Supercritical Fluids. Chemical and Engineering Principles and Applications 9780841210103, 9780841211667

Content: Effect of critical phenomena on transport properties in the supercritical region / Es. Gulari, H. Saad, and Y.C

1,019 126 5MB

English Pages 304 Year 1987

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

Supercritical Fluids. Chemical and Engineering Principles and Applications
 9780841210103, 9780841211667

Citation preview

Supercritical Fluids

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

ACS

SYMPOSIUM

SERIES

Supercritical Fluids Chemical and Engineering Principles and Applications Thomas G. Squires EDITOR

Michael E. Paulaitis, EDITOR University of Delaware

Developed from a symposium sponsored by the Division of Fuel Chemistry at the 190th Meeting of the American Chemical Society, Chicago, Illinois, September 8-13, 1985

American Chemical Society, Washington, DC 1987

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

329

Library of Congress Cataloging-in-Publication Data Supercritical fluids. ( A C S symposium series, ISSN 0097-6156; 329) "Developed from a symposium sponsored by the Division of Fuel Chemistry at the 190th Meeting of the American Chemical Society, Chicago, Illinois, September 8-13, 1985." Bibliography: p. Includes index. 1. Separation (Technology)—Congresses. 2. High pressures (Technology)—Congresses. I. Squires, Thomas G . , 1938Michael Ε. III. American Chemica Fuel Chemistry. IV. American Chemical Society. Meeting (190th: 1985: Chicago,Ill.)V.Series. TP156.S45S872 1987 ISBN 0 - 8 4 1 2 - 1 0 1 0 - 1

660.2'842

86-26480

C o p y r i g h t © 1987 American Chemical Society All Rights Reserved. The appearance o f the code at the bottom o f the first page of each chapter in this volume indicates the copyright owner's consent that reprographic copies of the chapter may be made for personal or internal use or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc., 27 Congress Street, Salem, MA 01970, for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright L a w . This consent does not extend to copying or transmission by any means—graphic or electronic—for any other purpose, such as for general distribution, for advertising or promotional purposes, for creating a new collective work, for resale, or for information storage and retrieval systems. The copying fee for each chapter is indicated in the code at the bottom of the first page of the chapter. The citation o f trade names and/or names of manufacturers in this publication is not to be construed as an endorsement or as approval byACSof the commercial products or services referenced herein; nor should the mere reference herein to any drawing, specification, chemical process, or other data be regarded as a license or as a conveyance of any right or permission, to the holder, reader, or any other person or corporation, to manufacture, reproduce, use, or sell any patented invention or copyrighted work that may in any way be related thereto. Registered names, trademarks, etc., used in this publication, even without specific indication thereof, are not to be considered unprotected by law. PRINTED IN T H E U N I T E D S T A T E S O F A M E R I C A

American Chemical Society Library 1155 16th St., N.W. Washington, D.C. 20036

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

ACS Symposium Series M. Joan Comstock, Series Editor Advisory Board Harvey W. Blanch

Donald E. Moreland

University of California—Berkele

Alan Elzerman

W. H. Norton

Clemson University

J. T. Baker Chemical Company

John W. Finley

James C. Randall

Nabisco Brands, Inc.

E x x o n Chemical Company

Marye Anne Fox

W. D. Shults

The University of Texas—Austin

Oak Ridge National Laboratory

Martin L. Gorbaty

Geoffrey K. Smith

E x x o n Research and Engineering C o .

Rohm & Haas C o .

Roland F. Hirsch

Charles S.Tuesday

U.S. Department of Energy

General Motors Research Laboratory

Rudolph J. Marcus

Douglas B. Walters

Consultant, Computers & Chemistry Research

National Institute of Environmental Health

Vincent D. McGinniss

C. Grant Willson

Battelle Columbus Laboratories

I B M Research Department

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Foreword The ACS SYMPOSIUM SERIES was founded in 1974 to provide a

medium for publishing symposia quickly in book form. The format of the Series parallels that of the continuing ADVANCES IN CHEMISTRY SERIE

papers are not typese reproduce y by the authors in camera-ready form. Papers are reviewed under the supervision of the Editors with the assistance of the Series Advisory Board and are selected to maintain the integrity of the symposia; however, verbatim reproductions of previously published papers are not accepted. Both reviews and reports of research are acceptable, because symposia may embrace both types of presentation.

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Preface SCIENTISTS HAVE BEEN AWARE

of the novel properties of supercritical fluids for more than a century Early investigators were fascinated by the "schizophrenic" behavio disconcerting but coincidental that research activities also split into two disparate areas. Fundamental interactions in simple systems were meticulously investigated to correlate and predict phase behavior. At the other extreme, scientists applied supercritical fluids with Edisonian zeal, seeking miraculous solutions to complex problems in extraction and fractionation. The explosion of interest in supercritical fluids during the past decade has seen a bridging of these extremes, a movement toward balance. Investigators have sought to understand and develop applications on the basis of underlying physicochemical principles, and recent reports of semiempirical treatment of supercritical solvent properties have shifted these fluids squarely into the mainstream of chemical research. We have sought to maintain this balance by probing the principles underlying supercritical fluid behavior in the first three sections and examining applications from the perspective of these principles in the last three sections. Within each section, there is also a flow from fundamentals to applications; the initial chapter provides the basis and the focus for ensuing chapters. The first section features new approaches to investigating physicochemical properties. Its final two chapters facilitate the transition to the second section, on chemical reactions, a new topic of fundamental importance. Phase equilibria are described in thefinalsection of principles. Here initial chapters are devoted to modeling, and thefinalchapters report solubility studies. The final three sections are devoted to important applications of supercritical fluids: chromatography, fractionation and separation, and fuel applications. The chapters in each of these sections are also arranged so that there is a transition to more applied topics in the later chapters. The contributions to this volume are representative of the exciting work under way in supercritical fluid research and attest that there is still much to be done. It is clear that there are abundant opportunities for ix In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

enhancing our understanding of supercriticalfluidbehavior and extending the useful application of their properties. THOMAS G . SQUIRES

1

Ames Laboratory Iowa State University Ames, IA 50011 MICHAEL E. PAULAITIS

Department of Chemical Engineering University of Delaware Newark, DE 19716 August 28, 1986

1

Current address: Associated Western Universities, 142 East 200 South, Suite 200, Salt Lake City, UT 84111

X In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Chapter 1

Effect of Critical Phenomena on Transport Properties in the Supercritical Region Es. Gulari, H. Saad, andY.C.Bae Department of Chemical and Metallurgical Engineering, Wayne State University, Detroit,MI48202 The transport properties of supercritical fluid mixtures are strongly affecte f i r s t step in testin range of the existing theories of c r i t i c a l phenomena, we have used photon correlation spectroscopy to measure the decay rate of density fluctuations in dilute supercritical solutions of heptane, benzene, and decane in CO . The results along c r i t i c a l isochores were analyzed in terms of the mode-coupling and the dynamic renormalization-group theories. The values of v, the temperature exponent of the size of the fluctuations, were in very good agreement with its ideal value. The relative magnitudes of the background contributions in different systems indicated the effects of molecular diffusion and solute-solvent interactions. 2

I n t r o d u c t i o n and Background In supercritical extraction, the dissolution step is diffusion-controlled and t h e t r a n s p o r t properties o f the supercritical phase govern the rate o f extraction. Due to difficulties i n measuring time-dependent phenomena at high p r e s s u r e s , t h e r e a r e v e r y few d a t a and t h e r e f o r e t h e r e i s a need f o r e x p e r i m e n t a l i n v e s t i g a t i o n s o f t r a n s p o r t p r o p e r t i e s o f dense s u p e r c r i t i c a l f l u i d s which c a n be c o r r e l a t e d f o r u s e i n p r a c t i c a l a p p l i c a t i o n s (1, 2 ) . The s u p e r c r i t i c a l phase i s a s o l u t i o n o f h i g h l y asymmetric components, e.g., CO and a h y d r o c a r b o n , a t t e m p e r a t u r e s and p r e s s u r e s v e r y c l o s e t o t h e c r i t i c a l p o i n t o f the s o l u t i o n . F o r example, f o r p u r e CO , Τ = 31°C and Ρ = 7.3 MPa, b u t f o r a m i x t u r e o f CO w i t h 2 mol \ benzene, Τ = 3 9 . 3 ° C and Ρ = 8 . 1 MPa, and f o r a m i x t u r e o f C 0 w i t h 2 mol % Secane, Τ = 4 6 . 8 C a n d P = 8.9 MPa. T h e r e f o r e , f r e q u e n t l y a p r o c e s s o p e r a t i n g a t 40 C and a t a c e r t a i n pressure i n order t o a t t a i n a given s o l u b i l i t y i s c l o s e to a c r i t i c a l l i n e o r surface. (

0

2

In domains

Q

c

t h e v i c i n i t y o f a c r i t i c a l p o i n t , even a t e q u i l i b r i u m , o f d i f f e r e n t density o r concentration exist i n a f l u i d .

0097-6156/87/0329-0002$06.00/0 © 1987 American Chemical Society

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

1.

GULARI

ET AL.

Critical Phenomena in the Supercritical Region

These fluctuations, which are r e f e r r e d t o as order-parameter f l u c t u a t i o n s i n s t u d i e s o f c r i t i c a l phenomena ( 3 ) , comprise t h e d r i v i n g f o r c e s f o r t r a n s p o r t i n t h e system. For l i q u i d mixtures near a c r i t i c a l m i x i n g p o i n t , t h e o r d e r parameter i s c o n c e n t r a t i o n , and f o r pure gases n e a r t h e v a p o r - l i q u i d c r i t i c a l p o i n t , t h e o r d e r parameter i s density. F o r gas m i x t u r e s such as supercritical s o l u t i o n s near t h e c r i t i c a l l i n e , t h e o r d e r parameter i s a g a i n density, which is a function of c o m p o s i t i o n and temperature compared t o a pure gas where d e n s i t y i s a function of only temperature a t c o n s t a n t p r e s s u r e . These fluctuations manifest themselves as optical i n h o m o g e n e i t i e s i n t h e f l u i d which can be most e a s i l y d e t e c t e d by light scattering techniques (4). Relatively f a r away from a c r i t i c a l point, Τ - Τ ~ 10 C, t h e c h a r a c t e r i s t i c s i z e s o f domains are ~ 1 nm and t h e y grow t o s 100 nm i n t h e immediate v i c i n i t y o f a c r i t i c a l point, Τ - Τ < 1°C. I f t h e domains a r e comparable t o o r less than the visible wavelengths and the refractive index increment i s a p p r e c i a b l e ideal nonintrusive probes s u p e r c r i t i c a l s o l u t i o n s two t y p e s o f experiments can be performed, namely t h e t i m e - a v e r a g e d i n t e n s i t y measurements t o d e t e r m i n e t h e magnitude o f the order-parameter fluctuations and the Photon C o r r e l a t i o n S p e c t r o s c o p y (PCS) t o measure t h e i r decay r a t e . The order-parameter fluctuations are temperatureand system-dependent and t h e i r decay r a t e i s r e l a t e d t o t h e t r a n s p o r t coefficients (5). U s u a l l y t h e magnitude o f t h e f l u c t u a t i o n s a r e c h a r a c t e r i z e d by a c o r r e l a t i o n length ξ . Along a critical i s o c h o r e o r i s o p l e t h , t h e c o r r e l a t i o n l e n g t h d i v e r g e s as

where ε = (Τ - Τ )/T , ξ i s a system-dependent a m p l i t u d e and V= 0.63 i s a u n i v e r s a l exponent. The decay rate of the order-parameter fluctuations is p r o p o r t i o n a l t o t h e t h e r m a l d i f f u s i v i t y i n c a s e o f pure gases near the v a p o r - l i q u i d c r i t i c a l p o i n t and i s p r o p o r t i o n a l t o t h e b i n a r y d i f f u s i o n c o e f f i c i e n t i n case o f l i q u i d m i x t u r e s near t h e c r i t i c a l m i x i n g p o i n t _(6J_. R e c e n t l y , we r e p o r t e d (7) s i n g l e - e x p o n e n t i a l decay rate of the order-parameter fluctuations in dilute s u g e r c r i t i c a l s o l u t i o n s o f l i q u i d h y d r o c a r b o n s i n C0_ f o r Τ - T^ < 10 C. T h i s i m p l i e d t h a t the time s c a l e s a s s o c i a t e d w i t h t h e r m a l d i f f u s i o n and mass d i f f u s i o n a r e s i m i l a r i n t h e s e systems. The mode-coupling theory £8^ and the dynamic r e n o r m a l i z a t i o n - g r o u p t h e o r y (9) a r e t h e two t h e o r e t i c a l approaches f o r t h e i n t e r p r e t a t i o n o f t h e decay r a t e o f t h e o r d e r - p a r a m e t e r fluctuations. The mode-coupling t h e o r y y i e l d s a r e l a t i o n among the decay rate or the t r a n s p o r t coefficient, the v i s c o s i t y , the c o r r e l a t i o n l e n g t h , and t h e temperature o f t h e system. The dynamic r e n o r m a l i z a t i o n - g r o u p t h e o r y p r e d i c t s how transport coefficients w i l l d i v e r g e o r converge on v a r i o u s paths o f approach t o t h e c r i t i c a l point. 0

The t r a n s p o r t p r o p e r t i e s o f a n e a r - c r i t i c a l system c o n t a i n an enhancement o r a r e d u c t i o n due t o c r i t i c a l f l u c t u a t i o n s i n a d d i t i o n t o t h e c o n t r i b u t i o n s o f m o l e c u l a r t r a n s p o r t p r o c e s s e s which a r e strictly a f u n c t i o n o f t h e thermodynamic s t a t e . T h e r e f o r e , the transport coefficients in the critical region are usually

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

3

4

SUPERCRITICAL

FLUIDS

p a r t i t i o n e d i n t o a c r i t i c a l p a r t and a background which c o r r e s p o n d s t o the v a l u e o f the t r a n s p o r t c o e f f i c i e n t extrapolated from a r e g i o n f a r away from the c r i t i c a l p o i n t ( 1 0 ) . The b i n a r y d i f f u s i o n c o e f f i c i e n t can be e x p r e s s e d as D = L/χ , where L i s mass c o n d u c t i v i t y and χ = ( δ ΰ / δ μ ) ^ , the c h e m i c a l p o t e n t i a l d e r i v a t i v e of concentration. Then L can be w r i t t e n as

= 1

AL

D

=

t/y

(2)

AD

where ÎI, t , and AL, A D denote the background and the c r i t i c a l contributions respectively. The p r e d i c t i o n o f t h e mode-coupling theory for AD is A D = k T / ( 6 i r ηζ B

)Ω(ςξ

)

(3)

where kg i s Boltzmann's c o n s t a n t , η is viscosity, q = 2q sin(9/2), with q and θ b e i n g the wave number o f the i n c i d e n t l i g h t and the s c a t t e r i n g angle. In u n i v e r s a l dynamic s c a l i n The effect of the background contributions are quite s i g n i f i c a n t f o r gases and must be d e t e r m i n e d ( 3 ) . Unfortunately, d i f f u s i v i t y d a t a a t h i g h e r temperatures and s u p e r c r i t i c a l p r e s s u r e s are not available for mixtures of h y d r o c a r b o n s w i t h CO^ and therefore there i s no easy way of estimating the background contribution independently. Using the scaling prediction for ε-dependence o f (δϋ/δμ) , we i n t r o d u c e d the temperature dependence o f the background term i n the f o l l o w i n g form: o

Î)=ï/X

=A/

(4)

V

where A i s a system-dependent a m p l i t u d e which can be t r e a t e d as a c o n s t a n ? over the temperature range o f our measurements. A f t e r s u b s t i t u t i n g the background and the c r i t i c a l terms from e q u a t i o n s 3 and 4 i n t o e q u a t i o n 2, the d i f f u s i o n c o e f f i c i e n t i n the s u p e r c r i t i c a l r e g i o n i s g i v e n by D = A^ ^ 2

kgT/(6ττηξ

)

(5)

The above e q u a t i o n p r o v i d e s a basis for correlating the temperature dependence o f a t r a n s p o r t c o e f f i c i e n t such as mass diffusivity in the supercritical region. The effects of composition, solute, and solvent c h a r a c t e r i s t i c s can also be introduced into the correlations via ξ and A which are system-dependent a m p l i t u d e s . However, a r i g o r o u s %est of the a p p l i c a b i l i t y o f e q u a t i o n 5 r e q u i r e s independent measurements o f the decay r a t e o f t h e o r d e r - p a r a m e t e r f l u c t u a t i o n s , the c o r r e l a t i o n l e n g t h , and the v i s c o s i t y . In t h i s s t u d y , we employed PCS t o measure the decay r a t e o f the o r d e r - p a r a m e t e r f l u c t u a t i o n s i n d i l u t e s u p e r c r i t i c a l s o l u t i o n s o f heptane, benzene, and decane i n CO^. The r e f r a c t i v e index increment w i t h c o n c e n t r a t i o n i s much l a r g e r t h a n the r e f r a c t i v e index increment w i t h temperature i n t h e s e systems. T h e r e f o r e the order-parameter fluctuations detected by light scattering are mainly concentration fluctuations and t h e i r decay rate^ * p r o p o r t i o n a l t o the b i n a r y d i f f u s i o n c o e f f i c i e n t , D = Γ/q . The r

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

s

1.

GULARI

5

Critical Phenomena in the Supercritical Region

ET AL.

r e s u l t s a l o n g c r i t i c a l i s o c h o r e s were a n a l y z e d i n terms o f e q u a t i o n 5. The v a l u e s o f t h e exponent ν and t h e s i g n i f i c a n c e o f t h e background term a r e d i s c u s s e d . Experimental The l i g h t - s c a t t e r i n g s p e c t r o m e t e r was s i m i l a r t o t h e one d e s c r i b e d i n a p r e v i o u s paper ( 1 1 ) . The d e s i g n o f t h e h i g h - p r e s s u r e c e l l a l l o w e d t h e range o f t h e s c a t t e r i n g a n g l e s t o be 6-11 degrees w i t h homodyne d e t e c t i o n . The sample c e l l was machined out o f a s o l i d b r a s s b l o c k , f i t t e d w i t h f l a n g e d 1.25 cm t h i c k q u a r t z windows, and t e s t e d up t o 20 MPa. The o p t i c a l p a t h l e n g t h o f t h e c e l l was 7 cm. The i n s i d e s u r f a c e s o f t h e c e l l were b l a c k e n e d and a r e d g l a s s tube was i n s e r t e d i n t o t h e c e l l t o absorb t h e r e f l e c t e d l i g h t . The c e l l was f i t t e d i n t o a b r a s s j a c k e t . The temperature o f t h e c i r c u l a t i n g water i n t h e j a c k e t was c o n t r o l l e d w i t h i n 0.002 C i n two s t e p s by u s i n g a N e s l a b RTE-8 c i r c u l a t i n g b a t h and T r o n a c PTC40 t e m p e r a t u r e controller i n series. The temperature was measured by a t h e r m i s t o r embedded i n t h e c e l l b l o c k D y n i s c o Model PT520-5M p r e s s u r reproducibility of whic , respectively. The amounts o f t h e h y d r o c a r b o n and CO^ charged i n t o t h e c e l l were d e t e r m i n e d gravimetrically. For a fixed amount o f the h y d r o c a r b o n , t h e CO^ charge was a d j u s t e d c a r e f u l l y so t h a t t h e r e l a t i v e amounts o f t h e l i q u i d and gas phases were e q u a l as t h e system c r o s s e d from t h e two-phase r e g i o n t o t h e dense gas r e g i o n . Then t h e p r o c e s s was r e v e r s e d t o check whether t h e meniscus appeared a t t h e c e n t e r p o s i t i o n o f t h e c e l l . Based on t h e v a l i d i t y o f t h e law o f r e c t i l i n e a r d i a m e t e r , t h i s p r o c e d u r e e n s u r e d such a l o a d i n g t o be v e r y c l o s e t o t h e c r i t i c a l p o i n t o f t h e m i x t u r e . R e s u l t s and D i s c u s s i o n C o r r e l a t i o n f u n c t i o n measurements were made a l o n g f o u r critical isochores for each of the three systems: CO^-n-heptane, C0 -benzene, and CO^-n-decane. The c r i t i c a l d e n s i t i e s and t h e c o r r e s p o n d i n g c o m p o s i t i o n s a r e p l o t t e d i n F i g u r e 1. The t h r e e h y d r o c a r b o n s i n o r d e r o f h i g h e r t o lower s o l u b i l i t y i n CCL were heptane, benzene, and decane. The measured b i n a r y diffusion c o e f f i c i e n t s o r t h e decay r a t e s o f t h e o r d e r - p a r a m e t e r f l u c t u a t i o n s at v a r i o u s temperatures and p r e s s u r e s a r e l i s t e d i n T a b l e s I, I I , and I I I f o r C0 -heptane, C0 -benzene, and C0 -decane systems respectively. In F i g u r e 2, t h e c r i t i c a l l i n e s o f the t h r e e b i n a r y systems i n the dilute hydrocarbon range are shown in the p r e s s u r e - t e m p e r a t u r e space. dP/dT a l o n g t h e c r i t i c a l lines of CO -heptane and CO -benzene systems a r e s i m i l a r and lower t h a n dP/dT a l o n g t h e c r i t i c a l l i n e o f C 0 - d e c a n e system, which i n d i c a t e s that C0 and decane form more asymmetric m i x t u r e s r e l a t i v e t o C 0 w i t h heptane o r benzene. The measured decay r a t e s were a n a l y z e d i n terms o f e q u a t i o n 5, which becomes 2

2

2

2

2

2

2

Γ/q when t h e taken t o

2

= A ^ '

+ ( k

B

T / 6 ^



ν

temperature dependence o f ξ i s substituted i n . be t h e v i s c o s i t y o f pure CO evaluated at the

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

(6) η was system

6

SUPERCRITICAL

FLUIDS

6n

Ο X

ο ci Ε ο

ο

/ Η

/

—• 0.45

s

/

/

^""'"7— 0.47

0.4

Critical Density F i g u r e 1:

P l o t o f the hydrocarbon content of v a r i o u s mixtures versus t h e i r c r i t i c a l d e n s i t i e s . Triangles, circles, and s q u a r e s denote heptane-, benzene-, and decane-CO^ solutions respectively. The s o l i d c i r c l e marks t h e c r i t i c a l d e n s i t y o f pure CO .

10 π

9H

S.

300

~530

320

310

τ (°κ) F i g u r e 2:

The c r i t i c a l l i n e s o f h e p t a n e - C 0 ( t r i a n g l e s ) , benzeneCO ( c i r c l e s ) , and d e c a n e - C 0 ( s q u a r e s ) systems. The s o l i d c i r c l e marks t h e c r i t i c a l t e m p e r a t u r e and p r e s s u r e o f p u r e CO . 2

2

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

1.

GULARI E T AL.

T a b l e I:

Critical Phenomena in the Supercritical Region

1

2 Measured Γ/q a t V a r i o u s Temperatures and P r e s s u r e s : CO -Heptane System

T(°C)

P(MPa)

Γ/q

2

· 10

5

3 94. 4 mol % C 0 , p,= 0.561 g/cm Τ = (53. 31 + 0 . 0 2 ) °c, Ρ = 9. 2411Pa c c 1. 03 + 0.03 9. 29 o

53. 74 54. 12 54. 76 55. 58 56. 69 58. 15 60. 76 63, 39

50. 61 50. 90 51. 57 52. 18 52. 72 53. 65 54. 38 55. 45 56. 52 57. 98 59. 98

1. 30 1. 52 1. 92 2. 49 3. 39 4. 71 5. 96

9. 35 9. 45 9. 57 9. 75 9. 97 10. 41 10. 84

+ ± + + + + +

0.02 0.02 0.02 0.03 0.04 0.04 0.05

P= 0.544 g/cm

95. 8 mol % CO Τ (50. 14 + c

3

1. 28 + 0.02 1. 63 + 0.02 2. 13 + 0.02 2. 40 + 0 . 0 2 3. 02 + 0.02 3.,52 + 0.03 4., 16 + 0.03 4.,83 + 0.05 5.,62 + 0.05 6,,74 + 0.07

9. 07 9. 18 9. 27 9. 37 9. 52 9.,64 9.,83 10.,01 10.,26 10.,61

P = 0.538 96,.9 mol % CO (44..24 + 0.02) °c, Ρ = 8.,46 MPa Τ c c 0.,74 8..50 1..16 8..57 1..48 8..64 2..25 8..79 2..97 8..96 3..61 9..08 4,.41 9,.25 5,.33 9,.49 6,.36 9,.74 7,.51 10..04 c

g/cm

3

Z

44.,49 44.,94 45.,36 46.,37 47. 70 48..47 49..52 50..95 52..48 54..31

39..43 40,.15 41,. 11 42 .26 43 .51 45 . 14 47 .64 49 . 12

+ + + + + + + + + +

0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.06 0.05

3 98 .1 mol % CO 0^= 0.525 g/cm Τ (39 .13 + 0 . 0 1 ) °c, Ρ = 8, .00 MPa c c 1 .13 + 0.02 8 .05 8 .17 8 .32 8 .51 8 .74 9 .00 9 .33 9 .57

1 .83 2 .71 3 .78 4 .81 6 .17 7 .71 8.82

+ + + + + + +

2

(cm /s)

0.02 0.02 0.02 0.03 0.05 0.05 0.05

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

8

SUPERCRITICAL FLUIDS

Table I I :

Measured Γ/q a t V a r i o u s Temperatures and P r e s s u r e s : CO -Benzene System

Τ (°C)

P(MPa) 95. 5 mol % CO , (48.48 + 0 . 0 2 ) °C c 8.86 8. 95 9. 05 9.,16 9. 22 9. 51 9. 82 10. 19 10. 48

Τ 48. 81 49. 37 49. 98 50. 64 51. 15 52. 76 54. 38 56. 57 58. 19

96. 8 mol % C (45.,98 c

Γ/q

2

· 10

5

2

(cm /s) 3

Ρ

ffc= 0.579 g/cm = 8. 78 MPa c 0. 88 + 0.04 1. 32 + 0.03 1. 87 + 0.03 2. 34 + 0.03 2. 84 + 0.03 4. 03 + 0.02 5. 02 + 0.04 6. 69 + 0.03 7. 58 + 0.05

Τ 46. 00 46. 72 48. 56 49. 29 50.03 51. 25 52. 29 53. 36 54.,41 55.,97

8. 62 8. 69 8. 84 8. 95 9.,06 9. 22 9. 35 9.,50 9.,64 9.,85

97. 9 mol % CO., (39,.30 + 0. 02) °C c 8..08 8..10 8..15 8..19 8..23 8..31 8..70 9..08 9..32 9,.56

Τ 39.,40 39. 51 39..79 40..08 40..48 41. 25 44..00 46..96 49..34 51..74

c

1.12 1. 24 2. 39 2. 87 3. 38 4. 30 4. 98 5. 84 6. 61 7. 78

+ + + + + + + + + +

0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.04 0.05 0.05 3

P = 0.546 g/cm = 8.,06 MPa c 0. 99 + 0.03 1. 19 + 0.02 1. 34 + 0.02 1. 65 + 0.03 1. 95 + 0.03 2. 51 + 0.02 5. 40 + 0.02 8. 18 + 0.02 10. 0 + 0.10 12. 3 + 0.10 c

Ρ

Ρ = 0.533 g/cm 98..6 mol % CO , = (36 .31 + 0. 02) °c, Ρ = 7,.78 MPa c c 1. 05 + 0.02 7,.82 1.,72 + 0.02 7,.91 2.,28 + 0.02 8,.00 3.,18 + 0.03 8,.14 4.,20 + 0.02 8 .28 5.,82 + 0.04 8 .55 7. 62 + 0.04 8 .84 10..45 + 0.05 9 .35 3

Τ 36..56 37,.12 37,.63 38,.48 39,.48 41,.14 43,.03 46,.32

Z

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

1. GULARI ET AL.

Critical Phenomena in the Supercritical Region 2

Table

I I I : Measured Γ/q

a t V a r i o u s Temperatures and P r e s s u r e s : CO^-Decane System

Τ (°C)

P(MPa)

Γ/q

2

· 10

5

50.31 50.77 51.02 51.42 52.42 53.56 54.34 55.15 56.60 57.88 59.29 59.88

Τ = mol (50.22 + 0 . 0 3 ) C, Ρ 97.2 % CO., 9.63 9.70 9.75 9.84 10.06 10.26 10.39 10.56 10.86 11.12 11.4 11.5

= 9.61 ρ = MPa 0.607 g/cm 0. 80 ± 0. 06 0. 99 ± 0. 04 1. 15 ± 0. 02 1. 37 ± 0. 02 1. 76 ± 0. 02 2. 14 ± 0. 03 2. 50 ± 0. 02 2. 80 ± 0. 02 3. 32 ± 0. 03 3. 83 ± 0. 04

46.20 46.65 47.59 48.28 49.94 51.42 52.84 55.50

97.9 mol % CO , Τ = (45.95 ± 0 . 0 3 ) °C, Ρ 9.91 9.27 9.37 9.52 9.81 10.10 10.37 10.88

592 g/cm p„ = 8 . f t MPa 0. 86 ± 0.,04 1. 10 ± 0.,01 1. 40 ± 0.,01 1. 62 ± 0.,02 2. 52 ± 0. 02 3. 11 ± 0.,06 3. 78 ± 0.,06 4. 80 ± 0., 10

43.38 44.32 45.30 46.33 48.35 50.06 51.44 52.83

99.0 mol % CO , Τ = (43.05 ± 0 . 0 2 ) °C, Ρ 8.77 8.95 9.09 9.29 9.55 9.86 10.12 10.37

3 P = 0.^564 g/cm = 8.73 MPa 1. 15 ± 0,.02 1. 76 ± 0,.02 2. 30 ± 0,.02 2. 97 ± 0,.02 3. 78 ± 0,.05 4. 86 ± 0,.05 5. 63 ± 0,.06 6. 40 ± 0 .10

35.99 36.35 36.85 37.71 38.75 39.81 40.99 42.31 45.60

99.6 mol % CO , Τ = (35.86 ± 0 . 0 2 ) °C, Ρ 7.84 7.91 8.00 8.14 8.32 8.51 8.71 8.95 9.28

P = 0.537 g/cm = 7.82 MPa 1.01 ± 0.02 1.35 ± 0.02 1.80 ± 0.02 2.61 ± 0.04 3.64 ± 0.03 4.52 ± 0.02 5.66 ± 0.09 6.73 ± 0.12 9.00 + 0.10

C

C

C

C

C

C

C

C

2

(cm /s)

3

3

c

3

c

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

10

SUPERCRITICAL

FLUIDS

density using η = 42.58p+ 661.7p + 82.89p + 152 + 1 2 5 G from r e f e r e n c e £ 3 ) . . I n t h e f i r s t p a r t o f t h e a n a l y s i s , t h e background c o n t r i b u t i o n was n e g l e c t e d and a two-parameter f i t f o r V and was performed. In t h e second p a r t , v was f i x e d a t 0 . 6 7 and t h e background term was i n c l u d e d . A g a i n a two-parameter f i t f o r A and ξ was performed. The r e s u l t s a r e summarized i n T a b l e IV. When t h e background term was n e g l e c t e d , we o b t a i n e d V = 0 . 7 1 + 0 . 0 4 f o r heptane i n CO , V = 0 . 7 6 + 0 . 0 5 f o r benzene i n CO , and v' = 0.66 + 0.05 f o r decane in C0 We have denoted t h e temperature exponent o f t h e c o r r e l a t i o n l e n g t h V i n equation 6 i n s t e a d o f v , and v v a l u e s s h o u l d be compared t o a u n i v e r s a l v a l u e of 0 . 6 7 i n s t e a d o f 0 . 6 3 because i n o u r a n a l y s i s v ' i n c l u d e s t h e ξ-dependence o f t h e v i s c o s i t y . When we used t h e background v i s c o s i t y 9f f o r pure C O ^ , we d i d n o t t a k e i n t o account t h e weak d i v e r g e n c e o f v i s c o s i t y which i s η α ξ , where z i s a u n i v e r s a l exponent. In f a c t , there i s a p o s t u l a t e t h a t the v i s c o s i t y r a t i o η /η e x h i b i t s a power-law b e h a v i o r as 1

f

0

1

1

2

1

f

2

η

=îf (Q ξ )

and Q, which i s a system-dependent amplitude, i s r e l a t e d t o t h e background contribution of the c o n d u c t i v i t y t (12). I f the d i v e r g e n c e o f t^he . v i s c o s i t y ^ i s .taken i n t o account, Δ ϋ s h o u l d go t o z e r o as ξ or ^ . The t h e o r e t i c a l p r e d i c t i o n f o r z i s 0 . 0 5 and t h e e x p e r i m e n t a l l y determined v a l u e f o r CO i s 0 . 0 5 6 + 0.005 ( 1 3 ) . Therefore, ν ' = v ( 1 . 0 6 ) = 0 . 6 7 . S t i l l s l i g h t l y higher ν' v a l u e s c a n be a t t r i b u t e d t o t h e e f f e c t s o f i m p u r i t i e s on t h e c r i t i c a l exponents which were a n a l y z e d on g e n e r a l grounds by F i s h e r ( 1 4 ) . When t h e p e r t u r b e d critical point o f a pure species i s studied at a constant impurity c o n c e n t r a t i o n x, t h e r e n o r m a l i z a t i o n o f t h e c r i t i c a l exponents i s expected. F o r example, ν g o v e r n i n g t h e temperature v a r i a t i o n o f ζ when χ = 0 becomes n o r m a l i z e d t o ν == v / ( l - a ) . a i s t h e temperature exponent o f t h e s p e c i f i c heat and t h e t h e o r e t i c a l and experimental predictions f o r α give ~ 0.1. I f the d i l u t e hydrocarbon c o n t e n t i n o u r systems were t r e a t e d as an i m p u r i t y p e r t u r b i n g t h e c r i t i c a l p o i n t o f pure CO , ν ' would have t o be n o r m a l i z e d t o ν' = v ' / ( l - a ) o r ν' = 0 . b 7 / 0 . 9 = 0 . 7 4 . The new v a l u e o f ν ' s h o u f d become e v i d e n t o n l y f o r Τ - Τ < ΔΤ where t h e c χ c r o s s o v e r temperature Δ Τ becomes s m a l l e r w i t h x'and v a n i s h e s as χ tends t o z e r o . A l t h o u g h îhere i s n ' t an easy way f o r c a l c u l a t i n g Δ Τ , i t i s expected t o v a r y as a h i g h power, such as 1/α ~ 1 0 , o f t h e c o n c e n t r a t i o n x. P r i m a r i l y f o r CO^-benzene systems and a l s o f o r CO -heptane systems we o b s e r v e d ν v a l u e s which were l a r g e r than the i d e a l ν ' value. T h i s was i n q u a l i t a t i v e agreement w i t h the renormalization of the c r i t i c a l exponents a t c o n s t a n t x, p a r t i c u l a r l y i f the hydrocarbon c o n t e n t i n v a r i o u s systems was taken into account. The maximum benzene and heptane content d i s s o l v e d i n CO was 5 mol %, whereas t h e maximum decane c o n t e n t i n CO was 2 . 8 moi %. However, t h e a c c u r a c y o f o u r measurements i s not s u f f i c i e n t and t h e temperature and c o m p o s i t i o n ranges a r e n o t wide enough t o determine t h e changeover from t h e i d e a l power-law b e h a v i o r t o t h e r e n o r m a l i z e d power-law b e h a v i o r q u a n t i t a t i v e l y . The r e l a t i v e magnitudes o f t h e background c o n t r i b u t i o n s f o r the three systems were e v a l u a t e d by f i x i n g ν' 0 . 6 7 and ε

1

a

t

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Critical Phenomena in the Supercritical Region

1. GULARI ET AL.

11

T a b l e IV: V a l u e s o f Parameters O b t a i n e d from T h e o r y o f C r i t i c a l F l u c t u a t i o n s

ξ' System:

Without Background χ 10 cm v ο f

1

ξ'

ο

y f i x e d a t 0.67 χ 10° cm Α χ 10 (cm / s )

CO^-n-Heptane

98.1 m o l % CO 0.68 + 0.06 p = 0.525 g/cm

0.69 _+ 0.02

0.76 + 0.04

0.51 + 0.15

96.9 m o l % CO 0.60 + 0.07 p = 0.538 g/cm

0.76 + 0.03

1.09 + 0.08

1.80 + 0.25

c

c

95.8 m o l % CO 0 . 7 9 + 0.07 p 0.544 g/cm

0.71 + 0.02

1.06 + 0.06

1.09 + 0.20

94.4 mol% CO 0 . 9 8 + 0.17 p = 0.561 g/cm

0.68 + 0.04

1.10 + 0.13

0.48 + 0.20

3

=

c

3

c

System:

CO^-Benzene

98.6 mol% CO 0.53 + 0.04 p = 0.533 g7cm

0.72 + 0.02

0.74 + 0.02

2.07 + 0.14

± 0-07

0.75 + 0.04

0.76 + 0.09

2.23 + 0.54

96.8 m o l % CO 0.42 + 0.11 P = 0.559 g/cm

0.85 + 0.07

1.21 + 0.03

2.95 + 0.07

95.5 m o l % CO 0.58 + 0.05 P = 0.579 g/cm"

0.74 + 0.02

0.92 + 0.01

1.17 + 0.05

99.6 m o l % CO 0.62 + 0.08 Ρ = 0 . 5 3 7 g7cm c

0.69 + 0.03

0.73 + 0.02

0.82 + 0.11

99.0 m o l % CO 0.91 + 0.19 Ρ = 0 . 5 6 4 g7cm c

0.67 + 0.04

0.95 + 0.12

0.23 + 0.55

c

97.9 m o l % CO p = 0.546 g7cm

3

0

·

4

4

c

c

c

System:

CO^-n-Decane

&

& /

97.9 m o l % C 0 1 . 1 6 ± 0.28 ρ = 0.592 g/cm 3

1 o

c

0

97.2 m o l % CO 1.60 + 0.17 Ρ = 0 . 6 0 7 g/cm

0.67 + 0.05

0.59 + 0.02

1.23 + 0.18

0.50 + 0.52

1.02 + 0.02 -0.82 + 0.05

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

12

SUPERCRITICAL FLUIDS

determining the corresponding values o f A and ξ which a r e a l s o listed i n Table IV. The background contribution was more s i g n i f i c a n t f o r benzene i n CO^ than heptane and decane i n CO^. The r e l a t i v e c o n t r i b u t i o n s t o t h e background and t h e c r i t i c a l p a r t o f t h e decay r a t e a r e shown i n F i g u r e s 3 and 4 a^ong two i s o c h o r e s , a benzene-CO isochore with p = 0.546 g/cm and a decane-C0 i s o c h o r e w i t h ρ = 0.592 g/cm r e s p e c t i v e l y , which were a t t h e same o v e r a l l composition. A l o n g any c r i t i c a l i s o c h o r e t h e background c o n t r i b u t i o n i s l a r g e s t f o r d a t a p o i n t s f a r t h e s t away from the c r i t i c a l p o i n t . F o r t h e benzene-CO m i x t u r e shown i n F i g u r e 3, t h e background amounts t o about 25% ot t h e t o t a l decay r a t e a t about 10 C away from t h e c r i t i c a l p o i n t and d i m i n i s h e s as t h e c r i t i c a l p o i n t i s approached. However, f o r t h e decane-CO m i x t u r e shown i n F i g u r e 4, t h e background c o n t r i b u t i o n i s s m a l l e r a t t h e same temperature d i s t a n c e to t h e c r i t i c a l p o i n t and amounts t o about 10% of t h e t o t a l decay r a t e . The d i f f e r e n t background c o n t r i b u t i o n s f o r t h e t h r e e s o l u t e s can be e x p l a i n e d as f o l l o w s : S i n c e benzene i s t h e most compact s o l u t would expect t h e d i f f u s i o f a s t e r , r e s u l t i n g i n t h e h i g h e r v a l u e f o r t h e background term. On t h e same b a s i s , t h e d i f f u s i o n o f heptane s h o u l d be f a s t e r t h a n decane and hence y i e l d a h i g h e r A f o r heptane t h a n decane. In our a n a l y s i s ξο i s a f i 8 t e d parameter. I t i s r e l a t e d to ξ i n ecgiation 1 by = ^ Q · Values of ξ ο range 1.8 χ 10 t o 1.2 χ 10 cm were°obtgined from t h e f i t s and a r e i n f a i r agreement w i t h ξ = 1.5 χ 10 cm r e p o r t e d f o r pure CO^ i n t h e l i t e r a t u r e (3) and i n d i c a t e s t h a t Q i s an a m p l i t u d e o f o r d e r one. In t h e l i m i t e d c o m p o s i t i o n range o f t h i s s t u d y , ζ appeared to i n c r e a s e w i t h the hydrocarbon content i n the mixture. ξ can be i n d e p e n d e n t l y determined from t u r b i d i t y measurements ( 1 5 ^ and t h e s e measurements a r e i n p r o g r e s s and w i l l e n a b l e us t o d e t e r m i n e t h e c o m p o s i t i o n dependence o f ξ and t h e r e l a t i o n between Q and A quantitatively. ° Independent measurements o f t h e v i s c o s i t y , t h e decay r a t e , and t h e c o r r e l a t i o n l e n g t h f o r t h e same f l u i d a r e n e c e s s a r y i n o r d e r t o t e s t t h e t h e o r y o f c r i t i c a l f l u c t u a t i o n s and determine i t s range o f v a l i d i t y i n s u p e r c r i t i c a l f l u i d mixtures. As a f i r s t s t e p , we have measured the decay r a t e o f d i l u t e m i x t u r e s o f t h r e e hydrocarbons with C0 . The results showed t h a t t h e c r i t i c a l fluctuations dominatea t h e o v e r a l l t r a n s p o r t p r o c e s s e s w i t h i n a 10 C d i s t a n c e t o the critical p o i n t of a mixture. The size of the critical f l u c t u a t i o n s d e s c r i b e d by t h e c o r r e l a t i o n l e n g t h ξ decayed w i t h i n c r e a s e d temperature d i s t a n c e from t h e c r i t i c a l p o i n t . The v a l u e s o f t h e temperature exponent V were i n v e r y good agreement w i t h t h e i d e a l v a l u e o f 0.67. I f t h e d i l u t e amounts o f h y d r o c a r b o n were c o n s i d e r e d as i m p u r i t i e s , s l i g h t l y h i g h e r v a l u e s o f V c o u l d be e x p l a i n e d by t h e renormal i z a t i o n o f V due t o i m p u r i t i e s . The results also indicated that the relative magnitudes of the background c o n t r i b u t i o n s c o u l d be used t o c o r r e l a t e t h e e f f e c t s o f m o l e c u l a r d i f f u s i o n and s o l u t e - s o l v e n t i n t e r a c t i o n s . c

2

5

i

n

t

n

e

Q

1

?

1

1

F

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

1. GULARI ET AL.

13

Critical Phenomena in the Supercritical Region

5

; 1er

100.1 (T-T ) c

F i g u r e 3:

(C)

P l o t o f t h e measured decay r a t e s and t h e c a l c u l a t e d c r i t i c a l and background c o n t r i b u t i o n s a l o n g a c r i t i c a l i s o c h o r e o f t h e b e n z e n e - C 0 system a t 97.9 mol % C 0 and p = 0.546 g/cm . 3

2

2

4

ΙΟ" ,

H

10

0.1

F i g u r e 4:

I

1—ι—ι ι Μ ι

1

r

η

1—ι—ι ι ι ι ι

10

P l o t o f t h e measured decay r a t e s and t h e c a l c u l a t e d c r i t i c a l and background c o n t r i b u t i o n s a l o n g a c r i t i c a l i s o c h o r e o f t h e d e c a n e - C 0 system a t 97.9 mol % CO^ and P = 0.592 g/cm . 2

c

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

14

SUPERCRITICAL FLUIDS

Acknowledgments T h i s work was s u p p o r t e d by N a t i o n a l S c i e n c e F o u n d a t i o n Granjt No. CBT-8419755.

Literature Cited 1. Franck, Ε. U . ; Schneider, G. M. Ber. Bunsenges. Phys. Chem. 1984, 88, 784. 2. Paulaitis, M. E.; Krukonis, V. J.; Kurnik, R. T.; Reid, R. C. Rev. in Chem. Engineering 1983, 1, 179. 3. Swinney, H. L . ; Henry, D. L. Phys. Rev. A 1973, 8, 2586. 4. Goldburg, W. I. In "Light Scattering Near Phase Transitions"; Cummins, H. Z.; Levanyuk, A. P., Eds.; North Holland: Amsterdam, 1983; p. 531. 5. Sengers, J . V. Int. J . of Thermophysics 1985, 6, 203. 6. Mountain, R. D.; Deutch, J . M. J . Chem. Phys. 1969, 50, 1103. 7. Saad, H.; Gulari, Es Ber Bunsenges Phys Chem 1984 88 834. 8. Kawasaki, K. In "Phas Domb, C.; Green, M. S., Eds.; Academic Press: New York, 1976; Vol. 5A, p. 165. 9. Hohenberg, P. C.; Halperin, Β. I. Rev. Mod. Phys. 1977, 49, 435. 10. Sengers. J . V. Ber. Bunsenges. Phys. Chem. 1972, 76, 234. 11. Saad, H.; Gulari, Es. J . Phys. Chem. 1984, 88, 136. 12. Ohta, T. J . Phys. C 1977, 10, 791. 13. Bruschi, L . ; Torzo, G. Phys. Lett. 1983, 98A, 257. 14. Fisher, M. E. Phys. Rev. 1968, 176, 257. 15. Kopelman, R. B.; Gammon, R. W.; Moldover, M. R. Phys. Rev. A 1984, 29, 2084. RECEIVED

July 17, 1986

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Chapter 2

Transport and Intermolecular Interactions in Compressed Supercritical Fluids J. Jonas and D. M. Lamb Department of Chemistry, School of Chemical Sciences, University of Illinois, Urbana, IL 61801

General overview of several studies of transport and intermolecular interactions in compressed supercritical fluids is presented The unique aspects of the studies are emphasized studies of self-diffusion in supercritical ethylene and toluene are discussed. These experiments used the fixed field gradient NMR spin-echo technique. Second, the novel NMR technique for the determination of solubility of solids in supercritical fluids is described.

R e s e a r c h on the p r o p e r t i e s o f s u p e r c r i t i c a l f l u i d s and s u p e r c r i t i c a l f l u i d m i x t u r e s h a s become v e r y i m p o r t a n t i n r e c e n t y e a r s due t o t h e g r e a t p r o m i s e o f s u p e r c r i t i c a l f l u i d e x t r a c t i o n techniques. These t e c h n i q u e s and t h e i r a p p l i c a t i o n s have been r e v i e w e d by s e v e r a l a u t h o r s ( 1 - 4 ) . T h e r e a r e many a d v a n t a g e s o f using s u p e r c r i t i c a l f l u i d e x t r a c t i o n over c o n v e n t i o n a l e x t r a c tion techniques. Many l o w v o l a t i l i t y m o l e c u l a r s o l i d s show g r e a t l y enhanced s o l u b i l i t i e s i n s u p e r c r i t i c a l dense f l u i d s . S o l v e n t r e c o v e r y i s e a s i l y a c c o m p l i s h e d by m a n i p u l a t i n g the d e n s i t y , and t h e r e f o r e the s o l v a t i n g power, o f the s u p e r c r i t i c a l f l u i d to p r e c i p i t a t e the s o l i d . In a d d i t i o n , a l t h o u g h the d e n s i t i e s o f the s u p e r c r i t i c a l f l u i d s a r e comparable t o l i q u i d d e n s i t i e s , the v i s c o s i t i e s a r e g e n e r a l l y an o r d e r o f magnitude s m a l l e r , and d i f f u s i v i t i e s an o r d e r o f magnitude l a r g e r than liquids. A more e f f i c i e n t s e p a r a t i o n c a n t h e r e f o r e be a c h i e v e d . U n f o r t u n a t e l y , t h e r e i s a l a c k o f fundamental d a t a on t r a n s p o r t and r e l a x a t i o n i n model f l u i d s a t s u p e r c r i t i c a l c o n d i t i o n s . Not s u r p r i s i n g l y , t h e r e i s a c o r r e s p o n d i n g l a c k o f t h e o r e t i c a l models to e x p l a i n the dynamics o f s u p e r c r i t i c a l f l u i d s on a m o l e c u l a r l e v e l , p a r t i c u l a r l y a t the i n t e r m e d i a t e d e n s i ties.

0097-6156/87/0329-0015$06.00/0 © 1987 American Chemical Society

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

SUPERCRITICAL FLUIDS

16

T h e main p u r p o s e o f o u r w o r k i s t h e i m p r o v e m e n t o f m o l e c u l a r l e v e l u n d e r s t a n d i n g o f s o l u t e - s o l v e n t i n t e r a c t i o n s under supercritical conditions. Unique n u c l e a r magnetic resonance ( 5 ) t e c h n i q u e s a r e employed t o o b t a i n new i n f o r m a t i o n about dynamics of m o l e c u l e s i n s u p e r c r i t i c a l f l u i d s a t h i g h p r e s s u r e s . The m a i n r e s u l t s o f s e v e r a l o f o u r s t u d i e s w i l l b e discussed. F i r s t , t h e r e s u l t s o f NMR s t u d i e s o f s e l f - d i f f u s i o n i n s u p e r c r i t i c a l e t h y l e n e (_6) a n d t o l u e n e (7) w i l l b e d i s c u s s e d . T h e s e e x p e r i m e n t s used the f i x e d f i e l d g r a d i e n t NMR s p i n - e c h o technique. Second, the movel NMR t e c h n i q u e ( 8 ) f o r t h e d e t e r mination of s o l u b i l i t y of s o l i d s i n s u p e r c r i t i c a l f l u i d e s w i l l be described. Experimental The s e l f - d i f f u s i o n c o e f f i c i e n t s i n s u p e r c r i t i c a l e t h y l e n e w e r e m e a s u r e d u s i n g t h e p u l s e d NMR s p e c t r o m e t e r d e s c r i b e d e l s e w h e r e ( 9 , 1 0 ) , automated for by t h e Hahn s p i n e c h o a t t h e p r o t o n r e s o n a n c e f r e q u e n c y o f 60 MHz u s i n g a 1 4 . 2 k G electromagnet. T h e p r e s s u r e was g e n e r a t e d u s i n g t h e g a s c o m p r e s s i o n s y s t e m described previously (12). A H e i s e - B o u r d o n p r e s s u r e gauge was i n s t a l l e d between the c o m p r e s s i o n system and the h i g h p r e s s u r e v e s s e l to supplement the 30,000 p s i pressure t r a n s d u c e r . The o x y g e n s c a v e n g e r s y s t e m was b y p a s s e d a s t h e a m o u n t o f o x y g e n i n t h e e t h y l e n e was b e l o w t h e m i n i m u m d e t e c t i o n l e v e l ( 1 0 ppm) o f the oxygen a n a l y z e r (Beckman I n s t r u m e n t s , I n c . ) . In order to d e p r e s s t h e e x t r e m e l y l o n g T-j v a l u e s o f p u r e e t h y l e n e ( 1 3 ) a t t h e e x p e r i m e n t a l c o n d i t i o n s s t u d i e d , s m a l l q u a n t i t i e s (< 1 0 0 0 ppm) o f o x y g e n w e r e m i x e d w i t h t h e e t h y l e n e b e f o r e measurement o f the d i f f u s i o n c o e f f i c i e n t . The a d d i t i o n o f o x y g e n b r o u g h t t h e T-j v a l u e s down t o 2 - 3 s e c , b u t s h o u l d n o t a f f e c t t h e v a l u e of the d i f f u s i o n c o e f f i c i e n t . The s h o r t e r T v a l u e s a l l o w e d a much s h o r t e r m e a s u r e m e n t t i m e . The s e l f - d i f f u s i o n c o e f f i c i e n t s i n s u p e r c r i t i c a l t o l u e n e - d g were measured a t t h e d e u t e r i u m r e s o n a n c e f r e q u e n c y o f 9.21 MHz, u s i n g a 14.1 kG e l e c t r o m a g n e t w i t h a w i d e gap ( 3 - 8 " ) t o accommodate the h i g h p r e s s u r e v e s s e l . The p u l s e d NMR s p e c t r o m e t e r a n d r e c e i v e r s y s t e m were d e s c r i b e d i n d e t a i l e l s e w h e r e ( 1 0 ) . The a r g o n p r e s s u r i z e d h i g h p r e s s u r e , h i g h t e m p e r a t u r e NMR p r o b e ( 1 4 ) was u s e d p r e v i o u s l y f o r s t u d i e s o f r e l a x a t i o n ( 1 5 ) a n d d i f f u s i o n (16) i n compressed s u p e r c r i t i c a l w a t e r . I t c o n s i s t s o f two h i g h pressure vessels: the p r i m a r y v e s s e l , c o n t a i n i n g an i n t e r n a l f u r n a c e , t w o t h e r m o c o u p l e s a n d t h e RF c o i l a n d s a m p l e , a n d t h e secondary v e s s e l , c o n t a i n i n g the s t a i n l e s s s t e e l sample b e l l o w s . Q u a r t z sample c e l l s were u s e d r a t h e r t h a n c e r a m i c c e l l s , a s c o r r o s i o n i s not a problem. The RF c o i l was c o n s t r u c t e d b y w i n d i n g 14 1 / 2 t u r n s o f 2 2 g a u g e n i c h r o m e ( C h r o m e l A) w i r e . The c o i l was s i l v e r s o l d e r e d t o n i c h r o m e c o n d u c t o r c o a x i a l h i g h pressure leads. The t u n i n g c i r c u i t c o n s i s t e d o f a s i x f o o t impedance t r a n s f o r m i n g c o a x i a l c a b l e t e r m i n a t e d w i t h a t a p p e d - p a r a l l e l c a p a c i t o r box w i t h b o t h f i x e d and v a r i a b l e 1

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Transport and Intermolecular Interactions

JONAS AND LAMB

c a p a c i t o r s t o t a l l i n g 7 0 p F i n s e r i e s a n d 10 p F i n p a r a l l e l . T h e o b s e r v e d s i g n a l peak t o rms n o i s e r a t i o i n l i q u i d t o l u e n e - d g ( 3 0 ° C ) was 60:1 a f t e r one s c a n . The s o l u b i l i t i e s f o r n a p h t h a l e n e i n s u p e r c r i t i c a l c a r b o n d i o x i d e (_8) w e r e m e a s u r e d a t 60 MHz u s i n g t h e NMR s p e c t r o m e t e r d e s c r i b e d e l s e w h e r e ( 1 0 ) . The h i g h p r e s s u r e , h i g h t e m p e r a t u r e NMR p r o b e a n d g a s c o m p r e s s i o n s y s t e m w e r e t h e same a s t h a t u s e d i n t h e s u p e r c r i t i c a l e t h y l e n e e x p e r i m e n t (6). The s o l u b i l i t y s a m p l e c e l l a s s h o w n i n F i g u r e 1 was o f c y l i n d r i c a l d e s i g n w i t h 0 . 2 5 0 i n . i n n e r d i a m e t e r a n d was m a c h i n e d from a h i g h t e m p e r a ­ t u r e p o l y i m i d e p l a s t i c ( V e s p e l , DuPont C o . ) . An e x c e s s o f s o l i d n a p h t h a l e n e was l o a d e d i n t o t h e c e l l b e f o r e a s o l u b i l i t y d e t e r ­ m i n a t i o n a n d t h e c e l l was c l o s e d w i t h a c l o s e - f i t t i n g p i s t o n . P r e s s u r i z e d C 0 e n t e r e d t h e sample r e g i o n t h r o u g h two s m a l l h o l e s (0.016 i n . ) d r i l l e d through the sample c e l l w a l l s . To a s s u r e t h a t e q u i l i b r u m s o l u b i l i t i e s were o b t a i n e d , enough s o l i d n a p h t h a l e n e was i n i t i a l l y p l a c e d i n t h e s a m p l e c e l l s o t h a t a n e x c e s s w o u l d be p r e s e n sary to separate the c o n t r i b u t i o d i s s o l v e d naphthalene and the r e m a i n i n g s o l i d . T h i s s e p a r a t i o n i s e a s i l y a c c o m p l i s h e d due t o the r a d i c a l l y d i f f e r e n t s p i n - s p i n r e l a x a t i o n r a t e s o f d i s s o l v e d a n d s o l i d m a t e r i a l ( T , s o l i d

C\J

ε

ο 'g

super­

1

Γ

0

200

for

-

A •

-

7

100

8

α 50

,

i

g 1 0.2

1

1 0.4

0.6

3

Density (g/cm ) Figure 2.

D e n s i t y and temperature dependence of the experimen t a l s e l f - d i f f u s i o n c o e f f i c i e n t s of compressed s u p e r c r i t i c a l ethylene.

In Supercritical Fluids; Squires, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

20

SUPERCRITICAL FLUIDS

The v a r i a t i o n i n t h e s e l f - d i f f u s i o n c o e f f i c i e n t i s p r i m a r i l y d e t e r m i n e d by the change i n d e n s i t y v a r i e d over a wide r a n g e . T h e r e i s no s i g n i f i c a n t t e m p e r a t u r e dependence w i t h i n t h e e r r o r o f t h e m e a s u r e m e n t s . The d a t a c o v e r a r a n g e o f d e n s i t i e s 0 . 3 4