Restoration of Ecosystems – Bridging Nature and Humans: A Transdisciplinary Approach 3662656574, 9783662656570

In this interdisciplinary specialist book, which bridges the gap between the natural and social sciences, both the scien

676 118 42MB

English Pages 726 [727] Year 2023

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

Restoration of Ecosystems – Bridging Nature and Humans: A Transdisciplinary Approach
 3662656574, 9783662656570

Table of contents :
Preface
Contents
About the Author
I: Fundamentals
1: Introduction to Restoration Ecology
1.1 Ecosystem Restoration and Restoration Ecology From a Historical Perspective
1.2 Ecological Terms and Key Concepts as a Basis for Ecosystem Restoration
1.2.1 Species and Populations
1.2.2 Ecosystems and Landscapes
1.3 Ecosystem Services
1.4 Degradation of Ecosystems
1.5 What Does Ecosystem Restoration Mean? A Definition
1.6 Scales of Restoration
1.7 Ecosystem Restoration in Relation to the Practice of Other Disciplines
2: Which Ecosystem Should Be Restored? Reference Systems for Restoration
2.1 Pristine or Historical Reference
2.2 Reference Ecosystems of the Present-Day Cultural Landscape
2.3 Potential or Hypothetical Reference State
3: Measures in the Practice of Ecosystem Restoration
3.1 Doing Nothing (Passive Restoration)
3.2 Stopping or Pushing Back Natural Succession
3.3 Removal or Reduction of Nutrients from Soil and Water
3.3.1 Terrestrial Sites, Wetlands, and Peatland
3.3.2 Lakes
3.4 Removal of Pollutants by Bioremediation
3.5 Restoration of the Water Balance, Rewetting, and Hydro-morphological Interventions
3.6 Erosion Control and Re-vegetation
3.7 Introduction and Re-introduction of Diaspores and Target Species
3.8 Inoculation with Mycorrhiza Fungi
3.9 Repression of Undesirable Species by Pesticides
3.10 Liming of Acidified Ecosystems
3.11 Fertilisation
3.12 Conclusion
4: Re-introduction of Plant and Animal Species
4.1 Re-introduction of Plant Species
4.2 Re-introduction of Animal Species
4.3 Case Study: Re-introduction of the Brown Bear in Trentino, Northern Italy (EU Project LIFE Ursus)
5: Dealing with Non-native Species in Ecosystem Restoration
5.1 Are Non-native Species Problematic?
5.2 Non-native Species in Ecosystem Restoration
5.3 Recommendations for Dealing with Non-native Species in Ecosystem Restoration
5.4 With Rationality and Objectivity for the Alien
6: Monitoring and Success Control
6.1 Ecological Monitoring: Basics and Recommendations for Practice
6.2 When Is a Restoration Project Successful?
6.3 Ecological and Nature Conservation Parameters for Monitoring and Success Control
6.4 Case Studies and Best Practice
II: Restoration of Specific Ecosystems and Land-Use Types in Central Europe and the Alps
7: Forests
7.1 Forest History in Central Europe Under Human Impact: From Natural Forests to Intensive Timber Production
7.2 Vegetation and Ecology of Central European Forests
7.3 Biodiversity and Ecosystem Services Provided by Forests
7.4 Degradation of Forests and the Need for Restoration
7.5 National and International Frameworks and Restoration Goals
7.6 The Concept of Differentiated Forest Management
7.7 Assessment of Forest Naturalness
7.8 Use of Natural Processes for the Restoration of Forests and Forest Sites
7.8.1 Regeneration of Anthropogenically Degraded Topsoil and Atmogenic Nitrogen Input
7.8.2 Natural Regeneration of Target Tree Species in Coniferous Monocultures
7.8.3 On the Importance of Short-Lived Tree Species for Forest Restoration
7.9 Restoration of Wetland Forests
7.10 Restoration of Forest Landscapes
7.11 Preservation and Revitalisation of Traditional Forest Uses
7.12 Case Study: New Forest and New Forest Landscapes After Open-Cast Lignite Mining in the Rhineland—Recultivation in the Südrevier
8: Peatland
8.1 From Natural to Degraded Peatlands: The History of Peatland Use in Central Europe
8.2 Ecology and Typology of Peatlands
8.3 Ecosystem Services of Peatland
8.4 Assessing the Degradation of Peatland
8.5 Regional, National, and International Peatland Protection Initiatives
8.6 Initiating Peatland Restoration and Restoration Objectives
8.7 Restoration Measures
8.7.1 Rewetting
8.7.2 Shallow Peat Removal (Flachabtorfung)
8.7.3 Introduction of Target Species and Nurse Plants
8.7.4 Dynamics of Phosphorus and Nutrient Removal
8.8 Protection Through Peatland Use: Integrative Peatland Restoration
8.8.1 Reed as Multipurpose Plant Species on Peatlands
8.8.2 Forestry on Fens
8.9 Monitoring and Success Control
8.10 Case Study: The Dosenmoor in Schleswig-Holstein
9: Subalpine and Alpine Grassland
9.1 The Alps as a Living and Economic Space
9.2 Ecological Site Conditions of the High Mountains
9.3 Alpine Convention on the Protection and Sustainable Development of the European Alps
9.4 Challenges of the Restoration of High-Altitude Mountain Sites
9.5 Restoration Objectives for the High Altitudes of the Alps
9.6 Restoration Measures in the Subalpine and Alpine Mountain Sites
9.6.1 Suppressing Forest and Shrub Succession
9.6.2 Re-vegetation of Ski Slopes and Degraded Pastureland
9.6.3 Nutrient Removal on Eutrophicated Sites
9.6.4 Re-introduction of Animal and Plant Species
9.7 Avoiding Interventions in the High Altitudes of the Alps
9.8 Case Study: The Restoration of an Alpine Cultural Landscape Through Pasture Management in Styria
10: Rivers and Floodplains
10.1 Ecology of Rivers and Their Floodplains
10.2 History of Use and Degradation of Rivers and Floodplains
10.3 Ecosystem Services of Rivers and Floodplains
10.4 Ecological Status Assessment of Rivers
10.5 International Initiatives for the Restoration of Rivers
10.6 Measures for River Restoration
10.6.1 Interventions in the River Morphology
10.6.2 Improvement of Physical and Chemical Water Conditions
10.6.3 Re-introduction of Target Species
10.6.4 Removal of Undesired Plant Species
10.7 Success Control
10.8 Case Study: Elbe Floodplain Near Lenzen—Natural Dynamics in a Cultural Landscape Shaped by the River
11: Natural and Anthropogenic Lakes
11.1 Diversity of Lakes in Central Europe
11.2 Ecology of Lakes
11.2.1 Stratification, Zonation, and Sedimentation
11.2.2 Flora and Vegetation of Lakes and Lakeshores
11.3 Anthropogenic Impacts on Lakes
11.3.1 Eutrophication and Pollution
11.3.2 Temperature Increase in Lakes
11.3.3 Obstruction of Lakeshores
11.3.4 Non-native Species in Lakes
11.4 Ecological Status Assessment of Lakes
11.5 Ecosystem Services of Lakes
11.5.1 Habitat for Species and Biocenoses
11.5.2 Fishery
11.5.3 Self-Purification of Water
11.5.4 Carbon Storage in Lakes
11.5.5 Quality of Life and Human Health
11.5.6 Lakes as Archives for Landscape History and Environmental Change
11.6 Restoration Measures in Lakes and on Their Shores
11.6.1 Restoration of the Lakeshore
11.6.2 Interventions in the Lake Sediment
11.6.3 Interventions in the Water Body
11.6.4 Biomanipulation as an Intervention in the Food Web of Lakes
11.6.5 Biological Lake Management with the Zebra Mussel
11.6.6 Harvesting of Submerged and Floating Macrophytes for Nutrient Removal
11.7 Concluding Assessment of Lake Restoration Measures
11.8 Case Study: Lake Tegel in Berlin as an Urban Water Ecosystem
12: Coastal and Inland Salt Grassland
12.1 Coastal Salt Grassland
12.1.1 Ecology and Vegetation of Saline Coastal Habitats
12.1.2 Ecosystem Services of Coastal Salt Grassland
12.1.3 Land-Use History and Environmental Changes of Coastal Salt Grassland
12.1.4 Environmental Policy Framework for the Protection and Restoration of Coastal Habitats in Central and Western Europe
12.1.5 Measures for the Restoration of Salt Grassland
Deconstruction and Opening of Dikes and Its Ecosystem Effects
Grazing as an Anthropo-Zoogenic Restoration Strategy for Salt Grassland
Introduction of Target Species
12.1.6 Case Study: Restoration of Salt Grassland in the National Park Wadden Sea on the North Sea Island of Langeoog
12.2 Inland Saline Habitats
12.2.1 Occurrence, Ecology, and Nature Conservation of Natural Inland Saline Sites in Central Europe
12.2.2 Secondary Inland Saline Habitats
12.2.3 Land-Use History, Degradation, and Threats to Inland Saline Habitats
12.2.4 Restoration Measures on Inland Saline Habitats
12.2.5 Case Study: Inland Saline Habitat Altensalzwedel in Saxony-Anhalt—Initial Success of a Restoration Project
13: Marine Habitats in the North Sea and Baltic Sea
13.1 Marine Ecosystems of the North Sea and the Baltic Sea
13.1.1 North Sea
13.1.2 Baltic Sea
13.2 Anthropogenic Evironmental Impacts on the Marine Ecosystems of the North Sea and the Baltic Sea
13.3 Ecosystem Services and Threatened Marine Habitats
13.4 International Marine Protection Initiatives
13.5 An Overarching Concept for the Restoration of Marine Ecosystem Services
13.6 Measures for the Restoration of Marine Habitats
13.6.1 Interventions in the Biotic Ecosystem Compartments
13.6.2 Interventions in the Abiotic Conditions
14: Lowland and Mountain Heaths
14.1 Vegetation Formation Heath and Its Distribution in Europe
14.2 Origin and Land-Use History of Heathland
14.3 Ecology and Dynamics of Heathland
14.3.1 Climate, Soil, Vegetation, and Fauna
14.3.2 Development Phases of Calluna Heaths
14.4 Reasons for the Restoration of Heathland
14.5 Restoration Measures
14.5.1 Restoration and Management of Dry Sandy Lowland Heaths
14.5.2 Restoration of Wet Lowland Heaths
14.5.3 Restoration of Coastal Heaths
14.6 Particular Challenges for the Restoration and Management of Heaths
14.7 Case Study: Land Use and Nature Conservation Between Past, Present, and Future—Restoration of Mountain Heaths in the Hochsauerland
15: Mesophilic, Wet, and Calcareous Grassland
15.1 Land-Use History of Grassland in Central Europe
15.2 A Short Glimpse into the Ecology of Grassland
15.3 Degradation of Grassland
15.4 Ecosystem Services of Extensively Used, Species-Rich Grassland
15.5 Initiatives and Environmental Programmes for the Restoration of Species-Rich Grassland
15.6 Measures to Restore Grassland Biodiversity and Ecosystem Services
15.6.1 Restoration of Grassland After Other Intermediate Land Uses
15.6.2 Grassland Restoration by Mowing, Grazing, and Shrub Removal
15.6.3 Topsoil Removal and Inversion
15.6.4 Lowering the Nutrient Level After Eutrophication (Aushagerung)
15.6.5 Rewetting for the Restoration of Wet Grassland
15.6.6 Re-introduction of Target Species and Diaspore Transfer
15.6.7 Inoculation with Mycorrhizal Fungi
15.7 Case Study: Grassland Restoration in the Rhön Biosphere Reserve—An Initiative for Cultural Landscape and Regional Rural Development
16: Coastal and Inland Sandy Dry Grassland
16.1 Occurrence and Historical Development of Sandy Sites in Central Europe
16.1.1 Coastal Dunes
16.1.2 Inland Sand Ecosystems
16.2 Ecology and Dynamics of Sandy Dry Grassland
16.3 Protection of Species, Habitats, and the Cultural Landscape and Reasons for Grassland Restoration
16.4 Restoration Strategies and Measures for Open Sand Habitats
16.4.1 Grazing
16.4.2 Topsoil Removal and Inversion
16.4.3 Application of Low-Nutrient Deep Sand
16.4.4 Long-Term Nutrient Removal (Aushagerung)
16.4.5 Manual and Mechanical Diaspore Transfer of Target Species
16.4.6 Allowing for Natural Dynamics
16.5 Case Study: The Former Military Training Area Döberitz—Megaherbivores and Sheep Replace Military Tanks
17: Species-Rich Arable Land
17.1 History: From a Sea of Flowers to a High-Performance Field
17.2 Flora, Fauna, and Vegetation of Arable Land
17.3 Nature Conservation and Restoration Strategies: Species-Rich Protective Fields and Marginal Strips
17.4 Case Study: Extensification for the Restoration of Species-Rich Arable Land in North-Eastern Germany
18: Traditional Agroforestry Systems
18.1 Traditional Orchards (Streuobstwiesen)
18.1.1 Land-Use History and Current Status
18.1.2 Ecosystem Services and Nature Conservation
18.1.3 Conservation and Restoration Initiatives
18.1.4 Case Study: Europe Promotes Bird Conservation in Orchards in Baden-Württemberg
18.2 Larch Meadows and Pastures in the Alps
18.2.1 Occurrence and Land Use
18.2.2 Ecosystem Services: Biodiversity and Carbon Storage
18.2.3 Maintaining an Element of the Traditional Cultural Landscape
18.3 Tree Meadows in Scandinavia and the Baltic Region
19: Urban Ecosystems
19.1 Ecological Characteristics of Urban Ecosystems
19.2 Urban Environment and Human Health
19.3 Motivation and National and International Initiatives for the Restoration of Urban Nature
19.4 Restoration Measures in Urban Environments
19.5 New Approaches to Urban Greening and the Restoration of Urban Nature
19.6 International Perspective on Sustainable Urban Development
19.7 Case Study: Wilderness in the City Centre—The Schöneberger Südgelände in Berlin
20: Mining Sites and Landfills
20.1 Ecological Characteristics of Mining Sites and Post-Mining Areas
20.1.1 Area Size
20.1.2 Geomorphology
20.1.3 Geology and Soils
20.1.4 Water Balance and Water Quality
20.1.5 Flora, Fauna, and Vegetation
20.2 Planning and Legal Framework for the Restoration of Mining Sites
20.3 Passive and Active Ecosystem Restoration on Mining Sites
20.4 Restoration of Mining Heaps
20.5 Restoration of Landfills
20.6 Case Study: Chalk Quarries on the Island of Rügen—Anthropogenic Diversity of Species and Habitats
III: Ecosystem Restoration Serving Nature and Humans: Aspects from the Social Sciences and Humanities
21: Reasons and Motivations for Ecosystem Restoration
21.1 Environmental Facts and Figures
21.2 Degradation and Ecosystem Services: Costs and Benefits
21.3 Legal Obligations and International Conventions and Agreements
21.3.1 National Requirements
21.3.2 International Conventions and Agreements
21.4 Justification and Motivation Derived From Environmental Ethics, Religion, and Emotions
22: Actors and Stakeholders and Their Role in Ecosystem Restoration: Conflict Resolution and Acceptance Through Participation
22.1 Actor and Stakeholder Analysis
22.2 Actors and Stakeholders in Nature Conservation and Ecosystem Restoration
22.3 Lack of Acceptance as a Limiting Factor of Ecosystem Restoration
22.3.1 Re-introduction of Large Carnivores
22.3.2 Rejection of Natural Processes
22.3.3 Promoting Acceptance Through Information
22.4 Science and Practice Pull Together: Transdisciplinary Approaches
23: Restoration Economy: Costs and Benefits
23.1 Methods for the Assessment of Costs and Benefits of Ecosystem Restoration
23.1.1 Market Price and Cost-Based Methods
23.1.2 Methods for the Economic Valuation of Non-market Goods
23.1.3 Habitat and Resource Equivalency Analysis
23.1.4 Benefit Transfer
23.2 Opportunity Costs
23.3 Comprehensive Cost-Benefit Analysis: From Degradation to Restoration
23.4 What Factors Influence Restoration Costs?
23.5 Funding Sources for Ecosystem Restoration
23.6 Costs and Benefits of Ecosystem Restoration with Examples from Europe
23.6.1 Grassland Restoration: Introduction of Target Species
23.6.2 Heathland Restoration and Management in North-West Germany
23.6.3 Grazing for the Restoration and Management of Open-Land Habitats
23.6.4 Ecosystem Restoration for Climate Protection
23.6.5 Wild and Honey Bees as Pollinators in Agriculture
23.7 First Calculate Costs and Benefits, Then Act
24: Norms and Values in Ecosystem Restoration
24.1 Environmental Ethics and Implications for Ecosystem Restoration
24.1.1 Faking Nature? Criticism on Ecosystem Restoration From Environmental Ethics
24.2 Ecosystem Restoration as an Implementation of Strong Sustainability
24.3 Traditional Ecological Knowledge
24.4 Environmental Anthropology
24.5 Ecosystem Restoration as Active Responsibility for Creation
24.6 Restoration Measures Put to the Ethical Test Bench
24.6.1 Application of Pesticides in Ecosystem Restoration
24.6.2 Controlled Burning to Restore and Preserve Open Land
24.6.3 Topsoil Removal
24.7 Non-native Organisms and Xenophobia
IV: Synthesis
25: Conclusions and Outlook
25.1 Limiting Factors for Ecosystem Restoration
25.2 Degradation in the Long Term and Restoration in the Short Term?
25.3 Restoration of Eutrophicated Terrestrial and Aquatic Habitats: A Sisyphean Task?
25.4 Limits to Planability, Uncertainties, and the Unforeseen: Allowing for More Dynamics
25.5 Ecosystem Restoration in the Light of Current Trends
25.6 Ecosystem Restoration at Any Price?
25.7 Scientific Knowledge, Knowledge Transfer, and Socio-Political Decisions
25.8 Final Conclusion
Appendix: List of Species
List of Animal Species Mentioned in the Book
List of Plant Species Mentioned in the Book
List of Fungi, Lichens, Bacteria, Viruses, and Other Species Mentioned in the Book
References

Citation preview

Stefan Zerbe

Restoration of Ecosystems – Bridging Nature and Humans A Transdisciplinary Approach

Restoration of Ecosystems – Bridging Nature and Humans

Stefan Zerbe

Restoration of Ecosystems – Bridging Nature and Humans A Transdisciplinary Approach

Stefan Zerbe Faculty of Science and Technology Free University of Bozen-Bolzano Bozen-Bolzano, Italy

ISBN 978-3-662-65657-0    ISBN 978-3-662-65658-7 (eBook) https://doi.org/10.1007/978-3-662-65658-7 © Springer-Verlag GmbH Germany, part of Springer Nature 2023 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer Spektrum imprint is published by the registered company Springer-Verlag GmbH, DE, part of Springer Nature. The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

V

The more clearly we can focus our attention on the wonders and realities of the universe about us, the less taste we shall have for destruction. (Rachel Carson, April 1952)

VII

Dedicated to my children

Preface In 2022, the “Earth Overshoot Day,” which indicates the date when humanity has exhausted nature’s budget for the whole year, fell on July 28th (Global Footprint Network 2022). Accordingly, this day has moved forward by about three weeks compared to 2020, thus indicating increasing, unsustainable resource consumption. One may argue about this approach, the data basis, and about the determination of an exact day. What is an undisputable scientific fact, however, is the overexploitation of our natural resources and natural capital, respectively, by the world’s human population and the subsequent trade-offs for the earth’s ecosystems, land-use systems, and the socio-economic conditions of the societies. Worldwide, these are, in particular, the loss of biodiversity, climate change, problems of water supply, not only quantitatively but also qualitatively in terms of eutrophication and pollution, the pollution of marine ecosystems, soil erosion, soil salinization with decreasing agricultural productivity, and desertification in arid and semi-arid regions and all this related to the growth of the world’s population, increasing energy demand, and the intensification of land-use and thus continuously increasing resource consumption. The fact that renewable natural resources should only be consumed to an extent that they can regenerate is not new and has already been practiced in some indigenous human populations since millennia to ensure their permanent livelihood (Diamond 2011). However, at the latest with the book The Limits to Growth, the Club of Rome (Meadows et al. 1972) insistently drew attention to the fact that certain natural resources cannot be regenerated and are therefore finite. Already 25 years ago, Daily (1995) pointed out that about 45% of the world’s land surface had a reduced capacity for land-use which means it was more or less anthropogenically degraded. She identified unsustainable land management as one major reason. This continuous degradation of many land-use types has been ecologically and economically quantified during recent decades, as illustrated in this book. The current discussion on the decline of insects (e.g., NEFO 2017; “Insektensterben”), for example, shows that, despite decades of environmental policy, the establishment of legal frameworks and international conventions, and the practice of nature conservation, the desired goals of nature conservation or environmental protection in Central Europe have hardly been achieved. Even if one does not want to follow this agitated terminology such as, “forest dieback” (“Waldsterben” during the 1980s and 1990s) and “insect dieback,” one cannot ignore the facts of the associated environmental problems and the urgent need for solutions. Apart from the local decline of forest stands due to high air pollution during the past decades (e.g., in the high altitudes of the Erzgebirge), the discussion about “forest dieback” has considerably stimulated forest ecosystem research in Central Europe and thus an increase in knowledge about the functions and services of our forest ecosystems. Consequently, also the discussion on “insect dieback” cannot be dismissed as mere emotional “hype.” The study by Hallmann et al. (2017), which found a decline in the biomass of flying insects of around 75% over the past 27 years for various habitat types, is just one of many scientific studies that document qualitatively and quantitatively the continuous and worldwide loss of species and biodiversity, respectively, and thus the loss of important ecosystem services.

IX Preface

Against this background, we must raise the question of how we can use natural resources more sustainably in the future, on the one hand, and how we can restore those resources or natural capital that have already been exploited or declined, on the other. The restoration of ecosystems, based on the scientific discipline of restoration ecology, offers one of the possible answers to this. While the practice of ecosystem restoration is as old as human settlements on earth, restoration ecology has been established as a sub-discipline of ecology since the second half of the twentieth century and, since then, has developed rapidly. Today, ecosystem restoration is based on several decades of scientific research and practical experiences. Consequently, restoration ecology provides a comprehensive and valuable body of knowledge for the practice of sustainable land-use, landscape management, and nature conservation. As this book demonstrates, there is no lack of data and facts on the state of many ecosystems and land-use systems in Central Europe, respectively, nor of concepts and tools for the assessment of this state and deriving recommendations for the practice of ecosystem restoration. Nevertheless, in many cases we are still far from having achieved the desired goals of restoring functioning ecosystems and sustainable land-­ use with the concepts and measures of ecosystem restoration within the set timeframes. When ecosystems are even “restored” by the application of pesticides, burning vegetation, or by completely removing topsoil and vegetation, one might sometimes be willing to protect these ecosystems from those “ecosystem restorationists.” This interdisciplinary textbook will present the scientific basics of restoration ecology in an introductory section. Reasons and motivations for the restoration of ecosystems as well as reference systems will be outlined. The various measures of ecosystem restoration will be presented in the first overview. Then, those measures will be specified in more detail using the examples of the diverse ecosystems and land-use types of Central Europe. The ecosystems and land-use types are briefly introduced regarding their land-use history and ecological site conditions. Their ecosystem services are highlighted, particularly those which have been lost through overexploitation and degradation. Then, the current scientific restoration knowledge and practical experiences regarding the particular ecosystems and land-use systems, respectively, are presented. The brief outline of the land-use history of near-natural ecosystems and land-use systems of the cultural landscape is indispensable for the identification of restoration goals and respective reference systems. This follows the premise that only with the knowledge of the historical, anthropogenic impact the current ecological state can be comprehensively assessed and recommendations for the practice of sustainable land-use can be derived. Although the practice of ecosystem restoration is essentially based on the concepts and knowledge of restoration ecology, it can only be successful if it is integrated into an interdisciplinary and transdisciplinary context, respectively. Accordingly, considerations of environmental economics as well as environmental ethics, sociology, anthropology, and religious aspects must be taken into account. These aspects will be addressed in Part III of this textbook. The penetration of a natural scientist into human science disciplines bears a risk. The expert of the respective human and social science discipline, respectively, may stumble over terms, modes of argumentation, and a lack of thoroughness in his or her respective discipline. Nevertheless, this is precisely what is intended to bridge the natural and the social sciences in order to stimulate further discussions and to intensify the scientific ­discourse between the natural and social sciences. This is particularly needed for the solution of the global environmental problems and the joint development of strate-

X

Preface

gies to adapt to and mitigate global change. By stepping out of his or her own scientific discipline in order to investigate and understand both the ecological and human dimension of environmental problems and to develop possible solutions, the scientist enters the field of a transdisciplinarity (7 Chap. 22). Consequently, this textbook follows a transdisciplinary approach. The geographical focus of this textbook is on Central Europe, including the Alps, essentially with the countries Germany, Austria, Poland, Switzerland, Slovakia, and the Czech Republic. Thus, the most important ecosystems and land-use types are addressed for this geographical area. Forests, rivers including their floodplains, lakes, peatland, and alpine grasslands as natural or near-natural ecosystems are considered as well as the anthropogenic land-use types grassland, heaths, arable land, agroforestry systems, quarries, and settlement areas. Nevertheless, a comprehensive insight into restoration ecology and the practice of ecosystem restoration would fall short if concepts and experiences from other regions of Europe or the world were neglected. For example, a chapter on the restoration of coastal salt grassland would be incomplete without the numerous studies and experiences from Great Britain. The same applies, for example, to the extensive research and practical experiences on the restoration of heathland on the British Islands, in Scandinavia, and the Netherlands. Consequently, by considering scientific literature from whole Europe, an attempt is made to draw a comprehensive, up-to-date picture of restoration ecology and ecosystem restoration, respectively. The numerous literature references may be a hindrance to the flow of reading. However, this is necessary to demonstrate that a huge amount of data and facts relevant to the restoration of ecosystems have already been elaborated by scientific research. In addition, these references should enable the reader to deepen specific issues, also in light of the fact that data and facts can be interpreted in different ways. In the individual chapters, key terms are highlighted in bold. Case studies from the practice of restoration are presented for the respective ecosystem or land-use type. Those case studies not only reflect successful restoration projects but are also intended to highlight problems in practical ecosystem restoration. There should be no doubt that the selection of case studies has a subjective character, but it usually follows the criteria of a comprehensive documentation of the restoration process from planning to implementation and success control, including socio-economic aspects, such as costs and acceptance. Many of the case studies presented here can also be considered examples of best practice. This book was written in substantial parts during a sabbatical generously granted to me by the Free University of Bozen-Bolzano (South Tyrol, Italy). During this year, I was warmly welcomed by various hosts to whom I am grateful, namely (in chronological order) the Peria family on the Italian island of Elba, Prof. Dr. Ana Bozena Sabogal Dunin Borkowski De Alegria at the Pontificia Universidad Católica del Perú in Lima (Peru), David Unger in Cobán (Guatemala), Luz Marina Delgado in San Marcos (Guatemala), Prof. Dr. Victoriano Ramón Vallejo Calzada at the University of Barcelona and at the Center for Mediterranean Environmental Studies in Valencia (Spain), and Prof. Dr. Ingo Kowarik at the Technical University of Berlin. During this time, I was inspired by discussions with numerous people and colleagues, to whom I would also like to express my gratitude. For the review of particular chapters and suggestions for their improvement, I would like to thank (in alphabetical order) Prof. Dr. Christian Ammer (University of Göttingen, Germany) for 7 Chap. 7, Dr. Arthur Brande (TU Berlin, Germany) for 7 Chap. 8, Dr. Ralf Döring (Thünen Institute of Sea Fisheries, Germany) for  





XI Preface

7 Chap. 13, Prof. em. Dr. Ulrich Hampicke (University of Greifswald, Germany) for 7 Chaps. 17 and 23, Dr. Michael Hupfer (Leibniz Institute of Freshwater Ecology and Inland Fisheries in Berlin, Germany) for 7 Chap. 11, Prof. Dr. Jochen Kantelhardt (University of Natural Resources and Life Sciences in Vienna, Austria) for 7 Chap. 23, Prof. Dr. Ingo Kowarik (TU Berlin, Germany) for 7 Chaps. 5 and 19, Prof. Dr. Volker Lüderitz (Magdeburg-Stendal University of Applied Sciences, Germany) for 7 Chap. 10, Prof. Dr. Christoph Leuschner (University of Göttingen, Germany) for 7 Chap. 7, Prof. Dr. Konrad Ott (University of Kiel, Germany) for 7 Chap. 24, Dr. Markus Salomon (German Advisory Council on the Environment, Germany) for 7 Chap. 13, Prof. Dr. Jutta Zeitz (Humboldt University Berlin, Germany) for 7 Chap. 8, and Dr. Wiebke Züghardt (Federal Agency for Nature Conservation in Bonn, Germany) for 7 Chap. 6. For discussions, comments, and suggestions regarding specific topics, I would like to thank (also, in alphabetical order) Dr. Albin Blaschka (HBLFA Raumberg-­ Gumpenstein, Austria), Prof. Dr. Dietmar Brandes (University of Braunschweig, Germany), Prof. Dr. Eckhard Jedicke (Geisenheim University, Germany), Prof. Dr. Vera Luthardt (Eberswalde University for Sustainable Development, Germany), Forest Director Uwe Schölmerich (Regional Forest Department Rhein-Sieg-Erft, Germany), Heike Seehofer (Stuttgart Regional Council, Germany), Prof. Dr. Elisabeth Tauber (Free University of Bozen-Bolzano, Italy), Dr. Werner Westhus (Thuringian Federal State Institute for Environment and Geology, Germany), and Prof. Dr. Dorothy Louise Zinn (Free University of Bozen-Bolzano, Italy). For the interesting guided tour through the case study sites in Germany, I would like to thank Jörg Fürstenow (Heinz Sielmann Foundation) in the Döberitzer Heide, Werner Schubert, and Bettina Gräf (Biological Station Hochsauerland) on mountain heaths in the Sauerland, Jürg Bunje (National Park Wadden Sea, Lower Saxony) and Dr. Holger Freund (University of Oldenburg) on the Island of Langeoog in the North Sea, Gregor Eßer (RWE) on the restoration of post-mining landscapes in North Rhine-Westphalia, and Dr. Hanna Köstler (Büro Dr. Köstler) on the Nature Park Schöneberger Südgelände in Berlin. For the assistance with figures, I thank Dr. Luigimaria Borruso, Dr. Barbara Plagg, and Dr. Andrea Polo. I would like to thank Dr. André Terwei (Federal Institute of Hydrology in Koblenz, Germany) for his professional and sharp eye when proofreading the book manuscript. Last but not least, I would like to thank Springer Publishing and its staff for the professional preparation of this book for printing and the always pleasant cooperation and communication.  





















Stefan Zerbe

Berlin, Germany March 2022

Reference Global Footprint Network (2022) Earth Overshoot Day. Global Footprint Network. Advancing the Science of Sustainability. https://www.footprintnetwork.org/our-work/earth-overshoot-day/ Accessed 13.12.2022

XIII

Contents I Fundamentals 1

Introduction to Restoration Ecology................................................................................ 3

1.1 Ecosystem Restoration and Restoration Ecology From a Historical Perspective........... 8 1.2 Ecological Terms and Key Concepts as a Basis for Ecosystem Restoration....................... 12 1.2.1 Species and Populations...........................................................................................................................12 1.2.2 Ecosystems and Landscapes....................................................................................................................16 1.3 Ecosystem Services.............................................................................................................................. 22 1.4 Degradation of Ecosystems.............................................................................................................. 24 1.5 What Does Ecosystem Restoration Mean? A Definition.......................................................... 24 1.6 Scales of Restoration........................................................................................................................... 28 1.7 Ecosystem Restoration in Relation to the Practice of Other Disciplines........................... 29 2

 hich Ecosystem Should Be Restored? Reference Systems W for Restoration................................................................................................................................. 31

2.1 2.2 2.3

 Pristine or Historical Reference....................................................................................................... 34 Reference Ecosystems of the Present-Day Cultural Landscape............................................ 35 Potential or Hypothetical Reference State.................................................................................. 39

3

Measures in the Practice of Ecosystem Restoration............................................... 43

3.1 Doing Nothing (Passive Restoration)............................................................................................ 45 3.2 Stopping or Pushing Back Natural Succession........................................................................... 45 3.3 Removal or Reduction of Nutrients from Soil and Water....................................................... 47 3.3.1 Terrestrial Sites, Wetlands, and Peatland.............................................................................................48 3.3.2 Lakes.................................................................................................................................................................50 3.4 Removal of Pollutants by Bioremediation................................................................................... 51 3.5 Restoration of the Water Balance, Rewetting, and Hydro-morphological Interventions.........................................................................................................................................   52 3.6 Erosion Control and Re-vegetation................................................................................................ 53 3.7 Introduction and Re-introduction of Diaspores and Target Species.................................. 53 3.8 Inoculation with Mycorrhiza Fungi................................................................................................ 54 3.9 Repression of Undesirable Species by Pesticides...................................................................... 54 3.10 Liming of Acidified Ecosystems....................................................................................................... 54 3.11 Fertilisation............................................................................................................................................ 55 3.12 Conclusion.............................................................................................................................................. 55 4

Re-introduction of Plant and Animal Species............................................................. 59

4.1 4.2 4.3

 Re-introduction of Plant Species.................................................................................................... 60 Re-introduction of Animal Species................................................................................................ 65 Case Study: Re-introduction of the Brown Bear in Trentino, Northern Italy (EU Project LIFE Ursus)...........................................................................................   74

XIV

Contents

5

Dealing with Non-native Species in Ecosystem Restoration............................. 79

5.1 5.2 5.3

 Non-native Species Problematic?........................................................................................... 81 Are Non-native Species in Ecosystem Restoration........................................................................... 83 Recommendations for Dealing with Non-native Species in Ecosystem Restoration.............................................................................................................................................   86 With Rationality and Objectivity for the Alien........................................................................... 86

5.4 6

Monitoring and Success Control.......................................................................................... 89

6.1 6.2 6.3

 Ecological Monitoring: Basics and Recommendations for Practice.................................... 92 When Is a Restoration Project Successful?................................................................................... 95 Ecological and Nature Conservation Parameters for Monitoring and Success Control������������������������������������������������������������������������������������������������������������������   97 Case Studies and Best Practice........................................................................................................ 103

6.4

II

Restoration of Specific Ecosystems and Land-­Use Types in Central Europe and the Alps

7

Forests................................................................................................................................................... 107

 Forest History in Central Europe Under Human Impact: From Natural Forests to Intensive Timber Production........................................................................................ 112 7.2 Vegetation and Ecology of Central European Forests............................................................. 118 7.3 Biodiversity and Ecosystem Services Provided by Forests..................................................... 121 7.4 Degradation of Forests and the Need for Restoration............................................................ 129 7.5 National and International Frameworks and Restoration Goals.......................................... 133 7.6 The Concept of Differentiated Forest Management................................................................ 134 7.7 Assessment of Forest Naturalness.................................................................................................. 135 7.8 Use of Natural Processes for the Restoration of Forests and Forest Sites......................... 136 7.8.1 Regeneration of Anthropogenically Degraded Topsoil and Atmogenic Nitrogen Input...............................................................................................................................................136 7.8.2 Natural Regeneration of Target Tree Species in Coniferous Monocultures.............................137 7.8.3 On the Importance of Short-Lived Tree Species for Forest Restoration...................................138 7.9 Restoration of Wetland Forests....................................................................................................... 142 7.10 Restoration of Forest Landscapes................................................................................................... 144 7.11 Preservation and Revitalisation of Traditional Forest Uses................................................... 144 7.12 Case Study: New Forest and New Forest Landscapes After Open-Cast Lignite Mining in the Rhineland—Recultivation in the Südrevier..................................................... 148 7.1

8

Peatland............................................................................................................................................... 153

8.1

 From Natural to Degraded Peatlands: The History of Peatland Use in Central Europe.......................................................................................................................... 155 Ecology and Typology of Peatlands............................................................................................... 159 Ecosystem Services of Peatland...................................................................................................... 164 Assessing the Degradation of Peatland....................................................................................... 170 Regional, National, and International Peatland Protection Initiatives.............................. 171 Initiating Peatland Restoration and Restoration Objectives................................................. 172 Restoration Measures......................................................................................................................... 172

8.2 8.3 8.4 8.5 8.6 8.7

XV Contents

8.7.1 Rewetting........................................................................................................................................................173 8.7.2 Shallow Peat Removal (Flachabtorfung)..............................................................................................174 8.7.3 Introduction of Target Species and Nurse Plants..............................................................................175 8.7.4 Dynamics of Phosphorus and Nutrient Removal.............................................................................176 8.8 Protection Through Peatland Use: Integrative Peatland Restoration................................ 178 8.8.1 Reed as Multipurpose Plant Species on Peatlands..........................................................................178 8.8.2 Forestry on Fens...........................................................................................................................................179 8.9 Monitoring and Success Control..................................................................................................... 180 8.10 Case Study: The Dosenmoor in Schleswig-Holstein................................................................. 182 9

Subalpine and Alpine Grassland......................................................................................... 185

 The Alps as a Living and Economic Space.................................................................................... 186 Ecological Site Conditions of the High Mountains................................................................... 188 Alpine Convention on the Protection and Sustainable Development of the European Alps��������������������������������������������������������������������������������������  191 9.4 Challenges of the Restoration of High-Altitude Mountain Sites.......................................... 192 9.5 Restoration Objectives for the High Altitudes of the Alps..................................................... 196 9.6 Restoration Measures in the Subalpine and Alpine Mountain Sites.................................. 196 9.6.1 Suppressing Forest and Shrub Succession.........................................................................................196 9.6.2 Re-vegetation of Ski Slopes and Degraded Pastureland...............................................................197 9.6.3 Nutrient Removal on Eutrophicated Sites...........................................................................................202 9.6.4 Re-introduction of Animal and Plant Species....................................................................................204 9.7 Avoiding Interventions in the High Altitudes of the Alps...................................................... 204 9.8 Case Study: The Restoration of an Alpine Cultural Landscape Through Pasture Management in Styria......................................................................................  204 9.1 9.2 9.3

10

Rivers and Floodplains............................................................................................................... 209

10.1 Ecology of Rivers and Their Floodplains....................................................................................... 211 10.2 History of Use and Degradation of Rivers and Floodplains................................................... 214 10.3 Ecosystem Services of Rivers and Floodplains........................................................................... 220 10.4 Ecological Status Assessment of Rivers........................................................................................ 222 10.5 International Initiatives for the Restoration of Rivers............................................................. 224 10.6 Measures for River Restoration....................................................................................................... 225 10.6.1 Interventions in the River Morphology................................................................................................225 10.6.2 Improvement of Physical and Chemical Water Conditions...........................................................228 10.6.3 Re-introduction of Target Species..........................................................................................................228 10.6.4 Removal of Undesired Plant Species.....................................................................................................229 10.7 Success Control..................................................................................................................................... 229 10.8 Case Study: Elbe Floodplain Near Lenzen—Natural Dynamics in a Cultural Landscape Shaped by the River............................................................................. 230 11

Natural and Anthropogenic Lakes...................................................................................... 235

11.1 Diversity of Lakes in Central Europe.............................................................................................. 238 11.2 Ecology of Lakes................................................................................................................................... 240 11.2.1 Stratification, Zonation, and Sedimentation......................................................................................240 11.2.2 Flora and Vegetation of Lakes and Lakeshores.................................................................................243 11.3 Anthropogenic Impacts on Lakes................................................................................................... 244

XVI

Contents

11.3.1 Eutrophication and Pollution...................................................................................................................244 11.3.2 Temperature Increase in Lakes................................................................................................................247 11.3.3 Obstruction of Lakeshores........................................................................................................................248 11.3.4 Non-native Species in Lakes.....................................................................................................................248 11.4 Ecological Status Assessment of Lakes......................................................................................... 250 11.5 Ecosystem Services of Lakes............................................................................................................. 250 11.5.1 Habitat for Species and Biocenoses......................................................................................................250 11.5.2 Fishery..............................................................................................................................................................251 11.5.3 Self-Purification of Water...........................................................................................................................251 11.5.4 Carbon Storage in Lakes............................................................................................................................252 11.5.5 Quality of Life and Human Health..........................................................................................................252 11.5.6 Lakes as Archives for Landscape History and Environmental Change.....................................252 11.6 Restoration Measures in Lakes and on Their Shores................................................................ 253 11.6.1 Restoration of the Lakeshore...................................................................................................................253 11.6.2 Interventions in the Lake Sediment......................................................................................................255 11.6.3 Interventions in the Water Body.............................................................................................................256 11.6.4 Biomanipulation as an Intervention in the Food Web of Lakes...................................................258 11.6.5 Biological Lake Management with the Zebra Mussel.....................................................................260 11.6.6 Harvesting of Submerged and Floating Macrophytes for Nutrient Removal........................261 11.7 Concluding Assessment of Lake Restoration Measures.......................................................... 261 11.8 Case Study: Lake Tegel in Berlin as an Urban Water Ecosystem........................................... 262 12

Coastal and Inland Salt Grassland...................................................................................... 265

12.1 Coastal Salt Grassland........................................................................................................................ 266 12.1.1 Ecology and Vegetation of Saline Coastal Habitats.........................................................................266 12.1.2 Ecosystem Services of Coastal Salt Grassland....................................................................................269 12.1.3 Land-Use History and Environmental Changes of Coastal Salt Grassland..............................272 12.1.4 Environmental Policy Framework for the Protection and Restoration of Coastal Habitats in Central and Western Europe.........................................................................275 12.1.5 Measures for the Restoration of Salt Grassland.................................................................................279 12.1.6 Case Study: Restoration of Salt Grassland in the National Park Wadden Sea on the North Sea Island of Langeoog...............................................................283 12.2 Inland Saline Habitats......................................................................................................................... 287 12.2.1 Occurrence, Ecology, and Nature Conservation of Natural Inland Saline Sites in Central Europe....................................................................................................287 12.2.2 Secondary Inland Saline Habitats..........................................................................................................290 12.2.3 Land-Use History, Degradation, and Threats to Inland Saline Habitats...................................290 12.2.4 Restoration Measures on Inland Saline Habitats..............................................................................292 12.2.5 Case Study: Inland Saline Habitat Altensalzwedel in Saxony-Anhalt—Initial Success of a Restoration Project.............................................................................................................293 13

Marine Habitats in the North Sea and Baltic Sea...................................................... 295

13.1 Marine Ecosystems of the North Sea and the Baltic Sea......................................................... 297 13.1.1 North Sea........................................................................................................................................................297 13.1.2 Baltic Sea.........................................................................................................................................................298 13.2 Anthropogenic Evironmental Impacts on the Marine Ecosystems of the North Sea and the Baltic Sea............................................................................................... 299

XVII Contents

13.3 Ecosystem Services and Threatened Marine Habitats............................................................. 306 13.4 International Marine Protection Initiatives................................................................................. 307 13.5 An Overarching Concept for the Restoration of Marine Ecosystem Services.................. 309 13.6 Measures for the Restoration of Marine Habitats..................................................................... 310 13.6.1 Interventions in the Biotic Ecosystem Compartments...................................................................310 13.6.2 Interventions in the Abiotic Conditions...............................................................................................312 14

Lowland and Mountain Heaths............................................................................................. 315

14.1 Vegetation Formation Heath and Its Distribution in Europe................................................ 316 14.2 Origin and Land-Use History of Heathland................................................................................. 317 14.3 Ecology and Dynamics of Heathland............................................................................................ 320 14.3.1 Climate, Soil, Vegetation, and Fauna.....................................................................................................320 14.3.2 Development Phases of Calluna Heaths..............................................................................................325 14.4 Reasons for the Restoration of Heathland................................................................................... 326 14.5 Restoration Measures......................................................................................................................... 330 14.5.1 Restoration and Management of Dry Sandy Lowland Heaths....................................................330 14.5.2 Restoration of Wet Lowland Heaths......................................................................................................335 14.5.3 Restoration of Coastal Heaths.................................................................................................................335 14.6 Particular Challenges for the Restoration and Management of Heaths............................ 336 14.7 Case Study: Land Use and Nature Conservation Between Past, Present, and Future—Restoration of Mountain Heaths in the Hochsauerland............................... 338 15

Mesophilic, Wet, and Calcareous Grassland................................................................. 343

 Land-Use History of Grassland in Central Europe..................................................................... 345 A Short Glimpse into the Ecology of Grassland......................................................................... 348 Degradation of Grassland................................................................................................................. 354 Ecosystem Services of Extensively Used, Species-Rich Grassland....................................... 357 Initiatives and Environmental Programmes for the Restoration of Species-­Rich Grassland................................................................................................................. 358 15.6 Measures to Restore Grassland Biodiversity and Ecosystem Services............................... 360 15.6.1 Restoration of Grassland After Other Intermediate Land Uses...................................................363 15.6.2 Grassland Restoration by Mowing, Grazing, and Shrub Removal..............................................364 15.6.3 Topsoil Removal and Inversion...............................................................................................................365 15.6.4 Lowering the Nutrient Level After Eutrophication (Aushagerung).............................................366 15.6.5 Rewetting for the Restoration of Wet Grassland...............................................................................367 15.6.6 Re-introduction of Target Species and Diaspore Transfer.............................................................367 15.6.7 Inoculation with Mycorrhizal Fungi.......................................................................................................370 15.7 Case Study: Grassland Restoration in the Rhön Biosphere Reserve—An Initiative for Cultural Landscape and Regional Rural Development....... 372 15.1 15.2 15.3 15.4 15.5

16

Coastal and Inland Sandy Dry Grassland....................................................................... 375

16.1 Occurrence and Historical Development of Sandy Sites in Central Europe..................... 376 16.1.1 Coastal Dunes................................................................................................................................................376 16.1.2 Inland Sand Ecosystems............................................................................................................................377 16.2 Ecology and Dynamics of Sandy Dry Grassland........................................................................ 379 16.3 Protection of Species, Habitats, and the Cultural Landscape and Reasons for Grassland Restoration........................................................................................ 381

XVIII

Contents

16.4 Restoration Strategies and Measures for Open Sand Habitats............................................ 385 16.4.1 Grazing.............................................................................................................................................................386 16.4.2 Topsoil Removal and Inversion...............................................................................................................386 16.4.3 Application of Low-Nutrient Deep Sand.............................................................................................387 16.4.4 Long-Term Nutrient Removal (Aushagerung).....................................................................................387 16.4.5 Manual and Mechanical Diaspore Transfer of Target Species......................................................388 16.4.6 Allowing for Natural Dynamics...............................................................................................................388 16.5 Case Study: The Former Military Training Area Döberitz—Megaherbivores and Sheep Replace Military Tanks.................................................................................................. 389 17

Species-Rich Arable Land......................................................................................................... 393

17.1 17.2 17.3

 History: From a Sea of Flowers to a High-Performance Field................................................ 394 Flora, Fauna, and Vegetation of Arable Land.............................................................................. 397 Nature Conservation and Restoration Strategies: Species-Rich Protective Fields and Marginal Strips............................................................................................ 399 Case Study: Extensification for the Restoration of Species-­Rich Arable Land in North-­Eastern Germany....................................................................................... 404

17.4

18

Traditional Agroforestry Systems....................................................................................... 409

18.1 Traditional Orchards (Streuobstwiesen).......................................................................................... 410 18.1.1 Land-Use History and Current Status....................................................................................................410 18.1.2 Ecosystem Services and Nature Conservation..................................................................................411 18.1.3 Conservation and Restoration Initiatives............................................................................................412 18.1.4 Case Study: Europe Promotes Bird Conservation in Orchards in Baden-Württemberg.......414 18.2 Larch Meadows and Pastures in the Alps..................................................................................... 415 18.2.1 Occurrence and Land Use.........................................................................................................................415 18.2.2 Ecosystem Services: Biodiversity and Carbon Storage...................................................................417 18.2.3 Maintaining an Element of the Traditional Cultural Landscape..................................................417 18.3 Tree Meadows in Scandinavia and the Baltic Region.............................................................. 418 19

Urban Ecosystems.......................................................................................................................... 419

19.1 19.2 19.3

 Ecological Characteristics of Urban Ecosystems........................................................................ 422 Urban Environment and Human Health....................................................................................... 428 Motivation and National and International Initiatives for the Restoration of Urban Nature.................................................................................................................................... 431 Restoration Measures in Urban Environments.......................................................................... 432 New Approaches to Urban Greening and the Restoration of Urban Nature................... 434 International Perspective on Sustainable Urban Development.......................................... 437 Case Study: Wilderness in the City Centre—The Schöneberger Südgelände in Berlin.................................................................................................................................................... 437

19.4 19.5 19.6 19.7

20

Mining Sites and Landfills........................................................................................................ 441

20.1 Ecological Characteristics of Mining Sites and Post-Mining Areas..................................... 444 20.1.1 Area Size..........................................................................................................................................................444 20.1.2 Geomorphology...........................................................................................................................................444 20.1.3 Geology and Soils........................................................................................................................................445 20.1.4 Water Balance and Water Quality...........................................................................................................445

XIX Contents

20.1.5 Flora, Fauna, and Vegetation....................................................................................................................446 20.2 Planning and Legal Framework for the Restoration of Mining Sites.................................. 448 20.3 Passive and Active Ecosystem Restoration on Mining Sites.................................................. 449 20.4 Restoration of Mining Heaps............................................................................................................ 455 20.5 Restoration of Landfills...................................................................................................................... 457 20.6 Case Study: Chalk Quarries on the Island of Rügen—Anthropogenic Diversity of Species and Habitats................................................................................................... 459

III

Ecosystem Restoration Serving Nature and Humans: Aspects from the Social Sciences and Humanities

21

Reasons and Motivations for Ecosystem Restoration............................................ 465

21.1 Environmental Facts and Figures.................................................................................................... 466 21.2 Degradation and Ecosystem Services: Costs and Benefits..................................................... 467 21.3 Legal Obligations and International Conventions and Agreements.................................. 468 21.3.1 National Requirements..............................................................................................................................468 21.3.2 International Conventions and Agreements......................................................................................468 21.4 Justification and Motivation Derived From Environmental Ethics, Religion, and Emotions...................................................................................................................... 471 22

 ctors and Stakeholders and Their Role in Ecosystem Restoration: A Conflict Resolution and Acceptance Through Participation............................. 473

22.1 Actor and Stakeholder Analysis...................................................................................................... 474 22.2 Actors and Stakeholders in Nature Conservation and Ecosystem Restoration.............. 476 22.3 Lack of Acceptance as a Limiting Factor of Ecosystem Restoration.................................... 480 22.3.1 Re-introduction of Large Carnivores.....................................................................................................481 22.3.2 Rejection of Natural Processes................................................................................................................481 22.3.3 Promoting Acceptance Through Information...................................................................................482 22.4 Science and Practice Pull Together: Transdisciplinary Approaches.................................... 483 23

Restoration Economy: Costs and Benefits..................................................................... 487

23.1 Methods for the Assessment of Costs and Benefits of Ecosystem Restoration.............. 489 23.1.1 Market Price and Cost-Based Methods................................................................................................489 23.1.2 Methods for the Economic Valuation of Non-market Goods.......................................................490 23.1.3 Habitat and Resource Equivalency Analysis.......................................................................................490 23.1.4 Benefit Transfer.............................................................................................................................................491 23.2 Opportunity Costs............................................................................................................................... 491 23.3 Comprehensive Cost-Benefit Analysis: From Degradation to Restoration....................... 492 23.4 What Factors Influence Restoration Costs?................................................................................. 492 23.5 Funding Sources for Ecosystem Restoration.............................................................................. 494 23.6 Costs and Benefits of Ecosystem Restoration with Examples from Europe..................... 496 23.6.1 Grassland Restoration: Introduction of Target Species..................................................................496 23.6.2 Heathland Restoration and Management in North-West Germany..........................................498 23.6.3 Grazing for the Restoration and Management of Open-Land Habitats...................................499 23.6.4 Ecosystem Restoration for Climate Protection..................................................................................502 23.6.5 Wild and Honey Bees as Pollinators in Agriculture..........................................................................503 23.7 First Calculate Costs and Benefits, Then Act............................................................................... 504

XX

Contents

24

Norms and Values in Ecosystem Restoration............................................................... 507

24.1 Environmental Ethics and Implications for Ecosystem Restoration................................... 510 24.1.1 Faking Nature? Criticism on Ecosystem Restoration From Environmental Ethics................513 24.2 Ecosystem Restoration as an Implementation of Strong Sustainability........................... 515 24.3 Traditional Ecological Knowledge.................................................................................................. 515 24.4 Environmental Anthropology.......................................................................................................... 516 24.5 Ecosystem Restoration as Active Responsibility for Creation............................................... 518 24.6 Restoration Measures Put to the Ethical Test Bench................................................................ 519 24.6.1 Application of Pesticides in Ecosystem Restoration........................................................................520 24.6.2 Controlled Burning to Restore and Preserve Open Land..............................................................520 24.6.3 Topsoil Removal............................................................................................................................................523 24.7 Non-native Organisms and Xenophobia...................................................................................... 525

IV Synthesis 25

Conclusions and Outlook.......................................................................................................... 529

25.1 25.2 25.3 25.4

 Limiting Factors for Ecosystem Restoration................................................................................ 530 Degradation in the Long Term and Restoration in the Short Term?................................... 532 Restoration of Eutrophicated Terrestrial and Aquatic Habitats: A Sisyphean Task?...... 534 Limits to Planability, Uncertainties, and the Unforeseen: Allowing for More Dynamics............................................................................................................ 536 Ecosystem Restoration in the Light of Current Trends............................................................ 537 Ecosystem Restoration at Any Price?............................................................................................. 538 Scientific Knowledge, Knowledge Transfer, and Socio-Political Decisions...................... 538 Final Conclusion.................................................................................................................................... 539

25.5 25.6 25.7 25.8

Supplementary Information Appendix: List of Species..................................................................................................................... 542 References............................................................................................................................................... 566

XXI

About the Author Stefan Zerbe Professor of Environment and Applied Botany at the Free University of Bozen-Bolzano in South Tyrol (Italy) Stefan Zerbe studied biology at the Universities of Würzburg and Stuttgart-Hohenheim in Germany, specializing in vegetation ecology. He was a research assistant at the University of Würzburg and the Technical University of Berlin, where he received his doctorate in 1992. In 1998, he was awarded his habilitation in botany. He performed research and university teaching at the Institute of Ecology at the TU Berlin until 2005. After a guest professorship in biology and botany at the TU Berlin, he took the Chair of Geobotany and Landscape Ecology at the University of Greifswald in 2005, where he also became the Managing Director of the Institute of Botany and Landscape Ecology. In 2009, he followed a direct call to the Free University of Bozen-Bolzano in South Tyrol as a professor for Environment and Applied Botany. Stefan Zerbe developed and implemented two international Master’s programs, i.e., Landscape Ecology and Nature Conservation (LENC) at the University of Greifswald and Environmental Management of Mountain Areas (EMMA) at the Free University of Bozen-Bolzano. Numerous disciplinary and interdisciplinary research projects and cooperations on the national and international level have resulted in more than 300 scientific publications, book contributions, and monographs. In addition to a wide range of other interests and topics in research and teaching, Stefan Zerbe has been working on restoration ecology and the restoration of ecosystems since his doctoral thesis on the vegetation of Norway spruce monocultures and their conversion to mixed broad-leaved forests by integrating natural ecological processes. This textbook is, therefore, both a synthesis of the current state of knowledge in an inter- and transdisciplinary perspective as well as a reflection of the author’s own research work and experiences regarding sustainable land use, environmental protection, and resource efficiency.

1

Fundamentals Contents Chapter 1

Introduction to Restoration Ecology – 3

Chapter 2

 hich Ecosystem Should Be Restored? W Reference Systems for Restoration – 31

Chapter 3

 easures in the Practice of Ecosystem M Restoration – 43

Chapter 4

 e-introduction of Plant and Animal R Species – 59

Chapter 5

 ealing with Non-native Species in Ecosystem D Restoration – 79

Chapter 6

Monitoring and Success Control – 89

I

3

Introduction to Restoration Ecology Contents 1.1

 cosystem Restoration and Restoration Ecology E From a Historical Perspective – 8

1.2

 cological Terms and Key Concepts as a Basis E for Ecosystem Restoration – 12

1.2.1 1.2.2

S pecies and Populations – 12 Ecosystems and Landscapes – 16

1.3

Ecosystem Services – 22

1.4

Degradation of Ecosystems – 24

1.5

 hat Does Ecosystem Restoration Mean? W A Definition – 24

1.6

Scales of Restoration – 28

1.7

 cosystem Restoration in Relation to  E the Practice of Other Disciplines – 29

© Springer-Verlag GmbH Germany, part of Springer Nature 2023 S. Zerbe, Restoration of Ecosystems – Bridging Nature and Humans, https://doi.org/10.1007/978-3-662-65658-7_1

1

4

1

Chapter 1 · Introduction to Restoration Ecology

Ecosystem restoration has become an increasing challenge worldwide in recent decades to counteract the loss of ecosystem services and to restore natural resources and natural capital at the local, regional, and global level (Aronson et  al. 2007; Jackson and Hobbs 2009; Zerbe et al. 2009). There is

a comprehensive scientific basis and many decades of practice in ecosystem restoration. Restoration ecology, as a sub-discipline of ecology and landscape ecology, respectively, has made a considerable contribution to this (see overview of textbooks in . Table 1.1). However, there is also consenst today that an  

..      Table 1.1  Selection of thematically and geographically comprehensive textbooks on restoration ecology and ecosystem restoration from 1980 to 2022, arranged chronologically by the year of publication Authors

Year

Book title

Bradshaw and Chadwick

1980

The Restoration of Land: The Ecology and Reclamation of Derelict and Degraded Land

Jordan III et al.

1987

Restoration Ecology: A Synthetic Approach to Ecological Research

Berger

1990

Environmental Restoration: Science and Strategies for Restoring the Earth

Baldwin et al.

1994

Beyond Preservation: Restoring and Inventing Landscapes

Harris et al.

1996

Land Restoration and Reclamation, Principles and Practice

Elliot

1997

Faking Nature: Ethics of Environmental Restoration

Rana

1998

Damaged Ecosystems and Restoration

Harker et al.

1999

Landscape Restoration Handbook

Bradshaw

2000

Methods in Ecological Restoration

Gobster and Hull

2000

Restoring nature: Perspectives from the Social Sciences and Humanities

Throop

2000

Environmental Restoration: Ethics, Theory, and Practice

Urbanska et al.

2000

Restoration Ecology and Sustainable Development

Perrow and Davy

2002

Handbook of Ecological Restoration: Restoration in Practice

Mitsch and Jørgensen

2003

Ecological Engineering and Ecosystem Restoration

Higgs

2003

Nature by Design: People, Natural Process, and Ecological Restoration

Wong and Bradshaw

2003

The Restoration and Management of Derelict Land: Modern Approaches

Temperton et al.

2004

Assembly Rules and Restoration Ecology: Bridging the Gap Between Theory and Practice

Egan and Howell

2005

The Historical Ecology Handbook: A Restorationist’s Guide to Reference Ecosystems

Falk et al.

2006

Foundations of Restoration Ecology

Friederici

2006

Nature’s Restoration: People and Places on the Front Lines of Conservation

Aronson et al.

2007

Restoring Natural Capital: Science, Business, and Practice

Boyce et al.

2007

Reclaiming Nature: Environmental Justice and Ecological Restoration

Naveh

2007

Transdisciplinary Challenges in Landscape Ecology and Restoration Ecology – An Anthology

1

5 Introduction to Restoration Ecology

..      Table 1.1 (continued) Authors

Year

Book title

Walker et al.

2007

Linking Restoration and Ecological Succession

Hobbs and Suding

2008

New Models for Ecosystem Dynamics and Restoration

Lennartz

2008

Renaturierung: Programmatik und Effektivitätsmessung

Perrow and Davy

2008

Handbook of Ecological Restoration: Principles of Restoration

Morrison

2009

Restoring Wildlife: Ecological Concepts and Practice of Applications

Pardue and Olvera

2009

Ecological Restoration

Zerbe and Wiegleb

2009

Renaturierung von Ökosystemen in Mitteleuropa

Brown et al.

2010

Sustainable Land Development and Restoration: Decision Consequence Analysis

Comín

2010

Ecological Restoration: A Global Challenge

Tongway and Ludwig

2010

Restoring Disturbed Landscapes: Putting Principles into Practice

Egan et al.

2011

Human Dimensions of Ecological Restoration: Integrating Science, Nature, and Culture

Greipsson

2011

Restoration Ecology

Jordan III and Lubick

2011

Making Nature Whole: A History of Ecological Restoration

Allison

2012

Ecological Restoration and Environmental Change: Renewing Damaged Ecosystems

Andel and Aronson

2012

Restoration Ecology: The New Frontier

Galatowitsch

2012

Ecological Restoration

Howell et al.

2012

Introduction to Restoration Ecology

Prasad

2012

Restoration and Conservation Ecology

Carmen Santa-­Regina and Santa-­Regina

2013

Restoration and Ecosystem Consequences of Changing Biodiversity

Clewell and Aronson

2013

Ecological Restoration: Principles, Values, and Structure of an Emerging Profession

Van Wieren

2013

Restored to Earth: Christianity, Environmental Ethics, and Ecological Restoration

Rieger et al.

2014

Project Planning and Management for Ecological Restoration

Simonis et al.

2014

Re-Naturierung: Gesellschaft im Einklang mit der Natur

Chabay et al.

2015

Land Restoration: Reclaiming Landscapes for a Sustainable Future

Pereira and Navarro

2015

Rewilding European Landscapes

Palmer et al.

2016

Foundations of Restoration Ecology

Squires

2016

Ecological Restoration: Global Challenges, Social Aspects, and Environmental Benefits

Telesetsky et al.

2016

Ecological Restoration in International Environmental Law (continued)

6

..      Table 1.1 (continued) Authors

Year

Book title

Allison and Murphy

2017

Routledge Handbook of Ecological and Environmental Restoration

Zerbe

2019

Renaturierung von Ökosystemen im Spannungsfeld von Mensch und Umwelt

Akhtar-­Khavari and Richardson

2019

Ecological restoration law. Concepts and case studies

Kollmann et al.

2019

Renaturierungsökologie

Holl

2020

Primer of ecological restoration

Zerbe

2022

Restoration of multifunctional cultural landscapes. Merging tradition and innovation for a sustainable future

Practical contribution from ...

Ecology, Soil Science, Chemistry, Hydrology, Biology,

Restoration Ecology Landscape Ecology, Agricultural and Forest Sciences, etc.

Economics, Sociology, Anthropology, Historical Sciences, Ethnology, Psychology, Theology, Health Sciences, etc.

Nature Conservation

Ecosystem Restoration

Natural Sciences

Scientific contributioin from ...

Social Sciences/ Humanities

1

Chapter 1 · Introduction to Restoration Ecology

Landscape Planning Landscape Architecture Biological/Ecological Engineering Environmental Chemistry

..      Fig. 1.1  The practice of ecosystem restoration in an interdisciplinary context, scientifically supported by the natural as well as the social sciences and humanities, respectively, and with practical contribu-

tions from applied research in various disciplines. The illustrated overlap of the natural sciences with the social sciences and humanities is intended to highlight the transdisciplinary character of restoration ecology

ecosystem or land-use type with its specific ecosystem services can only be successfully restored if not only ecological principles and fundamentals are taken into account, but ecosystem restoration is also embedded in a socio-economic context (Cairns and Heckman 1996; Higgs 1997; Gobster and Hull 2000; Throop 2000; van Diggelen et al.

2001; Aronson et al. 2007; Egan et al. 2011; Squires 2016). The practice of ecosystem restoration is thus interacting with numerous other scientific disciplines and their implications for practice (. Fig.  1.1). Restoring functioning ecosystems with their services on a former industrial site in an urban area, for example, especially if elaborate measures  

1

7 Introduction to Restoration Ecology

are applied, needs a cost calculation as well as the integration of stakeholders and decision-­ makers. Restoration ecology becomes transdisciplinary when it applies concepts and methodologies of the social sciences and humanities, respectively, or “goes beyond traditional system boundaries” (Rentz 2004, p.  150) to solve complex environmental problems (see Mittelstrass 2011; Bernstein 2015; on Mode 1 of transdisciplinarity, see Scholz 2011; Scholz and Steiner 2015a; 7 Sect. 22.4). One of the main drivers or justifications for ecosystem restoration is considered to be the loss and restoration of biodiversity at the species (including genetic diversity), ecosystem, and landscape level. This is highlighted repeatedly in review studies, for example for heathlands (. Fig.  1.2) and peatlands  



(Bonnett et al. 2009). There is no doubt that biodiversity loss is a global environmental problem that has been pointed out by science and the practice of nature conservation for decades (e.g., Ehrlich 1994; Tilman et  al. 1994; Pimm et  al. 1995; Sala et  al. 2000; Barthlott et  al. 2008/2009; Cardinale et  al. 2012; Hooper et al. 2012) and has been translated into environmental policies and actions in many countries around the world, at least since the United Nations Conference on Environment and Development in Rio de Janeiro in 1992. Nevertheless, the focus of ecosystem restoration on the conservation and restoration of biodiversity falls short if the entire ecosystem services (7 Sect. 1.3) are not comprehensively integrated into a qualitative and quantitative assessment against the background of sustainability (7 Chap. 24).  



60 Biodiversity Nature conservation

Number of publicaitons

50

Restoration

40

30

20

10

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

1999

1998

1997

1996

1995

1994

1993

1992

1991

1990

1990

0

Year ..      Fig. 1.2  Scientific publications on heathlands with a focus on biodiversity, conservation, and restoration in the period 1900–2011. (After Fagúndez 2013)

8

1

Chapter 1 · Introduction to Restoration Ecology

First, this chapter presents important fundamentals of restoration ecology that are indispensable as a scientific basis for the following chapters. A brief historical overview of ecosystem restoration and restoration ecology is given. Basic ecological terms and key concepts are explained, which provide the scientific basis for the practice of ecosystem restoration. In particular, the concept of ecosystem services is addressed and the term degradation is discussed. An up-to-date definition of ecosystem restoration is derived from the current state of knowledge. Finally, this chapter outlines the different scales of ecosystem and landscape restoration. Part I of this book focuses on aspects of the natural sciences, and Part II bridges the gap to the social sciences and humanities, respectively, and their implications for ecosystem restoration. 1.1

Ecosystem Restoration and Restoration Ecology From a Historical Perspective

The “restoration” of ecosystems is as old and common as man started to create settlements and perform agriculture, i.e., in principle it goes back to the Neolithic Period, for nothing other than a type of restoration is fallow on cultivated agricultural land, where abiotic resources regenerate. As the brief outline of the history of agriculture in 7 Chap. 17 shows, fallow in the traditional three-field agricultural system only came to an end when mineral fertilizer was introduced, thus allowing for an increase in agricultural yields through a permanent nutrient supply. One of the largest and most comprehensive restoration projects in Central Europe was the afforestation of the open cultural landscape with coniferous trees about 200  years ago, after a period of over-­ exploitation of the timber resources. Grazing, forest clearance, litter gathering, and other

uses that depleted the natural abiotic and biotic resources had led to a large-scale loss of forests and thus of timber as a natural resource. Woodland had been largely vanished in many regions, and heathland and poor grassland covered large parts of Central Europe. The afforestation, especially with Scots pine in the lowlands and Norway spruce in the mountain ranges, particularly since the end of the eighteenth century, also marked the beginning of regulated forestry (7 Chap. 7) and the concept of sustainability (7 Chap. 24). Still without the theoretical foundations of modern restoration ecology, overused and degraded sites had already been restored since the beginning of the last century. For example, the neo-baroque Körnerpark in Neukölln (Berlin) was created between 1912 and 1916 as a recultivation measure on the site of a former gravel pit. The high significance of this park today in terms of ecosystem services in one of the most densely populated districts of Berlin (Statistical Report 2016 for Neukölln: 14,295 inhabitants per km2) is easily revealed to the visitor by the number of people there on a summer day (. Fig. 1.3). Experiences in ecosystem restoration through several decades are available, particularly for rivers, peatlands, lakes, and the large-scale open-cast lignite mining landscapes. Restoration ecology has developed  







..      Fig. 1.3  The Körnerpark in Berlin-Neukölln, created in the early twentieth century as the recultivation of a former gravel pit. (S. Zerbe, August 2017)

1

9 1.1 · Ecosystem Restoration and Restoration Ecology From a Historical…

conceptually and methodologically from all these different experiences in the various ecosystems and land-use types, respectively. The restoration of the characteristic prairies in North America since the 1930s are regarded as internationally trend-setting for the development of restoration ecology. In this context, the restoration of the Curtis Prairie of the University of Wisconsin-­ Madison Arboretum is considered as one of the first initiatives (Sperry 1983; Cottam 1987; Wegener et  al. 2008), even though this was not a scientifically documented experiment of restoration ecology (Anderson 2009) and has more the character of a founding myth of restoration ecology (Jordan III and Lubick 2011, p. 75). Looking at Central Europe, the first targeted attempts to restore ecosystems on a scientific basis also start during this period. If we disregard the first initiatives before 1920, more extensive recultivation measures with afforestation began in the lignite mining area of North Rhine-Westphalia between 1920 and 1945 (Schölmerich 2013). Today, these ­afforestations, some of which are very close to nature and represent interesting experimental areas of forest restoration, are already more than 80  years old (7 Chap. 7). Also, there are ecological studies on mining spoil heaps. In the 1960s, for example, Bornkamm (1985) established permanent plots for the investigation of vegetation development and natural re-colonization processes on the dumping sites of opencast lignite mining. Conceptually already well rooted in the natural sciences (e.g., biology, ecology, hydrology), lake restoration projects have been carried out e.g., in Sweden (Björk 2014) since the 1960s. The restoration of peatlands and rivers with their floodplains also has a long history of practical experience (e.g., Brülisauer and Klötzli 1998; Succow and Joosten 2001; Jürging 2006). Since the 1990s, the forestry sector in many German states has been promoting forest conversion and thus the restoration of near-natural forests with silvicultural programmes based on  

nature conservation and ecological principles. Apart from these near-natural ecosystems, the focus today is on the one hand on traditional land-use systems of the cultural landscape, such as meadows, pastures, dry grasslands, and heaths, and on the other hand on highly disturbed landscapes such as mining sites (e.g., brown coal), military training areas, and urban-industrial sites. In addition to a large number of local and small-scale restoration projects, which are unfortunately often insufficiently documented scientifically, large-scale restoration projects, in particular, have provided an impetus for the development of restoration ecology. For example, many of the large-­scale nature conservation projects funded by the German government, with a total area of all projects funded to date of approximately 3700 km2 (. Fig. 1.4), encompass habitat restoration (Doerpinghaus and Bruker 2016). Similar to what Jordan III and Lubick (2011) have published with a focus on North America, it would certainly also be worthwhile to comprehensively review the history of restoration ecology and ecosystem restoration in Central Europe, also integrating the interactions of the natural and human sciences as well as the interdisciplinary impulses that result from this interaction of the various scientific disciplines. For the development of restoration ecology as a sub-discipline of ecology, the foundation of the Society for Ecological Restoration (SER) in 1987 must be considered an international milestone. The society comprises representatives from science and practice and offers a platform for the exchange of information with regular international conferences. In addition, SER publishes a Newsletter that provides information on current activities in research, teaching, and restoration practice 7 (7 www.­ser.­org). In comparison to these international activities, a working group on restoration ecology was founded 10 years later in 1997 within the Society for Ecology (Gesellschaft für Ökologie), which formed the joint Working  





10

Chapter 1 · Introduction to Restoration Ecology

1

..      Fig. 1.4  Completed and ongoing large-scale nature conservation projects in Germany (state: 1st July, 2016); many of these projects aim at habitat restoration. (From Doerpinghaus and Bruker 2016)

Group on Nature Conservation and Restoration Ecology in 2016. In addition to the scientific journal Restoration Ecology, which is published by SER, other international scientific journals also focus on restoration ecology and ecosystem restoration, such as Environmental

Management, Ecological Restoration, Ecological Engineering, Land Degradation and Development, Landscape and Ecological Engineering, Restoration & Management Notes, and Ecological Management & Restoration. Many English- and Germanlanguage journals for science and practice,

1

11 1.1 · Ecosystem Restoration and Restoration Ecology From a Historical…

including those in the disciplines of ecology, animal ecology, vegetation ecology, landscape ecology, ecological engineering, agriculture and forestry, and environmental sciences, increasingly report on ecosystem restoration projects and experimental restoration studies sensu latu (see Ormerod 2003; Fagúndez 2013). Since the 1980s, comprehensive textbooks with different thematic and geographical focuses have been published continuously (. Table 1.1). Information on practical restoration projects is also provided by the financial sponsors of the projects (7 Chap. 23), such as the European Union, nature conservation associations, foundations (e.g., Deutsche Bundesstiftung Umwelt, Michael Otto Environmental Foundation, Michael Succow Foundation, German Wildlife Foundation, the foundations within the German Stifterverband) or the national offices for nature conservation and environmental protection. In addition, references to restoration projects can be found in the municipalities or on their websites. A problem for restoration  



ecology, especially with regard to the critical analysis of the manifold practical experiences and their evaluation for future restoration projects, is that information is often difficult to find in the grey literature. In contrast to restoration projects that are successful, at least in the short term, there is often insufficient or no reporting at all on the failures, which makes it difficult to learn from them and to consistently further develop and adapt the approaches, methods, and measures of ecosystem restoration. Courses or modules on restoration ecology or ecosystem restoration are meanwhile offered at Bachelor’s or Master’s level at many universities in Europe as part of the degree courses in biology, ecology, landscape ecology, environmental and resource management, environmental and ecological engineering, agricultural and forest sciences, landscape planning, etc. Study programs that focus exclusively on ecosystem restoration, possibly with a special focus (e.g., on wetlands), have been comparatively rare in Europe to date (. Table  1.2). In contrast,  

..      Table 1.2  Examples of study programmes (Master’s programme (MSc) or further education) with a focus on ecosystem restoration and restoration ecology in Europe (state: 2019) Study program

University

Country

Type of Higher Education

Biology – Biodiversity: Conservation and Restoration

Antwerp

BEL

MSc

Ecology, Environmental Management, and Restoration

Barcelona

E

MSc

Environmental Diagnosis and Management

London (Royal Holloway)

UK

MSc

Environmental Protection: Restoration and Management of Environment

Warsaw

PL

MSc

Land Reclamation and Restoration

Cranfield

UK

MSc

Landscape Restoration for Sustainable Development: a Business Approach

Rotterdam (School of Management)

NL

Further education

Wetland science and Conservation

Bangor

UK

MSc

BEL Belgium, E Spain, NL Netherlands, PL Poland, UK United Kingdom

12

1

Chapter 1 · Introduction to Restoration Ecology

ecosystem restoration and restoration ecology can be studied at universities outside Europe e.g., at the Simon Fraser University in Burnaby in Canada as well as at the Defiance College and Paul Smith’s College, the Montana State University, the State University of New York, the University of Texas, and the University of Florida in the United States of America (SER 2017). 1.2

Ecological Terms and Key Concepts as a Basis for Ecosystem Restoration

Restoration ecology, as a sub-discipline of ecology is based on its scientific terminology and key concepts. Many of these key concepts are applied in practical ecosystem restoration (. Table  1.4). In many cases, ecological hypotheses are verified or falsified in a trial-and-error process in the context of restoration projects. Bradshaw (1987, p. 23) has aptly expressed this in the words “ecosystem restoration is an acid test for ecology”. Even if, in the case of the need for immediate action (e.g., against the invasion of undesirable species) or novel habitat conditions (e.g., on abandoned industrial sites) and thus a lack of thorough scientific research, ecosystem restoration is more of an “art” than science according to van Diggelen et  al. (2001, p.  115), restoration ecology, nevertheless, has achieved a comprehensive knowledge level in recent decades that can be profitably incorporated into restoration practice. In the following chapters, some important ecological terms and key concepts are briefly outlined. Thereby, it is distinguishing between the population and species level and the ecosystem and landscape level, although this is not always consistently possible. For further study, please refer to the numerous ecological textbooks available (e.g., Chapman and Reiss 1999; Odum and Barrett 2004; Begon et  al. 2005; Schulze et  al. 2005; Smith and Smith 2009; Loreau  

2010; Chapin III et al. 2011; Nentwig et al. 2012; Frey and Lösch 2014; Leuschner and Ellenberg 2017a, b) and the relevant chapters of this book, where specific reference to ecosystem restoration is made (Part II). 1.2.1

Species and Populations

z Species Pool

The number of species in a given spatial landscape section (e.g., a forest ecosystem) is determined by the available species at the next higher spatial level (e.g., forest landscape, biogeographic region) (Zobel 1997; Zobel et al. 1998; Herben 2000; Lepš 2001; . Fig. 1.5). The species pool of a geographical area is not static, but dynamic. Today, this dynamic is mainly influenced by humans, i.e., species can disappear from the species pool due to the influence of land use and habitat changes (for the global situation, see IUCN 2016), or the anthropogenic introduction of non-native (non-indigenous, alien, exotic) species (neobiota; Kowarik 2010) increases the species pool, such as in cities (7 Chaps. 5 and 19). The re-introduction of species can change both the local (e.g., re-introduction of grassland species to a meadow) and the regional species pool (e.g., re-introduction of megaherbivores or large predators) (7 Chap. 4).  





z Metapopulation

According to the metapopulation model, populations of a species are spatially separated as sub-populations within their range (Hanski and Gaggiotti 2004). In this system of populations, the extinction of a local sub-­ population and its re-establishment through immigration results in a constant change in the spatial distribution of a species within the potential settlement area (Nentwig et al. 2012). The exchange of individuals (gene flow) in this system of populations also helps to ensure that sub-populations do not become genetically impoverished. Different models assume sub-populations of different

13 1.2 · Ecological Terms and Key Concepts as a Basis for Ecosystem Restoration

Global species pool

Speciation Large-scale migration

Regional species pool

Small-scale migration

Local species pool Dispersal

Biocenoses depending on the abiotic and biotic site factors

1

Re-introduction of species

(Re-)Introduction of target species

..      Fig. 1.5  The species pool at different spatial scales and a possible influence of species re-introduction. (After Zobel 1997, adapted)

sizes e.g., the model of island biogeography assumes one large as well as various small sub-populations (MacArthur and Wilson 1967) or that of various sub-populations of similar size (Levins 1969). Knowledge of a species’ population biology and ecology, as well as population dynamics, dispersal vectors, and habitat requirements, is essential for understanding these metapopulations on the one hand, and for deriving species and habitat conservation strategies and measures, on the other. Ecosystem restoration often aims to stabilize sub-populations, especially in a landscape that is highly fragmented due to intensive land use, with its (often isolated) remnants of biotopes valuable for nature conservation. Accordingly, appropriate abiotic site conditions are restored, or the local-regional species pool is replenished by reintroducing individuals (Biere et  al. 2012; Van Wieren 2012). An appropriate management e.g., in the context of a functional habitat network, should promote the exchange of individuals between sub-populations. Further implications of the metapopulation model for ecosystem restoration are discussed by Maschinski (2006).

z Diaspores and Soil Seed Bank

Diaspores are the propagules of plants. These include fruits and seeds of vascular plants, respectively, and spores of cryptogams (mosses, fungi, lichens). The diaspores form a seed bank in the soil, which can be short-lived (a few years) to long-lived (many decades) depending on the abiotic site conditions and the type of vegetation or land use. The soil seed bank of Central European vegetation and land-use types, respectively, is well studied (e.g., Schmid and Stöcklin 1991; Thompson et  al. 1997; Bonn and Poschlod 1998; Wäldchen et  al. 2005; Baskin and Baskin 2014; Murphy 2016) so that the practice of ecosystem restoration can benefit from this biological and ecological knowledge. Target species in the soil seed bank, the depletion of diaspores in the soil due to intensive land use, or even the complete loss e.g., after topsoil removal, are among the most important factors to be considered in restoration. Despite the given theoretical basis, it is often advisable to analyse the current, local diaspore bank. Then, the necessity of an artificial introduction of target species within a restoration project can be assessed. However, such studies, which deter-

14

1

Chapter 1 · Introduction to Restoration Ecology

mine the living diaspores qualitatively and quantitatively, are usually time-­ consuming (e.g., Skowronek et al. 2013).

z Life Forms

Raunkiaer (1934) differentiated the plants according to the positioning of the buds enduring the unfavourable season into the z Dispersal Types of Plants life forms phanerophytes (trees and shrubs), The dispersal of plant diaspores is species-­ chamaephytes (dwarf shrubs), hemicryptospecific and is differentiated into dispersal phytes (herbaceous perennials, which protypes (Müller-Schneider 1986; Frank and duce buds at the soil surface), cryptophytes Klotz 1990; Bonn and Poschlod 1998). (plants with tubers, bulbs or rhizomes in the Depending on the dispersal vector, a distinc- soil or under water) and therophytes (survivtion is made between zoochory (by animals ing as seeds). Kratochwil and Schwabe with endo- and exozoochory), anemochory (2001) define a life form as the entire com(wind), hydrochory (water), and hemero- plex of species-specific characteristics that chory (by humans). In addition, there is auto- have evolved in adaptation to the special chory, in which the plant itself ensures the physiographic conditions (e.g., relief, clidispersal of diaspores from the mother plant mate, light) of a particular habitat. Hereby, by appropriate mechanisms, as in the case of morphological and physiological characterImpatiens species. The types of dispersal can istics enable the survival of a species in a be differentiated in even more detail, and the particular habitat. Today, the system of life same species may also follow different strate- forms is much more differentiated (e.g., gies. Species dispersal often plays a critical Ellenberg and Mueller-Dombois 1967; Frey role in habitat restoration. Since slow natural and Lösch 2014) and is also applied in anidispersal of certain species (in forests, for mal ecology, which differentiates life forms example, by ants) is often a limiting factor in according to the mode of feeding, locomoecosystem restoration, the target species are tion, and habitat (Koepcke 1973/1974; often (re-)introduced directly (e.g., by seed- Kratochwil and Schwabe 2001). Ellenberg ing, the application of hay, or by planting) or and Leuschner (2010) highlight that the proindirectly (e.g., via grazing animals) into the portion of trees in the Central European life habitat to be restored. form spectrum is very low at 1.8%, whereas 45% account for hemicryptophytes z Safe Site (. Table 1.3). Information on the life forms The microsite that ensures safe germination of Central European plant species can be and seedling development of a plant seed found in the list of indicator values by under the given abiotic and biotic site condi- Ellenberg et al. (2001). tions (see below) is referred to as a safe site (Harper et al. 1961; Kratochwil and Schwabe z Strategy Types 2001). Urbanska (2000) has extended this Plants and animals have developed certain concept to vegetative dispersal units, espe- strategies to cope with abiotic and biotic site cially with regard to restoration ecology. In factors and thus to increase or optimize addition, the same microsite can represent a their competitiveness. These strategies are protective site for diaspores of several spe- differentiated into strategy types. Starting cies. In particular, when introducing target from a simple differentiation into r and K species via diaspores, the restoration site strategists, Grime (1974, 1979) introduced must ensure that the corresponding safe sites three strategy types related to disturbances are available e.g., through rewetting (e.g., wet and resource supply in ecosystems: meadow) or topsoil disturbance through 55 Competitors: mostly long-lived, highly grazing (e.g., heathland or dry grassland). competitive species.  

15 1.2 · Ecological Terms and Key Concepts as a Basis for Ecosystem Restoration

..      Table 1.3  Life form spectrum of approximately 2880 vascular plant species of Central Europe (According to Ellenberg and Leuschner 2010) Life form

Abbr.

Description

%

Phanerophytes

P

Trees

1.8

Nanophanerophytes

N

Shrubs

8.4

Chamaephytes woody

Z

Dwarf shrubs

4.8

Chamaephytes herbaceous

C

Buds above ground

6.0

Hemicryptophytes

H

Buds near the soil surface

45.0

Geophytes

G

Perennial plant with an underground storage organ

10.4

Therophytes

T

Annual species

18.9

Hydrophytes

A

Surviving under water

4.6

55 Stress tolerators: mostly slow growing species on extreme sites with poorly available resources. 55 Ruderals: short-lived, mostly herbaceous species, which have a high growth rate, invest mainly in generative production (high seed numbers) and are adapted to frequent disturbance. In this system of strategy types, there are multiple transitions between the three types (Frank and Klotz 1990). Strategy types represent functional groups (see below) that are taken into account, for example, in the selection of target species in a particular habitat and its management.

1

z Functional Groups

In recent years, functional groups have gained increasing importance, especially in biodiversity research. These include plants (plant functional types), animals, or microorganisms that are similar in one or more morphological, physiological or phenological characteristics (functional traits) within the ecosystem and can thus be grouped (see Poschlod et  al. 2003; Violle et  al. 2007). Examples of such traits in plants are life forms (see above) or growth forms, leaf area, seed properties (e.g., weight, size), dispersal type (see above), and vegetative or generative reproduction. The diversity of functional groups is discussed, for example, in terms of ecosystem stability and resilience (see below) (e.g., Eisenhauer et  al. 2011; Byun et al. 2013; Fry et al. 2013). By qualitatively and quantitatively assessing functional groups, the causalities of ecosystem processes and in particular the effects of anthropogenic impact, ecosystem management, or restoration measures can be better understood (e.g., Duckworth et  al. 2000; Roscher et  al. 2012; von Gillhaussen et  al. 2014; Piekarska-Stachowiak et  al. 2014; Müller et al. 2016). According to the recommendations from the SER (2004), a restored ecosystem is characterized by the presence of all functional groups necessary for ecosystem development and stability; or the missing groups can potentially (re-)colonize the habitat naturally without further intervention (see below). z Ecosystem Engineers

Species that strongly influence their habitat physically, shaping it and thus directly or indirectly altering resource availability for other species, are called ecosystem engineers (Jones et  al. 1994; De Visser et  al. 2013). These can occur in all groups of organisms. For example, the European beaver (Castor fiber) plays an important role in the restora-

16

1

Chapter 1 · Introduction to Restoration Ecology

tion of riverine landscapes, as it can strongly influence vegetation as well as alter the landscape water balance (7 Chap. 10). Ecosystem engineers also exist among smallsized organisms (e.g., invertebrates) that can nevertheless occur in large individual numbers in a habitat, such as ants and earthworms (Jones et  al. 1994; Folgarait 1998; Jouquet et  al. 2006). Ecosystem engineers can make a significant contribution to habitat restoration by, for example, promoting the decomposition of organic matter (e.g., earthworms, microorganisms) or contributing to the dispersal of target species (e.g., ants, birds). However, as the example of the beaver shows, undesirable ecosystem changes can also occur.  

z Nurse Plants

Certain plant species positively influence other plants in their germination or growth (facilitation), for example by providing protection (e.g., in terms of microclimate) during germination and the establishment of the seedling (Ren et al. 2008). Other benefits may include protection against herbivory or improved nutrient and water supply at the microsite (safe site; see above). Nurse plants can be used in ecosystem restoration to promote vegetation development at extreme sites or specific target species (Frey and Lösch 2014). For example, in peatland restoration, hare’s tail cottongrass (Eriophorum vaginatum), common cottongrass (E. angustifolium) and silvery sedge (Carex canescens) have been identified as nurse plants (Sliva 1997; Wendel 2010). Nurse plants can also contribute to the restoration of former open-cast lignite mining areas with their sometimes extreme soil conditions or on alpine sites (Anthelme et al. 2014). z Mycorrhiza

Mycorrhiza is a symbiosis between fungi and vascular plants for the exchange of nutrients. The mycorrhizal fungi provide the plant with minerals and water and receive part of the assimilates produced by the pho-

tosynthesis of the vascular plants. Mycorrhiza, among many other applied aspects in ecosystem restoration (Turnau and Haselwandter 2002), plays a major role especially in trees and forest development, but also on nutrient-poor sites where there is a site-­specific nutrient limitation (e.g., phosphorus on calcareous dry grasslands). For example, in the case of reforestation on bare soil after open-cast lignite mining, inoculation with the corresponding fungi may be necessary to accelerate forest development (7 Chap. 20).  

z Bet Hedging

Plants spread the risk of germination, in that the seeds do not all germinate under suitable environmental conditions. Some remain dormant. Thus, seedling mortality under highly variable environmental conditions can be compensated for by germination of a proportion of seeds in another year (Philippi 1993). Animals also follow this strategy e.g., birds with their egg clutch and their different development (Freese and Zwölfer 1996; Olofsson et  al. 2009), or microorganisms with their spores (Baskin and Baskin 2014). This strategy is important for populations in habitats that are subject to highly variable abiotic site conditions or are highly disturbed, such as arable land (7 Chap. 17).  

1.2.2

Ecosystems and Landscapes

z Ecosystem and Ecosystem Functions

An ecosystem is a dynamic complex of communities of plants, animals, and microorganisms and their abiotic environment, which interact as a functional unit (via energy and material flows) (Patten and Odum 1981; Begon et  al. 2016). The interrelationships of organisms exist in a food web of primary producers, consumers, and destruents. These functional relationships or processes within the ecosystem are referred to as ecosystem functions and include, for

1

17 1.2 · Ecological Terms and Key Concepts as a Basis for Ecosystem Restoration

example, primary production, denitrification, mineralization, soil formation, self-­ purification and storage of water, biochemical cycles (e.g., nitrogen, phosphorous), pollen dispersal, and pollination (Groot et al. 2002; Jax 2005). In contrast to ecosystem services (7 Sect. 1.3), which are explicitly related to humans, ecosystem functions by definition do not require humans, even though they are very often influenced by humans. The size or boundary of an ecosystem can be defined spatially or functionally. In ecosystem restoration, the ecosystem is often equated with a biotope or land use type (e.g., forest, meadow, heath). A city can be understood as an ecosystem or ecosystem complex (7 Chap. 19).  



z Site and Site Factors

An ecological site is the sum of all abiotic and biotic factors that affect an ecosystem, habitat, or a biocenosis (see below). The abiotic site factors include climate (e.g., solar radiation, precipitation, snow cover, humidity, temperature, wind), soil and water (e.g., parent rock, soil type, water content, humus type and quantity, pH value, nutrient content, salinity, groundwater level), relief (e.g., slope inclination) and the biotic site factors plants, animals, and microorganisms. The biotic site factors also include human impact. In ecosystem restoration, the abiotic site factors are often strongly influenced (e.g., by topsoil removal on heaths or peat stripping from peatlands, rewetting of coastal salt grasslands) in order to create suitable habitat conditions for target species or target vegetation. z Biocenosis and Plant Communities

Animal and plant species that live together in a community and that at least partially interact directly or indirectly form a biocoenosis (Kratochwil and Schwabe 2001). The plant species assemblages under specific site conditions are referred to as plant communities. They are subject of plant sociology (phytocoenology) or vegetation ecology (e.g., Braun-Blanquet 1964; Dierßen 1990;

Dierschke 1994; Glavac 1996; Wilmanns 1998; Ellenberg and Leuschner 2010; Leuschner and Ellenberg 2017a, b). z Diversity

In ecology, diversity encompasses various aspects and scales of variety, multiplicity, variability, and complexity. As an object of biological and ecological research, the term and its analysis are by no means new (see the studies of C. von Linné, C. Darwin, A. von Humboldt; see also Whittaker 1972). However, since the UN Conference on Environment and Development in Rio de Janeiro in 1992 and with the addition of the prefix “bio” (= biodiversity), it has spread very rapidly in ecology and nature conservation and thus in science and practice. According to the Convention on Biological Diversity (CBD 2016), biodiversity means “the variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species and of ecosystems”. Here, in addition to species diversity, genetic diversity within species and the diversity of ecosystems are also explicitly included. For more detailed and comprehensive information on diversity and biodiversity and their threats, please refer to Wilson (1988), Kratochwil and Schwabe (2001), Streit (2007), Barthlott et al. (2008/2009), Reichholf (2008), Baur (2010), Neßhöver (2013), and Wittig and Niekisch (2014), among others. Restoring diversity at these different levels of biological organization is one of the main goals of ecosystem restoration worldwide (e.g., Isselstein et  al. 2005; EU 2011; Jørgensen 2015). z Hump-Back Model

The hump-back model assumes that there is a unimodal relationship (. Fig.  1.6) between the productivity or nutrient content (e.g., nitrogen, phosphorous, potassium) of the site and phytodiversity (Grime 1979, 2001). Under nutrient-poor conditions, spe 

18

Chapter 1 · Introduction to Restoration Ecology

1 Species numbers

Land-use intensif ication

Restoration of species-rich biocenoses through nutrient removal

low

high

Resource availability

..      Fig. 1.6  Relationship between resource availability and species numbers; to restore species-rich habitats on nutrient rich (eutrophicated) sites, it is

necessary to lower the nutrient content or productivity of the site. (Adapted after Al-Mufti et  al. 1977; Grime 1979)

cies numbers tend to be low and initially increase with increasing resource availability. As productivity increases, there is a decline in species number. This relationship has been proven for several habitats (e.g., Al-Mufti et  al. 1977; Willems 1980; Day et al. 1988; Oomes 1990; Wheeler and Shaw 1991; Janssens et  al. 1998; Graham and Duda 2011; Fraser et al. 2015). For the restoration of species-rich habitats on eutrophicated sites, this means that appropriate measures must be taken to reduce the nutrient content of the soil (or water) in order to increase species diversity (Marrs 1993).

specific objectives e.g., pioneer stages of vegetation development on sandy dry grasslands (7 Chap. 16).

z Disturbance

In ecology, disturbance refers to a single, temporally definable event that impacts an ecosystem, biocenosis, or population and thus alters both abiotic and biotic site conditions, at least in the short term. Disturbance thus influences the structure and also the processes of an ecosystem (White and Pickett 1985; White and Jentsch 2004). Examples of disturbances of Central European ecosystems are fire, windthrow in forests due to a strong storm, or avalanches in the Alps. Artificial disturbances are applied in ecosystem restoration to achieve



z Stress

In contrast to disturbance as a spatially and temporally definable individual event, stress refers to a physical (e.g., wind, high or low temperature), chemical (e.g., eutrophication, heavy metal contamination), or biological (e.g., mowing, grazing) influence on plants or ecosystems over a longer period or permanently, which limits their productivity and development (Grime 1977). Among plants, animals, and microorganisms, there are numerous strategies for coping with stress (see strategy types in 7 Sect. 1.2.1). These range from tolerance to specific morphological, anatomical, physiological, and phenological adaptations (Brunold et al. 1996). The ecological concept of stress on plants, animals, and vegetation is applied, for example, to restore certain traditional land-use types with their specific biodiversity, such as pastures or heathland with the (re-)introduction of grazing animals or coastal salt grassland under the influence of seawater. If a certain type of stress is harmful to ecosystems, as in the case of severe eutrophication or pollution  

1

19 1.2 · Ecological Terms and Key Concepts as a Basis for Ecosystem Restoration

of the soil, ecosystem restoration measures can help to reduce or eliminate this stress (e.g., through phytoremediation; 7 Chap. 3).  

z Succession

In ecology, succession means the directed development of vegetation or biocenoses at a given site along a time gradient. Succession can be triggered by a disturbance, whereby the abiotic site conditions and the availability of diaspores usually determine the vegetation development. In Central Europe, secondary succession prevails, i.e., vegetation and diaspores are already present. The typical succession in Central Europe is from naturally disturbed or anthropogenic open land to forest. In primary succession, a new and complete (re-)colonization occurs, in Central Europe for example on mining dumps or on

Pushing back or halting succession through mowing, grazing or removal of shrubs and trees Forests, shrubland, alpine grassland, forest-open land habitat complexes

former open-cast mining areas (7 Chap. 20). Succession can also be significantly influenced by the vegetation itself, as is the case, for example, with the colonization of the leguminous tree black locust (Robinia pseudoacacia) on nutrient-poor sites. Due to the enormous nitrogen input of up to 300 kg per ha and year (Cierjacks et  al. 2013), species with a high nitrogen requirement such as stinging nettle (Urtica dioica) and black elderberry (Sambucus nigra) quickly establish, suppressing species with a low competitiveness. In ecosystem restoration, succession is either artificially promoted and accelerated (e.g., in forest restoration through afforestation or re-­ vegetation of slag heaps) or pushed back by appropriate measures, such as in the restoration and management of species-rich meadows or sandy dry grasslands (. Fig. 1.7).  



Grassland, heathland, open dry sandy habitats, salt meadows, arable fields, agroforestry systems

Promoting succession through passive restoration, seeding or planting shrubs and trees

..      Fig. 1.7  Promoting and accelerating or pushing back succession in the context of ecosystem restoration. (Döberitzer Heide; S. Zerbe, Sept. 2017)

20

1

Chapter 1 · Introduction to Restoration Ecology

z Critical Load

The critical load designates a threshold value of nutrient or pollutant input above which a significant change in the ecosystem or vegetation is to be expected. The critical load approach is often applied for nutrient-­ poor habitats, such as sandy heaths, nutrient-­ poor grassland, or oligotrophic peatland. There, anthropogenic nutrient input, for example via atmogenic deposits (especially nitrogen and phosphorous), can exceed the critical load and thus, lead to an increase in grass coverage of e.g., crinkled hair grass (Deschampsia flexuosa) and bush grass (Calamagrostis epigejos) (Bobbink and Hettelingh 2011). However, this concept is also applicable to heavy metals or organic pollutants and other ecosystem types, such as lakes. This threshold can be determined experimentally (de Vries et  al. 2015). The ecosystem-based pollution thresholds can be applied globally in a given geographical context for environmental policy decisions (Bobbink et al. 2010). If the corresponding threshold values are exceeded, which is the case for nitrogen in many regions of Central Europe, appropriate measures such as e.g., topsoil removal are applied for the restoration of ecosystems (7 Chaps. 14 and 15).  

z Habitat Fragmentation

Today, many of the habitats of high nature conservation value that were once widespread in Central Europe such as e.g., heathland, dry calcareous grassland or species-rich meadows only occur in remnants and on isolated locations. This has made genetic exchange of populations difficult or even impossible (7 Sect. 1.2.1). Habitat fragmentation has led to biodiversity decline worldwide and can result in the disappearance of populations on a local and regional scale (Zwick 1992; Bailey et al. 2010; Krauss et al. 2010). Additionally, a high degree of habitat fragmentation increases edge effects (Murcia 1995; Pfeifer et  al. 2017). Since the 1980s, nature conservation efforts have attempted  

to overcome this fragmentation by creating a habitat network with the enlargement of still existing valuable habitats as well as by establishing corridors and stepping stones (Jedicke 1994; Fuchs et  al. 2011). In this context, the creation of new habitat structures can be distinguished as a structural habitat network from a functional habitat network, in which, for example, migratory animal herds contribute to the zoochorous dispersal of species (7 Chaps. 14 to 16). The restoration of ecosystems in fragmented landscapes is an attempt to stabilize the still existing populations of target species and to create stepping stones or new habitats for the target species or target vegetation.  

z Intermediate Disturbance Hypothesis

The intermediate disturbance hypothesis assumes that the number of species increases with moderate disturbance of an ecosystem (e.g., by extensive and low-input agriculture) and decreases with an increase in disturbance or the intensification of land use (Grime 1973; Connell and Slatyer 1977; Connell 1978; Huston 1985; Wilkinson 1999). This hypothesis has been analyzed and critically discussed with respect to specific ecosystems and land-use types, respectively, and various degrees of anthropogenic impact (e.g., Padisak 1993; Wohlgemuth et al. 2002; Zerbe et al. 2003; Svensson et al. 2012). Although, this hypothesis is controversial or even rejected in some cases (Fox 2013), it is undisputed in ecosystem restoration that, especially in traditional cultural landscapes, a certain degree of disturbances (e.g., by agriculture) favour the desired target species and target vegetation in many habitats, such as sandy dry grassland and heaths (Zerbe 2022). z Resilience

In ecology, this term, which originated in psychology (e.g., Fleming and Ledogar 2008), refers to the ability of ecosystems to regain the original initial state after distur-

1

21 1.2 · Ecological Terms and Key Concepts as a Basis for Ecosystem Restoration

bances (see above), rather than transitioning to a qualitatively different system state (Holling 1973; Connell and Slatyer 1977; Kratochwil and Schwabe 2001). The fact that this concept is under critical academic discourse will not be further explored here (e.g., Brand et  al. 2011). It is certainly problematic that an already ambiguous term is explained with other ambiguous terms such as “self-­organization”, “stability”, “elasticity”, “ecological integrity” or “adaptability”. Ecosystem restoration addresses system states that have moved out of the range of resilience due to a high degree of disturbances, over-exploitation, or degradation. Ecosystem restoration is

then intended to restore a state that can buffer disturbances or stress (see SER 2004). This is particularly problematic in the case of traditional land-­use types (e.g., heathland), which are under pressure of global change such as e.g., climate change, biological invasions, and eutrophication. Especially in these cases, Choi et al. (2008) argue for more flexible restoration goals and measures (see also White and Walker 1997; Suding et al. 2004; Suding and Gross 2006). . Table  1.4 shows examples of the application of ecological principles and key concepts, respectively, in ecosystem restoration.  

..      Table 1.4  Examples of ecological principles and key concepts and their application in ecosystem restoration Ecological principles and key concepts

Examples of their application in the practice of ecosystem restoration

Critical load

Continuous mowing, topsoil removal, or grazing to compensate for atmogenic nitrogen input

Dispersal types (plants)

Grazing with sheep to promote the zoochorous dispersal of target species on nutrient-poor and species-rich grassland; restoration of the longitudinal and transverse permeability of rivers and their floodplains to promote the dispersal of species typical of floodplains and rivers

Disturbance

Artificial ripping up the soil with machines to restore initial succession stages of sandy dry grassland, topsoil removal on grassland and heaths

Diversity

Maintenance or restoration of habitat conditions through appropriate management: introduction of target species, control of undesirable dominant species, artificial creation of ecological niches by keeping the habitat open; creation of a habitat network and increase of land-use diversity with positive effects on biodiversity

Ecosystem engineers

Re-introduction of the European beaver (Castor fiber) to promote natural river and floodplain dynamics

Functional groups

Introduction of species with a high capacity for vegetative reproduction to fix eroded slopes; promotion of halophytes through the opening of coastal dykes

Mycorrhiza

Inoculation of the soil with mycorrhizal fungi e.g., on former open-cast lignite mining areas or dumping sites in the course of reforestation

Nurse plants

Introduction of cotton grass (Eriophorum spec.) to promote peat moss (Sphagnum spec.) growth during peatland restoration

Soil seed bank

Re-introduction of target species after the depletion of the soil seed bank or after topsoil removal by sowing, planting, hay cover, or grazing (zoochorous dispersal); activation of the soil seed bank by cattle trampling on open land habitats (continued)

22

Chapter 1 · Introduction to Restoration Ecology

1

..      Table 1.4 (continued) Ecological principles and key concepts

Examples of their application in the practice of ecosystem restoration

Species pool

Re-introduction of plant and animal species into ecosystems and landscapes; control of neobiota

Stress

Targeted application of stress such as e.g., through grazing, mowing (decrease of nutrient level) or rewetting peatland or wet meadows; opening up dykes with the restoration of the natural coastal water dynamics

Succession

Stopping or pushing back shrub and forest succession to restore open land; accelerating forest development by planting trees

1.3

Ecosystem Services

Although, the services provided by ecosystems to humans and the society were the subject of scientific research long before that, the United Nations Millennium Ecosystem Assessment (MEA 2005) boosted this issue worldwide on the agenda of environmental sciences and practice of sustainable land use and nature conservation and initiated a large number of studies from a wide range of scientific disciplines. Ecosystem services are defined as the benefits people obtain from ecosystems or according to CICES (Haines-Young and Potschin 2018, p.  3), “as the contributions that ecosystems make to human well-being, and distinct from the goods and benefits that people subsequently derive from them” (. Table  1.5). According to the MEA (2005), ecosystem services are differentiated into provisioning, regulating, and cultural services. Additionally, supporting services maintain the ecosystem functions and support the other services, although they are not recognised anymore in the Common International Classification of Ecosystem Services (CICES; Haines-Young and Potschin 2018; for earlier classifications and definitions see e.g., Groot et al. 2002): 1. Provisioning services of e.g., edible and non-edible products from agriculture, forestry, and fishery, clean drinking  

water, or natural substances for the production of pharmaceuticals. 2. Regulating services of e.g., water and nutrient balance, soil processes (e.g., erosion control), and climate (e.g., microclimate in cities; 7 Chap. 19); this also includes self-purification of water (e.g., by reed stands; 7 Chap. 11), pollination of cultivated plants by insects and decomposition of organic waste. 3. Cultural services e.g., for recreation and tourism, human health and wellbeing, environmental education, scientific research, and cultural identity. 4. Supporting services, which essentially coincide with ecosystem functions such as e.g., photosynthesis, reproduction of organisms, nutrient cycling, mycorrhiza, and soil formation, as the basis for the above-mentioned ecosystem services.  



The concept of ecosystem services is increasingly determining the debate on biodiversity and sustainable land use and is one of the most important drivers for ecosystem restoration since the restoration of ecosystem services with corresponding influence on and manipulation of ecosystem functions is one of the main goals of ecosystem restoration. For the quantification of ecosystem services, an extensive source of indicators is available from ecology, agriculture and forestry, hydrology, soil science, economics,

1

23 1.3 · Ecosystem Services

..      Table 1.5  Ecosystem services, their definition and examples (groups) according to CICES (Haines-Young and Potschin 2018) Ecosystem service category

Definition

Examples

Provisioning

All nutritional, non-nutritional material and energetic outputs from living systems as well as abiotic outputs (including water)



•  Terrestrial, freshwater, and marine biota



•  Freshwater for drinking



•  Freshwater for non-­drinking purposes



•  Fodder and fibres from all biota



•  Chemicals and other substances from all biota



•  Genetic materials from all biota



•  Bioremediation



•  Accumulation/storage, dilution and filtration (in biota and ecosystems)



•  Land and soil regulation



•  Freshwater regulation



•  Marine regulation



•  Lifecycle maintenance, habitat and gene pool protection



•  Pest and disease control



•  Recreation



•  Information and knowledge



•  Spiritual and symbolic

Regulating and maintenance

Cultural

All the ways in which living organisms can mediate or moderate the ambient environment that affects human health, safety or comfort, together with abiotic equivalents

All the non-material, and normally non-rival and non-consumptive, outputs of ecosystems (biotic and abiotic) that affect physical and mental states of people

and the social sciences (e.g., Grunewald and Bastian 2012: Tables 3.1 to 3.3 and Albert et al. 2015). In the further outline of the different ecosystems and land-use types, respectively, in Part II of this book, particular attention is paid to their specific ecosystem services. Increasingly, ecosystem disservices are also being qualitatively and quantitatively assessed (Lyytimäki and Sipilä 2009; Escobedo et  al. 2011; Pataki et  al. 2011; Swain et  al. 2013; von Döhren and Haase 2015). These include the negative impacts of ecosystems or their compartments on humans or the society such as e.g., through strong pollen emitters and associated prob-

lems for human health, or through carbon emissions due to the use of machinery and fuel in ecosystem management (7 Chap. 19). For the planning practice of urban green spaces and tree plantations in settlement areas, for example, it is helpful to find a sustainable balance between ecosystem services and disservices in qualitative and quantitative terms. This should not result in an eitheror decision but should be seen as a continuum of complex positive and negative effects of ecosystems with their compartments (Escobedo et al. 2011). Appropriate methodological tools for decision-making in planning practice have already been developed (e.g., Vogt et al. 2017; Speak et al. 2018).  

24

1

1.4

Chapter 1 · Introduction to Restoration Ecology

Degradation of Ecosystems

els of peatland can be differentiated (7 Chap. 8), and thus, the need for restoration can be identified and recommendations for practice derived. The gradient ranges from functioning peatlands that do not require restoration but do need protection, to severely degraded or destroyed peatlands that cannot be restored anymore.  

In both, restoration ecology studies and ecosystem restoration practice, degradation is often the trigger for research or practical action. In order to derive goals and measures for ecosystem restoration, degradation processes and states have to be analysed and understood (Hobbs and Norton 1996). Value-free ecological analyses have to be clearly distinguished from a value-based assessment of the facts, especially since in many cases there is no consensus on the meaning of ecosystem degradation. For example, Lund (2009) compiles more than 50 different definitions of forest degradation (see also, Simula 2009). Degradation of ecosystems and land-use systems, respectively, with negative impacts on abiotic (soil, water, air) and biotic resources (organisms, biocenoses) is usually linked to strong anthropogenic impact and the intensification of land use (Johnson et al. 1997; McIsaac and Brün 1999). The WHO (2017a) relates land degradation directly to the loss of ecosystem services. The FAO (2011) defines forest degradation as a reduced capacity to provide ecosystem services. The degradation of ecosystems can be qualitatively and quantitatively investigated and thus, assessed on this scientific basis. Quantifiable criteria include, among others, species number and composition, biodiversity and corresponding indicator species in all ecosystem compartments, productivity or biomass of biocenoses, vegetation cover, nutrient or pollutant content in soils and plants, the degree of soil salinization, the physical condition of the soil (e.g., pore volume, degree of soil sealing), soil loss through erosion and the degree of landscape fragmentation (e.g., Ravera 1989; Aronson et al. 1993; Furse et  al. 2009; FAO 2011; Miler et al. 2015; Modica et al. 2015; Seibold et al. 2015; Virto et al. 2015). Based on the criteria vegetation, fauna, peat accumulation, and hydrology, for example, the degradation lev-

1.5

 hat Does Ecosystem W Restoration Mean? A Definition

In science and practice, the term “restoration” often leads to controversy, especially when the prefix “re-” is associated with a “back” to something original. It is helpful here to bear in mind the Latin word origin, in which the meaning of the prefix “re-” goes much further and, in addition to “back”, can also express “again” or “in the right state” (PONS 2016), i.e., in addition to the regressive meaning there is also a progressive meaning, which might be more purposeful in ecosystem restoration. This is the more important if one assumes that in the Central European cultural landscape, in which there is hardly an ecosystem left that is completely unaffected by humans, the restoration of original ecosystems or historical land-use systems is often hardly possible, or at least only possible with considerable efforts. The Society for Ecological Restoration (SER 2004) defines ecosystem restoration as “the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed”. Aronson et  al. (2007) add that ecosystem restoration recovers or optimizes certain ecosystem functions that have been severely degraded or completely lost through the use of the natural resources (see also Cairns and Heckman 1996). Zerbe et al. (2009, p. 5) have modified this definition by stating that “ecosystem restoration […] supports the development or restoration of an ecosystem that has been more or less

1

25 1.5 · What Does Ecosystem Restoration Mean? A Definition

severely degraded or destroyed by humans towards a more natural state. Thus, certain ecosystem services and structures are restored against the background of current ecological and socio-economic conditions and nature conservation frameworks.” However, this definition does not specify the measures to be applied. Against the background of the development of ecosystem restoration and restoration ecology, and in particular, the increasing use of ecosystem-degrading measures such as e.g., pesticides, fire or topsoil removal (7 Chap. 24), a further modification of the definition of ecosystem restoration has been introduced by Zerbe and Ott (2021), which also forms the conceptual framework for this book:

ecosystem services (provisioning, regulating, cultural) based on a functioning ecosystem, thus enhancing natural capital against the background of strong sustainability. It takes into account the transformative dimension of restoration seen as human-nature interaction. Ecosystem restoration gives priority to the conservation of certain desired species and habitats at selected sites as well as resource protection and/or the conservation of the cultural landscape.



The graphic representations of ecosystem restoration, for example by Bradshaw (1987), Zerbe et  al. (2009), and van Andel and Aronson (2012), form the basis for . Fig.  1.8 in which the processes of over-­ exploitation and degradation, respectively, are shown as well as the trajectories of ecosystem restoration, which lead to a rapid or delayed restoration of ecosystem services. The restoration of certain ecosystem services (e.g., carbon sinks due to peat accumulation in a peatland) is thus consequently  

Ecosystem and landscape services

Ecosystem restoration assists, with ethically acceptable measures and by activating or re-activating natural processes, the development of an anthropogenically degraded ecosystem or land-use type towards a state which provides the target

Ecosystems of the natural and cultural landscape Over-utilization and unsustainable use of natural resources

A B Degraded ecosystems/landuse types and landscapes

C D

time ..      Fig. 1.8  The restoration of ecosystems coupled with the restoration of ecosystem services which have been degraded or lost through the over-­utilization of the natural resources. a Successful restoration, b

delayed restoration success (e.g., peatland, see 7 Chap. 8), c unsuccessful restoration, d further degradation of the ecosystems or land-use system. (Modified according to Zerbe et al. 2009)  

26

1

Chapter 1 · Introduction to Restoration Ecology

..      Table 1.6  The three main objectives of ecosystem restoration with examples of ecosystems and land-use types where these objectives are essentially pursued Main objectives of ecosystem restoration

Examples of ecosystems and land-use types in Central Europe

Ecosystems and habitats of the natural landscape

Near-natural beech forests, rivers with their floodplains, reed stands on riverbanks and lakeshores, raised bogs and fens, lakes, salt grassland, alpine grassland

Ecosystems and land-use systems of the traditional cultural landscape

Arrhenatherum elatius and Trisetum flavescens meadows, wet grassland, calcareous grassland, sandy dry grassland, traditional orchards, species-rich arable land, extensively used lowland mires, heaths, grazed forests, coppice forests and coppice with standards, grazed coastal and inland salt grassland

Novel ecosystems

Vegetation and ecosystems on mining or waste dumps and on former industrial sites, urban vegetation rich in non-native species, new ecosystems in post-mining landscapes

linked to the corresponding ecosystem functions (e.g., groundwater dynamics of a wetland). According to Zerbe et  al. (2009), three main objectives can be differentiated with regard to the ecosystems and land-use systems to be restored (. Table 1.6): 1. The restoration of ecosystems of the natural landscape (or the closest possible approximation to them) such as e.g., rivers with their floodplains, lakes, raised bogs and fens, coastal salt grassland, and near-natural forests. In addition to possible initial interventions to create certain abiotic site conditions, this goal is primarily achieved by stopping or minimizing the use of the natural resources which means to allow natural ecological processes to take place as far as possible. According to van Diggelen et al. (2001, p. 116), this would be “true” restoration. 2. The restoration of land-­use systems of the traditional cultural landscape (Zerbe 2022) such as e.g., extensively used wet grassland, heathland, nutrient-­ poor grassland, species-rich arable land, orchards, or the traditional forms of forest management (see Swart et  al. 2001: Arcadian approach). This can only be  

achieved by reintroducing traditional types of management of the natural resources or by simulating them. This also includes concepts for the development of new cultural landscapes in which adapted uses and remnants of the natural landscape are integrated (on the restoration of cultural landscapes see e.g., Hobbs 2002; Moreira et al. 2006; Zerbe 2022; on the development of semi-open pasture landscapes see Redecker et  al. 2002). The objectives can be achieved both, through extensification (e.g., restoration of a species-rich meadow on an area of species-­poor intensive grassland) and through “intensification”, when, for example, succession is pushed back by removing woody plants to restore open land. 3. The creation of new ecosystems and land-use systems in highly disturbed landscapes such as e.g., post-mining landscapes or on urban-industrial sites. This includes the concept of creative conservation (Luscombe and Scott 2010), which means, for example, the introduction of wild plants into industrial sites, or generally all forms of revegetation on urban-industrial sites.

1

27 1.5 · What Does Ecosystem Restoration Mean? A Definition

Hobbs et al. (2006) introduced the term emerging or novel ecosystems for the creation of new ecosystems on sites that have been strongly altered by humans. The approach of the designer ecosystem (McDonald et  al. 2016), as the restoration of an ecosystem without a reference in the historical or current cultural landscape, can also be assigned here.

In the field of restoration ecology or the specific context of practical ecosystem restoration, a broad range of terms has meanwhile developed (. Table 1.7). The various terms reflect hereby different disciplines and their concepts, traditions, technologies or tools, objectives as well as the completeness and time frame of the restoration of certain ecosystem states or the extent to which techno 

..      Table 1.7  Different concepts and terms of ecosystem restoration sensu latu with references, an explanation, and examples Concepts and terms

Explanation and examples

Creation, designer ecosystem, fabrication (Jackson et al. 1995; MacMahon and Holl 2001; Clewell and Aronson 2013; McDonald et al. 2016)

Creation (design) of a novel ecosystem without historical or current reference

Extensification, de-intensification (Postma-Blaauw et al. 2012)

Conversion of previously intensively used grassland through the extensification of land use

Reconstruction (Bradshaw 1983)

Restoration of vegetation or ecosystems on strongly disturbed sites such as e.g., quarries, eventually by technical means (similar to recultivation)

Recovery of ecosystem health (Rapport et al. 2001; SER 2004)

Restoration of ecosystem functions according to a reference state so that the ecosystem can respond dynamically and resiliently to disturbances

Recovery of ecosystem integrity (SER 2004)

Restoration of ecosystem functions with the respective biodiversity, ecosystem structure, or species composition according to a reference state

Recultivation, reclamation (Clewell and Aronson 2013)

Restoration of agricultural, forestry, or other uses on mining sites (e.g., former open-cast lignite mining sites); often associated with the creation of new ecosystems and the restoration of provisioning ecosystem services

Regeneration (Clewell and Aronson 2013)

Reforestation or generally recolonisation with vegetation through natural succession

Rehabilitation (Aronson et al. 1993; Cooke 1999).

Geomorphological-­hydrological interventions for river and lake restoration; mostly with regard to natural ecosystem functions

Remediation, bioremediation, phytoremediation

Removal or demobilisation of pollutants from soil or water with the help of specific plants (phytoremediation) or other organisms such as bacteria (bioremediation)

Restitution (Rubarenzya et al. 2008)

Active restoration of a near-natural, possibly original ecosystem, in any case with technical means and measures, respectively (e.g., wetlands or rivers) (continued)

28

Chapter 1 · Introduction to Restoration Ecology

1

..      Table 1.7 (continued) Concepts and terms

Explanation and examples

Restoration, renaturalization

In the broadest sense, the restoration of certain ecosystems and land-use systems with their specific ecosystem services, usually to achieve a more natural state

Revitalization (Hughes and Rood 2003)

Restoration of abiotic site conditions or ecosystem functions as a prerequisite for the establishment of biocenoses typical of the site e.g., in rivers and their floodplains or on peatland

Sanitation

Intervention into the physical or chemical water conditions of lakes or their catchment area, mostly by technical means, to improve the water quality and to restore biocenoses characteristic for lakes

Therapy

All measures to improve the ecological status of lakes, including technical interventions in the abiotic and biotic site conditions

logical interventions are performed. The fact that restoration is often interpreted very narrowly as the return to a natural, original state has certainly contributed to the diversification of terms (see e.g., Cooke 1999 and chapter above). Against the background of this diversity of terms, the controversies on the term “restoration” and the criticism of ecosystem restoration e.g., by environmental ethics (7 Chap. 24), the term “restoration” is used in this book as an umbrella with reference to the definition proposed here (7 Sect. 1.5). Specific implications in relation to particular ecosystem and land-use types are presented in the respective chapters of Part II.  



prehensive restoration project for an entire river catchment has been realized up to now, approaches and concepts for this already exist. In Germany, the EU-funded LIFE project “LiLa Living Lahn - one river, many demands” pursues this goal by contributing to the ecological upgrading of the river Lahn. Its use as a federal waterway as well as nature conservation and aspects of aquatic ecology are taken into account, by developing an comprehensive concept for the river, which is to be achieved in particular by integrating the numerous user interests (Land Hessen 2017). Restoration at the landscape level is also found, for example, in post-­ mining landscapes where brown coal was extracted by open-cast mining (7 Chap. 20), in cultural and natural landscapes designated as national parks (7 Chap. 7), or traditional cultural landscapes such as e.g., pasture landscapes or terraced landscapes (Zerbe 2022). Ecosystem restoration at the landscape level is particularly necessary where fragmented habitats or sub-­populations are to be reconnected by stepping stones or corridors (Hobbs and Norton 1996). So far, only the large-scale restoration of forests through coniferous afforestations about 200 years ago can be considered as a restoration project in Central Europe above  

1.6

Scales of Restoration

Most restoration projects focus on a specific ecosystem or land-use type. For example, a grassland or heath, a fen, a section of a river, a lake, a forest stand, or a slope in the Alps is restored at the local level. At the landscape level, for example, a hydrological catchment with its different ecosystems and land-use types and tributaries can be restored. Bannister et al. (2005), for example, state for Great Britain that although there no com-



1

29 1.7 · Ecosystem Restoration in Relation to the Practice of Other Disciplines

the landscape scale (7 Chap. 7). This initiative covered both, the mountain ranges as well as the lowlands and contributed to the fact that today about 30–40% of the land area in the Central European countries is covered with woodland. Further approaches exist with international restoration initiatives of Central European rivers, such as the Elbe and the Rhine (Moss and Monstadt 2008). The re-introduction of brown bears, for example in the Southern Alps, must also be considered as above the landscape scale since these animals can have a high mobility over large distances (7 Chap. 4). The restoration of marine ecosystems of the North and Baltic Sea would reflect the smallest geographical scale in Europe (Central, Western, Northern, and Eastern Europe), which encompasses several catchment areas of the major European rivers and numerous landscapes and landscape complexes in different climate zones. Impulses for an overarching concept for the restoration of European marine ecosystems are provided, for example, by the EU Marine Strategy Framework Directive (7 Chap. 13; Zerbe 2019). In conclusion, three main scales of restoration can be differentiated: 1. ecosystem or land-use type (large scale), 2. landscape or river catchment (medium scale), 3. landscape complexes or several river catchments (small scale).  





The global environmental problems to which restoration ecology and ecosystem restoration, respectively, can provide an important contribution, such as the eutrophication of soils and water, soil erosion in the intensively used mountain and valley areas, the worldwide loss of biodiversity, global climate change, desertification in arid and semi-arid regions and, in particular, anthropogenic pressures on marine ecosystems, can today only be solved with approaches above the landscape level and with international initiatives.

1.7

Ecosystem Restoration in Relation to the Practice of Other Disciplines

As a sub-discipline of ecology, restoration ecology is conceptually and methodologically well rooted and distinguishable from other natural science disciplines and makes use of other sub-disciplines such as e.g., population ecology, biocenology, geobotany or landscape ecology. In contrast, ecosystem restoration has numerous overlaps with the practice of other disciplines concerned with the planning, design, management, conservation of ecosystems or land use systems (. Fig.  1.1). For example, the practice of ecosystem restoration has many overlaps with species and habitat conservation (nature conservation and environmental protection). This applies on the one hand to the objectives, such as the protection or restoration of populations of endangered species and habitats of conservation value, and on the other hand to the nature conservation measures. Accordingly, measures such as grazing and mowing to restore a specific land-use system are also applied for the maintenance and continuous management of nature conservation areas (7 Chap. 3). In particular, various technical measures are applied for the restoration of near-­ natural rivers or at least, parts of it where it was previously strongly altered by engineering measures, or in strongly disturbed landscapes such as post-mining landscapes, on mining dumps or on urban-industrial sites, but also for the restoration of traditional land-use types. In this case, there is a considerable overlap with ecological engineering or engineering biology. According to Schiechtl and Stern (1994), engineering biology is defined as a construction technique that makes use of biological knowledge in construction on terrestrial sites and in aquatic environments for the stabilisation of slopes and banks (see also Hartmann 1992; Mitsch and Jørgensen 2003; Kangas  



30

1

Chapter 1 · Introduction to Restoration Ecology

2004; Zeh 2007; Hacker and Johannsen 2011; Florineth 2012). Technical interventions in the hydro-morphology of rivers (7 Chap. 10), the fixation of eroded slopes with geotextiles and by seeding (7 Chap. 9), topsoil removal or coverage, or the stabilization of river banks with organic materials (7 Chap. 10) are applied both, in ecosystem restoration as well as ecological engineering measures. However, while ecosystem restoration gives priority to environmental and resource protection as well as nature and landscape conservation (7 Sect. 1.5), engineering biology, as an engineering and technical discipline, focuses on the use of organic and inorganic materials, often for the protection against natural hazards. With regard to rivers, however, engineering techniques and objectives alone do not guarantee the restoration of ecosystem services and thus ecosystem restoration as defined  







previously (Gerstgraser et al. 2005; see also Clewell and Aronson 2013). Measures that environmental chemistry has developed for the purification of ecosystems contaminated with pollutants or nutrients can also be applied in ecosystem restoration, for example in lake therapy (7 Chap. 11) or phytoremediation on landfills and dumping sites (7 Chap. 3). Overlaps with landscape architecture arise in the design and technical interventions in highly disturbed or destroyed ecosystems, such as in post-mining or urban landscapes (see Clewell and Aronson 2013). Accordingly, the biophilia concept introduced by Wilson (1984) and Kellert and Wilson (1993), which is implemented in landscape architecture e.g., for the design of biophilic cities (Beatley 2010; Ignatieva and Ahrné 2013; Berr 2017), is related to ecosystem restoration in urban environments.  



31

Which Ecosystem Should Be Restored? Reference Systems for Restoration Contents 2.1

Pristine or Historical Reference – 34

2.2

 eference Ecosystems of the Present-Day R Cultural Landscape – 35

2.3

Potential or Hypothetical Reference State – 39

© Springer-Verlag GmbH Germany, part of Springer Nature 2023 S. Zerbe, Restoration of Ecosystems – Bridging Nature and Humans, https://doi.org/10.1007/978-3-662-65658-7_2

2

32

2

Chapter 2 · Which Ecosystem Should Be Restored? Reference Systems for Restoration

For practical questions such as the identification of the restoration potential, the selection of suitable restoration or management measures, the coordination and, if necessary, the resolution of conflicts of land use with the stakeholders and the financing of ecosystem restoration activities, it is indispensable to determine the objectives in advance of a restoration project. Precise knowledge of the initial state before restoration and the desired target condition is also of great importance for the monitoring of the restoration project, in order to be able to evaluate the success or failure of the restoration and to apply the experience gained for similar restoration projects in the future (7 Chap. 6). The identification of one or more possible reference systems in Central

Europe against the background of the extensive ecological data available is not a major problem. It can be more difficult to reconcile the different land-use or nature conservation interests or conflicting goals. This is nicely illustrated in . Fig. 2.1 for a landscape that must have very different habitat structures and requirements for four different target species. The social sciences offer a wide range of methodological tools and instruments, respectively, for identifying and resolving such conflicting goals (7 Chap. 22). A further problem arises if the practice of ecosystem restoration leads to different, possibly unforeseen, results than those envisaged in the planning phase. For the identification of a reference system as the goal for restoration, three general  





a

b

c

d

..      Fig. 2.1  Four different restoration scenarios corresponding to the target species. a Elk (near-natural forests), b Black-tailed godwit (high proportion of grassland), c Harrier (rich-structured landscape with

open land, single trees, and shrub and forest patches, respectively), d Otter (open land with water corridors). (According to Harms et al. 1993)

33 Which Ecosystem Should Be Restored? Reference Systems for Restoration

approaches are possible, which include a time perspective: 1. The reference sysetem for ecosystem restoration is historical. The historical time slices here range from the immediate past (a few decades) to centuries ago in the traditional cultural landscape towards a pristine state without strong or even any human impact in a natural landscape. 2. Ecosystems or land-use types of the current cultural landscape can be taken as reference systems. These can also encompass still existing remnants of traditional land use such as e.g., heathland, grazed forests, traditional orchards, or a larch meadow in the Alps. 3. The reference system can be determined potentially or hypothetically. All of these approaches can draw on extensive and detailed data for Central Europe on the historical and current natural and cultural landscape with its ecosystems, vegetation, biocenoses, flora and fauna (e.g., Ozenda 1988; Wilmanns 1998; Kratochwil and Schwabe 2001; Oberdorfer et  al. 2001; Ellenberg and Leuschner 2010; Leuschner and Ellenberg 2017a, b; Zerbe 2019). In addition, recommendations are available on the methodological approach for determining reference systems in ecosystem restoration (Holl and Ciarns 2002; SER 2004; Clewell 2009). The synergy between ecosystem restoration, nature conservation, and landscape planning regarding guiding principles (Leitbilder) as a planning tool and the approaches for determining them (Wiegleb et al. 2013) is obvious. In certain cases, the reference system can correspond to a more or less exact “copy template”, in others it can only indicate a direction of restoration (Clewell et al. 2005). It is important to bear in mind that these reference systems represent a more or less specific and static state and generally leave little room for dynamics, processes, or uncertainty (see White and Walker 1997; Choi

2

et al. 2008; Hiers et al. 2012). However, these dynamics are an essential feature especially in ecosystems, such as rivers with their flooding regimes and floodplains, coastal ecosystems, or novel ecosystems in urban-­ industrial or open-cast mining landscapes. Dealing with this uncertainty, particularly in ecosystem restoration, remains a challenge (Samuels and Lockwood 2002; Darby and Sear 2008; McCarthy 2014). Approaches that allow for greater flexibility in ecosystem development or are more process-oriented may be useful here (Choi et al. 2008; Hiers et  al. 2012). For certain habitats, very specific and static targets can thus be set on the one hand, while for other restoration projects a range of possible target states emerges (. Fig. 2.2). The choice of an appropriate reference system for ecosystem restoration is not a scientific task. However, restoration ecology provides the scientific basis and supports the decision-making process with analyses, data, and methodological approaches. Ecological paremeters are applied for the operationalization of reference system’s determination (e.g., target or indicator species, groundwater levels, nutrient levels), which can then also be used for a qualitative and quantitative ecological assessment during monitoring (SER 2004; Clewell 2009; 7 Chap. 6). However, the final decision in favour of a certain reference system and thus a specific restoration goal is then normative and the result of the prioritization of options and scenarios as well as the coordination between stakeholders and possible land-use and nature conservation conflicts (7 Chap. 22). It is also important to bear in mind that guiding principles and references follow current paradigms and trends in nature conservation, and that these can change. For example, species and habitat conservation followed largely static approaches from its beginnings until the second half of the twentieth century. Then, since the 1990s, the con 





34

2

Chapter 2 · Which Ecosystem Should Be Restored? Reference Systems for Restoration

a

b

..      Fig. 2.2  Restoration with a focus on a specific and static reference system, such as heathland or a calcareous grassland with a specific vegetation structure and

species composition a or with a focus on development processes with several possible target states b

servation of natural processes (Prozessschutz) has been introduced into the conservation debate (Sturm 1993; Felinks and Wiegleb 1998; Jedicke 1998). However, it is still difficult to accept the natural development of ecosystems and thus the unforeseen, the unplannable, or the wilderness not influenced by human impact anymore (see Piechocki et al. 2010; Schuster 2010).

vegetation in Europe was spatio-temporally different during centuries and millennia. While, for example, many Mediterranean landscapes were already more or less strongly altered by land use during the Roman Empire (Walsh 2013), many regions north of the Alps and in particular the mountain ranges were transformed from natural to cultural landscapes with the medieval settlement expansions and forest clearings (for the example of the German Spessart mountains, see e.g., Zerbe 2002a). Pollen analysis, supported by detailed historical maps since the seventeenth century, allows the reconstruction of vegetation and landscape in different time slices (Rubin et al. 2008), each of which can serve as reference states for ecosystem restoration. Also, soils, geomorphology, archaeological features, historical elements in the current cultural landscape (e.g., Wanja et  al. 2007), archival records, dendrochronology, as well as historical paintings, photographs, aerial photographs, and maps  – linked with interdisciplinary approaches  – can serve to recontruct landscape history. Traditional, indigenous, and local ecological knowledge, respectively, also supports the reconstruction of historical landscape development phases

2.1

 ristine or Historical P Reference

In the pristine natural landscape, humans have not yet profoundly altered the landscape. These landscapes can be reconstructed through pollen analysis in peatlands, lake sediments, or glaciers (7 Chap. 8). In large-scale peatlands, lakes, or glaciers with large pollen catchments, the landscape development and evolution, respectively, can be reconstructed on the supra-regional scale (e.g., Rösch 1993; Brande 2003), and in small forest bogs or lakes, local and regional vegetation development can be reconstructed (e.g., Weichhardt-Kulessa et  al. 2007; Rösch and Lechterbeck 2016). However, the naturalness of landscape and  

2

35 2.2 · Reference Ecosystems of the Present-Day Cultural Landscape

with its related human impacts (Berkes et al. conservation as well as ecosystem restora2000; Molnár et al. 2015; 7 Sect. 24.3). tion, as they are habitats for many rare and In Central Europe, it is hardly possible to endangered species (Pfadenhauer 2002). restore an ecosystem towards its original Furthermore, landscapes with these tradi(pristine) state. Particluarly, the supra-­ tional land-use systems such as e.g., the regional and continental-wide, in some Lüneburg Heathland in Germany and regions very high atmogenic nutrient inputs Veluwe in the Netherlands), the juniper (especially nitrogen) create new site condi- heaths (e.g., in the Swabian Alb), and the dry tions compared to historical and pristine and nutrient-poor pasture land (e.g., in the conditions, apart from the many other Lower Oder Valley in NE Germany and W anthropogenic influences over the past cen- Poland and the Vinschgau in South Tyrol, N tury and decades. However, with regard to Italy), have become a considerable economic specific parameters, it is possible to take factor for the rural development of those original conditions as a guideline, for exam- regions e.g., for recreation and tourism. ple, for the restoration of peatland, lakes, Many of these land-use types of the trarivers, and coastal salt grassland the natural ditional cultural landscapes in Europe have water balance or the natural flood dynamics, been very well studied from a historical perfor the restoration of near-natural forests spective (e.g., Küster 1998, 1999; Ellenberg the natural stand dynamics, structure, and and Leuschner 2010; Zerbe 2022). For regeneration, and for the re-introduction of example, comprehensive knowledge is availspecies the original species pool. able on the vegetation ecology, dynamics, In Central Europe, the open and forest-­ and regeneration of Calluna heaths in free pre-industrial cultural landscape created Western and Central Europe (7 Chap. 14), by large-scale clearing and grazing is often from which reference systems for their restoused as a reference or guiding principle for ration can be derived. Taking the example species and habitat conservation as well as of the permanently very high atmogenic ecosystem restoration (Redecker et al. 2002; nitrogen input in many areas of Europe and Zerbe et  al. 2009; Hampicke 2013; Haber thus the exceeding of the critical load 2014). By the mid-nineteenth century, exten- (7 Sect. 1.2.2), however, it should be reconsively used grasslands, nutrient-poor dry sidered whether references and guiding pringrasslands, and heathland reached their ciples for elements of the traditional cultural maximum extent (7 Chaps. 14 and 15), as landscape, should better be adapted to the vividly depicted in contemporary paintings current site conditions and oriented more (Makowski and Buderath 1983). However, it strongly to current ecosystem and landscape must be considered that the large-scale development processes. destruction of forests, intensive grazing of open land combined with vegetation and topsoil removel (sod cutting = “plaggen”) for 2.2 Reference Ecosystems of the Present-Day Cultural farming purposes in the lowlands, litter gathering in forests, forest grazing, charcoal Landscape burning, and other unsustainable agricultural or agroforestry uses over centuries have Using ecosystems or land-use types of the led to a Central European-wide degradation present-day cultural landscape as a reference of ecosystems and land-use systems for ecosystem restoration offers some advan(Plachter 1995; Pfadenhauer 2002). Today, tages compared to the “historical” and “hypooften these ecosystems, which have been thetical” (see below) approaches. On the one over-exploited in terms of soil and vegeta- hand, the target conditions with regard to abition, are in the focus of species and habitat otic (e.g., soil, water balance) and biotic fac 







36

2

Chapter 2 · Which Ecosystem Should Be Restored? Reference Systems for Restoration

tors (flora, vegetation, fauna, microorganisms) as well as the influence of land use and management on the biocenoses, their regeneration and dynamics can be directly recorded qualitatively and quantitatively and do not have to be reconstructed. On the other hand, socioeconomic parameters such as management costs can be determined directly and against the current socio-economic background. Furthermore, as in the case of the transfer of target species, the reference ecosystems can be directly linked with the restoration sites. Much biological-­ ecological information is meanwhile available from numerous databases (. Table 2.1). This approach of a present-day reference reaches its limits if these no longer exist in the  

intensively used and strongly altered cultural landscape. This applies, for example, to nearnatural forests in large-scale agricultural landscapes or to elements of the traditional cultural landscape that exist only in a few remnants and even then, however, strongly degraded. The extensive network of large protected areas (national parks, biosphere reserves), nature reserves, and FFH areas in Central Europe offers a sound basis for determining reference systems for restoration. For near-­ natural forest management and the restoration of near-natural forests, an extensive network of natural forest reserves has meanwhile been established in Germany (. Fig.  2.3). More than 700 natural forest reserves with a total forest area of approxi 

..      Table 2.1  Examples of national and international biological-ecological, landscape-­ecological, and nature conservation databases in Central Europe and worldwide (in alphabetical order of abbreviation), which can be used to derive reference systems for ecosystem restoration or the restoration of ecosystem services in general Database

Content

References

BERGWALD

Vegetation database for the Bavarian Alps

Ewald (2012)

Biological Flora of Central Europe

Biology and ecology of Central European plant species (published in the journal Flora)

Matthies and Poschlod (2000)

BioPop

Biological-­ecological characteristics of plant species of Germany (see FloraWeb)

Poschlod et al. (2003)

Dispersal Diaspore Database

Information on seed dispersal of currently over 5000 plant species

Hintze et al. (2013)

Ellenberg Indicator Values (EIV)

Indicator values for the Central European flora with regard to abiotic factors (soil, water, climate)

Ellenberg et al. (2001)

EM-DAT (International Disaster Database)

Database of worldwide natural disasters and their impacts since 1900

CRED (2009) and EEA (2012)

EUNIS (European Nature Information System)

Data on species, habitats, and site ecology of the European Natura 2000 network

Riecken et al. (2006) and EEA (2017a)

European Soil Database

Distribution and characteristics of European soils

EC (2003)

European Vegetation Archive (EVA)

Vegetation surveys in Europe

Chytrý et al. (2016) and European Vegetation Survey (2017)

Fauna Europaea

List of animal species in Europe with their distribution

Fauna Europaea (2013) and de Jong et al. (2014)

37 2.2 · Reference Ecosystems of the Present-Day Cultural Landscape

..      Table 2.1 (continued) Database

Content

References

Fauna Indicativa

Biological and ecological characteristics of the animal groups dragonflies, grasshoppers, ground beetles and butterflies

Klaiber et al. (2017a, b)

Flora Database of the Czech Republic

Occurrence and distribution of vascular plants in the Czech Republic

Danihelka et al. (2009).

Flora Fauna South Tyrol

Inventory of the flora and fauna of South Tyrol (N Italy) with distribution and biological-­ecological information

Naturmuseum Südtirol (2017)

Flora Indicativa

Ecological indicator values and biological characteristics of the flora of Switzerland and the Alps

Landolt et al. (2010)

FloraWeb

Wild plant species, plant communities, and natural vegetation of Germany

BfN (2016d)

Global Biodiversity Information Facility

International database on global biodiversity (e.g., species, publications)

Gbif (2017)

Global Index of Vegetation-­Plot Databases (GIVD)

Directory of more than 130 databases worldwide (>80 in Europe) with more than 2.4 million vegetation plots of 1–1000 m2 plot size

Dengler et al. (2011)

Info Flora

List of plant species in Switzerland with distribution, ecology, and protection status

ZDSF (2017)

LEDA

Database on biological-­ecological characteristics of about 3000 plant species in NW Europe

Kleyer et al. (2008)

LUCAS

Data on land use in Europe

EU (2017a)

Natural forest reserves in Germany

Forest and forest site data on the more than 700 natural forest reserves in Germany

Meyer et al. (2007) and Münch (2007)

Neobiota

Alien and invasive species in Germany

BfN (2016e)

NOBANIS

European network for the exchange of information on alien and invasive species with species profiles

NOBANIS (2015)

Red Lists of species and habitats in Germany

List of endangered plant and animal species as well as endangered habitats

e.g., Ludwig and Schnittler (1996), Riecken et al. (2006), BfN (2016d, 2018), and Finck et al. (2017)

SynBioSys Europe

Data on flora and vegetation in Europe

Schaminée et al. (2007)

TRY (Plant Trait Database)

Worldwide inventory of biological-­ecological traits of plant species (state 2017: ca. 148,000 taxa), including more than 90 databases with ca. 50 trait groups

Kattge et al. (2011)

WISIA

Protection status of internationally and nationally protected species

BfN (2017a)

2

38

Chapter 2 · Which Ecosystem Should Be Restored? Reference Systems for Restoration

2

..      Fig. 2.3  Natural forest reserves (Naturwaldreservate) in Germany which can serve as a reference for nearnatural silviculture. (From BLE 2015)

39 2.3 · Potential or Hypothetical Reference State

mately 35,000  ha have been designated in Germany up to now (BLE 2015). The widely occurring forest communities are represented more or less proportionally in terms of area, while small-scale and rare forest communities are represented with a minimum number (Meyer et  al. 2007). These stands are continuously and, depending on the financial resources available, more or less intensively monitored with regard to vegetation, structural development, and their regeneration dynamics. The results of this continuous monitoring and of specific research projects are increasingly used in near-natural silviculture (Bücking 1997; Ammer and Utschik 2004; Winter 2005; Meyer et al. 2007).

2.3

 otential or Hypothetical P Reference State

Especially for the restoration of forests, naturalness is of great importance (see above). Numerous concepts and approaches are available for the quantitative and qualitative assessment of naturalness (see the overview by Kowarik 1988; Walentowski and Winter 2007). One of those, which is applied in forestry and silviculture, respectively (e.g., Bončina et al. 2017), is the concept of potential natural vegetation (pnv) introduced by Tüxen in 1956. This concept and its implications for the practice of land use, landscape planning, and nature conservation became often subject to critical discussion and consequently, was modified several times (Stumpel and Kalkhoven 1978; Kowarik 1987; Härdtle 1995; Leuschner 1997; Zerbe 1997, 1998; Chytrý 1998; Moravec 1998; Chiarucci et al. 2010; Loidi et al. 2010; Loidi and Fernández-González 2012). Although, the pnv concept can be a useful tool at small scales (1:50,000). The latter leads to the following limitations for the practice of nature conservation and ecosystem restoration (see, Zerbe 1998): 55 Many maps of the pnv can hardly be reproduced due to the fact that the methodology of constructing a pnv remains unclear e.g., with regard to the consideration of reversible and irreversible ecological site changes by human impact. 55 The hypothetical character of the pnv increases with increasing anthropogenic impact and subsequent changes of the site ecology, especially in urban-­ industrial environments, but also in intensively used agricultural landscapes (. Fig. 2.4). 55 The landscape diversity created by multifaceted and multifunctional land-use types, respectively (see Zerbe 2022), which is positively perceived, for example, in the context of species, habitat, and cultural landscape conservation, is strongly leveled by the maps of the pnv. This does not only apply to agricultural cultural landscapes but also to the diversity of forest landscapes, as shown by the example of the Spessart mountains in SW Germany (Zerbe 1999a). Here, 23 forest communities of the present-day woodland, differentiated by means of phytosociology, are reduced to only eight forest communities of the potential natural vegetation constructed for this natural unit. 55 One of the most critical aspects, especially for nature conservation and ecosystem restoration practice, is that succession  

40

Chapter 2 · Which Ecosystem Should Be Restored? Reference Systems for Restoration

annual trampled lawns, pioneer vegetation of dumps and rubbish places

very high

hypothetical character of pnv-construction

2

segetal vegetation, intensively managed meadows and pastures, monocultures of coniferous trees

high

heaths, dry grassland

middle

low

forests with minor wood withdrawal, bogs

oligo-

meso-

eu-

polyhemerobic

hemeroby ..      Fig. 2.4  Increase in the hypothetical character of the potential natural vegetation (PNV) with increasing anthropogenic impact on ecosystems or land-use

is excluded within the original definition by Tüxen (1956). Accordingly, the pnv has to be hypothetically constructed “abruptly” (schlagartig) which means without any succession and subsequent vegetation and site development and changes, respectively. Strictly speaking, on a poor sandy site of the Northwestern German lowlands, which has been degraded to a Calluna heath by the traditional agriculture performed there for centuries (Plaggenwirtschaft), the “abruptly” constructed pnv would be a poorly growing pine stand. Nevertheless, in the course of a long-term succession, combined with an accumulation of organic material and nutrients, a mixed or pure beech forest can develop (Leuschner et  al. 1993; Leuschner 1997). For the restoration of a near-natural, self-­

systems according to the hemeroby concept (see Kowarik 2014). (After Zerbe 1998)

regenerating, long-term stable forest stand, however, it is precisely this succession that should be included, if necessary via an intermediate phase of a mixed oak forest (Zerbe and Jansen 2008). Despite these limitations, pnv maps can be applied for the assessment of naturalness and goal setting in nature conservation and ecosystem restoration, since a very large number of pnv maps at various scales are already available across whole Europe (Loidi and Fernández-González 2012). However, this should not be overestimated for practical purposes. Any pnv mapping must be based on near-natural remnants of vegetation in a cultural landscape that has been more or less altered by humans over centuries (for the methodology of pnv mapping, see Tüxen 1956 and Dierschke 1994).

41 2.3 · Potential or Hypothetical Reference State

Accordingly, remnants of natural forests (“primeval forests”; Korpel 1995; Scherzinger 1996) or such forest stands that naturally develop by excluding any further human impact (e.g., forests in national parks, natural forest reserves; 7 Chap. 7) have an important reference function for the restoration of near-natural forests in Central Europe (see above). Potential reference systems also play an important role in the restoration of rivers with their floodplains. The guiding principle for river restoration can be today’s potential natural water status (heutige potenzielle natürliche Gewässerzustand, hpnG), which can be derived from historical data and still occurring near-natural river sections with low human impact e.g., on the hydrogeomorphology, or is constructed hypothetically (EU 2000; Lüderitz and Jüpner 2009; Lüderitz et  al. 2009). The typification of Central European rivers also provides an important basis (7 Chap. 10).  



2

For the identification of reference systems and guiding principles on sites that have been strongly altered by human impact, such as urban-industrial environments and opencast mining landscapes, hypothetical objectives must sometimes be developed, as there are no corresponding references in the Central European cultural landscape (“novel ecosystems” according to Hobbs et al. 2006). For the restoration of forests on these novel sites, for example, abiotic site conditions (e.g., soil pH, water balance, nutrient content, pore volume) can be matched with the biology, ecology, and site requirements of Central European tree species and the regional tree species pool, respectively. Recommendations for the development of pioneer forests on former open-cast lignite mining areas are available, for example, from Tischew et  al. (2009). Particularly for post-mining landscapes, corresponding decision-making tools have been developed (de Vente and Aerts 2000; Ganas et al. 2004; Wagner et al. 2016).

43

Measures in the Practice of Ecosystem Restoration Contents 3.1

Doing Nothing (Passive Restoration) – 45

3.2

Stopping or Pushing Back Natural Succession – 45

3.3

 emoval or Reduction of Nutrients from Soil R and Water – 47

3.3.1 3.3.2

T errestrial Sites, Wetlands, and Peatland – 48 Lakes – 50

3.4

Removal of Pollutants by Bioremediation – 51

3.5

 estoration of the Water Balance, Rewetting, R and Hydro-morphological Interventions – 52

3.6

Erosion Control and Re-vegetation – 53

3.7

I ntroduction and Re-introduction of Diaspores and Target Species – 53

3.8

Inoculation with Mycorrhiza Fungi – 54

3.9

Repression of Undesirable Species by Pesticides – 54

3.10

Liming of Acidified Ecosystems – 54

3.11

Fertilisation – 55

3.12

Conclusion – 55

© Springer-Verlag GmbH Germany, part of Springer Nature 2023 S. Zerbe, Restoration of Ecosystems – Bridging Nature and Humans, https://doi.org/10.1007/978-3-662-65658-7_3

3

44

3

Chapter 3 · Measures in the Practice of Ecosystem Restoration

Many measures for the restoration of ecosystems are applied in different ecosystems and land use types, as they pursue the same goals. Measures of rewetting, for example, are carried out for the restoration of wet grassland, peatlands, and coastal salt grassland. Topsoil removal for the rapid reduction of excessive nutrient or pollutant loads in the soil is carried out for the restoration of species-rich grassland on eutrophicated agricultural sites, peatland (“shallow peat cutting”), heaths (sod cutting, “plaggen”), and urban-industrial ecosystems with sites contaminated with pollutants. If lake sediments are included, this measure is in principle also applied in aquatic systems by pumping out the nutrient-rich or polluted sediment. For this reason, an overview of measures applied in the practice of ecosystem restoration will be presented here. These will then be specified in the chapters of Part II regarding the particular ecosystem or land-use types. Measures influence abiotic site factors on the one hand, and biotic site

factors on the other, with both sets of measures, generally interrelated. Many of the measures presented below have been adopted for ecosystem restoration from other land-use practices, while others have been developed specifically for ecosystem restoration. For example, grazing and mowing have been applied in habitat and protected area management for decades (e.g., Wegener 1991; Jedicke et  al. 1996; Redecker et  al. 2002; Finck et  al. 2009; Plachter and Hampicke 2010). River restoration and the ecological fixation of eroded mountain slopes make use of the techniques provided by engineering biology (e.g., Hacker and Johannsen 2011; Florineth 2012; Grubinger 2015). Interventions in lakes to improve water quality and the habitat for aquatic organisms or phytoremediation bridge the gap to the practice of environmental chemistry (7 Chap. 11). Ecosystem restoration measures range from doing nothing (passive restoration) to extensive technical measures (. Fig. 3.1).  



Doing nothing Degraded ecosystem, land-use system or landscape

Mowing, grazing, selective removal of woody species Re-wetting through filling of ditches, erosion protection with geotextiles, tree plantation for forest restoration

Restored ecosystem, land-use system, or landscape

Topsoil removal, removal of lake sediment, dyke removal, transplantation of vegetation ..      Fig. 3.1  Measures for the restoration of ecosystems and ecosystem services with different intervention intensities, ranging from doing nothing to engineering biology, with some examples given

3

45 3.2 · Stopping or Pushing Back Natural Succession

 oing Nothing (Passive D Restoration)

different target states (7 Fig. 2.2) that are sometimes unpredictable under changing environmental conditions (e.g., the invasion Probably the simplest and often most cost-­ by non-native species). Although, doing effective measure to restore an ecosystem is nothing can lead to near-natural ecosystems to do nothing or passive restoration (Prach in the medium to long term and significantly and Pyšek 2001; del Moral et al. 2007; Prach reduce the costs of ecosystem restoration, it and Hobbs 2008). In this case, restoration is sometimes encounters problems of accepleft to natural ecological processes, often tance if, for example, natural processes lead combined with allowing natural succession to the age-related decay of forest stands or without further management and anthropo- the spread of undesirable species (7 Sect. genic impact, respectively. Passive restora- 22.3). Under certain conditions, however, tion is applied, for example, in the restoration doing nothing is not applicable as a restoraof near-natural forest ecosystems (7 Chap. tion measure. This is the case, for example, 7) or in the restoration of open-cast mining on terrestrial sites or in water bodies considareas or quarries (7 Chap. 20), whereby erably contaminated with pollutants e.g., specific restoration goals might be achieved with heavy metals or organic pollutants, and after only a few years (e.g., dry sandy grassthe self-purification capacity is ecologically, land with its characteristic flora, fauna, and spatially, and temporally insufficient to vegetation on a slag heap of open-cast ligrestore the ecosystem and its services by natnite mining) or after many decades (e.g., the restoration of near-natural forests). ural processes. Spontaneous succession can also be a restoration option when grassland is the target 3.2  Stopping or Pushing Back on former arable land (Prach et  al. 2014). Natural Succession Doing nothing in ecosystem restoration is in accordance with the nature conservation objective of the conservation of processes Central Europe would be naturally covered (“Prozessschutz”; 7 Chaps. 2 and 7), which by forests except for high mountain altitudes is implemented on a broad scale in national and very dry or very wet sites. After forests parks (. Fig. 3.2). Thus, passive restoration have been cleared for agricultural land use is strongly process-oriented and can lead to spontaneous and natural succession would lead to the re-establishment of woodland again in the medium to the long term when this land is abandoned. Accordingly, if habitats of the open cultural landscape are the subject of restoration, this succession is undesirable and is pushed back. In the case of grassland and heathland, this is achieved by regular mowing or continuous grazing. On fens, shrubs and trees are removed (“entkusselt”) if they become too dense and outcompete light-demanding plants or negatively influence the water balance of the fen. Guggenberger et al. (2014) compare the ..      Fig. 3.2  Natural development with dying old trees advantages and disadvantages of different and spontaneous regeneration in forest stands taken out of forestry use. (S. Zerbe, July 1991; in the Nature grazing management, taking alpine pastures as an example (. Table 3.1). Reserve Fauler Ort in Brandenburg) 3.1 















46

Chapter 3 · Measures in the Practice of Ecosystem Restoration

..      Table 3.1  Advantages and disadvantages of different grazing management on alpine pastures (According to Guggenberger et al. 2014, modified and supplemented)

3

Grazing management

Advantages

Disadvantages

Free roaming herd

No fence necessary

Higher animal losses (e.g., due to large predators such as wolves)

Low personnel costs

Difficult control

Selective feeding possible

No targeted mountain grassland restoration

Good animal health

Animals can leave the alp

Hardly any parasite load Shepherding

Herding

Continuous stocking

Low animal losses

Increased personnel costs

Good forage utilization

Only limited restoration

Targeted mountain grassland restoration

High personnel costs

Optimum forage utilisation

Fence costs

Low animal losses

Higher exposure to parasites

Continuous monitoring of animal health

Costs for cottage and dog

Selective feeding possible

Costs for fence

Hardly any parasite load

No mountain grassland restoration

Animals cannot leave the alp Easy control of the fence Rotational grazing

Targeted grazing

Costs and effort for fencing

Good forage utilization

Increased workload

Easy control of the sheep

Possible parasite load No mountain grassland restoration

In the case of anthropogenic forest stands such as coppice forests and coppice with standards, respectively, or old-growth oak stands with a high nature conservation value, only appropriate silvicultural interventions can halt the natural succession that would lead to beech or mixed beech forests

on most Central European forest sites (7 Chap. 7; . Fig. 3.3). For the restoration of semi-open pasture landscapes with a mosaic of forest patches, grassland, and single old trees, the re-introduction of forest grazing can also be a socio-economically viable alternative (7 Chap. 7).  





3

47 3.3 · Removal or Reduction of Nutrients from Soil and Water

too dry for woodland

very dry (Pinus)

dry

(Pinus)

many light-demanding trees and shrubs

Quercus petraea, robur or pubescens

Acer species Fraxinus excelsior

Carpinus betulus slightly damp

Fagus sylvatica

Betula pendula

damp

a

dominance range of beech

Quercus species, Sorbus species, Tilia species

slightly dry

Quercus species

Fraxinus excelsior

Tilia cordata

slightly moist

Carpinus betulus

Acer pseudoplatanus Ulmus glabra

moist Betula pubescens slightly wet

b

Quercus robur Betula

wet (Pinus)

Acer pseudoplatanus

Carpinus betulus

pubescens

Fraxinus ex. Alnus glutinosa

Ulmus species

very wet too wet for woodland

water highly acid

acid

slightly acid

..      Fig. 3.3  Ecogram showing the tree species forming forests under natural competition in the Central European climate along the entire range of ecological site conditions, from dry to wet or strongly acidic to alkaline soils; only, on very wet and very dry sites forests cannot grow. Due to the wide ecological range and the competitiveness of European beech (Fagus sylvatica), it would be predominant on most forest sites in Central Europe, and additionally a on very

3.3 

 emoval or Reduction R of Nutrients from Soil and Water

Nutrient removal is particularly important in the restoration of traditional and formerly extensively used habitats that, prior to degradation due to eutrophication, were characterised by a high species diversity and the occurrence of rare and endangered species. This applies, for example, to extensively

nearly neutral

neutral

alkaline

poor and acidic soils with a thick humus layer and b on sites with stagnating wetness and sandy soils (from Ellenberg and Leuschner 2010). On sites, naturally dominated by beech, the restoration or preservation of forest types which developed under anthropogenic impact (e.g., oak forests due to forest grazing or hunting) is only possible with silvicultural interventions and through forest habitat management, respectively

used arable land (7 Chap. 17), grassland (7 Chaps. 15 and 16), or heaths (7 Chap. 14). Nutrient removal may also be necessary in the case of peatland restoration, especially after agricultural use (7 Chap. 8). In most cases, this involves the nutrients nitrogen and phosphorus, which have accumulated in the topsoil as a result of direct or indirect inputs e.g., fertilisation or atmogenic depositions, and which promote the spread of species-poor, highly competitive  







48

3

Chapter 3 · Measures in the Practice of Ecosystem Restoration

vegetation. In the following, measures are presented that can be applied to remove nutrients from terrestrial sites or water bodies. These measures range from a continuous nutrient removal through appropriate longterm site management (Aushagerung) towards a rapid nutrient removal achieved by one strong intervention. 3.3.1

Terrestrial Sites, Wetlands, and Peatland

z Cultivation of Plants for Nutrient Removal

Through the cultivation of plants that have a high nutrient requirement and accumulate it in their above-ground biomass, nutrients (e.g., phosphorus) can be removed from the soil. Experiences with regard to ecosystem restoration are available for rye (Secale cereale), maize (Zea mays), and a couple of other grass species such as ryegrass (Lolium spec.) (Dyke et  al. 1982; Marrs 1993; Nie et al. 2010). Hereby, it is indispensable that the plant material is removed from the local nutrient cycle by mowing and harvesting. The addition of inorganic nitrogen can accelerate particularly the removal of phosphorus, as this increases biomass production and nutrient uptake (Marrs 1993).

z Grazing

Grazing is applied in particular for the restoration of species-rich, dry, or moist nutrient-­ poor pastureland under mesotrophic, acidic, or alkaline soil conditions or of anthropogenic heathland. Since the animals feed on the plants, grazing removes plant biomass and nutrients from the site. However, the animals must be removed from the restoration site after grazing, otherwise, their excrements will return the nutrients to the cycle of the target habitat. Grazing is a measure of ecosystem restoration with complex effects and serves to achieve various restoration goals, such as nutrient removal, halting succession towards shrubland and forests, diaspore transfer (functional habitat network through zoochorous dispersal), the re-introduction of local animal breeds, and/ or the restoration of traditional cultural landscapes. z Topsoil Removal and Topsoil Inversion

A very complex and often expensive measure of nutrient removal is topsoil removal on terrestrial sites or shallow peat removal on fens. Here, the heavily eutrophic topsoil is removed by machines to a depth of several decimetres and deposited elsewhere (. Fig.  3.4). This measure is applied in grassland (topsoil removal), heathland  

z Mowing

Repeated mowing and removal of the biomass can continuously remove nutrients from ecosystems on terrestrial and semi-­ terrestrial sites (Aushagerung). Depending on the natural site conditions (e.g., calcareous soils), the mowing frequency, and the nutrient load of the site, the success of this measure may only be achieved after decades or even not at all in foreseeable periods (e.g., Briemle 1999; Bakker et  al. 2002a, b). Accordingly, an efficient nutrient removal from the soil can only be achieved with a combination of other measures.

..      Fig. 3.4  Mechanical removal of vegetation and topsoil to restore a mountain heath in the Hochsauerland, Germany. (Photo with courtesy of W. Schubert)

49 3.3 · Removal or Reduction of Nutrients from Soil and Water

(choppering), and peatland restoration (peat stripping), partly as an application of traditional land-use practices such as sod cutting (plaggen) on heathland (7 Chap. 14). Topsoil removal leads to a sudden reduction in the nutrient load of the ecosystem to be restored but also has considerable disadvantages. Accordingly, the entire diaspore bank (7 Sect. 1.2.1) and the soil animals and microorganisms in the topsoil are also removed. The high costs of the measure (use of machinery, personnel costs) and, if necessary, the disposal of the removed soil material are limiting factors (7 Chaps. 23 and 25). Similar to the application of controlled burning or pesticides, such measures for the restoration of ecosystems must be reflected upon ethical principles and sustainability (7 Chap. 24). If only the uppermost centimetres or decimetres of the soil carry a heavy load with nutrients, ploughing or topsoil inversion and thus mixing the nutrient-rich topsoil with the nutrient-poorer subsoil can also lead to a reduction in nutrients. This measure is applied, for example, in the restoration of sandy dry grassland and at the same time creates open (safe) sites for the establishment of plant species with low competitiveness as well as site-specific insects (7 Chap. 16).  









z Controlled Burning

Controlled burning is also applied as a measure to reduce nutrient content, particularly for the restoration of heaths (7 Chap. 14), but with little success so far in terms of considerably changing the nutrient load (e.g., Marrs 1993; Härdtle et  al. 2009). The ­application of fire and topsoil removal as a measure of ecosystem restoration is discussed critically in 7 Chap. 24.  



z Artificial Soil Acidification

Marrs (1993) discusses artificial soil acidification in order, on the one hand, to increase the leaching of nutrients, which can be

3

achieved, for example, by adding acidic peat, sulphur, or pyrite. On the other hand, it is intended to create the site conditions for the establishment of target species on acidic soils. Elemental sulphur and ferrous sulphate, for example, have been applied in a restoration experiment on Calluna heaths (7 Chap. 14) in England to lower the soil pH on sites that have been used as arable land or grassland (Walker et  al. 2007a, b; Diaz et  al. 2008). Elemental sulphur is applied as pellets and microbially transformed to sulphuric acid in the soil. Ferrous sulphate also has an acidifying effect on soils. It binds phosphate into stable iron or aluminium complexes, thus reducing its availability to higher plants (Walker et  al. 2004a, b). This measure was intended to accelerate the development of abiotic site conditions (acidic and nutrient-poor soil) for the establishment of the characteristic heathland vegetation. However, such measures can also have negative effects on soil (e.g., release of toxic aluminium ions) and groundwater, so that their application, apart from the costs, must be considered very critically in ecosystem restoration.  

z Addition of Carbon

In addition to the removal of nutrients and soil, respectively, the addition of certain substances can also lead to a reduction in nutrients. Accordingly, the addition of carbon can reduce plant productivity in the restoration of species-rich meadows and pastures, sandy dry grasslands, mountain meadows, or heaths, especially after arable use, thereby giving those target species which have low nutrient requirements a competitive advantage (Morgan 1994; Török et  al. 2000; Blumenthal et al. 2003). Carbon addition e.g., in the form of sugar (Eschen et al. 2006), sawdust (Wilson and Gerry 1995; Reever Morghan and Seastedt 1999; Corbin and D’Antonio 2004; Spiegelberger et  al. 2009), or woodchips (Eschen et al. 2007), is intended to activate soil bacteria and fungi

50

3

Chapter 3 · Measures in the Practice of Ecosystem Restoration

to immobilize plant-available nutrients (Schmidt et  al. 1997; Blumenthal et  al. 2003). In this regard, experimental studies are available showing that carbon addition lowers the inorganic nitrogen concentration in the soil (Schmidt et al. 1997; Török et al. 2000) and reduces above-ground plant biomass (Michelsen et  al. 1999; Alpert and Maron 2000; Blumenthal et  al. 2003). Whether the observed changes in species composition (e.g., McLendon and Redente 1992; Michelsen et  al. 1999; Alpert and Maron 2000; Corbin and D’Antonio 2004; Perry et al. 2004) are actually related to the changed chemical soil conditions manipulated by the addition of carbon or are the result of other complex ecosystem processes (e.g., plant competition for light) must be revealed by further investigations, especially with regard to the functional groups of the plant species (Eschen et al. 2006). So far, this measure has hardly passed the experimental stage. Efforts and costs might be limiting factors for an application in practice. However, this measure offers an alternative to topsoil removal, especially in fragile ecosystems such as in alpine altitudes (Spiegelberger et al. 2009). z Application of Nutrient-Poor Substrate

To achieve more nutrient-poor site conditions in the topsoil after eutrophication, nutrient-poor substrate can be applied. This has been tested in practice, for example, in the restoration of sandy dry grasslands by applying nutrient-poor sand from deeper soil horizons (7 Chap. 16).

..      Fig. 3.5  The specialized boat “Manati” of the Ruhrverband for the removal of phytomass from water bodies. (Photo with courtesy of K. van de Weyer)

shores (e.g., Zerbe et al. 2013). Appropriate harvesting machines have been developed for this purpose (7 Chap. 11; . Fig. 3.5).  



z Suction of the Lake Sediment

In highly eutrophic lakes such as e.g., in urban areas or intensively used agricultural landscapes, the suction of the sludge from the lake bottom leads to nutrient removal (Roelofs et  al. 2002; 7 Chap. 11). Hereby, particularly the phosphorus load in the lake sediment should be considerably reduced. This measure is related with high efforts and costs. The sludge and lake sediments, respectively, may contain pollutants (e.g., heavy metals) and must therefore be carefully analysed under the given legal frameworks (e.g., Federal Soil Protection Act) before it is used, for example, in agriculture or disposed of.  



3.3.2

Lakes

z Harvesting of Phytomass

Similar to the mowing of terrestrial and semi-terrestrial habitats, the phytomass in lakes can also be removed frequently with the aim of nutrient reduction. Helophytes (e.g., common reed) or floating mats can be removed from the water body and lake

z Precipitation of Phosphorus

For the restoration of eutrophic lakes, also precipitating agents are applied, particularly iron and aluminium salts, which cause the precipitation of phosphorus through the formation of hardly soluble hydroxides and their sedimentation. In addition to an economic cost-benefit assessment, aspects of environmental ethics must also be taken into account in such lake restoration measures (7 Chap. 24).  

3

51 3.4 · Removal of Pollutants by Bioremediation

3.4 

 emoval of Pollutants by R Bioremediation

In addition to the approaches described above for the removal of nutrients, which - as in the case of topsoil removal and the suction of lake sediment, for example - can also be applied to soils and sediments contaminated with pollutants, certain organisms (plants, microorganisms) can also be used. These organisms either remove the pollutants from the soil, make them permanently immobile or transform pollutants into innoxious substances by chemical processes. Thus, formerly contaminated sites can be used for agriculture or forestry again (e.g.,

mining dumps) or as green space in settlement areas. These processes are summarized with the concept of bioremediation (Karigar and Rao 2011; Adams et al. 2015; Dzionek et  al. 2016). With phytoremediation, plants are used for the extraction of nutrients and pollutants from the soil (phytoextraction), for the accumulation in their biomass (phytoaccumulation), for the stabilization in the root zone through chemical processes (phytostabilization) or their precipitation in the root zone (rhizofiltration) (. Fig.  3.6). Other processes of phytoremediation encompass the degradation of pollutants by biochemical processes (phytodegradation) or the release of gaseous substances via the

..      Fig. 3.6  The different processes of phytoremediation in the plant and the soil. (Gomes 2012)



52

3

Chapter 3 · Measures in the Practice of Ecosystem Restoration

leaves (phytovolatilization). Phytoremediation is considered a cost-­effective and environmentally friendly measure to clean contaminated sites from e.g., heavy metals (Kumar et  al. 1995; Salt et  al. 1998; McGrath and Zhao 2003; Meuser 2012; Ali et  al. 2013; Dadea et  al. 2017). Worldwide, more than 500 plant species have been identified as hyperaccumulators up to now (Krämer 2010). The efficiency of the plant and the success of phytoremediation depends on various soil factors, such as soil type, pH, cation exchange capacity, and organic matter content (Rieuwerts et  al. 1998; Yoon et  al. 2006; Zeng et  al. 2011). Synergistic effects between higher plants and certain bacteria can be achieved when the microorganisms in the soil increase the availability of nutrients as well as pollutants to the higher plants (He et al. 2010; Misra et al. 2012; Oves et al. 2013; Ahemad 2015). The corresponding physiological and chemical mechanisms, respectively, underlying this interaction between higher plants and bacteria are outlined by Ahemad (2015). Hybrid poplars, for example, can be used for the remediation of soils with organic pollutants (e.g., atrazine, TNT, trichloroethylene) and willows (Salix spec.), hemp (Cannabis sativa s. l.) and linseed (Linum usitatissimum) can be applied for the remediation of soils contaminated with heavy metals (Pulford and Watson 2003; Kuzovkina and Quigley 2005; Gomes 2012). Common reed (Phragmites australis) as a “multipurpose” or “multifunctional” plant (Zerbe 2022) is not only applied in constructed wetlands due to its ability to purify water in the root zone (Gedan et  al. 2013; Köbbing et  al. 2013/2014) but can also be used for phytoremediation on terrestrial, semi-terrestrial, and aquatic sites (Windham et al. 2003; Mal and Narine 2004; Weis and Weis 2004; Kiviat 2013). In this context, root-associated bacterial communities play a crucial role (Borruso et al. 2015, 2016). In the future, bioremediation will play an increasing role with respect to novel con-

taminants such as pharmaceutical residues in water (e.g., Madukasi et  al. 2010; Rana et al. 2017). A potential for phytoremediation is also assumed for plants of salt grassland, especially in those coastal areas where there is an input of heavy metals and other pollutants from urban-industrial areas (Gedan et  al. 2009). The presence of oxygen in the rhizosphere leads to the mobilization and uptake of heavy metals by salt-grassland plants (Weis and Weis 2004). The tolerance of halophytes to salt stress is hereby considered to predispose them to stress due to heavy metal pollution (Williams et  al. 1994; Windham et al. 2003). Micro- and macro algae can be used for wastewater treatment. Under experimental laboratory conditions, species of the genus Chlorella and Scenedesmus, for example, very efficiently converted residues of pharmaceuticals and cosmetic products as well as caffeine from urban wastewater into volatile compounds (Matamoros et  al. 2015). The removal of heavy metals from wastewater by the algae (biosorption) also shows good results under laboratory conditions (Mehta and Gaur 2005; Shanab et al. 2012; Chekroun and Baghour 2013; Kipigroch et  al. 2016; see also Brenner et  al. 2008). After having used them for bioremediation, biofuels can be produced from these algae (Bohutskyi et al. 2016).

3.5 

Restoration of the Water Balance, Rewetting, and Hydro-morphological Interventions

Against the background of the very high importance of water as a natural resource for humans, the strong decline of water-­ influenced inland (wetlands, peatlands) and coastal habitats, and the numerous national and international initiatives to improve water quality and to restore aquatic habitats to a

3

53 3.7 · Introduction and Re-introduction of Diaspores and Target Species

“good ecological” status (e.g., European Water Framework Directive; 7 Table 21.1), the natural water balance and the restoration of near-natural water dynamics in the course of ecosystem restoration play an outstanding role. In the restoration of peatland and wet grassland, the rewetting of formerly drained sites is of great importance. The various measures, which can range from filling in drainage ditches to constructions for the artificial supply of water to the restoration sites, are described in detail in 7 Chap. 8. With regard to coastal salt grassland and the natural dynamics of rivers and their floodplains, the landscape water balance is restored by dyke deconstruction (7 Sect. 12.1). In the restoration of rivers with their aquatic and semi-terrestrial habitats, damming and other construction measures carried out in the past often have to be reversed or modified in a near-natural way. This may require strong interventions into the hydro-­ morphology with measures adopted from engineering biology, such as raising the bed of the river or introducing deadwood to influence the river course dynamics (7 Chap. 10).

3.7 









3.6 

Erosion Control and Re-vegetation

Introduction and Re-introduction of Diaspores and Target Species

In addition to the restoration of desired abiotic site conditions e.g., through rewetting or the reduction of soil nutrient content, the restoration of target vegetation, often combined with the re-introduction or stabilization of populations of rare and endangered species, plays a key role in ecosystem restoration. Thus, several decades of experiences on diaspore transfer as well as the introduction or re-introduction of target species are available in restoration ecology and restoration practice (e.g., Kiehl et al. 2010; 7 Chap. 4). Plant species can be introduced through the transfer of diaspores such as e.g., via seeds, mown material, or hay, or through planting (7 Chaps. 9, 15, and 20). The diaspores can be taken from donor sites which correspond in their species composition to the target vegetation of the restoration site. In general, it is recommended to use autochthonous seed material wherever possible. In addition, animals that have grazed on a donor site and carry diaspores in their hooves, fur, or faeces (endo- and exozoochorous dispersal; 7 Sect. 1.2.1) can contribute very effectively to the introduction of target species to a restoration site (7 Table 15.3). In the context of a functional habitat network, herds can thus also contribute to population exchange between grazed ecosystems. Similarly, the introduction of topsoil with an appropriate soil seed bank can promote the target vegetation on a restoration site. This is particularly emphasized in the restoration of subalpine and alpine ecosystems or the re-vegetation of raw soils (7 Chaps. 9 and 20), because this transfers not only the diaspores and soil nutrients but also vegetative plant parts, soil organisms, and the mycorrhizal fungi, the latter playing a particular role for the plant growth on the extreme sites of alpine altitudes (Lesica and Antibus 1986) or for the colonization of raw  







If vegetation cover needs to be restored e.g., on over-utilized, heavily eroded ski slopes at high altitudes in the Alps or on mining dumps, biological engineering measures are often applied. Eroded slopes can be fixed with geotextiles, grassland sods, rolled turf, or reed mats (7 Chaps. 9 and 20). Transplantation of vegetation together with the topsoil (sod transplantation) from a donor site can also accelerate the development of vegetation cover. In addition, plantings of shrubs and trees that have a high vegetative regeneration capacity (e.g., willows, genus Salix) can rapidly stabilize slopes at risk of erosion (Kuzovkina and Quigley 2005).  



54

3

Chapter 3 · Measures in the Practice of Ecosystem Restoration

soils of open-cast lignite mining sites. When revegetating raw soils on mining sites, Kirmer and Tischew (2006), by referring to relevant studies, recommend removing the seed-rich topsoil from the donor site to a maximum depth of about 20 cm and spreading it with a maximum layer thickness of 3–5  cm. In other restoration projects, humus-rich topsoil from existing forests was transferred to accelerate forest development on former open-cast lignite mining areas (Wolf 1987, 2000; Borchers et al. 1998).

3.8 

Inoculation with Mycorrhiza Fungi

target vegetation is to be restored or target species are to be introduced or their populations stabilised, the regulation of undesirable species might be of major importance. Undesirable species are, for example, woody plants in grassland, dominant grasses on heaths or sandy dry grassland, or invasive herbs, perennials, or woody plants which are considered non-native. This is achieved either through the measures already described for influencing the abiotic or biotic site factors (mowing, grazing, nutrient removal, diaspore transfer, etc.), or undesirable species are deliberately suppressed or eradicated, as is the case, for example, with the cutting of woody plants on peatland (7 Chap. 8). For invasive non-native species, in particular, multifaceted management recommendations are made for their suppression (see compilation by Kowarik 2010), although this practice and the considerations on which it is based are critically reflected in 7 Chap. 5. Increasingly, the application of pesticides is also reported in the context of “ecosystem restoration” such as, for example, for the repression of bracken (Pteridium aquilinum) on coastal heaths (Måren et  al. 2008; Lewis and Shepherd 2009) or purple moor-grass (Molinia caerulea) on wet heathland (Todd et  al. 2000; Marrs et al. 2004; see also Pywell et al. 2011). However, as it will be discussed in 7 Chap. 23, the application of synthetic pesticides in ecosystem restoration can hardly be justified (see also Zerbe and Ott 2021).  

As already outlined in 7 Sect. 1.2.1, the symbiosis of higher plants and fungi is of crucial importance for vegetation development and plant growth on many sites. Many higher plants on nutrient-poor dry sites, such as calcareous grasslands, or on raw soils which have been produced during open-cast mining, are dependent on mycorrhiza. In order to accelerate the development of vegetation and the growth of target species e.g., in the re-vegetation process of mine sites or in afforestations on post-­mining areas, various practices of introducing or inoculating mycorrhizal fungi are recommended. Thus, the mycorrhizal fungi can be introduced, for example, together with the transfer of topsoil or the rooted soil horizon along with the seedlings and saplings when planting the target species (Lesica and Antibus 1986; van der Heijden et al. 1998; Renker et al. 2004; Gebhardt et al. 2007; Asmelash et al. 2016; Koziol and Bever 2017).  

3.9 

Repression of Undesirable Species by Pesticides

Particularly in the case of restoration projects in which, following a historical or current reference system (7 Fig. 2.2), specific  





3.10 

Liming of Acidified Ecosystems

Liming is a commonly applied measure to counteract the negative effects of acidification of, for example, peatlands (van Duren et  al. 1998; Sliva and Pfadenhauer 1999; Grootjans et al. 2006) or lakes (Hupfer and Hilt 2008; Björk 2014). Successful examples from the sanitation of acidified lakes

3

55 3.12 · Conclusion

with a low alkalinity are available from the Netherlands and Sweden (Roelofs et  al. 2002; Björk 2014). However, this measure is not without controversy, as direct massive liming of acidified lakes can lead to sedimentation of lime and an undesirable mobilization of nutrients due to increased decomposition rates of organic matter at the lake bottom (Roelofs et al. 1994; Hölzel et  al. 2009). These negative consequences are also known from forest ecosystems. In Central European forests, liming was widely applied as a countermeasure to soil acidification in the 1990s. After this short period of forest liming, this measure was stopped due to the undesirable rapid nutrient mobilization (on ecosystem processes following forest liming, see Meiwes 2013). Review studies taking into account longterm consequences of liming show that this measure may indicate success in the short term but are often ineffective in the long term or lead to negative environmental effects (7 Chap. 11).  

3.11 

Fertilisation

Large-scale fertilization on agricultural land, especially with nitrogen, phosphorus, and potassium, the direct nutrient inputs from urban-industrial areas through groundwater and surface waters as well as atmogenic nutrient inputs lead to soil and water eutrophication throughout Central Europe which is one of the most important drivers of ecosystem degradation and species decline, particularly regarding habitats with a high nature conservation value. Under certain conditions, it can, nevertheless, make sense to add nutrients in the form of fertilization during ecosystem restoration. This has already been explained in 7 Sect. 3.3.1 with the example of grass cultivation for the extraction of nutrients from  

eutrophicated soils (e.g., phosphorus). Additionally, initial fertilisation is recommended for the restoration of subalpine and alpine grassland in order to accelerate vegetation development and vegetation cover, respectively, and thus, erosion protection in these high mountain altitudes (7 Chap. 9).  

3.12 

Conclusion

In many ecosystem restoration projects, different measures are applied simultaneously or successively. After topsoil removal, for example, seeds of the target species are often introduced. Those measures that are specific to the ecosystem or land-use type being restored are outlined in 7 Chaps. 7 to 20. An overview of the measures and procedures frequently applied in ecosystem restoration is given in . Table  3.2, which also highlights possible problems. When considering ecosystem restoration measures, it should not be overlooked that some of the interventions are precisely those that contribute or have contributed to ecosystem degradation. Anthropogenic heathland in Central Europe, for example, was created by the continuous removal of the vegetation and organic topsoil for agriculture (sod cutting or “Plaggenwirtschaft”; 7 Chap. 14), which led to an interruption of the natural nutrient cycles and a nutrient impoverishment of the soils. However, those measures are applied today to restore these heaths. Ecosystem degrading measures also include burning, artificial eutrophication, and the application of pesticides. These “restoration” measures may be appropriate from an ecological point of view, but whether they also meet socio-economic or environmental ethical requirements needs to be carefully considered before the restoration intervention (7 Chaps. 23 and 24).  







56

Chapter 3 · Measures in the Practice of Ecosystem Restoration

..      Table 3.2  Frequent measures of ecosystem restoration in Central Europe with objectives, examples of ecosystems and land-use types to be restored, and potential problems

3

Restoration measure

Objective

Examples of ecosystems and land-use types

Potential problems

Do nothing

Ecosystem development without direct human intervention (possibly, after initial measures), protection of natural processes

Near-natural forests, former open-cast mining areas, still largely functioning peatland, coastal salt grassland in combination with dike removal or relocation

Long time required to achieve restoration goals, natural ecosystem development deviates from the restoration objectives

Mowing

Keeping grassland open, repressing succession towards shrub and forest vegetation, nutrient reduction through biomass removal

(Wet) meadows, nutrient-poor grassland, heaths, traditional agroforestry systems

Costs, use or disposal of the grassland biomass, farm abandonment and thus, lack of agricultural practice

Grazing

Maintenance and management of a specific ecosystem or land-use type of an open or semi-open landscape, nutrient removal, diaspore input from grazing animals, re-introduction of old livestock breeds, restoration of traditional open land-forest habitat complexes

Pasture and pasture landscapes, heath, sandy dry grassland, calcareous grassland, forest pasture and traditional agroforestry systems, coastal and inland salt grassland, subalpine and alpine grassland

Different grazing behaviour of livestock, grazing intensity too low or too high, no availability of farmers (e.g., after farm abandonment) or herders, marketing of animal products difficult or not possible

Diaspore introduction or re-introduction through seeds, mulching or hay

Restoration of target plant communities and species assemblages, respectively, acceleration of vegetation development, erosion control

Meadows on mesotrophic, acidic, and base-rich soils, dry grassland, heath, mining and waste dumps, open-cast mining areas

Introduction of undesirable or invasive species, insufficient quantities of seeds, seeds eaten by animals, lack of safe sites for germination and seedling establishment

Re-introduction of certain plant and animal species through sowing, planting, and the re-introduction of reproductive animal individuals

Stabilization of populations of endangered species, increasing diversity (species pool)

In principle, all ecosystem and land-use types in near-natural landscapes or traditional cultural landscapes

Site conditions not suitable for the establishment of the species, biology and ecology of the target species not sufficiently investigated, costs, lack of acceptance (e.g., large predators)

3

57 3.12 · Conclusion

..      Table 3.2 (continued) Restoration measure

Objective

Examples of ecosystems and land-use types

Potential problems

Cultivation of plant species for phytoremediation

Nutrient removal after eutrophication, pollutant removal or immobilization

Arable land, nutrient poor grassland, mining and waste dumps, urban-industrial ecosystems

Long duration of nutrient removal, insufficient plant growth and biomass production, disposal of the harvested (eventually contaminated) biomass

Topsoil or shallow peat removal

Nutrient removal after eutrophication

Nutrient-poor meadows and pastures, heathland, lowland mires

Costs, disposal of soil or peat, removal of the soil seed bank, lack of acceptance

Topsoil coverage

Transfer of topsoil or nutrient-poor sandy soil from another site, diaspore transfer, transfer of mycorrhizal fungi

Subalpine and alpine grassland, open-cast mining areas, mining dumps, sandy dry grassland

Costs, soil erosion on steep slopes, damage to the donor ecosystem

Ploughing or topsoil inversion

Nutrient reduction in the topsoil, creation of bare soil and thus, safe sites

Arable land, nutrient-­ poor grassland, sandy dry grassland

Damage of the soil seed bank, promotion of ruderal or invasive species, disturbance of the soil structure

Controlled burning

Halting shrub and tree encroachment and forest succession on open land, nutrient reduction in topsoil

Heathland

Costs, release of carbon into the atmosphere, damage to populations of less mobile animal species, lack of acceptance, uncontrollable fire

Suction of lake sediment and sludge, respectively

Nutrient reduction or removal

Lakes

Costs, disposal of possibly contaminated sludge, only short-term effects in case of further nutrient input from the catchment area

Precipitants (e.g., iron and aluminium salts)

Reduction of phosphorus in the water body by artificial sedimentation

Lakes

Costs, only short-term effects with further nutrient input from the catchment area, phosphorus can be remobilised (continued)

58

Chapter 3 · Measures in the Practice of Ecosystem Restoration

..      Table 3.2 (continued)

3

Restoration measure

Objective

Examples of ecosystems and land-use types

Potential problems

Liming

Raising the pH value of acidified waters

Lakes

Rapid mobilisation of nutrients and subsequent eutrophication, only short-term effects

Rewetting (incl. dyke deconstruction and relocation)

Restoration of the natural landscape water balance and natural water dynamics

Peatland, wetland, sewage farmland (Rieselfelder), coastal and inland salt grassland

Unforeseen ecological processes, methane emissions from peatlands, lack of regeneration of target species, lack of acceptance

Interventions in the hydrogeomorphology of rivers

Restoration of the natural river dynamics and biocenoses of the floodplains, creating water retention areas

Rivers with their floodplains, oxbow lakes

Costs, lack of acceptance, unforeseen ecological processes, spread of undesirable species

Re-vegetation of bare soil with geotextiles, grassland sods, rolled turf, reed mats, sod transplantation, seeding, etc.

Erosion control, promotion of natural succession

Open-cast mining areas, mining and waste dumps, degraded ski slopes, river banks

Costs, lack of regeneration of target species

59

Re-introduction of Plant and Animal Species Contents 4.1

Re-introduction of Plant Species – 60

4.2

Re-introduction of Animal Species – 65

4.3

 ase Study: Re-introduction of the C Brown Bear in Trentino, Northern Italy (EU Project LIFE Ursus) – 73

© Springer-Verlag GmbH Germany, part of Springer Nature 2023 S. Zerbe, Restoration of Ecosystems – Bridging Nature and Humans, https://doi.org/10.1007/978-3-662-65658-7_4

4

60

4

Chapter 4 · Re-introduction of Plant and Animal Species

The re-introduction of species is understood as all measures for the support of a population threatened with extinction in a certain area or a restoration site (reinforcement) or when a plant or animal species that has disappeared within its natural range due to anthropogenic impact is artificially brought back (re-introduction; IUCN/SSC 2013). The latter means that the species in question is returned to the local or regional species pool (7 Fig. 1.5) after land-use impact or over-­exploitation of the natural resources has led to its disappearance or the species has been deliberately eradicated, such as large carnivores and megaherbivores. Re-introduction thus also compensates for the possibly low dispersal capacity of certain species in a highly fragmented cultural landscape. The re-introduced species may be Red List, target, key or umbrella species (7 Sect. 6.3). In addition to international agreements and recommendations (Rat der Europäischen Gemeinschaften 1992; UN 1992a; IUCN/SSC 2013), the German Federal Nature Conservation Act (BNatschG § 37, paragraph 1 no. 3) also provides for the re-introduction of species by explicitly stating “the re-­introduction of animals and plants of displaced wild species in suitable habitats within their natural range”. Additionally to the general objective of restoring specific biocenoses in their habitats e.g., by introducing plant material containing diaspores, this chapter focuses on the reintroduction of specific species. The specific measures include, for example, in the case of animals, the release of reproductive individuals and, in the case of plants, the sowing or planting of the species concerned. While reinforcement and re-introduction are oriented towards the current, historical or original range of a species, species can also be established in an area outside their natural range for conservation purposes, which is referred to as translocation or assisted migration (Koch and Kollmann 2012a). This is justified, for example, as compensation for species extinction due to climate change (Thomas et al. 2004; Thomas  



2011). However, in contrast to re-introduction or stabilization of a population in its natural range, this is controversial (HoeghGuldberg et al. 2008; Loss et al. 2011; Weeks et al. 2011), especially when such translocations are linked to the problem of “biological invasions” (Ricciardi and Simberloff 2009; 7 Chap. 5). In recent decades, extensive experience has been gained worldwide with the re-­ introduction of animal and plant species, which has been compiled in review works (Falk et al. 1996; Seddon et al. 2005; Godefroid et al. 2011; Ewen et al. 2012; Maschinski and Haskins 2012; Jachowski et al. 2016). A search using the keyword “reintroduction” in the literature database for nature conservation and landscape management of the German Federal Agency for Nature Conservation, for example, yielded approximately 2100 literature references (BfN 2016c: cut-off date 08.01.2018). A database analysis by Koch and Kollmann (2012a) showed that there are only about 10% reintroduction projects for plants in Germany, but a disproportionately higher percentage of animals. Mammals and birds are more frequently the subject of re-­introduction projects than average (Seddon et al. 2005; Koch and Kollmann 2012a). A certain proportion of re-introductions of animal and plant species, especially by nature lovers or local nature conservation groups, is likely to elude literature research, as this is not documented.  

4.1

 e-introduction of Plant R Species

In an extensive literature review (including grey literature, i.e., literature not published in scientific journals), supported by surveys, Godefroid et al. (2011) identified over 230 re-­introduction projects for plant species in Europe (see . Table 4.1). They quantify the success of the re-introduction based primarily on the criteria of persistence and reproduction (flowering, fruiting) of the ­  

4

61 4.1 · Re-introduction of Plant Species

..      Table 4.1  Examples for the re-introduction of plant species in Central and Western Europe, including the Alps as a measure of restoration, with an assessment of re-­introduction success during the observation period (Based on the criteria of Primack and Drayton 1997) Plant species

Geographical region

Ecosystem or land-use type

Observation period or monitoring [years]

Assessment of the success of the measure during the observation period

References

Adenophora liliifolia (Ladybell)

Bavaria, Lower Isar Valley

Hardwood floodplain

6

+

Scheuerer and Späth (2005)

Aldrovanda vesiculosa (Waterwheel)

South Bohemia, Czech Republic

Mesotrophic fens rich in sedges

10



Adamec (2005)

Anthericum ramosum (St. Bernard’s-lily)

Bavaria, north of Munich

Calcareous grassland

3

+a

Röder and Kiehl (2007)

Arenaria grandiflora (Large-flowered sandwort)

Paris, Fontainebleau

South-exposed, calcareous sandy and rocky sites

7



Bottin et al. (2007)

Arnica montana (Arnica)

Bavarian Vogtland, northern Fichtelgebirge

Nutrient-poor meadows and matgrass grasslands

4

+

Blachnik and Saller (2015)

Asplenium scolopendrium (Hart’s tongue fern)

Harz, southern Lower Saxony

Gypsum doline with slope forest (Fraxino-­ Aceretum)

10

+

Becker and Becker (2010)

Calla palustris (Marsh calla)

Vosges

Alder forest, river banks

> 35

+

Muller (2009)

Cypripedium calceolus (Lady’s slipper orchid)

Middle Franconian Alb, Bavaria

Light pinespruce forests

3

+

Brunzel and Sommer (2016)

Gentianella lutescens (Carpathian gentian)

Eastern Erzgebirge

Mountain meadows or matgrass grassland

5

+

Brunzel et al. (2017)

Helosciadium repens (Creeping marshwort)

Schleswig-­ Holstein

Grazed floodplain grassland (Potentillion anserinae) on pond and lake shores

Until 2

+b

Burmeier and Jensen (2009) and Lütt (2009)

(continued)

62

Chapter 4 · Re-introduction of Plant and Animal Species

..      Table 4.1 (continued)

4

Plant species

Geographical region

Ecosystem or land-use type

Observation period or monitoring [years]

Assessment of the success of the measure during the observation period

References

Juncus atratus (Black rush)

Northeast Germany

Floodplain grassland along the Havel (Potentillion anserinae)

1



Burkart et al. (2010)

Luronium natans (Water-­ plantain)

Schleswig-­ Holstein

Sparsely vegetated shores of shallow, nutrient-poor to moderately nutrient-rich peat ponds

1

+

Lütt (2009)

Myricaria germanica (German tamarisk)

Isar floodplain, Bavaria and along various rivers in Carinthia

Largely vegetation-free riverbanks disturbed by regular flooding

10 years). The overall goal must be to establish viable populations that can persist without further human support or with a habitat-specific management (Griffith et al. 1989; Sarrazin and Barbault 1996; Bell et al. 2003). Godefroid et al. (2011) also emphasize that the quantification of unsuccessful projects from literature data is almost impossible because they are too rarely published (see Berg 1996), which may in general hold true for unsuccessful restoration projects of any kind. Thus, the re-introduction of plant species still seems to follow the trial-and-error principle. Nevertheless, some examples of long-­ term monitoring and success control are available (7 Chap. 6). Becker and Becker (2010), for example, assessed the relocation of the hart’s tongue fern (Asplenium scolopendrium) from an active gypsum quarry to a nearby gypsum doline. Although, a few plants had died at the new site, the other plant individuals showed biomass growth and regeneration over an observation period of 10 years (. Fig. 4.1). The re-introduction of the common water nut (Trapa natans)  



25

a

b

20

80 Number of progeny per transplanted plant

Proportion of sporulating plants (%)

4

Chapter 4 · Re-introduction of Plant and Animal Species

60 40 20 0

15 10 5 0

0a 0b

2

4

6

8

10

Years after planting ..      Fig. 4.1  Proportion of relocated individuals of hart’s tongue fern (Asplenium scolopendrium) with spores a and number of progenies per relocated plant b over a 10-years period (means and standard devia-

0a 0b

2

4

6

8

10

Years after planting tion are shown; ANOVA with repeated measures). 0a, spring 1999 (planting date), 0b, summer 1999. (From Becker and Becker 2010)

65 4.2 · Re-introduction of Animal Species

as a compensation for road construction in the Elbe floodplain, which was carried out between 1995 and 1999, was also considered successful by Bolender et al. (2015) after 19 years. There, preliminary studies on the ecology and water chemistry of potential restoration sites helped to identify 15 potential sites, in each of which up to 10 mature fruits, protected against herbivory by “protective enclosures”, were deployed. To monitor success, five vitality levels were differentiated, ranging from level 0 (no establishment of the plant) to 4 (extensive floating leaf formation, presence of numerous mature fruits). Population sizes of water nut ranging from 0.6 to 15 ha with the highest vitality levels of 3 and 4 were identified in six sites ranging in size from approximately 1 to 40 ha in 2014. Bolender et al. (2015) thus assume that the water nut population is stable on these restoration sites. In addition to ecological site factors, which can have a limiting effect on re-­ introduction success, costs or acceptance by people can also be problematic (7 Fig. 25.1). Kiehl (2009), for example, states the cost of seeding and planting selected target species on calcareous grasslands (e.g., Pulsatilla patens and Anthericum ramosum). Thereby, the costs of planting individuals which have been raised in a greenhouse are disproportional high compared to the reintroduction success (7 Sect. 23.6; 7 Table 23.3). The acceptance of re-introduction projects can be increased by appropriate strategies in the public. In a project for the re-introduction of arnica (Arnica montana) in the Bavarian Vogtland and the Fichtelgebirge, the nature conservation management of the species is specifically linked to its use, which can compensate for the costs and ultimately also lead to economic benefits (Blachnik and Saller 2015). In addition to the use of arnica as a medicinal plant, the public is also made aware of

such “services” of the plant species with appropriate information. . Table 4.1 lists selected re-introduction projects and studies on the re-introduction of plant species in Central and Western Europe. The target habitats are mostly wet meadows, peatland or spring sites, or dry and nutrient-poor grassland, i.e., habitats that have become rare in Central and Western Europe and whose existence is threatened. These re-introduction projects reflect various life forms and taxa, respectively, which range from mosses (e.g., Scorpidium scorpioides) and ferns (e.g., Asplenium scolopendrium) to grasses and rushes (e.g., Juncus atratus), herbs, and woody plants (e.g., Myricarica germanica). This compilation makes no claim to completeness, but clearly shows that monitoring and success control, respectively, hardly extend beyond a period of 10 years.  

4.2







4

 e-introduction of Animal R Species

Examples of the re-introduction of animal species in Central Europe and other parts of Europe are shown in . Table 4.2. These are often vertebrates which, as umbrella species, also reflect the quality of the restored habitats such as wetlands, rivers or forests (7 Sect. 6.3). For animal species, observation and monitoring periods of up to 50 years are much longer than for plant reintroduction projects. The international programme “Rhine” or currently “Rhine 2020” has been working since 1985 on the goal of enabling migratory fish species such as Atlantic salmon (Salmo salar) and sea trout (Salmo trutta trutta) to return to the restored river habitats of the Rhine and its tributaries (IKSR 2015). Part of the programme includes restoration measures to improve fish migration routes (e.g.,  



66

Chapter 4 · Re-introduction of Plant and Animal Species

..      Table 4.2  Examples of the re-introduction of animal species (with a focus on Central Europe and the Alps) as a measure of restoration, with an assessment of the re-introduction success during the observation period (Based on the criteria of Primack and Drayton 1997) Animal species

Geographical region

Ecosystem or land-use type

Observation period or monitoring [years]

Assessment of the success of the measure during the observation period

References

Bison bonasus (European bison or wisent)

Rothaargebirge

Beech and spruce forests, < 10% open land

3

o

Kuemmerle et al. (2011) and Tillmann et al. (2013)

Castor fiber (European beaver)

Different regions of Europe

Rivers, floodplains, wetlands

> 50

+

For example, Sjöberg and Ball (2011) and Swinnen et al. (2017)

Mustela lutreola (European mink)

Saarland

River floodplain of the Ill and its tributaries

2

o

Peters et al. (2009)

Lynx lynx (Eurasian lynx)

Different regions of Europe

Large, contiguous woodland

> 45



For example, Engleder (2004), von Arx et al. (2009), and Schnyder et al. (2016)

Ursus arctos (Brown bear)

Trentino, Northern Italy

Mountain forests

15

+

For example, Tosi et al. (2015); see also case study in this chapter

Ciconia ciconia (White stork)

Various regions of Europe e.g., Rhineland-­ Palatinate

Open to semi-open landscapes such as e.g., river floodplains with wet meadows

> 50

+

For example, Bloesch (1956), Feld (2000), Schaub et al. (2004), and Stoltz and Helb (2004)

Falco peregrinus (Peregrine Falcon)

Hesse

Buildings

35

+

Brauneis (2011)

4 Mammals

Birds

4

67 4.2 · Re-introduction of Animal Species

..      Table 4.2 (continued) Animal species

Geographical region

Ecosystem or land-use type

Observation period or monitoring [years]

Assessment of the success of the measure during the observation period

References

Gypaetus barbatus (Bearded vulture)

Alps

Habitats above the timber line

30

+

For example, Frey and Walter (1989) and Schaub et al. (2009)

Strix uralensis (Ural owl)

Dürrenstein, Austria

Mixed spruce-fir-beech forest

5

+

Kohl and Leditznig (2014)

Tetrao urogallus (Western capercaillie)

Various federal states in Germany

Mixed coniferous-­ deciduous forests

6–30



Siano and Klaus (2013)

Tetrastes bonasia (Hazel grouse)

Franconian Forest in Thuringia

Spruce and beech forests

7

o

Klaus et al. (2009)

Bombina variegata (Yellow-­ bellied toad)

Hesse

Pasture in the floodplain with small spawning waters

6

+

Nicolay and Nicolay (2015)

Hyla arborea (European tree frog)

Lower Saxony, North Rhine-­ Westphalia

Natural and artificial small water bodies with reed belt

> 25

+

Clausnitzer and Clausnitzer (1984), Meier et al. (2000), Glandt and Kronshage (2004), Brandt (2007), and Durrer (2014)

Lacerta viridis (European green lizard)

Bandenburg

Heathland with pine trees on nutrient-poor sandy soils and road embankments

7



Schneeweiß (2012)

Natrix tessellata (Dice snake)

Saxony

Rocky banks of the Elbe river near Meißen

15



Strasser and Peters (2016)

Amphibians

Reptiles

(continued)

68

Chapter 4 · Re-introduction of Plant and Animal Species

..      Table 4.2 (continued) Animal species

4

Geographical region

Ecosystem or land-use type

Observation period or monitoring [years]

Assessment of the success of the measure during the observation period

References

River Rhine with tributaries

River Rhine and its tributaries with spawning habitats

> 20

+

Roche (1994), Gerlier and Roche (1998), and IKSR (2015)

Aeshna viridis (Green hawker)

Lower Saxony

Small water bodies with water soldiers (Stratiotes aloides)

3

+

Kastner et al. (2016)

Euphydryas aurinia (Marsh fritillary)

Brandenburg

Nutrient-poor to moderately nutrient-rich calcareous lowland mires with extensive use

10

− (on 5 out of 7 re-­ introduction sites), + (on 2 sites)

Kretschmer et al. (2016)

Fishes Salmo salar (Atlantic salmon) and S. trutta trutta (Sea trout) Invertebrates

+ successful, o indifferent, − not successful

fish passes at barrages) and river habitats and riparian structures, respectively. As the salmon returns to its rivers of origin to spawn, stocking with “fingerlings” (juvenile salmon grown from eggs) is carried out. Within a continuous monitoring along the Rhine, adult salmons are counted. Thus, an increase in the salmon population was observed until 2007, but a decline thereafter (. Fig. 4.2). Although, the salmon has readopted the Rhine and some of its tributaries as spawning habitat, a stable population has not yet been reached in the Rhine catchment. Limiting factors for the re-introduc 

tion of salmon into the Rhine and its tributaries are illegal fishing (despite a fishing ban), the loss of juvenile salmons through predatory fish and cormorants, and high mortality rates during the passage of hydropower plants. In addition, increased “marine mortality” has been observed over the past two decades, without its causes and environmental mechanisms being sufficiently understood (IKSR 2015; 7 Sect. 13.2). Since the decline of salmon since 2007 correlates with the decline of sea trout, environmental factors across species (e.g., the lack of longitudinal river continuity) are  

4

69 4.2 · Re-introduction of Animal Species

900 800 Deltarhein 700 Niederrhein

Number

600

Mittelrhein Oberrhein

500

Hochrhein

400 300 200 100 0

Year Deltarhein Niederrhein

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 0

0

0

0

23

11

17

15

5

97

225

134

103

97

65

56

50

110

80

82

76

57

96

84

42

1

2

10

18

9

7

16

13

52

76

365

96

242

191

135

244

342

556

385

314

398

205

137

169

221

Mittelrhein

0

0

1

0

0

1

5

12

5

48

56

31

45

59

42

14

27

46

44

68

27

10

18

15

18

Oberrhein

0

0

0

0

0

9

24

5

7

3

76

61

96

93

73

49

70

93

161

108

57

120

92

36

159

Hochrhein

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

..      Fig. 4.2  Numbers of adult salmon in the Rhine and its tributaries in the period 1990–2014 within the continuous monitoring of the programme “Rhine” and “Rhine 2020”. (IKSR 2015)

assumed. The migratory fish species salmon and sea trout are regarded as indicator and umbrella species at the level of the entire river basin, as they allow an environmental assessment on the quality and functionality of the entire river system. Since they also depend on a transition between salt and fresh water, they link the river and sea habitats. Thus, according to IKSR (2015), special attention should be paid to migratory fish species not only in the implementation of the European Water Framework Directive (WRRL; EG 2000; 7 Sect. 10.5), but also in the implementation of the Marine Strategy Framework Directive (MSRL; EU 2008; 7 Sect. 13.4). Probably no re-introduction of species is more emotionally and controversially discussed in Europe than that of the large carnivores lynx (Lynx lynx), wolf (Canis lupus) and brown bear (Ursus arctos). In northern Europe, there is also the wolverine (Gulo gulo), which is currently by far the rarest species of these large carnivores in Europe, with about 1200 individuals in Scandinavia  



(Linnell 2014). Numerous topographic names still attest to the fact that bear, lynx, and wolf were once widespread in Europe, such as e.g., “Bärental”, “Bärenbad”, “Bärenfalle” or “Wolfsgruben” (e.g., Broggi 1973; LAGIS 2016). However, these animal species were exterminated by hunting and poaching in Germany and many regions of Europe until the beginning of the twentieth century. In addition to the use of these animals and their products (e.g., meat, fur) and as hunting trophies, it was primarily the endangerment of livestock (e.g., sheep, goats) and a deep-­ rooted human fear of these animals that led to their extinction. Mythology, cult, fairy tales, and heraldry bear witness to the conflicting human perceptions of these large carnivores, ranging from a beast to a symbol of strength, freedom, or other positive human character attributes (Egger 2001). Today, brown bear as well as wolf and lynx are under international and/or national protection (Mech and Boitani 2010a; Breitenmoser et al. 2015; McLellan et al. 2017).

70

Chapter 4 · Re-introduction of Plant and Animal Species

a

b

c

d

4

..      Fig. 4.3  Distribution of brown bear a, European lynx b, wolf c, and wolverine d (state: 2011). Dark blue areas indicate permanent occurrence, light blue spo-

radic occurrence in Europe; the numbers indicate the different populations and the orange lines their boundaries. (From Chapron et al. 2014)

4

71 4.2 · Re-introduction of Animal Species

.       Table 4.3  Size and status of current wolf populations in Europe (LCIE 2016) Populations in Europe (for the numbers, see . Fig. 4.3)

Countries

Population size (state: 2012)

Development trend

Scandinavia (1)

Norway, Sweden

260–330

Increasing

Karelia (2)

Finland

150–165

Declining

Baltic States (3)

Estonia, Latvia, Lithuania, Poland

870–1400

Stable

Central European Lowlands (4)

Germany, Poland

36 Packs

Increasing

Carpathians (5)

Slovakia, Czech Republic, Poland, Romania, Hungary, Serbia

3000

Stable?

Minarian Alps, Balkans (6)

Slovenia, Croatia, Bosnia and Herzegovina, Montenegro, Albania, Serbia, Greece, Bulgaria

3900

Stable?

Italian Peninsula (7)

Italy

600–800

Stable

Alps (8)

Italy, France, Switzerland, Austria, Slovenia

280

Increasing

Sierra Morena (9)

Spain

1 pack

Declining

Northwest Iberian Peninsula (10)

Spain, Portugal

2500 (estimate 2007)

Declining?



While the wolf is naturally re-establishing itself in Central Europe from its refuges in Eastern and South-Eastern Europe (Reinhardt et al. 2013; Chapron et al. 2014), lynx and bear, in addition to their natural migratory movements, have been deliberately re-­introduced into various regions of Europe through re-introduction programmes (. Table 4.2; case study in 7 Sect. 4.3). The current distribution of brown bear, lynx, wolf, and wolverine is shown in . Fig. 4.3, and the occurrence and status of the European sub-­ populations of wolves in . Table 4.3 (see also Kaczensky et al. 2012). It seems that these carnivores are re-occupying precisely those areas in the European cultural landscape which became abandoned due to current socio-economic devel 







opments, especially in peripheral regions and remote mountain areas, resepctively. In addition, there are the international initiatives of the EU to improve biological diversity as well as the quality and connectivity of habitats. Thus, these large carnivores do not seek proximity to humans at all, even if there are occasional collisions with humans. Scientific studies show that large carnivores generally avoid direct encounters with or proximity to humans (Sahlén et al. 2015). A problem for the coexistence of humans and large carnivores is that these animals at least potentially pose a threat to humans and that conflicts regarding agriculture and hunting can occur. However, the main problem of the coexistence of humans and large carnivores in Central Europe with the Alps

72

4

Chapter 4 · Re-introduction of Plant and Animal Species

often lies in an insufficient or missing regional management concept and a lack of information of citizens, especially land users (e.g., Zerbe 2021). According to interviews with stakeholders and land users, respectively, it is repeatedly highlighted that information and communication are essential for the development of regional wildlife management strategies (e.g., Wallner and Hunziker 2001). Treves and Karanth (2003) also point out that sustainable wildlife management is as much dependent on biological-ecological knowledge as on the socio-political environment. The fact that the management of large carnivores is an international challenge and cannot be solved at regional and national levels results particularly from the habitat size and migratory movements of large carnivores (Chapron et al. 2014). Male brown bears, for example, can move over an area of up to 1600 km2. For wolves, migratory movements of individuals up to a distance of 1100 km have been revealed by applying modern telemetric methods (Wabakken et al. 2007). The threats posed to populations of large carnivores in the Central European cultural landscape are: 55 too small and isolated populations (risk of extinction, genetic impoverishment), 55 habitat fragmentation due to settlements and traffic routes, 55 hybridization with domestic animals (e.g., wolf and dog; Hindrikson et al. 2012; Randi et al. 2014), 55 low acceptance on the part of humans and thus, also endangerment by poaching and hunting. Chapron et al. (2014) make clear that only a coexistence model works to maintain stable populations of bear, wolf, and lynx (and

wolverine in Scandinavia) in the European cultural landscape, in contrast to North America, where very large protected areas (e.g., national parks) host stable populations and can be managed with a separation model. Management recommendations for large carnivores in Europe can be found, for example, in Linnell et al. (2008) and Reinhardt et al. (2013). That the re-introduction of large carnivores affects the food web and overall forest ecosystem development is well documented for North America (Ripple and Beschta 2012; Ripple et al. 2014). Large predators reduce large herbivores (. Fig. 4.4), which leads to a decrease in browsing pressure and thus, an increase in shrub and tree regeneration. Initial studies on this relationship also confirm this for Central European forest ecosystems (Kuijper et al. 2013; Schnyder et al. 2016). In many forest ecosystems in Central Europe, high browsing pressure from roe deer poses a significant problem for forest regeneration and particularly, the conversion of coniferous forests into mixed broad-leaved forests (7 Sect. 7.4). Heurich (2015), in his critical analysis of the effects of large carnivores on ungulate populations and ecosystems, calls for caution in transferring results from North American national parks to the Central European cultural landscape, but concludes that the return of large carnivores in our landscapes is an important approach to ecosystem restoration; “especially, in large protected areas, the goal should be to restore the natural species assemblage of predators to ensure the protection of natural processes”. Against the background of the many failures of projects to re-introduce plant and animal species, one may become more reserved about the practice of species con 



4

73 4.2 · Re-introduction of Animal Species

Lynx

7 6

Eradication of the lynx

5

10

4

8

3

6

2

4

1

2

0

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000 Year

0

Population density lynx [N/100 km2]

Population density roe deer [N/km2]

Roe deer

..      Fig. 4.4  Development of roe deer and lynx populations in the Białowieża Forest (eastern Poland) over a period of about 140 years; the extermination of the lynx around 1900 and in the 1960s resulted in two unintended experiments to study the influence of

predators: The roe deer population responded with increases to the decline of the lynx population. (From Heurich 2015, modified according to Jędrzejewska and Jędrzejewski 1998)

servation and ecosystem restoration. However, for the increase of scientific knowledge with regard to the biology of the species concerned, interactions within ecosystems and land-use types, respectively, population dynamics, but also with regard to socio-­economic aspects such as costs and public acceptance, the case studies represent an asset if the re-introduction project is documented over the long term, from planning and implementation to monitoring and success control. Guerrant (2012) recommends the identification of best practices and taking benefit from them for the practice of re-­ introduction projects. Careful consideration is needed in advance of re-­ introduction, especially when (re-)introducing animal species that have a significant impact on habitats and regional socioeconomics as ecosystem engineers (7 Sect. 1.2.1) or as keystone species in ecosystems, and thus can lead to conflicts with humans and land use as well as to acceptance problems. Experience with beavers within the scope of water and

nature conservation law shows that conflicts can often be resolved (Albrecht 2016; Swinnen et al. 2017).



4.3

 ase Study: Re-introduction C of the Brown Bear in Trentino, Northern Italy (EU Project LIFE Ursus)

In the Autonomous Province of Trento in northern Italy, a residual population of brown bear (Ursus arctos) had been preserved until the early 1990s. From 1995 to 1997, a plan for the re-introduction and thus stabilizing the bear population was developed there, with a feasibility study and a cost estimate (Dupré et al. 2000). A survey revealed that about 70% of the people living in the province were in favour of the reintroduction. The re-­ introduction and accompanying measures were carried out within the LIFE-Ursus project funded by

74

the EU and the Province of Trento between 1997 and 2004. Thus, 10 animals which were captured in Slovenia were released in 1999. Within this re-introduction programme, the following accompanying measures were established, which can be considered as exemplary for similar projects: 55 continuous monitoring of the population development and migratory movements, 55 establishment of an emergency team, 55 prevention and financial compensation for damage caused by bears, 55 communication and information of the population, 55 cooperation with neighbouring regions and at international level, 55 training of technical personnel.

During the continuous monitoring since 2002, 100 bear individuals were counted in 2020 (. Fig. 4.5), with an average of about two cubs added annually to the population so far. While the habitat of the female bears is spatially limited with a density of 3.4 individuals per 100 km2, the male bears move significantly beyond this, which means also into the neighbouring Italian provinces as well as into neighbouring Switzerland (. Fig. 4.6). In 2015, 128 damages directly attributed to brown bears were reported to the Forest and Fauna Department of the Province of Trento, including beehives, agricultural land, and livestock, with a total financial compensation of about 66,000 EUR (Groff et al. 2016; . Fig. 4.7).  





100 90 80 Number of brown bear individuals

4

Chapter 4 · Re-introduction of Plant and Animal Species

70 60 50

100 88

40 69

30 50 20 10 10

10

15

18

22

23

27

29

38

41

58 47

46

58

48

0 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year

..      Fig. 4.5 The brown bear (Ursus arctos) has been re-­ introduced to the Province of Trento in N Italy to stabilize the population and prevent extinction; after 10 individuals were transferred from Slovenia in 1999,

the continuous monitoring between 2002 and 2020 recorded an unexpectedly fast increase of the individual numbers (After Groff et al. 2016, updated with data from the yearly reports e.g., by Groff et al. 2020)

4

75 4.3 · Case Study: Re-introduction of the Brown Bear in Trentino, Northern…

..      Fig. 4.6 Movement range of female and male bears in the Province of Trento (Northern Italy) and adjacent regions in 2015. (After Groff et al. 2016)

250

120000

200

Euro

100000 150

80000 60000

100

40000

Number of damages

140000

50

20000 0

0

02

20

03

20

04

20

05

20

06

20

20

07

8

0 20

09

20

10

20

11

20

12

20

13

20

14

20

15

20

Year Euro

Damages

..      Fig. 4.7 Number of damages caused by brown bears since 1990 and financial compensation. (After Groff et al. 2016)

76

4

Chapter 4 · Re-introduction of Plant and Animal Species

In addition to the biological-ecological monitoring of the brown bear population and the movements of the individual animals in the territory, attempts are also made to continuously record and evaluate the opinion and behaviour of the population with regard to the increasing population size of the bears. Thus, it can be seen that in the period from 1997 (before the release of the bear individuals) to 2011, the perception regarding the reintroduction of the bear in the Southern Alps has changed to some extent. While the population is still largely positive about the coexistence with bears in their country, there seems to be no more support for a further increase of the bear population (. Table 4.4). A chal 

lenge for the future will be a management plan that integrates the protection of large predators and the needs of the local population. As the example of Croatia shows, autonomous hunting on the community level can be effective without calling species conservation into question in principle, especially if the revenues from regulated hunting are also used to finance species conservation (Majić et al. 2011). Top-down decisions, however, without the participation of the local ­communities might lead to rejection, especially when they go against decades- or even centuries-­old traditions. Here, participatory decision-making is more effective (see Bath and Buchanan 1989; 7 Chap. 22).  

..      Table 4.4 Results of surveys of residents in the Province of Trento (Trentino, Northern Italy) regarding the bear population stabilized by re-introduction in 1997 (before the re-introduction), 2003 (a few years after the re-introduction), and 2011; data in percent of respondents in the immediate re-introduction area (1997−2011) and in the whole Province (in parentheses; 2003 and 2011 only) (Adapted from Tosi et al. 2015) Question or proportion of the relevant opinion/population

1997

2003

2011

Presence of the bear in Trentino known

77.6

97.4 (80.3)

98.2 (97.7)

Perception of a larger bear population in Trentino

2.0

33.3

n.d.

Perception of the bear in Trentino as a rare species

69.0

32.0

n.d.

Consent to further increase the current population

68.0

n.d.

8.0 (2.0)

Consent to maintain the current population size of the bear

23.0

n.d.

62.0 (66.0)

4.0

n.d.

28.0 (32.0)

Consent to reduce the current bear population Positive perception of the presence of the bear in the country

70.0

70.0 (76.8)

30.0 (30.4)

Bears responsible for damage in agriculture

29.0

65.0

(63.0)

Bears responsible for damage to livestock

23.0

59.0

(63.0)

Bears responsible for damage to beehives

69.0

81.0

(79.0)

Bears responsible for damage to other wildlife

23.0

n.d.

30.0 (30.0)

10.6 (9.6)

11.7 (10.1)

People who remember an attack of a bear against humans

2.8

People who avoid forests with a bear occurrence

31.0

n.d.

53.0 (60.0)

Persons who specifically visit forests with a bear occurrence

15.9

n.d.

2.3

n.d. no data

77 4.3 · Case Study: Re-introduction of the Brown Bear in Trentino, Northern…

This re-introduction initiative aiming at the management and protection of brown bears was continued within the EU project LIFE DINALP BEAR (2014–2019), with an international cooperation of Italy, Austria, Slovenia, and Croatia. Due to the unforeseen rapid increase of the bear population and the damage to humans and their

4

agricultural land, the Italian Ministry developed the PACOBACE Action Plan (ISPRA 2010), which, in addition to the measures already foreseen in the LIFE-Ursus project, addresses in particular the management of problematic animals such as e.g., brown bears entering ­settlements.

79

Dealing with Non-native Species in Ecosystem Restoration Contents 5.1

Are Non-native Species Problematic? – 81

5.2

Non-native Species in Ecosystem Restoration – 83

5.3

 ecommendations for Dealing with Non-native R Species in Ecosystem Restoration – 86

5.4

With Rationality and Objectivity for the Alien – 86

© Springer-Verlag GmbH Germany, part of Springer Nature 2023 S. Zerbe, Restoration of Ecosystems – Bridging Nature and Humans, https://doi.org/10.1007/978-3-662-65658-7_5

5

80

5

Chapter 5 · Dealing with Non-native Species in Ecosystem Restoration

The worldwide direct or indirect transport of organisms by humans, anthropogenic habitat range expansion within or between continents, and the occasionally rapid spread of these non-indigenous animals, plants, and microorganisms (neobiota) in their new habitats are considered part of the global change, which can result in biodiversity decline and habitat degradation (Vitousek et  al. 1997; Wilcove et  al. 1998; Zedler and Kercher 2005). Conservationists, land users, and landscape managers spend large sums of money to push back or control non-native species (US Congress 1993; Wilcove and Chen 1998; Pimentel et  al. 1999; D’Antonio and Meyerson 2002; Charles and Dukes 2007; Sundseth 2014). Reinhardt et  al. (2003) quantify the “additional expenditures” associated with 20 selected non-native species in Germany with an average of EUR 167 million annually. This assessment encompasses tree species (e.g., red oak), herbaceous perennials (e.g., giant hogweed), invertebrates (e.g., saw-­ toothed grain beetle, flour moth, horse-­ chestnut leaf miner), amphibians (e.g., North American bullfrog) and vertebrates (e.g., muskrat, mink). For Europe, Kettunen et  al. (2009) estimate the annual costs of about 60 non-native species at about EUR 12.5 billion, with about 75% of the costs related to damage (e.g., from pests in agriculture and forestry) and about 25% to control measures. However, the success of control measures is often unsatisfactory or even non-existent (Schepker 1998; Kowarik and Schepker 1998). Based on the experiences of invasive species control to date, Kowarik (2010, p. 417) concludes that “control is not a panacea, but rather a stopgap solution to manage biological invasions”, especially when the invasion process is already well advanced. The biological and ecological foundations of these biological invasions and implications for the management of non-native species are outlined in detail by Böcker et al. (1995), Hartmann et al. (1995), Williamson

(1996), Shigesada and Kawasaki (1997), Nentwig (2007), Kowarik (2010), Richardson (2011), Simberloff and Rejmanek (2011), Schmiedel et  al. (2015), and Canning-­Clode (2016) and will not be further deepened here. For the terminology of “non-native” species, which differentiates between the time of immigration, the degree of establishment, and the mode of introduction (e.g., terms like neophytes, archaeophytes, agriophytes, xenophytes), please also refer to the explanations by Kowarik (2010). Non-native species are relevant for ecosystem restoration when 55 these are the reason for restoration, as the non-native species are considered problematic or ecosystem degrading, 55 these occur after a restoration measure and thus cause unforeseen problems, 55 the presence of the non-native species as a reason for restoration and its suppression have long-term consequences, for example, on soil chemistry or the soil-­ seed bank, or 55 non-native species are purposefully used for ecosystem restoration (D’Antonio and Meyerson 2002). Because artificial disturbance is often applied as a measure in ecosystem restoration (e.g., topsoil removal, alteration of the river’s hydromorphology, controlled burning) and disturbance of an ecosystem can promote the invasion of non-native species (Hobbs and Huenneke 1992; Lozon and MacIsaac 1997; D’Antonio et  al. 1999), conflict is often obvious and does not occur unanticipated. When discussing and dealing with alien species, a kind of botanical and zoological xenophobia, respectively, has crept into both nature conservation practice and ecology. Terms or expressions such as “invasion”, “combating”, “eradication”, “aggressive spread”, “biological pollution” or the oftenunreflective attribution of problems allegedly caused by non-native species speak for themselves in this regard. This has led to

81 5.1 · Are Non-native Species Problematic?

numerous critical discussions in both the natural and social sciences (Reichholf 1996; Eser 1999; Körner 2004; Davis et  al. 2011; Simberloff and Vitule 2014). Simberloff (2015) summarizes five categories of criticism: 1. The problems discussed in relation to non-native species, which give rise to management against the species concerned, are exaggerated and similar problems are caused by native species; most non-native species are not problematic. 2. Introduced non-native species can increase biodiversity on the regional scale. 3. Xenophobia has developed towards nonnative species. 4. In the age of globalisation, the spread of non-native species can hardly be prevented. 5. The control methods applied against certain animals (e.g., non-­native mammals) are ethically unacceptable. Despite all these fundamental and justified criticisms, it should not be denied that invasion biology and invasion ecology have significantly expanded our knowledge in areas such as biogeography, vegetation, animal and landscape ecology, ecosystem science, biocenology, population biology, evolutionary biology, biodiversity, and vegetation history, and have stimulated critical discussions and the further development of biological and ecological concepts (see Catford et  al. 2009; Pyšek and Hulme 2009; Gurevitch et  al. 2011). It also opens up interesting insights into the human-nature field of tension (e.g., Eser 1999). However, when it comes to normative decisions in nature conservation and environmental protection or ecosystem restoration, and to an assessment of “good” and “bad”, “desirable” and “undesirable”, or damage and benefit, solid and unbiased scientific foundations are particularly important.

5.1

5

 re Non-native Species A Problematic?

The problems that can be associated with the spread and invasion of non-native species, which in principle also apply to certain native species (Simberloff 2011), concern species and habitat conservation, human health, landscape management, and land use, with corresponding economic and socio-economic impacts, respectively (. Table 5.1). In fact, however, the criticism of Simberloff (2015) seems to be justified (see above). Problems, for example, are recorded for only 2% of the non-native plant species introduced into Central Europe (Kowarik 1996). In a pan-European perspective, problems have so far been documented for about 10% of the approximately 11,000 introduced non-native species (Vilà et  al. 2010). In addition, most non-native species introduced from other faunal and floristic regions and climates, respectively, may not establish at all or may do so only after a long time lag (Kowarik 1995a; Crooks 2005). This has been quantified for 182 woody species introduced intentionally or unintentionally to Berlin between 1787 and 1992. Kowarik (1995b) estimates that only 12% of these species were able to establish without further human support. That the perception of problems associated with non-native species and the actions derived from it can also change over time is illustrated by Starfinger et  al. (2003) using the example of black cherry (Prunus serotina) in Central Europe. At least, for the intentional introduction of plant and animal species, for example for land use (agriculture, forestry, horticulture, fisheries) or landscape management (e.g., ornamental plants, engineering biology), the risk of a possible large-scale spread and potentially associated problems can be assessed in advance. Ecological foundations (e.g., Rejmánek and Richardson 1996; Kowarik 2010) and methods and tools for  

82

Chapter 5 · Dealing with Non-native Species in Ecosystem Restoration

..      Table 5.1  Problems perceived with the spread and invasion of non-native species (neobiota), with some examples and references to the literature (see also further examples and comprehensive references in Kowarik 2010), compared with similar problems caused by native species Areas concerned

Examples of non-native species

References

Examples of native species

Species and habitat conservation

Robinia pseudoacacia on nutrient-­ poor sites with undesirable site changes and the loss of biodiversity, dominance of Fallopia spec. or Heracleum mantegazzianum with the loss of biodiversity at least at the local scale

Pyšek and Prach (1993), Pyšek and Pyšek (1995), and Kleinbauer et al. (2010)

Spreading and competition of Fagus sylvatica in anthropogenic old-growth oak stands, encroachment of Calamagrostis epigejos and Carex arenaria on nutrient-poor grassland and heathland

Agriculture and forestry, horticulture, landscape management

Spreading of Solidago spec. on grassland fallow and in forest stands, Prunus serotina in pine forests with negative impact on natural forest regeneration, lowered litter decomposition of Quercus rubra leaves, damage by Arion vulgaris in home gardens, Viteus vitifoliae as pest in viticulture

Spaeth et al. (1994), Hartmann et al. (1995), Redl (1999), Dressel and Jäger (2002), and Kowarik (2010)

Dominance of Urtica dioica s. l. on grassland fallow, scrub encroachment of fallow land with Populus tremula, Crataegus spec., and Prunus spinosa agg.

Human health

Phototoxic effect of Heracleum mantegazzianum, pollen of Ambrosia spec. and Ailanthus altissima, transmission of diseases by Rattus norvegicus

Jäger (2000), von Mühlendahl et al. (2003), Taramarcaz et al. (2005), Easterbrook et al. (2007), and Kowarik and Säumel (2007)

Pollen of Betula pendula, Corylus avellana, and many native grasses

River management and hydraulic engineering

Destabilization of riverbanks by Populus x canadensis and Helianthus tuberosus s. l., economic and hydraulic-engineering problems due to the mass expansion of Elodea canadensis and E. nuttallii

Lohmeyer (1971), Lohmeyer and Krause (1975), and Kummer and Jentsch (1997)

Beaver with influence on the local-regional hydrology and landscape water balance

Fishery

Damage caused by Eriocheir sinensis

Yang et al. (2017)

Fishing by birds such as cormorants and herons

5

risk assessment (Sukopp and Sukopp 1993; Pheloung et  al. 1999; Londsdale 2011; Nehring et al. 2015a, b) are available for this purpose. These can also be applied to develop and implement laws, regulations or agreements in nature conservation and environmental protection at the national and international level prior to an active introduction of non-native species (e.g., BNatSchG

2009; UN 1992; Alpenkonvention 1995; see also Shine et  al. 2000; Doyle 2002; Hubo et al. 2007; Kowarik 2010). The approaches that have been developed for the risk assessment of genetically modified organisms (GMOs) can also be helpful in this regard (UBA 2001; Nöh 2002; Kowarik et al. 2008; Schütte et  al. 2013). However, in order to avoid an undesired spread and an invasion

83 5.2 · Non-native Species in Ecosystem Restoration

with subsequent problems, it should always be checked in advance of an introduction whether species of the indigenous species pool cannot fulfil the same tasks that are intended for the non-­ indigenous species (D’Antonio and Meyerson 2002).

5

lived diaspores (Newsome and Noble 1986; Kleyer et  al. 2008; Gioria et  al. 2012; Skowronek et  al. 2013). The activation of the soil seed bank in the context of ecosystem restoration through disturbances such as mechanical removal of species or vegetation, short-term grazing, or removal of the top soil layer can therefore lead to the germination and establishment of undesirable 5.2 Non-native Species species (Gioria and Osborne 2010; Pyšek in Ecosystem Restoration et al. 2010; Albrecht et al. 2011). This can be Pushing back invasive species is a frequent avoided if the soil seed bank is qualitatively objective in ecosystem restoration. Part II of and quantitatively investigated prior to the this book provides examples of this regard- restoration measure, although this has rarely ing the specific ecosystem and land-use been the case to date (Gioria et al. 2012). The suppression or control of non-native types. Sometimes measures are applied that species whether justified by a sound probalso have led to a degradation of ecosyslem analysis or not - incurs costs and is usutems. Pesticides or controlled burning, for ally associated with medium- to long-term example, are applied to control reed expanfollow-up measures. Accordingly, non-­ sion (genotypes of Phragmites australis), a native plant species may regenerate from the cosmopolitan species found worldwide on soil seed bank, from roots and rhizomes, sites close to groundwater, fens, and in floodrespectively (e.g., Solidago spec., Ailanthus plains, with the goal of “restoration” in the altissima, Robinia pseudoacacia), or from United States (Avers et  al. n.d.; Hazelton stumpshoots (e.g., Prunus serotina). et  al. 2014; Packer et  al. 2017; Rohal et  al. 2017). However, reed, as a multifunctional Continued management imposes further plant species, provides a variety of ecosys- costs (D’Antonio and Meyerson 2002). In north-eastern Germany, an extensive tem services when occurring in extensive database analysis (ca. 2300 vegetation samstands along rivers, at lakes, and on wetples) was applied to detect the occurrence of lands (7 Sect. 8.8.1). non-native species in (mostly anthropogenic) . Table  5.2 shows some examples of pine forests. The analysis revealed the occurnon-­native animal and plant species that are rence of, for example, herbaceous species considered a problem in the context of ecosuch as Canadian horseweed (Erigeron system restoration in Western and Central canadensis) and small-flowered touch-me-­ Europe. Given the high abundance of literanot (Impatiens parviflora) as well as woody ture on alien species and in particular their species such as Oregon grape (Mahonia aquirelevance for nature conservation and land folium), common snowberry (Symphoricarpos management (see above), only those examples are listed here that are explicitly men- albus), black cherry, and black locust (Zerbe tioned in the context of ecosystem and Wirth 2006). The assessment of the ecorestoration. One of the most common rea- logical indicator values according to sons given for controlling non-native species Ellenberg (Ellenberg et al. 2001) showed that is the displacement of indigenous species, most species are relatively light-­demanding and are therefore mainly found in pine stands vegetation, and biocenoses, respectively. It is well known that non-native species with open canopies. Thus, it is foreseeable can make a significant contribution to the that most of these species will decrease in soil seed bank, sometimes with very long-­ abundance or disappear under the shadier  



84

Chapter 5 · Dealing with Non-native Species in Ecosystem Restoration

..      Table 5.2  Examples of non-native animal and plant species in Western, Northern, and Central Europe that are considered a problem and thus, are the subject of control measures in ecosystem restoration Species

Ecosystem or land-use type

Problem

References

Acer negundo (box elder)

Floodplain forest

Local displacement of native species

Vor (2015)

Fallopia japonica (Japanese knotweed)

Rivers, urban wastelands

Local displacement of native species

Moss and Monstadt (2008), Maurel et al. (2010), and Regierungspräsidium Gießen (2017)

Heracleum mantegazzianum (Giant hogweed)

Rivers, ditches, wet grassland fallows, floodplain grassland

Harmful to human health due to phototoxic effect, local displacement of native species

Strubenhoff (2008), Jürging and Kraus (2013), and Harnisch et al. (2014)

Impatiens glandulifera (Himalayan balsam)

Rivers

Local displacement of native species

Filzek (2008), Jürging and Kraus (2013), and Regierungspräsidium Gießen (2017)

Myriophyllum heterophyllum (variable-leaf water milfoil)

Lakes

Local displacement of native species, dominant stands

Hussner et al. (2005), Hussner and Krause (2007), and Hussner et al. (2014)

Prunus serotina (black cherry)

Pine and larch forests, mixed oak forests

Local displacement of native species and inhibition of forest regeneration

Petersen et al. (2015)

Rhododendron ponticum (Pontic rhododendron)

Heathland, oak forests

Local displacement of native species and inhibition of forest regeneration

Tyler et al. (2006)

Robinia pseudoacacia (black locust)

Nutrient-poor and sandy dry grassland

Eutrophication of the soil due to nitrogen input (legume symbiosis), shrub encroachment

Barnkoth (2013) and Kirmer et al. (2015)

Rosa rugosa (Japanese rose)

Coastal dunes

Local displacement of native species

Kollmann et al. (2011), Doody (2012), and Martínez et al. (2013)

Solidago canadensis (Canadian goldenrod)

Rivers

Local displacement of native species

Moss and Monstadt (2008)

Plant species

5

85 5.2 · Non-native Species in Ecosystem Restoration

..      Table 5.2 (continued) Species

Ecosystem or land-use type

Problem

References

Branta canadensis (Canada goose)

Natural and artificial rivers, ditches, and lakes, coasts, agricultural land, parks

Competition for food and nesting sites with native waterfowl, hybridization with native geese, eutrophication of water bodies by droppings

Allan et al. (1995), Watola et al. (1996), and Geiter and Homma (2002)

Cervus nippon (Sika deer)

Deciduous and mixed forests, coniferous forests, and arable land

Browsing damage, hybridization with native deer species

Linderoth (2005) and Pérez-Espona et al. (2009)

Ctenopharyngodon idella (grass carp)

Lakes and ponds, small streams

Water management, fisheries and tourism: severe decline of aquatic and riparian vegetation, massive changes of nutrient dynamics, water chemistry, and food web possible

Wüstemann and Kammerad (1994), Dußling and Berg (2001), and Wiesner et al. (2010)

Lepomis gibbosus (pumpkinseed)

Slow flowing streams, oxbow lakes

Fisheries: food competition with native fish, predation on spawn and juveniles

Wolfram-Wais et al. (1999) and Dußling and Berg (2001)

Mustela vison (American mink)

Natural and artificial waters

Displacement of the European mink (Mustela lutreola), feeding on birds and fish

Macdonald et al. (2002) and Ahola et al. (2006)

Myocastor coypus (nutria)

Shores of rivers and lakes

Destabilisation of water banks, feeding activity reduces habitat structure

Gosling and Baker (1989) and Bertolino et al. (2005)

Ondatra zibethicus (muskrat)

Lakes and rivers

Feeding on fish and agricultural crops, destabilisation of banks, disease vector (fox tapeworm, rabies)

Böhmer et al. (2001) and Reinhardt et al. (2003)

Phasianus colchicus (common pheasant)

Agricultural landscapes

Damage to agricultural crops, hybridisation with the native black grouse, transmission of parasites

Reichholf (1982) and Gebhart (1996)

Procyon lotor (raccoon)

Forests, agricultural landscape, settlement areas

Spatial competition with birds, damage in agriculture including animal husbandry, physical and psychological nuisance in settlements

Görner (2009) and Michler and Michler (2012)

Rana catesbeiana (North American bullfrog)

Rivers, lakes, ponds

Resource competition with and threats to native frogs, feeding on vertebrates and invertebrates, transmission of diseases to other amphibians

Laufer and Sandte (2004), Adams and Pearl (2007), and Geiger and Kordges (2011)

Animal species

5

86

Chapter 5 · Dealing with Non-native Species in Ecosystem Restoration

forest stand conditions which are envisaged by the conversion of anthropogenic pine afforestations to near-natural mixed deciduous forests with oak, beech, and other deciduous tree species (7 Chap. 7).  

5.3

5

Recommendations for Dealing with Non-native Species in Ecosystem Restoration

For an appropriate approach to and the management of non-native species, Kowarik (2010) suggests the following steps, which are generally transferable to ecosystem restoration: 1. Analysis and evaluation of conflicting goals: What conflicts does the non-native species cause in ecosystem restoration and its objectives in terms of abiotic and biotic resources, costs, and acceptance? 2. Control perspective: Examination of potential repression and control, respectively, or an integration of the species concerned into the objective of ecosystem restoration, which should be based on ecological studies on e.g., possible site changes caused by the alien species, spontaneous regeneration of the alien population e.g., from the seed bank, possible invasion from nearby near-natural habitats, possible collateral damage of the control measure as well as on a cost-benefit analysis (e.g., duration and intensity of the intervention, follow-­up interventions) and on the analysis of the restorability of the ecosystem’s target state. 3. Decision for or against control measures and its acceptance. This has to be evaluated for each individual case, not only with regard to the non-native species, but also with regard to the habitat under consideration. A non-native species can be problematic in one habitat, but beneficial in another, as the example of the

black locust clearly shows. On the one hand, its occurrence causes nitrogen enrichment on nutrient-poor grassland which degrades its nature conservation value. On the other hand, it can rapidly stabilize bare soils and slopes, respectively, which are under the risk of erosion (e.g., on mining sites and their dumps) due to its high vegetative reproduction capacity and can promote a fast formation of an organic layer (7 Sect. 5.4).  

5.4

With Rationality and Objectivity for the Alien

An unbiased approach to non-native species also opens up the perspective for using them to restore functioning and resilient ecosystems (D’Antonio and Meyerson 2002). The narrow-leaved ragwort (Senecio inaequidens), for example, native to South Africa, is one of the first colonizers of spoil heaps in the Ruhr region and contributes to humus and soil formation (7 Fig. 19.3). The legume Robinia pseudoacacia can add considerable amounts of nitrogen to nutrientpoor soils through its symbiosis with nitrogen-fixing bacteria. A 4-year-old stand already fixes annually up to 30  kg  N per hectare (Boring and Swank 1984), and the yearly rate of older stands has been reported to be as high as 300  kg  N per hectare (Cierjacks et al. 2013). This leads to development of nitrogen-­ rich organic topsoils within a few years. This property can be used to recultivate post-mining sites for agriculture or forestry (Ashby 1987; Soni et al. 1989). In addition, there are the multifaceted other services of black locust stands, such as timber and fuelwood production (Naujoks and Ewald 2001; Knoche and Engel 2012), provision of flowers for honey production, its importance as an ornamental tree (particularly when flowering), and as protection against erosion and rockfall (Burylo et  al. 2012; Radtke et  al. 2013; Ambraß et  al. 2014; Mazurek and Bejger  

5

87 5.4 · With Rationality and Objectivity for the Alien

2014). Old-­ growth and structurally rich black locust stands can also support speciesrich breeding bird populations and other wildlife biocenoses (Tischew 2004). Annighöfer et al. (2015) and Zerbe et al. (2020) discuss options for managing non-­ native black cherry (Prunus serotina) in the Biosphere Reserve Valle del Ticino in northern Italy, whose development goals include the preservation and restoration of near-­ natural floodplain forests. With regard to economic efficiency and environmental sustainability, they identify management strategies to reduce the abundance of the invasive tree species and, in addition, to generate an income for the landowners by removing only trees with a higher diameter and sell them on the timber market. Intensive management interventions, especially to remove young trees, are counterproductive, as they are costand labour-intensive, lead to substantial nutrient depletion of the topsoils and, moreover, stimulate the vegetative regeneration of this pioneer tree species (Annighöfer et  al. 2012). On the one hand, this study shows that “precipitate” action to suppress non-native species might not be effective economically, ecologically, and regarding habitat conservation. On the other hand, it calls for strategies which have been well proven and are common in near-natural silviculture and are also applicable for non-­native tree species. In addition to ecosystems or sites that have been anthropogenically strongly altered due to land use (e.g., opencast mining areas, waste dumps), non-native species can also contribute to the restoration of ecosystem services in urban ecosystems (Kowarik 2011). In principle, this applies to the entire range of novel, anthropogenic ecosystems (see Hobbs et al. 2006, 2009; Seastedt et al. 2008). On urban brownfields, a new “wilderness” can develop with non-native plants (Kowarik 2017) which has been shown, for example, in Berlin with several decades old black locust stands which have developed on former housing areas destroyed during the Second World War. Körner (2004) addresses

this as a “new urban culture”. Ringenberg (2004) emphasizes that neophytes introduced by humans to Central Europe after 1500 A.D., just like the archaeophytes introduced before 1500, can potentially be endangered by land-use change and intensification and might therefore be potential future Red List candidates. In conclusion, non-native plant species can play an important role in the following cases of ecosystem restoration and thus, contribute to the restoration of ecosystem services: 55 After restoration interventions in the hydromorphology of rivers and their banks, and especially in urban-industrial areas, non-native species can rapidly establish on these sites. Using the example of the restoration of a section of the Wupper in Wuppertal, it becomes obvious that nature spontaneously initiated a re-vegetation with a dominance of non-­ native plants practically without further recultivation costs (7 Sect. 10.6.1). 55 The species pool in cities has been considerably increased anthropogenically by non-native species. The spontaneous vegetation in the Central European city centres is largely formed by non-native species. These can significantly contribute to the restoration of ecosystem services, together with native species (7 Sect. 19.1). 55 In novel ecosystems and under novel site conditions, such as on former open-cast mining sites or mining dumps, non-native plant species often establish themselves spontaneously, which, in addition to the aesthetics and cultural services of this natural re-vegetation, can contribute to erosion control, to soil formation including carbon sequestration, to the creation of new habitats for other organisms (animals, microorganisms), to the local micro-climate, and to the restoration of local nutrient cycles. Spontaneous vegetation can also offer the opportunity to investigate and exploit the potential for phytoremediation (7 Sect. 20.4), including non-native species.  





89

Monitoring and Success Control Contents 6.1

 cological Monitoring: Basics and Recommendations E for Practice – 92

6.2

When Is a Restoration Project Successful? – 95

6.3

 cological and Nature Conservation Parameters E for Monitoring and Success Control – 97

6.4

Case Studies and Best Practice – 103

© Springer-Verlag GmbH Germany, part of Springer Nature 2023 S. Zerbe, Restoration of Ecosystems – Bridging Nature and Humans, https://doi.org/10.1007/978-3-662-65658-7_6

6

90

6

Chapter 6 · Monitoring and Success Control

In the practice of nature conservation, environmental protection, and ecosystem restoration, it is necessary to evaluate the success (success control) of the measures taken and to determine whether the set goals have been achieved. This can be carried out once after a certain period of time or by means of a monitoring as a programme with regular or irregular sampling intervals (Hellawell 1991; Bürger and Dröschmeister 2001). The terms “monitoring” and “success control” are sometimes used synonymously, but the evaluation of success does not necessarily have to be linked to a monitoring, and a monitoring to investigate ecosystem developments, dynamics, and changes does not necessarily have to lead to success control. One of the most striking deficits of ecosystem restoration worldwide is the lack of an evaluation of success or a continuous monitoring of the project. This problem is repeatedly highlighted with reference to specific ecosystems or land-use types. Bernhardt et  al. (2005), for example, state that only 10% of more than 37,000 river restoration projects carried out in the USA were subject to success control. In North Rhine-Westphalia, according to the Ministry of Environment, Agriculture, Nature Conservation and Consumer Protection (MUNLV 2005), an evaluation of success has been carried out in less than 7% of river restoration projects, which has also been confirmed for other German federal states such as Bavaria (Pander and Geist 2013). Even if a monitoring is carried out, it usually only covers short periods of a few years. In Bavaria, for example, about 100 river restoration projects of various dimensions are documented for the period 1994–2011, but in less than 10% of the approximately 30 larger projects, a monitor-

ing of ecosystem development continued after 1 year (Pander and Geist 2013). Accordingly, a long-term monitoring of restoration projects that extends beyond 5 to 10 years must be considered very rare (see Hagen and Evju 2013). This general lack of long-term monitoring or a success control of restoration projects is also reflected in a comparatively low number of scientific publications on this topic (Nilsson et al. 2016). Also, the results of successful restoration projects are more likely to be published than those of unsuccessful ones (Bayraktarov et al. 2016). This makes it difficult to identify examples of best practice, especially regarding the assessment of the socio-economic impacts of ecosystem restoration (Wortley et  al. 2013). Best practices, however, could provide a template for future restoration projects, which can then be carried out more effectively and can be expected to better achieve the set goals. There is by no means a lack of scientific basics and practical guidelines for monitoring and success control in nature conservation. However, ecosystem restoration projects are often carried out as “trial and error”, whereby immediately after the restoration has been carried out there is either no further interest in the project, the restoration objectives were not clearly defined before the project was carried out, the initial condition before the measures were carried out was not sufficiently recorded, a monitoring has not been planned at all, or the financial and human resources are lacking to carry out a detailed long-term monitoring, which, in turn, would be the basis for a success evaluation. In addition, the success of a restoration project often has to be demonstrated to donors immediately after its implementation (Block et al. 2001).

91 Monitoring and Success Control

The evaluation of success requires, on the one hand, a precise reference (7 Chap. 2) and, on the other hand, criteria and measurable parameters with which success or failure can be qualitatively and quantitatively analysed and evaluated. A comprehensive monitoring programme includes ecological as well as economic and social aspects. Thus, an important criterion for the success of a restoration project is the acceptance on the part of the actors and stakeholders, which can be determined through a socio-economic monitoring (Feige and Triebswetter 1997; Oeschger 2000; Gätje 2004; 7 Chap. 22). Foundations of environmental economics for the monitoring of costs and the cost-benefit relationships of ecosystem restoration are presented in 7 Chap. 23. For a socio-­economic monitoring, which can also apply quality management tools from economy, reference is made to the corresponding literature and practical guidelines, respectively, such as e.g. Stockmann (2006), Holling and Schmitz (2010), Daschkeit and Schröder (2013), and Stahl (2010). Examples for an evaluation of success regarding socio-­ economic aspects are given by Macmillan and Duff (1998), Desaigues and Ami (1999), Mitani et  al. (2008), Currie et  al. (2009), Birch et  al. (2010), and Suding (2011). An evaluation of restoration success, based on a, preferably long-term monitoring, should answer the following questions: 55 Did the restoration project achieve the set goals regarding ecology, nature conservation, and socio-economic aspects? 55 If the restored ecosystem deviates from the previously defined target and reference, respectively, how can the restoration measures be modified and optimized  





6

in order to fully achieve the desired target state? 55 How can ecosystem restoration be done more efficiently in terms of costs and overall efforts to achieve the same goals? 55 Has the ecosystem restoration achieved the necessary acceptance by the community and stakeholders to ensure the restoration success in the long term and to prevent a future degradation of the ecosystem or land-use type through unsustainable management? A monitoring of socio-economic aspects can also include a transdisciplinary process (7 Chap. 22) to better understand and evaluate the interactions of actors and stakeholders and to learn from this for the planning and implementation of similar projects. Due to the significant lack of monitoring and success control in ecosystem restoration, all options and available information must be explored to optimize the restoration approaches and to lead ecosystem restoration to success. The following possibilities are available: 55 As best practice, a long-term (>10 years) monitoring concept is developed at the planning stage, which accompanies the restoration process and evaluates the development of the ecosystem or land-­ use type in the long term on the basis of ecological indicators and socio-economic parameters. 55 The donor or funding agency of the restoration project requests a proof of success at the end of the project and also finances a subsequent success control. The risk is hereby that any associated monitoring might remain superficial and might be very limited in time (200,000 m3 (••••), 50,000–200,000 (•••),10,000–50,000 (••), and  33

20–33

20–33

20–33

< 20

≤ 4.8

≤ 4.8

4.8–6.4

6.4–8.5

3.2–7.5

Peat-­ forming vegetation

Dwarf shrub-­ cotton grass- peat moss

Peat moss-sedge reed

Brown moss-sedge reed

Brown mossbogrush

Reeds, large sedge reeds, alder swamps

Woody vegetation

Scots pine-birch grove

Eared willow scrub, downy birch forest, downy birch-alder forest

Shrub birch-creeping willow, bay willow scrub, bay willow-­ downy birch forest

Shrub birch-­ creeping willow, bay willow scrub, bay willow-­ downy birch forest

Grey willow (alder) scrub, alder forest

Predominant peat types

Peat moss, cotton grass, Rannoch rush, pine

Peat moss, sedge, Rannoch rush, reed, birch, pine

Brown moss, sedge, reed, birch

Swamp sawgrass, brown moss, sedge, reed

Sedge, reed, alder; strongly decomposed peat

Predominant combination with hydrogenetic mire type

Kettle-hole mire

Siltation fen, swamp mire, spring mire, percolation mire, kettle-hole mire

Siltation fen, spring mire, percolation mire, kettle-­ hole mire

Siltation fen, spring mire, percolation mire

Siltation fen, flood mire, swamp mire, spring mire

KCL potassium-chloride solution

ing, has created the anthropo-zoogenic salt grassland characteristic of the southern Baltic Sea region (Härdtle 1984; Jeschke 1987; Jeschke and Lange 1991; 7 Sect. 12.1). 55 Percolation mires (Durchströmungsmoore): Percolation mires are mainly found in the valleys of glacial landscapes, wherever groundwater con 

tinuously flows out from the valley edge and leads to peat growth. A typical feature of this type of mire is the low degree of peat decomposition because of the continuous water flow. Percolation mires can naturally cover the entire valley (Succow and Lange 1984). The bog surface has a characteristic inclination from the valley edge to the stream.

162

8

Chapter 8 · Peatland

55 Slope mires (Hangmoore): Slope mires in northern Brandenburg with a mean are mainly formed in the low mountain annual precipitation of approximately ranges on slopes with low inclination 600 mm (Rowinsky 1995). In contrast to and with continuous water runoff. The the edge zone of kettle-hole mires, which peat is usually shallow ( 15 strepera), northern pintail (A. acuta), ruff Waterfowl and waders 1–3 (Philomachus pugnax), Eurasian spoonbill Songbirds 10–15 (Platalea leucorodia), black-crownd night heron (Nycticorax nycticorax), western Abiotic components marsh harrier (Circus aeruginosus), pied Sedimentation 1–3 avocet (Recurvirostra avosetta), common Nitrogen storage 3–5 ringed plover (Charadrius hiaticula), little egret (Egretta garzetta), smew (Mergellus Phosphorus storage 1–3 albellus), and jack snipe (Lymnocryptes minCarbon sequestration 3–5 imus) (Beauchard et al. 2013). Natural dike Carbon mineralization 5–15 breach at the Sieperda Polder in the Scheldt Estuary (Netherlands) resulted in the obserMethane formation 5–15 vation of breeding of oystercatcher (H. Denitrification 5–15 ostralegus), shelduck (T. tadorna), greylag goose (Anser anser), Eurasian coot (Fulica atra), pied avocet (R. avosetta) northern lapsedimentation rates depend on the distance wing (Vanellus vanellus), common redshank to tidal mud flats off the coast as sediment (T. totanus), meadow pipit (Anthus pratensources, the distance to tideways, which sis), bluethroat (Luscinia svecica), Eurasian transport sediments, the elevation of the salt reed warbler (Acrocephalus scirpaceus), and grassland above the mean high water level common reed bunting (Emberiza schoenicand thus the flooding frequency, as well as lus) on the developing salt grassland in only the grazing intensity and thus the growth a few years (Eertman et  al. 2002). During height of the vegetation (Andresen et  al. the monitoring after the opening of the 1990; Esselink et  al. 1998; Schröder and summer dike of the Hauener Hooge in 1994, Lüning 2000; Kiehl et al. 2003a). The rewet- the arthropod fauna was investigated ting of coastal flood mires is intended to ini- (Götting 2001). Thus, increased salt water tiate a revitalization of peat formation influence has led to a change in the commu(7 Chap. 8). An example is the Mellnitz-­ nities, indicated e.g., by the significant Üselitzer Wiek on the island of Rügen, increase of the beach flea (Orchestia gamwhich was restored as a compensation mea- marellus) and a shift of the spider communisure for the construction of the Strelasund ties (Lycosidae, Tetragnathidae) towards hygrophilous species. In particular, the sea bridge (DEGES 2010). ..      Table 12.6  Estimation of the regeneration time of ecosystem structures and processes in salt marshes during restoration compared to the reference natural marshes. (After Broome and Craft 2009; see further references there for the time data)

12



281 12.1 · Coastal Salt Grassland

aster contributes to biodiversity as a host plant for numerous animal species (Meyer and Reinke 1998). Vegetation development with the aim of reintroducing and establishing the habitat-­ typical halophytes can also be re-initiated very quickly. During monitoring of the dike opening on Northey Island in the Blackwater Estuary in Essex (UK), for example, the halophytes Salicornia spec., P. maritima, and S. maritima were already observed again on the restored areas in the first vegetation season after the measure (ABP 1998; Brooke et al. 1999). In a 10-year succession on the Sieperda Polder in the Scheldt Estuary (Netherlands), Tripolium pannonicum subsp. tripolium and P. maritima occurred, followed by Bolboschoenus maritimus and Atriplex prostrata agg.; in the upper salt grassland zone on the former pastures with Agrostis stolonifera and Elymus athericus, in particular, T. pannonicum subsp. tripolium, Juncus gerardii, and P. maritima were added (Eertman et al. 2002). Monitoring after the dike deconstruction on Hauener Hooge in 1994, as one of the first projects of this kind on the North Sea coast, also showed the rapid development over a few years from a ryegrass community (Lolio-Cynosuretum hordeetosum) of the formerly intensively used cattle pasture towards typical salt grassland of Armerio-Festucetum litoralis, Agropyretum littoralis, Puccinellion maritimae, and Juncetum gerardii (Seiberling et al. 2009). Hereby, a vegetation zonation from the low elevation and more frequently flooded zone to the higher areas occurs after only a few years, with a larger plant species diversity in the latter zone. Nearby intact salt grassland contribute positively to the restoration of salt grassland vegetation via diaspore input, especially since the majority of salt grassland species do not establish a long-lived soil seed bank (Brooke et al. 1999; Wolters and Bakker 2002; Wolters et  al. 2005b). Hydrochory of target species plays a key role in this regard (Dausse et  al. 2008; 7 Sect. 1.2.1).  

12

The rapid success of vegetation development on restored salt grassland could also be demonstrated for restoration sites on the Baltic Sea coast. Dike relocation and extensive grazing on the Karrendorf meadows near Greifswald (. Table  12.5), for example, restored typical salt grassland vegetation on 75% of the area (350 ha) after only 5  years and increased species diversity (Bernhardt and Koch 2003). This rapid adjustment of target species and vegetation after restoration of water dynamics by dike opening is also confirmed by Wolters et al. (2005a) with a comprehensive evaluation of coastal restoration projects in Western and Central Europe. However, they find that after longer periods of time (> 20  years), species diversity and the proportion of target species decreases again. Long-term studies from Germany and the Netherlands indicate that in the course of succession, individual or a few tall-growing species become dominant e.g., A. portulacoides on the lower and sea couch (E. athericus) or saltmarsh bulrush (B. maritimus) on the upper salt grassland (Andresen et al. 1990; Bakker et  al. 2002a, b; Bos et  al. 2002; Schröder et  al. 2002; Gettner 2003; Kiehl et al. 2007). These competitive, tall-growing species displace the low-­growing ones, leading to a decrease in species diversity. Therefore, Wolters et  al. (2005a) suggest combining restoration through dike opening and restoration of tidal dynamics with continuous management, such as grazing or mowing (see below). The temporal and spatial restoration of typical salt grassland vegetation depends very much on the free inflow of tidal water, which, according to experience from restoration projects on the North Sea coast, is only possible through a large dike opening or complete removal of the dikes (Seiberling et al. 2009). If the ponds as former clay-extraction sites (Pütten) on the North Sea coast are reconnected to the tidal regime, they can fill with mud again after only a few years, but according to Seiberling et  al. (2009), they  

282

Chapter 12 · Coastal and Inland Salt Grassland

only reach the original terrain level again after 30  years. Observations on the North Sea coast show a development from a glasswort community (after 5  years) to a salt marsh grassland (with Puccinellia maritima) after another 5 years. After another 10 years, species of the upper salt grassland establish. The former clay-extraction ponds often show a small-scale hummock-hollow complex and thus a high structural diversity. However, Seiberling et  al. (2009) conclude that the former clay-extraction sites will be lost over decades as habitats for salt grassland with their typical breeding bird ­communities (7 Sect. 12.1.3). Rewetting as part of coastal restoration can also lead to undesirable consequences, at least for a short time. Thus, for example, heavy metals can be mobilized in contaminated marsh sediments by flooding and enter the surface water (Teuchies et al. 2012, 2013). These are then found in elevated concentrations in both plants and animals of the corresponding coastal habitats. The process of heavy metal mobilization as a result of flooding is complex, and further research is needed on this.  

12

Grazing as an Anthropo-Zoogenic Restoration Strategy for Salt Grassland Grazing has been a traditional form of land use on salt grassland for centuries. In the context of restoration measures, intensive grazing is changed towards extensive grazing, in addition to the abandonment of land use for the development of natural site and vegetation dynamics (see Bakker 1985). Kiehl (1997), for example, distinguishes between intensive sheep grazing with stocking densities of more than 3 sheep per ha and extensive grazing with an average of one or fewer sheep per hectare. Intensive grazing of salt grassland on the North Sea coast often results in monotonous vegetation with saltmarsh grass (Seiberling et al. 2009). In contrast to intensive grazing, extensive grazing

leads to higher species and structural diversity (Kiehl 1997; Bakker et  al. 2002a, b). According to Scherfose (1993), salt grassland species that benefit from extensive grazing are those that have a short life span (therophytes and biennial species), are small in size, flower and fruit early in the growing season, and are capable of vegetative reproduction. Bakker et al. (1997) have shown in studies e.g., on the restored Hamburg Hallig, that the grazing behaviour of geese is correlated with the intensity of use by the grazing animals. With the cessation or extensification of grazing, barnacle geese (Branta leucopsis) and brent geese (Branta bernicla) shifted their foraging to areas intensively grazed by sheep. Consequently, the geese prefer the low-growing vegetation, which is promoted by grazing, also with cattle (Olff et al. 1997; Bos et al. 2005a). Härdtle (1984) states for the salt grasslands of the East Holstein Baltic Sea coast that “the extraordinarily strong influence of grazing on the species assemblages of salt saltgrassland […] often [masks] the effect of other ecological factors”. While intensive grazing is considered as having a generally negative impact in terms of species, habitat, coastal, and climate protection (e.g., Dijkema et  al. 1984; Ovesen 1990; Kiehl 1997), careful assessment of development objectives and desired ecosystem services is required when considering extensive grazing or complete land-use abandonment. Especially in coastal national parks, such as the National Park Wadden Sea (see case study below), there arises therefore a conflict between natural development without further human impact and cultural landscape protection with an appropriate management. If halting the natural succession processes on restored salt grassland through permanent management, such as grazing, in the national park is “not compatible with the objectives of the national park” (Gettner 2003), conflicts regarding future development are inevitable. However, this is

12

283 12.1 · Coastal Salt Grassland

a conflict of interest in many European national parks, which have particularly maintained their diversity and distinctiveness through centuries of cultural and landuse impact, respectively, and which would be lost if the national park objective of natural development uninfluenced by humans were consistently implemented (IUCN 2018; Zerbe 2022). This also applies, for example, to the national parks Vorpommersche Boddenlandschaft and Lower Oder Valley. Such conflicting goals also exist, for example, on the salt grasslands of the Baltic Sea coast. Natural development without grazing would lead to large-scale reed stands with numerous ecosystem services (. Table 12.7).  

Introduction of Target Species Due to the generally short-lived soil seed bank of typical salt grassland plants, an acceleration of vegetation development can be considered. This is especially the case if there are no donor areas with target plant species in the vicinity or if these are intensively grazed and no mature diaspores

..      Table 12.7  Comparison of ecosystem services of coastal reed beds (with Phragmites australis) and anthropo-zoogenic salt grassland of the southern Baltic Sea region with an assessment in 0 = no to low degree of ecosystem service, + = medium, ++ = high Ecosystem service

Coastal reed

Salt grassland

Peat accumulation on coastal flooded mires

++

0/+

Breakwater function

++

+

Diversity of possible uses

++

+

Plant diversity

0/+

++

Bird diversity

++

+

develop (Wolters and Bakker 2002). In restoration projects in the UK, for example, plants have been introduced to accelerate vegetation development by seeding, planting or transferring sods or topsoil from donor sites. At Tollesbury (Essex), pre-grown plants of T. pannonicum subsp. tripolium and P. maritima were planted in the low salt grassland zone, but without success in permanent establishment (Brooke et  al. 1999). Test plots were sown with 500 to 5000 seeds per m2 of the species Armeria maritima subsp. maritima, T. pannonicum subsp. tripolium, A. portulacoides, Limbardia crithmoides, Limonium vulgare, Plantago maritima agg., Puccinellia maritima, Spergularia media, Suaeda maritima, and Triglochin maritima. In addition, vegetation sods were transplanted from a donor plot (Garbutt et al. 2006). 12.1.6  Case Study: Restoration

of Salt Grassland in the National Park Wadden Sea on the North Sea Island of Langeoog

Settlement history and land use in the southern North Sea region reaches back thousands of years. While local people initially used the coastal area for farming, livestock breeding, and fishing as it was naturally shaped, in the Middle Ages communities began to reclaim land artificially by diking and thus intensifying land use. Since then, the coastal area has been reshaped accordingly and changed through intensive use. For more than 25  years, however, species and habitat protection objectives in the international protected area Wadden Sea in the North Sea have led to initiatives to restore natural coastal dynamics even on areas that have been anthropogenically influenced e.g., by agriculture (. Table 12.5). An example of this is the North Sea island  

284

12

Chapter 12 · Coastal and Inland Salt Grassland

of Langeoog, a sandy barrier island off the mainland coast whose geomorphological development has been marked by major changes in recent centuries due to the effects of ocean currents, natural new land formation, and land erosion (Streif 1990; Kolditz et al. 2012b). On the East Frisian island of Langeoog, which is now part of the National Park Lower Saxony Wadden Sea founded in 1986, the summer polder located on the mudflat side of the island with an area of approx. 200 ha was enclosed by an approx. 5.5 km long and approx. 2 m high dike in 1936/1937  in order to intensify agricultural use and to protect grazing cattle from summer floods (Thorenz 2008; Barkowski et  al. 2009). Intensive grazing was performed there until 1992, sometimes with up to 400 cattle. In addition, sods were partially cut out for the use as building and fuel material and for dike repair (Barkowski and Freund 2006). Due to the diking, the summer polder was only flooded during storm surges with a maximum of 20 to 25 times per year (Fröhlich et  al. 2015). Large parts of the original and typical salt grassland vegetation on the mudflat side of the island were lost due to the now reduced salt water influence and lack of sediment dynamics. Both, the lower and middle salt grassland had almost completely disappeared after diking, and up to 70% of the area was now covered by upper salt grassland vegetation, i.e., plant communities with red fescue, couch grass, and sea wormwood, indicating a strong decline of salinity on the summer polder (Thorenz 2008). In the course of a compensatory measure for the construction of a natural gas pipeline, two tidal sluice structures in the summer dike were completely removed in 2003/2004, and the summer dike was almost completely removed (Bezirksregierung Weser-Ems 2001). The material was used to fill the artificial drainage ditch adjacent to the former dike in sections. As part of the

measure, remnants of former tideways were reactivated, tideway fillings were opened, and the drainage ditches were partially closed with the soil material. The aim of this compensatory measure was to restore the natural tidal dynamics and to initiate a near-­natural tideway system in the area of the summer polder. Particularly, the development of natural coastal salt grassland should be promoted without, however, impairing the existing areas of high nature conservation value, i.e., areas with species and habitats of the European Habitats and Birds directives (Thorenz 2008). After this restoration measure, salt grassland vegetation with its characteristic species had developed again after only a few years. The rapid development towards the target vegetation was mainly due to the natural water dynamics and the input of diaspores of target species still present in the coastal area. Today, grazing is only performed extensively in an approx. 35 ha section of the restored salt grassland (Bezirksregierung Weser-Ems 2002). Only a small part of the costs of this restoration measure was spent on the removal of the summer dike and the filling of ditches. The majority of the financial resources went into preparatory measures, such as the construction of a largely flood-proof driving embankment to the east of the island (. Fig.  12.3). The latter was necessary to obtain approval for the restoration from the Langeoog municipality and to increase acceptance of the measure (Fröhlich et  al. 2015; see also Myatt et al. 2003). Since the restoration measure, continuous monitoring has already been carried out for more than 10 years by planning offices or as scientific studies, in particular by the University of Oldenburg. This includes vegetation surveys - on the one hand, on 80 permanent plots (partly already established in the 1930s), on the other hand, via mapping of plant communities - and the recording of bird fauna (e.g., Freund et  al. 2003; Barkowski and Freund 2006; Barkowski  

12

285 12.1 · Coastal Salt Grassland

et  al. 2009; Nationalparkverwaltung Niedersächsisches Wattenmeer 2016). In the first few years after the restoration measures were carried out, nitrophytic halophytes, such as herbaceous seepweed (Suaeda mari-

tima), spear-leaved orache (Atriplex prostrata agg.), and sea wormhood (Artemisia maritima) established due to the high nitrogen content in the soil (Barkowski et al. 2009). Today, the zonation of the vegetation on the seaward side up to the main dike is characterized by a pioneer zone with the plant communities Spartinetum anglicae, Suaedetum maritimae, Salicornietum ­strictae, and Salicornietum brachystachyae to lower and middle salt grassland (Puccinellion) towards upper salt grassland with communities of Armerion and Saginetea maritima (. Fig.  12.4). Transitions to wet grassland and coastal dunes are found in the marginal area. All characteristic salt grassland species and plant communities, respectively, could by already found after a few years, however, not with a zonation described in the textbooks (. Fig.  12.2) but in a small-­scale mosaic  

..      Fig. 12.3  Land use and habitat zonation of restored salt grassland (upper half of photo) and areas that continue to be grazed in the northern part of the North Sea island of Langeoog. (S. Zerbe, September 2017)

..      Fig. 12.4  Development of the vegetation influenced today by the natural tidal water dynamics from upper salt grassland dominated by couch grass before the dike was relocated in 2002 to pioneer vegetation



shortly after the former dike was removed in 2005 and towards species assemblages of the lower salt grassland in 2013. (From Nationalparkverwaltung Niedersächsisches Wattenmeer 2016)

286

depending on the micro-relief. Thus, at ditches and water-filled hollows (e.g., former sod extraction sites), the species of the pioneer zone (e.g., Salicornia stricta, S. maritima) and of the lower and middle salt grassland (e.g., J. gerardii, P. maritima agg., L. vulgare) are often found side by side in a small-scale mosaic. In the higher elevation zone, sea couch (Elymus athericus) has become widespread after grazing was discontinued (Barkowski et al. 2009). Extensive grazing, however, could lead to a diversification of the vegetation and the suppression of undesirable dominant species (Barkowski and Freund 2006), but this would always be associated with the maintenance of the anthropogenic drainage system. Birdlife has also been benefited from this salt grassland restoration. The populations of most breeding bird species have increased, and new species have also established, including the rare species of spoonbill, Mediterranean gull, and gull-billed tern (. Table  12.8). The deconstruction of the former dike also re-initiated natural sedimentation, especially of organic material (Kolditz et al. 2012a), so that salt grassland is continuously increasing in elevation. In view of the ongoing sea-level rise, the restoration of salt grassland, thus, represents a contribution to climate change adaptation (Fröhlich et al. 2015; Nationalparkverwaltung Niedersächsisches Wattenmeer 2016). Restoring natural coastal and sedimentation dynamics also counteracts the loss of the Wadden Sea’s carbon storage function after decades of diking and land use in this coastal area (see Delafontaine et al. 2000). Although, numerous target species as well as the target vegetation of the pioneer zone as well as the lower and middle salt grassland have already been re-established within a few years after the removal of the summer dike, Barkowski et  al. (2009) conclude that the natural water dynamics and thus, also the natural sedimentation have  

12

Chapter 12 · Coastal and Inland Salt Grassland

..      Table 12.8  Breeding bird species on the summer polder of the island of Langeoog with those species having newly established after the removal of the former dike (in bold). (From Nationalparkverwaltung Niedersächsisches Wattenmeer 2016) Breeding bird species Common name

Scientific name

Arctic tern

Sterna paradisaea

Barn swallow

Hirundo rustica

Black-headed gull

Larus ridibundus

Black-tailed godwit

Limosa limosa

Common gull

Larus canus

Common moorhen

Gallinula chloropus

Common tern

Sterna hirundo

Cuckoo

Cuculus canorus

Egyptian goose

Alopochen aegyptiaca

Eider

Somateria mollissima

Eurasian curlew

Numenius arquata

Eurasian reed warbler

Acrocephalus scirpaceus

Eurasian wren

Troglodytes troglodytes

European herring gull

Larus argentatus

Grasshopper warbler

Locustella naevia

Greylag goose

Anser anser

Gull-billed tern

Gelochelidon nilotica

Jackdaw

Corvus monedula

Lesser black-­ backed gull

Larus fuscus

Linnet

Carduelis cannabina

Mallard

Anas platyrhynchos

Marsh warbler

Acrocephalus palustris

Meadow pipit

Anthus pratensis

Mediterranean gull

Ichthyaetus melanocephalus

287 12.2 · Inland Saline Habitats

..      Table 12.8 (continued) Breeding bird species Common name

Scientific name

Northern lapwing

Vanellus vanellus

Northern shoveler

Anas clypeata

Northern wheatear

Oenanthe oenanthe

Oystercatcher

Haematopus ostralegus

Pied avocet

Recurvirostra avosetta

Redshank

Tringa totanus

Reed bunting

Emberiza schoeniclus

Ringed plover

Charadrius hiaticula

Sedge warbler

Acrocephalus schoenobaenus

Shelduck

Tadorna tadorna

Short-eared owl

Asio flammeus

Skylark

Alauda arvensis

Snipe

Gallinago gallinago

Spoonbill

Platalea leucorodia

Stock dove

Columba oenas

Tufted duck

Aythya fuligula

Whinchat

Saxicola rubetra

Whitethroat

Sylvia communis

White wagtail

Motacilla alba

Wood pigeon

Columba palumbus

not yet been fully restored due to the anthropogenic ditch system. This may require further interventions, combined with the restoration of a meandering, near-natural tideway system, to accelerate the restoration of the entire salt grassland ecosystem, with corresponding positive effects on the biodiversity of this coastal habitat. Since its designation, numerous restoration projects have been carried out in the National Park Wadden Sea to restore the typical coastal habitats influenced by the

12

dynamics of the seawater level by reducing land use and accompanying measures. Examples include the backfilling of the anthropogenic trench system (= Grüppen as shallow artificial drainage ditches in the coastal area) in the salt grassland in the east of the island of Norderney and the deconstruction of the counter dike at Langwarder Groden. 12.2  Inland Saline Habitats 12.2.1  Occurrence, Ecology, and

Nature Conservation of Natural Inland Saline Sites in Central Europe

Under special geological or climatic conditions, salt-influenced sites with their typical, salt-tolerant flora and vegetation also occur naturally in inland areas (primary inland saline habitats). Although, mineral salts are natural components of soils, elevated concentrations of sodium chloride, in particular, occur in certain habitats far from the coasts, in addition to calcium, sulphate, and hydrogen carbonate ions (Hermsdorf 2010). Saline water, for example, can be transported to the soil surface with groundwater that has been enriched with salt when flowing through rock salt layers (Zechstein). Normally, these deep-lying layers are covered and sealed by younger deposits; however, due to special geological and geomorphological conditions, saline groundwater can penetrate through the upper soil layers to the surface, which then affects the vegetation e.g., at brine springs. In addition, salts can be transported to the soil surface by strong evapotranspiration during dry climatic periods e.g., in the Pannonian Plain in south-eastern Central Europe, and lead to natural topsoil salinization.

288

12

Chapter 12 · Coastal and Inland Salt Grassland

Inland saline sites in Central Europe are found, for example, at the Kyffhäuser Mountains in Thuringia (TMLNU 2005), in the Luch meadows in Brandenburg (MLUL 2016), and at several sites in Central Poland (Piernik 2005, 2012). Site ecology as well as flora and vegetation characteristics of inland saline habitats have been described e.g., by Janssen (1986) and Preising et  al. (1990) in Lower Saxony, by Westhus et  al. (1997) and Pusch (2007) in Thuringia, by Herrmann (2007, 2010) in Brandenburg, by LAU (2012) and Brennenstuhl (2015) in Saxony-Anhalt, and by Piernik (2005, 2012) and Piernik and Hulisz (2011) in Poland, also pointing out the vegetation and site ecological similarity of natural with anthropogenic inland saline sites (see below). According to these studies, up to 50 species of higher plants, which belong to the halophytes sensu strictu as well as to the salttolerant species of Central Europe, can be found in inland saline habitats. For further information on the flora and vegetation of primary and secondary inland saline habitats in Central Europe, reference is made to the comprehensive bibliography by Brandes (1999a). In inland saline habitats in Central Europe, plant communities from two phytosociological associations within the class Asteretea tripolii are found, namely the common saltmarsh grasslands (Puccinellion maritimae) and the sea aster salt grasslands (Armerion maritimae), which also occur with similar species assemblages on the coasts of the North Sea and Baltic Sea (Ellenberg and Leuschner 2010; 7 Sect. 12.1). In addition, brackish reed beds of the association Bolboschoenion maritimi and salt-tolerant reed beds occur (Zimmermann 2010b). At inland saline sites, there is often a typical zonation depending on the salt concentration (Janssen 1986; Brandes 1999b). Around a vegetation-free central area, the plant communities Salicornietum ramosis 

simae are found in a ring around this central area with high salt concentrations, followed by the Spergulario-Puccinellietum distantis (e.g., with T. pannonicum subsp. tripolium) and the Juncetum gerardii with saltmarsh rush (Juncus gerardii) and sea milkwort (Glaux maritima) in the outer zone. In the transition to the sites that are hardly or no longer influenced by salt, less salt-tolerant plant communities join in e.g., with scentless mayweed (Tripleurospermum perforatum) and common reed (Phragmites australis). Similar to the anthropo-zoogenic salt grassland of the southern Baltic Sea coast (7 Sect. 12.1.3), the low-growing halophyte vegetation of inland saline sites is often the result of grazing and would naturally develop into reed beds (Westhus 1984; Brandes 1999b). Comparatively extensive surveys of the invertebrate fauna are available for the inland salt pans of Saxony-Anhalt. While the spider fauna of inland salt pans, with few exceptions, such as Argenna patula, Erigone longipalpis, and Sitticus caricis, consists of species that are not linked to salt sites (Süssmuth 2012), Trost (2012) lists 18 species of ground beetles (Carabidae) whose occurrence is closely linked to a high salinity of the site, including, for example, the Red List species Amara (Zezea) strandi, Bembidion tenellum, Dyschiriodes (Chiridysus) extensus, Pogonus iridipennis, and Tachys scutellaris. Natural inland saline sites with their typical halophyte vegetation are among the habitats of outstanding nature conservation value in Europe. In Brandenburg, for example, all natural inland salt sites are protected, irrespective of their area size and the number of salt-tolerant plant species present (Zimmermann et al. 2007). Due to the rarity and increasing endangerment of inland saline habitats on a European scale, they are also included in the European Habitats Directive as inland salt meadows  

289 12.2 · Inland Saline Habitats

(Code 1340). In addition to those already mentioned above, inland saline sites in Europe also occur in Denmark, France, the Czech Republic, Slovakia, and Bulgaria. In Europe, Poland has the highest area share with 1916  ha, followed by France with 965 ha, Germany with 654 ha, and Bulgaria with 412  ha (Krumbiegel and Hartenauer 2012). This habitat type occurs in almost all German federal states, with highest area shares in Mecklenburg-Western Pomerania (184  ha), Brandenburg (180  ha), Saxony-­ Anhalt (116 ha), and Thuringia (67 ha). Key conservation objectives for inland saline sites are the preservation and restoration of these habitats with their typical and endangered species (Zimmermann 2010a). Particularly in the case of the large-scale Pannonian salt pans and steppes, respectively, the preservation of the traditional, historically evolved cultural landscape with pasture use is also important (Šefferová Stanová et al. 2008). The flora and vegetation of the Pannonian salt steppes in the climatic transition zone of Central Europe and continental South-Eastern Europe differ fundamentally from the inland saline habitats described above. According to Molnár and Borhidi (2003), the plant communities are differentiated into three main types on the basis of differences in their physiognomy as well as species and life form composition (see also Chytrý 2007; Šefferová Stanová et al. 2008): 1. The plant communities of the class Thero-Salicornietea strictae occur with annual succulent halophytes of the genera Salicornia and Suaeda on those sites with very high salt concentrations, which become wet during the winter season and spring and dry out in summer. These communities are very poor in plant species. 2. The communities of the class Crypsidetea aculeatae with e.g., pricklegrass (Crypsis aculeata), Pannonian flatsedge (Cyperus

12

pannonicus), and swamp pricklegrass (Crypsis schoenoides) colonize the alkaline lakes that dry out in summer and consist mainly of grasses and sedges. 3. The communities of the class FestucoPuccinellietea are mainly found on grazed continental salt steppes and salt grassland, respectively. The vegetation cover, dominated by hemicryptophytes, is dense and comparatively species-rich. The salt concentration of the topsoil is lower than in the two above-mentioned community types. These plant communities are found especially in Hungary (Molnár and Borhidi 2003) and also in Slovakia (Stanová and Valachovič 2002), Austria (Mucina 2003), and Romania (Gafta and Mountford 2008). Šefferová Stanová et al. (2008) highlight the habitat-specific and rich fauna of Pannonian salt steppes and salt meadows. In the periodically water-filled saline lakes and ponds, plankton can be found e.g., the small crustaceans Branchinecta orientalis and B. ferox. In addition, these wetlands play an important role as resting areas for birds, such as red-breasted goose (Branta ruficollis) and lesser white-fronted goose (Anser erythropus). The western extension of the salt steppes in south-eastern Central Europe are habitat for red-winged pratincole (Glareola pratincola), Eurasian stone curlew (Burhinus oedicnemus), and greater short-­toed lark (Calandrella brachydactyla), among others. The occurrence of the great bustard (Otis tarda), which has a large population in the salt steppes of Hungary, is also noteworthy. Among the mammals, the steppe polecat (Mustela eversmannii subsp. eversmanii) and the southern birch mouse (Sicista subtilis) should be mentioned. Traditionally, these sites are grazed and represent, for example in Hungary, a cultural landscape of European significance, the Puszta (. Fig. 12.5).  

290

Chapter 12 · Coastal and Inland Salt Grassland

(7 Sect. 20.4), can contain high concentrations of water-soluble salts (KCl, NaCl, MgCl2, MgSO4) and thus, lead to the establishment of anthropogenic saline vegetation (Müller 1995; Koch 1996; van Elsen 1997; Westhus et al. 1997; Guder et al. 1998; Garve 1999; John 2000; Piernik 2003). Saline water also enters receiving waters  - indirectly via groundwater flow or by direct discharge - as has been documented, for example, for the Werra since the beginning of the twentieth century (Kahlert 1993) and has had considerable effects on biocenoses (Buhse 1993; Schwevers et al. 2006). Saline coal layers in lignite mining areas can also give rise to secondary saline habitats.  

..      Fig. 12.5  Typical cultural landscape of the Puszta in Hungary with an occurrence of halophytes at sites influenced by salt in the topsoil. (S. Zerbe, September 2013, near Kecskemét)

12.2.2  Secondary Inland Saline

Habitats

12

In the Central European cultural landscape, salt-affected sites of anthropogenic origin also occur (secondary inland saline habitats). Continuously high application of road salt in winter, especially in cities and along motorways, leads to soil salinization at roadsides and damage to salt-sensitive roadside flora and vegetation. Continuous anthropogenic salt input leads to vegetation changes associated with the occurrence of salt-­ tolerant plant species, such as sea thrift (A. maritima subsp. maritima), buck’s-horn plantain (Plantago coronopus), two-scale saltbush (Atriplex micrantha), glossy-leaved orache (A. sagittata), Tatarian orache (A. tatarica), Danish scurvy grass (Cochlearia danica), foxtail barley (Hordeum jubatum), broad-leaved pepperweed (Lepidium latifolium), roadside pepperweed (L. ruderale), seashore dock (Rumex maritimus), lesser sea-spurrey (Spergularia marina), and the weeping alkali grass (Puccinellia distans agg.; Adolphi 1975, 1999; Auhagen and Sukopp 1980; Gilbert 1991; Jackowiak 1996; Brandes 1999b). The seepage water from overburden dumps, especially from potash mining

12.2.3  Land-Use History,

Degradation, and Threats to Inland Saline Habitats

Historically, inland saline sites were integrated into agricultural, initially extensive use as meadow or pasture. Moreover, apart from the large inland salt pans of Central Europe (e.g., Janowitz 2003), salt used to be extracted locally at these sites (Zimmermann 2010a; Balaske 2012). Grazing has often led to the decline of natural reed stands, similar to coastal salt grassland on the Baltic Sea (7 Sect. 12.1.3). However, inland saline habitats have suffered a similar fate to peatland, wet meadows, nutrient-­ poor grasslands, and coastal salt grassland with land-use intensification since the mid-­ twentieth century. Drainage, eutrophication, ploughing up of grassland, and seeding (for example, in Brandenburg in the context of “complex amelioration”; 7 Sect. 8.1) contributed to a decline in inland saline habitats and the disappearance of halophyte vegetation. Only very few nutrient-poor sites were spared from this land-use change, partly due to their small size (Rößling 2010). Today, abandonment is also one of the endangering factors (see Zerbe 2022 on land  



291 12.2 · Inland Saline Habitats

abandonment). According to the Red List of endangered habitat types in Germany (Riecken et  al. 2006), near-natural inland saline sites are “threatened with complete destruction”. The conservation status of the FFH habitat type “inland salt meadow” can be determined with the following criteria: 1. Presence of the typical habitat structures,

12

2. occurrence of the typical species assemblages, and 3. existing impairments (. Table 12.9).  

According to this assessment, there is a need for restoration at the grade C. The Pannonian salt steppes were also traditionally grazed. However, over the past 150  years, drainage, conversion to arable

..      Table 12.9  Evaluation scheme of inland saline habitats (FFH Habitat Type with code 1340) according to the guidelines of the LAU (2010) in Saxony-Anhalt. (Slightly modified after Krumbiegel and Hartenauer 2012) Criteria

Assessment grade A

B

C

Completeness of habitat-­ typical habitat structures

Excellent

Good

Medium to poor

Structural diversity

Typical structural elements: Brine discharge, brine ditches, vegetation-­ free areas, glasswort vegetation, patchy salt grassland, brackish water reeds At least four structural elements

At least two structural elements

At least one structural element

Completeness of the habitat-typical species assemblage

Present

Largely present

Only partly present

Species assemblage

Ten characteristic species, including three species typical of this habitat type

Four characteristic species, including at least one species typical of this habitat type

One species typical of this habitat type

Impairments

None to low

Medium

Strong

Indicators of eutrophication, abandonment, and disturbance; neophytes

None

< 10% coverage

> 10% coverage

Impairment due to use, recreational activities, deposits

No or only selective impact

Not significant, maintenance measures not optimally effective

Significant (e.g., excessive livestock, fertilisation, seeding)

Alteration of the water balance (e.g., lowering of the groundwater table, alteration of the natural dynamics, water withdrawals)

Not recognizable

Water balance slightly to moderately disturbed

Water balance strongly disturbed

A = excellent, B = good, C = medium to poor

292

Chapter 12 · Coastal and Inland Salt Grassland

land combined with the application of mineral fertilizer, intensification of grazing, and afforestation with, for example, poplars increased and have led to significant vegetation and landscape changes (Šefferová Stanová et al. 2008; Melečková et al. 2013). This is well documented, for example, for Slovakia in the second half of the twentieth century (Sádovský et  al. 2004; Dítě et  al. 2008; Eliáš et  al. 2008). In contrast, traditional grazing, especially with sheep, declined sharply or was abandoned. The flocks of sheep driven by shepherds across the salt steppes for grazing have now been replaced locally and regionally, respectively, by intensive goose farming. Šefferová Stanová et al. (2008) also refer to the problems of wild boar hunting, especially when vehicles are used for this purpose, which leads to soil compaction, or when the animals are attracted by food, which promotes eutrophication and the spread of weeds.

12

site than from the fact that livestock farmers are no longer present in the area concerned (Rößling 2010). Hess (1976) reports on the re-planting of halophytes and the relocation of sods from still intact saline habitats in the Wetterau (Hesse). However, long-term monitoring and success control have not yet been carried out. In contrast, at the two most important inland saline sites in the northern Harz foreland of Lower Saxony, the Barnstorf and Seckertrift nature reserves, long-term monitoring of over 5 years was carried out, in particular, to determine the influence of grazing and topsoil removal (Evers and Zacharias 1999). After topsoil removal, S. europaea agg. Initially occurred as a pioneer plant, which was then replaced by P. distans agg. and T. pannonicum subsp. tripolium in the course of further succession. For the grazing of the salt grassland as a measure of habitat management, Evers and Zacharias (1999) recommend the use of cattle over sheep, as the latter have a negative impact on 12.2.4  Restoration Measures the seed production of the annual glasswort (see also Janssen and Brandes 1989). on Inland Saline Habitats For the Pannonian salt steppes, Šefferová Stanová et al. (2008) propose various strateFrom experiences in the restoration of gies for their restoration. The re-introducinland saline habitats with their typical flora tion of traditional grazing is one of the most and vegetation, for example, in Saxony-­ important measures. In the Hortobágy Anhalt and Brandenburg, recommendaNational Park in Hungary, located in the tions can be derived that are very similar to largest Central European steppe region the restoration of wet meadows (7 Sect. (Hortobágy Puszta), an approximately 15.6). If land-use intensification has led to the degradation of the inland saline habi- 2400 ha large reserve has been grazed with tats, measures, such as rewetting e.g., by Przewalski’s horses since 1997 (Zimmermann closing drainage ditches or removing top- et  al. 1998, 2005). The number of animals soil, are applied. In contrast, the re-intro- on the pastures depends on the precipitation duction of extensive grassland use with of the previous year and the current precipimowing or grazing and without additional tation, respectively, and thus on the vegetafertilizer applications is considered in cases tion development. Accordingly, grazing of abandonment and advanced succession intensity must always be adapted to current (Rößling 2010; Brennenstuhl 2015). moisture conditions and vegetation develParticularly in the case of restoring the veg- opment as part of a flexible management etation of inland saline habitats created by (see case study in 7 Sect. 16.5). Mowing is extensive grazing, often a limiting factor recommended to remove undesirable species results less from the ecological status of the (“weeds”). Backfilling of ditches or removal  



293 12.2 · Inland Saline Habitats

of dams may be necessary to restore the original hydrological conditions. Some halophytes with very low competitiveness, such as lesser sea-spurrey (S. marina), swamp pricklegrass (C. schoenoides), and pricklegrass (C. aculeata) require topsoil disturbance for regeneration. This can be induced by machine or by the trampling of grazing animals. In addition, seeding (e.g., of Festuca pulchra) is recommended. Studies of the spider fauna of Pannonian salt habitats at Lake Neusiedl show that both, the ungrazed and the grazed sites contain rare and site-typical species (Zulka et  al. 1997). From this it is deduced that a mosaic of different land-use intensities maintains species diversity. Adapted to local-regional conditions, a spatio-temporal mosaic of different grazing intensities is proposed, whereby non-grazed areas should also be included in the overall management concept. Certain halophytes, for example, such as grey aster (Galatella cana) and hog’s-­ fennel (Peucedanum officinale) do not tolerate grazing. Examples of conservation- and restoration-oriented grazing management are available for geese, sheep, Galloway cattle, and Przewalski’s horses (Šefferová Stanová et al. 2008). Melečková et al. (2013) do not come to satisfactory results after an experimental topsoil removal for the regeneration of halophyte vegetation typical for Pannonian salt steppes. Positive effects are only short-term and promote ruderal species. Rößling (2010) has formulated the following theses for the conservation of inland saline habitats in Brandenburg, which can also be applied to similar Central European inland habitats influenced by salt: 55 The special characteristics of the flora, vegetation, and fauna of inland saline habitats that have been created by extensive use can only be restored by resuming the same or similar land management. 55 The management concept must be adapted to the local and, in particular,

12

the hydrological characteristics of the inland saline habitats. 55 The agricultural use of inland saline sites must be economically viable for the farm using them and must have the ability to be integrated into the farm’s operations. 55 Land use must be supported by complementary funding instruments for nature conservation and cultural landscape protection. 55 The land user must have access to professional advice from nature conservation experts or to nature conservation-­ friendly landscape management. The nature conservation administration accompanies the restoration measures with monitoring.

12.2.5  Case Study: Inland Saline

Habitat Altensalzwedel in Saxony-Anhalt—Initial Success of a Restoration Project

While extensive literature is available on the restoration of salt grassland and salt marshes at the coasts in Western, Central, and Northern Europe, from which transferable recommendations for further restoration practice can be derived, restoration initiatives on inland saline habitats are still insufficiently documented by science and practice. In a special issue on “Inland saline habitats in the Natura 2000 network of protected areas”, for example, the State Department for Environmental Protection in Saxony-Anhalt has presented a comprehensive documentation of inland saline habitats in terms of flora, fauna, vegetation, and conservation status, including recommended maintenance measures (LAU 2012). On the inland saline site “Altensalzwedel”, located close to the city of Salzwedel, and according to Brennenstuhl (2015) “repre-

294

12

Chapter 12 · Coastal and Inland Salt Grassland

senting a rather insignificant example compared to the classic saline habitats in Saxony-Anhalt […]”, various restoration measures have been carried out and their effects documented for several decades. This is a natural inland saline habitat with the typical characteristics of the FFH habitat type 1340, but only with “medium quality”. Information on the flora is available for the site as early as the second half of the nineteenth century; anthropogenic impacts and the state of development have also been documented since the 1960s (Burchardt 1963; Jage and Jage 1967; Brennenstuhl 2015). The saline site is fed by several brine springs and has a small-scale relief mosaic with gullies and hollows formed by clay-extraction pits as well as peatland. The interventions in order to promote agricultural use documented for the 1960s and later included drainage, cattle grazing on the grassland, some of which had been seeded after ploughing, and maize cultivation (Brennenstuhl 2015). These land-use interventions in a wetland site reflect the efforts at the time to meliorate such sites that were considered unfavorable for agricultural use (7 Sect. 8.1). 1969 was the last time glasswort (S. europaea agg.) was recorded. Land-use was intensified in the 1970s with site levelling and the creation of drainage ditches up to 1  m deep.  

Brennenstuhl (2015) sums up the loss of valuable species and “a devastating decline in the individual numbers of the remaining salt plants” for the period of agricultural use 1970–1989, “which was characterized by dramatic changes”. In 1999, the saline site was re-supplied with saline water by means of a short trench, and in 2002/2003, an initial small-scale topsoil removal (40 m2) was carried out, which was then supplemented by the removal of approx. 2000 m2 of topsoil. This led to the re-establishment and spread of the pioneer species S. marina as well as J. gerardii, P. distans agg., and Ranunculus sceleratus on the now created sites with bare soil, which were again influenced by saltwater. In the water-­ filled hollows created by the soil excavation, brackish water reed with B. maritimus and Schoenoplectus tabernaemontani occurred. The strong expansion of common reed and stinging nettle made it necessary to remove soil again in 2012. Although, the restoration measures to date have not been able to restore the high species diversity of before the heavy agricultural interventions since the 1960s – until 1970 the only occurrence of the red bulrush (Blysmus rufus) in Saxony-­ Anhalt (Hartenauer et al. 2012) - they have at least created more or less stable ­populations for 12 plants typical for saline habitats (Brennenstuhl 2015).

295

Marine Habitats in the North Sea and Baltic Sea Contents 13.1

 arine Ecosystems of the North Sea M and the Baltic Sea – 297

13.1.1 13.1.2

North Sea – 297 Baltic Sea – 298

13.2

 nthropogenic Evironmental Impacts A on the Marine Ecosystems of the North Sea and the Baltic Sea – 299

13.3

 cosystem Services and Threatened E Marine Habitats – 306

13.4

International Marine Protection Initiatives – 307

13.5

 n Overarching Concept for the Restoration A of Marine Ecosystem Services – 309

13.6

Measures for the Restoration of Marine Habitats – 310

13.6.1 13.6.2

Interventions in the Biotic Ecosystem Compartments – 310 Interventions in the Abiotic Conditions – 312

© Springer-Verlag GmbH Germany, part of Springer Nature 2023 S. Zerbe, Restoration of Ecosystems – Bridging Nature and Humans, https://doi.org/10.1007/978-3-662-65658-7_13

13

296

Chapter 13 · Marine Habitats in the North Sea and Baltic Sea

In the past, it was assumed that the oceans could not really be damaged by human impact because of their large size and their natural ability in its self-regeneration. The oceans represented a kind of “commons” which, however, unlike social communities that use their common resources sustainably (Ostrom 1990), was overexploited and not used sustainably. Overfishing, direct and indirect inputs of nutrients and pollutants, and the continuous input of waste, which is washed into the seas from the mainland via rivers or directly from coastal cities, now constitute a global environmental problem. Another factor in the very delayed environmental policy initiatives to protect marine ecosystems is probably the fact that the effects of environmental stress are not directly perceived, as is the case, for example, with eutrophication of lakes and its environmental consequences (7 Sect. 11.3) or pollutant emissions in urban-industrial areas, but occur at a great geographical distance and are more ‘hidden’. The state of many marine ecosystems worldwide is worrying from the point of view of environmental protection and nature conservation. In Latin America, for example, around 85% (!) of urban wastewater is discharged untreated into rivers and seas, respectively, or used for irrigation in agriculture (Cavallini et al. 2005). In the megacity Lima with about 10 million inhabitants, more than 85% of urban wastewater is discharged untreated directly into the Pacific Ocean (Wirth 2010)  - and this against the current knowledge about ecological processes and environmental threats, but also the available technology and the high qualitative standard of water purification. Up to 50% of municipalities in the Eastern Baltic Sea region, i.e., especially in Russia, Poland, and Lithuania, are not yet connected to water treatment plants (COWI 2007; Haahti et al. 2010), so that large amounts of nitrogen and phosphorus enter the Baltic Sea there (Hautakangas et al. 2014). Indeed, the  

13

oceans are the collecting basins for all the water from terrestrial catchments and the nutrients and pollutants they contain, but also for the substances discharged directly into the sea - with the corresponding impacts on the quality of the seawater and the organisms living in it. Added to this are the effects of climate change on marine ecosystems, with changes in sea level and water temperatures (Hoegh-Guldberg and Bruno 2010) and the acidification of seawater (Doney et al. 2009). Whereas in the past the coastal areas and the sea close to the coasts were mainly used for fishing and other purposes, today there is also a high pressure of use and associated environmental stress on the deeper marine areas due to deep-sea fishing, offshore mining of raw materials, and waste disposal (Thiel and Koslow 2001; Ramirez-­ Llodra et al. 2011; Cordes et al. 2016). The restoration of marine ecosystems lags significantly behind that of terrestrial and inland aquatic ecosystems (Hawkins et  al. 2008). Although, anthropogenic impacts on the oceans and the resulting pressures on marine ecosystems and the organisms living in them represent a global challenge (Bax et  al. 2003; Shahidul Islam and Tanaka 2004; Kappel 2005; Halpern et al. 2008; Belim Imtiyaz et al. 2011; Pawar 2016; Visbeck et al. 2017), the focus here will be on the North Sea and Baltic Sea, which are directly relevant for Central Europe. According to Halpern et  al. (2008), the North Sea is among the most polluted seas on Earth when all anthropogenic impacts are cumulatively considered. For the Baltic Sea, it was already assumed at the beginning of this century that about 90% of marine and coastal habitats are endangered (von Nordheim and Boedecker 2000; HELCOM 2003). The current Red List of marine organisms assesses 30% of approximately 1750 considered taxa of fish, bottom-­ dwelling invertebrates, and large marine algae of the German coastal and marine areas as endangered (Becker et  al. 2013).

13

297 13.1 · Marine Ecosystems of the North Sea and the Baltic Sea

Sustainable environmental management and restoration of the North Sea and Baltic Sea with their coastal ecosystems can be based on already existing comprehensive biological-ecological foundations, continuous monitoring, and recommendations for practice derived from this (e.g., Lozán et al. 1990; Liedl et  al. 1992; Schernewski and Schiewer 2002; Walday and Kroglund 2008a, b; Hupfer 2010; OSPAR 2000, 2010; Becker et  al. 2013; Furman et  al. 2013; Rheinheimer 2013; Rodriguez and Brebbia 2013). The reports on the implementation of the European Marine Strategy Framework Directive (7 Sect. 13.4), which provide an initial assessment and description of the state of the environment for each marine region and formulate environmental targets (e.g., BMU 2012a, b), are also of particular relevance to environmental policy.  

13.1  Marine Ecosystems

of the North Sea and the Baltic Sea

13.1.1  North Sea

The North Sea, with an area of about 750,000 km2, is a comparatively young sea, which was formed in the Holocene about 20,000  years ago by the flooding of land. The shallow sea depth (on average 90  m, max. 725  m) and the close interconnection with the European coasts make the North Sea one of the world’s most productive seas. In addition to the rich fish stocks, there is a direct and high exploitation pressure on the North Sea due to the occurrence of gas and oil in the seabed. Furthermore, there is an extraordinarily high level of shipping traffic from a global perspective. With the countries England, Scotland, Norway, Sweden, Denmark, Germany, the Netherlands, Belgium and France directly bordering, the North Sea as an international sea has a

catchment area of 850,000 km2 (Walday and Kroglund 2008a), with a population of approximately 184 million people (OSPAR 2000). Coastal habitats are very diverse and include, for example, rocky fjords (Norway), cliffs and pebble beaches (England and Scotland), large sandy beaches and dunes (Denmark), the Wadden Sea with its typical salt marshes (Netherlands, Germany, Denmark; 7 Sect. 12.1) and numerous estuaries as the mouths of major European river systems. Large marine algae occur mainly on rocky substrates to depths of 15  m (in the southern part of the North Sea) to 30 m (in the northern area). For the British Isles, 820 macro-algal species (e.g., Ascophyllum nodosum, Laminaria hyperborea, and L. digitata) are reported, for the coast of Norway 370, in the Northern Kattegat 325, for Helgoland 274, and for the Netherlands 230 (Bartsch and Kuhlenkamp 2000). In marine zones dominated by macro-algae, these contribute up to 90% of primary production (Walday and Kroglund 2008b). In the benthic green, red, and brown algal stands of the coastal zones, many marine organisms find a habitat for protection from predators, for foraging as as mating sites. “Seaweed” is harvested mainly in Norway and England for industrial purposes and as fertilizer for agriculture. Similar to salt grassland (7 Sect. 12.1.2), also macro-algal populations in coastal areas are thought to act as breakwaters (Walday and Kroglund 2008a). Approximately 230 fish species occur in the North Sea, with generally higher species diversity near the coast, with many fish species showing migratory behaviour over the course of the year and their life cycle, respectively (Knijn et  al. 1993; Greenstreet and Hall 1996; ICES 2008). Some fish species link marine and riverine habitats through their life history. Atlantic salmon, for example, which spend about two-thirds of their life cycle in the sea, migrate to rivers, such as the Rhine, to spawn (7 Sect. 4.2). The total  





298

13

Chapter 13 · Marine Habitats in the North Sea and Baltic Sea

biomass of fish in the North Sea has been estimated at 10–12 million tonnes in recent decades, with two to four million tonnes fished annually in the period 1950–2000 (Walday and Kroglund 2008b; ICES 2008; OSPAR 2010). In 2012, only about 1.4 million t of total catch is reported (ICES 2017a). Rare or endangered fish species in the North Sea include, for example, species of elasmobranchs, such as spiny dogfish (Squalus acanthias), common skate (Dipturus batis), and thornback skate (Raja clavata; Teal 2011; Becker et al. 2013). The bird populations of the North Sea are considered to be of global significance (Walday and Kroglund 2008b). Approximately 30 species breed in the coastal area, and approximately 10 million birds reside there during most of the year. In particular, the Wadden Sea is of high importance as a habitat, with over 50 breeding and migratory bird species and up to 12 million individuals annually (OSPAR 2000, 2010; ICES 2008). The North Sea is also home to the mammals grey seal (Halichoerus grypus) and harbour seal (Phoca vitulina), as well as 16 species of whales and dolphins, such as common dolphin (Delphinus delphis), long-­ finned pilot whale (Globicephala melas), Risso’s dolphin (Grampus griseus), Atlantic white-sided dolphin (Lagenorhynchus acutus), and killer whale (Orcinus orca), which are frequently observed there (OSPAR 2000; Walday and Kroglund 2008b). 13.1.2  Baltic Sea

The inland sea of the Baltic Sea, with an area of about 370,000 km2 and a mean sea depth of 57  m (max. 459  m), with its low salinity (about 6–18‰) and the only narrow connection of the Kattegat and Skagerrak to the North Sea, is a brackish water system with only a small tidal range. Like the North Sea, the Baltic Sea is also a sea formed in the Holocene, after the retreat of the last

glaciation. The pronounced horizontal and vertical salinity gradients influence the diversity of biotic communities  - with the highest biodiversity in the southwest of the Baltic Sea. Freshwater species can co-occur with typical marine species. With the states of Germany, Denmark, Sweden, Finland, Russian Federation, Estonia, Latvia, Lithuania, and Poland bordering, the Baltic Sea has an international catchment area of 1,650,000 km2, inhabited by approximately 80 million people (Walday and Kroglund 2008a). While icing of the surface water can occur in winter, especially in the eastern part of the Baltic Sea, comparatively high surface water temperatures are typical for late summer and autumn. Summer temperatures up to above 15  °C can lead to blooms of often toxic cyanobacteria (IOW 2014). In particular, eutrophication (see Hautakangas et  al. 2014) stimulates algal growth. The algae die, sink to the bottom, and bacterial decomposition contributes to a sharp drop in oxygen levels, especially in deeper water layers of the Baltic Sea. The zoobenthos is dominated by three groups of invertebrates, namely the molluscs, polychaetes, and crustaceans. In the central Baltic Sea, the common blue mussel (Mytilus edulis), the Baltic tellin (Macoma balthica), the amphipod Pontoporeia affinis, and the isopod Saduria entomon occur with large populations. In the phytobenthos of the western Baltic Sea, up to more than 350 species of macro-algae occur (Nielsen et al. 1995). The fish fauna of the Baltic Sea includes about 100 marine and freshwater species. Many of these species have their spawning and feeding grounds in the coastal zones. Marine species include Atlantic cod (Gadus morhua), Baltic herring (Clupea harengus), and European sprat (Sprattus sprattus), freshwater species include pike (Esox lucius) and perch (Perca fluviatilis), and diadromous species include Atlantic salmon (Salmo salar), sea trout (Salmo trutta trutta), and European eel (Anguilla anguilla).

299 13.2 · Anthropogenic Evironmental Impacts on the Marine Ecosystems…

Around 80 bird species use the Baltic Sea region as feeding and breeding habitat or for resting and wintering, especially the sandy shallow water areas and estuaries (HELCOM 2017b). Characteristic species of the Baltic Sea coasts include red-breasted merganser (Mergus serrator), tufted duck (Aythya fuligula), common eider (Somateria mollissima), common sandpiper (Actitis hypoleucos), European herring gull (Larus argentatus), common tern (Sterna hirundo), Arctic tern (Sterna paradisaea), and cormorant (Phalacrocorax carbo). If all bird species that use the Baltic Sea and its coastal areas as breeding and feeding habitat are included, about 40% of a total of 56 species are considered to be critically or potentially endangered, including dunlin (Calidris alpina), black-legged kittiwake (Rissa tridactyla), Mediterranean gull (Larus melanocephalus), and terek sandpiper (Xenus cinereus; HELCOM 2013). In the Baltic Sea, as in the North Sea, the mammals grey seal (H. grypus) and harbour seal (P. vitulina) are frequently observed (OSPAR 2000; Walday and Kroglund 2008b). In addition, two populations of the common porpoise (Phocoena phocoena) and the Baltic ringed seal (Pusa hispida botnica occur.

13.2  Anthropogenic Evironmental

Impacts on the Marine Ecosystems of the North Sea and the Baltic Sea

Most types of environmental pressures are equally relevant for the marine ecosystems of the North Sea and the Baltic Sea, but differ in part in their temporal and spatial extent. Although, fishing is one of the oldest human activities on earth for food supply, it is now practised in many marine ecosystems to an extent that has a highly negative impact on population sizes and on the repro-

13

duction of fish and other marine animals. As fish consumption increases worldwide, so does the problem of overfishing (FAO 2016a). In the North Sea, this currently affects, for example, cod and sole (ICES 2017a) and in the Baltic Sea, cod, Atlantic salmon, and European eel (ICES 2017b). For the North Sea and the Baltic Sea, . Fig.  13.1 shows the development of fish catches, differentiated by fish categories and in each case for the fish species with the highest catch numbers. It becomes clear that many fish species have experienced declining catches over the past decades, but these seems to be a recent recovery. In addition to the commercial catch of fish for food and industrial purposes, there is also the unintentional by-catch and damage to marine organisms caused by fishing practices. This is particularly problematic from a species conservation perspective for harbour porpoises, rays, and seabirds. Up to 18% of local harbour porpoise populations in the Baltic Sea fall victim to by-catch in gillnets (Scheidat et  al. 2008). In the North Sea, approximately 30% of the cod and 50% of the plaice caught are discarded as unused by-catch (ICES 2010). Together with the fish waste that is disposed of directly into the sea, this increases the eutrophication problem (see below). Bird populations are also affected by by-catch (Žydelis et  al. 2009). High mortality from fishing nets, for example, has been observed in some bird species, such as long-tailed duck (Clangula hyemalis), velvet scoter (Melanitta fusca), common eider (S. mollissima), red-throated loon (Gavia stellata), and common scoter (Melanitta nigra) (Fedorov et al. 2011). For the northeast German Baltic Sea coast, Bellebaum (2011) estimates a by-catch of 17,000 to 20,000 birds during winter and spring. According to ICES (2017b), at least 76,000 birds were killed by gillnets as bycatch in the Baltic Sea during the period 1980–2005. Seals are found as by-catch in fyke nets and gillnets. These estimates still  

300

Landings (thousand tonnes)

a

Chapter 13 · Marine Habitats in the North Sea and Baltic Sea

1500

North Sea

1000 other herring

500

sprat

plaice

Norway pout saithe

cod

0 1950

b Landings (thousand tonnes)

sandeel mackerel

500

1960

1970

1980

1990

2000

haddock

whiting

2010

Baltic Sea

400 herring

300 sprat

200 100

other

cod

undefined finfish

0 1950

1960

1970

1980

1990

2000

flounder

2010

..      Fig. 13.1  Catch of major commercially exploited fish in the North Sea a and Baltic Sea b between 1950 and 2015. (Based on data from ICES 2017a, b)

13

need to be corrected by exact figures. It is known for the common harbour porpoise that by-catch from marine fisheries can lead to threats to populations on the local scale (Žydelis et  al. 2009; OSPAR 2010). As a large proportion of the by-catch of fish dies after going overboard, this also poses an economic problem for fisheries (SRU 2011). Non-indigenous species (neobiota) reach the North Sea and Baltic Sea with the ballast water of ships, by adhering to ship hulls (fouling), through mariculture or by other means (LLUR 2014). At the end of the last century, more than 80 non-native species were already reported for the North Sea (Reise et  al. 1999). In the Baltic Sea, 120 non-native species occur today, of which about 90 are considered naturalized (Zaiko et  al. 2011; Furman et  al. 2013). In the North Sea, for example, the macro-algae Bonnemaisonia hamifera, Codium fragile, and Sargassum muticum, originally from

East Asia, have become established, the latter, probably introduced to France in the early 1970s by transport of goods (Critchley 1983), being considered highly invasive due to its high biomass production (Bartsch and Kuhlenkamp 2000). The Pacific oyster (Crassostrea gigas), also native to East Asia, has spread throughout the North Sea and is considered invasive worldwide (Kochmann 2012). Ballast water has also introduced the Atlantic jackknife clam (Ensis directus) and polychaetes of the genus Marenzelleria (Walday and Kroglund 2008a). Shipping from North America is responsible for the introduction of the bay barnacle (Amphibalanus improvises) as early as the mid-­ nineteenth century (Furman et  al. 2013). Over the past three decades, the average temperature of the surface water of the North Sea has increased by about 2  °C (OSPAR 2010). Water warming can affect

13

301 13.2 · Anthropogenic Evironmental Impacts on the Marine Ecosystems…

the distribution of organisms, their population sizes, and their phenology, and affects fish, zooplankton, organisms on or in the sediment (benthos), and birds. The higher CO2 content of the atmosphere, and consequently higher uptake by seawater, leads to acidification of the latter (Turley et al. 2006; Doney et  al. 2009). A recent study by a German research consortium looking at the possible consequences of seawater acidification highlights that this can both, alter marine biocenoses and cause the decline of certain organisms (especially those with calcareous skeletons) as well as alter trophic feeding relationships. Along with water warming, reproduction of certain fish species can be negatively affected and the ability of the oceans to sequester carbon can be reduced (Nicolai 2017). Although, the discharge of nutrients, such as nitrogen and phosphorus into the North Sea and the Baltic Sea has decreased significantly in recent decades (. Fig. 13.2),  

eutrophication of these two marine ecosystems is still considered one of the most significant environmental problems (OSPAR 2010; Hautakangas et al. 2014; Pyhälä et al. 2014; Arle et  al. 2017). Conley (2012) estimates the nitrogen input to the Baltic Sea over the last 50 years to be about 20 million tonnes, and the phosphorus input to be two million tonnes. Nitrogen is mainly discharged from agriculture in the catchment area through the major rivers, such as Elbe, Rhine, Ems, Weser, and Thames into the North Sea or via Oder, Vistula, Memel, Düna, Łeba, and Neva into the Baltic Sea. A high proportion of phosphorus inputs also originate from agriculture; in addition, there are those from settlement areas. Furthermore, there is also nitrogen input from the atmosphere, as is the case for terrestrial ecosystems. In marine ecosystems, however, one of the most significant contributors is shipping (Bartnicki et  al. 2011; Jalkanen et al. 2013; Raudsepp et al. 2013).

Tonnes 42,500 40,000 37,500 35,000 30,000

Total phosphorus input

27,500 25,000

Maximum Allowable (MAI)

22,500 20,000 a

1995

2000

2005

2010

2012

550,000 500,000 450,000

Total nitrogen input

400,000 350,000 300,000 b

Maximum Allowable Level (MAI) 1995

2000

2005

2010

2012

..      Fig. 13.2  Inputs of phosphorus a and nitrogen b to the Baltic Sea between 1995 and 2012, indicating the maximum allowable input (MAI) defined by HELCOM (2017a)

302

Chapter 13 · Marine Habitats in the North Sea and Baltic Sea

The input of nutrients leads to increased primary production, increased biomass decomposition and thus, increased consumption of oxygen in deep water layers and near the bottom of the sea, respectively. These processes then lead to hypoxic to anoxic conditions, which in turn can significantly alter biocenoses in these water layers and in the benthos (Sandén and Håkansson 1996; Eilola 1998; Frid et al. 1999; Raffaelli 2000; Carstensen et al. 2014a). Hypoxic conditions affect an average of 60,000  km2 of the Baltic Sea annually, according to Conley (2012). All higher benthic organisms die under anoxic to hypoxic conditions (Diaz and Rosenberg 2008; Rabalais et  al. 2010). Karlson et  al. (2002) estimate that due to oxygen depletion on the seabed of the Baltic Sea, the loss of biomass of benthic organisms is up to three million tonnes. Under anoxic conditions, phosphorus fixed in the sediment is also mobilized and contributes to further eutrophication despite reduced discharge of nutrients from terrestrial catchments (. Fig.  13.2) (Carstensen et  al. 2014b; Stigebrandt et  al. 2014; 7 Sect. 11.3.1). In addition, fish farms in coastal areas (mariculture), which are also responsible for some of the nutrient loads, also introduce antibiotics that can lead to antibiotic resistance in bacteria (Kerry et al. 1996; see also Singer et  al. 2016; Gillings et  al. 2017). The increased input of nutrients into seawater can lead to local algal blooms, some of which can be toxic (see IOW 2014). The strong growth of the alga Chrysochromulina polylepis in the spring of 1988, for example, starting in the Kattegat and Skagerrak and covering a total area of about 60,000  km2, led to mass mortality in coastal fish farms and of other marine organisms (Dahl et al. 1989; Skjoldal and Dundas 1991). Toxic effects are also known for the dinoflagellate Karenia mikimotoi and the alga Fibrocapsa japonica (Walday and Kroglund 2008a).  



13

Toxic cyanobacteria that may be widespread in the Baltic Sea include, for example, Nodularia spumigena and species of the genus Microcystis (Wasmund 2002). In addition to the environmental impacts, these algal blooms can also cause considerable economic damage to fisheries and tourism. As with the nutrients nitrogen and phosphorus, a decrease in inputs of many inorganic and organic pollutants has been observed over the past two decades. Nevertheless, the concentrations of cadmium, mercury, lead, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) in seawater and sediments are regionally above the defined thresholds. Moreover, some of these substances accumulate in the food web. Persistent, bioaccumulative, and toxic pollutants (PBTs; see Klöpffer 2013) and endocrine disruptors, whose effects on ecosystems are still poorly understood, pose a particular problem. Tornero and Hanke (2016) list 276 chemical substances in European seas (including radionuclides) that must be considered contaminants. Shahidul Islam and Tanaka (2004) provide an overview of synthetic pesticides and chemicals, respectively, that can enter rivers from agriculture and thus, potentially enter the oceans and food web, and point out the link between these substances in the sea and diseases and tumours in fish in the North Sea. The harmful effects of tributyltin (additive to ships’ paints) on molluscs and gastropods (Nehring 1999), of PAHs and PCBs on fish and seals (Walday and Kroglund 2008a), and of copper on benthic fauna (Rygg 1985) have been documented. For many other pollutants, however, the retention time in the marine ecosystem as well as their effects on organisms and the food web are still poorly understood, if at all. In the Baltic Sea, contamination with organic and inorganic pollutants is particularly problematic due to its inland sea character, as complete water

303 13.2 · Anthropogenic Evironmental Impacts on the Marine Ecosystems…

exchange with the North Sea and the Atlantic Ocean, respectively, only takes place over relatively long periods of 25 to 35 years (Walday and Kroglund 2008b). In principle, this applies to all substances that are not biodegraded within short periods of time. Ocean dumping is the disposal of oil, acids, pollutants, and excavated material from shipping lanes and ports in the open sea. In the area of the north-east Atlantic, including the North Sea, over 100 million tonnes of industrial waste, sewage sludge, radioactive waste, and dredged material were dumped annually in the 1970s and 1980s (Nentwig 2006). Even though environmental awareness in Europe has changed today and the dumping of pollutants in European seas has been stopped (on the dumping of dilute acid, see Koch and Monßen 2006), excavated material containing pollutants (e.g., with heavy metals) from the port areas is still dumped in the sea today (OSPAR 2017). In addition, there are considerable quantities of pollutants that are illegally dumped at sea (see below). The waste residues of this former large-scale practice continue to be stored in the sea, as do the residues of ammunition dumped in the sea from both World Wars, which pose an ongoing threat to fisheries and coastal uses (OSPAR 2010; Greenberg et al. 2016). It is estimated that the Baltic Sea contains approximately 40,000 tonnes of chemical munitions that were disposed of at the end of the Second World War or afterwards (Knobloch et al. 2013). A particular environmental problem is oil that enters the North Sea and the Baltic Sea via shipping, oil drilling in the sea, from coastal settlement and industrial areas, and illegal disposal (Kostianoy and Lavrova 2014; Carpenter 2016). Walday and Kroglund (2008b) estimate the illegal discharge of oil into the Baltic Sea to be about 10% of the total oil discharge. Today, how-

13

ever, continuous monitoring, including the application of remote sensing, increasingly allows the precise localization of oil spills and slicks in the sea. Worldwide, about 80% of marine debris (marine litter), such as plastic objects, glass bottles, and packaging material, comes from terrestrial sources, and 20% is of marine origin e.g., from ships and oil platforms (Meith 2009; Trouwborst 2011). For the Baltic Sea, . Fig.  13.3 indicates the origin of marine litter. The items can cause external injury to marine animals or cause internal injury as they feed (Derraik 2002). Globally, over 250 marine animals have been documented to be impacted or killed by marine plastic litter, notably including sea turtles, seabirds, and marine mammals (Laist 1997; Thompson et  al. 2009). The wastes float in the ocean, sometimes washing up on shorelines or accumulating on the seafloor where they may not be degraded for centuries (Goldberg 1997). In addition to the environmental impacts, marine litter also poses economic, aesthetic, and health problems (UNEP 2006). Marine litter must also include ghost nets (derelict fishing gear), i.e., fishing nets that have been intentionally disposed of in the sea or have come loose unintentionally during fishing in the sea (e.g., in bad weather conditions) and are subsequently floating in the sea or lying on the seabed (Smolowitz et al. 1978). In the Baltic Sea, it is reported that 5500 to 10,000 gillnets are lost per year (NOAA Marine Debris Program 2015). Fish (Tschernij and Larsson 2003) and other marine organisms, some of which are protected (Laist 1987; NOAA Marine Debris Program 2015; Stelfox et al. 2016), become entangled in these nets, so that there is an urgent need for action not only from an ecological or nature conservation perspective, but also from an economic perspective (Gilardi et  al. 2010; Butler et  al. 2013) to remove them from the sea again. Remote sensing methods are applied for this purpose  

304

Chapter 13 · Marine Habitats in the North Sea and Baltic Sea

29 %

Sanitary sector

25 %

Coastal tourism 12 %

Household general Waste transport

7%

Recreational navigation

6%

Harbours

5%

Transport shipping

4%

Construction sector

3%

Fishery

3%

Reacreational fishing

3%

Others

2%

..      Fig. 13.3  Origin of marine debris in the Baltic Sea. (After HELCOM 2017a; with data from van Acoleyen et al. 2013)

13

(McElwee et  al. 2012; Pichel et  al. 2012). The scientific journal Marine Pollution Bulletin focuses on the increasing problem of marine debris. In addition to coarse marine debris, there is increasing discussion of the environmental impacts of anthropogenic microparticles that accumulate in water and sediment. Up to 100,000 particles can occur in one cubic meter of water (Wright et  al. 2013). According to HELCOM (2017a), 40  t of microplastics (particle size 5  years) to also fully restore the animal communities in brown algal stocks. Numerous restoration activities focus on the re-introduction of populations of marine species that have been severely depleted by catches and exploitation, respectively. The  





13

re-introduction of salmon and sea trout is discussed in detail in 7 Chap. 4. This restoration measure is also practiced for other fish species e.g., the houting (Coregonus oxyrinchus; Jepsen et  al. 2012). The European oyster (Ostrea edulis), which has been exploited since pre-Roman times (Yonge 1960), has strongly declined in abundance since the nineteenth century, partly due to reduced reproduction and partly due to habitat destruction caused by special harvesting techniques (Gercken and Schmidt 2014). The problem of over-exploitation of oyster beds was already known at the end of the nineteenth century (Möbius 1877; cited in Gercken and Schmidt 2014). Today, the European oyster is considered an endangered species, and the protection and restoration of oyster beds is being pursued - with a focus on the Wadden Sea and the German Bight. The restoration efforts focus, on the one hand, on reproduction and, on the other hand, on the restoration of the habitats (oyster beds). High population densities and water temperatures that are not too cold, which are considered optimal at depths of 20–30 m, are necessary for successful reproduction (Gercken and Schmidt 2014). The European oyster settles on hard surfaces, such as rock, gravel or on biogenic substrates (mussel shells). These can also be artificial, such as offshore wind turbines in the sea. However, for the restoration of oyster stocks, infection by the parasites Bonamia ostreae and Marteilia refringens can also be limiting. Mortality of over 90% due to bonamiosis has been observed, for example, in Ireland (Culloty and Mulcahy 2007). Consequently, care must be taken to ensure healthy organisms when transferring donor populations. For the restoration of stable oyster populations with the aim of species and habitat conservation, the profound experience of economically motivated introduction of larvae or adult oysters can be drawn upon (e.g., Kennedy and Roberts 1999; Laing et  al. 2006; Gercken and Schmidt 2014). However, long periods of up  

312

13

Chapter 13 · Marine Habitats in the North Sea and Baltic Sea

to 25 years must be expected for the restoration of stable populations (Laing et al. 2006; see also Hiscock et al. 2013). This rules out further commercial exploitation of oysters at the restoration sites, primarily in protected areas. Other initiatives to reintroduce species into marine habitats exist for eelgrass vegetation in the Wadden Sea. In the Dutch Wadden Sea, for example, the severe decline of the common eelgrass (Zostera marina) has been countered by attempts to reintroduce it (de Jonge et al. 1996, 2000). Eelgrass stands contribute to biodiversity in coastal areas of the North Sea and Baltic Seas e.g., by providing breeding and feeding habitat for marine fauna (Orth et  al. 1984; Heck et  al. 1995; Boström and Bonsdorff 1997), stabilizing sediment (Gambi et al. 1990) and providing a biological filter (Short et  al. 1984; Fonseca et  al. 2008). Already in the 1930s, a population decline of eelgrass was observed in the Danish Wadden Sea (Jespersen and Rasmussen 1994). In the Dutch Wadden Sea, the decline has been documented from 90 to 150 km2 in the 1930s to less than 1  km2 in the 1970s (de Jonge et al. 2000). Based on greenhouse and field experiments, de Jonge et  al. (1996) suggest initial plantings of eelgrass in the mudflats to a maximum of 40 cm below mean water level in sheltered areas. Initial plantings require a careful analysis of potential restoration sites to ensure establishment success of this rhizome grass (de Jonge et al. 2000; Meyer and Nehring 2006). That plantings or transplants of eelgrass can be successful with appropriate measures has been demonstrated by experiments in the Dutch Wadden Sea (Bos et  al. 2005a) and also outside Europe (e.g., Zhou et al. 2014). With regard to the costs of seagrass restoration, Fonseca et al. (2008) emphasise that monitoring and success control account for the largest budget item (approximately 60%), as this is, performed at a high monitoring standard, very labour-intensive and takes several years.

Attempts to reintroduce marine ­ rganisms (e.g., corals) e.g., through transo plantation, are available also from other marine ecosystems outside Europe and worldwide, respectively. However, MonteroSerra et al. (2017) point out that when reintroducing marine organisms into marine ecosystems, the biology, ecology, and life cycle of the species concerned should be very well known in order to increase the chances of success of ecosystem restoration. 13.6.2  Interventions in the Abiotic

Conditions

The cleaning of the seas from coarse waste, such as plastic objects, is mainly carried out on beaches used for tourism, where the waste is washed ashore. Watercrafts are used for mechanical removal from the water in coastal and port areas or on rivers (e.g., Županski and Gavrilović 2011). For the removal of coarse floating litter on the open sea, there are as yet no concepts that can be implemented on a large scale. This is because the waters are usually international and responsibility is unclear, there is no economic incentive for litter removal, and techniques (e.g., with nets) can also harm marine organisms. Due to the strong oxygen depletion in deeper layers (>70 m) of the Baltic Sea since the 1960s - a consequence of increased nutrient input and associated increase in algal growth (7 Sect. 13.2)  - it is proposed to pump water from less deep layers, which contain more oxygen, into the deeper layers using geoengineering methods (Stigebrandt and Kalén 2013). This would also prevent the remobilization of inorganically dissolved phosphorus under anoxic conditions (Gustafsson et  al. 2012; Stigebrandt et  al. 2014). Initial experiments as part of a 2.5year pilot project were conducted in Byfjord on the Swedish west coast with pumping of oxygenated surface water to deeper layers at  

313 13.6 · Measures for the Restoration of Marine Habitats

ca. 35  m (Stigebrandt et  al. 2015). This increased the oxygen content in the deep water and phosphorus fixation in the sediment. Other proposed methods include sediment removal (equivalent to topsoil removal in terrestrial ecosystems; 7 Sect. 3.3) or chemical binding of phosphorus in sediment. However, Conley (2012) gives to consider that an artificial oxygen supply to the seabed of the entire Baltic Sea would require about 100 pumps, with an operating time of several decades and an estimated financial volume of at least EUR 200 million. This rules out such a measure to oxygenate the seabed on a large scale. Bacteria (e.g., Alcanivorax spec.) that naturally degrade oil can potentially be used against oil spills in water and coastal areas (bioremediation); degradation by indigenous organisms or organisms introduced to the system from outside (bioaugmentation) can be accelerated by nitrogen additions (Lindstrom et  al. 1991; Bragg et al. 1994; Rosenberg et al. 1996; Atlas and Bragg 2009; Kube et  al. 2013). However, there are still considerable knowledge gaps  

13

with regard to the scientific basis (e.g., spatio-temporal degradation processes, bacteria involved, abiotic degradation conditions) and application practice (e.g., Chronopoulou et  al. 2015). Concerns also exist, particularly with the addition of nutrients and chemicals which should accelerate the process of bacterial oil degradation (Swannell et  al. 1996). Eutrophication and contamination of seawater could promote the already existing environmental threats on the seas. The general problem of applying such methods of engineering biology and environmental chemistry to restore ecosystems, which have also led or may lead to ecosystem degradation, is discussed in 7 Chap. 24. A general strategy to reduce pollution in the terrestrial catchment area of the oceans and on the coasts, however, does not solve the problem of waste, nutrients, and pollutants that have already accumulated in the sea and seabed. What is needed here, therefore, are restoration strategies and measures that intervene directly in the marine ­ecosystem.  

315

Lowland and Mountain Heaths Contents 14.1

 egetation Formation Heath and Its Distribution V in Europe – 316

14.2

Origin and Land-Use History of Heathland – 317

14.3

Ecology and Dynamics of Heathland – 320

14.3.1 14.3.2

 limate, Soil, Vegetation, and Fauna – 320 C Development Phases of Calluna Heaths – 325

14.4

Reasons for the Restoration of Heathland – 326

14.5

Restoration Measures – 330

14.5.1

 estoration and Management of Dry Sandy R Lowland Heaths – 330 Restoration of Wet Lowland Heaths – 335 Restoration of Coastal Heaths – 335

14.5.2 14.5.3

14.6

 articular Challenges for the Restoration P and Management of Heaths – 336

14.7

 ase Study: Land Use and Nature Conservation C Between Past, Present, and Future—Restoration of Mountain Heaths in the Hochsauerland – 338

© Springer-Verlag GmbH Germany, part of Springer Nature 2023 S. Zerbe, Restoration of Ecosystems – Bridging Nature and Humans, https://doi.org/10.1007/978-3-662-65658-7_14

14

316

Chapter 14 · Lowland and Mountain Heaths

Most people in Central, Western, and Northern Europe probably associate a positive perception with the landscape term “heath”: a wide, open, and quiet landscape that invites people to relax and wander or where animals can be observed grazing, combined with the impression of the heather, which occurs extensively and captivates with its vivid colour in the flowering season. Literature and painting have also been inspired by these impressions. However, heaths are also a good example of how an ecosystem that has been degraded by centuries of land use is now perceived as valuable from a nature conservation and socio-­ economic point of view because of its particular species assemblages, its landscape structure, and its services to society, and therefore, has become under protection and is the subject of ecosystem restoration. The disappearance of vast heathland, which was once widespread in Central Europe, can certainly be seen as a success of sustainable land use, but for nature conservation and socio-economic reasons it is logical to safeguard the remaining heaths and to restore potential heath areas through restoration and appropriate management.

addition, the term “heath” was also used more broadly in historical times, depending on the region. Thus, heath was formerly also understood as uncultivated or non-­ cultivable, forest-free land. In the north-east German lowlands, sparse pine forests are also referred to as “heathland” (Krausch 1969; on the Menzer Heide in Brandenburg, see Zerbe et al. 2000). These vegetation structures can occur naturally in Europe. Most of the heaths in Central Europe, however, are anthropo-­ zoogenic, i.e., they have developed as a result of the interaction between humans and animals over centuries to millennia (Ellenberg and Leuschner 2010). Apart from the natural arctic-alpine heaths in Northern Europe and the subalpine-alpine altitudes of the high mountains, the “Atlantic heaths” are bound to an oceanic climate with mild winters, i.e., they usually occur near the coast. The distribution of Atlantic heaths in Europe is shown in . Fig. 14.1.  

14.1  Vegetation Formation Heath

14

and Its Distribution in Europe

In vegetation ecology, “heathland” refers to open vegetation or land-use structures characterised by a dominance of dwarf shrubs, primarily from the heather family (Ericaceae). In Central Europe, heaths occur on sandy, nutrient-poor substrates, such as in the lowlands of Northern Germany, as well as on nutrient-poor, but also calcareous soils in the mountains. In this forest-free vegetation formation (Schroeder 1998), trees and shrubs occur only sporadically (Hüppe 1993; Ellenberg and Leuschner 2010). However, the term “heath” is also a historical legal term that means pastureland, which was used as common land (Hüppe 2011). In

..      Fig. 14.1  Distribution of Atlantic heaths in Europe. (From Haaland 2002)

14

317 14.2 · Origin and Land-Use History of Heathland

14.2  Origin and Land-Use History

However, the maintenance of open land and the creation of the extensive heathland of Heathland landscapes are largely due to grazing. Due Pollen analytic research reveals that dwarf to the general nutrient deficiency of the shrub heaths as a form of land use by com- heathland, only very frugal grazing animals munities practicing agriculture and animal could be used here, such as the sheep breed husbandry  - especially indicated by the “Heidschnucke” or goats. Occasionally, also increased occurrence of heather (Calluna cattle was found on the pastures. Burning of vulgaris) - were already occurring in Central the heath was applied to improve the quality Europe several millennia ago (Straka 1973; of the forage, to regenerate overaged heaths Hüppe 1993; Schnitzler and Muller 1998; (7 Sect. 14.3), and to suppress the common Behre 2001, 2008). In Western and Central juniper (Juniperus communis subsp. commuEurope, heathlands have expanded mainly nis; see Davies et al. 2008). Traditional heathland management during the Bronze Age and the Roman inserted a fallow period of several years into Imperial Period (Behre 1976b; Prøsch-­ the fields. Accordingly, a 6-year field cultivaDanielsen and Simonsen 2000; Karg 2008; tion was usually followed by a 4-year fallow Doorenbosch and van Mourik 2016). Four period (Keienburg et al. 2004). This can be different, temporally and spatially interreconsidered as a form of ‘passive restoralated modes of heath farming have led to tion’. Traditional heathland farming was large-scale expansion and the emergence of widespread throughout the north-western Central European heathland landscapes over the past centuries: Sod cutting, mow- German lowlands (. Fig.  14.2), but was ing, grazing, and burning (Gorissen 1998; also found in large parts of Atlantic Central, Webb 1998; Keienburg et  al. 2004; Behre Western, and Northern Europe, and thus in 2008; Härdtle et al. 2009). With sod cutting the British Isles, the Netherlands, Belgium, Denmark, and Norway (so-called Plaggen, Plaggenhieb, France, (. Fig. 14.1). Typical of glacial sandy areas, Plaggenstechen), the above-ground biomass, the over-­ e xploitation of heathland and the organic layer, and part of the rooted sandy, nutrient-­ p oor grassland (7 Chap. 16) mineral soil were removed and used as bedin the nineteenth century led to large-scale ding in the stables. Mixed with the manure of the animals, the litter was then applied as vegetation destruction, resulting in the crefertilizer to the cultivated rye (Secale ation of bare sandy soils, so-called cereale), black oat (Avena strigosa) or buck- Sandschellen, and inland dunes (Koopmann wheat (Fagopyrum esculentum) fields and Mertens 2004; Behre 2008). This degra(Keienburg et al. 2004). In order to be able dation of heathland and a concurrent lack to easily obtain the manure, the grazing ani- of timber resources then, led to large-scale mals were brought into the barn at night and afforestation (7 Sect. 7.1). For the period of sometimes also during the day (Koopmann maximum distribution of heathland in and Mertens 2004). Hüppe (1995) empha- Central and Western Europe about 150 years sises the large area of land required for this ago, Ellenberg and Leuschner (2010), based type of farming (see also Behre 2008). on data from Graebner (1925) and de Smidt 2 Accordingly, a farming family needed up to (1979), estimate areas of up to 10,000 km in2 200 ha of land for this spatio-temporal land- north-western Germany and about 6000 km use cycle. In addition, the above-ground bio- in the Netherlands. With the development of regulated formass was removed by mowing and also used estry since the middle of the nineteenth cenas bedding, fodder for the animals or for tury, heathland in Central and Western roofing.  









318

Chapter 14 · Lowland and Mountain Heaths

..      Fig. 14.2  The decline of heathland landscapes from ca. 1800 to the year 2000. (From Härdtle et al. 2009, modified after Assmann and Janssen 1999)

14

Europe was afforested with fast-growing conifers, in the lowlands mostly with Scots pine (Pinus sylvestris) and in the low mountain ranges with Norway spruce (Picea abies; 7 Sect. 7.1). This contributed significantly to the decline of open heathland (for the Netherlands see Verhagen 2007), although the historical land use is often still reflected today by the herb and shrub layer of the afforestation (. Fig. 14.3). Moreover, heaths often developed on moorland sites after interventions in the water balance and subsequent buckwheat-­ fire culture (Keienburg et  al. 2004; 7 Sect. 8.1). Since the vegetation of these wet ­heathlands was hardly suitable for grazing, the organic layer was cut and used either as  





..      Fig. 14.3  Juniper bushes and dwarf shrubs in the herb and shrub layer of pine afforestations as indicators of former open land and heathland vegetation in the Gottesheide in eastern Mecklenburg-­Vorpommern. (S. Zerbe, May 2007)

319 14.2 · Origin and Land-Use History of Heathland

14

fuel or as stable litter (Küster 1995; Ellenberg and Leuschner 2010). In addition to this traditional heath farming, many heaths also developed indirectly through the non-sustainable management and over-exploitation of forests and forest sites (7 Sect. 7.1). Since the Middle Ages, litter use in forests, forest grazing, and unregulated logging for firewood and timber production have led to the development of large areas of heath vegetation in heavily

thinned forests and on degraded forest sites, respectively. The increase in frequency and abundance of heather (C. vulgaris) due to the increasing land use and especially the traditional heathland farming with sod cutting, combined with a decline of forests, can be reconstructed by pollen analyses, as shown by Behre (2008) for Northern Germany (. Fig.  14.4). Heaths are found today, in addition to extensive sandy dry grasslands (7 Chap. 16), also on former or

..      Fig. 14.4  Averaged and selected pollen diagram for north-western Germany with woody plants and a selection of settlement and land-use indicators (from Behre 2008); the increase in heather (C. vulgaris),

combined with a decline in forest tree species (especially beech), clearly indicates the increase in land use over a wide area since the Middle Ages. (From Behre 2008)







320

Chapter 14 · Lowland and Mountain Heaths

currently used military training areas in the glacially formed landscapes of north-­eastern Germany (Deutscher Rat für Landespflege 1993; Zerbe et  al. 2004; Ellwanger et  al. 2012).

14.3  Ecology and Dynamics

of Heathland

14.3.1  Climate, Soil, Vegetation,

and Fauna

14

According to Gimingham et al. (1979), the typical climate of Atlantic heaths can be characterised as humid to oceanic with mild winters and relatively long spring and autumn seasons. Mean annual precipitation is generally between 600 and 1100 mm, with no prolonged drought periods. The mean temperature of the warmest month is below 22 °C, and at least 4 months have a temperature mean above 10 °C. Montane heaths, in contrast, occur under the climatic conditions of typical Central European low mountain ranges, with a mean annual precipitation of at least 1000  mm, a mean annual air temperature of about 5–7 °C, and a distinct winter, usually with snow cover. The heathland vegetation is dominated by dwarf shrubs (life form chamaephytes) both, in the species assemblage and in the vegetation cover; hemicryptophytes also dominate. Mean species numbers of higher plants usually remain low; however, depending on the development phases (see below), numerous moss and lichen species may occur. Many of the typical plant species of anthropo-zoogenic heaths have their natural occurrences in sparse coniferous and mixed deciduous forests, on natural heaths or forest-­ free, nutrient-poor mires. These include, in particular, the shrubs and dwarf shrubs heather (C. vulgaris), black crowberry (Empetrum nigrum agg.), bell heather (Erica cinerea), common juniper (J. commu-

nis subsp. communis), blueberry (Vaccinium myrtillus) and cranberry (V. vitis-idaea), and stiff club moss (Lycopodium annotinum), the fern species deer fern (Blechnum spicant), common polypody (Polypodium vulgare), and bracken (Pteridium aquilinum), the grasses common bent (Agrostis capillaris), wavy hair-grass (Deschampsia flexuosa), sheep’s fescue (Festuca ovina agg.), common woodrush (Luzula multiflora subsp. multiflora), and hairy woodrush (L. pilosa) as well as purple moor-grass (Molinia caerulea agg.), the herbs heath bedstraw (Galium saxatile), common cow-wheat (Melampyrum pratense), wood sorrel (Oxalis acetosella), Arctic starflower (Trientalis europaea), heath speedwell (Veronica officinalis), and dog-violet (Viola riviniana) as well as the bryophytes Dicranum scoparium, Hypnum cupressiforme, Leucobryum glaucum, Lophocolea bidentata, Mnium hornum, Pleurozium schreberi, Polytrichum formosum, Ptilidium ciliare, Ptilium crista-­ castrensis, Rhytidiadelphus loreus, R. triquetrus, Scleropodium purum, and numerous lichen species such as e.g., of the genus Cladonia. In Central, Western, and Northern Europe, four vegetation types of heaths can be differentiated (see e.g., Schaminée et  al. 1995, 1996; Wilmanns 1998; Ellenberg and Leuschner 2010): 1. Outside the forest climate, the natural arctic-alpine heaths (Cetrario-­ Loiseleurietea) are found in high mountain altitudes or in the tundra on mostly siliceous soils. Extreme site conditions result, among other factors, from the fact that the sites are frequently blown free of snow cover by the wind during winter, thus removing the protection of the snow. The various Ericaceae species are accompanied by eightpetal mountainavens (Dryas octopetala), alpine azalea (Kalmia procumbens), hermaphrodite crowberry (Empetrum hermaphroditum), dwarf birch (Betula nana), and dwarf

14

321 14.3 · Ecology and Dynamics of Heathland

juniper (Juniperus communis subsp. nana), often interspersed with a high proportion of lichens (e.g., Cetraria spec., Cladonia spec.). Intensive recreational use, especially through winter sports and intensive grazing, represent significant factors of threat. Even minor damages to the vegetation cover e.g., by animal or human trampling and by skiing, can rapidly spread and lead to more extensive damage (Körner 1980; Wilmanns 1998). Due to the extreme ecological site conditions and the specific adaptation of plant and animal species to this habitat, there have been hardly any approaches and measures for restoration to date (Hagen 2002; Aradottir 2012; 7 Sect. 9.2). 2. In the Atlantic, humid climate of Central, Western, and Northern Europe, the edaphically dry heaths are found with the phytosociological associations Calluno-­Genistion pilosae (broom heaths) and Empetrion nigri (crowberry heaths). In the broom heaths, the broom species Genista pilosa, G. anglica, and G. germanica occur. In addition to the heathers, shrubs, such as common juniper (J. communis subsp. communis), common gorse (Ulex europaeus), and Scotch broom (Cytisus scoparius) are also found, depending on the succession stage and the intensity of use. The dry heaths encompass natural stages that occur in the course of succession on dunes (coastal heaths with mainly E. nigrum agg.) and can develop without anthropogenic intervention e.g., on the north-east German coasts via pine forests into mixed deciduous forests of beech and oak (. Fig.  14.5). In particular, however, land-use-induced vegetation formation is found in inland heath landscapes. In the past, these dry sandy heaths, mostly poor in species of higher plants, represented the largest proportion of heathland in the lowlands. Today, the  



..      Fig. 14.5  Natural coastal heath with Calluna vulgaris, within a succession mosaic of sandy dry grassland and pine regeneration on the Darß. (S.  Zerbe, August 2005)

Lüneburg Heath Nature Reserve and the Veluwe National Park in the Netherlands are among the largest relicts of this anthropo-zoogenic vegetation type. Grasses, such as matgrass (Nardus stricta), wavy hair-grass (D. flexuosa), heath grass (Danthonia decumbens), and common bent (A. capillaris) typically belong to this dwarf shrub formation. Grass encroachment occurs when, for example, high atmogenic nitrogen inputs lead to eutrophication (7 Sect. 14.6). Ellenberg and Leuschner (2010) contrast the sandy heaths on podzol soils with the clay heaths (Genisto-Callunetum molinietosum), which have a better water and nutrient supply due to fine sand, silt, and clay in the soil, respectively, and thus bridge to the wet heaths. Therefore, in addition to the purple moorgrass (M. caerulea agg.), more nutrient-­demanding plant species occur here, such as leopard’s bane (Arnica montana), viper’s-­ grass (Scorzonera humilis) or lesser butterfly-­orchid (Platanthera bifolia s.l.). Clay heaths formerly were and today are rare, however, as these sites were mostly used for ­ agriculture due to the better nutrient supply. 3. In the low mountain ranges, such as the Hochsauerland and Weserbergland, and  

322

14

Chapter 14 · Lowland and Mountain Heaths

the montane altitudes of the Alps, anthropo-zoogenic mountain heaths of berry dwarf shrubs (Vaccinion myrtilli) are found on acidic and nutrient-­poor substrates over e.g., red sandstone, slate, and quartz porphyry, which would naturally be covered with deciduous or mixed deciduous-coniferous forests (e.g., Schubert 1960; Geringhoff and Daniëls 2003). Here, predominantly dwarf shrubs of the genus Vaccinium, such as V. myrtillus and V. vitis-idaea, and on wetter sites bog blueberry (V. uliginosum s. l.), are found, which were able to spread from their natural habitats in the mountain woodlands onto the heaths (Küster 1995). The mountain heaths were used for litter gathering and grazed by sheep, goats, and cattle. With decreasing use or land-use abandonment, succession to forest usually proceeds via pioneer trees, such as silver birch (Betula pendula), aspen (Populus tremula) or rowan (Sorbus aucuparia; Zerbe 2001). 4. Wet heaths are found on transitional sites from dry heaths and mires, both inland and coastal. In these oligotrophic moor heaths (Ericion tetralicis), the bell heath (Erica tetralix) dominates. Accompanying species may be bog asphodel (Narthecium ossifragum), heath rush (Juncus squarrosus), marsh Labrador tea (Rhododendron tomentosum), and bog myrtle (Myrica gale). Peat mosses (e.g., Sphagnum compactum, S. molle) may also occur here. Most of the wet heaths were created by clearing wetland and peatland forests, respectively. Accordingly, they develop towards woodland without further use or appropriate management, although this is usually slower than on dry heaths (Schaminée et al. 1996). The vegetation of wet heaths and dry heaths may occur mosaic-like due to a small-scale terrain relief with hollows and higher elevation patches. Wet heaths dominated by E. tetralix were

commonly occurring mainly in northwestern Germany, England, Denmark, the Netherlands, and Southern Sweden (Malmer 1965; Zonneveld 1965; de Smidt 1966; Schaminée et al. 1995), but have been often drained for grassland use (Ellenberg and Leuschner 2010). Although, the dwarf shrub heaths and grassdominated matgrass grasslands (class Nardo-Callunetea) have much in common in terms of flora and habitat characteristics, and often occur in close spatial proximity (Preising 1949; Ellenberg and Leuschner 2010), the latter are presented separately in 7 Chap. 15. For nutrient-poor, sandy soils far from groundwater in north-western Germany, Ellenberg and Leuschner (2010) illustrate the emergence of heaths under grazing with sheep and without grazing, as well as succession back to natural deciduous forest after abandonment (. Fig.  14.6); the various succession stages can be restored and permanently maintained by appropriate management, respectively. Heathland soils are generally very nutrient poor and acidic due to land use, with pH values of around 3.5–5.5 and a high carbon-­ nitrogen ratio. Soil types include podzols, oligotrophic brown earths, gleys rich in humus, rankers or peats, depending on the degree of moisture or waterlogging. Above the mineral soil, there are often thick layers of raw humus. Vegetation is determined by low nitrogen and phosphorus availability (Heil and Diemont 1983; Caporn et al. 1995; Härdtle et al. 2009). The nutrient dynamics on anthropogenic heaths are influenced by natural material flows of soil weathering, decomposition of organic matter and leaching, but particularly by the anthropo-­zoogenic impact of grazing, the removal of organic topsoil (sod cutting), controlled burning and, especially nowadays, also by nutrient inputs from the air (. Fig. 14.7).  





14

323 14.3 · Ecology and Dynamics of Heathland

Natural high forest Luzulo-Fagetum

plantation of broad-leaved trees pine plantation with broad-leaved second layer

,Coppice („Stühbusch“) Betulo-Quercetum

Pine plantation Pinus sylvestris

Juniper stage Juniperus communis; clear-cut or burnt stage

Dwarf shrub heath Genisto-Callunetum

senescent stage (with much Cladonia) regeneration stage Cut heath patches

colonisation by pine or birch

CallunaJuniperus stage

Eutrophication grass-dominated heath

Nardus stage Grassland fallow Festuca ovina stage:

BEE KEEPING fallow arable field (with dense weed stand) TURVES USED AS LITTER IN STABLES

Arable f ield manured with heath turves, with weed community Arnoseretum

Arable field with high mineral fertilizer input, very few weeds

Rye, oats, buckwheat, potatoes

Mainly potatoes, beets, wheat etc.

With sheep grazing

Without pasturing

..      Fig. 14.6  Vegetation development on sandy soils far from groundwater, naturally covered by nutrient-­ poor beech forests (Luzulo-Fagetum) in the north-­ western German lowlands with sheep grazing (left) and without grazing (right) and after abandonment. Possible restoration trajectories after land-use abandonment or the degradation of the land-use system

with a corresponding restoration of near-natural vegetation (forest) or various traditional land-use types (heath, arable land) and certain succession stages, for which experiences from scientific studies and restoration practice are available, are shown with red arrows. (From Ellenberg and Leuschner 2010, red arrows added)

The heather (C. vulgaris), typical of lowland heaths, roots in the upper organic layer, where it can access organic phosphorus and nitrogen sources with the help of ericoid mycorrhiza (Read 1996; Genney et al. 2002). It is, therefore, optimally adapted to sites where nutrients are mainly available in the organic layer and the upper sandy mineral soil is washed out and thus nutrient poor. This competitive advantage is shifted in favor of grasses (e.g., N. stricta) with arbuscular mycorrhiza when nitrogen is intro-

duced e.g., from the air or through fertilization (Terry et  al. 2004; Garg and Chandel 2010). Härdtle et al. (2009) highlight the significance of heathlands for nature conservation with regard to their characteristic fauna. Among vertebrates, numerous animal species use heathland as a habitat, even if they are not exclusively dependent on it. One of the most prominent bird species that use heathland as part of their habitat is the black grouse (Lyrurus tetrix). The habitat of

324

14

Chapter 14 · Lowland and Mountain Heaths

..      Fig. 14.7 Nutrient cycling in anthropogenic heathland ecosystems with nutrient stocks in living and dead biomass and mineral soil, nutrient inputs and losses. To nutrient losses must be added, in the

case of Central European heaths, periodically carried out choppering and sod cutting (7 Sect. 14.2). (According to Gimingham 1972)

the black grouse is characterised by a mosaic of open and wooded areas, which was characteristic of the traditionally used cultural landscape (Cramp and Simmons 1980; Baines 1990; Flade 1994). With the separation and intensification of agricultural and forestry land, suitable habitats for the black grouse have greatly diminished, so that the remnants of heathland are valuable refuges for this internationally protected species (IUCN 2016). The open landscape character also provides habitat for numerous other bird species, such as Eurasian skylark (Alauda arvensis), meadow pipit (Anthus pratensis), great grey shrike (Lanius excubitor), whinchat (Saxicola rubetra), European stonechat (S. rubicola), woodlark (Lullula arborea), European nightjar (Caprimulgus

europaeus), and Northern wheatear (Oenanthe oenanthe). In the wet heaths, breeding birds include the Eurasian curlew (Numenius arquata) and the common snipe (Gallinago gallinago; Härdtle et al. 2009). Furthermore, some reptiles are mentioned that use heathland as a habitat, such as the sand lizard (Lacerta agilis) and the common European adder (Vipera berus). Amphibians such as e.g., the moor frog (Rana arvalis) or the natterjack toad (Bufo calamita), can be found in small water bodies and ponds on dry heaths or on wet heaths. Among the invertebrates, some insects are bound to heaths. Flea beetle (Altica longicollis), the tussock moth (Orygia antiquoides), heather beetle (Lochmaea suturalis), and silver-studded blue (Plebejus



14

325 14.3 · Ecology and Dynamics of Heathland

argus) are mentioned as phytophagous insects on dwarf shrubs (Härdtle et al. 2009). Other invertebrate species are linked to specific plant species of the heaths e.g., the Alcon blue (Phengaris alcon), which develops on the marsh gentian (Gentiana pneumonanthe; Habel et  al. 2007). The two bee species Andrena fuscipes and Colletes succinctus collect pollen on C. vulgaris and are parasitized by the cuckoo bees Epeolus cruciger and Nomada rufipes, which distinguishes these species as specific to Calluna heaths (Stuke 1997). Along with the numerous ground beetle species, the occurrence of the heath ground beetle (Carabus nitens), one of the most endangered ground beetle species in Central Europe, on dry and wet heaths is particularly highlighted (Assmann and Janssen 1999). The number of insect species occurring on heathland depends on the succession state, management, and structural heterogeneity of the landscape (e.g., Littlewood et al. 2006). The occurrence, for example, of the ground beetle species Bembidion nigricorne and Cymindis (Tarsostinus) macularis is promoted by sod cutting, whereas of C. nitens and Nebria salina is supported by mowing (den Boer and van Dijk 1994). Although, the number of higher plant species on Calluna heaths is rather low compared to other habitat types, this is not necessarily true for animal species. Usher (1992), for example, highlights the high species numbers of ground beetles and spiders of heathlands in England, accounting for 15% and 20%, respectively, of the countrywide species pool of these animal groups there. 14.3.2  Development Phases

of Calluna Heaths

Typical for Calluna heaths is their dynamics, which according to Gimingham (1972, 1988; see also Watt 1955; Kvamme et al. 2004) is differentiated into four phases (see also

Gimingham and Miller 1968; Gimingham et al. 1979). These phases differ in terms of their microclimates, mean species numbers of higher plants, mosses, and lichens, animal communities, productivity, and heather regeneration. The occurrence and population densities of some plant and animal species are characteristic of certain development phases e.g., the heath ground beetle (7 Sect. 14.3.1) for the building phase (Assmann and Janssen 1999; see also Usher and Thompson 1993): 1. In the pioneer phase (up to approximately 6  years), C. vulgaris establishes from seeds. The vegetation cover of the dwarf shrub layer is still very patchy (25  years), the cover of Calluna decreases strongly (up to 70%)

Herbaceous vegetation in larger proportions low-growing (30–70%)

Herbaceous vegetation only on partial areas low-growing ( 50%) Spread of non-native species (A = largely absent, B = in small proportions of area, C = in larger proportions of area) Encroachment with shrubs and trees Afforestation Abandonment of management or land use Fragmentation effects No impairments

Minor to small-scale impairment

Severe and large-scale impairment

A = excellent status, B = good status, C = medium to poor status

14

14.5  Restoration Measures

14.5.1  Restoration

In principle, a distinction must be made between the restoration of degraded heathland, such as grassy or over-aged heathland (. Table  14.2: Conservation status C), or the restoration of heathland on sites that have been converted to arable land, grassland or forest (mostly coniferous afforestation) after the end of traditional heathland farming (. Table  14.3), and the management of existing heathland. Nevertheless, the measures and procedures, respectively, are largely identical. While individual conservation efforts to preserve heathland date back to the 1930s (e.g., Schubert et al. 2008), extensive experience on the restoration and management of heathland has been available from science and practice for about three decades.

The restoration and management of anthropo-zoogenic sandy heaths of the lowlands basically follows the traditional measures of heath farming and consequently applies grazing, mowing, sod cutting (= topsoil removal), and controlled burning. Grazing, mowing, and sod cutting prevent succession towards woodland. On the one hand, the intensity of grazing should halt forest succession, but on the other hand, it must neither impair the growth of the dwarf shrubs nor the development phases of the heath vegetation in the long term. Accordingly, grazing densities for sheep of 0.8 to 1.5 and for cattle 5  m) after 13  years, no shrub or forest development could be observed on the slag of a steelwork during this observation period. On extreme sites (e.g., mining dumps), it may therefore be necessary to use accelerating measures, such as planting, seeding, humus application or inoculation with mycorrhizal fungi when re-­ establishing vegetation cover (7 Sect. 20.3). On fallow land created during World War II in German cities (Trümmerschuttstandorte), often an urban secondary forest has developed, provided that they have not been rebuilt after 1945. Both the novel, anthropogenic substrates and the often high proportion of non-native plant species (neophytes) give rise to emerging and novel ecosystems, respectively (Hobbs et al. 2006; Kowarik 2011) that did not yet exist in the natural or traditional cultural landscape. After the Second World War, black locust forests (Robinia pseudacacia) developed spontaneously over several decades in the “Diplomatenviertel” in the centre of Berlin, protected by the particular location and the political situation of a divided city. Due to the symbiosis of black locust with atmospheric nitrogen-fixing bacteria, a specific herbaceous and shrub vegetation with e.g., stinging nettle (Urtica dioica),  

19

Chapter 19 · Urban Ecosystems

great celandine (Chelidonium majus), cleavers (Galium aparine), and black elderberry (Sambucus nigra) has developed under this legume (Kowarik and Körner 2005). Thus, a kind of urban wilderness has developed via passive restoration (Kowarik 2017). In the past two decades, this development trend can also be observed on derelict industrial sites such as e.g., in the Ruhr area (see above and Rebele and Dettmar 1996; Rebele 2009). If one considers ecosystem restoration in cities in the broadest sense as the restoration of elements or compartments of natural and near-natural ecosystems with their corresponding services, then facade and roof greening must also be included in this. The vertical and horizontal greening of residential buildings can have a positive effect on the urban micro- and meso-climate e.g., by lowering the surface temperature due to cooling, reducing the heat flow through the walls due to the formation of air pockets between plants and house surfaces, or by reducing air pollution due to deposition on the plant surfaces (Kuttler 1998). Practical guidance on facade and roof greening can be found in numerous textbooks, review studies, and manuals (e.g., Althaus 1987; Köhler 1993; Dunnett and Kingsbury 2008; Hopkins and Goodwin 2011; Tabb and Deviren 2013; Tsarouhas 2014; Tan and Jim 2017).

19.5 

 ew Approaches to Urban N Greening and the Restoration of Urban Nature

For some years, the re-introduction of kitchen gardens and urban farming (urban gardening, urban food systems) for the production of fruit and vegetables in urban environments has been gaining in importance, which in the broadest sense can also be considered as ecosystem restoration. However, this should only be applied to approaches that do not use the means of

435 19.5 · New Approaches to Urban Greening and the Restoration of Urban Nature

intensive agriculture, i.e., the application of mineral fertilizers and especially pesticides, in order to increase production. Meanwhile, there are numerous approaches worldwide to regenerate or generate production areas for agricultural products, both horizontally and vertically, using the walls of buildings as additional production areas (Armstrong 2000; Smit et  al. 2001; Caridad Cruz and Sánchez Medina 2003; Van Veenhuizen 2006; Nordahl 2009; Redwood 2009; Rojas-­ Valencia et al. 2011; Krasny 2012; de Zeeuw and Drechsel 2015). Urban agriculture, also supported by international initiatives and agreements, such as the Milan Urban Food Policy Pact concluded in 2015 (FAO 2016b), can have multiple facets. Urban residents, for example, have adopted the abandoned airport in Berlin-Tempelhof as a production area for agricultural products, among other diverse leisure activities (. Fig. 19.8). Under keywords such as “new urbanity”, “local diversity”, “rediscovery of togetherness”, and “renaissance of do-it-­yourself”, urban gardens are being created that not only contribute to the greening of city centres but also positively influence social life in urban areas (Müller 2011). Intercultural gardens represent a special form, promoting communication, integration, and social interaction between different cultures, especially against  

the background of migration (Müller 2005, 2007; Neuner 2009; Moulin-Doos 2014). These novel forms of urban agriculture and urban gardening also find their historical models in the allotment garden movement with their origin in the nineteenth century (Evert 2001; Landesverband Berlin der Gartenfreunde e.V 2001; Doppler 2009). Gardening schools (Gartenarbeitsschulen) and school gardens are of particular importance for environmental education from childhood onwards (Birkenbeil 1999; Krüger-­Danielson et  al. 2010; von der Lühe and WolschkeBulmahn 2013; Lehnert et al. 2016). Originally a form of political protest and civil disobedience in public space, guerrilla gardening has evolved into urban gardening or urban agriculture, with which residents enhance their urban environment and, above all, fallow land according to their own ideas (Krasny 2012). Russo et  al. (2017) provide an overview of different approaches to edible green infrastructure. This concept goes far beyond the sole production of agricultural products and particularly includes other ecosystem services, such as environmental education. . Table  19.4 provides an overview of the different types of green infrastructure in cities. However, Russo et al. (2017) also highlight the problems or ‘ecosystem disservices’ associated with the production and use of agricultural products in urban environments (7 Sect. 19.2). These include, for example, contaminated soils and agricultural products, emissions of pollen and biogenic volatile organic compounds by plants, costs and fuel consumption of ecosystem management, increased water use, and the contamination of public spaces and hazards from fruit or leaf drop and branch breakage (Escobedo et  al. 2011; Pataki et  al. 2011; Dobbs et al. 2014; von Hoffen and Säumel 2014; Mitchell et  al. 2014; Warming et  al. 2015; Mårtensson et al. 2016). Even though some of these aspects must be taken very seriously, especially in the practice of sustainable urban development and with a view  



..      Fig. 19.8  New forms of urban agriculture and horticulture in public spaces, using the example of the former airport Berlin-Tempelhof. (S.  Zerbe, August 2017)

19

436

Chapter 19 · Urban Ecosystems

..      Table 19.4  Types of “edible green infrastructure” with a short description. (Modified after Russo et al. 2017)

19

Types of “edible green infrastructure”

Description

Ecosystem and land-use types

References

Edible urban forests and edible urban greening, urban food forestry

Woody plants or vegetation with fruit and nut trees

Parks, streets, and public spaces

Konijnendijk et al. (2006) and Clark and Nicholas (2013)

Edible forest gardens

Agroforestry systems with trees and ground vegetation for the production of fruit, vegetables, aromatic herbs, and ornamental plants

Private gardens

Perera and Rajapakse (1991), Jacke and Toensmeier (2005), and Kumar and Nair (2004)

Historic gardens and parks and botanical gardens

Gardens and parks with a composition of ornamental and edible plants for aesthetic purposes, environmental education, species protection and science

Private villas and residences, palaces and castles, landscape parks, public spaces, universities

e.g., Ehler (2003), LUA (2005), and Palliwoda et al. (2017)

Domestic gardens

Gardens directly associated to residential buildings

Private houses, housing estates, private areas

Cameron et al. (2012)

School gardens

Garden areas on the grounds of schools for environmental education and horticultural activities

Public or private schools

Lehnert et al. (2016)

Allotment gardens and community gardens

Parcelled land in the urban area for individual or community, non-­commercial use

Public or private grounds and yards

Alaimo et al. (2008) and Breuste and Artmann (2015)

Edible green roofs and vegetable raingardens

Green roofs on specific roof constructions, rain gardens as basins for the filtered collection of rainwater

Private and public buildings, schools, hospitals

Köhler (1993) and GSA (2011)

Facade greening

Climbing plants (e.g., cucumbers, pumpkins) on walls and “living walls”, respectively

Private and public buildings, schools, hospitals

Manso and Castro Gomes (2015) and Raji et al. (2015)

to human health (e.g., heavy metal pollution), the impression must not be given that urban greenery or urban ecosystems pose a danger to humans in principle (see Shapiro and Báldi 2014; Lyytimäki 2015; Conway and Yip 2016; Conway and Jalali 2017). Especially for the cities of Central Europe,

sufficient scientific evidence and practical recommendations are already available to find a sustainable and viable balance of services and disservices of ecosystems and ecosystem compartments in the context of urban green planning (e.g., Vogt et al. 2017; Speak et al. 2018).

437 19.7 · Case Study: Wilderness in the City Centre—The Schöneberger…

19.6 

International Perspective on Sustainable Urban Development

If the focus here is on Central European cities, it should not be overlooked that in many metropolises in Central and South America, Africa, and Asia, hardly any minimum standards of ecologically-oriented and sustainable urban development are achieved. One in six people on earth, for example, has no access to clean drinking water, and around 1.5 million people die each year as a result of contaminated drinking water (European Parliament 2011; see, Winkler 2014). Urban sprawl (Frumkin et al. 2004) as uncontrolled (and often unplanned) growth of cities into the surrounding countryside, lack of wastewater treatment, lack of urban waste management, rapidly progressing sealing or destruction of urban green spaces, and serious social disparities, which are also expressed in an unequal distribution of health resources (e.g., Hilmers et  al. 2012, Zerbe 2022), are major challenges in megacities on a global scale (Sorensen and Okata 2011). Simply transferring knowledge to the regions concerned on how to improve living conditions through environmental protection and ecosystem restoration would already be an important step.

19.7 

Case Study: Wilderness in the City Centre—The Schöneberger Südgelände in Berlin

The Schöneberger Südgelände is located in the Tempelhof-Schöneberg district of Berlin and has a history of many decades as a railway area. Initially used as a marshalling yard since the 1880s, a large-scale railway station Berlin-Südbahnhof was planned in the 1930s. However, its construction was never realized with the end of the Second

19

World War and the new political situation of Berlin and Germany as well as the special legal ownership of the area (Deutsche Reichsbahn). Instead, in the following decades, operations as a marshalling yard were resumed on a partial area. The planned extension of the railway use in the 1980s to the southern area, which had already become overgrown due to the natural succession of trees, was not implemented. Thus, the former railway area gained increasing importance as green space, urban wilderness, and local recreation area, also against the background of the post-war political situation of a divided city in the years 1945 to 1989. In 1999, the Protected Area Ordinance came into force, designating the Schöneberger Südgelände Nature Park with a total of about 18 ha as a landscape conservation area (12.9  ha) and parts of the area as a nature reserve (3.2 ha) and thus, as one of the first nature reserves in Germany in an inner-city area (Kowarik and Langer 2008). Mohrmann (2002) states the costs for planning, development, and implementation of the nature park at approximately 3.6 million German marks (= approximately 1.8 million €) and emphasises that the costs for this green space were thus only about 15% of the investment costs for conventional green spaces. In the meantime, it has been well documented by a large number of expert reports and research projects on ecology, species and habitat protection, and urban climate (see Sukopp 1990; literature database “Ökogrube” of the Senatsverwaltung für Umwelt, Verkehr und Klimaschutz Berlin 2008) that the Schöneberger Südgelände offers a valuable contrast to the densely populated and sealed areas in the inner city of metropolitan Berlin, not only with its biodiversity of plants, animals, lichens, and fungi, but also structurally and with regard to the positive influence on the urban climate. It is noteworthy that organisms occur there that one would not necessarily expect

438

Chapter 19 · Urban Ecosystems

..      Table 19.5  Species numbers of selected species groups on the Schöneberger Südgelände. (According to Kowarik and Langer 2008, Elvers et al. 1981 and various expert reports)

..      Table 19.6  Shift in the proportion of herbaceous vegetation to woody stands between 1981 and 1991. (From Kowarik and Langer 2008) Area size and vegetation

1981

1991

Investigated area size [ha]

22.4

20.0

Vegetation area studied [ha = 100%]

21.6

19.1

28

Macro-fungi

49

Herbaceous vegetation [%]

63.5

30.9

Grasshoppers and crickets

14

Woody vegetation [%]

36.5

69.1

Ground beetles

45

Dominant tree species [%]

Spiders

57

Black locust

11.2

21.3

Wild bees and wasps

208

Silver birch

13.7

23.8

Aspen

1.3

2.3

Norway and sycamore maple

0.2

1.4

10.1

15.0

Species group

Species number

Vascular plants

366

Breeding birds

in the interior of large cities, such as e.g., 11 epigeic and epiphytic lichen species, the spider species Nesticus eremita (Elvers et  al. 1981) and, since a few years, the European praying mantis (Mantis religiosa; Köstler, pers. comm.). Kowarik and Langer (2008) provide an overview of the species diversity of the Schöneberger Südgelände (. Table  19.5) and thus, demonstrate the nature conservation value of the area (see also Kowarik 1992; Prasse and Ristow 1995; Saure 2001). The dynamic development of this inner-­ city fallow land is very well documented. Kowarik and Langer (2008; see also Kowarik and Langer 1994), for example, quantify the succession of shrubs and forests between 1980 and 1990, showing that the proportion of forest and shrub vegetation in terms of area share doubled in only 10 years (. Table  19.6). In particular, black locust (Robinia pseudoacacia), which originates from North America and is spreading rapidly in inner cities in Central Europe, and the native silver birch (Betula pendula) as well as the aspen (Populus tremula) have benefited from this development (. Fig. 19.9). Oregon grape (Mahonia aquifolium) and yew (Taxus baccata) have been established from the

Other tree species [%]





19



..      Fig. 19.9  Succession towards urban forests on the Schöneberger Südgelände. (S. Zerbe, September 2017)

adjacent gardens. Today, the Schöneberger Südgelände is characterized by an extraordinary richness of trees and shrubs, including in addition to the species already mentioned - walnut (Juglans regia), Swedish whitebeam (Sorbus intermedia), the maple species Acer pseudoplatanus, A. platanoides, A. campestre, and A. negundo, common ash (Fraxinus excelsior), hornbeam (Carpinus betulus), field elm (Ulmus minor), sea buckthorn (Hippophae rhamnoides), wild fruit

439 19.7 · Case Study: Wilderness in the City Centre—The Schöneberger…

19

(pear and apple), sweet chestnut (Castanea sativa), and numerous berry bushes of the genus Rubus. For about 8 years, natural regeneration of beech (Fagus sylvatica) has been occasionally observed. Since 1997, vegetation monitoring has been carried out on the area, including over 100 permanent plots, in order to document the development of the vegetation, the population dynamics, and the increase or decrease of species worthy of protection such as e.g., the hawkweeds Hieracium bauhini, Hieracium cymosiforme, and Hieracium glomeratum as well as the endangered rose species eglantine rose (Rosa rubiginosa), dog rose (R. subcanina), and false hedge rose (Rosa subcollina). Furthermore, with this monitoring the effects of the restoration and management measures should be assessed (Köstler 2015). Since 2004, parts of the area have been grazed by Gotland pelt (sheep breed from Sweden) to keep it open (. Fig.  19.10), accompanied by mowing and clearing of shrubs and trees (1 m

Material and time consuming, wide foreland required

Soil cover 10  t/ha) and thus, to a value of greenhouse gas reduction of about EUR 30 million per year. This economic benefit will be further increased by extending the Peatland Protection Programme to other peatland and wetland areas, especially if peatland protection can be combined with sustainable agricultural and forestry use options (e.g., “paludiculture”; see, Wichtmann et al. 2016) without losing sight of the overarching environmental and nature conservation goals (see, BfN 2014; 7 Sect. 8.8). According to calculations by Wüstemann et  al. (2014), climate-related damage amounting to EUR 217 million annually could be avoided in Germany alone with a national programme of peatland protection and restoration on approximately 300,000  ha of peatland area (see also,  



503 23.6 · Costs and Benefits of Ecosystem Restoration with Examples from Europe

Wüstemann et al. 2017). According to Röder and Grützmacher (2012), about 940,000 ha of peatlands are currently used for agriculture, of which about 75% is grassland. Similar economic studies on the contribution of peatland restoration to climate change mitigation are available from other countries. Even if the increase in methane emissions after rewetting (7 Sect. 8.7.1) is taken into account (for Scotland, see e.g. Chapman et al. 2012), the balance of greenhouse gas reduction should be positive. Röder and Grützmacher (2012) conclude that “the rewetting of peatlands […] is a low-cost option for reducing greenhouse gases in Germany”. The avoidance of more than 21 million tonnes of CO2 equivalents would result in costs of EUR 835 million in the short term. Röder and Grützmacher (2012) hereby compare the promotion of energy production by biogas with at least 1.6 billion EUR per year (reference year 2009), which in the most favourable case led to a saving of 8.22 million t CO2 equivalents. Based on a socio-economic study on the implementation of climate-friendly peatland management in Germany, Schaller (2015) concludes that “an implementation of climate-friendly peatland management should rather take the form of the complete and optimised restoration of peatlands than via small extensification steps”. According to a study commissioned by the Federal Agency for Nature Conservation (see, BfN 2014), Matzdorf et al. (2010) and Reutter and Matzdorf (2013) determined that the ploughing up of 5% species-­ rich grassland (high nature value grassland) to arable land in Germany results in climate-­ damaging emissions that, converted into damage costs, correspond to a value of up to approximately EUR 1500 per ha and year or a total of EUR 436 million per year based on an approach of avoidance costs of EUR 70 per tonne of CO2. In addition, the management of arable land leads to an increased release of nutrients, which in turn leads to the contamination of groundwater and sur 

23

face waters; to prevent this, approximately EUR 40–120 per ha would have to be spent annually. In addition to climate protection as an ecosystem service of grassland, a willingness to pay for species-rich habitats can be added, which was estimated here at approximately 1000 EUR per ha and per year. Agricultural production on species-­ rich grassland is lower compared to arable land, which has been estimated at a loss of approximately EUR 435 per ha annually. Consequently, BfN (2014) calculated a net value of maintaining species-rich grassland compared to a conversion to arable land to be EUR 890–2661 per ha annually, depending on the site conditions. In these calculations and the values given for the “climate costs”, it must be taken into account that economic estimates of future damage caused by climate change are included, which are then translated within a socio-political discourse into “tariffs”, threshold values or taxes to be paid. Such model-based calculations are thus dependent on the variables on which they are based and are also subject to considerable uncertainties. Calculations of climate costs or “tariffs” (social costs of carbon), for example, diverge by a factor of more than 10, ranging from about US$30 to over US$350 per tonne of CO2 (Hope 2006; Stern et al. 2006; Foley et al. 2013; Nordhaus 2017). Nevertheless, these scientific foundations are indispensable for the derivation of political recommendations for action and the development of sustainability strategies (see, Stern 2006; Nordhaus 2016). 23.6.5 

 ild and Honey Bees as W Pollinators in Agriculture

Globally, over 70% of the main agricultural crops, which contribute to 35% of global food production, rely on flowervisiting pollinators (Klein et  al. 2007; Geldmann and González-Varo 2018).

504

23

Chapter 23 · Restoration Economy: Costs and Benefits

Gallai et  al. (2009) estimate the value of pollination as an ecosystem service to be 153 billion EUR worldwide. Wild bees and honeybees are the most important insect group, but they are in decline worldwide. Major reasons for this are pollinator habitat loss, the application of synthetic pesticides, and the spread of parasites (Johansen and Mayer 1990; Kevan and Plowright 1995; Morse and Calderone 2000; Kevan and Phillips 2001; Potts et al. 2010; Cameron et al. 2011; Goulson et al. 2015). To compensate for the economic losses in, for example, fruit growing, some regions of the world have already switched to hand pollination of crops (Atkins and Atkins 2016) or are developing drones to take over insect pollination (Chechetka et al. 2017). That pollinator decline is associated with crop loss and hence economic loss has already been demonstrated for various agricultural products. Kevan (1997) shows for Canada that with an increase in the pollinator population both, the form and the quantity of apples produced are positively influenced, which translates into an increase in revenue of 250 Canadian dollars per ha. This relationship has also been confirmed, for example, by studies in apple growing in the UK (Garratt et al. 2014). Holzschuh et al. (2012) use the example of sweet cherry cultivation in Hesse to point out the greater importance of wild bees and habitat diversity for these pollinators compared to honey bees, the latter usually introduced directly into the crops in bee hives. An increased number of flower visits by wild bees, also promoted by appropriate habitat diversity close to the cultivation, resulted in higher fruit set (see also, Kremen et  al. 2002). However, competition for pollen between wild and honey bees can lead to losses in honey production (see, Schlindwein et al. 2005; Larsson and Franzen 2007; Cane and Tepedino 2017; Geldmann and González-Varo 2018).

23.7 

 irst Calculate Costs F and Benefits, Then Act

The large-scale restoration project in the Skjern river basin on the Danish mainland exemplifies the priority of preserving functioning ecosystems (Zerbe and Wiegleb 2009). As late as the 1950s, a near-­natural floodplain landscape covering several thousand hectares was found in this river basin. With the aim of agricultural use, the floodplain was drained and the river straightened in the 1960s (Pedersen et  al. 2007). These measures cost approximately EUR 30 million. As a result, not only near-natural habitats with high biodiversity were significantly impaired, but also the functionality of a floodplain and the estuary of the river (Ringkøbing Fjord). Due to the negative impacts on the floodplain ecosystem and the estuary, as well as the consequential costs of maintaining agricultural use (e.g., permanent pumping of water from the land as a result of peat compaction), a large-scale restoration project was initiated about 30 years later (Mant and Janes 2006). The goals were 55 the restoration of a floodplain of international value, 55 increasing the recreational and tourism potential of the landscape, and 55 an improvement in the quality of the estuary as a wetland. The costs of this restoration were similar to those of the “melioration” (Danish Ministry of the Environment and Energy 2007). Similar negative consequences in terms of natural resources and their use by agriculture were caused by the “complex melioration” in the GDR (7 Sect. 8.1). Today, such degraded land areas are the subject of peatland, river, and grassland restoration in north-eastern Germany, for example (7 Chaps. 8 and 15). An economic example calculation for creeks in Mecklenburg-Western Pomerania that were piped in the course of agricultural  



505 23.7 · First Calculate Costs and Benefits, Then Act

melioration in the former GDR shows that restoration can indeed be more cost-­effective than further degrading use of ecosystems, which leads, for example, to the loss of biodiversity of rivers (Krämer 2006; cited by Hampicke 2009). Piping was carried out to drain wetlands and to gain unfragmented and contiguous farmland. Today, the alternatives are continued maintenance of the piping or complete repiping, conversion to open ditches, or river restoration. The calculation of costs includes planning, investment, reinvestment, and maintenance costs and also takes into account income losses for agriculture. At approximately 8.5 EUR per metre, the annual costs of piping according to this sample calculation are significantly higher than those of the “ditch” (approximately 4.4 EUR) and “river restoration” variants (approximately 4.8 EUR). If

23

one takes into account the other negative consequences of this former “melioration”, including the loss of species-rich wet grassland, a decline in yields due to peat and soil compaction, respectively, on lowland fen sites, and the release of greenhouse gases due to the decomposition of the organic matter (7 Sect. 8.1), high costs could have been avoided if a cost-benefit analysis had been carried out beforehand. It must be concluded that even when ecological knowledge is profoundly implemented in restoration projects, the socio-economic background is often insufficiently illuminated. This also applies to measures that lead to the degradation of terrestrial and aquatic ecosystems and whose follow-up costs are not considered (Zerbe and Wiegleb 2009).  

507

Norms and Values in Ecosystem Restoration Contents 24.1

 nvironmental Ethics and Implications for Ecosystem E Restoration – 510

24.1.1

F aking Nature? Criticism on Ecosystem Restoration From  Environmental Ethics – 513

24.2

 cosystem Restoration as an Implementation E of Strong Sustainability – 515

24.3

Traditional Ecological Knowledge – 515

24.4

Environmental Anthropology – 516

24.5

 cosystem Restoration as Active Responsibility E for Creation – 518

24.6

 estoration Measures Put to the Ethical R Test Bench – 519

24.6.1 24.6.2 24.6.3

 pplication of Pesticides in Ecosystem Restoration – 520 A Controlled Burning to Restore and Preserve Open Land – 520 Topsoil Removal – 523

24.7

Non-native Organisms and Xenophobia – 525

© Springer-Verlag GmbH Germany, part of Springer Nature 2023 S. Zerbe, Restoration of Ecosystems – Bridging Nature and Humans, https://doi.org/10.1007/978-3-662-65658-7_24

24

508

24

Chapter 24 · Norms and Values in Ecosystem Restoration

While restoration ecology, as a scientific sub-discipline of ecology, generates and analyses data and facts qualitatively and quantitatively and thus, provides restoration practice with a value-free basis for decision-­ making, concrete ecosystem restoration requires an assessment and a decision between different options. The “best” option is then also based (often probably decisively) on socio-political and socio-economic framework conditions, opinions and motivations, value concepts, normative objectives of nature conservation and environmental protection, current scopes of action or a certain, possibly culturally determined paradigm. Comparative environmental science studies of topsoils in the EU, for example, have found lead concentrations exceeding 40  mg per kg (maximum value 151 mg/kg) in some industrially dominated regions of Central Europe (Tóth et al. 2016; . Fig. 24.1). The heavy metal sources here are current or historical, punctual or diffuse. Particularly high values are found in former mining areas. These are the ecological facts. A suspected level of lead contamination in soils is given by the Federal Environment Agency as 50  mg per kg (UBA 2003). Although, this threshold can be justified by facts (e.g., from health science and medical studies), it ultimately undergoes a socio-­ political decision process and is thus, linked to current norms. This makes lead a pollutant in many areas and results in a compelling need to protect the environment from contamination and to protect human health. The derivation of options for action, such as the disposal of soil contaminated with heavy metals or soil restoration by means of phytoremediation (7 Sect. 3.4), is then a normative decision-making process based on science. Another very impressive example from the field of species conservation is the reintroduction or natural return of the large carnivores brown bear, wolf, and lynx in Europe (7 Sect. 4.2). Even if the scientifically established data and facts from wildlife  





biology or animal ecology, conservation biology, socio-economics as well as environmental ethics considerations speak in favour of the coexistence of humans and large carnivores in European cultural landscapes, a deep-­seated unease on the part of humans towards these animals and a lack of acceptance of this coexistence can ultimately doom species conservation efforts to failure, as is currently reflected in the heated and emotional discussions and press releases in some of the regions concerned (e.g., in South Tyrol; see, Zerbe 2020). Land-use concepts such as permaculture (Mollison and Holmgren 1978; Mollison 1990; Ferguson and Lovell 2014) or biodynamic farming (Steiner 1924; Sattler and von Wistinghausen 1992; Kirchmann 1994; Koepf et al. 1996), which can make a significant contribution to the restoration of ecosystems, may be representative of the diverse holistic, ethically or spiritually based approaches that link value concepts to land use. This important distinction between scientific ecology and norms or values is often blurred in terms of language or content in discussions about environmental protection and nature conservation, when “ecological” or “biological” is equated with “good” for people and the environment. In social discourses and practical life of nature conservation and environmental protection, but also in scientific studies, an “eco-slang” has sometimes become established, which is critically examined, for example, by Ott (2010, p. 59f.) from the perspective of environmental ethics. When “ecosystem health” (see, Winterhalder et  al. 2004) is used as a term and concept in restoration ecology (7 Table 1.7), it often remains unclear what a “healthy” ecosystem actually is. The problems arising from such hybrid concepts are often critically discussed (Kapustka and Landis 1998; Lancaster 2000; Potthast 2005; Ott 2009; Gregorowius 2016; Kirchhoff 2016). These concepts or terms mix ecological concepts and their specific definitions  

24

509 Norms and Values in Ecosystem Restoration

..      Fig. 24.1  Soil-borne lead concentrations in micrograms per kilogram of topsoil in the EU. Pb, lead. (From Tóth et al. 2016)

(here, “ecosystem”; 7 Sect. 1.2.2) with human science terms, here with the term “health” (on the Ottawa Charter on Health Promotion of 1986, see e.g., Eriksson and Lindström 2008; Jakob and Laepple 2014; Schramme 2017; WHO 2017a, b) or even with the “diagnosis of ecosystem diseases” (Rapport 1995: diagnosis of ecosystem ills). Ott (2009, p.  428) gives rise to particular concerns that hybrid terms “disguise [the]  

value references of restoration ecology if they give the impression that they are scientific concepts”. Similar hybrid terms or concepts are “ecosystem integrity” or the psychology-based concept of “resilience”, which has found its way into other disciplines, particularly ecology (7 Sect. 1.2.2). These considerations make it clear that in nature conservation and environmental protection, as well as in practical ecosystem  

510

Chapter 24 · Norms and Values in Ecosystem Restoration

restoration, there is no way around the need to justify goals in an evaluative manner, to negotiate them with the actors in a participatory approach (7 Chap. 22), and to define them discursively (Eser and Potthast 1997). In the following, some of the human-­ scientific foundations of normative decisions in ecosystem restoration are examined, and examples will illuminate the sometimes very difficult field of tension between science and practice. Environmental ethics provides a theoretical framework. In addition, the disciplines of environmental anthropology, theology and religious studies, sociology, and the science of history, among others, can be used to build a human-­ scientific bridge to ecosystem restoration in theory and practice, especially with regard to values and norms. It is recommended to follow Davis and Slobodkin (2004) who state: “[…] it is important that restorationists do their best to clearly distinguish between their science and their values in their discussions with the public and policy makers as well as among themselves.”  

24

basis for the identification of a reference system as a target for ecosystem or landscape restoration and for the selection of the corresponding restoration measures; however, what is ultimately “best” and is implemented in practice follows a decision-making process in which values and norms come into play. Thus, environmental ethics has a theoretical and practical dimension and should be pursued in an analytical way, “so that presuppositions are reflected, distinctions are made, conclusions are controlled, ambiguities are resolved, and arguments are reconstructed” (Ott 2010, p. 17). This critical analysis is guided by environmental ethical argumentation spheres, which include anthropocentric, physio-centric, and theocentric approaches (Yaling 2008; Ott 2010; Ott et al. 2017a). Anthropocentric approaches assume that nature should be protected because it is valuable to humans, differentiating between instrumental and eudaimonistic (i.e., the happiness of the individual or the community as the fulfilment of meaning in human existence) values (. Table  24.1). The concept of ecosystem services can be given here as an example (7 Sect. 1.3). In contrast, physio-­centric or bio-centric approaches assume that certain non-human natural entities (animals, plants, microorganisms) have moral self-worth and should therefore be protected as members of the moral community (Norton 1987, 1992; Jackson et  al. 1995; Ott 2010). These two approaches may arrive at quite different assessments in the particular case of pests, parasites, or pathogens, for example, especially if one follows a holistic approach that attributes intrinsic values to all organisms (Mayr 2003). In the latter case, it is considered problematic that ecosystem restoration with correspondingly strong interventions (e.g., the application of pesticides, fire, topsoil removal; 7 Sect. 24.6) leads to damage to “nature’s creatures” (see, Gorke 2010). It also leads to a difference in assessment whether restoration objectives are defined on the basis of the anthropocen 

24.1 

Environmental Ethics and Implications for Ecosystem Restoration

Whenever ecology (here: restoration ecology) addresses practical issues of nature conservation and environmental protection or ecosystem restoration, it enters into a relationship with environmental ethics or natural ethics, which, as application-based ethics, analyses, reflects, and justifies values and norms (Ott 1997, 2009; Ott et al. 2017a). For many decisions within concrete restoration projects, values and norms usually play a significant role, which is often overlooked in practice with a reductionist view of ecological principles alone and is then reflected, for example, in a lack of acceptance or even rejection of restoration (7 Sect. 22.3). Ecology, for example, provides the scientific  





511 24.1 · Environmental Ethics and Implications for Ecosystem Restoration

..      Table 24.1  Anthropocentric argumentation sphere of environmental ethics. (After Ott et al. 2017b) Value of nature

Argument

Dependence: Humans are existentially dependent on nature in order to survive or to be able to lead a good life Instrumental

Duties to future generations: Because nature has an instrumental value and/ or eudaimonistic value to humans, it should be preserved for future generations Nature aesthetics: Nature should be protected because of its aesthetic value for humans Biophilia: Humans are anthropologically constituted in such a way that they can (must) turn to nature in a positive way

Eudaimonistic

Homeland: Certain sections of nature represent homeland for people and should therefore be protected Transformative value: Experiencing nature can change (transform) a person’s existing values; the resulting transformations can go in a morally desirable direction Difference: Nature, as a pleasant (refuge) place, often represents a difference, perceived as positive and valuable, to the hard-to-bear constraints and almost exclusive functional purpose of urban civilisation

tric concept of ecosystem services or whether a habitat is restored for a specific species with a view to that creature. Theocentric approaches, use religious or spiritual arguments. The various religions of the world, such as Christianity, Hinduism, Islam, Jainism, Judaism, Shamanism, Taoism, the religions of the Incas and Mayas, etc., might have a very different

24

understanding of nature. This can also be reflected in very different motivations and approaches to nature conservation and ecosystem restoration (Gobster and Hull 2000; Dearborn and Kark 2010; Clingerman and Dixon 2013; Van Wieren 2013). Particularly in view of the different understandings of nature of different ethnic groups, religious communities, and cultures, it becomes clear that there can be no universally binding environmental ethic worldwide. The general argumentation lines of environmental ethics must therefore be interpreted in each culture and embedded into the appropriate cultural contexts. Nevertheless, global environmental problems such as climate change, loss of biodiversity, the pollution of the oceans, the eutrophication of landscapes, and soil salinization, for example, speak in favour of arriving at a global ethos, at least in these areas (Crutzen and Schwägerl 2011). International initiatives, such as the global agenda of Sustainable Development Goals (SDGs; e.g., Nicolai et  al. 2015), are dedicated to this goal. Some basic types of environmental ethics are illustrated in the so-called onion-skin model (. Fig.  24.2). For introductions to environmental ethics and further reading, it is referred to VanDeVeer and Pierce (1994), Katz et  al. (2000), Light and Rolston III (2002), DesJardins (2005), Yaling (2008), Keller (2010), Ott (2010), Paslak et  al. (2010), Boylan (2013), Brennan and Lo (2015), Demko et  al. (2016), and the comprehensive Handbook of Environmental Ethics (Handbuch Umweltethik) by Ott et al. (2017a). One school of thought in environmental ethics is the so-called deep ecology as a spiritual holistic environmental and natural philosophy, respectively, within the ecological philosophies (ecophilosophies, ecosophies), which has developed out of the worldwide environmental crises of resource pollution and consumption (see, Carson 1962) and seeks solutions. Deep ecology thus aims to replace conventional and technical envi 

512

Chapter 24 · Norms and Values in Ecosystem Restoration

Living beings + Inanimate + Natural objects with intrinsic value

Living beings

Supra-organismic entities

,,Higher“ animals Humans

24

Anthropocentrism Being human, personality, language

Physiocentrism Sentientism (Pathocentrism)

Biocentrism

Holism

(Pain-sensitivity) Criteria for direct moral consideration

Aliveness/ teleonomic structure

Without criterion of existence

..      Fig. 24.2  Onion-skin model of basic types of environmental ethics. (From Ott et  al. 2017b; after Gorke 2010)

ronmental protection, which is understood as “superficial” (shallow). Founded by the Norwegian philosopher Næss (1973), deep ecology sees human beings as living in harmony with nature and thus, combines anthropocentric and physio-centric approaches. It uses the biological-ecological term of a “symbiosis” between man and nature. Næss (1973) sees a limitation in scientific ecology and its methods, which can be overcome with deep ecology and the bridge to philosophy, opening the way to an “ecological harmony or [harmony] of equilibrium”. The concept of deep ecology is taken up, discussed, and further developed by, for example, Devall (1980), Devall and Sessions (1985), Fox (1990), Drengson and Inoue (1995), Sessions (1995), Clark (1996), Witoszek and Brennan (1999), Roszak (2001) and Kopnina (2012). This philosophical school of thought is mentioned here because, on the one hand, it links scientific ecology to norms and, on the other hand, it has implications for environmental protection and ecosystem restoration (McGinnis 1996; Katz et  al. 2000; Rosenblum 2002;

Palamar 2008), up to “deep restoration” (Sweeney 2000). However, the hypotheses of deep ecology and the consequences to be derived from it e.g., for human population growth, are controversial. This will not be explored further here, and reference is made to the critical discussions by Devall (1991), Johns (1992), Grey (1993), Anker and Witoszek (1998), Warren (1999), Katz et al. (2000), Taylor (2001), Glasser (2011), and Hendlin (2017), among others. Hendlin (2017, p.  202) suggests, with regard to the sustainable coexistence of humans and nature, that deep ecology should also pay more attention to “the role of humans in the context of restoration efforts”. In conclusion, environmental ethics, as well as other disciplines in the human sciences, not only make a valuable contribution to the theory and practice of ecosystem restoration but are sometimes essential (. Table 24.2). The diversity of environmental ethical schools and concepts, respectively, such as e.g., biophilia (Wilson 1984; Kellert and Wilson 1993; Simaika and Samways 2010), cannot be explored further here.  

513 24.1 · Environmental Ethics and Implications for Ecosystem Restoration

24

..      Table 24.2  Possible contributions of various disciplines of the human sciences to the theory and practice of ecosystem restoration (7 Fig. 1.1)  

Discipline

Possible contribution to ecosystem restoration

Environmental anthropology

Understanding of human-­environment relationships, sustainable land-use practices, traditional land-use practices

Environmental economics

Costs and benefits of land use and ecosystem restoration, economic valorisation of ecosystem services

Environmental ethics

Valuations, motivations, principles, attitudes

Environmental psychology

Human-environment interactions, environmental experience, human behaviour in and towards the environment

Ethnology

Understanding of nature of different ethnic groups and their possibly different handling and use of natural capitals

Health sciences

Interaction of environment and human health (7 Table 19.2)

History

Historical development of ecosystems and land uses, traditional forms of land use, historical reference systems

Pedagogy

Environmental education, communication of environmental protection and nature conservation goals and the concept of sustainability, communication of appropriate options for action

Religious Studies and Theology

Understanding of nature by different religions and religious communities, values and norms towards nature and the environment

Sociology

Actor and stakeholder analysis, participatory approaches

24.1.1 



 aking Nature? Criticism F on Ecosystem Restoration From Environmental Ethics

Since the 1990s, the discussion and criticism of environmental ethics has focused on ecosystem restoration. Initially dominated by the debate in the US (e.g., Hargrove 1989; Birch 1993; Elliot 1995; Katz 1992, 1996; Throop 2000; Higgs 2003), Ott (2009) and Ott et al. (2017a), in particular, have continued the discussion with a view to Central Europe and the European cultural context. Ott (2009) rightly states that this criticism of ecosystem restoration should not be fundamentally dismissed by ecologists, but should be reflected upon, also with regard to decision-­ making processes and especially the measures of practical restoration, which

can sometimes raise considerable ethical controversies (Throop 2000). The latter concerns, for example, the application of pesticides and fire to restore ecosystems (7 Sect. 24.6), the re-introduction of large carnivores in the cultural landscapes (7 Sects. 4.2 and 4.3), or the control of nonnative species against a background of latent xenophobia (7 Chap. 5). Katz’s (1992, 1996) criticism is directed against the anthropocentric approach that nature can be degraded or even destroyed for the purpose of resource use, since the damage can then be compensated or repaired, often by technical means. The restored nature is then an artefact that satisfies human needs. In this technological position (technological fix) he sees a similar process that has caused the environmental  





514

24

Chapter 24 · Norms and Values in Ecosystem Restoration

crises, combined with man’s claim to dominate nature by technical means and technology, respectively. This is considered as an overestimation of man’s ability to construct nature according to his will. Elliot (1982) argues in a similar direction, seeing restored nature as a fake or copy of the original state, but of lesser value than the original. Original wilderness cannot be restored even with ecosystem restoration (Elliot 1995; see also, Katz 2010). Elliot thus draws an analogy to artwork, but this seems questionable (Ott 2009). Elliot’s criticism must be reflected from the context that North America still has large-scale landscapes and national parks that have been little influenced by humans. In contrast, Central Europe is “an ancient cultural landscape [boldface by author] in which literally no piece of land has been able to retain its natural state unchanged” (Ellenberg and Leuschner 2010, p.  23). Consequently, many ecosystems that are the subject of restoration in Central Europe are historical (traditional) land-use types, such as extensive meadows and pastures, heaths, sandy dry grasslands, salt grassland, and certain forest-use types (Part II). This criticism may also have arisen from a too narrowly understood objective of restoration. In Central Europe, re-storation will rarely be the restoration of an original state or wilderness (see, Chapman 2006) (7 Sect. 1.5). This field of tension between natural and cultural landscapes also illustrates the fact, already explained above, that environmental ethics must be embedded in the cultural and also natural-geographical context. Criticism of environmental ethics is certainly also stimulated by an understanding of nature that differs, at least in part, between cultures and scientific disciplines (Higgs 2003). For practical ecosystem restoration, it is therefore helpful to deal with the sometimes very different reference systems (7 Chap. 2). Katz (1992) and Elliot (1982) are among the most important initiators of the environmental-­ethical debate on ecosystem  



restoration. Indeed, Katz’s (1992) critique refers to the paradigm in industrialized and highly technological societies that damage to nature can be easily repaired (Elliot 1982: restoration thesis). With this kind of ecosystem restoration, according to Ott (2009, p. 433) and by referring to Benjamin (1936), “nature enters the era of its (eco)technical reproducibility”. Although, Katz’s theses are discussed very critically or even rejected in philosophy and environmental ethics (Lo 1999; Light 2000; Ladkin 2005; Ott 2009), these nevertheless indicate that ecosystems cannot be arbitrarily altered, over-exploited, degraded or destroyed and then, restored again by technical means. The many failures in ecosystem restoration (e.g., 7 Chap. 11) proof this, as do examples showing that restoring an ecosystem with its ecosystem services can be much more expensive than leaving it in its historical or original state (7 Chap. 23). Referring to examples of companies that create “restored native nature” (e.g., around their location) in order to demonstrate their “closeness to nature” (see, Light and Higgs 1996), and looking at the “suggestive stagings” associated with this, Ott (2009, p. 434) expresses the concern that ecosystem restoration could become a “technocratic and commercialized enterprise” that “serves only as an alibi for the continuation of nature-consuming practices”. This risk also exists, in principle, in the case of interventions in nature or historically developed cultural landscapes and their legally regulated compensatory measures. The fundamental criticism of ecosystem restoration by Elliot (1982) and Katz (1992) is put into perspective by Light (2000), who considers ecosystem restoration not only in terms of the ecosystem, but also in terms of the restoration of the human-nature relationship. He distinguishes “malicious” restoration, which follows the restoration thesis (see above), from “benevolent” restoration, which is not carried out only to justify ecosystem damage that has already occurred or  



515 24.3 · Traditional Ecological Knowledge

24

through capital. Capital, as a term borrowed from economics, includes physical, natural, cultivated natural (e.g., agricultural land), social (e.g., institutions, administrations), human (e.g., education), and knowledge capital (Döring 2004; see also, Cirella and Zerbe 2015). Conceptually, a distinction is made between weak and strong sustainabil24.2  Ecosystem Restoration ity (Norton and Toman 1997; Döring 2004; as an Implementation Hanley et  al. 2007; Ott and Döring 2008; of Strong Sustainability Ott et al. 2011; Holden et al. 2014; Ott 2015, Although, the term sustainability is increas- 2017). The main difference between the two ingly watered down and also overextended concepts lies in the assessment of the substiand misused for non-sustainable actions  - tutability of natural capital. In the concept Ott (2010, p. 164) states “linguistic inflation” of strong sustainability, natural capital and “conceptual contourlessness”  - it pro- should be kept constant for future generavides a clear guiding principle when care- tions (constant natural capital rule; fully referring to definition and content. The Costanza and Daly 1992; Daly 1997), idea of sustainability goes back to Hans whereas in weak sustainability natural capiCarl von Carlowitz (1645–1714), a German tal can, in principle, be substituted by physimining councillor (Sächsische Carlowitz-­ cal capital without limit. With the concept Gesellschaft 2013). Through him, the prin- of strong sustainability, natural capital and ciple of sustainability found its way into thus, ecosystem restoration take on a very forestry and, in its original meaning, recom- special significance, namely when natural mends not harvesting more wood than will capital can be renewed with the restoration grow back (Karafyllis 2002). Setting the of ecosystems (Aronson et  al. 2007; tone for global and national environmental Crossman and Bryan 2009; Gradinaru 2014; policy, the term “sustainability” was newly Zerbe 2022). Döring (2004), for example, and comprehensively coined for all land uses considers the restoration of soil fertility, and land development by the Brundtland erosion control, the development of near-­ Commission in 1987 (Ott 2010). natural forests, the restoration of fish popuDevelopment is considered sustainable when lations, river restoration, and the it “meets the needs of the present without improvement of groundwater quality investcompromising the ability of future genera- ments in natural capital. Ecosystem restorations to meet their own needs” (WCED tion is thus directly related to the sustainable 1987). This enshrines the principle that peo- development of nature, environment, and ple are entitled to have their basic needs met land use. on a sustainable basis. Since the Environmental Conference in Rio de Janeiro in 1992, “the idea of sustainable develop- 24.3  Traditional Ecological Knowledge ment has been one of the guiding principles of environmental and development policy and has found its way into countless docu- For several decades, indigenous and traditional ecological knowledge, respectively, ments and agreements” (Ott 2010, p. 164). Sustainability encompasses the three pil- has been increasingly engaged with to lars of ecology, economy, and social affairs, advance the knowledge of human-­ whereby operationalisation takes place environment relations and to contribute to is still occurring. The latter is based on a physio-centric approach that attributes a value to the ecosystem independently of any direct (economic) benefit of ecosystem restoration for humans.

516

24

Chapter 24 · Norms and Values in Ecosystem Restoration

the solution of land-use problems and sustainable land-use issues (Johannes 1989; Williams and Baines 1993; Dudgeon and Berkes 2003; Menzies 2006; Ramakrishnan 2007; Berkes 2012; McCarter et  al. 2014; Timaeus et  al. 2015; Zerbe 2022). Often brought into the discussion of sustainable land-use practices of pre-industrial societies in the context of indigenous non-European cultures (Berkes 1993), the general definition to be followed here is that traditional ecological knowledge encompasses the experiences and knowledge of a local population in direct contact with their environment, which has been accumulated and modified over centuries (Rinkevich et al. 2011). This knowledge concerns the relationships between plants and animals, but also natural phenomena and seasonal cycles and dynamics of a specific habitat, which was and is constantly developed and applied for land use (agriculture, forestry, hunting, fishing) in a process of cultural adaptation. This knowledge has been passed down through the generations in a local social network. Thus, traditional ecological knowledge touches the interface of the scientifically generated knowledge of ecology and experiences made by local-regional land users over a long period of land and water use, respectively. Thus, ecological facts can be profitably linked with normative aspects to meet the challenges of social-ecological systems (Ostrom et al. 2007). Zent and Maffi (2009) point out the extensive applications of traditional ecological knowledge with regard to science, medicine, agriculture, forestry, rural development, and environmental protection. For ecosystem restoration, traditional ecological knowledge can be applied because it not only provides ecological information, but also provides guidance on land management and promotes adaptive strategies in the face of a changing environment (McCarter et al. 2014). In addition, the use of traditional ecological knowledge catalyzes interactions between actors, stakeholders, and the scientific community (Ross et al.

2011; 7 Chap. 22). However, there is an increasing risk that rural development, urbanization, and globalization will lead to an erosion of this traditional knowledge (Benz et al. 2000; Brosi et al. 2007; Zent and Maffi 2009; Pungetti et  al. 2012; Erdmann and Kastenholz 2013). A revival of this knowledge is called for by both, the scientific community and practitioners (e.g., nature conservation; Zent 1999; Ford and Martinez 2000). In Central Europe, for example, traditional ecological knowledge can be integrated into the restoration of historical land-use systems such as heaths, woodland pasture, and mountain agriculture in the high mountains. This knowledge can also be applied in the restoration of forests and, in particular, to restore their services for the provision of non-timber products, especially in order to strengthen peripheral rural regions that are undergoing a social-ecological transformation due to the outmigration of the population. According to Thompson (1991) and the IUCN (1991), it is important to preserve traditional local knowledge for the following reasons: 55 Local knowledge plays an important role in gaining new biological and ecological insights. 55 Local knowledge is an important factor for sustainable resource management. 55 Local knowledge contributes to the establishment and management of protected areas and to environmental education. 55 Local knowledge is helpful in land-use planning.  

24.4 

Environmental Anthropology

Environmental anthropology or ecological anthropology examines the spatiotemporal relationships of humans to their environment, in both historical and contemporary perspectives (Glacken 1976; Salzman and

517 24.4 · Environmental Anthropology

Attwood 1996; Ingold 2000; Crumley et al. 2001; Harris 2001; White 2007; Townsend 2009; McGee and Warms 2012; Moore 2012; Descola 2013; Kopnina and Shoreman-­Ouimet 2013, 2017; Haenn et al. 2016). Cultural and social predispositions of different perceptions of nature as well as appropriation of nature are comparatively deciphered, for example. Cultural ecology was founded by Steward (1955, 1968, 2006) as a sub-discipline of anthropology in the first half of the twentieth century (Nowak 2003; Haenn et al. 2016). This was then further developed into environmental anthropology by Bennett (1976), Rappaport (1968), and Vayda (1969), among others, and also provided the impetus for other anthropological research directions such as political ecology, which was significantly influenced by Wolf (1972), Blaikie (1995), and Blaikie and Brookfield (1987; see, Townsend 2009; Haenn et al. 2016). In considering, for example, the adaptation of different cultures to their environment and its sustainable use (or unsustainable use; see Diamond 2011), the analysis of traditional ecological knowledge (7 Sect. 24.3), or the development of new land uses based on historical experiences (e.g., Birnbaum and Fox 2014), concepts and methods of cultural or environmental anthropology are linked, at least indirectly, to issues of ecosystem restoration. Studies examining this field of tension are mostly available from the US and often on indigenous ethnic groups (e.g., Casagrande 2004; Shebitz 2005; Jordan III 2006; Storm and Shebitz 2006; Trigger et al. 2008; Casagrande and Vasquez 2009; Egan et  al. 2011; Celentano et  al. 2014; Cuerrier et al. 2015). From Central Europe, there are environmental anthropological studies, for example by Reichel and Frömming (2014), on how Alpine inhabitants deal with natural hazards in the context of climate change. This also draws on traditional local knowledge about the environment. The analysis of user communities and common property or the  

24

commons (see, Ostrom 1990) and its traditional rights of use are also the subject of environmental anthropological studies, such as in the Romanian Eastern Carpathians, where “people regard the forest not simply as a resource, but as a powerful source of collective identity, social practice, and pride” (Vasile 2015). Environmental anthropology provides a significant impetus for the use of ecosystems and their restoration when it sheds light on human-environment relations and reflects on ecological facts against the background of value concepts in history and the present. Wahlhütter (2011), for example, states for soils in Austria that the “changes reflected by farmers, the linkage with religious values or the role of soil in the construction of an agricultural identity show that soil in agriculture is much more than the reduction of matter to purely material aspects”. This is illustrated, among other things, by the example of the different understanding of “soil fertility” and “soil quality”, which clearly goes beyond the scientifically measurable nutrient and water balance and other ecological parameters. Another aspect of the relationship between humans and the environment is illuminated by the ethnographic approach of multispecies ethnography (Haraway 2010; Kirksey and Helmreich 2010). Here, the biological concept of symbiosis is transferred to the relationship of humans to certain species in the natural and cultural landscape (companionship, interspecies collaboration; Tsing 2009) and the corresponding social and cultural phenomena are illuminated. Tsing (2012) illustrates this with the example of cereal cultivation, which has led to a “biological transformation” of humans and cereal plants since the Neolithic. The species considered in multispecies ethnography may be plants, animals, cryptogams or bacteria (Feinberg et  al. 2013; Pouliot and Ryan 2013; Locke and Münster 2015). The concept thus also links biodiversity to the cultural diversity of human societies (see, Martin et al. 2012).

518

Chapter 24 · Norms and Values in Ecosystem Restoration

For the restoration of cultural ecosystems, environmental anthropologists propose cultural keystone species based on the concept of ecological keystone species (7 Sect. 6.3), which play a special or even central role for cultures and their land use e.g., as food, raw material, medicine or for spiritual practices (Garibaldi and Turner 2004; Petelka et al. 2022). Such cultural keystone species, in addition to ecosystem restoration, can also contribute to the restoration of social-ecological systems. In the European Alps, for example, in montane coniferous or mixed coniferous forests, the European larch (Larix decidua) in larch meadows and pastures can be considered as such a cultural keystone species, as this tree species offers a wide range of use options (7 Sect. 18.2). In many regions of Central Europe and the Alps (especially in the Southern Alps), the sweet chestnut (Castanea sativa) also plays this role (Bender 2002; Conedera et  al. 2004a, b; Bouffier and Maurer 2009; Schabacker et al. 2015; Pástor et  al. 2017). The concept of cultural keystone species thus bridges the gap between environmental anthropology and nature or cultural landscape conservation.  

24



24.5 

Ecosystem Restoration as Active Responsibility for Creation

Gerten and Bergmann (2012, p. 4) note that religion offers a promising analytical approach to the multiple ways people perceive, act, think, and live in the context of global change. Reichel and Frömming (2014) complement this with mythology, using an example from the Swiss Alps to argue that myths prevented access or land use to areas at risk from natural hazards, such as avalanches. In Central Europe, Christianity has been the impetus for cultural-­historical developments as well as for values and norms for more than

1000  years (on the history, see Große Hüttmann and Wehling 2013). In particular, the Genesis as the creation story of the Bible has been interpreted and discussed intensively in theology, philosophy, and environmental ethics as the basis for human interaction with nature. Link (2012, p.  15) introduces his book “Creation” (Schöpfung) with the words that “no other theological topic […] has emigrated from the inner circle of theology into the public discussion of science and worldview in recent decades in a similarly tumultuous development as the problem of creation”. While the anthropocentric interpretation of man’s mission for domination over the earth (dominium terrae) in Genesis 1 was theologically trend-setting until the 1970s, calling “believers to craft and engineer the world” (Baranzke and LambertyZielinski 1995), growing criticism of this interpretation, coupled with an emerging socio-­political discussion related to increasing environmental crises (White 1967), has led to new interpretations (e.g., Auer 1985; Kay 1988; Baranzke and Lamberty-Zielinski 1995; Link 2012). According to Hardmeier and Ott (2015), this imperial anthropocentrism cannot be derived from the Genesis. An interpretation that follows a theocentric approach considers humans as a “tenant” of the earth who should cultivate and preserve it (Hardmeier and Ott 2017). After reflecting on the Genesis and its various translations and interpretations, Hardmeier and Ott (2017, p. 185) conclude that “the interpretation of an unrestricted license of exploitation of the earth by man […] has no support in the original text”, which nevertheless offers a “license of use”. The new interpretation of Genesis 1 should “[…] - translated in terms of natural ethics  - lead to a much richer understanding of what it means in the biblical tradition to live and manage cohabitatively and responsibly as human beings on earth in the present era of the Anthropocene” (Hardmeier and Ott 2015, p. 111). The ethical content of the entire creation narrative is

24

519 24.6 · Restoration Measures Put to the Ethical Test Bench

summarized by Hardmeier and Ott (2015, p.  163) in a mnemonic formula: “Living as mandate holder of God in his blessings and moving gratefully and responsibly in his very good creation.” For a comprehensive nature ethics discourse of the biblical creation narrative, see Hardmeier and Ott (2015). With the Encyclical Laudato si’, Pope Franciscus (2015) became the first leader of the Roman-Catholic Church to comprehensively address global environmental problems in a way that had never been done before in this form, thus calling for activities of protection for “our common home” and for an urgent dialogue “about how we shape the future of our planet”. Even though ecosystem restoration is not explicitly mentioned in it, a recommendation for action can, however, be casually derived from it when it states therein to “repair the damage done by human misuse of God’s creation”. The environmental damages and problems mentioned in the encyclical, such as the loss of biodiversity, air, water, and soil pollution, the over-exploitation of natural resources, the accumulation of waste, climate change, urbanization, social injustice and the resulting burdens on human health, and the challenges to sustainable landscape development, have been documented by relevant environmental science studies and long-term environmental monitoring, respectively (Part II) and urge action. Additionally, the statement “[…] remediate all that we have destroyed […]” can be interpreted in this direction. If “no branch of science and no form of wisdom may be left aside,” this underscores the need for interdisciplinary approaches (Tucker and Grim 2016). While other encyclicals focus more on social and economic issues and problems, the encyclical Laudato si’ specifically targets a holistic human ecology (Nass 2017). For further ecological implications of the encyclical and relations to global environmental protection, see

Ceballos (2016) and DeWitt (2016) and, with regard to ecosystem restoration, Raven (2016). George (2017) summarizes numerous statements on the Pope’s encyclical from the perspectives of natural science, social science, and economics. 24.6 

 estoration Measures Put R to the Ethical Test Bench

As explained in 7 Chap. 3 and discussed in more detail with regard to the various ecosystem and land-use types (Part II), practical ecosystem restoration applies a wide range of measures in order to achieve the goals set as quickly as possible. If, according to the general objectives of ecosystem restoration, the services of anthropogenically degraded ecosystems are to be restored (7 Sect. 1.5), those measures in particular that have led or are leading to the degradation of ecosystems must be critically examined (Zerbe and Ott 2021). This will be discussed taking the example of the application of synthetic pesticides, controlled burning, and topsoil removal. If ecosystem restoration is generally questioned from an environmental ethics perspective (7 Sect. 24.1.1), this discussion and the practical implications derived from it must also extend to ecosystem restoration measures. The critical reflection on measures of restoration practice also makes it clear that interdisciplinary approaches of applied ecology and landscape ecology are useful here. Thus, on the one hand, environmental ethics is dependent on biologicalecological facts, and on the other hand, an implementation of restoration-­ ecological principles also depends on values and norms for which environmental ethics, anthropology, cultural history or, more generally, the human sciences offer theoretical and practical decision-­making frameworks and foundations.  





520

Chapter 24 · Norms and Values in Ecosystem Restoration

24.6.1 

24

Application of Pesticides in Ecosystem Restoration

Over the past two decades, the application of synthetic pesticides in ecosystem restoration and management for the conservation and promotion of biodiversity has been increasingly reported worldwide. Pesticides are applied, for example, to “restore” water bodies (Finlayson et al. 2000) and reed beds (Cheshier et al. 2012; Hazelton et al. 2014), forests (Baer and Groninger 2004; Nakamura et  al. 2008), heathlands (Snow and Marrs 1997), and grasslands (Davy 2002; Lulow et al. 2007; Young and Claassen 2008; Rokich et al. 2009). Pesticides applied include glyphosate (Cornish and Burgin 2005), metsulfuron-methyl (Baer and Groninger 2004), rotenone (Finlayson et al. 2000), fluazifop-P-butyl (Rokich et al. 2009), and tebuthiuron (Olson and Whitson 2002), only part of these are approved for application in Germany. In North America in particular, pesticides are frequently applied against non-native species in order to suppress them and promote native species (7 Chap. 5). The suspicion arises that the occurrence and spread of non-native species justify any means of combating them under the guise of “restoration”. Although, numerous scientific studies are available on the adverse effects of pesticides on wild plant and animal species (e.g., Davidson et al. 2001; Relyea and Hoverman 2006; Schäfer et  al. 2007; Baldwin et  al. 2009; Mullin et al. 2010; Scholz et al. 2012; Brühl et  al. 2013; Goulson 2014) and on adverse health effects on humans (WHO 1990; Eskenazi et  al. 1999; Jaeger et  al. 1999b; Reichl 2002; Bradberry et  al. 2004; Hayes et al. 2006; Bassil et al. 2007; Sanborn et  al. 2007; Bjørling-Poulsen et  al. 2008; Alewu and Nosiri 2011; Mnif et  al. 2011; Osman 2011; Mostafalou and Abdollahi 2013; Pirsaheb et  al. 2015; Nicolopoulou-­ Stamati et  al. 2016), criticism of pesticide application in ecosystem restoration from  

the scientific community has so far been restrained. Wagner and Nelson (2014), for example, point to the fact that the application of aminopyralid and picloram negatively affects the diaspore bank of target grassland species in the context of restoration projects. Knapp and Matthews (1998) indicate when rotenone is used to manage fish populations in North American lakes, it also has a lethal effect on other organisms such as amphibians, zooplankton, and benthic invertebrates (Cushing and Olive 1957; Anderson 1970; Neves 1975; Chandler and Marking 1982) and a short-term negative effect on overall water quality (CDFG 1994). Against the background of the increasing application of synthetic pesticides in many parts of the world (Wilson and Tisdell 2001; FAO 2002; Alavanja 2009), the negative effects of many pesticides on the environment and, in particular, on biodiversity that have been known for decades (Geiger et  al. 2010; Beketov et  al. 2013; Goulson 2013), the increasing problem of harm to human health associated with the application of pesticides, the concentration and accumulation of pesticides in the food web, and restoration objectives that prioritize environmental and resource protection, nature conservation, and sustainability, completely preclude the application of synthetic pesticides in ecosystem restoration. Biological plant protection, in contrast, might be considered e.g., in the restoration and management of species-rich arable land or in the cultivation of plants for phytoremediation. 24.6.2 

Controlled Burning to Restore and Preserve Open Land

Controlled burning is applied or suggested in Europe for the restoration and management of open land in cultural landscapes,

521 24.6 · Restoration Measures Put to the Ethical Test Bench

often in particular for traditional land-use types that have a species composition and biodiversity valuable for nature conservation. Examples are available for heathland (Keienburg et  al. 2004; Niemeyer 2005; Härdtle et al. 2009), grassland (Wegener and Reichhoff 1989; Hansson and Fogelfors 2000; Kahmen et al. 2002; Moog et al. 2002; Wahlman and Milberg 2002; Page and ­Goldammer 2004; Köhler et al. 2005; Liira et al. 2009), dunes (Vogels 2009), former military training areas (Karlowski et  al. 2001; Goldammer et  al. 2012), and traditional vineyards (Bylebyl 2009). Controlled burning is intended to push back woody plants, remove an excessively dense herb layer, and/ or improve ecological site conditions for target species. Additionally, controlled burning is being considered for the restoration of temperate and boreal forests (Goldammer et al. 1997; Kuuluvainen et al. 2002; Stanturf et al. 2014; Bernes et al. 2015). This measure should influence ecological processes to achieve specific restoration goals. Goldammer et  al. (1997) conclude that “from the point of view of nature conservation, landscape management, and possibly also forestry […] several priority areas [arise] today in which one could consider a targeted use of fire in addition to conventional management measures”. In this context, heaths, mires, dry and nutrient-poor grasslands, fallow land, agricultural and viticultural “problem sites” and forests are mentioned. Apart from the numerous failures of this restoration and management measure for the restoration and maintenance of open land (see compilation by Valkó et al. 2014), there are several reasons why the use of fire in ecosystem restoration and in landscape management oriented towards nature conservation and environmental protection objectives in Central Europe should be carefully reconsidered, even though the specific character of fire (e.g., rate of spread, residence time, amount of fuel material) can vary greatly (Goldammer et  al. 1997). The following considerations are listed below

24

and may stimulate further critical discussion: 55 Central Europe is not a region in which fire occurs naturally and frequently in a vegetation- and landscape-shaping manner, as it does, for example, in the Mediterranean climate and the subtropical and tropical savannahs (e.g., de Booysen and Tainton 1984; Myers 2006; Shlisky et al. 2007; Stanturf et al. 2014). In addition to fires that occur naturally e.g., due to lightning in the summer months, anthropogenic fires by far predominate, mainly due to negligence or arson. According to UBA (2016e), negligence and arson were the cause of about 44% of forest fires in 2015, while natural causes were the trigger for only 5% of forest fires (for Europe, see EC 2017d). The damage caused by forest fires is estimated by UBA (2016e) to average EUR 1.4 million per year in the period 1993– 2014. Climate change is expected to increase the risk of fires in Central Europe (Cimolino et  al. 2015). If it is argued that controlled burning (fire farming, slash-and-burn agriculture) was widespread in the historical cultural landscape (Goldammer et  al. 1997), it must also be perceived that this traditional way of farming still exists, especially in the tropics, and creates significant problems for humans and the environment. 55 Fire and the damage it causes are among the most significant environmental problems worldwide. Damage affects natural and semi-natural ecosystems and their biodiversity, the climate with the release of carbon, and human health. Van der Werf et al. (2010) quantify global carbon emissions from fire in the period 1997– 2009 at 2 Gt (= 1,000,000,000,000 kg) per year, with fires on grasslands and savannahs contributing 44%, forest fires in the tropics 36%, forest fires outside the tropics 15%, and the burning of agricultural residues and peat fires in the tropics

522

Chapter 24 · Norms and Values in Ecosystem Restoration

(7 Chap. 8) 3% each. This means that fire is of considerable importance worldwide in the discussion on climate protection. In many regions of the world, an increase in temperature, longer drought periods, and an increase in extreme weather events will further increase the likelihood of fires occurring (Stocks et al. 1998; Westerling et al. 2006; Moritz et al. 2012), with the consequence of increasing carbon emissions. When applying controlled burning as a management measure in German nature reserves, Goldammer et al. (1997) quantify the release of carbon at an annually burned area of 1000 ha and assuming an average burning of a maximum of 20 t plant material (dry weight) per hectare at approximately 9000 t. Although, this value is considered comparatively low by the authors, burning contradicts the efforts to promote carbon storage and sequestration in Central European ecosystems for climate protection. Heathland, for example, contributes with about 20–30  kg of carbon per hectare for each kilogram of nitrogen input to sustainable carbon sequestration in aboveground biomass, given the current annual atmogenic nitrogen input of 5–15 kg per hectare (Evans et al. 2006; de Vries et al. 2009). 55 Although, a direct causal link between fire and smoke, respectively, in cultivated landscapes and human health is difficult or indirect to prove, numerous studies point to this negative effect, especially where the burning of agricultural residues is still practiced on a large scale or fire is part of traditional landscape management (Bowman and Johnston 2005; Goldammer et al. 2009; Johnston et al. 2012; Bowman et al. 2013; Marlier et al. 2013; Reddington et  al. 2015). 8–11% of fires worldwide are attributed to agricultural lands (Korontzi et al. 2006). The fact that land use-related fires are detrimental to people and the environment was already established 100  years ago with reference  

24

to the Central European buckwheat-fire culture, because “after all, the burning of peatland usually causes a very strong nuisance to the surrounding area through the smoke emission […], often to great distances” (Hoering 1915, p. 148). 55 Controlled burning may improve the abiotic and biotic site conditions for target species or the target vegetation of a restoration site, but it has a negative impact on other organisms (or even on certain target species themselves). Studies on heathland in Lower Saxony, for example, found that controlled burning permanently damaged mosses, but also most lichens (especially Cladonia species; Keienburg et  al. 2004), including Red List species such as Cetraria aculeata, Cladonia ciliate, and Ptilidium ciliare (Fottner et  al. 2004). Fire can also permanently alter animal communities. Experimental plots in Lower Saxony showed an outmigration of surviving phytophagous insects, which depend on living, above-ground Calluna tissue, and their predators, respectively (Schmidt and Melber 2004). Schmidt and Melber (2004) also recorded the almost complete extinction of the population of the small butterfly Coleophora juncicolella following burning. Particularly in the case of isolated heathland, recolonisation and stabilisation of populations with low dispersal ability can hardly be expected in the foreseeable future. Carried out during the breeding season, controlled burning can permanently damage populations of birds breeding on the ground or in low shrubs (Artman et  al. 2001). These examples illustrate that controlled burning and its impact on organisms must not only be analyzed in biological-­ ecological terms, but also touch on ethical issues. Why, for example, are certain populations of organisms severely damaged or wiped out (losers; see Moretti et  al. 2004) in order to promote target populations (winners), especially if this

24

523 24.6 · Restoration Measures Put to the Ethical Test Bench

can be avoided by the application of other measures? 55 Fire can release large amounts of nitrogen bound in vegetation and soil. On heathland in Lower Saxony, it was determined that nitrogen in the order of 80–90% of the nutrient stock bound in the vegetation was released by the immediate fire event (Keienburg et  al. ­ 2004). This can be carried out by leachate and thus pollute groundwater (Pilkington et al. 2007). Following a fire on a 12-year-­old heathland stand in southern England, Chapman (1967) determined a nutrient outflow of approximately 170 kg of nitrogen per hectare. The amount of nitrogen loss depends on the ecosystem and land-use type, as well as on the season in which the fire occurs. In view of the already highly eutrophic landscapes in Central Europe (see, Kuylenstierna et al. 2012) and the pollution of groundwater and surface water by nutrients, these values must give cause for concern. With man’s deep-rooted fear of uncontrolled and uncontrollable fire (see, Böhme 2003; Böhme and Böhme 2010), the acceptance of controlled burning as a restoration and landscape management measure is of great importance (for Lower Saxony, see Müller and Schaltegger 2004). However, this need not be problematic in principle if the population and those affected are involved in the relevant decisions or are very well informed in advance about the ecological and nature conservation functions of fire (7 Chap. 22). In this context, participatory approaches for involving stakeholders and those affected have been proposed (Davies et al. 2008).  

24.6.3 

Topsoil Removal

It is unlikely to meet with any opposition if soil in urban habitats that is strongly contaminated with heavy metals or organic pollutants - because of the risk it poses to human

health - is cleaned or removed and disposed of by environmental engineering means and the site is re-vegetated with appropriate measures. This is all the more urgent if the pollutants are released into the air through dust formation and wind effects or leached into the groundwater. The situation is different with the re-introduction or continuation of sod cutting on heaths (7 Sect. 14.5), the removal of topsoil in the restoration of nutrient-poor and species-rich grassland (7 Sect. 15.6.3) or the accelerated restoration of peatland by shallow peat removal (7 Sect. 8.7.2). Some facts about the ecosystem compartment soil in Central European habitats may inspire to critically question these restoration practices. It should also be noted that the United Nations have declared 2015 the “International Year of Soil” in order to raise awareness and focus on soil and soil protection worldwide (UN 2014). As an interplay of chemical, physical, and biological processes, soil formation is a very slow process. Typical soil formation rates on permanent grassland under Central European temperate climate conditions, for example, are only 1–2  cm per 100  years (Jones et  al. 2012). Accordingly, it takes periods of several hundred to thousands of years to naturally make up for soil loss due to erosion, for example. Jones et  al. (2012) state in the context of a comprehensive status report on Europe’s soils that they are practically a non-renewable natural resource. The authors also highlight the high annual soil loss rate in Europe due to erosion at 10 tonnes per hectare. Even though soils in Central Europe are naturally very diverse in terms of soil type as well as water and nutrient balance, the figures presented by Jedicke (1989) may shed light on the high diversity of animals and microorganisms in soils, including mycorrhizal fungi (. Fig.  24.3). In addition, there are the seeds and fruits in the soil diaspore bank. On various dry grasslands of Central Europe, up to more than 50,000 seeds have been counted on 1 m2 in the first 10 cm of soil (Kiss et al. 2017), and  







524

Chapter 24 · Norms and Values in Ecosystem Restoration

24

..      Fig. 24.3  Soil organisms in 1 m2 of soil in the top 30 cm of the soil layer. (From Jedicke 1989)

525 24.7 · Non-native Organisms and Xenophobia

up to more than 90,000  in wet grassland (Klimkowska et al. 2010a; Valkó et al. 2011). During topsoil removal, these organisms and the diaspore bank are completely removed to depths of 10–30 cm, depending on the depth of soil removal. Apart from this considerable intervention in a soil or peat that has developed over centuries and the consequences for the organisms and diaspores that occur in it, the topsoil or peat removed often has to be disposed of at great expense, which is associated with correspondingly high costs (7 Table 23.2). Even if the topsoil or peat removed can be used e.g., in horticulture or for other purposes, the high costs of topsoil removal are not necessarily compensated (Klimkowska et al. 2010b). Another aspect that must be included in an ethically reflected decision-making process for topsoil removal as a restoration measure is the diverse ecosystem services provided by soils. Apart from the biodiversity already mentioned above, these include the provision of habitats for antagonists of agricultural and forestry pests, soil as an agricultural and forestry production site, the regulating capacity of soils in the nutrient and water cycles, carbon storage and sequestration, soil as an environmental archive (e.g., archaeology, pollen deposition), and as a subject for environmental education and research (Daily et al. 1997; Dominati et al. 2010; Robinson et  al. 2012; Bouma 2014; Sauerwein et  al. 2015; Adhikari and Hartemink 2016). At the very least, before removing soil or peat as part of a restoration of certain ecosystem services that one wishes to restore, these must be weighed against the services of the soil that may be lost. Against this background, Harnisch et al. (2014) cannot share “the almost euphoric assessment of topsoil removal as a means of reducing nutrient levels” and state a scenario that should give cause for concern when considering this measure for the restoration of ecosystems. With a restoration area of 1 ha, a topsoil removal of 50 cm soil depth  

24

results in a soil volume of approximately 5000  m3, which increases to approximately 6000  m3 when a “loosening factor” of approximately 20% is taken into account. With an average weight of approximately 1.5  t per cubic metre, this means that 225 tours with a 40-t truck would be necessary to transport the soil material. In addition, the excavated soil must be tested for contamination on the basis of the Federal Soil Protection Act, the Closed Substance Cycle and Waste Management Act, and the corresponding federal state regulations before it can be put to any possible use. This brief critical reflection on some of the measures that are now common practice in ecosystem restoration could be extended to other measures, such as technological interventions for lake restoration as a measure of improving water and sediment quality (7 Sect. 11.6).  

24.7 

Non-native Organisms and Xenophobia

In 7 Chap. 5 it was already outlined why the management of non-native species in ecosystem restoration needs to be carefully reconsidered  - not only from a natural science perspective, but especially from a human science or environmental ethics perspective. Both, in scientific studies and in practice, non-native species are often rejected per se, and the need to combat them is uncritically assumed. Eser (1999), for example, has shown that the language and choice of words about neobiota and biological invasions show parallels to xenophobic semantics. The discussion and management of non-native species exemplifies how ecological facts and anthropocentric evaluations (unconsciously) intermingle and thus, serious misjudgements may occur. So why, for example, should nonnative species not play a key ecological role in the restoration of ecosystems, strongly altered by anthropogenic impact such as e.g., urban-industrial sites?  

527

Synthesis Contents Chapter 25 Conclusions and Outlook – 529

IV

529

Conclusions and Outlook Contents 25.1

Limiting Factors for Ecosystem Restoration – 530

25.2

 egradation in the Long Term and Restoration D in the Short Term? – 532

25.3

 estoration of Eutrophicated Terrestrial and Aquatic R Habitats: A Sisyphean Task? – 534

25.4

L imits to Planability, Uncertainties, and the Unforeseen: Allowing for More Dynamics – 536

25.5

 cosystem Restoration in the Light E of Current Trends – 537

25.6

Ecosystem Restoration at Any Price? – 538

25.7

 cientific Knowledge, Knowledge Transfer, S and Socio-Political Decisions – 538

25.8

Final Conclusion – 539

© Springer-Verlag GmbH Germany, part of Springer Nature 2023 S. Zerbe, Restoration of Ecosystems – Bridging Nature and Humans, https://doi.org/10.1007/978-3-662-65658-7_25

25

530

25

Chapter 25 · Conclusions and Outlook

There must be no question that the condition of many ecosystems and land-use types, respectively, which is associated with the loss of ecosystem services, on the one hand, and orientation of land use and landscape development in Central Europe according to the principles of sustainability, on the other, make ecosystem restoration indispensable. With the legal obligations, also against the background of the multifaceted international agreements, and from environmental-­ ethical and socio-economic considerations, a requirement for action can be deduced without any constraint (7 Chap. 21). Ecosystem restoration must be neither a luxury nor ecosystem cosmetics, but a consistent implementation of nature, environmental, and resource protection as well as of strong sustainability (7 Chap. 24). The fact that overexploitation and degradation of ecosystems can cause considerable socio-economic damage, while ecosystem restoration can be economically beneficial, has been demonstrated by environmental economic studies from the local-regional to the global level (7 Chap. 23). In the following, some overarching facts will be reflected to elaborate general trends, identifying potentials and weaknesses of ecosystem restoration, and, in particular, to stimulate an interdisciplinary discussion. Experimental restoration ecology as well as the successes and failures of practical ecosystem restoration and its scientific analysis have considerably expanded our knowledge of ecosystems and land-use types of the cultural landscape in Central Europe in recent decades both, at the level of populations and species as well as at the level of biocenoses and ecosystems and landscapes. While certain land-use types, such as species-rich meadows, dry grassland, and heathland, have been more or less successfully restored for decades, the results for some near-­ natural ecosystems, in particular, are rather sobering. Lake restoration projects (lake  





therapy, lake rehabilitation), for example, often show no significant success in the long term (7 Chap. 11), or, as in the case of marine habitats (7 Chap. 13), there are still no comprehensive restoration concepts at all.  



25.1 

Limiting Factors for Ecosystem Restoration

Limitations for practical ecosystem restoration result from ecological, economic, and/ or social factors. The ecological limitations are described in detail by Hölzel et al. (2009), for example, and can be caused by abiotic or biotic site factors, also in mutual interaction. The water balance in a wetland, for example, may not be adjusted in such a way that the characteristic wetland species or biocenoses reestablish themselves naturally; or the nutrient content of the soil on terrestrial sites or in the waterbody or sediment of lakes is too high and favours competitive nitrophytes and strong algal growth, respectively. Even if the nutrient content is reduced by appropriate measures (e.g., topsoil removal), continuously high atmogenic inputs can have a permanently limiting effect, as they exceed the critical load. This has been shown, for example, for heathland (7 Sect. 14.6). Particularly on urban-­ industrial or mining sites, contaminant loads (e.g., heavy metals) may be too high to restore an ecosystem that provides ecosystem services to humans. Contamination with pollutants poses a health hazard to humans and a significant barrier to the production of agricultural food products. Limiting biotic factors result, for example, from an impoverished or “empty” soil seed bank. In particular, ecosystems of the open cultural landscape that are to be restored after a long, often intensive interim use, show that the soil seed bank of the target species is severely impoverished or  

25

531 25.1 · Limiting Factors for Ecosystem Restoration

that the corresponding species have disappeared from the local-regional species pool. Due to dispersal barriers or low dispersal potential, the input of target species into the ­ecosystem to be restored may be limited. Even with suitable abiotic conditions of wetlands and floodplains, for example, transport pathways for floating diaspores may be obstructed (Donath et al. 2003; Jensen et al. 2006; Nilsson et al. 2010; Lorenz and Feld 2013). If the diaspores reach the target area naturally or artificially supported by appropriate measures, however, the suitable micro-­sites (safe sites; 7 Sect. 1.2.1) where the diaspores could germinate and the plants could become permanently established may be lacking. In the case of large-scale measures such as topsoil removal or the re-­vegetation of slopes in the high mountains, the micro-relief important for plant and vegetation establishment may have been lost, which could provide a corresponding diversity of micro-sites. Other limiting factors include the fragmentation of ecosystems or landscapes, high anthropogenic land-use pressure, or the small size of the area to be restored. An economic limitation results from excessively high costs for a planned or already started restoration project. While the actual costs (not the opportunity costs; 7 Chap. 23) of passive restoration (7 Sect. 3.1) can be very low, for example, topsoil removal on grassland, the de-construction of a dike on a river or at the coast, or the pumping out of lake sediment contaminated with nutrients or pollutants are very expensive. The parameters on which restoration costs depend, and which items have to be included in the cost calculation are explained in 7 Chap. 23. Excessively high costs can lead to the failure of a restoration project already in the planning phase or even during implementation (cf. Manchester et al. 1999; Török et al. 2011b; Bayraktarov et al. 2016).  







However, even if the ecological facts, the measures to be taken, and the costs would ensure the feasibility of an ecosystem restoration project, social or cultural limitations may exist. This is discussed using the example of the re-introduction of large carnivores in 7 Chap. 4. Acceptance of the measure by the local population is essential for the long-­term success of such re-introductions. This may be the case at the beginning of the project but may also change in the course of a re-introduction (7 Table 4.4). In an intensively used cultural landscape, the lack of available land is also a limiting factor for ecosystem restoration. Pfadenhauer and Grootjans (1999), for example, point out that many restoration projects fail not because of ecological knowledge, but because of the lack of available land against the background of ownership in a fragmented landscape. A major cultural barrier may exist in the restoration of wilderness. After centuries of pushing back wilderness and cultivating the land for agriculture and forestry, it sometimes takes a great deal of persuasion to convince local people of the value and benefits of an untouched natural environment. The fact that this is not easy, and that nature conservation repeatedly suffers setbacks due to a lack of acceptance is vividly illustrated by the example of the Bavarian Forest National Park (7 Chap. 22). Ecological, economic, and social limitations can be identified in advance using participatory approaches (7 Chap. 22). On this basis, objectives, plans, and measures can be adjusted. However, despite the elimination of obstacles in advance, unforeseen obstacles or limitations can also arise during ecosystem restoration, which then leads to the failure of the project (. Fig.  25.1), especially if the environmental variables or the socioeconomic framework conditions change (Covington et  al. 1999; Choi 2004; Griggs 2009).  









532

Chapter 25 · Conclusions and Outlook

Limiting factors

social

25

economic

ecological

No limitation or limitation is overcome

Limitation occurs later

Existing limitation is not overcome ..      Fig. 25.1  Ecological, economic, and social factors can be limiting for the success of restoration, even after the beginning or during the implementation of the restoration project

25.2 

Degradation in the Long Term and Restoration in the Short Term?

With regard to the restoration of the Dosenmoor (peatland) in SchleswigHolstein, Müller (1985) concludes that “it will take centuries, or even millennia, until the wounds inflicted on the Dosenmoor have healed” (case study in 7 Sect. 8.10). This points to a fundamental problem of ecosystem restoration. In many cases, attempts are made and it is expected to reverse longterm processes of degradation within the shortest possible periods, often using drastic measures such as topsoil removal to reduce nutrient loads. About 30  years ago, Kaule (1986) estimated periods for habitat restoration ranging from short-term restorable (150  years) such as for raised bogs and fens, forests, and heaths  

(see also, Riecken et al. 2006). Today, these time specifications can be modified based on the experience gained over several decades from practical ecosystem restoration and knowledge gained from restoration ecology (. Table  25.1). The characteristic vegetation of coastal salt grassland, for example, can be re-established just a few years after the dike is opened, which even leads Turner (1995) to conclude that salt grassland and marshland are the easiest of the wetlands to restore. Similar positive experiences are also available for other ecosystems and land-use types, respectively. The forest stands on former opencast lignite mines in the Rhenish lignite mining area, for example, show a remarkable state of development after about 80 years, which leaves nothing to be desired in terms of many ecosystem services (e.g., timber production, species and habitat protection, local recreation) (7 Sect. 7.12). Nevertheless, it must be stated that certain habitats that have been severely degraded by over-utilization in the past cannot be restored in the foreseeable future.  



533 25.2 · Degradation in the Long Term and Restoration in the Short Term?

25

..      Table 25.1  Time periods in which ecosystem services and habitats, respectively, can be permanently restored, if necessary with appropriate management, derived from previous experiences of practical ecosystem restoration and from the knowledge of restoration ecology, differentiated into short term (50 years). This assessment is based on favourable initial conditions; for some habitat types or unfavourable initial conditions, the restoration of the habitat-­typical ecosystem services is not possible in the foreseeable future Habitat, land-use or vegetation type

Period [years] 50

×

for peat formation - but it will not be possible to restore the diverse ecosystem services of a bog (7 Table 8.2). Here, the criticism of Katz (1992, 1996) and Elliot (1982) from the perspective of environmental ethics may be justified, that in this case, the restored  

534

Chapter 25 · Conclusions and Outlook

peatland ecosystem can at best be an “artefact” or a “fake”. The time periods given in . Table 25.1 reflect only general trends for the respective ecosystems or land-use types. The actual regeneration time of the specific case under consideration depends on the degree of degradation, on the duration of an interim land use, on the type, duration, and intensity of the restoration or maintenance management, and on the goals set. Determining the actual regeneration times of ecosystems or land-use types is usually made very difficult by the lack of corresponding long-term studies. The longterm monitoring of peatland development in Denmark over a period of more than 150 years (Kollmann and Rasmussen 2012) or the success control of European beaver re-introductions after more than 50  years (7 Table 4.2) are rare exceptions. In restoration ecology, most research projects are short-­term ( 5000 ha). Surv Perspect Integrat Environ Soc 7(2):1–22

Brown K, Marjorie WH, Snook H, Garvin K (2010) Sustainable land development and restoration: decision consequence analysis. ButterworthHeinemann, Oxford Brožová K, Dlouhá J, Fereš J, Horatius D, Jungvirtová E, Kovář J, Kubelka F, Kulich J, Matoušková L, Mertl J, Milatová M, Nosková B, Podhajská Z, Pokorný J, Sůsa J, Volaufová L, Vrtišková L, Zeman J (2008). The economy and the environment in the Czech Republic after 1989. Czech Environmental Information Agency. http:// www1.­cenia.­cz/. Accessed 1 Aug 2017 Brucet S, Pedron S, Mehner T, Lauridsen TL, Argillier C, Winfield IJ, Volta P, Emmrich M, Hesthagen T, Holmgren K, Benejam L, Kelly F, Krause T, Palm A, Rask M, Jeppesen E (2013) Fish diversity in European lakes: geographical factors dominate over anthropogenic pressures. Freshw Biol 58:1779–1793 Brudvig LA (2011) The restoration of biodiversity: where has research been and where does it need to go? Am J Bot 98:549–558 Bruelheide H (2003) Translocation of a montane meadow to simulate the potential impact of climate change. Appl Veg Sci 6:23–34 Bruelheide H, Flintrop T (2000) Evaluating the transplantation of a meadow in the Harz Mountains, Germany. Biol Conserv 92:109–120 Brugha R, Varvasovszky Z (2000) Stakeholder analysis: a review. Health Pol Plann 15(3):239–246 Brühl CA, Schmidt T, Pieper S, Alscher A (2013) Terrestrial pesticide exposure of amphibians: an underestimated cause of global decline? Sci Rep 3:1135 Brülisauer A, Klötzli F (1998) Notes on the ecological restoration of fen meadows, ombrogenous bogs and rivers: definitions, techniques, problems. Bull Geobot Inst ETH 64:47–61 Brüne C (1994) Ökonomische und schafzüchterische Rahmenbedingungen für die Landschaftspflege mit Schafen. LÖBF-Mitt 3:41–44 Brunk I, Reike HP, Berg C (2013) The impact of coppicing and patch cuts on communities of minute brown scavenger beetles (Coleoptera, Latridiidae) of a temperate floodplain forest. Latridiidae 10:13–22 Brunke M, Wesseler E (2007) Monitoring der Fischfauna in Seen: Methodenevaluation, Zusammenarbeit mit gewerblichen Binnenfischern und erste Ergebnisse zur Fischfauna. Jahresbericht Landesamt für Natur und Umwelt des Landes Schleswig-Holstein 2006/07. https://www.­umweltdaten.­landsh.­de/nuis/upool/ gesamt/jahrbe06/Gewaesser/6Monitoring.­p df. Accessed 3 May 2017 Brunken H, Brunschön C, Sperling M, Winkler M (2009) Fischfauna-Online. Fischartenatlas von Deutschland und Österreich. Gesellschaft für Ich-

585 References

thyologie e. V. http://www.­ichthyologie.­de/. Accessed 3 July 2017 Brunold C, Rüegsegger A, Brändle R (eds) (1996) Stress bei Pflanzen. Ökologie, Physiologie, Biochemie, Molekularbiologie. Ulmer, Stuttgart Brunotte E, Dister E, Günther-Diringer D, Koenzen U, Mehl D (2009) Flussauen in Deutschland— Erfassung und Bewertung des Auenzustandes. Natschutz Biol Vielfalt 87:1–141 Brunzel S, Sommer M (2016) Schutzmaßnahmen für den Frauenschuh—Verbesserung des Erhaltungszustands von Cypripedium calceolus. Natschutz Landschplan 48(4):114–121 Brunzel S, Sommer M, Hachmöller B, König B, Zimmermann A, Menzer H (2017) Erhaltungskulturen zur Wiederansiedlung des Karpaten-Enzians im Osterzgebirge. Natschutz Landschplan 49(1):19–27 Brzeziecki B, Kienast F, Wildi O (1995) Modelling potential impacts of climate change on the spatial distribution of zonal forest communities in Switzerland. J Veg Sci 6:257–268 Buchholz S (2010) Ground spider assemblages as indicators for habitat structure in inland sand ecosystems. Biodivers Conserv 19(9):2565–2595 Buchholz S, Hannig K, Schirmel J (2013) Losing uniqueness—shifts in carabid species composition during dry grassland and heathland succession. Anim Conserv 16:661–670 Buck A (2005) Forest restoration in international forest related processes and potential synergies in implementation. In: Veltheim T, Pajari B (eds) Forest landscape restoration in Central and Northern Europe. EFI Proceedings 53:47–67 Bücking W (1997) Naturwald, Naturwaldreservate, Wildnis in Deutschland und Europa. Forst Holz 52:515–522 Buckley P, Ito S, McLachlan S (2002) Temperate woodlands. In: Perrow MR, Davy AJ (eds) Handbook of ecological restoration, vol 1 & 2. Cambridge University Press, Cambridge, pp 503–538 Buczkó K, Korponai J, Padisák J, Starratt SW (eds) (2010) Palaeolimnological proxies as tools of environmental reconstruction in fresh water. Dev Hydrob 208:1–327 Büdel B (2001) Biological soil crusts of European temperate and Mediterranean regions. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management, Ecological studies (analysis and synthesis), vol 150. Springer, Berlin, pp 75–86 Bühlmann A, Gassmann J, Ingenfeld A, Hunziker K, Kellerhals M, Frey JE (2015) Molecular characterisation of the Swiss fruit genetic resources. Erwerbs-obstbau 57(1):29–34 Buhr C, Rohner MS, von Heydebrand D (2013) Ein Vorkommen von Tanacetum corymbosum (L.) Sch.

Bip. am Buchsee bei Bölkendorf (Uckermark) oder wie der Botanische Verein zu einer Pflegestelle kam. Verh Bot Ver Berlin Brandenburg 146:93–107 Buhse G (1993) Auswirkungen der Salzkonzentration auf die Biozönose der Fließgewässer. DVWKMitt 24:83–100 Buijse AD, Coops H, Staras M, Jans LH, Van Geest GJ, Grift RE, Ibelings BW, Oosterberg W, Roozen FCJM (2002) Restoration strategies for river floodplains along large lowland rivers in Europe. Freshw Biol 47:889–907 Bulánková E (1996) Dragonflies (Odontata) as bioindicators of environmental quality. Biologia 52:177–180 Bullock JM (1998) Community translocation in Britain: setting objectives and measuring consequences. Biol Conserv 84(3):199–214 Bullock JM, Jefferson RG, Blackstock TH, Pakeman RJ, Emmett BA, Pywell RJ, Grime JP, Silvertown J (2011) Semi-natural grasslands. In: UNEPWCMC (ed) Technical report: the UK National Ecosystem Assessment. UNEP-WCMC, Cambridge, pp 161–195 Bundesamt für Naturschutz (2018) Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Vol 7: Pflanzen. https://www.­bfn.­de/fileadmin/BfN/presse/2018/Dokumente/ Pressehintergrund_RL_7_Pflanzen.­pdf. Accessed 9 July 2017 Bundesamt für Statistik (2017) Bodennutzung, − bedeckung. Schweizerische Eidgenossenschaft, Bundesamt für Statistik, Sektion Geoinformation https://www.­b fs.­a dmin.­c h/bfs/de/home/statistiken/raum-umwelt/bodennutzung-bedeckung.­ html. Accessed 9 July 2017 Bundesministerium für Wirtschaft und Energie (2017) Förderdatenbank. Förderprogramme und Finanzhilfen des Bundes, der Länder und der EU. http:// www.­foerderdatenbank.­de/. Accessed 19 May 2017 Bundessortenamt (2014) Über 6.000 Apfelsorten in der neuen Datenbank zu Obstsorten—Gesamtliste der vertriebsfähigen Obstsorten. Bundesministerium für Ernährung und Landwirtschaft (BMEL). https://www.­bundessortenamt.­de/. Accessed 21 Aug 2017 Bünger L, Kölbach D (1995) Streuobst-Bindeglied zwischen Naturschutz und Landschaft. Dok Nat Landsch 23:1–166 Bunza G (1984) Oberflächenabfluss und Bodenabtrag in alpinen Graslandökosystemen. Verh Gesell Ökol Bern 12:101–109 Bunza G (1989) Oberflächenabfluß und Bodenabtrag in der Alpinen Grasheide der Hohen Tauern an der Großglockner-Hochalpenstraße. Österr. Akademie der Wiss., Veröff. des österr. MaB-Programms 13:155–200

586

References

Burchardt I (1963) Die Salzstelle und die Salzflora bei Altensalzwedel (Altmark). Altmärk Mus Stendal 17:67−72 Burd F (1995) Managed retreat: a practical guide. English Nature, Peterborough Burel F, Baudry J (1995) Species biodiversity in changing agricultural landscapes: a case study in the Pays d’Auge, France. Agric Ecosyst Environ 55:193–200 Burga AC (1987) Gletscher- und Vegetationsgeschichte der Südrätischen Alpen seit der Späteiszeit: (Puschlav, Livigno, Bormiese). Denkschriften der Schweizerischen Naturforschenden Gesellschaft, vol 101. Birkhäuser, Basel Bürger-Arndt R (1994) Zur Bedeutung von Stickstoffeintraegen fuer naturnahe Vegetationseinheiten in Mitteleuropa. Diss Bot 220:1–228 Burger J (2006a) Bioindicators: a review of their use in the environmental literature 1970–2005. Environ Bioindic 1(2):136–144 Burger J (2006b) Bioindicators: types, development, and use in ecological assessment and research. Environ Bioindic 1:22–39 Bürger K, Dröschmeister R (2001) Naturschutzorientierte Umweltbeobachtung in Deutschland: ein Überblick. Nat Landsch 76(2):49–57 Bürgi M, Wohlgemuth T (2002) “Natur aus Bauernhand”—auch im Wald? Informationsblatt Forschungsbereich Landschaft, Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL, Birmensdorf Burggraaff P (2013) Zisterzienserklöster als Gestalter der Kulturlandschaft: das Beispiel des Klosters und der heutigen Weltkulturerbestätte Maulbronn. In: Bund Heimat und Umwelt (Ed): Religion und Kulturlandschaft. Bonn, pp 22–35 Burkart M (2001) River corridor plants (Stromtalpflanzen) in Central European lowland: a review of a poorly understood plant distribution pattern. Glob Ecol Biogeogr 10:449–468 Burkart M, Alsleben K, Lachmuth S, Schumacher J, Hofmann R, Jeltsch F, Schurr FM (2010) Recruitment requirements of the rare and threatened Juncus atratus. Flora 205(9):583–589 Burkart M, Dierschke H, Hölzel N, Nowak B (2004) Molinio-Arrhenatheretea (E1). Kulturgrasland und verwandte Vegetationstypen, Part 1: Molinietalia. Futter- und Streuwiesen feuchtnasser Standorte. In: Dierschke H (ed) Synopsis der Pflanzengesellschaften Deutschlands, vol 9. Floristisch-soziologische Arbeitsgemeinschaft, Göttingen Burkart-Aicher B (ed) (2014) Online-Handbuch “Beweidung im Naturschutz”. Akademie für Naturschutz und Landschaftspflege (ANL), Laufen. www.­anl.­ b ay e r n .­d e / f a c h i n fo r m at i o n e n / b ewe i d u n g / handbuchinhalt.­htm. Accessed 2 Mar 2017

Burmeier S, Jensen K (2009) Experimental ecology and habitat specifi ity of the endangered plant Apium repens (Jacq.) Lag. at the northern edge of its range. Plant Ecol Divers 2(1):65–75 Bursch P, Engelhardt J, Schwab U (2002) Begrünungen mit autochthonem Saatgut. Natschutz Landschplan 11:346–357 Burschel P, Huss J (2003) Grundriss des Waldbaus: ein Leitfaden für Studium und Praxis. Ulmer, Stuttgart Burton A, Aherne J, Hassan N (2013) Trace metals in upland headwater lakes in Ireland. Ambio 42(6):702–714 Burylo M, Rey F, Mathys N, Dutoit T (2012) Plant root traits affecting the resistance of soils to concentrated flow erosion. Earth Surf Proc Land 37:1463–1470 Büscher D, Raabe U, Wentz EM (1990) Crassula helmsii (T. Kirk) Cockayne in Westfalen. Flor Rundbr 24:8–9 Büscher M, Zavalloni C, Dupré de Boulois H, Vicca S, Van den Berge J, Declerck S, Ceulemans R, Janssens IA, Nijs I (2012) Effects of arbuscular mycorrhizal fungi on grassland productivity are altered by future climate and below-ground resource availability. Environ Exp Bot 81:62–71 Bussmann RW, Paniagua Zambrana NY, Sikharulidze S, Kikvidze Z, Kikodze D, Tchelidze D, Khutsishvili M, Batsatsashvili K, Hart RE (2016) A comparative ethnobotany of Khevsureti, Samtskhe-Javakheti, Tusheti, Svaneti, and RachaLechkhumi, Republic of Georgia (Sakartvelo), Caucasus. J Ethnobiol Ethnomed 12:43 Butaye J, Adriaens D, Honnay O (2005) Conservation and restoration of calcareous grasslands: a concise review of the effects of fragmentation and management on plant species. Biotechnol Agron Soc Environ 9(2):111–118 Butchart SH, Walpole M, Collen B, van Strien A, Scharlemann JP, Almond RE, Baillie JE, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque JF, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Hernandez Morcillo M, Oldfield TE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vie JC, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168 Butler JRA, Gunn R, Berry HL, Wagey GA, Hardesty BD, Wilcox C (2013) A value chain analysis of ghost nets in the Arafura Sea: identifying trans-boundary stakeholders, intervention points and livelihood trade-off s. J Environ Manag 123:14–25

587 References

Buttler A, Grosvernier P, Matthey Y (1998) Development of Sphagnum fallax diaspores on bare peat with implications for the restoration of cut-over bogs. J Appl Ecol 35:800–810 Bylebyl K (2009) Historische Weinbaustandorte aus Sicht der Botanik. Lebensräume, Arten und Möglichkeiten für den Erhalt bzw. die Wiederherstellung. Regensburger Land 2:183–194 Byrne E, Mullally G, Sage C (2016) Transdisciplinary perspectives on transitions to sustainability. Routledge, London Byun C, de Blois S, Brisson J (2013) Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. J Ecol 101:128–139 Cachada A, Ferreira da Silva E, Duarte AC, Pereira R (2016) Risk assessment of urban soils contamination: the particular case of polycyclic aromatic hydrocarbons. Sci Total Environ 551–552:271–284 Cachada A, Pato P, Rocha-Santos T, da Silva EF, Duarte AC (2012) Levels, sources and potential human health risks of organic pollutants in urban soils. Sci Total Environ 430:184–192 Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087 Caffrey JM, Dutartre A, Haury J, Murphy KM, Wade PM (eds) (2009) Macrophytes in aquatic ecosystems: from biology to management. Dev Hydrobiol 190:1–264 Cairns J, Heckman JR (1996) Restoration ecology: the state of an emerging field. Annu Rev Energ Env 21:167–189 Cairns J, Pratt JR (1993) A history of biological monitoring using benthic macroinvertebrates. In: Rosenberg DM, Resh VH (eds) Freshwater biomonitoring and benthic macroinvertebrates. Chapman & Hall, New York, pp 10–27 Calder IR (2007) Forests and water-ensuring forest benefits outweigh water costs. For Ecol Manag 251:110–120 Callaway JC, Sullivan G, Desmond JS, Williams GD, Zedler JB (2001) Assessment and monitoring. In: Zedler JB (ed) Handbook for restoring tidal wetlands. CRC Press, Boca Raton, pp 271–335 Cameron RWF, Blanuša T, Taylor JE, Salisbury A, Halstead AJ, Henricot B, Thompson K (2012) The domestic garden—its contribution to urban green infrastructure. Urban For Urban Green 11(2):129–137 Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. PNAS 108:662–667 Camlin R (2001) Landwirtschaft und Landschaft in Großbritannien. Garten Landsch 111(8):28–29

Camm E, Buck HWL, Mitchell JC (1976) Phytophotodermatitis from Heracleum mantegazzianum. Contact Derm 2:68–72 Cane JH, Tepedino VJ (2017) Gauging the effect of honey bee pollen collection on native bee communities. Conserv Lett 10(2):205–210 Cannell MGR (1999) Environmental impacts of forest monocultures: water use, acidification, wildlife conservation, and carbon storage. New For 17(1– 3):239–262 Canning-Clode J (ed) (2016) Biological invasions in changing ecosystems. Vectors, ecological impacts, management and predictions. De Gruyter, Berlin Caporn SJM, Song W, Read DJ, Lee JA (1995) The effect of repeated nitrogen-fertilization on mycorrhizal infection in Heather [Calluna vulgaris (L.) Hull]. New Phytol 129:605–609 Caraco NF, Cole JJ, Raymond PA, Strayer DL, Pace ML, Findlay SEG, Fischer DT (1997) Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78: 588–602 Caraher D, Knapp WH (1995) Assessing ecosystem health in the Blue Mountains. Silviculture: from the cradle of forestry to ecosystem management. Southeast Forest Experimental Station, US Forest Service, Hendersonville, North Carolina. General Techn Rep SE-88:34–41 Carbiener R, Schnitzler A (1990) Evolution of major pattern models and processes of alluvial forest of the Rhine in the rift valley (France/Germany). Vegetatio 88:115–129 Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486(7401):59–67 Caridad Cruz M, Sánchez Medina R (2003) Agriculture in the city: a key to sustainability in Havana, Cuba. International Development Research Centre, Ottawa Carli A, Drescher A (2002) Die Verbesserung der Humusauflage durch Laubbäume—das Beispiel sekundärer Fichtenforste in der SE-Steiermark (Österreich). Mitt naturwiss Ver Steiermark 132:153–168 Carlsson F, Martinsson P (2001) Do hypothetical and actual willingness to pay diff er in choice experiments? J Environ Econom Manage 41:179–192 Carmel Y, Kadmon R (1998) Computerized classification of Mediterranean vegetation using panchromatic aerial photographs. J Veg Sci 9(3): 445–454 Caro T (2010) Conservation by proxy: indicator, umbrella, keystone, flagship, and other surrogate species. Island Press, Washington, DC

588

References

Caro TM, O’Doherty G (1999) On the use of surrogate species in conservation biology. Conserv Biol 13:805–814 Carpenter A (ed) (2016) Oil pollution in the North Sea. Springer International, Cham Carpenter J, Odum WE, Mills A (1983) Leaf litter decomposition in a reservoir affected by acid mine drainage. Oikos 41:16–172 Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. PNAS 102(29):10002–10005 Carreiro MM, Song YC, Wu J (2007) Ecology, planning, and management of urban forests: international perspective. Springer, New York Carrera G, Fernández P, Grimalt JO, Ventura M, Camarero L, Catalan J, Nickus U, Thies H, Psenner R (2002) Atmospheric deposition of organochlorine compounds to remote high mountain lakes of Europe. Environ Sci Technol 36(12):2581–2588 Carrus G, Scopelliti M, Lafortezza R, Colangelo G, Ferrini F, Salbitano F, Agrimi M, Portoghesi L, Semenzato P, Sanesi G (2015) Go greener, feel better? The positive effects of biodiversity on the well-being of individuals visiting urban and periurban green areas. Landscape Urban Plan 134:221–228 Carson R (1962) Silent spring. Houghton Miffl in Comp, Boston Carstensen J, Andersen JH, Gustafsson BG, Conley DJ (2014a) Deoxygenation of the Baltic Sea during the last century. PNAS 111(15):5628–5633 Carstensen J, Conley DJ, Bonsdorff E, Gustafsson BG, Hietanen S, Janas U, Jilbert T, Maximov A, Norkko A, Norkko J, Reed DC, Slomp CP, Timmermann K, Voss M (2014b) Hypoxia in the Baltic Sea: biogeochemical cycles, benthic fauna, and management. Ambio 43(1):26–36 Carvalheiro LG, Buckley YM, Memmott J (2010) Diet breadth influences how the impact of invasive plants is propagated through food webs. Ecology 91(4):1063–1074 Carvell C, Meek WR, Pywell RF, Goulson D, Nowakowski M (2007) Comparing the efficacy of agrienvironment schemes to enhance bumble bee abundance and diversity on arable field margins. J Appl Ecol 44:29–40 Casagrande DG (2004) Conceptions of primary forest in a Tzeltal Maya community: implications for conservation. Hum Organ 63:189–292 Casagrande DG, Vasquez M (2009) Restoring for cultural-ecological sustainability in Arizona and Connecticut. In: Hall M (ed) Restoration and history: the search for a usable environmental past. Routledge, London, pp 195–209 Casagrande Bacchiocchi S, Zerbe S, Cavieres L, Wellstein C (2019) Impact of ski piste management on

mountain grassland ecosystems in the Southern Alps. Sci Total Environ 665:959–967 Caspers G, Schmatzler E (2009) Vorkommen und Verwendung von Torf in Deutschland. Telma 39:75– 98 Castel I, Koster E, Slotboom R (1989) Morphogenetic aspects and age of Late Holocene eolian drift sands in Northwest Europe. Ztschr Geomorph 33(1):1–26 Catford JA, Jansson R, Nilsson C (2009) Reducing redundany in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Dist 15:22–40 Cavallero A, Aceto P, Gorlier A, Lombardi G, Lonati M, Martinasso B, Tagliatori C (2007) I tipi pastorali delle Alpi piemontesi. Alberto Perdisa Editore, Bologna Cavallini JM, Young LE, Ramírez Chávez MA (2005) Validación de lineamientos para formular políticas de gestión del agua residual doméstica en América Latina. Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente. http:// www.­b vsde.­p aho.­o rg/bvsaar/e/lineamv/pdf/ proceso.­pdf. Accessed 22 Mar 2017 CBD (2016) Convention on biological diversity. https://www.­cbd.­int/convention/. Accessed 13 Oct 2016 CDFG (1994) Rotenone use for fisheries management. Programmatic environmental impact report. California Department of Fish and Game. Inland Fisheries Division and Environmental Services Division, Sacramento Ceballos G (2016) IV.  Pope Francis’ encyclical letter Laudato si’, global environmental risks, and the future of humanity. Q Rev Biol 91(3):285–295 Celentano D, Rousseau GX, Engel VL, Façanha CL, de Oliveira EM, de Moura EG (2014) Perceptions of environmental change and use of traditional knowledge to plan riparian forest restoration with relocated communities in Alcântara, Eastern Amazon. J Ethnobiol Ethnomed 10:11 Černý K, Strnadová V (2010) Phytophthora alder decline: disease symptoms, causal agent and its distribution in the Czech Republic. Plant Protect Sci 46(1):12–18 Chabay I, Frick M, Helgeson J (2015) Land restoration: reclaiming landscapes for a sustainable future. Academic, Oxford Chadd R, Extense C (2004) The conservation of freshwater macroinvertebrate populations: a community-­ based classification scheme. Aquat Conserv Mar Freshw Ecosyst 14:597–624 Chameides WL, Lindsay RW, Richardson J, Kiang CS (1988) The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. Science 241:1473–1475

589 References

Chandler JH, Marking LL (1982) Toxicity of rotenone to selected aquatic invertebrates and frog larvae. Prog Fish Cult 44:78–80 Chapin FS III, Matson PA, Vitousek P (2011) Principles of terrestrial ecosystem ecology, 2nd edn. Springer, New York Chapman JL, Reiss MJ (1999) Ecology: principles and applications. Cambridge University Press, Cambridge Chapman RL (2006) Ecological restoration restored. Environ Values 15(4):463–478 Chapman S, Thomson K, Matthews R (2012) AFOLU accounting: implication for implementing peatland restoration—costs and benefits. http://www.­ climatexchange.­org.­uk/. Accessed 25 May 2017 Chapman SB (1967) Nutrient budget for a dry heath ecosystem in the south of England. J Ecol 58: 445–452 Chapman VJ (1960) Salt marshes and salt deserts of the world. Leonard Hill, London Chapron G, Kaczensky P, Linnell JDC, von Arx M, Huber D, Andrén H, López-Bao JV, Adamec M, Álvares F, Anders O, Balčiauskas L, Balys V, Bedő P, Bego F, Blanco JC, Breitenmoser U, Brøseth H, Bufka L, Bunikyte R, Ciucci P, Dutsov A, Engleder T, Fuxjäger C, Groff C, Holmala K, Hoxha B, Iliopoulos Y, Ionescu O, Jeremić J, Jerina K, Kluth G, Knauer F, Kojola I, Kos I, Krofel M, Kubala J, Kunovac S, Kusak J, Kutal M, Liberg O, Majić A, Männil P, Manz R, Marboutin E, Marucco F, Melovski D, Mersini K, Mertzanis Y, Mysłajek RW, Nowak S, Odden J, Ozolins J, Palomero G, Paunović M, Persson J, Potočnik H, Quenette PY, Rauer G, Reinhardt I, Rigg R, Ryser A, Salvatori V, Skrbinšek T, Stojanov A, Swenson JE, Szemethy L, Trajçe A, TsingarskaSedefcheva E, Váňa M, Veeroja R, Wabakken P, Wölfl M, Wölfl S, Zimmermann F, Zlatanova D, Boitani L (2014) Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346(6216):1517–1519 Charles H, Dukes JS (2007) Impacts of invasive species on ecosystem services. In: Nentwig W (ed) Biological invasions, Ecological studies (analysis and synthesis), vol 193. Springer, Berlin, pp 217– 237 Chauchard S, Beilhe F, Denis N, Carcaillet C (2010) An increase in the upper tree-limit of silver fir (Abies alba Mill.) in the Alps since the mid-20th century: a land-use change phenomenon. For Ecol Manag 259:1406–1415 Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural disturbances. Perspect Plant Ecol Evol Syst 6(1/2):51–71 Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320(5882):1458–1460

Chechetka SA, Yu Y, Tange M, Miyako E (2017) Materially engineered artificial pollinators. Chem 2(2):224–239 Chekroun KB, Baghour M (2013) The role of algae in phytoremediation of heavy metals: a review. J Mater Environ Sci 4(6):873–880 Cheshier JC, Madsen JD, Wersal RM, Gerard PD, Welch ME (2012) Evaluating the potential for differential susceptibility of common reed (Phragmites australis) haplotypes I and M to aquatic herbicides. Invas Plant Sci Mana 5:101–105 Chiarucci A, Araújo MB, Decocq G, Beierkuhnlein C, Fernández-Palacios JM (2010) The concept of potential natural vegetation: an epitaph? J Veg Sci 21:1172–1178 Chivu IA (1968) The use of reeds as raw material for pulp and paper production. In: FAO (ed) Pulp and paper development in Africa and the Near East, vol 2. Food and Agriculture Organization of the United Nations (FAO), Rome Chmielewski TJ, Krogulec J (2003) Ten years of experience in the implementation of environmental engineering in the protection of biodiversity. The case of Lublin Region (CE Poland). In: Pawłowski L, Dudzińska MR, Pawłowski A (eds) Environmental engineering studies. Springer, Boston, pp 431–442 Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem Cy 17(4):1–11 Choi Y (2004) Theories for ecological restoration in changing environment: toward ‘futuristic’ restoration. Ecol Res 19(1):75–85 Choi YD, Temperton VM, Allen EB, Grootjan AP, Halassy M, Hobbs RJ, Naeth A, Török K (2008) Ecological restoration for future sustainability in a changing environment. Ecoscience 15:53–64 Chorus I, Schauser I (2011) Oligotrophication of Lake Tegel and Schlachtensee, Berlin. Analysis of system components, causalities and response thresholds compared to responses of other waterbodies. UBATexte 45:1–179 Chovanec A (1994) Libellen als Bioindikatoren. Anax 1(1):1–9 Christensen M, Hahn K, Mountford EP, Ódor P, Standovár T, Rozenbergar D, Diaci J, Wijdeven S, Meyer P, Winter S, Vrska T (2005) Dead wood in European beech (Fagus sylvatica) forest reserves. For Ecol Manag 210:267–282 Christensen Steen N, Johnsen I (2001) The lichen-rich coastal heath vegetation on the isle of Anholt, Denmark—conservation and management. J Coast Conserv 7:13–22 Christie H, Fredriksen S, Rinde E (1998) Regrowth of kelp and colonization of epiphyte and fauna community after kelp trawling at the coast of Norway. Hydrobiologia 375(376):49–58

590

References

Christie M, Fazey I, Cooper R, Hyde T, Deri A, Hughes L, Bush G, Brander L, Nahman A, de Lange W, Reyers B (2008) An evaluation of economic and noneconomic techniques for assessing the importance of biodiversity to people in developing countries. Defra, London Chronopoulou PM, Sanni GO, Silas-Olu DI, van der Meer JR, Timmis KN, Brussaard CBD, McGenity TJ (2015) Generalist hydrocarbon-degrading bacterial communities in the oil-­polluted water column of the North Sea. Microb Biotechnol 8(3):434–447 Chuman T (2015) Restoration practices used on post mining sites and industrial deposits in the Czech Republic with an example of natural restoration of granodiorite quarries and spoil heaps. J Landscape Ecol 8(2):29–46 Chytrý M (1998) Potential replacement vegetation: an approach to vegetation mapping of cultural landscapes. Appl Veg Sci 1:177–188 Chytrý M (ed) (2007) Vegetation of the Czech Republic. 1. Grassland and heathland vegetation. Academia, Prag Chytrý M, Hennekens SM, Jiménez-Alfaro B, Knollová I, Dengler J, Jansen F, Landucci F, Schaminée JHJ, Acic S, Agrillo E, Ambarli D, Angelini P, Apostolova I, Attorre F, Berg C, Bergmeier E, Biurrun I, Botta-Dukát Z, Brisse H, Campos JA, Carlón L, Carni A, Casella L, Csiky J, Cušterevska R, Dajic Stevanovic Z, Danihelka J, De Bie E, de Ruffray P, De Sanctis M, Dickoré WB, Dimopoulos P, Dubyna D, Dziuba T, Ejrnæs R, Ermakov N, Ewald J, Fanelli G, Fernández-González F, FitzPatrick Ú, Font X, García-MijangosI Gavilán RG, Golub V, Guarino R, Haveman R, Indreica A, Isik Gürsoy D, Jandt U, Janssen JAM, Jiroušek M, Kacki Z, Kavgaci A, Kleikamp M, Kolomiychuk V, Krstivojevic Cuk M, Krstonošic D, Kuzemko A, Lenoir J, Lysenko T, Marcenò C, Martynenko V, Michalcová D, Moeslund JE, Onyshchenko V, Pedashenko H, Pérez-Haase A, Peterka T, Prokhorov V, Rašomavicius V, RodríguezRojo MP, Rodwell JS, Rogova T, Ruprecht E, Rusina S, Seidler G, Šibík J, Šilc U, Škvorc Ž, Sopotlieva D, Stancic Z, Svenning J-C, Swacha G, Tsiripidis I, Turtureanu PD, Ugurlu E, Uogintas D, Valachovic M, Vashenyak Y, Vassilev K, Venanzoni R, Virtanen R, Weekes L, Willner W, Wohlgemuth T, Yamalov S (2016) European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl Veg Sci 19(1):173–180 Chytrý M, Danihelka J, Kaplan Z, Pyšek P (eds) (2017) Flora and vegetation of the Czech Republic. Plant Veg 14:1–466 Cierjacks A, Kowarik I, Joshi J, Hempel S, Ristow M, von der Lippe M, Weber E (2013) Biological flora

of the British Isles: Robinia pseudoacacia. J Ecol 101:1623–1640 Ciesla WM (2002) Non-wood forest products from temperate broad-leaved trees. Food and Agriculture Organization of the United Nations (FAO), Rom Cimolino U, Maushake D, Südmersen J, Zawadke T (2015) Vegetationsbrandbekämpfung: Grundlagen, Taktik. Ausrüstung. ecomed, Landsberg Cinquepalmi V, Monno R, Fumarola L, Ventrella G, Calia C, Greco MF, de Vito D, Soleo L (2013) Environmental contamination by dog’s faeces: a public health problem? Int J Environ Res Pub Health 10(1):72–84 Cioc M (2015) The Rhine—an eco-biography, 1815– 2000. Weyerhaeuser Environmental Books, Washington, DC Cirella GT, Zerbe S (2015) Index of sustainable functionality—procedural developments and application in Urat front banner, Inner Mongolia autonomous region. Int J Environ Sustainability 10(2):15–31 Ciucci P, Boitani L, Groff C (2012) Bear—Italy. In: Kaczensky P, Chapron G, Arx M von, Huber D, Andrén H, Linnell J (eds) Status, management and distribution of large carnivores—bear, lynx, wolf and wolverine in Europe, Vol 1 & 2. Report to the EU Commission. http://ec.­europa.­eu/environment/nature/conservation/species/carnivores/ pdf/task_1_part2_species_country_reports.­p df. Accessed 9 Aug 2018 Cizek O, Zamecnik J, Tropek R, Kocarek P, Konvicka M (2012) Diversification of mowing regime increases arthropods diversity in species-poor cultural hay meadows. J Insect Conserv 16: 215–226 Cizmas L, Sharma VK, Gray CM, McDonald TJ (2015) Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk. Environ Chem Lett 13(4):381–394 Claessens H, Oosterbaan A, Savill P, Rondeux J (2010) A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry 83(2):163–175 Clair TA, Hindar A (2005) Liming for the mitigation of acid rain effects in freshwaters: a review of recent results. Environ Rev 13:91–128 Clark J (1996) How wide is deep ecology? Inquiry 39(2):189–201 Clark MR, Kozar JS (2011) Comparing sustainable forest management certifications standards: a meta-analysis. Ecol Soc 16(1):3 Clark NE, Lowell R, Wheeler BW, Higgins SL, Depledge MH, Norris K (2014) Biodiversity, cultural pathways, and human health. Trends Ecol Evol 29:198–204

591 References

Clark KH, Nicholas KA (2013) Introducing urban food forestry: a multifunctional approach to increase food security and provide ecosystem services. Landsc Ecol 28(9):1649–1669 Clarke RT, Wright JF, Furse MT (2003) RIVPACS models for predicting the expected macroinvertebrate fauna and assessing the ecological quality of rivers. Ecol Model 160:219–233 Claßen T, Hornberg C (2014) Urbane Grünräume (Stadtgrün) und Gewässer (Stadtblau)—Ressourcen einer gesundheitsförderlichen Stadtentwicklung?! IPP Info 12:8–9 Clausnitzer HJ, Clausnitzer C (1984) Erste Ergebnisse einer Wiederansiedlung des Laubfrosches Hyla arborea (L.) im Landkreis Celle (Niedersachsen). Salamandra 20(1):50–55 Clausnitzer HJ, Bühring E, Langbehn H, Ortmann M, Rufert G, Thiess A (2004) Die Entwicklung des Naturschutzgroßprojekts “Meißendorfer Teiche/ Bannetzer Moor” (Landkreis Celle, Niedersachsen) seit 1979. Nat Landsch 79(6):249–256 Clauss MJ, Venable DL (2000) Seed germination in desert annuals: an empirical test of adaptive bet hedging. Am Nat 155(2):168–186 Clawson M (1959) Methods of measuring the demand for and the value of outdoor recreation. Resources for the Future. Reprint 10, Washington, DC Clewell A (2009) Intent of ecological restoration, its circumscription, and its standards. Ecol Rest 27(1):5–7 Clewell A, Aronson J (2013) Ecological restoration. Principles, values, and structure of an emerging profession, 2nd edn. Island Press, Washington, DC Clewell A, Aronson J, Winterhalder K (2002) The SER primer on ecological restoration. Society for Ecological Restoration Science & Policy Working Group. www.­ser.­org/. Accessed 2 July 2017 Clewell A, Rieger J, Munro J (2005) Guidelines for developing and managing ecological restoration projects, 2nd ed. Society for Ecological Restoration International (SER), Tucson. http://c.­y mcdn.­c om/sites/www.­s er.­o rg/resource/ resmgr/custompages/publications/ser_publicat i o n s / D ev _ a n d _ M n g _ E c o _ Re s t _ P ro j .­p d f. Accessed 28 May 2017 Clingerman F, Dixon MH (2013) Placing nature on the borders of religion, philosophy and ethics. Ashgate, Farnham Closs GP, Krkosek M, Olden JD (eds) (2015) Conservation of freshwater fishes, Conservation biology series, vol 20. Cambridge University Press, Cambridge Clymo RS (1970) The growth of Sphagnum: methods of measurement. J Ecol 58(1):13–49 Clymo RS, Hayward PM (1982) The ecology of Sphagnum. In: Smith AJE (ed) Bryophyte ecology. Springer, Dordrecht

Coch T (1994) Waldrandpflege. Grundlagen und Konzepte, Stuttgart Coch T (2003) Strukturelle Klassifikation der Niederwälder im zentralen Kaiserstuhl als Grundlage von Pflege- und Entwicklungskonzepten. Mitt Bad. Landesver Natkde Natschutz NF 18(2):97– 117 Cochrane SKJ, Connor DW, Nilsson P, Mitchell I, Reker J, Franco J, Valavanis V, Moncheva S, Ekebom J, Nygaard K, Serrao Santos R, Naberhaus I, Packeiser T, van de Bund W, Cardoso AC, Zampoukas N (2010) Marine Strategy Framework Directive—Task Group 1, report biological diversity. EUR—Scientific and Technical Research series EUR 24337 EN.  Office for Official Publications of the European Communities, Luxembourg Cohen D (1967) Optimizing reproduction in a randomly varying environment when a correlation may exist between the conditions at the time a choice has to be made and the subsequent outcome. J Theor Biol 16(1):1–14 Coillte (2006) Blanket bog restoration in Ireland. Coillte Teoranta, the Irish Forestry Board. http:// www.­i rishbogrestorationproject.­i e/index.­h tml. Accessed 18 May 2017 Colditz G (2013) Auen, Moore, Feuchtwiesen: Gefährdung und Schutz von Feuchtgebieten. Springer, Stuttgart Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into terrestrial carbon budget. Ecosystems 10:171–184 Coley RL, Sullivan WC, Kuo FE (1997) Where does community grow? The social context created by nature in urban public housing. Environ Behav 29:468–494 Comín FA (2010) Ecological restoration: a global challenge. Cambridge University Press, Cambridge Common M (2005) Ecological economics: an introduction. Cambridge University Press, Cambridge Conedera M, Krebs P, Tinner W, Pradella M, Torriani D (2004a) The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale. Veg Hist Archaeobot 13:161–179 Conedera M, Manetti MC, Giudici F, Amorini E (2004b) Distribution and economic potential of the Sweet chestnut (Castanea sativa Mill.) in Europe. Ecol Mediterr 30(2):179–193 Conley DJ (2012) Save the Baltic Sea. Nature 486: 463–464 Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

592

References

Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community. Stability and organization. Am Nat 111:1119–1144 Connelly NA, O’Neill CR, Knuth BA, Brown TL (2007) Economic impacts of zebra mussels on drinking water treatment and electric power generation facilities. Environ Manag 40:105–112 Connif R (2014) Rebuilding the natural world: a shift in ecological restoration. Yale Environmental 360. http://e360.­yale.­edu/features/rebuilding_the_natural_world_a_shift_in_ecological_restoration. Accessed 8 June 2017 Conrad MK, Tischew S (2011) Grassland restoration in practice: do we achieve the targets? A case study from Saxony-Anhalt/Germany. Ecol Eng 37(8):1149–1157 Conway TM, Jalali MA (2017) Representation of local urban forestry issues in Canadian newspapers: impacts of a major ice storm. Can Geogr 61(2):253–265 Conway TM, Yip V (2016) Assessing residents’ reactions to urban forest disservices: a case study of a major storm event. Landscape Urban Plan 153:1– 10 Cooke GD (1999) Ecosystem rehabilitation. J Lake Reserv Manage 15(1):1–4 Cooke GD, Welch EB, Peterson SA (1986) Lake and reservoir restoration. Butterworth-­ Heinemann, Oxford Cooke GD, Welch EB, Peterson S, Nichols SA (2005) Restoration and management of lakes and reservoirs, 3rd edn. Taylor & Francis, London Cooper MDA, Evans CD, Zieliński P, Levy PE, Gray A, Peacock M, Norris D, Fenner N, Freeman C (2014) Infilled ditches are hotspots of landscape methane flux following peatland re-wetting. Ecosystems 17(7):1227–1241 Coops H (2002) Ecology of Charyophytes: an introduction. Aquat Bot 72:205–208 Corbin JD, D’Antonio CM (2004) Can carbon addition increase competitiveness of native grasses? A case study from California. Restor Ecol 12(1):36– 43 Cordes EE, Jones DOB, Schlacher TA, Amon DJ, Bernardino AF, Brooke S, Carney R, DeLeo DM, Dunlop KM, Escobar-Briones EG, Gates AR, Génio L, Gobin J, Henry LA, Herrera S, Hoyt S, Joye M, Kark S, Mestre NC, Metaxas A, Pfeifer S, Sink K, Sweetman AK, Witte U (2016) Environmental impacts of the deep-water oil and gas industry: a review to guide management strategies. Front Environ Sci 4:1–26 Cornish PS, Burgin S (2005) Residual effects of Glyphosate herbicide in ecological restoration. Restor Ecol 13(4):695–702

Correl DL (2005) Principles of planning and establishment of buffer zones. Ecol Eng 24:433–439 Corse E, Costedoat C, Chappaz R, Pech N, Martin JF, Gilles A (2010) A PCR-based method for diet analysis in freshwater organisms using 18S rDNA barcoding on faeces. Mol Ecol Res 10:96–108 Costanza R, Daly HE (1992) Natural capital and sustainable development. Conserv Biol 6(1):37–46 Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:255 Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson S, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Global Environ Change 26:152–158 Cosyns E, Claerbout S, Lamoot I, Hoffmann M (2005) Endozoochorous seed dispersal by cattle and horse in a spatially heterogeneous landscape. Plant Ecol 178:149–162 Cotana F, Cavalaglio G, Pisello AL, Gelosia M, Ingles D, Pompili E (2015) Sustainable ethanol production from common reed (Phragmites australis) through simultaneuos saccharification and fermentation. Sustainability 7:12149–12163 Cottam G (1987) Community dynamics on an artificial prairie. In: Jordan WR III, Gilpin ME, Aber JD (eds) Restoration ecology: a synthetic approach to ecological research. Cambridge University Press, New York, pp 257–270 Coulon JB, Delacroix-Buchet A, Martin B, Pirisi A (2004) Relationships between ruminant management and sensory characteristics of cheeses: a review. Lait 84:221–241 Couwenberg J, De Klerk P, Endtmann E, Joosten H, Michaelis D (2001) Hydrogenetische Moortypen in der Zeit—eine Zusammenschau. In: Succow M, Joosten H (eds) Landschaftsökologische Moorkunde. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 399–403 Couwenberg J, Joosten H (1999) Pools as missing links: the role of nothing in the being of mires. In: Standen V, Tallis J, Meade R (eds) Patterned mires and mire pools—origin and development; flora and fauna. British Ecological Society, Durham, pp 87–102 Couwenberg J, Joosten H (2001) Bilanzen zum Moorverlust: Das Beispiel Deutschland. In: Succow M, Joosten H (eds) Landschaftsökologische Moorkunde. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 409–411 Covington W, Niering WA, Starkey E, Walker J (1999) Ecosystem restoration and management: scientific principles and concepts. In: Johnson NC, Malk AJ, Sexton WT, Szaro R (eds) Ecological steward-

593 References

ship: a common reference for ecosystem management. Elsevier, Oxford, pp 599–617 Cowell M (1993) Ecological restoration and environmental ethics. Environ Ethics 15:19–32 COWI (2007) Economic analysis of the BSAP with focus on eutrophication. Final report. HELCOM und NEFCO Craft C (2015) Creating and restoring wetlands: from theory to practice. Elsevier, New York Craft CB, Reader J, Sacco JN, Broome SW (1999) Twenty-five years of ecosystem development of constructed Spartina alterniflora (Loisel) marshes. Ecol Appl 9:1405–1419 Craft CB, Betram J, Broome S (2008) Coastal zone restoration. In: Jørgensen SE (ed) Applications in ecological engineering. Academic, New  York, pp 59–66 Cramer VA, Hobbs RJ, Standish RJ (2007) What’s new about old fields? Land abandonment and ecosystem assembly. Trends Ecol Evol 23(2):104– 112 Cramp S (ed) (1977) Handbook of the birds of Europe the Middle East and North Africa, Ostrich to Ducks, vol 1. Oxford University Press, Oxford Cramp S, Simmons KEL (1980) The birds of the Western Palearctic, vol 2. Oxford University Press, Oxford Crave M-F (1990) Une essence pleine de ressources: l’aulne glutineux. Forêt Entreprise 69:20–28 Crawford SA (1979) Farm pond restoration using Chara vulgaris vegetation. Hydrobiologia 62: 17–32 CRED (2009) EM-DAT—The International Disaster Database. Centre for Research on the Epidemiology of Disasters (CRED). http://www.­emdat.­be/ database. Accessed 20 Feb 2018 Cris R, Buckmaster S, Bain C, Reed M (eds) (2014) Global peatland restoration demonstrating success. IUCN UK, National Committee Peatland Programme, Edinburgh. http://www.­iucnukpeatlandprogramme.­org. Accessed 14 Jan 2017 Cristofoli S, Monty A, Mahy G (2010) Historical landscape structure affects plant species richness in wet heathlands with complex landscape dynamics. Landscape Urban Plan 98:92–98 Critchley AT (1983) Sargassum muticum: a taxonomic history including world-wide and western Pacific distributions. J Mar Biol Assoc UK 63: 617–625 Cronin G, Lewis WM, Schiehser MA (2006) Influence of freshwater macrophytes on the littoral ecosystem structure and function of a young Colorado reservoir. Aquat Bot 85:37–43 Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12:316–329

Crosby BL (1991) Stakeholder analysis: a vital tool for strategic managers. USAID’s implementing policy change project. Techn Not 2:1–6 Crossman ND, Bryan BA (2009) Identifying costeffective hotspots for restoring natural capital and enhancing landscape multi-functionality. Ecol Econ 68:654–668 Crowther A (2007) The restoration of intertidal habitats for nonbreeding waterbirds through breached managed realignment. PhD thesis, University of ­ Stirling. www.­storre.­stir.­ac.­uk/bitstream/1893/334/1/ Thesis.­pdf. Accessed 6 Feb 2017 Crumley CL, van Deventer AE, Fletcher JJ (eds) (2001) New directions in anthropology and environment: intersections, 3rd edn. Lanham, AltaMira Press Crutzen PJ, Schwägerl C (2011) Living in the Anthropocene: toward a new global ethos. New Haven, Yale School of Forestry & Environmental Studies, Yale University Csencsics D, Galeuchet D, Keel A, Lambelet C, Müller N, Werner P, Holderegger R (2008) Der Kleine Rohrkolben. Bedrohter Bewohner eines seltenen Lebensraumes. Merkbl Prax 43:1–8 Cucherousset J, Olden JD (2011) Ecological impacts of non-native freshwater fishes. Fisheries 36: 215–230 Cuerrier A, Turner NJ, Gomes TC, Garibaldi A, Downing A (2015) Cultural keystone places: conservation and restoration in cultural landscapes. J Ethnobiol 35(3):427–448 Cullen P, Forsberg C (1988) Experience with reducing point source of phosphorus to lakes. Hydrobiologia 170:321–336 Culloty SC, Mulcahy MF (2007) Bonamia ostreae in the native oyster Ostrea edulis—a review. Mar Environ Health Ser 29:1–40 Currie B, Milton SJ, Steenkamp JC (2009) Cost-benefit analysis of alien vegetation clearing for water yield and tourism in a mountain catchment in the Western Cape of South Africa. Ecol Econ 68:2574–2579 Cushing CE, Olive JR (1957) Effects of toxaphene and rotenone upon the macroscopic bottom fauna of two northern Colorado reservoirs. Trans Am Fish Soc 86:294–301 CWSS (2013) Common Wadden Sea Secretariat. http://www.­waddensea-secretariat.­org/. Accessed 10 Feb 2017 Cylwik E, Lajter W, Müller-Albinsky M (2010) Altlastenerkundungs- und -sanierungsmarkt in Mittelund Osteuropa—Akteursanalyse für Polen. Fraunhofer-Zentrum für Mittel- und Osteuropa (MOEZ), Leipzig. https://www.­ufz.­de/export/ data/38/34547_10_04_09_Akteursanalyse_PL.­ pdf. Accessed 8 Jun 2017

594

References

D’Antonio C, Meyerson LA (2002) Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restor Ecol 10(4):703–713 D’Antonio CM, Dudley TL, Mack MC (1999) Disturbance and biological invasions: direct effects and feedbacks. In: Walker L (ed) Ecosystems of disturbed ground. Elsevier, Amsterdam, pp 413–452 D’Odorico P, Bhattachan A, Davis KF, Ravi S, Runyan CW (2013) Global desertification: drivers and feedbacks. Adv Water Res 51:326–344 Dadea C, Russo A, Tagliavini M, Mimmo T, Zerbe S (2017) Tree species as tools for biomonitoring and phytoremediation in urban environments: a review with special regard to heavy metals. Arboriculture & Urban For 43(4):155–167 Dageförde A (1998) Vegetationsentwicklung nach Waldbodenauftrag im Tagebau Reichwalde. In: Bungart R, Hüttl RF (eds) Landnutzung auf Kippenflächen, Cottbuser Schriften zu Bodenschutz und Rekultivierung, vol 2. Brandenburgische Technische Universität Cottbus, Cottbus, pp 141–152 Dageförde A, Wüstrich D, Klem D, Kolk A (1998) Biologische Melioration mit Waldboden—eine Sondermaßnahme zur Rekultivierung im Tagebau Reichwalde. In: Bungart R, Hüttl RF (eds) Landnutzung auf Kippenflächen, Cottbuser Schriften zu Bodenschutz und Rekultivierung, vol 2. Brandenburgische Technische Universität Cottbus, Cottbus, pp 125–136 Dahl A, Strandhede S-O, Wihl J-A (1999) Ragweed— an allergy risk in Sweden? Allergologia 15:293–297 Dahl E, Lindahl O, Paasche E, Throndsen J (1989) The Chrysochromulina polylepis bloom in Scandinavian waters during spring 1988. In: Cosper EM, Bricelj VM, Carpenter EJ (eds) Novel phytoplankton blooms, Coastal and estuarine studies, vol 35. Springer, Berlin, pp 383–405 Dahlem R (2001) Vermarktungsaktivitäten und Sortenerhaltungskonzepte in Deutschland—ein Überblick. In: Holler C, Spornberger A (eds) Beiträge zum Streuobstanbau in Europa. Stand, Entwicklungen und Probleme. Tagber UBA 28:41–45 Dahlgren JP, Ehrlén J (2005) Distribution patterns of vascular plants in lakes—the role of metapopulation dynamics. Ecography 28:49–58 Daily GC (1995) Restoring value to the world’s degraded lands. Science 269:350–355 Daily GC, Matson PA, Vitousek PM (1997) Ecosystem services supplied by soil. In: Daily GC (ed) Nature services: societal dependence on natural ecosystems. Island Press, Washington, DC, pp 113–132 Daley TJ, Barber KE (2012) Multi-proxy Holocene palaeoclimate records from Walton Moss, northern England and Dosenmoor, northern Germany, assessed using three statistical approaches. Quater Int 268:111–127

Daly HE (1997) Beyond growth: the economics of sustainable development. Beacon, Boston Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8(5): 1402–1419 Damm C (2013a) Ecological restoration and dike relocation on the river Elbe, Germany. Sci Ann Danube Delta Inst 19:79–86 Damm C (2013b) Deichrückverlegung Lenzen-Wustrow—Geschichte und Umsetzung im Rahmen eines Naturschutzgroßprojektes. BAW-Mitt 97:23–36 Damm C, Dister E, Fahlke N, Follner K, König F, Korte E, Lehmann B, Müller K, Schuler J, Weber A, Wotke A (2012) Auenschutz—Hochwasserschutz—Wasserkraftnutzung. Beispiele für eine ökologisch vorbildliche Praxis. Natschutz Biol Vielfalt 112:1–321 Damos P, Escudero Colomar LA, Ioriatti C (2015) Integrated fruit production and pest management in Europe: the apple case study and how far we are from the original concept? Insects 6:626–657 Danihelka J, Petřík P, Wild J (2009) Flora database of the Czech Republic. http://florabase.­cz. Accessed 28 May 2017 Danish Ministry of the Environment and Energy (2007) The Skjern River restoration project. National Forest and Nature Agency. http://www.­ sns.­d k/natur/netpub/skjernaa/foldereng.­h tm. Accessed 4 Jun 2008 Darby S, Sear D (eds) (2008) River restoration: managing the uncertainty in restoring physical habitat. Wiley, Chichester Daschkeit A, Schröder W (2013) Umweltforschung quergedacht: perspektiven integrativer Umweltforschung und -lehre. Springer, Heidelberg Dauber J, Biesmeijer JC, Gabriel D, Kunin WE, Lamborn E, Meyer B, Nielsen A, Potts SG, Roberts SPM, Sõber V, Settele J, Steffan-Dewenter I, Stout JC, Teder T, Tscheulin T, Vivarelli D, Petanidou T (2010) Effects of patch size and density on flower visitation and seed set of wild plants: a pan-European approach. J Ecol 98:188–196 Dausse A, Bonis A, Bouzillé J-B, Lefeuvre J-C (2008) Seed dispersal in a polder after partial tidal restoration: implications for salt-marsh restoration. Appl Veg Sci 11(1):3–12 Dausse A, Mérot P, Bouzillé JP, Bonis A, Lefeuvre JC (2005) Variability of nutrient and particulate matter fluxes between the sea and a polder after partial tidal restoration, Northwestern France. Estuar Coast Shelf Sci 64:295–306 Davidson C, Shaffer HB, Jennings MR (2001) Declines of the California red-legged frog: climate, UV-B, habitat, and pesticides hypotheses. Ecol Appl 11:464–479

595 References

Davidson NC (2014) How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshw Res 65(10):934–941 Davidson NC, Laffoley DA, Doody JP, Way LS, Gordon J, Key R, Drake CM, Pienkowski MW, Mitchell RM, Duff KL (1991) Nature conservation and estuaries in Great Britain. Nature Conservancy Council, Peterborough Davies GM, Gray A, Hamilton A, Legg CJ (2008) The future of fi re management in the British uplands. Int J Biodivers Sci Manage 4:127–147 Davis MA, Slobodkin LB (2004) The science and values of restoration ecology. Restor Ecol 12:1–3 Davis MA, Chew MK, Hobbs RJ, Lugo AE, Ewel JJ, Vermeij GJ, Brown JH, Rosenzweig ML, Gardener MR, Carroll SP, Thompson K, Pickett ST, Stromberg JC, Del Tredici P, Suding KN, Ehrenfeld JG, Grime JP, Mascaro J, Briggs JC (2011) Don’t judge species on their origins. Nature 474(7350):153–154 Davy AJ (2002) Establishment and manipulation of plant populations and communities in terrestrial systems. In: Perrow MR, Davy AJ (eds) Handbook of ecological restoration, Principles of restoration, vol 1. Cambridge University Press, Cambridge, pp 223–241 Dawson D (1994) Are habitat corridors conduits for animals and plants in fragmented landscapes? Eng Nat Res Rep 94:1–89 Day RT, Keddy PA, McNeill J, Carleton T (1988) Fertility and disturbance gradients: a summary model for riverine marsh vegetation. Ecology 69:1044–1054 De Boer WM (1995) Äolische Prozesse und Landschaftsformen im mittleren Baruther Urstromtal seit dem Hochglazial der Weichselkaltzeit. Berlin Geogr Arb 84:1–215 De Bonte AJ, Boosten A, van der Hagen HGJM, Sykora KV (1999) Vegetation development influenced by grazing in the coastal dunes near The Hague, the Netherlands. J Coast Conserv 5: 59–68 De Booysen PV, Tainton NM (eds) (1984) Ecological effects of fire in South African ecosystems. Ecol Stud 48:1–428 De Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, de Ruiter PC, Verhoef HA, Bezemer TM, van der Putten WH (2003) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713 Groot RS de, Wilson MA, Boumans RMJ (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41(3):393–408 Grooth D et al (2012) Global estimates of the value of ecosystems and their services in monetary units. Ecosyst Serv 1(1):50–61

De Jong Y, Verbeek M, Michelsen V, de Place BP, Los W, Steeman F, Bailly N, Basire C, Chylarecki P, Stloukal E, Hagedorn G, Tobias Wetzel F, Glöckler F, Kroupa A, Korb G, Hoffmann A, Häuser C, Kohlbecker A, Müller A, Güntsch A, Stoev P, Penev L (2014) Fauna Europaea—all European animal species on the web. Biodivers Data J 2:e4034 De Jonge VN, van den Bergs J, de Jong DJ (1996) Reintroduction of eelgrass (Zostera marina) in the Dutch Wadden Sea: review of research and suggestions for management measures. J Coast Conserv 2:149–158 De Jonge VN, de Jong DJ, van Katwijk MM (2000) Policy plans and management measures to restore eelgrass (Zostera marina L.) in the Dutch Wadden Sea. Helgol Mar Res 54:151–158 De Roman M, Claveria V, De Miguel AM (2005) A revision of the descriptions of ectomycorrhizas published since 1961. Mycol Res 109(10):1063– 1104 De Smidt JT (1966) The inland-heath communities of the Netherlands. Wentia 15:142–166 De Smidt JT (1979) Origin and destruction of Northwest European heath vegetation. In: Wilmans O, Tüxen R (eds) Werden and Vergehen von Pflanzengesellschaften. Cramer, Vaduz, pp 411–435 De Valck J, Vlaeminck P, Broekx S, Liekens I, Aertsens J, Chen W, Vranken L (2014) Benefits of clearing forest plantations to restore nature? Evidence from a discrete choice experiment in Flanders, Belgium. Landscape Urban Plan 125:65–75 De Visser S, Thébault E, de Ruiter PC (2013) Ecosystem engineers, keystone species. In: Leemans R (ed) Selected entries from the encyclopedia of sustainability science and technology. Springer, New York, pp 59–68 De Vries HH, den Boer PJ, van Dijk TS (1996) Ground beetle species in heathland fragments in relation to survival, dispersal, and habitat preference. Oecologia 107:332–342 De Vries W, Vel E, Reinds GJ, Deelstra H, Klap JM, Leeters EEJM, Hendriks CMA, Kerkvoorden M, Landmann G, Herkendell J, Haussmann T, Erisman JW (2003) Intensive monitoring of forest ecosystems in Europe: 1. Objectives, set-up and evaluation strategy. For Ecol Manag 174(1–3):77–95 De Vries W, Reinds GJ, Gundersen P, Sterba H (2006) The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Glob Chang Biol 12:1151–1173 De Vries W, Solberg S, Dobbertin M, Sterba H, Laubhann D, van Oijen M, Evans C, Gundersen P, Kros J, Wamelink GWW, Reinds GJ, Sutton MA (2009) The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. For Ecol Manag 258:1814–1823

596

References

De Vries W, Hettelingh JP, Posch M (eds) (2015) Critical loads and dynamic risk assessments: nitrogen, acidity and metals in terrestrial and aquatic ecosystems. Springer, Amsterdam De Zeeuw H, Drechsel P (eds) (2015) Cities and agriculture: developing resilient urban food systems. Routledge, New York Del Carmen S-RM, Santa-Regina I (2013) Restoration and ecosystem consequences of changing biodiversity. Lambert Academic, Riga Del Moral R, Walker LR, Bakker JP (2007) Insights gained from succession for the restoration of landscape structure and function. In: Walker LR, Walker J, Hobbs RJ (eds) Linking restoration and ecological succession, Springer series on environmental management. Springer, New  York, pp 19–44 Den Boer PJ, van Dijk TS (1994) Carabid beetles in a changing environment. Wageningen Agric Univ Pap 94(6):1–30 Dean RG (2003) Beach nourishment: theory and practice. Adv Ser Ocean Eng 18:1–420 Dean WE, Gorham E (1998) Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26(6):535–538 Dearborn DC, Kark S (2010) Motivations for conserving urban biodiversity. Conserv Biol 24(2):432–440 Decleer K, Bonte D, van Diggelen R (2013) The hemiparasite Pedicularis palustris: ‘Ecosystem engineer’ for fen-meadow restoration. J Nat Conserv 21:65–71 Decocq G, Aubert M, Dupont F, Alard D, Saguez R, Wattez-Franger A, De Foucault B, Delelis-­ Dusollier A, Bardat J (2004) Plant diversity in a managed temperate deciduous forest: understorey response to two silvicultural systems. J Appl Ecol 41:1065–1079 Degenbeck M (2003) Zur Situation der Streuobstbestände in Bayern. Schrreihe Bayer Landesanst Landwirtsch 1(6):12–24 Degerman E, Hammar J, Nyberg P, Svärdson G (2001) Human impact on the fish diversity in the four largest lakes of Sweden. Ambio 30(8):522– 528 DEGES (2010) B96n: Flutungsbeginn zur Renaturierung der Mellnitz-Üselitzer Wiek. Deutsche Einheit Fernstraßenplanungs- und -bau GmbH. http://www.­deges.­de/. Accessed 10 Feb 2017 DEGES (2011) Fernstraßenbau und Umwelt. Sonderpublikation der DEGES. Deutsche Einheit Fernstraßenplanungs- und -bau GmbH. http:// www.­d eges.­d e/Ueber-DEGES/Publikationen/ DEGES-Publikationen-K113.­htm. Accessed 18 May 2017 DeLaCruz A (1987) The production of pulp from marsh grass. Econ Bot 32:46–50

Delafontaine MT, Flemming BW, Mai S (2000) The Wadden Sea squeeze as a cause of decreasing sedimentary organic loading. In: Flemming BW, Delafontaine MT, Liebezeit G (eds) Muddy coats dynamics and resource management, Proceedings in marine science, vol 2. Elsevier, New  York, pp 273–286 Delarze R, Eggenberg S, Steiger P, Bergamini A, Fivaz F, Gonseth Y, Guntern J, Hofer G, Sager L, Stucki P (2016) Rote Liste der Lebensräume der Schweiz. Bundesamtes für Umwelt (BAFU), Bern. http:// w w w.­u n i n e.­c h / f i l e s / l i v e / s i t e s / c s c f / f i l e s / Actualit%C3%A9s/Rote_Liste_Lebensraeume.­ pdf. Accessed 5 July 2017 DeMelo R, France R, McQueen DJ (1992) Biomanipulation: hit or myth? Limnol Oceanogr 37:192–207 Demko D, Elger BS, Jung C, Pfleiderer G (eds) (2016) Umweltethik interdisziplinär. Perspekt Ethik 8: 1–227 Deneke R (2000) Review of rotifers and crustaceans in highly acidic environments of pH values ≤ 3. Hydrobiologia 433:167–172 Dengler J (1994) Flora und Vegetation von Trockenrasen und verwandten Gesellschaften im Biosphärenreservat Schorfheide-Chorin. Gleditschia 22:179–321 Dengler J (2004) Klasse: Koelerio-Corynephoretea Klika in Klika & V. Novák 1941—Sandtrockenrasen und Felsgrusfluren von der submeridionalen bis zur borealen Zone. In: Berg C, Dengler J, Abdank A, Isermann M (eds) Die Pflanzengesellschaften Mecklenburg-Vorpommerns und ihre Gefährdung. Textband. Weissdorn, Jena, pp 301–326 Dengler J (2005) Zwischen Estland und Portugal— Gemeinsamkeiten und Unterschiede in den Phytodiversitätsmustern europäischer Trockenrasen. Tuexenia 25:387–405 Dengler J, Jansen F, Glöckler F, Peet RK, De Cáceres M, Chytrý M, Ewald J, Oldeland J, Lopez-­ Gonzalez G, Finckh M, Mucina L, Rodwell JS, Schaminée JHJ, Spencer N (2011) The Global Index of Vegetation Plot Databases (GIVD): a new resource for vegetation science. J Veg Sci 22:582–597 Dengler J, Oldeland J, Jansen F, Chytrý M, Ewald J, Finckh M, Glöckler F, Lopez-Gonzalez G, Peet RK, Schaminée JHJ (eds) (2012) Vegetation databases for the 21st century. Biodivers Ecol 4:1–447 Dennis P, Young MR, Bentley C (2001) The effects of varied grazing management on epigeal spiders, harvestmen and pseudoscorpions of Nardus stricta grassland in upland Scotland. Agric Ecosyst Environ 86:39–57 Denslagen W (2009) Romantic modernism. Nostalgia in the world of conservation. Amsterdam University Press, Amsterdam

597 References

Depenheuer O, Möhring B (2010) Waldeigentum: Dimensionen und Perspektiven. Springer, Heidelberg Depledge MH, Bird WJ (2009) The Blue Gym: health and wellbeing from our coasts. Mar Pollut Bull 58:947–948 Derhé MA, Murphy H, Monteith G, Menéndez R (2016) Measuring the success of reforestation for restoring biodiversity and ecosystem functioning. J Appl Ecol 53:1714–1724 Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44(9):842–852 Derraik JG (2007) Heracleum mantegazzianum and Toxicodendron succedaneum: plants of human health significance in New Zealand and the National Pest Plant Accord. N Z Med J 120:U2657 Desaigues B, Ami D (1999) An estimation of the social benefits of preserving biodiversity. Int J Environ Pollut 12:400–413 Descola P (2013) Beyond nature and culture. University of Chicago Press, Chicago Descroix L, Mathys N (2003) Processes, spatio-temporal factors and measurements of current erosion in the French Southern Alps: a review. Earth Surf Proc Land 28(9):993–1011 DesJardins J (2005) Environmental ethics: an introduction to environmental philosophy, 4th edn. Wadsworth Publishing, Belmont Desvousges WH, Gard N, Michael HJ, Chance AD (2018) Habitat and resource equivalency analysis: a critical assessment. Ecol Econ 143:74–89 Dettmann C, Zerbe S (2000) Zur Effizienz des Flächenschutzes am Beispiel ausgewählter brandenburgischer Naturschutzgebiete. Natschutz Landschpfl Brandenburg 9:140–146 Dettmer J, Ganser K (eds) (1999) IndustrieNatur. Ökologie und Gartenkunst im Emscher Park. Ulmer, Stuttgart Deutscher Rat für Landespflege (1993) Truppenübungsplätze und Naturschutz. Schrreihe Deut Rat Landespfl 62:1–94 Devall B (1980) The deep ecology movement. Nat Res J 20:299–322 Devall B (1991) Deep ecology and radical environmentalism. Soc Nat Res 4(3):247–258 Devall B, Sessions G (1985) Deep ecology: living as if nature mattered, 8th edn. Gibbs M. Smith, Layton Devarajan N, Laffite A, Graham ND, Meijer M, Prabakar K, Mubedi JI, Elongo V, Mpiana PT, Ibelings BW, Wildi W, Poté J (2015) Accumulation of clinically relevant antibiotic-­resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe. Environ Sci Technol 49(11):6528–6537 Devillers J (2002) Acute toxicity of pesticides to honey bees. In: Devillers J, Pham-Delègue MH (eds)

Honey bees: estimating the environmental impact of chemicals. Taylor & Francis, London, pp 56–66 DeWitt CB (2016) Four commentaries on the pope’s message on climate change and income inequality. III.  Earth stewardship and Laudato si’. Q Rev Biol 91(3):271–284 Dezhou H (1991) Dendrolimiasis: an analysis of 58 cases. J Trop Med Hyg 94:79–87 Dezi S, Medlyn BE, Tonon G, Magnani F (2010) The effect of nitrogen deposition on forest carbon sequestration: a model-based analysis. Glob Chang Biol 16:1470–1486 Di Filippo A, Biondi F, Čufar K, de Luis M, Grabner M, Maugeri M, Presutti Saba E, Schirone B, Piovesan G (2007) Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a treering network. J Biogeogr 34:1873–1892 Di Iacovo F, O’Connor D (2009) Supporting policies for Social Farming in Europe. Progressing multifunctionality in responsive rural areas. Agenzia Regionale per lo Sviluppo e l’Innovazione nel settore Agricolo-forestale, Florenz. http://www.­ umb.­n o/statisk/greencare/sofarbookpart1.­p df. Accessed 3 Jan 2018 Diaci J (ed) (2006) Nature-based forestry in Central Europe. Alternatives to industrial forestry and strict preservation. Stud For Slovenica 126:1–178 Diamond J (2011) Collapse: how societies choose to fail or survive, 2nd edn. Penguin, London Diaz A, Green I, Tibett M (2008) Re-creation of heathland on improved pasture using topsoil removal and sulphur amendments: Edaphic drivers and impacts on ericoid mycorrhizas. Biol Conserv 141:1628–1635 Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929 Dicks LV, Ashpole JE, Dänhardt J (2014) Farmland conservation: evidence for the effects of interventions in northern and western Europe. Pelagic Publishing, Exeter Diekmann M (1995) Use and improvement of Ellenberg’s indicator values in deciduous forests of the boreo-nemoral zone in Sweden. Ecography 18:178–189 Diekmann M (2003) Species indicator values as an important tool in applied plant ecology—a review. Basic Appl Ecol 4:493–506 Diekmann R (2002) Renaturierung von Rückstandshalden der Kaliindustrie. Kali Steinsalz 3:32–41 Diemont WH (1994) Effects of removal of organic matter on the productivity of heathlands. J Veg Sci 5:409–414 Diepenbrock W, Ellmer F, Léon J (2012) Ackerbau, Pflanzenbau und Pflanzenzüchtung: Grundwissen Bachelor, 3rd edn. Ulmer, Stuttgart

598

References

Dierschke H (1994) Pflanzensoziologie—Grundlagen und Methoden. Ulmer, Stuttgart Dierschke H, Briemle G (2002) Kulturgrasland. Wiesen, Weiden und verwandte Staudenfluren. Ulmer, Stuttgart Dierßen K (1983) Rote Liste der Pflanzengesellschaften Schleswig Holsteins. Schriftenr Landesamtes Natursch Landschaftspfl Schleswig-Holstein 6:1–159 Dierßen K (1990) Einführung in die Pflanzensoziologie. Wissenschaftliche Buchgesellschaft, Darmstadt Dierßen K, Dierßen B (2001) Moore. Ulmer, Stuttgart Dierßen K, Trepel M (2004) Feuchtgebiete und Moore. In: Steinberg C, Calmano W, Klapper H, Wilken RD (eds) Handbuch Angewandte Limnologie 18. ecomed, Landsberg, pp 3–31 Dieterich H (1965) Veränderungen in der Waldbodenvegetation durch Düngungsmaßnahmen. Mit Ver Forstl Standortskde Forstpflanzenz 15:44–46 Dietrich O, Blankenburg J, Dannowski R, Hennings HH (2001) Vernässungsstrategien für verschiedene Standortverhältnisse. In: Kratz R, Pfadenhauer J (eds) Ökosystemmanagement für Niedermoore, Strategien und Verfahren zur Renaturierung. Ulmer, Stuttgart, pp 53–73 Dijkema KS, Beeftink WJ, Doody JP, Gehu JM, Hydemann B, Rivas-Martinez S (1984) Saltmarshes in Europe. Nat Environ Ser 30:1–180 Dijkema KS, Bossinade JH, Bouwsema P, de Glopper JR (1990) Salt marshes in the Netherlands Wadden sea: rising high tide levels and accretation enhancement. In: Beukema JJ, Wolff WJ, Brouns JJWM (eds) Expected effects of climatic change on marine Costal ecosystems. Kluwer, Dordrecht, pp 173–188 Dijkstra EF, van Mourik JM (1996) Reconstruction of recent forest dynamics based on pollen analysis and micromorphological studies of young acid forest soils under Scots pine plantations. Acta Bot Neerl 45(3):393–410 Dilla L (1973) Einst Bagger jetzt Wälder—Rekultivierung des rheinischen Braunkohlenreviers. Umschau 73(7):207–210 Dilla L (1983) Die forstliche Rekultivierung im Rheinischen Braunkohlenrevier. Allg Forstz 48:1283–1286 Dimbleby GW (1985) The palynology of archaeological sites. Academic, London Dise NB, Ashmore M, Bleeker A, Belyazid S, Bobbink R, de Vries W, Erisman JW, Spranger T, Stevens CJ, van den Berg L (2011) Nitrogen as a threat to European terrestrial biodiversity. In: Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B (eds) The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press, Cambridge

Dissmann C (2014) Die Gestaltung der Leere: Zum Umgang mit einer neuen städtischen Wirklichkeit. transcript, Bielefeld Dister E (1983) Zur Hochwassertoleranz von Auenwaldbäumen an lehmigen Standorten. Verh Ges Ökol 10:325–336 Dítě D, Eliáš P, Sádovský M (2008) Camphorosmetum annuae Rapaics ex Soó 1933—vanishing plant community of saline habitats in Slovakia. Thaiszia 18:9–20 Dixon AM, Leggett DJ, Weight RC (1998) Habitat creation opportunities for landward coastal realignment: Essex case studies. J Chart Inst Water Environ Manage 12:107–112 Dizer H, Bartocha W, Bartel H, Seidel K, Lopez-Pila JM, Grohmann A (1993) Use of ultraviolet radiation for inactivation of bacteria and coliphages in pretreated wastewater. Water Res 27(3):397–403 DJV (2017) Jagdstatistik. Deutscher Jagdverband. https://www.­jagdverband.­de/node/3304. Accessed 12 July 2017 Dobbs C, Kendal D, Nitschke CR (2014) Multiple ecosystem services and disservices of the urban forest establishing their connections with landscape structure and sociodemographics. Ecol Indic 43:44–55 Dobeš C, Konrad H, Geburek T (2017) Potential population genetic consequences of habitat fragmentation in Central European forest trees and associated understorey species—an introductory survey. Diversity 9(9):1–24 Dobrowolska D (2006) Oak natural regeneration and conversion processes in mixed Scots pine stands. Forestry 79(5):503–513 Dobrowolska D (2015) Forest regeneration in northeastern Poland following a catastrophic blowdown. Can J For Res 45:1172–1182 Döll C, Döll P (2008) Modellierung der Problemwahrnehmungen und Handlungen von Akteuren im Problemfeld “Mobile organische Fremdstoff e in Gewässern”. Salzburger Geogr Arb 43:59–75 Doerpinghaus A, Bruker J (2016) Chance.natur— Naturschutzgroßprojekte in Deutschland. In: BLG—Bundesverband der gemeinnützigen Landgesellschaften (ed) Landesentwicklung Aktuell. Das Magazin des Bundesverbandes der gemeinnützigen Landgesellschaften 22:45–47 Doerpinghaus A, Eichen C, Gunnemann H, Leopold P, Neukirchen M, Petermann J, Schröder E (2005) Methoden zur Erfassung von Arten der Anhänge IV und V der Fauna-Flora-Habitat-Richtlinie. Natschutz Biol Vielfalt 20:1–454 Doherty JM, Zedler JB (2015) Increasing substrate heterogeneity as a bet-hedging strategy for restoring wetland vegetation. Restor Ecol 23:15–25 Dolman PM, Sutherland WJ (1994) The use of soil disturbance in the management of Breckland

599 References

grass heaths for nature conservation. J Environ Manag 41:123–140 Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol Econ 69(9):1858–1868 Dommermuth C (1995) Beschleunigte Bodenabtragungsvorgänge in der Kulturlandschaft des Nationalparks Berchtesgaden. Ursachen und Auswirkungen aufgezeigt am Beispiel des Jennergebietes. Forstwiss Centralbl 114:285–292 Donald PF, Sanderson FJ, Burfield IJ, van Bommel FPJ (2006) Further evidence of continent-­wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric Ecosyst Environ 116(3/4):189–196 Donath TW, Bissels S, Hölzel N, Otte A (2007) Large scale application of diaspore transfer with plant material in restoration practice—impact of seed and microsite limitation. Biol Conserv 138:224–234 Donath TW, Hölzel N, Otte A (2003) The impact of site conditions and seed dispersal on restoration success in alluvial meadows. Appl Veg Sci 6: 13–22 Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO 2 problem. Annu Rev Mar Sci 1:169–192 Doody JP (1991) Sand dune inventory of Europe. Joint Nature Conservation Committee, Peterborough. http://www.­eurobis.­org/imis?module=ref&r efid=34637&basketaction=add. Accessed 7 Mar 2017 Doody JP (2007) Saltmarsh conservation, management and restoration. Coast Syst Cont Marg 12:1–219 Doody JP (2012) Sand dune conservation, management and restoration. Springer, Dordrecht Doorenbosch M, van Mourik JM (2016) The impact of ancestral heath management on soils and landscapes: a reconstruction based on paleoecological analyses of soil records in the central and southeastern Netherlands. Soil 2:311–324 Doppler W (2009) StadtundLand: zwei Lebenswelten und ihre Bewohner. Grüne Reihe 20:1–344 Dörfler EP (2016) Die Elbe: Vom Elbsandsteingebirge bis nach Geesthacht. Trescher, Berlin Döring R (2004) Wie stark ist schwache, wie schwach starke Nachhaltigkeit? Wirtschwiss Diskuspap, Univ Greifswald 8:1–41 Doss CR, Taff SJ (1996) The influence of wetland type and wetland proximity on residential property values. J Agric Resour Econ 21:120–129 Dotterweich M (2008) The history of soil erosion and fl uvial deposits in small catchments of Central Europe: deciphering the long-term interaction between humans and the environment—a review. Geomorphology 101:192–208

Douglas I, James P (2015) Urban ecology: an introduction. Routledge, London Doyle U (2002) Ist die rechtliche Regulierung gebietsfremder Organismen in Deutschland ausreichend? Neobiota 1:259–272 Drengson A, Inoue Y (eds) (1995) The deep ecology movement: an introductory anthology. North Atlantic Books, Berkely Dressel R, Jäger EJ (2002) Beiträge zur Biologie der Gefäßpflanzen des herzynischen Raumes. 5. Quercus rubra L. (Roteiche): Lebensgeschichte und agriophytische Ausbreitung im Nationalpark Sächsische Schweiz. Hercynia NF 35:37–64 Drews H, Jacobsen J, Trepel M, Wolter K (2000) Moore in Schleswig-Holstein unter besonderer Berücksichtigung der Niedermoore. Verbreitung, Zustand und Bedeutung. Telma 30:241–278 Driscoll CT, Baker JP, Bisogni JJ, Scofield CL (1980) Effect of aluminium speciation on fish in dilute acidified waters. Nature 284:161–164 Droege P, Knieling J (2017) Regenerative Räume. Leitbilder und Praktiken nachhaltiger Raumentwicklung. Oekom, München Drösler M, Freibauer A, Adelmann W, Augustin J, Bergman L, Beyer C, Chojnicki B, Förster C, Giebels M, Görlitz S, Höper H, Kantelhardt J, Liebersbach H, Hahn-Schöfl M, Minke M, Petschow U, Pfadenhauer J, Schaller L, Schägner P, Sommer M, Thuille A, Wehrhan M (2011) Klimaschutz durch Moorschutz in der Praxis. Ergebnisse aus dem BMBF-Verbundprojekt “Klimaschutz—Moornutzungsstrategien” 2006– 2010. Arbeitsberichte aus dem vTI-Institut für Agrarrelevante Klimaforschung 4:1–15. http:// l i t e r at u r.­v t i .­bu n d .­d e / d i g b i b _ e x t e r n / b i t v / dn049337.­pdf. Accessed 15 Jan 2017 DTP (2017) DanubeSediment—Danube sediment management, restoration of the sediment balance in the Danube River. http://www.­ interregdanube.­eu/approved-projects/danubesediment. Accessed 19 May 2017 Duarte CM, Borja A, Carstensen J, Elliott M, KrauseJensen D, Marbà N (2015) Paradigms in the recovery of estuarine and coastal ecosystems. Estuar Coast 38:1202–1212 Duarte CM, Dennison WC, Orth RJW, Carruthers TJB (2008) The charisma of coastal ecosystems: addressing the imbalance. Estuar Coast 31:233– 238 Duckworth JC, Kent M, Ramsay PM (2000) Plant functional types: an alternative to taxonomic plant community description in biogeography? Progr Phys Geogr 24(4):515–542 Dudgeon RC, Berkes F (2003) Local understandings of the land: traditional ecological knowledge and indigenous knowledge. In: Selin H (ed) Nature across cultures: views of nature and the environ-

600

References

ment in non-western cultures. Kluwer, Dordrecht, pp 75–96 Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366 Dufraisse A (2008) Firewood management and woodland exploitation during the late Neolithic at Lac de Chalain (Jura, France). Veg Hist Archaeobot 17(2):199–210 Dumolard P (2009) Road transport and atmospheric pollution—Northern French Alps case. Pres Environ Sustain Develop 3:5–20 Dumortier M, Butaye J, Jacquemyn H, van Camp N, Lust N, Hermy M (2002) Predicting vascular plant species richness of fragmented forests in agricultural landscapes in central Belgium. For Ecol Manag 158:85–102 Dunford RW, Donoghue DNM, Burt TP (2012) Forest land cover continues to exacerbate freshwater acidification despite decline in sulphate emissions. Environ Pollut 167:58–69 Dunford RW, Ginn TC, Desvousges WH (2004) The use of habitat equivalency analysis in natural resource damage assessments. Ecol Econ 48(1):49–70 Dunger W, Wanner M, Hauser H, Hohberg K, Schulz HJ, Schwalbe T, Seifert B, Vogel J, Voigtländer K, Zimdars B, Zulka KP (2001) Development of soil fauna at mine sites during 46 years after afforestation. Pedobiologia 45:243–271 Dunnett N, Kingsbury N (2008) Planting green roofs and living walls, 2nd edn. Timber Press, Portland Dupieux N (1998) La gestion conservatoire des tourbières de France: premiers éléments scientifiques et techniques. Espaces Natureles de France, programme LIFE, Tourbières de France, Orléans Dupouey JL, Dambrine E, Laffite JD, Moares C (2002) Impact of past land use on forest soils and biodiversity. Ecology 83(11):2978–2984 Dupré E, Genovesi P, Pedrotti L (2000) Studio di fattibilità per la reintroduzione dell’orso bruno. Ursus arctos sulle alpi centrali. Biol Conserv Fauna 105:1–89 van Duren IC, Strijkstra RJ, Grootjans AP, ter Heerdt GNJ, Pegtel DM (1998) A multidiciplinary evaluation of restoration measures in a degraded fen meadow (Cirsio-Molinietum). Appl Veg Sci 1:115–130 Durham E, Baker H, Smith M, Moore E, Morgan V (2014) The BiodivERsA stakeholder engagement handbook. BiodivERsA, Paris. www.­biodiversa.­ org. Accessed 20 Jun 2017 Durrer H (2014) Amphibienschutz im siedlungsnahen Raum um Basel (CH) (40 Jahre Erfahrung in Bau und Pflege von Weiherbiotopen). Mitt Natforsch Ges beider Basel 15:51–76

Dußling U, Berg R (2001) Fische in Baden-Württemberg. Ministerium für Ernährung und Ländlichen Raum Baden-Württemberg, Stuttgart Dußling U, Berg R, Klinger H, Wolter C (2014) Assessing the ecological status of river sytems using fish assemblages. In: Hupfer M, Calmano W (eds) Handbuch Angewandte Limnologie: Grundlagen— Gewässerbelastung—Restaurierung—Aquatische Ökotoxikologie—Bewertung—Gewässerschutz. Wiley-VCH, Weinheim, pp 1–84 Dutcher DD, Finley JC, Luloff AE, Johnson JB (2007) Connectivity with nature as a measure of environmental values. Environ Behav 39(4):474–493 DVL (2008) Natura 2000—Chance für Mensch und Natur. Deutscher Verband für Landschaftspflege e. V. Newslett 2:1–20 DVL (2010) Ackerwildkräuter schützen und fördern— Perspektiven einer langfristigen Finanzierung und Bewirtschaftung. Schrreihe Deut Verb Landschpfl 18:1–46 Dyke GV, George BJ, Johnston AE, Poulton PR, Todd AD (1982) The broadbalk wheat experiment 1968–78: yields and plant nutrients in crops grown continuously and in rotation. Rothamsted Exp Stn Rep 2:5–44 Dzionek A, Wojcieszyńska D, Guzik U (2016) Natural carriers in bioremediation: a review. Electron J Biotechnol 23:28–36 Dzwonko Z, Loster S (1988) Species richness of small woodlands of the western Carpathian foothills. Vegetatio 76:15–27 Dzwonko Z, Loster S (2008) Changes in plant species composition in abandoned and restored limestone grasslands—the effects of tree and shrub cutting. Acta Soc Bot Pol 77:67–75 EA (2004) Humber tides news. Environment Agency. https://www.­gov.­uk. Accessed 8 Feb 2017 Easterbrook JD, Kaplan JB, Vanasco NB, Reeves WK, Purcell RH, Kosoy MY, Glass GE, Watson J, Klein SL (2007) A survey of zoonotic pathogens carried by Norway rats in Baltimore, Maryland, USA. Epidemiol Infect 135(7):1192–1199 Ebel F (2006) Vor dem Aussterben gerettet: Gips-Fettkraut (gipsbewohnende Sippe von Pinguicula vulgaris L.). Natschutz Land Sachsen-Anhalt 43(1):41–43 Ebel F, Schönbrodt R (1991) Geschützte Natur im Saalkreis. Eine Anleitung zur Pflege und Nutzung der Naturschutzobjekte, 3rd edn. Rat des Saalkreises, Halle (Saale) Ebenman B, Jonsson T (2005) Using community viability analysis to identify fragile systems and keystone species. Trends Ecol Evol 20:568–575 Eberhartinger-Tafi S II, Merl A (2011) Leitfaden UVP für Bergbauvorhaben. Umweltverträglichkeitserklärung Einzelfallprüfung. Aktualisierte Fassung 2011. Bundesministerium für Land- und Forst-

601 References

wirtschaft, Umwelt und Wasserwirtschaft. http:// www.­umweltbundesamt.­at. Accessed 16 Dec 2016 EC (2003) The European soil database. European Commission. http://esdac.­jrc.­ec.­europa.­eu/ESDB_ Archive/ESDBv2/fr_intro.­htm. Accessed 28 May 2017 EC (2015) Forest ecosystem services. European Commission. http://forest.­jrc.­ec.­europa.­eu/activities/ forest-ecosystem-services/. Accessed 12 July 2017 EC (2016) Water scarcity and droughts in the European Union. European Commission. http://ec.­europa.­eu/ environment/water/quantity/scarcity_en.­h tm. Accessed 3 Sep 2017 EC (2017a) Entwicklung des ländlichen Raums 2014– 2020. European Commission. https://ec.­europa.­eu/ agriculture/rural-development-2014-2020_de. Accessed 5 Mar 2017 EC (2017b) Agri-environmental indicator—high nature value farmland. Eurostat—statistics explained. European Commission. http://ec.­ europa.­eu/eurostat. Accessed 5 Mar 2017 EC (2017c) Large carnivores in the EU—the Commission’s activity on large carnivores. European Commission. http://ec.­europa.­eu/environment/ nature/conservation/species/carnivores/index_en.­ htm. Accessed 20 June 2017 EC (2017d) European Forest Fire Information System (EFFIS). European Commission. http://effis.­jrc.­ ec.­europa.­eu/. Accessed 8 Aug 2017 EC (2017e) Plant variety catalogues, databases and information systems. FRUMATIS (Fruit Reproductive Material Information System). European Commission. https://ec.­europa.­eu/food/plant/ plant_propagation_material/plant_variety_catalogues_databases_en. Accessed 30 Aug 2017 EC (2018) Fishing quotas—managing fisheries. European Commission. https://ec.­europa.­eu/fisheries/ cfp/fishing_rules/tacs_en. Accessed 2 Jan 2018 Ecke F, Hellsten S, Köhler J, Lorenz A, Rääpysjärvi J, Scheunig S, Segersten J, Baattrup-Pedersen A (2015) The response of hydrophyte growth forms and plant strategies to river restoration. Hydrobiologia 769(1):41–54 Eckert F, Lorenz H (2013) Lehrbuch der Forstwirtschaft für Waldbau- und Försterschulen: sowie zum forstlichen Unterrichte für Aspiranten des Forstverwaltungsdienstes. Unikum, Barsinghausen ECRR (2014a) Social benefits of river restoration: healthy rivers provide a quality environment. European Centre for River Restoration. http:// www.­ecrr.­org/. Accessed 24 Apr 2017 ECRR (2014b) Sharing best practice. European Centre for River Restoration. http://www.­ecrr.­org/RiverRestoration/Howtodoriverrestoration/StepIVSharingbestpractice/tabid/3033/Default.­aspx. Accessed 19 Jan 2018

Edom F (2001) Moorlandschaften aus hydrologischer Sicht (chorische Betrachtung). In: Succow M, Joosten H (eds) Landschaftsökologische Moorkunde. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 185–228 Edom F, Dittrich I, Goldacker S, Kessler K (2007) Die hydromorphologisch begründete Planung der Moorrevitalisierung im Erzgebirge. In: Sächsische Landesstiftung Natur und Umwelt (ed) Praktischer Moorschutz im Naturpark Erzgebirge/ Vogtland und Beispielen aus anderen Gebirgsregionen: Methoden, Probleme, Ausblick. Lausitzer Druck- und Verlagshaus, Bautzen, pp 19–32 Edwards PJ, Abivardi C (1997) Ecological engineering and sustainable development. In: Urbanska KM, Webb NR, Edwards PJ (eds) Restoration ecology and sustainable development. Cambridge University Press, Cambridge, pp 325–352 EEA (2010) Mapping the impacts of natural hazards and technological accidents in Europe. European Environment Agency. Tech Rep 13:1–146 EEA (2012) EM-DAT: the international disaster database. European Environment Agency. https://www.­ eea.­e uropa.­e u/data-and-maps/data/external/ emergency-events-database-em-dat. Accessed 20 Feb 2018 EEA (2015a) Forest: deadwood. European Environment Agency. https://www.­eea.­europa.­eu/data-­andmaps/ indicators/forest-deadwood-1/assessment-1. Accessed 11 July 2017 EEA (2015b) Water retention potentials of Europe’s forests. A European overview support to natural water retention measures. European Environment Agency. Tech Rep 13:1–46 EEA (2016a) Eutrophication. European Environment Agency. https://www.­eea.­europa.­eu/publications/ 92-9167-205-X/page014.­html. Accessed 3 Sep 2017 EEA (2016b) Rivers and lakes in European cities. Past and future challenges. European Environment Agency. Tech Rep 26:1–56 EEA (2017a) European Nature Information System, EUNIS.  European Environment Agency. https:// eunis.­eea.­europa.­eu/. Accessed 25 Dec 2017 EEA (2017b) Soil erosion. European Environment Agency. https://www.­eea.­europa.­eu/dataand-­maps/ indicators/soil-erosion-by-water-1/assessment. Accessed 3 Sep 2017 Eertman RHM, Kornman BA, Stikvoort E, Verbeek H (2002) Restoration of the Sieperda Tidal Marsh in the Scheldt Estuary, The Netherlands. Restor Ecol 10:438–449 Eesti Loodushoiu Keskus (2011) Saving life in meanders and oxbow lakes of Emajõgi River on Alam-Pedja NATURA 2000 area. Layman’s report. http://ec.­ europa.­eu/environment/life/project/Projects/index.­ cfm?fuseaction=home.­s howFile&rep=file&fil=

602

References

LIFE07_NAT_EE_000120_LAYMAN1.­p df. Accessed 25 Apr 2017 EFI (2011) State of Europe’s forests 2011. Status and trends in sustainable forest management in Europe. Forest Europe, UNECE and FAO EG (2000) Richtlinie 2000/60/EG des Europäischen Parlamentes und des Rates vom 23. Oct. 2000 zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik. Amtsblatt der Europäischen Gemeinschaften L327. https://eur-lex.­europa.­eu/. Accessed 8 Aug 2018 Egan D, Howell EA (2005) The historical ecology handbook: a restorationist’s guide to reference ecosystems. Island Press, Washington, DC Egan D, Hjerpe EE, Abrams J (2011) Human dimensions of ecological restoration: integrating science, nature, and culture (the science and practice of ecological restoration series). Island Press, Washington, DC Eggelsmann R (1987) Ökotechnische Aspekte der Hochmoor-Regeneration. Telma 17:59–94 Egger B (2001) Raubtiere, mythologisch und tiefenpsychologisch betrachtet. For Snow Landscape Res 76(1/2):53–90 Egger G, Angermann K, Buchgraber K (2003) GISgestützte Ertragsmodellierung zur Optimierung des Weidemanagements auf Almweiden. Bundesanstalt für alpenländische Landwirtschaft Raumberg-Gumpenstein, Irdning Egger G, Angermann K, Gruber A (2010) Wiederansiedlung der Deutschen Tamariske (Myricaria germanica (L.) Desv.) in Kärnten. Carinthia II 200(120):393–418 Eggers B (2004) Verteilung und Bindungsverhalten ausgewählter Schwermetalle in Auenböden der Oker und Ecker (Harzvorland). Dissertation, TU Braunschweig Egoh BN, Paracchini ML, Zulian G, Schägner JP, Bidoglio G (2014) Exploring restoration options for habitats, species and ecosystem services in the European Union. J Appl Ecol 51:899–908 Ehler M (2003) Fürstliche Garten(t)räume: Schlösser und Gärten in Mecklenburg und Vorpommern. Lukas, Berlin Ehrlich PR (1994) Energy use and biodiversity loss. Philos T Roy Soc B 344:99–104 Eichberg C, Storm C, Schwabe A (2005) Epizoochorous and post-dispersal processes in a rare plant species: Jurinea cyanoides (L.) Rchb. (Asteraceae). Flora 200:477–489 Eichberg C, Storm C, Kratochwil A, Schwabe A (2006) A differentiating method for seed bank analysis: validation and application to successional stages of Koelerio-Corynephoretea inland sand vegetation. Phytocoenologia 14:161–189

Eichberg C, Storm C, Schwabe A (2007) Endozoochorous dospersal, seedling emergence and fruiting success in disturbed and undisturbed successional stages of sheep-grazed inland sand ecosystems. Flora 202:3–26 Eichberg C, Storm C, Stroh M, Schwabe A (2010) Is the combination of topsoil replacement and inoculation with plant material an effective tool for the restoration of threatened sandy grassland? Appl Veg Sci 13(4):425–438 EIFAAC (2016) European Inland fisheries and aquaculture advisory commission. FAO. http://www.­ fao.­org/fishery/rfb/eifaac/en. Accessed 25 Apr 2017 Eigner J (1998) Renaturierungsmaßnahmen. Grundlagen der Hochmoorrenaturierung. In: Irmler U, Müller K, Eigner J (eds) Das Dosenmoor. Ökologie eines regenerierenden Hochmoores. Wachholtz, Neumünster, pp 33–42 Eigner J (2003) Möglichkeiten und Grenzen der Renaturierung von Hochmooren. Laufen Sembeitr 1(3):23–36 Eigner J, Schmatzler E (1991) Handbuch des Hochmoorschutzes, 2nd edn. Kilda, Greven Eilola K (1998) Oceanographic studies of the dynamics of freshwater, oxygen and nutrients in the Baltic Sea. Earth Sci Centre Publ A30:1–22 Einhorn B, Eckert N, Chaix C, Ravanel L, Deline P, Gardent M, Boudières V, Richard D, Vengeon JM, Giraud G, Schoeneich P (2015) Climate change and natural hazards in the Alps. J Alp Res 103(2):1–38 Eiseltová M (ed) (2010) Restoration of lakes, streams, floodplains, and bogs in Europe: principles and case studies. Wetlands Ecol Conserv Manag 3:1–374 Eisenhauer N, Milcu A, Sabais ACW, Bessler H, Brenner J, Engels C, Klarner B, Maraun M, Partsch S, Roscher C, Schonert F, Temperton VM, Thomisch K, Weigelt A, Weisser WW, Scheu S (2011) Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS One 6(1):e16055 Eisma D (2016) Planning and developments in the Dutch Waddensea area. In: Laconte P, Epstein G, Gibson JE (eds) The environment of human settlements. Human well-being in cities. Conference Brussels, Belgium 1976, pp 237–248 Elbakidze M, Hahn T, Mauerhofer V, Angelstam P, Axelsson R (2013) Legal framework for biosphere reserves as learning sites for sustainable development: a comparative analysis of Ukraine and Sweden. Ambio 42(2):174–187 Eliáš P, Dítě D, Grulich V, Sádovský M (2008) Distribution and communities of Crypsis aculeata and Heleochloa schoenoides in Slovakia. Hacquetia 7(1):5–20

603 References

Ellenberg H (1950) Unkrautgemeinschaften als Zeiger für Klima und Boden. Ulmer, Stuttgart Ellenberg H (1974) Zeigerwerte der Gefäßpflanzen Mitteleuropas. Scripta Geobot 9:1–97 Ellenberg H, Weber HE, Düll R, Wirth V, Werner W (2001) Zeigerwerte von Pflanzen in Mitteleuropa. 3rd ed. Scripta Geobotanica 18:1–258. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 6th edn. Ulmer, Stuttgart Ellenberg H, Mayer R, Schauermann J (eds) (1986) Ökosystemforschung. Ergebnisse des Solling-Projektes 1966–1986. Ulmer, Stuttgart Ellenberg H, Mueller-Dombois D (1967) A key to Raunkiaer plant life forms with revised subdivisions. Ber Geobot Inst Eidgenöss Tech Hochsch, Stift Rübel 37:56–73 Ellenberg H, Weber HE, Düll R, Wirth V, Werner W (2001) Zeigerwerte von Pflanzen in Mitteleuropa. 3rd ed. Scripta Geobotanica 18:1–258 Elliot R (1982) Faking nature. Inquiry 25:81–93 Elliot R (1995) Faking nature. In: Environmental ethics. Oxford University Press, Oxford, pp 76–88 Elliot R (1997) Faking nature: the ethics of environmental restoration (Environmental philosophies series). Routledge, London Elliott P, Aldridge DC, Moggridge GD (2008) Zebra mussel filtration and its potential uses in industrial water treatment. Water Res 42:1664–1674 Elliott S (2015) Coastal realignment at RSPB Nigg Bay Nature Reserve. Royal Society for the Protection of Birds. https://www.­rspb.­org.­uk/. Accessed 9 Feb 2017 Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foster DR, Kloeppel BD, Knoepp JD, Lovett GM, Mohan J, Orwig DA, Rodenhouse NL, Sobczak WV, Stinson KA, Stone JK, Swan CM, Thompson J, von Holle B, Webster JR (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 9:479–486 Ellwanger G, Ssymank A, Vischer-Leopold M (2012) Erhaltung von Offenlandlebensräumen auf aktiven und ehemaligen militärischen Übungsflächen. Natschutz Biol Vielfalt 127:1–180 Ellwanger G, Müller C, Ssymank A, Vischer-Leopold M, Paulsch C (eds) (2016) Management of Natura 2000 sites on military training areas. Natschutz Biol Vielfalt 152:1–200 Elmqvist T, Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, McDonald RI, Parnell S, Schewenius M, Sendstad M, Seto KC, Wilkinson C (2013) Urbanization, biodiversity and ecosystem services: challenges and opportunities. Springer, Dordrecht

Elofsson K (2010) The costs of meeting the environmental objectives for the Baltic Sea: a review of the literature. Ambio 39(1):49–58 Elsasser H, Bürki R (2002) Climate change as a threat to tourism in the Alps. Clim Res 20:253–257 Elsasser P (2017) Monetäre Bewertung von Ökosystemleistungen: eine kritische Sicht auf einige Kritiken. Schweiz Z Forstwes 168(1):14–20 Elsen S, Zerbe S (2018) Transformation in the Javakheti Highland Georgia—a community-­ based participatory approach towards sustainable pasture management in a remote mountain area. J Postmodernism Probl 8(3):369–394 Elsen S, Reifer G, Oberleiter E, Wild A (eds) (2015) Die Kunst des Wandels: Ansätze für die ökosoziale Transformation. Oekom, München Elvers H, Korge H, Woltemade H (1981) Faunistisches Gutachten für den Geltungsbereich des Landschaftspflegerischen Begleitplanes für den Bau des Schöneberger Südgüterbahnhofes. Im Auftrag des Senats Bau- und Wohnungswesen, Berlin Elzinga CL, Salzer DW, Willoughby JW, Gibbs JP (2001) Monitoring plant and animal populations. Blackwell, Oxford Emmerling C, Liebner C, Haubold-Rosar M, Katzur J, Schröder D (2000) Impact of application of organic waste materials on microbial and enzyme activities of mine soils in the Lusatian coal mining region. Plant Soil 220:129–138 Emsens WJ, Aggenbach CJS, Smolders AJP, van Diggelen R (2015) Topsoil removal in degraded rich fens: can we force an ecosystem reset? Ecol Eng 77:225–232 Endlicher W (2011) Perspectives in urban ecology. Ecosystems and interactions between humans and nature in the metropolis of Berlin. Springer, Heidelberg Endres A (2007) Umweltökonomie, 3rd edn. Kohlhammer, Stuttgart Engelhardt J (2000) Das Heudrusch®-Verfahren im ingenieurbiologischen Sicherungsbau. Jahrb Ges Ingbiol 9:165–174 Engelhardt KAM, Ritchie ME (2001) Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411:687–689 Engleder T (2004) Der Luchs im Norden Österreichs—Böhmerwald, Mühl- und Waldviertel. Natschutz Niederbayern 4:68–77 Entling W, Schmidt MH, Bacher S, Brandl R, Nentwig W (2007) Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Glob Ecol Biogeogr 16:440–448 Environmental Protection Agency (1999) Landfill manuals. Landfill restoration and aftercare. Environmental Protection Agency, Ireland. https://

604

References

www.­epa.­ie/pubs/advice/licensee/EPA%20Landfill%20Restoration%20and%20Aftercare.­p df. Accessed 21 Aug 2017 EOL (2018) Encyclopedia of Life (EOL). http://eol.­ org/. Accessed 1 July 2018 Eppler U, Petersen JE (2007) Short rotation forestry, short rotation coppice and energy grasses in the European Union: agro-environmental aspects, present use and perspectives. EEA Specific Contract 2. http://iet.­jrc.­ec.­europa.­eu/remea/sites/ remea/files/files/documents/events/background_ paper_final_draft.­pdf. Accessed 10 July 2017 Erdmann KH, Kastenholz HG (2013) Umwelt- und Naturschutz am Ende des 20. Probleme, Aufgaben und Lösungen. Springer, Heidelberg, Jahrhunderts Erhardt A, Thomas JA (2012) Lepidoptera as indicators of change in the semi-natural grasslands of lowland and upland Europe. In: Collins NM (ed) The conservation of insects and their habitats. Academic, Cambridge, pp 213–236 Eriksson M, Lindström B (2008) A salutogenic interpretation of the Ottawa Charter. Health Promot Int 23(2):190–199 Eriksson F, Hörnström E, Mossberg P, Nyberg P (1983) Ecological effects of lime treatment of acidified lakes and rivers in Sweden. In: Forsberg C, Johansson JA (eds) Forest water ecosystems. Dev Hydrobiol 13:145–163 Erisman JW (2011) The European nitrogen problem in a global perspective. In: Sutton MA, Howard CM, Erisman JM, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B (eds) The European nitrogen assessment. Cambridge University Press, Cambridge, pp 9–31 Ermischer G, Kelm R, Meier D, Rosmanitz H (eds) (2003) Wege in europäische Kulturlandschaften. PCL, München Erwin K (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wet Ecol Manag 17:71–84 Eschen R, Mortimer SR, Lawson CS, Edwards AR, Brook AJ, Igual JM, Hedlund K, Schaffner U (2007) Carbon addition alters vegetation composition on ex-arable fields. J Appl Ecol 44:95–104 Eschen R, Müller-Schärer H, Schaffner U (2006) Soil carbon addition affects plant growth in a speciesspecific way. J Appl Ecol 43:35–42 Escobedo FJ, Kroeger T, Wagner JE (2011) Urban forests and pollution mitigation: analyzing ecosystem services and disservices. Environ Pollut 159:2078–2087 Eser U (1999) Der Naturschutz und das Fremde: Ökologische und normative Grundlagen der Umweltethik. Campus Forsch 776:1–266 Eser U, Potthast T (1997) Bewertungsproblem und Normbegriff in Ökologie und Naturschutz aus

wissenschaftsethischer Perspektive. Z Ökol Natursch 6:181–189 Eskenazi B, Bradman A, Castorina R (1999) Exposures of children to organophosphate pesticides and their potential adverse health effects. Environ Health Perspect 107:409–419 ESP (2016) Ecosystem service valuation database. Ecosystem Service Partnership. https://www.­espartnership.­org/services/data-knowledgesharing/ ecosystem-service-valuation-­database. Accessed 21 May 2017 Esselink P, Dijkema KS, Reents S, Hageman G (1998) Vertical accretion and profile changes in abandoned man-made tidal marshes in the Dollard Estuary. J Coast Res 14:570–582 Esselink P, de Leeuw C, Berg G, Graveland J (2002) Evaluatie van 25 ecologische herstelmaatregelen in de zoute rijkswateren. RIKZ, Ministerie van Verkeer en Waterstaat, Haren. http://edepot.­ wur.­nl/174430. Accessed 8 Feb 2017 Esselink P, Petersen J, Arens S, Bakker JP, Bunje J, Dijkema KS, Hecker N, Hellwig U, Jensen AV, Kers AS, Körber P, Lammerts EJ, Stock M, Veeneklaas RM, Vreeken M, Wolters M (2009) Salt marshes. Thematic Report 8. In: Marencic H, de Vlas J (eds) Quality status report 2009. Wadden-Sea Ecosystem 25. Common Wadden Sea Secretariat, Trilateral Monitoring and Assessment Group. Wilhelmshaven Eßer G, Janz S, Walther H (2017) Förderung der Biodiversität in der Rekultivierung des Rheinischen Braunkohlenreviers. World of Mining 69(6):2–9 Essl F, Egger G, Ellmauer T (2002) Rote Liste gefährdeter Biotoptypen Österreichs. Konzept. Umweltbundesamt Monogr 155:1–40 Esteves LS (2014) Managed realignment: a viable long-term coastal management strategy? Springer Briefs in Environmental Science. http://eprints.­ bournemouth.­a c.­u k/21139/1/2014%20Esteves% 20-%20Managed%20Realignment%20book.­pdf. Accessed 8 Feb 2017 Estreguil C, Caudullo G, de Rigo D, San Miguel J (2013) Forest landscape in Europe: pattern, fragmentation and connectivity. European Commission. Joint Research Centre Scientific and Policy Reports. http://publications.­jrc.­ec.­europa.­eu/repository/bitstream/111111111/27726/1/lb-na-25717en-n.­pdf. Accessed 2 Aug 2017 Eswaran H, Lal R, Reich PF (2001) Land degradation: an overview. In: Bridges EM, Hannam ID, Oldeman LR, Pening FWT, Vries SJ de, Scherr SJ, Sompatpanit S (eds) Responses to land degradation. Proceedings. 2nd International Conference on Land Degradation and Desertification, Khon Kaen, Thailand. Oxford University Press, New Delhi

605 References

EU (1992) Richtlinie 92/43/EWG des Rates vom 21. Mai 1992 zur Erhaltung der natürlichen Lebensräume sowie der wildlebenden Tiere und Pflanzen. http://eur-lex.­europa.­eu. Accessed 24 Nov 2016 EU (2000) Richtlinie 2000/60/EG des Europäischen Parlaments und des Rates vom 23. Oktober 2000 zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik. http://eur-lex.­europa.­eu/legal-content/ DE/TXT/?uri=celex:32000L0060. Accessed 25 Apr 2017 EU (2006a) Verordnung (EG) Nr. 1737/2006 der Kommission vom 7. November 2006 mit Durchführungsbestimmungen zur Verordnung (EG) Nr. 2152/2003 des Europäischen Parlaments und des Rates für das Monitoring von Wäldern und Umweltwechselwirkungen in der Gemeinschaft. Amtsblatt der Europäischen Union L 334/1. http://eur-lex.­europa.­eu/legal-content/DE/TXT/ PDF. Accessed 12 July 2017 EU (2006b) Richtlinie 2006/105/EG des Rates vom 20. November 2006. Anhang I: Natürliche Lebensraumtypen von Gemeinschaftlichem Interesse, für deren Erhaltung besondere Schutzgebiete ausgewiesen werden müssen. Amtsblatt der Europäischen Union vom 20.12.2006:368–384 EU (2007) Leipzig charter on sustainable European cities. European Commission. http://ec.­europa.­eu/ regional_policy/archive/themes/urban/leipzig_ charter.­pdf. Accessed 7 Jan 2018 EU (2008) Richtlinie 2008/56/EG des europäischen Parlaments und des Rates vom 17. Juni 2008 zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Meeresumwelt (Meeresstrategie-Rahmenrichtlinie). Amtsblatt der Europäischen Union L 164/19. http://eur-lex.­ europa.­eu/LexUriServ/LexUriServ.­do?uri=OJ:L:20 08:164:0019:0040:de. Accessed 19 Oct 2016 EU (2009) Richtlinie 2009/147/EG des europäischen Parlaments und des Rates vom 30. November 2009 über die Erhaltung der wildlebenden Vogelarten. Amtsblatt der Europäischen Union L 20/7. http://eur-lex.­europa.­eu/LexUriServ/LexUriServ.­ do?uri=OJ:L:2010:020:0007:0025:DE:PDF. Accessed 3 Sep 2017 EU (2011) The EU biodiversity strategy to 2020. European Union, Luxemburg. http://ec.­ europa.­e u/environment/nature/info/pubs/docs/ b ro c h u re s / 2 0 2 0 % 2 0 B i o d % 2 0 b ro c h u re % 2 0 final%20lowres.­pdf. Accessed 31 Aug 2017 EU (2013) Umwelthaftungsrichtlinie Schutz der natürlichen Ressourcen Europas. Europäische Union. http://ec.­europa.­eu/environment/legal/liability/pdf/eld_brochure/DE.­pdf. Accessed 26 May 2017

EU (2016) Urban Europe: statistics on cities, towns and suburbs. European Union, Luxemburg. http://ec.­ europa.­eu/eurostat/documents/3217494/7596823/ KS-01-16-691-EN-N.­p df/0abf140c-­c cc7-­4 a7fb236-682effcde10f. Accessed 8 Aug 2018 EU (2017a) Eurostat: land cover, land use and landscape. http://ec.­europa.­eu/eurostat/statistics-­explained/ index.­php/Land_cover,_land_use_and_landscape. Accessed 28 May 2017 EU (2017b) Environment: LIFE Programme. European Commission. http://ec.­europa.­eu/environment/life/index.­htm. Accessed 18 May 2017 Euller K, Zmelik K, Schneidergruber A, Wrbka T, Korner I (2014) Auswirkungen der Beweidung in der Bewahrungszone des Nationalparks Neusiedlersee-Seewinkel—Eine statistische Analyse der Vegetationsdaten des Dauerflächenmonitorings. Acta Zoo-Bot Austria 150(151):41–62 European Environment Agency (2001) Pressures on grasslands. European Environment Agency, Kopenhagen. https://www.­eea.­europa.­eu/data-andmaps/indicators/pressures-ongrasslands/dry-andmesic-grassland-habitats. Accessed 9 Aug 2018 European Environment Agency (2007). Progress in management of contaminated sites. Report CSI 015. European Environment Agency, Kopenhagen European Parliament (2011) News 19.05.2011. http:// www.­europarl.­europa.­eu/. Accessed 9 Aug 2018 European Parliament (2011) One in six people have no access to clean water. https://www.europarl. europa.eu/ European Marine Board (2013) Linking oceans and human health: a strategic research priority for Europe. Position Pap 19:1–112. www.­marineboard.­eu. Accessed 10 Feb 2017 European Vegetation Survey (2017) European Vegetation Archive (EVA). http://euroveg.­org/eva-­ database. Accessed 28 May 2017 Eurostat (2015) Resident population in European cities. https://ec.­europa.­eu/eurostat/. Accessed 12 July 2017 Eustafor (2012) Ecosystem services in European state forests. https://www.­eustafor.­eu/uploads/Eustafor_ecosystem_report_2011-1.­pdf. Accessed 12 July 2017 Evans CD, Cullen JM, Alewell C, Kopácek J, Marchetto A, Moldan F, Prechtel A, Rogora M, Veselý J, Wright R (2001) Recovery from acidification in European surface waters. Hydrol Earth Syst Sci 5:283–297 Evans CD, Caporn SJM, Carroll JA, Pilkington MG, Wilson DB, Ray N, Cresswell N (2006) Modelling nitrogen saturation and carbon accumulation in heathland soils under elevated nitrogen deposition. Environ Poll 143:468–478 Evans DM, Kitson JJN, Lunt DH, Straw NA, Pocock MJO (2016) Merging DNA metabarcoding and

606

References

ecological network analysis to understand and build resilient terrestrial ecosystems. Funct Ecol 30(12):1904–1916 Evans J (2008) The forests handbook, vol 2: applying forest science for sustainable management. Blackwell Science, Oxford Evers C, Zacharias D (1999) Langzeitmonitoring primärer Binnensalzstellen im östlichen Niedersachsen. Braunschw Geobot Arb 6:149–159 Evert KJ (ed) (2001) Lexikon—Landschafts- und Stadtplanung. Springer, Heidelberg Ewald J (2000) Long-term impact of forest pasture on the understorey of mountain forests in the Tegernsee Alps (Bavaria). Z Ökol Natschutz 9:161–170 Ewald J (2012) BERGWALD—the vegetation database of mountain forests in the Bavarian Alps. In: Dengler J, Oldeland J, Jansen F, Chytrý M, Ewald J, Finckh M, Glöckler F, Lopez-­Gonzalez G, Peet RK, Schaminée JHJ (eds) Vegetation databases for the 21st century. Biodivers Ecol 4:161–165 Ewald J, Rothe A, Hansbauer M, Schumann C, Wilnhammer M, Schönfeld F, Wittkopf S, Zahner V (2017) Energiewende und Waldbiodiversität. BfN Skripten 455:1–129 Ewen JG, Armstrong DP, Parker KA, Seddon PJ (2012) Reintroduction Biology: integrating Science and Management. Wiley Blackwell, Hoboken, NJ Ewers RM, Didham RK (2006) Continuous response functions for quantifying the strength of edge effects. J Appl Ecol 43:527–536 Exeler N, Kratochwil A, Hochkirch A (2009) Restoration of riverine inland sand dune complexes: implications for the conservation of wild bees. J Appl Ecol 46:1097–1105 Fagúndez J (2013) Heathlands confronting global change: drivers of biodiversity loss from past to future scenarios. Ann Bot 111(2):151–172 Fahner NA, Shokralla S, Baird DJ, Hajibabaei M (2016) Large-Scale monitoring of plants through environmental DNA Metabarcoding of soil: recovery, resolution, and annotation of four DNA markers. PLoS One 11(6):e0157505 Falk DA, Millar C, Olwell M (1996) Restoring diversity. Strategies for reintroduction of endangered plants. Island Press, Washington, DC Falk DA, Palmer MA, Zedler JB (eds) (2006) Foundations of restoration ecology. Island Press, Washington, DC Fang Z, Ouyang Z, Zheng H, Wang X, Hu L (2007) Culturable airborne bacteria in outdoor environments in Beijing, China. Microbiol Ecol 54: 487–496 Fantke P, Friedrich R, Jolliet O (2012) Health impact and damage cost assessment of pesticides in Europe. Environ Int 49:9–17

FAO (1995) Code of conduct for responsible fisheries. Food and Agriculture Organization of the United Nations (FAO), Rom. http://www.­fao.­org/ docrep/005/v9878e/v9878e00.­htm. Accessed 25 Apr 2017 FAO (2000) Second expert meeting on harmonizing forest-related definitions for use by various stakeholders. Food and Agriculture Organization of the United Nations (FAO), Rom. http://www.­fao.­ org/DOCREP/005/Y4171E/Y4171E37.­h tm. Accessed 4 Mar 2017 FAO (2002) World agriculture: towards 2015/2030. Summary report. Food and Agriculture Organization of the United Nations (FAO), Rom. http:// www.­fao.­org/3/a-y3557e.­pdf. Accessed 7 Aug 2017 FAO (2011) Assessing forest degradation. Towards the development of globally applicable guidelines. Food and Agriculture Organization of the United Nations (FAO), Rom. For Res Assess Work Pap 177:1–109 FAO (2015) Global forest resources assessment. Food and Agriculture Organization of the United Nations (FAO), Rom. http://www.­fao.­org/3/a-i4808e.­pdf. Accessed 4 Feb 2018 FAO (2016a) The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. Food and Agriculture Organization of the United Nations (FAO), Rom. http://www.­fao.­ org/3/a-i5555e.­pdf. Accessed 28 Mar 2017 FAO (2016b) Milan Urban food policy pact. Food and Agriculture Organization of the United Nations (FAO), Rom. http://www.­fao.­org. Accessed 15 Oct 2017 FAO (2017) Non-wood forest products. Food and Agriculture Organization of the United Nations (FAO), Rom. http://www.­fao.­org/forestry/nwfp/ en/. Accessed 12 July 2017 Farley J, Costanza R (2010) Payments for ecosystem services: from local to global. Ecol Econ 69: 2060–2068 Farrell M, Jones DL (2010) Food waste composting: its use as a peat replacement. Waste Manag 30(8– 9):1495–1501 Fartmann T, Krämer B, Stelzner F, Poniatowski D (2012) Orthoptera as ecological indicators for succession in steppe grassland. Ecol Indic 20:337–344 Fartmann T, Borchard F, Buchholz S (2015) Montane heathland rejuvenation by choppering—effects on vascular plant and arthropod assemblages. J Nat Conserv 28:35–44 Fattorini M (2001) Establishment of transplants on machine-graded ski runs above timberline in the Swiss Alps. Restor Ecol 9(2):119–126 Faulhaber P, Alexy M (2013) Hydraulische Wirkung der Deichrückverlegung Lenzen an der Eibe— Zusammenschau von Modeliierungen und Natur-

607 References

messungen. In: Struck A, Garbe H, Felinks B (eds) Auenreport Spezial: Die Deichrückverlegung bei Lenzen. Erste Ergebnisse der wissenschaftlichen Begleitung. Ministerium für Umwelt, Gesundheit und Verbraucherschutz des Landes Brandenburg, Potsdam, pp 17–23 Fauna Europaea (2013) All European animal species online. Museum für Naturkunde, Berlin. https:// fauna-eu.­org. Accessed 1 July 2018 Fauve M, Rhyner H, Schneebeli M (2002) Preparation and maintenance of pistes. Handbook for practitioners. Swiss Federal Institute for Snow and Avalanche Research, Davos Fedorov V, Hario M, Herrmann C, Kieckbusch J, Sternik L, Stipniece A, Thorup O, Tjernberg M (2011) HELCOM red list of species and habitats/ biotopes: red list of baltic breeding birds. http:// helcom.­fi/. Accessed 28 Mar 2017 Feger KH (1993) Bedeutung von ökosysteminternen Umsätzen und Nutzungseingriffen für den Stoffhaushalt von Waldlandschaften. Freiburg Bodenkdl Abh 31:1–237 Feige M, Triebswetter U (1997) Projektberichte Sozioökonomie Teil A: Theoretisches Konzept und Methodologie. UBA-Texte 79/97 Feige W (2004) Wiesenbewässerung an der Alme und in ihren Nebentälern. Heimatpfl Westf 17(6):1–7 Feinberg R, Nason P, Sridharan H (2013) Introduction: human-animal relations. Environ Soc Adv Res 4(1):1–4 Feld W (2000) Wiederansiedlung des Weißstorchs Ciconia ciconia (L., 1758) in Baden-­Württemberg. In: Dorner I (ed) Naturschutz mit dem Storch— Die Wiederbesiedlung des westlichen Europa durch den Weißstorch (Ciconia ciconia) mit Hilfe von Wiederansiedlungsprojekten. Tagungsbericht des Internationalen Symposiums 1998, Pollichia, Bad Dürkheim, pp 76–99 Felinks B, Wiegleb G (1998) Welche Dynamik schützt der Prozeßschutz? Aspekte unterschiedlicher Maßstabsebenen—dargestellt am Beispiel der Niederlausitzer Bergbaufolgelandschaft. Natschutz Landschplan 30:298–303 Felinks B, Ehlert T, Neukirchen B (eds) (2013) Perspektiven einer nachhaltigen Gewässer- und Auenentwicklung. BfN Skripten 354:1–91 Felix R, Johannes B (1995) Bodenerosionsuntersuchungen auf Testparzellen im Kalkhochgebirge. Mit Österr Geogr Ges 137:76–92 Fellberg P, Haln H, Sloth C, Boven-Flier D van (2012) Comparative analysis of the PEFC system with FSCTM controlled wood requirements. NEPCon. ic.fsc.org/download.nepconcomparative-­analysispefc-and-fsc-cw.370.htm. Accessed 27 July 2017 Fellenberg G (2013) Umweltbelastungen: Eine Einführung. Springer, Heidelberg

Fenton A (1970) Paring and burning and the cutting of turf and peat in Scotland. In: Gailey A, Fenton A (eds) The Spade in Northern and Atlantic Europe. Ulster Folk Museum, Holywood, Institute of Irish Studies, Belfast, pp 155–193 Ferguson RS, Lovell ST (2014) Permaculture for agroecology: design, movement, practice, and worldview. A review. Agron Sustain Dev 34(2): 251–274 Ferincz Á, Staszny Á, Weiperth A, Takács P, Urbányi B, Vilizzi L, Paulovits G, Copp GH (2016) Risk assessment of non-native fishes in the catchment of the largest Central-European shallow lake (Lake Balaton, Hungary). Hydrobiologia 780: 85–97 Fernández P, Vilanova RM, Martínez C, Appleby P, Grimalt JO (2000) The historical record of atmospheric pyrolytic pollution over Europe registered in the sedimentary PAH from remote mountain lakes. Environ Sci Technol 34:1906–1913 Ferreira JG, Andersen JH, Borja A, Bricker SB, Camp J, Cardoso da Silva M, Garcés E, Heiskanen AS, Humborg C, Ignatiades L, Lancelot C, Menesguen A, Tett P, Hoepffner N, Claussen U (2010) Marine Strategy Framework Directive—Task Group 5 Report: Eutrophication. EUR 24338 EN—Joint Research Centre, Office for Official Publications of the European Communities, Luxembourg Fietz J, Tomiuk J, Loeschcke V, Weis-Dootz T, Segelbacher G (2014) Genetic consequences of forest fragmentation for a highly specialized arboreal mammal—the edible dormouse. PLoS One 9(2):e88092 Filzek D (2008) Erfassung und Bewertung von FlussUferstrukturen und -vegetation: Entwicklung eines Verfahrens zum Einsatz bei Effizienzkontrollen und Monitoring am Beispiel der Ems. Diploma Thesis, University of Münster. Diplomica, Hamburg Finch OD, Brandt T (2017) Möglichkeiten und Grenzen des Fischbestandsmanagements in Kleingewässern. Hinweise zur Neuanlage von Gewässern und Entfernen von Fischen. Natschutz Landschplan 49(4):117–125 Finck P, Heinze S, Raths U, Riecken U, Ssymank A (2017) Rote Liste der gefährdeten Biotoptypen Deutschlands—dritte fortgeschriebene Fassung 2017. Natschutz Biol Vielfalt 156:1–460 Finck P, Klein M, Riecken U, Schröder E (1998) Schutz und Förderung dynamischer Prozesse in der Landschaft. Schrreihe Landschpfl Natschutz 56:1–425 Finck P, Riecken U, Schröder E (2009) Offenlandmanagement außerhalb von landwirtschaftlichen Nutzflächen. Natschutz Biol Vielfalt 73:1–274

608

References

Fincke W, Willführ B (2013) Chronik über den Rechtsstatus der Reichswasserstraßen/Binnenwasserstraßen des Bundes im Gebiet der Bundesrepublik Deutschland nach dem 3. Oktober 1990. http://www.­wsv.­de/wasserstrassen/chronik/index.­ html. Accessed 22 Apr 2017 Finlayson BJ, Schnick RA, Cailteux RL, DeMong L, Horton WD, McClay W, Thompson CW, Tichacek GJ (2000) Rotenone use in fisheries management: administrative and technical guidelines manual. American Fisheries Society, Bethesda, MD. http://www.­fisheriessociety.­org/ rotenone/Rotenone_Manual.­pdf. Accessed 6 Aug 2017 Finnish Environment Institute (2015) Interreg IVC: Regional administration of lake restoration initiatives. http://www.­interreg4c.­eu/projects/project-details/ index-project=181-regional-­a dministration-oflakerestoration-initiatives&.­html. Accessed 19 May 2017 Fischer A (1983) Wildkrautvegetation der Weinberge des Rheingaus (Hessen): Gesellschaften, Abhängigkeit von modernen Bewirtschaftungsmethoden, Aufgaben des Naturschutzes. Phytocoenologia 11:331–383 Fischer A, Fischer H (2012) Restoration of temperate forests: an European approach. In: van Andel J, Aronson J (eds) Restoration ecology: the new frontier, 2nd edn. Blackwell, Oxford, pp 145–160 Fischer LK, Honold J, Cvejić R, Delshammar T, Hilbert S, Lafortezza R, Nastran M, Nielsen AB, Pintar M, van der Jagt APN, Kowarik I (2018) Beyond green: broad support for biodiversity in multicultural European cities. Glob Environ Change 49:35–45 Fischer LK, von der Lippe M, Rillig MC, Kowarik I (2013) Creating novel urban grasslands by reintroducing native species in wasteland vegetation. Biol Conserv 159:119–126 Fischer P (2016) Fluviale Morphodynamik und eigendynamische Entwicklung. Untersuchungen an einem naturnahen Umgehungsbach im Auwald zwischen Neuburg und Ingolstadt. Dissertation, University of Eichstätt-Ingolstadt Fischer P, Bültmann H, von Drachenfels O, Heinken T, Waesch G (2014) Rückgang der Flechten-Kiefernwälder in Niedersachsen seit 1990. Infdienst Natschutz Niedersachsen 34(1):54–65 Fischer R, Lorenz M (2011) Forest condition in Europe. Technical Report of ICP Forests and FutMon. Work Report of the Institute for World Forestry 2011/1. ICP Forests, Hamburg. http:// literatur.­ti.­bund.­de/digbib_extern/dn049968.­pdf. Accessed 21 Jan 2018 Fischer SF, Poschlod P, Beinlich B (1996) Experimental studies on the dispersal of plants and animals

on sheep in calcareous grasslands. J Appl Ecol 33(5):1206–1222 Fisher J, Acreman MC (2004) Wetland nutrient removal: a review of the evidence. Hydrol Earth Syst Sci 8(4):673–685 Flachowsky H (2015) Die Erhaltung obstgenetischer Ressourcen—eine Aufgabe im Spannungsfeld zwischen Nostalgie, Umwelt und Naturschutz, Forschung und modernem Obstbau. Jahrb Braunschweig Wiss Gesell 2015:335–344 Flade M (1994) Die Brutvogelgemeinschaften Mittelund Norddeutschlands. Grundlagen für den Gebrauch vogelkundlicher Daten in der Landschaftsplanung. IHW, Eching Flade M (1995) Aufbereitung und Bewertung vogelkundlicher Daten für die Landschaftsplanung unter besonderer Berücksichtigung des Leitartenmodells. Schrreihe Landschpfl Natschutz 43:107–146 Fleck S, Cools N, De Vos B, Meesenburg H, Fischer R (2016) The Level II aggregated forest soil condition database links soil physicochemical and hydraulic properties with long-­term observations of forest condition in Europe. Ann For Sci 73:945–957 Fleishman E, Murphy DD, Brussard PF (2000) A new method for selection of umbrella species for conservation planning. Ecol Appl 10(2):569–579 Fleming J, Ledogar RJ (2008) Resilience, an evolving concept: a review of literature relevant to aboriginal research. Pimatisiwin 6(2):7–23 Fleming LE, Broad K, Clement A, Dewailly E, Elmir S, Knap A, Pomponi SA, Smith S, Solo Gabriele H, Walsh P (2006) Oceans and human health: emerging public health risks in the marine environment. Mar Pollut Bull 53:545–560 Flores NE, Thacher J (2002) Money, who needs it? Natural resource damage assessment. Contemp Econ Pol 20:171–178 Florineth F (2012) Pflanzen statt Beton: Sichern und Gestalten mit Pfl anzen, 2nd edn. Patzer, Berlin Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–337 FNR (2012a) Dämmstoff e aus nachwachsenden Rohstoff en. Fachagentur für nachwachsende Rohstoffe (FNR), Gülzow-Prüzen. http://www.­ fnr.­de/. Accessed 21 Jan 2017 FNR (2012b) Nachwachsende Rohstoffe in der Industrie. Fachagentur für nachwachsende Rohstoffe (FNR), Gülzow-Prüzen. http://www.­fnr.­de/. Accessed 21 Jan 2017 FNR (2017) Das Potenzial nichtheimischer Baumarten für den forstlichen Anbau in Deutschland sachlich und vorurteilsfrei prüfen. Pressemitteilung der Fachagentur Nachwachsende für Rohstoffe (FNR), Gülzow-Prüzen. https://forst.­fnr.­de/ser-

609 References

vice/presse/pressemitteilungen/. Accessed 10 July 2017 Foley DK, Rezai A, Taylor L (2013) The social cost of carbon emissions: seven propositions. Econ Lett 121:90–97 Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7:1221–1244 Follner K, Ehlert T, Neukirchen B (2010) The status report on German floodplains. In: Proceedings 38th IAD Conference, Dresden. https://www.­ bfn.­de/. Accessed 22 Apr 2017 Fonseca MS, Kenworthy WJ, Griffith E, Hall MO, Finkbeiner M, Bell SS (2008) Factors influencing landscape pattern of the seagrass Halophila decipiens in an oceanic setting. Estuar Coast Shelf Sci 76:163–174 Fontana V, Radtke A, Bossi Fedrigotti V, Tappeiner U, Tasser E, Zerbe S, Buchholz T (2013) Comparing land-use alternatives: using the ecosystem services concept to define a multi-criteria decision analysis. Ecol Econ 93:128–136 Fontana V, Radtke A, Bossi Fedrigotti V, Zerbe S, Tappeiner U, Wilhalm T, Nascimbene J, Spitale D, Nagler M, Ambraß S, Tasser E, Tonon G, Mulser J (2015) Traditionelle Formen der Landund Forstwirtschaft in Südtirol. Free University of Bozen-Bolzano. http://pro2.­unibz.­it/. Accessed 22 Aug 2017 Fontana V, Radtke A, Walde J, Tasser E, Wilhalm T, Zerbe S, Tappeiner U (2014) What plant traits tell us: consequences of land-use change of a traditional agro-forest system on biodiversity and ecosystem service provision. Agric Ecosyst Environ 186:44–53 Foos E, Nusko N, Aenis T, Zeitz J (2014) Materialband (online-Version): 27. Bildungsmodule zum Thema Moor, 2nd ed. HU Berlin. http://edoc.­hub e r l i n .­d e / o a / b o o k s / r e B k M p RO Z 9 r G s / PDF/21vU4f9G04VeI.­pdf. Accessed 13 Jan 2017 Ford J, Martinez D (2000) Traditional ecological knowledge, ecosystem science, and environmental management. Ecol Appl 10:1249–1250 Forman RTT (2014) Urban ecology: science of cities. Cambridge University Press, Cambridge Forschungsstelle Rekultivierung (2011) Rekultivierung im Rheinischen Braunkohlerevier. Exkursionsführer I–V. http://www.­forschungsstellerekul tivierung.­de. Accessed 26 Oct 2017 Forschungsstelle Rekultivierung (2017) Kooperation der RWE-Power AG mit dem Kölner Büro für Faunistik. http://www.­forschungsstellerekultivieru ng.­de/startseite/index.­html. Accessed 26 Oct 2017 Forstamt Rhein-Sieg-Erft (2012) Datenblatt des Huttanusbestandes (UAbt. 1412 C1). Staatswald Nordrhein-Westfalen (unpubl)

Fottner S, Niemeyer T, Sieber M, Härdtle W (2004) Zur kurzfristigen Vegetationsentwicklung auf Pflegeflächen in Sand- und Moorheiden. NNABer 17:126–136 Fottner S, Härdtle W, Niemeyer M, Niemeyer T, von Oheimb G, Meyer H, Mockenhaupt M (2007) Impact of sheep grazing on nutrient budgets of dry heathlands. Appl Veg Sci 10:391–398 Fox JW (2013) The intermediate disturbance hypothesis should be abandoned. Trends Ecol Evol 28(2):86–92 Fox W (1990) The meanings of “Deep Ecology”. Trumpeter 7(1):48–50 Fraaije RGA, Moinier S, van Gogh I, Timmers R, van Deelen JJ, Verhoeven JTA, Soons MB (2017) Spatial patterns of water-dispersed seed deposition along stream riparian gradients. PLoS One 12(9):e0185247 Frank D, Klotz S (1990) Biologisch-ökologische Daten zur Flora der DDR.  Wiss Beitr Martin Luther Univ Halle Wittenberg 32:1–167 Franke T, Böhme C, Strauss WC, Beckmann KJ, Müller A, Marshall T (2012) 5 Jahre LEIPZIG CHARTA—Integrierte Stadtentwicklung als Erfolgsbedingung einer nachhaltigen Stadt. Integrierte Stadtentwicklung in den 27 Mitgliedstaaten der EU und ihren Beitrittskandidaten. Bundesministerium für Verkehr, Bau und Stadtentwicklung. http://www.­nationale-stadtentwicklungspoli tik.­de. Accessed 7 Jan 2018 Frankenberg P, Geier B, Proswitz E, Schütz J, Seeling S (1995) Untersuchungen zu Bodenerosion und Massenbewegungen im Gunzesrieder Tal/Oberallgäu. Europ J For Res 114(1):214–231 Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Boldgiv B, Boldrini II, Bork E, Brown L, Cabido M, Cahill J, Carlyle CN, Campetella G, Chelli S, Cohen O, Csergo AM, Díaz S, Enrico L, Ensing D, Fidelis A, Fridley JD, Foster B, Garris H, Goheen JR, Henry HA, Hohn M, Jouri MH, Klironomos J, Koorem K, Lawrence-Lodge R, Long R, Manning P, Mitchell R, Moora M, Müller SC, Nabinger C, Naseri K, Overbeck GE, Palmer TM, Parsons S, Pesek M, Pillar VD, Pringle RM, Roccaforte K, Schmidt A, Shang Z, Stahlmann R, Stotz GC, Sugiyama S, Szentes S, Thompson D, Tungalag R, Undrakhbold S, van Rooyen M, Wellstein C, Wilson JB, Zupo T (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 349(6245):302–305 Freeman AM III, Herriges JA, Kling CL (1993) The measurement of environmental and resource values: theory and methods, Resources for the future, 3rd edn. RFF Press, Washington, DC

610

References

Freese A, Benes J, Bolz R, Cizek O, Dolek M, Geyer A, Gros P, Konvicka M, Liegl A, Stettmer C (2006) Habitat use of the endangered butterfly Euphydryas maturna and forestry in Central Europe. Anim Conserv 9(4):388–397 Freese G, Zwölfer H (1996) The problem of optimal clutch size in a tritrophic system: the oviposition strategy of the thistle gallfly Urophora cardui (Diptera, Tephritidae). Oecologia 108:293–302 Freibauer A, Drösler M, Gensior A, Schulze ED (2009) Das Potenzial von Wäldern und Mooren für den Klimaschutz in Deutschland und auf globaler Ebene. Nat Landsch 84(1):20–25 Freibauer A, Rounsevell MDA, Smith P, Verhagen J (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122:1–23 Freier K, Ratz G, Körner W, Janz P, Weiss P, Moche W, Denne M (2020) PureAlps 2016–2020. Monitoring von persistenten organischen Schadstoffen und Quecksilber im Alpenraum (Immission, Deposition und Biota). Final report. Umweltbundesamt, Vienna Frese E, Müller J (1996) Floristische Veränderungen in Wassergreiskrautwiesen des mittleren Ostetals: Ein mehrdimensional-dynamischer Erklärungsansatz. Abh Naturw Ver Bremen 43:449–470 Freund H, Petersen J, Pott R (2003) Investigations on recent and subfossil salt-marsh vegetation of the East Frisian barrier islands in the southern North Sea (Germany). Phytocoenologia 33(2–3):349–375 Freund H, Pott R (2001) Spuren der Siedlungsgeschichte in der Vegetation heutiger Wälder. Siedlforsch Archäol Gesch Geogr 19:219–241 Frey H, Walter W (1989) The reintroduction of the bearded vulture Gypaetus barbatus into the Alps. In: Meyburg BU, Chancellor RD (eds) Raptors in the modern world. WWGBP, Berlin Frey W, Lösch R (2014) Geobotanik: Pflanze und Vegetation in Raum und Zeit, 3rd edn. Springer Spektrum, Heidelberg Freyhof J, Brooks E (2011) European red list of freshwater fishes. Publications Office of the European Union, Luxembourg. https://portals.­iucn.­org/ library/sites/library/files/documents/RL-4-015.­ pdf. Accessed 29 Apr 2017 Freyhof J, Kottelat M (2008a) Coregonus gutturosus. The IUCN Red List of Threatened Species 2008:e. T135506A4134620. https://doi.org/10.2305/ IUCN.UK.2008.RLTS.T135506A4134620.en. Accessed 12 May 2017 Freyhof J, Kottelat M (2008b) Dicentrarchus labrax. The IUCN red list of threatened species. https:// d o i . o r g / 1 0 . 2 3 0 5 / I U C N. U K . 2 0 0 8 . R LT S. T135606A4159287.en. Accessed 24 Jan 2017 Freyhof J, Kottelat M (2008c) Salvelinus profundus. The IUCN red list of threatened species 2008:e. T135539A4141058. https://doi.org/10.2305/

IUCN.UK.2008.RLTS.T135539A4141058.en. Accessed 12 May 2017 Frick A, Steffenhagen P, Zerbe S, Timmermann T, Schulz K (2011) Monitoring of the vegetation composition in rewetted peatland with iterative decision tree classification of satellite imagery. Photogramm Fernerkdg Geoinform 3:109–122 Frid CLJ, Clark RA, Hall JA (1999) Long-term changes in the benthos on a heavily fi shed ground off the NE coast of England. Mar Ecol Prog Ser 188:13–20 Frieben B, Prolingheuer U, Wildung M, Meyerhoff E (2012) Aufwertung der Agrarlandschaft durch ökologischen Landbau—Eine Möglichkeit der produktionsintegrierten Kompensation? Natschutz Landschplan 44(4):108–114 Friedel A, vOheimb G, Dengler J, Härdtle W (2006) Species diversity and species composition of epiphytic bryophytes and lichens—a comparison of managed and unmanaged beech forests in NE Germany. Feddes Repertorium 117:172–185 Friederici P (2006) Nature’s restoration: people and places on the front lines of conservation. Island Press, Washington, DC Fries C, Johansson O, Pettersson B, Simonsson P (1997) Silvicultural models to maintain and restore natural stand structures in Swedish boreal forests. For Ecol Manag 94:89–103 Friese K, Hupfer M, Schultze M (1998) Chemical characteristics of water and sediment in acid mining lakes of the Lusatian lignite district. In: Geller W, Klapper H, Salomons W (eds) Acidic mining lakes, Acid mine drainage, limnology and reclamation, vol 2. Springer, Heidelberg, pp 25–45 Friese K, Witter B, Miehlich G, Rode M (eds) (2013) Stoffhaushalt von Auenökosystemen: Böden und Hydrologie, Schadstoffe, Bewertungen. Springer, Heidelberg Fritz P (ed) (2006) Ökologischer Waldumbau in Deutschland. Fragen, Antworten, Perspektiven. Oekom, München Fröhlich J, Rösner HU, Hofstede J (2015) Klimaanpassung an weichen Küsten. Fallbeispiele aus Europa und den USA für das schleswig-holsteinische Wattenmeer. WWF Deutschland. https:// www.­w wf.­d e/fileadmin/fm-wwf/PublikationenPDF/WWF-­Studie-­Klimaanpassungan-weichenKuesten.­pdf. Accessed 24 Jan 2017 Frölander E (2013) Water preservation project ‘AQUABRAVA’. European Network for Rural development. https://enrd.­ec.­europa.­eu/projects-practice/ water-preservation-project-%E2%80% 98aquabrava%E2%80%99_en. Accessed 19 May 2017 Frouz J (2013) Soil biota and ecosystem development in post mining sites. CRC Press, Boca Raton Frouz J, Cienciala E, Pižl V, Kalcik J (2009) Carbon storage in post-mining forest soil, the role of tree

611 References

biomass and soil bioturbation. Biogeochem 94:111–121 Frouz J, Prach K, Pižl V, Háněl L, Starý J, Tajovský K, Materna J, Balík V, Kalačík J, Řehounková K (2008) Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur J Soil Biol 44:109–121 Frühwald A, Heuveldop J, Thoroe C (2002) Stellenwert der Forst- und Holzwirtschaft in der Klimapolitik. Forsch Rep 1:35–39 Frumkin H, Frank L, Jackson R (2004) Urban sprawl and public health: designing, planning, building for healthy communities. Island Press, Washington, DC Fry EL, Manning P, Allen DGP, Hurst A, Everwand G, Rimmler M, Power SA (2013) Plant functional group composition modifies the effects of precipitation change on grassland ecosystem function. PLoS One 8(2):e57027 FSC (2017a) Forest Stewardship Coucil. https://us.­fsc.­ org/. Accessed 4 Sep 2017 FSC (2017b) FSC—Waldzertifizierung. Maßstab für die Waldbewirtschaftung. Forest Stewardship Council Deutschland. http://www.­fscdeutschland.­de/de-de/ wald/waldzertifizierung. Accessed 27 July 2017 Fuchs D, Hänel K, Lipski A, Reich M, Finck P, Riecken U (2011) Länderübergreifender Biotopverbund in Deutschland. Grundlagen und Fachkonzept. Natschutz Biol Vielfalt 96:1–192 Fuller RA, Gaston KJ (2009) The scaling of green space coverage in European cities. Biol Lett 5:352–355 Fuller RA, Irvine KN, Devine-Wright P, Warren PH, Gaston KJ (2007) Psychological benefits of greenspace increase with biodiversity. Biol Lett 3:390–394 Funk DT (1990) Alnus glutinosa (L.) Gaertn. European alder. In: Burns RM, Honkala BH (eds) Silvics of North America: 2. Hardwoods. Agriculture Handbook 654. US Department of Agriculture, Forest Service, Washington, DC Funke W, Heinle R, Kuptz S, Majzian O, Reich M (1986) Arthropodengesellschaften im Ökosystem, Obstgarten. Verh Ges Ökol 14:131–141 Furman E, Pihlajamäki M, Välipakka P, Myrberg K (eds) (2013) The Baltic Sea—environment and ecology. http://www.­syke.­fi/download/noname/% 7B45C3C2FD-9301-43D7-803F-90460B436AE5% 7D/99119. Accessed 26 Mar 2017 Furness RW, Wade HM, Masden EA (2013) Assessing vulnerability of marine bird populations to off shore wind farms. J Environ Manag 119:56–66 Furse MT, Hering D, Brabec K, Buffagni A, Sandin L, Verdonschot PFM (2009) The ecological status of European rivers: evaluation and intercalibration of assessment methods. Springer, Dordrecht

Fürstenow J (2004) Naturschutzfachliche Bewertung einer 10-jährigen Landschaftspflege im NSG Ferbitzer Bruch (Landkreis Potsdam-Mittelmark). Natursch Landschpfl Brandenbg 13:37–44 Fürstenow J, Kummer V (2011) Vegetation und Landschaftspflege in der Döberitzer Heide. Mitt florSoz Arbgem Suppl 4:103–126 Gabriel KMA, Endlicher WR (2011) Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environ Poll 159:2044– 2050 Gächter R (1976) Die Tiefenwasserableitung, ein Weg zur Sanierung von Seen. Schweiz Z Hydrol 38:1–28 Gächter R, Müller B (2003) Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnol Oceanogr 48:929–933 Gadboury M, Wong R (1999) A framework for conducting effectiveness evaluations of watershed restoration projects. Watershed Restoration Program, B.C. Ministry of Environment, Lands and Parks and Ministry of Forests, Victoria. Watershed Res Tech Circ 12:1–40 Gafta D, Mountford JO (eds) (2008) Manual de interpretare a habitatelor Natura 2000 din România. Ministerul Mediului şi Dezvoltării Durabile. ClujNapoca. http://www.­coastal-biodiv.­ro/docs/manual_de_interpretare_a_habitatelor.­pdf. Accessed 13 Feb 2017 Gailing L, Röhring A, Vetter A (2007) Kulturlandschaft als integrativer Ansatz für eine nachhaltige Regionalentwicklung. In: Wöllecke J, Anders K, Durka W, Elmer M, Wanner W, Wiegleb G (eds) Landschaft im Wandel—Natürliche und anthropogene Besiedlung der Niederlausitzer Bergbaufolgelandschaft. Shaker, Aachen, pp 233–248 Galatowitsch SM (2012) Ecological restoration. Oxford University Press, Oxford Galgani F, Fleet D, van Franeker J, Katsanevakis S, Maes T, Mouat J, Oosterbaan L, Poitou I, Hanke G, Thompson R, Amato E, Birkun A, Janssen C (2010) Marine strategy framework directive—task group 10 report: Marine Litter. EUR 24340 EN— Joint Research Centre, Office for Official Publications of the European Communities, Luxembourg Gallai N, Salles JM, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture with pollinator decline. Ecol Econ 68(3):810–821 Gambi CM, Nowell ARM, Jumars PA (1990) Flume observations on flow dynamics in Zostera marina L. (eelgrass) beds. Mar Ecol Prog Ser 61:159–169 Ganas A, Aerts J, Astaras T, de Vente J, Frogoudakis E, Lambrinos N, Riskakis C, Oikonomidis D, Filippidis A, Kassoli-Fournaraki A (2004) The use of Earth observation and decision support systems in the restoration of open-cast nickel

612

References

mines in Evia, central Greece. Int J Remote Sens 25(16):3261–3274 Garbutt RA, Reading CJ, Wolters M, Gray AJ, Rothery P (2006) Monitoring the development of intertidal habitats on former agricultural land after managed realignment of coastal defences at Tollesbury, Essex, UK.  Marine Poll Bull 53: 155–164 Garcia-Guinea J, Correcher V, Recio-Vazquez L, Crespo-Feo E, Gonzalez-Martin R, Tormo L (2010) Influence of accumulation of heaps of steel slag on the environment: determination of heavy metals content in the soils. Ann Acad Bras Cienc 82(2):267–277 Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev 30:581–599 Garibaldi A, Turner N (2004) Cultural keystone species: implications for ecological conservation and restoration. Ecol Soc 9(3):1 Garratt MPD, Breeze TD, Jenner N, Polce C, Biesmeijer JC, Potts SG (2014) Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agric Ecosyst Environ 184:34–40 Garrod GD, Willis KG (1992) The amenity value of woodland in Great Britain: a comparison of economic estimates. Environ Res Econ 2(4):415–434 Garrod G, Willis KG (1999) Economic valuation of the environment: methods and case studies. Elgar, Cheltenham Garve E (1999) Neu aufgetretene Blütenpflanzen an salzhaltigen Rückstandshalden in Niedersachsen. Braunschw Geobot Arb 6:171–191 Gascon M, Triguero-Mas M, Martínez D, Dadvand P, Rojas-Rueda D, Plasència A, Nieuwenhuijsen MJ (2016) Residential green spaces and mortality: a systematic review. Environ Int 86:60–67 Gaston KJ (2010) Urban ecology. Cambridge University Press, Cambridge Gasser S (2021) Eröffnung der Torfstiche “Fondazione” und “Diuke” in der Gemeinde Salurn. Umweltversträglichkeitsstudie gemäß 2011/92/ EU - Anhang IV. Autonomous Province of Bolzano-South Tyrol, Salurn Gätje C (2004) Double strategy towards sustainable tourism: Offers for visitors and opportunities for people employed in tourism in the Wadden Sea National Park in Schleswig-Holstein. Work Pap Finn For Res Inst 2:330–335 Gatzweiler HP, Meyer K, Milbert A (2003) Schrumpfende Städte in Deutschland? Fakten und Trends. Inform Raumentw 10(11):557–574 Gaudig G, Fengler F, Krebs M, Prager A, Schulz J, Wichmann S, Joosten H (2013/14) Sphagnum farming in Germany—a review of progress. Mires Peat 13:1–11 Gavilanes-Terána I, Jara-Samaniego J, IdrovoNovillo J, Bustamante MA, Pérez-Murcia MD, Pérez-

Espinosa A, López M, Paredes C (2017) Agroindustrial compost as a peat alternative in the horticultural industry of Ecuador. J Environ Manag 186(1):79–87 Gbif (2017) Global biodiversity information facility. http://www.­gbif.­org. Accessed 29 May 2017 Gebhardt S, Neubert K, Wöllecke J, Münzenberger B, Hüttl RF (2007) Ectomycorrhiza communities of red oak (Quercus rubra L.) of different age in the Lusatian lignite mining district, East Germany. Mycorrhiza 17(4):279–290 Gebhart H (1996) Ecological and economic consequences of introductions of exotic wildlife (birds and mammals) in Germany. Wildl Biol 2:205–211 Gedan KB, Kirwan ML, Wolanski E, Barbier EB, Silliman BR (2011) The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clima Change 106:7–29 Gedan KB, Silliman BR, Bertness MD (2009) Centuries of human-driven change in salt marsh ecosystems. Annu Rev Mar Sci 1:117–141 Gedan KB, Silliman BR, Bertness MD (2013) Centuries of human-driven change in salt marsh ecosystems. Annu Rev Mar Sci 1:117–141 Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Treeline shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582 Geiger A, Kordges T (2011) Amerikanischer Ochsenfrosch—Lithobates catesbeianus. In: Hachtel M, Schlüpmann M, Weddeling K, Thiesmeier B, Geiger A, Willigalla C (eds) Handbuch der Amphibien und Reptilien Nordrhein-Westfalens. Laurentis, Bielefeld, pp 1159–1165 Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, Ceryngier P, Liira J, Tscharntke T, Winqvist C, Eggers S, Bommarco R, Part T, Bretagnolle V, Plantegenest M, Lement LW, Dennis C, Palmer C, Onate JJ, Guerrero I, Hawro V, Aavik T, Thies C, Flohre A, Hanke S, Fischer C, Goedhart PW, Inchausti P (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11(2):97–105 Geisbauer C, Hampicke U (2012) Ökonomie schutzwürdiger Ackerflächen—Was kostet der Schutz von Ackerwildkräutern? Broschüre-Panzig, Greifswald. http://www.­schutzaecker.­de/?publikationen. Accessed 24 Aug 2017 Geiter O, Homma S (2002) Modellfall Gänse (Anatidae) unter besonderer Berücksichtigung der Kanadagans (Branta canadensis). In: Geiter O, Homma S, Kinzelbach R (eds) Bestandsaufnahme und Bewertung von Neozoen in Deutschland. UBATexte 25(2):1–31 Geitner C, Mayr A, Rutzinger M, Löbmann MT, Tonin R, Zerbe S, Wellstein C, Markart G, Kohl B (2021) Shallow erosion on grassland slopes in the

613 References

European Alps—Geomorphological classification, spatio-temporal analysis, and understanding snow and vegetation impacts. Geomorphology 373:107446 Geldmann J, González-Varo JP (2018) Conserving honey bees does not help wildlife. Science 359(6374):392–393 Geller W, Klapper H, Schultze M (1998) Natural and anthropogenic sulfuric acidification of lakes. In: Geller W, Klapper H, Salomons W (eds) Acidic mining lakes. Springer, Heidelberg, pp 3–14 Geller W, Schultze M, Kleinmann B, Wolkersdorfer C (eds) (2012) Acidic pit lakes: the legacy of coal and metal surface mines. Springer, Heidelberg Genney DR, Alexander IJ, Hartley SE (2002) Soil organic matter distribution and below-ground competition between Calluna vulgaris and Nardus stricta. Funct Ecol 16:664–670 George W (ed) (2017) Laudato si Wissenschaftler antworten auf die Enzyklika von Papst Franziskus. Psychosozial, Gießen Gepp J (1986) Trockenrasen in Österreich als schutzwürdige Refugien wärmeliebender Tierarten. In: Holzner W, Horvatic E, Köllner E, Köppl E, Pokorny M, Scharfetter E, Schramayr G, Strudl M (eds) Österreichischer Trockenrasen-Katalog. Grüne R Bundesminist Ges Umweltsch 6:15–29 Gercken J, Schmidt A (2014) Current status of the European Oyster (Ostrea edulis) and possibilities for restoration in the German North Sea. Bundesamt für Naturschutz, Bonn. https://www.­bfn.­de/fileadmin/ BfN/meeresundkuestenschutz/Dokumente/201506-­0 2_Auster_Machbarkeitsstudie-­b arrierefreienglish.­pdf. Accessed 9 Aug 2018 Geringhoff HJT, Daniëls FJA (2003) Zur Syntaxonomie des Vaccinio-Callunetum Büker 1942 unter besonderer Berücksichtigung der Bestände im Rothaargebirge. Abh Westfäl Mus Naturkd 65(3):1–80 Gerken B, Görner M (eds) (1999) Europäische Landschaftsentwicklung mit großen Weidetieren— Geschichte, Modelle und Perspektiven. Nat Kultlandsch 3:1–435 Gerlier M, Roche P (1998) A radio telemetry study of the migration of Atlantic salmon (Salmo salar L.) and sea trout (Salmo trutta trutta L.) in the upper Rhine. Hydrobiologia 371:283–293 Germanwatch (2017) Erdüberlastungstag. https:// germanwatch.­org/overshoot. Accessed 10 Sep 2017 Gerstgraser C, Männel R, Müller G, Prugger H, Stowasser A, Tynior R (2005) Ufersicherung—Strukturverbesserung. Anwendung ingenieurbiologischer Bauweisen im Wasserbau, Handbuch 1. Sächsisches Staatsministerium für Umwelt und Landwirtschaft, Dresden Gerstgraser C, Gassert R, Giebler S (2015) Erfolgskontrolle einer großen Flussrenaturierung am

Beispiel der Spreeaue bei Cottbus. Dresdner Wasserbaul Mitt 53:541–550 Gerten D, Bergmann S (2012) Facing the human faces of climate change. In: Gerten D, Bergmann S (eds) Religion in environmental and climate change: suffering, values, lifestyles. Continuum International, London, pp 3–15 Gettner S (2003) Vegetationsveränderungen in Festlands-Salzmarschen an der Westküste SchleswigHolsteins—elf Jahre nach Änderung der Nutzungen. Kiel Not Pflkd Schleswig-­ Holstein Hamburg 30:69–83 Gibbs JN (1978) Development of the Dutch elm disease in Southern England. Ann Appl Biol 88: 219–228 Gibbs JN, Lipscombe MA, Peace AJ (1999) The impact of Phytophthora disease on riparian populations of common alder (Alnus glutinosa) in southern Britain. Eur J For Pathol 29:39–50 Gibson DJ (2009) Grasses and grassland ecology. Oxford University Press, Oxford Giguet-Covex C, Arnaud F, Poulenard J, Disnar JR, Delhorn C, Francus P, David F, Enters D, Rey PJ, Delannoy JJ (2011) Changes in erosion patterns during the Holocene in a currently treeless subalpine catchment inferred from lake sediment geochemistry (Lake Anterne, 2063  m a.s.l., NW French Alps): The role of climate and human activities. The Holocene 21(4):651–665 Giguet-Covex C, Pansu J, Arnaud F, Rey J, Griggo C, Gielly L, Domaizon I, Coissac E, David F, Choler P, Poulenard J, Taberlet P (2014) Long livestock farming history and human landscape shaping revealed by lake sediment DNA.  Nature Comm 5:3211 Gijbels P, Adriaens D, Honnay O (2012) An orchid colonization credit in restored calcareous grasslands. Ecoscience 19(1):21–28 Gilardi KVK, Carlson-Bremer D, June JA, Antonelis K, Broadhurst G, Cowan T (2010) Marine species mortality in derelict fishing nets in Puget Sound, WA and the cost/benefits of derelict net removal. Marine Poll Bull 60(3):376–382 Gilbert OL (1991) The ecology of urban habitats. Chapman & Hall, London Gilcher S, Bruns D (1999) Renaturierung von Abbaustellen. Reihe Praktischer Naturschutz. Ulmer, Stuttgart Gilhaus K, Vogt V, Hölzel N (2015) Restoration of sand grasslands by topsoil removal and self-greening. Appl Veg Sci 18:661–673 Gillham ME (1970) Seed dispersal by birds. In: Perrings FE (ed) The flora of a changing Britain. Classey, Hampton, pp 90–98 Gilliam FS (2006) Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J Ecol 94:1176–1191

614

References

Gillings MR, Paulsen IT, Tetu SG (2017) Genomics and the evolution of antibiotic resistance. Ann N Y Acad Sci 1388:92–107 Gimingham CH (1972) Ecology of heathlands. Chapman and Hall, London Gimingham CH (1988) A reappraisal of cyclical processes in Calluna heath. Vegetatio 77:61–64 Gimingham CH, Chapman SB, Webb N (1979) European heathlands. In: Specht RL (ed) Heathlands and related shrublands. Elsevier, Amsterdam, pp 365–413 Gimingham CH, Miller GR (1968) Measurement of the primary production of dwarf shrub heath. IBP Handbook 6:30–34 Gioria M, Osborne B (2010) Similarities in the impact of three large invasive plant species on soil seed bank communities. Biol Invasions 12:1671–1683 Gioria M, Pyšek P, Moravcová L (2012) Soil seed banks in plant invasions: promoting species invasiveness and long-term impact on plant community dynamics. Preslia 84:327–350 Giovannini G (2017) Paesaggi agro-forestali in Trentino. Tutela, ripristino e miglioramento degli ambienti tradizionali. Provincia autonoma di Trento. Servizio foreste e fauna. https:// forestefauna.­p rovincia.­t n.­i t/content/download/13836/240950/file/paesaggi_agro_forestali_ nternet.­pdf. Accessed 23 Aug 2017 Glacken CJ (1976) Traces on the Rhodian Shore. Nature and culture in western thought from ancient times to the end of the eighteenth century. University of California Press, Berkeley Glandt D, Kronshage A (eds) (2004) Der Europäische Laubfrosch (Hyla arborea)—Biologie, Schutzmaßnahmen, Effizienzkontrollen. Suppl Z Feldherpetol 5:1–192 Glaser FF, Hauke U (2004) Historisch alte Waldstandorte und Hudewälder in Deutschland. Schrreihe Angew Landschökol 61:1–194 Gläser J (2005) Untersuchungen zur historischen Entwicklung und Vegetation mitteldeutscher Auenwälder. Dissertation, Umweltforschungszentrum Leipzig-Halle Glaser KH, Hassler D, Hassler M (2001) Wässerwiesen, Geschichte, Technik und Ökologie der bewässerten Wiesen, Bäche und Gräben in Kraichgau, Hardt und Bruhrain. Regionalkultur, UbstadtWeiher Glasser H (2011) Naess’s deep ecology: implications for the human prospect and challenges for the future. Inquiry 54(1):52–77 Glavac V (1996) Vegetationsökologie: Grundfragen, Aufgaben, Methoden. Fischer, Jena Glavac V (1996) Vegetationsökologie: Grundfragen, Aufgaben, Methoden. Fischer, Jena, Stuttgart, Lübeck, Ulm Glen E, Price EAC, Caporn SJM, Carroll JA, Jones LM, Scott R (2017) Evaluation of topsoil inver-

sion in U.K. habitat creation and restoration schemes. Restor Ecol 25:72–81 Global Forest Watch (2015) Czech Republic. Washington, DC. http://www.­globalforestwatch.­org/ country/CZE. Accessed 8 July 2017 Glos J, Behnke J, Feigs J, Grunwald G, Kühne D, Rottenau A, Ryz S (2013) Amphibien in Flussauen— Einfluss der Renaturierung der Lenzener Elbtalaue auf die Diversität von Amphibien und die Entwicklung von Amphibienpopulationen. In: Struck A, Garbe H, Felinks B (eds) Auenreport Spezial: Die Deichrückverlegung bei Lenzen. Erste Ergebnisse der wissenschaftlichen Begleitung. Ministerium für Umwelt, Gesundheit und Verbraucherschutz des Landes Brandenburg, Potsdam, pp 31–36 Glos R (1998) Entwicklungs- und Vegetationsgeschichte im Bereich des Dosenmoores. In: Irmler U, Müller K, Eigner J (eds) Das Dosenmoor, Ökologie eines regenerierenden Hochmoores. Wachholtz, Neumünster, pp 76–92 Główny Urząd Statystyczny (2016) Leśnictwo. Warszawa. http://stat.­gov.­pl/en/topics/agriculture-­ forestry/forestry/forestry-2016,1,7.­html. Accessed 8 July 2017 Gnecco I, Berretta C, Lanza LG, La Barbera P (2005) Storm water pollution in the urban environment of Genoa, Italy. Atmos Res 77:60–73 Gobet E, Hochuli AH, Ammann B, Tinner W (2004) Vom Urwald zur Kulturlandschaft des Oberengadins, Vegetationsgeschichte der letzten 6200 Jahre. Jahrbuch der Schweiz Gesell Ur-Frühgesch 87:255–270 Gobster PH, Hull RB (eds) (2000) Restoring Nature: Perspectives from the Social Sciences and Humanities. Island Press, Washington, DC Gockel S (2016) Wachstumsreaktionen einzeln eingemischter Vogelbeeren (Sorbus aucuparia L.) in Fichtenjungbeständen nach Freistellung. Dissertation, TU Dresden Godefroid S, Piazza C, Rossi G, Buord S, Stevens AD, Aguraiuja R, Cowell C, Weekley CW, Vogg G, Iriondo JM, Johnson I, Dixon B, Gordon D, Magnanon S, Valentin B, Bjureke K, Koopman R, Vicens M, Virevaire M, Vanderborght T (2011) How successful are plant species reintroductions? Biol Conserv 144(2):672–682 Gold S (2003) The development of European forest resources, 1950 to 2000: a better information base. United Nations publications ECE/TIM/DP/31. http://www.­fao.­org/3/a-­ae890e.­pdf. Accessed 7 Aug 2018 Goldammer JG, Page H, Prüter J (1997) Feuereinsatz im Naturschutz in Mitteleuropa—Ein Positionspapier. NNA Ber 10(5):2–17 Goldammer JG, Brunn E, Held A, Johst A, Kathke S, Meyer F, Pahl K, Restas A, Schulz J (2012) Kontrolliertes Brennen zur Pflege von Zwergstrauch-

615 References

heiden (Calluna vulgaris) auf munitionsbelasteten Flächen: Problemstellung und erste Erfahrungen im Pilotvorhaben im Naturschutzgebiet “HeidehofGolmberg” (Landkreis Teltow-Fläming). Natschutz Biol Vielfalt 127:65–95 Goldammer JG, Statheropoulos M, Andreae MO (2009) Impacts of vegetation fi re emissions on the environment, human health, and security: a global perspective. In: Bytnerowicz A, Arbaugh M, Andersen C, Riebau A (eds) Wildland fires and air pollution. Elsevier, Amsterdam, pp 1–36 Goldberg ED (1997) Plasticizing the seafloor: an overview. J Environ Technol 18(2):195–201 Gomes HI (2012) Phytoremediation for bioenergy: challenges and opportunities. J Environ Technol Rev 1(1):59–66 Gons H, Otten JH, Rijkeboer M (1991) The significance of wind resuspension for the dominance of filamentous Cyanobacteria in a shallow, eutrophic lake. Memorie Dell’Istituto Italiano Di Idrobiologia 48:233–250 Gonsiorczyk T, Kasprzak P, Wauer G, Casper P (2015) Restaurierung des Tiefwarensees (Mecklenburg-Vorpommern) durch eine kombinierte Zugabe von Aluminat und Calciumhydroxid in das Tiefenwasser. In: Hupfer M, Calmano W, Fischer H, Klapper H (eds) Handbuch Angewandte Limnologie 31. Erg.LfG 1/15:3–9 González D, Coughlan C, Stips A, Stolk A, González Pola C, Moreno Aranda IM, Giorgi G, Rees J, Babbini L, Manca Zeichen M, Alenius P, Cariou V, Zervakis V, Krzyminski W (2015) Review of the Commission Decision 2010/477/EU concerning MSFD criteria for assessing Good Environmental Status—Descriptor 7. JRC Technical Reports 27544 EN. https://mcc.­jrc.­ec.­europa.­eu/ documents/201603310431.­pdf. Accessed 9 June 2022 Gophen M (1990) Biomanipulation—retrospective and future development. Hydrobiologia 200:1–11 Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climate warming. Ecol Appl 1:182–195 Gorham E, Janssens JA, Wheeler GA, Glaser PH (1987) The natural and anthropogenic acidification of peatlands. In: Hutchinson TC, Meema KM (eds) Effects of atmospheric pollutants on forests, wetlands and agricultural ecosystems, NATO ASI Series G: Ecological Sciences 16. Springer, Heidelberg, pp 493–512 Gorham E, Underwood JK, Martini FB, Gordon Ogden IIIJ (1986) Natural and anthropogenic causes of lake acidification in Nova Scotia. Nature 324:451–453 Gorissen I (1998) Die großen Hochmoore und Heidelandschaften in Mitteleuropa. Natur—Land-

schaft—Naturschutz. Selbstverlag Gorissen, Siegburg Gorke M (2010) Eigenwert der Natur. Ethische Begründung und Konsequenzen. Hirzel, Stuttgart Görner M (2009) Haben Waschbären (Procyon lotor) einen Einfluß auf den Reproduktionserfolg heimischer Vögel? Acta Ornithoecol 6:197–209 Gosling LM, Baker S (1989) The eradication of muskrats and coypus from Britain. Biol J Linn Soc 38:39–51 Gossner MM, Lewinsohn TM, Kahl T, Grassein F, Boch S, Prati D, Birkhofer K, Renner SC, Sikorski J, Wubet T, Arndt H, Baumgartner V, Blaser S, Blüthgen N, Börschig C, Buscot F, Diekötter T, Ré Jorge L, Jung K, Keyel AC, Klein A-M, Klemmer S, Krauss J, Lange M, Müller J, Overmann J, Pašalić E, Penone C, Perović DJ, Purschke O, Schall P, Socher SA, Sonnemann I, Tschapka M, Tscharntke T, Türke M, Venter PC, Weiner CN, Werner M, Wolters V, Wurst S, Westphal C, Fischer M, Weisser WW, Allan E (2016) Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540: 266–269 Göthe E, Timmerman A, Januschke K, Hering D, Baattrup-Pedersen A (2015) Structural and functional responses of floodplain vegetation to stream ecosystem restoration. Hydrobiologia 769(1):79–92 Götting E (2001) Development of salt marsh arthropod fauna after opening a summer polder. Senckenberg Marit 31:333–340 Göttlich K (1991) Kataster der Moore und Feuchtgebiete Südtirols. Tätigkeitsber biol Landeslab Auton Prov Bozen 6:1–74 Goulson D (2013) An overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50:977–987 Goulson D (2014) Ecology: pesticides linked to bird declines. Nature 511:295–296 Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347(6229):1255957 Grabherr G (2009/2010) Biodiversitätsverlust durch moderne Hochlagen-Landwirtschaft. Jahrb Ver Schutz Bergwelt (München) 74/75:29–40 Grabherr G, Gottfried M, Pauli H (2011) Global change eff ects on alpine plant diversity. In: Zachos FE, Habel JC (eds) Biodiversity hotspots. Springer, Heidelberg, pp 149–163 Grabherr G, Kusstatscher K, Mair A (1985) Zur vegetationsökologischen Aufbereitung aktueller Naturschutzprobleme im Hochgebirge. Veröff Zool-Bot Ges Österr 123:269–292

616

References

Grabherr G, Mucina L (eds) (1993) Die Pflanzengesellschaften Österreichs. Part II. Natürliche waldfreie Vegetation. Fischer, Jena Grabner DS, Weigand AM, Leese F, Winking C, Hering D, Tollrian R, Sures B (2015) Invaders, natives and their enemies: distribution patterns of amphipods and their microsporidian parasites in the Ruhr Metropolis, Germany. Parasit Vect 8(1):419 Grace J (2004) Understanding and managing the global carbon cycle. J Ecol 92:189–202 Gradinaru G (2014) A business perspective of a natural capital restoration. Procedia Econ Finance 10:97–103 Graebner P (1925) Die Heide Norddeutschlands, 2nd edn. Engelmann, Leipzig Gräf B, Trappmann R (2009) LIFE-Projekt Medebacher Bucht. Grünlandrenaturierung—Gewässerrenaturierung—Öffentlichkeitsarbeit. Naturschutzzentrum—Biologische Station Hochsauerlandkreis e. V. (eds). http://www.­medebacher-bucht.­de/life_projekt/ life_projekt.­html. Accessed 6 Oct 2017 Graf F (1994) Ecology and sociology of macromycetes in snow-beds with Salix herbacea L. in the alpine Valley of Radönt (Grisons, Switzerland). Diss Bot 235:1–242 Graf MD, Bérubé V, Rochefort L (2012) Restoration of peatlands after peat extraction: impacts, restoration goals, and techniques. In: Vitt DH, Bhatti JS (eds) Restoration and reclamation of boreal ecosystems. Cambridge University Press, Cambridge, pp 259–280 Graham JH, Duda JJ (2011) The humpbacked species richness-curve: a contingent rule for community ecology. Int J Ecol 2011:1–15 Graiss W, Krautzer B (2011) Soil erosion and surface runoff on slopes in mountain environment depending on application technique and seed mixture—a case-study. In: Godone D, Stanchi S (eds) Soil erosion studies. InTechopen, London, pp 193–212 Grand-Clement E, Anderson K, Smith D, Angus M, Luscombe DJ, Gatis N, Bray LS, Brazier RE (2015) New approaches to the restoration of shallow marginal peatlands. J Environ Manag 161:417–430 Grant SA, Armstrong HM (1993) Grazing ecology and the conservation of heather moorland: the development of models as aids to management. Biodivers Conserv 2:79–94 Gratzer G, Veselinovic B, Lang HP (2012) Urwälder in Mitteleuropa—die Reste der Wildnis. Silva fera 1:16–29 Graves PE (2007) Environmental economics. A critique of benefit-cost analysis. Rowman & Littlefield, Lanham Graw M (2003) Ökologische Bewertung von Fließgewässern. 2nd ed. Schrreihe Ver Deut Gewässersch 64:1–96

Grebe R, Bauernschmitt G (1995) Biosphärenreservat Rhön. Rahmenkonzept für Schutz, Pflege und Entwicklung. Neumann, Radebeul Green S, Baird A (2012) A mesocosm study of the role of the sedge Eriophorum angustifolium in the efflux of methane including that due to episodic ebullition from peatlands. Plant Soil 351:207–218 Greenberg MI, Sexton KJ, Vearrier D (2016) Seadumped chemical weapons: environmental risk, occupational hazard. Clin Toxicol 54(2):79–91 Greenstreet SPR, Hall SJ (1996) Fishing and the groundfish assemblage structure in the north-­ western North Sea: an analysis of long-term and spatial trends. J Anim Ecol 65:577–598 Gregorowius D (2016) Das Gute in den Umweltwissenschaften. VSH-Bull 1:52–58 Gregow H, Laaksonen A, Alper ME (2017) Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951– 2010. Sci Rep 7:46397 Greipsson S (2011) Restoration ecology. Jones & Bartlett Learning, Burlington Gren I-M, Elofsson K, Jannke P (1997) Cost-effective nutrient reductions to the Baltic Sea. Environ Res Econ 10:341–362 Grenzius R (1987) Die Böden Berlins (West)—Klassifizierung, Vergesellschaftung, ökologische Eigenschaften. Dissertation, TU Berlin Grey W (1993) Anthropocentrism and deep ecology. Australas J Philos 71(4):463–475 Griffith B, Scott JM, Carpenter JW, Reed C (1989) Translocation as a species conservation tool: status and strategy. Science 245:477–480 Grigal DF (1985) Sphagnum production in forested bogs of northern Minnesota. Can J Bot 63:1204– 1207 Griggs FT (2009) California riparian habitat restoration handbook. River Partners, 2nd ed. http:// www.­water.­c a.­g ov/urbanstreams/docs/ca_riparian_handbook.­pdf. Accessed 11 Jan 2018 Grimble R, Wellard K (1997) Stakeholder methodologies in natural resource management: a review of concepts, contexts, experiences and opportunities. Agric Syst 55:173–193 Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242:344–347 Grime JP (1974) Vegetation classification by reference to strategies. Nature 250:26–31 Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111(982):1169–1194 Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties, 2nd edn. Wiley, Chichester

617 References

Grimm NB, Faeth SH, Golubiewski NE, Redman CL, WuJ BX, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760 Grizzetti B, Lanzanova D, Liquete C, Reynaud A, Cardoso AC (2016) Assessing water ecosystem services for water resource management. Environ Sci Pol 61:194–203 Groff C, Angeli F, Asson D, Bragalanti N, Pedrotti L, Rizzoli R, Zanghellini P (2016) Rapporto Orso 2015 del Servizio Foreste e Fauna della Provincia Autonoma di Trento. Con appendici Lince e Lupo. Provincia Autonoma di Trento. www.­orso.­ provincia.­tn.­it. Accessed 15 Oct 2016 Groff C, Angeli F, Asson D, Bragalanti N, Pedrotti L, Zanghellini P (eds) (2020) 2019 Large carnivores report. Autonomous Province of Trento’s Forestry and Wildlife Department Grolle R, Long D (2000) An annotated checklist of Hepaticae and Anthocerotae of Europe and Macaronesia. J Bryol 28:198–267 Gronemann S, Hampicke U (1997) Die Monetarisierung der Natur. Möglichkeiten, Grenzen und Methoden. In: Weise P (ed) Nachhaltigkeit der ökonomischen Theorie. Campus, Frankfurt a. M, pp 164–207 Grootjans AP, Bakker JP, Jansen AJM, Kemmers RM, Gulati RD, Nienhuis PH (2002) Restoration of brook valley meadows in The Netherlands. Hydrobiologia 478:149–170 Grootjans AP, van Diggelen R (1995) Assessing the restoration prospects of degraded fens. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) Restoration of temperate wetlands. Wiley, Chichester, pp 73–90 Grootjans AP, van Diggelen R, Bakker JP (2006) Restoration of mires and wet grasslands. In: van Andel J, Aronson J (eds) Restoration ecology. Blackwell, Oxford, pp 111–123 Grootjans AP, Schipper PC, Vanderwindt HJ (1986) Influence of drainage on N-mineralization and vegetation response in wet meadows. 2. CirsioMolinietum stands. Acta Oecol-Oec Plant 7:3–14 Große Hüttmann M, Wehling HG (eds) (2013) Das Europalexikon, 2nd edn. Bonn, Dietz Grosse-Brauckmann G (1972) Über pflanzliche Makrofossilien mitteleuropäischer Torfe. Vol II: Weitere Reste (Früchte und Samen, Moose u. a.) und ihre Bestimmungsmöglichkeiten. Telma 4:51–117 Grosser D, Ehmcke G (2012) Das Holz der Lärche— Eigenschaften und Verwendung. LWF-­ Wissen 69:65–71 Grosvernier P, Matthey Y, Buttler A (1995) Microclimate and physical properties of peat: new clues to the understanding of bog restoration processes. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) Restoration of temperate wetlands. Wiley, Chichester, pp 435–450 Grosvernier P, Staubli P (eds) (2009) Regeneration von Hochmooren. Grundlagen und technische

Massnahmen. Umwelt-Vollzug Nr. 0918. Bundesamt für Umwelt, Bern Grube A, Usinger H (2017) Spring fed raised peat hummocks with tufa deposits at the Farbeberg hills (Northwest-Germany): Structure, genesis and paleoclimatic conclusions (Eemian, Holocene). E&G Quat Sci J 66(1):14–31 Gruber A, Pauli A (2007) Nutzungsgeschichten aus dem Wienerwald. Vom Streurechen, Pechen und den Adletzbeerbäumen. http://www.­noe.­gv.­at/noe/ Naturschutz/Leseprobe_Nutzungsgeschichten_2.­ pdf. Accessed 21 Aug 2017 Grubinger H (2015) Basiswissen Kulturbautechnik und Landneuordnung: Planung, Bewertung, Nutzung und Schutz unserer Lebensräume für Planer. Kulturbau- und Umweltingenieure. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart Gruda N (2012) Sustainable peat alternative growing media. Acta Hortic 927(2):973–980 Grüneberg B, Ostendorp W, Leßmann D, Wauer G, Nixdorf B (2009) Restaurierung von Seen und Renaturierung von Seeufern. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer Spektrum, Heidelberg, pp 125–151 Grüneberg E, Ziche D, Wellbrock N (2014) Organic carbon stocks and sequestration rates of forest soils in Germany. Glob Change Biol 20:2644– 2662 Grunewald K, Bastian O (eds) (2012) Ökosystemdienstleistungen. Konzept, Methoden und Fallbeispiele. Springer Spektrum, Heidelberg Grünewald U (2001) Water resources management in river catchments influenced by lignite mining. Ecol Eng 17:143–152 Grunwald M (2002) Carabid beetles as indicators for restoration of salt grasslands: the example of the polder “Ziesetal”. In: Fock T, Hergarden K, Repasi D (eds) Salt grasslands and coastal meadows in the Baltic region. Proceedings of the 1st conference. FH Neubrandenburg, Neubrandenburg, pp 101–113 GSA (2011) The benefits and challenges of green roofs on public and commercial buildings. http:// www.­gsa.­gov/. Accessed 20 May 2016 Guder C, Evers C, Brandes D (1998) Kalihalden als Modellobjekte der kleinräumigen Florendynamik, dargestellt an Untersuchungen im nördlichen Harzvorland. Braunschw. Natkd Schr 5:641–665 Gudermann R (2001) Morastwelt und Paradies. Ökonomie und Ökologie in der Landwirtschaft am Beispiel der Meliorationen in Westfalen und Brandenburg (1830–1880). Forsch Reggesch 35:1–577 Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J Geophys Res 98:12609–12617

618

References

Guerrant EO (2012) Characterizing two decades of rare plant reintroductions. In: Maschinski J, Haskins KE (eds) Plant reintroduction in a changing climate. Promises and perils. Island Press, Washington, DC Guggenberger T, de Ros G, Venerus S (eds) (2007) Der geeignete Platz—Ein integriertes Modell zur Eignungsprüfung und Potentialabschätzung alpiner Weiden für Schafe und Ziegen. HBLFA Raumberg-Gumpenstein, Irdning. http://www.­ alpine-space.­org/2000-2006/uploads/media/Alpinet_Gheep_Am_besten_Platz_DE.­pdf. Accessed 8 Mar 2018 Guggenberger T, Ringdorfer F, Blaschka A, Huber R, Haslgrübler P (2014) Praxishandbuch zur Wiederbelebung von Almen mit Schafen. Lehr- und Forschungszentrum für Landwirtschaft Raumberg-Gumpenstein, Irdning Gulati RD, van Donk E (2002) Lakes in the Netherlands, their origin, eutrophication and restoration: state of-the-art review. Hydrobiologia 478:73–106 Gulati RD, Lammens EHRR, Meyer ML, van Donk E (1990) Biomanipulation tool for water management. In: Proceedings of an international conference held in Amsterdam. Dev Hydrob 61:1–628 Gulati RD, Pires LMD, van Donk E (2008) Lake restoration studies: failures, bottlenecks and prospects of new ecotechnological measures. Limnologica 38:233–247 Güll R (2015) Streuobstwiesen. Von der früheren Normalität bis zur heutigen Einzigartigkeit. Stat Monatsh Baden-Württemberg 12:38–42 Gumiero B, Mant J, Hein T, Elso J, Boz B (2013) Linking the restoration of rivers and riparian zones/wetlands in Europe: Sharing knowledge through case studies. Ecol Eng 56:36–50 Gunawardena M, Rowan JS (2005) Economic valuation of a mangrove ecosystem threatened by shrimp aquaculture in Sri Lanka. Environ Manag 36(4):535–550 Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006) Leaching of nitrogen from temperate forests—effects of air pollution and forest management. Environ Rev 14:1–57 Gunia K, Van Brusselen J, Päivinen R, Zudin S, Zudina E (2012) Forest map of Europe. European Forest Institute (EFI). http://www.­efi.­int/. Accessed 3 Aug 2017 Gunkel G (1999) Renaturierung kleiner Fließgewässer: Ökologische und ingenieurtechnische Grundlagen. Fischer, Berlin Gunschera G (1998) Landwirtschaftliche Rekultivierung. In: Pflug W (ed) Braunkohlentagebau und Rekultivierung. Landschaftsökologie—Folgenutzung— Naturschutz. Springer, Heidelberg, pp 589–599

Gurevitch J, Fox GA, Wardle GM, Inderjit CMW, Taub D (2011) Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol Lett 14:407–418 Güsewell S, Pohl M, Gander A, Strehler C (2007) Temporal changes in grazing intensity and herbage quality within a Swiss fen meadow. Bot Helv 117:57–73 Gustafsson BG, Schenk F, Blenckner T, Eilola K, Meier HEM, Müller-Karulis B, Neumann T, Ruoho-Airola T, Savchuk OP, Zorita E (2012) Reconstructing the development of Baltic Sea eutrophication 1850–2006. Ambio 41:534–548 Guzman-Chavez RE, Segundo-Zaragoza C, Cervantes-Olıvares RA, Tapia-Perez G (2000) Presence of keratinophilic fungi with special reference to dermatophytes on the haircoat of dogs and cats in Mexico and Nezahualcoyotl Cities. Rev Latinoam Microbiol 42:41–44 Gypser S, Veste M, Fischer T, Lange P (2016) Infiltration and water retention of biological soil crusts on reclaimed soils of former open-cast lignite mining sites in Brandenburg, north-east Germany. J Hydrol Hydromech 64(1):1–11 Haahti BM, Hedenström E, Linke S, Lundberg C, Reisner G, Wanamo M (2010) Project environmental risk governance of the Baltic Sea. Casestudy report: Eutrophication. https://www.­sh.­se/. Accessed 2 Jan 2018 Haaland S (2002) Fem tusen år med flammer. Det europeiske lyngheilandskapet. Vigmostad & Bjørke, Oslo Haapalehto T, Vasander H, Jauhiainen S, Tahvanainen T, Kotiaho J (2011) The eff ects of peatland restoration on water-table depth, elemental concentrations, and vegetation: 10 years of changes. Restor Ecol 19:587–598 Haarlaa R, Kärkkäinen M (1982) Tervalepän kuitujen pituus. Silva Fenn 16(4):343–350 Haas HD, Schlesinger DM (2016) Umweltökonomie und Ressourcenmanagement. WBG, Darmstadt Haas PM (1993) Protecting the Baltic and North Seas. In: Haas PM, Keohane RO, Levy MA (eds) Institutions for the earth: sources of effective international environmental protection. MIT Press, Cambridge, pp 133–181 Haase D, Larondelle N, Andersson E, Artmann M, Borgström S, Breuste J, Gomez-Baggethun E, Gren Å, Hamstead Z, Hansen R, Kabisch N, Kremer P, Langemeyer J, Rall EL, McPhearson T, Pauleit S, Qureshi S, Schwarz N, Voigt A, Wurster D, Elmqvis T (2014) Quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio 43(4):413–433 Haase P, Birzle-Harder B, Deffner J, Hering D, Januschke K, Kaffenberger N, Leps M, Lorenz A,

619 References

Modrak P, Stoll S, Sundermann A (2015) Räumliche und zeitliche Aspekte von Fließgewässer-­ Renaturierungen: Entwicklung neuartiger Bewertungstools. DBU-Abschlussbericht. https:// www.­d bu.­d e/OPAC/ab/DBU-AbschlussberichtAZ-31007.­pdf. Accessed 29 Apr 2017 Habel JC, Schmitt J, Härdtle W, Lütkepohl M, Assmann T (2007) Dynamics in a butterfly-plant-­ant system: influence of habitat characteristics on turnover rates of the endangered lycaenid Maculinea alcon. Ecol Entomol 32:536–543 Haber W (1971) Landschaftspflege durch differenzierte Bodennutzung. Bayer Landwirtsch Jahrb 48(1):19–35 Haber W (2014) Landwirtschaft und Naturschutz. Wiley-VCH, Weinheim Haber W, Bückmann W (2013) Nachhaltiges Landmanagement, differenzierte Landnutzung und Klimaschutz. Schriftenreihe der interdisziplinären Forschungsarbeitsgemeinschaft für Gesellschaft, Umwelt und Siedlung des Universitätsverlages der TU Berlin (FAGUS-Schriften) 16. Universitätsverlag der TU Berlin, Berlin Häberli R, Bill A, Grossenbacher-Mansuy W, Thompson Klein J, Scholz RW, Welti M (2001) Synthesis. In: Thompson Klein J, Grossenbacher-Mansuy W, Häberli R, Bill A, Scholz RW, Welti M (eds) Transdisciplinarity: Joint problem solving among science, technology, and society. An effctive way for managing complexity. Birkhäuser, Basel, pp 6–22 Hach T, Büdel B, Schwabe A (2005) Biologische Krusten in basenreichen Sand-Ökosystemen des Koelerion glaucae-Vegetationskomplexes: taxonomische Struktur und Empfindlichkeit gegenüber mechanischen Störungen. Tuexenia 25: 357–372 Hachmöller B, Hardtke HJ, Hölzel M, Schmidt PA, Walczak C, Zöphel B, Kandler P, Müller F, Döring N (2009) Erprobungs- und Entwicklungsvorhaben “Grünlandverbund im Osterzgebirge am Beispiel Oelsener Höhe” des Landesvereins Sächsischer Heimatschutz. In: ­ Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (ed) Naturschutzfachliche Aspekte des Grünlandes in Sachsen, Dresden, pp 35–50. https://publikationen.­ sachsen.­de/bdb/artikel/11659/documents/12195. Accessed 10 Dec 2017 Hacker E, Johannsen R (2011) Ingenieurbiologie. Ulmer, Stuttgart Hackert J (2014) Beate Schlupp: Kieshofer Moor— Anwohner dürfen nicht im Stich gelassen werden. Bundesumweltportal. http://www.­bundesumweltportal. de/mecklenburg-vorpommern/11-mecklenburgvorpommern/beate-schluppkieshofer-moor-–anwohner-dürfen-nicht-im-stichgelassen-werden .html. Accessed 20 Jun 2017

Hackett M, Lawrence A (2014) Multifunctional role of field margins in arable farming. Report for European crop protection association. Cambridge Environmental Assessments, Cambridge. http:// www.­e cpa.­e u/sites/default/files/Field%20Margins%20Arable%20Farming_V02%20%281%29.­ pdf. Accessed 25 Aug 2017 Hadač E, Sofron J (1980) Notes on syntaxonomy of cultural forest communities. Folia Geobot Phytotax 15:245–258 Häder M (2015) Empirische Sozialforschung. Eine Einführung. Springer, Heidelberg Hæggström CA (1983) Vegetation and soil of the wooded meadows in Natö, Åland. Acta Bot Fenn 120:1–66 Haemig PD (2012). Ecology of the Beaver. Ecology Online Sweden, Ecology Info 13. http://www.­ecology.­ info/beaver-ecology.­htm. Accessed 7 May 2017 Haenn N, Wilk R, Harnish A (2016) The environment in anthropology: a reader in ecology, culture, and sustainable living, 2nd edn. University Press, New York Hagen D (2002) Propagation of native arctic and alpine species with a restoration potential. Polar Res 21(1):37–47 Hagen D, Evju M (2013) Using short-term monitoring data to achieve goals in a large-scale restoration. Ecol Soc 18(3):29 Hagman CHC, Ballot A, Hjermann DØ, Skjelbred B, Brettum P, Ptacnik R (2015) The occurrence and spread of Gonyostomum semen (Ehr.) Diesing (Raphidophyceae) in Norwegian lakes. Hydrobiologia 744(1):1–14 Hahn F (2004) Künstliche Beschneiung im Alpenraum. Ein Hintegrundbericht. CIPRA-­ International. www.­cipra.­org/de/publikationen. Accessed 10 May 2017 Hahn SC, Tenhunen JD, Popp PW, Meyer A (1993) Upland tundra in the foothills of the Brooks Range, Alaska—diurnal CO2 exchange patterns of characteristic lichen species. Flora 188: 125–143 Hahn V (2007) Neubegründung von Bergheideflächen auf dem Kahlen Asten. Nat NRW 2:42–44 Hahn-Schöfl M, Zak D, Minke M, Gelbrecht J, Augustin J, Freibauer A (2011) Organic sediment formed during inundation of a degraded fen grassland emits large fluxes of CH4 and CO2. Biogeosciences 8:1539–1550 Haines-Young R, Potschin M (2018) Common International Classification of Ecosystem Services (CICES) V5.1. Guidance on the application of the revised structure. https://cices.­eu/content/uploads/ sites/8/2018/01/Guidance-V51-01012018.­p df. Accessed 10 May 2017

620

References

Häkkinen J (2007) Traditional use of reed. In: Ikonen I, Hagelberg E (eds) Read up on reed! Southwest Finland Regional Environment Centre, Turku Hall MJ, Ng A, Ursano RJ, Holloway H, Fullerton C, Casper J (2004) Psychological impact of the animal-human bond in disaster preparedness and response. J Psychiatr Pract 10:368–374 Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W, Müller A, Sumser H, Hörren T, Goulson D, de Kroon H (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12(10):e0185809 Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319:948–952 Hambler C, Speight MR (1995) Biodiversity conservation in Britain: science replacing tradition. British Wildl 6:137–147 Hampicke U (1991) Naturschutz-Ökonomie. Ulmer, Stuttgart Hampicke U (2009) Kosten der Renaturierung. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer Spektrum, Heidelberg, pp 441–457 Hampicke U (2013) Kulturlandschaft und Naturschutz: Probleme-Konzepte-Ökonomie. Springer, Vieweg Hampicke U, Wichtmann W (2005) Betriebswirtschaft und Naturschutzkosten auf ertragsschwachen Ackerstandorten. In: Hampicke U, Litterski B, Wichtmann W (eds) Ackerlandschaften. Nachhaltigkeit und Naturschutz auf ertragsschwachen Standorten. Springer, Heidelberg, pp 129–144 Hampicke U, Horlitz H, Kiemstedt K, Tampe K, Timp D, Walters M (1991) Kosten und Wertschätzung des Arten- und Biotopschutzes. UBA Ber 3(91):1–629 Hampicke U, Litterski B, Wichtmann W (2005) Ackerlandschaften—Nachhaltigkeit und Naturschutz auf ertragsschwachen Standorten. Springer, Heidelberg Han KT (2010) An exploration of relationships among the responses to natural scenes: Scenic beauty, preference, and restoration. Environ Behav 42:243 Han T, Zhang H, Hu W, Deng J, Li Q, Zhu G (2015) Research on self-purification capacity of Lake Taihu. Environ Sci Pollut Res Int 22(11): 8201–8215 Handel SN, Robinson GR, Parsons WFJ, Mattei JH (1997) Restoration of woody plants to capped

landfills: root dynamics in an engineered soil. Restor Ecol 5:178–186 Hänggi A (1998) Bewertungen mit Indikatorarten versus Erfassung des gesamten Artenspektrums—ein Konfliktfall? Laufen Sembeitr 8(98):33–42 Hangler J, Huber R (2011) Wildschadensbericht 2008. Bericht des Bundesministers für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft gemäß § 16 Abs. 6 Forstgesetz 1975. http://publikationen.­ lebensministerium.­at. Accessed 10 Dec 2017 Hanley N, Shogren JF, White B (2007) Environmental economics in theory and practice, 2nd edn. Palgrave & Macmillan, London Hansen R, Rolf W, Pauleit S, Born D, Bartz R, Kowarik I, Lindschulte K, Becker CW, Schröder A (2017) Urbane Grüne Infrastruktur. Grundlage für attraktive und zukunftsfähige Städte. Hinweise für die kommunale Praxis. Bundesamt für Naturschutz, Bonn. https://www.­bfn.­de/fileadmin/BfN/planung/siedlung/Dokumente/UGI_ Broschuere.­pdf. Accessed 6 Jan 2018 Hansjürgens B, Lienhoop N (2015) Was uns die Natur wert ist. Potenziale ökonomischer Bewertung. Ökol Wirtschforsch 96:1–152 Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford Hanski I, Gaggiotti OF (eds) (2004) Ecology, genetics and evolution of metapopulations. Elsevier, Amsterdam Hansson M, Fogelfors H (2000) Management of a semi-natural grassland; results from a 15-year-old experiment in southern Sweden. J Veg Sci 11: 31–38 Hansson PA, Fredriksson H (2004) Use of summer harvested common reed (Phragmites australis) as nutrient source for organic crop production in Sweden. Agric Ecosyst Environ 102(3):365–375 Haraway D (2010) When species meet: staying with the trouble. Environ-Plann D Soc Space 28(1):53– 55 Hardmeier C, Ott K (2015) Naturethik und biblische Schöpfungserzählung. Ein diskurstheoretischer und narrativ-hermeneutischer Brückenschlag. Kohlhammer, Stuttgart Hardmeier C, Ott K (2017) Biblische Schöpfungstheologie. In: Ott K, Dierks J, Voget-­Kleschin L (eds) Handbuch Umweltethik. Metzler, Stuttgart, pp 183–189 Härdtle W (1984) Vegetationskundliche Untersuchungen in Salzwiesen der ostholsteinischen Ostseeküste. Mitt Arbgem Geobot Schleswig-Holstein Hamburg 34:1–142 Härdtle W (1995) On the theoretical concept of the potential natural vegetation and proposals for an up-to-date modification. Folia Geobot Phytotax 30:263–276

621 References

Härdtle W, Niemeyer M, Niemeyer T, Assmann T, Fottner S (2006) Can management compensate for atmospheric nutrient deposition in heathland ecosystems? J Appl Ecol 43:759–769 Härdtle W, Assmann T, van Diggelen R, von Oheimb G (2009) Renaturierung und Management von Heiden. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer Spektrum, Heidelberg, pp 317–347 Härdtle W, Ewald J, Hölzel N (2008) Wälder des Tiefl andes und der Mittelgebirge. Ulmer, Stuttgart Härdtle W, Heinken T, Pallas J, Welß W (1997) Quercion roboris (Bodensaure Eichenmischwälder). Synop Pflges Deut 2:1–51 Hargrove EC (1989) Foundations of environmental ethics. Prentice Hall, Englewood Cliffs Harker D, Libby G, Karker K, Evans S, Evans M (1999) Landscape Restoration Handbook, 2nd edn. CRC Press, Boca Raton Harms B, Knaapen JP, Rademakers JG (1993) Landscape planning for nature restoration: comparing regional scenarios. In: Vos CC, Opdam P (eds) Landscape ecology of a stressed environment. Springer, Dordrecht, pp 197–218 Harnisch M, Otte A, Schmiede R, Donath TW (2014) Verwendung von Mahdgut zur Renaturierung von Auengrünland. Ulmer, Stuttgart Harpenslager SF, van den Elzen E, Kox MAR, Smolders AJP, Ettwig KF, Lamersa LPM (2015) Rewetting former agricultural peatlands: topsoil removal as a prerequisite to avoid strong nutrient and greenhouse gas emissions. Ecol Eng 84: 159–168 Harper J, Clatworthy J, McNaughton I, Sagar G (1961) The evolution and ecology of closely related species living in the same area. Evolution 15:209–227 Harris JA, Birch P, Palmer JP (1996) Land restoration and reclamation: principles and practice. Longman, London Harris M (2001) Cultural materialism: the struggle for a science of culture. Rowman & Altamira, Lanham Hartel T, Plieninger T (eds) (2014) European woodpastures in transition: a social-­ ecological approach. Routledge, Chichester Hartenauer K, John H, Krumbiegel A, Herdam H, Kison H-U, Ziesche H (2012) Weitere Salzstellen in Sachsen-Anhalt. Natschutz Land SachsenAnhalt 49:155–170 Hartig T, van den Berg AE, Hagerhall CM, Tomalak M, Bauer N, Hansmann R, Ojala A, Syngollitou E, Carrus G, van Herzele A, Bell S, Podesta MTC, Waaseth G (2011) Health benefits of nature experience: psychological, social and cultural processes. In: Nilsson K, Sangster M, Gallis C, Hartig T, de

Vries S, Seeland K, Schipperijn J (eds) Forest, trees and human health. Springer, Dordrecht, pp 127–168 Hartmann E, Schuldes H, Kübler R, Konold W (1995) Neophyten. Biologie, Verbreitung und Kontrolle ausgewählter Arten. ecomed, Landsberg Hartmann L (1992) Ökologie und Technik: Analyse, Bewertung und Nutzung von Ökosystemen. Springer, Heidelberg Hasch B (2014) DSS-WAMOS: ein webbasiertes Entscheidungsunterstützungssystem für das Management von Waldmooren. In: Luthardt V, Zeitz J (eds) Moore in Brandenburg und Berlin. Natur + Text, Rangsdorf, pp 255–262 Hasch B, Meier-Uhlherr R, Lotsch H, Schlösser B (2009) DSS-WAMOS: Eine Decision Support System-gestützte Managementstrategie für Waldmoore. http://www.­dss-­wamos.­de. Accessed 15 Dec 2017 Hasekamp H, Wieking G (1976) Moorkultivierung im Emsland. Telma 6:125–134 Haslam SM (1996) Enhancing river vegetation: conservation, development and restoration. In: Caffrey JM, Barrett PRF, Murphy KJ, Wade PM (eds) Management and ecology of freshwater plants. Dev Hydrobiol 120:345–348 Haslam SM (2009) The reed. Updated ed. British Reed Growers Association. Brown & Co, Norwich Hasse T (2005) Charakterisierung der Sukzessionsstadien im Spergulo-Corynephoretum (Silbergrasfluren) unter besonderer Berücksichtigung der Flechten. Tuexenia 25:407–424 Haupt H, Ludwig G, Gruttke H, Binot-Hafke M, Otto C, Pauly A (2009) Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Vol 1: Wirbeltiere. Natschutz Biol Vielfalt 70(1): 1–386 Haupt R (2012) Mittelwald—Nachhaltigkeit und Artenvielfalt. Landschpfl Natschutz Thüringen 49(3):91–99 Hautakangas S, Ollikainen M, Aarnos K, Rantanen P (2014) Nutrient abatement potential and abatement costs of waste water treatment plants in the Baltic Sea region. Ambio 43(3):352–360 Hawkins SJ, Allen JR, Ross PM, Genner MJ (2008) Marine and coastal ecosystems. In: Perrow MR, Davy AJ (eds) Handbook of ecological restoration, Restoration in Practice, vol 2. Cambridge University Press, Cambridge, pp 121–148 Hayes TB, Case P, Chui S, Chung D, Haeffele C, Haston K, Lee M, Mai VP, Marjuoa Y, Parker J, Tsui M (2006) Pesticide mixtures, endocrine disruption, and amphibian declines: are we underestimating the impact? Environ Health Perspect 114:40–50 Hazelden J, Boorman LA (1999) The role of soil and vegetation processes in the control of organic and

622

References

mineral fluxes in some Western European saltmarshes. J Coast Res 15:15–31 Hazelton ELG, Mozdzer TJ, Burdick DM, Kettenring KM, Whigham DF (2014) Phragmites australis management in the United States: 40 years of methods and outcomes. AoB Plants 6:plu001 He LY, Zhang YF, Ma HY, Su LN, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl Soil Ecol 44(1):49–55 Heap I (2017) The international survey of herbicide resistant weeds. www.­weedscience.­org. Accessed 25 Aug 2017 Heberer T (2002) Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol 266:175–189 Heck KL, Able KW, Roman CT, Fahay MP (1995) Composition, abundance, biomass and production of macrofauna in a New England estuary: comparisons among eelgrass meadows and other nursery habitats. Estuaries 18(2):379–389 Hedberg P, Kotowski W (2010) New nature by sowing? The current state of species introduction in grassland restoration, and the road ahead. J Nat Conserv 18(4):304–308 Heekin Bartels E (1982) Berlin’s Tiergarten: Evolution of an urban park. J Garden Hist 2(2):143–174 Heiber W, Götting E, Arens S (2005) Kleientnahmen in Salzwiesen an der niedersächsischen Küste— Merkmale, Entwicklung, Kriterien zu ihrer Bewertung. Forschzent Terramare Ber 14:1–11 Heikuranen L (1976) Comparison between runoff condition on a virgin peatland and a forest drainage area. In: Proceedings of the 5th International Peat Congress, pp 76–86 Heil GW, Diemont WH (1983) Raised nutrient levels change heathlands into grasslands. Vegetatio 53:113–120 Heimann D, de Franceschi M, Emeis S, Lercher P, Seibert P (eds) (2007) Air pollution, traffic noise and related health effects in the Alpine Space − A guide for authorities and consulters. ALPNAP comprehensive report. Università degli Studi di Trento, Dipartimento di Ingegneria Civile e Ambientale, Trento, Italy. http://www.­ing.­unitn.­it/ d ica /too ls/d ow nl o a d / Qu a d e rn i/ ALP NAP _ CR_2007_Part_1.­pdf. Accessed 8 Feb 2018 Heimann S, Podraza P (eds) (2017) Fließgewässer im urbanen Raum. Springer, Heidelberg Heinicke T (2013) Zur Entwicklung der Vogelgemeinschaften im Bereich der Deichrückverlegung Lenzen. In: Struck A, Garbe H, Felinks B (eds) Auenreport Spezial: Die Deichrückverlegung bei Lenzen. Erste Ergebnisse der wissenschaftlichen Begleitung. Ministerium für Umwelt, Gesundheit und Verbraucherschutz des Landes Brandenburg, Potsdam, pp 65–72

Heinken A (2001) Vegetationsentwicklung von Auengrünland nach Wiederüberflutung. Dissertation, HU Berlin. http://edoc.­hu-berlin.­de/dissertat i o n e n / h e i n ke n - a n d re a s - 2 0 0 1 - 0 7 - 0 9 / P D F / Heinken.­pdf. Accessed 5 June 2017 Heinken T, Raudnitschka D (2002) Do wild ungulates contribute to the dispersal of vascular plants in Central European forests by epizoochory? A case study in NE Germany. Forstwiss Centralbl 121:179–194 Heinrich W, Klotz S, Korsch H, Marstaler R, Pfotzenreuter S, Samietz R, Scholz P, Türk W, Westhus W (2002) Rote Liste der Pflanzengesellschaften Thuringens. 2nd ed. Natschutzrep 18:377–409 Heinsdorf D (1976) Untersuchungen über die Wirkung mineralischer Düngung auf das Wachstum und den Ernährungszustand von Kiefernkulturen auf verbreiteten Kippbodenformen der Niederlausitz. Beitr Forstwirtsch 10:185–198 Heinsdorf D (1987) Nährelementspeicherung in gedüngten und ungedüngten Kiefernjungbeständen auf Kippböden. Arch Natschutz Landschforsch 27(2):65–88 Heinze M, Fiedler HJ (1979) Versuche zur Begrünung von Kalirückstandshalden. 1. Mitteilung: Gefäßversuche mit Bäumen und Sträuchern bei unterschiedlichem Wasser- und Nährstoff angebot. Arch Acker Pflbau Bodenkd 23(5):315–322 Heinze M, Fiedler HJ (1981) Versuche zur Begrünung von Kalirückstandshalden. 2. Mitteilung: Gefäßversuche mit Gehölzen auf verschiedenen. Rückstandssubstraten. Arch Acker Pflbau Bodenkd 25(11):717–724 Heinze M, Fiedler HJ, Liebmann H (1984) Freilandversuche zur Begrünung von Kalirückstandshalden im Südharzgebiet. Hercynia NF 21(2):179–189 Heinze M, Liebmann H (1991) Freilandversuche zur Begrünung von Kalirückstandshalden im Südharzgebiet. Hercynia NF 28(1):62–71 Heinzmann B, Sarfert F, Stengel A (1991) Die Phosphateliminationsanlage Tegel in Berlin. Gwf-­ Wasser/Abwasser 132(12):674–685 Heipke C (2017) Photogrammetrie und Fernerkundung. In: Freeden W, Rummel R (eds) Handbuch der Geodäsie. Springer, Heidelberg Heitz R (1998) Umbau von Fichtenreinbeständen in naturnahe Mischwälder—Auswirkungen auf bodenchemischen Zustand und Bioelementhaushalt. Dissertation, University of Munich Hejcman M, Hejcmanová P, Pavlů V, Beneš J (2013) Origin and history of grasslands in Central Europe—a review. Grass Forage Sci 68:345–363 Helbig A, Baumüller J, Kerschgens MJ (2013) Stadtklima und Luftreinhaltung, 2nd edn. Springer, Heidelberg HELCOM (2003) The Baltic marine environment 1999–2002. Baltic Sea Environ Proc 87:1–47

623 References

HELCOM (2007) Climate change in the Baltic Sea area. HELCOM thematic assessment. Baltic Sea environment proceedings 111. http://www.­ helcom.­f i/stc/files/Publications/Proceedings/ bsep111.­pdf. Accessed 19 Apr 2008 HELCOM (2013) HELCOM red list of Baltic Sea species in danger of becoming extinct. Baltic Sea Environ Prot Comm Proc 140:1–110 HELCOM (2017a) Measuring progress for the same targets in the Baltic Sea. HELCOM—Helsinki Commission: Baltic Marine Environment Protection Commission. http://www.­helcom.­fi/Lists/ Publications/BSEP150.­pdf. Accessed 23 Mar 2017 HELCOM (2017b) State of the Baltic Sea—Holistic Assessment. Biodiversity and its status—Waterbirds. HELCOM—Helsinki Commission: Baltic Marine Environment Protection Commission. http://stateofthebalticsea.­helcom.­fi/biodiversityand-its-status/waterbirds/. Accessed 21 Nov 2017 Held M (1998) Der Nationalpark Bayerischer Wald und seine Akzeptanz: Situationsbericht. BfN Skripten 2:23–26 Heldt S, Budryte P, Ingensiep HW, Teichgräber B, Schneider U, Denecke M (2016) Social pitfalls for river restoration: How public participation uncovers problems with public acceptance. Environ Earth Sci 75:1053 Helfrich LA, Neves RJ, Parkhurst J (2009) Liming acidified lakes and ponds. VCE Publications 420– 254. https://www.­pubs.­ext.­vt.­edu/420/420-254/420254.­html. Accessed 13 May 2017 Helfrich T (2009) Naturschutzfachliche und touristische Bedeutungen der Niederwälder in Rheinland-­ Pfalz. Tájökológiai Lapok 7(2):443–455 Helfrich T, Konold W (2010) Formen ehemaliger Niederwälder und ihre Strukturen in Rheinland-­ Pfalz. Arch Forstwes Landschökol 44:157–168 Hellawell JM (1991) Development of a rationale for monitoring. In: Goldsmith FB (ed) Monitoring for conservation and ecology. Chapman and Hall, London, pp 1–14 Hellberg F, Müller J, Frese E, Janhoff D, Rosenthal G (2003) Vegetationsentwicklung in Feuchtwiesen bei Brache und Vernässung—Erfahrungen aus nordwestdeutschen Flussniederungen. Nat Landsch 78(6):245–255 Hellwig M (2000) Auenregeneration an der Elbe Untersuchungen zur Syndynamik und Bioindikation von Pflanzengesellschaften an der Unteren Mittelelbe bei Lenzen. Dissertation, University of Hannover. http://d-nb.­info/96017947x/34. Accessed 5 Jun 2017 Helsinki Convention (1992) Convention on the protection of the marine environment of the Baltic Sea area. HELCOM. http://www.­helcom.­fi/. Accessed 9 Aug 2018 Hemingway KL, Cutts NC, Pérez-Dominguez R (2008) Managed realignment in the Humber Estu-

ary, UK. Institute of Estuarine & Coastal Studies (IECS), University of Hull, UK.  Report. http:// ec.­europa.­eu/ourcoast/download.­cfm?fileID=863. Accessed 6 Feb 2017 Hemm M, Jöhnk KD (2004) Datenbank stehender Gewässer in Deutschland. Beschreibung und deren Anwendung. Akt Reihe BTU Cottbus 3:145–160 Hendlin YH (2017) Tiefenökologie. In: Ott K, Dierks J, Voget-Kleschin L (eds) Handbuch Umweltethik. Metzler, Stuttgart, pp 195–202 Hendrickx F, Maelfait JP, van Wingerden W, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Diekötter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44: 340–351 Henning D, Müllensiefen K (1990) Herstellung von Flächen für die forstwirtschaftliche Rekultivierung, dargestellt am Beispiel der Außenkippe Sophienhöhe des Braunkohlentagebaus Hambach. Braunkohle 42(12):11–18 Henninger S (ed) (2011) Stadtökologie: Bausteine des Ökosystems Stadt. UTB, Stuttgart Henriksen A, Skjelvåle BL, Mannio J, Wilander A, Harriman R, Curtis C, Jensen JP, Fjeld E, Moiseenko T (1998) Northern European lake survey, 1995: Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland and Wales. Ambio 27(2):80–91 Henrikson L, Brodin YW (1995) Liming of surface water in Sweden—a synthesis. In: Henrikson L, Brodin YW (eds) Liming of acidifi d surface water a Swedish synthesis. Springer, Heidelberg, pp 1–44 Hérault B, Honnay O, Thoen D (2005) Evaluation of the ecological restoration potential of plant communities in Norway spruce plantations using a life-trait based approach. J Appl Ecol 42:536–545 Herben T (2000) Correlation between richness per unit area and the species pool cannot be used to demonstrate the species pool effect. J Veg Sci 11(1):123–126 Herbert P, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA barcodes. Proc Roy Soc Lon Ser B Biol Sci 270:313–321 Hering D, Arovitta J, Baattrupp-Pedersen A, Brabec K, Buijse T, Ecke F, Friberg N, Gielczewski M, Januschke K, Kohler J, Kupilas B, Lorenz A, Muhar S, Paillex A, Poppe M, Schmidt T, Schmutz S, Vermaat JE, Verdonschot P, Verdonschot R (2015) Contrasting the roles of section length and instream habitat enhancement for river restoration success: a fi eld study on 20 European restoration projects. J Appl Ecol 52:1518–1527

624

References

Hermans LM (2004) Dynamic actor network analysis for diff use pollution in the province of NorthHolland. Water Sci Technol 49(3):205–212 Hermsdorf A (2010) Überblick über die Grundwasserversalzungen im Land Brandenburg und ihre Spezifikation für die Binnensalzstellen. Natschutz Landschpfl Brandenburg 19(1/2):9–15 Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conserv 91:9–22 Hermy M, Stieperaere H (1981) An indirect gradient analysis of the ecological relationship between ancient and recent riverine woodlands to the south of Breges (Flanders, Belgium). Vegetatio 44:43–49 Herrmann A (2007) Binnensalzstellen in Brandenburg—Verbreitung und Zustand salzbeeinflusster Lebensräume. In: Thüringer Mininisterium für Landwirtschaft, Naturschutz und Umwelt (ed) Binnensalzstellen Mitteleuropas. Internationale Tagung, 8–10 Sep 2005, Bad Frankenhausen, pp 135–142 Herrmann A (2010) Pflanzen im Salz—die Flora der brandenburgischen Versalzungsgebiete. Natschutz Landschpfl Brandenburg 19(1/2):21–30 Herrmann AG, Röthemeyer H (2013) Langfristig sichere Deponien: Situation, Grundlagen, Realisierung. Springer, Heidelberg Herzog F (1998) Streuobst: a traditional agroforestry system as a model for agroforestry development in temperate Europe. Agrofor Syst 42:61–80 Herzog F, Oetmann A (2001) Communities of interest and agro-ecosystem restoration: Streuobst in Europe. In: Flora C (ed) Interactions between agroecosystems and rural communities. CRC Press, Boca Raton, pp 85–102 Herzog F, Balázs K, Dennis P, Friedel J, Geijzendorffer I, Jeanneret P, Kainz M, Pointereau P (eds) (2012) Biodiversity indicators for European farming systems. A guidebook. ART Schrreihe 17:1–101 Herzsprung P, Schultze M, Hupfer M, Boehrer B, von Tümpling W, Duffek A, Van der Veen A, Friese K (2010) Flood effects on phosphorus immobilization in a river water filled pit lake—case study Lake Goitsche (Germany). Limnologica 40:182–190 Hesp PA (1991) Ecological processes and plant adaptions on coastal dunes. J Arid Environ 21:165–191 Hess K (1976) Wiederanpflanzung ausgestorbener Halophytenarten und Umpflanzung von Salzwiesenausstichen an Wetterauer Salzstellen. Hess flor Br 25(1):11–15 Hessisches Ministerium für Umwelt, Klimaschutz, Landwirtschaft und Verbraucherschutz (2017) Naturnahe Gewässer: Renaturierung. https:// umwelt.­h essen.­d e/umwelt-natur/wasser/baeche-­ fluesse-­seen/renaturierung. Accessed 18 May 2017

Hettrich R (2014) Kiesgewinnung und Artenvielfalt. Handlungsleitfaden für Schwaben. Landesbund für Vogelschutz in Bayern e. V. (ed). http://www.­ lbv.­de/. Accessed 16 Dec 2016 Heurich M (2015) Welche Effekte haben große Beutegreifer auf Huftierpopulationen und Ökosysteme? Bottom up versus top down control. Natschutz Landschplan 47(11):337–345 Heusohn R (1929) Praktische Kulturvorschläge für Kippen, Bruchfelder, Dünen und Ödländereien. Neumann, Neudamm Hewett DG (1985) Grazing and mowing as management tools on dunes. Vegetatio 62:441–447 Heydeck P, Radtke L (2014) Pilze in Mooren. In: Luthardt V, Zeitz J (eds) Moore in Brandenburg und Berlin. Natur + Text, Rangsdorf, pp 67–69 Heydemann B (1981) Ecology of arthropods of the lower salt marsh. In: Dankers N, Kühl H, Wolff WJ (eds) Invertebrate fauna of the Wadden Sea. Wadden Sea Work Group Rep 4:35–57 Heyer E (1962) Das Klima des Landes Brandenburg. Abhandlungen des Hydrologischen und Meteorologischen Dienstes der DDR 64. Akademie, Berlin Hiers JK, Mitchell RJ, Barnett A, Walters JR, Mack M, Williams B, Sutter R (2012) The dynamic reference concept: measuring restoration success in a rapidly changing no-analogue future. Ecol Restor 30(1):27–36 Higgs ES (1997) What is good ecological restoration? Conserv Biol 11:338–348 Higgs ES (2003) Nature by design: people, natural process, and ecological restoration. MIT Press, Cambridge Higgs ES (2010) Focal restoration. In: Comín FA (ed) Ecological restoration: a global challenge. Cambridge University Press, Cambridge, pp 91–99 Higgs ES, Light A, Strong D (2010) Technology and the good life? University of Chicago Press, Chicago Hilbig W (1975) Über den Stand der agrogeobotanischen Forschung in der DDR.  Biol Rundsch 13:344–358 Hilbig W (1987) Wandlungen der Segetalvegetation unter den Bedingungen der industriemäßigen Landwirtschaft. Arch Natschutz Landschforsch 27(4):229–249 Hilbig W (2005) Möglichkeiten zur Erhaltung bestandsgefährdeter Ackerwildkrautpflanzen und ihrer Pflanzengesellschaften durch extensive Ackernutzung. In: Hampicke U, Litterski B, Wichtmann W (eds) Ackerlandschaften. Nachhaltigkeit und Naturschutz auf ertragsschwachen Standorten. Springer, Heidelberg, pp 173–190 Hilbig W (2007) Die Arbeitsgruppe “Ackerwildpflanzenschutz” in der Biologischen Gesellschaft der DDR. Studarch Umweltgesch 12:3–15 Hilbig W, Bachthaler G (1992) Wirtschaftsbedingte Veränderungen der Segetalvegetation in Deutsch-

625 References

land im Zeitraum von 1950–1990. Part 1 & 2. Angew Bot 66:192–209 Hill R, Hill K, Aumüller R, Schulz A, Dittmann T, Kulemeyer C, Coppack T (2014) Of birds, blades and barriers: detecting and analysing mass migration events at alpha ventus. In: Beiersdorf A, Radeike A (eds) Ecological research at the off shore windfarm Alpha Ventus: challenges, results and perspectives. Springer, Wiesbaden, pp 111–131 Hill MO, Mountford JO, Roy DB, Bunce RGH (1999) Ellenberg’s indicator values for British plants. Ecofact 2:1–46 Hill MO, Bell N, Bruggeman-Nannenga MA (2006) An annotated checklist of mosses of Europe and Macaronesia. J Bryol 22:103–140 Hillebrand K (1998) Vogelbeere (Sorbus aucuparia L.) im Westfälischen Bergland—Wachstum, Ökologie, Waldbau. Schrreihe Landesanst Ökol Bodenordg Forsten 15:1–183 Hiller DA, Meuser H (1998) Urbane Böden. Springer, Heidelberg Hilmers A, Hilmers DC, Dave J (2012) Neighborhood disparities in access to healthy foods and their effects on environmental justice. Am J Public Health 102(9):1644–1654 Hilt S, Gross EM, Hupfer M, Morscheid H, Mählmann J, Melzer A, Poltz J, Sandrock S, Scharf EM, Schneider S, van de Weyer K (2006) Restoration of submerged vegetation in shallow eutrophic lakes—a guideline and state of the art in Germany. Limnologica 36(3):155–171 Hilt S, van de Weyer K, Köhler A, Chorus I (2010) Submerged macrophyte responses to reduced phosphorus concentrations in two peri-urban lakes. Restor Ecol 18:452–461 Hindrikson M, Mannil P, Ozolins J, Krzywinski A, Saarma U (2012) Bucking the trend in wolf-dog hybridization: first evidence from Europe of hybridization between female dogs and male wolves. PLoS One 7:e46465 Hintze C, Heydel F, Hoppe C, Cunze S, König A, Tackenberg O (2013) D 3: the dispersal and diaspore database—baseline data and statistics on seed dispersal. Perspect Plant Ecol Evol Syst 15(3):180–192 Hinwood AL, Heyworth J, Tanner H, McCullough C (2012) Recreational use of acidic pit lakes— human health considerations for post closure planning. J Water Res Protect 4:1061–1070 Hirsch Hardon G (2008) Unity of knowledge in transdisciplinary research for sustainable development, Bd I. EOLSS, Oxford Hirsch KW, Trimpop M (2010) Lärmschutz durch Wald. Part 2: Forstliche Aspekte bei der Schallausbreitungsrechnung. Daga. http://www.­ kwhirsch.­d e/Publikation/HiTrDaga10_02w.­p df. Accessed 12 July 2017

Hiscock K, Bayley D, Pade N, Lacey C, Cox E, Enever R (2013) Prioritizing action for recovery and conservation of marine species: a case study based on species of conservation importance around England. Aquat Conserv Mar Freshw Ecosyst 23: 88–110 Hitschfeld U, Lachmann H (2013) Akzeptanz als strategischer Erfolgsfaktor. Friedrich-­ Ebert-­ Stiftung, Bonn Hobbs RJ (2002) The ecological context: a landscape perspective. In: Perrow MR, Davy AJ (eds) Handbook of ecological restoration, Principles of restoration, vol 1. Cambridge University Press, Cambidge, pp 24–45 Hobbs RJ, Harris JA (2001) Restoration ecology: repairing the earth’s ecosystems in the new millennium. Restor Ecol 9:239–246 Hobbs RJ, Huenneke LF (1992) Disturbance, diversity and invasion: implications for conservation. Conserv Biol 6:324–337 Hobbs RJ, Norton DA (1996) Towards a conceptual framework for restoration ecology. Restor Ecol 4:93–110 Hobbs RJ, Suding KN (2008) New models for ecosystem dynamics and restoration. Island Press, Washington, DC Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Vilà M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7 Hobbs RJ, Higgs E, Harris JA (2009) Novel ecosystems: implications for conservation and restoration. Trends Ecol Evol 24:599–605 Hobohm C (ed) (2013) Endemism in vascular plants, Plant and Vegetation 9. Springer, Dordrecht Hobohm C, Bruchmann I (2011) Are there endemic vascular plants in wet habitats of Europe? Transylv Rev Syst Ecol Res 12:1–14 Hochbichler E (2008) Fallstudien zur Struktur, Produktion und Bewirtschaftung von Mittelwäldern im Osten Österreichs (Weinviertel). Forst Schrreihe BOKU 20:1–246 Hochhardt W (1996) Vegetationskundliche und faunistische Untersuchungen in den Niederwäldern des Mittleren Schwarzwaldes unter Berücksichtigung ihrer Bedeutung für den Arten- und Biotopschutz. Culterra, Freiburg Hodačová D, Prach K (2003) Spoil heaps from brown coal mining: technical reclamation versus spontaneous revegetation. Restor Ecol 11:385–391 Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

626

References

Hodgson JG, Grime JP, Wilson PJ, Thompson K, Band SR (2005) The impacts of agricultural change (1963–2003) on the grassland flora of Central England: processes and prospects. Basic Appl Ecol 6(2):107–118 Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528 Hoeksema RJ (2007) Three stages in the history of land reclamation in The Netherlands. Irrig Drain 56:113–126 Hoering P (1915) Moornutzung und Torfverwertung mit besonderer Berücksichtigung der Trockendestillation. Springer, Heidelberg Hofer B, Huwald G, Lehmann J (2012) Study of the situation of the Baltic Peat Industry. Telma 42:43–56 Höfer M, Hanke MV (2014) 10 Jahre Obstgenbank Dresden-Pillnitz in der Verantwortlichkeit der Bundesforschung. J Kulturpfl 66(4):117–129 Hoffmann A, Hering D (2000) Wood-associated macroinvertebrate fauna in Central European streams. Int Rev Hydrobiol 85:25–48 Hoffmann T, Schlummer M, Notebaert B, Verstraeten G, Korup O (2013) Carbon burial in soil sediments from Holocene agricultural erosion, Central Europe. Glob Biogeochem Cycl 27:828–835 Höflich G, Münzenberger B, Busse J (2001) Bedeutung inokulierter Rhizosphärenbakterien und Ektomykorrhizapilze für das Wachstum von Kiefernsämlingen auf unterschiedlichen Böden. Forstwiss Centralbl 120:68–79 Hofmann G (1995) Wald, Klima, Fremdstoffeintrag. Ökologischer Wandel mit Konsequenzen für Waldbau und Naturschutz dargestellt am Gebiet der neuen Bundesländer Deutschlands. Angew Landschaftsökol 4:165–189 Hofmann G, Pommer U (2005) Potentielle Natürliche Vegetation von Brandenburg und Berlin mit Karte im Maßstab 1:200.000. Ebersw Forstl Schrreihe 24:1–315 Hofmann H (2003) Untersuchungen zur Begrünung und zur Sukzession auf einer anhydritisch geprägten Rückstandhalde der Kaliindustrie im Werragebiet. Dissertation, University of Kassel Hofmann M, Isselstein J (2005) Species enrichment in an agriculturally improved grassland and its effects on botanical composition, yield and forage quality. Grass Forage Sci 60(2):136 Hofmeister H, Garve E (2006) Lebensraum Acker. Kessel, Remagen Höft A, Wichtmann W, Jörns S (2005) Akzeptanz extensiver Bewirtschaftung ertragsschwacher Ackerstandorte bei Landnutzern. In: Hampicke U, Litterski B, Wichtmann W (eds) Ackerlandschaften. Nachhaltigkeit und Naturschutz auf ertragsschwachen Standorten. Springer, Heidelberg, pp 103–114

Hohmann U, Bartussek I, Böer B (2005) Der Waschbär, 2nd edn. Oertel + Spörer, Reutlingen Holden E, Linnerud K, Banister D (2014) Sustainable development: Our Common Future revisited. Glob Environ Change 26:130–139 Holden J, Walker J, Evans MG, Worrall F, Bonn A (2008) A compendium of UK peat restoration and management projects. SP0556 Final Report to Defra. Defra, London Holl KD (2014) Roots of chaparral shrubs still fail to penetrate a geosynthetic landfill liner after 16 Years. Ecol Restor 32(2):125–127 Holl KD, Cairns J (2002) Monitoring and appraisal. In: Perrow MR, Davy AJ (eds) Handbook of ecological restoration, I: principles of Restoration. Cambridge University Press, Cambridge, pp 411–432 Holler C (2001) Quantitative Streuobsterhebung im Burgenland im Rahmen des Leader II Projektes der Wieseninitiative. In: Holler C, Spornberger A (eds) Beiträge zum Streuobstanbau in Europa. Stand, Entwicklungen und Probleme. Tagungsber Umweltbundesamt 28:24–28 Holler C, Spornberger A (eds) (2001) Beiträge zum Streuobstanbau in Europa. Stand, Entwicklungen und Probleme. Tagber UBA 28:1–95 Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23 Holling H, Schmitz B (eds) (2010) Handbuch Statistik, Methoden und Evaluation. Hogrefe, Göttingen Hollingsworth PM (2011) Refining the DNA barcode for land plants. PNSA 108(49):19451–19452 Holz R, Eichstädt W (1993) Die Ausdeichung der Karrendorfer Wiesen—ein Beispielprojekt zur Renaturierung von Küstenüberflutungsräumen. Natursch Mecklenburg-­Vorpommern 36:57–59 Holz R, Hermann C, Müller-Motzfeld G (1996) Vom Polder zum Ausdeichgebiet: Das Projekt Karrendorfer Wiesen und die Zukunft der Küstenüberflutungsgebiete in Mecklenburg-­ Vorpommern. Nat Natschutz Mecklenburg-Vorpommern 32:3–28 Hölzel N, Bissels S, Donath TW, Handke K, Harnisch M, Otte A (2006) Renaturierung von Stromtalwiesen am hessischen Oberrhein—Ergebnisse aus dem E+E-Vorhaben 89211-­9/00 des Bundesamtes für Naturschutz (BfN). Natschutz Biol Vielfalt 31:1–263 Hölzel N, Otte A (2004) Assessing soil seed bank persistence in flood-meadows. The search for reliable traits. J Veg Sci 15:93–100 Hölzel N, Rebele F, Rosenthal G, Eichberg C (2009) Ökologische Grundlagen und limitierende Faktoren der Renaturierung. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer Spektrum, Heidelberg, pp 23–53 Holzmann G, Wangelin M (2009) Natürliche und pflanzliche Baustoff e: Rohstoff—Bauphysik— Konstruktion. Vieweg + Teubner, Wiesbaden

627 References

Holzner W, Numata M (eds) (1982) Biology and ecology of weeds. Geobotany 2:1–461 Holzschuh A, Dudenhöffer JH, Tscharntke T (2012) Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biol Conserv 153:101–107 Holzschuh A, Steffan-Dewenter I, Kleijn D, Tscharntke T (2007) Diversity of flower-­visiting bees in cereal fields: effects of farming system, landscape composition and regional context. J Appl Ecol 44:41–49 Hommel PWFM, de Waal RW (2003) Rijke bossen op arme bodems. Alternatieve boomsoortenkeuze verhoogt soortenrijkdom ondergroei op verzuringgevoelige gronden. Landschap 20(4):193–204 Hönigová I, Vačkář D, Lorencová E, Melichar J, Götzl M, Sonderegger G, Oušková V, Hošek M, Chobot K (2012) Survey on grassland ecosystem services. Report of the European Topic Centre on Biological Diversity. Nature Conservation Agency of the Czech Republic, Prag. http://www.­teebweb.­ org/wp-content/uploads/2013/01/Surveyon-­ grassland-­E S_2011_final-report_ISBN.­p df. Accessed 28 Feb 2017 Honnay O, Verheyen K, Bossuyt B, Hermy M (2004) orest biodiversity: lessons from history for conservation. IUFRO Res Ser 10:1–320 Honsová D, Hejcman M, Klaudisová M, Pavlů V, Kocourková D, Hakl J (2007) Species composition of an alluvial meadow after 40 years of applying nitrogen, phospohorus and potassium fertilizer. Preslia 79:245–258 Hooper DU, Adair EC, Cardinale BJ, Byrnes JE, Hungate BA, Matulich KL, Gonzalez A, Duff y JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486(7401): 105–108 Hope CW (2006) The social cost of carbon: what does it actually depend on? Clim Policy 6(5):565–572 Höper H (2007) Freisetzung von Treibhausgasen aus deutschen Mooren. Telma 37:85–116 Hopkin SP (1997) Biology of the springtails (Insecta: Collembola). Oxford University Press, Oxford Hopkins A, Holz B (2006) Grassland for agriculture and nature conservation: production, quality and multifunctionality. Agron Res 4:3–20 Hopkins G, Goodwin C (2011) Living architecture: green roofs and walls. Csiro, Clayton Hopp R (2008) Grundlagen der Chemischen Technologie. Wiley-VCH, Weinheim Hoppe A (2002) Die Bewässerungswiesen Nordwestdeutschlands—Geschichte, Wandel und heutige Situation. Abh Westfäl Mus Naturkd 64(1): 1–103 Hornberg C, Beyer R, Classen T, Herbst T, Hofmann M, Honold J, Van der Meer E, Wissel S, Wüste-

mann H (2016) Stadtnatur fördert die Gesundheit. In: Kowarik I, Bartz R, Brenck M (eds) Ökosystemleistungen in der Stadt. Naturkapital Deutschland, Berlin, pp 98–124 Horton P, Schaefli A, Mezghani B, Hingray B, Musy A (2006) Assessment of climate change impacts on alpine discharge regimes with climate model uncertainty. Hydrol Process 20:2091–2109 Hosper SH (1998) Stable states, buffers and switches: an ecosystem approach to the restoration and management of shallow lakes in The Netherlands. Water Sci Technol 37:151–164 Hotze C, van Elsen T, Haase T, Heß J, Otto M (2009) Ackerwildkraut-Blühstreifen zur Integration autochthoner Ackerwildkräuter in ökologisch bewirtschafteten Ackerflächen. In: Mayer J, Alföldi T, Leiber F, Dubois D, Fried P, Heckendorn F, Hillmann E, Klocke P, Lüscher A, Riedel S, Stolze M, Strasser F, van der Heijden M, Willer H (eds) Werte—Wege—Wirkungen: Biolandbau im Spannungsfeld zwischen Ernährungssicherung, Markt und Klimawandel. Beiträge zur 10. Wissenschaftstagung Ökologischer Landbau, ETH Zurich, vol 1. Dr. Köster, Berlin, pp 426–429 Houghton JT, Jenkins GJ, Ephraums JJ (1990) Climate change: the IPCC scientific assessment. Cambridge University Press, Cambridge Houston J, Rooney PJ, Edmondson SE (eds) (2001) Coastal dune management: shared experience of European conservation practice. Liverpool University Press, Liverpool Howell EA, Harrington JA, Glass SB (2012) Introduction to restoration ecology. Island Press, Washington, DC Howells G, Dalziel TRK (1990) Restoring acid waters: Loch Fleet 1984–1990. Elsevier, London Huber D (2012) Bear—Croatia. In: Kaczensky P, Chapron G, von Arx M, Huber D, Andrén H, Linnell J (eds) Status, management and distribution of large carnivores—bear, lynx, wolf and wolverine in Europe. Report to the EU Commission, pp 1–4 Huber D, Kusak J, Majić-Skrbinšek A, Majnarić D, Sindičić M (2008) A multidimensional approach to managing the European brown bear in Croatia. Ursus 19:22–32 Huber R, Rigling A, Bebi P, Brand FS, Briner S, Buttler A, Elkin C, Gillet F, Grêt-Regamey A, Hirschi C, Lischke H, Scholz RW, Seidl R, Spiegelberger T, Walz A, Zimmermann W, Bugmann H (2013) Sustainable land use in mountain regions under global change: synthesis across scales and disciplines. Ecol Soc 18(3):36 Hübner-Schmid K, von Borries B, Hasemann A, Schnegg M (2003) Netzwerk- und Akteursanalyse. Ein methodischer Leitfaden. FriEnt, Bonn

628

References

Hubo C, Jumpertz E, Krott M, Nockemann L, Steinmann A, Bräuer I (2007) Grundlagen für die Entwicklung einer nationalen Strategie gegen invasive gebietsfremde Arten. BfN Skripten 213:1–370 Hughes FMR, Rood SB (2003) Allocation of river flows for restoration of floodplain forest ecosystems: a review of approaches and their applicability in Europe. Environ Manag 32(1):12–33 Hughes FMR, Adams WM, Muller E, Nilsson C, Richards KS, Barsoum N, Decamps H, Foussadier R, Girel J, Guilloy H, Hayes A, Johansson M, Lambs L, Pautou G, Peiry JL, Perrow M, Vautier F, Winfield M (2001) The importance of different scale processes for the restoration of floodplain woodlands. Regul River 17:325–345 Hughes SR, Kay P, Brown LE (2013) Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ Sci Technol 47:661–677 Hügin G (1981) Die Auenwälder des südlichen Oberrheintals—ihre Veränderung und Gefährdung durch den Rheinausbau. Landsch Stadt 13:78–91 Hunziker M, Kienast F (1999) Potential impacts of changing agricultural activities on scenic beauty— a prototypical technique for automated rapid assessment. Landsc Ecol 14:161–176 Hupfer M, Hilt S (2008) Lake restoration. In: Jørgensen SE, Fath BD (eds) Ecological engineering, Encyclopedia of ecology, vol 3. Elsevier, Oxford, pp 2080–2093 Hupfer M, Kleeberg A (2011) Zustand und Belastung limnischer Ökosysteme—Warnsignale einer sich verändernden Umwelt. In: Lozán JL, Graßl H, Hupfer P, Karbe L, Schönwiese CD (eds) Warnsignal Klima: Genug Wasser für alle? 3rd edn. University of Hamburg, Hamburg, pp 186–196 Hupfer M, Scharf BW (2014) Seentherapie: Interne Maßnahmen zur Verminderung der Phosphorkonzentration. VI-2.1. In: Hupfer M, Calmano W (eds) Handbuch Angewandte Limnologie: Grundlagen—Gewässerbelastung—Restaurierung—Aquatische Ökotoxikologie—Bewertung— Gewässerschutz. Wiley-VCH, Weinheim, pp 1–67 Hupfer P (2010) Die Ostsee—kleines Meer mit großen Problemen, 2nd edn. Gebr Borntraeger, Stuttgart Hüppe J (1987) Zur Entwicklung der Ackerunkrautvegetation seit dem Neolithikum. Nat Landschkd 23:25–33 Hüppe J (1993) Entwicklung der Tieflands-Heidelandschaften Mitteleuropas in geobotanischvegetationsgeschichtlicher Sicht. Ber. d. Reinh.-Tüxen-Ges. 5:49–75 Hüppe J (1995) Geschichte der Landschaft in Mitteleuropa: Von der Eiszeit bis zur Gegenwart. Beck, München Hüppe J (2011) Ausbeutung der Ressourcen bis zur Devastierung—Die Entstehung der Heideland-

schaften in Mitteleuropa. In: Hilbk M, Schneider N (eds) Ressourcen: aus welchen Quellen lebt der Mensch? LIT, Münster, pp 110–120 Hüppe J, Hofmeister H (1990) Syntaxonomische Fassung und Übersicht über die Ackerunkrautgesellschaften in der Bundesrepublik Deutschland. Ber Reinh-Tüx-Ges 2:61–81 Hurst A, John E (1999) The biotic and abiotic changes associated with Brachypodium pinnatum dominance in chalk grassland in south-east England. Biol Conserv 88:75–84 Hussner A, Krause T (2007) Zur Biologie des aquatischen Neophyten Myriophyllum heterophyllum Michaux in Düsseldorfer Stadtgewässern. Acta Biol Benrodis 14:67–76 Hussner A, Nehring S, Hilt S (2014) From first reports to successful control: a plea for improved management of alien aquatic plant species in Germany. Hydrobiologia 737:321–331 Hussner A, Nienhaus I, Krause T (2005) Zur Verbreitung von Myriophyllum heterophyllum Michx in Nordrhein-Westfalen. Flor Rundbr 39: 113–120 Hussner A, van de Weyer K, Gross EM, Hilt S (2010) Eine Übersicht über die aquatischen Neophyten in Deutschland—Einführung, Etablierung, Auswirkungen und aktuelle Probleme, Zukunftsaussichten und Managementperspektiven. In: Hupfer M, Calmano W, Klapper H, Wilken R-D (eds) Handbuch Angewandte Limnologie, 27 Lfrg. 4/10. Wiley, Weinheim, pp 1–28 Huston MA (1985) Patterns of species diversity on coral reefs. Ann Rev Ecol Syst 16:149–177 Huth J, Oelerich H-M, Reuter M, Tischew S (2004): Biotoptypen in der Bergbaufolgelandschaft. In: Tischew S (Ed): Renaturierung nach dem Braunkohleabbau. Vieweg and Teubner , Wiesbaden, pp 31–68 Huth F (2010) Untersuchungen zur Verjüngungsökologie der Sand-Birke (Betula pendula Roth). Dissertation, TU Dresden Huth J, Oelerich HM, Reuter M, Tischew S (2004) Biotoptypen in der Bergbaufolgelandschaft. In: Tischew S (ed) Renaturierung nach dem Braunkohleabbau. Vieweg & Teubner, Wiesbaden, pp 31–68 Hutter CP, Briemle G, Fink C (2002) Wiesen, Weiden und anderes Grünland. Hirzel, Stuttgart Hüttl R (1998) Ecology of post strip-mining landscapes in Lusatia, Germany. Environ Sci Pol 1:129–135 Hüttl RF, Klem D, Weber E (eds) (1999) Rekultivierung von Bergbaufolgelandschaften. Das Beispiel des Lausitzer Braunkohlereviers. De Gruyter, Berlin Hüttl RF, Weber E (2001) Forest ecosystem development in post-mining landscapes: a case study of the Lusatian lignite district. Naturwiss 88(8):322–329

629 References

Huyghe C, De Vliegher A, van Gils B, Peeters A (2014) Grasslands and herbivore production in Europe and effects of common policies. Éditions Quae, Versailles IBKF (2016) Die Fische des Bodensee-Obersees. Internationale Bevollmächtigtenkonferenz für die Bodenseefischerei. http://www.­ibkf.­org/. Accessed 3 May 2017 ICES (2005) Report of the ICES advisory committee on fishery management. Int Council Explor Sea Advice 8:1–155 ICES (2008) Report of the ICES advisory committee. ICES Advice Book 6:1–326 ICES (2010) ICES Advice: Report of the ICES advisory committees. Book 6: North Sea. Cod in Subarea IV (North Sea), Division VIId (Eastern Channel), and IIIa West (Skagerrak). ICES, Copenhagen ICES (2017a) Fisheries overviews greater North Sea Ecoregion. http://www.­ices.­dk/. Accessed 9 Aug 2018 ICES (2017b) Fisheries overviews Baltic Sea Ecoregion. http://www.­ices.­dk/. Accessed 9 Aug 2018 Ignatieva M, Ahrné K (2013) Biodiverse green infrastructure for the 21 st century: from “green desert” of lawns to biophilic cities. J Archit Urban 37(1):1–9 IHK (2016) Touristische Kennzahlen für Niedersachsen. Industrie- und Handelskammer. http:// www.­h annover.­i hk.­d e/fileadmin/data/Dokumente/Themen/Tourismus/Touristische_Kennzahlen_fuer_Niedersachsen.­pdf. Accessed 21 May 2017 IBKF (2016) Die Fische des Bodensee-Obersees. Internationale Bevollmächtigtenkonferenz für die Bodenseefischerei. http://www.ibkf.org/ Iital A, Klõga M, Kask Ü, Voronova V, Cahill B (2012) Reed harvesting. In: Schultz-Zehden A, Matczak M (eds) Compendium: an assessment of innovative and sustainable uses of Baltic marine resources. Maritime Institute in Gdansk, Gdansk, pp 103–124 IKSR (2015) Rheinfischfauna. IKSR Rhein—Messprogramm Biologie 2012/2013: Qualitätskomponente Fische. Internationale Kommission zum Schutz des Rheins. IKSR Fachber 228:1–85 Illig H, Kläge HC (1985) Das Feldflorareservat bei Luckau-Freesdorf. Arch Natschutz Landschforsch 25:93–95 Ingold T (2000) The perception of the environment. Essays on livelihood, dwelling and skill. Routledge, London Ingram HAP (1978) Soil layers in mires: function and terminology. J Soil Sci 29:224–227 Ingrisch S, Wasner U, Glück E (1989) Vergleichende Untersuchungen der Ackerfauna auf alternativ und konventionell bewirtschafteten Flächen. Schrreihe Landesanst Ökol Landschentw Forstplan Nordrhein-Westfalen 11:113–272

IOW (2014) Faktenblatt “Blaualgen”—Cyanobakterien. Leibniz-Institut für Ostseeforschung Warnemünde. https://www.­io-warnemuende.­de/ blaualgencyanobakterien.­html. Accessed 2 Jan 2018 IPCC (2000) Emissions scenarios. Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge. http://www.­ipcc.­ch/ ipccreports/sres/emission/index.­p hp?idp=0. Accessed 12 July 2017 IPCC (2007) Fourth assessment report of the Intergovernmental panel on climate change: mountains. https://www.­ipcc.­ch/publications_and_data/ ar4/wg2/en/ch4s4-4-7.­html. Accessed 2 Aug 2018 IPCC (2009) IPCC’S Peatland sites database. Irish Peatland conservation council Intergovernmental panel on climate change (IPCC) http://www.­ipcc.­ie/a-to-z-peatlands/peatland-action-plan/invasive-species-on-irish-peatlands/. Accessed 20 Jan 2017 IPCC (2014) Climate change: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change, Geneva. https://www.­ipcc.­ch/ pdf/assessment-report/ar5/syr/SYR_AR5_ FINAL_full_wcover.­pdf. Accessed 2 Aug 2017 IPCC (2015) Special report of the intergovernmental panel on climate change on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. https://www.­ipcc.­ch/ report/sr2/pdf/sr2_stakeholder_consultation-­final.­ pdf. Accessed 2 Aug 2018 IPCC (2016) Dutch-Irish bog conservation. Irish Peatland conservation council. Intergovernmental panel on climate change (IPCC). http://www.­ ipcc.­ie. Accessed 18 Jan 2017 IPS (2016) Global peat resources by country. International Peatland society (IPS). http://www.­peatsociety. ­org/peatlands-and-peat/global-peatresources-country. Accessed 13 Jan 2017 Irmler U (1998) Faunistische Erfassung. In: Irmler U, Müller K, Eigner J (eds) Das Dosenmoor. Ökologie eines regenerierenden Hochmoores. Wachholtz, Neumünster, pp 181–182 Irmler U, Müller K, Eigner J (eds) (1998) Das Dosenmoor. Ökologie eines regenerierenden Hochmoores. Wachholtz, Neumünster Isermann M (2008) Expansion of Rosa rugosa and Hippophae rhamnoides in coastal grey dunes: effects at different spatial scales. Flora 203:273–280 Isermann M, Cordes H (1992) Changes in dune vegetation on Spiekeroog (East Friesian islands) over a 30 year period. In: Carter RWG, Curtis TGF, Sheehy-Skeffington MJ (eds) Coastal dunes: geomorphology, ecology and management for conservation. Balkema, Rotterdam, pp 201–209

630

References

Islam MS, Tanaka M (2004) Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar Pollut Bull 48:624–649 ISPRA (2010) Piano d’azione interregionale per la conservazione dell’orso bruno sulle alpi centroorientali (denominato PACOBACE). Ministero dell’Ambiente. http://www.­minambiente.­it/pagina/ piano-dazione-interregionale-laconservazionedellorso-bruno-sulle-alpi-­centroorientali. Accessed 15 Oct 2016 Isselin-Nondedeu F, Bédécarrats A (2007) Influence of alpine plants growing on steep slopes on sediment trapping and transport by runoff. Catena 71:330–339 Isselstein J, Jeangros B, Pavlu V (2005) Agronomic aspects of biodiversity targeted management of temperate grasslands in Europe—a review. Agron Res 3:139–151 IUCN (1991) The lowland grasslands of Central and Eastern Europe. Environ Res Ser IUCN East Eur Prog 4:1–89 IUCN (2016) IUCN red list of threatened species, version 2. http://www.­iucnredlist.­org. Accessed 13 Oct 2016 IUCN (2017a) World commission on protected areas: grasslands. https://www.­iucn.­org/theme/protectedareas/wcpa/what-we-do/grasslands. Accessed 26 Feb 2017 IUCN (2017b) Gender-responsive restoration guidelines: a closer look at gender in the restoration opportunities assessment methodology. Gland. https://portals.­iucn.­org/library/sites/library/files/ documents/2017-009.­pdf. Accessed 20 Jun 2017 IUCN (2018) Category II: National Park. Protected area categories. International union for conservation of nature. https://www.­iucn.­org/theme/protectedareas/about/protected-­a reas-­c ategories/ categoryii-national-park. Accessed 1 Jan 2018 IUCN UK (2017) IUCN Peatland programme. http:// www.­iucn-uk-peatlandprogramme.­org/. Accessed 15 Jan 2017 IUCN/SSC (2013) Guidelines for reintroductions and other conservation translocations. Version 1.0. IUCN Species Survival Commission, Gland, Switzerland. https://portals.­iucn.­org/library/efiles/ documents/2013-009.­pdf. Accessed 20 Jun 2017 Jabin M, Mohr D, Kappes H, Topp W (2004) Influence of deadwood on density of soil macroarthropods in a managed oak–beech forest. For Ecol Manag 194(1–3):61–69 Jabłońska-Czapla M, Nocoń K, Szopa S, Łyko A (2016) Impact of the Pb and Zn ore mining industry on the pollution of the Biała Przemsza River, Poland. Environ Monit Assess 188:262–270

Jachowski DS, Millspaugh JJ, Angermeier PL, Slotow R (2016) Reintroduction of fish and wildlife populations. University of California Press, Oakland Jacke D, Toensmeier E (2005) Edible forest gardens, Ecological design and practice for temperate-climate permaculture, vol 2. Chelsea Green Publishing, Vermont Jackowiak B (1996) Chorological-ecological model for the spread of Puccinellia distans (Poaceae) in Central Europe. Fragm Flor Geobot 41: 551–561 Jackson LL, Lopoukhine N, Hillyard D (1995) Ecological restoration: a definition and comments. Restor Ecol 3:71–75 Jackson ST, Hobbs RJ (2009) Ecological restoration in the light of ecological history. Science 325:567– 569 Jacob M, Bade C, Calvete H, Dittrich S, Leuschner C, Hauck M (2013) Significance of over-mature and decaying trees for carbon stocks in a Central European natural spruce forest. Ecosystems 16(2):336–346 Jacob M, Weland N, Platner C, Schaefer M, Leuschner C, Thomas F (2009) Nutrient release from decomposing leaf litter of temperate deciduous forest trees along a gradient of increasing tree species diversity. Soil Biol Biochem 41:2122–2130 Jacobs DF, Oliet JA, Aronson J, Bolte A, Bullock JM, Donoso PJ, Landhäusser SM, Madsen P, Peng S, Rey-Benayas JM, Weber JC (2015) Restoring forests: what constitutes success in the twenty-first century? New For 46(5–6):601–614 Jacomet S, Brombacher C, Dick M (1991) Palaeoethnobotanical work on Swiss Neolithic and Bronze Age lake dwellings over the past ten years. In: Renfrew JM (ed) New light on early farming: recent developments in palaeoethnobotany. Proceedings of the 7th symposium of the IWGP, Cambridge 1986. Edinburgh University Press, Edinburgh, pp 257–276 Jacomet S, Kreuz A (1999) Archäobotanik. Aufgaben, Methoden und Ergebnisse vegetations- und agrargeschichtlicher Forschung. Ulmer, Stuttgart Jacot KA, Lüscher A, Nösberger J, Hartwig UA (2000a) Symbiotic N2 fixation of various legume species along an altitudinal gradient in the Swiss Alps. Soil Biol Biochem 32:1043–1052 Jacot KA, Lüscher A, Nösberger J, Hartwig UA (2000b) The relative contribution of symbiotic N2 fixation and other nitrogen sources to grassland ecosystems along an altitudinal gradient in the Alps. Plant Soil 225:201–211 Jacquemart AL, Champluvier D, De Sloover J (2003) A test of mowing and soil-removal restoration techniques in wet heaths of the High Ardenne, Belgium. Wetlands 23:376–385

631 References

Jacquemyn H, Butaye J, Hermy M (2003) Influence of environmental and spatial variables on regional distribution of forest plant species in a fragmented and changing landscape. Ecography 26(6):768–776 Jacquemyn H, Van Mechelen C, Brys R, Honnay O (2011) Management effects on the vegetation and soil seed bank of calcareous grasslands: an 11-year experiment. Biol Conserv 144:416–422 Jactel H, Brockerhoff E, Duelli P (2005) A test of the biodiversity-stability theory: meta-­analysis of tree species diversity effects on insect pest infestation, and re-examination of responsible factors. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function: temperate and boreal systems. Ecol Stud 176:235–262 Jaeger CH, Monson RK, Fisk MC, Schmidt SK (1999a) Seasonal partitioning of nitrogen by plants and soil microorganisms in an alpine ecosystem. Ecology 80:1883–1891 Jaeger JW, Carlson IH, Porter WP (1999b) Endocrine, immune, and behavioral effects of aldicarb (carbamate), atrazine (triazine) and nitrate (fertilizer) mixtures at groundwater concentrations. Toxicol Ind Health 15:133–151 Jage H, Jage I (1967) Zur Flora der Altmark. Verh Bot Ver Prov Brandenbg 104:54–62 Jäger D (2005) Die Makrophyten-Vegetation ausgesuchter Fließgewässer des Vorarlberger Rheintals als Grundlage für die Bewertung des ökologischen Zustands. Dissertation, University of StuttgartHohenheim. http://d-nb.­info/975493973/34. Accessed 3 Apr 2017 Jäger S (2000) Ragweed (Ambrosia) sensitisation rates correlate with the amount of inhaled airborne pollen. A 14-year study in Vienna, Austria. Aerobiologia 16:149–153 Jaggy M (1997) Risikoanalyse von Deponien und komplementäre Konzepte für die Abfallwirtschaft und das Deponiemanagement. vdf Hochschulverlag, Zurich Jähnig SC, Brabec K, Buffagni A, Erba S, Lorenz AW, Ofenböck T, Verdonschot PFM, Hering D (2010) A comparative analysis of restoration measures and their effects on hydromorphology and benthic invertebrates in 26 central and southern European rivers. J Appl Ecol 47:671–680 Jähnig SC, Hering D, Sommerhäuser M (eds) (2011) Fließgewässer-Renaturierung heute und morgen—EG-Wasserrahmenrichtlinie, Maßnahmen und Effizienzkontrolle. Limnol Akt 13:1–289 Jäkel A, Roth M (2004) Conversion of single-layered Scots pine monocultures into close-to-­ nature mixed hardwood forests: effects on parasitoid wasps as pest antagonists. Eur J For Res 123(3):203–212 Jakob B, Laepple U (2014) Gesundheit, Heilung und Spiritualität: Heilende Dienste in Kirche, Dia-

konie und weltweiter Ökumene. Vandenhoeck & Ruprecht, Göttingen Jalkanen JP, Johansson L, Kukkonen J (2013) A comprehensive inventory of the ship traffic exhaust emissions in the Baltic Sea from 2006 to 2009. Ambio 2013:1–14 Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30(5):435–458 Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268 Janowitz A (2003) Die Lüneburger Saline im 18. und 19. Jahrhundert. Verlag für Regionalgeschichte, Bielefeld Janse JH, Scheffer M, Lijklema L, Van Liere L, Sloot JS, Mooij WM (2010) Estimating the critical phosphorus loading of shallow lakes with the ecosystem model PC-Lake: sensitivity, calibration and uncertainty. Ecol Model 221:654–665 Jansen AJM, de Graaf MCC, Roelofs JGM (1996) The restoration of species-rich heathland communities in the Netherlands. Vegetatio 126:73–88 Jansen F, Ewald J (2011) Einstufung der Waldbindung epigäischer Moose mit Hilfe statistischer Auswertungen von Vegetationsdatenbanken. BfN Skripten 299:46–52 Jansen F, Zerbe S, Succow M (2009) Changes in landscape naturalness derived from a historical land register—a case study from NE Germany. Landsc Ecol 24:185–198 Jansen P, Kuiper L (2004) Double green energy from traditional coppice stands in the Netherlands. Biomass Bioenergy 26(4):401–402 Jansen AJM, Fresco LFM, Grootjans AP, Jalink MH (2004) Effects of restoration measures on plant communities of wet heathland ecosystems. Appl Veg Sci 7:243–252 Janssen C (1986) Ökologische Untersuchungen an Binnensalzstellen in Südostniedersachsen. Phytocoenologia 14:109–142 Janssen C, Brandes D (1989) Phänologie der binnenländischen Halophytengesellschaften Niedersachsens. Phytocoenologia 17(1):105–124 Janssens F, Peeters A, Tallowin JRB, Bakker JP, Bekker RM, Fillat F, Oomes MJM (1998) Relationship between soil chemical factors and grassland diversity. Plant Soil 202(1):69–78 Jantsch E (1970) Inter- and transdisciplinary university: a systems approach to education and innovation. Pol Sci 1:203–428 Jantsch E (1972) Towards interdisciplinarity and transdisciplinarity in education and innovation. In: Centre for educational research and innovation (CERI) interdisciplinarity: problems of

632

References

teaching and research in universities. CERI, Paris, pp 97–121 Januschke K, Verdonschot R (2015) Effects of river restoration on riparian ground beetles (Coleoptera: Carabidae) in Europe. Hydrobiologia 769(1):93–104 Jany A, Geitz P (2013) Ingenieurbiologische Bauweisen an Fließgewässern, Part 1. Leitfaden für die Praxis. WBW Fortbildungsgesellschaft für Gewässerentwicklung mbH. http://www4.­ lubw.­b aden-wuerttemberg.­d e/. Accessed 29 Apr 2017 Jauker F, Bondarenko B, Becker HC, Steffan-Dewenter I (2012) Pollination efficiency of wild bees and hoverflies provided to oilseed rape. Agric For Entomol 14(1):81–87 Jax K (2005) Function and “functioning” in ecology: what does it mean? Oikos 111(3):641–648 Jeckel G (1984) Syntaxonomische Gliederung, Verbreitung und Lebensbedingungen nordwestdeutscher Sandtrockenrasen (SedoScleranthetea). Phytocoenologia 12:9–153 Jedicke E (1989) Boden: Entstehung, Ökologie, Schutz. Otto Maier, Ravensburg Jedicke E (1994) Biotopverbund. Grundlagen und Maßnahmen einer neuen Naturschutzstrategie, 2nd edn. Ulmer, Stuttgart Jedicke E (1998) Raum-Zeit-Dynamik in Ökosystemen und Landschaften—Kenntnisstand der Landschaftsökologie und Umsetzung in die Prozeßschutz-Definition. Natschutz Landschplan 30(7/8):229–236 Jedicke E, Frey W, Hundsdorfer M, Steinbach E (eds) (1996) Praktische Landschaftspflege: Grundlagen und Maßnahmen, 2nd edn. Stuttgart, Ulmer Jedicke E, Kolb KH, Preusche K (2010) Grünlandprojekt Rhön. Grünlandschutz und Landschaftsentwicklung durch großflächige Beweidung im Biosphärenreservat Rhön. Regionale Arbeitsgemeinschaft Rhön (ARGE Rhön). https://www.­dbu. ­d e/OPAC/ab/DBUAbschlussbericht-AZ-22655.­ pdf. Accessed 5 Mar 2017 Jędrzejewska B, Jędrzejewski W (1998) Predation in verterbrate communites. The Białowieża Primeval forest as a case study. Ecol Stud 135:1–452 Jefferson RG, Usher MB (1994) Ökologische Sukzession und die Untersuchung und Bewertung von Nicht-Klimax-Gesellschaften. In: Usher MB, Erz W (eds) Erfassen und Bewerten im Naturschutz. Probleme—Methoden—Beispiele. Quelle & Meyer, Heidelberg, pp 66–82 Jennings DH (1976) The effect of sodium cholride on higher plants. Biol Rev 51:453–486 Jensen HS (2004) Restoration of dune habitats along the Danish west coast. Int Forest Fire News 30:14–15

Jensen K, Lenzewski N, Dengler J (2013) Vegetationsentwicklung im Rückdeichungsgebiet Lenzen: Veränderungen zwischen 2009 und 2011. In: Struck A, Garbe H, Felinks B (eds) Auenreport Spezial: Die Deichrückverlegung bei Lenzen. Erste Ergebnisse der wissenschaftlichen Begleitung. Ministerium für Umwelt, Gesundheit und Verbraucherschutz des Landes Brandenburg, Potsdam, pp 58–64 Jensen K, Trepel M, Merritt D, Rosenthal G (2006) Restoration ecology of river valleys. Basic Appl Ecol 7:383–387 Jentsch A (2001) The significance of disturbance for vegetation dynamics in sandy grassland ecosystems. Dissertation, University of Bielefeld Jentsch A, Beyschlag W (2003) Vegetation ecology of dry acidic grasslands in the lowland area of central Europe. Flora 198:3–25 Jentsch A, Friedrich S, Beyschlag W, Nezadal W (2002) Significance of ant and rabbit disturbance for seedling establishment in dry acidic grasslands dominated by Corynephorus canescens. Phytocoenologia 32:553–580 Jeppesen E, Jensen JP, Kristensen P, Søndergaard M, Mortensen E, Sortkjær O, Olrik K (1990) Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes. 2: Threshold levels, long-term stability and conclusions. Hydrobiologia 200(201):219–227 Jeppesen E, Sammalkorpi I (2002) Lakes. In: Perrow MR, Davy AJ (eds) Handbook of ecological restoration, Restoration in practice, vol 2. Cambridge University Press, Cambridge, pp 297–324 Jeppesen E, Søndergaard M, Jensen JP, Havens K, Anneville O, Carvalho L, Coveney MF, Deneke R, Dokulil M, Foy B, Gerdeaux D, Hampton SE, Kangur K, Köhler J, Körner S, Lammens E, Lauridsen TL, Manca M, Miracle R, Moss B, Nõges P, Persson G, Phillips G, Portielje R, Romo S, Schelske CL, Straile D, Tátrai I, Willén E, Winder M (2005) Lake responses to reduced nutrient loading—an analysis of contemporary data from 35 European and North American long term studies. Freshw Biol 50:1747–1771 Jeppesen E, Søndergaard M, Lauridsen TL, Kronvang B, Beklioglu M, Lammens E, Jensen HS, Köhler J, Ventelä AM, Tarvainen M, Tátrai I (2007a) Danish and other European experiences in managing shallow lakes. Lake Reser Manage 23(4):439–451 Jeppesen E, Søndergaard M, Meerhoff M, Lauridsen TL, Jensen JP (2007b) Shallow lake restoration by nutrient loading reduction- some recent findings and challenges ahead. Hydrobiologia 584:239–252 Jepsen N, Deacon M, Koed A (2012) Decline of the North Sea houting: protective measures for an

633 References

endangered anadromous fish. Endang Species Res 16:77–84 Jernelöv A (2017) The long-term fate of invasive species. Springer International, Cham Jeschke L (1987) Vegetationsdynamik des Salzgraslandes im Bereich der Ostseeküste der DDR unter dem Einfluss des Menschen. Hercynia NF 24:312– 328 Jeschke L (2001) Revitalisierung des Kieshofer Moors bei Greifswald. In: Succow M, Joosten H (eds) Landschaftsökologische Moorkunde. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 528–534 Jeschke L, Lange E (1991) Zur Genese der Küstenüberflutungsmoore im Bereich der vorpommerschen Boddenküste. In: Billwitz K, Janke W, Jäger KD (eds) Jungquartäre Landschaftsräume. Springer, Heidelberg, pp 208–215 Jeschke M, Kiehl K (2007) Restoration of xerophytic cryptogam vegetation in calcareous grasslands by cryptogam transfer. Verh Ges Ökol 37:311 Jespersen M, Rasmussen E (1994) Koresand—Die Entwicklung eines Aussensandes vor dem dänischen Wattenmeer. Küste 52:79–91 Jessel B (1998) Zielarten—Leitarten—Indikatorarten. Laufen Sembeitr 8(98):5–8 Jimenez-Carceles FJ, Egea C, Rodriguez-Caparros AB, Barbosa OA, Delgado MJ, Ortiz R, AlvarezRogel J (2006) Contents of nitrogen, ammonium, phosphorus, pesticides and heavy metals, in a salt marsh in the coast of the Mar Menor Lagoon (SE Spain). Fresenius Environ Bull 15:370–378 JNCC (1994) Biodiversity—The UK Actaion Plan. Joint nature conservation committee. http://jncc.­ defra.­g ov.­u k/PDF/UKBAP_Action-Plan-1994.­ pdf. Accessed 6 Feb 2017 Jochimsen ME (2001) Vegetation development and species assemblages in a long-term reclamation project on mine spoil. Ecol Eng 17:187–198 Johannes RE (ed) (1989) Traditional ecological knowledge. A collection of essays. The World Conservation Union (IUCN), Gland Johansen CA, Mayer DF (1990) Pollinator protection: a bee and pesticide handbook. Wicwas Press, Cheshire John H (2000) Zur Ausbreitung von Halophyten und salztoleranten Pflanzen in der Umgebung von Kali-Rückstandshalden am Beispiel des FND “Salzstelle bei Teutschenthal-Bahnhof ” (Saalkreis). Mitt Flor Kart Sachsen-Anhalt 5:175–197 Johns D (1992) The practical relevance of deep ecology. Wild Earth 2:62–68 Johnson DL, Ambrose SH, Bassett TJ, Bowen ML, Crummey DE, Isaacson JS, Johnson DN, Lamb P, Saul M, Winter-Nelson AE (1997) Meanings of environmental terms. J Environ Qual 26(3):581–589

Johnston FH, Henderson SB, Chen Y, Randerson JT, Marlier M, DeFries RS, Kinney P, Bowman DMJS, Brauer M (2012) Estimated global mortality attributable to smoke from landscape fires. Environ Health Perspect 120:695–701 Jonášová M, van Hees A, Prach K (2006) Rehabilitation of monotonous exotic coniferous plantations: a case study of spontaneous establishment of different tree species. Ecol Eng 28(2):141–148 Jones A, Panagos P, Barcelo S, Bouraoui F, Bosco C, Dewitte O, Gardi C, Erhard M, Hervás J, Hiederer R, Jeffery S, Lükewille A, Marmo L, Montanarella L, Olazábal C, Petersen JE, Penizek V, Strassburger T, Tóth G, Van Den Eeckhaut M, Van Liedekerke M, Verheijen F, Viestova E, Yigini Y (2012) The state of soil in Europe. European Commission, European Environment Agency, Joint Research Centre, Luxemburg. https://ec.­ europa.­e u/jrc/sites/jrcsh/files/lbna25186enn.­ pdf ?search. Accessed 10 Aug 2017 Jones CA, Pease KA (1997) Restoration-based compensation measures in natural resource liability statutes. Contemp Econ Pol 15:111–122 Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69(3):373–386 Jones KC, de Voogt P (1999) Persistent organic pollutants (POPs): state of the science. Environ Pollut 100(1–3):209–221 Jones MB, Donnelly A (2004) Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol 164:423–439 Joniak T, Kuczyńska-Kippen N (2016) Habitat features and zooplankton community structure of oxbows in the limnophase: reference to transitional phase between flooding and stabilization. Limnetica 35(1):37–48 Joosten H (2007) Belarus takes the lead in peatland restoration for climate. IMCG Newslett 3:21–23 Joosten H (2009) Human impacts: farming, fire, forestry and fuel. In: Maltby E, Barker T (eds) The wetlands handbook, 2nd edn. Wiley, Chichester, pp 689–718 Joosten H, Berghöfer A, Couwenberg J, Dietrich K, Holsten B, Permien T, Schäfer A, Tanneberger F, Trepel M, Wahren A (2015) Die neuen MoorFutures®—Kohlenstoffzertifikate mit ökologischen Zusatzleistungen. Nat Landsch 90(4):170–175 Joosten H, Clarke D (2002) Wise use of mires and peatlands. Backround and principles including a framework for decision making. International Mire Conservation Group & International Peat Society, Totnes Joosten H, Couwenberg J (2001) Bilanzen zum Moorverlust. Das Beispiel Europas. In: Succow M, Joosten H (eds) Landschaftsökologische

634

References

Moorkunde. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 406–408 Joosten H, Tanneberger F, Moen A (eds) (2017) Mires and peatlands of Europe—status, distribution and conservation. Schweizerbart Science Publishers, Stuttgart Jordan WR III (2006) Ecological restoration: carving a niche for humans in the classic landscape. Nat Cult 1(1):22–35 Jordan WR III, Gilpin ME, Aber JD (eds) (1987) Restoration ecology: a synthetic approach to ecological research. Cambridge University Press, Cambridge Jordan WR III, Lubick GM (2011) Making nature whole: a history of ecological restoration. Island Press, Washington, DC Jørgensen D (2015) Ecological restoration as objective, target, and tool in international biodiversity policy. Ecol Soc 20(4):43 Jørgensen MH, Elameen A, Hofman N, Klemsdal S, Malaval S, Fjellheim S (2016) What’s the meaning of local? Using molecular markers to define seed transfer zones for ecological restoration in Norway. Evol Appl 9(5):673–684 Joseph C (1912) Die forstliche Bewirtschaftung des Flugsandgebietes in den Oberförstereien Eberstadt und Jugenheim. Ber Vers Forstver Großh Hessen 17:19–43 Jouquet P, Dauber J, Lagerlöf J, Lavelle P, Lepage M (2006) Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Appl Soil Ecol 32(2):153–164 Joye Y, van den Berg AE (2012) Restorative environments. In: Steg L, van den Berg AE, de Groot J (eds) Environmental psychology: an introduction. Wiley, Chichester, pp 57–67 Jukonienė I, Dobravolskaitė R, Sendžikaitė J, Skipskytė D, Repečkienė J (2015) Disturbed peatlands as a habitat of an invasive moss Campylopus introflexus in Lithuania. Boreal Environ Res 20:724–734 Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127 Junker M, Wagner S, Gros P, Schmitt T (2010) Changing demography and dispersal behaviour: ecological adaptations in an alpine butterfly. Oecologia 164(4):971–980 Jüpner R (2005) Hochwassermanagement. Magdeburger Wasserwirtsch 1:1–162 Jürging P (2006) Fließgewässer- und Auenentwicklung: Grundlagen und Erfahrungen. Springer, Heidelberg Jürging P, Kraus W (2013) Naturnaher Wasserbau: Entwicklung und Gestaltung von Fließgewässern. Springer, Heidelberg

Kabisch N, Haase D (2013) Green spaces of European cities revisited for 1990–2006. Landscape Urban Plan 110:113–122 Kaczensky P, Chapron G, von Arx M, Huber D, Andrén H, Linnell J (eds) (2012) Status, management and distribution of large carnivores—bear, lynx, wolf and wolverine—in Europe. Report to the EU Commission. http://ec.­europa.­eu/environment/nature/conservation/species/carnivores/pdf/ task_1_part2_species_country_reports.­p df. Accessed 7 Jun 2017 Kaczensky P, Rauer G (2012) Bear—Austria. In: Kaczensky P, Chapron G, von Arx M, Huber D, Andrén H, Linnell J (eds) Status, management and distribution of large carnivores—bear, lynx, wolf and wolverine—in Europe. Report to the EU Commission, pp 1–3. http://ec.­europa.­eu/environment/nature/conservation/species/carnivores/pdf/ task_1_part2_species_country_reports.­p df. Accessed 7 Jun 2017 Kadereit JW, Körner C, Kost B, Sonnewald U (2014) Strasburger − Lehrbuch der Pflanzenwissenschaften. Springer Spektrum, Heidelberg Kahl M, Gehrcke-Schleithoff M (2016) Diskussion um das Weißbuch Stadtgrün. Bundesregierung definiert die eigene Strategie zur urbanen grünen Infrastruktur. Natschutz Landschplan 48(6): 200–204 Kahlert M (1993) Auswirkungen der Werraversalzung auf die ökologischen Verhältnisse der Auenlandschaft der Werra. Ökol Umweltsicherung Ökol Umweltsicherung 2:1–168 Kahmen S, Poschlod P, Schreiber KF (2002) Conservation management of calcareous grasslands. Changes in plant species composition and response of functional traits during 25 years. Biol Conserv 104:319–324 Kail J, Brabec K, Poppe M, Januschke K (2015) The effect of river restoration on fish, macroinvertebrates and macrophytes: a meta-analysis. Ecol Indic 58:311–321 Kail J, Hering D, Muhar S, Gerhard M, Preis S (2007) The use of large wood in stream restoration: experiences from 50 projects in Germany and Austria. J Appl Ecol 44:1145–1155 Kaiser K, Keller N, Brande A, Dalitz S, Hensel N, Heußner KU, Kappler C, Michas U, Müller J, Schwalbe G, Weiße R, Bens O (2017) A largescale medieval dam-lake cascade in central Europe: water level dynamics of the Havel River, Berlin-Brandenburg region, Germany. Geoarchaeology 2017:1–23 Kaiser K, Merz B, Bens O, Hüttl RF (2012) Historische Veränderungen des Wasserhaushalts und der Wassernutzung in Nordostdeutschland. In:

635 References

Kaiser K, Merz B, Bens O, Hüttl RF (eds) Historische Perspektiven auf Wasserhaushalt und Wassernutzung in Mitteleuropa. Cottbus Stud Gesch Tech Arb Umwelt 38:73–102 Kaiser M, Schulte G (1998) Vergleich der Laufkäferfauna (Coleoptera, Carabidae) alternativ und konventionell bewirtschafteter Äcker in Nordrhein-Westfalen. In: Ebermann E (ed) Arthropod biology contributions to morphology, ecology and systematics. Biosyst Ecol Ser 14. Verlag der Österreichischen Akademie der Wissenschaften, pp 365–384 Kaiser T (2004) Feuer und Beweidung als Instrumente zur Erhaltung magerer Offenlandschaften in Nordwestdeutschland—Operationalisierung der Forschungsergebnisse für die naturschutzfachliche Planung. NNA Ber 17:213–221 Kaitaranta J, Niemistö J, Buhvestova O, Nurminen L (2013) Quantifying sediment resuspension and internal phosphorus loading in shallow nearshore areas in the Gulf of Finland. Boreal Environ Res 18:473–487 Kalin M, Fyson A, Wheeler WN (2005) The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Sci Total Environ 366(2–3):395–408 Kals E, Schumacher D, Montada L (1999) Emotional affinity toward nature as a motivational basis to protect nature. Environ Behav 31:178–202 Kampfmann G, Krimm S (1988) Verkehrsgeographie und Standorttypologie der Glashütten im Spessart. Stud Gesch Spessartglases 2:1–244 Kangas P (2004) Ecological engineering: principles and practice. CRC Press, Boca Raton Kangler G, Liebl-Schwindhammer B, Voigt A (2014) Faszination Wildfluss—Gesellschaftliche Auffassungen von Wildflüssen und ihre Relevanz für Naturschutz und Landschplanung. Anliegen Natur 36(1):66–73 Kapfer A (1994) Erfolgskontrolle bei Renaturierungsmaßnahmen im Feuchtgrünland. Schrreihe Landschpfl Natschutz 40:125–142 Kaphengst T, Bassi S, Davis M, Gardner S, Herbert S, Mazza L, Pieterse M, Rayment M (2011) Taking into account opportunity costs when assessing costs of biodiversity and ecosystem action. Final report. Ecologic Institute, Berlin. http://ec.­ europa.­eu/environment/enveco/biodiversity/pdf/ OpportunityCostsOfBiodiversityAndEcosystem Action.­pdf. Accessed 28 Jan 2018 Kaplan R, Kaplan S (1989) The experience of nature. A psychological perspective. Cambridge University Press, Cambridge Kaplan S (1995) The restorative benefits of nature: toward an integrative framework. J Environ Psych 15:169–182

Kappel CV (2005) Losing pieces of the puzzle: threats to marine, estuarine, and diadromous species. Front Ecol Environ 3(5):275–282 Kappes H, Topp W (2004) Emergence of Coleoptera from deadwood in a managed broadleaved forest in central Europe. Biodivers Conserv 13(10): 1905–1924 Kapusta A, Bogacka-Kapusta E (2015) Non-native fish species in heated lakes: origins and present status. Arch Pol Fish 23:121–129 Kapusta P, Sobczyk Ł (2015) Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions. Sci Total Environ 536:517–526 Kapustka LA, Landis WG (1998) Ecology: the science versus the myth. Hum Ecol Risk Assess 4(4): 829–838 Karafyllis NC (2002) “Nur soviel einschlagen, wie nachwächst”. Die Nachhaltigkeitsidee und das Gesicht des deutschen Waldes im Wechselspiel zwischen Forstwissenschaft und Nationalökonomie. Dent Tech 69(4):247–273 Karatayev AY, Burlakova LE, Padilla DK (1997) The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in Eastern Europe. J Shellfish Res 16:187–203 Karbe L, Ternes T, Wenzel A, Hecker M (2006) Estrogens, xenoestrogens and effects on fish in German waters. In: Vethaak D, Schrap M, De Voogt P (eds) Estrogens and xenoestrogens in the aquatic environment: an integrated approach for field monitoring and effect assessment. SETAC Press Special Publication, Pensacola, pp 365–406 Karg S (2008) Direct evidence of heathland management in the early Bronze Age (14th century B.C.) from the grave-mound Skelhøj in western Denmark. Veg Hist Archaeobotany 17:41–49 Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:805187 Karjalainen E, Sarjala T, Raitio H (2010) Promoting human health through forests: overview and major challenges. Environ Health Prev Med 15(1):1–8 Karkow K, Gronemann S (2005) Akzeptanz und Zahlungsbereitschaft bei Besuchern der Ackerlandschaft. In: Hampicke U, Litterski B, Wichtmann W (eds) Ackerlandschaften. Nachhaltigkeit und Naturschutz auf ertragsschwachen Standorten. Springer, Heidelberg, pp 115–128 Karl T, Fall R, Jordan A, Lindinger W (2001) On-line analysis of reactive VOCs from urban lawn mowing. Environ Sci Technol 35(14):2926–2931 Karlowski U, Konold W, Mrzljak J, Wallschläger D, Wiegleb G (2001) Offenland-­ Management auf

636

References

ehemaligen und in Nutzung befindlichen Truppenübungsplätzen in Nordostdeutschland. Natschutz Landschpfl Brandenburg 10(3): 109–111 Karlson K, Rosenberg R, Bonsdorff E (2002) Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters—a review. Oceanogr Mar Biol 40:427–489 Karofeld E, Müür M, Vellak K (2015) Factors affecting re-vegetation dynamics of experimentally restored extracted peatland in Estonia. Environ Sci Pollut Res 23(14):13706–13717 Kartodihardjo H, Supriono A (2000) The impact of sectoral development on natural forest conversion and degradation: the case of timber and tree crop plantations in Indonesia. CIFOR Occas Pap 26(E):1–14 Kask Ü, Kask L, Link S (2014) Combustion characteristics of reed and its suitability as a boiler fuel. Mires Peat 13:1–10 Kasperidus HD, Klimo E, Müller GK, Richter W, Sickert A (2001) The urban floodplain forest ecosystem of Leipzig. In: Klimo E, Hager H (eds) The floodplain forests in Europe. current situation and perspectives, Eur For Inst Res Rep, vol 10. European Forest Institute, Joensuu, pp 127–145 Kasprzak P, Schrenk-Bergt C, Koschel R, Krienitz L, Gonsiorcyk T, Wysujack K, Steinberg C (2000) Biologische Therapieverfahren (Biomanipulation). In: Steinberg C, Calmano W, Klapper H, Wilken RD (eds) Handbuch Angewandte Limnologie 10. ecomed, Landsberg, pp 1–20 Kastner F, Buchwald R, Körner F, Marxmeier U, Steffens P, Winkler C, Jödicke K, Mauscherning I (2016) Wiederansiedlung als Maßnahme des Artenschutzes. Die Grüne Mosaikjungfer (Aeshna viridis, Odonata) in Niedersachsen und SchleswigHolstein—ein Beitrag zum Habitaverbund. Natschutz Landschplan 48(3):87–96 Kastowski M, Hinderer M, Vecsei A (2011) Longterm carbon burial in European lakes: analysis and estimate. Glob Biogeochem Cycles 25(3):1–12 Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby MW, Reich PB, Wright IJ et al (2011) TRY—a global database of plant traits. Glob Change Biol 17:2905–2935 Katz C (2010) Was aber ist Wildnis?—Wildnis und kulturelle Vielfalt. Wildnis-­Naturverständnisse in anderen Kulturen und von Menschen mit Migrationshintergrund. Laufen Spezbeitr 2010:53–61 Katz E (1992) The big lie: human restoration of nature. Res Phil Technol 12:231–241 Katz E (1996) The problem of ecological restoration. Environ Ethics 18:222–224 Katz E, Light A, Rothenberg D (2000) Beneath the surface: critical essays in the philosophy of deep ecology. MIT Press, Cambridge

Katzur J, Haubold-Rosar M (1996) Amelioration and reforestation of sulfurous mine soils in Lusatia (Eastern Germany). Water Air Soil Pollut 91: 17–32 Kaule G (1986) Arten- und Biotopschutz, 1st edn. Ulmer, Stuttgart Kaule G (1991) Arten- und Biotopschutz, 2nd edn. Ulmer, Stuttgart Kausch H (1996) Die Elbe—ein immer wieder veränderter Fluß. In: Lozan J, Kausch H (eds) Warnsignale aus Flüssen und Ästuaren. Parey, Berlin, pp 43–52 Kay J (1988) Concepts of nature in the Hebrew Bible. Environ Ethics 10(4):309–327 Keddy PA (2010) Wetland ecology: principles and conservation. Cambridge University Press, Cambridge Keenleyside C, Beaufoy G, Tucker G, Jones G (2014) High nature value farming throughout EU-27 and its financial support under the CAP.  European Commission. http://ec.­europa.­eu/environment/ agriculture/pdf/High%20Nature%20Value%20 farming.­pdf. Accessed 5 Mar 2017 Keenleyside KA, Dudley N, Cairns S, Hall CM, Stolton S (2012) Ecological restoration for protected areas: principles, guidelines and best practices, Best practice protect area guidelines series 18. IUCN, Gland Keienburg T, Prüter J, Härdtle W, Kaiser T, Koopmann A, Melber A, Niemeyer F, Schaltegger S (2004) Feuer und Beweidung als Instrumente zur Erhaltung magerer Offenlandschaften in Nordwestdeutschland—Zusammenfassende Aspekte eines Verbundforschungsvorhabens. NNA Ber 17(2):3–12 Keienburg T, Prüter J (2004) Naturschutzgebiet Lüneburger Heide. Mitt NNA 17(1):1–65 Kelcey JG (2016) Provisional bibliography of atlases, floras and faunas of European cities: 1600–2014. Springer International, New York Kelleher G, Bleakley C, Wells S (eds) (1995) A global representative system of marine protected areas: Antarctic, Arctic, Mediterranean, Northwest Atlantic, Northeast Atlantic and Baltic. World Bank, Washington, DC Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M (2003) Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field. Plant Soil 249:67–81 Keller DR (ed) (2010) Environmental Ethics: the Big Questions. Wiley, Chichester Kellert SR, Wilson EO (eds) (1993) The Biophilia Hypothesis. Island Press, Washington, DC Kempeneers P, Sedano F, Seebach L, Strobl P, San Miguel-Ayanz J (2012) Data fusion of different spatial resolution remote sensing images applied

637 References

to forest type mapping. IEEE Transact Geosci Remote Sens 49(12):4977–4986 Kempke S, Schick R, Rinke K, Rothhaupt K-O (2008) Biogene Calcitfällung im Bodensee—Prozessverständnis und Modellierung. WasserWirtschaft 10:31–33 Kennedy RJ, Roberts D (1999) A survey of the current status of the flat oyster Ostrea edulis in Strangford Lough, Northern Ireland, with a view to the restoration of its oyster beds. Biol Environ 99B(2):79–88 Kerry J, Coyne R, Gilroy D, Hiney M, Smith P (1996) Spatial distribution of oxytetracycline and elevated frequencies of oxytetracycline resistant bacteria in the sediments beneath a salmon farm following oxytetracycline therapy. Aquacult 145:31–39 Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology, and ecology. J Atmos Chem 33:23–88 Kessler K, Denner M, Dittrich I, Müller I, Wendel D (2014) Das Sächsische Informationssystem für Moore und organische Nassstandorte (SIMON)— aktueller Stand und Zukunft. Telma 44:115–138 Kesting S (2009) Shrub encroachment of temperate grasslands: effects on plant biodiversity and herbage production. Dissertation, University of Göttingen Kettunen M, Genovesi P, Gollasch S, Pagad S, Starfinger U, ten Brink P, Shine C (2009) Technical support to EU strategy on Invasive Alien Species (IAS)—assessment of the impacts of IAS in Europe and the EU. Institute for European Environmental Policy, Brussels. http://ec.­europa.­eu/environment/ nature/invasivealien/docs/Kettunen2009_IAS_ Task%201.­pdf. Accessed 17 Nov 2017 Kevan PG (1997) Honeybees for better apples and much higher yields: study shows pollination services pay dividends. Canadian Fruitgrower 14:16 Kevan PG, Phillips TP (2001) The economic impacts of pollinator declines: an approach to assessing the consequences. Conserv Ecol 5(1):8 Kevan PG, Plowright RC (1995) Impact of pesticides on forest pollination. In: Armstrong JA, Ives WGH (eds) Forest insect pests in Canada. Natural resources Canada. Canadian Forest Service, Ontario, pp 607–618 Kiedrzyńska E, Kiedrzyński M, Zalewski M (2008) Flood sediment deposition and phosphorus retention in a lowland river floodplain: impact on water quality of a reservoir, Sulejów, Poland. Ecohydrol Hydrobiol 8(2–4):281–289 Kiedrzyńska E, Kiedrzyński M, Zalewski M (2015) Sustainable floodplain management for flood prevention and water quality improvement. Nat Hazards 76(2):955–977 Kiedrzyńska E, Zalewski M (2012) Water quality improvement through an integrated approach to

point and non-point sources pollution and management of river floodplain wetlands. In: Voudouris K, Voutsa D (eds) Ecological water quality water treatment and reuse. InTechopen, Rijeka, pp 325–342 Kiehl K (1997) Vegetationsmuster in Vorlandsalzwiesen in Abhängigkeit von Beweidung und abiotischen Standortfaktoren. Mitt Arbeitsgem Geobot Schleswig-Holstein Hamburg 52:1–171 Kiehl K (2009) Renaturierung von Kalkmagerrasen. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer Spektrum, Heidelberg, pp 265–282 Kiehl K, Jensen K, Stock M (2003a) Langfristige Vegetationsveränderungen in Wattenmeer-­Salzwiesen in Abhängigkeit von Höhenlage und Sedimentation. Kieler Not Pflanzenkd Schleswig-Holstein Hamb 31:50–68 Kiehl K, Kirmer A, Donath TW, Rasran L, Holzel N (2010) Species introduction in restoration projects: evaluation of different techniques for the establishment of semi-natural grasslands in Central and Northwestern Europe. Basic Appl Ecol 11:285–299 Kiehl K, Kirmer A, Tischew S, Shaw N (2014) Guidelines for native seed production and grassland restoration. Cambridge Scholars Publishing, Cambridge Kiehl K, Schröder H, Stock M (2007) Long-term vegetation dynamics after land-use change in the wadden sea salt marshes. Coastline Rep 7:17–24 Kiehl K, Thormann A, Pfadenhauer J (2003b) Nährstoffdynamik und Phytomasseproduktion in neu angelegten Kalkmagerrasen auf ehemaligen Ackerflächen. In: Pfadenhauer J, Kiehl K (eds) Renaturierung von Kalkmagerrasen. Angew Landschökol 2:39–71 Kiehl K, Thormann A, Pfadenhauer J (2006) Evaluation of initial restoration measures during the restoration of calcareous grasslands on former arable fields. Restor Ecol 14:148–156 Kiel E, Kastner F, Lühken R, Schröder M (2012) Die Wirbellosenfauna in Gräben Norddeutschlands. Natur Landsch 87(8):347–350 Killeen I, von Proschwitz T, Vavrova L (2011) Sphaerium solidum. The IUCN red list of threatened species.e.T155986A4878927. http://www.­iucnredlist.­ org/details/155986/0. Accessed 29 Apr 2017 Kim J-W (1994) On the distribution pattern of potential natural vegetation by climate change scenarios in the Korean peninsula. J Inst Nat Sci 13:73–80 Kim H, Kleinschmit B (2005) Use of high resolution satellite imagery for the analysis of sealing in the metropolitan area Seoul. In: Kappas M, Cyffka B, Erasmi S (eds) Remote sensing & GIS for environmental studies: applications in geography. Goltze, Göttingen, pp 281–286

638

References

Kimble JM, Levine ER, Stewart BA (1995) Soils and global change. CRC Press, Boca Raton Kimmel K, Mander Ü (2010) Ecosystem services of peatlands: implications for restoration. Progress Phys Geogr 34(4):491–514 Kinder M, Främbs H, Hielen B, Mossakowski D (2003) Regeneration von Salzwiesen in einem Sommergroden an der Nordseeküste: E + E-Vorhaben “Salzwiesenprojekt Wurster Küste”. Nat Landsch 78:343–353 King M (2010) An investigation into policies affecting Europe’s semi-natural grasslands. The Grasslands Trust, Hampshire, UK. http://www.­efncp.­org/ download/European-­g rasslands-­report-phase1.­ pdf. Accessed 26 Feb 2017 King SE, Lester JN (1995) Pollution economics. The value of salt marshes as a sea defence. Mar Pollut Bull 30:180–189 Kinzelbach R (1969) Epökie der Wandermuschel (Dreissena polymorpha Pallas). Nat Mus 99(4):155–158 Kipfer T, Bosshard A (2007) Low seed bank of herb species suitable for grazing hampers the establishment of wood pastures in the Swiss lowlands. Bot Helv 117:159–167 Kipigroch K, Janosz-Rajczyk M, SkowronGrabowska B (2016) The use of algae in the removal of Cd and Cu in the process of wastewater recovery. Desalin Water Treat 57(3):1508–1514 Kirchhoff T (2016) Die Konzepte der Ökosystemgesundheit und Ökosystemintegrität. Zur Frage und Fragwürdigkeit normativer Setzungen in der Ökologie. Nat Landsch 91(9/10):464–469 Kirchmann H (1994) Biological dynamic farming—an occult form of alternative agriculture? J Agric Environ Ethics 7(2):173–187 Kirchner M, Fegg W, Römmelt H, Leuchner M, Ries L, Zimmermann R, Michalke B, Wallasch M, Maguhn J, Faus-Kessler T, Jakobi G (2014) Nitrogen deposition along differently exposed slopes in the Bavarian Alps. Sci Total Environ 470–471:895–906 Kirksey SE, Helmreich S (2010) The emergence of multispecies ethnography. Cult Anthropol 25(4):545–576 Kirleis W, Klooß S, Kroll H, Müller J (2012) Crop growing and gathering in the northern German Neolithic: a review supplemented by new results. Veg History Archaeobot 21(3):221–242 Kirmer A (2004a) Methodische Grundlagen und Ergebnisse initiierter Vegetationsentwicklung auf xerothermen Extremstandorten des ehemaligen Braunkohlentagebaus in Sachsen-Anhalt. Diss Bot 385:1–167 Kirmer A (2004b) Beschleunigte Entwicklung von Offenlandbiotopen auf erosionsgefährdeten Böschungsstandorten. In: Tischew S (ed) Renatu-

rierung nach dem Braunkohleabbau. Vieweg & Teubner, Wiesbaden, pp 234–248 Kirmer A, Jünger G, Tischew S (2002) Initiierung von Sandtrockenrasen auf Böschungen im Braunkohletagebau Goitsche. Kriterien und Empfehlungen für Strategien der Renaturierung. Natschutz Landschplan 34(2/3):52–59 Kirmer A, Krautzer B, Scotton M, Tischew S (eds) (2012) Praxishandbuch zur Samengewinnung und Renaturierung von artenreichem Grünland. Eigenverlag Lehr- und Forschungszentrum Raumberg-Gumpenstein, Irdning Kirmer A, Lorenz A, Baasch A, Tischew T (2015) Renaturierung von Offenlandlebensräumen. 3rd ed. Hochschule Anhalt. http://offenlandinfo.­loel.­ hs-anhalt.­d e/fileadmin/user_upload/Publikationen/Projektbroschuere_2015-05-07.­p df. Accessed 31 May 2017 Kirmer A, Tischew S (eds) (2006) Handbuch naturnahe Begrünung von Rohböden. Springer, Heidelberg Kiss R, Valkó O, Tóthmérész B, Török P (2017) Seed bank research in Central European grasslands— an overview. In: Murphy J (ed) Seed banks: types, roles and research. Nova Science Publishers, New York, pp 1–34 Kiviat E (2013) Ecosystem services of Phragmites in North America with emphasis on habitat functions. AoB PLANTS 5:plt008 Kiviat E, Hamilton E (2001) Phragmites use by Native North Americans. Aqua Bot 69:341–357 Kläge HC (1999) Segetalarten und -gesellschaften der nordwestlichen Niederlausitz und die Naturschutzstrategie zu ihrer Erhaltung. Diss Bot 304:1–142 Klaiber J, Altermatt F, Birrer S, Chittaro Y, Dziock F, Gonseth Y, Hoess R, Keller D, Küchler H, Luka H, Manzke U, Müller A, Pfeifer MA, Roesti C, Schlegel J, Schneider K, Sonderegger P, Walter T, Holderegger R, Bergamini A (2017a) Fauna Indicativa. WSL Berichte 54:1–192 Klaiber J, Bergamini A, Holderegger R (2017b) Fauna Indicativa—ein neues Werkzeug für die ökologische Auswertung faunistischer Daten der Schweiz. Natschutz Landschplan 49(12):392–397 Klang-Westin E, Eriksson J (2003) Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant Soil 249:127–137 Klapp E (1965) Grünlandvegetation und Standort. Paul Parey, Berlin Klapper H (2003) Technologies for lake restoration. J Limnol 62(1):73–90 Klapper H, Boehrer B, Packroff G, Schultze M, Tittel J, Wendt-Potthoff G (2001) Bergbaufolgegewässer: Limnologie—Wassergütebewirtschaftung. In: Steinberg C, Calmano W, Klapper H, Wilken RD

639 References

(eds) Handbuch Angewandte Limnologie 13. Erg. Lfg. 11/01. ecomed, Landsberg Klapper H, Koschel R (2012) Lake Stechlin: area and society. In: Casper SJ (ed) Lake Stechlin: a temperate oligotrophic lake. Springer, Dordrecht, pp 455–483 Klapper H, Schultze M (1995) Geogenically acidified mining lakes—living conditions and possibilities of restoration. Int Rev Ges Hydrobiol 80:639–653 Klaus S, Hoffmann H, Heinrich R (2009) Haselhuhn Bonasa bonasia—Wiederansiedlung im Thüringer Frankenwald. Ornithol Anz 48(1):83–87 Klawitter J (2014) Moose. In: Luthardt V, Zeitz J (eds) Moore in Brandenburg und Berlin. Natur + Text, Rangsdorf, pp 55–57 Kleckova I, Klecka J (2016) Facing the heat: thermoregulation and behaviour of lowland species of a cold-dwelling butterfl y genus, Erebia. PLoS One 11(3):1–16 Kleijn D, Baquero RA, Clough Y, Díaz M, De Esteban J, Fernández F, Gabriel D, Herzog F, Holzschuh A, Jöhl R, Knop E, Kruess A, Marshall EJP, Steffan-Dewenter I, Tscharntke T, Verhulst J, West TM, Yela JL (2006) Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol Lett 9:243–254 Kleijn D, Müller-Schärer H (2006) The relation between unpalatable species, nutrients and plant species richness in Swiss montane pastures. Biodivers Conserv 15:3971–3982 Kleijn D, Sutherland WJ (2003) How effective are European agri-environment schemes in conserving and promoting biodiversity? J Appl Ecol 40:947–969 Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc Biol Sci 274(1608):303–313 Klein J (1997) Sediment dredging and macrophyte harvest as lake restoration techniques. Restor Reclam Rev 2(2):1–5 Kleinbauer I, Dullinger S, Peterseil J, Essl F (2010) Climate change might drive the invasive tree Robinia pseudacacia into nature reserves and endangered habitats. Biol Conserv 143:382–390 Klenk J, Becker C, Rapp K (2010) Heat-related mortality in residents of nursing homes. Age Ageing 39(2):245–252 Kleyer M, Bekker RM, Bakker J, Knevel IC, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimeš L, Klimešová J, Klotz S, Rusch G, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Dannemann A, Kühn I, Kunzmann D, Ozinga W, Römermann C, Stadler M,

Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Fitter A, Peco B (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274 Kleyheeg E, Klaassen M, Soons MB (2016) Seed dispersal potential by wild mallard duck as estimated from digestive tract analysis. Freshw Biol 61:1746–1758 Klimkowska A, Bekker RM, van Diggelen R, Kotowski W, Grootjans AP, Dzierza P (2010a) Species trait shifts in vegetation and soil seed bank during fen degradation. Plant Ecol 206(1):59–82 Klimkowska A, van Diggelen R, Bakker JP, Grootjans AP (2007) Wet meadow restoration in Western Europe: a quantitative assessment of the effectiveness of several techniques. Biol Conserv 140:318–328 Klimkowska A, Dzierża P, Brzezińska K, Kotowski W, Mędrzycki P (2010b) Can we balance the high costs of nature restoration with the method of topsoil removal? Case study from Poland. J Nat Conserv 18(3):202–205 Klimkowska A, Van der Elst DJD, Grootjans AP (2015) Understanding long-term effects of topsoil removal in peatlands: overcoming thresholds for fen meadows restoration. Appl Veg Sci 18:110– 120 Klimo E, Hager H (2001) The floodplain forests in Europe. Current situation and perspectives. Eur For Inst Res Rep 10:1–267 Klimo E, Hager H, Kulhavý J (eds) (2000) Spruce monocultures in Central Europe—problems and prospects. EFI Proc 33:1–208 Klooker J, van Diggelen R, Bakker JP (1999) Natuurontwikkeling op minerale gronden. Ontgronden: nieuwe kansen voor bedreigde plantensoorten? Ber Rijksuniversiteit Groningen. Laboratorium voor Plantenoecologie Rijksuniversiteit Groningen, Groningen Klöpffer W (2013) Verhalten und Abbau von Umweltchemikalien: Physikalisch-chemische Grundlagen. Wiley, Chichester Kloskowski J (2011) Human-wildlife conflicts at pond fisheries in eastern Poland: perceptions and management of wildlife damage. Eur J Wildlife Res 57(2):295–304 Klotz S, Kühn I, Durka W (eds) (2002) BIOLFLOR— Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Bundesamt für Naturschutz, Bonn. Schrreihe Vegkd 38:1–334 Klug B, Markart G, Meier J, Krautzer B, Kohl B (2013) Ski run re-vegetation: a never-ending story of trial and error? In: Rixen C, Rolando A (eds)

640

References

The impacts of skiing and related winter recreational activities on mountain environments. Bentham eBooks, Bussum, pp 155–183 Klug B, Scharfetter-Lehrl G, Scharfetter E (2002) Effects of trampling on vegetation above the timberline in the Austrian Alps. Arc Antarc Alp Res 34(4):377–388 Knapp RA, Matthews KR (1998) Eradication of nonnative fish by gill netting from a small mountain lake in California. Restor Ecol 6(2):207–213 Knapp S, Keil A, Keil P, Reidl K, Rink D, Schemel H-J (2016) Naturerleben, Naturerfahrung und Umweltbildung in der Stadt. In: Kowarik I, Bartz R, Brenck M (eds) Ökosystemleistungen in der Stadt: Naturkapital Deutschland. HelmholtzZentrum für Umweltforschung–UFZ, Berlin, pp 146–169 Kneifl M, Kadavý J, Knott R (2011) Gross value yield potential of coppice, high forest and model conversion of high forest to coppice on best sites. J For Sci 57(12):536–546 Knight RL, Temple SA (1995) Wildlife and recreationists: coexistence through management. In: Knight RL, Gutzwiller KJ (eds) Wildlife and recreationists: coexistence through management and research. Island Press, Washington, DC, pp 327–333 Van der Knijff JM, Jones RJA, Montanarella L (2000) Soil erosion risk assessment in Europe. European Commission, European Soil Bureau, Luxembourg. http://www.­unisdr.­org/files/1581_ereurnew2.­pdf. Accessed 21 Oct 2016 Knijn RJ, Boon TW, Heessen HJL, Hislop JRG (1993) Atlas of North Sea fishes. ICES Coop Res Rep 194:1–272 Knobloch T, Bełdowski J, Böttcher C, Söderström M, Rühl NP, Sternheim J (2013) Chemical munitions dumped in the Baltic Sea. Baltic Sea Environ Proc 142:1–128 Knoche D, Engel J (2012) Pilotprojekt zum Kurzumtrieb der Robinie (Robinia pseudoacacia L.) in Brandenburg. Ber NW-LVA 8:143–164 Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res 127:89–101 Knoke T, Stimm B, Ammer C, Moog M (2005) Mixed forests reconsidered: a forest economics contribution on an ecological concept. For Ecol Manag 213:102–116 Knörzer D, Reif A (2002) Fremdländische Baumarten in deutschen Wäldern. Fluch oder Segen? In: Kowarik I, Starfinger U (eds) Biologische Invasionen: Herausforderung zum Handeln? Neobiota 1:27–35 Knottnerus OS (2005) History of human settlement, cultural change and interference with the marine environment. Helgol Mar Res 59:2–8

Knudsen EA (1983) Seasonal variations in the content of phototoxic compount in giant hogweed. Contact Derm 9:281–284 Knutson PL, Brochu RA, Seelig WN, Inskeep M (1982) Wave damping in Spartina alterniflora marshes. Wetlands 2(1):87–104 Köbbing J, Thevs N, Zerbe S (2016a) Cutting of Phragmites australis as a lake restoration technique: productivity calculation and nutrient removal in Wuliangsuhai Lake, China. Sci Cold Arid Reg 8(5):400–410 Köbbing JF, Beckmann V, Thevs N, Peng H, Zerbe S (2016b) Investigation of a traditional reed economy (Phragmites australis) under threat: pulp and paper market, values and net-chain at Wuliangsuhai Lake, Inner Mongolia, China. Wetland Ecol Manage 24(3):357–371 Köbbing JF, Thevs N, Zerbe S (2013/2014) The utilisation of reed (Phragmites australis): a review. Mires Peat 13:1–14 Kobel J (2015) Renaturierung von Mooren und Gewässern im Teilgebiet Serrahn des Müritz-­ Nationalparks. In: Kaiser K, Kobel J, Küster M, Schwabe M (eds) Neue Beiträge zum Naturraum und zur Landschaftsgeschichte im Teilgebiet Serrahn des Müritz-Nationalparks. Forsch Monitoring 4:97–113 Köble R, Seufert G (2001) Novel maps for forest tree species in Europe. In: Proceedings of the 8th European Symposium on the physico-chemical behaviour of air pollutants: a changing atmosphere Turin, Italy, 17–20 Sep 2001. http://www.­ citeulike.­o rg/group/15400/article/13112610. Accessed 11 Aug 2018 Koch C, Kollmann J (2012a) Wiederansiedlung und Translokation regional ausgestorbener Pflanzenarten. Natschutz Landschplan 44(3):77–82 Koch C, Kollmann J (2012b) Clonal re-introduction of endangered plant species: the case of German False Tamarisk in pre-alpine rivers. Environ Manag 50(2):217–225 Koch L, Monßen M (2006) Kooperative Umweltpolitik und nachhaltige Innovationen: Das Beispiel der chemischen Industrie. Springer, Heidelberg Koch M (1996) Zur Ausbreitung des Dänischen Löffelkrauts (Cochlearia danica L.) als Küstensippe in das niedersächsische Binnenland. Flor Rundbr (Göttingen) 30:20–23 Kochmann J (2010) Into the wild. Documenting and predicting the spread of Pacific Oysters (Crassostrea gigas) in Ireland. PhD Thesis, University College Dublin, Dublin Kochmann J (2012) Into the wild. Documenting and predicting the spread of Pacific Oysters (Crassostrea gigas) in Ireland. PhD Thesis, Univ College Dublin

641 References

Koepcke HW (1973/1974) Die Lebensformen, Grundlagen zu einer universell gültigen biologischen Theorie, vol 1 and 2. Goecke & Evers, Krefeld Koepf HH, Schaumann W, Haccius M (1996) Biologisch-dynamische Landwirtschaft. Ulmer, Stuttgart Koerselman W, Verhoeven JTA (1995) Eutrophication of fen ecosystems: external and internal nutrient sources and restoration strategies. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) Restoration of Temperate Wetlands. Wiley, Chichester, pp 91–112 Kofalk S, Scholten M, Faulhaber P, Baufeld R, Kleinwächter M, Kühlborn J, Evers M (eds) (2016) Struktur und Dynamik der Elbe Management und Renaturierung von Auen im Elbeeinzugsgebiet, Konzepte für eine nachhaltige Nutzung einer Flusslandschaft, vol 2/3. Schweizerbart, Stuttgart Koh NS, Hahn T, Ituarte-Lima C (2014) A comparative analysis of ecological compensation programs: The effect of program design on the social and ecological outcomes. Working Paper. http:// uu.­d iva-portal.­o rg/smash/get/diva2:772933/ FULLTEXT01.­pdf. Accessed 20 May 2017 Kohl I, Leditznig C (2014) Die Wiederansiedlung des Habichtskauz’ (Strix uralensis) in Österreich— Überblick über fünf Jahre Forschung im Wildnisgebiet Dürrenstein. Eulen-Rundblick 64:27–41 Kohlbrecher C, Wesche K, Hilbig W, Leuschner C, Meyer S (2012) Veränderungen in der Segetalflora am Kyffhäusergebirge in den letzten 50 Jahren (1961–2011). Landschaftspflege und Naturschutz in Thüringen 49(1):1–9 Köhler B, Gigon A, Edwards PJ, Krüsi B, Langenauer R, Lüscher A, Ryser P (2005) Changes in the species composition and conservation value of limestone grasslands in Northern Switzerland after 22 years of contrasting managements. Perspect Plant Ecol Evol Syst 7:51–67 Kohler KE, Dodge RE (2006) Visual_HEA: Habitat Equivalency Analysis software to calculate compensatory restoration following natural resource injury. In: Proceedings of 10th international coral reef symposium, pp  1611–1616. http://cnso.­nova.­edu/ forms/visual_hea_paper.­pdf. Accessed 26 May 2017 Köhler M (1993) Fassaden- und Dachbegrünung. Ulmer, Stuttgart Kohler-Schneider M, Caneppele A (2009) Late Neolithic agriculture in eastern Austria: archaeobotanical results from sites of the Baden and Jevišovice cultures (3600–2800 B.C.). Veg Hist Archaeobotany 18(1):61–74 Kolada A, Soszka H, Cydzik D, Gołub M (2005) Abiotic typology of polish lakes. Limnologica 35(3):145–150 Kolditz K, Dellwig O, Barkowski J, Badewien TH, Freund H, Brumsack HJ (2012a) Geochemistry of salt marsh sediments deposited during simu-

lated sea-level rise and consequences for recent and Holocene coastal development of NW Germany. Geo-Mar Lett 32:49–60 Kolditz K, Dellwig O, Barkowski J, Bahlo R, Leipe T, Freund H, Brumsack HJ (2012b) Geochemistry of Holocene salt marsh and tidal flat sediments on a barrier island in the southern North Sea (Langeoog, North-west Germany). Sedimentology 59:337–355 Kolk J, Naaf T (2015) Herb layer extinction debt in highly fragmented temperate forests—completely paid after 160 years? Biol Conserv 182:164–172 Kollmann J, Brink-Jensen K, Frandsen SI, Hansen MK (2011) Uprooting and burial of invasive alien plants: a new tool in coastal restoration? Restor Ecol 19:371–378 Kollmann J, Rasmussen KK (2012) Succession of a degraded bog in NE Denmark over 164 years— monitoring one of the earliest restoration experiments. Tuexenia 32:67–85 Kolstad CD (2010) Environmental economics, 2nd edn. Oxford University Press, Oxford König P (2017) Plant diversity and dynamics in chalk quarries on the islands of Rügen and Wolin (Western Pomerania/Germany and Poland). Biodivers Res Conserv 47:23–39 König P, Böttcher A, Steffenhagen P (2005) Der ehemalige Kreidebruch Hoch Selow (Halbinsel Jasmund/Rügen)—ein Beitrag zum Zustand und zur Pflege von 25 Kulturlandschaftsbestandteilen. Natschutzarb Mecklenburg-Vorpommern 48(1):34–40 Konijnendijk CC, Ricard RM, Kenney WA, Randrup TB (2006) Defining urban forestry—a comparative perspective of North America and Europe. Urban For Urban Green 4:93–103 Kontriš J, Kontrišová O, Malajterová N, Gregor J, Marušková A (2011) Soil characteristics of submontane beech and spruce monocultures in Turčianska Kotlina Basin. Ekológia (Bratislava) 30(3):288–295 Kooijman AM (2004) Environmental problems and restoration. Measures in coastal dunes in The Netherlands. In: Martínez ML, Psuty NP (eds) Coastal dunes. Ecology and conservation. Ecol Stud 171:243–258 Kooijman AM, Beltman B, Westhoff V (1994) Extinction and reintroduction of the bryophyte Scorpidium scorpioides in a rich-fen spring site in the Netherlands. Biol Conserv 69(1):87–96 Kooijman AM, van der Meulen F (1996) Grazing as a control against ‘grass-encroachment’ in dry dune grasslands in The Netherlands. Landscape Urban Plan 34:323–333 Koopmann A, Mertens D (2004) Offenlandmanagement im Naturschutzgebiet “Lüneburger Heide”—Erfahrungen aus Sicht des Vereins Naturschutzpark. NNA Ber 17:244–261

642

References

Kopeszki H (1999) Die aktive Bioindikationnsmethode mit Collembolen Möglichkeit der Diagnose von Bodenzustand und -belastung. Z Umweltchem Ökotoxikol 11(4):201–206 Kopnina H (2012) The Lorax complex: deep ecology, ecocentrism and exclusion. J Integr Environ Sci 9(4):235–254 Kopnina H, Shoreman-Ouimet E (eds) (2013) Environmental anthropology. Future directions. Routledge, New York Kopnina H, Shoreman-Ouimet E (eds) (2017) Routledge handbook of environmental anthropology. Routledge, New York Koppisch D, Roth S, Hartmann M (2001) Vom Saatgrasland zum wieder torfspeichernden Niedermoor—Die Experimentalanlage Am Fleetholz/ Friedländer Große Wiese. In: Succow M, Joosten H (eds) Landschaftsökologische Moorkunde. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 497–504 Körber-Grohne U (1967) Geobotanische Untersuchungen auf der Feddersen Wierde, vol 1 & 2. Franz Steiner, Wiesbaden Körber-Grohne U (1990) Gramineen und Grünlandvegetationen vom Neolithikum bis zum Mittelalter in Mitteleuropa. Bibl Bot 139:1–102 Körber-Grohne U (1994) Nutzpflanzen in Deutschland, Kulturgeschichte und Biologie, 3rd edn. Theiss, Stuttgart Korneck D (1978) Sedo-Scleranthetea. In: Oberdorfer E (ed) Süddeutsche Pflanzengesellschaften II, 2nd edn. Fischer, Stuttgart Korneck D, Schnittler M, Klingenstein F, Ludwig G, Takla M, Bohn U, May R (1998) Warum verarmt unsere Flora? Auswertung der Roten Liste der Farnund Blütenpflanzen Deutschlands. Schrreihe Vegkd 29:299–444 Korneck D, Sukopp H (1988) Rote Liste der in der Bundesrepublik Deutschland ausgestorbenen, verschollenen und gefährdeten Farn- und Blütenpflanzen und ihre Auswertung für den Arten- und Biotopschutz. Schrreihe Vegkd 19:1–210 Körner C (1980) Zur anthropogenen Belastbarkeit der alpinen Vegetation. Verh Ges Ökol 8:451–461 Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Heidelberg Körner S (2004) Das Heimische und das Fremde: Zur kulturellen Interpretation eines ökologischen Problems in der sich verändernden Landschaft. In: Stiftung Natur und Umwelt Rheinland-Pfalz (ed) Denkanstöße. Welche Natur schützen wir? snu.rpl, Mainz, pp 31–43 Kornprobst M (1994) Lebensraumtyp Streuobst. Landschaftspflegekonzept Bayern 11(5):1–221 Korontzi S, McCarty J, Loboda T, Kumar S, Justice C (2006) Global distribution of agricultural fires in

croplands from 3 years of moderate resolution imaging spectroradiometer (MODIS) data. Glob Biogeochem Cycles 20:GB2021 Korotkov KO, Morozova OV, Belonovskaja EA (1991) The USSR vegetation prodromus. Vilchek, Moskau Korpel S (1995) Die Urwälder der Westkarpaten. Fischer, Stuttgart Korsch H, Westhus W (2011) Rote Liste der Farn- und Blütenpflanzen (Pteridophyta et Spermatophyta) Thüringens. 5th ed. Natschutzrep 26: 366–390 Koska I, Stegmann H (2001) Revitalisierung eines Quellmoorkomplexes am Sernitz-­ Oberlauf. In: Succow M, Joosten H (eds) Landschaftsökologische Moorkunde. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 509–517 Kosten S, Huszar VLM, Bécares E, Costa LS, van Donk E, Hansson L-A, Jeppesen E, Kruk C, Lacerot G, Mazzeo N, De Meester L, Moss B, Lürling M, Nõges T, Romo S, Scheffer M (2012) Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Change Biol 18:118–126 Koster EA (2005) Aeolian environments. In: Koster EA (ed) The physical geography of Western Europe. Oxford Regional Environments. Oxford University Press, Oxford, pp 139–160 Köster W, Merkel D (1985) Schwermetalluntersuchungen landwirtschaftlich genutzter Böden und Pflanzen in Niedersachsen. LUFA, Hameln Kostianoy AG, Lavrova OY (eds) (2014) Oil pollution in the Baltic Sea. Springer, Heidelberg Köstler JN, Brückner E, Bibelriether H (1968) Die Wurzeln der Waldbäume. Paul Parey, Berlin Köstler H (2015) Multitemporale Offenflächenkartierung des LSG/NSG „Schöneberger Südgelände“ im Maßstab 1 : 500 im Rahmen eines Vegetationsmonitorings. On behalf of Senatsverwaltung für Stadtentwicklung Berlin. Unpubl Report Kotar F (2001) Nationales Projekt zur Revitalisierung des Streuobstbaues in Slowenien. In: Holler C, Spornberger A (eds) Beiträge zum Streuobstanbau in Europa. Stand, Entwicklungen und Probleme. Tagungsber Umweltbundesamt 28:63 Kotze DJ, Brandmayr P, Casale A, Dauffy-Richard E, Dekoninck W, Koivula MJ, Lövei GL, Mossakowski D, Noordijk J, Paarmann W, Pizzolotto R, Saska P, Schwerk A, Serrano J, Szyszko J, Taboada A, Turin H, Venn S, Vermeulen R, Zetto T (2011) Forty years of carabid beetle research in Europe— from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. ZooKeys 100:55–148 Kovács-Hostyánszki A, Kőrösi Á, Orci KM, Batary P, Báldi A (2011) Set-aside promotes insect and plant diversity in a central European country. Agric Ecosyst Environ 141:296–301

643 References

Kovács-Hostyánszkia A, Elek Z, Balázs K, Centeri C, Falusi E, Jeanneret P, Penksza K, Podmaniczky L, Szalkovszkie O, Báldi A (2013) Earthworms, spiders and bees as indicators of habitat quality and management in a low-input farming region—a whole farm approach. Ecol Indic 33:111–120 Kowarik I (1987) Kritische Anmerkungen zum theoretischen Konzept der potentiellen natürlichen Vegetation mit Anregungen zu einer zeitgemäßen Modifikation. Tuexenia 7:53–67 Kowarik I (1988) Zum menschlichen Einfluss auf Flora und Vegetation. Theoretische Konzepte und ein Quantifizierungsansatz am Beispiel von Berlin (West). Landschentw Umweltforsch 56:1– 280 Kowarik I (1992) Einführung und Ausbreitung nichteinheimischer Gehölzarten in Berlin und Brandenburg und ihre Folgen für Flora und Vegetation. Ein Modell für die Freisetzung gentechnisch veränderter Organismen. Verh Bot Ver Berlin Brandenbg Suppl 3:1–188 Kowarik I (1995a) Time lags in biological invasions with regard to the success and failure of alien species. In: Pyšek P, Prach K, Rejmánek M, Wade M (eds) Plant invasions—general aspects and special problems. SPB Academic Publishing, Amsterdam, pp 15–38 Kowarik I (1995b) Wälder und Forsten auf ursprünglichen und anthropogenen Standorten. Mit einem Beitrag zur syntaxonomischen Einordnung ruderaler Robinienwälder. Ber Reinhold-TüxenGes 7:47–67 Kowarik I (1996) Auswirkungen von Neophyten auf Ökosysteme und deren Bewertung. UBA-Texte 58(96):119–155 Kowarik I (2010) Biologische Invasionen. Neophyten und Neozoen in Mitteleuropa, 2nd edn. Ulmer, Stuttgart Kowarik I (2011) Novel urban ecosystems, biodiversity, and conservation. Environ Poll 159:1974– 1983 Kowarik I (2014) Natürlichkeit, Naturnähe und Hemerobie als Bewertungskriterien. In Schröder W, Müller F, Fränzle O (Eds), Handbuch der Umweltwissenschaften. Ecomed, Landsberg am Lech, pp. 1–18 Kowarik I (2017) Urban wilderness: supply, demand, and access. Urban For Urban Green 29:336–347 Kowarik I, Bartz R, Brenck M (eds) (2016) Ökosystemleistungen in der Stadt. Naturkapital Deutschland, Berlin Kowarik I, Bartz R, Heink U (2008) Bewertung “ökologischer Schäden” infolge des Anbaus von GVO in der Landwirtschaft. Natschutz Biol Vielfalt 56:1–248 Kowarik I, Böcker R (1984) Zur Verbreitung, Vergesellschaftung und Einbürgerung des Götterbau-

mes (Ailanthus altissima [Mill.] Swingle) in Mitteleuropa. Tuexenia 4:9–29 Kowarik I, Körner S (eds) (2005) Wild urban woodlands. Springer, New perspectives for urban forestry Kowarik I, Langer A (1994) Vegetation einer Berliner Eisenbahnfläche (Schöneberger Südgelände) im vierten Jahrzehnt der Sukzession. Verh Bot Ver Berlin-Brandenburg 127:5–43 Kowarik I, Langer A (2008) Natur-Park Südgelände. Linking conservation and recreation in an abandoned railyard in Berlin. BfN Skripten 229(2):57–66 Kowarik I, Säumel I (2007) Biological flora of Central Europe: Ailanthus altissima (Mill.) Swingle. Perspect Plant Ecol Evol Syst 8:207–237 Kowarik I, Seidling W (1989) Zeigerwertberechnungen nach ELLENBERG—Zu Problemen und Einschränkungen einer sinnvollen Methode. Landsch Stadt 21:132–143 Kowarik I, Schepker H (1998) Plant invasions in Northern Germany: human perception and response. In: Starfinger U, Edwards K, Kowarik I, Williamson M (eds) Plant invasions: ecological mechanisms and human responses. Backhuys, Leiden, pp 109–120 Kowatsch A (2007) Moorschutzkonzepte und -programme in Deutschland. Ein historischer und aktueller Überblick. Natschutz Landschplan 39:197–204 Koziol L, Bever JD (2017) The missing link in grassland restoration: arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. J Appl Ecol 54:1301–1309 Krämer I (2006) Verrohrte Fließgewässer bei der Umsetzung der EG-Wasserrahmenrichtlinie: mögliche Lösungen und deren ökonomische Auswirkungen im Peene-Einzugsgebiet. Edmund-­ Siemers-­Stiftung, Norderstedt Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61(1):517–534 Krasny E (ed) (2012) Hands-on Urbanism 1850–2012. Vom Recht auf Grün. Turia & Kant, Wien Kratochwil A (2003) Bees (Hymenoptera: Apoidea) as key-stone species: specifics of resource and requisite utilisation in different habitat types. Ber Reinh-Tüxen-Ges 15:59–77 Kratochwil A, Krausch S (2016) Bee-plant networks: structure, dynamics and the metacommunity concept. Ber Reinhold-Tüxen-Ges 28:23–40 Kratochwil A, Schwabe A (2001) Ökologie der Lebensgemeinschaften: Biozönologie. Ulmer, Stuttgart Kratochwil A, Stroh M, Dittrich S, Remy D (2009) Binnendünen-Flutmulden-Renaturierung im Auengebiet der Hase (Niedersachsen)—eine Bilanz nach sieben Jahren. Natschutz Biol Vielfalt 73:93–107

644

References

Kratochwil A, Stroh M, Remy D, Schwabe A (2004) Restitution alluvialer Weidelandschaften: Binnendünen-Feuchtgebietskomplexe im Emsland (Nordwestdeutschland). Schrreihe Rat Landschaftspfl Natursch 78:93–101 Kratz R, Pfadenhauer J (eds) (2001) Ökosystemmanagement für Niedermoore. Strategien und Verfahren zur Renaturierung. Ulmer, Stuttgart Krausch HD (1968) Die Sandtrockenrasen (SedoScleranthetea) in Brandenburg. Mitt flor-soz Arbgem NF 13:71–100 Krausch HD (1969) Über die Bezeichnung “Heide” und ihre Verwendung in der Vegetationskunde. Mitt flor-soz Arbgem FN 14:435–457 Krausch H-D (1993) Grundlagen ökologischer Planung Berlin und Brandenburg: Karte der potentiellen natürlichen Vegetation, Maßstab 1:300 000 (G/6.01). In: MUNR Brandenburg (ed) Landschaftsprogramm Brandenburg. MUNR Brandenburg, Potsdam Krause B, Culmsee H, Wesche K, Bergmeier E, Leuschner C (2011) Habitat loss of floodplain meadows in North Germany since the 1950s. Biodivers Conserv 20:2347–2364 Krause B, Culmsee H, Wesche K, Leuschner C (2015) Historical and recent fragmentation of temperate floodplain grasslands: do patch size and distance affect the richness of characteristic wet meadow plant species? Folia Geobot 50(3):253–266 Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A, Kuussaari M, Lindborg R, Öckinger E, Pärtel M, Pino J, Pöyry J, Raatikainen KM, Sang A, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13(5): 597–605 Krauß M, Fietz M, Heinze K, von Lührte A (2015) Erfolgreiche Röhrichtschutzmaßnahmen und langfristiges Bestandsmonitoring an den Berliner Spree- und Havelgewässern. Nat Landsch 90(7):317–324 Krauß M, von Lührte A, Fietz M (2013a) Berliner Röhrichtschutzprogramm. Bericht zur Luftbildauswertung 2010. Bericht im Auftrag der Senatsverwaltung für Stadtentwicklung und Umwelt. http://www.­stadtentwicklung.­berlin.­de/. Accessed 15 May 2017 Krauss SL, Sinclair EA, Bussell JD, Hobbs RJ (2013b) An ecological genetic delineation of local seedsource provenance for ecological restoration. Ecol Evol 3(7):2138–2149 Krautzer B, Wittmann H, Florineth F (2000) Richtlinien für standortsgerechte Begrünungen. Österreichische Agrargemeinschaft für Grünland und

Futterbau (ÖAG), pp 29. http://web.utanet.at/ szedalpe/Resources/Regelwerk.pdf Krautzer B, Graiss W, Peratoner G, Partl C, Venerus S, Klug B (2011) The influence of recultivation technique and seed mixture on erosion stability after restoration in mountain environment. Nat Hazards 56:547–557 Krautzer B, Klug B (2009) Renaturierung von subalpinen und alpinen Ökosystemen. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer Spektrum, Heidelberg, pp 209–234 Krautzer B, Parente G, Spatz G, Partl C, Peratoner G, Venerus S, Graiss W, Bohner A, Lamesso M, Wild A, Meyer J (2003) Seed propagation of indigenous species and their use for restoration of eroded areas in the Alps. Final report CT98-4024, BAL Gumpenstein, Irdning Krautzer B, Wittmann H (2006) Restoration of alpine ecosystems. In: van Andel J, Aronson J (eds) Restoration ecology. The new frontier. Blackwell, Oxford, pp 208–220 Krautzer B, Wittmann H, Florineth F (2000) Richtlinie für standortgerechte Begrünungen. Ein Regelwerk im Interesse der Natur. Österreichische Arbeitsgemeinschaft für Grünland und Futterbau (ÖAG), Höhere Bundeslehr- und Forschungsanstalt Raumberg-Gumpenstein, Irdning, Österreich. http://www.­surenet.­info/surenet/download/ regelwerk.­pdf. Accessed 22 Oct 2016 Krautzer B, Wittmann H, Peratoner G, Graiss W, Partl C, Parente G, Venerus S, Rixen C, Streit M (2006) Site-specific high zone restoration in the Alpine region. The current technological development. Federal Research and Education Centre (HBLFA) Raumberg-Gumpenstein Irdning 46: 1–135 Kreienkamp F, Spekat A, Enke W (2010) Ergebnisse eines regionalen Szenarienlaufs für Deutschland mit dem statistischen Modell WETTREG2010. Bericht im Auftrag des Umweltbundesamtes. https://www.­u mweltbundesamt.­d e/sites/default/ files/medien/382/dokumente/transwetterlagen_ abschlussbericht.­pdf. Accessed 2 Aug 2017 Kremen C, Colwell RK, Erwin TL, Murphy DD, Noss RF, Sanjayan MA (1993) Terrestrial arthropod assemblages: their use in conservation planning. Conserv Biol 7(4):796–808 Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. PNAS 99(26):16812–16816 Kress WJ, García-Robledo C, Uriarte M, Erickson DL (2015) DNA barcodes for ecology, evolution, and conservation. Trends Ecol Evol 30(1):25–35 Kretschmer H, Salpeter H, Gelbrecht J (2016) Ergebnisse zur Wiederansiedlung des Goldenen Scheck-

645 References

enfalters (Euphydryas aurinia Rottemburg, 1775) in Brandenburg—eine Bilanz nach zehn Jahren. Märkisch Entomol Nachr 17(2):219–238 Kreutzer K (1981) Die Sauerstoffbefrachtung des Sickerwassers in Waldbeständen. Mitt Deut Bodenkdl Ges 32:273–286 Kreyer D, Zerbe S (2006) Short-lived tree species and their role as indicators for plant diversity in the restoration of natural forests. Restor Ecol 14:137–147 Krijgsveld KL, Fijn RC, Japink M, van Horssen PW, Heunks C, Collier MP, Poot MJM, Beuker D, Dirksen S (2011) Effect studies, off shore wind farm Egmond Aan Zee. Final Report on fluxes, flight altitudes and behaviour of flying birds. Wageningen Institute for Marine Resources & Ecosystem Studies (IMARES), Culemborg, The Netherlands. http://www.­noordzeewind.­nl/wp-content/ uploads/2012/03/OWEZ_R_231_T1_20111114_2_ fluxflight.­pdf. Accessed 11 Aug 2018 Kringel R, Obermann P (1997) Simulation and modeling of overburden dump-water chemistry with fly ash amendments under closed system conditions. In: Proceedings of the 1997 International Ash Utilization Symposium. Lexington, KY, pp 1–12 Kristensen EA, Kronvang B, Wiberg-Larsen P, Thodsen H, Nielsen C, Amor E, Friberg N, Pedersen ML, Baattrup-Pedersen A (2014) 10 years after the largest river restoration project in Northern Europe: hydromorphological changes on multiple scales in River Skjern. Ecol Eng 66:141–149 Krivograd Klemenčič A, Vrhovšek (2003) Algae in the peat bogs Lovrenška Jezera and Šijek in Slovenia. Nat Croat 12(3):141–150 Kromrey H (2007) Empirische Sozialforschung, 11th edn. Ulmer, Stuttgart Krueger I, Schulz C, Borken W (2017) Stocks and dynamics of soil organic carbon and coarse woody debris in three managed and unmanaged temperate forests. Eur J Forest Res 136(1): 123–137 Krueger T, Maynard C, Carr G, Bruns A, Mueller EN, Lane S (2016) A transdisciplinary account of water research. WIREs Water 3:369–389 Krüger F (2013) Boden- und Sedimentqualitäten aus der Rückdeichungsfläche Lenzen In: Struck A, Garbe H, Felinks B (eds) Auenreport Spezial: Die Deichrückverlegung bei Lenzen. Erste Ergebnisse der wissenschaftlichen Begleitung. Ministerium für Umwelt, Gesundheit und Verbraucherschutz des Landes Brandenburg, Potsdam, pp 24–30 Krüger-Danielson H, Meil-Lachmann C, Winkler N, Wosing U (2010) Bildung für Berlin: Berliner Gartenarbeitsschulen—90 Jahre Grüne Lernorte in den Berliner Bezirken. Senatsverwaltung für Bildung, Wissenschaft und Forschung Berlin, Berlin

Krumbiegel A, Hartenauer K (2012) Binnenlandsalzstellen als Schutzgut nach der Fauna-Flora-­ Habitat-Richtlinie. Natschutz Land Sachsen-Anhalt 49:13–29 Krümmelbein J, Bens O, Raab T, Naeth MA (2012) A history of lignite coal mining and reclamation practices in Lusatia, eastern Germany. Can J Soil Sci 92:53–66 Krümmelbein J, Horn R, Raab T, Bens O, Hüttl R (2010) Soil physical parameters of a recently established agricultural recultivation site after brown coal mining in Eastern Germany. Soil Tillage Res 111:19–25 Kryžanowski A, Brilly M, Rusjan S, Schnabl S (2014) Structural flood-protection measures referring to several European case studies. Nat Hazards Earth Syst Sci 14(1):135–142 Krzyk M, Drev D, Kolbl S, Panjan J (2015) Selfpurification processes of Lake Cerknica as a combination of wetland and SBR reactor. Environ Sci Pollut Res 22:20177–20185 Kube M, Chernikova TN, Al-Ramahi Y, Beloqui A, Lopez-Cortez N, Guazzaroni ME, Heipieper HJ, Klages S, Kotsyrbenko OR, Langer I, Nechitaylo TY, Lünsdorf H, Fernández M, Juárez S, Ciordia S, Singer S, Kagan O, Egorova O, Petit PA, Stogios P, Kim Y, Tchigvintsev A, Flick R, Denaro R, Genovese M, Albar JP, Reva ON, MartínezGomariz M, Tran H, Ferrer M, Savchenko A, Yakunin AF, Yakimov MM, Golyshina OV, Reinhardt R, Golyshin PN (2013) Functional genome analysis of Oleispira antarctica RB-8, a key oildegrading bacterium in cold and deep marine environments. Nat Commun 4:2156 Kubicki A, Bartholomä A (2011) Sediment dynamics in the Jade tidal channel prior to port construction, south-eastern North Sea. J Coast Res 64:771–775 Kucharczyk M, Teske E (1996) Active protection of extremely small populations of plants—Primula vulgaris Hudson. Bull Pol Acad Sci Biol Sci 44(1– 2):121–125 Küchler H, Grünig A, Hangartner R, Küchler M (2009) Vegetation change and effects of cattle grazing in the transition mire “Burgmoos”. Bot Helv 119:95–104 Kuemmerle T, Radeloff VC, Perzanowski K, Kozlo P, Sipko T, Khoyetskyy P, Bashta AT, Chikurova E, Parnikoza I, Baskin L, Angelstam P, Waller DM (2011) Predicting potential European bison habitat across its former range. Ecol Appl 21:830–843 Kühn I, Brandl R, Klotz S (2004) The flora of German cities is naturally species rich. Evol Ecol Res 6(5):749–764 Kühn M (2009) Strategische Planung—ein Ansatz zur Regenerierung schrumpfender Städte. In: Kühn

646

References

M, Liebmann H (eds) Regenerierung der Städte. Strategien der Politik und Planung im Schrumpfungskontext. VS Verlag, Wiesbaden, pp 85–108 Kuijper DPJ, de Kleine C, Churski M, van Hooft P, Bubnicki J, Jędrzejewska B (2013) Landscape of fear in Europe: wolves affect spatial patterns of ungulate browsing in Białowieża Primeval Forest, Poland. Ecography 36(12):1263–1275 Kuiper JJ, Verhofstad MJJM, Louwers ELM, Bakker ES, Brederveld RJ, van Gerven LPA, Janssen ABG, de Klein JJM, Mooij WM (2017) Mowing submerged macrophytes in shallow lakes with alternative stable states: battling the good guys? Environ Manag 59(4):619–634 Kukk T, Kull K (1997) Wooded meadows. Estonia Mar 2:1–249 Kull K, Kukk T, Lotman A (2003) When culture supports biodiversity: the case of wooded meadow. In: Roepstorff A, Bubandt N, Kull K (eds) Imagining nature: practices of cosmology and identity. Aarhus University Press, Aarhus, pp 76–96 Kullman L (1986) Temporal and spatial aspects of subalpine populations of Sorbus aucuparia in Sweden. Ann Bot Fenn 23:267–275 Kumar BM, Nair PKR (2004) The enigma of tropical homegardens. Agrofor Syst 61–62(1–3):135–152 Kumar P (ed) (2010) The economics of ecosystems and biodiversity: ecological and economic foundations. Routledge, TEEB Foundation Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29(5):1232–1238 Kummer V, Jentsch H (1997) Elodea nuttallii (Planch.) St. John nun auch in Brandenburg. Verh Bot Ver Berlin-Brandenburg 130:185–198 Kunz W (2016) Artenschutz durch Habitatmanagement: Der Mythos von der unberührten Natur. Wiley, Oxford Küster H (1998) Geschichte des Waldes. Beck, München Küster H (1999) Geschichte der Landschaft in Mitteleuropa: Von der Eiszeit bis zur Gegenwart. Beck, München Küster H (2010) Geschichte der Landschaft in Mitteleuropa: Von der Eiszeit bis zur Gegenwart. 2nd ed. Beck, München Küster H (2014) Paradies. In: Fischer H (ed) Zukunft aus Landschaft gestalten. Stichworte zur Landschaftsarchitektur. Akademische Verglasgemeinschaft, München, pp 193–194 Küster H, Pötsch J (1998) Ökosystemwandel in Flusslandschaften Norddeutschlands. Ber Reinhold-­ Tüxen-Ges 10:61–71 Kuttler W (1998) Stadtklima. In: Sukopp H, Wittig R (eds) Stadtökologie, 2nd edn. Fischer, Stuttgart, pp 125–167

Kuuluvainen T, Aapala K, Ahlroth P, Kuusinen M, Lindholm T, Sallantaus T, Siitonen J, Tukia H (2002) Principles of ecological restoration of boreal forested ecosystems: Finland as an example. Silva Fennica 36:409–422 Kuylenstierna JCI, Hicks WK, Cinderby S, Cambridge H (2012) In: van der Hoek K, Erisman JW, Smeulders S, Wisniewski JR (eds) Nitrogen, the Confer-N-s. Elsevier, Amsterdam, pp 591–598 Kuzovkina YA, Knee M, Quigley MF (2004) Cadmium and copper uptake and translocation of five Salix L. species. Int J Phytoremediation 6:269–287 Kuzovkina YA, Quigley MF (2005) Willows beyond wetlands: uses of Salix L. species for environmental projects. Water Air Soil Pollut 162:183–204 Kvamme M, Kaland PE, Brekke NG (2004) Conservation and management of north European coastal heathlands. Heathguard, The Heathland Centre, Norway. http://www.­muho.­no/wp-­content/uploads/ 2009/09/Lyngheirapport-2604-04_norsk-LR.­pdf. Accessed 11 Aug 2018 Kvamme M, Kaland PE (2009) Prescribed burning of coastal heathlands in Western Norway: history and present-day experiences. Int For Fire News 38:35–50 La Sorte FA, McKinney ML, Pyšek P (2007) Compositional similarity among urban floras within and across continents: biogeographical consequences of human-mediated biotic interchange. Glob Change Biol 13:913–921 Laaidi K, Zeghnoun A, Dousset B, Bretin P, Vandentorren S, Giraudet E, Beaudeau P (2012) The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environ Health Perspect 120(2):254–259 Ladkin D (2005) Does ‘restoration’ necessarily imply the domination of nature? Environ Values 14: 204–219 Laffaille P, Feunteun E, Lefeuvre JC (2000) Composition of fish communities in a European macrotidal salt marsh (the Mont Saint-Michel Bay, France). Estuar Coast Shelf Sci 51:429–438 LAGIS (2016) Landesgeschichtliches Informationssystem Hessen—Hessische Flurnamen. Hessisches Landesamt für geschichtliche Landeskunde. http://lagis.­online.­uni-­marburg.­de/. Accessed 15 Oct 2016 Lagoni N (2012) Vom Lärchenharz zum Terpentin bis Lärchenöl. LWF-Wissen 69:79–81 Laing I, Walker P, Areal F (2006) Return of the native—is European oyster (Ostrea edulis) stock restoration in the UK feasible? Aquat Living Resour 19:283–287 Laiolo P, Dondero F, Ciliento E, Rolando A (2004) Consequences of pastoral abandonment for the structure and diversity of the alpine avifauna. J Appl Ecol 41:294–304

647 References

Lair GJ, Zehetner F, Fiebig M, Gerzabek MH, van Gestel CA, Hein T, Hohensinner S, Hsu P, Jones KC, Jordan G, Koelmans AA, Poot A, Slijkerman DM, Totsche KU, Bondar-­ Kunze E, Barth JA (2009) How do long-term development and periodical changes of riverfloodplain systems affect the fate of contaminants? Results from European rivers. Environ Pollut 157(12):3336–3346 Laist DW (1987) Overview of the biological effects of lost and discarded plastic debris in the marine environment. Marine Poll Bull 18:319–326 Laist DW (1997) Impacts of marine debris: entanglement of marine life in marine debris including a comprehensive list of species with entanglement and ingestion records. In: Coe JM, Rogers DB (eds) Marine debris—sources, impacts and solutions. Springer, New York, pp 99–139 Lake S, Bullock JM, Hartley S (2001) Impacts of livestock grazing on lowland heathland in the UK. Engl Nat Res Rep 422:1–143 Lakes T, Kim H-O (2012) The urban environmental indicator “Biotope Area Ratio”—an enhanced approach to assess and manage the urban ecosystem services using high resolution remote-sensing. Ecol Indic 13:93–103 Lambeck RJ (1997) Focal species: a multi-species umbrella for nature conservation. Conserv Biol 11(4):849–856 Lamers LPM, Smolders AJP, Roelofs JGM (2002) The restoration of fens in the Netherlands. Hydrobiologia 478:107–130 Lamers LPM, Vile MA, Grootjans AP, Acreman MC, van Diggelen R, Evans MG, Richardson CJ, Rochefort L, Kooijman AM, Roelofs JGM, Smolders AJP (2015) Ecological restoration of rich fens in Europe and North America: from trial and error to an evidence-­based approach. Biol Rev 90:182–203 Lammens EHRR (1999) The central role of fish in lake restoration and management. Hydrobiologia 395(396):191–198 Lammens EHRR, Gulati RD, Meijer ML, van Donk E (1990) The first biomanipulation conference: a synthesis. Hydrobiologia 200(201):619–627 Lamnek S (2010) Qualitative Sozialforschung, 5th edn. Weinheim, Beltz Lampert C, Brunner PH, Diebold W (2000) Ressourcenschonende und umweltverträgliche regionale Nutzung biogener Materialien. Entwurf eines regionalen Bewirtschaftungskonzeptes, Projekt RUNBA im Auftrag des Amtes der Steiermärkischen Landesregierung, Wien. http://www.­abfallwirtschaft.­ steiermark.­at/cms/dokumente/10717890_46555/ c5cf411a/RUNBAEndberichtFinale_.­pdf. Accessed 25 Oct 2016 Lancaster J (2000) The ridiculous notion of assessing ecological health and identifying the useful con-

cepts underneath. Human Ecol Risk Assess 6(2):213–222 Land Hessen (2017) Life-Projekt Living Lahn. Hessisches Ministerium für Umwelt, Klimaschutz, Landwirtschaft und Verbraucherschutz. http:// www.­lila-livinglahn.­de/seite/impressum/. Accessed 5 Sep 2017 Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460 Landesagentur für Umwelt (2016) Kalterer See. Autonome Provinz Bozen-Südtirol. http://umwelt.­ provinz.­b z.­i t/wasser/zustand-suedtirolerseen. ­a sp?news_action=4&news_article_id=551015. Accessed 3 May 2017 Landesanstalt für Umweltschutz Baden-Württemberg (1997) Leitfaden für die Eingriffs- und Ausgleichsbewertung bei Abbauvorhaben. http://www.­ fachdokumente.­l ubw.­b adenwuerttemberg.­d e. Accessed 16 Dec 2016 Landesanstalt für Umweltschutz Baden-Württemberg (2002) Moore in Baden-­ Württemberg—Eigenschaften, Inventur und Funktionen. Bodenschutz 11:1–14 Landesumweltamt Brandenburg (2004) Leitfaden zur Renaturierung von Feuchtgebieten in Brandenburg. Stud Tagungsber 50:1–87 Landsberg HE (1981) The urban climate. Int Geophys Ser 28:1–275 Landesverband Berlin der Gartenfreunde e.V (2001) Ein starkes Stück Berlin 1901–2001. 100 Jahre organisiertes Berliner Kleingartenwesen. W. Wächter, Berlin Landgraf L (2014) Wiedervernässung von Mooren. In: Luthardt V, Zeitz J (eds) Moore in Brandenburg und Berlin. Natur & Text, Rangsdorf, pp 239–253 Landis DA, Gardiner MM, van der Werf W, Swinton SM (2008) Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes. PNAS 105(51):20552–20557 Luscombe G, Scott R (2010) Creative conservation. In: Douglas I, Goode D, Houck M, Maddox D (eds) The Routledge handbook of urban ecology. Routledge, New York, pp 221–232 Landmann G, Held A, Schuck A, Van Brusselen J (eds) (2015) European forests at risk. a scoping study in support of the development of a European forest risk facility. European forest institute. http://www.­efi.­int/files/images/publications/scoping_study_09_2015.­pdf. Accessed 10 July 2017 Landolt E (1977) Ökologische Zeigerwerte zur Schweizer Flora. Veröff Geobot Inst Eidgenöss Tech Hochsch, Stift Rübel Zür 68:1–208 Landolt E, Bäumler B, Erhardt A, Hegg O, Klötzli F, Lämmler W, Nobis M, Rudmann-­Maurer K, Schweingruber FH, Theurillat JP, Urmi E, Vust M, Wohlgemuth T (2010) Flora indicativa. Ökologische Zeigerwerte und biologische Kennzeichen

648

References

zur Flora der Schweiz und der Alpen. Haupt, Bern Landschaftspflegeverband Rügen (2017) Südwestpolder Neuensien—Renaturierung des Südwestpolder Neuensien. http://lpv-ruegen.­de/?page_id=50. Accessed 8 Feb 2017 Landtag Mecklenburg-Vorpommern (2014) Kleine Anfrage: Wasserstandsregulierung im Kieshofer Moor und andere Vorhaben der Wiedervernässung. Drucksache 6/2668. http://www.­dokumentation.­ landtag-mv.­de/. Accessed 20 Jun 2017 Lang A, Bork HR (2006) Past soil erosion in Europe. In: Boardman J, Poesen J (eds) Soil erosion in Europe. Wiley, Chichester, pp 465–476 Lang C, Seven J, Polle A (2011) Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest. Mycorrhiza 21(4):297–308 Lang G (1994) Quartäre Vegetationsgeschichte Europas. Methoden und Ergebnisse. Gustav Fischer, Jena Lange E (1976) Zur Entwicklung der natürlichen und anthropogenen Vegetation in frühgeschichtlicher Zeit. Feddes Repertorium 87:5–30 Lange G, Knödel K (2013) Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, Erkundungspraxis, vol 8. Springer, Heidelberg Lange J, Schmitt S (2008) Leitfaden Bürgerbeteiligung gemäß Artikel 14 der EG Wasserrahmenrichtlinie Erfahrungsbericht des Rhein-Netzprojektes. RheinNetz (ed). http://www.­rivernet.­org/rhin/pdfetdocs/rheinnetzbericht.­pdf. Accessed 8 Jun 2017 Langenauer R, Gigon A (2000) Blaue Listen von Tierund Pflanzenarten in der nördlichen Schweiz. Gaia 9(1):30–36 Langenscheidt E (1995) The Jenner area of the Berchtesgaden-National-Park—short description and results of soil-erosion monitoring. Forstwiss Centralbl 114(4–5):282–284 Langheinrich U, Lüderitz V (2016) Die Bewertung des ökologischen Zustands von Gräben—ein Verfahrensvergleich. WasserWirtschaft 2(3):14–19 Langner A, Siegert F (2009) Spatio-temporal fire occurrence in Borneo over a period 16 of 10 years. Glob Chang Biol 15:48–62 Larcher W (1977) Ergebnisse des IPB-Projekts “Zwergstrauchheide Patscherkofel”. Sitzber Österr Akad Wiss Mathem-naturw Kl Abt I 186:301–371 Larcher W (2001) Ökophysiologie der Pflanzen, 6th edn. Ulmer, Stuttgart Larcher W, Wagner J (1976) Temperaturgrenzen der CO2-Aufnahme und Temperaturresistenz der Blätter von Gebirgspflanzen im vegetationsaktiven Zustand. Oecol Plant 11:361–374 Larkin DJ, Bruland GL, Zedler JB (2016) Heterogeneity theory and ecological restoration. In: Palmer

MA, Zedler JB, Falk DA (eds) Foundations of restoration ecology, 2nd edn. Island Press, Washington, DC, pp 271–300 Larocque-Tobler I (ed) (2017) Using paleolimnology for lake restoration and management. Frontiers Media, Lausanne Larsson M, Franzen M (2007) Critical resource levels of pollen for the declining bee Andrena hattorfiana (Hymenoptera, Andrenidae). Biol Conserv 134:405–414 Laskov C, Amelung W, Peiffer S (2002) Organic matter preservation in the sediment of an acidic mining lake. Environ Sci Technol 36(20):4218–4223 LAU (2010) Kartieranleitung Lebensraumtypen Sachsen-Anhalt. Teil Offenland. Landesamt für Umwelt, Sachsen-Anhalt. Landesamt für Umweltschutz Sachsen-­Anhalt, Halle/Saale. https:// lau.­sachsenanhalt.­de/. Accessed 11 Aug 2018 LAU (2012) Binnenlandsalzstellen im Schutzgebietssystem Natura 2000 des Landes Sachsen-Anhalt. Natschutz Land Sachsen-Anhalt 49:1–192 Laufer H, Sandte A (2004) Hinweise zur Konkurrenz zwischen eingeschlepptem Ochsenfrosch (Rana catesbeiana) und einheimischen Grünfröschen. Herpetofauna 25:29–38 Laux D, Bernshausen F, Hormann M (2014) Artenhilfskonzept Raubwürger (Lanius excubitor) in Hessen. Gutachten im Auftrag der Staatlichen Vogelschutzwarte für Hessen, Rheinland-Pfalz und das Saarland. https://vswffm.­de/v/vsw/content/e3884/e4324/e4779/Artenhilfskonzept_ Raubwrger_04082014.­pdf. Accessed 20 Aug 2017 Lavelle P, Bignell D, Lepage M, Wolters V, Roger PA, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33(4):159–193 Lavoie C, Grosvernier P, Girard M, Marcoux K (2003) Spontaneous revegetation of mined peatlands: a useful restoration tool? Wetland Ecol Manage 11:97–107 Law R, Hanke G, Angelidis M, Batty J, Bignert A, Dachs J, Davies I, Denga Y, Duffek A, Herut B, Hylland K, Lepom P, Leonards P, Mehtonen J, Piha H, Roose P, Tronczynski J, Velikova V, Vethaak D (2010) Marine strategy framework directive—task group 8 report: contaminants and pollution effects. EUR 24335 EN—Joint Research Centre, Office for Official Publications of the European Communities, Luxembourg LAWA (1999) Gewässerbewertung—stehende Gewässer. Vorläufige Richtlinien für eine Erstbewertung von natürlich entstandenen Seen nach trophischen Kriterien. Länderarbeitsgemeinschaft Wasser, Kulturbuch, Berlin. http://www.­lawa.­de/ documents/Gewaesserbewertung_stehende_ Gewaesser_2_4ed_copy_589.­pdf. Accessed 8 May 2017

649 References

Lawesson JE, Fosaa AM, Olsen E (2003) Calibration of Ellenberg indicator values for the Faroe Islands. Appl Veg Sci 6:53–62 Lawniczak AE, Zbierska J, Nowak B, Achtenberg K, Grześkowiak A, Kanas K (2016) Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environ Monitor Assess 188:172 Lawrence A (2008) Experience with participatory conservation in post-socialist Europe. Int J Biodivers Sci Manage 4(4):179–186 Lazzaro X (1987) A review of planktivorous fishes: their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia 146:97–167 LCIE (2016) Large Carnivore Initiative for Europe (LCEI). IUCN/SSC Specialist Group. http:// www.­lcie.­org/. Accessed 14 Oct 2016 Leder B (1992) Weichlaubhölzer. Verjüngungsökologie, Jugendwachstum und Bedeutung in Jungbeständen der Hauptbaumarten Buche und Eiche. Schrreihe Landesanst Forstwirtsch NRW, Sonderband. Landesanstalt für Forstwirtschaft, Arnsberg, pp 1–413 Lederbogen D, Rosenthal G, Scholle D, Trautner J, Zimmermann B, Kaule G (2004) Allmendweiden in Südbayern: Naturschutz durch landwirtschaftliche Nutzung. Angew Landschökol 62:1–469 Van der Lee AS, Koops MA (2016) Are small fishes more sensitive to habitat loss? a generic size-based model. Can J Fish Aquat Sci 73:716–726 Lee HC, Ting KH, Chang Y, Lee MT, Liu WH (2016) Transdisciplinary education for sustainable marine and coastal management: a case study in Taiwan. Sustainability 8(11):1096 Lee M (2001) Coastal defence and the habitats directive: predictions of habitat change in England and Wales. Geogr J 167(1):39–56 Leemhuis C, Al-Khudhairy DHA (2001) Assessing the restoration of a degraded salt marsh with the Modflow groundwater model. European Commission, EUR 19747/EN.  European Commission, Brüssel De Leeuw C, Meijer ML (2002) Proefgebieden herstel zoet-zout overgangen in Noord Nederland. werkdocument concept. RIKZ, Haren. http://www.­ waddenzee.­nl/. Accessed 8 Feb 2017 De Leeuw J, Apon LP, Herman PMJ, de Munck W, Beeftink WG (1994) The response of salt marsh vegetation to tidal reduction caused by the Oosterschelde storm-surge barrier. Hydrobiologia 282(1):335–353 Lefebvre SL, Waltner-Toews D, Peregrine AS, ReidSmith R, Hodge L, Arroyo LG, Weese JS (2006) Prevalence of zoonotic agents in dogs visiting hospitalized people in Ontario: implications for infection control. J Hospital Infect 62:458–466

Legg CJ, Nagy L (2006) Why most conservation monitoring is, but need not be, a waste of time. J Environ Manag 78:194–199 Lehmann A (2006) Technosols and other proposals on urban soils for the WRB (World Reference Base for Soil Ressources). Int Agrophys 20:129–134 Lehmann A, Lachavanne JB (1999) Changes in the water quality of Lake Geneva indicated by submerged macrophytes. Freshw Biol 42: 457–466 Lehmann S, Persigehl M, Rosenkranz B, Falke B, Günther J, Assmann T (2004) Laufkäfer-­ Gemeinschaften xerothermer Sandrasen des Emslandes (Coleoptera, Carabidae). NNA Ber 17(1):147–153 Lehner B, Döll P, Alcamo J, Henrichs T, Kaspar F (2006) Estimating the impact of global change on flood and drought risks in Europe: a continental integrated analysis. Clim Chang 75:273–299 Lehnert HJ, Köhler K, Benkowitz D (2016) Schulgärten: Anlegen, pflegen, nutzen. Ulmer, Stuttgart Leibundgut H (1953) Beobachtungen über den Streuabbau einiger Baumarten im Lehrwald der ETH. Schweiz Z Forstwes 104:1–14 Lemaire G, Hodgson J, Chabbi A (2011) Grassland productivity and ecosystem services. CABI, Cambridge Lempiänen T, Behre KE (1997) Zur Umwelt und Ernährung einiger hochmittelalterlicher Wurtsiedlungen in der Marsch des Landes Wursten, Ldkr. Cuxhaven (Niedersachsen), nach archäobotanischen Untersuchungen. Prob Küstenfor südl Nordseegeb 24:275–300 Lennartz G (2008) Renaturierung. Programmatik und Effektivitätsmessung. Academia, Sankt Augustin Leonardson L, Ripl W (1980) Förstudie av fosforfastläggning genom inducerad denitrifikation vid sedimentytan i Finjasjön. Universität Lund, Limnologisches Institut, Lund Leppik E, Jüriado I, Liira J (2011) Changes in stand structure due to the cessation of traditional land use in wooded meadows impoverish epiphytic lichen communities. Lichenol 43:257–274 Lepš J (2001) Species-pool hypothesis: limits to its testing. Folia Geobot 36:45–52 Lerman A, Imboden DM, Gat JR (eds) (1995) Physics and chemistry of lakes, 2nd edn. Springer, Heidelberg Leser C (2003) Entwicklung operationell einsatzfähiger Methoden zur Biotoptypen-Kartierung anhand hochauflösender HRSC-Daten. Dissertation, TU Berlin Lesica P, Antibus RK (1986) Mycorrhizae of alpine fellfield communities on soils derived from crystalline and calcareous parent materials. Can J Bot 64:1691–1697

650

References

Lessmann D, Deneke R, Ender R, Hemm M, Kapfer M, Krumbeck H, Wollmann K, Nixdorf B (1999) Lake Plessa 107 (Lusatia, Germany)—an extremely acidic shallow mining lake. Hydrobiologia 408(409):293–299 Lessmann D, Uhlmann W, Grünewald U, Nixdorf B (2003) Sustainability of the flooding of lignite mining lakes as a remediation technique against acidification in the Lusatian mining district, Germany. In: Proceeding of 6th International Conference on Acid Rock Drainage, Australian Institute of Mining and Metallurgy, Carlton South, Cairns, pp 521–527 Lethonen L, Pekkala O, Uusvaara O (1978) Tervalepän (Alnus glutinosa) ja raidan (Salix caprea L.), puu- ja massateknisiä omnaisuuksia. Folia Forest 344:1–19 Lettl A, Hýsek J (1994) Soil microflora in an area where spruce (Picea abies) was killed by SO2 emissions and was succeeded by birch (Betula pendula) and mountain ash (Sorbus aucuparia). Ecol Eng 3:27–37 Leuschner C (1997) Das Konzept der potentiellen natürlichen Vegetation (PNV): Schwachstellen und Entwicklungsperspektiven. Flora 192:379–391 Leuschner C (1998) Mechanismen der Konkurrenzüberlegenheit der Rotbuche. Ber Reinhold-­ Tüxen-­Ges 10:5–18 Leuschner C (1999) Zur Abhängigkeit der Baum- und Krautschicht mitteleuropäischer Waldgesellschaften von der Nährstoffversorgung des Bodens. Ber Reinhold-Tüxen-Ges 11:109–132 Leuschner C, Ellenberg H (2017a) Ecology of Central European forests, Vegetation ecology of Central Europe, vol 1. Springer, Cham Leuschner C, Ellenberg H (2017b) Ecology of Central European non-forest vegetation: coastal to alpine, natural to man-made habitats, Vegetation ecology of Central Europe, vol 2. Springer, Cham Leuschner C, Rode MW (1999) The role of plant resources in forest succession: changes in radiation, water and nutrient fluxes, and plant productivity over a 300-yr-long chronosequence in NW-Germany. Perspect Plant Ecol Evol Syst 2(1):103–147 Leuschner C, Rode MW, Heinken T (1993) Gibt es eine Nährstoffmangel-Grenze der Buche im nordwestdeutschen Flachland? Flora 188:239–249 Levin LA, Boesch DF, Covich A, Dahm C, Erseus C, Ewel KC, Kneib RT, Moldenke A, Palmer MA, Snelgrove P, Strayer D, Weslawski JM (2001) The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4:430–451 Levine JM, Brewer JS, Bertness MD (1998) Nutrients, competition and plant zonation in a New England salt marsh. J Ecol 86:285–292

Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240 Lewandowski J, Hoehn E, Kasprzak P, Kleeberg A, Kurzreuther H, Mathes J, Meis S, Rönicke H, Sandrock S, Wauer G, Hupfer M (2013) Gewässerinterne Ökotechnologien zur Verminderung der Trophie von Seen und Talsperren. Korrespond-Wasserwirtsch 6(12):718–728 Lewin WC, Fladung E (2013) Die Bedeutung der Flutmulden der Lenzener Elbtalaue für die Flussfischgemeinschaft. In: Struck A, Garbe H, Felinks B Auenreport Spezial: Die Deichrückverlegung bei Lenzen. Erste Ergebnisse der wissenschaftlichen Begleitung. Ministerium für Umwelt Gesundheit und Verbraucherschutz des Landes Brandenburg, Potsdam, pp73–78 Lewis NR, Shepherd PA (2009) Mechanical management of bracken (Pteridium aquilinum) in Sherwood Forest. In: Rotherham ID, Bradley J (eds) Lowland heaths: ecology, history, restoration and management, special series. J Nat Conserv 5:99–105 Lexer MJ, Hönninger K, Scheifinger H, Matulla C, Groll N, Kromp-Kolb H, Schadauer K, Starlinger F, Englisch M (2002) The sensitivity of Austrian forests to scenarios of climate change: a large-scale risk assessment based on a modified gap model and inventory data. For Ecol Manag 162:53–72 LfL (2017a) Artenreiches Grünland: Ergebnisorientierte Grünlandnutzung. LfL Information, Bayer Landesanstalt für Landwirtschaft, 4th ed. https:// www.­l fl.­b ayern.­d e/publikationen/infor mationen/069544/index.­php. Accessed 27 Feb 2017 LfL (2017b) Was tun bei einer Rückkehr von Luchs, Wolf und Bär? Informationen für Nutztierhalter und Behörden in Bayern. Information der Bayerischen Landesanstalt für Landwirtschaft (LfL). https://www.­l fl.­b ayern.­d e/mam/cms07/publikationen/daten/informationen/lfl-­i nformation-­ luchs-wolfbaer.­pdf. Accessed 20 Jun 2017 LfU (2012) Oderausbau. Landesamt für Umweltschutz Brandenburg. http://www.­lfu.­brandenburg.­de/cms/ detail.­php/bb1.­c.­303558.­de. Accessed 3 Apr 2017 Li Q, Morimoto K, Kobayashi M, Inagaki H, Katsumata M, Hirata Y, Suzuki H, Li YJ, Wakayama Y, Kawada T, Park BJ, Ohira T, Matsui N, Kagawa T, Miyazaki Y, Krensky AM (2008) Visiting a forest, but not a city, increases human natural killer activity and expression of anti-cancer proteins. Int J Immunopathol Pharmacol 21:117–128 Liedl F, Weber K-M, Witte U (1992) Die Ostsee— Meeresnatur im ökologischen Notstand. Werkstatt, Bielefeld Light A (2000) Ecological restoration and the culture of nature: a pragmatic perspective. In: Gobster P, Hull B (eds) Restoring nature: perspectives from

651 References

the social sciences and humanities. Island Press, Washington, DC, pp 49–70 Light A, Higgs E (1996) The politics of ecological restoration. Environ Ethics 18:227–247 Light A, Rolston H III (eds) (2002) Environmental ethics: an anthology. Wiley-Blackwell, Oxford Liira J, Issak M, Jögar Ü, Mändoja M, Zobel M (2009) Restoration management of a floodplain meadow and its cost-effectiveness—the results of a 6-year experiment. Ann Bot Fenn 46:397–408 Likens GE (2010) Lake ecosystem ecology. A global perspective. Academic, Cambridge Liljelund LE, Nilsson I, Andersson I (1986) Trädslagsvalets betydelse for mark och vatten. En litteraturstudie med spesiell referens till lufförureningar och försurning. National Swedish Environment Protection Board, Solna Limpens J, Heijmans MMPD, Berendse F (2006) The nitrogen cycle in boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Ecol Stud 188:195–230 Lind B, Stein A, Kärcher A, Klein M (2009) Where have all the flowers gone? Grünland im Umbruch. In: Bundesamt für Naturschutz (eds) Bonn-Bad Godesberg. https://www.­bfn.­de/fileadmin/MDB/ documents/themen/landwirtschaft/Gruenlandumbruch_end.­pdf. Accessed 28 Feb 2017 Lindeboom HJ, de Groot SJ (1998) IMPACT-II: the effects of different types of fisheries on the North Sea and Irish Sea benthic ecosystems, NIOZ Rapport 1998-1, Den Burg. http://www.­vliz.­be/en/imis ?module=ref&refid=6412&printversion=1&dropI MIStitle=1. Accessed 28 Mar 2017 Lindenberg M, Crosby B (1981) Managing development: the political dimension. Kumarian Press, Sterling Lindenmayer DB, Likens GE (2011) Direct measurement versus surrogate indicator species for evaluating environmental change and biodiversity loss. Ecosystems 14:47–59 Lindenschmidt KE, Chorus I (1997) The effect of aeration on stratification and phytoplankton populations in Lake Tegel. Berlin Arch Hydrobiol 139:317–346 von Lindern E, Lymeus F, Hartig T (2017) The restorative environment: a complementary concept for salutogenesis studies. In: Mittelmark MB, Sagy S, Eriksson M, Bauer G, Pelikan JM, Lindström B, Espnes GA (eds) The handbook of salutogenesis. Springer, Cham, pp 181–195 Linderoth P (2005) Sikahirsch Cervus nippon Temminck, 1836. In: Braun M, Dieterlen F (eds) Die Säugetiere Baden-Württembergs, vol 2. Ulmer, Stuttgart, pp 564–574 Lindstrom JE, Prince RC, Clark JC, Grossman MJ, Yeager TR, Braddock JF, Brown EJ (1991) Micro-

bial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon-Valdez oil-spill. Appl Environ Microbiol 57:2514–2522 Link C (2012) Schöpfung: Ein theologischer Entwurf im Gegenüber von Naturwissenschaft und Ökologie. Vandenhoeck & Ruprecht, Göttingen Linnell J (2014) Status of wolverines in Europe. Large Carnivore Initiative for Europe (LCIE). IUCN/ SSC Specialist Group. http://www.­lcie.­org. Accessed 14 Oct 2016 Linnell J, Salvatori V, Boitani L (2008) Guidelines for population level management plans for large carnivores in Europe. A Large Carnivore Initiative for Europe report prepared for the European commission (contract 070501/2005/424162/MAR/ B2). http://ec.­europa.­eu/environment/nature/conservation/species/carnivores/pdf/guidelines_for_ population_level_management.­pdf. Accessed 14 Oct 2016 Litterski B, Jörns S (2004) Der Einfluss extensiven Anbaus von Winterroggen auf die Segetalflora und -vegetation—eine Untersuchung in Nordostdeutschland. Z Pfl krankh Pfl schutz 19:65–72 Litterski B, Jörns S, Grabow M, Manthey M (2005a) Extensiv bewirtschaftete Sandstandorte aus vegetationsökologischer Sicht. In: Hampicke U, Litterski B, Wichtmann W (eds) Ackerlandschaften, Nachhaltigkeit und Naturschutz auf ertragsschwachen Standorten. Springer, Heidelberg, pp 77–88 Litterski B, Jörns S, Hampicke U (2005b) Farbtupfer in Ackerlandschaften. In: Hampicke U, Litterski B, Wichtmann W (eds) Ackerlandschaften, Nachhaltigkeit und Naturschutz auf ertragsschwachen Standorten. Springer, Heidelberg, pp 231–248 Litterski B, Wichtmann W, Holzhausen J, Bastian M, Jörns S (2005c) Das EASE-Projekt und untersuchte Standorte in Nordostdeutschland. In: Hampicke U, Litterski B, Wichtmann W (eds) Ackerlandschaften, Nachhaltigkeit und Naturschutz auf ertragsschwachen Standorten. Springer, Heidelberg, pp 191–206 Littlewood NA, Pakeman RJ, Woodin SJ (2006) The response of plant and insect assemblages to the loss of Calluna vulgaris from upland vegetation. Biol Conserv 128:335–345 Liu S, Xia X, Yang L, Shen M, Liu R (2010) Polycyclic aromatic hydrocarbons in urban soils of different land uses in Beijing, China: distribution, sources and their correlation with the city's urbanization history. J Hazard Mat 177:1085–1092 LLUR (2014) Neobiota in deutschen Küstengewässern. Eingeschleppte und kryptogene Tier- und Pflanzenarten an der deutschen Nord- und Ostseeküste. Landesamt für Landwirtschaft, Umwelt und län-

652

References

dliche Räume des Landes Schleswig-Holstein (LLUR). Schrreihe LLUR SH-­ Gewässer D 25. Schmidt & Klaunig, Kiel, pp 1–216 LNU (2004) Erläuterungen zur Umsetzung der Wasserrahmenrichtlinie in Schleswig-Holstein. Regeneration von Fließgewässern. Landesamt für Natur und Umwelt Schleswig-Holstein. http://www.­ wasserblick.­net/. Accessed 22 Apr 2017 Lo YS (1999) Natural and artifactual: restored nature as subject. Environ Ethics 21:247–266 Locke P, Münster U (2015) Multispecies ethnography. Oxford Bibliographies, Oxford Löffler F, Borchard F, Fartmann T (2016) Auswirkungen des Schopperns auf die Regeneration von Bergheide-Ökosystemen im Rothaargebirge. Jahrb Natschutz Hessen 16:74–81 Lohmeyer W (1971) Über einige Neophyten als Bestandsglieder der bach- und flussbegleitenden nitrophilen Staudenfluren in Westdeutschland. Nat Landsch 46:166–168 Lorenz A (2006) Praktische Umsetzung der Methoden — Ansaaten (Gehölze). In: Kirmer A, Tischew S (Eds) Handbuch naturnahe Begrünung von Rohböden. Teubner, Wiesbaden, pp 118–131 Lohmeyer W, Krause A (1975) Über die Auswirkungen des Gehölzbewuchses an kleinen Wasserläufen des Münsterlandes auf die Vegetation im Wasser und an den Böschungen im Hinblick auf die Unterhaltung der Gewässer. Schrreihe Vegkd 9:1–105 Lohmeyer W, Sukopp H (1992) Agriophyten in der Vegetation Mitteleuropas. Schrreihe Vegkd 25: 1–185 Loidi J, del Arco M, Pérez de Paz PL, Asensi A, Díez Garretas B, Costa M, Díaz González T, Fernández-González F, Izco J, Penas A, Rivas-Martínez S, Sánchez-Mata D (2010) Understanding properly the “potential natural vegetation” concept. J Biogeogr 37:2209–2211 Loidi J, Fernández-González F (2012) Potential natural vegetation: reburying or reboring? J Veg Sci 23:596–604 Lomba A, Guerra C, Alonso J, Honrado JP, Jongman R, McCracken D (2014) Mapping and monitoring high nature value farmlands: challenges in European landscapes. J Environ Manag 143:140–150 Londo G (1990) Conservation and management of semi-natural grasslands in north-­western Europe. In: Bohn V, Neuhäusl R (eds) Vegetation and flora of temperate zones. SPB Academic Publishing, Den Haag, pp 69–77 Londsdale M (2011) Risk assessment and prioritization. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, pp 604–609 Looman J, Campbell JB (1960) Adaptation of Sorensen’s K (1948) for estimating unit affinities in prairie vegetation. Ecology 41(3):409–416

Loreau M (2010) From populations to ecosystems: theoretical foundations for a new ecological synthesis. Princeton University Press, Princeton Lorenz A, Hering D, Feld CK, Rolauffs P (2004) A new method for assessing the impact of hydromorphological degradation on the macroinvertebrate fauna in five German stream types. Hydrobiologia 516:107–127 Lorenz AW, Feld CK (2013) Upstream river morphology and riparian land use overrule local restoration effects on ecological status assessment. Hydrobiologia 704:489–501 Los SO, Rosette JAB, Kljun N, North PRJ, Chasmer L, Suárez JC, Hopkinson C, Hill RA, van Gorsel E, Mahoney C, Berni JAJ (2012) Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data. Geosci Mod Dev 5:413–443 Lososová Z, Chytrý M, Kühn I (2008) Plant attributes determining the regional abundance of weeds on central European arable land. J Biogeogr 35:177–187 Loss SR, Terwilliger LA, Peterson AC (2011) Assisted colonization: integrating conservation strategies in the face of climate change. Biol Conserv 144(1):92–100 Louviere J, Hensher D (1982) On the design and analysis of simulated choice or allocation experiments in travel choice modelling. Transport Res Rec 890(1):1–17 Louviere JJ, Woodworth G (1983) Design and analysis of simulated consumer choice of allocation experiments. J Mark Res 20:350–367 Lowrance R, Leonard R, Sheridan J (1985) Managing riparian ecosystems to control nonpoint pollution. J Soil Water Conserv 40:87–97 Lozán JL, Lenz W, Rachor E, Watermann B, von Westernhagen H (1990) Warnsignale aus der Nordsee. Parey, Berlin Lozon JD, MacIsaac HJ (1997) Biological invasions: are they dependent on disturbance? Environ Rev 5:131–144 LUA (2005) Parks und Gärten im ländlichen Raum— vernachlässigte Potenziale in Brandenburg? Fachbeitr Landesumweltamt 92:1–81 Lucchese M, Waddington JM, Poulin M, Pouliot R, Rochefort L, Strack M (2010) Organic matter accumulation in a restored peatland: evaluating restoration success. Ecol Eng 36:482–488 Lucke R, Silbereisen R, Herzberger E (1992) Obstbäume in der Landschaft. Ulmer, Stuttgart Lüderitz V (2009) Ansätze und Probleme der Bewertung von Altwässern. In: Lüderitz V, Langheinrich U, Kunz C (eds) Flussaltwässer: Ökologie und Sanierung. Springer Vieweg, Wiesbaden, pp 91–93 Lüderitz V, Jüpner R (2009) Renaturierung von Fließgewässern. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer Spektrum, Heidelberg, pp 94–124

653 References

Lüderitz V, Langheinrich U, Kunz C (2009) Flussaltwässer: Ökologie und Sanierung. Vieweg & Teubner, Wiesbaden Lüderitz V, Langheinrich U, Recht S, Pozimski I (2015) Untersuchungen zur Allerrenaturierung bei Wefensleben. Natschutz Land Sachsen-Anhalt 52:28–44 Lüderitz V, Speierl T, Langheinrich U, Seidel M (2013) Eignung von Fischaufstiegsanlagen an Obermain und Rodach als Lebensräume und Migrationshilfen für Fische und Makroinvertebraten. WasserWirtschaft 1(2):39–46 Lüdge W (1971) Der Einfluß von Laubholzunterbau auf die Schädlingsdichte in den Kiefernbeständen der Schwetzinger Hardt. Allg Forst Jagdztg 142:173–178 Ludwig G, Schnittler M (1996) Rote Liste gefährdeter Pflanzen Deutschlands. Schrreihe Vegetationskde 28:1–744 Luft L, Kühling M, Fürstenow J, Schoknecht T, Frey T (eds) (2011) Monitoring Döberitzer Heide. Landesamt für Umwelt, Gesundheit und Verbraucherschutz Brandenburg. Fachbeitr LUGV 123:1–106 Lugato E, Bampa F, Panagos P, Montanarella L, Jones A (2015) Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices. Glob Chang Biol 20:3557–3567 Von der Lühe I, Wolschke-Bulmahn J (2013) Landschaften—Gärten—Literaturen: Festschrift für Hubertus Fischer (CGL-Studies). Akademische Verlagsgemeinschaft, München Luick R, Kapfer A (1994) Möglichkeiten der Renaturierung von Maisäckern. Hohenheim Umwelttag 26:321–324 Luick R, Vonhoff W (2009) Wertholzpflanzungen— das Thema Agroforstsysteme in moderner Inszenierung. Natschutz Landschplan 41(2):47–52 Luley H, Peters J, Christian S, Buss E (2010) Landwirtschaftliche und touristische Nutzungsänderungen im Naturschutzgroßprojekt “Lenzener Elbtalaue” (2005–2009). Sozioökonomische Evaluierung. Hochschule für Nachhaltige Entwicklung (HNE), Eberswalde Lulow ME, Young TP, Wirka JL, Anderson JH (2007) Variation in the initial success of seeded native bunchgrasses in the rangeland foothills of Yolo County, California. Ecol Restor 25:20–28 Lunáčková L, Masarovičová E, Král’ová K, Streško V (2003) Response of fast growing woody plants from family Salicaceae to cadmium treatment. Bull Environ Contam Toxicol 70:576–585 Lund HG (2009) What is a degraded forest? Forest Information Services, Gainesville Lundberg S, Österling M (eds) (2016) Return of using mussels and brains. Layman’s report, UC4LIFE,

Skåne County Administrative Board. http://www.­ ucforlife.­s e/wp-content/uploads/2017/02/LS_ folder_20sid_ENG_hog.­pdf. Accessed 25 Apr 2017 Von Lüpke B, Ammer C, Braciamacchie M, Brunner A, Ceitel J, Collet C, Deuleuze C, Di Placido J, Huss J, Jankovic J, Kantor P, Larsen JB, Lexer M, Löf M, Longauer R, Madsen P, Modrzynski J, Mosandl R, Pampe A, Pommerening A, Stefancik J, Tesar V, Thompson R, Zientarski J (2004) Silvicultural strategies for conversion. In: Spiecker H, Hansen J, Klimo E, Skovsgaard JP, Sterba H, von Teuffel K (eds) Norway spruce conversion— options and consequences. European Forest Institute. Research Report 18, pp 121–164 Luque S, Iverson L (2016) Forest-related ecosystem services. In: Potschin M, Haines-Young R, Fish R, Turner RK (eds) Routledge handbook of ecosystem services. Routledge, New York, pp 383–393 Luthardt M, Beyer G (1998) Einfluß des Schalenwildes auf die Waldvegetation. AFZ/Der Wald 17:890–895 Luthardt V, Wichmann S (2016) Ecosystem services of peatland. In: Wichtmann W, Schröder C, Joosten H (eds) Paludiculture—productive use of wet peatlands, Climate protection—biodiversity—regional economic benefits. Schweizerbart Science Publishers, Stuttgart, pp 13–20 Luthardt V, Zeitz J (eds) (2014) Moore in Brandenburg und Berlin. Natur + Text, Rangsdorf Lütt S (2009) (Wieder-)Ansiedlungsprojekte von gefährdeten Pflanzenarten in Schleswig-­Holstein. Kieler Not Pflkd 36(2):119–129 Luyssaert S, Ciais P, Piao SL, Schulze E-D, Jung M, Zaehle S, Schelhaas MJ, Reichstein M, Churkina G, Papale D, Abril G, Beer C, Grace J, Loustau D, Matteucci G, Magnani F, Nabuurs GJ, Verbeeck H, Sulkava M, van der Werf GR, Janssens IA (2010) European carbon balance. Part 3: forests. Glob Chang Biol 16(5):1429–1450 Lye DJ (2002) Health risks associated with consumption of untreated water from household roof catchment systems. J Am Water Resour Assoc 38:1301–1306 Lyytimäki J (2015) Ecosystem disservices: embrace the catchword. Ecosyst Serv 12:136 Lyytimäki J, Sipilä M (2009) Hopping on one leg—the challenge of ecosystem disservices for urban green management. Urban For Urban Gree 8(4): 309–315 Malo JE, Suárez F (1995) Establishment of pasture species on cattle dung: the role of endozoochorous seeds. J Veg Sci 6, 169–174 Ma WL, Li YF, Sun DZ, Qi H (2009) Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in topsoils of Harbin. China Arch Environ Contam Toxicol 57:670–678

654

References

Van der Maarel E, Franklin J (2013) Vegetation ecology. Wiley, Chichester Van der Maarel E, van der Maarel-Versluys M (1996) Distribution and conservation status of littoral vascular plant species along the European coasts. J Coast Conserv 2:73–92 Maas J, Verheij RA, Groenewegen PP, de Vries S, Spreeuwenberg P (2006) Green space, urbanity, and health: how strong is the relation? J Epidemiol Commun Health 60:587–592 Mabbutt JA (1979) Desertification and the future of the arid lands. Austral Geogr 14(3):141–150 MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton MacDonald D, Crabtree JR, Wiesinger G, Dax T, Stamou N, Fleury P, Gutierrez Lazpita J, Gibon A (2000) Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. J Environ Manag 59:47–69 Macdonald DW, Sidorovich VE, Anisomova EI, Sidorovich NV, Johnson PJ (2002) The impact of American mink Mustela vison and European mink Mustela lutreola on water voles Arvicola terrestris in Belarus. Ecography 25:295–302 Machmer M, Steeger C (2002) Effectiveness monitoring guidelines for ecosystem restoration. Final Report für Ministry of Water, Land and Air Protection, Victoria, BC. http://www.­env.­gov.­bc.­ca/ fia/documents/rest_eff ect_mon_guidelines_s.­pdf. Accessed 2 July 2017 MacIsaac HJ (1996) Potential abiotic and biotic impacts of zebra mussels on the inland waters of North America. Am Zool 36:287–299 MacMahon JA, Holl KD (2001) Ecological restoration: a key to conservation biology's future. In: Soulé ME, Orians GH (eds) Conservation biology: research priorities for the next decade. Island Press, Washington, DC, pp 24–269 Macmillan DC, Duff EI (1998) Estimating the nonmarket costs and benefits of native woodland restoration using the contingent valuation method. Forestry 71:247–259 MacPherson C, Tonning B, Faalasli E (2015) Engaging and involving stakeholders in your watershed. Im Auftrag der US Environmental Protection Agency. US Environmental Protection Agency. https://www.­epa.­gov/sites/production/files/201511/documents/stakeholderguide_0.­pdf. Accessed 20 Jun 2017 Mader HJ (1982) Die Tierwelt der Obstwiesen und intensiv bewirtschafteten Obstplantagen im quantitativen Vergleich. Nat Landsch 57(11):371–377 Madgwick J, Jones TA (2002) Europe. In: Perrow MR, Davy AJ (eds) Handbook of ecological restoration, vol 2. Cambridge University Press, Cambridge, pp 32–56

Madukasi EI, Dai X, He C, Zhou J (2010) Potentials of phototrophic bacteria in treating pharmaceutical wastewater. Int J Environ Sci Technol 7(1):165–174 Maes N, van Vuure T (1989) De linde in Nederland: verspreiding, ecologie en toekomstmogelijkheden van de lindesoorten in Nederland en aangrenzende gebieden. Stichting Kritisch Bosbeheer. http://www.­e cologischadviesbureaumaes.­n l/23.­ pdf. Accessed 20 Jun 2017 Magura T, Tóthmérész B, Elek Z (2003) Diversity and composition of carabids during a forestry cycle. Biodivers Conserv 12:73–85 Mahan BL, Polasky S, Adams RM (2000) Valuing urban wetlands: a property price approach. Land Econ 76(1):100–113 Mährlein A (2004) Agrarwirtschaftliche Untersuchungen in “neuen Hudelandschaften” bei naturschutzkonformer Extensivbeweidung mit Rindern und Schafen. In: Schwabe A, Kratochwil A (eds) Beweidung und Restitution als Chancen für den Naturschutz? NNA Berichte 17(1): 191–203 Mai S, von Lieberman N (2001) Polder an der tidebeeinflußten Küste—Naturschutz versus Küstenschutz. Tagungsband zur 19. AMK-Tagung, Bamberg, May 2001. https://www.­lufi.­ unihannover.­de/uploads/tx_tkpublikationen/40_ amk_2001.­pdf. Accessed 8 Feb 2017 Mai S, Zimmermann C (2002) Diked forelands and their importance in coastal zone management. Hydro 2002:1–12 Maiolini B, Franceschini A, Boscaini A (1998) The role of invertebrate communities as indicators of environmental characteristics of European river margins. In: Joyce CP, Wade M (eds) European wet grasslands: biodiversity, management and restoration. Wiley, Chichester, pp 151–162 Majić A, de Bodonia AMT, Huber D, Bunnefeld N (2011) Dynamics of public attitudes toward bears and the role of bear hunting in Croatia. Biol Conserv 144:3018–3027 Makowski H, Buderath B (1983) Die Natur, dem Menschen untertan. Ökologie im Spiegel der Landschaftsmalerei. Kindler, München Maktav D (ed) (2009) Remote sensing for a changing Europe. In: Proceedings of the 28th Symposium of the European Association of Remote Sensing Laboratories, Istanbul, Turkey. IOS Press, Amsterdam Mal TK, Narine L (2004) The biology of Canadian weeds. 129. Phragmites australis (Cav.) Trin. ex Steud. Can J Plant Sci 84:365–396 Maleki K, Hosseini SM, Nasiri P (2010) The effect of pure and mixed plantations of Robinia pseudoacacia and Pinus eldarica on traffic noise decrease. Int J Environ Sci 1(2):213–224

655 References

Malmer N (1965) The south-western dwarf shrub heaths. Acta Phytogeogr Suecica 50:123–130 Maltby E, Barker T (eds) (2009) The wetlands handbook, 2nd edn. Wiley, Chichester Manakos I, Braun M (eds) (2014) Land use and land cover mapping in Europe, Practices and trends. Springer, Dordrecht Manchester SJ, McNally S, Treweek JR, Sparks TH, Mountford JO (1999) The cost and practicality of techniques for the reversion of arable land to lowland wet grassland—an experimental study and review. J Environ Manag 55:91–109 Mander Ü, Antrop M (eds) (2003) Multifunctional landscapes, 3rd ed. Continuity and change. Adv Ecol Sci 16:95–114 Manhart C, Marschalek H, Karg J (2004) Renaturierung feucht-nassen Grünlands im Voralpenraum. Untersuchungen zur Vegetationsentwicklung sowie zur Biomasse und Diversität bei Insekten. Nat Landsch 79(6):257–263 Mannio J (2001) Responses of headwater lakes to air pollution changes in Finland. Monogr Boreal Environ Res 18:6–48 Manso M, Castro Gomes J (2015) Green wall systems: a review of their characteristics. Renew Sust Energ Rev 41:863–871 Mansourian S, Vallauri D, Dudley N (eds) (2005) Forest restoration in landscapes, Beyond planting trees. Springer, New York Mant RC, Jones DL, Reynolds B, Ormerod SJ, Pullin AS (2013) A systematic review of the effectiveness of liming to mitigate impacts of river acidification on fish and macro-invertebrates. Environ Pollut 179:285–293 Mant J, Janes M (2006) Restoration of rivers and floodplains. In: Van Andel J, Aronson J (eds) Restoration ecology. The new frontier. Blackwell, Oxford, pp 141–157 Mantel K (1990) Wald und Forst in der Geschichte. Schaper, Hannover Manthey M, Zerbe S (eds) (2008) Tagungs- und Exkursionsführer zur Jahrestagung der floristischsoziologischen Arbeitsgemeinschaft in Greifswald 2008. Tuexenia 1:1–157 Manz E (1993) Vegetation und standörtliche Differenzierung der Niederwälder im Nahe- und Moselraum. Pollichia 28:1–413 Manz E (1994) Bedeutung der linksrheinischen Niederwälder für den Naturschutz. AFZ/Der Wald 20:1123–1125 Måren IE, Vandvik V, Ekelund K (2008) Restoration of bracken-invaded Calluna vulgaris heathlands: effects on vegetation dynamics and non-target species. Biol Conserv 141(4):1032–1042 Marencic H, Frederiksen J (2014) Sustainable tourism in the Wadden Sea. World Heritage Destination Common Wadden Sea Secretariat, Wilhelmshaven.

http://www.­waddensea-worldheritage.­o rg/sites/ default/files/downloads/tourism-strategyenglish2014-12-22.­pdf. Accessed 10 Feb 2017 Margesin R, Schinner F (eds) (1999) Cold-adapted organisms: ecology, physiology, enzymology and molecular biology. Springer, Heidelberg Marion JL, Wimpey J (2007) Environmental impacts of mountain biking: science review and best practices, Managing mountain biking, IMBA’s guide to providing great riding. International Mountain Bicycling Association (IMBA), Boulder Maris T, Cox TJS, Jacobs S, Beauchard O, Teuchies J, Van Liefferinge C, Temmerman S, Vandenbruwaene W, Meire P (2008) Natuurontwikkeling in het Lippenbroek Herstel van estuariene natuur via een gecontroleerd gereduceerd getij. Natuur Focus 7:21–27 Marlier ME, DeFries RS, Voulgarakis A, Kinney PL, Randerson JT, Shindell DT, Chen Y, Faluvegi G (2013) El Nino and health risks from landscape fire emissions in southeast Asia. Nat Climate Change 3:131–136 Marrs RH (1985) Techniques for reducing soil fertility for nature conservation purposes: a review in relation to research at Roper's Heath, Suffolk, England. Biol Conserv 34:307–332 Marrs RH (1993) Soil fertility and nature conservation in Europe: theoretical considerations and practical management solutions. Adv Ecol Res 24:241–300 Marrs RH (2002) Manipulating the chemical environment of the soil. In: Perrow MR, Davy AJ (eds) Handbook of ecological restoration, vol 1 & 2. Cambridge University Press, Cambridge, pp 155–183 Marrs RH, Phillips JDP, Todd PA, Ghorbani J, Le Duc MG (2004) Control of Molinia caerulea on upland moors. J Appl Ecol 41:398–411 Marsden S (1989) Lake restoration by reducing external P loading: the influence of sediment P release. Freshw Biol 21:139–162 Marshall JK (1967) Corynephorus canescens (L.) Beauv. Biol Flora 55:207–220 Martens D (2007) Urbane Naturflächen als Ressource für das menschliche Wohlbefinden. In: Gesundheit Berlin (ed) Dokumentation. 12. bundesweiter Kongress Armut und Gesundheit, Berlin, pp 1–6. http://www.­wsl.­ch/. Accessed 4 Mar 2017 Martens D, Bauer N (2008) Do presentation modes of nature influence the effect on human well-­being? A comparison of laboratory and fi eld results. Int J Psychol 43:287–287 Martens D, Gutscher H, Bauer N (2011) Walking in “wild” and “tended” urban forests: the impact on psychological well-being. J Environ Psychol 31:36–44 Mårtensson LM, Fransson AM, Emilsson T (2016) Exploring the use of edible and evergreen peren-

656

References

nials in living wall systems in the Scandinavian climate. Urban For Urban Green 15:84–88 Martin C, Bischof N, Eiblmaier M (2000) Deutsche Hochmoorkultur. Lexikon der Geowissenschaften. http://www.­spektrum.­de/lexikon/geowissenschaften/. Accessed 15 Jan 2017 Martin G, Mincyte D, Münster U (2012) Why do we value diversity? Biocultural diversity in a global context. RCC Perspect 9:1–106 Martínez ML, Gallego-Fernández JB, Hesp PA (2013) Restoration of coastal dunes. Springer, Heidelberg Martínez ML, Psuty NP (2004) Coastal dunes. Ecology and conservation. Ecol Stud 171:1–386 Martinez-Fernandez C, Weyman T, Fol S, Audirac I, Cunningham-Sabot E, Wiechmann T, Yahagi H (2016) Shrinking cities in Australia, Japan, Europe and the USA: from a global process to local policy responses. Progr Plann 105:1–48 Marzelli S, Moning C, Daube S, Offenberger M, GrêtRegamey A, Rabe S-E, Köllner T, Poppenborg P, Hansjürgens B, Ring I, Schröter-Schlaack C, Schweppe-Kraft B, Macke S (2012) Naturkapital Deutschland: Der Wert der Natur für Wirtschaft und Gesellschaft—Eine Einführung. TEEB Deutschland. http://www.­naturkapitalteeb.­de/fileadmin/Downloads/Projekteigene_Publikationen/TEEB_DE_Einfuehrungsbericht.­pdf. Accessed 25 May 2017 Marzetti S, Disegna M, Villani G, Speranza M (2011) Conservation and recreational values from seminatural grasslands for visitors to two Italian parks. J Environ Plan Manag 54:169–191 Marzluff JM, Shulenberger E, Endlicher W, Alberti M, Bradley G, Ryan C, ZumBrunnen C, Simon U (eds) (2008) Urban ecology: an international perspective on the interaction between humans and nature. Springer, Heidelberg Maschinski J (2006) Implications of population dynamic and metapopulation theory for restoration. In: Falk DA, Palmer MA, Zedler JB (eds) Foundations of restoration ecology. Island Press, Washington, DC, pp 59–87 Maschinski J, Haskins KE (2012) Plant reintroduction in a changing climate, Promises and perils. Island Press, Washington, DC Massei G, Genove PV (2004) The environmental impact of wild boar. Galemys 16:135–145 Matamoros V, Uggetti E, García J, Bayona JM (2015) Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: a laboratory scale study. J Hazard Mater 301:197–205 Matenaar D, Bazelet CS, Hochkirch A (2015) Simple tools for the evaluation of protected areas for the conservation of grasshoppers. Biol Conserv 192:192–199 Matesanz S, Valladares F, Tena D, Costa-Tenorio M, Bote D (2006) Early dynamics of plant communi-

ties on revegetated motorway slopes from southern Spain: is hydroseeding always needed? Restor Ecol 14:297–307 Mathes J, Plambeck G, Schaumburg J (2002) Das Typisierungssystem für stehende Gewässer in Deutschland mit Wasserflächen ab 0,5  km2 zur Umsetzung der Wasserrahmenrichtlinie. In: Deneke R, Nixdorf B (eds) Implementierung der EU-Wasserrahmenrichtlinie in Deutschland: Ausgewählte Bewertungsmethoden und Defizite. BTUC-AR 5/2002:15–24 Mathey J, Rink D (2010) Urban wastelands—a chance for biodiversity in cities? Ecological aspects, social perceptions and acceptance of wilderness by residents. In: Müller N, Werner P, Kelcey JG (eds) Urban biodiversity and design. Wiley-Blackwell, Oxford, pp 406–424 Mathieson S, Cattrijsse A, Costa MJ, Drake P, Elliott M, Gardner J, Marchand J (2000) Fish assemblages of European tidal marshes: a comparison based on species, families and functional guilds. Mar Ecol Progr Ser 204:225–242 Mattheiss V (2015) Dyke relocation on the river Elbe near Lenzen, Germany. European Platform: natural water retention measures. http://nwrm.­eu/case-study/dykerelocation-river-elbe-near-­lenzengermany. Accessed 5 Jun 2017 Matthies D, Bräuer I, Maibom W, Tscharntke T (2004) Population size and the risk of local extinction: empirical evidence of rare plants. Oikos 105:481–488 Matthies D, Poschlod P (2000) The biological flora of central Europe—aims and concept. Flora 195(2): 116–122 Matula R, Svátek M, Kůrová J, Úradníček L, Kadavý J, Kneifl M (2012) The sprouting ability of the main tree species in Central European coppices: implications for coppice restoration. Eur J For Res 131(5):1501–1511 Matuszkiewicz W (1984) Die Karte der potentiellen natürlichen Vegetation von Polen. Braun Blanquetia 1:1–99 Matyssek R, Fromm J, Rennenberg H, Roloff A (2010) Biologie der Bäume: von der Zelle zur globalen Ebene. Ulmer, Stuttgart Matzdorf B, Kaiser T, Rohner MS (2008) Developing biodiversity indicator to design efficient agri-­ environmental schemes for extensively used grassland. Ecol Indic 8(3):256–269 Matzdorf B, Reutter M, Hübner C (2010) GutachtenVorstudie: Bewertung der Ökosystemdienstleistungen von HNV-Grünland (High Nature Value Grassland). Final Report. Leibniz-­ Zentrum für Agrarlandschaftsforschung (ZALF) e. V., Müncheberg. https://www.­bfn.­de/fileadmin/MDB/ documents/themen/recht/oekosdienstleist_hnv.­ pdf. Accessed 25 May 2017

657 References

Matzdorf B, Zerbe S (2000) Segetalvegetation der Uckermark (NO-Brandenburg) unter dem Einfluss von biologisch-dynamischer und konventioneller Bewirtschaftung. Verh Bot Ver Berlin-­Brandenbg 133:87–118 Mauch E, Schmedtje U, Maetze A, Fischer F (2003) Taxaliste der Gewässerorganismen Deutschlands zur Kodierung biologischer Befunde. Informationsber Bayer Landesamt Wasserwirtsch 1(3):1–388 Mauersberger R (2014) Moorschutzmaßnahmen im Naturschutzgroßprojekt “Uckermärkische Seen”. In: Luthardt V, Zeitz J (eds) Moore in Brandenburg und Berlin. Natur & Text, Rangsdorf, pp 294–303 Mauersberger R (2006) Klassifikation der Seen für die Naturraumerkundung des nordostdeutschen Tieflandes. Arch Natschutz Landschfor 45(3/4):51–90 Mauersberger H, Mauersberger R (1997) Die Seen des Bioshpärenreservates Schorfheide Chorin—Eine ökologische Studie. Dissertation, University of Greifswald Maurel N, Salmon S, Ponge JF, Machon N, Moret J, Muratet A (2010) Does the invasive species Reynoutria japonica have an impact on soil and flora in urban wastelands? Biol Invasions 12(6):1709–1719 Maurer K, Weyand A, Fischer M, Stöcklin J (2006) Old cultural traditions, in addition to land use and topography, are shaping plant diversity of grasslands in the Alps. Biodivers Conserv 130:438–446 May A (2003) The largest coastal re-alignment in Europe—occurred in Essex. Essex Nat (New Series) 20:108–110 Mayer AC, Stöckli V, Gotsch N, Konold W, Kreuzer M (2004) Waldweide im Alpenraum. Neubewertung einer traditionellen Mehrfachnutzung. Schweiz Z Forstwes 155:38–44 Mayer H (1992) Waldbau: Auf soziologisch-ökologischer Grundlage. Spektrum Akademischer Verlag, Heidelberg Mayer M (2014) After LIFE Conservation Plan. Vogelschutz in Streuobstwiesen des Mittleren Albvorlandes und des Mittleren Remstales. http:// ec.­europa.­eu/. Accessed 21 Aug 2017 Mayer M, Steiger R (2013) Skitourismus in den Bayerischen Alpen—Entwicklung und Zukunftsperspektiven. In: Job H, Mayer M (eds) Tourismus und Regionalentwicklung in Bayern, Arbeitsberichte der ARL 9:164–212 Mayr P (2003) Das pathozentrische Argumentals Grundlage einer Tierethik. Dissertation, University of Münster. http://d-nb.­info/983071659/34. Accessed 12 Aug 2017 Mazurek R, Bejger R (2014) The role of Black Locust (Robinia pseudoacacia L.) shelterbelts in the stabilization of carbon pools and humic substances

in Chernozem. Pol J Environ Stud 23(4): 1263–1271 McAlpine CA, Etter A, Fearnside PM, Seabrook L, Laurance WF (2009) Increasing world consumption of beef as a driver of regional and global change: a call for policy action based on evidence from Queensland (Australia), Colombia and Brazil. Glob Environ Chang 19:21–33 McBride MB, Shayler HA, Spliethoff HM, Mitchell RG, Marquez-Bravo LG, Ferenz GS, Russell-­ Anelli JM, Casey L, Bachman S (2014) Concentrations of lead, cadmium and barium in urban garden-grown vegetables: the impact of soil variables. Environ Poll 194:254–261 McCarter J, Gavin MC, Baereleo S, Love M (2014) The challenges of maintaining indigenous ecological knowledge. Ecol Soc 19(3):39 McCarthy MA (2014) Contending with uncertainty in conservation management decisions. Ann N Y Acad Sci 1322(1):77–91 McCarthy MP, Best MJ, Betts RA (2010) Climate change in cities due to global warming and urban effects. Geophys Res Lett 37(9):L09705 McComas S (2003) Lake and pond management guidebook. CRC Press, Boca Raton McCullough CD (2008) Approaches to remediation of acid mine drainage water in pit lakes. Int J Mining Reclamat Environ 22(2):105–119 McDonald T, Gann GD, Jonson J, Dixon KW (2016) International standards for the practice of ecological restoration—including principles and key concepts. Society for Ecological Restoration (SER), Washington, DC. http://c.­ymcdn.­com/sites/www.­ ser.­org/resource/resmgr/docs/SER_International_ Standards.­pdf. Accessed 2 July 2017 McElwee K, Donohue MJ, Courtney CA, Morishige C, Rivera-Vicente A (2012) A strategy for detecting derelict fi shing gear at sea. Marine Poll Bull 65(1–3):7–15 McGee RJ, Warms RL (2012) Anthropological theory. An introductory reader. McGraw-­ Hill, New York McGinnis MV (1996) Deep ecology and the foundations of restoration. Inquiry Interdisc J Philos 39(2):203–217 McGrath MJ, Luyssaert S, Meyfroidt P, Kaplan JO, Bürgi M, Chen Y, Erb K, Gimmi U, McInerney D, Naudts K, Otto J, Pasztor F, Ryder J, Schelhaas MJ, Valade A (2015) Reconstructing European forest management from 1600 to 2010. Biogeosciences 12:4291–4316 McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotech 14(3):277–282 McIsaac GF, Brün M (1999) Natural environment and human culture: defining terms and understanding worldviews. J Environ Qual 28:1–10

658

References

McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176 McLellan BN, Proctor MF, Huber D, Michel S (2017) Ursus arctos (amended version of 2017 assessment). The IUCN Red List of Threatened Species 2017:e.T41688A121229971. https://doi. o r g / 1 0 . 2 3 0 5 / I U C N . U K . 2 0 1 7 - 3 . R LT S . T41688A121229971.en. Accessed 8 Jan 2018 McLendon T, Redente EF (1992) Effects of nitrogen limitation on species replacement dynamics during early secondary succession on a semiarid sagebrush site. Oecologia 91:312–317 McLeod E, Chmura GL, Bouillon S, Salm R, Bjark M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560 MEA (2005) Millenium ecosystem assessment. http:// www.­m illenniumassessment.­o rg/en/index.­h tml. Accessed 13 Oct 2016 Meadows DH, Meadows DL, Randers J, Behrens WW III (1972) The limits to growth. Universe Books, Milford Mech LD, Boitani L (2010a) Canis lupus. The IUCN Red List of Threatened Species 2010:e. T3746A10049204. https://doi.org/10.2305/IUCN. UK.2010-4.RLTS.T3746A10049204.en. Accessed 8 Jan 2018 Mech LD, Boitani L (eds) (2010b) Wolves: behavior, ecology, and conservation. University of Chicago Press, Chicago Meckelmann H (2001) Zur Unterschutzstellung von ehemaligen durch die Westgruppe der Truppen (WGT) genutzten Übungsplätzen im Land Brandenburg. Natschutz Landschpfl Brandenburg 10(2):81–83 Meek B, Loxton D, Sparks T, Pywell R, Pickett H, Nowakowski M (2002) The effect of arable field margin composition on invertebrate biodiversity. Biol Conserv 106(2):259–271 Mehner T, Arlinghaus R, Berg S, Dörner H, Jacobsen L, Kasprzak P, Koschel R, Schulze T, Skov C, Wolter C, Wysujack K (2004) How to link biomanipulation and sustainable fisheries management: a step-by-step guideline for lakes of the European temperate zone. Fish Manage Ecol 11:261–275 Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25(3):113–152 Meier C (2008) Die Bewertung der Degradation deutscher Fließgewässer mit dem Makrozoobenthos. Ein multimetrischer gewässertypspezifischer Ansatz. Dissertation, University of DuisbergEssen

Meier D (2004) Man and environment in the marsh area of Schleswig-Holstein from Roman until late Medieval times. Quat Int 112:55–69 Meier E, Glader H, Averkamp R (2000) Erfolgreiche Wiederansiedlung des Laubfroschs. LÖBF-Mitt 25(4):35–46 Meijer ML, de Boois I, Scheffer M, Portielje R, Hosper H (1999) Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case studies. Hydrobiologia 409:13–30 Meijer ML, Jeppsen E, van Donk E, Moss B (1994) Long-term responses to fish stock reduction in small shallow lakes—interpretation of five-year results of four biomanipulation cases in the Netherlands and Denmark. Hydrobiologia 276: 457–466 Meijer ML, Raat AJP, Doef RW (1989) Restoration by biomanipulation of lake Bleiswijkse Zoom (The Netherlands): first results. Hydrobiol Bull 23:49–57 Meilinger P (2003) Makrophyten als Bioindikatoren zur leitbildbezogenen Bewertung von Fließgewässern. Ein Beitrag zur Umsetzung der EG-Wasserrahmenrichtlinie. Dissertation, TU München Meinig H, Boyer P, Hutterer R (2008) Rote Liste und Gesamtartenliste der Säugetiere (Mammalia) Deutschlands. State Oct 2008. In: Bundesamt für Naturschutz (ed) Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Vol 1: Wirbeltiere, Bundesamt für Naturschutz, Bonn-Bad Godesberg, pp 115–153 Meinig H, Vierhaus H, Trappmann C, Hutterer R (2010) Rote Liste und Artenverzeichnis der Säugetiere—Mammalia—in Nordrhein-Westfalen. In: Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (ed): Rote Liste der gefährdeten Pflanzen, Pilze und Tiere in Nordrhein-Westfalen, 4th ed. 2:51–78 Meisel-Jahn S (1955) Die Kiefern-Forstgesellschaften des nordwestdeutschen Flachlandes. Angew Pflsoziol (Stolzenau) 11:1–126 Meith N (2009) Marine litter: a global challenge. UNEP, Nairobi. http://www.­euroshore.­com/sites/ euroshore.­c om/files/documents/unep_marine_ litter.­pdf. Accessed 26 Mar 2017 Meiwes KJ (2013) Kalkungen. In: Matschullat J, Heinrichs H, Schneider J, Ulrich B (eds) Gefahr für Ökosysteme und Wasserqualität: Ergebnisse interdisziplinärer Forschung im Harz. Springer, Heidelberg, pp 415–431 Melečková Z, Galvánek D, Dítě D, Eliášjun P (2013) Effect of experimental top soil removal on vegetation of Pannonian salt steppes. Centr Eur J Biol 12:1204–1215

659 References

Menzies CR (ed) (2006) Traditional ecological knowledge and natural resource management. University of Nebraska Press, Lincoln Mertens D, Meyer T, Wormanns S, Zimmermann M (2007) 14 Jahre Naturschutzgroßprojekt Lüneburger Heide. VNP Schri 1:1–140 Metzger B (2015) “Erst stirbt der Wald, dann du!”: Das Waldsterben als westdeutsches Politikum (1978–1986). Campus, Frankfurt a. M Metzing D (2005) Küstenflora und Klimawandel. Der Einfluss der globalen Erwärmung auf die Gefäßpflanzenfl ora des deutschen Küstengebietes von Nord- und Ostsee. Dissertation, University of Oldenburg Meusburger K (2010) Soil erosion in the Alps: causes and risk assessment. Dissertation, University of Basel. https://edoc.­unibas.­ch/1219/1/Diss_Meusburger_digital.­pdf. Accessed 12 Aug 2018 Meusburger K, Alewell C (2008) Impacts of anthropogenic and environmental factors on the occurrence of shallow landslides in an alpine catchment (Urseren Valley, Switzerland). Nat Hazards Earth Syst Sci 8:509–520 Meusburger K, Alewell C (2014) Soil erosion in the Alps. Experience gained from case studies (2006– 2013), Environmental studies Bd 1408 Federal Office for the Environment, Bern, pp 1–116 Meusel H, Jäger E (1992) Vergleichende Chorologie der zentraleuropäischen Flora, Text- und Kartenband, vol 1–3. Fischer, Jena Meuser H (2012) Soil Remediation and Rehabilitation: treatment of Contaminated and Disturbed Land. Springer, Dordrecht Meyer E, Thaler K (1995) Animal diversity at high altitudes in the Austrian Central Alps. In: Chapin FS, Körner C (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Springer, Berlin, pp 97–108 Meyer H, Reinke HD (1998) Nutzung von Salzpflanzen durch pflanzenverzehrende Insekten. In: Landesamt für das Schleswig-Holsteinische Wattenmeer und Umweltbundesamt (eds) Umweltatlas Wattenmeer. Vol 1: Nordfriesisches und Dithmarscher Wattenmeer. Ulmer, Stuttgart, pp 102–103 Meyer P, Bücking W, Gehlhar U, Schulte U, Steffens R (2007) Das Netz der Naturwaldreservate in Deutschland: Flächenumfang, Repräsentativität und Schutzstatus im Jahr 2007. Forstarchiv 78:188–196 Meyer S (2014) 100 Äcker für die Vielfalt. Projekt “Errichtung eines bundesweiten Schutzgebietsnetzes für Ackerwildkräuter”. Deutsche Bundesstiftung Umwelt (DBU). https://www.­dbu.­de/123artikel29379_2430.­ html. Accessed 7 Aug 2018

Meyer S, Hilbig W, Steffen K, Schuch S (2013) Ackerwildkrautschutz—Eine Bibliographie. BfN Skripten 351:1–224 Meyer S, Leuschner C (eds) (2015) 100 Äcker für die Vielfalt, Initiativen zur Förderung der Ackerwildkrautflora in Deutschland. Universitätsverlag, Göttingen Meyer T, Nehring S (2006) Anpflanzung von Seegraswiesen (Zostera marina L.) als interne Maßnahme zur Restaurierung der Ostsee. Rostock Meeresbiol Beitr 15:105–119 Meyerhoff J, Hartje V, Zerbe S (2006) Biologische Vielfalt und deren Bewertung am Beispiel des ökologischen Waldumbaus in den Regionen Solling und Lüneburger Heide. Ber Forschzentr Waldökosyst Univ Göttingen Reihe B 73:1–19 Meyerhoff J, Lienhoop N, Elsasser P (eds) (2007) Stated preference methods for environmental valuation: applications from Austria and Germany. Ökol Wirtschforsch 76:1–324 Michelsen A, Graglia E, Schmidt IK, Jonasson S, Sleep D, Quarmby C (1999) Differential responses of grass and a dwarf shrub to long-term changes in soil microbial biomass C, N and P following factorial addition of NPK fertilizer, fungicide and labile carbon to a heath. New Phytol 143:523–538 Michler FU, Michler BA (2012) Ökologische, ökonomische und epidemiologische Bedeutung des Waschbären (Procyon lotor) in Deutschland—eine aktuelle Übersicht. Beitr Jagd-Wildforsch 37: 385–397 Mielke HW, Gonzales CR, Smith MK, Mielke PW (1999) The urban environment and children’s health: soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana, U.S.A. Environ Res 81:117–129 Mielke HW, Reagan PL (1998) Soil is an important pathway of human lead exposure. Environ Health Perspect 106:217–229 Van Mierlo JEM, van Groenendael JM (1991) A population dynamic approach to the control of Anthriscus sylvestris (L.) Hoff m. J Appl Ecol 28(1):128–139 Mikol GF (1984) Effects of mechanical control of aquatic vegetation on biomass, regrowth rates, and juvenile fish populations at Saratoga Lake, New York. Lake Reserv Manage 1(1):456–462 Miler O, Ostendorp W, Brauns M, Porst G, Pusch MT (2015) Ecological assessment of morphological shore degradation at whole lake level aided by aerial photo analysis. Fund Appl Limnol 186(4):353–369 Miller JD, Laflamme AM, Sobol Y, Lafontaine P, Greenhalgh R (1988) Fungi and fungal products in some Canadian houses. Int Biodeterior 24: 103–120

660

References

Miller RM, Wilson GWT, Johnson NC (2012) Arbuscular mycorrhizae and grassland ecosystems. In: Southworth D (ed) Biocomplexity of Plant— Fungal Interactions. Wiley, Chichester, pp 59–84 Minchin D, Lucy F, Sullivan M (2002) Zebra mussel: impacts and spread. Distribution, Impacts and Management. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe. Kluwer, Dordrecht, pp 135–146 Minello TJ, Able KW, Weinstein MP, Hays CG (2003) Salt marshes as nurseries for nekton: testing hypotheses on density, growth and survival through meta-analysis. Mar Ecol Prog Ser 246: 39–59 Ministerium für Ländlichen Raum und Verbraucherschutz (2012) Agrarumweltprogramm des Landes Baden-Württemberg, MEKA III. https:// mlr.­baden-wuerttemberg.­de/fileadmin/redaktion/ m-mlr/intern/dateien/publikationen/Broschuere_ MEKA_III.­pdf. Accessed 27 Feb 2017 Mirschel F, Zerbe S, Jansen F (2011) Driving factors for natural tree rejuve nation in anthropogenic pine (Pinus sylvestris L.) forests of NE Germany. For Ecol Manage 261:683–694 Mischke U, Nixdorf B (2008) Bewertung von Seen mittels Phytoplankton zur Umsetzung der EUWasserrahmenrichtlinie. Gewässerreport Nr. 10, BTUC-AR 2/2008. https://opus4.­kobv.­de/opus4btu/files/951/GewAsserreport_10_AR_2_2008.­ pdf. Accessed 12 Aug 2018 Misra N, Gupta G, Jha PN (2012) Assessment of mineral phosphate-solubilizing properties and molecular characterization of zinc-tolerant bacteria. J Basic Microbiol 52:549–558 Mitani Y, Shoji Y, Kuriyama K (2008) Estimating economic values of vegetation restoration with choice experiments: a case study of an endangered species in Lake Kasumigaura, Japan. Landscape Ecol Eng 4:103–113 Mitscherlich G (1978) Wald, Wachstum und Umwelt. Vol 1: Form und Wachstum von Baum und Bestand. 2nd ed. Sauerländer, Frankfurt a.M. Mitchell D, Heaviside C, Vardoulakis S, Huntingford C, Masato G, Guillod BP, Frumhoff P, Bowery A, Wallom D, Allen M (2016) Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ Res Lett 11(7):074006 Mitchell RG, Spliethoff HM, Ribaudo LN, Lopp DM, Shayler HA, Marquez-Bravo LG, Lambert VT, Ferenz GS, Russell-Anelli JM, Stone EB, McBride MB (2014) Lead (Pb) and other metals in New York City community garden soils: factors influencing contaminant distributions. Environ Pollut 187:162–169

Mitlacher K, Poschlod P, Rosén E, Bakker JP (2002) Restoration of wooded meadows—a comparative analysis along a chronosequence on Öland (Sweden). Appl Veg Sci 5:63–73 Mitsch WJ, Gosselink JG (2015) Wetlands, 5th edn. Wiley, New York Mitsch WJ, Jørgensen SE (2003) Ecological Engineering and Ecosystem Restoration. Wiley, New York Mitsch WJ, Fink DF, Hernandez ME, Altor AE, Tuttle CL, Nahlik AM (2008) Ecological engineering of floodplains. Ecohydrol Hydrobiol 8(2–4): 139–147 Mittelstrass J (2011) On transdisciplinarity. Trames 15(4):329–338 MLUL (2016) Naturschutzgebiete in Brandenburg. Ministeriums für Ländliche Entwicklung, Umwelt und Landwirtschaft des Landes Brandenburg (MLUL). http://www.­mlul.­brandenburg.­de/media_ fast/4055/nsg_liste.­pdf. Accessed 4 Feb 2017 MLUL (2017) Förderung Kulturlandschaftsprogramm (KULAP) ab 2015. Ministerium für Ländliche Entwicklung, Umwelt und Landwirtschaft des Landes Brandenburg (MLUL). http://www.­ mlul.­b randenburg.­d e/sixcms/detail.­p hp/bb1.­c .­ 374948.­de. Accessed 21 Aug 2017 MLUR Brandenburg (2004) Moorschutz im Brandenburgischen Wald. Ministerium für Landwirtschaft, Umweltschutz und Raumordnung (MLUR), Berlin. www.­mlur.­brandeburg.­de. Accessed 18 Jan 2017 Mnif W, Hassine AIH, Bouaziz A, Bartegi A, Thomas O, Roig B (2011) Effect of endocrine disruptor pesticides: a review. Int J Environ Res Public Health 8:2265–2303 Möbius KA (1877) Die Auster und die Austernwirtschaft. Wiegandt. Hempel & Parey, Berlin Modica G, Merlino A, Solano F, Mercurio R (2015) An index for the assessment of degraded Mediterranean forest ecosystems. For Syst 24(3):e037 Mohamed A, Härdtle W, Jirjahn B, Niemeyer T, Gv O (2007) Effects of prescribed burning on plant available nutrients in dry heathland ecosystems. Plant Ecol 189(279):289 Mohrmann R (2002) Beitrag der Landschaftsplanung zur städtischen Freiraumgestaltung: Beispiel Natur-Park Schöneberger Südgelände in Berlin. In: Auhagen A, Ermer K, Mohrmann R (eds) Landschaftsplanung in der Praxis. Ulmer, Stuttgart, pp 328–354 Moksness E, Dahl E, Støttrup J (eds) (2009) Integrated coastal zone management. Wiley, Chichester Möller A (1922) Der Dauerwaldgedanke. Sein Sinn und seine Bedeutung. Springer Möller A, Müller HW, Abdullah A, Abdelgawad G, Utermann J (2005) Urban soil pollution in Damascus, Syria: concentrations and patterns of

661 References

heavy metals in the soils of the Damascus Ghouta. Geoderma 124:63–71 Möller D, Heller C, Zeitz J (2014a) CARBSTOR—ein Online-Tool für den Moorschutz Berechnung der Kohlenstoff -Speichermenge und des -Freisetzungspotenzials von Moorböden. Natschutz Landschplan 46(7):201–210 Möller I, Spencer T, French J (1996) Wind wave attenuation over saltmarsh surfaces: preliminary results from Norfolk, England. J Coast Res 12(4):1009–1016 Möller I, Spencer T, French JR, Leggett DJ, Dixon M (1999) Wave transformation over salt marshes: a field and numerical modelling study from north Norfolk, England. Estuar Coast Shelf Sci 49: 411–426 Möller I, Spencer T, French JR, Leggett DJ, Dixon M (2001) The sea-defence value of salt marshes—a review in the light of fi eld evidence from North Norfolk. J Charter Inst Water Environ Manage 15:109–116 Möller I, Lendzion J, Spencer T, Hayes A, Zerbe S (2009) The sea-defense function of micro-tidal temperate coastal wetlands. In: Brebbia CA, Benassai G, Rodriguez GR (eds) Coastal Processes. WIT Trans Ecol Environ 126:51–62 Möller I, Kudella M, Rupprecht F, Spencer T, Paul M, van Wesenbeeck BK, Wolters G, Jensen K, Bouma TJ, Miranda-Lange M, Schimmels S (2014b) Wave attenuation over coastal salt marshes under storm surge conditions. Nat Geosci 7:727–731 Möller K, Burgschweiger J (eds) (2008) Wasserversorgungskonzept für Berlin und für das von den BWB versorgte Umland (Entwicklung bis 2040). Im Auftrag der Berliner Wasserbetriebe. http:// www.­stadtentwicklung.­berlin.­de/umwelt/wasser/ download/wvk2040.­pdf. Accessed 3 May 2017 Mollison B, Holmgren D (1978) Permaculture one: a perennial agriculture for human settlements. Transworld, Melbourne Mollison BC (1990) Permaculture: a practical guide for a sustainable future. Island Press, Washington, DC Molnár Z, Borhidi A (2003) Hungarian alkali vegetation: origins, landscape history, syntaxonomy, conservation. Phyotocoenol 33:377–408 Molnár Z, Gellény K, Margóczi K, Biró M (2015) Landscape ethnoecological knowledge base and management of ecosystem services in a SzékelyHungarian pre-capitalistic village system (Transylvania, Romania). J Ethnobiol Ethnomed 11:3 Moltmann JF, Liebig M, Knacker T, Keller M, Scheurer M, Ternes T (2007) Gewässerrelevanz endokriner Stoff e und Arzneimittel. Abschlussbericht F+E Vorhaben—FKZ 20524205. Im Auftrag des Umweltbundesamtes (UBA). ECT Oekotoxikolo-

gie GmbH & Bundesanstalt für Gewässerkunde (BfG). UBA, Dessau Monahan C, Caffrey JM (1996) The effect of weed control practices on macroinvertebrate communities in Irish canals. Hydrobiologia 340:205–211 Montenegro H (2013a) Wasserstandsmessungen zur Untersuchung des Wirkungszusammenhangs zwischen Abflussdynamik und Grundwasser in Flussauen In: Struck A, Garbe H, Felinks B (eds) Auenreport Spezial: Die Deichrückverlegung bei Lenzen. Erste Ergebnisse der wissenschaftlichen Begleitung. Ministerium für Umwelt, Gesundheit und Verbraucherschutz des Landes Brandenburg (eds), Potsdam, pp 12–16 Montenegro H (2013b) Untersuchung des Wirkungszusammenhangs zwischen Abflussdynamik und Grundwasser. BAW Mitt 97:135–148 Montero-Serra I, Garrabou J, Doak DF, Figuerola L, Hereu B, Ledoux J-B, Linares C (2017) Accounting for life-history strategies and timescales in marine restoration. Conserv Lett 11:e12341 Montoya D, Rogers L, Memmott J (2012) Emerging perspectives in the restoration of biodiversity-­ based ecosystem services. Trends Ecol Evol 27:666–672 Moog D, Poschlod P, Kahmen S, Schreiber K-F (2002) Comparison of species composition between different grassland management treatments after 25 years. Appl Veg Sci 5:99–106 Mooij WM, Hulsmann S, Domis LND, Nolet BA, Bodelier PLE, Boers PCM, Pires LMD, Gons HJ, Ibelings BW, Noordhuis R, Portielje R, Wolfstein K, Lammens EHRR (2005) The impact of climate change on lakes in the Netherlands: a review. Aquat Ecol 39:381–400 Moor M (1958) Pflanzengesellschaften schweizerischer Flussauen. Mitt Schweiz Anst Forst Versuchswes 34:221–360 Moore JD (2012) Visions of culture. an introduction to anthropological theories and theorists. AltaMira, Lanham Moore PD (1993) The origin of blanket mire, revisited. In: Chambers FM (ed) Climate change and human impact of the landscape. Chapman & Hall, London, pp 217–224 Moravec J (1995) Rostlinná společenstva Českérepubliky a jejich ohrožení. Okresní vlastivědnémuzeum, Litoměřice Moravec J (1998) Reconstructed natural versus potential natural vegetation in vegetation mapping—a discussion of concepts. Appl Veg Sci 1:173–176 Moreira F, Queiroz AI, Aronson J (2006) Restoration principles applied to cultural landscapes. J Nat Conserv 14(3):217–224 Morelli F, Tryjanowski P (2017) Birds as useful indicators of High Nature Value farmlands: using spe-

662

References

cies distribution models as a tool for monitoring the health of agro-ecosystems. Springer, Cham Moretti M, Obrist MK, Duelli P (2004) Arthropod biodiversity after forest fi res: winners and loser in the winter fi re regime of the southern Alps. Ecography 27:173–186 Morgan JP (1994) Soil impoverishment: a little-known technique holds potential for establishing prairie. Restor Manage Not 12:55–56 Morita E, Fukuda S, Nagano J, Hamajima N, Yamamoto H, Iwai Y, Nakashima T, Ohira H, Shirakawa T (2007) Psychological effects of forest environments on healthy adults: Shirin-yoku (forest-air bathing, walking) as a possible method of stress reduction. Public Health 121:54–63 Moritz MA, Parisien M-A, Batllori E, Krawchuk MA, Van Dorn J, Ganz DJ, Hayhoe K (2012) Climate change and disruptions to global fi re activity. Ecosphere 3(6):1–22 Morris PJ, Waddington JM, Benscoter BW, Turetsky MR (2011) Conceptual frameworks in peatland ecohydrology: looking beyond the two-layered (acrotelm–catotelm) model. Ecohydrology 4:1–11 Morrison ML (1994) Resource inventory and monitoring: concepts and applications for ecological restoration. Restor Manage Not 12(2):179–183 Morrison ML (2009) Restoring wildlife: ecological concepts and practical applications. Island Press, Washington, DC Morrison ML, Marcot BG (1995) An evaluation of resource inventory and monitoring program used in national forest planning. Environ Manag 19:147–156 Morse EV, Duncan MA, Estep DA, Riggs WA, Blackburn BO (1976) Canine salmonellosis: a review and report of dog to child transmission of Salmonella enteritidis. Am J Public Health 66:82–83 Morse RA, Calderone NW (2000) The value of honey bees as pollinators of U.S. crops in 2000. Bee Cult 128(3):2–15 Moser M, Prentice C, Frazier S (1996) A global overview of wetland loss and degradation. In: Proceeding of 6th Meeting of the Conference of Contracting Parties. Ramsar Convention Bureau, Gland, Brisbane, pp 21–31 Moser M, Weisse T (2011) The most acidified Austrian lake in comparison to a neutralized mining lake. Limnologica 41(4):303–315 Moser W (1970) Ökophysiologische Untersuchungen an Nivalpflanzen. Mitt Ostalp-din Ges Vegkd 11:121–134 Moss B (1990) Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200(201): 367–377

Moss B (1998) Shallow lakes, biomanipulation and eutrophication. Scope News Lett 29:1–45 Moss T, Monstadt J (2008) Restoring floodplains in Europe. IWA Publishing, London Mossakowski D, Främbs H (1993) Carabiden als Indikatoren der Auswirkungen von Wiedervernässungsmaßnahmen auf die Fauna im Leegmoor. Natschutz Landschpfl Niedersachs 29:79–114 Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 268:157–177 Moulin-Doos C (2014) Intercultural gardens: the use of space by migrants and the practice of respect. J Urban Aff 36:197–206 Moussie AM, Vos P, Verhagen HMC, Bakker JP (2005) Endozoochory by free ranging large herbivores: ecological correlates and perspectives for restoration. Basic Appl Ecol 6:547–558 Moxey A (2012) Agriculture and water quality: monetary costs and benefits across OECD countries. Organisation for Economic Co-operation and Development (OECD). https://www.­oecd.­org/tad/ sustainable-agriculture/49841343.­pdf. Accessed 4 Sep 2017 Mrotzek R, Halder M, Schmidt W (1999) Die Bedeutung von Wildschweinen für die Diasporenausbreitung von Phanerogamen. Verh Ges Ökol 29:437–443 Mucina L (2003) Puccinellio-Salicornietea. In: Mucina L, Grabherr G, Ellmauer T (eds) Die Pflanzengesellschaften Österreichs. Part I. Gustav Fischer, Jena, pp 522–549 Mucina L, Grabherr G (eds) (1993) Die Pflanzengesellschaften Österreichs II: Natürliche waldfreie Vegetation. Fischer, Jena Mucina L, Grabherr G, Ellmauer T (eds) (1993a) Die Pflanzengesellschaften Österreichs I: Anthropogene Vegetation. Fischer, Jena Mucina L, Grabherr G, Wallnöfer S (eds) (1993b) Die Pflanzengesellschaften Österreichs III: Wälder und Gebüsche. Fischer, Jena Mucina L, Bültmann H, Dierßen K, Theurillat J-P, Raus T, Čarni A, Šumberová K, Willner W, Dengler J, García RG, Chytrý M, Hájek M, Di Pietro R, Iakushenko D, Pallas J, Daniëls FJA, Bergmeier E, Santos Guerra A, Ermakov N, Valachovič M, Schaminée JHJ, Lysenko T, Didukh YP, Pignatti S, Rodwell JS, Capelo J, Weber HE, Solomeshch A, Dimopoulos P, Aguiar C, Hennekens SM, Tichý L (2016) Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl Veg Sci 19:3–264 Mudrák O, Frouz J (2012) restoration of spoil heaps by spontaneous succession in the Sokolov coal mining area. In: Jongepierová I, Pešout P, Jonge-

663 References

pier JW, Prach K (eds) Ecological restoration in the Czech Republic. Nature Conservation Agency of the Czech Republic, Prag, pp 99–101 Mudrák O, Frouz J, Velichová V (2010) Understory vegetation in reclaimed and unreclaimed postmining forest stands. Ecol Eng 36(6):783–790 Mudroch A, Stottmeister U, Kennedy C, Klapper H (eds) (2002) Remediation of abandoned surface coal mining sites. Springer, Heidelberg Muhar S, Januschke K, Kail J, Poppe M, Schmutz S, Hering D, Buijse AD (2016) Evaluating good-­ practice cases for river restoration across Europe: context, methodological framework, selected results and recommendations. Hydrobiologia 769:3–19 Mühlenberg M (1993) Freilandökologie, 3rd edn. Ulmer, Stuttgart Müller J, Schaltegger S (2004) Sozioökonomische Analyse des Heidemanagements in Nordwestdeutschland – Wirtschaftlichkeit, KostenWirksamkeitsverhältnisse und Akzeptanz. In: Keienburg T, Prüter J (Eds) Feuer und Beweidung als Instrumente zur Erhaltung magerer Offenlandschaften in Nordwestdeutschland – Ökologische und sozioökonomische Grundlagen des Heidemanagements auf Sand- und Hochmoorstandorten. NNA Ber 17(2):183–197 Müller C (2005) Interkulturelle Gärten. Neue Sozialräume in der Stadt. Städtetag 58(6):33–34 Müller C (2007) Intercultural gardens: Urban places for subsistence production and diversity. Germ J Urban Stud 46(1):55–65 Müller C (ed) (2011) Urban gardening. Über die Rückkehr der Gärten in die Stadt. Oekom, München Müller IB, Buhk C, Alt M, Entling MH, Schirmel J (2016) Plant functional shifts in Central European grassland under traditional flood irrigation. Appl Veg Sci 19:122–131 Müller J (2004) Cost-benefit ratio and empirical examination of the acceptance of heathland maintenance in the Lüneburg Heath Nature Reserve. J Environ Plan Manag 47:757–771 Müller J, Brustel H, Brin A, Bussler H, Bouget C, Obermaier E, Heidinger IM, Lachat T, Förster B, Horak J, Procházka J (2015) Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography 38(5):499–509 Müller K (1985) Das Dosenmoor—ein großes regenerierendes Plateauhochmoor in der Jungmoräne. In: Meier OG (ed) Die Naturschutzgebiete Rendburg-Eckernförde und Neumünster. Boyens, Heide, pp 27–38 Müller M, Bosshard A (2010) Altgrasstreifen fördern Heuschrecken in Ökowiesen. Eine Möglichkeit

zur Strukturverbesserung im Mähgrünland. Natschutz Landschplan 42(7):212–217 Müller N (1990) Die Entwicklung eines verpflanzten Kalkmagerrasens. Nat Landsch 65:21–27 Müller N, Werner P, Kelcey JG (eds) (2010) Urban biodiversity and design. Blackwell, Oxford Muller S (2009) Recovery success of the nationally threatened and protected wetland plant species Calla palustris L. in the Vosges mountains (France). Revue d’Écologie 64(2):117–122 Müller W (1995) Zur Flora und Vegetation sekundärer Salzstandorte bei Dieckholzen, Landkreis Hildesheim. Natkdl Mitt Orn Ver Hildesheim 16:45–56 Müller W, Fricke H, Halliday AN, McCulloch MT, Wartho J-A (2003) Origin and migration of the Alpine Iceman. Science 302:862–866 Müller-Motzfeld G, Ringel H, Hampel J, Loch R, Hennike S, Martschei T, Kornmilch C (2005) Bewirtschaftung ertragsarmer Ackerböden aus faunistischer Sicht. In: Hampicke U, Litterski B, Wichtmann W (eds) Ackerlandschaften, Nachhaltigkeit und Naturschutz auf ertragsschwachen Standorten. Springer, Heidelberg, pp 207–230 Müller-Schneider P (1986) Verbreitungsbiologie der Blütenpflanzen Graubündens. Veröff Geobot Inst Eidgenöss Tech Hochsch Stift Rübel Zür 85: 1–263 Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, vanEngelsdorp D, Pettis JS (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5:e9754 Münch E (2007) Die Datenbank Naturwaldreservate in Deutschland. Forstarchiv 78:197–201 MUNLV (2005) Erfolgskontrolle von Maßnahmen zur Unterhaltung und zum naturnahen Ausbau von Gewässern. Ministerium für Umwelt, Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen (MUNLV), Düsseldorf Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250 Muratet A, Machon N, Jiguet F, Moret J, Porcher E (2007) The role of urban structures in the distribution of wasteland flora in the greater Paris area, France. Ecosystems 10:661–671 Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62 MURL NRW (1991) Wald 2000. Gesamtkonzept für eine ökologische Waldbewirtschaftung des Staatswaldes in Nordrhein-Westfalen. Ministerium für Umwelt, Raumordnung und Landwirtschaft des Landes Nordrhein-Westfalen. 2nd ed

664

References

Murphy J (ed) (2016) Seed banks: types, roles and research. Nova Science Publishers, New York Muster C, Gaudig G, Krebs M, Joosten H (2015) Sphagnum farming: the promised land for peat bog species? Biodivers Conserv 24:1989–2009 Muszeika M (1998) Technik der Renaturierungsmaßnahmen. In: Irmler U, Müller K, Eigner J (eds) Das Dosenmoor, Ökologie eines regenerierenden Hochmoores. Wachholtz, Neumünster, pp 42–57 Myatt LB, Scrimshaw MD, Lester JN (2003) Public perceptions and attitudes towards an established managed realignment scheme: orplands, Essex, UK. J Environ Manag 68(2):173–181 Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858 Myers RL (2006) Living with fire-sustaining ecosystems and livehoods through integrated fire management. The Nature Conservancy, Tallahassee Nabel K (2013) Artenzusammensetzung von Getreibsel und der Bodendiasporenbank im Gebiet der Deichrückverlegung Lenzener Elbtalaue. In: Struck A, Garbe H, Felinks B (eds) Auenreport Spezial: Die Deichrückverlegung bei Lenzen, Erste Ergebnisse der wissenschaftlichen Begleitung. Ministerium für Umwelt, Gesundheit und Verbraucherschutz des Landes Brandenburg, Potsdam, pp 50–57 Nabel K, Damm C, Felinks B (2014) Vegetationsentwicklung in der Deichrückverlegung Lenzener Elbtalaue nach Nutzungsaufgabe und Auenwaldinitialpflanzungen. Ein Vergleich zwischen 1999 und 2009. Natschutz Landschpfl Brandenburg 23(1):24–32 NABU (2016) Deutscher Moorschutzfonds. Neues Instrument zur Finanzierung von Natur- und Klimaschutzprojekten gegründet. Naturschutzbund Deutschland e.V. (NABU). https://www.­nabu.­de/ natur-und-landschaft/moore/aktivitaeten/ deutscher-­moorschutzfonds/16150.­html. Accessed 18 Jan 2017 NABU (2017) Aufpreisvermarktung. Nebenerwerb wird wieder rentabel. Naturschutzbund Deutschland e.V. (NABU). https://www.­nabu.­de/natur-und-landschaft/ landnutzung/streuobst/vermarktung/00438.­html. Accessed 21 Aug 2017 Nabuurs GJ, Lindner M, Verkerk PJ, Gunia K, Deda P, Michalak R, Grassi G (2013) First signs of carbon sink saturation in European forest biomass. Nat Clim Chang 3:792–796 Næss A (1973) The Shallow and the deep. Inquiry 16(1–4):95–100 Nagamitsu T, Shuri K, Taki H, Kikuchi S, Masaki T (2016) Eff cts of converting natural forests to coniferous plantations on fruit and seed production and mating patterns in wild cherry trees. Ecol Res 31(2):239–250

Nagel TA, Svoboda M, Diaci J (2006) Regeneration patterns after intermediate wind disturbance in an old-growth Fagus-Abies forest in south-eastern Slovenia. For Ecol Manag 226:268–278 Nagler M, Fontana V, Laira GJ, Radtke A, Tasser E, Zerbe S, Tappeiner U (2015) Different management of larch grasslands in the European Alps shows low impact on above- and belowground carbon stocks. Agric Ecosyst Environ 213: 186–193 Nagy L, Grabherr G (2009) The biology of Alpine habitats. Oxford University Press, Oxford Nakamura A, Catterall PC, Kitching LR, House PNA, Burwell JC (2008) Effects of glyphosate herbicide on soil and litter macro-arthropods in rainforest: implications for forest restoration. Ecol Manage Restor 9(2):126–133 Napiórkowska-Krzebietke A, Dunalska J (2015) Phytoplankton-based recovery requirement for urban lakes in the implementation of the water framework directive’s ecological targets. Ocean Hydrobiol Stud 44(1):109–119 Nascimbene J, Fontana V, Spitale D (2014) Lichen, moss and vascular plant diversity on larch meadows in South Tyrol. Sci Total Environ 487: 110–116 Nass E (2017) Ökologischer Humanismus. Ein neues Paradigma in der katholischen Soziallehre. In: George W (ed) Laudato si´ Wissenschaftler antworten auf die Enzyklika von Papst Franziskus. Psychosozial, Gießen, pp 233–243 Nassauer JI (2004) Monitoring the success of metropolitan wetland restorations: cultural sustainability and ecological functions. Wetlands 24:756–765 Nassauer JI, Kosek SE, Corry RC (2001) Meeting public expectations with ecological innovation in riparian landscapes. J Am Water Res Assoc 37(6):1439–1443 Nationalpark Wattenmeer (2010) Weltnaturerbe. h t t p : / / w w w.­n at i o n a l p a rk - wat t e n m e e r.­d e / . Accessed 10 Feb 2017 Nationalparkverwaltung Niedersächsisches Wattenmeer (2016) 30 Jahre Nationalpark Niedersächsisches Wattenmeer. Schrreihe Nationalpark Niedersächs Wattenmeer 15:1–122 Naturland (2015) Naturland Zertifizierung Wald und Holz. http://www.­naturland.­de. Accessed 27 July 2017 Naturmuseum Südtirol (2017) FloraFaunaSüdtirol— Das Portal zur Verbreitung von Tier- und Pflanzenarten in Südtirol. http://www.­florafauna.­it. Accessed 28 May 2017 Naturstiftung David (2012) Naturschutzrelevante Militärflächen in Mittel- und Osteuropa—Erstellung einer Datenbank als Basis der Flächensicherung für einen europäischen Biotopverbund—Abschlussbericht AZ 26043—Naturstiftung DAVID—Stiftung

665 References

des BUND Thüringen, Erfurt. https://www.­dbu.­de/ OPAC/ab/DBU-­Abschlussbericht-­AZ-26043.­pdf. Accessed 12 Aug 2017 Naujoks G, Ewald D (2001) Robinie—pionierbaum und Wertholz. ForschRep 1:36–38 Naveh Z (2005) Epilogue: toward a transdisciplinary science of ecological and cultural landscape restoration. Restor Ecol 13(1):228–234 Naveh Z (2007) Transdisciplinary challenges in landscape ecology and restoration ecology—an anthology. Springer, Dordrecht Neckles HA, Dionne M, Burdick DM, Roman CT, Buchsbaum R, Hutchins E (2002) A monitoring protocol to assess tidal restoration of salt marshes on local and regional scales. Restor Ecol 10:556– 563 Neel JK, Peterson SA, Smith WL (1973) Weed harvest and lake nutrient dynamics. Ecological Research Series. EPA-600/3–73–001. US Environmental Protection Agency, Washington, DC Neet CR (1996) Spiders as indicator species: lessons from two case studies. Rev Suisse Zool 1996:501–510 NEFO (2017) Wissenschaftler bestätigen dramatisches Insektensterben. Netzwerk-Forum zur Biodiversitätsforschung in Deutschland. http:// www.­biodiversity.­de/en/news/bio-­div/. Accessed 23 Dec 2017 Negro M, Rolando A, Palestrini C (2011) The impact of overgrazing on dung beetle diversity in the Italian Maritime Alps. Environ Entomol 40(5): 1081–1092 Nehring S (1999) Impacts of tributylitin (TBT) from anti-fouling pains on snail populations on the German North Sea coast. Hydrol Wasserbewirtsch 43(2):66–74 Nehring S, Essl F, Rabitsch W (2015a) Methodik der naturschutzfachlichen Invasivitätsbewertung für gebietsfremde Arten, Version 1.3. BfN Skripten 401:1–48 Nehring S, Rabitsch W, Kowarik I, Essl F (eds) (2015b) Naturschutzfachliche Invasivitätsbewertungen für in Deutschland wildlebende gebietsfremde Wirbeltiere. BfN Skripten 409:1–222 Neidlein HC, Walser M, Lanz P, Lengefeld M, Schnell KD, Miller U, Marx T (2004) Finanzierungshandbuch für Naturschutzmaßnahmen. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. https://www.­bfn.­de/fileadmin/ M D B / d o c u m e n t s / fo e rd e r u n g / b ro s c h u e re _ finanzierungshdb-oV.­pdf. Accessed 19 May 2017 Nentwig W (2006) Humanökologie: Fakten—Argumente—Ausblicke, 2nd edn. Springer, Heidelberg Nentwig W (ed) (2007) Biological invasions, Ecological Studies, vol 193. Springer, Heidelberg Nentwig W, Bacher S, Brandl R (2012) Ökologie kompakt, 3rd edn. Springer Spektrum, Heidelberg

Van Nes EH, Scheffer M, van den Berg MS, Coops H (2002) Aquatic macrophytes: restore, eradicate or is there a compromise? Aquat Bot 72:387–403 Neßhöver C (2013) Biodiversität: unsere wertvollste Ressource. Herder, Freiburg i. Br Nessing G, Zerbe S (2002) Wild und Waldvegetation—Ergebnisse des Monitorings im Biosphärenreservat Schorfheide-Chorin (Brandenburg) nach 6 Jahren. Allg Forst- Jagdztg 173:177–185 Nestorovski L, Trajkov P, Hinkov G, Dekaniæ S, Vuèkoviæ M (2009) Contribution towards energetic potential and possibilities for forestry biomass energy utilization from coppice forests in some countries of South-Eastern Europe. Silva Balcanica 10(1):63–67 Netting RM (1981) Balancing on an alp. Cambridge University Press, Cambridge Neubecker J (2010) Der Schierlings-Wasserfenchel (Oenanthe conioides)—Ökologie und Ansiedelungsmaßnahmen im limnischen Elbe-Ästuar. In: Ellwanger G, Finck P, Schröder E (eds) Managementmaßnahmen in Küstenlebensräumen und Ästuarien der Nord- und Ostsee. Natschutz Biol Vielfalt Heft 91:173–190 Neubecker J, Köhler S, Obst G, Jensen K (2005) Der Schierlings-Wasserfenchel. Erfolgreiche Ansiedlung einer prioritären FFH-Art an der Elbe. Natschutz Landschplan 37(8):248–255 Neumann A (1981) Die mitteleuropäischen Salix-Arten. Mitt Forstl Bundes-Versanst Wien 134:1–152 Neuner A (2009) Interkulturelle Gemeinschaftsgärten. Sustain Austria 46:1–24 Neuner S, Albrecht A, Cullmann D, Engels F, Griess VC, Hahn WA, Hanewinkel M, Härtl F, Kölling C, Staupendahl K, Knoke T (2015) Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Glob Chang Biol 21(2):935–946 Neves R (1975) Zooplankton recolonization of a lake cove treated with rotenone. T Am Fish Soc 104:390–393 Newman S (2014) Inland fisheries and the common fisheries policy. Policy Department Structural and Cohesion Policies, European Parliament. http:// www.­ieep.­eu/assets/1346/Inland_Fisheries_and_ the_Common_Fisheries_Policy.­pdf. Accessed 24 Apr 2017 Newsome AE, Noble IR (1986) Ecological and physiological characters of invading species. In: Groves RH, Burdon JJ (eds) Ecology of biological invasions: an Australian perspective. Cambridge University Press, New York, pp 1–20 Nichols E, Larsen T, Spector S, Davis AL, Escobar F, Favila M, Vulinec K (2007) Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biol Conserv 137:1–19

666

References

Nick KJ, Blankenburg J, Eggelsmann R, Weber HE, Mossakowski D, Beinhauer R, Lienemann J (1993) Beiträge zur Wiedervernässung abgebauter Schwarztorfflächen. Natschutz Landschpfl Niedersachsen 29:1–127 Nicli S, Angeli S, Zerbe S (2020) Ökosoziale Landwirtschaft im Dienst für Mensch und Umwelt am Beispiel der Alpen. Natursch Landschaftspl 52(2):68–75 Nicolai M (2017) Exploring ocean change. BIOACID— Biological Impacts of Ocean Acidifi cation. https:// www.­oceanacidification.­de/wp-content/uploads/ 2017/10/BIOACID_brochure_e_web.­pdf. Accessed 2 Jan 2018 Nicolai S, Hoy C, Berliner T, Aedy T (2015) Projecting progress: reaching the SDGs by 2030. Overseas Development Institute, London. https://www.­odi.­ org/sites/odi.­org.­uk/files/odiassets/publications-­ opinion-files/9839.­pdf. Accessed 10 Jan 2018 Nicolescu VN, Carvalho J, Hochbichler E, Bruckman V, Piqué-Nicolau M, Hernea C, Viana H, Štochlová P, Ertekin M, Tijardovic M, Dubravac T, Vandekerkhove K, Kofman PD, Rossney D, Unrau A (2017) Silvicultural guidelines for European coppice forests. COST Action FP1301 Reports, Albert Ludwig University Freiburg Printing Press, Freiburg Nicolay H, Nicolay G (2015) Erfolgreiche Wiederansiedlung der Gelbbauchunke (Bombina variegata) an zwei Standorten im Werra-Meißner-Kreis. Hessen. Rana. Mitt Feldherpetol Ichthyofaun 16:46–58 Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:148 Nie SW, Gao WS, Chen YQ, Sui P, Eneji AE (2010) Use of life cycle assessment methodology for determining phytoremediation potentials of maize-based cropping systems in fields with nitrogen fertilizer over-dose. J Clean Prod 18(15): 1530–1534 Niederberger M, Wassermann S (eds) (2015) Methoden der Experten- und Stakeholdereinbindung in der sozialwissenschaftlichen Forschung. Springer, Wiesbaden Niedersächsische Landesregierung (1992) Langfristige ökologische Waldentwicklung in den Landesforsten. Programm der Landesregierung Niedersachsen. 2nd ed. Hannover Niehoff N (2013) Ökologische Bewertung von Fließgewässerlandschaften: Grundlage für Renaturierung und Sanierung. Springer, Heidelberg Nielsen E, Kristiansen A, Mathiesen L, Mathiesen H (eds) (1995) Distributional index of the benthic marine macroalgae of the Baltic Sea area. Acta Bot Fennica 155:1–51

Niemelä J (ed) (2011) Urban ecology. Patterns, processes, and applications. Oxford University Press, Oxford Niemeyer T, Niemeyer M, Mohamed A, Fottner S, Härdtle W (2005) Impact of prescribed burning on the nutrient balance of heathlands with particular reference to nitrogen and phosphorus. Appl Veg Sci 8:183–192 Niemeyer M, Niemeyer T, Fottner S, Härdtle W, Mohamed A (2007) Impact of sod-cutting and choppering on nutrient budgets of dry heathlands. Biol Conserv 134:344–353 Niemeyer T (2005) Kontrolliertes Brennen von Calluna-Heiden. Bilanzierung der Nährstoffentzüge durch kontrolliertes Brennen als Pflegeverfahren von Calluna dominierten Sand- und Moorheiden in Norddeutschland. Dissertation, University of Lüneburg Niemeyer T, Fottner S, Mohamed A, Sieber M, Härdtle W (2004) Einfluss kontrollierten Brennens auf die Nährstoffdynamik von Sand- und Moorheiden. NNA Ber 17:65–79 Nienhuis PH, Gulati RD (eds) (2013) Ecological restoration of aquatic and semi-aquatic ecosystems in the Netherlands (NW Europe). Dev Hydrobiol 166:1–234 Nijssen ME, van Noordwijk CGE (2015) Restoration of species rich fauna communities on calcareous grasslands. De Levende Natuur 116(6):242–247 Nilsson C, Stjernquist I, Bärring L, Schlyter P, Jönsson AM, Samuelsson H (2004) Recorded storm damage in Swedish forests 1901–2000. For Ecol Manag 199:165–173 Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science 308(5720):405–408 Nilsson C, Brown RL, Jansson R, Merritt DM (2010) The role of hydrochory in structuring riparian and wetland vegetation. Biol Rev Camb Philos Soc 85(4):837–858 Nilsson C, Aradottir AL, Hagen D, Halldórsson G, Høegh K, Mitchell RJ, Raulund-Rasmussen K, Svavarsdóttir K, Tolvanen A, Wilson SD (2016) Evaluating the process of ecological restoration. Ecol Soc 21(1):41 Nisbet TR, Evans CD (2014) Forestry and surface water acidification. Forestry Commission Res Note. https://www.­forestry.­gov.­uk/pdf/FCRN016.­ pdf/$FILE/FCRN016.­pdf. Accessed 8 May 2017 Nishihiro J, Washitani I (2007) Restoration of lakeshore vegetation using sediment seed banks; studies and practices in Lake Kasumigaura, Japan. Global Environ Res 11:171–177 Nixdorf B, Deneke R (2004) Grundlagen und Maßnahmen zur biogenen Alkalinisierung von sauren Tagebauseen. Weißensee, Berlin

667 References

Nixdorf B, Hemm M, Schmidt A, Kapfer M, Krumbeck H (2001) Tagebauseen in Deutschland—ein Überblick. UBA-Texte 1(35):1–106 Nixdorf B, Lessmann D, Steinberg CEW (2003) The importance of chemical buffering for pelagic and benthic colonization in acidic waters. Water Air Soil Pollut 3:27–46 Nixdorf B, Uhlmann W, Lessmann D (2010) Potential for remediation of acidic mining lakes evaluated by hydrogeochemical modelling: case study Grünewalder Lauch (Plessa 117, Lusatia/Germany). Limnologica 40:167–174 Nixdorf B, Rücker J, Dolman AM, Wiedner C, Hilt S, Kasprzak P, Köhler A, van de Weyer K, Sandrock S, Scharf EM, Willmitzer H (2013) Prozessverständnis als Grundlage für die Gewässerbewirtschaftung—Fallbeispiele für Limitation, Konkurrenz, Gewässerstruktur und Nahrungsnetzsteuerung. Korrespond Wasserwirtsch 6(12):693–701 Njoroge R, Birech R, Arusey C, Korir M, Mutisya C, Scholz RW (2015) Transdisciplinary processes of developing, applying, and evaluating a method for improving smallholder farmers’ access to (phosphorus) fertilizers: the SMAP method. Sustain Sci 10(4):601–619 NOAA (1995) Habitat equivalency analysis: an overview. National oceanic and atmospheric administration, US department of commerce, National oceanic and atmospheric administration, Damage assessment and restoration program. https:// casedocuments.­d arrp.­n oaa.­g ov/northwest/cbay/ pdf/cbhy-a.­pdf. Accessed 28 Jan 2018 NOAA Marine Debris Program (2015) Report on the impacts of “ghost fishing” via derelict fishing gear. Silver Spring, MD. https://marinedebris.­ noaa.­g ov/sites/default/files/publications-files/ Ghostfishing_DFG.­pdf. Accessed 21 Aug 2018 NOBANIS (2015) European Network on Invasive Alien Species. https://www.­nobanis.­org/about-­ nobanis/nobanis-projects. Accessed 30 May 2017 Noga T, Peszek Ł, Stanek-Tarkowska J, Pajączek A (2014) The Pinnularia genus in south-eastern Poland with consideration of rare and new taxa to Poland. Ocean Hydrobiol Stud 43(1):77–99 Nöh I (2002) Bewertung von Umweltwirkungen gentechnisch veränderter Organismen (GVO). Maßstäbe und Erfahrungen des Umweltbundesamtes. Umweltwiss Schadstoff For 14(3): 155–163 Nomade J, Chapron E, Desmet M, Reyss J-L, Arnaud F, Lignier V (2005) Reconstructing historical seismicity from lake sediments (Lake Laffrey, Western Alps, France). Terra Nova 17:350–357 Noonan TA (1986) Water quality in long lake, Minnesota, following riplox sediment treatment. Lake Reserv Manage 2(1):131–137

Noordhuis R, Reeders HH, Bij de Vaate A (1992) Filtering rate and pseudofaeces production in zebra mussels and their application in water quality management. Limnol Akt 4:101–114 Nordahl D (2009) Public produce: the new urban agriculture. Island Press, Washington, DC Nordbakken JF, Ohlson M, Högberg P (2003) Boreal bog plants: nitrogen sources and uptake of recently deposited nitrogen. Environ Pollut 126(2):191–200 Nordhaus WD (2016) Projections and uncertainties about climate change in an era of minimal climate policies. Cowles Found Discuss Pap 2057:1–44 Nordhaus WD (2017) Revisiting the social cost of carbon. PNAS 114(7):1518–1523 Norton B (1987) Why preserve natural variety? Princeton University Press, Princeton Norton B (1992) Toward unity among environmentalists. Oxford University Press, Oxford Norton BG, Toman MA (1997) Sustainability: ecological and economic perspectives. Land Econ 73(4):553–568 Noss RF (1999) Assessing and monitoring forest biodiversity: a suggested framework and indicators. For Ecol Manag 115:135–146 Noss RF, Cooperrider AY (1994) Saving nature’s legacy: protecting and restoring biodiversity. Island Press, Washington, DC Novák J, Prach K (2003) Vegetation succession in basalt quarries: pattern on a landscape scale. Appl Veg Sci 6:111–116 Novitski RP (1979) Hydrologic characteristics of Wisconsin’s wetlands and their influence on floods, streamflow and sediment. In: Greeson PE, Clark JR, Clark JE (eds) Wetland functions and values: the state of our understanding, pp 377–388 Nowak H, Preul F (1971) Untersuchungen über Bleiund Zinkgehalte in Gewässern des Westharzes. Suppl Geol Jahrb 105:1–68 Nowak M (2003) Der kulturökologische Ansatz des Julian H. Steward. GRIN, München Nowicka B, Dmitriuk U, Nadolna A, Jancewicz A, Tomczuk U (2013) Lake Charzykowskie: heavy metals and pesticides. European lakes under environmental stressors (EuLakes). https://www.­ eulakes-model.­e u/media/files/heavy-metalsandpesticides-in-lake-charzykowskie.­pdf. Accessed 7 May 2017 Nowotny H, Scott PB, Gibbons MT (2001) Re-thinking science: knowledge and the public in an age of uncertainty. Wiley, Cambridge NSW (2015) Guide to monitoring ecological restoration projects. Office of Environment and Heritage NSW. http://www.­e nvironment.­n sw.­g ov.­a u/resources/ grants/150472-­EcologicalMonitoring.­pdf. Accessed 2 July 2017 Nühlen J, Denk M, Gläßer C, Teuwsen S, Algermissen D (2016) Sekundärrohstoff e in Hüttenhalden—

668

References

Strategien zur Haldendetektion und -analyse auf Basis von Geoinformationstechnologien. In: Thomé-Kozmiensky KJ (ed) Mineralische Nebenprodukte und Abfälle, vol 3. Karl Thomé-Kozmiensky, Neuruppin, pp 359–382 Nürnberg G (1987) Hypolimnetic withdrawal as lake restoration technique. J Environ Eng 113:1006–1017 Oberdorfer E (1993) Süddeutsche Pflanzengesellschaften, Wirtschaftswiesen und Unkrautgesellschaften, vol 3. Fischer, Jena Oberdorfer E (1999) Süddeutsche Pflanzengesellschaften, Wälder und Gebüsche. Part A & B, vol 4, 2nd edn. Spektrum, Heidelberg Oberdorfer E, Schwabe A, Müller T (2001) Pflanzensoziologische Exkursionsflora für Deutschland und angrenzende Gebiete, 8th edn. Ulmer, Stuttgart Oberrauch F (2001) Streuobstbau und Sortenerhaltung in Europa. Sortengärten Südtirol. In: Holler C, Spornberger A (eds) Beiträge zum Streuobstanbau in Europa. Stand, Entwicklungen und Probleme. Tagber UBA 28:39–40 Öckinger E, Eriksson AK, Smith HG (2006) Effects of grassland abandonment, restoration and management on butterflies and vascular plants. Biol Conserv 133:291–300 Ödman AM, Olsson PA (2014) Conservation of sandy calcareous grassland: what can be learned from the land use history? PLoS One 9(3):e90998 Odum EP, Barrett GW (2004) Fundamentals of ecology, 5th edn. Brooks Cole Publishing, Pacific Grove OECD (2014) Cities and climate change. Policy perspectives. https://www.­oecd.­org/env/cc/Cities-­and-­ climate-change-2014-PolicyPerspectives-Finalweb.­pdf. Accessed 9 Aug 2018 Oehlschlaeger S, Beier W, van Dorsten P, Harnisch R, Hinrichsen A, Tschöpe O, Zierke I (2004) Das Naturschutzgebiet Döberitzer Heide. In: Anders K, Mrzljak J, Wallschläger D, Wiegleb G (eds) Handbuch Offenlandmanagement: Am Beispiel ehemaliger und in Nutzung befindlicher Truppenübungsplätze. Springer, Heidelberg, pp 187–208 Oelerich H-M (2004) Heuschrecken. In: Tischew S (ed) Renaturierung nach dem Braunkohleabbau. Teubner, Wiesbaden, pp 108–115 Oelerich HM, Reuter M, Huth J, Tischew S (2013) Intervalle eines naturschutzfachlichen Monitorings und Probeflächenauswahl am Beispiel Sachsen-Anhalts. In: Tischew S (ed) Renaturierung nach dem Braunkohleabbau. Vieweg & Teubner, Wiesbaden, pp 329–323 Oertel G (1998a) Gewässerrenaturierung in der Wümmeniederung bei Bremen. Angew Landschökol 23:19–36 Oertel G (1998b) Fließgewässerrenaturierung und naturnahe Auenentwicklung an der Wümme. Schrreihe Landschpfl Natschutz 56:199–219

Oertel G (2014) Borgfelder Wümmewiesen. Ein herausragendes Naturschutzprojekt. Festschrift zum 100jährigen Jubiläum des BUND Bremen, pp  30–35. http://www.­nordwest-natur.­de/fileadmin/nwn/dateien/Veroeffentlichungen/100_Jahre_ BUND_NSG_BW.­pdf. Accessed 29 Apr 2017 Oesau A (1998) Möglichkeiten zur Erhaltung der Artenvielfalt im Ackerbau—Erfahrungen aus der Praxis. Schrreihe Vegkd 29:69–79 Oeschger R (2000) Der Ökosystemansatz der Biodiversitätskonvention. Deutsche Fallstudie: Erfahrungen aus dem Projekt “Ökosystemforschung Wattenmeer”. Gutachten im Auftrag des Umweltbundesamtes. https://www.­umweltbundesamt.­de/ sites/default/files/medien/publikation/long/1970.­ pdf. Accessed 2 July 2017 ÖGUT (2017) Partizipation & nachhaltige Entwicklung in Europa. Österreichische Gesellschaft für Umwelt und Technik und Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft. http://www.­partizipation.­at/aktuell.­ html. Accessed 18 Dec 2017 Ohtsuka Y, Yabunaka N, Takayama S (1998) Shirinyoku (forest air bathing and walking) effectively decreases blood glucose levels in diabetic patients. Int J Biometeorol 41:125–127 Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072 Okruszko T, Maltby E, Szatylowicz J, Miroslaw-Swiatek D, Kotowski W (eds) (2007) Wetlands: monitoring, modelling and management. Taylor & Francis, Leiden Olde Venterink H, Hummelink E, Van Den Hoorn MW (2003a) Denitrification potential of a river floodplain during flooding with nitrate-rich water: grasslands versus reedbeds. Biogeochemistry 65:233–244 Olde Venterink H, Wiegman F, Van der Lee GEM, Vermaat JE (2003b) Role of active floodplains for nutrient retention in the River Rhine. J Environ Qual 32:1430–1435 Oleksyn J, Reich PB (1994) Pollution, habitat destruction, and biodiversity in Poland. Conserv Biol 8:943–960 Olem H (1991) Liming acidic surface waters. Lewis, Michigan Olenin S, Alemany F, Cardoso AC, Gollasch S, Goulletquer P, Lehtiniemi M, McCollin T, Minchin D, Miossec L, Occhipinti Ambrogi A, Ojaveer H, Rose Jensen K, Stankiewicz M, Wallentinus I, Aleksandrov B (2010) Marine strategy framework directive. Task Group 2 Report: non-indigenous species. European Union & ICES. http://www.­ keskkonnaministeerium.­ee/sites/default/files/nonindigenous_species.­pdf. Accessed 29 Nov 2017 Olff H, de Leeuw J, Bakker JP, Platerink RJ, van Wijnen HJ (1997) Vegetation succession and her-

669 References

bivory in a salt marsh: changes induced by sea level rise and silt deposition along an elevational gradient. J Ecol 85(6):799–814 Olofsson H, Ripa J, Jonzén N (2009) Bet-hedging as an evolutionary game: the trade-off between egg size and number. P R Soc B 276(1669): 2963–2969 Olowoyo JO, Lion GN (2016) Urban farming as a possible source of trace metals in human diets. S Afr J Sci 112(1–2):1–6 Olson RA, Whitson TD (2002) Restoring structure in late-successional sagebrush communities by thinning with Tebuthiuron. Restor Ecol 10(1): 146–155 Olsson PA, Mårtensson LM, Bruun HH (2009) Acidification of sandy grasslands—consequences for plant diversity. Appl Veg Sci 12:350–361 Olsson PA, Schnoor TK, Hanson SÅ (2010) pH preferences of red-listed gasteromycetes in calcareous sandy grasslands: implications for conservation and restoration. Fungal Ecol 3:357–365 Olsson PA, Ödman AM (2014) Natural establishment of specialist plant species after topsoil removal and soil perturbation in degraded calcareous sandy grassland. Restor Ecol 22:49–56 Olsson PA, Sjöholm C, Ödman AM (2014) Soil disturbance favours threatened beetle species in sandy grasslands. J Insect Conserv 18:827–835 Olsthoorn AFM, Bartelink HH, Gardiner JJ, Pretzsch H, Hekhuis HJ, Franc A (1999) Management of mixed-species forest: silviculture and economics. IBN Scientific Contributions 15. DLO Institute for Forestry and Nature Reseach (IBN-DLO), Wageningen O’Mara FP (2012) The role of grasslands in food security and climate change. Ann Bot 110: 1263–1270 Ongley ED (1996) Control of water pollution from agriculture. FAO irrigation and drainage paper 55. http://www.­fao.­org/docrep/w2598e/w2598e00.­ htm#Contents. Accessed 23 Aug 2017 Oomes MJM (1990) Changes in dry matter and nutrient yields during the restoration of species-rich grasslands. J Veg Sci 1:333–338 Oomes MJM, van der Werf A (1996) Restoration of species diversity in grasslands: the effect of grassland management and changes in ground water level. Acta Bot Gallica 143:451–461 Opitz F (2013) Plaggen und Luchten—die Küstenheide wird wiederbelebt. Natschutz heute 4:18–19 Opitz W (1970) Zuschüsse für Obstbaum-Rodung. Deut Gartenbauwirtsch 3:20–21 Oppermann R, Gujer HU (2003) Artenreiches Grünland bewerten und fördern—MEKA und ÖQV in der Praxis. Ulmer, Stuttgart Oppermann R, Liesen J (2015) Wiesenmeisterschaften—Win-win-Effekte für alle Beteiligten.

Perspektiven für die Zukunft. Natschutz Landschplan 47(11):361–368 ÖPUL (2015) Agrar-Umweltprogramm bis 2020: Umweltschonende Bewirtschaftung der landwirtschaftlichen Flächen durch Förderung einer umweltgerechten, extensiven und den natürlichen Lebensraum schützenden Landwirtschaft. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft. https://www.­ bmlfuw.­g v.­at/land/laendl_entwicklung/oepul/ oepul2015.­html. Accessed 22 Aug 2017 Ormerod SJ (2003) Restoration in applied ecology: editor’s introduction. J Appl Ecol 40:44–50 Ormerod SJ, Durance I (2009) Restoration and recovery from acidification in upland Welsh streams over 25 years. J Appl Ecol 46:164–174 Orth RJ, Heck KL, van Montfrans J (1984) Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predatorprey relationships. Estuaries 7(4): 339–350 Ortiz-Lerín R, Cambra J (2007) Distribution and taxonomic notes of Eunotia Ehrenberg 1837 (Bacillariophyceae) in rivers and streams of Northern Spain. Limnetica 26(2):415–434 Osaki M, Tsuji N (2016) Tropical peatland ecosystems. Springer, Tokyo Osenberg CW, Bolker BM, White J-SS, St Mary CM, Shima JS (2006) Statistical issues and study design in ecological restorations: lessons learned from marine reserves. In: Falk DA, Palmer MA, Zedle JB (eds) Foundations of restoration ecology. Island Press, Washington, DC, pp 280–302 Osman KA (2011) Pesticides and human health. In: Stoytcheva M (ed) Pesticides in the Modern World—effects of pesticides exposure. IntechOpen, London, pp 206–230 Oslo Convention (1972) Convention for the prevention of marine pollution by dumping from ships and aircraft. UN. https://treaties.un.org/doc/Publication/UNTS/Volume%20932/volume-932-I13269-English.pdf OSPAR (2000) Quality status report 2000, Region II—Greater North Sea. OSPAR commission for the protection of the marine environment of the North-East Atlantic, London. http://qsr2010.­ o s p a r.­o rg / m e d i a / a s s e s s m e n t s / Q S R _ 2 0 0 0 _ Region_II.­pdf. Accessed 22 Mar 2017 OSPAR (2010) Quality status report 2010, Region II—Greater North Sea. OSPAR commission for the protection of the marine environment of the North-East Atlantic, London. http://qsr2010.­ ospar.­o rg/en/media/chapter_pdf/QSR_Front_ EN.­pdf. Accessed 22 Mar 2017 OSPAR (2017) Human activities: dredging & dumping. OSPAR commission for the protection of the marine environment of the North-East Atlantic,

670

References

London. http://www.­ospar.­org/work-areas/eiha/ national Peat Congress Poznan. NOT, Warschau, dredging-dumping. Accessed 28 Mar 2017 pp 51–60 OSPAR Convention (1992) Convention for the pro- Ott J, Conze KJ, Günther A, Lohr M, Mauersberger tection of the marine environment of the northR, Roland H-J, Suhling F (2015) Rote Liste und east Atlantic. OSPAR Commission. https:// Gesamtartenliste der Libellen Deutschlands www.­o spar.­o rg/site/assets/files/1290/ospar_ (Odonata). Libellula Suppl 14:395–422 convention_e_updated_text_in_2007_no_revs.­ Ott K (1997) Ipso Facto. Zur ethischen Begründung pdf. Accessed 12 Aug 2018 normativer Implikate wissenschaftlicher Praxis. Ostendorp W (1989) ‘Die-Back’ of reeds in Europe: a Suhrkamp, Frankfurt a. M critical review of literature. Aquat Bot 35:5–26 Ott K (2009) Zur ethischen Dimension von RenaturiOstendorp W (1990) Ist die Seeneutrophierung am erungsökologie und Ökosystemrenaturierung. In: Schilfsterben schuld? In: Sukopp H, Krauß M Zerbe S, Wiegleb G (eds) Renaturierung von Öko(eds) Ökologie, Gefährdung und Schutz von systemen in Mitteleuropa. Springer Spektrum, Röhrichtpflanzen. Landschentw Umweltforsch Heidelberg, pp 423–439 71:121–140 Ott K (2010) Umweltethik zur Einführung. Junius, Ostendorp W (1993) Schilf als Lebensraum. Beih Hamburg Veröff Natursch Landschaftspfl Baden-­Ott K (2015) Zur Dimension des Naturschutzes in Württemberg 68:173–280 einer Theorie starker Nachhaltigkeit. Beiträge zur Ostendorp W, Schmieder K, Jöhnk K (2004) AssessTheorie und Praxis starker Nachhaltigkeit ment of human pressures and their hydromorphoMetropolis 8:1–298 logical impacts on lakeshores in Europe. Ott K (2017) Verantwortung im Anthropozän und Ecohydrol Hydrobiol 4:379–395 Konzepte der Nachhaltigkeit. In: Sierra R, Öster M (2006) Biological diversity values in seminatuGrisoni A (eds) Nachhaltigkeit und Transition: ral grasslands—indicators, landscape context and Konzepte. Campus, Frankfurt a. M, pp 141–188 restoration. University of Stockholm, Dissertation Ott K, Döring R (2008) Theorie und Praxis starker Osterburg B, Rüter S, Freibauer A, de Witte T, Nachhaltigkeit. Metropolis, Marburg Elsasser P, Kätsch S, Leischner B, Paulsen HM, Ott K, Muraca B, Baatz C (2011) Strong sustainability Rock J, Röder N, Sanders J, Schweinle J, Steuk J, as a frame for sustainability communication. In: Stichnothe H, Stümer W, Welling J, Wolff A Godemann J, Michelsen G (eds) Sustainability (2013) Handlungsoptionen für den Klimaschutz communication: interdisciplinary perspectives in der deutschen Agrar- und Forstwirtschaft. and theoretical foundations. Springer, Heidelberg Thünen Report 11. Thünen-Institut, Braunsch- Ott K, Dierks J, Voget-Kleschin L (eds) (2017a) weig. http://literatur.­thuenen.­de/digbib_extern/ Handbuch Umweltethik. J.B. Metzler, Stuttgart dn052858.­pdf. Accessed 28 Dec 2017 Ott K, Dierks J, Voget-Kleschin L (2017b) EinfühOstermann R, Hochhardt W (1993) Vegetation, Stanrung. In: Ott K, Dierks J, Voget-Kleschin L (eds) dort und Nutzung der Edelkastanien-­ Handbuch Umweltethik. J.B.  Metzler, Stuttgart, Niederwälder von Ödsbach/Oberkirch (Mittlerer pp 1–19 Schwarzwald). Mitt Bad Landesver Natkd Natsch Ovenden L (1990) Peat accumulation in northern wetNF 15(3/4):533–567 lands. Quat Res 33:377–386 Österreichische UNESCO-Kommission (2011) Ver- Overbeck F (1975) Botanisch-geologische Moorkunde, zeichnis des immateriellen Kulturerbes in Österunter besonderer Berücksichtigung der Moore reich. Transhumanz—Schafwandertriebe in den Nordwestdeutschlands als Quellen zur VegetaÖtztaler Alpen. http://immaterielleskulturerbe.­ tions-, Klima- und Siedlungsgeschichte. Karl unesco.­at/cgi-bin/unesco/element.­p l?eid=73& Wachholtz, Neumünster lang=de. Accessed 22 Oct 2016 Overdevest C (2010) Comparing forest certification Ostrom E (1990) Governing the commons: the evoluschemes: the case of ratcheting standards in the tion of institutions for collective action. Camforest sector. Socio-Econ Rev 8:47–76 bridge University Press, Cambridge Oves M, Khan MS, Zaidi A (2013) Chromium reducOstrom E, Janssen MA, Anderies JM (2007) Going ing and plant growth promoting novel strain beyond panaceas. PNAS 104:15176–15178 Pseudomonas aeruginosa OSG41 enhance chickO’Sullivan P, Reynolds CS (eds) (2004) The lakes pea growth in chromium amended soils. Eur J Soil handbook: lake restoration and rehabilitation, Biol 56:72–83 Vol 1 &, vol 2. Wiley-Blackwell, Oxford Ovesen CH (ed) (1990) Salt marsh management in the Oswit J, Pacowski R, Zurek S (1976) Characteristics Wadden Sea region. In: Proceeding of 2nd Trilatof more important peat species in Poland. In: eral Working Conference on salt marsh managePeatlands and their utilization in Poland. V. Interment in the Wadden Sea Region. The Ministry of

671 References

the Environment, The National Forest and Nature Agency. Rømø, Dänemark Ozenda P (1988) Die Vegetation der Alpen im europäischen Gebirgsraum. Elsevier, München Ozenda P (1995) L’endémisme au niveau de l’ensemble du Système alpin. Acta Bot Gallica 142(7):753–762 Ozenda P, Borel JL (2003) The alpine vegetation of the Alps. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Ecol Stud 167:53–64 Ozimek T (2006) The possibility of submerged macrophyte recovery from a propagule bank in the eutrophic Lake Mikołajskie (North Poland). Hydrobiologia 570:127–131 Ozimek T, Gulati RD, van Donk E (1990) Can macrophytes be useful in biomanipulation of lakes? The Lake Zwemlust example. Dev Hydrobiol 61: 399–407 Packer JG, Meyerson LA, Skálová H, Petr P, Kueffer C (2017) Biological flora of the British Isles: Phragmites australis. J Ecol 105:1123–1162 Padisak J (1993) The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia 249:135–156 Page H, Goldammer JG (2004) Prescribed burning in landscape management and nature conservation: the first long-term pilot project in Germany in the Kaiserstuhl viticulture area, Baden-Württemberg Germany. Int For Fire News 30:49–58 Page S, Rieley JO, Banks CJ (2010) Global and regional importance of the tropical peatland carbon pool. Glob Change Biol 17:798–818 Page SE, Baird AJ (2016) Peatlands and global change: response and resilience. Ann Rev Environ Res 41:35–57 Page SE, Siegert F, Rieley JO, Boehm HDV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fi res in Indonesia during 1997. Nature 420:61–65 Pahl-Wostl C (2006) The importance of social learning in restoring the multifunctionality of rivers and floodplains. Ecol Soc 11(1):10 Päivinen R, Lehikoinen M, Schuck A, Häme T, Väätäinen S, Kennedy P, Folving S (2001) Combining earth observation data and forest statistics. EFI Research Report 14:1–101 Pakeman RJ, Digneffe G, Small JL (2002) Ecological correlates of endozoochory by herbivores. Funct Ecol 16:296–304 Palamar CR (2008) The justice of ecological restoration: environmental history, health, ecology, and justice in the United States. Human Ecol Rev 15(1):82–94 Palliwoda J, Kowarik I, von der Lippe M (2017) Human-biodiversity interactions in urban parks:

the species level matters. Landsc Urban Plan 157:394–406 Palmer C, Gothe J, Mitchell C, Riedy C, Sweetapple K, McLaughlin S, Hose G, Lowe M, Goodall H, Green T, Sharma D, Fane S, Brew K, Jones P (2007) Finding integration pathways: developing a transdisciplinary (TD) approach for the Upper Nepean Catchment. In: Wilson AL, Dehaan RL, Watts RJ, Page KJ, Bowmer KH, Curtis A (eds) Proceedings of the 5th Australian Stream Management Conference. Australian rivers: making a difference. Charles Sturt University, Thurgoona Palmer MA, Bernhardt ES, Allan JD, Lake PS, Alexander G, Brooks S, Carr J, Clayton S, Dahm CN, Follstad Shah J, Galat DL, Loss SG, Goodwin P, Hart DD, Hassett B, Jenkinson R, Kondolf GM, Lave R, Meyer JL, O’Donnell TK, Pagano L, Sudduth E (2005) Standards for ecologically successful river restoration. J Appl Ecol 42:208–217 Palmer MA, Zedle JB, Falk DA (eds) (2016) Foundations of restoration ecology. Island Press, Washington, DC Palmquist RB (1991) Hedonic methods. In: Braden JB, Kolstad CD (eds) Measuring the demand for environmental quality. Emerald, Amsterdam, pp 77–120 Palmquist RB (2006) Property value models. In: Maler K-G, Vincent J (eds) Handbook of environmental economics, vol 2. Elsevier, Amsterdam, pp 763–819 PAN (2017) Übersicht zur Abschätzung von Minimalarealen von Tierpopulationen in Bayern. Planungsbüro für angewandten Naturschutz (PAN). http://www.­p an-gmbh.­c om/content/dload/ TabMinimalareal.­pdf. Accessed 11 July 2017 Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993 Panagos P, Van Liedekerke M, Yigini Y, Montanarella L (2013) Contaminated sites in Europe: review of the current situation based on data collected through a European network. J Environ Public Health 2013:1–11 Pander J, Geist J (2013) Ecological indicators for stream restoration success. Ecol Indic 30:106–118 Papst Franziskus (2015) Enzyklika Laudato si’ von Papst Franziskus über die Sorge für das gemeinsame Haus. Libreria Editrice Vaticana. http://w2.­ vatican.­v a/content/francesco/de/encyclicals/ documents/papa-francesco_20150524_ enciclicalaudato-si.­html. Accessed 10 Oct 2017 Pardue GH, Olvera TK (eds) (2009) Ecological restoration. Nova Science Publishers, New York

672

References

Parish F, Sirin A, Charman D, Joosten H, Minayeva T, Silvius M, Stringer L (2008) Assessment on peatlands, biodiversity and climate change. Main report, global environment centre, Kuala Lumpur, Malaysia. Wetlands International, Wageningen. http://www.­i mcg.­n et/media/download_gallery/ books/assessment_peatland.­pdf. Accessed 12 Aug 2018 Parris K (2011) Impact of agriculture on water pollution in OECD countries: recent trends and future prospects. Int J Water Res D 27(1):33–52 Parsons WFJ, Ehrenfeld JG, Handel SN (1998) Vertical growth and mycorrhizal infection of woody plant roots as potential limits to the restoration of woodlands on landfills. Restor Ecol 6:280–289 Pärtel M, Kalamees R, Zobel M, Rosén E (1998) Restoration of species-rich limestone grassland communities from overgrown land: the importance of propagule availability. Ecol Eng 10:275–286 Pärtel M, Bruun HH, Sammul M (2005) Biodiversity in temperate European grasslands: origin and conservation. In: Lillak R, Viiralt R, Linke A, Geherman V (eds) Integrating efficient grassland farming and biodiversity. Proceedings of the 13th International Occasional Symposium of the European Grassland Federation, Tartu, Estonia, pp 1–14 Pascual U, Muradian R, Brander L, Gómez-Baggethun E, Martín-López B, Verma M, Armsworth P, Christie M, Cornelissen H, Eppink F, Farley J, Loomis J, Pearson L, Perrings C, Polasky S (2010) The economics of valuing ecosystem services and biodiversity. In: TEEB (ed) The economics of ecosystems and biodiversity: the ecological and economic foundations. Taylor & Francis, London, pp 183–256 Paslak R, Vromans K, Isildar GY (eds) (2010) Umweltethik, Eine Einführung für Lehrende und Studierende. Meidenbauer, München Pasternack GB, Varekamp JC (1994) The geochemistry of the Keli-Mutu crater lakes, Flores, Indonesia. Geochem J 28:243–262 Pástor M, Slámová M, Benčať T (2017) The distribution and biocultural value assessment of sweet chestnut (Castanea sativa Mill.) in the cadastral districts of Stredné Plachtince and Horné Plachtince (Slovakia). Ekológia (Bratislava) 36(2):130–145 Pataki DE, Carreiro MM, Cherrier J, Grulke NE, Jennings V, Pincetl S, Pouyat RV, Whitlow TH, Zipperer WC (2011) Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions. Front Ecol Environ 9:27–36 Patt H (2016) Fließgewässer- und Auenentwicklung: Grundlagen und Erfahrungen, 2nd edn. Springer, Heidelberg

Patt H, Jürging P (2010) Naturnaher Wasserbau: Entwicklung und Gestaltung von Fließgewässern. Springer, Heidelberg Patt H, Jürging P, Kraus W (2011) Naturnaher Wasserbau, 4th edn. Springer, Heidelberg Patten BC, Odum EP (1981) The cybernetic nature of ecosystems. Am Nat 118:886–895 Patthey P, Signorell N, Rotelli L, Arlettaz R (2012) Vegetation structural and compositional heterogeneity as a key feature in Alpine black grouse micro-habitat selection: conservation management implications. Eur J Wildlife Res 58:59–70 Patuzzi F, Mimmo T, Cesco S, Gasparella A, Baratieri M (2013) Common reeds (Phragmites australis) as sustainable energy source: experimental and modelling analysis of torrefaction and pyrolysis processes. GCB Bioenergy 5:367–374 Patzelt A (1998) Vegetationsökologische Grundlagen für die Etablierung von Magerwiesen in Niedermooren. Diss Bot 297:1–215 Patzelt A, Wild U, Pfadenhauer J (2001) Restoration of wet fen meadows by topsoil removal: vegetation development and germination biology of fen species. Restor Ecol 9:127–136 Patzelt G (1997) Modellstudie Ötztal—Landschaftsgeschichte im Hochgebirgsraum. Jahrb Innsbruck Geogr Ges 95(96):80–94 Pauleit S, Hansen R (2016) Stadtbrachen als Chance. Perspektive für mehr Grün in den Städten. 2nd ed. Bundesamt für Naturschutz (BfN), Bonn-Bad Godesberg Pauls S, Feld CK, Sommerhäuser M, Hering D (2002) Neue Konzepte zur Bewertung von Tieflandbächen und -flüssen nach Vorgaben der EUWasserrahmenrichtlinie. Wasser Boden 54:70–77 Pavao-Zuckerman MA (2008) The nature of urban soils and their role in ecological restoration in cities. Restor Ecol 16(4):642–649 Pawar PR (2016) Anthropogenic threats to coastal and marine biodiversity: a review. Int J Mod Biol Res 4:35–45 Pawłowski B (1970) Remarques sur l’endémisme dans la fl ore des Alpes et des Carpates. Vegetatio 21:181–243 Pawlak JF (2007) Climate change in the Baltic Sea area. HELCOM Thematic Assessment. Baltic Sea Environment Proceedings 111. http://www.helcom.fi/stc/files/Publications/Proceedings/bsep111. pdf Pearce DW, Moran D (1994) The economic value of biodiversity. Earthscan, London Pedersen ML, Andersen JM, Nielsen K, Linnemann M (2007) Restoration of Skjern river and its valley: project description and general ecological changes in the project area. Ecol Eng 30:131–144 Peet RK, Glenn-Lewin DC, Walker Wolf J (1983) Prediction of man’s impact on plant diversity: a chal-

673 References

lenge for vegetation science. In: Holzner W, Werger MJ, Ikusima I (eds) Man’s impact on vegetation. Dr W Junk, Den Haag, pp 41–54 PEFC (2017) Programme for the endorsement of forest certification. www.­pefc.­de. Accessed 27 July 2017 Peh KSH, Balmford A, Field RH, Lamb A, Birch JC, Bradbury RB, Brown C, Butchart SHM, Lester M, Morrison R, Sedgwick I, Soans C, Stattersfield AJ, Stroh PA, Swetnam RD, Thomas DHL, Walpole M, Warrington S, Hughes FMR (2014) Benefits and costs of ecological restoration: rapid assessment of changing ecosystem service values at a U.K.  Wetland. Ecol Evol 4(20): 3875–3886 Peissner T (1992) Erfassung und Eignung des Makrozoobenthos für die Gütebestimmung und Beurteilung von Gewässern. In: Trautner J (ed) Arten- und Biotopschutz in der Planung. Ökol Forsch Anw 5:75–96 Peng C, Chen WP, Liao XL, Wang M, Ouyang Z, Jiao W, Bai Y (2011) Polycyclic aromatic hydrocarbons in urban soils of Beijing: status, sources, distribution and potential risk. Environ Poll 59:802–808 Peng A, Liu J, Gao Y, Chen Z (2013) Distribution of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. from soils contaminated by polycyclic aromatic hydrocarbons. PLoS ONE 8(12):e83054 Penn-Bressel G, Weber O, Mutert T, Salzborn N, Lamfried D, Golde M, Alsleben C, Iyimen-­ Schwarz Z, Kirschbaum B, Bertram A (2014) Umweltverträgliche Nutzung des Untergrundes und Ressourcenschonung. Anforderungen an eine Raumordnung unter Tage und ein modernes Bergrecht. Umweltbundesamt, Dessau-Roßlau Peratoner G (2003) Organic seed propagation of alpine species and their use in ecological restoration of ski runs in mountain regions. Kassel University Press, Kassel Pereira HM, Navarro L (eds) (2015) Rewilding European landscapes. Springer International Publishing, New York Perera AH, Rajapakse RMN (1991) A base line study of Kandyan forest gardens of Sri Lanka: structure, composition and utilisation. For Ecol Manag 45:269–280 Pérez-Espona S, Pemberton JM, Putman R (2009) Red and sika deer in the British Isles, current management issues and management policy. Mamm Biol 74:247–262 Perillo GME, Wolanski E, Cahoon DR, Brinson MM (eds) (2009) Coastal wetlands: an integrated ecosystem approach. Elsevier, Amsterdam Perlik M (2001) Alpenstädte—Zwischen Metropolisation und neuer Eigenständigkeit. Geographica Bernensia P38, Bern

Perring MP, Standish RJ, Price JN, Craig MD, Erickson TE, Ruthrof KX, Whiteley AS, Valentine LE, Hobbs RJ (2015) Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere 6(8):1–25 Perrow MR, Davy AJ (eds) (2002) Handbook of ecological restoration, Restoration in practice, vol 2. Cambridge University Press, Cambridge Perrow MR, Davy AJ (eds) (2008) Handbook of ecological restoration, Principles of restoration, vol 1. Cambridge University Press, Cambridge Perry LG, Galatowitsch SM, Rosen CJ (2004) Competitive control of invasive vegetation: a native wetland sedge suppresses Phalaris arundinacea in carbonenriched soil. J Appl Ecol 41: 151–162 Petelka J, Bonari G, Säumel I, Plagg B, Zerbe S (2022) Conservation with local people: medicinal plants as Cultural Keystone Species in the Southern Alps. Ecol Soc (in press) Peterken GF (1976) Long-term changes in the woodlands of Rockingham forest and other areas. J Ecol 64:123–146 Peterken GF (2000) Identifying ancient woodland using vascular plant indicators. British Wildlife 11:153–158 Peterken GF, Game M (1984) Historical factors affecting the number and distribution of vascular plant species in the woodlands of central Lincolnshire. J Ecol 72:155–182 Peters E, Brinkmann I, Krüger F, Zwirlein S, Klaumann I (2009) Reintroduction of the European mink Mustela lutreola in Saarland, Germany. Preliminary data on the use of space and activity as revealed by radio-tracking and live-trapping. Endang Spec Res 10:305–320 Petersen R, Annighöfer P, Spellmann H, Leder B (2015) Spätblühende Traubenkirsche (Prunus serotina Ehrh.). In: Vor T, Spellmann H, Bolte A, Ammer C (eds) Potenziale und Risiken eingeführter Baumarten. Baumartenportraits mit naturschutzfachlicher Bewertung. Gött Forstwiss 7:167–186 Peterson GW, Turner RE (1994) The value of saltmarsh edge vs. interior as a habitat for fish and decapod crustaceans in a Louisiana tidal marsh. Estuaries 17:235–262 Petts GE (1996) Sustaining the ecological integrity of large river floodplain systems. In: Anderson MG, Walling DE, Bates PD (eds) Floodplain processes. Wiley, Chichester, pp 535–551 Petursdottir T, Arnalds O, Baker S, Montanarella L, Aradóttir Á (2013) A social-ecological system approach to analyze stakeholders’ interactions within a large-scale rangeland restoration program. Ecol Soc 18(2):29

674

References

Petzold R, Hahn O (1973) Ergebnisse der Rodungsaktion in der EWG und in der Bundesrepublik Deutschland. Erwerbsobstbau 15(1):5–9 Pfadenhauer J (2002) Landnutzung und Biodiversität—Beispiele aus Mitteleuropa. Laufen Sembeitr 2:145–159 Pfadenhauer J, Grootjans A (1999) Wetland restoration in central Europe: aims and methods. Appl Veg Sci 2:95–106 Pfadenhauer J, Kiehl K (eds) (2003) Renaturierung von Kalkmagerrasen. Angew Landschökol 55: 1–292 Pfadenhauer J, Klötzli F (2015) Vegetation der Erde: Grundlagen, Ökologie, Verbreitung. Springer Spektrum, Heidelberg Pfeifer M, Lefebvre V, Peres CA, Banks-Leite C, Wearn OR, Marsh CJ, Butchart SHM, Arroyo-­ Rodríguez V, Barlow J, Cerezo A, Cisneros L, D’Cruze N, Faria D, Hadley A, Harris SM, Klingbeil BT, Kormann U, Lens L, Medina-Rangel GF, Morante-Filho JC, Olivier P, Peters SL, Pidgeon A, Ribeiro DB, Scherber C, SchneiderMaunoury L, Struebig M, UrbinaCardona N, Watling JI, Willig MR, Wood EM, Ewers RM (2017) Creation of forest edges has a global impact on forest vertebrates. Nature 551:187–191 Pfiffner L, Wyss E (2004) Use of sown wildflower strips to enhance natural enemies of agricultural pests. In: Gurr GM, Wratten SD, Altieri MA (eds) Ecological engineering for pest management: advances in habitat manipulation for arthropods. CSIRO Publishing, Melbourne, pp 165–186 Pflug W (ed) (2013) Braunkohlentagebau und Rekultivierung—Landschaftsökologie, Folgenutzung, Naturschutz. Springer, Heidelberg Pheloung PC, Williams PA, Halloy SR (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manag 57:239–251 Philippi T (1993) Bet-Hedging Germination of desert annuals: beyond the first year. Am Nat 142(3): 474–487 Piaget I (1972) The epistemology of interdisciplinary relationships. In: Apostel L, Berger G, Briggs A, Michaud G (eds) Interdisciplinarity: problems of teaching and research in universities. Organization for Economic Cooperation and Development (OECD), Paris, pp 127–139 PIANC (2009) Dredged material as a resource. Options and constraints. The World Association for Waterborn Transport Infrastructure. Permanent International Association of Navigation Congresses (PIANC). PIANC Rep 104:1–54 Pichel WG, Veenstra TS, Churnside JH, Arabini E, Friedman KS, Foley DG, Brainard RE, Kiefer D, Ogle S, Clemente-Colón P, Li X (2012) Ghost-Net

marine debris survey in the Gulf of Alaska—satellite guidance and aircraft observations. Marine Poll Bull 65(1–3):28–41 Pickaver AH (2010) Restoration of dune habitats along the Danish west coast—DK. EU Environment, OURCOAST. http://ec.­europa.­eu/environment/index_en.­htm. Accessed 21 Nov 2016 Piechocki R, Wiersbinski N, Potthast T, Ott K (2004) Vilmer Thesen zum “Prozessschutz”. Natur Landsch 79:53–56 Piechocki R, Wiersbinski N, Potthast T, Ott K (2010) Vilmer Thesen zum “Prozessschutz”. In: Piechocki R, Ott K, Potthast T, Wiersbinski N (eds) Vilmer Thesen zu Grundsatzfragen des Naturschutzes. Vilmer Sommerakademien 2001– 2010. BfN Skripten 281:31–39 Piekarska-Stachowiak A, Szary M, Ziemer B, Besenyei L, Woźniak G (2014) An application of the plant functional group concept to restoration practice on coal mine spoil heaps. Ecol Res 29:843–853 Piernik A (2003) Inland halophilous vegetation as indicator of soil salinity. Basic Appl Ecol 4(6):525–536 Piernik A (2005) Vegetation-environment relations on inland saline habitats in central Poland. Phytocoenologia 35(1):19–38 Piernik A (2012) Ecological pattern of inland salt marsh vegetation in Central Europe. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń Piernik A, Hulisz P (2011) Soil-plant relations in inland natural and anthropogenic saline habitats. Eur J Plant Sci Biotechn 5(2):37–43 Piessens K, Honnay O, Nackaerts K, Hermy M (2004) Plant species richness and composition of heathland relics in north-western Belgium: evidence for a rescue-effect? J Biogeogr 31:1683–1692 Piet GJ, Albella AJ, Aro E, Farrugio H, Lleonart J, Lordan C, Mesnil B, Petrakis G, Pusch C, Radu G, Ratz HJ (2010) Marine Strategy Framework Directive—Task Group 3 Report: Commercially exploited fish and shellfish. EUR 24316 EN— Joint Research Centre, Office for Official Publications of the European Communities, Luxembourg Pietrzykowski M (2014) Soil quality index as a tool for Scots pine (Pinus sylvestris) monoculture conversion planning on afforested, reclaimed mine land. J For Res 25(1):63–74 Pignatti S, Menegoni P, Pietrosanti S (2005) Biondicazione attraverso le piante vascolari. Valori di indicazione secondo Ellenberg (Zeigerwerte) per le specie della Flora d’Italia. Braun-Blanquetia 39:1–97 Pilkington MG, Caporn SJM, Carroll JA, Cresswell N, Phoenix GK, Lee JA, Emmett BA, Sparks T

675 References

(2007) Impacts of burning and increased nitrogen deposition on nitrogen pools and leaching in an upland moor. J Ecol 95:1195–1207 Pimentel D, Burgess M (2013) Soil erosion threatens food production. Agriculture 3:443–463 Pimentel D, Lehman H (eds) (1993) The pesticide question: environment, economics and ethics. Chapman & Hall, New York Pimentel D, Lach L, Zuniga R, Morrison D (1999) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65 Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269:347–350 Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752 Piotrowska H (1988) The dynamic of the dune vegetation on the Polish Baltic coast. Vegetatio 77:169–175 Piqueray J, Bottin G, Delescaille LM, Bisteau E, Colinet G, Mahy G (2011) Rapid restoration of a speciesrich ecosystem assessed from soil and vegetation indicators: the case of calcareous grasslands restored from forest stands. Ecol Indic 11(2):724–733 Pirsaheb M, Limoee M, Namdari F, Khamutian R (2015) Organochlorine pesticides residue in breast milk: a systematic review. Med J Islam Repub Iran 29:228 Pitcher TJ, Lam ME (2015) Fish commoditization and the historical origins of catching fish for profit. Mar Stud 14:2 Piwernetz D (2015) Biber werden in Bayern zur Plage—am Beispiel der Biberschäden an der Donau dargestellt. Fischer Teichwirt 66(8):283– 293 Pižl V (2001) Earthworm succession in afforested colliery spoil heaps in the Sokolov Region, Czech Republic. Restor Ecol 9:359–364 Plachter H (1995) Naturschutz in Kulturlandschaften: Wege zu einem ganzheitlichen Konzept der Umweltsicherung. In: Gepp J (ed) Naturschutz außerhalb von Schutzgebieten. Monogr Natschutz 5:47–96 Plachter H, Hampicke U (eds) (2010) Large-scale livestock grazing—a management tool for nature conservation. Springer, Heidelberg Plieninger T, Hartel T, Martín-López B, Beaufoy G, Bergmeier E, Kirby K, Montero MJ, Moreno G, Oteros-Rozas E, Van Uytvanck J (2015) Wood pastures of Europe: geographic coverage, socialecological values, conservation management, and policy implications. Biol Conserv 190: 70–79

Pöckl M (1999) Distribution of crayfish species in Austria with special reference to introduced species. Freshwater Crayfi sh 12:733–750 Poggendorf C, Rüpke A, Gock E, Saheli H, Kuhn K, Martin T (2014) Nutzung des Rohstoffpotentials von Bergbau- und Hüttenhalden am Beispiel des Westharzes. In: Thomé-­Kozmiensky KJ (ed) Mineralische Nebenprodukte und Abfälle, Aschen, Schlacken, Stäube, Baurestmassen, vol 3. Karl Thomé-Kozmiensky, Neuruppin, pp 579–599 Pöhlmann R, Rall H (2011) Die Akzeptanz des Nationalparks bei der lokalen Bevölkerung. Nationalpark Bayerischer Wald. https://www.­ wup.­w i.­t um.­d e/fileadmin/w00beh/www/Files/ Langfassung_Akzeptanzstudie_NP_Bay_Wald.­ pdf. Accessed 11 Jun 2017 Poiani KA, Richter BD, Anderson MG, Richter HE (2000) Biodiversity conservation at multiple scales: functional sites, landscapes, and networks. Bioscience 50:133–146 Pollux BJA (2011) The experimental study of seed dispersal by fish (ichthyochory). Freshw Biol 56: 197–212 Pollux BJA, Santamaria L, Ouborg NJ (2005) Differences in endozoochorous dispersal between aquatic plant species, with reference to plant population persistence in rivers. Freshw Biol 50:232–242 Pollux BJA, de Jong M, Steegh A, Ouborg NJ, van Groenendael JM, Klaassen M (2006) The effect of seed morphology on the potential dispersal of aquatic macrophytes by the common carp (Cyprinus carpio). Freshw Biol 51:2063–2071 Pomeroy LR, Wiegert RG (eds) (1981) The ecology of a salt marsh. Ecol Stud 38:1–271 Pompanon F, Deagle BE, Symondson WO, Brown DS, Jarman SN, Taberlet P (2012) Who is eating what: diet assessment using next generation sequencing. Mol Ecol 21(8):1931–1950 PONS (2016) Wörterbuch Schule und Studium LateinDeutsch. PONS, Stuttgart Poppe M, Kail J, Aroviita J, Stelmaszczyk M, Giełczewski M, Muhar S (2015) Assessing restoration effects on hydromorphology in European mid-sized rivers by key hydromorphological parameters. Hydrobiologia 769(1):21–40 Poschlod P (1993) Die Dauerhaftigkeit von generativen Diasporenbanken in Böden am Beispiel von Kalkmagerasenpflanzen und deren Bedeutung für den botanischen Arten- und Biotopschutz. Verh Ges Ökol 22:229–240 Poschlod P (2014) Kulturlandschaft, Landnutzungswandel und Vielfalt—Mechanismen und Prozesse der Entstehung und Entwicklung unserer Kulturlandschaft und die Notwendigkeit einer Genbank für “Wildpflanzen für Ernährung und Landwirtschaft (WEL)”. Hoppea Denkschr Regensb Bot Ges Special Issue 2014:7–40

676

References

Poschlod P (2015) Geschichte der Kulturlandschaft. Ulmer, Stuttgart Poschlod P (2016) Die Obere Isar—Flusslandschaft im Wandel: Eine “Kulturgeschichte” wasserbaulicher Maßnahmen und der Waldweide. Tuexenia 9:85–105 Poschlod P, Biewer H (2005) Diaspore and gap availability limiting species richness in wet meadows. Folia Geobot 40(1):13–34 Poschlod P, Jordan S (1992) Wiederbesiedlung eines aufgeforsteten Kalkmagerrasenstandortes nach Rodung. Z Ökol Natschutz 1:119–139 Poschlod P, Kleyer M, Jackel A-K, Dannemann A, Tackenberg O (2003) BIOPOP—a database of plant traits and internet application for nature conservation. Folia Geobot 38:263–271 Poschlod P, Meindl C, Sliva J, Herkommer U, Jäger M, Schuckert U, Seemann A, Ullmann A, Wallner T (2007) Natural revegetation and restoration of drained and cut-over raised bogs in Southern Germany—a comparative analysis of four longterm monitoring studies. Global Environ Res 11:205–216 Poschlod P, Muhle H (1985) Beobachtungen zur Vegetations- und Bodenentwicklung in Kalksteinbrüchen der Schwäbischen Alb. Münstersche Geogr Arb 20:199–212 Poschlod P, WallisDeVries MF (2002) The historical and socioeconomic perspective of calcareous grasslands—lessons from the distant and recent past. Biol Conserv 104:361–376 Postma-Blaauw MB, de Goede RGM, Bloem J, Faber JH, Brussaard L (2012) Agricultural intensification and de-intensification differentially affect taxonomic diversity of predatory mites, earthworms, enchytraeids, nematodes and bacteria. Appl Soil Ecol 57:39–49 Pott R (1988) Die Entstehung von Vegetationstypen und Pflanzengesellschaften unter dem Einfluß des Menschen. Düsseld Geobot Koll 5:27–54 Pott R (1992) Nacheiszeitliche Entwicklung des Buchenareals und Differenzierung der mitteleuropäischen Buchenwaldgesellschaften. Seminarber Naturschutzz Nordrhein-­Westf 12:6–18 Pott R (1993) Farbatlas Waldlandschaften. Ulmer, Stuttgart Pott R (1995) Die Pflanzengesellschaften Deutschlands, 2nd edn. Ulmer, Stuttgart Pott R, Hüppe J (1991) Die Hudelandschaften Nordwestdeutschlands. Abh Westfäl Mus Natkd 53:1– 313 Pott R, Hüppe J (2001) Flussauen- und Vegetationsentwicklung an der mittleren Ems. Abh Westfäl Mus Natkd 63(2):1–119 Pott R, Remy D (2000) Gewässer des Binnenlandes. Ulmer, Stuttgart Pottgießer T, Sommerhäuser M (2004) Fließgewässertypologie Deutschlands: Die Gewässertypen und

ihre Steckbriefe als Beitrag zur Umsetzung der EU Wasserrahmenrichtlinie. In: Steinberg C, Calmano W, Klapper H, Wilken WD (eds) Handbuch Angewandte Limnologie. 19. Ergänzungslieferung. ecomed, Landsberg Potthast T (2005) Umweltforschung und das Problem epistemisch-moralischer Hybride. In: Baumgärtner S, Becker C (eds) Wissenschaftsphilosophie interdisziplinärer Umweltforschung. Metropolis, Marburg, pp 87–100 Potts SG, Roberts SPM, Dean R, Marris G, Brown MA, Jones R, Neumann P, Settele J (2010) Declines of managed honey bees and beekeepers in Europe. J Apicult Res 49:15–22 Pouliot A, Ryan JC (2013) Fungi: an entangled exploration. Philos Activ Nat 10:1–5 Pouliot R, Hugron S, Rochefort L (2015) Sphagnum farming: a long-term study on producing peat moss biomass sustainably. Ecol Eng 74:135–147 Power SA, Ashmore MR, Cousins DA, Ainsworth N (1995) Long term effects of enhanced nitrogen deposition on a lowland dry heath in southern Britain. Water Air Soil Pollut 85:1701–1706 Prach K (1987) Succession of vegetation on dumps from strip coal mining, N.W.  Bohemia. Czechoslovakia. Folia Geobot. Phytotax 22:339–354 Prach K (2013) Vegetation development in central European coal mining sites. In: Frouz J (ed) Soil biota and ecosystem development in postmining sites. CRC Press, Boca Raton, pp 38–52 Prach K, Hobbs RJ (2008) Spontaneous succession versus technical reclamation in the restoration of disturbed sites. Restor Ecol 16:363–366 Prach K, Jongepierov I, Řehounková K, Fajmon K (2014) Restoration of grasslands on exarable land using regional and commercial seed mixtures and spontaneous succession: successional trajectories and changes in species richness. Agric Ecosyst Environ 182:131–136 Prach K, Pyšek P (2001) Using spontaneous succession for restoration of human-disturbed habitats: experience from Central Europe. Ecol Eng 17: 55–62 Prasad G (2012) Restoration and conservation ecology. Discovery Publishing, New Delhi Prasse R, Ristow M (1995) Die Gefäßpflanzenflora einer Berliner Güterbahnhofsfläche (Schöneberger Südgelände) im vierten Jahrzehnt der Sukzession. Verh Bot Ver Berlin Brandenb 128:165–192 Prasuhn V, Liniger H, Gisler S, Herweg K, Candinas A, Clement JP (2013) A high-resolution soil erosion risk map of Switzerland as strategic policy support system. Land Use Pol 32:281–291 Preising E (1949) Nardo-Callunetea. Zur Systematik der Zwergstrauch-Heiden und Magertriften Europas mit Ausnahme des Mediterran-Gebietes, der

677 References

Arktis und der Hochgebirge. Mitt Flor-­ soziol Arbgem NF 1:12–25 Preising E, Vahle HC, Brandes D, Hofmeister H, Tüxen J, Weber HE (1990) Die Pflanzengesellschaften Niedersachsens—Bestandesentwicklung, Gefährdung und Schutzprobleme. Salzpflanzengesellschaften der Meeresküste und des Binnenlandes. Natursch Landschpfl Niedersachsen 20:1–44 Prentice C (1988) Records of vegetation in time and space: the principles of pollen analysis. In: Huntley B, Webb T III (eds) Vegetation history. Kluwer Academic Publishers, Dordrecht, pp 17–42 Pretty JN, Mason CF, Nedwell DB, Hine RE, Leaf S, Dils R (2003) Environmental costs of freshwater eutrophication in England and Wales. Environ Sci Technol 37(2):201–208 Pretzsch H, Durský J (2002) Growth reaction of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L) to possible climatic changes in Germany. A sensitivity study. Forstwiss Centralbl 121(1):145–154 Pretzsch H, Utschig H (2000) Wachstumstrends der Fichte in Bayern. Mitt Bayer Staatsforstverw 49:1–170 Preuss S (2012) Expansion rate & dispersal pattern of the non-native Roesel’s Bush-Cricket in Sweden. Dissertation, University of Uppsala Preußner K (1998) Wälder und Forsten auf Kippenstandorten. In: Pflug W (ed) Braunkohlentagebau und Rekultivierung. Landschaftsökologie—Folgenutzung—Naturschutz. Springer, Heidelberg, pp 600–610 Price C (2017) Landscape economics. Palgrave Macmillan, London Price EAC (2003) Lowland grassland and heathland habitats. Psychology Press, London Priede A (2011) Phytosociology and dynamics of calcareous grasslands in Ķemeri National Park. Latvia. Estonian J Ecol 60(4):284–304 Prikryl I, Kabrna M (2016) Findings from flooding residual pits remaining after coal mining in the Czech Republic. In: Drebenstedt C, Paul M (eds) Mining meets water—conflicts and solutions, International Mine Water Association Symposium 2016, Leipzig, pp 201–208 Primack R, Drayton B (1997) The experimental ecology of reintroduction. Plant Talk 97:25–28 Primack RB (2002) Essentials of conservation biology, 3rd edn. Sinauer Associates, Sunderland Probo M, Massolo A, Lonati M, Bailey DW, Gorlier A, Maurino L, Lombardi G (2013) Use of mineral mix supplements to modify the grazing patterns by cattle for the restoration of sub-­alpine and alpine shrub-encroached grasslands. Rangel J 35:85–93 Pröbstl U (2006) Kunstschnee und Umwelt. Entwicklung und Auswirkungen der technischen Beschneiung. Haupt, Bern

Pröbstl U, Ammer U, Karpf S (1998) Wege zu einer verbesserten Begrünung von Schadstellen im Hochgebirge. Jb Ver Schutz Bergwelt 63:57–77 Prochnow A, Schlauderer R (2002) Verfahren der Landnutzung zur Offenhaltung ehemaliger Truppenübungsplätze. Agrartech Forsch 8(3):47–54 proHolz Austria (2017) Waldfläche und Waldvorrat in Österreich. Arbeitsgemeinschaft der österreichischen Holzwirtschaft. http://www.­proholz.­at/ co2-klima-wald/waldflaeche-undvorrat/waldflaeche-und-waldvorrat-in-oesterreich/. Accessed 9 July 2017 Prokop G, Jobstmann H, Schönbauer A (2011) Report on best practices for limiting soil sealing and mitigating its effects. Study contracted by the European Commission, Technical Report-2011–50. DG Environment, Brussels Promny M, Hammer M, Busch N (2014) Untersuchungen zur Wirkung der Deichrückverlegung auf das Hochwasser vom Juni 2013 an der unteren Mittelelbe. Korrespond Wasserwirtsch 6:344–349 Prøsch-Danielsen L, Simonsen A (2000) The deforestation patterns and the establishment of the coastal heathland of Southwestern Norway. AmS-Skrifter 15:1–52 Protokoll Bodenschutz (1991) Protokoll zur Durchführung der Alpenkonvention von 1991 im Bereich Bodenschutz. http://www.­alpconv.­org/de/ convention/framework/Documents/protokoll_d_ bodenschutz.­pdf. Accessed 23 Oct 2016 Provoost S, Jones MLM, Edmondson SE (2011) Changes in landscape and vegetation of coastal dunes in northwest Europe: a review. J Coast Conserv 15:207–226 Prüter J (2004) Schutz und Erhaltung der Heide— Aktuelle Ansätze aus europäischer Perspektive. NNA Ber 17(2):22–26 Prüter J, Lütkepohl M, Wübbenhorst J (2004) Untersuchungen zur Bestandsentwicklung ausgewählter Brutvogelarten im NSG “Lüneburger Heide” als Beitrag zur Entwicklungskontrolle im Heidemanagement. NNA Ber 17(2):165–175 Pryor SN, Curtis TA, Peterken GF (2002) Conversion to native woodland or conservation of ancient woodland communities? Woodland Trust. http:// www.­woodlandtrust.­o rg/mediafile/100160196/ FRIresearch.­pdf. Accessed 1 Aug 2017 Puhe J, Ulrich B (2012) Global climate change and human impacts on forest ecosystems: postglacial development, present situation and future trends in Central Europe. Ecol Stud 143:1–592 Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29(4):529–540 Pungetti G, Oviedo G, Hooke D (eds) (2012) Sacred species and sites: advances in biocultural conservation. Cambridge University Press, Cambridge

678

References

Puppim de Oliveira JA, Balaban O, Doll CNH, Moreno-Peñaranda R, Gasparatos A, Iossifova D, Suwa A (2011) Cities and biodiversity: perspectives and governance challenges for implementing the convention on biological diversity (CBD) at the city level. Biol Conserv 144(5): 1302–1313 Purps J (2013) Neuanlage von Auwäldern in der Lenzen er Elbtalaue—Evaluation des Allwuchses vor dem ersten Hochwasserereignis. In: Struck A, Garbe H, Felinks B Auenreport Spezial: Die Deichrückverlegung bei Lenzen. Erste Ergebnisse der wissenschaftlichen Begleitung Ministerium für Umwelt, Gesundheit und Verbraucherschutz des Landes Brandenburg, Potsdam, pp 37–43 Pusch J (2007) Die naturnahen Binnensalzstellen Thüringens—ein aktueller Gesamtüberblick 2005. In: Thüringer Ministerium für Landwirtschaft, Naturschutz und Umwelt (ed) Binnensalzstellen Mitteleuropas. Internationale Tagung, 8–10 Sep 2005, Bad Frankenhausen, pp 37–40 Putz FE, Romero C (2015) Futures of tropical forests (sensu lato). Biotropica 46(4):495–505 Pyhälä M, Fleming-Lehtinen V, Laamanen M (eds) (2014) Eutrophication status of the Baltic Sea 2007–2011. A concise thematic assessment. Baltic Sea Environ Proc 143:1–41 Pykälä J (2000) Mitigating human effects on European biodiversity through traditional animal husbandry. Conserv Biol 14:705–712 Pyšek P (1993) Factors affecting the diversity of flora and vegetation in central European settlements. Vegetatio 106:89–100 Pyšek P, Hulme P (2009) Invasion biology is a discipline that’s too young to die. Nature 460:324 Pyšek P, Prach K (1993) Plant invasions and the role of riparian habitats: a comparison of four species alien to Central Europe. J Biogeogr 20:413–420 Pyšek P, Pyšek A (1995) Invasion of Heracleum mantegazzianum in different habitats of the Czech Republic. J Veg Sci 6:711–718 Pyšek P, Bacher S, Chytrý M, Jarošík V, Wild J, Celesti-Grapow L, Gassó N, Kenis M, Lambdon PW, Nentwig W, Pergl J, Roques A, Sádlo J, Solarz W, Vilà M, Hulme PE (2010) Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Glob Ecol Biogeogr 19:317–331 Pywell RF, Webb NR, Putwain PD (1994) Soil fertility and its implications for the restoration of heathland on farmland in Southern Britain. Biol Conserv 70:169–181 Pywell RF, Webb NR, Putwain PD (1995) A comparison of techniques for restoring heathland on abandoned farmland. J Appl Ecol 32:400–411 Pywell RF, Webb NR, Putwain PD (1996) Harvested heather shoots as a resource for heathland restoration. Biol Conserv 75:247–254

Pywell RF, Putwain PD, Webb NR (1997) The decline of heathland seed populations following the conversion to agriculture. J Appl Ecol 34:949–960 Pywell RF, Bullock JM, Hopkins A, Walker KJ, Sparks TH, Burkes MJW, Peel S (2002a) Restoration of speciesrich grassland on arable land: assessing the limiting processes using a multi-site experiment. J Appl Ecol 39:294–309 Pywell RF, Pakeman RJ, Allchin EA, Bourn NAD, Warman EA, Walker KJ (2002b) The potential for lowland heath regeneration following plantation removal. Biol Conserv 108:247–258 Pywell RF, Warman EA, Carvell C, Sparks TH, Dicks LV, Bennett D, Wright A, Chritchley CNR, Sherwood A (2005) Providing foraging resources for bumblebees in intensively farmed landscapes. Biol Conserv 121:479–494 Pywell RF, Meek WR, Webb NR, Putwain PD, Bullock JM (2011) Long-term heathland restoration on former grassland: the results of a 17-year experiment. Biol Conserv 144:1602–1609 Qu C, Li B, Wu H, Wang S, Giesy JP (2015) Multipathway assessment of human health risk posed by polycyclic aromatic hydrocarbons. Environ Geochem Health 37:587–601 Quilliam RS, van Niekerk MA, Chadwick DR, Cross P, Hanley N, Jones DL, Vinten AJA, Willby N, Oliver DM (2015) Can macrophyte harvesting from eutrophic water close the loop on nutrient loss from agricultural land? J Environ Manag 152:210–217 Quinger B (2002) Wiederherstellung von artenreichem Magergrünland (Arrhenatherion) und Magerrasen (Mesobromion) auf Grünlandstandorten durch Mahd im Bayerischen Alpenvorland. Schrreihe Bayer Landesamt Umweltsch 167:37–52 Quinton JN, Govers G, Van Oost K, Bardgett RD (2010) The impact of agricultural soil erosion on biogeochemical cycling. Nat Geosci 3(5):311–314 Quinty F, Rochefort L (2003) Peatland restoration guide. 2nd ed. http://www.­gret-perg.­ulaval.­ca/ uploads/tx_centrerecherche/Peatland_Restoration_guide_2ndEd_01.­pdf. Accessed 14 Jan 2017 Rabalais NN, Díaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619 Rabitsch W, Nehring S (2017) Naturschutzfachliche Invasivitätsbewertung: Dreissena polymorpha— Wandermuschel. In: Rabitsch W, Nehring S (eds) Naturschutzfachliche Invasivitätsbewertungen für in Deutschland wild lebende gebietsfremde aquatische Pilze, Niedere Pflanzen und Wirbellose Tiere. BfN Skripten 458:112–113 Rachewiltz S, Rauchegger A, Ganner C (eds) (2015) Papaver—Mohn. Der Mohn in Mythos, Volksmedizin, Speise- und Sachkultur Tirols. Schr Landwirtschmus Brunnenburg 16:1–123

679 References

Rackham O (1980) Ancient woodland, its history, vegetation and uses in England. Arnold, London Rackham O (1988) Trees and woodland in a crowded landscape—the cultural landscape of the British Isles. In: Birks HH, Birks HJB, Kaland PE, Moe D (eds) The cultural landscape—past, present and future. Cambridge University Press, Cambridge, pp 53–78 Radford JQ, Bennett AF, Cheers GJ (2005) Landscape-level thresholds of habitat cover for woodland-­ dependent birds. Biol Conserv 124:317–337 Radoglou K, Dobrowolska D, Spyroglou G, Nicolescu VN (2008) A review on the ecology and silviculture of limes (Tilia cordata Mill., Tilia platyphyllos Scop. and Tilia tomentosa Moench.) in Europe. COST Action. http://www.­valbro.­unifreiburg.­de. Accessed 12 Sep 2017 Radtke A, Toe D, Berger F, Zerbe S, Bourrier F (2013) Managing coppice forests for rockfall protection: lessons from modelling. Ann For Sci 71(4): 485–494 Raehse S (1999) Veränderungen der hessischen Grünlandvegetation seit Beginn der 50er Jahre am Beispiel ausgewählter Tal- und Bergregionen Nord- und Mittelhessens. Dissertation, University of Kassel. http://www.­uni-kassel.­de/upress/ online/frei/Textteil.­Raehse.­pdf. Accessed 27 Feb 2017 Raetz A (1936) Die Insel Rügen, wirtschaftsgeographisch betrachtet. Dissertation, University of Greifswald Raffaelli D (2000) Interactions between macro-algal mats and invertebrates in the Ythan estuary, Aberdeenshire, Scotland. Helgol Mar Res 54:71–79 RAFTS (2016) Stakeholder engagement. Inform Guid Not 4:1–9 Rahmann G (2000) Biotoppflege als neue Funktion und Leistung der Tierhaltung—dargestellt am Beispiel der Entbuschung von Kalkmagerrasen durch Ziegenbeweidung. Schrreihe Agraria 28:1–384 Raji B, Tenpierik MJ, van den Dobbelsteen A (2015) The impact of greening systems on building energy performance: a literature review. Renew Sust Energ Rev 45:610–623 Ramakrishnan PS (2007) Participatory use of traditional ecological knowledge for restoring natural capital in agroecosystems of rural India. In: Aronson J, Milton SJ, Blignaut JN (eds) Restoring natural capital: Science, business and practice. Island Press, Washington, DC, pp 137–145 Rametsteiner E, Simula M (2003) Forest certification—an instrument to promote sustainable forest management? J Environ Manag 67:87–98 Ramirez-Llodra E, Tyler PA, Baker MC, Bergstad OA, Clark MR, Escobar E, Levin LA, Menot L, Rowden AA, Smith CR, Van Dover CL (2011)

Man and the last great wilderness: human impact on the deep sea. PLoS One 6(8):e22588 Rana BC (1998) Damaged ecosystems and restoration. World Scientific, Singapore Rana RS, Singh P, Kandari V, Singh R, Dobhal R, Gupta S (2017) A review on characterization and bioremediation of pharmaceutical industries’ wastewater: an Indian perspective. Appl Water Sci 7(1):1–12 Randi E, Hulva P, Fabbri E, Galaverni M, Galov A, Kusak J, Bigi D, Černá Bolfíková B, Smetanová M, Caniglia R (2014) Multilocus detection of wolf x dog hybridization in Italy, and guidelines for marker selection. PLoS One 9(1):e86409 Ranwell DS (1972) Ecology of salt marshes and sand dunes. Chapman & Hall, London Rappaport RA (1968) Pigs for the ancestors. Yale University Press, New Haven Rapport D (1995) Ecosystem health: more than a metaphor? Environ Value 4(4):287–309 Rapport DJ, Fyfe WS, Costanza R, Spiegel J, Yassi A, Böhm GM, Patil GP, Lannigan R, Anjema CM, Whitford WG, Horwitz P (2001) Ecosystem health: definitions, assessment, and case studies, Ecology, vol II. EOLSS, Oxford, pp 1–40 Raspé O, Findlay C, Jacquemart A-L (2000) Biological flora of the British Isles: Sorbus aucuparia L. J Ecol 88:910–930 Rasran L, Vogt K, Jensen K (2006) Seed content and conservation evaluation of hay material of fen grasslands. J Nat Conserv 14:34–45 Rasran L, Vogt K, Jensen K (2007) Effects of topsoil removal, seed transfer with plant material and moderate grazing on restoration of riparian fen grasslands. Appl Veg Sci 10:451–460 Rat der Europäischen Gemeinschaften (1992) Richtlinie 92/43/EWG des Rates zur Erhaltung der natürlichen Lebensräume sowie der wildlebenden Tiere und Pflanzen. http://eur-lex.­europa.­eu/legalcontent/DE/TXT/?uri=CELEX%3A31992L0043. Accessed 16 Oct 2016 Raudsepp U, Laanemets J, Maljutenko I, Hongisto M, Jalkanen J-P (2013) Impact of ship-­ borne nitrogen deposition on the Gulf of Finland ecosystem: an evaluation. Oceanologia 55(4):837–857 Raunkiaer C (1934) The life-forms of plants and statistical plant geography. Clarendon Press, Oxford Raven PH (2016) Four commentaries on the pope’s message on climate change and income inequality. I.  Our world and pope Francis’ encyclical letter, Laudato si’. Q Rev Biol 91(3):247–260 Ravera O (ed) (1989) Ecological assessment of environmental degradation, pollution and recovery. Elsevier, Amsterdam Read DJ (1996) The structure and function of the ericoid mycorrhizal root. Ann Bot 77:365–374 Read DJ, Haselwandter K (1981) Observations on the mycorrhizal status of some plant communities. New Phytol 88:341–352

680

References

Rebele F (2009) Renaturierung von Ökosystemen in urban-industriellen Landschaften. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer Spektrum, Heidelberg, pp 389–422 Rebele F, Dettmar J (1996) Industriebrachen—Ökologie und Management. Ulmer, Stuttgart REC Caucasus (2014) Regional Environmental Centre for the Caucasus (REC Caucasus). http:// reccaucasus.­am. Accessed 20 Jun 2017 Reddington CL, Butt EW, Ridley DA, Artaxo P, Morgan WT, Coe H, Spracklen DV (2015) Air quality and human health improvements from reductions in deforestation-related fi re in Brazil. Nat Geosci 8:768–771 Redecker B, Finck P, Härdtle W, Riecken U, Schroder E (2002) Pasture landscapes and nature conservation. Springer, Heidelberg Redl H (1999) Die Reblaus auch in Österreich (beängstigend?) im Kommen. Pflarzt 52:8–12 Redwood M (ed) (2009) Agriculture in urban planning, Generating livelihoods and food security. Earthscan Publ, London Reed MS (2008) Stakeholder participation for environmental management: a literature review. Biol Conserv 141:2417–2431 Reed MS, Graves A, Dandy N, Posthumus H, Hubacek K, Morris J, Prell C, Quinn CH, Stringer LC (2009) Who’s in and why? A typology of stakeholder analysis methods for natural resource management. J Environ Manag 90: 1933–1949 Reed MS, Stringer LC, Dougill AJ, Perkins JS, Atlhopheng JR, Mulale K, Favretto N (2015) Reorienting land degradation towards sustainable land management: linking sustainable livelihoods with ecosystem services in rangeland systems. J Environ Manag 151:472–485 Reeders HH, Bij de Vaate A (1990) Zebra mussels (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia 200(201):437–450 Reeders HH, Bij de Vaate A (1992) Bioprocessing of polluted suspended matter from the water column by the zebra mussel (Dreissena polymorpha Pall.). Hydrobiologia 239:53–63 Reeders HH, Bij de Vaate A, Slim FJ (1989) The filtration rate of Dreissena polymorpha (Bivalvia) in three Dutch lakes with reference to biological water quality management. Freshw Biol 22: 133–141 Rees WE, Farley J, Vesely ET, De Groot R (2007) Valuing natural capital and the costs and benefits of restoration. In: Aronson J, Milton SJ, Blignaut JN (eds) Restoring natural capital: the science, business and practise. Island Press, Washington, DC, pp 227–236

Reever Morghan KJ, Seastedt TR (1999) Effects of soil nitrogen reduction on non-native plants in restored grasslands. Restor Ecol 7:51–55 Regato P, Berrahmouni N (2005) Using nontimber forest products for restoring environmental, social, and economic functions. In: Mansourian S, Vallauri D, Dudley N (eds) Forest restoration in landscapes, Beyond planting trees. Springer, New York, pp 215–222 Regierungspräsidium Gießen (2017) Renaturierungsmaßnahmen an Fließgewässern. Neophytenprävention im Rahmen von baulichen Maßnahmen. https://rp-giessen.­h essen.­d e/sites/rp-giessen.­ hessen.­d e/files/content-downloads/Flyer%20 Neopyhtenpr%C3%A4vention%20Renaturierung%20Flie%C3%9Fgew%C3%A4sser.­p df. Accessed 31 May 2017 Region Eifel (2017) Förderprogramme. Hilfen zum Erhalt von Streuobstwiesenbeständen. Kompetenznetzwerk Streuobstwiesen. https://www.­ streuobstwiesen.­net/content.­php/96?selected=107. Accessed 21 Aug 2017 Řehounková K, Prach K (2006) Spontaneous vegetation succession in disused gravel-sand pits: role of local site and landscape factors. J Veg Sci 17: 583–590 Řehounková K, Řehounek J, Prach K (eds) (2011) Near-natural restoration vs. technical reclamation of mining sites in the Czech Republic. Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice Reichel C, Frömming UU (2014) Participatory mapping of local disaster risk reduction knowledge: an example from Switzerland. Int J Disaster Risk Sci 5:41–54 Reichelt G (1986) Lasst den Rhein leben! Girardet, Düsseldorf Reichholf J (1982) Verdrängte der Fasan Phasianus colchicus das Birkhuhn Tetrao tetrix? Anz Ornithol Ges Bayern 21:3–19 Reichholf JH (1996) In dubio pro reo! Mehr Toleranz für fremde Arten. Nationalpark 91(2):21–26 Reichholf JH (2008) Ende der Artenvielfalt? Gefährdung und Vernichtung von Biodiversität, 2nd edn. Fischer, Frankfurt a. M Reichl FX (2002) Taschenatlas der Toxikologie: Substanzen, Wirkungen, Umwelt, 2nd edn. Georg Thieme, Stuttgart Reid KA, Williams KJH, Paine MS (2011) Hybrid knowledge: place, practice, and knowing in a volunteer ecological restoration project. Ecol Soc 16(3):19 Reidl K (1989) Floristische und vegetationskundliche Untersuchungen in der Stadt Essen als Grundlagen für Naturschutzmaßnahmen. Verh Ges Ökol 18:155–162 Reif A, Wagner U, Bieling C (2005) Analyse und Diskussion der Erhebungsmethoden und Ergebnisse

681 References

der zweiten Bundeswaldinventur vor dem Hintergrund ihrer ökologischen und naturschutzfachlichen Interpretierbarkeit. BfN Skripten 158:1–63 Reif A, Gärtner S (2007) Die natürliche Verjüngung der laubabwerfenden Eichenarten Stieleiche (Quercus robur L.) und Traubeneiche (Quercus petraea Liebl.)—eine Literaturstudie mit besonderer Berücksichtigung der Waldweide. Waldökol online 5:79–116 Reif A, Przybilla M (1995) Zur Regeneration der Fichte (Picea abies) in den Hochlagen des Nationalparks Bayerischer Wald. Hoppea 56:467–514 Reif A, Baumgärtel R, Dister E, Schneider E (2016) Zur Natürlichkeit der Stieleiche (Quercus robur L.) in Flussauen Mitteleuropas—eine Fallstudie aus dem Naturschutzgebiet “Kühkopf-Knoblochsaue” am hessischen Oberrhein. Waldökol Landschforsch Natursch 15:69–92 Reinhardt F, Herle M, Bastiansen F, Streit B (2003) Ökonomische Folgen der Ausbreitung von Neobiota. UBA-Texte 79(3):1–248 Reinhardt I, Kluth G, Nowak N, Mysłajek R (2013) A review of wolf management in Poland and Germany with recommendations for future transboundary collaboration. BfN Skripten 356:1–115 Reise K (2005) Coast of change: habitat loss and transformations in the Wadden sea. Helgol Mar Res 59:9–12 Reise K, Gollasch S, Wolff WJ (1999) Introduced marine species of the North Sea coasts. Helgol Meeresunters 52(3/4):219–234 Reisigl H, Keller R (1994) Alpenpflanzen im Lebensraum. Fischer, Jena Reiter S, Meitzner V (2010) Ökologische Bewertung und Planung mit Laufkäfern. Ein Handbuch für die tierökologische Bioindikation. Rohn, Detmold Reitzel K, Hansen J, Andersen FO, Hansen KS, Jensen HS (2005) Lake restoration by dosing aluminum relative to mobile phosphorus in the sediment. Environ Sci Technol 39:4134–4140 Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661 Relyea R, Hoverman J (2006) Assessing the ecology in ecotoxicology: a review and synthesis in freshwater systems. Ecol Lett 9:1157–1171 Remmert H (1991) Das Mosaik-Zyklus-Konzept und seine Bedeutung für den Naturschutz: Eine Übersicht. Laufen Sembeitr 5(91):5–15 Ren H, Yang L, Liu N (2008) Nurse plant theory and its application in ecological restoration in lower subtropics of China. Prog Nat Sci 18(2):137–142 Renker C, Zobel M, Öpik M, Allen MF, Allen EB, Vosátka M, Rydlová J, Buscot F (2004) Structure, dynamics, and restoration of plant communities: Do arbuscular mycorrhizae matter? In: Temperton VM, Hobbs RJ, Nuttle T, Halle S (eds)

Assembly rules and restoration ecology: bridging the gap between theory and practice. Island Press, Washington, DC, pp 189–229 Rennwald E (2000) Verzeichnis und Rote Liste der Pflanzengesellschaften Deutschlands Schrreihe Vegkd 35:1–800 Rentz M (2004) Transdiziplinarität der Ökologie. In: Brand F, Schaller F, Völker H (eds) Transdisziplinarität. Universitätsverlag Göttingen, Bestandsaufnahme und Perspektiven, pp 143–153 Reutter M, Matzdorf B (2013) Leistungen artenreichen Grünlands. In: Grunwald K, Bastian O (eds) Ökosystemdienstleistungen—Konzepte, Methoden, Fallbeispiele. Springer, Heidelberg, pp 216–224 Rewald B, Falik O, Godbold D, Rachmilevitch S (2014) Ecophysiology of root systems-­environment interaction. Frontiers E-books, Lausanne Reynolds JF, Stafford Smith DM (2002) Global desertification: do humans cause deserts? Dahlem University Press, London Rheinheimer G (2013) Meereskunde der Ostsee, 2nd edn. Springer, Heidelberg Rhind PM, Jones R (2009) A framework for the management of sand dune systems in Wales. J Coast Conserv 13:15–23 Ricciardi A, Atkinson SK (2004) Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecol Lett 7:781–784 Ricciardi A, Simberloff D (2009) Assisted colonization is not a viable conservation strategy. Trends Ecol Evol 24:248–253 Rice J, Arvanitidis C, Borja A, Frid C, Hiddink J, Krause J, Lorance P, Ragnarsson SA, Sköld M, Trabucco B (2010) Marine strategy framework directive—task group 6 report: seafloor integrity. EUR 24334 EN—joint research centre, Office for Official Publications of the European Communities, Luxembourg Rice J, Arvanitidis C, Borja A, Frid C, Hiddink JG, Krause J, Lorance P, Ragnarsson SA, Sköld M, Trabucco B, Enserink L, Norkko A (2012) Indicators for sea-floor integrity under the European marine strategy framework directive. Ecol Indic 12(1):174–184 Richardson DM (2011) Fifty years of invasion ecology: the legacy of Charles Elton. Wiley, Chichester Richardson L, Loomis J, Kroeger T, Casey F (2015) The role of benefit transfer in ecosystem service valuation. Ecol Econ 115:51–58 Richter K, Teubert H, Böckelmann R, Teumer C, Pietzsch M, Kipping J, Hüttner M, Franz M, Röhling S, Micksch R, Everz S, Laermer T (2012) Wissenschaftliche Begleitung verschiedener forstlicher Bewirtschaftungsmaßnahmen im NSG “Burgaue” (im LSG “Leipziger Auwald”) zur Optimierung der forstlichen Planungen und

682

References

Pflegemaßnahmen im Sinne der nachhaltigen Sicherung und Verbesserung der Biodiversität. Abschlussbericht im Auftrag der Stadt Leipzig. http://www.­leipziger-auwald.­de/. Accessed 24. April 2017 Rickert B-H, Drews H (2009) Ein erster Schritt zu einem Populationsmanagement für Pulsatilla pratensis (L.) Mill in Schleswig-Holstein? Kieler Not Pflanzenkde 36(2):37–41 Ridker RG, Henning JA (1967) The determinants of residential property values with special reference to air pollution. Rev Econ Statistics 29(2):246–257 Riecken U, Finck P, Raths U, Schröder E, Ssymank A (2006) Rote Liste der gefährdeten Biotoptypen Deutschlands. Zweite fortgeschriebene Fassung. Natschutz Biol Vielfalt 34:1–318 Riecken U, Finck P, Schröder E (2002) Significance of pasture landscapes for nature conservation and extensive agriculture. In: Redecker B, Härdtle W, Finck P, Riecken U, Schröder E (eds) Pasture landscapes and nature conservation. Springer, Heidelberg, pp 423–435 Riedel W, Lange H, Jedicke E, Reinke M (2016) Landschaftsplanung. Springer Spektrum, Heidelberg Riedmüller U, Mischke U, Pottgiesser T, Böhmer J, Deneke R, Ritterbusch D, Stelzer D, Hoehn E (2013) Steckbriefe der deutschen Seetypen. Begleittext und Steckbriefe. Im Auftrag des Umweltbundesamtes. https://www.­ umweltbundesamt.­de/. Accessed 3 May 2017 Riegel G, Luding H, Haase R, Hartmann P, Jeschke M, Joas C, Kiehl K, Müller N, Preiß H, Wagner C, Wiesinger K (2007) Erhaltung und Entwicklung von Flussschotterheiden. Arbeitshilfe Landschaftspflege, Bayerisches Landesamt für Umwelt, Augsburg. http://www.­bestellen.­bayern.­de/shoplink/lfu_nat_00118.­htm. Accessed 9 Dec 2017 Rieger J, Stanley J, Traynor R (2014) Project planning and management for ecological restoration. Island Press, Washington, DC Riek W, Hornschuch F, Ostermaier S (2014) Waldmoore und Moorwälder. In: Luthardt V, Zeitz J (eds) Moore in Brandenburg und Berlin. Natur + Text, Rangsdorf, pp 168–180 Rieuwerts JS, Thornton I, Farago ME, Ashmore MR (1998) Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem Spec Bioavailab 10(2):61–75 Riksen M, Ketner-Oostra R, van Turnhout C, Nijssen M, Goossens D, Jungerius PD, Spaan W (2006) Will we lose the last active inland drift sands of Western Europe? The origin and development of the inland drift-sand ecotype in The Netherlands. Landsc Ecol 21:431–447 Riksen M, Spaan W, Stroosnijder L (2008) How to use wind erosion to restore and maintain the inland

drift-sand ecotype in the Netherlands? J Nat Conserv 16(1):26–43 Riley JD, Craft IW, Rimmer DL, Smith RS (2004) Restoration of magnesian limestone grassland: optimizing the time for seed collection by vacuum harvesting. Restor Ecol 12:311–317 Ring I, Hansjürgens B, Elmquist T, Wittmer H, Sukhdev P (2010) Challenges in framing the economics of ecosystems and biodiversity: The TEEB initiative. Curr Opin Environ Sustain 2:15–26 Ringenberg J (2004) Sind die Neophyten von heute die Rote-Liste-Arten von morgen? In: Landesamt für Natur und Umwelt des Landes Schleswig-Holstein (ed) Neophyten in Schleswig-­Holstein: Problem oder Bereicherung? Dokumentation einer Tagung im LANU am 31.03.2004. Schrreihe LANU SH—Natur 10:33–38 Ringler A, Dingler B (2005) Moorentwicklungskonzept Bayern (MEK)—Moortypen in Bayern. Schrreihe Bayer Landesamt Umweltsch 180:1–103 Rinkevich S, Greenwood K, Leonetti C (2011) Traditional ecological knowledge for application by service scientists. US Fish and wildlife service, Native American program. https://www.­fws.­gov/ nativeamerican/pdf/tek-fact-sheet.­pdf. Accessed 12 Aug 2017 Ripl W (1976) Biochemical oxidation of polluted lake sediment with nitrate: a new lake restoration method. Ambio 5(3):132–135 Ripl W (1978) Oxidation of lake sediments with nitrate—a restoration method for former recipients. Dissertation, University of Lund Ripl W, Lindmark G (1979) The impact of algae and nutrient composition on sediment exchange dynamics. Arch Hydrobiol 86:45–65 Ripple W, Beschta R (2012) Large predators limit herbivore densities in northern forest ecosystems. Eur J Wildl Res 58:733–742 Ripple WJ, Beschta RL, Fortin JK, Robbins CT (2014) Trophic cascades from wolves to grizzly bears in Yellowstone. J Anim Ecol 83:223–233 Ristow M, Herrmann A, Illig H, Klemm G, Kummer V, Kläge HC, Machatzi B, Rätzel S, Schwarz R, Zimmermann F (2006) Liste und Rote Liste der etablierten Gefäßpflanzen Brandenburgs. Natschutz Landschpfl Brandenburg 15(4):1–163 Ritchie M, Wordsworth J (2010) Identifying the historic environment in Scotland’s forests and woodlands. Forestry commission scotland practice guide. Forestry Commission, Edinburgh Rixen C (2002) Artificial snow and snow additives on ski pistes: interactions between snow cover, soil and vegetation. Dissertation, University of Zurich Rixen C, Teich M, Lardelli C, Gallati D, Pohl M, Pütz M, Bebi P (2011) Winter tourism and climate change in the Alps: an assessment of resource consumption, snow reliability, and future snowmaking potential. Mt Res Dev 31(3):229–236

683 References

Robertson DP, Hull RB (2001) Beyond biology: toward a more public ecology for conservation. Conserv Biol 15:970–979 Robinson DA, Emmett BA, Reynolds B, Rowe EC, Spurgeon D, Keith AM, Lebron I, Hockley N (2012) Soil natural capital and ecosystem service delivery in a world of global soil change. In: Hester RE, Harrison RM (eds) Soils and food security. RSC, London, pp 41–68 Roche P (1994) Habitat availability and carrying capacity in the French part of the Rhine for Atlantic Salmon Salmon salar L. Water Sci Technol 29:257–265 Rochefort L (2000) Sphagnum—a keystone genus in habitat restoration. Bryologist 103(3):503–508 Rochefort L, Gauthier R, Lequéré D (1995) Sphagnum regeneration—toward an optimisation of bog restoration. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) The restoration of temperate wetlands. Wiley, Chichester, pp 423–434 Rodenkirchen H (1992) Effects of acidic precipitation, fertilization and liming on the ground vegetation of coniferous forests of Southern Germany. Water Air Soil Poll 61:279–294 Röder D, Kiehl K (2007) Ansiedlung von lebensraumtypischen Pflanzen in neu angelegten Kalkmagerrasen. Methodenvergleich zwischen Ansaat und Pflanzung. Natschutz Landschplan 39(10):304–310 Röder D, Kiehl K (2008) Vergleich des Zustandes junger und historisch alter Populationen von Pulsatilla patens (L.) Mill. in der Münchner Schotterebene. Tuexenia 28:121–132 Röder N, Grützmacher F (2012) Emissionen aus landwirtschaftlich genutzten Mooren—Vermeidungskosten und Anpassungsbedarf. Nat Landsch 87(2):56–61 Rodewald-Rudescu L (1974) Das Schilfrohr Phragmites communis Trinius. Die Binnengewässer, 27th edn. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart Rodriguez GR, Brebbia CA (eds) (2013) Coastal processes III. WIT Trans Ecol Environ 169:1–253 Rodwell JS, Morgan V, Jefferson RG, Moss D (2007) The European context of British lowland grasslands. JNCC Rep 394:1–65 Roegner GC, Diefenderfer HL, Borde AB, Thom RM, Dawley EM, Whiting AH, Zimmerman SA, Johnson GE (2008) Protocols for monitoring habitat restoration projects in the lower Columbia River and Estuary. PNNL-15793. Report by Pacific Northwest National Laboratory, National Marine Fisheries Service, and Columbia River Estuary Study Taskforce, Portland, Oregon. http://www.­ pnl.­g ov/main/publications/external/technical_ reports/PNNL-15793.­pdf. Accessed 2 July 2017 Roelofs JGM, Brandrud TE, Smolders AJP (1994) Massive expansion of Juncus bulbosus L. after

liming of acidified SW Norwegian lakes. Aquatic Bot 48:187–202 Roelofs JGM, Brouwer E, Bobbink R (2002) Restoration of aquatic macrophyte vegetation in acidified and eutrophicated shallow soft water wetlands in the Netherlands. Hydrobiologia 478:171–180 Rogers S, Casini M, Cury P, Heath M, Irigoien X, Kuosa H, Scheidat M, Skov H, Stergiou KI, Trenkel VM, Wikner J, Yunev O (2010) Marine strategy framework directive—task group 4 report: food webs. EUR 24343 EN—joint research centre, Office for Official Publications of the European Communities, Luxembourg Rogiers B, Lermytte J, De Bie E, Batelaan O (2011) Evaluating the impact of river restoration on the local groundwater and ecological system: a case study in NE Flanders. Geol Belgica 14(3/4):265–276 Rogora M, Mosello R, Arisci S, Brizzio MC, Barbieri A, Balestrini R, Waldner P, Schmitt M, Stähli M, Thimonier A, Kalina M, Puxbaum H, Nickus U, Ulrich E, Probst A (2006) An overview of atmospheric deposition chemistry over the Alps: present status and long-term trends. Hydrobiologia 562(1):17–40 Rohal C, Hambrecht K, Cranney C, Kettenring K (2017) How to restore Phragmites-invaded wetlands. Utah Agric Exp Stat Res Rep 224:1–2 Röhe P, Schröder J (2010) Grundlagen und Empfehlungen für eine nachhaltige Bewirtschaftung der Roterle in Mecklenburg-Vorpommern. Waldbesitzerverband für Mecklenburg-­ Vorpommern e.V. (ed). www.­wald-mv.­de/. Accessed 19 July 2017 Röhrig E (1996) Die Ulmen in Europa. Forstarch 67(5):179–198 Röhrig E, Bartsch N, von Lüpke B (2006) Waldbau auf ökologischer Grundlage, 7th edn. Ulmer, Stuttgart Rojas-Valencia MN, Orta de Velásquez MT, Franco V (2011) Urban agriculture, using sustainable practices that involve the reuse of wastewater and solid waste. Agric Water Manag 98(9):1388–1394 Rokich DP, Harma J, Turner SR, Sadler RJ, Tan BH (2009) Fluazifop-p-butyl herbicide: implications for germination, emergence and growth of Australian plant species. Biol Conserv 142:850–869 Rolando A, Caprio E, Negro M (2013) The effect of skipistes on birds and mammals. In: Rixen C, Rolando A (eds) The impacts of skiing and related winter recreational activities on mountain environments. Bentham eBooks, Bussum, pp 101–122 Rolauffs P, Hering D, Sommerhäuser M, Jähnig S, Rödiger S (2003) Entwicklung eines leitbildorientierten Saprobienindexes für die biologische Fließgewässerbewertung. UBA-Texte 11(3):1–137 Roleček J, Čornej II, Tokarjuk AI (2014) Understanding the extreme species richness of semi-dry grass-

684

References

lands in east-central Europe: a comparative approach. Preslia 86:13–34 Rolo V, Olivier PI, van Aarde R (2017) Tree and bird functional groups as indicators of recovery of regenerating subtropical coastal dune forests. Restor Ecol 25(5):788–797 Roloff A, Weisgerber H, Lang UM, Stimm B (eds) (2010) Bäume Mitteleuropas. Weinheim, Von Aspe bis Zirbelkiefer. Wiley-VCH Rolstad J (1991) Consequences of forest fragmentation for the dynamics of bird populations: conceptual issues and the evidence. Biol J Linn Soc 42:149–163 Roman CT, Burdick DM (2012) Tidal marsh restoration: a synthesis of science and management. Island Press, Washington, DC Rönicke H, Angelstein S, Schultze M, Geller W (2006) Invasion submerser Makrophyten im Tagebausee Goitsche. In: Deutsche Gesellschaft für Limnologie (ed) Tagungsbericht 2005, pp 139–143 Rösch K (1992) Einfluss der Beweidung auf die Vegetation des Bergwaldes. Forschungsbericht des Nationalparks Berchtesgaden 26. Nationalparkverwaltung, Berchtesgaden Rösch M (1993) Prehistoric land use as recorded in a lake-shore core at Lake Constance. Veg Hist Archaeobot 2:213–232 Rösch M, Lechterbeck J (2016) Seven Millennia of human impact as reflected in a high resolution pollen profile from the profundal sediments of Litzelsee, Lake Constance region, Germany. Veg Hist Archaeobot 25(4):339–358 Roscher C, Schumacher J, Gubsch M, Lipowsky A, Weigelt A, Buchmann N, Schmid B, Schulze ED (2012) Using plant functional traits to explain diversity-productivity relationships. PLoS One 7(5):e36760 Rosell F, Bozsér O, Collen P, Parker H (2005) Ecological impact of beavers Castor fiber and Castor canadensis and their ability to modify ecosystems. Mammal Rev 35:248–276 Rosenberg E, Legman R, Kushmaro K, Adler E, Abir H, Ron EZ (1996) Oil bioremediation using insoluble nitrogen source. J Biotechnol 51:273–278 Rosenblum E (2002) Is Gaia Jewish? Finding a framework for radical ecology in traditional Judaism. In: Yaffe MD (ed) Judaism and environmental ethics: a reader. Lexington Books, Plymouth, pp 183–205 Rosenthal G (1992) Erhaltung und Regeneration von Feuchtwiesen—Vegetationsökologische Untersuchungen auf Dauerflächen. Diss Bot 182:1–286 Rosenthal G (2001) Zielkonzeptionen und Erfolgsbewertung von Renaturierungsversuchen in nordwestdeutschen Niedermooren anhand vegetationskundlicher und ökologischer

Kriterien. Habilitationsschrift University of Stuttgart. http://elib.­uni-stuttgart.­de/opus/volltexte/2006/2574/. Accessed 3 Mar 2017 Rosenthal G (2003) Selecting target species to evaluate the success of wet grassland restoration. Agric Ecosyst Environ 98(1–3):227–246 Rosenthal G (2006) Restoration of wet grasslands— effects of seed dispersal, persistence and abundance on plant species recruitment. Basic Appl Ecol 7:409–421 Rosenthal G, Hölzel N (2009) Renaturierung von Feuchtgrünland, Auengrünland und mesophilem Grünland. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer Spektrum, Heidelberg, pp 283–316 Rösler M (2003) Aufpreisvermarktung und Naturschutz—Streuobstbau als Trendsetter. Zur Entwicklung neuer Leitbilder im Naturschutz. Nat Landsch 9–10:295–298 Ross A, Sherman K, Snodgrass J, Delcore H, Sherman R (2011) Indigenous peoples and the collaborative stewardship of nature: knowledge binds and institutional conflicts. Left Coast Press, Walnut Creek Rößling H (2010) Managementstrategien für den Erhalt der Binnensalzstellen in Brandenburg. Natschutz Landschpfl Brandenburg 19(1/2):45–49 Rostin L, Martin G, Herkül K (2013) Environmental concerns related to the construction of offshore windparks: Baltic Sea case. In: Rodriguez GR, Brebbia CA (eds) Coastal processes III.  WIT Trans Ecol Envir 169:131–140 Roszak T (2001) The voice of the earth: an exploration of ecopsychology, 2nd edn. Phanes, Newburyport Roth T, Kohli L, Rihm B, Achermann B (2013) Nitrogen deposition is negatively related to species richness and species composition of vascular plants and bryophytes in Swiss mountain grassland. Agric Ecosyst Environ 178:121–126 Rothe A (2005) Tree species management and nitrate contamination of groundwater: a central Europe perspective. In: Binkley D, Menyailo O (eds) Tree species effects on soils: Implications for Global change. Kluwer Academic Publishers, Dordrecht, pp 71–83 Rott T (2005) Gewässerbelastung durch Cyanobakterien—Ergebnisbericht über den Einsatz von Makrophyten in der Restaurierung eines Flachsees. Deutsche Gesellschaft für Limnologie Tagungsbericht 2004:496–500 Roux-Fouillet P, Wipf S, Rixen C (2011) Long-term impacts of ski piste management on alpine vegetation and soils. J Appl Ecol 48:906–915 Rovers AK (2015) Eine empirische Analyse zur ästhetischen und ethischen Wertschätzung mittel-

685 References

deutscher Buchenwaldgebiete: Meinungen von Experten und Einstellung der Bevölkerung. Ökon Forbeitr Umweltpol 6:1–400 Rowinsky V (1995) Hydrologische und stratigraphische Studien zur Entwicklungsgeschichte von Brandenburger Kesselmooren. Berlin Geogr Abh 60:1–155 Rozan A (2004) Benefit transfer: a comparison of WTP for air quality between France and Germany. Environ Res Econ 29:295–306 Rozema J, Leendertse P, Bakker JP, van Wijnen H (2000) Nitrogen and vegetation dynamics in European salt marshes. In: Weinstein M (ed) Concepts and controversies in tidal marsh ecology. Kluwer Academic Publishers, Dordrecht, pp 469–491 RRC (2013) Manual of river restoration techniques. River Restoration Centre, UK. 2. update. http:// www.­therrc.­co.­uk. Accessed 1 Apr 2017 Rubarenzya M, Staes J, Willems P, Berlamont J, Meire P (2008) Modelling in support of an interdisciplinary approach to ecosystem restitution. Annals of Warsaw University of life sciences— SGGW. Land Reclam 38:139–150 Rubin M, Brande A, Zerbe S (2008) Ursprüngliche, historisch-anthropogene und potenzielle Vegetation bei Ferch (Gemeinde Schwielowsee, Lkr. Potsdam-Mittelmark). Natschutz Landschpfl Brandenburg 17(1):14–23 Rubinoff D (2001) Evaluating the California gnatcatcher as an umbrella species for conservation of Southern California coastal sage scrub. Conserv Biol 15(5):1374–1383 Ruff M, Kuhn G, Heinz S, Kollmann J, Albrecht H (2013) Beurteilung der Artenvielfalt im Wirtschaftsgrünland kleinstrukturierter Gebiete. Methodische Untersuchungen für Agrarumweltprogramme. Natschutz Landschplan 45(3):76–82 Ruiz del Árbol Moro M, Ruíz del Árbol M, Orejas Saco del Valle A (2005) Landscapes as cultural heritage in the European research. Biblioteca de ciencias 22:1–172 Ruiz-Jaen MC, Aide TM (2005) Restoration success: how is it being measured? Restor Ecol 13(3): 569–577 Runge F (1959) Die Bergheiden in den Naturschutzgebieten “Schnettenberg” und “Auf der Lake” im Kreis Meschede. Nat Heimat 19(4):97–102 Runge F (1963) Die Vegetationsentwicklung auf einer Brandstelle in einer Bergheide. Arch Natursch Landschforsch 3(2):173–177 Runge H, Mestermann B (2002) Verbesserung der Renaturierungsmöglichkeiten bei Abbauvorhaben. Angew Landschökol 48:1–214 Rupp P, Hafemann E, Nowack E (2003) Die Bewirtschaftung der Schwarz-Erle im Spreewald. Eberswald Forst Schrreihe 17:110–123

Ruppert H, Ibendorf J (eds) (2017) Bioenergie im Spannungsfeld. Wege zu einer nachhaltigen Bioenergieversorgung. Universitätsverlag, Göttingen Russo A, Escobedo FJ, Cirella GT, Zerbe S (2017) Edible green infrastructure: a review on provisioning ecosystem services and disservices in urban environments. Agric Ecosyst Envrion 242:53–66 Rydin H, Jeglum JK (2013) The Biology of Peatlands, 2nd edn. Oxford University Press, Oxford Rygg B (1985) Effect of sediment copper on benthic fauna. Mar Ecol Progr Ser 25:3–89 Rykowska I, Wasiak W (2015) Research trends on emerging environment pollutants—a review. Open Chem 13:1353–1370 Sabatier P, Poulenard J, Fanget B, Reyss JL, Develle AL, Wilhelm B, Ployon E, Pignol C, Naffrechoux E, Dorioz JM, Montuelle B, Arnaud F (2014) Long-term relationships among pesticide applications, mobility, and soil erosion in a vineyard watershed. PNAS 111(44):15647–15652 Sabatini FM, Burrascano S, Keeton WS, Levers C, Lindner M, Pötzschner F, Verkerk PJ, Bauhus J, Buchwald E, Chaskovsky O, Debaive N, Horváth F, Garbarino M, Grigoriadis N, Lombardi F, Duarte IM, Meyer P, Midteng R, Mikac S, Mikoláš M, Motta R, Mozgeris G, Nunes L, Panayotov M, Ódor P, Ruete A, Simovski B, Stillhard J, Svoboda M, Szwagrzyk J, Tikkanen O-P, Volosyanchuk R, Vrska T, Zlatanov T, Kuemmerle T (2018) Where are Europe’s last primary forests? Divers Distrib 24(10):1426–1439 Sabogal C, Besacier C, McGuire D (2015) Forest and landscape restoration: concepts, approaches and challenges for implementation. Unasylva 66(245):3–10 Sächsische Carlowitz-Gesellschaft (2013) Die Erfindung der Nachhaltigkeit. Leben, Werk und Wirkung des Hans Carl von Carlowitz. Oekom, München Sachteleben J, Behrens M (2010) Konzept zum Monitoring des Erhaltungszustandes von Lebensraumtypen und Arten der FFH-Richtlinie in Deutschland. BfN Skripten 278:1–184 Sádovský M, Eliáš P, Dítě D (2004) Historické a súčasné rozšírenie slaniskových spoločenstiev na juhozápadnom Slovensku. Bull Slov Bot Spoločn 10:127–129 Sahlén G, Ekestubbe K (2001) Identification of dragonflies (Odonata) as indicators of general species richness in boreal forest lakes. Biodivers Conserv 10(5):673–690 Sahlén V, Ordiz A, Swenson JE, Støen OG (2015) Behavioural Differences between single Scandinavian brown bears (Ursus arctos) and females with dependent young when experimentally approached by humans. PLoS One 10(4):e0121576

686

References

Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff ALR, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the Year 2100. Science 287:1770–1774 Šálek M (2012) Spontaneous succession on opencast mining sites: implications for bird diversity. J Appl Ecol 49:1417–1425 Salomon M, Dross M (2013) Challenges in cross-sectoral marine protection in Europe. Mar Pol 42:142–149 Salomon M, Markus T (eds) (2018) Handbook on marine environment protection, Science, impacts and sustainable management. Springer, Cham Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Phys 49(1):643–668 Salzer A (2016) “Die Zukunft ist rosa”—Potenziale und Bedingungen öko-sozialer Transformation im Javakheti Hochland, Georgien. Dissertation, Free University of Bozen-­Bolzano Salzman PC, Attwood DW (1996) Ecological anthropology. In: Barnard A, Spencer J (eds) Encyclopedia of social and cultural anthropology. Routledge, London, pp 169–172 Samuels CL, Lockwood JL (2002) Weeding out surprises: incorporating uncertainty into restoration models. Ecol Restor 20(4):262–269 Sanborn M, Kerr KJ, Sanin LH, Cole DC, Bassil KL, Vakil C (2007) Non-cancer health effects of pesticides. Systematic review and implications for family doctors. Can Fam Physician 53:1712–1720 Sandén P, Håkansson B (1996) Long-term trends in Secchi depth in the Baltic Sea. Limnol Oceanogr 41:346–351 Sandu C, Reinartz R, Bloesch J (eds) (2016) “Sturgeon 2020”: A program for the protection and rehabilitation of Danube sturgeons. Danube Sturgeon Task Force (DSTF) & EU Strategy for the Danube River (EUSDR) Priority Area (PA) 6— biodiversity. 2nd ed. www.­dstf.­eu/assets/Uploads/ documents/Sturgeon-2020edited_2.­pdf. Accessed 25 Apr 2017 Santamouris M (ed) (2001) Energy and climate in the urban built environment. James & James Science Publishing, London Santos JC, Finlay RD, Tehler A (2006) Molecular analysis of arbuscular mycorrhizal fungi colonising a seminatural grassland along a fertilization gradient. New Phytol 172:159–168 Santos-González JC (2007) Diversity of arbuscular mycorrhizal fungi in grasslands and arable fields. Ecological factors related to community composition and dynamics. Dissertation, University of Uppsala. http://pub.­epsilon.­slu.­se/1545/1/AVTHESIS_jcs.­pdf. Accessed 27 Feb 2017

Sarneel JM, Beltman B, Buijze A, Groen R, Soons MB (2014) The role of wind in the dispersal of floating seeds in slow-flowing or stagnant water bodies. J Veg Sci 25:262–274 Sarrazin F, Barbault R (1996) Reintroduction: challenges and lessons for basic ecology. Trends Ecol Evol 11:474–478 Sas H (ed) (1989) Lake restoration by reduction of nutrient control. Expectations, experiences, extrapolations. Academia, St. Augustin Sattler F, von Wistinghausen E (1992) Bio-dynamic farming practice. Bio-Dynamic Agricultural Association, Stroud Sauer A, Luz F, Suda M, Weiland U (2005) Steigerung der Akzeptanz von FFH-Gebieten. BfN Skripten 144:1–161 Sauer E, Weyrath U (1989) Die gefährdeten Pflanzengesellschaften. In: Ministerium für Umwelt des Saarlandes (ed) Rote Liste—Bedrohte Tier- und Pflanzenarten im Saarland, Saarbrücken, pp 117–121 Sauer T, Elsen S, Garzillo C (2016) Cities in transition: social innovation for Europe’s urban sustainability. Routledge, Abingdon Sauerwein M, Dieck JP, Stadtmann R (2015) Urbane Böden im Kontext von ecosystem services. Hildesh Geogr Stud 5:64–89 Saure C (2001) Das Schöneberger Südgelände. Ein herausragender Ruderalstandort und seine Bedeutung für die Bienenfauna (Hymenoptera, Apoidae). Berlin Natschutzbl 35:17–29 Sautter R (1994) Untersuchungen zur Diasporen- und Samenökologie in bedrohten Pflanzengesellschaften sandiger Böden. Diss Bot 226:1–155 Sautter R (2003) Waldgesellschaften in Bayern: Vegetationskundliche und forstgeschichtliche Darstellung der natürlichen und naturnahen Waldgesellschaften. ecomed, Landsberg Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132:97–109 Schaack D, Rampold C, Behr HC (2016) Strukturdaten im ökologischen Landbau in Deutschland 2015—Bodennutzung, Tierhaltung und Verkaufserlöse. Studie im Auftrag der Bundesanstalt für Landwirtschaft und Ernährung (BLE). https:// www.­oekolandbau.­de/fileadmin/redaktion/dokumente/service/Zahlen/AMI_strukturdaten2015.­ pdf. Accessed 24 Nov 2017 Schaaf W, Gast M, Wilden R, Scherzer J, Blechschmidt R, Hüttl R (1998) Temporal and spatial development of soil solution chemistry and element budgets in different mine soils of the Lusatian lignite mining area. Plant Soil 213:169–179 Schabacker A, Eichhorn S, Hapla F (2015) Untersuchung über die kulturelle und wirtschaftliche Bedeutung der Edelkastanien-Nebenerzeugnisse.

687 References

Mitt Forschsanst Waldökol Forstwirtsch Rheinland-Pfalz 74:145–160 Schäfer A (2005) Umweltverträgliche Erlenwirtschaft auf wiedervernässten Niedermoorstandorten. Beitr Forstwirtsch Landschökol 39(4): 165–171 Schäfer A (2010) Biodiversität und ökosystemare Leistungen unter den Bedingungen des Klimawandels—Monetarisierung der Ökosystemdienstleistungen von Mooren. BfN Skripten 274: 38–39 Schäfer C, Zerbe S, Seiberling S (2008) Mögliche Auswirkungen des Klimawandels auf die Salzgrasländer an der Ostseeküste. Eine Analyse am Beispiel der Küste Mecklenburg-­Vorpommerns. Natschutz Landschplan 40(11):361–366 Schäfer M (2012) Wörterbuch der Ökologie. Springer Spektrum, Heidelberg Schäfer RB, Caquet T, Siimes K, Mueller R, Lagadic L, Liess M (2007) Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Sci Total Environ 382:272–285 Schaffers AP, Sýkora KV (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci 11:225–244 Schaich H, Konold W (2006) Auenrenaturierung und extensive Beweidung in Luxemburg—Evaluation einer Naturschutzmaßnahme in der Syr-Aue. Ber Natforsch Ges Freiburg 96:83–110 Schaich H, Konold W (2012) Honorierung ökologischer Leistungen der Forstwirtschaft. Neue Wege für Kompensationsmaßnahmen im Wald? Natschutz Landschplan 44(1):5–13 Schall P, Gossner MM, Heinrichs S, Fischer M, Boch S, Prati D, Jung K, Baumgartner V, Blaser S, Böhm S, Buscot F, Daniel R, Goldmann K, Kaiser K, Kahl T, Lange M, Müller J, Overmann J, Renner SC, Schulze ED, Sikorski J, Tschapka M, Türke M, Weisser WW, Wemheuer B, Wubet T, Ammer C (2017) The impact of even-aged and uneven-­aged forest management on regional biodiversity of multiple taxa in European beech forests. J Appl Ecol 55(1):267–278 Schallenberg M, de Winton MD, Verburg P, Kelly DJ, Hamill KD, Hamilton DP (2013) Ecosystem services of lakes. In: Dymond JR (ed) Ecosystem services in New Zealand—conditions and trends. Manaaki Whenua Press, Lincoln, pp 203–225 Schaller L (2015) Landwirtschaftliche Nutzung von Moorflächen in Deutschland—Soziookonomische Aspekte einer klimaschonenden Bewirtschaftung. Dissertation, TU Munich Schaminée JHJ, Weeda EJ, Westhoff V (1995) De vegetatie van Nederland 2: wateren, moerassen, natte heiden. Opulus Press, Uppsala

Schaminée JHJ, Stortelder AHF, Weeda EJ (1996) De vegetatie van Nederland 3: graslanden, zomen en droge heiden. Opulus Press, Uppsala Schaminée JHJ, Hennekens SM, Ozinga WA (2007) Use of the ecological information system SynBioSys for the analysis of large datasets. J Veg Sci 18:463–470 Scharbert A, Beeck P (2011) Die Wiederansiedlung des Maifischs (Alosa alosa) im Rhein-System. LANUV Fachber 28:1–25 Scharpf FW (2000) Interaktionsformen: Akteurzentrierter Institutionalismus in der Politikforschung. Leske & Budrich, Opladen Schattke W (1992) Das Reetdach—Natürliches Wohnen unter sanftem Dach—Von der Urzeit bis heute. Christians, Hamburg Schatz T (2000) Untersuchungen zur holozänen Landschaftsentwicklung Nordostdeutschlands. ZALF Ber 41:1–201 Schaub M, Pradel R, Lebreton JD (2004) Is the reintroduced white stork (Ciconia ciconia) population in Switzerland self-sustainable? Biol Conserv 119:105–114 Schaub M, Zink R, Beissmann H, Sarrazin F, Arlettaz R (2009) When to end releases in reintroduction programmes: demographic rates and population viability analysis of bearded vultures in the Alps. J Appl Ecol 46:92–100 Schaumburg J, Schranz C, Foerster J, Gutowski A, Hofmann G, Meilinger P, Schneider S, Schmedtje U (2004) Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the water framework directive. Limnologica 34:283–301 Schauser I, Chorus I (2007) Assessment of internal and external lake restoration measures for two Berlin lakes. Lake Reserv Mange 23:366–376 Schauser I, Chorus I, Lewandowski J (2006) Effects of nitrate on phosphorus release: comparison of two Berlin lakes. Acta Hydrochim Hydrobiol 34: 325–332 Scheffer M (1998) Ecology of shallow lakes. Chapman & Hall, London Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279 Scheidat M, Gilles A, Kock K-H, Siebert U (2008) Harbour porpoise Phocoena phocoena abundance in the southwestern Baltic Sea. Endanger Species Res 5:215–223 Schelhaas MJ, Nabuurs GJ, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Change Biol 9:1620– 1633 Schemel HJ (2008) Das Konzept der städtischen Naturerfahrungsräume und Thesen zu seiner Umsetzung. BfN Skripten 230:79–92

688

References

Schepker H (1998) Wahrnehmung, Ausbreitung und Bewertung von Neophyten, Eine Analyse der problematischen nichteinheimischen Pflanzenarten in Niedersachsen. Ibidem, Stuttgart Scherfose V (1990) Salz-Zeigerwerte von Gefäßpflanzen der Salzmarschen, Tideröhrichte und Salzwassertümpel an der Deutschen Nord- und Ostseeküste. Jahresber Niedersächs Landesamt Wasser Abfall 39:31–83 Scherfose V (1993) Zum Einfluß der Beweidung auf das Gefäßpflanzen-Artengefüge von Salz- und Brackmarschen. Z Ökol Natschutz 2:201–212 Schernewski G, Schiewer U (eds) (2002) Baltic coastal ecosystems: structure, function and coastal zone management. Springer, Heidelberg Scherzinger W (1996) Naturschutz im Wald: Qualitätsziele einer dynamischen Waldentwicklung. Ulmer, Stuttgart Scherzinger W (1997) Tun oder Unterlassen? Aspekte des Prozessschutzes und Bedeutung des “NichtsTuns” im Naturschutz. Lauf Sembeitr 1:31–44 Scheuerer M, Späth J (2005) Erfolgreiche Artenhilfsmaßnahmen für die in Deutschland vom Aussterben bedrohte Adenophora liliifolia (Campanulaceae). Hoppea 66:503–531 Schiechtl HM, Stern R (1994) Handbuch für den naturnahen Wasserbau. Österreichischer Agrarverlag, Wien Schiechtl HM, Stern R (2002) Naturnaher Wasserbau, Anleitung für ingenieurbiologische Bauweisen. Ernst & Sohn, Berlin Schiefer J (1984) Möglichkeiten der Aushagerung von nährstoffreichen Grünlandflächen. Veröff Natschutz Landschpfl Baden-Württ 57(58):33–62 Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602 Schimmelpfennig S, Kirillin G, Engelhardt C, Nützmann G (2012a) Effects of wind-driven circulation on river intrusion in Lake Tegel: modelling study with projection on transport of pollutants. Environ Fluid Mech 12(4):321–339 Schimmelpfennig S, Kirillin G, Engelhardt C, Nützmann G, Dünnbier W (2012b) Seeking a compromise between pharmaceutical pollution and phosphorus load: management strategies for Lake Tegel, Berlin. Water Res 46(13):4153–4163 Schirmel J, Mantilla-Contreras J, Blindow I, Fartmann T (2011) Impacts of succession and grass encroachment on Orthoptera in heathlands. J Insect Conserv 15:633–642 Schley L, Leytem M (2004) Extensive Beweidung mit Rindern im Naturschutz: eine kurze Literaturauswertung hinsichtlich der Einflüsse auf die Biodiversität. Bull Soc Nat Luxembg 105:65–85 Schlicht W (2017) Urban health. Erkenntnisse zur Gestaltung einer “gesunden” Stadt. Springer Spektrum, Heidelberg

Schlindwein C, Wittmann D, Martins CF (2005) Pollination of Campanula rapunculus L. (Campanulaceae): how much pollen flows into pollination and into reproduction of oligolectic pollinators? Plant Syst Evol 250:147–156 Schmalfuß N, Lorho F, Braun W (2010) Alt- und Totholzkonzept Baden-Württemberg. Landesbetrieb Forst Baden-Württemberg. http://www.­ naturschutz.­landbw.­de. Accessed 27 Dec 2017 Schmid B, Stöcklin J (1991) Populationsbiologie der Pflanzen. Springer, Basel Schmid W, Stäubli A, Wiedemeier P (2002) Begleitbericht Waldweideliteratur-Datenbank. Agrofutura, Frick und Sternenberg, im Auftrag der Abt. Wald des Kantons Aargau. http://www.­poel.­ch/ pdf/Waldweideliteratur_AG.­pdf. Accessed 3 Aug 2017 Schmidl A, Jacomet S, Oeggl K (2007) Distribution patterns of cultivated plants in the Eastern Alps (Central Europe) during Iron Age. J Archaeol Sci 34:243–254 Schmidli J, Frei C (2005) Trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century. Int J Climatol 25(6):753–771 Schmidt I, Zerbe S, Betzin J, Weckesser M (2006) An approach to the identification of indicators for forest biodiversity—the Solling mountains (NW Germany) as an example. Restor Ecol 14:123–136 Schmidt IK, Michelsen A, Jonasson S (1997) Effects of labile soil carbon on nutrient partitioning between an Arctic graminoid and microbes. Oecologia 112:557–565 Schmidt IK, Tietema A, Williams D, Gundersen P, Beier C, Emmett BA, Estiarte M (2004) Soil solution chemistry and element fluxes in three European heathlands and their responses to warming and drought. Ecosystems 7:638–649 Schmidt KJ, Poppendieck HH, Jensen K (2014a) Effects of urban structure on plant species richness in a large European city. Urban Ecosyst 17(2):427–444 Schmidt L, Melber A (2004) Einfluss des Heidemanagements auf die Wirbellosenfauna in Sand- und Moorheiden Nordwestdeutschlands. In: Keienburg T, Prüter J (eds) Feuer und Beweidung als Instrumente zur Erhaltung magerer Offenlandschaften in Nordwestdeutschland—Ökologische und sozioökonomische Grundlagen des Heidemanagements auf Sand- und Hochmoorstandorten. NNA Ber 17(2):145–164 Schmidt M, Kriebitzsch WU, Ewald J (2011) Waldartenlisten der Farn- und Blütenpflanzen, Moose und Flechten Deutschlands. BfN Skripten 299: 1–111 Schmidt M, Mölder A, Schönfelder E, Engel F, Schmiedel I, Culmsee H (2014b) Determining ancient woodland indicator plants for practical

689 References

use: a new approach developed in Northwest Germany. For Ecol Manag 330:228–239 Schmidt PA (1998) Potentielle natürliche Vegetation als Entwicklungsziel naturnaher Waldbewirtschaftung? Forstwiss Centralbl 117:193–205 Schmidt PA, Hempel W, Denner M, Döring N, Gnüchtel A, Walter B, Wendel D (2002) Potentielle natürliche Vegetation Sachsens mit Karte 1:200 000. Mat Natschutz Landschpfl 2002:1–138 Schmidt R (2013) Die Deichrückverlegung WustrowLenzen—Planung und Umsetzung aus Sicht des Bauherrn. BAW-Mitt 97:37–48 Schmidt-Schütz A, Huss J (1998) Wiederbewaldung von Fichten-Sturmwurfflächen auf vernässenden Standorten mit Hilfe von Pioniergehölzen. In: Fischer A (ed) Die Entwicklung von WaldBiozönosen nach Sturmwurf. ecomed, Landsberg, pp 188–211 Schmiedel D, Wilhelm EG, Nehring S, Scheibner C, Roth M, Winter S (2015) Management-­Handbuch zum Umgang mit gebietsfremden Arten in Deutschland. Vol 1: Pilze, Niedere Pflanzen und Gefäßpflanzen. Natschutz Biol Vielfalt 141(1):1–709 Schneeweiß N (2012) Missglückter Versuch einer Ansiedlung von Lacerta viridis in Nordost-­ Deutschland. Z Feldherpetol 19(2):145–164 Schnell R, Hill PB, Esser E (2011) Methoden der empirischen Sozialforschung, 9th edn. Oldenbourg, München Schnitzler A, Muller S (1998) Towards an ecological basis for the conservation of subalpine heath grassland on the upper ridges of the Vosges. J Veg Sci 9:317–326 Schnoor JL, Stumm W (1985) Acidification of aquatic and terrestrial systems. In: Stumm W (ed) Chemical processes in lakes. Wiley, New York, pp 311–338 Schnyder J, Ehrbar R, Reimoser F, Robin K (2016) Huftierbestände und Verbissintensitäten nach der Luchswiederansiedlung im Kanton St. Gallen. Schweiz Z Forstwes 167(1):13–20 Schofield RV, Kirkby MJ (2003) Application of salinization indicators and initial development of potential global soil salinization scenario under climatic change. Glob Biogeochem Cycles 17(3):1078 Schoknecht T (1993) Die Naturschutzgebiete (NSG) Ferbitzer Bruch und Döberitzer Heide auf dem Truppenübungsplatz Döberitz; Natur und Naturschutz auf den Truppenübungsplätzen Brandenburgs, Folge 2. Natursch Landschaftspfl Brandenbg 1:23–25 Schölmerich U (1998) 70 Jahre forstliche Rekultivierung—Erfahrungen und Folgerungen. In: Pflug W (ed) Braunkohlentagebau und Rekultivierung: Landschaftsökologie—Folgenutzung—Naturschutz. Springer, Heidelberg, pp 142–156 Scholten M, Anlauf A, Büchele B, Faulhaber P, Henle K, Kofalk S, Leyer I, Meyerhoff J, Purps J, Rast G, Scholz M (2005) The River Elbe in Germany—

present state, conflicting goals, and perspectives of rehabilitation. Arch Hydrobiol Suppl 15(1–4): 579–602 Scholz E (1962) Die naturräumliche Gliederung Brandenburgs. Pädagogisches Bezirkskabinett, Potsdam Scholz M, Stab S, Dziock F, Henle K (eds) (2005) Lebensräume der Elbe und ihrer Auen. Konzepte für die nachhaltige Entwicklung einer Flusslandschaft 4:1–380 Scholz NL, Fleishman E, Brown L, Werner I, Johnson ML, Brooks ML, Mitchelmore CL, Schlenk D (2012) A perspective on modern pesticides, pelagic fish declines, and unknown ecological resilience in highly managed ecosystems. Bioscience 62(4): 428–434 Scholz RW (2000) Mutual learning as a basic principle of transdisciplinarity. In: Scholz RW, Häberli R, Bill A, Welti M (eds) Transdisciplinarity: joint problem—solving among science, technology and society, Workbook II: mutual learning sessions. Haffmans, Zurich, pp 13–17 Scholz RW (2011) Environmental literacy in science and society: from knowledge to decisions. Cambridge University Press, Cambridge Scholz RW (2017) Environmental literacy in science and society: from knowledge to decisions. Cambridge University Press, Cambridge Scholz RW, Stauffacher M (2009) From a science for society to science with society. Psychol Rundschau 60(4):242–280 Scholz RW, Steiner G (2015a) The real type and ideal type of transdisciplinary processes: part I—theoretical foundations. Sustain Sci 10(4):527–544 Scholz RW, Steiner G (2015b) The real type and ideal type of transdisciplinary processes: part II—what constraints and obstacles do we meet in practice? Sustain Sci 10(4):653–671 Scholz RW, Steiner G (2015c) Transdisciplinarity at the crossroads. Sustain Sci 10(4):521–526 Schönermark G, Wolschke-Bulmahn J (2006) Klösterliche Kulturlandschaftsforschung. Klosterkammer Hannover. https://www.­cgl.­uni-hannover.­de/fileadmin/cgl/pdf/Publikationen/Broschueren/kl_sterliche_kulturlandschaften_brosch_re.­pdf. Accessed 22 Apr 2017 Schönthaler K, von Andrian-Werburg S (2008) Erster integrierter Umweltbericht für das länderübergreifende UNESCO-Biosphärenreservat Rhön. Bayerisches Staatsministerium für Umwelt, Gesundheit und Verbraucherschutz, Hessisches Ministerium für Umwelt, ländlichen Raum und Verbraucherschutz und Thüringer Ministerium für Landwirtschaft, Naturschutz und Umwelt. http://biosphaerenreservat-rhoen.­d e/_upl/br/_ pdf/Umweltbericht_Langfassung-1.­pdf. Accessed 20 Aug 2017

690

References

Schooley LR, Branch LC (2007) Spatial heterogeneity in habitat quality and cross-scale interactions in metapopulations. Ecosystems 10:846–853 Schopp-Guth A (1999) Renaturierung von Moorlandschaften. Naturschutzfachliche Anforderungen aus bundesweiter Sicht. Schrreihe Landschpfl Natschutz 57:1–219 Schouten MGC (2002) Conservation and restoration of raised bogs: geological, hydrological and ecological studies. Vakblad Natuurbeheer. The Government Stationary Office, Dublin Schramayr G (2001) Entwicklung, Bestand und Gefährdung des Streuobstanbaus in Europa—ein Überblick. In: Holler C, Spornberger A (eds) Beiträge zum Streuobstanbau in Europa. Stand, Entwicklungen und Probleme. Tagber Umweltbundesamt 28:9–13 Schramme T (2017) Gesundheit und Krankheit in der philosophischen Diskussion. In: Beck S (ed) Krankheit und Recht. Springer, Heidelberg Schreiber KF, Brauckmann HJ, Broll G, Krebs S, Poschlod P (2009) Artenreiches Grünland in der Kulturlandschaft. 35 Jahre Offenhaltungsversuche Baden-Württemberg. Naturschutz-­Spectrum. Themen 97:1–425 Schrenk-Bergt C, Zwick AM, Scharf BW, Jüttner I, Schönfelder I, Facher E, Casper P, Wilkes H, Steinberg C (1998) Paläolimnologie: Vorteile und Grenzen bei der angewandten Limnologie. In: Steinberg C, Calmano W, Klapper H, Wilken RD (eds) Handbuch Angewandte Limnologie. IV-8.3, ecomed, Landsberg, pp 1–49 Schröder H, Lüning M (2000) Die Standortverhältnisse in den Salzmarschen der Harnburger Hallig. In: Stock M, Kiehl K (Eds): Die Salzwiesen der Harnburger Hallig. Schriftenr Nationalparks Schleswig-Holsteinisches Wattenmeer 2:13–23 Schröder C, Schulze P, Luthardt V, Zeitz J (eds) (2015) Steckbriefe für Niedermoorbewirtschaftung bei unterschiedlichen Wasserverhältnissen. LeibnizZentrum für Agrarlandschaftsforschung (ZALF) e.V, Müncheberg Schröder E (1989) Der Vegetationskomplex der Sandtrockenrasen in der Westfälischen Bucht. Abh Westfäl Mus Naturkd 51(2):1–95 Schroeder FG (1998) Lehrbuch der Pflanzengeographie. Quelle & Meyer, Wiesbaden Schröder HK, Kiehl K, Stock M (2002) Directional and non-directional vegetation changes in a temperate salt marsh in relation to biotic and abiotic factors. Appl Veg Sci 5(1):33–44 Schröder K (2009) Der Mittelwald als waldbauliche Option in Deutschland. In: Konold W, Böcker R, Hampicke U (eds) Handbuch Naturschutz und Landschaftspflege, VIII-­7.6.3, 22. Erg.Lfg. 01/09, Wiley, Weinheim

Schroeder P, Belis CA, Schnelle-Kreis J, Herzig R, Prevot ASH, Raveton M, Kirchner M, Catinon M (2014) Why air quality in the Alps remains a matter of concern. The impact of organic pollutants in the Alpine area. Environ Sci Pollut Res 21: 252–267 Schroter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Garcia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpaa S, Klein RJT, Lavorel S, Lindner M, Metzger M, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabate S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and human vulnerability to global change in Europe. Science 310:1333–1337 Schubert K, Bandelow NC (eds) (2014) Lehrbuch der Politikfeldanalyse. De Gruyter, Oldenbourg Schubert R (1960) Die zwergstrauchreichen azidiphilen Pflanzengesellschaften Mitteldeutschlands. Pflsoziol 11:1–235 Schubert R, Frank D, Herdam H, Hilbig W, Jage H, Karste G, Kison HU, Klotz S, Peterson J, Reichhoff L, Stocker G, Weinitschke H, Wegener U, Westhus W (2004) Rote Liste der Farn- und Blütenpflanzengesellschaften des Landes SachsenAnhalt. Ber Landesamt Umweltsch Sachsen-Anhalt 39:111–122 Schubert W, Trappmann R, Gräf B (2008) Erhalt und Restitution von Heiden im östlichen Hochsauerlandkreis. Abh Westfäl Mus Naturkd 70(3/4): 261–276 Schuch M (1994) Ziele der Moorrenaturierung—Die wichtigsten Maßnahmen. Telma 24:245–252 Schuck A, Van Brusselen J, Päivinen R, Häme T, Kennedy P, Folving S (2002) Compilation of a calibrated European forest map derived from NOAA-AVHRR data. European Forest Institute. EFI Intern Rep 13:1–44 Schulte W, Sukopp H (2000) Stadt- und Dorfbiotopkartierungen: Erfassung und Analyse ökologischer Grundlagen im besiedelten Bereich der Bundesrepublik Deutschland—ein Überblick. Natursch Landschaftspl 32(5):140–147 Schultz PW, Zelezny L (1999) Values as predictors of environmental attitudes: evidence for consistency across 14 countries. J Environ Psychol 19:255–265 Schultze M, Pokrandt KH, Hille W (2010) Pit lakes of the Central German lignite mining district: creation, morphometry and water quality aspects. Limnologica 40(2):148–155 Schulz F, Wiegleb G (2013) Die Niederlausitzer Bergbaufolgelandschaft—Probleme und Chancen. In: Wiegleb G, Bröring U, Mrzljak J, Schulz F (eds) Naturschutz in Bergbaufolgelandschaften: Land-

691 References

schaftsanalyse und Leitbildentwicklung. Springer, Heidelberg, pp 3–23 Schulz K, Mikhailyuk T, Dreßler M, Leinweber P, Karsten U (2015) Biological soil crusts from coastal dunes at the Baltic Sea: cyanobacterial and algal biodiversity and related soil properties. Microbiol Ecol 71(1):178–193 Schulze ED, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, Heidelberg Schulze ED, Aas G, Grimm GW, Gossner MM, Walentowski H, Ammer C, Kühn I, Bouriaud O, von Gadow K (2016) A review on plant diversity and forest management of European beech forests. Eur J Forest Res 135:51–67 Schumacher W (1982) Die Pflanzenwelt der Äcker, Raine und Ruderalplätze—Gefährdung, Erhaltung, Pflege. Deutscher Naturschutzring Bundesverband Umweltschutz, Bonn Schumacher W (1989) Die Pflanzenwelt der Äcker, Raine und Ruderalplätze – Gefährdung, Erhaltung, Pflege. Deutscher Naturschutzring Bundesverband Umweltschutz, Bonn Schumann M, Joosten H (2008) Global peatland restoration manual. University of Greifswald. http:// www.­i mcg.­n et/media/download_gallery/books/ gprm_01.­pdf. Accessed 14 Jan 2017 Schuster U (2010) Der Prozessschutzgedanke in Deutschland: Seine Ursprünge, seine Verfechter, seine Argumentation. Laufen Spezbeitr 2010: 34–42 Schütte G, Stirn S, Beusmann V (2013) Transgene Nutzpflanzen: Sicherheitsforschung, Risikoabschätzung und Nachgenehmigungs-Monitoring. Birkhäuser, Basel Schwab U, Engelhardt J, Bursch P (2002) Begrünungen mit autochthonem Saatgut. Ergebnisse mit dem Heudrusch®-Verfahren auf Ausgleichsflächen. Natschutz Landschplan 37(11):346–354 Schwabe A (1991) Zur Wiederbesiedlung von AuenVegetationskomplexen nach Hochwasserereignissen. Bedeutung der Diasporenverdriftung, der generativen und vegetativen Etablierung. Phytocoenologia 20:65–94 Schwabe A, Kratochwil A (eds) (2004) Beweidung und Restitution als Chancen für den Naturschutz? NNA Ber 17(1):1–237 Schwabe A, Kratochwil A (2009) Renaturierung von Sandökosystemen im Binnenland. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer Spektrum, Heidelberg, pp 235–263 Schwabe A, Storm C, Zeuch M, Kleine-Weischede H, Krolupper N (2000) Sand-­Ökosysteme in Südhessen: Status quo, jüngste Veränderungen und Folgerungen für Naturschutzmaßnahmen. Geobot Koll 15:25–45

Schwabe A, Zehm A, Nobis M, Storm S, Süss K (2004) Auswirkungen von Schaf-­ Erstbeweidung auf die Vegetation primär basenreicher SandÖkosysteme. NNA Ber 17(1):39–53 Schwartz R (2003) Vorkommen und Eigenschaften der Böden in der Lenzener Elbaue. Brandenbg Geowiss Beiträge 10(1/2):77–89 Schwärzel H (1998) Verwendung von Obstgehölzen für Wegbegleit- und Streuobstpflanzungen. Ministerium für Ernährung, Landwirtschaft und Forsten des Landes Brandenburg. Schrreihe Minist Ernähr Landwirtsch Forsten. Reihe Gartenbau 2:1–36 Schweingruber FH (2001) Dendroökologische Holzanatomie. Haupt, Bern Schweingruber FH (2013) Tree rings: basics and applications of dendrochronology. Kluwer, Dordrecht Schwerdtfeger F (1981) Die Waldkrankheiten. Ein Lehrbuch der Forstpathologie und des Forstschutzes. Paul Parey, Berlin Schwermer S (2012) Economic valuation methods. Annex A to economic valuation of environmental damage—methodological convention 2.0 for estimates of environmental costs. Umweltbundesamt. https://www.­umweltbundesamt.­de/. Accessed 17 May 2017 Schwevers U, Adam B, Engler O (2006) Fischökologische Untersuchung der hessischen Anteile der Fließgewässersysteme von Weser und Werra, Vol III. Servicestelle für Forsteinrichtung und Naturschutz (FENA). Überarb. Fassung von 2005. https://www.­hlnug.­de/. Accessed 11 Aug 2018 Scott C, Armstrong S, Townend I, Dixon M, Everard M (2011) Lessons learned from 20 years of managed realignment and regulated tidal exchange in the UK.  Common Wadden Sea Secretariat (CWSS), Wilhelmshaven Scott DB, Frail-Gauthier J, Mudie PJ (2014) Coastal wetlands of the world: geology, ecology, distribution and applications. Cambridge University Press, Cambridge Scotton M, Kirmer A, Krautzer B (eds) (2011) Practical handbook for seed harvest and ecological restoration of species rich grasslands. Cooperativa Libraria Editrice Università di Padova, Padua Seabrook C (2013) The world of the salt marsh: appreciating and protecting the tidal marshes of the South-eastern Atlantic coast. University of Georgia Press, Athens Seastedt TR, Hobbs RJ, Suding KN (2008) Management of novel ecosystems: are novel approaches required? Front Ecol Environ 6:547–553 Seckler D, Amarasinghe U, de Silva R, Barker R (1998) Water and water resources in global perspective: an informative introduction. Econ Rev 23(12):3–6

692

References

Seddon PJ, Soorae PS, Launay F (2005) Taxonomic bias in reintroduction projects. Anim Conserv 8:51–58 Seehofer H, Wagner F, Mayer M, Baumhof-Pregitzer M, Geiger J, Habeck J, Heinzelmann R, Küpfer C, Meyer M (2014) New ways for traditional orchards. Practical experience from the LIFE+ Project “Vogelschutz in Streuobstwiesen des Mittleren Albvorlandes und des Mittleren Remstales”. Regierungspräsidium Stuttgart, Referat 56, Naturschutz und Landschaftspflege (ed). www.­lifevogelschutzstreuobst.­de. Accessed 21 Aug 2017 Seeler A (1962) Beiträge zur Morphologie norddeutscher Dünengebiete und zur Darstellung des Dünenreliefs in topographischen Karten. Dissertation, University of Greifswald Šefferová Stanová V, Janák M, Ripka J (2008) Management of Natura 2000 habitats. 1530 Pannonic salt steppes and salt marshes. European Commission (ed), http://ec.­europa.­eu/environment/nature/ natura2000/management/habitats/pdf/1530_Pannonic_salt_steppes.­pdf. Accessed 4 Feb 2017 Segert A, Zierke I (2004) Methodische Grundlagen der soziologischen Bewertung von Offenland. In: Anders K, Mrzljak J, Wallschläger D, Wiegleb G (eds) Handbuch Offenlandmanagement. Springer, Heidelberg, pp 87–96 Seiberling S (2003) Auswirkungen veränderter Überflutungsdynamik auf Polder- und Salzgraslandvegetation der Vorpommerschen Boddenlandschaft. Dissertation, University of Greifswald Seiberling S, Stock M, Thapa PP (2009) Renaturierung von Salzgrasländern bzw. Salzwiesen der Küsten. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer Spektrum, Heidelberg, pp 183–208 Seibert P (1955) Die Niederwaldgesellschaften des südwestfälischen Berglandes. Allg Forst Jagdztg 126:1–11 Seibold S, Brandl R, Buse J, Hothorn T, Schmidl J, Thorn S, Müller J (2015) Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conserv Biol 29(2):382–390 Seibt CH (1994) Zivilrechtlicher Ausgleich ökologischer Schäden: eine rechtsvergleichende Untersuchung zum repressiven Schutz kollektiver Rechtspositionen an Naturgütern und zum Ausgleich von Beeinträchtigungen des Naturhaushalts im Zivilrecht. Mohr Siebeck, Heidelberg Seidel M, Brunke M (2015) Impulsgebende Maßnahmen in Tieflandbächen Schleswig-­ Holsteins— Wirkung und mögliche Einbauvarianten für eine naturnähere Gestaltung. WasserWirtschaft 12:55–61 Seidel M, Voigt M, Langheinrich U, Hoge-Becker A, Gersberg RM, Arévalo JR, Lüderitz V (2017) Re-

connection of oxbow lakes as an effective measure of river restoration. Clean Soil Air Water 45(3):1600211 Seidel M, Lüderitz V, Langheinrich U, Seitel C, Voigt M (2015) Ökologische Gewässersituation kleinerer Fließgewässer in den verschiedenen Naturräumen Oberfrankens. Abschlussbericht 2015. Bezirk Oberfranken, Bayreuth Seidl R, Brand FS, Stauffacher M, Krütli P, Le Bao Q, Spörri A, Meylan G, Moser C, Berger González M, Scholz RW (2013) Science with society in the Anthropocene. Ambio 42(1):5–12 Senatsverwaltung für Stadtentwicklung und Umwelt Berlin (2015) Anteil öffentlicher Grünflächen in Berlin. Grünflächeninformationssystem. http:// www.­s tadtentwicklung.­b erlin.­d e/umwelt/stadtgruen/gruenanlagen/de. Accessed 10 Oct 2016 Senatsverwaltung für Umwelt, Verkehr und Klimaschutz Berlin (2008) Der Landesbeauftragte für Naturschutz und Landschaftspflege: Beratung und Service. https://www.­berlin.­de/senuvk/natur_ gruen/lb_naturschutz/de/service/index.­s html. Accessed 6 Sep 2017 Senatsverwaltung für Umwelt, Verkehr und Klimaschutz Berlin (2017) Berliner Klärschlamm: Anfallmengen und Entsorgung. http://www.­ stadtentwicklung.­berlin.­de/umwelt/abfall/klaerschlamm/anfallmengen.­shtml. Accessed 25 Apr 2017 SER (2004) The SER international primer on ecological restoration. Society for Ecological Restoration International (SER). Tucson, Arizona. www.­ser.­ org/. Accessed 28 May 2017 SER (2017) Academic programs. Society for Ecological Restoration International, Tucson, Arizona. http://www.­s er.­o rg/page/AcademicPrograms. Accessed 16 Sep 2017 Serbser W (2000) Lebenswelt und Dorfentwicklung am Rande des Sanierungsbergbaues. In: Wiegleb G, Bröring U, Mrzljak J, Schulz F (eds) Naturschutz in Bergbaufolgelandschaften. Landschaftsanalyse und Leitbildentwicklung. Physica, Heidelberg, pp 70–81 Sergerström U (1991) Soil pollen analysis—an application for tracing ancient arable patches. J Archaeol Sci 18(2):165–175 Sessions G (1995) Deep Ecology for the twenty-first century. Readings on the philosophy and practice of the new environmentalism. Shambhala Publications, Boston Settele J, Henle K (2009) Grazing and cutting regimes for old grassland in temperate zones. In: Gherardi F, Corti C, Gualtieri M (eds) Biodiversity conservation and habitat management—Volume I. EOLSS, Oxford, pp 261–276 Shanab S, Essa A, Shalaby E (2012) Bioremoval capacity of three heavy metals by some microal-

693 References

gae species (Egyptian Isolates). Plant Sign Behav 7(3):392–399 Shanahan DF, Lin BB, Bush R, Gaston KJ, Dean JH, Barber E, Fuller RA (2015) Toward improved public health outcomes from urban nature. Am J Public Health 105(3):470–477 Shapiro J, Báldi A (2014) Accurate accounting: how to balance Ecosystem services and disservices. Ecosyst Serv 7:201–202 Shaw WD, Wlodarz M (2013) Ecosystems, ecological restoration, and economics: does habitat or resource equivalency analysis mean other economic valuation methods are not needed? Ambio 42:628–643 Shebitz D (2005) Weaving traditional ecological knowledge into the restoration of basketry plants. J Ecol Anthropol 9:51–68 Shepard CC, Crain CM, Beck MW (2011) The protective role of coastal marshes: a systematic review and meta-analysis. PLoS One 6(11):e27374 Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, Oxford Shine C, Williams N, Gundling L (2000) A guide to designing legal and institutional frameworks on alien invasive species. IUCN Environ Pol Law Pap 40:1–138 Shlisky A, Waugh J, Gonzalez P, Gonzalez M, Manta M, Santoso H, Alvarado E, Nuruddin AA, Rodríguez-Trejo DA, Swaty R (2007) Fire, ecosystems and people: threats and strategies for global biodiversity conservation. The Nature Conservancy, Arlington Shojaei P, Karimlou M, Mohammadi F, Afzali HM, Forouzan AS (2013) Position of social determinants of health in urban man-made lakes. Global J Health Sci 5(6):100–111 Short FT, Mathieson AC, Nelson JI (1984) The seagrass filter: purification of estuarine and coastal waters. In: Kennedy VS (ed) The estuarine as a filter. Academic, London, pp 395–413 Shrestha R, Köckler H, Flacke J, Martinez J, van Maarseveen M (2017) Interactive knowledge co-­ production and integration for healthy urban development. Sustainability 9(11):1945 Siano R, Klaus S (2013) Auerhuhn Tetrao urogallus— Wiederansiedlungs- und Bestandsstützungsprojekte in Deutschland nach 1950—eine Übersicht. Vogelwelt 134(1):3–18 Siddig AAH, Ellison AM, Ochs A, Villar-Leeman C, Lau MK (2016) How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in ecological indicators. Ecol Indic 60:223–230 Siedentopf Y (2005) Vegetationsökologie von Stromtalpflanzengesellschaften (Senecionion fluviatilis) an der Elbe. Dissertation, TU Braunschweig

Sikorska D, Sikorski P, Hopkins RJ (2017) High biodiversity of green infrastructure does not contribute to recreational ecosystem services. Sustainability 9:334–347 Silliman BR, Grosholz E, Bertness MD (eds) (2009) Human impacts on salt marshes: a global perspective. University of California Press, Berkeley Silva JP, Toland J, Jones W, Eldridge J, Thorpe E, O’Hara E (2008) LIFE and Europe’s grasslands. Restoring a forgotten habitat. European Community (ed). http://ec.­europa.­eu/environment/life/ publications/lifepublications/lifefocus/documents/grassland.­pdf. Accessed 27 Feb 2017 Simaika JP, Samways MJ (2010) Biophilia as a universal ethic for conserving biodiversity. Conserv Biol 24:903–906 Simberloff D (2011) Native invaders. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, pp 472–475 Simberloff D (2015) Non-native invasive species and novel ecosystems. F1000Prime Rep 7:47 Simberloff D, Rejmanek M (2011) Encyclopedia of biological invasions. University of California Press, Berkeley Simberloff D, Vitule JRS (2014) A call for an end to calls for the end of invasion biology. Oikos 123:408–413 Simberloff DA (1998) Flagships, umbrellas, and keystones: is single-species management passé in the landscape era. Biol Conserv 83:247–257 Simon J, Machar I, Bucek A (2014) Linking the historical research with the growth simulation model of hardwood floodplain forests. Polish J Ecol 62(2):273–288 Simon L (1992) Entwurf, Ergebnisse und Konsequenzen der wissenschaftlichen Begleituntersuchungen zum Biotopsicherungsprogramm ‘Streuobstwiesen’ des Landes Rheinland-Pfalz. Beitr Landespfl Rheinland-Pfalz 15:1–56 Simon M, Gießelmann K, Köstermeyer H, Brand S (2008) Internethandbuch Fledermäuse: Kleine Bartfledermaus. Bundesamt für Naturschutz (BfN). http://www.­ffh-anhang4.­bfn.­de.­html. Accessed 21 Aug 2017 Simonis UE, Leitschuh H, Michelsen G, Sommer J, von Weizsäcker EU (eds) (2014) Re-­Naturierung: Gesellschaft im Einklang mit der Natur, Jahrbuch Ökologie, vol 2015. Hirzel, Stuttgart Simula M (2009) Towards defining forest degradation: comparative analysis of existing definitions. Discussion paper, Food and Agriculture Organization (FAO). http://www.­ardot.­fi/Documents_2/ Degradationdefintions.­pdf. Accessed 26 Dec 2017 Singer AC, Shaw H, Rhodes V, Hart A (2016) Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front Microbiol 7:1728

694

References

Sitschick H, Ludwig F, Wetzel E, Luckert J, Höding T (2005) Raseneisenerz—auch in Brandenburg ein mineralischer Rohstoff mit bedeutender wirtschaftlicher Vergangenheit. Brandenbg Geowiss Beitr 12(1/2):119–128 Sjöberg G, Ball JP (eds) (2011) Restoring the European Beaver: 50 years of experience. Pensoft, Sofia Skagen SK, Oman HD (1996) Dietary flexibility of shorebirds in the western hemisphere. Can Field Nat 110:419–444 Skjaerseth JB (2003) Managing North Sea pollution effectively: linking international and domestic institutions. Int Environ Agreem-P 3(2):167–190 Skjoldal HR, Dundas I (eds) (1991) The Chrysocromulina polylepis bloom in the Skagerrak and in the Kattegat in May-June 1988: Environmental conditions, possible causes and effects. International Council for the Exploration of the Seas (ICES), Kopenhagen Skowronek S, Terwei A, Zerbe S, Mölder I, Annighöfer P, Kawaletz H, Ammer C, Heilmeier H (2013) Regeneration potential of floodplain forests under the influence of non-native tree species: soil seed bank analysis in northern Italy. Restor Ecol 22(1):22–30 Sliva J (1997) Renaturierung von industriell abgetorften Hochmooren am Beispiel der Kendlmühlfilzen. Herbert Utz, München Sliva J, Pfadenhauer J (1999) Restoration of cut-over raised bogs in southern Germany—a comparison of methods. Appl Veg Sci 2:137–148 Smakhtin V, Revenga C, Döll P (2004) A pilot global assessment of environmental water requirements and scarcity. Water Int 29(3):307–317 Smart D (2015) Case study: Abbotts Hall managed realignment scheme. Restoring Europe’s Rivers. https://restorerivers.­eu/wiki/index.­php?title=Case_ study%3AAbbotts_Hall_Managed_Realignment_ Scheme. Accessed 9 Feb 2017 Smit J, Ratta A, Nasr J (eds) (2001) Urban agriculture: food, jobs and sustainable cities. UNDP, New York Smith K (2001) Environmental hazards: assessing risk and reducing disaster. Routledge, London Smith TM, Smith RL (2009) Ökologie, 6th edn. Pearson, Boston Smolowitz RJ, Corps LN, Center NF (1978) Lobster, Homarus americanus, trap design and ghost fishing. Marine Fish Rev 40:2–8 Snow CSR, Marrs RH (1997) Restoration of Calluna heathland on a bracken Pteridium-infested site in northwest England. Biol Conserv 81:35–42 Sobczyk T (2014) Der Eichenprozessionsspinner in Deutschland. Historie—Biologie—Gefahren— Bekämpfung. BfN Skripten 365:1–172 Söderström B, Svensson B, Vessby K, Glimskär A (2001) Plants, insects and birds in semi-natural

pastures in relation to local habitat and landscape factors. Biodivers Conserv 10:1839–1863 Solem T (1989) Blanket mire formation at Haramsøy, Møre og Romsdal, western Norway. Boreas 18: 221–235 Sommerhäuser M, Schuhmacher H (2003) Handbuch der Fließgewässer Norddeutschlands. Wiley, Weinheim Sommerhäuser M, Schuhmacher H (2009) Handbuch der Fließgewässer Norddeutschlands. Wiley, Weinheim Søndergaard M, Jeppesen E, Lauridsen TL, Skov C, Van Nes EH, Roijackers R, Lammens E, Portielje R (2007) Lake restoration: successes, failures and long-term effects. J Appl Ecol 44:1095–1105 Soni AK, Mishra B, Singh S (2014) Pit lakes as an end use of mining: a review. J Min Environ 5(2):99–111 Soni P, Vasistha HB, Kumar O (1989) Biological diversity in surface mined areas after reclamation. Indian For 115:475–482 Sonntag-Öström E, Nordin M, Lundell Y, Dolling A, Wiklund U, Karlsson M, Carlberg B, Slunga Järvholm L (2014) Restorative effects of visits to urban and forest environments in patients with exhaustion disorder. Urban Fog Urb Green 13(2):344–354 Soons MB (2006) Wind dispersal in freshwater wetlands: knowledge for conservation and restoration. Appl Veg Sci 9:271–278 Soons MB, Messelink JH, Jongejans E, Heil GW (2005) Habitat fragmentation reduces grassland connectivity for both short-distance and longdistance wind dispersed forbs. J Ecol 93:1214–1225 Soons MB, Brochet AL, Kleyheeg E, Green AJ (2016) Seed dispersal by dabbling ducks: an overlooked dispersal pathway for a broad spectrum of plant species. J Ecol 104:443–455 Sorensen A, Okata J (eds) (2011) Megacities. Urban form, governance, and sustainability, cSUR-­UT Series 10: library for sustainable urban regeneration. Springer, Tokyo Spaeth I, Balder H, Kilz E (1994) Das Problem mit der Spätblühenden Traubenkirsche in den Berliner Forsten. Allg Forstzeitschr 49:234–236 Spake R, Ezard THG, Martin PA, Newton AC, Doncaster CP (2015) A meta-analysis of functional group responses to forest recovery outside of the tropics. Conserv Biol 29(6):1695–1703 Spangenberg JH, Settele J (2010) Precisely incorrect? Monetising the value of ecosystem services. Ecol Complex 7:327–337 Speak A, Escobedo FJ, Russo A, Zerbe S (2018) An ecosystem service-disservice ratio: using composite indicators to assess the net benefits of urban trees. Ecol Indic 95:544–553 Speed R, Li Y, Tickner D, Huang H, Naiman R, Cao J, Lei G, Yu L, Sayers P, Zhao Z, Yu W (2016) River restoration: a strategic approach to plan-

695 References

ning and management. UNESCO, Paris. http:// unesdoc.­unesco.­org/images/0024/002456/245644e.­ pdf. Accessed 1 Apr 2017 Speer JH (2010) Fundamentals of tree ring research. University of Arizona Press, Tucson Spekat A, Enke W, Kreienkamp F (2007) Neuentwicklung von regional hoch aufgelösten Wetterlagen für Deutschland und Bereitstellung regionaler Klimaszenarios (auf der Basis von globalen Klimasimulationen mit dem Regionalisierungsmodell WETTREG auf der Basis von globalen Klimasimulationen mit ECHAM5/MPI-OM T63L31 2010 bis 2100 für die SRESSzenarios B1, A1B und A2). Forschungsprojekt im Auftrag des Umweltbundesamtes, FuE-­ Vorhaben 20441138. Final Report. Umweltbundesamt (UBA), Dessau-Roßlau Speranza A, Hanke J, van Geel B, Fanta J (2000) LateHolocene human impact and peat development in the Černá Hora bog, Krkonoše Mountains, Czech Republic. The Holocene 10(5):575–585 Sperle T (2010) Evaluation der Umsetzung von Ausgleichsmaßnahmen von Bebauungsplänen. Gutachten im Auftrag der Landesfraktion Bündnis90/Die Grünen Baden-Württemberg. http:// www.­b und-bawue.­d e/fileadmin/bawue/presse/ pressemitteilungen/2010/06/Studie_Evaluation_B-­Plaene_ges.­pdf. Accessed 20 May 2017 Sperry T (1983) Analysis of the University of Wisconsin-Madison prairie restoration project. In: Brewer R (ed) Proceedings of the 8th North American Prairie Conference. Western Michigan University, Kalamazoo, pp 140–146 Spiecker H, Hein S (2009) Valuable broadleaved forests in Europe. Eur For Inst Res Rep 22:1–256 Spiegelberger T, Matthies D, Müller-Schärer H, Schaffner U (2006) Scale-dependent effects of land use on plant species richness of mountain grassland in the European Alps. Ecography 29:541–548 Spiegelberger T, Müller-Schärer H, Matthies D, Schaffner U (2009) Sawdust addition reduces the productivity of. Nitrogen-Enriched Mountain Grasslands. Restor Ecol 17(6):865–872 Spindler T (1997) Fischfauna in Österreich. Ökologie—Gefährdung—Bioindikation—Fischerei— Gesetzgebung, 2nd ed. Umweltbundesamt Monogr 87:1–140 Spitzer L, Konvicka M, Benes J, Tropek R, Tuf IH, Tufova J (2008) Does closure of traditionally managed open woodlands threaten epigeic invertebrates? Effects of coppicing and high deer densities. Biol Conserv 141(3):827–837 Spliethoff H, Mitchell T, Ribaudo L, Taylor O, Shayler H, Greene V, Oglesby D (2014) Lead in New  York City community garden chicken eggs: influential factors and health implications. Environ Geochem Health 36:633–649

Spracklen BD, Lane JV, Spracklen DV, Williams N, Kunin WE (2013) Regeneration of native broadleaved species on clear-felled conifer plantations in upland Britain. For Ecol Manag 310:204–212 Spranger E, Türk W (1993) Die Halbtrockenrasen (Mesobromion erecti Br.-Bl. et Moor 1938) der Muschelkalkstandorte NW-Oberfrankens im Rahmen ihrer Kontakt- und Folgegesellschaften. Tuexenia 13:203–245 Spray SL, McGlothlin KL (2003) Loss of biodiversity. Rowman & Littlefield, Lanham Squires VR (2016) Ecological Restoration: global challenges, social aspects and environmental benefits. Nova Science, New York Squires VR, Glenn EP (2009) Salination, desertification, and soil erosion. In: Squires (ed) Encyclopedia of Life Support Systems (EOLSS), The role of food, agriculture, forestry and fisheries in human nutrition, vol 3. EOLSS, Oxford, pp 102–123 SRU (2002) Für eine Stärkung und Neuorientierung des Naturschutzes. Sondergutachten des Rates von Sachverständigen für Umweltfragen (SRU). Drucksache 14/9852. https://ia801607.­us.­archive.­ org/21/items/ger-bt-drucksache-14-9852/1409852.­ pdf. Accessed 12 Jan 2018 SRU (2004) Meeresumweltschutz für Nord- und Ostsee. Sondergutachten. Sachverständigenrat für Umweltfragen (SRU). https://www.­umweltrat.­de/. Accessed 2 Jan 2017 SRU (2011) Sustainable management of fish stocks. Reforming the common fisheries policy. German Advisory Council on the Environment (Sachverständigenrat für Umweltfragen SRU). Statement 16:1–58 SRU (2012) Umweltgutachten 2012. Verantwortung in einer begrenzten Welt. Sachverständigenrat für Umweltfragen (SRU). Schmidt, Berlin SRU (2016a) Mehr Raum für Wildnis in Deutschland. In: Sachverständigenrat für Umweltfragen (SRU) (ed) Umweltgutachten 2016. Impulse für eine integrative Umweltpolitik. SRU, Berlin, pp 299–356 SRU (2016b) Umweltgutachten 2016. Impulse für eine integrative Umweltpolitik. Sachverständigenrat für Umweltfragen (SRU), Berlin Ssymank A (1994) Indikatorarten der Fauna für historisch alte Wälder. NNA Ber 3:134–141 Ssymank A, Hauke U, Rückriem C, Schröder E (1998) Das europäische Schutzgebietssystem Natura 2000 BfN-Handbuch zur Umsetzung der FaunaFlora-Habitat-Richtlinie und der VogelschutzRichtlinie. Schrreihe Landschpfl Natschutz 53:1–560 Ssymank A, Ullrich K, Vischer-Leopold M, Belting S, Bernotat D, Bretschneider A, Rückriem C, Schiefelbein U (2015) Handlungsleitfaden “Moorschutz und Natura 2000” für die Durchführung von

696

References

Moorrevitalisierungsprojekten. Natschutz Biol Vielfalt 140:277–312 Staddon C (2016) Managing Europe’s water resources: twenty-first century challenges. Routledge, London Stahl M (2010) Methoden und Instrumente der Sozialwissenschaften. Leibniz-Institut für Sozialwissenschaften. Sozialwiss Fachinformationsd 2:1–124 Stammel B, Cyffka B, Geist J, Müller M, Pander J, Blasch G, Fischer P, Gruppe A, Haas F, Kilg M, Lang P, Schopf R, Schwab A, Utschik H, Weißbrod M (2012) Floodplain restoration on the Upper Danube (Germany) by re-establishing water and sediment dynamics: a scientific monitoring as part of the implementation. River Syst 20(1):55–70 Stampfli A, Zeiter M (1999) Plant species decline due to abandonment of meadows cannot easily be reverse by mowing: a case study from the southern Alps. J Veg Sci 10:151–164 Stanc SR, Radu V, Bejenaru L (2009) Cyprinid fishing in Dobrudja (Romania) from prehistory to the Middle Ages. In: Makowiecki D, Hamilton-Dyer S, Riddler I, Trzaska-­ Nartowski N, Makohonienko M (eds) Fishes—Culture—Environment through achaeoichthyology, ethnography & history. Envirom Cult 7:1–14 Stanc SR, Radu V, Bejenaru L (2009) Cyprinid fishing in Dobrudja (Romania) from prehistory to the Middle Ages. In: Makowiecki D, Hamilton-Dyer S, Riddler I, Trzaska-Nartowski N, Makohonienko M (Hrsg) Fishes – Culture – Environment through Archaeoichthyology, ethnography & history. Envirom Cult 7:108–114 Ständiges Sekretariat der Alpenkonvention (2008) Alpenkonvention. http://www.­alpconv.­org. Accessed 23 Oct 2016 Stanová V, Valachovič M (eds) (2002) Katalóg biotopov Slovenska. DAPHNE—Inštitút aplikovanej ekológie, Bratislava Stanturf JA (2015) Restoration of boreal and temperate forests, 2nd edn. CRC Press, Boca Raton Stanturf JA, Lamb D, Madsen P (eds) (2012) Forest landscape restoration: integrating natural and social sciences. Springer, Dordrecht Stanturf JA, Palik BJ, Dumroese KR (2014) Contemporary forest restoration: a review emphasizing function. For Ecol Manag 331:292–323 Starfinger U, Kowarik I, Rode M, Schepker H (2003) From desirable ornamental plant to pest to accepted addition to the flora? The perception of alien tree species through the centuries. Biol Invasions 5:323–335 Statistischer Bericht (2016) Einwohnerinnen und Einwohner im Land Berlin am 30. Juni 2016. Statistik Berlin Brandenburg. https://www.­statistik-berlinb r a n d e n bu rg .­d e / p u bl i k at i o n e n / s t at _ b e r i -

chte/2016/SB_A01-05-00_2016h01_BE.­p df. Accessed 30 Aug 2017 Statistisches Bundesamt (2015a) Umwelt: Abfallbilanz. https://www.­destatis.­de/. Accessed 21 Aug 2017 Statistisches Bundesamt (2015b) Umwelt: Abfallentsorgung. Fachserie 19. Reihe 1:1–256 Statistisches Bundesamt (2016) Flächennutzung. https://www.­destatis.­de/. Accessed 9 Oct 2016 Statistisches Bundesamt (2017a) Land- und Forstwirtschaft, Fischerei. Forstwirtschaftliche Bodennutzung—Holzeinschlagsstatistik. Fachserie 3, Reihe 3.3.1:1–46. Statistisches Bundesamt (2017b) Mülldeponien. h t t p s : / / d e.­s t a t i s t a .­c o m / s t a t i s t i k / d a t e n / studie/170060/umfrage/anzahl-verschiedenermuelldeponien-in-deutschland/. Accessed 14 Aug 2018 Statistisches Bundesamt (2017c) Volkswirtschaftliche Gesamtrechnungen, Inlandsprodukt. https:// www.­destatis.­de/. Accessed 15 Nov 2017 Statzner B, Pierre B, Dolédec S, Schöll F (2005) Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of trait patterns in least impacted river reaches. Freshw Biol 50:2136–2161 Stauffacher M, Flüeler T, Kruetli P, Scholz RW (2008) Analytic and dynamic approach to collaboration: a transdisciplinary case study on sustainable landscape development in a Swiss pre-alpine region. Sys Pract Act Res 21:409–422 Stavins RN (ed) (2012) Economics of the environment: selected readings, 6th edn. Norton, New York Steffenhagen P, Frick A, Timmermann T, Zerbe S (2008a) Satellitenbildgestützte Bewertung auf Landschaftsebene. In: Gelbrecht J, Zak D, Augustin J (eds) Phosphor- und Kohlenstoff -Dynamik und Vegetationsentwicklung in wiedervernässten Mooren des Peenetals in Mecklenburg-Vorpommern—Status. Steuergrößen und Handlungsmöglichkeiten Ber IGB 26:155–158 Steffenhagen P, Timmermann T, Schulz K, Zerbe S (2008b) Biomasseproduktion sowie Kohlenstoff—und Nährstoffspeicherung durch Sumpfpflanzen (Helophyten) und Wasserpflanzen (Hydrophyten). In: Gelbrecht J, Zak D, Augustin J (eds) Phosphor- und Kohlenstoff -Dynamik und Vegetationsentwicklung in wiedervernässten Mooren des Peenetals in Mecklenburg-Vorpommern—Status, Steuergrößen und Handlungsmöglichkeiten. Ber IGB 26:145–150 Steffenhagen P, Zak D, Schulz K, Timmermann T, Zerbe S (2011) Biomass and nutrient stock of submersed and floating macrophytes in shallow lakes formed by rewetting of degraded fens. Hydrobiologia 692(1):99–109

697 References

Steffenhagen P, Zerbe S, Frick A, Schulz K, Timmermann T (2010) Wiederherstellung von Ökosystemleistungen der Flusstalmoore in Mecklenburg-Vorpommern. Ein aktiver Beitrag zum Moorschutz. Natschutz Landschplan 42(10):304–311 Stegmann H (2005) Die Quellmoore im Sernitztal (NO-Brandenburg)—Genese und anthropogene Bodenveränderungen. Dissertation, University of Greifswald Steidl I, Heinz S, Ruppaner M, Kuhn G (2016) Bayerische Wiesenmeisterschaften. Naturschutz und Landwirtschaft Hand in Hand. Bayerische Landesanstalt für Landwirtschaft. https://www.­bundnaturschutz.­de/. Accessed 27 Feb 2017 Stein A, Rietz C, Hupfer M (2008) Seentherapie: Anwendung eines Phosphor-­ Bilanzmodells zur Abschätzung der Wirksamkeit einer Tiefenwasserableitung bei sinkender externer Belastung durch Flächenstilllegung. Hydrol Wasserbewirt 52(2):66–75 Stein-Bachinger K, Fuchs S, Gottwald F, Helmecke A, Grimm J, Zander P, Schuler J, Bachinger J, Gottschall R (2010) Naturschutzfachliche Optimierung des Ökologischen Landbaus—Naturschutzhof Brodowin. Natschutz Biol Vielfalt 90:1–409 Steiner R (1924) Geisteswissenschaftliche Grundlagen zum Gedeihen der Landwirtschaft, Landwirtschaftlicher Kursus. Rudolf Steiner, Dornach Steinfeld H, Gerber P, Wassenaar TD (2006) Livestock’s long shadow: environmental issues and options. FAO, Rom Steinsiek PM, Laufer J (2012) Quellen zur Umweltgeschichte in Niedersachsen vom 18. bis zum 20. Jahrhundert: Ein thematischer Wegweiser durch die Bestände des Niedersächsischen Landesarchivs. Vandenhoeck & Ruprecht, Göttingen Steinwender A, Gundacker C, Wittmann KJ (2008) Objective versus subjective assessments of environmental quality of standing and running waters in a large city. Landsc Urban Plan 84(2):116–126 Stelbrink B, Shirokaya AA, Föller K, Wilke T, Albrecht C (2016) Origin and diversification of Lake Ohrid’s endemic acroloxid limpets: the role of geography and ecology. BMC Evol Biol 16(273):2–13 Stelfox M, Hudgins J, Sweet M (2016) A review of ghost gear entanglement amongst marine mammals, reptiles and elasmobranchs. Marine Poll Bull 111(1–2):6–17 Stephan G (2012) Die Gewinnung des Harzes der Kiefer (Pinus silvestris), 3rd edn. Kessel, Remagen-Oberwinter Stephan HJ (1998) Landschaftsentwicklung. In: Irmler U, Müller K, Eigner J (eds) Das Dosenmoor. Ökologie eines regenerierenden Hochmoores. Wachholtz, Neumünster, pp 63–73

Stern N (2006) What is the economics of climate change? World Econ 7(2):1–10 Stern N, Peters S, Bakhshi V, Bowen A, Cameron C, Catovsky S, Crane D, Cruickshank S, Dietz S, Edmonson N, Garbett SL, Hamid L, Hoffman G, Ingram D, Jones B, Patmore N, Radcliffe H, Sathiyarajah R, Stock M, Taylor C, Vernon T, Wanjie H, Zenghelis D (2006) Stern review: the economics of climate change. HM Treasury, London Stevens CJ, Dise NB, Gowing DJG, Mountford JO (2006) Loss of forb diversity in relation to nitrogen deposition in the UK: regional trends and potential controls. Glob Chang Biol 12:1823–1833 Stevenson MJ, Ward LK, Pywell RF (1997) Re-creating semi-natural communities: vacuum harvesting and hand collection of seed on calcareous grassland. Restor Ecol 5:66–76 Steverding M, Leuschner C (2002) Auswirkungen des Fichtenanbaus auf die Brutvogelgemeinschaften einer submontan-montanen Waldlandschaft (Kaufunger Wald, Nordhessen). Forstwiss Cbl 121:83–96 Steward J (1968) Cultural ecology. In: Sills D (ed) International encyclopedia of the social sciences, vol 4. Macmillan, New York, pp 337–344 Steward J (2006) The concept and method of cultural ecology. In: Haenn N, Wilk RR (eds) The environment in anthropology, A reader in ecology, culture, and sustainable living. New York University Press, New York, pp 5–9 Steward JH (1955) Theory of culture change. The methodology of multilinear evolution. University of Illinois Press, Campaign Stewart N, Thomas R, Schauer M (2015) Introduction. In: ELD Initiative: The value of land. Prosperous lands and positive rewards through sustainable land management, pp  8–23. http:// www.­eldinitiative.­org/fileadmin/pdf/ELD-mainreport_05_web_72dpi.­pdf. Accessed 20 May 2017 Stiftung Natur und Umwelt Rheinland-Pfalz (2017) Das Hangmoorprojekt in Rheinland-­Pfalz. http:// lifemoore.­de. Accessed 18 May 2017 Stiftung Naturschutzfonds Brandenburg (2017) LIFE Feuchtwälder. http://www.­feuchtwaelder.­de/projekt. Accessed 18 May 2017 Stigebrandt A, Kalén O (2013) Improving oxygen conditions in the deeper parts of Bornholm Sea by pumped injection of winter water. Ambio 42(5):587–595 Stigebrandt A, Rahm L, Viktorsson L, Ödalen M, Hall POJ, Liljebladh B (2014) A new phosphorus paradigm for the Baltic Proper. Ambio 43(5): 634–643 Stigebrandt A, Liljebladh B, de Brabandere L, Forth M, Granmo Å, Hall P, Hammar J, Hansson D, Kononets M, Magnusson M, Norén F, Rahm L, Treusch AH, Viktorsson L (2015) An experiment

698

References

with forced oxygenation of the deep-water of the anoxic By Fjord, Western Sweden. Ambio 44(1):42–54 Stive MJF, Dijkinan JPM, Baan PJA, Villars MT, de Graaff RF (1998) Artificial island in the North Sea and options for coastal development. Proc Ocean Int 98:1–8 StMELF (2017) Kulturlandschaft und Biodiversität, Förderprogramme für Streuobst in Bayern. Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten. http://www.­lfl.­bayern.­de/ iab/kulturlandschaft/030830/index.­php. Accessed 21 Aug 2017 Stoate C, Boatman ND, Borralho RJ, Rio Carvalho C, de Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63:337–365 Stobrawa K (2014) Poplars (Populus spp.): ecological role, applications and scientific perspectives in the 21st century (review paper). Baltic For 20(1):204– 213 Stock M, Kiehl K (eds) (2000) Die Salzwiesen der Hamburger Hallig. Schrreihe Nationalparks Schleswig-Holstein Wattenmeer 11:1–95 Stock O, Lesturgez G, Bens O, Hüttl R (2007) Mechanical properties of metastable glacial till before and after water-induced compaction. J Plant Nutr Soil Sci 170:560–566 Stock P, Burton RJF (2011) Defining terms for integrated (multi-inter-trans-disciplinary) sustainability research. Sustainability 3:1090–1113 Stöcklin J, Bosshard A, Klaus G, Rudermann-Mauer K, Fischer M (2007) Landnutzung und biologische Vielfalt in den Alpen. Syntheseber NFP 48:1–191 Stockmann R (2006) Evaluation und Qualitätsentwicklung. Eine Grundlage für wirkungsorientiertes Qualitätsmanagement. Sozialwiss Evalforsch 5:1–376 Stocks BJ, Fosberg MA, Lynham TJ, Mearns L, Wotton BM, Yang Q, Jin J-Z, Lawrence K, Hartley GR, Mason JA, McKenney DW (1998) Climate change and forest fire potential in Russian and Canadian boreal forests. Clim Chang 38:1–13 Stoddard JL, Jeffries DS, Lükewille A, Clair TA, Dillon PJ, Driscoll CT, Forsius M, Johannessen M, Kahl JS, Kellogg JH, Kemp A, Mannio J, Monteith DT, Murdoch PS, Patrick S, Rebsdorf A, Skjelkvåle BL, Stainton MP, Traaen T, van Dam H, Webster KE, Wieting J, Wilander A (1999) Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401:575–578 Stoffel M, Bollschweiler M, Butler DR, Luckman BH (eds) (2010) Tree rings and natural hazards. Adv Global Change Res 41:1–505

Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Cambridge University Press, Cambridge Stoll S (1999) Bewertungsprobleme bei der Umnutzung von Landschaft—Umweltsozialwissenschaftliche Erklärungsansätze. In: Schneider-Sliwa R, Schaub D, Gerold G (eds) Angewandte Landschaftsökologie, Grundlagen und Methoden. Springer, Heidelberg, pp 477–490 Stolle M (1998) Böschungssicherung, Erosions- und Deflationsschutz in Bergbaufolgelandschaften— Zur Anwendung von Mulchdecksaaten. In: Pflug W (ed) ­ Braunkohlenbergbau und Rekultivierung—Landschaftsökologie, Folgenutzung, Naturschutz. Springer, Heidelberg, pp 873–881 Stoltz J, Lundell Y, Skärbäck E, van den Annerstedt BM, Grahn P, Nordström EM, Dolling A (2016) Planning for restorative forests: describing stressreducing qualities of forest stands using available forest stand data. Eur J For Res 135(5):803–813 Stoltz M, Helb HW (2004) Die Entwicklung einer Wiederansiedlungspopulation des Weißstorchs Ciconia ciconia in Rheinland-Pfalz und im Saarland. Vogelwelt 125:21–39 Stopka I, Rank S (2013) Naturerfahrungsräume in Großstädten. Wege zur Etablierung im öffentlichen Raum. BfN Skripten 345:1–143 Storath S (2016) Rund 250 aktive Steinbrüche: Deutschland hat viel zu bieten. Natursteinonline. http:// www.­natursteinonline.­de/zeitschrift/wissen/steinbrueche_deutschland.­html. Accessed 14 Dec 2016 Storm C, Eichberg C, Stroh M, Schwabe A (2016) Restoration of steppic sandy grassland using deep-sand deposition, inoculation with plant material and grazing: a 10-year study. Tuexenia 36:143–166 Storm L, Shebitz D (2006) Evaluating the purpose, extent, and ecological restoration applications of indigenous burning practices in Southwestern Washington. J Ecol Restor 24(4):256–268 Straka H (1973) La végétation des landes d’Europe occidentale (Nardo-Callunetea). Géhu JM (ed) Colloque de l’Amicale Phytosociologique 1–3:243–245 Straka H (2005) Pollenanalyse und Vegetationsgeschichte, Neue Brehm Bücherei, 3rd edn. Westarp Wissenschaftliche Verlags-Gesellschaft, Mülheim Strasser P, Peters T (2016) Die Würfelnatter (Natrix tessellata) am Wiederansiedlungsstandort Knorre bei Meißen: aktuelle Situation und Rückblick auf das Hochwasser vom Juni 2013. Terraria 2:78–85 Streif H (1990) Das ostfriesische Küstengebiet. Nordsee, Inseln, Watten und Marschen. Samml Geol Führer 57:1–376 Streit B (2007) Was ist Biodiversität? Erforschung, Schutz und Wert biologischer Vielfalt. Beck, München

699 References

Streito JC, Legrand PH, Tabary F, De Villartay JG (2002) Phytophthora disease of alder (Alnus glutinosa) in France: investigations between 1995 and 1999. For Pathol 32:179–191 Striese G, Spinn H, Lorenz A (2004) Etablierung von Eichen mittels Hähersaat. In: Tischew S (ed) Renaturierung nach dem Braunkohleabbau. Vieweg & Teubner, Wiesbaden, pp 278–280 Stroh M, Storm C, Zehm A, Schwabe A (2002) Restorative grazing as a tool for directed succession with diaspore inoculation: the model of sand ecosystems. Phytocoenologia 32:595–625 Stroh M, Kratochwil A, Remy D, Zimmermann K, Schwabe A (2005) Rehabilitation of alluvial landscapes along the river Hase (Ems river basin, Germany). Arch Hydrobiol 155(1–4):243–260 Stroh M, Storm C, Schwabe A (2007) Untersuchungen zur Restitution von Sandtrockenrasen: das Seeheim-Jugenheim-Experiment in Südhessen (1999 bis 2005). Tuexenia 27:287–306 Strubenhoff F (2008) Renaturierung der Nebenflüsse der oberen Oste, Diplomarbeit, Fachhochschule Nordostniedersachsen, Standort Buxtehude. Diplomica, Hamburg Struck A, Garbe H, Felinks B (2013) Auenreport Spezial: Die Deichrückverlegung bei Lenzen. Erste Ergebnisse der wissenschaftlichen Begleitung. Ministerium für Umwelt, Gesundheit und Verbraucherschutz des Landes Brandenburg, Potsdam Stuber M, Bürgi M (2001) Agrarische Waldnutzungen in der Schweiz 1800–1950. Waldweide, Waldheu, Nadel- und Laubfutter. Schweiz Z Forstwes 152(12):490–508 Stucki P (2010) Methoden zur Untersuchung und Beurteilung der Fließgewässer. Makrozoobenthos Stufe F.  Bundesamt für Umwelt, Bern. Umwelt-Vollzug Nr. 1026. http://www.­modul-­stufenkonzept.­ch/ download/MZB_Stufe_F-D_20111215.­p df. Accessed 17 Nov 2017 Stuke JH (1997) Stechimmen. In: Cordes H, Kaiser T, von der Lancken H, Lütkepohl M, Prüter J (eds) Naturschutzgebiet Lüneburger Heide: Geschichte—Ökologie—Naturschutz. Hauschild, Bremen, pp 287–290 Stumpel AHP, Kalkhoven JTR (1978) A vegetation map of the Netherlands, based on the relationship between ecotopes and types of potential natural vegetation. Vegetatio 37:163–173 Stumpf M, Ternes T, Wilken RD, Rodrigues S, Baumann W (1999) Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Sci Total Environ 225:135–141 Sturm B, Vogt C (2011) Umweltökonomik, Eine anwendungsorientierte Einführung. Physica, Heidelberg

Sturm K (1993) Prozeßschutz—ein Konzept für naturgerechte Waldwirtschaft. Z Ökol Natschutz 2:181–192 Succow M (1988) Landschaftsökologische Moorkunde. Gustav Fischer, Jena Succow M (1998) Wachsende (naturnahe) Moore. In: Wegener U (ed) Naturschutz in der Kulturlandschaft: Schutz und Pflege von Lebensräumen. Gustav Fischer, Jena, pp 126–156 Succow M, Jeschke L (1986) Moore in der Landschaft. Harri Deutsch, Frankfurt a. M Succow M, Jeschke L (1990) Moore in der Landschaft, 2nd edn. Harri Deutsch, Frankfurt a. M Succow M, Joosten H (2001) Landschaftsökologische Moorkunde, 2nd edn. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart Succow M, Kopp D (1985) Seen als Naturraumtypen. Petermann Geogr Mitt 3:159–165 Succow M, Lange E (1984) The mire types of the German Democratic Republic. In: Moore PD (ed) European Mires. Academic, Michigan, pp 149–175 Suchenwirth L, Förster M, Cierjacks A, Lang F, Kleinschmit B (2012) Knowledge-based classification of remote sensing data for the estimation of below- and above-ground organic carbon stocks in riparian forests. Wetland Ecol Manage 20: 151–163 Suchomel C, Konold W (2008) Niederwald als Energiequelle—Chancen und Grenzen aus Sicht des Naturschutzes. Ber Natforsch Ges Freiburg 98:61–120 Südbeck P, Andretzke H, Fischer S, Gedeon K, Schikore T, Schröder K, Sudfeldt C (eds) (2005) Methodenstandards zur Erfassung der Brutvögel Deutschlands. Ländergemeinschaft der Vogelschutzwarten & Dachverband Deutscher Avifaunisten, Radolfzell Sudfeldt C, Dröschmeister R, Wahl J, Berlin K, Gottschalk T, Grüneberg C, Mitschke A, Trautmann S (2012) Vogelmonitoring in Deutschland. Programme und Anwendungen. Natschutz Biol Vielfalt 119:1–257 Suding KN (2011) Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annu Rev Ecol Evol Syst 42:465–487 Suding KN, Gross KL (2006) The dynamic nature of ecological systems: multiple states and restoration trajectories. In: Falk DA, Palmer MA, Zedler J (eds) Foundations of restoration ecology. Island Press, Washington, DC, pp 190–209 Suding KN, Gross KL, Houseman GR (2004) Alternative states and positive feedbacks in restoration ecology. Trends Ecol Evol 19:46–53 Sukhdev P, Bishop J, ten Brink P, Gundimeda H, Karousakis K, Kumar P, Neßhöver C, Neuville A, Skinner D, Vakrou A, Weber JL, White S, Witt-

700

References

mer H (2009) TEEB climate issues update. The economics of ecosystems and biodiversity. http:// www.­teebweb.­org/media/2009/09/TEEB-­Climate-­ IssuesUpdate.­pdf. Accessed 24 May 2017 Sukopp H (ed) (1990) Stadtökologie, Das Beispiel Berlins. Reimer, Berlin Sukopp H, Markstein B (1978) Die Ufervegetation der Berliner Havel, Veränderungen 1962–1977, Schutz, Pflege und Entwicklung. Arb deut Fischereiverb 25:16–29 Sukopp H, Markstein B (1989) Die Vegetation der Berliner Havel. Bestandsveränderungen 1962– 1987. Landschentw Umweltforsch 64:1–128 Sukopp H, Scholz H (1997) Herkunft der Unkräuter. Osnabrück Naturwiss Mitt 23:327–333 Sukopp H, Sukopp S, Mollenhauer D, Krauss M, Brande A (2010) Der Tegeler See. Botanisch-­ historische Exkursion am 13. September 2009. Verh Bot Ver Berlin-Brandenburg 143:303–325 Sukopp H, Trepl L, Markstein B (1975) Röhrichte unter intensivem Großstadteinfluß. Beitr naturkdl Forsch Südwestdeut 34:371–385 Sukopp H, Wittig R (eds) (1998) Stadtökologie. Ein Fachbuch für Studium und Praxis, 2nd edn. FischeR, Jena Sukopp U, Sukopp H (1993) Das Modell der Einführung und Einbürgerung nicht einheimischer Arten. Gaia 2:267–288 Sundermann A, Antons C, Heigl E, Hering D, Jedicke E, Lorenz A, Haase P (2009) Evaluation von Fließgewässer-Revitalisierungsprojekten als Modell für ein bundesweites Verfahren zur Umsetzung effizienten Fließgewässerschutzes. Final Report DBU. https://www.­dbu.­de/ab/DBU-Abschlussbericht-AZ25032.­pdf. Accessed 29 Apr 2017 Sundseth K (2014) Invasive alien species—a European response. European Commission. http://ec.­ europa.­eu/environment/nature/invasivealien/docs/ ias-brochure-en-web.­pdf. Accessed 30 May 2017 Surminski J (1980) Technical properties of alder wood and its possible utilization. In: Bialobok S (ed) Olsze: Alnus Mill. Monograph Popular 8:325–341 Suske W (2001) Öffentliches Interesse “Streuobstfläche”—Hintergründe und Beispiele der Europäischen Förderpolitik. In: Holler C, Spornberger A (eds) Beiträge zum Streuobstanbau in Europa. Stand, Entwicklungen und Probleme. Tagber Umweltbundesamt 28:14–18 Süss K, Schwabe A (2007) Sheep versus donkey grazing or mixed treatment: results from a 4-year field experiment in Armerio-Festucetum trachyphyllae sand vegetation. Phytocoenologia 37:135–160 Süss K, Storm C, Zehm A, Schwabe A (2004) Successional traits in inland sand ecosystems: which factors determine the occurrence of the tall grass species Calamagrostis epigejos (L) Roth and Stipa capillata L? Plant Biol 6:465–476

Süss K, Storm C, Schwabe A (2011) Ried und Sand: Biotopverbund und Restitution durch extensive Landbewirtschaftung. Natschutz Biol Vielfalt 110:1–350 Süssmuth T (2012) Fauna: Spinnen. Natschutz Land Sachsen-Anhalt 49:45–48 Suttie JM, Reynolds SG, Batello C (2005) Grasslands of the world. FAO Plant Prod Protect Ser 34: 1–514 Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B (2011) The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press, Cambridge Sutton MA, Mason KE, Sheppard LJ, Sverdrup H, Haeuber R, Hicks WK (2014) Nitrogen deposition, critical loads and biodiversity. Springer, Dordrecht Svenning JC (2002) A review of natural vegetation openness in north-western Europe. Biol Conserv 104:133–148 Svensson JR, Lindegarth M, Jonsson PR, Pavia H (2012) Disturbance—diversity models: what do they really predict and how are they tested? Proc Biol Sci 279(1736):2163–2170 Swain HM, Boughton EH, Bohlen PJ, O’Gene LL (2013) Trade-off s among ecosystem services and disservices on a Florida ranch. Rangelands 35(5):75–87 Swannell RPJ, Lee K, McDonagh M (1996) Field evaluations of marine oil spill bioremediation. Microbiol Rev 60:342–365 Swart JAA, van der Windt HJ, Keulartz J (2001) Valuation of nature in conservation and restoration. Restor Ecol 9(2):230–238 Swartenbroux F, Albajedo B, Angelidis M, Aulne M, Bartkevics V, Besada V, Bignert A, Bitterhof A, Hallikainen A, Hoogenboom R, Jorhem L, Jud M, Law R, Licht Cederberg D, McGovern E, Miniero R, Schneider R, Velikova V, Verstraete F, Vinas L, Vlad S (2010) Marine strategy framework directive—task group 9 report: contaminants in fish and other seafood. EUR 24339 EN—Joint Research Centre, Office for Official Publications of the European Communities, Luxembourg. http://mcc.­jrc.­ec.­europa.­eu/document.­ py?code=201406241428. Accessed 14 Aug 2018 Sweeney S (2000) Different means, shared ends: environmental restoration and restoration ecology. Biol 38:129–139 Swig BA (2009) The recreation of estuarine ecosystem: a case study at Paull Holme Strays, Humber Estuary, UK.  Dissertation, University of Hull. https://hydra.­h ull.­a c.­u k/assets/hull:2560a/content. Accessed 9 Feb 2017 Swinnen KRR, Strubbe D, Matthysen E, Leirs H (2017) Reintroduced Eurasian beavers (Castor

701 References

fiber): colonization and range expansion across human-dominated landscapes. Biodivers Conserv 26:1863–1876 Symes NC, Day J (2003) A practical guide to the restoration and management of lowland heathland. RSPB, Sandy Szabolcs I (1987) The global problems of salt affected soils. Acta Agron Hung 36(1–2):159–172 Szabolcs I, Redly M (1989) State and possibilities of soil salinization in Europe. Agrokem Talajt 3: 537–561 Szafer W (ed) (2013) The vegetation of Poland. Int Ser Monogr Pure Appl Biol Bot 9:1–766 Szarek-Łukaszewska G, Grodzińska K (2011) Grasslands of a Zn-Pb post-mining area (Olkusz OreBearing region S Poland). Pol Bot J 56(2):245–260 Szymura TH, Szymura M, Macioł A (2014) Bioindication with Ellenberg’s indicator values: a comparison with measured parameters in Central European oak forests. Ecol Indic 46:495–503 Tabb PJ, Deviren AS (2013) The greening of architecture: a critical history and survey of contemporary sustainable architecture and urban design. Ashgate, Surrey Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Molecul Ecol 21(8):2045–2050 Taebia A, Droste RL (2004) Pollution loads in urban runoff and sanitary wastewater. Sci Total Environ 327:175–184 Tago D, Andersson H, Treich N (2014) Pesticides and health: a review of evidence on health effects, valuation of risks, and benefit-cost analysis. Adv Health Econ Health Serv Res 24:203–295 Tajovský K (2001) Colonization of colliery spoil heaps by millipedes (Diplopoda) and terrestrial isopods (Oniscidea) in the Sokolov Region, Czech Republic. Restor Ecol 9(4):365–369 Tallowin JRB, Smith REN (2001) Restoration of a Cirsio-Molinietum fen meadow on an agriculturally improved pasture. Restor Ecol 9:167–178 Talvi T (1995) Carabid beetle assemblages (Coleoptera) in a wooded meadow and in the adjacent habitats on the Saaremaa Island, Estonia. Entomol Fennica 6:169–175 Tamegger C, Krautzer B (2006) Production and use of site specific seed in Austria. In: Krautzer B, Hacker E (eds) Soil bioengineering: ecological restoration with native plant and seed material. HBLFA Raumberg-Gumpenstein, Irdning, pp 113–118 Tan PY, Jim CY (eds) (2017) Greening cities. Forms and functions. Springer, Singapore Tanavitskaya N, Kozulin A, Thiele A (2008) Inventory overview of status of peatlands in European Belarus. Seminarmaterialien zu “Market Based Instruments for the Rewetting of Peatlands”,

12–17, November 2008, Internationale Naturschutzakademie Insel Vilm, pp 3–32 Tang JW (2009) The effect of environmental parameters on the survival of airborne infectious agents. J Royal Soc Interface 6:737–746 Tanneberger F, Joosten H, Moen A, Whinam J (2017) Mire and peatland conservation in Europe. In: Tanneberger F, Joosten H, Moen (eds) Mires and peatlands in Europe—status, distribution and conservation. Schweizerbart Science Publishers, Stuttgart, pp 173–195 Taramarcaz P, Lambelet B, Clot B, Keimer C, Hauser C (2005) Ragweed (Ambrosia) progression and its health risks: will Switzerland resist this invasion? Swiss Med Week 135(37/38):538–548 Tasker ML, Amundin M, Andre M, Hawkins A, Lang W, Merck T, Scholik-Schlomer A, Teilmann J, Thomsen F, Werner S, Zakharia M (2010) Marine strategy framework directive—task group 11 report: underwater noise and other forms of energy. EUR 24341 EN—Joint Research Centre, Office for Official Publications of the European Communities, Luxembourg Tasser E, Tappeiner U (2002) Impact of land use changes on mountain vegetation. Appl Veg Sci 5:173–184 Tasser E, Mader M, Tappeiner U (2003) Effects of land use in alpine grasslands on the probability of landslides. Basic Appl Ecol 4:271–280 Tasser E, Walde J, Tappeiner U, Teutsch A, Noggler W (2007) Land-use changes and natural reforestation in the Eastern Central Alps. Agric Ecosyst Environ 118:115–129 Taylor B (2001) Earth and nature-based spirituality (Part I): from Deep Ecology to radical environmentalism. Religion 31(2):175–193 Taylor J, Singleton R (2014) The evolution of flow devices used to reduce flooding by beavers: a review. Wildlife Soc B 38:127–133 Teal LR (2011) The North Sea fish community: past, present and future. Background document for the 2011 National Nature Outlook. Wageningen. http://edepot.­wur.­nl/189131. Accessed 27 Mar 2017 TEEB (2017) The Economics of ecosystems and biodiversity. http://www.­teebweb.­org/. Accessed 24 May 2017 Telesetsky A, Cliquet A, Akhtar-Khavari A (2016) Ecological restoration in international environmental law. Routledge research in international environmental law. Routledge, London Tellería JL, Baquero R, Santos T (2003) Effects of forest fragmentation on European birds: implications of regional differences in species richness. J Biogeogr 30:621–628 Temel R, Haydn F (eds) (2006) Temporäre Räume: Konzepte zur Stadtnutzung. Birkhäuser, Basel

702

References

Temperton VM (2007) The recent double paradigm shift in restoration ecology. Restor Ecol 15(2): 344–347 Temperton VM, Hobbs RJ, Nuttle T, Halle S (eds) (2004) Assembly rules and restoration ecology: bridging the gap between theory and practice. Island Press, Washington, DC Ten Brink P (ed) (2011) The economics of ecosystems and biodiversity in national and international policy making. Earthscan, London Ten Thoren B, Heuger A, Jokwitz C, Melter J (2010) Renaturierung eines Altarms der Bever in Glandorf: Begleitende Untersuchungen der Wasserqualität und Fischbesiedlung. Osnabrücker Naturwiss Mitt 36:139–151 Ter Heerdt GNJ, Schutter A, Bakker JP (1997) Kiemkrachtig heidezaad in de bodem van ontgonnen heidevelden. De Levende Natuur 98:142–146 Terry AC, Ashmore MR, Power SA, Allchin EA, Heil GW (2004) Modelling the impacts of atmospheric nitrogen deposition on Calluna-dominated ecosystems in the UK. J Appl Ecol 41:897–909 Tesch A, Handke U (2013) Von der Heide zum Acker—und zurück? Begleituntersuchungen zu einer Heideentwicklung als Kompensationsmaßnahme. Natursch Landschaftspl 45(12):373–381 Tesch P, Hesselink E, Valckenier Suringar J (1926) De zandverstuivingen bij Kootwijk in word en Beeld. Tekst bij den platenatlas. Staatsbosbeheer, Utrecht Těšitel J, Kušová D (2012) Biosphere reserves—suggested model of the institution of commons (case study of the Šumava Biosphere Reserve). J Landsc Ecol 3(2):73–89 Teuchies J, Beauchard O, Jacobs S, Meire P (2012) Evolution of sediment metal concentrations in a tidal marsh restoration project. Sci Total Environ 419:187–195 Teuchies J, Singh G, Bervoets L, Meire P (2013) Land use changes and metal mobility: multi-approach study on tidal marsh restoration in a contaminated estuary. Sci Total Environ 449:174–183 Teuffel K, Baumgarten M, Hanewinkel M, Konold W, Sauter UH, Spiecker H, Wilpert K (2005) Waldumbau: für eine zukunftsorientierte Waldwirtschaft. Springer, Heidelberg Theodose TA, Bowman WD (1997) Nutrient availability, plant abundance, and species diversity in two alpine tundra communities. Ecology 78:1861– 1872 Thevenon F, Graham ND, Chiaradia M, Arpagaus P, Wildi W, Poté J (2011) Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries. Sci Total Environ 412–413:239–247 Thevs N, Zerbe S, Gahlert E, Mijit M, Succow M (2007) Productivity of reed (Phragmites australis

Trin. ex Steud.) in continental-arid NW China in relation to soil, groundwater, and land-use. J Appl Bot Food Qual 81(1):62–68 Thiel H, Koslow A (eds) (2001) Managing risks to biodiversity and the environment on the high seas, including tools such as marine protected areas— scientifi c requirements and legal aspects. BfN Skripten 43:1–214 Thiele A, Liashchynskaya N, Broska T, Bärisch S, Skuratovich A, Dubovik D, Stepanovich J, Ermolenko G, Sozinov O, Sakovich A (2012) Belarus peatland restoration project database. In: Dengler J, Oldeland J, Jansen F, Chytrý M, Ewald J, Finckh M, Glöckler F, Lopez-Gonzalez G, Peet RK, Schaminée JHJ (eds) Vegetation databases for the 21st century. Biodivers Ecol 4:335–336 Thiele J, Kollmann J, Rose Andersen U (2009) Ecological and socio-economic correlates of plant invasions in Denmark—the utility of environmental assessment data. Ambio 38(2):89–94 Thiele-Bruhn S (2009) Agricultural soils in Europe— special demands related to intensive agriculture in an industrialized environment. In: Lal R (ed) Agricultural sciences. EOLSS Publ 2:28–43 Thiry E, Van de Weyer K, Abts UW (2005) Re-establishment plan for the Natura 2000 species Najas flexilis in Poland. Final report. http://www.­ lanaplan.­d e/download/Najas%20flexilis.­p df. Accessed 14 May 2017 Thom T, Hanlon A, Lindsay R, Richards J, Stoneman R, Brooks S (2019) Conserving bogs: the management handbook. Stationary Office, Edinburgh Thomas CD (2011) Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends Ecol Evol 26(5):216– 221 Thom T, Hanlon A, Lindsay R, Richards J, Stoneman R, Brooks S (2019). Conserving Bogs: The Management Handbook. 2nd ed. IUCN UK Peatland Programme Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, De Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148 Thomas F, Denzel K, Hartmann E, Luick R, Schmook K (2009) Kurzfassungen der Agrarumwelt- und Naturschutzprogramme—Darstellung und Analyse der Entwicklung von Maßnahmen der Agrarumwelt- und Naturschutzprogramme in der Bundesrepublik Deutschland. BfN Skripten 253:1–376 Thomasius H (1991) Mögliche Auswirkungen einer Klimaänderung auf die Wälder Mitteleuropas. Forstwiss Centralbl 110:305–330

703 References

Thomasius H, Wünsche M, Selent H, Bräunig A (1999) Wald und Forstökosysteme auf Kippen des Braunkohlebergbaus in Sachsen—ihre Entstehung, Dynamik und Bewirtschaftung. Sächsische Landesanstalt für Forsten (LAF). Schrreihe Sächs Landesanst Forst 17:1–71 Thomaz SM, Ribeiro da Cunha E (2010) The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol Bras 22(2):218–236 Thompson J (1991) Combining local knowledge and expert assistance in natural resource management. Gland, International Union for Conservation of Nature (IUCN) Thompson K, Bakker J, Bekker R (1997) The soil seed banks of North West Europe: methodology, density and longevity. Cambridge University Press, Cambridge Thompson RC, Moore CJ, vom Saal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc Lond B Biol Sci 364(1526): 2153–2166 Thompson RN, Humphrey JW, Harmer R, Ferris R (2003) Restoration of native woodland on ancient woodland sites. Forestry Commission Practice Guide. Forestry Commission, Edinburgh. https:// www.­forestry.­g ov.­u k/pdf/fcpg014.­p df/$FILE/ fcpg014.­pdf. Accessed 1 Aug 2017 Thormann A, Kiehl K, Pfadenhauer J (2003) Einfluss unterschiedlicher Renaturierungsmaßnahmen auf die langfristige Vegetationsentwicklung neu angelegter Kalkmagerrasen. In: Pfadenhauer J, Kiehl K (eds). Angew Landschökol 55:73–106 Thorsen BJ, Mavsar R, Tyrväinen L, Prokofieva I, Stenger A (eds) (2014) The provision of forest ecosystem services. European Forest Institute. http:// www.­e fint/files/attachments/publications/efi_ wsctu_5_vol-1_en_net.­pdf. Accessed 12 July 2017 Thorenz F (2008) Coastal flood defence and coastal protection along the North Sea Coast of Niedersachsen. Die Küste 74:158–169 Throop W (ed) (2000) Environmental restoration: ethics, theory and practice. Humanity Books, New York Throop W, Purdom R (2006) Wilderness restoration: the paradox of public participation. Restor Ecol 14:493–499 Thüringer Ministerium für Umwelt, Energie und Naturschutz (2014) Programm zur Förderung umweltgerechter Landwirtschaft, Naturschutz und Landschaftspflege in Thüringen (KULAP 2014), Teil Naturschutz. https://www.­thueringen.­de/th8/tmuen/ naturschutz/foerderung. Accessed 21 Aug 2017 Tiebel K, Huth F, Wagner S (2018) Soil seed banks of pioneer tree species in European temperate forests: a review. iForest 11:48–57

Tiefenbach M, Larndorfer G, Weigand E (1998) Naturschutz in Österreich. Monogr Umweltbundesamt 91:1–136 Tiemeyer B, Bechtold M, Belting S, Freibauer A, Förster C, Schubert E, Dettmann U, Frank S, Fuchs D, Gelbrecht J, Jeuther B, Laggner A, Rosinski E, Leiber-Sauheitl K, Sachteleben J, Zak D, Drösler M (2017) Moorschutz in Deutschland— Optimierung des Moormanagements in Hinblick auf den Schutz der Biodiversität und der Ökosystemleistungen: Bewertungsinstrumente und Erhebung von Indikatoren. BfN Skripten 462:1–320 Tilley DJ, John LS (2012) Plant guide for common reed (Phragmites australis). USDA-­Natural Resources Conservation Service, Aberdeen. https://plants.­usda.­gov/plantguide/pdf/pg_phau7.­ pdf. Accessed 21 Jan 2017 Tillmann JE, Finck P, Riecken U (eds) (2013) Wisente im Rothaargebirge. Ergebnisse und Erfahrungen aus dem gleichnamigen Erprobungs- und Entwicklungsvorhaben (E+E) des Bundesamtes für Naturschutz. Natschutz Biol Vielfalt 133:1–240 Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66 Timaeus J, Heink U, Neßhöver K, Neuman RK (2015) Die Kernelemente für eine Stärkung der Schnittstelle zwischen Biodiversitätsforschung, Politik und Praxis. BfN Skripten 397:11–18 Timmermann T (1999) Anbau von Schilf (Phragmites australis) als ein Weg zur Sanierung von Niedermooren—Eine Fallstudie zu Etablierungsmethoden, Vegetationsentwicklung und Konsequenzen für die Praxis. Arch Natschutz Landschforsch 38:111–143 Timmermann T (2003) Der Polder Pentin. Greifswald Geogr Arb 30:69–77 Timmermann T, Joosten H, Succow M (2009) Restaurierung von Mooren. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer Spektrum, Heidelberg, pp 55–93 Timpe C, Felinks B (2013) Erfolgskontrolle ausgewählter Initialpflanzungen in der Lenzener Elbtalaue. In: Struck A, Garbe H, Felinks B (eds) Auenreport Spezial: Die Deichrückverlegung bei Lenzen. Erste Ergebnisse der wissenschaftlichen Begleitung. Ministerium für Umwelt, Gesundheit und Verbraucherschutz des Landes Brandenburg, Potsdam, pp 44–49 Tischew S (ed) (2004) Renaturierung nach dem Braunkohleabbau. Vieweg & Teubner, Wiesbaden Tischew S, Klotz S (1991) Die Pflanzengesellschaften der Äcker auf rekultivierten Kippenflächen des Tagebaugebietes südlich von Leipzig. Wiss Z Univ Halle 40(9):3–24 Tischew S, Mahn EG (1998) Ursachen räumlicher und zeitlicher Differenzierungsprozesse von Silbergrasfluren und Sandtrockenrasen auf Flächen des mitteldeutschen Braunkohletagebaus. Grundla-

704

References

gen für Renaturierungskonzepte. Verh Gesell Ökol 28:307–317 Tischew S, Wiegleb G, Kirmer A, Oelerich HM, Lorenz A (2009) Renaturierung von Tagebaufolgeflächen. In: Zerbe S, Wiegleb S (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer Spektrum, Heidelberg, pp 349–388 Tittel J, Kamjunke N (2004) Metabolism of dissolved organic carbon by planktonic bacteria and mixotrophic algae in lake neutralization experiments. Freshw Biol 49:1062–1071 TMLNU (2005) Binnensalzstellen um das Kyffhäusergebirge. Europaweit seltene und gefährdete Lebensräume. Thüringer Ministerium für Landwirtschaft, Naturschutz und Umwelt. http://apps.­thueringen.­de/ de/publikationen/pic/pubdownload612.­p df. Accessed 4 Feb 2017 Tocco C, Probo M, Lonati M, Lombardi G, Negro M, Nervo B, Rolando A, Palestrini C (2013) Pastoral practices to reverse shrub encroachment of subalpine grasslands: dung beetles (Coleoptera, Scarabaeoidea) respond more quickly than vegetation. PLoS One 8(12):e83344 Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environ Conserv 29(3):308–333 Tockner K, Pennetzdorfer D, Reiner N, Schiemer F, Ward JV (1999) Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshw Biol 41:521–535 Tockner K, Tonolla D, Uehlinger U, Siber R, Robinson CT, Peter FD (2009) Introduction to European rivers. In: Tockner K, Uehlinger U, Robinson CT (eds) Rivers of Europe. Academic, Cambridge, pp 1–21 Todd PA, Phillips JDP, Putwain PD, Marrs RH (2000) Control of Molinia caerulea on moorland. Grass Forage Sci 55:181–191 Toft AR, Pethick JS, Burd F, Gray AJ, Doody JP, Penning-Rowsell E (1995) A guide to the understanding and management of salt marshes. National Rivers Authority, Research & Development Note 324, Foundation for Water Research, Marlow Tomalak M, Rossi E, Ferrini F, Moro PA (2010) Negative aspects and hazardous effects of forest environment on human health. In: Nilsson K, Sangster M, Gallis C, Hartig T, de Vries S, Seeland K, Schipperijn J (eds) Forests, trees and human health. Springer, Dordrecht, pp 77–124 Tomassen HBM, Smolders AJP, Lamers LPM, Roelofs JGM (2004) Development of floating rafts after the rewetting of cut-over bogs: the importance of peat quality. Biogeochemistry 71:69–87 Tomassen HBM, Smolders AJP, van der Schaaf S, Lamers LPM, Roelofs JGM (2010) Restoration

of raised bogs: mechanisms and case studies from the Netherlands. In Eiseltova M (ed) Restoration of lakes, streams, floodplains, and bogs in Europe: principles and case studies. Wetl Ecol Conserv Manage 3:285–330 Tønder (2015) Raised bogs in Denmark. http:// raisedbogsindenmark.­dk. Accessed 18 May 2017 Tongway DJ, Ludwig JA (2010) Restoring disturbed landscapes: putting principles into practice. Island Press, Washington, DC Tornero V, Hanke G (2016) Chemical contaminants entering the marine environment from sea-­based sources: a review with a focus on European seas. Mar Pollut Bull 112:17–38 Török K, Szili-Kovács T, Halassy M, Tóth T, Hayek Z, Paschke MW, Wardell LJ (2000) Immobilization of soil nitrogen as a possible method for the restoration of sandy grassland. Appl Veg Sci 3: 7–14 Török P, Kelemen A, Valkó O, Deák B, Lukács B, Tóthmérész B (2011a) Lucerne-dominated fields recover native grass diversity without intensive management actions. J Appl Ecol 48: 257–264 Török P, Vida E, Deák B, Lengyel S, Tóthmérész B (2011b) Grassland restoration on former croplands in Europe: an assessment of applicability of techniques and costs. Biodivers Conserv 20: 2311–2332 Török P, Miglécz T, Valkó O, Kelemen A, Tóth K, Lengyel S, Tóthmérész B (2012) Fast restoration of grassland vegetation by a combination of seed mixture sowing and low-diversity hay transfer. Ecol Eng 44:133–138 Torrez V, Ceulemans T, Mergeay J, de Meester L, Honnay O (2016) Effects of adding an arbuscular mycorrhizal fungi inoculum and of distance to donor sites on plant species recolonization following topsoil removal. Appl Veg Sci 19:7–19 Tosi G, Chirichella R, Zibordi F, Mustoni A, Giovannini R, Groff C, Zanin M, Apollonio M (2015) Brown bear reintroduction in the Southern Alps: to what extent are expectations being met? J Nat Conserv 26:9–19 Tóth G, Hermann T, Szatmári G, Pásztor L (2016) Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Sci Total Environ 565:1054–1062 Totsche O, Fyson A, Steinberg C (2006) Microbial alkalinity production to prevent reacidification of neutralized mining lakes. Mine Water Environ 25(4):204–213 Tovar-Sánchez A, Sánchez-Quiles D, Basterretxea G, Benedé JL, Chisvert A, Salvador A, Moreno-­ Garrido I, Blasco J (2013) Sunscreen products as emerging pollutants to coastal waters. PLoS One 8(6):e65451

705 References

Townsend PK (2009) Environmental anthropology: from pigs to policies, 2nd edn. Waveland Press, Long Grove Tränkle U (2000) Sieben Jahre Mahdgutflächen. Themenh Umweltberat ISTE Baden-Württ 1:1–56 Tränkle U, Poschlod P (1995) Vergleichende Untersuchungen zur Sukzession von Steinbrüchen unter besonderer Berücksichtigung des Naturschutzes—Ergebnisse und Schlußfolgerungen. Veröff Proj Angew Ökol 12:167–178 Tränkle U, Poschlod P, Kohler A (1992) Steinbrüche und Naturschutz. Vegetationskundliche Grundlagen zur Schaffung von Entwicklungskonzepten in Materialentnahmestellen am Beispiel von Steinbrüchen. Veröff Proj Angew Ökol 4:1–133 Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA (2009) Lake and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314 Trautmann W (1973) Vegetationskarte der Bundesrepublik Deutschland 1:200 000—Potentielle natürliche Vegetation—Blatt CC 5502 Köln. Schrreihe Vegkde 6:1–172 Trautner J, Aßmann T (1998) Bioindikation durch Laufkäfer—Beispiele und Möglichkeiten. Laufen Sembeitr 8(98):169–182 Traversa D, Frangipane di Regalbono A, Di Cesare A, LaTorre F, Drake J, Pietrobelli M (2014) Environmental contamination by canine geohelminths. Parasit Vect 7:67 Traynor M (2006) Honigbienen und Imkerei in Niedersachsen. LAVES—Institut für Bienenkunde Celle. Niedersächsisches Ministerium für Ernährung, Landwirtschaft, Verbraucherschutz und Landesentwicklung. https://www.­laves.­ niedersachsen.­de. Accessed 21 Aug 2017 Treiber R (2003) Genutzte Mittelwälder—Zentren der Artenvielfalt für Tagfalter und Widderchen im Südelsass. Natschutz Landschplan 35(2):50–62 Treitler JT, Drissen T, Stadtmann R, Zerbe S, Mantilla-Contreras J (2017) Complementing endozoochorous seed dispersal patterns by donkeys and goats in a semi-natural island ecosystem. BMC Ecol 17:42 Tremp H (2005) Aufnahme und Analyse vegetationsökologischer Daten. Ulmer, Stuttgart Tremp H, Kappus B (2014) Natürliche Fließgewässer— Habitate, Flora und Fauna. Handbuch Naturschutz und Landschaftspflege. Wiley-VCH, Weinheim

Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138 Trentanovi G, von der Lippe M, Sitzia T, Ziechmann U, Kowarik I, Cierjacks A (2013) Biotic homogenization at the community scale: disentangling the roles of urbanization and plant invasion. Divers Dist 19:738–748 Trepel M, Pfadenhauer J, Zeitz J, Jeschke L (2017) Germany. In: Joosten H, Tanneberger F, Moen A (eds) Mires and peatlands of Europe—Status, distribution and conservation. Schweizerbart Science Publishers, Stuttgart, pp 413–424 Tress B, Tress G, Décamp H, d’Hauteserre AM (2001) Bridging human and natural sciences in landscape research. Landsc Urban Plan 57:137–141 Treves A, Karanth KU (2003) Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv Biol 17:1491–1499 Treweek JR (1999) Ecological impact assessment. Blackwell, Oxford Trigger D, Mulcock J, Gaynor A, Toussaint Y (2008) Ecological restoration, cultural preferences and the negotiation of ‘nativeness’ in Australia. Geoforum 39:1273–1283 Tripathi N, Singh RS, Hills CD (2016) Reclamation of mine-impacted land for ecosystem recovery. Wiley-Blackwell, Oxford Tropek R, Kadlec T, Karešová P, Spitzer L, Kočárek P, Malenovský P, Baňař P, Tuf IH, Hejda M, Konvička M (2010) Spontaneous succession in limestone quarries as an effective restoration tool for endangered arthropods and plants. J Appl Ecol 47:139–147 Tropek R, Kadlec T, Hejda M, Kočárek P, Skuhrovec J, Malenovský I, Vodka Š, Spitzer L, Baňař P, Konvička M (2012) Technical reclamations are wasting the conservation potential of post-­mining sites. A case study of black coal spoil dumps. Ecol Engin 43:13–18 Trost M (2012) Fauna: Laufkäfer. Natschutz Land Sachsen-Anhalt 49:48–57 Trouwborst A (2011) Managing marine litter: exploring the evolving role of international and European law in confronting a persistent environmental problem. Merkourios 27(73):4–18 Tsarouhas G (2014) Green walls green roofs: designing sustainable architecture. Images Publishing, Victoria Tschernij V, Larsson P-O (2003) Ghost fishing by lost cod gill nets in the Baltic Sea. Fish Res 64(2– 3):151–162 Tsing A (2009) Beyond economic and ecological standardisation. Australian J Anthropol 20(3): 347–368 Tsing A (2012) Unruly edges: mushrooms as companion species. Environ Human 1:141–154

706

References

Tsunetsugu Y, Park BJ, Ishii H, Hirano H, Kagawa T, Miyazaki Y (2007) Physiological effects of shinrinyoku (taking in the atmosphere of the forest) in an old-growth broadleaf forest in Yamagata Prefecture, Japan. J Physiol Anthropol 26:135–142 Tuck SL, Winqvist C, Mota F, Ahnström J, Turnbull LA, Bengtsson J (2014) Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J Appl Ecol 51: 746–755 Tucker ME, Grim J (2016) Four commentaries on the pope’s message on climate change and income inequality. II Integrating ecology and justice: the papal encyclical. Quart Rev Biol 91(3):261–270 Tuittila ES, Komulainen VM, Vasander H, Nykänen H, Martikainen PJ, Laine J (2000) Methane dynamics of a restored cut-away peatland. Glob Chang Biol 6:569–581 Tulla AF, Vera A, Valldeperas N, Guirado C (2017) New approaches to sustainable rural development: social farming as an opportunity in Europe? Human Geogra 11(1):25–40 Tullus H, Tullus A, Rytter L (2013) Short-rotation forestry for supplying biomass for energy production. In: Kellomäki S, Kilpeläinen A, Alam A (eds) Forest bioenergy production. Springer, New York Turbé A, Jana U, de Toni A, Woodward S, Schopf A, Netherer S, Angelstam P, Mudgal S, Sonigo P (2012) Disturbances of EU forests caused by biotic agents. European Commission, Final report. http://ec.­europa.­eu/environment/forests/ pdf/FBD_report_2012.­pdf. Accessed 10 July 2017 Turetsky MR, Benscoter B, Page S, Rein G, van der Werf GR, Watts A (2015) Global vulnerability of peatlands to fire and carbon loss. Nat Geosci 8:11–14 Turley C, Blackford J, Widdicombe S, Lowe D, Nightingale PD, Rees AP (2006) Reviewing the impact of increased atmospheric CO2 on oceanic pH and the marine ecosystem. In: Schellnhuber HJ, Cramer W, Nakicenovic N, Wigley T, Yohe G (eds) Avoiding dangerous climate change. Cambridge University Press, Cambridge, pp 65–70 Turnau K, Haselwandter K (2002) Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 137–149 Turner KM (1995) Managed re-alignment as a coastal management option. Biol J Linne Soc 56:217–219 Tüxen R (1956) Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. Angew Pfl anzensoz 13:5–42 Twardowska I, Allen HE, Kettrup AF, Lacy WJ (2004) Solid waste: assessment, monitoring and remediation. Gulf Professional Publishing, Houston

Twenhöven FL (1992) Untersuchungen zur Wirkung stickstoffhaltiger Niederschläge auf die Vegetation von Hochmooren. Mitt Arbgem Geobot SchleswigHolst Hambg 44:1–172 Tyler C, Pullin AS, Stewart GB (2006) Effectiveness of management interventions to control invasion by Rhododendron ponticum. Environ Manag 37(4):513–522 Tzoulas K, Korpela K, Venn S, Ylipelkonen V, Kazmierczak A, Niemela J, James P (2007) Promoting ecosystem and human health in urban areas using green infrastructure: a literature review. Landsc Urban Plan 81:167–178 UBA (2001) Stand der Entwicklung des Monitorings von gentechnisch veränderten Organismen (GVO)—Materialiensammlung. UBA-Texte 60(1):1–234 UBA (2003) Zulässige Grenzwerte (Richtwerte) für Schadstoffe in Klärschlamm und Boden. Umweltbundesamt. http://www.­umweltbundesamt.­at/fileadmin/site/umweltthemen/boden/_bersicht_ Richtwerte.­pdf. Accessed 4 Aug 2017 UBA (2010) Seen. Umweltbundesamt (UBA). https:// www.­u mweltbundesamt.­d e/themen/wasser/ seen#textpart-1. Accessed 3 May 2017 UBA (2012) Die Wasserrahmenrichtlinie—Eine Zwischenbilanz zur Umsetzung der Maßnahmenprogramme 2012. Umweltbundesamt (UBA). https://www.­umweltbundesamt.­de/. Accessed 8 June 2017 UBA (2014) KüstenKlima—Klimaschutz und Klimaanpassung an der deutschen Küste. Handlungsmöglichkeiten durch räumliche Planung und Küstenmanagement. Umweltbundesamt (UBA). http://www.­raum-energie.­de/. Accessed 10 Feb 2017 UBA (2015) Ökologischer Landbau. Umweltbundesamt (UBA). http://www.­umweltbundesamt.­de/daten/ land-forstwirtschaft/landwirtschaft/oekologischerla ndbau#textpart-1. Accessed 25 Aug 2017 UBA (2016a) Struktur der Flächennutzung. Umweltbundesamt http://www.­umweltbundesamt.­de/. Accessed 6 Oct 2016 UBA (2016b) Flächenverbrauch für Rohstoffabbau. Umweltbundesamt. http://www.­umweltbundesamt. ­de/daten/flaechennutzung/flaechenverbrauch-fuerrohstoffabbau. Accessed 28 Nov 2016 UBA (2016c) Ökologischer Zustand der Fließgewässer. Umweltbundesamt (UBA) https://www. umweltbundesamt.­de/. Accessed 23 Apr 2017 UBA (2016d) Zustand der Seen. Umweltbundesamt (UBA). http://www.­umweltbundesamt.­de/daten/ gewaesserbelastung/zustand-der-seen#textpart-1. Accessed 14 May 2017 UBA (2016e) Waldbrände. Umweltbundesamt (UBA). https://www.­umweltbundesamt.­de/daten/land-forstwirtschaft/forstwirtschaft/waldbraende#textpart-1. Accessed 7 Aug 2017

707 References

UBA (2017) Abfallaufkommen. Umweltbundesamt (UBA). https://www.­umweltbundesamt.­de/print/ daten/ressourcen-abfall/abfallaufkommen. Accessed 7 Aug 2018 Uekötter F (2007) Umweltgeschichte im 19. und 20. Jahrhundert. Enzykl Deut Gesch 81:1–144 Uhlmann W, Nitsche C, Neumann V, Guderitz I, Leßmann D, Nixdorf B, Hemm M (2001) Tagebauseen: Wasserbeschaffenheit und wassergütewirtschaftliche Sanierung—konzeptionelle Vorstellungen und erste Erfahrungen. Landesumweltamt Brandenbg Stud Tagungsberichte 35:1–81 Ullrich B (1975) Bestandsgefährdung von Vogelarten im Ökosystem “Streuobstwiese” unter besonderer Berücksichtigung von Steinkauz Athene noctua und Würgerarten der Gattung Lanius. Beih Veröff Natschutz Landschpfl Baden-Württ 7:90–110 Ullrich B (1987) Streuobstwiesen. In: Hölzinger J (ed) Die Vögel Baden-Württembergs, Gefährdung und Schutz, vol 1. Ulmer, Karlsruhe, pp 551–570 Ullrich K, Riecken U (2012) Moorschutzstrategien, −initiativen und -programme in Deutschland. Nat Landsch 87(2):81–86 UN (1992) Convention on Biological Diversity (CBD). https://www.cbd.int/ UN (1992a) Convention on Biological Diversity (CBD). https://www.­cbd.­int/. Accessed 17 Oct 2016 UN (1992b) United nations framework convention on climate change. United Nations. http://unfccc.­int/ files/essential_background/background_publications_htmlpdf/application/pdf/conveng.­p df. Accessed 4 Sep 2017 UN (2012) State of the world’s cities 2012/2013. Prosperity of cities. United Nations Human Settlements Programme. https://sustainabledevelopment.­un.­ org/content/documents/745habitat.­pdf. Accessed 15 Oct 2017 UN (2014) Resolution 68/232 World soil day and international year of soils. United Nations. http://www.­ un.­o rg/en/ga/search/view_doc.­a sp?symbol=A/ RES/68/232. Accessed 10 Aug 2017 UN (2018) Revision of world urbanization prospects. Department for Economic and Social Affairs. https:// www.­un.­org/development/desa/publications/2018revision-of-world-urbanizationprospects.­h tml. Accessed 6 Aug 2018 UNEP (2006) Marine and coastal ecosystems and human well-being: a synthesis report based on the findings of the Millennium Ecosystem Assessment: Nairobi, Kenya. http://www.­unep.­org/pdf/ Completev6_LR.­pdf. Accessed 7 Feb 2017 UNEP (2006) Marine and coastal ecosystems and human wellbeing: A synthesis report based on the findings of the Millennium Ecosystem Assessment: Nairobi, Kenya. http://www.unep.org/pdf/ Completev6_LR.pdf UNESCO (1972) Convention concerning the protection of the world cultural and natural heritage.

United Nations Educational, Scientific and Cultural Organisation. http://whc.­unesco.­org/archive/ convention-en.­pdf. Accessed 4 Sep 2017 UNESCO (1994) Übereinkommen über Feuchtgebiete, insbesondere als Lebensraum für Wasserund Watvögel, von internationaler Bedeutung. Ramsar 2 Feb 1971, Iran. The Ramsar Convention Secretariat, Gland UNESCO (2003) Five transboundary biosphere reserves in Europe. Biosphere reserves technical notes. UNESCO, aris Urbanska KM (2000) Safe sites—interface of plant population ecology and restoration ecology. In: Urbanska KM, Webb NR, Edwards PJ (eds) Restoration ecology and sustainable development. Cambridge University Press, Cambridge, pp 81–110 Urbanska KM, Fattorini M (2000) Seed rain in highaltitude restoration plots in Switzerland. Restor Ecol 8:74–79 Urbanska KM, Schütz M, Gasser M (1988) Revegetation trials above timberline—an exercise in experimental population ecology. Ber Geobot Inst Eidgenöss Tech Hochsch, Stift Rübel 54:85–110 Urbanska KM, Webb NR, Edwards PJ (2000) Restoration ecology and sustainable development. Cambridge University Press, Cambridge US Congress (1993) Harmful non-indigenous species in the United States: OTA-F-565. Office of Technology Assessment, Washington, DC. https://www.­ anstaskforce.­gov/Documents/OTA_Report_1993.­ pdf. Accessed 14 Aug 2018 US Environmental Protection Agency (2011) Evaluation of urban soils: suitability for green infrastructure or urban agriculture. EPA Publication 905R1103 Usbeck T, Wohlgemuth T, Dobbertin M, Pfister C, Bürgi A, Rebetez M (2010) Increasing storm damage to forests in Switzerland from 1858 to 2007. Agr For Meteorol 150(1):47–55 Usher MB (1992) Management and diversity of arthropods in Calluna heathland. Biodivers Conserv 1:63–79 Usher MB, Thompson DBA (1993) Variation in the upland heathlands of Great Britain: conservation importance. Biol Conserv 66:69–81 Vacher P (1991) Le Vergne—une essence oubliée à valoriser. Forêts de France 346:32–35 Vacik H, Zlatanov T, Trajkov P, Dekaniæ S (2009) Role of coppice forests in maintaining forest biodiversity. Silva Balcanica 10(1):35–45 Vaičekonytė R, Kiviat E, Nsenga F, Ostfeld A (2014) An exploration of common reed (Phragmites australis) bioenergy potential in North America. Mires Peat 13:1–9 Vaissière A-C, Levrel H, Pioch S, Carlier A (2014) Biodiversity off sets for offshore wind farm projects: the current situation in Europe. Mar Policy 48:172–183

708

References

Valentini A, Taberlet P, Miaud C, Civade R, Herder J, Thomsen PF, Bellemain E, Besnard A, Coissac E, Boyer F, Gaboriaud C, Jean P, Poulet N, Roset N, Copp GH, Geniez P, Pont D, Argillier C, Baudoin JM, Peroux T, Crivelli AJ, Olivier A, Acqueberge M, Le Brun M, Møller PR, Willerslev E, Dejean T (2016) Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol Ecol 25:929–942 Valkó O, Török P, Tóthmérész B, Matus G (2011) Restoration potential in seed banks of acidic fen and dry-mesophilous meadows: can restoration be based on local seed banks? Restor Ecol 19:9–15 Valkó O, Török P, Deák B, Tóthmérész B (2014) Prospects and limitations of prescribed burning as a management tool in European grasslands. Basic Appl Ecol 15(1):26–33 Vallauri DR, Aronson J, Barbero M (2002) An analysis of forest restoration 120 years after reforestation on bad-lands in the Southwestern Alps. Restor Ecol 10:16–26 VanDeVeer D, Pierce C (1994) The environmental ethics and policy book: philosophy, ecology, economics. Wadsworth, Belmont Vanermen N, Stienen EWM, Onkelinx T, Courtens W, van de Walle M, Verschelde P, Verstraete H (2012) Seabirds & offshore wind farms monitoring results 2011. Research Institute for Nature and Forest, im Auftrag des Royal Belgian Institute for Natural Sciences, Management Unit of the North Sea Mathematical Models. www.­vliz.­be/imisdocs/ publications/236444.­pdf. Accessed 14 Aug 2018 van Andel J, Aronson J (eds) (2012) Restoration ecology: the new frontier, 2nd edn. Oxford, Blackwell van Dam H (1987) Monitoring of chemistry, macrophytes, and diatoms in acidifying moorland pools. Research Institute for Nature Management, Leersum. RIN Rep 87(19):1–122 van Dam H, Buskens RFM (1993) Ecology and management of moorland pools: balancing acidification and eutrophication. Hydrobiologia 265(1): 225–263 van Dam H, Suurmond G, ter Braak CJF (1981) Impact of acidification on diatoms and chemistry of Dutch moorland pools. Hydrobiologia 83: 425–459 van den Berg AE, Hartig T, Staats H (2007) Preference for nature in urbanized societies: stress, restoration, and the pursuit of sustainability. J Soc Issues 63(1):79–96 Van den Berg M, van Poppel M, van Kamp I, Andrusaityte S, Balseviciene B, Cirach M, Danileviciute A, Ellis N, Hurst G, Masterson D, Smith G, Triguero-Mas M, Uzdanaviciute I, de Wit P, van Mechelen W, Gidlow C, Grazuleviciene R, Nieuwenhuijsen MJ, Kruize H, Maas J (2016) Visiting green space is associated with mental health and

vitality: a cross-sectional study in four European cities. Health Place 38:8–15 Van den Berg MS, Scheffer M, Van Nes E, Coops H (1999) Dynamics and stability of Chara sp. and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia 409:335–342 Van den Bergh E, van Damme S, Graveland J, de Jong D, Baten I, Meire P (2005) Ecological rehabilitation of the Schelde estuary (The NetherlandsBelgium; Northwest Europe): linking ecology, safety against floods, and accessibility for port development. Restor Ecol 13:204–214 Van den Bergh E, Garniel A, Morris RKA, Barendregt A (2009) Conservation of tidal freshwater wetlands in Europe. In: Barendregt A, Whigham DF, Baldwin AH (eds) Tidal freshwater wetlands. Backhuys, Leiden, pp 241–252 Van den Brink FWB, Van der Velde G, Buijse AD, Klink AG (1996) Biodiversity in the lower Rhine and Meuse river-floordplains: its significance for ecological river management. Neth J Aquat Ecol 30(2–3):129–149 Van der Does J, Verstraelen P, Boers P, Van Roestel J, Roijackers R, Moser G (1992) Lake restoration with and without dredging of phosphorusenriched upper sediment layers. Hydrobiologia 233:197–210 van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72 Van der Meulen F, Van der Hagen H, Kruysen B (1987) Campylopus introflexus. Invasion of a moss in Dutch coastal dunes. P K Ned Akad C Biol 90:73–80 Van der Ploeg S, de Groot RS (2010) The TEEB Valuation Database—a searchable database of 1310 estimates of monetary values of Ecosystem services. Wageningen, Foundation for Sustainable Development van der Putten WH (1994) Assessing ecological change in European wetlands: how to know what parameters should be monitored to evaluate the die-back of common reed (Phragmites australis)? In: Aubrecht G, Dick G, Prentice C (eds) Monitoring ecological change in wetlands of Middle Europe. Stapfia 31:61–68 Van Der Salm C, Rosenqvist L, Vesterdal L, Hansen K, Denier Van Der Gon H, Bleeker A, Wieggers R, Van Den Toorn A (2007) Interception and water recharge following afforestation: experiences from oak and Norway Spruce chronosequences in Denmark, Sweden and The Netherlands. In: Heil GW, Muys B, Hansen K (eds) Environmental effects of afforestation in

709 References

NorthWestern Europe, Plant and Vegetation book series, vol 1. Springer, Dordrecht, pp 53–77 Van der Veken S, Bellemare J, Verheyen K, Hermy M (2007) Life-history traits are correlated with geographical distribution patterns of western European forest herb species. J Biogeogr 34(10): 1723–1735 Van der Velde G, Rajagopal S, Bij de Vaate A (2010) The Zebra Mussel in Europe. Backhuys, Leiden van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997– 2009). Atmos Chem Phys 10:11707–11735 Van Der Woude BJ, Pegtel DM, Bakker JP (1994) Nutrient limitation after long-term fertilizer application in cut grasslands. J Appl Ecol 31: 405–412 Van Duijkeren E, Wolfhagen MJHM, Box ATA, Heck MEOC, Wannet JB, Fluit AC (2004) Human-todog transmission of methicillin-resistant Staphylococcus aureus. Emerg Infect Dis 10:2235–2236 Van Diggelen R, Grootjans A, Wierda AK (1995) Hydroecological landscape analysis: a tool for wetland restoration. Z Kulturtech Landentw 36(3):125–131 Van Diggelen R, Grootjans ABP, Harris JA (2001) Ecological restoration: state of the art or state of the science? Restor Ecol 9:115–118 Van Dobben HF, de Vries W (2017) The contribution of nitrogen deposition to the eutrophication signal in understorey plant communities of European forests. Ecol Evol 7(1):214–227 Van Donk E, van de Bund WJ (2002) Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 72:261–274 Van Dyke F (2008) Conservation biology. Foundations, concepts, applications. Springer, Dordrecht Van Eetvelde V, Antrop M (2004) Analyzing structural and functional changes of traditional landscapes—two examples from Southern France. Landsc Urban Plan 67(1–4):79–95 Van Eerden MR (1998) Patchwork—patch use, habitat exploitation and carrying capacity for water birds in Dutch freshwater wetlands. Dissertation, University of Groningen. http://www.­ commissiemer.­nl/. Accessed 5 May 2017 Van Elsen T (1996) Wirkungen des ökologischen Landbaus auf die Segetalflora. Ein Übersichtsbeitrag. In: Diepenbrock W, Hülsbergen KJ (eds) Langzeiteffekte des ökologischen Landbaus auf Fauna. Flora und Boden. Institut für Acker- und Pflanzenbau, Halle (Saale), pp 143–152 Van Elsen T (1997) Binnensalzstellen an Rückstandshalden der Kali-Industrie-­ Binnensalzstellen in

Thüringen—Situation, Gefährdung und Schutz. Natschutzrep 12:63–117 Van Elsen T (2010) “Soziale Landwirtschaft”—Perspektiven Sozialer Arbeit auf landwirtschaftlichen Betrieben. Landberichte. Sozialwiss J 13(1):49–66 Van Elsen T, Hotze C (2008) Die Integration autochthoner Ackerwildkräuter und der Kornrade in Blühstreifenmischungen für den ökologischen Landbau. J Plant Dis Prot 21:373–378 Van Grinsven HJM, Holland M, Jacobsen BH, Klimont Z, Sutton M, Willems WJ (2013) Costs and benefits of nitrogen for Europe and implications for mitigation. Environ Sci Technol 47:3571–3579 Van Til M, Kooijman A (2007) Rapid improvement of grey dunes after shallow sod cutting. In: Isermann M, Kiehl K (eds) Restoration of coastal ecosystems. Coastline Rep 7:53–60 Van Veenhuizen R (ed) (2006) Cities farming for the future. Urban agriculture for green and productive cities. RUAF Foundation, IDRC & IIRR, Ottawa Van Wieren G (2008) Ecological restoration as public spiritual practice. Worldviews 12:237–254 Van Wieren G (2013) Restored to earth: Christianity, environmental ethics, and ecological restoration. Georgetown University Press, Washington, DC Van Wieren SE (2012) Reintroductions: learning from successes and failures. In: van Andel J, Aronson J (eds) Restoration ecology: the new frontier, 2nd edn. Wiley-Blackwell, Oxford, pp 87–100 Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aqua Sci 37:130–137 Vanselow-Algan M, Schmidt SR, Greven M, Fiencke C, Kutzbach L, Pfeiffer E-M (2015) High methane emissions dominated annual greenhouse gas balances 30 years after bog rewetting. Biogeosciences 12:4361–4371 Väre R, Lampinen R, Humphries C, Williams P (2003) Taxonomic diversity of vascular plants in the European Alpine areas. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Ecol Stud 167:133–148 Vasile M (2015) Die Anthropologie der Wälder. Über die Bedeutung von Erinnerung und Identität in rumänischen Gemeinschaftswäldern. In: Helfrich S, Bollier D (eds) Die Welt der Commons. Muster gemeinsamen Handelns. Transcript, Bielefeld Vayda AP (1969) Environment and cultural behavior. The Natural History Press, New York VDI-Kommission (1988) Stadtklima und Luftreinhaltung. Ein wissenschaftliches Handbuch für die Praxis in der Umweltplanung. Springer, Heidelberg Veen P, Jefferson R, de Smidt J, van der Straaten J (2009) Grasslands in Europe of high nature value. KNNV Publishing, Zeist Veit H (2002) Die Alpen—Geoökologie und Landschaftsentwicklung. Ulmer, Stuttgart

710

References

Veitch N, Webb NR, Wyatt BK (1995) The application of geographic information systems and remotely sensed data to the conservation of heathland fragments. Biol Conserv 72:91–97 de Vente J, Aerts JCJH (2000) Environmental restoration of a surface mining area. The application of remote sensing and GIS in a management information system. In: Brebbia CA, Pascolo P (eds) Management information systems. WITPress, Southampton, pp 393–402 Vera FWM, Bakker ES, Olff H (2006) Large herbivores: missing partners of western European light-demanding tree and shrub species? In: Danell K, Bergström R, Duncan P, Pastor J (eds) Large herbivore ecology, ecosystem dynamics and conservation. Cambridge University Press, Cambridge, pp 203–231 Verbeek H, Storm H (2001) Tidal wetland restoration in the Netherlands. J Coast Res 27:192–202 Verbeylen G (2003) The unofficial return of the European beaver (Castor fiber) in Flanders (Belgium). Lutra 46:123–128 Vergeer P, Sonderen E, Ouborg NJ (2004) Introduction strategies put to the test: local adaptation versus heterosis. Conserv Biol 18:812–821 Verhagen R (2007) Changing land use. Restoration perspectives of low production communities on agricultural fields after top soil removal. Dissertation, University of Groningen Verhagen R, Klooker J, Bakker JP, van Diggelen R (2001) Restoration success of low-production plant communities on former agricultural soils after topsoil removal. Appl Veg Sci 4:75–82 Verhagen R, van Diggelen R, Bakker JP (2003) Natuurontwikkeling op minerale gronden. Report Rijksuniversiteit, Groningen Verhagen R, van Diggelen R, Vermeulen R (2008) Community assemblage of the Carabidae fauna in newly created habitats. Baltic J Coleopterol 8(2):1–14 Vermaat JE, Wagtendonk AJ, Brouwer R, Sheremet O, Ansink E, Brockhoff T, Plug M, Hellsten S, Aroviita J, Tylec L, Giełczewski M, Kohut L, Brabec K, Haverkamp J, Poppe M, Böck K, Coerssen M, Segersten J, Hering D (2016) Assessing the societal benefits of river restoration using the ecosystem services approach. Hydrobiologia 769: 121–135 Verry ES, Boelter DH (1979) Peatland hydrology. In: Greeson PE, Clark JR, Clark JE (eds) Wetland functions and values: the state of our understanding. Proceedings of the symposium held in Lake Buena Vista, Florida, pp 389–402 Vetter D, Storch I (2009) Schirmarten: effektives Naturschutzinstrument oder theoretisches Konstrukt? Validität des Konzepts und Auswahlkriterien am Beispiel der Vögel. Natschutz Landschplan 41(11):341–347

Viewegh J, Kusbach A, Mikeska M (2003) Czech forest ecosystem classification. J For Sci 49(2):85–93 Vilà M, Basnou C, Pyšek P, Josefsson M, Genovesi P, Gollasch S, Nentwig W, Olenin S, Roques A, Roy D, Hulme PE (2010) DAISIE partners: how well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front Ecol Environ 8:135–144 Vild O, Roleček J, Hédl R, Kopecký M, Utinek D (2013) Experimental restoration of coppice-­with-­ standards: response of understorey vegetation from the conservation perspective. For Ecol Manag 310:234–241 Vilén T, Gunia K, Verkerk PJ, Seidl R, Schelhaas MJ, Lindner M, Bellassen V (2012) Reconstructed forest age structure in Europe 1950–2010. For Ecol Manag 286:203–218 Villalobos-Jiménez G, Dunn AM, Hassall C (2016) Dragonflies and damselflies (Odonata) in urban ecosystems: a review. Eur J Entomol 113:217–232 Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892 Virto I, Imaz MJ, Fernández-Ugalde O, Gartzia-Bengoetxea N, Enrique A, Bescansa P (2015) Soil degradation and soil quality in Western Europe: current situation and future perspectives. Sustainability 7:313–365 Visbeck M, Bernitt U, van Doorn E, Schäfer K, Döring R (2017) Meere: Herausforderung Ozean, Fischereipolitik. In: Ott K, Dierks J, Voget-Kleschin L (eds) Handbuch Umweltethik. Metzler, Stuttgart, pp 273–280 Vischer-Leopold M, Ellwanger G, Ssymank A, Ullrich K, Paulsch C (2015) Natura 2000 und Management in Moorgebieten. Natschutz Biol Vielfalt 140:1–313 Visser PM, Ibelings BW, van der Veer B, Koedood J, Mur LR (1996) Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis in Lake Nieuwe Meer, the Netherlands. Freshw Biol 36:436–450 Vitali F, Mastromei G, Senatore G, Caroppo C, Casalone E (2016) Long lasting effects of the conversion from natural forest to poplar plantation on soil microbial communities. Microbiol Res 182:89–98 Vítková M, Kolbek J (2010) Vegetation classification and synecology of Bohemian Robinia pseudacacia stands in a Central European context. Phytocoenologia 40(2–3):205–241 Vitousek PM, D’Antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. New Zeal J Ecol 21:1–16 Vogel K, Vogel B, Rothhaupt G, Gottschalk E (1996) Einsatz von Zielarten im Naturschutz: Auswahl der Arten, Methode von Populationsgefährdungs-

711 References

analyse und Schnellprognose, Umsetzung in der Praxis. Natschutz Landschplan 28(6):179–184 Vogels J (2009) Fire as a restoration tool in the Netherlands—first results from Dutch dune areas indicate potential pitfalls and possibilities. Int For Fire News 38:23–35 Vogt J, Gillner S, Hoffman M, Tharang A, Dettmann S, Gerstenberg T, Schmidt C, Gebauer H, Van de Riet K, Berger U, Roloff A (2017) Citree: a database supporting supporting tree selection for urban areas in temperate climate. Landscape Urban Plan 157:14–25 Vogt JV, Safriel U, Von Maltitz G, Sokona Y, Zougmore R, Bastin G, Hill J (2011) Monitoring and assessment of land degradation and desertification: towards new conceptual and integrated approaches. Land Degrad Dev 22:150–165 Vogt K, Rasran L, Jensen K (2006) Seed deposition in drift lines during an extreme flooding event—evidence for hydrochorous dispersal? Basic Appl Ecol 7:422–432 Voigtländer G, Jacob H (eds) (1986) Grünlandwirtschaft und Futterbau. Ulmer, Stuttgart Volk H (1999) Die Rheinauewälder bei Karlsruhe vor und nach der Rheinkorrektion—Ergebnisse landschaftsgeschichtlich-ökologischer Untersuchungen in der Nördlichen Oberrheinaue. Mitt Ver Forstl Standortskde Forstpflzüchtung 40:35–61 Von Arx M, Breitenmoser-Würsten C, Breitenmoser U (2009) Lessons from the reintroduction of the Eurasian lynx in Central and West Europe. In: Vargas A, Breitenmoser-Würsten C, Breitenmoser U (eds) Iberian Lynx ex situ conservation: an interdisciplinary approach. Fundación Biodiversidad & IUCN Cat Specialist Group, Madrid, pp 402–409 Von Blanckenhagen B, Poschlod P (2005) Restoration of calcareous grasslands: the role of the soil seed bank and seed dispersal for recolonisation processes. Biotechnol Agron Soc Environ 9:143–149 Von der Ohe PC, Apitz SE, Arbačiauskas K, Beketov MA, Borchardt D, de Zwart D, Goedkoop W, Hein M, Hellsten S, Hering D, Kefford BJ, Panov VE, Schäfer RB, Segner H, van Gils J, Vegter JJ, Wetzel MA, Brack W (2014) Status and causal pathway assessments supporting river basin management. In: Brils J, Brack W, Müller-Grabherr D, Négrel P, Vermaat JE (eds) Risk-­informed management of European river basins, Handbook of environmental chemistry 29. Springer, Heidelberg, pp 53–149 Von Döhren P, Haase D (2015) Ecosystem disservices research: a review of the state of the art with a focus on cities. Ecol Indic 52:490–497 Von Gillhaussen P, Rascher U, Jablonowski ND, Plückers C, Beierkuhnlein C, Temperton VM (2014) Priority effects of time of arrival of plant functional groups override sowing interval or

­ ensity effects: a grassland experiment. PLoS One d 9(1):e86906 Von Hoffen LP, Säumel I (2014) Orchards for edible cities: cadmium and lead content in nuts, berries, pome and stone fruits harvested within the inner city neighbourhoods in Berlin, Germany. Ecotoxicol Environ Saf 101:233–239 Von Mühlendahl KE, Oberisse U, Bunjes R, Ritter S (eds) (2003) Vergiftungen im Kindesalter, 4th edn. Stuttgart, Enke Von Nordheim H, Boedeker D (2000) Umweltvorsorge bei der marinen Sand- und Kiesgewinnung. BLANO-Workshop. BfN Skripten 23:1–72 Von Post L (1924) Das genetische System der organogenen Bildungen Schwedens. Comm Internat Pédol 4(22):287–304 Vonlanthen P, Bittner D, Hudson AG, Young KA, Müller R, Lundsgaard-Hansen B, Roy D, Di Piazza S, Largiader CR, Seehausen O (2012) Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482:357–362 Vor T (2015) Eschenahorn (Acer negundo L.). In: Vor T, Spellmann H, Bolte A, Ammer C (eds) Potenziale und Risiken eingeführter Baumarten. Baumartenportraits mit naturschutzfachlicher Bewertung. Gött Forstwiss 7:47–58 Vor T, Spellmann H, Bolte A, Ammer C (eds) (2015) Potenziale und Risiken eingeführter Baumarten. Baumartenportraits mit naturschutzfachlicher Bewertung. Gött Forstwiss 7:1–296 Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288 Vrahnakis M, Janišová M, Rūsiņa S, Török P, Venn S, Dengler J (2013) The European Dry Grassland Group (EDGG): stewarding Europe’s most diverse habitat type. In: Thüringer Ministerium für Landwirtschaft (ed) Steppenlebensräume Europas—Gefährdung, Erhaltungsmaßnahmen und Schutz. Thüringer Ministerium für Landwirtschaft, Forsten, Umwelt und Naturschutz, Erfurt, pp 417–434 Vurdu H, Bensend DW (1979) Specific gravity and fiber length in European black alder roots, branches and stem. Wood Sci 12(2):103–105 Wabakken P, Sand H, Kojola I, Zimmermann B, Arnemo JM, Pedersen HC, Liberg O (2007) Multistage, long-range natal dispersal by a global positioning system–collared Scandinavian wolf. J Wildl Manag 71(5):1631–1634 Waddington JM, Day SM (2007) Methane emissions from a peatland following restoration. J Geophys Res 112:1–11 Wade MR, Gurr GM, Wratten SD (2008) Ecological restoration of farmland: progress and prospects. Philos T Roy Soc B 363(1492):831–847

712

References

Wägele W, Paulsen R (2012) Nationale Ausbildungsinitiative Taxonomie. Eine gemeinsame Aufgabe für Bund und Länder. http://www.­taxonomie-initiative.­ de/die_initiative/index_ger.­html. Accessed 5 June 2017 Wagner AM, Larson DL, DalSoglio JA, Harris JA, Labus P, Rosi-Marshall EJ, Skrabis KE (2016) A framework for establishing restoration goals for contaminated ecosystems. Integr Enviro Assess Manage 12:264–272 Wagner C (2004) Passive dispersal of Metrioptera bicolor (Phillipi 1830) (Orthopteroidea: Ensifera: Tettigoniidae) by transfer of hay. J Insect Conserv 8:287–296 Wagner G (1976) Simulation der Seeneutrophierung am Beispiel des Bodensee-Obersees. Part II: Simulation des Phosphorhaushalts des Bodensees. Arch Hydrobiol 78:1–41 Wagner V, Nelson CR (2014) Herbicides can negatively affect seed performance in native plants. Restor Ecol 22(3):288–291 Wahl HW, Oswald F (2010) Umwelten für ältere Menschen. In: Linneweber V, Lantermann ED, Kals E (eds) Spezifische Umwelten und umweltbezogenes Handeln. Enzykl Psychol 2:235–264 Wahlhütter S (2011) Lokales Wissen über Boden zwischen Praxis und Theorie. Eine kulturanthropologisch-­ethnopedologische Studie im südlichen Burgenland und in der Weststeiermark. Dissertation, University of Graz Wahlman H, Milberg P (2002) Management of seminatural grassland vegetation: evaluation of a longterm experiment in Southern Sweden. Anna Bot Fennici 39:159–166 Walday M, Kroglund T (2008a) The Baltic Sea—the largest brackish sea in the world. European Environment Agency. http://www.­eea.­europa.­eu/publications/ report_2002_0524_154909/regional-seas-aroundeurope/page141.­html. Accessed 23 Mar 2017 Walday M, Kroglund T (2008b) The North Sea—bottom trawling and oil/gas exploitation. European Environment Agency. http://www.­eea.­europa.­eu/ publications/report_2002_0524_154909/regionalseas-around-europe/page131.­html. Accessed 22 Mar 2017 Wäldchen J, Pusch J, Luthardt V (2005) Zur Diasporen-Keimfähigkeit von Segetalpflanzen— Untersuchungen in Nord-Thüringen. Beitr Forstwirtsch Landschökol 38(2):145–156 Waldén E, Lindborg R (2016) Long term positive effect of grassland restoration on plant diversity—success or not? PLoS One 11(5):e0155836 Walder B (2018) Letter from SER executive director. SER News 33(2):1 Waldner P, Marchetto A, Thimonier A, Schmitt M, Rogora M, Granke O, Mues V, Hansen K, Karlsson GP, Žlindra D, Clarke N, Verstraeten A, Lazdins A, Schimming C, Iacoban C, Lindroos AJ,

Vanguelova E, Benham S, Meesenburg H, Nicolas M, Kowalska A, Apuhtin V, Napa U, Lachmanová Z, Kristoefel F, Bleeker A, Ingerslev M, Vesterdal L, Molina J, Fischer U, Seidling W, Jonard M, O’Dea P, Johnson J, Fischer R, Lorenz M (2014) Detection of temporal trends in atmospheric deposition of inorganic nitrogen and sulphate to forests in Europe. Atmos Environ 95:363–374 Walentowski H, Winter S (2007) Naturnähe im Wirtschaftswald—was ist das? Tuexenia 27:19–26 Walentowski H, Raab B, Zahlheimer WA (1992) Vorläufige Rote Liste der in Bayern nachgewiesenen oder zu erwartenden Pflanzengemeinschaften. IV. Wasser-, Verlandungs- und Moorgesellschaften, Vegetation oberhalb der alpinen Waldgrenze und alpigene Schwemmlingsfluren (mit Gesamtübersicht Teil I-IV). Ber Bayer Bot Ges 7:1–1705 Walentowski H, Bußler H, Bergmeier E, Blaschke M, Finkeldey R, Gossner MM, Litt T, Müller-Kroehling S, Philippi G, Pop VV, Reif A, Schulze ED, Strätz C, Wirth V (2010) Sind die deutschen Waldnaturschutzkonzepte adäquat für die Erhaltung der buchenwaldtypischen Flora und Fauna? Eine kritische Bewertung basierend auf der Herkunft der Waldarten des mitteleuropäischen Tief- und Hügellandes. Forstarchiv 81:195–217 Walker KJ, Pywell RF, Warman EA, Fowbert JA, Bhogal A, Chambers BJ (2004a) The importance of former land use in determining successful recreation of lowland heath in southern England. Biol Conserv 116:289–303 Walker KJ, Stevens PA, Stevens DP, Mountford JO, Manchester SJ, Pywell RF (2004b) The restoration and re-creation of species-rich lowland grassland on land formerly managed for intensive agriculture in the UK. Biol Conserv 119:1–18 Walker KJ, Warman EA, Bhogal A, Cross BC, Pywell RF, Meek BR, Chambers BJ, Pakeman R (2007a) Recreation of lowland heathland on ex-arable land: assessing the limiting processes on two sites with contrasting spoil fertility and pH.  J Appl Ecol 44:573–582 Walker LR, Walker J, Hobbs RJ (2007b) Linking restoration and ecological succession. Springer, New York Wallis-DeVries MF, Raemakers I (2001) Does extensive grazing benefit butterflies in coastal dunes? Restor Ecol 9:179–188 Wallner A, Hunziker M (2001) Die Kontroverse um den Wolf—Experteninterviews zur gesellschaftlichen Akzeptanz des Wolfs in der Schweiz. For Snow Landscape Res 76(1/2):191–212 Walsh K (2013) The archaeology of Mediterranean landscapes: human-environment interaction from the Neolithic to the Roman Period. Cambridge University Press, New York

713 References

Walter AI, Helgenberger S, Wiek A, Scholz RW (2007) Measuring societal effects of transdisciplinary research projects: design and application of an evaluation method. Eval Program Plann 30:325–338 Walter T, Umbricht M, Schneider K (1998) Datenbank zur Fauna der Auen. FAL, Reckenholz Walz U, Richter B, Grunewald K (2017) Indikatoren zur Regulationsleistung von Auen. Ein Beitrag zum Konzept nationaler ÖkosystemleistungsIndikatoren Deutschland. Natschutz Landschplan 49(3):93–100 Wamelink GWW, Joosten V, van Dobben HF, Berendse F (2002) Validity of Ellenberg indicator values judged from physico-chemical fi eld measurements. J Veg Sci 13:269–278 Wang CH, Wu SH, Zhou SL, Wang H, Li BJ, Chen H, Yu YN, Shi YX (2015) Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: concentration, source, spatial distribution, and potential human health risk. Sci Total Environ 527–528:375–383 Wang S, Zhuang Q, Yu Z, Bridgham S, Keller JK (2016) Quantifying peat carbon accumulation in Alaska using a process-based biogeochemistry model. J Geophys Res Biogeosci 121:2172–2185 Wang X, Yang H, Gong P, Zhao X, Wu G, Turner S, Yao T (2010) One century sedimentary records of polycyclic aromatic hydrocarbons, mercury and trace elements in the Qinghai Lake, Tibetan Plateau. Environ Pollut 158:3065–3070 Wanja G, Brande A, Zerbe S (2007) Erfassung und Bewertung historischer Kulturlandschaften. Das Beispiel Ferch am Schwielowsee, Brandenburg. Natursch Landschpl 39:337–345 Ward JV, Tockner K, Arscott DB, Claret C (2002) Riverine landscape diversity. Freshw Biol 47: 517–539 Wardle DA, Zackrisson O (2005) Effects of species and functional group loss on island ecosystem properties. Nature 435:806–810 Warming E (1909) Oecology of plants. An introduction to the study of plant-communities. Clarendon, Oxford Warming M, Hansen MG, Holm PE, Magid J, Hansen TH, Trapp S (2015) Does intake of trace elements through urban gardening in Copenhagen pose a risk to human health? Environ Pollut 202:17–23 Wärner C (2009) Ökologie und Biologie gefährdeter Stromtalpflanzen. Dissertation, University of Bremen. http://d-nb.­info/1000939537/34. Accessed 22 April 2017 Warren KJ (1999) Ecofeminist philosophy and deep ecology. In: Witoszek N, Brennan A (eds) Philosophical dialogues: Arne Næss and the progress of eco-philosophy. Rowman & Littlefield, New York, pp 255–269

Warren MS (1987) The ecology and conservation of the heath fritillary butterfly, Mellicta athalia. III. Population dynamics and the effect of habitat management. J Appl Ecol 24(2):499–513 Wasmund N (2002) Harmful algal blooms in coastal waters of the South-Eastern Baltic Sea. In: Schernewski G, Schiewer U (eds) Baltic coastal ecosystems: structure, function and coastal zone management. Springer, Heidelberg, pp 93–116 Waterhouse BR, Adair KL, Boyer S, Wratten SD (2014) Advanced mine restoration protocols facilitate early recovery of soil microbial biomass, activity and functional diversity. Basic Appl Ecol 15(7):599–606 Watola G, Allan J, Feare C (1996) Problems and management of naturalised introduced Canada geese Branta canadensis in Britain. In: Holmes JS, Simons JR (eds) The introduction and naturalisation of birds. HMSO, London, pp 71–77 Watson C, Pulford ID, Riddell-Black D (2003) Development of a hydroponic screening technique to assess heavy metal resistance in willow (Salix). Int J Phytoremediation 5(4):333–349 Watt AS (1955) Bracken versus heather, a study in plant sociology. J Ecol 43:490–506 Wattenbach M, Zebisch M, Hattermann F, Gottschalk P, Goemann H, Kreins P, Badeck F, Lasch P, Suckow F, Wechsung F (2007) Hydrological impact assessment of afforestation and change in tree-species composition—a regional case study for the Federal State of Brandenburg (Germany). J Hydrol 346(1):1–17 Wauer G, Gonsiorczyk T, Casper P, Kretschmer K, Koschel R (2005) Sediment treatment with a nitrate-storing compound to reduce phosphorus release. Water Res 39:494–500 Wauer G, Gonsiorczyk T, Hupfer M, Koschel R (2009) Phosphorus balance of Lake Tiefwarensee during and after restoration by hypolimnetic treatment with aluminum and calcium salts. Lake Reserv Manage 25(4):377–388 WCED (1987) Our common future. Report of the world commission on environment and development. Oxford, New York Webb NR (1998) The traditional management of European heathland. J Appl Ecol 35:987–990 Weber E (1956) Die Kreideindustrie Rügens. Nat Heimat 9:274–278 Weber E (1970) Die Entwicklung der rügenschen Kreideindustrie bis zum Ersten Weltkrieg. Jahrb Wirtschgesch 2:101–128 Weber E, Klem D, Hüttl R (1999) Das BTUC Innovationskolleg Bergbaufolgelandschaften. In: Hüttl R, Klem D, Weber E (eds) Rekultivierung von Bergbaufolgelandschaften. Das Beispiel des Lausitzer Braunkohlereviers. De Gruyter, Berlin, pp 3–21

714

References

Weber F, Kowarik I, Säumel I (2014) Herbaceous plants as filters: immobilization of particulates along street corridors. Environ Pollut 186: 234–240 Weber HE (1993) Steuerung und Beobachtung der Vegetation—Leegmoorprojekt. Natschutz Landschpfl Niedersachsen 29:49–78 Weber JL (2011) An experimental framework for ecosystem capital accounting in Europe. Eur Environ Agency Tech Rep 13:1–46 Weber M (1980) Wirtschaft und Gesellschaft—Grundriss der verstehenden Soziologie, 5th edn. Mohr, Tübingen Weber RE (2007) High-altitude adaptations in vertebrate hemoglobins. Respir Physiol Neurobiol 158:132–142 Weeda EJ, Doing H, Schaminée JHJ (1996) KoelerioCorynephoretea. In: JHJ S, AHF S, Weeda EJ (eds) De Vegetatie von Nederland—Deel 3. Plantengemeenschappen van graslanden, zomen en droge heiden. Opulus, Uppsala, pp 61–144 Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NJ, Miller KA, Byrne M, Coates DJ, Eldridge MDB, Sunnucks P, Breed MF, James EA, Hoffmann AA (2011) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evol Appl 4:709–725 Wegener M, Zedler P, Herrick B, Zedler J (2008) Curtis Prairie: 75-year-old restoration research site. Arboretum Leaflets 16:1–4 Wegener U (ed) (1991) Schutz und Pflege von Lebensräumen: Naturschutzmanagement. Fischer, Jena Wegener U, Reichhoff L (1989) Zustand, Entwicklungstendenzen und Pflege der Bergwiesen. Hercynia NF 26(2):190–198 Wehrli B, Wüest A (1996) Zehn Jahre Seenbelüftung: Erfahrungen und Optionen. Schrreihe EAWAG 9:1–165 Weichhardt-Kulessa K (2011) Vegetationskundliche und vegetationsgeschichtliche Untersuchungen an Mooren im Spessart und Odenwald. Dissertation, TU Berlin Weichhardt-Kulessa K, Brande A, Zerbe S (2007) Zwei kleine Waldmoore im Hochspessart als Archive der Landschaftsgeschichte und Objekte des Naturschutzes. Telma 37:57–76 Weidema I (2006) NOBANIS—Invasive alien species fact sheet: Rosa rugosa. Online Database of the European Network on Invasive Alien Species— NOBANIS. www.­nobanis.­org. Accessed 23 Nov 2016 Weinstein MP, Kreeger DA (eds) (2002) Concepts and controversies in tidal marsh ecology. Springer, Dordrecht Weis JS, Carol A (2009) Butler salt marshes: a natural and unnatural history. Rutgers University Press, Piscataway

Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700 Weis JS, Segarra KEA, Bernal P (2016) Chapter 49: Salt marshes. In: United Nations (ed) First global integrated marine assessment. http://www.­un.­org/ depts/los/global_reporting/WOA_RegProcess.­ htm. Accessed 6 Feb 2017 Weiss L, Jeltsch F (2015) The response of simulated grassland communities to the cessation of grazing. Ecol Model 303:1–11 Wendel D (2010) Autogene Regenerationserscheinungen in erzgebirgischen Moorwäldern und deren Bedeutung für Schutz und Entwicklung der Moore. Dissertation, TU Dresden Werger MJA, Prentice IC (1985) The effect of sodcutting to different depths on Calluna heathland regeneration. J Environ Manag 20:181–188 Werling BP, Meehan TD, Robertson BA, Gratton C, Landis DA (2011) Biocontrol potential varies with changes in biofuel–crop plant communities and landscape perenniality. GCB Bioenergy 3:347–359 Werner F, Bilek F, Luckner L (2001) Impact of regional groundwater flow on the water quality of an old post-mining lake. Ecol Eng 17(2–3): 133–142 Werth K (2003) Geschichte der Etsch zwischen Meran und San Michele: Flussregulierung, Trockenlegung der Möser. Hochwasser, Tappeiner, Lana Wesche K, Krause B, Culmsee H, Leuschner C (2012) Fifty years of change in Central European grassland vegetation: large losses in species richness and animal-pollinated plants. Biol Conserv 150:76–85 Wessels S, Eichberg C, Storm C, Schwabe A (2008) Do plant-community-based grazing regimes lead to epizoochorous dispersal of high proportions of target species? Flora 203(4):304–326 West JM, Zedler JB (2000) Marsh-creek connectivity: fish use of a tidal saltmarsh in Southern California. Estuaries 23:699–710 Westbury DB, Dunnett NP (2007) The impact of Rhinanthus minor in newly established meadows on a productive site. Appl Veg Sci 10(1):121–129 Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western US forest wildfire activity. Science 313:940–943 Westhus W (1984) Zur Entstehung und Pflegebedürftigkeit herzynischer Binnensalzstellen, dargestellt am Beispiel der “Solwiese” (NSG “SchloßbergSolwiesen”, Kr. Nordhausen). Arch Natschutz Landschforsch 24(3):177–188 Westhus W, Fritzlar F, Pusch J, van Elsen T, Andres C (1997) Binnensalzstellen in Thüringen—Situa-

715 References

tion, Gefährdung und Schutz. Natschrep 12: 1–193 Wetterlund E, Leduc S, Dotzauer E, Kindermann G (2013) Optimal use of forest residues in Europe under different policies—second generation biofuels versus combined heat and power. Biomass Conv Bioref 3(1):3–16 Weyhenmeyer GA, Blenckner T, Pettersson K (1999) Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnol Oceanogr 44:1788–1792 Wheater CP, Cullen WR, Bell JR (2000) Spider communities as tools in monitoring reclaimed limestone quarry landforms. Landsc Ecol 15:401–406 Wheeler BD, Shaw SC (1991) Above-ground crop mass and species richness of the principal types of herbaceous rich-fen vegetation of lowland England and Wales. J Ecol 79:285–301 Wheeler BD, Shaw SC (1995) Restoration of damaged peatlands—with particular reference to lowland raised bogs affected by peat extraction. HMSO, London Wheeler BD, Money RP, Shaw SC (2008) Freshwater wetlands. In: Perrow MR, Davy AJ (eds) Handbook of ecological restoration, Restoration in practice, vol 2. Cambridge University Press, Cambridge, pp 325–354 Whild S, Meade R, Daniels J (2001) Management of water and trees on raised bogs. Engl Nat Res Rep 407:1–51 White L (1967) The historical roots of our ecologic crisis. Science 155(3767):1203–1207 White L (2007) The evolution of culture: the development of civilization to the fall of Rome. Routledge, London White M, Smith A, Humphryes K, Pahl S, Snelling D, Depledge M (2010) Blue space: the importance of water for preference, affect, and restorativeness ratings of natural and built scenes. J Environ Psychol 30:482–493 White PS, Jentsch A (2004) Disturbance, succession and community assembly in terrestrial plant communities. In: Temperton VM, Hobbs RJ, Nuttle T, Halle S (eds) Assembly rules and restoration ecology: bridging the gap between theory and practice. Island Press, Washington, DC, pp 342–366 White PS, Pickett ST (1985) The ecology of natural disturbance and patch dynamics. Academic, New York White PS, Walker JL (1997) Approximating nature’s variation: selecting and using reference information in restoration ecology. Restor Ecol 5:338–349 Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 12:213–251 Whitton BA, Albertano P, Satake K (eds) (2000) Chemistry and ecology of highly acidic environments: introduction. Hydrobiologia 433:1–2

WHO (1986) The Ottawa Charter for health promotion. WHO, Geneva. http://www.­who.­int/healthpromotion/conferences/previous/ottawa/en/ index4.­html. Accessed 15 Oct 2017 WHO (1990) Public health impact of pesticides used in agriculture. WHO, Geneva. http://apps.­who.­ int/iris/bitstream/10665/39772/1/9241561394.­pdf. Accessed 6 Aug 2017 WHO (2003) Polynuclear aromatic hydrocarbons in drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. WHO, Geneva. http://www.­who.­int/water_sanitation_health/ dwq/chemicals/polyaromahydrocarbons.­p df. Accessed 14 Aug 2018 WHO (2012) Pharmaceuticals in drinking-water. WHO, Geneva. http://apps.­who.­int/iris/bitstream/ 10665/44630/1/9789241502085_eng.­pdf. Accessed 9 Oct 2017 WHO (2017a) Climate change and human health: land degradation and desertification. WHO, Geneva. http://www.­who.­int/globalchange/ecosystems/desert/en/. Accessed 1 Sep 2017 WHO (2017b) Constitution of WHO: principles. WHO, Geneva. http://www.­who.­int/about/mission/ en/. Accessed 12 Aug 2017 Wichmann H (1976) Wald-, Moor- und Heidebrände. Moorbrandkultur und Höhenrauch im Gebiet zwischen Weser und Ems in vergangenen Tagen. Leuchtfeuer—Heimatblatt für die Jugend zwischen Niederelbe und Ems 26. 10. Folge, Sept 1976. Nordwestzeitung, Oldenburg Wichmann S, Köbbing JF (2015) Common reed for thatching—a first review of the European market. Ind Crop Prod 77:1063–1073 Wichtmann W, Joosten H (2007) Paludiculture: peat formation and renewable resources from rewetted peatlands. IMCG Newsl 3:24–28 Wichtmann W, Schröder C, Joosten H (eds) (2016) Paludiculture—productive use of wet peatlands. Climate protection—biodiversity—regional economic benefits. Schweizerbart Science Publishers, Stuttgart Wick AF, Geaumont BA, Sedivec KK, Hendrickson JR (2016) Grassland degradation. In: Shroder J, Sivanpillai R (eds) Biological and environmental hazards, risks, and disasters. Elsevier, Amsterdam, pp 257–276 Wickramasinghe LP, Harris S, Jones G, Vaughan N (2003) Bat activity and species richness on organic and conventional farms: impact of agricultural intensification. J Appl Ecol 40:984–993 Wieder RK, Lang GE (1983) Net primary production of the dominant bryophytes in a Sphagnum -dominated wetland in West Virginia. Bryologist 86:280–286 Wieder RK, Novák M, Schell WR, Rhodes T (1994) Rates of peat accumulation over the past 200

716

References

years in five Sphagnum-dominated peatlands in the United States. J Paleolimnol 12:35–47 Wiegand C, Geitner C (2010) Shallow erosion on grasslands and pastures of the Alps (Blaiken)— state of the art, data base and demand for research. Mitt Österr Geogr Ges 152:130–162 Wiegleb G (2000) Leitbildentwicklung in der Bergbaufolgelandschaft als Beispiel für das Konzept der “guten naturschutzfachlichen Praxis”. In: Wiegleb G, Bröring U, Mrzljak J, Schulz F (eds) Naturschutz in Bergbaufolgelandschaften. Landschaftsanalyse und Leitbildentwicklung. UmweltWissenschaften—Schriftenreihe der Fakultät für Umweltwissenschaften und Verfahrenstechnik der BTU Cottbus, Cottbus, pp 24–47 Wiegleb G, Felinks B (2001) Primary succession in postmining landscapes of Lower Lusatia—chance or necessity. Ecol Eng 17(2–3):199–217 Wiegleb G, Lüderitz V (2009) Akteure in der Renaturierung. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer Spektrum, Heidelberg, pp 457–467 Wiegleb G, Schulz F, Bröring U (2013) Naturschutzfachliche Bewertung im Rahmen der Leitbildmethode. Physica, Heidelberg Wiehe J, von Ruschkowski E, Rode M, Kanning H, von Haaren C (2009) Auswirkungen des Energiepflanzenanbaus auf die Landschaft am Beispiel des Maisanbaus für die Biogasproduktion in Niedersachsen. Natschutz Landschplan 41(4):107–113 Wiesinger K, Cais K, Bernhardt T, van Elsen T (2010) Biodiversität. Klares Votum für Rittersporn. Frauenspiegel und Co Ökol Landbau 153(1): 54–56 Wiesinger K, Otte A (1991) Extensiv genutzte Obstanlage in der Gemeinde Neubeuern/Inn: Baumbestand, Vegetation und Fauna einer traditionellen, bäuerlichen Nutzung. Ber Bayr Akad Natschutz Landschpfl 15:69–94 Wiesmeth H (2003) Umweltökonomie. Theorie und Praxis im Gleichgewicht. Springer, Heidelberg Wiesner C, Wolter C, Rabitsch W, Nehring S (2010) Gebietsfremde Fische in Deutschland und Österreich und mögliche Auswirkungen des Klimawandels. BfN Skripten 279:1–192 Wilcove DS, Chen LY (1998) Management costs for endangered species. Conserv Biol 12:1405–1407 Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48:607–617 Wilcox TM, McKelvey KS, Young MK, Jane SF, Lowe WH, Whiteley AR, Schwartz MK (2013) Robust detection of rare species using environmental DNA: the importance of primer specificity. PLoS ONE 8(3):e59520 Wilden RW, Schaaf W, Hüttl R (1999) Soil solution chemistry of two reclamation sites in the Lusatian

lignite mining district as influenced by organic matter application. Plant Soil 213:231–240 Wilhelm GJ, Rieger H (2013) Naturnahe Waldwirtschaft—mit der QD-Strategie. Eine Strategie für den qualitätsgeleiteten und schonenden Gebrauch des Waldes unter Achtung der gesamten Lebewelt. Ulmer, Stuttgart Wilkinson DM (1999) The disturbing history of intermediate disturbance. Oikos 84(1):145–147 Willems JH (1980) Observations on north-west European limestone grassland communities: an experimental approach to the study of species diversity and above-ground biomass in chalk grassland. P K Ned Akad C Biol 83:279–306 Willerding U (1981) Ur- und frühgeschichtliche sowie mittelalterliche Unkrautfunde in Mitteleuropa. Z Pfl krankh Pflschutz 9:65–74 Williams NM, Baines G (eds) (1993) Traditional ecological knowledge: Wisdom for sustainable development. Centre for Resource and Environmental Studies. Australian National University, Canberra Williams TP, Bubb JM, Lester JN (1994) Metal accumulation within salt marsh environments: a review. Mar Pollut Bull 28:277–290 Williamson M (1996) Biological invasions, Population and community biology series 15. Springer, Bern Wilmanns O (1989) Vergesellschaftung und StrategieTypen von Pflanzen mitteleuropäischer Rebkulturen. Phytocoenologia 18:83–128 Wilmanns O (1998) Ökologische Pflanzensoziologie: Eine Einführung in die Vegetation Mitteleuropas, 6th edn. Ulmer, Stuttgart Wilmanns O, Bogenrieder A (1992) Das GeranioAllietum in der oberelsässischen Rebflur. Bauhinia 10:99–114 Wilson ME (1995) Travel and the emergence of infectious diseases. Emerging Infectious Diseases 1(2):39–46 Wilson C, Tisdell C (2000) Why farmers continue to use pesticides despite environmental, health and sustainability costs. Work Pap Econ Ecol Environ Univ Queensland 53:1–29 Wilson C, Tisdell C (2001) Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol Econ 39(3):449–462 Wilson EO (1984) Biophilia. Harvard University Press, Cambridge Wilson EO (ed) (1988) Biodiversity. National Academies Press, Washington, DC Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802 Wilson SD, Gerry AK (1995) Strategies for mixedgrass prairie restoration: herbicide, tilling, and nitrogen manipulation. Restor Ecol 3:290–298 Wilton-Jones G, Ausden M (2005) Restoring heathland by conifer plantation removal at The Lodge

717 References

RSPB Reserve, Bedfordshire, England. Conserv Evid 2:70–71 Windham L, Weis JS, Weis P (2003) Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuar Coast Shelf Sci 56:63–72 Winker M (2010) Pharmazeutische Wirkstoffe in der aquatischen Umwelt. In: Hupfer M, Calmano W, Klapper H, Wilken RD (eds) Handbuch Angewandte Limnologie. V-4.1.2. Wiley-VCH, Weinheim Winkler I (2014) The human right to water: significance, legal status and implications for water allocation. Hart, Oxford Winter K (2015) Ansichtssache Stadtnatur: Zwischennutzungen und Naturverständnisse. Transcript, Bielefeld Winter M, Schweiger O, Klotz S, Nentwig W, Andriopoulos P, Arianoutsou M, Basnou C, Delipetrou P, Didžiulis V, Hejda M, Hulme PE, Lambdon PW, Pergl J, Pyšek P, Roy DB, Kühn I (2009) Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. PNAS 106(51):21721–21725 Winter S (2005) Ermittlung von Struktur-Indikatoren zur Abschätzung des Einflusses forstlicher Bewirtschaftung auf die Biozönosen von Tiefland-Buchenwäldern. Dissertation, TU Dresden Winterhalder K, Clewell AF, Aronson J (2004) Values and science in ecological restoration—a response to Davis and Slobodkin. Restor Ecol 12:4–7 Wipf S, Rixen C, Fisher M, Schmid B, Stoeckli V (2005) Effects of ski piste preparation on Alpine vegetation. J Appl Ecol 42:306–316 Wirth N (2010) Wastewater re-use in Lima Metropolitana: a concept for an integrated and sustainable water and wastewater management. Masterarbeit, Hochschule Emden-Leer. http://www.­limawater.­de/documents/nwirth_tesis.­pdf. Accessed 22 Mar 2017 Wisotzky F, Obermann P (2001) Acid mine groundwater in lignite overburden dumps and its prevention—the Rhineland lignite mining area (Germany). Ecol Eng 17:115–123 Withers PJA, Haygarth PM (2007) Agriculture, phosphorus and eutrophication: a European perspective. Soil Use Manag 23(1):1–4 Witoszek N, Brennan A (eds) (1999) Philosophical dialogues: Arne Næss and the progress of ecophilosophy. Rowan & Littlefield, New York Wittig R (2002) Siedlungsvegetation. Ulmer, Stuttgart Wittig R, Niekisch M (2014) Biodiversität: Grundlagen, Gefährdung, Schutz. Springer Spektrum, Heidelberg Wittig R, Diesing D, Gödde M (1985) Urbanophob— Urbanoneutral—Urbanophil. Das Verhalten der

Arten gegenüber dem Lebensraum Stadt Flora 177:265–282 Wöhler V (1999) Aufbereitete Aluminium-Salzschlacke als Rekultivierungsmaterial. Dissertation, University of Kassel Wohlgemuth T, Bürgi M, Scheidegger C, Schütz M (2002) Dominance reduction of species through disturbance—a proposed management principle for Central European forests. For Ecol Manag 166:1–15 Woike M, Zimmermann P (1997) Biotope pflegen mit Schafen, 4th ed. AID-Heft 11(97):1–62 Wolf E (1972) Ownership and political ecology. Anthropol Quart 45(3):201–205 Wolf G (1987) Untersuchungen zur Verbesserung der forstlichen Rekultivierung mit Altwaldboden im Rheinischen Braunkohlenrevier. Nat Landsch 62:364–368 Wolf G (2000) Der Einfluss des Diasporengehaltes im Boden auf die Vegetationsentwicklung forstlicher Rekultivierungsflächen. In: Bönecke G, Seiffert P (eds) Spontane Vegetationsentwicklung und Rekultivierung von Auskiesungsflächen. Des Cult 26:77–92 Wolf RJAM, Vrielink JG, de Waal RW (2001) History, management and classification of floodplain forests in the Netherlands. In: Klimo E, Hager H (eds) The floodplain forests in Europe. Current situation and perspectives. European Forest Institute Research Report 10:203–219 Wolff WJ, Bakker JP, Laursen K, Reise K (2010) The Wadden Sea quality status report—synthesis report 2010. Common Wadden Sea Secretariat, Wilhelmshaven, Germany. Wadden Sea Ecosyst 29:25–74 Wolfram-Wais A, Wolfram G, Auer B, Mikschi E, Hain A (1999) Feeding habits of two introduced fish species (Pseudorasbora parva, Lepomis gibbosus) in Neusiedler See (Austria), with special reference to chironomid larvae (Diptera: Chironomidae). Hydrobiologia 408–409:123–129 Wolfslehner B, Krajter S, Joviæ D, Nestorovski L, Velichkov I (2009) Framing stakeholder and policy issues for coppice forestry in selected Central and South-Eastern European countries. Silv Balc 10(1):21–34 Wollmann K, Deneke R, Nixdorf B, Packroff G (2000) Dynamics of planktonic food webs in three mining lakes across a pH gradient (pH 2-4). Hydrobiologia 433:3–14 Wolters M, Bakker JP (2002) Soil seed bank and driftline composition along a successional gradient on a temperate salt marsh. Appl Veg Sci 5:55–62 Wolters M, Garbutt A, Bakker JP (2005a) Saltmarsh restoration: evaluating the success of de-embankments in Northwest Europe. Biol Conserv 123:249–268

718

References

Wolters M, Garbutt A, Bakker JP (2005b) Plant colonization after managed realignment: the relative importance of diaspore dispersal. J Appl Ecol 42:770–777 Wolters S (2002) Vegetationsgeschichtliche Untersuchungen zur spätglazialen und holozänen Landschaftsentwicklung in der Döberitzer Heide (Brandenburg). Diss Bot 366:1–157 Wong MH, Bradshaw AD (2003) The restoration and management of derelict land: modern approaches. World Scientific, Singapur Wong PP, Losada IJ, Gattuso J-P, Hinkel J, Khattabi A, McInnes KL, Saito Y, Sallenger A (2014) Coastal systems and low-lying areas. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects, Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 361–409 Wood S, Trice A (1958) Measurement of recreation benefits. Land Econ 34:195–207 Woodrow W, Symes N, Auld M, Cadbury J (1996) Restoring Dorset’s heathland: the RSPB Dorset heathland project. RSPB Conserv Rev 10:69–81 Woolley H (2003) Urban open spaces. Taylor & Francis, London Woolsey S, Weber C, Gonser T, Hoehn E, Hostmann M, Junker B, Roulier C, Schweizer S, Tiegs S, Tockner K, Peter A (2005) Handbuch für die Erfolgskontrolle bei Fließgewässerrevitalisierungen. Publikation des Rhone-Thur Projektes. Eawag, WSL, LCH-EPFL, VAW-ETHZ. http:// www.­r ivermanagement.­c h/erfolgskontr/docs/ erfolgskontrolle.­pdf. Accessed 16 Jan 2018 Woolway RI, Maberly SC, Jones ID, Feuchtmayr H (2014) A novel method for estimating the onset of thermal stratification in lakes from surface water measurements. Water Resour Res 50:5131–5140 Woolway RI, Dokulil MT, Marszelewski W, Schmid M, Bouffard D, Merchant CJ (2017) Warming of Central European lakes and their response to the 1980s climate regime shift. Clim Chang 2017:1–16 Wopfner N, Gadermaier G, Egger M, Asero R, Ebner C, Jahn-Schmid B, Ferreira F (2005) The spectrum of allergens in ragweed and mugwort pollen. Int Arch Allergy Immunol 138:337–346 Worrell R, Hampson A (1997) The influence of some forest operations on the sustainable management of forest soils—a review. Forestry 70(1):61–85 Wortley L, Hero JM, Howes M (2013) Evaluating ecological restoration success: a review of the literature. Restor Ecol 21:537–543

Wöss M, Nopp-Mayr U, Grünschachner-Berger V, Zeiler H (2008) Bauvorhaben in alpinen Birkhuhnlebensräumen—Leitlinie für Fachgutachten. BOKU Ber Wildtierforsch Wildbewirtsch 16:1–35 Wright J (2003) Environmental chemistry. Routledge, London Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492 Wu J (2014) Urban ecology and sustainability: the state-of-the-science and future directions. Landsc Urban Plan 125:209–221 Wulf AJ (2001) Die Eignung landschaftsökologischer Bewertungskriterien für die raumbezogene Umweltplanung. BoD—Books on Demand, Norderstedt Wulf M (1994) Überblick zur Bedeutung des Alters von Lebensgemeinschaften, dargestellt am Beispiel “historisch alter Wälder”. NNA Ber 3:3–14 Wulf S, Dräger N, Ott F, Serb J, Appelt O, Guðmundsdóttir E, van den Bogaard C, Słowinski M, Błaszkiewicz M, Brauer A (2016) Holocene tephrostratigraphy of varved sediment records from Lakes Tiefer See (NE Germany) and Czechowskie (N Poland). Quat Sci Rev 132:1–14 Wünsche M, Thum J (1990) Bodensubstrate und Bodenentwicklung der landwirtschaftlich genutzten Flurkippe Espenhain (Sachsen). Arch Natschutz Landschforsch 30:217–229 Wünsche M, Vogler E, Knauf C (1998) Bodenkundliche Kennzeichnung der Abraumsubstrate und Bewertung der Kippenböden für die Rekultivierung im Mitteldeutschen Braunkohlenrevier. In: Pflug W (ed) Braunkohlentagebau und Rekultivierung—Landschaftsökologie, Folgenutzung, Naturschutz. Springer, Heidelberg, pp 780–796 Wupperverband (2016) Alles im Fluss: Wupper wird wieder natürlicher. http://www.­wupperverband.­ com/. Accessed 26 Nov 2017 Wurzel A, Weiser U (1993) Truppenübungsplätze und Naturschutz. Schrreihe Deut Rat Landespfl 62:1–94 Wüstemann H, Meyerhoff J, Rühs M, Schäfer A, Hartje V (2014) Financial costs and benefits of a program of measures to implement a national strategy on biological diversity in Germany. Land Use Pol 36:307–318 Wüstemann H, Bonn A, Albert C, Bertram C, BiberFreudenberger L, Dehnhardt A, Döring R, Elsasser P, Hartje V, Mehl D, Kantelhardt J, Rehdanz K, Schaller L, Scholz M, Thrän D, Witing F, Hansjürgens B (2017) Synergies and tradeoff s between nature conservation and climate policy: Insights from the “Natural Capital Germany—TEEB DE” study. Ecosyst Serv 24:187–199 Wüstemann O, Kammerad B (1994) Ökologische Auswirkungen der allochthonen Fischarten Graskarpfen (Ctenopharyngodon idella) und Silberkarpfen

719 References

(Hypophthalmichthys molitrix) auf Gewässerbiotope—dargestellt am Beispiel von Gewässerökosystemen im Naturpark Drömling in Sachsen-Anhalt (Deutschland). Österr Fischerei 47:89–96 Wüstrich D (2000) Einfluß humoser Substrate auf sandige Kippenböden am Beispiel der Bergbaufolgelandschaft Reichwalde. Cottbus Schr Bodensch Rekult 13:1–119 Yadav M (2016) Handbook on forest certification. The Energy and Resources Institute (TERI), Neu Delhi Yaling L (2008) Naturschutz und Umweltschutz als moralische Verpflichtung? Erörterung unter besonderer Berücksichtigung der Diskursethik LIT, Münster Yang D, Kanae S, Oki T, Koike T, Musiake K (2003) Global potential soil erosion with reference to land use and climate changes. Hydrol Process 17:2913–2928 Yang N, Haiying O, Caiping Y (2017) Eriocheir sinensis (Chinese mitten crab). Invasive species compendium. Centre for Agriculture and Biosciences International (CABI). http://www.­cabi.­org/isc/ datasheet/84120. Accessed 2 Jun 2017 Yaling L (2008) Naturschutz und Umweltschutz als moralische Verpflichtung? Erörterung unter besonderer Berücksichtigung der Diskursethik. LIT, Münster Yon D, Tendron G (1981) Alluvial forests of Europe. Nat Environ Ser Council Eur 22:1–65 Yonge CM (1960) Oysters. Collins, London Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368(2–3):456–464 Young SL, Claassen VP (2008) Native perennial grasses in highway medians: pre- and post-­plant techniques for establishment in a Mediterranean climate. Invas Plant Sci Manage 1:368–375 Yu G, Zhang Z, Yang G, Zheng W, Xu L, Cai Z (2014) Polycyclic aromatic hydrocarbons in urban soils of Hangzhou: status, distribution, sources, and potential risk. Environ Monit Assess 186(5):2775–2784 Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ (2010) Global peatland dynamics since the last glacial maximum. Geophys Res Lett 37:L13402 Zacharias D (1994) Bindung von Gefäßpflanzen an Wälder alter Waldstandorte im nördlichen Harzvorland Niedersachsens—ein Beispiel für die Bedeutung des Alters von Biotopen für den Pflanzenartenschutz. NNA Ber 3:76–87 Zafonte M, Hampton S (2007) Exploring welfare implications of resource equivalency analysis in natural resource damage assessments. Ecol Econ 61(1):134–145 Zahn A (2014) Beweidung von feuchtem, nährstoffreichem Offenland. In: Burkart-Aicher B (ed)

Online-Handbuch “Beweidung im Naturschutz”, Akademie für Naturschutz und Landschaftspflege (ANL), Laufen. www.­anl.­bayern.­de/fachinformationen/beweidung/handbuchinhalt.­h tm. Accessed 2 Mar 2017 Zaiko A, Lehtiniemi M, Narscius A, Olenin S (2011) Assessment of bioinvasion impacts on a regional scale: a comparative approach. Biol Invasions 13:1739–1765 Zak D, Gelbrecht J (2007) The mobilisation of phosphorus, organic carbon and ammonium in the initial stage of fen rewetting (a case study from NE Germany). Biogeochemistry 85:141–151 Zak D, Gelbrecht J, Zerbe S, Shatwell T, Barth M, Cabezas A, Steffenhagen P (2014) How helophytes influence the phosphorus cycle in degraded inundated peat soils—implications for fen restoration. Ecol Eng 66:82–90 Zak D, Goldhammer T, Cabezas A, Gelbrecht J, Gurke R, Wagner C, Reuter H, Augustin J, Klimkowska A, McInnes R (2018) Top soil removal reduces water pollution from phosphorus and dissolved organic matter and lowers methane emissions from rewetted peatlands. J Appl Ecol 55(1):311–320 Zak D, Wagner C, Payer B, Augustin J, Gelbrecht J (2010) Phosphorus mobilization in rewetted fens: the effect of altered peat properties and implications for their restoration. Ecol Appl 20: 1336–1349 Zaller JG (2004) Ecology and non-chemical control of Rumex crispus and R. obtusifolius (Polygonaceae): a review. Weed Res 44:414–432 Zander B (2002) Vegetation dynamics in coastal grasslands at the “Greifswalder Bodden” (Baltic Sea) after removing the dyke and reintroduction of flooding. In: Fock T, Hergarden K, Repasi D (eds) Salt grasslands and coastal meadows in the Baltic region. Proceedings of the 1st conference. FH Neubrandenburg, Neubrandenburg, pp 155–166 Zarzycki K (1984) Ekologiczne liczby wskaźnikowe roślin naczyniowych Polski. Polska Akademia NaukInstytut Botaniki, Kraków Zauft M, Ruffer J, Rößling H (2014) EU-LIFE-Projekt “Kalkmoore Brandenburgs”. In: Luthardt V, Zeitz J (eds) Moore in Brandenburg und Berlin. Natur + Text, Rangsdorf, pp 313–322 ZDSF (2017) Info Flora—Das nationale Informationszentrum der Schweizer Flora. Center of the Data Network of the Swiss Flora. https://www.­ infoflora.­ch. Accessed 28 May 2017 Zechmeister HG, Schmitzberger I, Steurer B, Peterseil J, Wrbka T (2003) The influence of land-use practices and economics on plant species richness in meadows. Biol Conserv 114:165–177 Zedler JB (2000) Progress in wetland restoration ecology. Trends Ecol Evol 15(10):402–407

720

References

Zedler JB, Kercher S (2005) Wetland resources: status, trends, ecosystem services, and restorability. Annu Rev Environ Res 30:39–74 Zeh H (2007) Ingenieurbiologie: Handbuch Bautypen. Verein f. Ingenieurbiologie. vdf Hochschulverlag, Zurich Zehlius-Eckert W (1998) Arten als Indikatoren in der Naturschutz- und Landschaftsplanung. Definitionen, Anwendungsbedingungen und Einsatz von Arten als Bewertungsindikatoren. Laufen Sembeitr 8(98):9–32 Zehm A, Storm C, Nobis M, Gebhardt S, Schwabe A (2002) Beweidung in Sandökosystemen. Konzept eines Forschungsprojektes und erste Ergebnisse aus der nördlichen Oberrheinebene. Natschutz Landsc 34(2/3):67–73 Zehnder M, Weller F (2016) Streuobstbau. Obstwiesen erleben und erhalten, 3rd edn. Ulmer, Stuttgart Zeitz J (2003) Moorkulturen. In: Blume HP, FelixHenningsen P, Frede HG, Guggenberger G, Horn R, Stahr K (eds) Handbuch der Bodenkunde 16 (Blattsammlung). ecomed, Landsberg, pp 1–16 Zeitz J (2014) Ausgewählte Meliorationsverfahren. In: Luthardt V, Zeitz J (eds) Moore in Brandenburg und Berlin. Natur + Text, Rangsdorf, pp 106–123 Zeitz J, Möller D, Heller C (2011) CARBSTOR—Ein Tool zur Berechnung der Kohlenstoff speichermenge und des Kohlenstofffreisetzungspotentials von Moorböden. HU Berlin. http://www.­ carbstor.­de/pages/impressum.­php. Accessed 13 Jan 2017 Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159(1):84–91 Zent S (1999) The quandary of conserving ethnoecological knowledge: a Piaroa example. In: Gragson T, Blount B (eds) Ethnoecology: knowledge, resources and rights. University of Georgia Press, Athens, pp 90–124 Zent S, Maffi L (2009) Final report on indicator No. 2: methodology for developing Vitality Index of Traditional Environmental Knowledge (VITEK) for the project “Global indicators of the status and trends of linguistic diversity and traditional knowledge”. Terralingua, Salt Spring Island Zerbe S (1989) Untersuchungen artspezifischer Bewegungsmuster entlang von Korridoren am Beispiel von Laufkäfern (Carabidae) und Heuschrecken (Acrididae). Landsch Stadt 21(3):100–103 Zerbe S (1993) Fichtenforste als Ersatzgesellschaften von Hainsimsen-Buchenwäldern. Vegetation, Struktur und Vegetationsveränderungen eines Forstökosystems. Ber Forschungszentr Waldökosyst Reihe A 100:1–173

Zerbe S (1995) Die Vegetation der Fichtenforste im Buntsandstein-Spessart. Schrreihe Vegkde 27(Festschrift H. Sukopp):341–351 Zerbe S (1997) Stellt die potentielle natürliche Vegetation (PNV) eine sinnvolle Zielvorstellung für den naturnahen Waldbau dar? Forstwiss Centralbl 116:1–15 Zerbe S (1998) Potential natural vegetation: validity and applicability in landscape planning and nature conservation. Appl Veg Sci 1:165–172 Zerbe S (1999a) Die Wald- und Forstgesellschaften des Spessarts mit Vorschlägen zu deren zukünftigen Entwicklung. Mitt Naturwiss Mus Aschaffenburg 19:1–354 Zerbe S (1999b) Konzeptionelle Überlegungen zur zukünftigen Entwicklung von Nadelholzforsten aus vegetationsökologischer Sicht. Arch Nat Conserv Landscape Res 37:285–304 Zerbe S (1999c): Konzeptionelle Überlegungen zur zukünftigen Entwicklung von Nadelholzforsten aus vegetationsökologischer Sicht. Arch Nat Conserv Landsc Res 37:285–304 Zerbe S (2001) On the ecology of Sorbus aucuparia (Rosaceae) with special regard to germination, establishment, and growth. Pol Bot J 46:229–239 Zerbe S (2002a) Biologische Vielfalt durch Landnutzung am Beispiel der Waldlandschaft des Spessarts. Natur Museum 132:365–375 Zerbe S (2002b) Restoration of natural broad-leaved woodland in Central Europe on sites with coniferous forest plantations. For Ecol Manag 167:27–42 Zerbe S (2003) Vegetation and future natural development of plantations with the Black poplar hybrid Populus x euramericana GUINIER introduced to Central Europe. For Ecol Manag 179:293–309 Zerbe S (2004) Influence of historical land use on present-day forest patterns—a case study in SW Germany. Scand J For Res 19:261–273 Zerbe S, Schmidt I (2006) Forstliche Entwicklungsziele mit unterschiedlichen Baumartenzusammensetzungen und deren Auswirkungen auf die biologische Vielfalt. In: Meyerhoff J, Hartje V, Zerbe S (Eds): Biologische Vielfalt und deren Bewertung am Beispiel des ökologischen Waldumbaus in den Regionen Solling und Lüneburger Heide. Ber Forschungszentr Waldökosyst, Reihe B 73:43–60 Zerbe S (2009) Renaturierung von Waldökosystemen. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer Spektrum, Heidelberg, pp 152–182 Zerbe S (2019) Zur Renaturierung mariner Ökosysteme. Beispiel Nord- und Ostsee—eine internationale Herausforderung. Natschutz Landschplan 51(3):116–123 Zerbe S (2020) Bär und Wolf in den Südalpen: Rückkehr der Großraubtiere zwischen aktiver Wieder-

721 References

ansiedlung und Ablehnung. Nationalpark-Jahrb Unteres Odertal 2021:80–89 Zerbe S (2022) Restoration of multifunctional cultural landscapes. Merging tradition and innovation for a sustainable future. Springer. Landsc Ser 30:1–716 Zerbe S, Annighöfer P, Mölder I, Schneider H, Terwei A, Ammer C (2020) Biosphere reserves als Reallabore für ein nachhaltiges Management von nicht einheimischen Pflanzenarten. In: Borsdorf A, Jungmeier M, Braun V, Heinrich K (eds) Biosphere 4.0.—UNESCO-Biosphärenparks als Modellregionen einer nachhaltigen Entwicklung: Prinzipien, Grundlagen und Fallstudien. Springer, Heidelberg, pp 241–256 Zerbe S, Bergmann A, Schermer M, Wellstein C (2019) Wiedereinführung der Waldweide in den Alpen? Perspektiven aus der Sicht von Akteuren. Natschutz Landschplan 51(6):276–282 Zerbe S, Brande A (2003) Woodland degradation and regeneration in Central Europe during the last 1,000 years—a case study in NE Germany. Phytocoenologia 33(4):683–700 Zerbe S, Brande A, Gladitz F (2000) Kiefer, Eiche und Buche in der Menzer Heide (N-­ Brandenburg). Veränderungen der Waldvegetation unter dem Einfluß des Menschen. Verh Bot Ver Berlin-­ Brandenburg 133:45–86 Zerbe S, Brande A, Kähler B (2004) Vegetationsökologische Untersuchungen als Grundlage für die zukünftige Entwicklung anthropogener Laubholzbestände—das Beispiel des Colbitzer Lindenwaldes (Sachsen-Anhalt). Natschutz Landschplan 36(12):357–362 Zerbe S, Dettmann C (1996) Vorschlag für ein neues Naturschutzgebiet “Parsteiner See” (Biosphärenreservat Schorfheide-Chorin) unter besonderer Berücksichtigung des Südwestufers. Berlin Natschutzbl 40(1):460–470 Zerbe S, Jansen F (2008) Vergleich verschiedener Managementstrategien zur Renaturierung anthropogener Kiefernbestände in Brandenburg. Forst Holz 63:13–18 Zerbe S, Kreyer D (2007) Influence of different forest conversion strategies on ground vegetation and tree regeneration in pine (Pinus sylvestris L.) stands: a case study in NE Germany. Eur J For Res 126:291–301 Zerbe S, Maurer U, Schmitz S, Sukopp H (2003) Biodiversity in Berlin and its potential for nature conservation. Landsc Urban Plan 62:139–148 Zerbe S, Meiwes KJ (2000) Zum Einfluß von Weichlaubhölzern auf Vegetation und Auflagehumus von Fichtenforsten. Untersuchungen in einem zwei Jahrzehnte alten Birken-Ebereschen-­ Vorwald im Hoch-Solling. Forstwiss Centbl 119:1–19

Zerbe S, Ott K (2021) Pesticides, soil removal, and fire for the restoration of ecosystems? A call for ethical standards in ecosystem restoration. For Ecol Landsc Res Nat Conserv 20:59–73 Zerbe S, Plagg B, Polo A (2018) Städtische Ökosysteme und menschliche Gesundheit. Ein interdisziplinarer Brückenschlag zur nachhaltigen Entwicklung und Renaturierung urbaner Lebensraume. In: Fehr R, Hornberg C (eds) Stadt der Zukunft—Gesund und nachhaltig. Brückenbau zwischen Disziplinen und Sektoren. Oekom, München, pp 169–185 Zerbe S, Roweck H (1991) Waldränder in der Kulturlandschaft. Vegetationskundliche Untersuchungen im Oberen Gäu (Baden-Württemberg) mit Pflegevorschlägen. Natschutz Landsc 23(5): 186–191 Zerbe S, Schacht T (1997) Kreidebrüche auf Jasmund (Insel Rügen). Nutzungsgeschichte, Vegetation und Naturschutzaspekte. Natschutz Landsch 29:325–330 Zerbe S, Schacht T (1998) Vegetation and successional stages in chalk quarries on Jasmund (Rügen Island, NE Germany). Frag Flor Geobot 43: 117–146 Zerbe S, Schmidt I, Betzin J (2007) Indicators for plant species richness in pine (Pinus sylvestris L.) forests of Germany. Biodivers Conserv 16:3301– 3316 Zerbe S, Steffenhagen P, Parakenings K, Timmermann T, Frick A, Gelbrecht J, Zak D (2013) Ecosystem service restoration after 10 years of rewetting peatlands in NE Germany. Environ Manag 51(6):1194–1209 Zerbe S, Sukopp H (1995) Gehören Forste zur Vegetation? Definition und Abgrenzung eines vegetationskundlichen und kulturhistorischen Begriff es. Tuexenia 15:11–24 Zerbe S, Thevs N (2011) Restoring central Asian floodplain ecosystems as natural capital and cultural heritage in a continental desert environment. In: Hong SK, Wu J, Kim JE, Nakagoshi N (eds) Landscape ecology in Asian cultures. Ecological research monographs. Springer, Tokyo, pp  277– 297 Zerbe S, Vater G (2000) Vegetationskundliche und standortsökologische Untersuchungen in Pappelforsten auf Niedermoorstandorten des Oberspreewaldes (Brandenburg). Tuexenia 20:55–76 Zerbe S, Wiegleb G (eds) (2009a) Renaturierung von Ökosystemen in Mitteleuropa. Springer Spektrum, Heidelberg Zerbe S, Wiegleb G (2009b) Renaturierungsökologie und Ökosystemrenaturierung—Synthese und Herausforderungen für die Zukunft. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen

722

References

in Mitteleuropa. Springer Spektrum, Heidelberg, pp 469–475 Zerbe S, Wiegleb G, Rosenthal G (2009) Einführung in die Renaturierungsökologie. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer Spektrum, Heidelberg, pp 1–21 Zerbe S, Wirth P (2006) Ecological range of invasive plant species in Central European pine (Pinus sylvestris L.) forests. Ann For Sci 63:189–203 Zhai D-L, Xu JC, Dai ZC, Cannon CH, Grumbine RE (2013) Increasing tree cover while losing diverse natural forests in tropical Hainan, China. Reg Environ Chang 14(2):611–621 Zhang L, Sun X, Tian Y, Gong X (2013) Composted green waste as a substitute for peat in growth media: effects on growth and nutrition of Calathea insignis. PLoS One 8(10):e78121 Zhang P, Shao G, Zhao G, Le Master DC, Parker GR, Dunning JB Jr, Li Q (2000) China’s forest policy for the 21st century. Science 288(5474):2135–2136 Zhang W, Ming Q, Shi Z, Chen G, Niu J, Lei G, Chang F, Zhang H (2014) Lake sediment records on climate change and human activities in the Xingyun Lake catchment, SW China. PLoS One 9(7):e102167 Zhang WL, Tian ZX, Zhang N, Li XQ (1996) Nitrate pollution of groundwater in northern China. Agricult Ecosyst Environ 59:223–231 Zhou Y, Liu P, Liu B, Liu X, Zhang X, Wang F, Yang H (2014) Restoring eelgrass (Zostera marina L.) habitats using a simple and effective transplanting technique. PLoS One 9(4):e92982 Ziege M, Brix M, Schulze M, Seidemann A, Straskraba S, Wenninger S, Streit B, Wronski T, Plath M (2015) From multifamily residences to studio apartments: shifts in burrow structures of European rabbits along a rural-to-urban gradient. J Zool 295:286–293 Ziegler DH (2001) Untersuchungen zur nachhaltigen Wirkung der Uferfiltration im Wasserkreislauf Berlins. Dissertation, TU Berlin Zika M, Erb KH (2009) The global loss of net primary production resulting from human-induced soil degradation in drylands. Ecol Econ 69: 310–318 Zimmermann F (2010a) Von “Apothekers Geheimnis” ins Netz NATURA 2000—Europäische Bedeutung der Binnensalzstellen in Brandenburg. Natschutz Landschpfl Brandenbg 19(1/2):6–8 Zimmermann F (2010b) Pflanzengesellschaften der Binnensalzstellen in Brandenburg. Natschutz Landschpfl Brandenbg 19(1/2):31–33 Zimmermann F, Düvel M, Herrmann A (2007) Biotopkartierung Brandenburg, vol 2: Beschreibung der Biotoptypen. LUA Brandenburg (eds), Potsdam

Zimmermann W, Kolter L, Sándor I, Dukat Z (1998) Przewalskipferde in der Hortobagy-Puszta—ein Natur- und Artenschutzprojekt. Z Köln Zoo 1(41):37–55 Zimmermann W, Sándor I, Kerekes V (2005) Naturschutzprojekt Hortobágy—Jahresbericht 2004. Z Köln Zoo 48(1):35–45 Zink TA, Allen MF (1998) The effects of organic amendments on the restoration of a disturbed coastal sage scrub habitat. Restor Ecol 6:52–58 Żmudzki J, Jabłoński A, Nowak A, Zębek S, Arent Z, Bocian Ł, Pejsak Z (2016) First overall report of Leptospira infections in wild boars in Poland. Acta Vet Scand 58(3):1–5 Zobel M (1997) The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends Ecol Evol 12:266–269 Zobel M, van der Maarel E, Dupré C (1998) Species pool: the concept, its determinants and its significance for community restoration. Appl Veg Sci 1(1):55–66 Zöckler C (2000) Wise use of floodplains: review of river restoration projects in a number of European countries. WWF European Freshwater Programme, EU Life Programme. Birdlife International, Cambridge Zohary M (1962) Plant life of Palestine, Israel and Jordan. Ronald Press, New York Zólyomi B, Baráth Z, Fekete G, Jakucs P, Kárpáti I, Kovács M, Máthe I (1967) Einreihung von 1400 Arten der ungarischen Flora in ökologische Gruppen nach TWR-Zahlen. Fragm Bot Mus Hist-Nat Hung 4:101–142 Zonneveld IS (1965) Studies van landschap, bodem en vegetatie in het westelijk deel van de Kalmthoutse heide. Boor en Spade 14:216–238 Zückert H (2003) Allmende und Allmendaufhebung. Vergleichende Studien zum Spätmittelalter bis zu den Agrarreformen des 18/19 Jahrhunderts. Lucius & Lucius, Stuttgart Zulka KP (2002) Rote-Liste-Arten: Schutzwürdigkeit, Gefährdung, Naturschutz-Prioritäten. Entomol Aust 7:3–6 Zulka KP, Milasowszky N, Lethmayer C (1997) Spider biodiversity potential of an ungrazed and a grazed inland salt meadow in the National Park ʻNeusiedler See-Seewinkel’ (Austria): implications for management (Arachnida: Araneae). Biodivers Conserv 6:75–88 Zumbroich T (2013) Strukturgüte von Fließgewässern: Grundlagen und Kartierung. Springer, Heidelberg Županski D, Gavrilović Z (2011) Problem of floating debris in the Danube and Tamiš Rivers: area of Pančevo. Danubius on-line. http:// danubecooperation.­com/. Accessed 25 Mar 2017

723 References

Zuppke U, Elz I (2013) Die Aue der Biber Störche und Urzeitkrebse: Natur und Landschaft der Aue an der mittleren Elbe bei der Lutherstadt Wittenberg. Norderstedt, Books on Demand Zurek S (1984) Organic matter accumulation in European peatlands (on the basis of 14 C data). In: Irish National Peat Committee (ed) 7th International Peat Congress, Dublin, Ireland, 18–23 June 1984; Dublin revisited: 30 years of international collaboration in peat development and the challenge of the future. National Peat Committee & International Peat Society Proceedings, Dublin, pp 68–87 Züscher AL (1998) Die Wiedernutzbarmachung im Bergrecht und die Umsetzung im Betrieb. In: Pflug W (ed) Braunkohletagebau und Rekultivier-

ung—Landschaftsökologie, Folgenutzung. Naturschutz. Springer, Heidelberg, pp 42–48 Zwick P (1992) Stream habitat fragmentation—a threat to biodiversity. Biodivers Conserv 1(2): 80–97 Zwygart D (1989) Obstgärten. In: Imbeck-Löffler P (ed) Natur aktuell: Lagebericht zur Situation der Natur im Kanton Basel-Landschaft im Jahr 1988—Grundlagen für ein Natur- und Landschaftsschutzkonzept. Verlag des Kantons BaselLandschaft, Liestal, pp 180–187 Žydelis R, Bellebaum J, Osterblom H, Vetemaa M, Schirmeister B, Stipniece A, Dagys M, van Eerden M, Garthe S (2009) By-catch in gillnet fisheries— an overlooked threat to waterbird populations. Biol Conserv 142:1269–1281