The application of high frequency oscillations to chemical analysis

463 69 2MB

English Pages 30

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

The application of high frequency oscillations to chemical analysis

Citation preview

THIS APPLICATION OF HIGH FHSQUEHOI OSCILLATIONS TO CH3MI0AL ANALYSIS

A D is s e r ta tio n Subm itted to th e G raduate F acu lty o f th e L o u isian a S ta te U n iv e rs ity and A g ric u ltu ra l and K echanical C ollege i n p a r t i a l f u lf il lm e n t o f th e req u irem ents f o r th e degree o f D octor o f P hilosophy in The Department o f Chem istry

by Thomas Shepherd S u rk b a lte r B .A ., U n iv e rsity o f Oklahoma, 19^7 M#S#, U n iv e rsity o f Oklahoma, 19^8 June, 1950

UMI Number: DP69323

All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

U M I' D issertation Publishing

UMI DP69323 Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

P roQQ uueest ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346

MANUSCRIPT THESES U npublished th e se s su b m itted f o r th e m a s te r’s and d o c to r ’s degrees and d e p o s ite d i n th e L ouisiana S ta te U n iv e rsity L ib ra ry a re a v a ila b le f o r in sp e c tio n * r ig h t s o f th e author*

Use o f any th e s is i s lim ite d by th e

B ib lio g ra p h ic a l re fe re n c e s may be noted* b u t

passages may n o t be co p ied u n le ss th e a u th o r has given p erm issio n . C re d it must be g iv en i n subsequent v jr itte n o r p u b lish ed work# A l i b r a r y which borrows t h i s t h e s i s f o r use by i t s c l i e n t e l e i s ex p ected to make su re th a t th e borrow er i s aware o f th e above r e s t r i c t io n s # LOUISIANA STATE UNIVERSITY LIBRARY

AOOTOWLSIWSIf

th o a u th o r wlefat# t® expyeoe h ia a in o e re a p p reciatio n . f o r th e ad w io o o ad a a e le ta n o e o f Sr* P h ilip W* Wosi who d ire o te d t h i s researeh * Dr* &o® Bronaeord* Dr# &* If* M orris and Dr. O* A* Kono® o f fe re d many helpful eaggedtiens regarding oirmiltry* The financial assistance of the SSsao Standard Oil Oompetisgr Is acknowledged*

3 n t .n l W ^ o i

a

R S o

C '^

432637

tA B M OF O T W 8

Acknowledgment . » • L i s t of T ables • L i s t o f F ig u res # * * ♦ * * * * , * , . * * * # * A b s tra c t ♦ * ♦ • * * # • * . . . « * * » * Chapter 1 , * * * * # # * ♦ # . * » » « , , Review o f ih® l i t e r a t u r e Chapter XI # * * » .* * * * « # • « » # » » * A paper A High Frequency O s c illa to r u t i l i s i n g th® Heterodyne P r in c ip le t o Measure Frequency Changes Induced by D iverse Chemical Systems* West, P h ilip tfwt B urkhalter, T. 3*, and Broussard, Leo Anal* Cham. 22 469 (1990) B ib lio g rap h y V ita

ill

Fag© 11 iv v

v& X 1®

IT 21

iiSST OF TABLES

I

V alues o f Oomponent F a rts o f A nalyaer

.

»



Pago 14

XI

Boat Frequency Change Induced % V arious O rganic Compounds

*

.

15

iv

Lis'? Of? Ficftmss 1

Block Diagram o f Heterodyne A nalyser ,

t

............................

1$

3

C ir c u it Diagram o f H eterodyne A nalyzer

*

«

#

14

5

frmqsamr D r i f t o f SetOh O s c illa to r

,

«

* » * # . *

4

Time V ersus Boat Frequency

• * * * • * « »

5

A otd-base T i t r a t i o n

6

C a lib ra tio n . Curve f o r N itro b en zen ea n i l i n e System

,







14 15 15

r

,

,

*

»







»

1$

AS&ftAOT Aa e le c tr o n ic in stru m e n t s u ita b le f o r u se ha® been d esig n ed and co n stru cted *

m a chem ical a n a ly s e r

th e a n a ly s e r c o n s is ts e s s e n t i a l l y

o f two h ig h freq u en cy o s c i l l a t o r s (on® a “r e fe r e n c e 11 and th e o th e r a “w orking *1 o s c i l l a t o r ) and a system f o r M easuring th e frequency d iff e r e n c e betw een th e two*

Chemical a n a ly s is w ith th e u se o f t h i s In stru m e n t i s

based upon th e p r in c ip le t h a t th e frequency o f an o s c i l l a t o r changes w ith a change in com position o f th e co re m a te ria l o f th e ta n k c i r c u i t c o ll*

I n t h i s in stru m e n t, o f th e heterodyne ty p e , th e ta n k c i r c u i t c o i l

f o m i s hollow and th e c o re m a te ria l i s changed by p la c in g th e chem ical system under in v e s tig a tio n w ith in th e hollow c o il form*

th e m agnitude

o f th e freq u en cy change caused by in s e r tio n o f th e chem ical system i s a f u n c tio n o f th e com position o f th e chem ical System*

S t a b i l i t y o f op er­

a t i o n has been checked* The a n a ly z e r i s a d a p ta b le to most ty p e s o f conductom etria t i t r a t i o n s and i s n o t s u b je c t to th e o b je c tio n s a s s o c ia te d w ith e le c tro d e s i n c o n ta c t w ith so lu tio n *

Acid-baa© o r p r e c ip i ta tio n t i t r a t i o n s can be made re a d ily *

By u se o f a p re v io u s ly prepared c a l ib r a tio n c h a rt d i r e c t c o n c e n tra tio n measurements can be ma.de on many o rg an ic b in a ry systems*

The frequency

changes caused by a number o f org an ic compounds have been measured and a r e lis te d *

vi

OHAFTM |

mrtEW Of fflg LITBRAWR8

I

1o*% p

o5?

ff

3 *it8 g % **» r

*

«

©

d* *©

i

I

if •p

p C6 9£SED Jt G a tf

c*1 ? Or © v» d£

51

c> If os*

O'

St ff

IS ©

1

s

H» ♦IA *

I



(«»

©

O ' ©

P-

•a **

§ $

i

*5© 0I ft © 6

9 n a

0

•* O

H* ao »-* & £

i e* 0

s

*

I

: 1 1

H §

H H * O pu

1

5

o

g ©

g

I -0 *"&

aSIc* H* O » cr* M

1* **

I I i

Pb

»0

P

S 8 ffl

0

© b* 1 § £b

©

fU w

&

I fH

P

ff

O P.

0 0

© d*

F*

0*i> .©

?n

Ig- I O Io 0

©> ** A

I

o H \0

g s

W O R K IN G

OSC.

REFERENCE

OSC.

E g 4200 LJW

T ab le I.

3800

V alues o f C o m p o n e n t P a rts o f A n alyzer

Condensers Condenser N o. Value, mfd.

3400

Ci

150 mmfd. 0.001 100 mmfd. 0 .1 0.0 01 0 .0 1 0.0 02 0.0 02 0 .0 1 0 .001

C2andC« (Silver C4 Mikes)

3000

0 F igu re 3.

50 TIME, MINUTES

100

F req u en cy D rift o f Each O scillator

two oscillators under stand-by conditions must be able to main­ tain a constant frequency difference. The circuit diagram for the oscillators (Figure 2 ) is the Clapp modification of a Colpitts-type oscillator and is especially well suited for work of this kind. A description of the individual parts is given in Table I. The oscillator circuit is described by Gramer (3 ), who investigated the stability of the oscillator in the QST laboratories, and reports that the circuit "results in an oscillator whose frequency is al­ most independent of plate voltage and tube thermal effects.” The unusual stability is due to loose coupling between the oscilla­ tor tube and a high Q tuned circuit. The large capacity of C2 and C3, compared to Ci, makes coupling between the tube and the tuned circuit very loose, so that the circuit Q can be kept very high; in addition, these large values "swamp” the grid to cathode and plate to cathode capacities to such an extent that the effect of any change in these capacities becomes negligible.

C i C«

Ct Cs C9 C 10 C.1 C12 Cu and Ci« (Silver Cis M ikes) Cis ClT Cis C 19 C20 C21 C22 C23 C24 and C26

0.1

0.001 100 mmfd. 150 mmfd. 500 mmfd. 0 .0 6 50 mmfd.

0.02 0.02

0.1

0.02

R esistors R esistor N o.

Li

L t U L t Li L a L 7

100 750 400 ohms 250 250 5 .6 150 330 ohms 680 ohms 500 600 250 250 400 ohms 750 100 560 150 1200 ohms 40 50 7

r2 Rs R4 Re Re

Rt Rs Rs> R io Ru Ris Rl3

Ru Rl5 Rio Rl7 RlS

Rio R 20 Rzi R 22

Coils Coil No.

Value, K .°

Ri

Tubes Value, mh. 0 .0 0 6 2 .5 2 .5 2 .5 2 .5 0.006 8 henries

T ube N o. V, v2 Vs V, Ve Ve

V? V8

Vo 0 1000-ohm units.

T ype 6J5 6K7 6L7 6K7 6J5 6 H6 6J5 5U4G V -R 150

15 VOLUME

2 2, N O .

3, M A R C H

471

1950

mm.) fits snugly into the coil form. The titrant is added from a microburet, the beat frequency change is measured after the addition of each increment, and a plot is made of volume versus beat frequency change. Figure 5 is a sample graph made by this method. Ten milliliters of 0,01000 N potassium hydroxide in the test tube were diluted to approximately 30 ml. and titrated with 0.1060 N hydrochloric acid.

every minute for 96 minutes. Because the crystal oscillator has negligible drift, the variation of the difference frequency is due to the drift of the oscillator. The two curves are almost parallel throughout their length and after 45 minutes show practically zero drift and a constant frequency difference. Figure 4 is a plot of time versus beat frequency, stand-by from a cold start. During the first 45 minutes the beat frequency gradually increases, then slopes off and becomes constant within 10 cycles. The frequency of each oscillator varies about 1 cycle per volt with fluctuations of line voltage, but the frequency difference is unaffected.

T ab le II.

B ea t F req u en cy C h an ge In d u ced by V arious O rganic C o m p o u n d s Beat Frequency Change, C ycles/Sec.

Compound

660 681 697

n-Pentane it-Hexane n-H eptane

6200

M ethanol Ethanol n-Propyl alcohol Isopropyl alcohol n-B u tyl alcohol Isobu tyl alcohol sec-B utyl alcohol tert-Butyl alcohol n-Am yl alcohol eH-Amyl alcohol n-Octyl alcohol

5560 4763 4288 4117 3895 3906 3658 2998 2031 2938 2550

Acetone M ethyl ethyl ketone D iethyl ketone M ethyl n-am yl ketone Acetophenone

4397 4103 3922 3062 4014

Benzene Toluene Bromobenzene Aniline Nitrobenzene

810 830 1675 2040 5720

Acetic acid Propionic acid Butyric acid Caproic acid

2190 1242 1094 1005

M ethyl acetate M ethyl n-propionate M ethyl n-butyrate

2135 1890 1687

2

5700

0

100

50

200

150

TIME, MINUTES

F ig u re 4.

T im e vs. B e a t F req u en cy

The buffer, mixer, detector, and amplifier stages are all of standard design and m ay be modified in any way necessary to fit a particular need. The buffer is an R -C coupled 6K7 R-F amplifier. The mixer stage consists of a 6L7 tube with a split cathode resistor to maintain proper bias on each of the control grids. A diodetype detector circuit is employed utilizing a 6H6 tube. The audio-amplifier uses a 6J5 tube with the component values ad­ justed to give approximately a linear amplification factor of 14 over a frequency range of 500 to 5000 cycles.

B y using a small volumetric flask (special design, 19-ml, capacity) which fits entirely inside the coil form and a previously prepared calibration chart, direct concentration measurements can be made on many binary organic systems. The calibration curve of composition versus beat frequency change is nearly linear and for many system s is sufficiently steep so that accuracy of the order of 0.2 to 2.0% can be attained. A calibration chart of the aniline-nitrobenzene system shows that the curve is a straight line with a slope of 36 allowing an accuracy 0.3%. The slope of the calibration curve is determined by the differ­ ence in the beat frequency change induced by the pure com­ ponents. The greater the difference in the beat frequency change induced, the steeper the slope of the calibration curve and the greater the attainable accuracy. The beat frequency changes in­ duced by a number of organic compounds have been measured and are listed in Table II. A difference of beat frequency change equal to 5000 cycles between any two compounds represents an attainable accuracy of 0 .2 %,

8100 8000 -fc-lil

S 0 '-1 >

7900

ee U.I11 7800

hO

7700 7600 7500

0

0.2

0 .4

0.6

0.8

1.0

1.2

1.4

1.6

ML. O F HCI

F ig u re 5,

A cid -B ase T itra tio n

A C K N O W LED G M EN T

The layout and mechanical construction of a high-frequency oscillator of exceptional stabilit3r are at least partially an art. Stray wire capacity, chassis currents, radiation effect, etc., consti­ tute individual problems with every set. The technician who has had no previous experience with high-frequency oscillators will meet with some difficulty in his first attempt. However, any radio amateur or veteran with radio-radar maintenance experience should have no difficulty in obtaining the required stability.

T h e a u th o rs w ish to express th e ir a p p re c ia tio n to th e E sso S ta n d a rd Oil C o m p an y , L o u isia n a D ivision, for s u p p o rt in m a k ­ ing th is w ork possible. All th e in v e stig a tio n w as c arrie d o u t u n d e r a fellow ship sponsored b y th is c om pany. L IT E R A T U R E C IT E D

(1) (2) (3) (4)

Berry, A. L., U. S. P a te n t 2,076,441 (April 6, 1937). Blake, G. G., A u stra lia n J . S et., 10, 10-11 (1947). G ram er, George, QST, 32, 42 (M ay 1948). Jensen, F. W . , and P arrack, A, L., I n d . E n g . C h e m ., A n a l . E d ., 18. 595 (1946). (5) Reilly, Joseph, and Rae, W , N,, “ Physical Chemical M ethods,” Vol. I I , pp. 501-31, New York, D. Van N ostrand Co., 1939.

A PP L IC A T IO N S O F T H E A N A LY Z E R

The analyzer is adaptable to most types of conductometric titrations. Acid-base or precipitation titrations can be made readily. A common 50-mi. heat-resistant test tube (25 by 105 P

rin ted

R

in

eceiv ed

U. S. A

S e p t e m b e r 14, 1949.

X6

6000

4000

BEAT

FREQUENCY

CHANGE

5000

3000

100

50

NITROBENZENE,

FIGURE 6

WT. %

CALIBRATION CHART OF ANILINE-NITROBENZENE SYSTEM

A SBfcOTtD BIBLIOGRAPHY (A)

A r d itti# to n e and Heiissmaam* P ie rre ** C o n trib u tio n a L* stud© dea Beaagea Ghmtqam par C ir c u its O seill& nio

(2)

A rnold, 0* K, and W illiam s, J* W, — th e R esistance' and C apacity B ehavior o f S trong S le e b fo ly te a i n D ilu te Aqueous S o lu tio n s Method f o r Sissultaneous O bservation o f Conductance and D ie le c tr ic C o n stan t a t S igh Frequency J* Am* Ohem* See* ^ 261$ ( 1 9 5 6 )

(5)

B erry , A* h , B. 3 . P a te n t 2076441

(A p ril

6

# 1957)

(4 ) B lake, G* G. «— Micro Conductom etric A nalysis and T itra tio n * R ecti* f le d Radio-Frequency Method A u s tra lia n J , o f Science 10 80 (1947) (5 )

B lake, 0 * G, quency A u s tra lia n

—-

A D if f e r e n tia l Comparator O perating a t Radio Fre­

Si o f Science U, 60

(1946)

( 6 ) C lapp, j . K. — An Induetanoe*0apaoitejioe O s c illa to r o f Unusual Frequency S t a b i l i t y P ro s, o f th e X* R* 3* jgj 566 (1946) (7)

G oolidge, W4 D* — D ia le k tr is c h s Uniersuehungen und D le k trisc h e D rahtw ellen Wled# Arm, 6 £ 125 (1899)

( 8 ) De Bruyne, J . M, ki and 3B®rth, 0* p . — Deuteroaramonia J . As, Ohem* S o c, 2 1 13&5 (^955) (9 )

(10)

th e Dipole Moment o f

Debye, P , and Falkonha gen, H, 1 — D isp ersio n der L e itf a h ig k e it und d er D ie le k tr is ita ts k o n s ta n te n S ta rk e r fle fc tro ly te P hyeik. 3« 401 ( 1 9 2 8 ) Drude, P , «*- S ine Bequerae Method® for D em onstration des S le e tris c h e n Brechnngaexpononten von F lu sa ig k e ito n Wied, Ann. 655 (2$9$)

( 1 1 ) Drude, P. — Sine Method® Zur Messung Der O le le c tr ia ita ts k o n s ta n te n und S le e trls c h e n A bsorption K lein er Substanzmengen V e r m itte ls t S le e tr is e h e r D rahtw ellen Wied, Ann* 61 466 (1897)

17

16 (12)

F alek en b erg , 0* A bhangigkeii D ie le k b ri& ita tsk o n a ta n te n daa W asserg, A tfcylalkohols, M ethylalkoholo, und Aoetona von Druck Ann* FJ^rsik* 6 | 145 ( 1 9 2 0 ) 'i

(1 5 )

^alkanhagen, H* fleaty n l.Y te» Oxford U n iv e rsity Frag a London* England (195*) ‘ ;^ F r i t t s , 0 * ■«*** A D eterm ination o f th e D ie le c tr ic C onstants o f Five Qmmm by t h e High Frequency Method Phys* Rev* J 2 5*5 (1924) -

(14)

(15)

G aertn o r, H* **+. D isp ersio n dor he i t f a h l g k e i t Eineger W assriger tm d M iahw assriger E le k tro ly tlo su n g e n Fby*lk* 3* jg 919 (1931)

(15)

G**a»r» CWorge — T echnical Topics Q S T p . 42 (May, 1948)

(17)

H olborn, F* «— Uber Yersuche m lt Kurzen Ungedampften E la k triso h e n Wallen 2* Fhysite* & 528 (1921)

(18)

Hyalop, W* H* and Oar man, A* Pi An tJn&ened Wave Method o f D eterm ining D ie le c tr ic C onstants o f liq u id s Fhy®* Hev* 245 092 0 )

(19)

Jack so n , L* 0* te m p e ra tu re 9 P h il. Mag.

»•

+

*— The D ie le c tr ic C onstants o f Dorn®E ste rs 481

a t low

(1922)

(20)

Jen sen , ?* W, and P a rra c k , A . l»* th e Use o f High Frequency O s c illa to r s in t i t r a t i o n , and A nalysis Anal* Chom 18 595 (19*6)

(21)

King, J* F. and P a tr ic k , W* A* Th® Measurement o f D ie le c tr ic C o n stan ts d* Am* Oheau 3oc* j g I 8 5 5 (1921)

(22)

L a tte y , R* T, «*- th e D ie le c tr ic C onstants o f E le c tr o ly tic S o lu tio n s P hil* Mag* 41 829 (1921)

(25)

Lewis, 3eo* L* and Smyth, 0* P* *•» I n te r n a l R o tatio n and D ipole Moments J* Ohera. Phys. J IO8 5 (1959)

(24)

L lw ellyn, F* B*

';.

*.

•»

-

P o la r ity i n C e rta in Hydrocarbon



E xperim ental! aa j £ 627 (1928)

mr B iep eraio n d er L e itf a h ig k e ii



Uber Qi©l e k t r i z i ta ts k o n -

(30)

W illiam s, W* and Krehma* Xgnae© J* o f Binary M ixtures «J* Am* Ohem* Soc* ■^8 1888 (1926)

**** th© D ie le c tr ic C onstanta

(4 0 )

W illiam s, J , W* and W elaberger* Arnold th© D ie le c tr ic C onstant o f Binary M ixtures* th e S le c ir io Moment o f C e rta in Diphenyl D erive* t iv e a % Am* ChOBW Soo* 31 2 3 3 a (1938)

(41) Wlawail* % H* and Smyth* Q% f%, **■ the Measurement, o f th e D ie le c tr ic C onstants o f Vapors end th e P o la risa tio n © o f T rim ethyl Aluminum* Dimethyl Aluminum C hloride* and Methyl Aluminum B ic h lo rid e J* Cham* Phys, £ ( lp 4 l) (4a)

Saha* 0* f , *—■ Th© S l e c t r i c Moment o f Carbon Dioxide* Ammonia and S u lfu r D ioxide Physw Her* JX 435 (103*)

( 4 5 ) 2ahn, 0.. f* Hydride© Fhys. Rev, (44)

The E le c tr ic Moment o f Caseous M olecules o f Halogen 24

400

(1924)

2ahn, H* «**■ Uber das Leitverm ogen von S tark en S lo k tro ly to n f u r Hocfefre quensstrom e 2 , P h y sik , % TO (1928)

Thomas Shepherd B u rk h a lte r was born i n S ayre, Oklahoma September 2?» 19X5*

He re c e iv e d h ie elem entary and secondary e d u c a tio n in th e p u b lic

sch o o l system a t S ay re, Oklahoma*

He was graduated from th e U n iv e rs ity o f

Oklahoma w ith th© B*A* degree i n 19^7 and w ith th e M.3, degree i n

19*184

While a tte n d in g t h e U n iv e rs ity o f Oklahoma he served a s g rad u ate a s s i s t * a n t f o r one term and a s i n s t r u c to r in ch em istry f o r one summer s e s s io n ; September 27* 19*& he m arried M ildred B4 Westgat® o f Blackwell* i ?

Oklahoma and he i s now th e f a t h e r o f two ch ild re n * Dianne* age seven* and Kay, age ona* He e n ro lle d a t th e L o u isian a S ta te U n iv e rs ity l a th© f a l l o f 19*58, was th e r e c i p i e n t o f th e Standard O il Company fe llo w sh ip in a n a ly tic a l ch em istry , and i s now a c a n d id a te f o r th e degree o f Doctor o f Philosophy i n C hem istry,

21

EXAMINATION AND THESIS REPORT

Candidate:

Thom as S h e p h e r d B u r k h a l t e r

Major Field:

. , C h e m is try

Title of Thesis: THE APPLICATION OF HIGH FREQUENCY OSCILLATION TO CHEMICAL ANALYSIS Approved:

Ia J , Major Pijbfessor and Chairman

ft Deanrof the Graduate School

EXAMINING COMMITTEE:

i/r

Date of Examination: May 1 0 , 1 9 5 0