Physics of Semiconductor Devices [3 ed.] 0471143235, 9780471143239

The Third Edition of the standard textbook and reference in the field of semiconductor devices This classic book has set

402 65 10MB

English Pages 832 [814] Year 2006

Report DMCA / Copyright

DOWNLOAD FILE

Physics of Semiconductor Devices [3 ed.]
 0471143235, 9780471143239

Table of contents :
Cover
Preface
Contents
Introduction
Part I Semiconductor Physics
1. Physics and Properties of Semiconductors-A Review
1.1 INTRODUCTION
1.2 CRYSTAL STRUCTURE
1.2.1 Primitive Cell and Crystal Plane
1.2.2 Reciprocal Lattice
1.3 ENERGY BANDS AND ENERGY GAP
1.4 CARRIER CONCENTRATION AT THERMAL EQUILIBRIUM
1.4.1 Carrier Concentration and Fermi Level
1.4.2 Donors and Acceptors
1.4.3 Calculation of Fermi Level
1.5 CARRIER-TRANSPORT PHENOMENA
1.5.1 Drift and Mobility
1.5.2 Resistivity and Hall Effect
1.5.3 High-Field Properties
1.5.4 Recombination, Generation, and Carrier Lifetimes
1.5.5 Diffusion
1.5.6 Thermionic Emission
1.5.7 Tunneling
1.5.8 Space-Charge Effect
1.6 PHONON, OPTICAL, AND THERMAL PROPERTIES
1.6.1 Phonon Spectra
1.6.2 Optical Properties
1.6.3 Thermal Properties
1.7 HETEROJUNCTIONS AND NANOSTRUCTURES
1.8 BASIC EQUATIONS AND EXAMPLES
1.8.1 Basic Equations
1.8.2 Examples
REFERENCES
PROBLEMS
Part II Device Building Blocks
2. Junctions
2.1 INTRODUCTION
2.2 DEPLETION REGION
2.2.1 Abrupt Junction
2.2.2 Linearly Graded Junction
2.2.3 Arbitrary Doping Profile
2.3 CURRENT-VOLTAGE CHARACTERISTICS
2.3.1 Ideal Case-Shockley Equation
2.3.2 Generation-Recombination Process
2.3.3 High-Injection Condition
2.3.4 Diffusion Capacitance
2.4 JUNCTION BREAKDOWN
2.4.1 Thermal Instability
2.4.2 Tunneling
2.4.3 Avalanche Multiplication
2.5 TRANSIENT BEHAVIOR AND NOISE
2.5.1 Transient Behavior
2.5.2 Noise
2.6 TERMINAL FUNCTIONS
2.6.1 Rectifier
2.6.2 Zener Diode
2.6.3 Varistor
2.6.4 Varactor
2.6.5 Fast-Recovery Diode
2.6.6 Charge-Storage Diode
2.7 HETEROJUNCTIONS
2.7.1 Anisotype Heterojunction
2.7.2 Isotype Heterojunction
REFERENCES
PROBLEMS
3. Metal-Semiconductor Contacts
3.1 INTRODUCTION
3.2 FORMATION OF BARRIER
3.2.1 Ideal Condition
3.2.2 Depletion Layer
3.2.3 Interface States
3.2.4 Image-Force Lowering
3.2.5 Barrier-Height Adjustment
3.3 CURRENT TRANSPORT PROCESSES
3.3.1 Thermionic-Emission Theory
3.3.2 Diffusion Theory
3.3.3 Thermionic-Emission-Diffusion Theory
3.3.4 Tunneling Current
3.3.5 Minority-Carrier Injection
3.3.6 MIS Tbnnel Diode
3.4 MEASUREMENT OF BARRIER HEIGHT
3.4.1 Current-Voltage Measurement
3.4.2 Activation-Energy Measurement
3.4.3 Capacitance-Voltage Measurement
3.4.4 Photoelectric Measurement
3.4.5 Measured Barrier Heights
3.5 DEVICE STRUCTURES
3.6 OHMIC CONTACT
REFERENCES
PROBLEMS
4. Metal-Insulator-Semiconductor Capacitors
4.1 INTRODUCTION
4.2 IDEAL MIS CAPACITOR
4.2.1 Surface Space-Charge Region
4.2.2 Ideal MIS Capacitance Curves
4.3 SILICON MOS CAPACITOR
4.3.1 Interface Traps
4.3.2 Measurement of Interface Traps
4.3.3 Oxide Charges and Work-Function Difference
4.3.4 Carrier Transport
4.3.5 Nonequilibrium and Avalanche
4.3.6 Accumulation- and Inversion-Layer Thickness
REFERENCES
PROBLEMS
Part III Transistors
5. Bipolar Transistors
5.1 INTRODUCTION
5.2 STATIC CHARACTERISTICS
5.2.1 Basic Current-Voltage Relationship
5.2.2 Current Gain
5.2.3 Output Characteristics
5.2.4 Nonideal Effects
5.3 MICROWAVE CHARACTERISTICS
5.3.1 Cutoff Frequency
5.3.2 Small-Signal Characterization
5.3.3 Switching Characteristics
5.3.4 Device Geometry and Performance
5.4 RELATED DEVICE STRUCTURES
5.4.1 Power Transistor
5.4.2 Basic Circuit Logics
5.5 HETEROJUNCTION BIPOLAR TRANSISTOR
5.5.1 Double-Heterojunction Bipolar Transistor
5.5.2 Graded-Base Bipolar Transistor
5.5.3 Hot-Electron Transistor
REFERENCES
PROBLEMS
6. MOSFETs
6.1 INTRODUCTION
6.1.1 Field-Effect Transistors: Family Tree
6.1.2 Versions of Field-Effect Transistors
6.2 BASIC DEVICE CHARACTERISTICS
6.2.1 Inversion Charge in Channel
6.2.2 Current-Voltage Characteristics
6.2.3 Threshold Voltage
6.2.4 Subthreshold Region
6.2.5 Mobility Behavior
6.2.6 Temperature Dependence
6.3 NONUNIFORM DOPING AND BURIED-CHANNEL DEVICE
6.3.1 High-Low Profile
6.3.2 Low-High Profile
6.3.3 Buried-Channel Device
6.4 DEVICE SCALING AND SHORT-CHANNEL EFFECTS
6.4.1 Device Scaling
6.4.2 Charge Sharing from SourceIDrain
6.4.3 Channel-Length Modulation
6.4.4 Drain-Induced Barrier Lowering (DIBL)
6.4.5 Multiplication and Oxide Reliability
6.5 MOSFET STRUCTURES
6.5.1 Channel Doping Profile
6.5.2 Gate Stack
6.5.3 SourceIDrain Design
6.5.4 SO1 and Thin-Film Transistor (TFT)
6.5.5 Three-Dimensional Structures
6.5.6 Power MOSFETs
6.6 CIRCUIT APPLICATIONS
6.6.1 Equivalent Circuit and Microwave Performance
6.6.2 Basic Circuit Blocks
6.7 NONVOLATILE MEMORY DEVICES
6.7.1 Floating-Gate Devices
6.7.2 Charge-Trapping Devices
6.8 SINGLE-ELECTRON TRANSISTOR
REFERENCES
PROBLEMS
7. JFETs, MESFETs, and MODFETs
7.1 INTRODUCTION
7.2 JFET AND MESFET
7.2.1 I-V Characteristics
7.2.2 Arbitrary Doping and Enhancement Mode
7.2.3 Microwave Performance
7.2.4 Device Structures
7.3 MODFET
7.3.1 Basic Device Structure
7.3.2 I-VCharacteristics
7.3.3 Equivalent Circuit and Microwave Performance
7.3.4 Advanced Device Structures
REFERENCES
PROBLEMS
Part IV Negative-Resistance and Power Devices
8. Tunnel Devices
8.1 INTRODUCTION
8.2 TUNNEL DIODE
8.2.1 Tunneling Probability and Tunneling Current
8.2.2 Current-Voltage Characteristics
8.2.3 Device Performance
8.3 RELATED TUNNEL DEVICES
8.3.1 Backward Diode
8.3.2 MIS Tunnel Devices
8.3.3 MIS Switch Diode
8.3.4 MIM Tunnel Diode
8.3.5 Hot-Electron Transistors
8.4 RESONANT-TUNNELING DIODE
REFERENCES
PROBLEMS
9. IMPATT Diodes
9.1 INTRODUCTION
9.2 STATIC CHARACTERISTICS
9.2.1 Breakdown Voltage
9.2.2 Avalanche Region and Drift Region
9.2.3 Temperature and Space-Charge Effects
9.3 DYNAMIC CHARACTERISTICS
9.3.1 Injection Phase Delay and Transit-Time Effect
9.3.2 Small-Signal Analysis
9.4 POWER AND EFFICIENCY
9.4.1 Large-Signal Operation
9.4.2 Power-Frequency Limitation-Electronic
9.4.3 Limitation on Efficiency
9.4.4 Power-Frequency Limitation-Thermal
9.5 NOISE BEHAVIOR
9.6 DEVICE DESIGN AND PERFORMANCE
9.7 BARITT DIODE
9.7.1 Current Transport
9.7.2 Small-Signal Behaviors
9.7.3 Large-Signal Performance
9.8 TUNNETT DIODE
REFERENCES
PROBLEMS
10. Transferred-Electron and Real-Space-Transfer Devices
10.1 INTRODUCTION
10.2 TRANSFERRED-ELECTRON DEVICE
10.2.1 Transferred-Electron Effect
10.2.2 Domain Formation
10.2.3 Modes of Operation
10.2.4 Device Performances
10.3 REAL-SPACE-TRANSFER DEVICES
10.3.1 Real-Space-Transfer Diode
10.3.2 Real-Space-Transfer Transistor
REFERENCES
PROBLEMS
11. Thyristors and Power Devices
11.1 INTRODUCTION
11.2 THYRISTOR CHARACTERISTICS
11.2.1 Reverse Blocking
11.2.2 Forward Blocking
11.2.3 Turn-On Mechanisms
11.2.4 Forward Conduction
11.2.5 Static I-V Curves
11.2.6 Turn-On and Turn-Off Times
11.3 THYRISTOR VARIATIONS
11.3.1 Gate Turn-Off Thyristor
11.3.2 Diac and Triac
11.3.3 Light-Activated Thyristor
11.4 OTHER POWER DEVICES
11.4.1 Insulated-Gate Bipolar Transistor
11.4.2 Static-Induction Transistor
11.4.3 Static-Induction Thyristor
REFERENCES
PROBLEMS
Part V Photonic Devices and Sensors
12. LEDs and Lasers
12.1 INTRODUCTION
12.2 RADIATIVE TRANSITIONS
12.2.1 Emission Spectra
12.2.2 Methods of Excitation
12.3 LIGHT-EMITTING DIODE (LED)
12.3.1 Device Structures
12.3.2 Materials of Choice
12.3.3 Definitions of Efficiencies
12.3.4 White-Light LED
12.3.5 Frequency Response
12.4 LASER PHYSICS
12.4.1 Stimulated Emission and Population Inversion
12.4.2 Optical Resonator and Optical Gain
12.4.3 Waveguiding
12.5 LASER OPERATING CHARACTERISTICS
12.5.1 Device Materials and Structures
12.5.2 Threshold Current
12.5.3 Light Spectra and Efficiencies
12.5.4 Far-Field Pattern
12.5.5 Turn-On Delay and Modulation Response
12.5.6 Wavelength Tuning
12.5.7 Laser Degradation
12.6 SPECIALTY LASERS
12.6.1 Quantum-Well, Quantum-Wire, and Quantum-Dot Lasers
12.6.2 Vertical-Cavity Surface-Emitting Laser (VCSEL)
12.6.3 Quantum-Cascade Laser
12.6.4 Semiconductor Optical Amplifier
REFERENCES
PROBLEMS
13. Photodetectors and Solar Cells
13.1 INTRODUCTION
13.2 PHOTOCONDUCTOR
13.3 PHOTODIODES
13.3.1 General Consideration
13.3.2 p-i-n and p-n Photodiodes
13.3.3 Heterojunction Photodiode
13.3.4 Metal-Semiconductor Photodiode
13.4 AVALANCHE PHOTODIODE
13.4.1 Avalanche Gain
13.4.2 Avalanche-Multiplication Noise
13.4.3 Signal-to-Noise Ratio
13.4.4 Device Performance
13.5 PHOTOTRANSISTOR
13.6 CHARGE-COUPLED DEVICE (CCD)
13.6.1 CCD Image Sensor
13.6.2 CCD Shift Register
13.6.3 CMOS Image Sensor
13.7 METAL-SEMICONDUCTOR-METAL PHOTODETECTOR
13.8 QUANTUM-WELL INFRARED PHOTODETECTOR
13.9 SOLAR CELL
13.9.1 Introduction
13.9.2 Solar Radiation and Ideal Conversion Efficiency
13.9.3 Photocurrent and Spectral Response
13.9.4 Device Configuration
REFERENCES
PROBLEMS
14. Sensors
14.1 INTRODUCTION
14.2 THERMAL SENSORS
14.2.1 Thermistor
14.2.2 Diode Thermal Sensor
14.2.3 Transistor Thermal Sensor
14.2.4 Nonsemiconductor Thermal Sensors
14.3 MECHANICAL SENSORS
14.3.1 Strain Gauge
14.3.2 Interdigital Transducer
14.3.3 Nonsemiconductor Mechanical Sensor
14.4 MAGNETIC SENSORS
14.4.1 Hall Plate
14.4.2 Magnetoresistor
14.4.3 Magnetodiode
14.4.4 Magnetotransistor
14.4.5 Magnetic-Field-Sensitive Field-Effect Transistor
14.4.6 Carrier-Domain Magnetic-Field Sensor
14.5 CHEMICAL SENSORS
14.5.1 Metal-Oxide Sensors
14.5.2 Ion-Sensitive Field-Effect Transistor
14.5.3 Catalytic-Metal Sensors
14.5.4 Biosensors
REFERENCES
PROBLEMS
APPENDIXES
Appendix A: List of Symbols
Appendix B: International System of Units
Appendix C: Unit Prefixes #
Appendix D: Greek Alphabet
Appendix E: Physical Constants
Appendix F: Properties of Important Semiconductors
Appendix G: Properties of Si and GaAs
Appendix H: Properties of SiO2 and Si3N4
Index

Polecaj historie