Power Electronics, Drives and Advanced Applications 1138062391, 9781138062399

Concern for reliable power supply and energy-efficient system design has led to usage of power electronics-based systems

978 183 28MB

English Pages 544 [791] Year 2020

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

Power Electronics, Drives and Advanced Applications
 1138062391, 9781138062399

Table of contents :
Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface
Acknowledgment
Authors
SECTION I: Power Semiconductor Devices
Chapter 1: Overview of Power Electronics
1.1 Introduction
1.2 Power Electronics Systems
1.3 Power Semiconductor Devices
1.4 Power Electronic Converters
1.5 Power Electronic Modules
1.6 Applications of Power Electronics
1.7 Computer Simulation of Power Electronic Circuits
1.7.1 Importance of Simulation
1.7.2 Benefits of Computer-Aided Simulation
1.7.3 Demerits of Computer-Aided Simulation
1.7.4 Simulation Tools
Review Questions
Summary
References/Further Reading
Chapter 2: Power Semiconductor Devices
2.1 Introduction
2.2 Power Diode
2.2.1 Working and V-I Characteristics
2.2.2 Diode Reverse Recovery Characteristics
2.3 DIAC
2.4 TRIAC
2.5 Characteristics of Power Transistors
2.5.1 Bipolar Junction Transistor
2.5.1.1 Steady-State Characteristics
2.5.1.2 Switching Characteristics of a BJT
2.5.2 Power MOSFETs
2.5.3 Insulated-Gate Bipolar Transistor
2.6 Characteristics of the Thyristor
2.6.1 Static V-I Characteristics of a Thyristor
2.6.1.1 Reverse Blocking Mode (RBM)
2.6.1.2 Forward Blocking Mode
2.6.1.3 Forward Conducting Mode
2.6.2 Switching Characteristics of a Thyristor
2.6.3 Thyristor Gate Characteristics
2.7 Gate Turn-Off (GTO) Thyristor
2.7.1 Static V-I Characteristics
2.7.2 Switching Characteristics of GTO
2.8 Two-Transistor Model of a Thyristor
Review Questions
Summary
References/Further Reading
Chapter 3: Silicon-Controlled Rectifier
3.1 Introduction
3.2 SCR Construction
3.2.1 Planer Diffused
3.2.2 Alloy Diffused
3.3 Specifications and Ratings
3.3.1 Voltage Ratings
3.3.2 Current Ratings
3.4 Methods of Turn On
3.4.1 Gate Triggering
3.4.2 Forward Voltage Triggering
3.4.3 dv/dt Triggering
3.4.4 Temperature Triggering
3.4.5 Light Triggering
3.5 Firing (Triggering) Circuits for SCR
3.5.1 Resistance (R) Triggering Circuit
3.5.2 Resistance-Capacitance (RC) Triggering Circuit
3.5.3 UJT Relaxation Oscillator
3.6 Series and Parallel Operation of SCR
3.6.1 Series-Connected SCRs
3.6.2 Parallel-Connected SCRs
3.7 String Efficiency
3.8 Protection of SCR
3.8.1 Overvoltage Protection
3.8.2 Overcurrent Protection
3.8.3 dv/dt Protection
3.8.4 di/dt Protection
3.8.5 Gate Protection
3.9 Solved Problems
Review Questions and Unsolved Problems
Summary
Main Formulas of the Chapter
References/Further Reading
SECTION II: Power Electronic Converters
Chapter 4: Phase-Controlled Rectifiers
4.1 Introduction
4.2 Classifications
4.3 Performance Indices for Line-Commutated Converter
4.4 Single-Phase Converters
4.4.1 Single-Phase Half-Wave-Controlled Rectifier with R Load
4.4.2 Single-Phase Half-Wave-Controlled Rectifier with RL Load
4.4.3 Single-Phase Half-Wave-Controlled Rectifier with RL Load and Freewheeling Diode (FD)
4.4.4 Single-Phase Full-Wave-Controlled Converter
4.4.4.1 Single-Phase Full-Wave Mid-Point Rectifier with R Load
4.4.4.2 Single-Phase Full-Wave Bridge-Type- Controlled Rectifier with R Load
4.4.4.3 Single-Phase Full-Wave Bridge-Type-Controlled Rectifier with RL Load
4.4.5 Single-Phase Half-Wave-Controlled Rectifier with RLE Load
4.4.6 Single-Phase Full Converter with RLE Load and Discontinuous Conduction
4.5 Three-Phase Converters
4.5.1 Three-Phase Half-Wave Converters with RL Load
4.5.2 Three-Phase Full Converter
4.6 Dual Converters
4.6.1 Ideal Dual Converter
4.6.2 Practical Dual Converter
4.6.2.1 Dual Converter without Circulating Current
4.6.2.2 Dual Converter with Circulating Current
4.6.3 Single-Phase Dual Converter
4.6.4 Three-Phase Dual Converters
4.7 Effect of Source Impedance
4.7.1 Single-Phase Fully Controlled Rectifier with Source and Load Inductance
4.8 Solved Problems
Review Questions and Unsolved Problems
Summary
Main Formulas of the Chapter
References/Further Reading
Chapter 5: Semiconverters
5.1 Introduction
5.2 Single-Phase Semiconverter with RL Load
5.3 Three-Phase Semiconverter with RL Load
5.4 Power Factor Improvement
5.4.1 Extinction Angle Control (EAC)
5.4.2 Symmetrical Angle Control (SAC)
5.4.3 Pulse Width Modulation Control
5.4.4 Sinusoidal Pulse Width Modulation Control
5.5 Inversion Operation
5.6 Solved Problems
Review Questions and Unsolved Problems
Summary
Main Formulas of the Chapter
References/Further Reading
Chapter 6: Chopper
6.1 Introduction
6.2 Chopper Classifications
6.3 Principle of Chopper Operation
6.4 Control Strategies
6.4.1 Time Ratio Control
6.4.2 Current Limit Control
6.5 Step Up/Down Chopper
6.6 Chopper Configurations
6.6.1 First-Quadrant or Type-A Chopper
6.6.2 Second-Quadrant or Type-B Chopper
6.6.3 Two-Quadrant Type-A Chopper or Type-C Chopper
6.6.4 Two-Quadrant Type-B Chopper or Type-D Chopper
6.6.5 Four-Quadrant Chopper or Type-E Chopper
6.7 Analysis of Type-A (Step-Down) Chopper
6.7.1 With Resistive Load
6.7.2 With RLE Load
6.7.2.1 Steady-State Ripple
6.7.2.2 Limits of Continuous Conduction
6.7.2.3 Computation of Extinction Time (tx)
6.7.2.4 AC Ripple Voltage (Vr)
6.7.2.5 Ripple Factor (RF)
6.8 Commutation of Chopper
6.8.1 Voltage-Commutated Chopper (Classical Chopper or Parallel Capacitor Turn-Off Chopper)
6.8.2 Current-Commutated Chopper
6.8.3 Load-Commutated Chopper
6.9 Switched-Mode Regulators
6.10 Solved Problems
Review Questions and Unsolved Problems
Summary
Main Formulas of the Chapter
References/Further Reading
Chapter 7: DC-to-AC Converter: Inverter
7.1 Introduction
7.2 Classifications
7.3 Performance Parameters of Inverters
7.4 Voltage Source Inverters
7.4.1 Single-Phase Voltage Source Inverters
7.4.1.1 With RL and RLC Overdamped Loads
7.4.1.2 With RLC Underdamped Load
7.4.1.3 Fourier Analysis of Single-Phase Inverter Output Voltage
7.4.2 Three-Phase VSI Bridge Inverter
7.4.2.1 Three-Phase 180-degree Mode VSI
7.4.2.2 Three-Phase 120-degree Mode VSI
7.4.2.3 Merits and Demerits of 180°- and 120°-Mode VSIs
7.5 Current Source Inverters
7.5.1 Single-Phase CSI
7.5.2 Three-Phase CSI
7.6 CSI versus VSI
7.7 Voltage Control of Single-Phase Inverters
7.7.1 Control of Input DC Voltage
7.7.2 External Control of AC Output Voltage
7.7.3 Internal Control of Inverters
7.8 Pulse-Width Modulation
7.8.1 Single Pulse-Width Modulation
7.8.2 Multiple Pulse-Width Modulation
7.8.3 Sinusoidal Pulse-Width Modulation
7.9 Advanced Modulation Techniques
7.9.1 Trapezoidal Modulation
7.9.2 Staircase Modulation
7.9.3 Stepped Modulation
7.9.4 Harmonic-Injected Modulation
7.9.5 Delta Modulation
7.10 Space Vector Modulation
7.10.1 Implementation of Space Vector PWM
7.11 Harmonic Reduction
7.12 Solved Problems
Review Questions and Unsolved Problems
Summary
Main Formulas of the Chapter
References/Further Reading
Chapter 8: AC Voltage Controllers
8.1 Introduction
8.2 Principle of On-Off Control
8.3 Principle of Phase Control
8.4 Single-Phase AC Voltage Controllers
8.4.1 Single-Phase Full-Wave AC Voltage Controller with Resistive Load
8.4.2 Single-Phase Full-Wave AC Voltage Controller with RL Load
8.4.3 Single-Phase Full-Wave AC Voltage Controller with Purely Inductive Load
8.5 Three-Phase Full-Wave AC Voltage Controllers
8.6 Solved Problems
Review Questions
Summary
Main Formulas of the Chapter
References/Further Reading
Chapter 9: Cycloconverter
9.1 Introduction
9.2 Classifications
9.3 Principle of Operation of Single-Phase to Single-Phase Cycloconverter
9.3.1 Single-Phase to Single-Phase Step-Up Cycloconverter
9.3.1.1 Midpoint Cycloconverter
9.3.1.2 Bridge-Type Cycloconverter
9.3.2 Single-Phase to Single-Phase Step-Down Cycloconverter
9.3.2.1 Bridge-Type Cycloconverter
9.3.2.2 Midpoint Cycloconverter
9.4 Three-Phase to Single-Phase Cycloconverters
9.5 Three-Phase to Three-Phase Cycloconverters
9.6 Output Voltage Equation for the Cycloconverter
9.7 Reduction of Output Harmonics
9.8 Solved Problems
Review Questions Unsolved Problems
Summary
Main Formulas of the Chapter
References/Further Reading
Chapter 10: Switched-Mode Power Supplies
10.1 Introduction
10.2 Basic Working of Switched-Mode Power Supply
10.2.1 Forward-Mode-Type Switching Regulator
10.2.2 Flyback-Mode-Type Switching Regulator
10.3 Switched-Mode Power Supply (SMPS)
10.3.1 Flyback Switched-Mode Power Supply
10.3.2 Push-Pull Switched-Mode Power Supply
10.3.3 Half-Bridge Switched-Mode Power Supply
10.3.4 Full-Bridge Switched-Mode Power Supply
10.4 Resonant DC Power Supplies
10.5 Bidirectional DC Power Supplies
Review Questions
Summary
Main Formulas of the Chapter
References/Further Reading
Chapter 11: Multipulse Converter
11.1 Introduction
11.2 Multipulse Converter
11.2.1 Unidirectional AC-DC Converters
11.2.1.1 12-Pulse AC-DC Converters
11.2.1.2 18-Pulse AC-DC Converters
11.2.1.3 24-Pulse AC-DC Converters
11.3 Multilevel Inverters
11.3.1 Cascaded H-Bridge Multilevel Inverter
11.3.2 Neutral Point-Clamped Multilevel Inverter
11.3.3 Flying Capacitor Multilevel Inverter (FCMLI)
11.4 Power Converter Switching Techniques
11.4.1 Hysteresis Current Control of Inverters
11.4.2 Pulse-Width Modulation (PWM) Techniques
11.4.2.1 Sinusoidal PWM
11.4.2.2 Phase-Opposition Sinusoidal PWM
11.4.2.3 In-Phase Sinusoidal PWM
11.4.2.4 Third-Harmonic Injection Sinusoidal PWM (THISPWM)
11.4.2.5 Three-Phase Two-Level SVPWM
11.5 Resonant Converters
11.5.1 Soft-Switching Topologies
11.5.1.1 Resonant Load Converters
11.5.1.2 Resonant Switch Converters
11.5.1.3 Flyback Converter
11.5.1.4 Switched Mode Power Conversion (SMPC) with Regulated DC Source
11.5.1.5 Phase-Shift Bridge
11.5.1.6 Parallel Resonant Converter
11.5.1.7 Multielement Resonant Converters
11.6 Dual Active-Bridge Converter
11.7 Three-Phase AC-AC Matrix Converter
11.7.1 Three-Phase to Three-Phase DMC Modeling
11.7.2 Space Vector PWM
11.7.3 Commutation Methods in DMC
11.7.4 Deadtime Commutation
11.7.5 Current Commutation Based on Multiple Steps
11.7.6 Simulation Results
Review Questions
Summary
References/Further Reading
SECTION III: Electrical Drives
Chapter 12: Introduction of Electrical Drives
12.1 Electric Drives Concepts
12.1.1 Electrical Motors
12.1.2 Power Modulator
12.1.3 Sources
12.1.4 Controller
12.1.5 Load Torques
12.2 Advantages of Electrical Drives
12.3 Characteristics of an Electrical Drive
12.4 Classifications
12.5 Quadrant Operation of the Drive
12.5.1 One Quadrant
12.5.2 Two Quadrants
12.6 Four-Quadrant Operation of Electrical Drives
12.7 Constant-Torque Drive
12.8 Constant-Power Drive
12.9 Nature and Components of Load
12.9.1 Fan-Type Load
12.9.2 Load Torque as a Function of Position
12.9.3 Hoisting Load
12.9.4 Load Torque as a Function of Angle of Shaft Displacement
12.9.5 Load Torques Varying with Time
12.10 Combined Motor Load Dynamics
12.11 Equivalent System
12.11.1 Equivalent Load Torque Referred to the Motor
12.11.2 Equivalent Moment of Inertia
12.11.3 Relating Translation Motion to Rotational Motor
12.12 Practical Determination of Moment of Inertia
12.12.1 Retardation Test
12.13 Rating of Electrical Drives
12.13.1 Heating Affects All Machines during Running Produce Losses
12.13.2 Loading Conditions
12.13.3 Load Inertia
12.13.4 Environmental Factors
12.14 Selection of Electrical Drives
12.14.1 Drive Considerations
12.15 Guides for Selection of Electrical Motors
12.16 Solved Problems
Review Questions
Unsolved Problems
Summary
References
Chapter 13: Control of DC Motor Drives
13.1 Introduction
13.2 Basics of DC Machines
13.2.1 Shunt and Separately Excited DC Motors
13.2.2 DC Series Motor
13.3 Effect of Change in Supply Voltage on Characteristics of DC Motors
13.3.1 Separately Excited DC Motor
13.3.2 DC Series Motor
13.4 Effect of Change in Load Torque
13.5 Speed Control of DC Motors
13.6 Phase-Controlled Rectifier Control of DC Motor
13.6.1 Single-Phase Fully Controlled Rectifier Control of DC Separately Excited Motor Drive
13.6.2 Single-Phase Half-Controlled Rectifier (or Semiconverter) Control of DC Separately Excited Motor Drive
13.6.3 Three-Phase Fully Controlled Rectifier Control of DC Separately Excited Motor Drive
13.6.4 Three-Phase Half-Controlled Rectifier Control of Separately Excited DC Motor
13.7 Chopper Control of DC Motor
13.7.1 Chopper Control of Separately Excited DC Motors
13.7.2 Chopper Control of DC Series Motor
13.8 Solved Problems
Review Questions and Unsolved Problems
Summary
References/Further Reading
Chapter 14: Control of Induction Motor Drives
14.1 Introduction
14.2 Basics of the Induction Motor
14.3 Modeling and Characteristics of Induction Drives
14.4 No-Load Current of a Three-Phase Motor
14.5 Starting Performance of the Three-Phase Induction Motor
14.6 Modifying Torque-Speed Characteristics of the Three-Phase Induction Motors
14.6.1 Varying the Supply Voltage
14.6.2 Constant V/f Control
14.6.3 Adding Impedance in the Stator Circuit
14.6.4 Adding Resistance in the Rotor Circuit
14.6.5 Voltage Injection—The Rotor Circuit
14.6.6 Pole-Changing Drive
14.6.7 Pole-Amplitude Modulation
14.7 Transient Stability
14.8 Braking of the Induction Motor
14.8.1 Regenerative Braking
14.8.2 Plugging
14.8.3 Dynamic Braking
14.9 Speed Control of Three-Phase Induction Motors
14.9.1 Stator Voltage Control Method
14.9.2 Variable-Frequency Control Method
14.9.3 Rotor-Resistance Control
14.9.4 Injection of Voltage in the Rotor Circuit
14.10 Slip Power Control Using Power Semiconductor Converter
14.10.1 Static Rotor-Resistance Control
14.10.2 Static Scherbius Drive
14.10.3 Static Kramer Drive
14.11 Solved Examples
Review and Unsolved Questions
Summary
References
Chapter 15: FPGA-Based Fuzzy-Logic Control of DTC for Matrix-Converter-Fed Induction-Motor Drives
15.1 Introduction
15.2 Various Controllers for Induction Motor Drives
15.3 Integrated Circuits for IM Drives
15.4 Details of IM Drive under Investigation
15.4.1 Direct-Torque Control for Matrix-Converter-Fed Induction-Motor Drive
15.4.2 Estimation of Flux and Electromagnetic Torque
15.4.3 Development of Developed Fuzzy-Logic Controller
15.4.4 Control Implementation on the FPGA Board
15.5 Simulation Results of Performance Comparison between Developed Fuzzy-Logic DTC-Controller- Based IM Drive and Conventional DTC-Based IM Drive
15.5.1 Response of the System at Constant Reference Speed 100 rad/s and No-Load Condition
15.5.2 Response of the System with Reference Speed Reversal at No-Load Condition
15.6 Experimental Results of Developed FLDTC-Based MC-Fed IM Drive
15.6.1 Response of the Drive with Constant Reference Speed (500 rpm) at No-Load Condition
15.6.2 Stability Analysis of the Developed System
15.6.3 Harmonic Analysis
Summary
References/Further Reading
Chapter 16: Control of Synchronous and Special Motor Drives
16.1 Introduction
16.2 Basics of the Synchronous Motor
16.3 Speed Control of the Synchronous Motor
16.3.1 True Synchronous Mode
16.3.2 Self-Controlled Mode
16.4 Stepper Motor
16.5 Variable-Reluctance Motor
16.5.1 Single-Stack Variable-Reluctance Stepper Motor
16.5.2 Multistack Variable-Reluctance Stepper Motor
16.6 Permanent-Magnet Motors
16.7 Hybrid Stepper Motor
16.8 Drive Circuits for Stepper Motors
Unsolved Problems
Summary
References
SECTION IV: Advanced Power electronics Applications
Chapter 17: Electric/Hybrid Electric Vehicles
17.1 Introduction
17.2 Power-Train Architectures
17.2.1 Major Characteristics of BEVs, HEVs, and FCVs
17.2.2 Different Functions of the Various HEV Architectures
17.3 Drivetrain Analysis
17.3.1 BEV Drivetrain Topology
17.3.2 Series HEV Drivetrain Topology
17.3.3 Parallel HEV Drivetrain Topology
17.3.4 Series-Parallel HEV Drivetrain Topology
17.3.5 FCV Drivetrain Topology
17.4 Vibration and Vehicle Dynamics
17.4.1 Vibration
17.4.2 Vehicle Dynamics
17.5 Power Converter for Electric/Hybrid Electric Vehicles
17.5.1 Configurations of Engine-Based HEV
17.5.2 Configurations of FCV
17.5.3 Basic Bidirectional DC-DC Converters
17.5.4 Isolated Bidirectional DC-DC Converters
17.5.5 Multiphase Bidirectional DC-DC Converters
17.6 Vehicular Power Electronics
17.6.1 Power Converters for DC Motor Drives
17.6.2 Power Converters for AC Motor Drives
17.7 Selection of Motor Drives for Electric/Hybrid Electric Vehicles
17.7.1 Comparative Study
17.7.1.1 DC Motor (DC)
17.7.1.2 Induction Motor
17.7.1.3 Synchronous Motor (PM Brushless Motor)
17.7.1.4 Switched Reluctance Motor (SRM)
17.8 Solar and Fuel Cell Drives
17.9 PV Array Formations
17.10 Solar-Powered Variable-Speed Drive
17.10.1 Solar-Based Electric Vehicles
17.10.2 Solar-Based Pump Drive
17.11 Fuel-Cell-Powered Electrical Drives
17.12 Solved Problems
Review Questions and Unsolved Problems
Summary
References/Further Reading
Chapter 18: Power Electronics Applications in Power Systems
18.1 Introduction
18.2 General Aspects of DC Transmission
18.3 Converter Circuits and Their Analysis
18.4 High Voltage DC Transmission
18.5 Mechanism of Active and Reactive Power Flow Control
18.6 Basic FACTS Controllers: SVC, TCR, TSC, STATCOM, TCSC, UPFC
18.6.1 Static VAR Compensator
18.6.2 Thyristor-Controlled Reactor (TCR)
18.6.3 Thyristor-Switched Capacitor (TSC)
18.6.4 Static Synchronous Compensator
18.6.5 TCSC
18.6.6 UPFC
18.7 Modeling of FACTS Controllers
18.7.1 Filter Modeling
18.7.2 STATCOM Modeling
18.8 System Dynamic Performance Improvement with FACTS Controllers
18.9 Interline Power Flow Controller (IPFC)
18.10 Unified Power Quality Conditioners (UPQC)
18.11 Power Electronics in Power Generation
Review Questions
Summary
References/Further Reading
Chapter 19: Power Electronics Application in Renewable Energy (Wind and PV) System Integration
19.1 Introduction
19.2 Grid-Connected Converters—Key Element for Grid Integration of WT and PV Systems
19.3 Power Electronics Converters for Renewable Energy Integration
19.3.1 Variable-Speed Double-Fed Induction Generator (DFIG)
19.3.2 Variable-Speed Full-Power Converter
19.3.3 Boost Converter
19.4 Photovoltaic Inverter Structure
19.5 Grid Converter Structure for Wind Turbine System
19.5.1 Single-Cell (VSC or CSC)
19.5.2 Medium-Power Converter
19.5.3 High-Power Converter
19.6 Grid Requirements for Photovoltaic and Wind Turbine Systems
19.7 Grid Synchronization Using a Phase-Locked Loop
19.7.1 Basic Structure of a Phase-Locked Loop
19.7.2 Basic Equations of PLL
19.7.3 Linearized Small-Signal Model of a PLL
19.7.4 PLL Based on T/4 Transport Delay
19.7.5 PLL Based on the Inverse Park Transform
19.7.6 Second-Order Generalized Integrator
19.7.7 SOGI-QSG
19.8 Control of Grid Converter under Grid Fault
19.9 Design of Grid Filters
19.10 Solved Problems
Review Questions
Summary
References/Further Reading
Chapter 20: Distributed Generation and Microgrids
20.1 Introduction
20.2 DG and MG Components
20.3 Microsources and Loads
20.4 Power Electronics Interface
20.4.1 DC-Bus Interface
20.4.2 AC-Bus Interface
20.5 Architecture (DC/AC/Hybrid) of Microgrids and Storage Systems
20.5.1 DC Microgrid
20.5.2 AC Microgrid
20.5.3 Hybrid Microgrid
20.5.4 Storage System
20.6 Integration Issues of Distributed Generation and Synchronization
20.6.1 Integration Issues
20.6.2 Grid Synchronization
20.7 Interconnection of Power Electronics Converters with Medium-Voltage Grid
20.8 Stability Aspects in Microgrids
20.8.1 Major Stability Issues in the Microgrid
20.8.2 Stability Improvement in Microgrid
20.9 Islanding Techniques
20.9.1 Active Islanding Detection
20.9.2 Passive Islanding Detection
20.10 Power Electronics in Smart-Grid Applications
20.11 Vehicle-to-Grid Interconnection
20.12 Grid-to-Vehicle
Review Questions
Summary
References/Further Reading
Chapter 21: Wireless Power Transfer
21.1 Introduction
21.2 Wireless Charging Landscape
21.3 Wireless Power Transfer Model
21.3.1 Two-Coil Structures
21.3.2 Direct-Fed (DF) Coils
21.4 Magnetic Resonance WPT System
21.4.1 Multiterminal WPT System
21.4.2 Dual and Multiterminal Links
21.5 Inductive Wireless Power Transfer (IWPT)
21.6 Technology Overview and Concepts of Wireless Charging System
21.6.1 Inductive-Coupling-Based Wireless Charging System
21.6.2 Magnetic-Resonance-Based Wireless Charging System
21.6.3 Microwave-Based Wireless Charging System
21.7 Analysis of Three Resonating Coupled Coils
21.8 Wireless Power Transfer in Online Electric Vehicle
21.9 Hardware Design of Wireless Power Transmitter and Receiver
Review Questions
Summary
References/Further Reading
Appendix
Index

Citation preview

Power Electronics, Drives, and Advanced Applications

Power Electronics, Drives, and Advanced Applications

Vinod Kumar

EE Department, Maharana Pratap University of Agriculture and Technology, Udaipur, India

Ranjan Kumar Behera

Electrical Engineering Department, IIT Patna, India

Dheeraj Joshi

EE Department, Delhi Technological University, India

Ramesh Bansal

Electrical Engineering Department, University of Sharjah, UAE

MATLAB ® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB ® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB ® software.

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2020 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-138-06239-9 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com

Contents Preface.....................................................................................................................xxi Acknowledgment���������������������������������������������������������������������������������������������������xxv Authors..................................................................................................................xxvii

Section I  Power Semiconductor Devices Chapter 1 Overview of Power Electronics............................................................. 3 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Introduction.................................................................................. 3 Power Electronics Systems........................................................... 3 Power Semiconductor Devices..................................................... 4 Power Electronic Converters........................................................7 Power Electronic Modules...........................................................9 Applications of Power Electronics............................................. 10 Computer Simulation of Power Electronic Circuits................... 11 1.7.1 Importance of Simulation............................................... 12 1.7.2 Benefits of Computer-Aided Simulation........................ 12 1.7.3 Demerits of Computer-Aided Simulation...................... 12 1.7.4 Simulation Tools............................................................. 13 Review Questions................................................................................ 14 Summary............................................................................................. 15 References/Further Reading................................................................ 15 Chapter 2 Power Semiconductor Devices............................................................ 17 2.1 Introduction................................................................................ 17 2.2 Power Diode............................................................................... 17 2.2.1 Working and V-I Characteristics.................................... 19 2.2.2 Diode Reverse Recovery Characteristics....................... 19 2.3 DIAC.......................................................................................... 21 2.4 TRIAC........................................................................................ 22 2.5 Characteristics of Power Transistors.......................................... 23 2.5.1 Bipolar Junction Transistor............................................ 23 2.5.1.1 Steady-State Characteristics............................24 2.5.1.2 Switching Characteristics of a BJT.................25 2.5.2 Power MOSFETs............................................................ 27 2.5.3 Insulated-Gate Bipolar Transistor.................................. 30 2.6 Characteristics of the Thyristor.................................................. 32 2.6.1 Static V-I Characteristics of a Thyristor........................ 33 2.6.1.1 Reverse Blocking Mode (RBM)......................34 2.6.1.2 Forward Blocking Mode.................................34 2.6.1.3 Forward Conducting Mode.............................34 v

vi

Contents

2.6.2 Switching Characteristics of a Thyristor........................ 35 2.6.3 Thyristor Gate Characteristics....................................... 38 2.7 Gate Turn-Off (GTO) Thyristor.................................................40 2.7.1 Static V-I Characteristics...............................................40 2.7.2 Switching Characteristics of GTO................................. 41 2.8 Two-Transistor Model of a Thyristor......................................... 42 Review Questions................................................................................44 Summary............................................................................................. 45 References/Further Reading................................................................ 45 Chapter 3 Silicon-Controlled Rectifier................................................................ 47 3.1 Introduction................................................................................ 47 3.2 SCR Construction....................................................................... 47 3.2.1 Planer Diffused.............................................................. 47 3.2.2 Alloy Diffused................................................................ 48 3.3 Specifications and Ratings......................................................... 49 3.3.1 Voltage Ratings.............................................................. 49 3.3.2 Current Ratings.............................................................. 50 3.4 Methods of Turn On................................................................... 51 3.4.1 Gate Triggering.............................................................. 51 3.4.2 Forward Voltage Triggering........................................... 53 3.4.3 dv/dt Triggering.............................................................. 53 3.4.4 Temperature Triggering.................................................. 53 3.4.5 Light Triggering............................................................. 53 3.5 Firing (Triggering) Circuits for SCR......................................... 54 3.5.1 Resistance (R) Triggering Circuit.................................. 55 3.5.2 Resistance-Capacitance (RC) Triggering Circuit.......... 58 3.5.3 UJT Relaxation Oscillator.............................................. 61 3.6 Series and Parallel Operation of SCR........................................ 62 3.6.1 Series-Connected SCRs................................................. 63 3.6.2 Parallel-Connected SCRs............................................... 65 3.7 String Efficiency.........................................................................66 3.8 Protection of SCR...................................................................... 67 3.8.1 Overvoltage Protection................................................... 67 3.8.2 Overcurrent Protection................................................... 68 3.8.3 dv/dt Protection.............................................................. 69 3.8.4 di/dt Protection............................................................... 72 3.8.5 Gate Protection............................................................... 72 3.9 Solved Problems......................................................................... 72 Review Questions and Unsolved Problems......................................... 98 Summary............................................................................................. 98 Main Formulas of the Chapter............................................................. 98 References/Further Reading.............................................................. 100

vii

Contents

Section II  Power Electronic Converters Chapter 4 Phase-Controlled Rectifiers.............................................................. 105 4.1 Introduction.............................................................................. 105 4.2 Classifications........................................................................... 105 4.3 Performance Indices for Line-Commutated Converter........... 107 4.4 Single-Phase Converters........................................................... 110 4.4.1 Single-Phase Half-Wave-Controlled Rectifier with R Load.......................................................................... 110 4.4.2 Single-Phase Half-Wave-Controlled Rectifier with RL Load .............................................................. 113 4.4.3 Single-Phase Half-Wave-Controlled Rectifier with RL Load and Freewheeling Diode (FD)������������� 116 4.4.4 Single-Phase Full-Wave-Controlled Converter............ 118 4.4.4.1 Single-Phase Full-Wave Mid-Point Rectifier with R Load.................................... 119 4.4.4.2 Single-Phase Full-Wave Bridge-TypeControlled Rectifier with R Load���������������� 121 4.4.4.3 Single-Phase Full-Wave Bridge-Type-Controlled Rectifier with RL Load������������������������������������������������������� 122 4.4.5 Single-Phase Half-Wave-Controlled Rectifier with RLE Load..................................................................... 125 4.4.6 Single-Phase Full Converter with RLE Load and Discontinuous Conduction������������������������������������������ 128 4.5 Three-Phase Converters........................................................... 129 4.5.1 Three-Phase Half-Wave Converters with RL Load..... 129 4.5.2 Three-Phase Full Converter......................................... 133 4.6 Dual Converters....................................................................... 135 4.6.1 Ideal Dual Converter.................................................... 136 4.6.2 Practical Dual Converter.............................................. 137 4.6.2.1 Dual Converter without Circulating Current.......................................................... 138 4.6.2.2 Dual Converter with Circulating Current..... 139 4.6.3 Single-Phase Dual Converter....................................... 139 4.6.4 Three-Phase Dual Converters...................................... 142 4.7 Effect of Source Impedance..................................................... 144 4.7.1 Single-Phase Fully Controlled Rectifier with Source and Load Inductance���������������� 144 4.8 Solved Problems....................................................................... 147 Review Questions and Unsolved Problems....................................... 172 Summary........................................................................................... 174 Main Formulas of the Chapter........................................................... 174 References/Further Reading.............................................................. 177

viii

Contents

Chapter 5 Semiconverters.................................................................................. 179 5.1 5.2 5.3 5.4

Introduction.............................................................................. 179 Single-Phase Semiconverter with RL Load............................. 179 Three-Phase Semiconverter with RL Load.............................. 186 Power Factor Improvement...................................................... 188 5.4.1 Extinction Angle Control (EAC).................................. 188 5.4.2 Symmetrical Angle Control (SAC).............................. 190 5.4.3 Pulse Width Modulation Control................................. 192 5.4.4 Sinusoidal Pulse Width Modulation Control............... 194 5.5 Inversion Operation . ............................................................... 195 5.6 Solved Problems....................................................................... 195 Review Questions and Unsolved Problems....................................... 212 Summary........................................................................................... 213 Main Formulas of the Chapter........................................................... 214 References/Further Reading.............................................................. 216 Chapter 6 Chopper............................................................................................. 217 6.1 6.2 6.3 6.4 6.5 6.6

6.7

6.8

Introduction.............................................................................. 217 Chopper Classifications............................................................ 217 Principle of Chopper Operation............................................... 218 Control Strategies..................................................................... 220 6.4.1 Time Ratio Control....................................................... 220 6.4.2 Current Limit Control.................................................. 222 Step Up/Down Chopper........................................................... 222 Chopper Configurations........................................................... 223 6.6.1 First-Quadrant or Type-A Chopper..............................224 6.6.2 Second-Quadrant or Type-B Chopper.........................224 6.6.3 Two-Quadrant Type-A Chopper or Type-C Chopper..................................................................... 225 6.6.4 Two-Quadrant Type-B Chopper or Type-D Chopper..................................................................... 225 6.6.5 Four-Quadrant Chopper or Type-E Chopper............... 226 Analysis of Type-A (Step-Down) Chopper.............................. 227 6.7.1 With Resistive Load..................................................... 227 6.7.2 With RLE Load............................................................ 228 6.7.2.1 Steady-State Ripple....................................... 231 6.7.2.2 Limits of Continuous Conduction................. 231 6.7.2.3 Computation of Extinction Time (tx)............. 232 6.7.2.4 AC Ripple Voltage (Vr).................................. 233 6.7.2.5 Ripple Factor (RF)........................................ 233 Commutation of Chopper......................................................... 233 6.8.1 Voltage-Commutated Chopper (Classical Chopper or Parallel Capacitor Turn-Off Chopper)�������������������� 234

ix

Contents

6.8.2 Current-Commutated Chopper.................................240 6.8.3 Load-Commutated Chopper.....................................244 6.9 Switched-Mode Regulators.................................................... 247 6.10 Solved Problems..................................................................... 261 Review Questions and Unsolved Problems....................................... 288 Summary........................................................................................... 291 Main Formulas of the Chapter........................................................... 291 References/Further Reading.............................................................. 294 Chapter 7 DC-to-AC Converter: Inverter.......................................................... 297 7.1 7.2 7.3 7.4

Introduction............................................................................ 297 Classifications......................................................................... 297 Performance Parameters of Inverters..................................... 298 Voltage Source Inverters........................................................ 299 7.4.1 Single-Phase Voltage Source Inverters..................... 299 7.4.1.1 With RL and RLC Overdamped Loads..... 303 7.4.1.2 With RLC Underdamped Load................. 303 7.4.1.3 Fourier Analysis of Single-Phase Inverter Output Voltage............................. 303 7.4.2 Three-Phase VSI Bridge Inverter.............................304 7.4.2.1 Three-Phase 180-degree Mode VSI.......... 305 7.4.2.2 Three-Phase 120-degree Mode VSI.......... 310 7.4.2.3 Merits and Demerits of 180°- and 120°-Mode VSIs........................................ 314 7.5 Current Source Inverters........................................................ 315 7.5.1 Single-Phase CSI...................................................... 315 7.5.2 Three-Phase CSI....................................................... 316 7.6 CSI versus VSI........................................................................ 317 7.7 Voltage Control of Single-Phase Inverters............................. 318 7.7.1 Control of Input DC Voltage.................................... 318 7.7.2 External Control of AC Output Voltage................... 318 7.7.3 Internal Control of Inverters..................................... 319 7.8 Pulse-Width Modulation........................................................ 320 7.8.1 Single Pulse-Width Modulation............................... 320 7.8.2 Multiple Pulse-Width Modulation............................ 321 7.8.3 Sinusoidal Pulse-Width Modulation......................... 322 7.9 Advanced Modulation Techniques......................................... 323 7.9.1 Trapezoidal Modulation........................................... 324 7.9.2 Staircase Modulation................................................ 325 7.9.3 Stepped Modulation................................................. 326 7.9.4 Harmonic-Injected Modulation................................ 326 7.9.5 Delta Modulation...................................................... 327 7.10 Space Vector Modulation....................................................... 328 7.10.1 Implementation of Space Vector PWM.................... 328

x

Contents

7.11 Harmonic Reduction............................................................... 334 7.12 Solved Problems..................................................................... 334 Review Questions and Unsolved Problems....................................... 352 Summary........................................................................................... 353 Main Formulas of the Chapter........................................................... 353 References/Further Reading.............................................................. 354 Chapter 8 AC Voltage Controllers..................................................................... 357 8.1 8.2 8.3 8.4

Introduction............................................................................ 357 Principle of On-Off Control................................................... 357 Principle of Phase Control......................................................360 Single-Phase AC Voltage Controllers..................................... 361 8.4.1 Single-Phase Full-Wave AC Voltage Controller with Resistive Load.................................................... 361 8.4.2 Single-Phase Full-Wave AC Voltage Controller with RL Load............................................................. 363 8.4.3 Single-Phase Full-Wave AC Voltage Controller with Purely Inductive Load��������������������������������������� 365 8.5 Three-Phase Full-Wave AC Voltage Controllers.................... 366 8.6 Solved Problems..................................................................... 366 Review Questions.............................................................................. 372 Summary........................................................................................... 372 Main Formulas of the Chapter........................................................... 373 References/Further Reading.............................................................. 373 Chapter 9 Cycloconverter.................................................................................. 375 9.1 Introduction............................................................................ 375 9.2 Classifications......................................................................... 375 9.3 Principle of Operation of Single-Phase to Single-Phase Cycloconverter����������������������������������������������������������������������� 375 9.3.1 Single-Phase to Single-Phase Step-Up Cycloconverter............................................................ 375 9.3.1.1 Midpoint Cycloconverter............................. 375 9.3.1.2 Bridge-Type Cycloconverter........................ 377 9.3.2 Single-Phase to Single-Phase Step-Down Cycloconverter............................................................ 378 9.3.2.1 Bridge-Type Cycloconverter........................ 378 9.3.2.2 Midpoint Cycloconverter............................. 380 9.4 Three-Phase to Single-Phase Cycloconverters....................... 380 9.5 Three-Phase to Three-Phase Cycloconverters....................... 382 9.6 Output Voltage Equation for the Cycloconverter................... 384 9.7 Reduction of Output Harmonics............................................. 385 9.8 Solved Problems..................................................................... 386

Contents

xi

Review Questions Unsolved Problems............................................. 387 Summary........................................................................................... 388 Main Formulas of the Chapter........................................................... 388 References/Further Reading.............................................................. 388 Chapter 10 Switched-Mode Power Supplies........................................................ 391 10.1 Introduction............................................................................ 391 10.2 Basic Working of Switched-Mode Power Supply.................. 391 10.2.1 Forward-Mode-Type Switching Regulator............... 392 10.2.2 Flyback-Mode-Type Switching Regulator................ 393 10.3 Switched-Mode Power Supply (SMPS).................................. 395 10.3.1 Flyback Switched-Mode Power Supply.................... 395 10.3.2 Push-Pull Switched-Mode Power Supply................. 397 10.3.3 Half-Bridge Switched-Mode Power Supply............. 398 10.3.4 Full-Bridge Switched-Mode Power Supply.............. 399 10.4 Resonant DC Power Supplies.................................................400 10.5 Bidirectional DC Power Supplies........................................... 401 Review Questions..............................................................................402 Summary...........................................................................................402 Main Formulas of the Chapter...........................................................402 References/Further Reading..............................................................403 Chapter 11 Multipulse Converter.........................................................................405 11.1 Introduction............................................................................405 11.2 Multipulse Converter..............................................................405 11.2.1 Unidirectional AC-DC Converters...........................405 11.2.1.1 12-Pulse AC-DC Converters...................405 11.2.1.2 18-Pulse AC-DC Converters...................406 11.2.1.3 24-Pulse AC-DC Converters...................406 11.3 Multilevel Inverters................................................................407 11.3.1 Cascaded H-Bridge Multilevel Inverter....................408 11.3.2 Neutral Point-Clamped Multilevel Inverter.............. 410 11.3.3 Flying Capacitor Multilevel Inverter (FCMLI)........ 411 11.4 Power Converter Switching Techniques................................. 413 11.4.1 Hysteresis Current Control of Inverters................... 413 11.4.2 Pulse-Width Modulation (PWM) Techniques.......... 415 11.4.2.1 Sinusoidal PWM..................................... 416 11.4.2.2 Phase-Opposition Sinusoidal PWM........ 417 11.4.2.3 In-Phase Sinusoidal PWM...................... 418 11.4.2.4 Third-Harmonic Injection Sinusoidal PWM (THISPWM)................................. 418 11.4.2.5 Three-Phase Two-Level SVPWM........... 420

xii

Contents

11.5

Resonant Converters............................................................ 426 11.5.1 Soft-Switching Topologies..................................... 428 11.5.1.1 Resonant Load Converters.................... 429 11.5.1.2 Resonant Switch Converters.................. 430 11.5.1.3 Flyback Converter................................. 431 11.5.1.4 Switched Mode Power Conversion (SMPC) with Regulated DC Source.......432 11.5.1.5 Phase-Shift Bridge................................. 432 11.5.1.6 Parallel Resonant Converter.................. 433 11.5.1.7 Multielement Resonant Converters........ 434 11.6 Dual Active-Bridge Converter............................................. 435 11.7 Three-Phase AC-AC Matrix Converter............................... 437 11.7.1 Three-Phase to Three-Phase DMC Modeling........ 439 11.7.2 Space Vector PWM................................................440 11.7.3 Commutation Methods in DMC.............................446 11.7.4 Deadtime Commutation.........................................446 11.7.5 Current Commutation Based on Multiple Steps.....446 11.7.6 Simulation Results.................................................. 447 Review Questions..............................................................................448 Summary........................................................................................... 450 References/Further Reading.............................................................. 450

Section III  Electrical Drives Chapter 12 Introduction of Electrical Drives....................................................... 455 12.1

12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9

Electric Drives Concepts...................................................... 455 12.1.1 Electrical Motors.................................................... 456 12.1.2 Power Modulator.................................................... 457 12.1.3 Sources................................................................... 458 12.1.4 Controller................................................................ 459 12.1.5 Load Torques.......................................................... 459 Advantages of Electrical Drives.......................................... 459 Characteristics of an Electrical Drive..................................460 Classifications...................................................................... 461 Quadrant Operation of the Drive......................................... 462 12.5.1 One Quadrant......................................................... 462 12.5.2 Two Quadrants........................................................ 463 Four-Quadrant Operation of Electrical Drives.................... 463 Constant-Torque Drive.........................................................464 Constant-Power Drive..........................................................465 Nature and Components of Load.........................................466 12.9.1 Fan-Type Load........................................................466 12.9.2 Load Torque as a Function of Position...................466

xiii

Contents

12.9.3 12.9.4

Hoisting Load.......................................................466 Load Torque as a Function of Angle of Shaft Displacement........................................................ 467 12.9.5 Load Torques Varying with Time........................468 12.10 Combined Motor Load Dynamics.......................................469 12.11 Equivalent System................................................................ 470 12.11.1 Equivalent Load Torque Referred to the Motor...... 471 12.11.2 Equivalent Moment of Inertia.............................. 471 12.11.3 Relating Translation Motion to Rotational Motor................................................................. 472 12.12 Practical Determination of Moment of Inertia.................... 473 12.12.1 Retardation Test.................................................... 473 12.13 Rating of Electrical Drives.................................................. 474 12.13.1 Heating Affects All Machines during Running Produce Losses...................................... 474 12.13.2 Loading Conditions.............................................. 476 12.13.3 Load Inertia.......................................................... 476 12.13.4 Environmental Factors......................................... 477 12.14 Selection of Electrical Drives.............................................. 477 12.14.1 Drive Considerations............................................ 479 12.15 Guides for Selection of Electrical Motors............................480 12.16 Solved Problems................................................................... 481 Review Questions.............................................................................. 483 Unsolved Problems............................................................................484 Summary........................................................................................... 485 References......................................................................................... 485 Chapter 13 Control of DC Motor Drives............................................................. 487 13.1 13.2

Introduction.......................................................................... 487 Basics of DC Machines........................................................ 487 13.2.1 Shunt and Separately Excited DC Motors............ 488 13.2.2 DC Series Motor................................................... 489 13.3 Effect of Change in Supply Voltage on Characteristics of DC Motors���������������������������������������������������������������������� 491 13.3.1 Separately Excited DC Motor.............................. 491 13.3.2 DC Series Motor................................................... 491 13.4 Effect of Change in Load Torque......................................... 491 13.5 Speed Control of DC Motors............................................... 492 13.6 Phase-Controlled Rectifier Control of DC Motor................ 492 13.6.1 Single-Phase Fully Controlled Rectifier Control of DC Separately Excited Motor Drive����������������� 493 13.6.2 Single-Phase Half-Controlled Rectifier (or Semiconverter) Control of DC Separately Excited Motor Drive�������������������������������������������� 495

xiv

Contents

13.6.3 Three-Phase Fully Controlled Rectifier Control of DC Separately Excited Motor Drive����������������� 497 13.6.4 Three-Phase Half-Controlled Rectifier Control of Separately Excited DC Motor������������ 499 13.7 Chopper Control of DC Motor.............................................500 13.7.1 Chopper Control of Separately Excited DC Motors............................................................500 13.7.2 Chopper Control of DC Series Motor..................506 13.8 Solved Problems................................................................... 507 Review Questions and Unsolved Problems.......................................509 Summary........................................................................................... 510 References/Further Reading.............................................................. 510 Chapter 14 Control of Induction Motor Drives.................................................... 513 14.1 Introduction.......................................................................... 513 14.2 Basics of the Induction Motor.............................................. 513 14.3 Modeling and Characteristics of Induction Drives.............. 516 14.4 No-Load Current of a Three-Phase Motor.......................... 518 14.5 Starting Performance of the Three-Phase Induction Motor����������������������������������������������������������������������������������518 14.6 Modifying Torque-Speed Characteristics of the Three-Phase Induction Motors������������������������������������������� 519 14.6.1 Varying the Supply Voltage.................................. 519 14.6.2 Constant V/f Control............................................. 519 14.6.3 Adding Impedance in the Stator Circuit.............. 521 14.6.4 Adding Resistance in the Rotor Circuit................ 521 14.6.5 Voltage Injection—The Rotor Circuit.................. 523 14.6.6 Pole-Changing Drive............................................ 523 14.6.7 Pole-Amplitude Modulation................................. 524 14.7 Transient Stability................................................................ 524 14.8 Braking of the Induction Motor........................................... 524 14.8.1 Regenerative Braking........................................... 524 14.8.2 Plugging................................................................ 526 14.8.3 Dynamic Braking................................................. 526 14.9 Speed Control of Three-Phase Induction Motors................ 527 14.9.1 Stator Voltage Control Method............................. 527 14.9.2 Variable-Frequency Control Method.................... 528 14.9.3 Rotor-Resistance Control...................................... 532 14.9.4 Injection of Voltage in the Rotor Circuit.............. 533 14.10 Slip Power Control Using Power Semiconductor Converter������������������������������������������������������������������������� 535 14.10.1 Static Rotor-Resistance Control........................... 535 14.10.2 Static Scherbius Drive.......................................... 539 14.10.3 Static Kramer Drive............................................. 543

xv

Contents

14.11  Solved Examples.................................................................. 543 Review and Unsolved Questions....................................................... 548 Summary........................................................................................... 548 References......................................................................................... 548 Chapter 15 FPGA-Based Fuzzy-Logic Control of DTC for Matrix-Converter-Fed Induction-Motor Drives................................ 551 15.1 15.2 15.3 15.4

Introduction.......................................................................... 551 Various Controllers for Induction Motor Drives.................. 551 Integrated Circuits for IM Drives........................................ 552 Details of IM Drive under Investigation.............................. 553 15.4.1 Direct-Torque Control for Matrix-Converter-Fed Induction-Motor Drive������ 554 15.4.2 Estimation of Flux and Electromagnetic Torque... 556 15.4.3 Development of Developed Fuzzy-Logic Controller............................................................... 557 15.4.4 Control Implementation on the FPGA Board........ 559 15.5 Simulation Results of Performance Comparison between Developed Fuzzy-Logic DTC-ControllerBased IM Drive and Conventional DTC-Based IM Drive� 562 15.5.1 Response of the System at Constant Reference Speed 100 rad/s and No-Load Condition�������������� 562 15.5.2 Response of the System with Reference Speed Reversal at No-Load Condition����������������������������� 562 15.6 Experimental Results of Developed FLDTC-Based MC-Fed IM Drive��������������������������������������������������������������� 566 15.6.1 Response of the Drive with Constant Reference Speed (500 rpm) at No-Load Condition���������������� 566 15.6.2 Stability Analysis of the Developed System.......... 566 15.6.3 Harmonic Analysis................................................. 566 Summary........................................................................................... 572 References/Further Reading.............................................................. 572 Chapter 16 Control of Synchronous and Special Motor Drives.......................... 575 16.1 16.2 16.3 16.4 16.5

Introduction.......................................................................... 575 Basics of the Synchronous Motor........................................ 575 Speed Control of the Synchronous Motor............................ 578 16.3.1 True Synchronous Mode........................................ 578 16.3.2 Self-Controlled Mode............................................. 578 Stepper Motor...................................................................... 579 Variable-Reluctance Motor.................................................. 580 16.5.1 Single-Stack Variable-Reluctance Stepper Motor.....581 16.5.2 Multistack Variable-Reluctance Stepper Motor..... 582

xvi

Contents

16.6 Permanent-Magnet Motors..................................................... 582 16.7 Hybrid Stepper Motor............................................................. 583 16.8 Drive Circuits for Stepper Motors.......................................... 584 Unsolved Problems............................................................................ 585 Summary........................................................................................... 586 References......................................................................................... 586

Section IV  Advanced Power Electronics Applications Chapter 17 Electric/Hybrid Electric Vehicles...................................................... 591 17.1 Introduction............................................................................ 591 17.2 Power-Train Architectures...................................................... 591 17.2.1 Major Characteristics of BEVs, HEVs, and FCVs... 591 17.2.2 Different Functions of the Various HEV Architectures............................................................ 593 17.3 Drivetrain Analysis................................................................ 594 17.3.1 BEV Drivetrain Topology........................................ 594 17.3.2 Series HEV Drivetrain Topology............................. 594 17.3.3 Parallel HEV Drivetrain Topology.......................... 595 17.3.4 Series-Parallel HEV Drivetrain Topology............... 596 17.3.5 FCV Drivetrain Topology........................................ 596 17.4 Vibration and Vehicle Dynamics............................................ 598 17.4.1 Vibration................................................................... 598 17.4.2 Vehicle Dynamics.................................................... 598 17.5 Power Converter for Electric/Hybrid Electric Vehicles......... 601 17.5.1 Configurations of Engine-Based HEV..................... 601 17.5.2 Configurations of FCV............................................. 601 17.5.3 Basic Bidirectional DC-DC Converters...................602 17.5.4 Isolated Bidirectional DC-DC Converters...............604 17.5.5 Multiphase Bidirectional DC-DC Converters..........605 17.6 Vehicular Power Electronics..................................................606 17.6.1 Power Converters for DC Motor Drives...................606 17.6.2 Power Converters for AC Motor Drives...................606 17.7 Selection of Motor Drives for Electric/Hybrid Electric Vehicles���������������������������������������������������������������������������������607 17.7.1 Comparative Study...................................................608 17.7.1.1 DC Motor (DC).......................................608 17.7.1.2 Induction Motor.......................................608 17.7.1.3 Synchronous Motor (PM Brushless Motor)......................................................609 17.7.1.4 Switched Reluctance Motor (SRM)......... 610

Contents

xvii

17.8 Solar and Fuel Cell Drives................................................... 611 17.9 PV Array Formations........................................................... 611 17.10 Solar-Powered Variable-Speed Drive.................................. 614 17.10.1 Solar-Based Electric Vehicles............................... 614 17.10.2 Solar-Based Pump Drive...................................... 615 17.11 Fuel-Cell-Powered Electrical Drives................................... 616 17.12 Solved Problems................................................................... 617 Review Questions and Unsolved Problems....................................... 618 Summary........................................................................................... 619 References/Further Reading.............................................................. 619 Chapter 18 Power Electronics Applications in Power Systems........................... 623 18.1 Introduction.......................................................................... 623 18.2 General Aspects of DC Transmission.................................. 623 18.3 Converter Circuits and Their Analysis................................ 624 18.4 High Voltage DC Transmission........................................... 625 18.5 Mechanism of Active and Reactive Power Flow Control...... 626 18.6 Basic FACTS Controllers: SVC, TCR, TSC, STATCOM, TCSC, UPFC����������������������������������������������������������������������� 627 18.6.1 Static VAR Compensator...................................... 627 18.6.2 Thyristor-Controlled Reactor (TCR).................... 627 18.6.3 Thyristor-Switched Capacitor (TSC).................... 628 18.6.4 Static Synchronous Compensator......................... 629 18.6.5 TCSC.................................................................... 629 18.6.6 UPFC.................................................................... 631 18.7 Modeling of FACTS Controllers.......................................... 633 18.7.1 Filter Modeling..................................................... 633 18.7.2 STATCOM Modeling........................................... 634 18.8 System Dynamic Performance Improvement with FACTS Controllers�������������������������������������������������������������� 635 18.9 Interline Power Flow Controller (IPFC).............................. 638 18.10 Unified Power Quality Conditioners (UPQC)..................... 639 18.11 Power Electronics in Power Generation...............................640 Review Questions.............................................................................. 641 Summary........................................................................................... 641 References/Further Reading.............................................................. 641 Chapter 19 Power Electronics Application in Renewable Energy (Wind and PV) System Integration................................................... 643 19.1 Introduction.......................................................................... 643 19.2 Grid-Connected Converters—Key Element for Grid Integration of WT and PV Systems������������������������������������644

xviii

Contents

19.3 Power Electronics Converters for Renewable Energy Integration��������������������������������������������������������������������������� 645 19.3.1 Variable-Speed Double-Fed Induction Generator (DFIG)................................................... 645 19.3.2 Variable-Speed Full-Power Converter................... 645 19.3.3 Boost Converter...................................................... 647 19.4 Photovoltaic Inverter Structure............................................648 19.5 Grid Converter Structure for Wind Turbine System............ 652 19.5.1 Single-Cell (VSC or CSC)..................................... 653 19.5.2 Medium-Power Converter...................................... 653 19.5.3 High-Power Converter............................................ 653 19.6 Grid Requirements for Photovoltaic and Wind Turbine Systems������������������������������������������������������������������������������� 656 19.7 Grid Synchronization Using a Phase-Locked Loop............ 657 19.7.1 Basic Structure of a Phase-Locked Loop............... 658 19.7.2 Basic Equations of PLL.......................................... 658 19.7.3 Linearized Small-Signal Model of a PLL.............. 659 19.7.4 PLL Based on T/4 Transport Delay........................ 660 19.7.5 PLL Based on the Inverse Park Transform............. 661 19.7.6 Second-Order Generalized Integrator.................... 663 19.7.7 SOGI-QSG............................................................. 666 19.8 Control of Grid Converter under Grid Fault........................668 19.9 Design of Grid Filters.......................................................... 669 19.10 Solved Problems................................................................... 671 Review Questions.............................................................................. 672 Summary........................................................................................... 673 References/Further Reading.............................................................. 673 Chapter 20 Distributed Generation and Microgrids............................................ 675 20.1 20.2 20.3 20.4

Introduction.......................................................................... 675 DG and MG Components.................................................... 676 Microsources and Loads...................................................... 677 Power Electronics Interface................................................. 677 20.4.1 DC-Bus Interface................................................... 677 20.4.2 AC-Bus Interface.................................................... 678 20.5 Architecture (DC/AC/Hybrid) of Microgrids and Storage Systems������������������������������������������������������������������ 679 20.5.1 DC Microgrid......................................................... 679 20.5.2 AC Microgrid......................................................... 679 20.5.3 Hybrid Microgrid................................................... 680 20.5.4 Storage System....................................................... 681 20.6 Integration Issues of Distributed Generation and Synchronization������������������������������������������������������������������ 681 20.6.1 Integration Issues.................................................... 681 20.6.2 Grid Synchronization............................................. 682

xix

Contents

20.7 Interconnection of Power Electronics Converters with Medium-Voltage Grid���������������������������������������������������������684 20.8 Stability Aspects in Microgrids...........................................684 20.8.1 Major Stability Issues in the Microgrid.................684 20.8.2 Stability Improvement in Microgrid...................... 685 20.9 Islanding Techniques............................................................ 686 20.9.1 Active Islanding Detection..................................... 686 20.9.2 Passive Islanding Detection.................................... 687 20.10 Power Electronics in Smart-Grid Applications.................... 687 20.11 Vehicle-to-Grid Interconnection.......................................... 688 20.12 Grid-to-Vehicle.....................................................................690 Review Questions.............................................................................. 691 Summary........................................................................................... 691 References/Further Reading.............................................................. 691 Chapter 21 Wireless Power Transfer.................................................................... 695 21.1 21.2 21.3

Introduction.......................................................................... 695 Wireless Charging Landscape.............................................. 695 Wireless Power Transfer Model........................................... 695 21.3.1 Two-Coil Structures............................................... 695 21.3.2 Direct-Fed (DF) Coils............................................ 696 21.4 Magnetic Resonance WPT System...................................... 697 21.4.1 Multiterminal WPT System................................... 697 21.4.2 Dual and Multiterminal Links...............................700 21.5 Inductive Wireless Power Transfer (IWPT).........................700 21.6 Technology Overview and Concepts of Wireless Charging System����������������������������������������������������������������� 701 21.6.1 Inductive-Coupling-Based Wireless Charging System.................................................................... 702 21.6.2 Magnetic-Resonance-Based Wireless Charging System.................................................................... 702 21.6.3 Microwave-Based Wireless Charging System....... 702 21.7 Analysis of Three Resonating Coupled Coils...................... 702 21.8 Wireless Power Transfer in Online Electric Vehicle............ 705 21.9 Hardware Design of Wireless Power Transmitter and Receiver������������������������������������������������������������������������������� 706 Review Questions.............................................................................. 708 Summary........................................................................................... 708 References/Further Reading.............................................................. 708 Appendix................................................................................................................ 711 Index....................................................................................................................... 749

Preface With the integration of renewable energy sources into a power system, the role of power electronics has become extremely important. Power Electronics, Drives, and Advanced Applications is suitable at both the under- and postgraduate levels. It also provides a comprehensive reference material for power electronics professionals and engineers. This textbook is supported by a large number of solved, unsolved, and review problems. This  book contains twenty-one chapters that are arranged in four sections. Section  I in three chapters covers an overview of power electronics, power semiconductor devices, and silicon control rectifiers. Section II contains eight chapters and describes power converters, such as phase-controlled rectifiers, semiconverters, choppers, inverters, AC voltage controllers, multipulse converters, and switchedmode power supplies. The  five chapters of Section  III on electric drives presents control of DC, induction, FPGA-based fuzzy-logic control of DTC for matrixconverter-fed induction motor drives, and synchronous and special motor drives. Section  IV in five chapters covers the areas of advanced power electronics applications, that is, electric/hybrid electric vehicles; power electronics applications in power, renewable energy, distributed generation, and microgrids; and wireless power transfer. Brief descriptions of the contents are as follows. Chapter 1 presents an overview of power electronics, and Chapter 2 explains the construction, working, and different characteristics of various power semiconductor devices for power applications. Chapter  3 presents the construction, structure, working, and principles of operation of SCR with different characteristics for power applications. Chapter 4 discusses the controlled rectifiers used at high power levels for controlled transfer of power between an AC source and the adjustable DC load by controlling the phase angle or delay angle of thyristors. This chapter discusses various types of rectifiers with the effect of source and load impedance. Chapter 5 discusses half-controlled rectifiers or semiconverters that are used at high power levels for controlled transfer of power between an AC source and the adjustable DC load by controlling phase angle or delay angle of thyristors. Chapter 6 covers in detail various converter topologies for DC-to-DC conversion. These converters are widely used for various types of DC power supplies. These are also very common in telecommunication systems and battery-operated systems. Chapter 7 discusses in detail the voltage and current-source inverters with singleand three-phase AC outputs along with different voltage-control techniques. It also explains the different pulse-width modulation schemes. Chapter  8 explains the working principles of different AC voltage controllers along with their controls. It  can be seen that two types of control strategies, that is, phase control and integral cycle control, can be effectively used to control the power flow in AC voltage controllers. Few main applications of such converters are for industrial and domestic heating, lighting control, starting of induction motors, motion control of AC drives, etc. AC voltage controllers have replaced the use of xxi

xxii

Preface

magnetic amplifiers, reactors, auto transformers, etc. for these applications due to faster control, higher efficiency, less maintenance, and being compact in size. Chapter 9 deals in the detailed principles of operation of different step-up and step-down cycloconverters, such as single-phase to single-phase, three-phase to single-phase, and three-phase to three-phase. Various applications of cycloconverters include induction heating, motion control of AC drives, power supply in aircrafts and shipboards, and static VAr compensators. Chapter 10 studies the concept and principle of operation of different switched-mode power supplies, resonant DC power supplies, and bidirectional power supplies. Due to factors such as increased switching speeds, low cost, low-power dissipation, higher current, and voltage ratings, the switching-power supplies have emerged significantly. Chapter 11 discusses different kinds of multipulse converter structures for AC-DC converters and how they help in reducing harmonics. Detailed multilevel pulse-width modulation (PWM) voltage source converters (VSC) for high-power drive applications are discussed. The operating principles, characteristics, modulation methods, and latest developments of these converters, such as neutral-point clamped cascaded H-bridge and flying capacitor multilevel converters, are presented. Well-known PWM for industrial applications and hysteresis current control (HCC) techniques for VSC are discussed. The operation of dual active bridge (DAB) and matrix converter technology is explained. Chapter 12 deals with the basic concepts of the electric drive. Each component of the electric drive is explained. Emphasis is also given on the load component, which is a deciding factor to select a suitable rating for the electric drive. Chapter 13 presents the control of DC motors, which are highly suitable for the servo drive applications. Chapter  14 presents the control of induction motors. AC drives have several advantages over DC drives, such as being cheaper, 30% lighter than DC motors, and low maintenance. Chapter 15 presents the development of the fuzzy-logic-based DTC controller on the FPGA board for matrix converter-fed induction motor drives to achieve superior performance under different conditions with reduced harmonics. Chapter 16 presents the control of synchronous and special motor drives. It converts variable reluctance, permanent magnet, hybrid stepper, and synchronous motors. Chapter  17 provides the fundamentals of electric/hybrid electric vehicles and their drives technology that includes drivetrain analysis, vibration, vehicle dynamics, power converters, vehicular power electronics and selection of motor drives. General solar-powered electric drives and fuel cells with their motor drive are provided. Chapter 18 presents a general introduction of power electronics application to the power system, which includes HVDC transmission; power-flow modeling; FACTS controllers such as SVC, STATCOM, TCSC, UPFC, and IPFC; and power-quality conditioners. Chapter  19 explains the key elements for wind and PV systems for grid integration. A brief discussion of MPPT algorithms and robust inverter topologies are provided. The importance of the filter and their utilization for integration with the utility grid is discussed. Chapter 20 presents distributed generation (DG) and microgrid (MG) technology. Microgrid integration, stability issues, synchronization, and its interconnection with

Preface

xxiii

power electronics converters are explained for both grid connected and islanding modes. Few power electronics converters for smart-grid applications and an overview of vehicle-to-grid (V2G) and grid-to-vehicle (G2V) interconnection technologies with the microgrid are provided. Chapter 21 discusses how the wireless power transfer is a cutting-edge technology for modern portable electronics devices. The analysis of inductive coupling and the resonant-based coupled inductor system and analysis of two and three wireless power transmission system are discussed. Appendix A provides, in detail, various MATLAB-based/Simulink models and programs for circuit computation, simulation, waveform plots, and spectrum analysis of various power electronic circuits. MATLAB® is a registered trademark of The MathWorks, Inc. For product information, please contact: The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098 USA Tel: 508 647 7000 Fax: 508-647-7001 E-mail: [email protected] Web: www.mathworks.com

Acknowledgment Authors sincerely thank Dr. Gagandeep Singh, Mouli Sharma, Prachi Mishra of CRC Press, Taylor & Francis Group; and Monica Felomina of Lumina Datamatics for their help in the timely publication of the book. Authors would like to thank their universities, authorities, and staff members for maintaining a cordial atmosphere and providing the facilities for the completion of the book. Authors would like to express gratitude and sincere regards to their family members who have provided great support during preparation of this book. Also, Dr. Ranjan dedicates this book to HDG A. C. Bhaktivedanta Swami Prabhupada, Founder Acharya ISKCON. Dr. Ranjan would like to express his heartfelt gratitude to his father Sri Narayan, Mother Tara Rani, and teachers. He extends his sincere thanks to his wife Madhurya Rasa Devi Dasi. Thanks are due to Padma, Sanjay, Runu, Dr. Sanjoy Kumar Parida, Prof. Shayama Prasad Das of IIT Kanpur, Prof. David Gao, Prof. J. Ojo, and all his colleagues at IIT Patna. He thanks his students Utkal Muduli, Bheemaiah Chikondra, Md. Junaid Akhtar, Jitendra Kumar, Suryaprakash, Chintami Mahapatro, Bibhunandan Pradhan, Anish Ahmad, Rajalaxmi Rath, Jasmine Minz, and Omsmaran Mahapatra for writing, editing, and helping to develop the manuscript. He is highly indebted to his teacher Prof. Laxmidhardhar Behera, who taught him the very purpose of all his endeavors. He expresses his heartfelt gratitude to Lord Jagannath, Baladeva, and Mother Subhadra for unlimited blessing and strength. Suggestions leading to the improvement of the book will be gratefully acknowledged and incorporated in future editions.

xxv

Authors Vinod Kumar has more than 15 years of t­ eaching, research, and industrial experience. Currently, he is faculty in the Department of Electrical Engineering, Maharana Pratap University of Agriculture & Technology, Udaipur, India. He has published several books/book chapters and over 80  papers in journals and conferences. He  has received the prestigious Career Award for Young Teachers from AICTE, the government of India, New Delhi. His current research interests include power electronics, power quality, and wind-power generation. He is an associate editor of the reputed journal IET-Renewable Power Generation. He  is a fellow at the Institution of Engineers (India). Ranjan Kumar Behera received his BE degree in electrical engineering from the Regional Engineering College Rourkela, Rourkela, India, and M.Tech and PhD degrees from the Indian Institute of Technology Kanpur, Kanpur, India, in 1998, 2003, and 2009, respectively. He  worked at Hindustan Aeronautic Limited, Sunabeda, as a trainee engineer. Since May  2009, he has been a faculty member in the Department of Electrical Engineering at IIT Patna, where he became head of the department in January 2016. From July 2008 to February 2009, he was as a visiting scholar at the Energy Systems Research Center, Tennessee Technological University, USA, and a visiting research collaborator in the ECE department, University of Pretoria, in July 2016. His current research interests include power electronic, electric motor drives, and nonlinear control applications.

xxvii

xxviii

Authors

Dheeraj Joshi received an ME in electrical enginee­ ring from the Indian Institute of Technology, Roorkee, in 2000  and a PhD in electrical engineering from the National Institute of Technology, Kurukshetra, India, in 2010. He  is presently working as professor in the Department of Electrical Engineering, Delhi Technological University, New Delhi, India. His present research interests are renewable power generation, power electronics, and application of AI techniques.

Professor Ramesh Bansal has more than 25 years of diversified experience of research, scholarship of teaching and learning, accreditation, industrial, and academic leadership in several countries. Currently, he is a professor in the Department of Electrical Engineering at University of Sharjah. Previously, he was professor and group head (Power) in the ECE Department at University of Pretoria (UP), South Africa. Prior to his appointment at UP, he was employed by the University of Queensland, Australia; University of the South Pacific, Fiji; BITS Pilani, India; and Civil Construction Wing, All India Radio. Prof. Bansal has significant experience in collaborating with industry and government organizations. These utilities include NTPC (a 60 GW Indian power generation company), Powerlink, and ESKOM. During sabbaticals, he has worked with Powerlink, an Australian government-owned corporation responsible for Queensland’s high-voltage electricity transmission network. He has made significant contributions to the development and delivery of BS and ME programs for utilities. He has extensive experience in the design and delivery of CPD programs for professional engineers. He has carried out research and consultancy and attracted significant funding from industry and government organizations. Professor Bansal has published over 300 journal articles, presented papers at conferences, and wrote books and chapters in books. He has Google Citations of over 9000 and an h-index of 45. He has supervised 20 PhDs, 4 postdocs, and is currently supervising several PhD students. His diversified research interests are in the areas of renewable energy (wind, PV, DG, microgrid) and smart grid. Professor Bansal is an editor of several highly regarded journals: IET-RPG, IEEE Systems Journal, Electric Power Components and Systems, and Technology and Economics of Smart Grids and Sustainable Energy. He is a Fellow and Chartered Engineer at IET-UK, Fellow Engineers Australia, Fellow Institution of Engineers (India), Fellow SAIEE, and senior member of IEEE-USA.

Section I Power Semiconductor Devices

1

Overview of Power Electronics

1.1 INTRODUCTION Power electronics deals with the use of electronics for the control and conversion of large amounts of electrical power. The design of power electronics involves interactions between the source and the load with the effective use of small-signal electronic control circuits as well as power semiconductor devices. Definition: Power electronics is the study of electronic circuits meant to ­control the flow of electrical energy at higher levels than the individual device ratings. A power electronics system consists of an electrical source, load, and a power electronic circuit containing switches, energy storage elements, and control functions as shown in Figure  1.1. Power electronics is a vast, complex, and interdisciplinary subject that has under gone through a rapid technological evolution during the last 50 years. Due to advancement in technology with decreased apparatus cost and improved reliability, the applications of power electronics are expanding in industrial, commercial, aerospace, residential, military, and utility environments. Many innovations in the field of power semiconductor devices, converter topologies, electric machine drives, control, and estimation techniques contribute to this advancement. The frontier of this technology has been further advanced by the versatile use of artificial intelligence (AI) techniques, such as fuzzy logic and the artificial neural network, thus bringing more challenges to power electronics engineers. This chapter presents an overview of the power devices, converters, applications of power electronics, and computer simulation for power electronics circuits.

1.2  POWER ELECTRONICS SYSTEMS The  major components of a power electronics system are shown in the form of a block diagram in Figure 1.2 [3,4,6]. The main power source can be an AC or a DC supply system. The output from the power electronics circuit can be variable AC or DC voltage, or it may be a variable voltage and frequency depending upon the requirements of the load. For example, if the load is a DC motor, the converter output must be adjustable direct voltage. In case the load is a three-phase induction motor, the converter should have adjustable voltage and frequency at its output terminals. The  feedback component in Figure  1.2 measures various parameters of the load, say, speed in case of a rotating machine, and compares it with the command. The difference of the two, through the digital circuit components, controls the instant 3

4

Power Electronics, Drives, and Advanced Applications

FIGURE 1.1  Control, energy and power electronics are interrelated.

FIGURE 1.2  Block diagram of power electronics system.

of turn-on of semiconductor devices forming the power converter system. In  this manner, the behavior of the load circuit can be controlled as desired over a wide range with the adjustment of the command.

1.3  POWER SEMICONDUCTOR DEVICES In 1957, the silicon-controlled rectifier (SCR) was introduced, and later other power semiconductor devices have been developed with the advancement in the semiconductor technology, which is enumerated below [1–6]. Power diodes are available up to the ratings of 3,000  V, 3,500  A, and 1  kHz, whereas thyristors are available up to 6,000 V, 3,500 A, 1 kHz, and gate turn-off (GTO) thyristors up to ratings of 4,000 V, 3,000 A, and 10 kHz. MOS-controlled thyristors (MCTs) and TRIACS can work up to 600 V, 60 A, 20 kHz, and 1,200 V, 300 A, 400 Hz, respectively. Bipolar Junction Transistors (BJTs) are available in the market up to ratings of 1,200 V, 400 A, and 10 kHz, as shown in Table 1.1 [1‒12].

13.

10. 11. 12.

8. 9.

6. 7.

5.

2. 3. 4.

1.

S. No.

Reapplied dv/dt (V/us)

Turn-off gain Switching frequency Turn-on time Turn-off time Snubber

SOA (Safe Operating Area) Conduction drop Temp. coeff. of resistivity

Voltage and current ratings Linear/trigger Gatting Voltage blocking

Parameters

30

2 μs 200 μs Unpolarized

— 500 Hz