Ontologie und Logik / Ontology and Logic 3428043391

898 77 13MB

English Pages [143] Year 1979

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

Ontologie und Logik / Ontology and Logic
 3428043391

Citation preview

Academie Internationale de Philosophie des Sciences Institut for Wissenschaftstheorie am Internationalen Forschungszentrum Salzburg

Ontologieund Logik ·Ontology and Logic Vortrage und Diskussionen eines Internationalen Kolloquiums Proceedings of an International Colloquium (Salzburg, 21. - 24. September 1976)

Herausgegeben von I Edited by

Paul Weingartner · Edgar Morscher

DUNCKER

&

HUMBLOT

BERLIN

VORWORT

Dieser Band enthalt die Vortrage eines Kolloquiums i.iber Logik und Ontologie, das am Internationalen Forschungszentrum in Salzburg vom 21. bis zum 24. September 1976 abgehalten wurde. Dieses Kolloquium wur de von der Academie Internationale de Philosophie des Sciences und vom Institut fiir Wissenschaftstheorie am Internationalen Forschungszentrurn Salzbt1.rg veranstaltet. Zusatzlich zu den Vortragen enthalt dieser Band die Diskussionen, die im AnschluB an die Vortrage stattfanden. Aul3erdem sind in diesem Band auch noch Beitriige von Henri Lauener und Valerio Tonini abgedruckt, die nicht am Kolloquium teilnahmen, weshalb es zu diesen zwei Beitragen keine Diskussionen gibt. Das Kolloquium und die Publikation dieses Bandes wurden durch die folgenden Personen und Institutionen groBzi.igig untersti.itzt: Dr. Hertha Firnberg, B undesminister fur Wissenscha ft und Forschung; Dr. Wilfried Haslauer, Lancleshauptmann des Bundeslandes Salzburg; Dr. Herbert Kessler, Landeshauptrnann des Bundeslandes Vo rarlberg; Heinrich Salfenauer, Burgermeister der Stadt S alzburg; Konsul Dr. Alexander Grupp, VoTStandsvorsitzender der DeutschOsterreichischen G esellschaft zur Forderung van Wissenschaft und Kunst, Stuttgart; Academie Int ernationale de Philosophie des Sciences, Bruxelles; Internationales Forsclmngszentrum fur Grundfragen der Wissenschaften, Salzb urg. Die Her ausgeber mochten den genannten Personen und Institutionen fi.ir ihre Hilfe danken. Institut fi.ir Wissenschaftstheorie am Internationalen Forschungszentrum fi.ir Grundfragen der Wissenschaften Salzburg und Institut fi.ir Philosophie an der Universitat Salzburg, Juli 1977 Alie Rechte, auch die des auszugsweisen Nachdrucks, der photomechanische n Wiedergabe und der Vbersetzung, fil r samtliche Beitrage vorbeha lten © 1979 Duncker & Humblot, Berlin 41 Gedruckt 1979 bei Berliner Buchdruckerel Union GmbH., Berlin 61 Printed in Germany ISBN 3 428 04339 I

Paul Weingartner · Edgar Morscher

INHALT · CONTENTS

PREFACE

This volume contains the papers of a colloquium on Logic and Ontology which was held at the Internationales Forsclwngszentrmn in Salzburg from September 21 to September 24, 1976. The colloquium was organized by the Academie Internationale de Philosophie des Sciences and by the Institut fur Wissenschaftstheorie of the Internationales Forschungszentntm Salzburg. In addition to the colloquium papers, this volume contains the discussions which took place following the presentation of the papers.

Paul Bernays Gesichtspunkte zur natUrlichen Ontologie .................... · · · · · ·

9

J. M. Bochenski

Logique et ontologie ............................................ · · 19 Roderick M. Chisholm Events, Propositions and States of Affairs ..................... · ... . 27

Also found in this volume are papers by Henry Lauener and Valerio Tonini neither of whom attended the colloquium. Therefore there was no discussion of these two papers.

Roderick M. Chisholm Possibility and States of Affairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

The colloquium and the publication of this volume have been generously supported by the following persons and institutions:

0. Costa de Beauregard Time Symmetry and the Einstein Paradox .................. · · · · · · · · 59

Dr. Hertha Firnberg, Bundesminister fur Wissenschaft und Forschung; Dr. Wilfried Haslauer, Landeshauptmann des Buncleslandes Salzburg; Dr. Herbert Kessler, Lancleshauptmann cles Buncleslancles Vorarlberg; Heinrich Salfenauer, Burgermeister cler Stadt Salzburg; Konsul Dr. Alexander Grupp, Vorstanclsvorsitzencler cler DeutschOsterreichischen Gesellschaft znr Forclerung von Wissenschaft imcl Kunst, Stuttgart; Acaclemie Internationale cle Philosophie cles Sciences, Bruxelles; Internationales Forschnngszentrnm fiir Grunclfragen cler Wissenschaften, Salzburg.

D. Dubarle Evolution de l'ontologie et extensions de la logique mathematique . . 93

The editors wish to express their gratitude to the above people and institutions.

P. T. Geach Existential or Particular -Quantifier? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Institut fi.ir Wissenschaftstheorie am Internationalen Forschungszentrum fi.ir Grundfragen der Wissenschaften Salzburg und Institut fi.ir Philosophie an der Universitat Salzburg, July 1977

Paul Weingartner · Edgar Morscher

J. L. Destouches Criteres logiques et criteres ontologiques . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Paulette Fevrier Discours sur l'experience et discours sur l'etre ...................... 121

Jean Ladriere Le logique et le reel

.............................................. 157

Henri Lauener Nominalistic and other Ontological Prejudices ...................... 185 Czeslaw Lejewski On the Dramatic Stage in the Development of Kotarbinski's Pansomatism ................................... · · · · · .. · . · · · · · · · · · · · · · · 197

8

Inhalt · Contents

D. H. Salman

Logic and Ontology in the Human Sciences . . . . . . . . . . . . . . . . . . . . . . . . 219 Valerio Tonini Systems and Logics of Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 Paul Urban & Norbert Pucker Johannes Kepler: Sa contribution au progres des sciences naturelles .. 247 Paul Weingartner Are there Negative Facts or Properties? ............................ 267 Paul Weingartner Nachruf auf Paul Bernays .......................................... 281 Verzeichnis der Herausgeber und Mitarbeiter . . . . . . . . . . . . . . . . . . . . . . . . . . 285

GESICHTSPUNKTE ZUR NATURLICHEN ONTOLOGIE Von Paul Bernays* Vorbemerkung Von natiirlicher Ontologie soll zur Unterscheidung von den Betrachtungen ontologischer Metaphysik gesprochen werden, welche Einsichten iiber das Sein als solches, iiber das ,,Sein des Seienden", iiber die ,,idee de l'etre", iiber das absolute Sein, in Anspruch nehmen, und welche sowohl iiber den Bereich der gewohnten Denkweise wie iiber denjenigen des wissenschaftlichen Denkens hinausgehen . 1. Unsere Zugange zum Wirklichen Vom Seienden oder Existierenden sprechen wir in verschiedenem Sinne; im engeren Sinne sprechen wir vom ,,Wirklichen". Die Ausgangsmomente unserer Vorstellung vom Wirklichen sind etwa die: Wir haben ein Erleben unserer eigenen Existenz, und zwar erleben wir uns in einer Umwelt und in Wechselbeziehungen mit anderen Wesen unseresgleichen. Anhand von Erfahrungen kommen wir dazu, auch vVechselbeziehungen zwischen uns und anderen Dingen (auch anderen Lebewesen) anzusetzen. Das alles vollzieht sich anhand von Wahrnehmungen, operativen Handlungen und einer groJ3enteils instinktiven Rationalitat. Dabei schreiben wir alledem, was wir mit uns in Wechselwirkung finden, Wirklichkeit zu. Wir gelangen auf diese Weise zu unseren gelaufigen Vorstellungen von den Aul3endingen und zu unserer Orientierung in der Umwelt. Unsere eigene Existenz vollzieht sich im Verlauf unserer Erlebnisse: unserer Wahrnehmungen, unserer Handlungen, unserer Gedanken, unserer Empfindungen, Gefiihle und Stimmungen. Dieses Erleben ist uns bewul3t als das unsrige, und wir schreiben es demgemafi unserem Ich zu. Dieses Ich selbst ist uns freilich nicht wahrnehmungsmaJ3ig gegeben, aber eine Form der Bezogenheit auf das Ich ist in allen Erlebnissen enthalten. Dberdies ist das, was ,,innere Wahrnehmung" genannt wird, unmittelbar verbunden mit einer Art von instinktiver (aul3erwissenschaftlicher) Rationalitat - auch schon John Locke spricht bier von

* Siehe den Nachruf am Ende des Bandes.

11

Paul Dcrnays

Gesichtspunkte zur naWrlichcn Ontologic

,,reflection" -, aus welchcr cine Begriffswelt entspringt, mit der wir die inneren Erlebnisse deuten, uncl anhand dieser Begriffswelt eine Art des Verstehens, welchc durch clas wissenschaftliche Erkenncn zwar ergiinzt, aber kaum uberboten wird.

und damit auch zur Anerkennung einer Art von Existenz, die nicht Wirklichkeit ist. Wir sprechen in bezug auf diese vom ,,Objektiven".

10

Fur cliese Art der Deutung ist charakteristisch, dafi sie gleichcrmafien auf andere Personen wie auf unsere eigenc Anwendung findet, und dafi sie sich gleichermafien wie an unser inneres Bewufitsein auch an die Wahrnehmung iiufierer Gebiirclcn knupft. Aus unserer Orientierung in der Aufienwelt entsteht unsere geliiufige Naturansicht. Dieser gegenuber bringt die theoretische Naturforschung wesentliche Ergiinzungen und zum Teil auch erhebliche Wancllungen, - wobei aber das Experimentieren im Rahmen der geliiufigen Naturansicht verbleibt. 2. Die Ausscheidung der Sinnesqualitaten in der Physik und ihre Folgen Eine schon sehr friihzeitig sich vollziehende Wandlung gegenuber unserer gelaufigen Naturansicht besteht darin, daB die Sinnesqualitiiten aus der theoretischen Naturbeschreibung eliminiert werden und nur das Strukturelle beibehalten wird. Dieser Schritt wurde ja schon in den griechischen Spekulationen uber die Natur vollzogen, im Sinne des Programmes, die Phanomene zu retten, niimlich zu retten gegenuber der Kritik der eleatischen Philosophie, welche uberhaupt jegliche Vielheit leugnete, cl. h. als nicht wahrhaft existierend erklartc. Durch die Ausscheidung der Sinnesqualitaten ergibt sich in zweierlei Hinsicht eine ontologische Problematik. Einerseits kann hiernach die theoretisch-physikalische Beschreibung nur als eine unvollstandige angesehen werden. Es ist extending in time from - oo to + oo. One is then sure that it has come inside the past light cone, and will go inside the future light cone. This is the expression (in a position measurement) of the complete time symmetry of the elementary stochastic process which, in quantum mechanics, is a transition, or collapse of the wave function. And this corrects an utterly wrong impression unduly drawn from the Second Law of macrophysics: the collapse of the 111 does not effect the filture alone, but symmetrically both the past and the future. This is precisely the key we are proposing24 to solve the EPR riddle. That our solution is paradoxical we do not deny. But Copernicus' heliocentrism was paradoxicaJ19 in its days. 21 '. 0. Costa de Beauregard, Comptes Rendus 236, 1632 (1953); Rev. Int. Philos. 61 - 62, 2 (1968); Dialectica 19, 280 (1965) and 22, 187 (1968). See also Proc. Intern. Conj. on Thermodynamics, P. T. Landsberg ed., Butterworths, London, 1970, p. 539.

The statistical frequency concept implies the idea of a repetition of the stochastic test, that is, in the present case, of the position measurements. How can we speak of a repetition of the position measurement at x', as each point instant is unique in space-time? The answer is very much the same as in other forms of statistical theories. We must consider as negligible (or be able to render negligible) all the "secondary aspects" of the operation which are not invariant by space-time translations. Then we can imagine, say, N repetitions of the measurement process which are "identical" as far as their "significant" aspects are considered, in the sense that they are invariant in this respect by space-time translations. In our example we must imagine N apexes x' of Jordan-Pauli propagators, which we ideally bring all into superposition by the appropriate space-time translations. This will confer a statistical frequency meaning not only to the probability that the particle crosses a' at x', but also to the similar probabilities associated with any other point instant x situated either in the future of x' or in its past. It is at this very point that the factlike (not lawLike) physical irreversibility obtrudes into the picture. For it is at this point that (in Watanabe's words 15) blind statistical prediction is accepted as physical, while blind statistical retrodiction is rejected as non-physical (or should we rather say anti-physical? to this we will come back).

Everybody accepts that a hole in a screen may work as the source of an observable macroscopic diverging wave, but no physicist will accept that such a hole taken alone may act as the sink of a converging wave. Stars are quite common, while anti-stars are not. But again, this is a factlike, not an absolute statement. And again, it is a macrophysical, not a microphysical statement. 3. Time Symmetry and the Information Concept Information in physics is negentropy 25 • Negentropy, in all cases, is the logarithm of an (appropriately defined) probability. These two statements are time independent, and therefore time symmetric. The problem of factlike time asymmetry versus lawlike time symmetry arises when the coupling between the observer (or, rather, the 25

E.T. Jaynes, Phys. Rev. 106, 620 and 108, 171 (1957).

5 Ontologie und Logilc

66

0. Costa de Beauregard

Time Symmetry and the Einstein Paradox

experimenter) and the observed system is considered. In a telephone conversation, for instance, the receiver decodes, and understands, a message possessing an ordered structure, expressed as a negentropy. This is the learning transition, in which information is extracted as knowledge from the negentropy of a macroscopically ordered structure. Symmetrically, the sender of the message conceives and expresses it. This we shall call the wiHing transition, in which information is injected as a macroscopic order into a material device or environment. There is a complete lawlike symmetry between the two procedures, that is, also between information as knowledge and information as will, or, in other words, between knowing awareness and wiHing awareness.

is de facto very much rarer. Therefore we deem highly significant that cybernetics, without in the least having searched for it, has hit upon Aristotle's de jme twin faces of the information concept.

It is extremely striking that this cybernetical scheme restates, in more technical form, the existence of two symmetrical facets of the information concept as enunciated by Aristotle 2400 years ago. In the meantime, between Aristotle and cybernetics, information as knowledge has been a trivial concept (the man in the street buys a newspaper for a few cents to find information in it), whereas information as organizing power has been an esoteric concept used by those few philosophers interested in finality (as opposed to causality). The reason for this accident is fairly obvious: it is the factiike time asymmetry, according to which probability-increasing processes outweigh by far probabilitydecreasing processes. The learning transition is thus far more common or far more easily generated, than the willing transition 2a, this bein~ a cybernetical restatement of the Second Law21.

In the "wavelike probability theory" considered in this paper, the factlike time asymmetry is expressed as a large predominance of retatarded over advanced waves or, in other words, and for very obvious reasons, of causality over finality 28. It is the duty of fundamental thinking, however, to discuss lawlike symmetries which may be hidden by factlike asymmetries. A typical example of this has happened with the positron, which is de jure the electron's twin brother, although it 26 • Coi;:sid~ring that the values of universal constants, as expressed in "convement u?1ts, reflect an anthropomorphic reference, the very small value of ~oltzma.ni: ~ constant, k ~ 10-16 c.g.s. units, may be closely related to physical irrevers1b1hty. As k Ln 2 is the conversion coefficient between an information as expressed in bits and a negentropy as expressed in thermodynamic units the change rate is such that knowledge is extremely cheap, or easy, and actio~ extremely hard, or costly. 2 i L. Brillouin, Science and Information Theory, 2nd Edition Academic Press, New York, 1962. ' 28 _ Th? on.e to one connection between causality and retarded actions on one hand, fmal!ty a;id a.dv~nced actions on the other, may be shown by a more abstract reasomng ms1de the frame of classical statistical mechanics. See e.g. 0. Costa de Beauregard, ref. 15, 1964.

67

There have been endless discussions between the objectivistic and the subjectivistic schools of probability theory. One point in this paper is that information should be called neither objective nor subjective because it is both, being the very hinge around which mind and matter interact. If we believe we are living in an essentially probabilistic world - as do most quantum physicists - no other position is tenable. But then, as the new "wavelike probability theory" is by far the most advanced and precise physical probability theory, it is from it that we should learn the essentials of the interaction between the experimenter's mind and the outside universe. For one thing, the wavelike propagation of probability amplitudes has induced much dreaming in the minds of theoreticians. This specific resurgence of the subject of the verb to undulate, which the relativity theory had lost, has been a very unexpected one indeed. The point is that the "wavelike probability theory" does project in space time the intrinsic symmetry of the two facets of Aristotle's information (cognizance and will) in the form of the intrinsic symmetry between retarded and advanced waves. And this is a very important point which the Copenhagen school has missed, when it speaks of the "wave collapse" as induced by an "act of observation". Forgetting will by sticking to knowledge is "scientific". More exactly, this defines the domain of science which (as seen in Section 2) is also the domain of validity of the Second Law, that is, the domain of physics. The point, however, which cannot be too strongly stressed, is that the lawlike, or intrinsic, time symmetry of the elementary stochastic event (the discussion of which is at the very center of the interpretation of quantum mechanics) forbids the least time asymmetry

either in the words or in the concepts we are using.




As the x' I x propagator associated with a position measurement symmetrically extends into future and past, it is obvious that, in the individual transition induced (according to the Copenhagen school) by an act of consciousness, this very act is (in our terminology) sym-

metrically cognizance and will. This will be shown in Section 4 to be the only conceivable key for solving the EPR riddle, not by trying (hopelessly) to reduce it, but rather by unfolding its full implications.

Time Symmetry and the Einstein Paradox

4. The Act of Quantum Measurement and the Einstein Paradox

How this stems directly from the "new wavelike probability calculus" is seen as follows. The sort of correlated subsystems 52 and CS we are speaking of are by hypothesis described by an overall wave function of the form 3:i

An apologue will help in understanding the essence of the paradox. At midnight GIVIT two travellers leave the Calcutta airport C, one for London L and the other for Tokyo T, each carrying a closed box containing, or not, the one ball which a third man, in Calcutta, has enclosed, behind a veil. At 6 h. GMT, having landed, each traveller opens his box, and thus immediately learns what the other man finds. The point is, however, that the logical inference, drawn either at L or at T, when made explicit, does not follow the spacelike vector LT or TL, which is physically empty, but rather the Feynman29 like zigzag LCT or TCL, which is physically occupied by the two airplanes. Each traveller has to remember his flight from C, what has been done there, and then imagine the other man's flight. Thus the logical inference is, so to speak, telegraphed along the two timelike vectors CL and CT, once towards the past, once towards the future. This is a simple problem in classical information theory, with nothing paradoxical in it, because what we have between L and T is pure "telediction", with no "teleaction" ammixture. This is because we are dealing with a "local hidden variable theory", the value of which is zero in one box and 1 in the other. The dye is cast at C, so to speak, and this is virtually the end of the story. It is at this very point that quantum mechanics changes matters radically, as pointed out first by Einstein 1• Quantum mechanics has it that the dye is cast not at C but later, where and when a measurement is made, that is, at L or T - at L and T if both measurements are made. This is because at L (for instance) the choice is open between mutually incompatible measurements, and because, in principle, the experimenter at L can choose the measurement he will perform after the severance at C of the two subsystems has occurred. In this precise sense what we have now between L and T is no more pure telediction, but rather telediction plus teleaction-something so extremely paradoxical that Einstein30 , Schrodinger31 , and de Broglie 32 have a priori refused it as implying either "telepathy", or "non separability" of systems with no "present" interaction30 , "magic" 31 , or "rejection of our familiar concepts concerning space and time"3 2 •

0. Costa de Beauregard, Comptes Renclus 283A, 1003 (1976) and Phys. shows the very tight connection between the non locality in Feynman's theory of antiparticles and the Einstein non separability when expressed as a polarization or spin correlation. 30 A. Einstein, in E'instein, Philosopher Scientist, P. A. Schilpp ed., The Library of Living Philosophers, Evanston, 1949, p. 85 and 683. 31 E. Schri:idinger; ref. 2 p. 845. 32 L. de Broglie; ref. 3 p. 73. 2

69

0. Costa de Beauregard

63

~

(12)

the [ cpj > 's and [ lflj > 's respectively spanning the Hilbert spaces of 52 and CS, and the c/s being normalized according to (13)

.A and B denoting Hermitean operators associated with measurements performed upon 52 and CS, the correlated expected value of the A and B measurements is written as (14)

(A&B)= ~4:c[cj(rr;!Ajcp)(1p;JBl•P). I

J

Let (15)

denote the partial probabilities of A. and B in the different states and ip; >, and (16)

(A & B)o :== ~ ;.

W;

(('f

>

(A) (B;)

the corresponding classical correlated expected value. The point is that (14) may be written as (17)

(A & B)

=

(A & B)o

+ Ll

(A & B)

with (18)

whence the following remarks. Going from the "classical" to the "wavelike" probability calculus means replacing the formula (16) for probabilities by the formula (12) for amplitudes, a remark strongly reminiscent of Lande's 34 • While formula (16) obviously expresses the "local hidden variables" philosophy (as being the formula for a statistical mLcture), formula (12) does no

Lett. 60A, 93 (1977),

ss The following formulas are implicitely found in all texts discussing the correlation between the measurement system and the measuring apparatus, which is precisely of the Einstein sort. However, I am not aware that their discussion has ever been as explicit as it is here. 3.1 A. Lande, New Foundations of Quanillm Mechanics, Cambridge Univ. Press, 1935. A controversi and I 1p >. It is thus a typically wavelike term.

gonal polarization states, for example, of the two pure helicity states (left, left and right, right). Thus, in the 0-1-0 cascade for instance, the "paleo-quantal" prediction would be, for all values of and I 1p >, neither onor L1 do possess this invariance. If one (not necessarily both) of these bases is chosen so as to diagonalize the operator A or B, the additional term .d disappears in (17), and the classical state of affairs is thus apparently recovered: we formally have a mixture of correlated eigenstates of A and B. The point is, of course, that we do not have a mixture of correlated eigenstates of any other pair of operators, C and D, not commuting with A and B. In many recent experiments pertaining to the Einstein paradox, what is measured at L and T is the linear polarization of correlated photons, issuing from a cascade transition at C, and flying in opposite directions along a given axis x in the laboratory frame. A photon either passes or not a linear polarizer, thus answering a "yes or no" question. Denoting l\'. the angle between the polarizers, the probabilities of the "yes and Yes" and " no an d no " answers are 21 cos 2 lX, an d those of the "yes and no" and "no and yes" answers ~ sin 2 lX, in the 0-1-0 type cascade. In the 1-1-0 type cascade the formulas are exchanged35. Experimental verifications of these formulas are excellentt2. Had such results been obtained in the days of the old quantum mechanics, there is absolutely no doubt that they would have caused no less surprise than those of the Michelson-Morley experiment. This is because they unambiguously prove that the two photons of the pair do not possess polarizations of their own when leaving the source C, but borrow one later, when passing the polarizers L and T. If the two photons did possess polarizations of their own when leaving C, these would certainly not depend on the orientations of the polarizers L and T (nor even of their presence or absence). Therefore they would be randomly distributed upon the states compatible with the dynamics of the system, that is, expressible as a mixture of any two of the ortho33 M. Horne, Ph.D. Thesis (mimeographed), Boston University, 1970, Chap. V. 0. Costa de Beauregard, Lett. Niwvo Cim. 19, 113 (1977) · Nuovo Cim. 42B 41 (1977). ' '

(19)