a t e a c h u n i t w i l l be consumed i n a r e l a ­ t i v e l y s h o rt p e r i o d a f t e r b e in g opened to th e atm osphere. In a d d i t i o n ,

t h e u s e o f an i n e r t a t m o s p h e r e l i k e n i t r o g e n

s h o u l d t e n d t o r e d u c e any c h a n g e i n t h e c o a l c o m p o s i t i o n due to such f a c t o r s a s o x i d a t i o n . The a n a l y s i s of t h e c o a l sam ple was c h e c k e d a n d f o u n d t o c o n f o r m w i t h m in o r v a r i a t i o n s t o t h e a v e r a g e a n a l y s i s s u b m i t t e d by t h e p r o d u c e r .

T h is a n a l y s i s i s as f o l lo w s : As R e c e i v e d

i s 'c u r e Ash V e i n s 11 o

no

F ix ed

C u r oon

Curo on Hy vlXO_ - n H i t r O : : ^n C‘1 . L d. *111?

iu-D O Y• o w* • J'v 4 1 . Ob * ‘w'oj OO *

OsJ



Ot)

Dry OtOW *110 i Ov

4 7 .5 0 «*.V -J » 'wV

75.70 3.07 . . *- *■

1*15

i

’■w *' • o o

VO.

» O v

n n I t

33

In a d d i t i o n ,

s c r e e n ash. a n a l y s e s o f t h e p r o d u c t fr o m

two d i f f e r e n t u n i t s w e r m a d e t o g i v e an i n d i c a t i o n o f t h e u n i f o r m i t y o f t h e s a m p l i n g m etho d .

The two a n a l y s e s a r e

g i v e n i n p a r a l l e l colu m ns i n T a b l e 3.

Screen Size

R etained Sample 1

$

R etained s a m p le 3

%

0.0

0.0

o

r>

12.0

12.6

o

37.4

28.2

10

20.6

20.0

14

13.2

13.4

4 mesh

30

8.55

8.25

23

5.40

5.24

35

3.79

3.71

48

3.57

2.60

65

d

*43

1 • So

100

1 . 10

1.43

15w
.ii oy singjitt s t o r —

c h i o m e t r y t h a t t h e a m o u n t s o f t h e t h r e e c o m p o n e n ts p r e s e n t a r e f i x e d by t h e c o n t r a c t i o n i n volume a n d t h e c a r b o n d i ­ o x i d e form ed on c o m b u s t i o n , in th e sam ple.

and by t h e amount o f h y d r o g e n

Thus t h e d e s i r e d r e l a t i o n s a r e

' Methane - 4 / 3 I - 5 / 3 I I Ethane = 2 /3 (3 1 1 w here

1 + 3/2

2H H)

I » Volume c o n t r a c t i o n on c o m b u s t i o n I I * Volume o f c a r b o n d i o x i d e fo rm ed on com bustion H = Volume o f h y d r o g e n i n t h e sample

w..j .i*;w un g cvGo'v c. i.i6tA: u o c e

no u d i r i e x e w t i a _ L I y

p r i n c i p l e fr o m t h e s t a n d a r d p r a c t i c e ,

xn

i t h a s p r o v e d t o be

g u i t s a u s e f u l m o d i f i c a t i o n in t h i s work. b. L iqu id s No a n a l y t i c a l p r o c e d u r e s f o r l i q u i d s were n e c e s s a r y i n t h e p r e s e n t work due t o t h e f a c t t h a t t h e c o n d i t i o n s o f t h e

e x p e r i m e n t a were s u c h a s t c p r o d u c e l i t t l e d ucts.

c r no l i q u i d p r o ­

At t h e h i g h t e m p e r a t u r e s e m ployed, c r a c k i n g o f l o n g

h y d r o c a r b o n s , a nd s u b s e q u e n t h y d r o g e n a t i o n o f u n s a t u r a t e d l i n k a g e s t e n d e d t o c o n v e r t a l l b u t t h e i n e r t m a t e r i e - l to l o t D C i-i i n g h y d r o c a r b o n s , c h i e f l }

iii 11.--niii •

C * CO-L lyiS Coal a n d c oke a n a l y s e s v.-ere made a c c o r d i n g t o t h e s p e c i f i c a t i o n s o f th e A .S.T.ii.

A l t h o u g h s l i g h t mo a i f i c a t i o n s

i n t h e a b s o r p t i o n t r a i n i n t h e c & r b o n - h y d r o g e n a n a l y s i s were made, t h e method was e s s e n t i a l l y as d e s c r i b e d i n s t a n d a r d r e f e r e n c e works on t h e s u b j e c t ( l 7 ) . The a p p a r a t u s u s e d i s r e p r o d u c e d i n t h e a cc o m p a n y in g p h o t o g r a p h s , F i g u r e s 3, 8 , a n d 10.

40

41

43 X.

STABILITY AHD PFEFOEMAHCE OF HIC-H PRESSURE EQ.UIPI'!E!'IT

a. C o r r o s i o n L i t t l e c o r r o s i o n was e n c o u n t e r e d w i t h t h e p e a r l i t i c mangnnese s t e e l o f which t h e h i g h p r e s s u r e c y l i n n e r was made.

During th e f i r s t

two o r t h r e e t i n e s t h e bomb was

h e a t e d , a t h i n s c a l e ox f l a k y o x i d e v/ae f o r m e d on t h e o u t ­ side surface. brush.

T h i s m a t e r i a l was s c r a p e d o f f w i t h a w i r e

L a t e r r u n s g a v e no t r o u b l e o f t h i s k i n d , a more o r

l e s s r e s i s t a n t su rfa c e having developed. s i o n was n e g l i g i b l e ,

In tern a l corro­

s i n c e t h e r e was p r e s e n t a h i g h l y r e ­

ducing atm osphere o f hydrogen. Ho i n f o r m a t i o n was s e c u r e d on t h e e x t e n t o f d e c a r b u r i z a t i o n o r h y d r o g e n e m b r i t t l n r e n t : h o w e v e r , th m re h a s b e e n no a p p r e c i a b l e c h a n g e i n t h e a p p e a r a n c e i n o v e r 1000 h o u r s o f ^p

c'. t) X i .

b. Cres Ho d a t a were a v a i l a b l e on t h e h i g h t e m p e r a t u r e c r e e p s tr e n g th o f the a llo y s t e e l , but the upper l i m i t s of th e m a t e r i a l were q u i t e o e f i n i t e l y

i n d i c a t e d a f t e r a s e r i e s of

a b o u t t h r e e r u n s a t 1060F. an d p r e s s u r e s o f SGOO t o 5GG0 po u n d s p e r s q u a r e i n c h .

The a p p r o x i m a t e s t r e s s t o w h i c h t h e

w a l l s o f t h e c y l i n d e r were s u b j e c t e d u n d e r t h e s e p r e s s u r e s was 5000 t o SOOO p o u n d s p e r s q u a r e i n c h , u s i n g t h e a p p r o x i mc,t i o n

43

(R0~ > R^) S - P .(V where

- V )

S » Wall s t r e s s ? = In ternal pressure R0 « O u t s i d e r a d i u s o r d i a m e t e r Ri -

In sid e r a d i u s or d iam ete r

Curing, t h e t h r e e r u n s t h e bomb was s u b j e c t e d t o t h e s e c o n d i t i o n s f o r a t o t a l o f a b o u t 20 h o u r s , a n d c r e e p amount­ i n g t o a b o u t t h r e e p e r c e n t o f t h e e x t e r n a l d i a m e t e r was p; i 1 Z •

F o r t u n a t e l y t h i s c o n d i t i o n was n o t e d b e f o r e t h e c y l i n d e r was r u p t u r e d .

Su b s e p a e n t l y t h e o u t e r s u r f a c e was f a c e d o f f

to th e o r i g i n a l d ia m e te r and th e p r e s s u r e s reduced.

Since

t h a t t f m e i n no c a s e h a v e p r e s s u r e s g r e a t e r t h a n 2C0C pou n ds p e r s q u a r e i n c h b e e n u s e d a t 1CSCF. Hazardous as t h i s

i n c i d e n t na y h a v e b e e n ,

i t d id serve

to i n d ic a te q u ite d e f i n i t e l y th e upper l i m i t s of th e m a te ria l cuo rv-^turo.^ n i &n "Danp^xn.turo cre^x-'* c . Co on ox* £.a s h e r s . At t e m p e r a t u r e s o f ICSOF. t h e u s e o f c o p p e r g a s k e t s b e g in s to be u n d e s i r a b l e . tu res,

On making r u n s a t t h e s e t e m p e r a ­

i t has been iound t h a t th e copper v a p o r i z e s t o a

s lig h t degree,

a s i s e v i d e n c e d by t h e f a c t t h a t s m a l l d e ­

p o s i t s c f a f u z z c o n s i s t i n g of met s i l i e

copper c r y s t a l s a re

d e p o s i t e d i n t h e c o o l e r p a r t s o f t h e bomb; e . g . ,

on t h e b o t ­

tom o f t h e s t a i n l e s s s t . e e l l i n e r . The c o p p e r g a s k e t by w h i c h t h e t h e r m o c o u p l e w e l l was

44 s e a l e d i n t o t h e bomb h e a d was f o u n d t o be a b o u t h a l f gone when t h e w e l l was removed f o r i n s p e c t i o n a f t e r a s e r i o u s le a k had developed.

The i n n e r h a l e d a d a p p a r e n t l y d i f f u s e d

aw*.// * d. P r e s s u r e f i t t i n n s I n g e n e r a l , t h e p r e s s u r e f i t t i n g s were q u i t e s a t i s f a c ­ tory , although o c c a sio n a lly

i t vsras f o u n d t h a t t h e c o n i c a l

s e a t s became d i s t o r t e d t h r o u g h c o n t i n u e d u s e . quired f ilin g at

These r e ­

i n t e r v a l s , e,no i n some c a s e s i t was f o u n d

d e s i r a b l e t o r e - t h r e a d ana c u t th e ends.

45 XI. VARIATION OF GAS COMPOSITION WITH TIME OF HYDROGENATION

a.

In troduction In o r d e r t o o b t a i n an ap p ro x im ate id e a of th e r a t e s

of r e a c t i o n o b t a i n a b l e in t h e h y d ro g e n a tio n r e a c t i o n ,

a

number of c o n s t a n t volume r u n s were made o v e r q u i t e l o n g p erio d s of tin e ,

d u r i n g w h ic h s a m p l e s of t h e g a s e o u s c o n ­

t e n t s o f t h e r e a c t i o n chamber were t a k e n f o r a n a l y s i s . I t was d e s i r a b l e t o

determ ine th e sp e ed w ith which

e q u i l i b r i u m was r e a c h e d i n o r d e r t o g i v e some q u a l i t a t i v e i d e a o f t h e r a t e o f r e a c t i o n a s w e l l a s t o i n d i c a t e how l o n g i t would be n e c e s s a r y t o a l l o w t h e r e a c t i o n t o p r o c e e d so t h a t in p la n n in g l a t e r r u n s , d a ta co u ld be o b ta in e d of " e ; u i l i b r iun" c o n c e n t r a t i o n s . W hile t h e c h i e f r e u c t i c n e x p e c t e d (combination o f c a r ­ bon i n some form w i t h h y d r o g e n t o g i v e m e th a n e ) r e s u l t s i n a d e c r e a s e i n v o lu m e ,

i t might a t f i r s t

seem p o s s i b l e t o

f o l l o w t h e r e a c t i o n by means o f t h e c h a n g e i n p r e s s u r e ,

u sin g a constant volume s y s t e m . l£i ^ 13_1V *Lo

For v a r i o u s r e a s o n s ,

th is

W Cbs d i s c a r d e d i n p r e f e r e n c e t o t h e a n a l y s i s of g a s

com positions.

C h i e f among t h e s e i s t h e f a c t t h a t o t h e r r e ­

a c t i o n s , c h i e f l y t h o s e .-reducing e t h a n e and o t h e r h y d r o c a r ­ b o n s , g i v e v a r i o u s c h a n g e s i n volume p e r mol o f h y d r o g e n consumed, d e p e n d i n g on t h e p a r t i c u l a r h y d r o c a r b o n f o r m e d . V a r i o u s o t h e r unknown r e a c t i o n s i n v o l v i n g w a t e r , c a r b o n m o n ox id e, a n d c a r b o n d i o x i d e o c c u r w i t h c h a n g e s i n volume

46 a l s o a n d r e a d e r t h e i n t e r p r e t sit io n o f p r e s s u r e - t i m e d a t a ra th e r uncertain.

I n a d d i t i o n , u n d e r t h e e x tr e m e c o n d i t i o n s

o f o p e r a tio n , o c c a s io n a lly sm all I s a k s

( c h i e f l y due t o f a i l ­

u re o f g a sk et m a te r ia l a t nigh te m p e ra tu re s ) a re e n co u n tere d , a n d w h i l e n o t a f f e c t i n g t h e g a s c o m p o s i t i o n s m a r k e d l y , do c a u s e c h a n g e s i n p r e s s u r e w h i c h would he d i f f i c u l t t o i n t e r ­ p r e t i f no o t h e r d a t a on t h e r e a c t i o n p r o g r e s s were a v a i l a b l e E x p e r imen t a l da t a Data f o r ru n s i l l u s t r a t i n g

the e f f e c t of tim e of hydro­

g e n a t i o n on g a s c o m p o s i t i o n a r e p r e s e n t e d below i n c o n d e n s e d fo r m .

For e a c h r u n a d e s c r i p t i o n of t h e g e n e r a l c o n d i t i o n s

w i l l be g i v e n f o l l o w e d b y a summary o f t h e g a s a n a l y s e s and c o n d i t i o n s a t t h e t i m e o f s a m p l i n g a n d a c c o m p a n i e d by a c u r v e s h o w in g t h e g a s c o m p o s i t i o n w i t h r e s p e c t t o t h e m a j o r c om po n e n ts p l o t t e d a g a i n s t t i m e . Two s e t s o f s u c h d a t a a r e p r e s e n t e d .

The f i r s t g r o u p ,

i n which t h e m o l a r r a t i o o f c a r b o n t o h y d r o g e n was l a r g e (i.e.,

a b o u t 15 t o i ) ,

show q u i t e n o rm al r a t e c u r v e s ,

approac

i n g a l i m i t i n g v a l u e a s y m t o t i c a l l y f o r some c o m p o ne nts a n d f o r o t h e r s s h o w in g a n i n i t i a l x n ix j.

J i.

x

i.

- i y oOVvci.jro.

i n c r e a s e t o a maximum a n d •

The s e c o n d s o t o f c u r v e s was u e t o r m i w e d w i t h l o w m o la r r a t i o s of carbon to hydrogen (about i : l ) .

For t h i s g ro u p

t h e r a t e o f r e a c t i o n was much s l o w e r , a n d t h e r e was a l e s s p r o n o u n c e d l e v e l l i n g o f f t o an e q u i l i b r i u m v a l u e o f t h e m a jo r co m p o n e n ts .

47 The d a t a f o r Rune 7 a n d 3 r e q u i r e a word o f e x p l a n a t i o n , s i n c e t h e o p e r a t i n g p r o c e d u r e was somewhat d i f f e r e n t f o r th e s e experim ents.

In t h e s e c a s e s a s a m p l e o f c o a l was

c h a r g e d i n t o t h e bomb a n d g a s u n d e r p r e s s u r e a d m i t t e d . the r e a c t i - n proceeded,

As

s a m p l e s o f t h e g a s e o u s bomb p r o d u c t

were drawn f r o m t i m e t o t i m e and a n a l y z e d a p p r o x i m a t e l y by a s p e c i a l l y developed r a p i d com bustion a n a l y s i s . c o m p o s i t i o n became a p p r o x i m a t e l y c o n s t a n t ,

When t h e

t h e r u n was s t o p p e d ,

t h e g a s e s b l e d o f f a n d m e a s u r e d , a n d new g a s a d m i t t e d t o t h e h o t r e a c t i o n mass i n t h e bomb.

Thus s u c c e s s i v e h y d r o g e n a ­

t i o n s o f t h e same c o a l sa m p le o r cok e r e s i d u e were p o s s i b l e , and th e r e s u l t i n g changes in r a t e s o f r e a c t i o n w ith d e p le ­ t i o n o f t h e v o l a t i l e m a t t e r i n t h e c o al co u ld be d e t e c t e d . The v a r i o u s p e r i o d s i n w h i c h new g a s c h a r g e s were a d d e d a r e d e n o t e d a s 7 a , 7 b , 3d, e t c . , t h e n u m e r a l r e f e r r i n g t o t h e p a r t i c u l a r c o a l c h a r g e and t h e l e t t e r s i g n i f y i n g t h e p a r t i ­ c u la r gas charge. The c u r v e s o f F i g u r e 15 were p l o t t e d f r o m Runs 7 an d 3 in i/hich t h e v a r i o u s p o i n t s r e p r e s e n t c o m p o s itio n s p l o t t e d a g a i n s t t im e o f h y d r o g e n a t i o n .

The p o i n t s a r e g r o u p e d a c ­

c o r d i n g t o t h e number o f t i m e s t h e c o a l mass h a d b e e n p r e ­ v i o u s l y h y d r o g e n a t e d a n d c u r v e s draw n t h r o u g h e a c h g r o u p a c ­ cordingly.

Thus t h e v a r i o u s c u r v e s r e p r e s e n t t h e r a t e o f

hydrogenation a t d i f f e r e n t sta g e s of d e p le tio n of v o l a t i l e m a t t e r fr o m t h e c a r b o n a c e o u s r e s i d u e .

43

3 CJ C nO H

cr>

•H rH

rH

l— 1 •H O to

i— I

®o

CD

iH

tD CD

CD

CD

P O

CO

to

CO

iS W P i

rH

(D*a S'-d

in

TABLE 3 i

SwanarT- of Data for Rons Deed to E stablish

Rate R e la tio n s h ip s

m r-> +>

rd

CO rH

rH

CO

CO 00

•u

8 9

to • Cl

Cl • o

E-• O

00 • 1—(

CO

8 $

in • in

rH • O

o



CM • CM

to • to

Cl • o

in • rH

CO • r-

in • rH

Cl ♦

* * 03 t to

CO 1 to

o • o

in • o N

CO • to

o

o.

tn • CO to

IN• in 03

CO . "I*

o• o

o £

CO • rH 03

IN • CO

• rH Cl

o « o

CO » rto

03 • tn 03

rH . CO

•tf4 • O

CO . to

o • o

CO . IN rH

in $

in . N tn

CO • rH

03 • eCM

o« o

CM • O to

• 03 03

to • rH

03 • rH

I w © a

* * c8

to 8

o p-

c-

3

co

to

& -p n) p S'

• rH

to • o

§

CO

CM • o

to «

-tf

to

rH • rH

o

o

in • rH

o

c* « CO m

03 • rH

o• in m

O • rH O rH

o

-p

)

03 • N

CO • 03 03

Cl •

CM . Cl in

W . to

to * to co

CO • CO 03

IN • rH

to • CO IN

in *

10 Pi H S4 8 O* o n W f2r w eh

2 sto «p u fit

O o o

•g o .Q u 0) -p CJ

EH

I *

C• rH

o• o

Cl o o

• rH rH M

Cl « o



o

o

in • rH

to • 03 03

W

• ■p o EH

.

o

s

ft ©o -P rH

®

rH

03 • H

• 03 rH

•d

C M o o o

w

tn W CM

o

o

errors)

§

8

due to sampling

to

«

(Discarded

3 -1 0

r Cl rH

1 3 .1

8 5


00 .

8

ca . co

8 8



o

.

o> • 02

CO . 02



o. o

tv

rH CO

.

I 1

ID

o . o

CO • CO co

tv . CO 02

to

£

02 . 02 00

ID 02

8

• iH

1 2 :0 0

&

o



o.

CO

CO

CO

i— 1

o

CO •

IV . rH

02

£V •

02

.



02

o. o

00 •

o

rH

. co

o

#

8:00) o • o

sx~ wGg >ax1g - - : , coal w eight,

Sli’U X ll

tem perature,

t im e, e t c .

xioIo.iUg

cmset&nt a n a v a r y i n g

i n i t in i p r e s s u r e of h y d r o g e n .

o . E x p e r i m e n t a l d a t a. The d a t a f o r

these

si:perim ents i r e

sunxurixed in

Te. o i s i 4. o . C onclus io n s The c o n c e n t r a t i o n s o f a s t h a n e a n d e t h a n e , w h i l e unusual v ariatio ix s

sith pressure,

a s m ight se en ? t f i r s t .

If th ese

are not as u nreasonable co n cen tratio n s are ealeu -

j_c4.wc;-U to ga t.■ .X iiy^iX OCei Qon e-.iC ea gX h .-a

i s iounu l i e : l e v a r i a t i o n

of f a c t o r s •and e t h a n e , tio n

-- gI-,11^, uG.OiG

i n c o n c e n t r e t i o n v/ith p r e s s u r e ,

w ith th e e x c e p tio n of the s l i g h t pressures.

showing

T h is w ould i n d i c a t e

in crease

t h e p o s s i b i l i t y ox some s e t

c o n tr o llin g the r e l a t i v e out h a v in g t i t t l e

tow ard th e low er

affect

p r o p o r t i o n s c f m ethane on t h e t o t a l

co n cen tra­

of hydrocarbons p re s e n t. F urther,

if

the t o ta l

h y d ro c a rb o n s e v o lv e d from t h e

c c a l a r e c o m p u te d , by m u l t i p l y i n g t h e f i n a l

c o n ce n tra tio n s

U1 cn Cl

1300

P ress. -p s ig

8 o

0.303