O Circo Voador da Física [2 ed.]
 9788521635048

Citation preview

O autor e a editora empenharam-se para citar adequadamente e dar o devido crédito a todos os detentores dos direitos autorais de qualquer material utilizado neste livro, dispondo-se a possíveis acertos caso, inadvertidamente, a identificação de algum deles tenha sido omitida. Não é responsabilidade da editora nem do autor a ocorrência de eventuais perdas ou danos a pessoas ou bens que tenham origem no uso desta publicação. Apesar dos melhores esforços do autor, do tradutor, do editor e dos revisores, é inevitável que surjam erros no texto. Assim, são bem-vindas as comunicações de usuários sobre correções ou sugestões referentes ao conteúdo ou ao nível pedagógico que auxiliem o aprimoramento de edições futuras. Os comentários dos leitores podem ser encaminhados à LTC — Livros Técnicos e Científicos Editora pelo e-mail [email protected]. The Flying Circus of Physics Second Edition Copyright © 2007 John Wiley & Sons, Inc. All Rights Reserved. This translation published under license. Direitos exclusivos para a língua portuguesa Copyright © 2008 by LTC — Livros Técnicos e Científicos Editora Ltda. Uma editora integrante do GEN | Grupo Editorial Nacional Reservados todos os direitos. É proibida a duplicação ou reprodução deste volume, no todo ou em parte, sob quaisquer formas ou por quaisquer meios (eletrônico, mecânico, gravação, fotocópia, distribuição na internet ou outros), sem permissão expressa da editora. Travessa do Ouvidor, 11 Rio de Janeiro, RJ — CEP 20040-040 Tels.: 21-3543-0770 / 11-5080-0770 Fax: 21-3543-0896 [email protected] www.grupogen.com.br Ilustração da Capa: Norm Christiansen Produção digital: Geethik CIP-BRASIL. CATALOGAÇÃO-NA-FONTE SINDICATO NACIONAL DOS EDITORES DE LIVROS, RJ. W178c Walker, Jearl, 1945O circo voador da física / Jearl Walker ; tradução de Claudio Coutinho de Biasi. - [Reimpr.]. - Rio de Janeiro : LTC, 2015. Tradução de: The flying circus of physics, 2nd ed Inclui bibliografia ISBN 978-85-216-3504-8 1. Física. I. Título.

08-0327.

CDD: 530 CDU: 53

     

Dedico este livro à minha esposa

Mary Golrick que esteve sentada ao meu lado durante os 13 anos em que escrevi a seção “The Amateur Scientist” (O Cientista Amador) para a revista Scientific American, os 16 anos (até agora) que passei escrevendo edições do livro Fundamentos da Física e os (aparentes) 200 anos que passei preparando e escrevendo esta edição de O Circo Voador da Física. Sem o seu incentivo, o seu apoio, o seu amor e a sua tolerância eu ficaria paralisado e não teria forças para seguir adiante.

  O Circo Voador da Física surgiu em 1968, em uma noite escura e triste, quando eu era aluno de pós-graduação da Universidade de Maryland. Na verdade, para a maioria dos alunos de pós-graduação quase todas as noites são escuras e tristes, mas aquela noite em particular estava especialmente escura e triste. Eu era monitor em tempo integral e durante o dia havia submetido uma de minhas alunas, Sharon, a um exame rápido. Ela errou quase tudo; ao concluir a prova, perguntou: — O que isto tem a ver com a minha vida? Respondi prontamente: — Sharon, isto é física! Tem tudo a ver com a sua vida! Ela se virou, olhou diretamente para mim e disse devagar, com o olhar e a voz tensos: — Dê-me alguns exemplos. Dei tratos à bola, mas não consegui encontrar um único exemplo. Havia passado pelo menos seis anos estudando física e não era capaz de pensar em um exemplo sequer. Naquela noite, percebi que o problema de Sharon era na verdade um problema meu: esta coisa chamada física era algo com que as pessoas se deparavam nas aulas de física, não tinha nenhuma ligação com o mundo real de Sharon (ou o meu). Portanto, decidi reunir alguns exemplos do mundo real e batizei a coleção de O Circo Voador da Física, para despertar o interesse de Sharon. Aos poucos, fui incrementando a coleção. Em pouco tempo, outras pessoas queriam cópias de O Circo Voador, no começo alunos da sala de Sharon, em seguida meus colegas de pós-graduação e, finalmente, alguns professores. Depois que o texto foi impresso como “relató- rio técnico” pelo Departamento de Física de Maryland, fechei um contrato de publicação com a editora John Wiley & Sons. O livro foi publicado em 1975, alguns anos depois de me tornar professor de física da Cleveland State University; foi revisto em 1977. Desde então, foi traduzido em 11 idiomas e publicado no mundo inteiro. Esta é a segunda edição do livro, totalmente reescrita. Quando comecei a escrever O Circo Voador, pesquisei em apenas umas poucas dezenas de revistas científicas, página por página, e encontrei poucos artigos relevantes. De fato, minha metáfora para o projeto era que eu estava explorando ouro em uma mina quase esgotada: as pepitas de ouro eram escassas e difíceis de achar. O mundo mudou: hoje são publicados anualmente milhares de artigos científicos com um conteúdo digno de O Circo Voador. Em termos da minha metáfora, encontro imensos filões de ouro. Atualmente, não pesquiso mais em poucas dezenas de revistas; tenho acesso direto a cerca de 400 revistas e uso sites de busca para explorar outras centenas. Em certos dias, meus dedos voam pelo teclado do computador. Gostaria que Sharon pudesse observar comigo todos esses fenômenos fascinantes que descobri. Este livro oferece esta oportunidade: siga-me e verá que a física “tem tudo a ver com a sua vida”.

Site de O Circo Voador da Física O site do livro é www.flyingcircusofphysics.com* e contém os seguintes recursos (em inglês): • Mais de 10.000 citações de revistas e livros de ciência, engenharia, matemática, medicina e direito. As citações estão reunidas de acordo com os itens do livro e classificadas de acordo com o grau de dificuldade. • Itens complementares. • Correções, atualizações e comentários adicionais. • Um índice ampliado.

Origem do nome Circo Voador

O nome da minha coleção original de problemas foi dado em homenagem aos primeiros espetáculos de acrobacias aéreas em que pilotos destemidos realizavam manobras arrepiantes. Eu achava que esses espetáculos aéreos eram conhecidos pelo nome genérico de “circo voador” e esperava que a imagem de pilotos destemidos estimulasse as pessoas a lerem minhas palavras. Descobri mais tarde que o circo voador era originalmente um circo itinerante que se deslocava de trem e, em seguida, foi o nome dado a aviões alemães que eram transportados dessa forma. A expressão ficou associada ao famoso piloto alemão Barão Vermelho, que na Primeira Guerra Mundial pintou seu avião de vermelho-vivo para assustar os pilotos que ele combatia em batalhas aéreas. O programa humorístico Monty Python’s Flying Circus (Circo Voador de Monty Python) foi lançado na Inglaterra cerca de um ano depois que comecei a escrever usando o nome Circo Voador. Naquele ano, aparentemente, o nome estava no ar dos dois lados do Atlântico. (O “quadro do papagaio morto”, porém, é exclusivo de Monty Python.)

Bibliografia Todas as citações aparecem no site de O Circo Voador da Física, agrupadas de acordo com os assuntos do livro e classificadas segundo o grau de dificuldade matemática. O site contém mais de 10.000 citações.

Envio de material Apreciaria muito receber correções, comentários, novas idéias e citações. Neste último caso, gostaria que o leitor incluísse a citação completa, sem abreviações e com o número inicial e final das páginas; mas, se isso não for possível, até um recorte me interessa. Se o leitor puder enviar a fotocópia de um artigo ou o endereço de um site, será ótimo. Não costumo mencionar os sites nas citações porque não tenho como verificar com freqüência se continuam ativos. Dou aulas em tempo integral, trabalho neste livro em tempo integral e trabalho no livro-texto Fundamentos de Física em tempo duplamente integral. São muitos tempos integrais e sou um só. Sendo assim, compreendam, por favor, que nem todas as cartas podem ser respondidas.

Cleveland State University Se você quer freqüentar uma universidade de primeira linha, de porte médio, venha para a Cleveland State University (www.csuohio.edu), em Cleveland, Ohio. Leciono aqui há mais de 30 anos e não pretendo parar (embora saiba que a natureza vai me obrigar a reduzir o ritmo). Vivo em um escritório apertado, cercado de artigos científicos, digitando freneticamente para tentar concluir mais uma publicação dentro do prazo.

Livros-texto O conteúdo deste livro supõe que o leitor cursou aulas de física elementar ou ciências naturais no ensino fundamental. Se você quiser um bom texto para acompanhar este livro, aqui vão algumas sugestões: • How Things Work: The Physics of Everyday Life (Como as Coisas Funcionam: A Física do Dia-a-dia), Louis A. Bloomfield (John Wiley & Sons), uma introdução não-matemática à física • Física, John D. Cutnell e Kenneth W. Johnson (LTC Editora) uma introdução em três volumes à física baseada na álgebra • Fundamentos de Física, David Halliday, Robert Resnick e Jearl Walker (LTC Editora), uma introdução em quatro volumes à física baseada no cálculo.

Agradecimentos Tenho muitas pessoas a quem agradecer, pois elas me incentivaram nos momentos em que pensei: “Não há mais esperança!” Na verdade, isto é apenas parte do motivo. O resto é que muitas pessoas me agüentaram quando fiquei completamente obsessivo e pensei: “Tenho que trabalhar como se não houvesse amanhã!” Jearl e Martha Walker (meus pais, que, quando eu era adolescente, certamente passaram muitas noites em claro preocupados se eu teria sucesso na vida ou acabaria na prisão), Bob Phillips (meu professor de matemática e física no ensino médio, que abriu novos mundos para mim), Phil DiLavore (que me ajudou a dar os primeiros passos como professor), Joe Reddish (que prestou grande ajuda ao conseguir que o texto original de O Circo Voador da Física fosse publicado como um relatório técnico pelo Departamento de Física da Universidade de Maryland), Phil Morrison (que foi o primeiro a me incentivar a publicar o relatório técnico em forma de livro e, em seguida, escreveu uma bela resenha sobre o livro na Scientific American, que

provavelmente me valeu um emprego de 13 anos como colunista da seção “O Cientista Amador”), Dennis Flanagan (o editor da Scientific American, que me contratou e depois me orientou durante anos), Donald Deneck (editor de física da John Wiley & Sons no início dos anos 1970, que me ofereceu o primeiro contrato de publicação de O Circo Voador da Física), Karl Casper e Bernard Hammermesh (que ficaram tão impressionados com o livro que me contrataram como professor adjunto da Cleveland State University), David Halliday e Robert Resnick (que permitiram que eu cuidasse do seu livro-texto, Fundamentos de Física, a partir de 1990), Ed Millman (que me ensinou a escrever livrostexto), Mary Jane Saunders (reitora da Faculdade de Ciência na CSU e que construiu uma atmosfera tão positiva que tornou possível esta edição de O Circo Voador da Física, tendo revisado criticamente muitas das páginas originais), Stuart Johnson (editor de física da John Wiley & Sons que me orientou neste livro e nas várias edições de Fundamentos de Física), Carol Seitzer (que leu do início ao fim os originais do livro e fez muitas mudanças significativas), Madelyn Lesure (designer da edição original deste livro), Elizabeth Swain (editora de produção da John Wiley & Sons responsável pela produção da edição original deste livro), Chris Walker, Heather Walker e Claire Walker (meus filhos, já crescidos, que agüentaram durante a vida inteira a minha obsessão por escrever e lecionar), Patrick Walker (meu filho menor, que não só agüentou os muitos anos que passei trabalhando no porão, mas também me ensinou a subir no paredão de escalada) e (principalmente) Mary Golrick (minha esposa, que contribuiu com muitas sugestões para esta edição e me deu forças para prosseguir toda vez que eu exclamava: “Não há mais esperança!”).

Física para… • um primeiro encontro: 1.57, 1.75, 1.122, 1.124, 2.51, 2.90, 4.78, 5.17, 5.19, 6.98, 6.122, 7.15, 7.16, 7.50 • o bar: 1.110, 1.122, 1.149, 2.10, 2.24, 2.25, 2.51, 2.76 a 2.78, 2.87 a 2.91, 2.96, 2.108, 2.120, 3.27, 3.40, 4.24, 4.42, 4.60, 4.78, 6.98, 6.113, 6.130, 6.136, 6.138 • uma viagem de avião: 1.17, 1.18, 4.53, 4.69, 5.34, 5.35, 6.10, 6.34, 6.35, 6.37, 6.44, 6.63, 6.91, 6.100, 6.105, 6.129 • o banheiro: 1.93, 1.193, 2.21, 2.23, 2.41, 2.60, 2.150, 3.67, 4.65, 4.66, 6.88, 6.99, 6.110 • o jardim: 1.132, 2.11, 2.80, 2.93, 2.94, 2.99, 3.25, 4.29, 4.57, 4.84, 5.32, 6.84, 6.92, 6.115, 6.118, 6.120, 6.121, 6.126, 7.38

Sinta-se à vontade para criar novos grupos de problemas para outros lugares e ocasiões.

Jearl Walker Department of Physics College of Science Cleveland State University 2121 Euclid Avenue Cleveland, Ohio USA 44115 Fax: USA 216.687.2424

_____________ *A manutenção do site é de responsabilidade do autor do original em inglês. (N.E.)

 

Sumário Geral Prefácio 1 Desviando das Gotas de Chuva (MOVIMENTO) 2 Correndo no Teto; Nadando em Melado (FLUIDOS) 3 Debaixo das Cobertas, Ouvindo os Monstros (SOM) 4 Atacando à Noite, Guiados pelo Calor (PROCESSOS TÉRMICOS) 5 Escapando de um Estrondo e de um Clarão (ELETRICIDADE E MAGNETISMO) 6 Espalhando Cores por Toda Parte, como um Arco-Íris (ÓPTICA) 7 Tatus Dançando à Luz de uma Lua Inchada (VISÃO)

Sumário Prefácio CAPÍTULO 1 Desviando das Gotas de Chuva (MOVIMENTO) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40

Correr ou andar na chuva? Filas no trânsito e trânsito parado Ondas de choque na auto-estrada Distância mínima em relação ao carro da frente Passando no sinal amarelo Travamento das rodas durante uma freada brusca Deslizar ou não deslizar Derrapando até parar CURIOSIDADE: Alguns recordes de marcas de derrapagem Pica-paus, carneiros monteses e concussões CURIOSIDADE: Altas acelerações Colisão frontal de automóveis CURIOSIDADE: Brincando com locomotivas Colisões traseiras e o efeito chicote Curvas dos carros de corrida Pistas de atletismo Ilusão de decolagem CURIOSIDADE: Vôo 143 da Air Canada Medo e arrepios no parque de diversões CURIOSIDADE: Loopings de bicicleta Apanhando uma bola voadora CURIOSIDADE: Bola alta Rebatendo uma bola de beisebol Passes legais no rúgbi Malabarismo Salto com vara O disparo de um atlatl e a língua de um sapo Fundas Tomahawks Boleadeiras Máquinas de cerco Canhão humano Arremessos de basquete CURIOSIDADE: Recordes de lances livres Tempo de vôo no basquete e no balé Golfe CURIOSIDADE: Cortina da morte do impacto de um meteoro O salto em altura e o salto em distância Feijões saltitantes Acrobacia de um salta-martim; ataque de uma tamarutaca

1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89

CURIOSIDADE: Alguns recordes de levantamento de peso Colisões em cadeia Deixando cair uma pilha de bolas CURIOSIDADE: Uma demonstração arrasadora Caratê Boxe Queda de uma passarela Queda do World Trade Center Recordes de queda livre Um ousado salvamento de pára-quedas Gatos caindo de grandes alturas Land dive e bungee jump Preso em um elevador em queda livre CURIOSIDADE: Bombardeiro colide com o edifício Empire State Quedas em lutas e ao descer de pára-quedas Camas de pregos Colheres penduradas Rastros deixados por pedras Nós Escaladas Escaladas de carneiros monteses O deslocamento de estátuas na ilha da Páscoa A construção de Stonehenge O levantamento dos blocos das pirâmides do Egito Molamania Torre inclinada de peças Torre inclinada de Pisa Queda de peças de dominó Queda de chaminés, lápis e árvores Quebrando pontas de lápis Queda de uma ponte Engavetamento de um trem Strikes no boliche Tacadas de bilhar e sinuca Minigolfe Truques com uma Superbola Golpes de raquetebol CURIOSIDADE: Um gol polêmico Tênis Bicicletas e motocicletas Saltos em distância de motocicleta Skates Arremesso de ferraduras O giro dos bambolês e dos laços de vaqueiro Ioiôs Desenrolando um ioiô Rompendo a barreira do som em um carro CURIOSIDADE: Explosão em um teste de rotação Rolamento de esquimó

1.90 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 1.100 1.101 1.102 1.103 1.104 1.105 1.106 1.107 1.108 1.109 1.110 1.111 1.112 1.113 1.114 1.115 1.116 1.117 1.118 1.119 1.120 1.121 1.122 1.123 1.124 1.125 1.126 1.127 1.128 1.129 1.130 1.131 1.132 1.133 1.134 1.135 1.136 1.137 1.138

Curling Andando na corda bamba Montando em touros Rasgando papel higiênico Pedras e bombas saltitantes Rodopio de um patinador no gelo Rodopio de um livro Gatos em queda livre, proezas dos astronautas e saltos ornamentais Salto mortal quádruplo A queda da torrada Balé Esquiação Abandonado no gelo CURIOSIDADE: A ordem das rotações é importante Idiossincrasias dos piões CURIOSIDADE: Mala empacada Piões invertidos Ovos giratórios Diabolôs Pedras celtas Moedas e garrafas que balançam Judô, aiquidô e luta greco-romana Rotação dos projéteis e passes longos Movimento de um balanço Movimento de um turíbulo O pêndulo no poço Pêndulos invertidos; monociclistas Transporte de cargas na cabeça Transporte de cargas em varas oscilantes Pêndulos acoplados Pêndulo elástico O sino que não tocava Efeito espaguete A aranha e a mosca Oscilações de passarelas e pistas de dança Construções e pedras precariamente equilibradas Naufrágio do submarino nuclear Kursk O mecanismo de detecção dos escorpiões da areia Ondas de neve Olas em estádios esportivos Colete à prova de balas O paradoxo do arqueiro Oscilações das plantas Oscilações dos edifícios altos Saltando de um trampolim Lançando um anzol Batalha das Malvinas; Big Bertha João e o pé de feijão rumo ao espaço O equinócio de primavera e ovos em pé

1.139 1.140 1.141 1.142 1.143 1.144 1.145 1.146 1.147 1.148 1.149 1.150 1.151 1.152 1.153 1.154 1.155 1.156 1.157 1.158 1.159 1.160 1.161 1.162 1.163 1.164 1.165 1.166 1.167 1.168 1.169 1.170 1.171 1.172 1.173 1.174 1.175 1.176 1.177 1.178 1.179 1.180 1.181 1.182 1.183 1.184 1.185 1.186 1.187

Loucura da Lua Subindo na descida Passando pelo centro da Terra A distensão de sacolas plásticas de compras A Calçada do Gigante e colunas de amido Unhas quebradas Fazendo bolas de papel Exemplos divertidos e trágicos de expansões explosivas Por que um quadro pendurado na parede fica torto Duas molas e uma surpresa A estabilidade de uma lata de refrigerante Pêndulo de Wilberforce Largadas das corridas de dragster Desviar ou frear Ultrapassando um ônibus A região de compressão de uma fita adesiva Bobsled em uma curva Rápido demais para escorregar A casa do Pequeno Príncipe Saltando de pára-quedas com uma abóbora Fisgando um peixe grande Fiddlesticks Cata-vento mágico Lançamento de peso e arremesso de martelo Saltos de um esquiador descendo uma encosta Puxando a toalha com os pratos na mesa CURIOSIDADE: Puxando com os dentes Cadeira sacolejante Levantando uma pessoa com os dedos Foguetes e um problema com um trenó a vela CURIOSIDADE: Da Terra a Vênus A escolha do martelo Regulador de pressão Uma régua deslizando sobre os dedos CURIOSIDADE: Cabo-de-guerra gigante Atirando ladeira acima e ladeira abaixo Saindo com o carro em uma rua escorregadia Balanceando um pneu Derrubando uma garrafa com um pêndulo Taça suspensa, pronta para quebrar Quebrando uma ponta de broca Relógios balançantes CURIOSIDADE: Achatando a ponte Golden Gate O balanço dos trens A oscilação da antena de um carro O tanque de estabilização de um navio As costelas das estradas Vendo apenas uma face da Lua Satélites espiões

1.188 1.189 1.190 1.191 1.192 1.193 1.194

A resistência do ar acelera os satélites Rota para a Lua em forma de oito A atração gravitacional da Terra e do Sol sobre a Lua O efeito estilingue gravitacional Fazendo um mapa da Índia Barbeando-se com duas lâminas A lateralidade da erosão fluvial

CAPÍTULO 2 Correndo no Teto; Nadando em Melado (FLUIDOS) 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 2.35 2.36 2.37

Carros de corrida no teto Pegando o vácuo Aerodinâmica de trens em movimento Queda da velha ponte de Tacoma Narrows A aerodinâmica dos edifícios Pipas Saltos de esqui Velocidade de um esquiador Bumerangues Lançamento de cartões de crédito e cartas de baralho Sementes que giram Cobras voadoras O efeito da resistência do ar sobre as bolas de tênis Desviando a bola da barreira A aerodinâmica da bola de golfe A aerodinâmica da bola de beisebol A aerodinâmica da bola de críquete Pássaros voando em V Nadando em melado Contrails O movimento da cortina para o interior do boxe Cães-da-pradaria e formigueiros gigantes Redemoinho na banheira Redemoinho em uma xícara de café Aglomeração de folhas de chá; rotação de azeitonas Rios tortuosos Um pássaro que gira na água A subida da água em um ovo que gira O movimento circular da água da pia O nível da água nos canais Ondas solitárias Pororocas Marés As marés da baía de Fundy Água morta Tornados CURIOSIDADE: No olho de um tornado

2.38

Trombas d’água e nuvens em forma de funil

2.39 2.40 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.50 2.51 2.52 2.53 2.54 2.55 2.56 2.57 2.58 2.59 2.60 2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.70 2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79 2.80 2.81 2.82 2.83 2.84 2.85 2.86 2.87

Redemoinhos de poeira, de neblina e de vapor Vórtices anulares Sifões e privadas Lagartos andando sobre a água Uma barra de chumbo em um barco Barras e embalagens flutuantes Buraco em uma represa; navio em um dique seco Perda de consciência dos pilotos Circulação sanguínea nas cobras, nas girafas e nos dinossauros altos Os saurópodes nadavam? Os gastrólitos dos dinossauros e dos crocodilos O efeito Coanda O efeito chaleira Subindo após um mergulho profundo Nodo com tubo de respiração, praticado por pessoas e elefantes Mergulhos profundos; fuga de um submarino A tragédia do lago Nyos CURIOSIDADE: Saltando sobre uma casa e voando em uma cadeira de jardim A fluência do vidro nas janelas das catedrais medievais Fluidos de viscosidade incomum A inversão do sentido de rotação da sopa Jato de líquido saltitante Fluidos que sobem em bastões Rolo de barbante líquido Ondas do mar Ondas extremas e ondas traiçoeiras Mudança de direção das ondas Ondas que passam por uma abertura estreita Seiches e a oscilação da água Esteiras deixadas por patos e porta-aviões Surfe O movimento dos botos e dos golfinhos Ondas de borda Cúspides praianas O petróleo e as ondas Gotas flutuantes Gotas que respingam Bolhas em refrigerantes, cerveja e champanhe Bolhas de sabão e a espuma da cerveja Estourando bolhas Baleias e redes de bolhas Baratas-d’água A formação de nódulos em bastões e fios de saliva A captação da chuva por lagartos do deserto A captura da presa pelas aves marinhas Gotas e películas líquidas em superfícies sólidas A aglomeração do cereal matinal Castelos de areia A aparência do café requentado

2.88 2.89 2.90 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99 2.100 2.101 2.102 2.103 2.104 2.105 2.106 2.107 2.108 2.109 2.110 2.111 2.112 2.113 2.114 2.115 2.116 2.117 2.118 2.119 2.120 2.121 2.122 2.123 2.124 2.125 2.126 2.127 2.128 2.129 2.130 2.131 2.132 2.133 2.134 2.135 2.136

Lágrimas de vinho e outros fenômenos em superfícies líquidas Estruturas tubulares no licor Tia Maria Desenhos no café quente e em outros fluidos Desenhos nas manchas de café O embaçamento de vidros e lentes O efeito lótus Pulgões e bolas de líquido Pincéis, cabelo molhado e a rosquinha molhada no café Batatas fritas Patos enxutos Batatas cortadas, fezes de passarinho e um carro Lançando esporos de cogumelo Ondas em um filete de água Sinos, placas e correntes de água Pisando na praia molhada e na areia movediça A queda de edifícios e de um elevado CURIOSIDADE: O efeito areia movediça em silos Fluxo de pedestres e fugas desordenadas Montes de areia e escoamento auto-regulado Escoamento em ampulhetas e silos O efeito castanha-do-pará e a agitação de grãos Balão de avalanche Ondulações e movimentos da areia Dunas de areia Yardangs e outras formações na areia Barreiras de proteção contra a neve e depósitos eólicos Avalanches de neve Grandes deslizamentos de terra Avalanches de pedra Bandeiras e fitas tremulantes Fontes tremulantes e cachoeiras ribombantes Fontes pulsantes Despejando líquidos de um copo invertido e de um yard-of-ale Gotejamento Bolhas de sabão Trajetórias de bolhas Antibolhas Levantando arroz com uma vara Lançamento de disco Lançamento de dardo Dois barcos que se atraem A aerodinâmica de cabos e linhas de transmissão A prancha “sonrisal” Empuxo ao fazer uma curva Reflexão de ondas em bancos de areia A chuva e as ondas Um oscilador de sal Dedos de sal e uma fonte de sal A subida da água em árvores altas

2.137 2.138 2.139 2.140 2.141 2.142 2.143 2.144 2.145 2.146 2.147 2.148 2.149 2.150 2.151 2.152 2.153 2.154

Leiras na água Ruas de nuvens e incêndios seletivos Empacotamento de pastilhas M&M Uma pilha de maçãs Figuras de pó Um oscilador hidráulico Bolas de óleo em glicerina Bola em uma corrente de ar O navio de Flettner Estreito de Gibraltar; estreito de Messina; estreito da Sicília Jorro granular Pequena crista em água corrente Filetes de água tortuosos Pêlos de barba e barcos de cânfora na água Manchas de óleo na pista Desenhos formados por gotas d’água caindo em glicerina Dedos de azeite de oliva em uma água coberta de talco Oscilador de gordura de galinha

CAPÍTULO 3 Debaixo das Cobertas, Ouvindo os Monstros (SOM) 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26

O uivo do vento O canto dos cabos telefônicos e das agulhas de pinheiro Apitos e assobios A fala e o canto O efeito do hélio na voz O canto gutural O ronco O ronronar e o rugido CURIOSIDADE: O som de um Parassaurolofo Os sons dos tigres e dos elefantes O coaxar da rã-touro Grilos e lagostas Rãs e grilos que emitem sons ressonantes O ataque das cigarras australianas As vozes dos pingüins Estalidos emitidos por uma baleia Interferência construtiva causada por sons refletidos Sons de longo alcance Sombras acústicas Ouvindo os submarinos soviéticos Megafone de um chefe de torcida, buzina de nevoeiro A direção de um sussurro O efeito Doppler Como os morcegos encontram insetos Como os morcegos encontram flores Ouvindo debaixo d’água

3.27

O efeito coquetel

3.28 3.29 3.30 3.31 3.32 3.33 3.34 3.35 3.36 3.37 3.38 3.39 3.40 3.41 3.42 3.43 3.44 3.45 3.46 3.47 3.48 3.49 3.50 3.51 3.52 3.53 3.54 3.55 3.56 3.57 3.58 3.59 3.60 3.61 3.62 3.63 3.64 3.65 3.66 3.67 3.68 3.69 3.70 3.71 3.72 3.73 3.74 3.75 3.76

Sons emitidos pelos ouvidos Música na cabeça Perda auditiva causada por ruídos Sons amplificados por ruídos Estetoscópios e sons respiratórios Esticando cordas de violão e elásticos Tocando violino Brilho difuso de um violino Conchas Didjeridu Oscilações nos silos A emissão de sons por tubos corrugados A acústica de uma caneca de café A ressonância de uma garrafa Unhas no quadro-negro Passando o dedo em taças de vinho Quebrando taças de vinho com a voz Ragatos murmurantes e o barulho da chuva A ressonância de copos e jarras O barulho dos encanamentos Estalando as juntas Sons de Korotkoff O ataque do camarão assassino Sons da água fervente Sons de uma pessoa que está comendo Estala, crepita e estoura Estrondo sônico de aviões e projéteis Estrondos sônicos em túneis ferroviários Trovão Aeromotos: estrondos misteriosos vindos do céu Quedas de pedras e de árvores Os estalos de chicotes e toalhas molhadas A tosse e o espirro A acústica de auditórios e salas de concerto Galerias de sussurros em recintos fechados A galeria de sussurros da catedral de St. Paul Ecos de paredes, esquinas e bosques Ecos musicais produzidos por escadas e cercas CURIOSIDADE: A acústica de construções antigas Cantando no chuveiro O barulho do vizinho de cima Ruídos emitidos pela areia O barulho de gelo quebrando e o bergy seltzer Ouvindo através da neve Sons produzidos por quem anda na neve “É possível ouvir a forma de um tambor?” Infra-som O som do milho crescendo O ruído da roupa esticada

3.77 3.78 3.79 3.80 3.81

Canos que fazem glissandos Molamanias sibilantes Sons de tiros em regiões de pergelissolo Ouvindo auroras e bolas de fogo O zunidor australiano

CAPÍTULO 4 Atacando à Noite, Guiados pelo Calor (PROCESSOS TÉRMICOS) 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.24 4.25 4.26 4.27 4.28 4.29 4.30 4.31 4.32 4.33 4.34 4.35 4.36 4.37 4.38 4.39

Cascavéis mortas Besouros sensíveis ao fogo Abelhas matam uma vespa Animais que se aglomeram Andando no espaço sem traje espacial Gotas d’água em uma frigideira quente, dedos em chumbo derretido CURIOSIDADE: Uma bebida mortal Caminhando sobre brasas CURIOSIDADE: Relatos de caminhadas sobre o fogo Água congelada e super-resfriada Comendo gelo marinho Velocidade de resfriamento de água quente e morna Água congelada pelo céu Preservando legumes em conserva com uma banheira cheia de água Pulverizando o pomar para proteger as árvores da geada Jogando água quente em um ar muito frio Pingentes de gelo Represas de gelo em beirais Gelo poroso e gelo liso em cabos Agulhas de gelo e outras formações glaciares Cubos de gelo translúcidos Desenhos dentro de gelo parcialmente derretido Congelamento de lagos Congelamento de bebidas gasosas Rompimento de canos Tocando ou lambendo um cano gelado Montículos no inverno; pingos em pergelissolo Polígonos de gelo do Ártico Pedras que brotam em jardins e formam desenhos no solo Pedra-arado CURIOSIDADE: Bomba de gato morto e um corpo desaparecido A formação de flocos de neve Esquiação Patinação no gelo e bolas de neve Andando no gelo Iglus Rolos de neve Avalanches de neve Desenhos formados pelo derretimento da neve

4.40

O efeito do sal em calçadas escorregadias

4.41 4.42 4.43 4.44 4.45 4.46 4.47 4.48 4.49 4.50 4.51 4.52 4.53 4.54 4.55 4.56 4.57 4.58 4.59 4.60 4.61 4.62 4.63 4.64 4.65 4.66 4.67 4.68 4.69 4.70 4.71 4.72 4.73 4.74 4.75 4.76 4.77 4.78 4.79 4.80 4.81 4.82 4.83 4.84 4.85 4.86 4.87 4.88 4.89

Sorvete feito em casa Bebendo café quente; comendo pizza quente Fervendo a água Cozinhando um ovo Assados, cozidos e grelhados Cozinhando no acampamento Assando uma pizza Aquecimento em um forno de microondas Estourando pipoca Preparando ovos mexidos Gêiseres e cafeteiras Barco pop-pop de brinquedo Dilatação térmica Destruição de um vagão-tanque Secagem da roupa em varal Casacos quentes Plantas quentes Pêlos de urso polar Roupas pretas e ovelhas negras no deserto Velocidade de resfriamento de uma xícara de café Água fresca da moringa Pássaro bebedor CURIOSIDADE: Pássaros bebedores grandes Tubos de calor e pregos na batata Espelhos embaçados Óculos embaçados O abastecimento de água em regiões áridas Lama rachada A dilatação de caixinhas de suco em aviões Inflando bolhas e bolas Assando bolo em altitudes elevadas Champanhe em um túnel CURIOSIDADE: Presa na garrafa Trovoadas no inverno Fumaça de chaminé Sinais de fumaça e nuvens em forma de cogumelo Fogo em uma lareira A chama de uma vela Borrifando água para apagar um incêndio Fogo em óleo de cozinha Queimadas e incêndios florestais Tempestades de fogo A regulação de temperatura em cupinzeiros e edifícios O calor nas estufas e nos carros fechados Ilhas de calor Termodinâmica dos elásticos O föhn e o chinook O teste da água fervente Energia em uma sala aquecida

4.90 4.91 4.92 4.93

Orientação de depósitos de gelo Um radiômetro de brinquedo e sua rotação Poços e tempestades Nuvens de insetos e de camarões

CAPÍTULO 5 Escapando de um Estrondo e de um Clarão (ELETRICIDADE E MAGNETISMO) 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.30 5.31 5.32 5.33 5.34 5.35 5.36 5.37 5.38 5.39 5.40

Raios Raios: pessoas, vacas e ovelhas Raios: veículos Raios: árvores, torres e a terra Relâmpagos de contas e relâmpagos globulares Sprites Pára-raios Suéteres, escorregas e centros cirúrgicos Automóveis, bombas de gasolina e paradas nos boxes CURIOSIDADE: Troca de chicletes chocante O perigo das partículas em suspensão no ar O perigo das latas de aerossol O perigo da água em suspensão Esqui luminoso O desastre do Hindenburg Incêndios em macas de hospital Fagulhas produzidas ao se deslocar uma fita adesiva Salsa, sálvia, alecrim e tomilho Luz emitida por uma pastilha em um quarto escuro Luzes de terremoto O fogo-de-santelmo e a luz nos Andes Linhas de alta tensão Corrente, tensão e pessoas CURIOSIDADE: Um protesto infeliz Uso de correntes elétricas em cirurgias Incêndios e explosões durante cirurgias Bateria de limão; formigamento em obturações Enguias e peixes-elétricos Eletrificação causada por poeira, areia e neve levadas pelo vento Descargas semelhantes a relâmpagos acima de vulcões Contaminação bacteriana em cirurgias Abelhas e polinização CURIOSIDADE: Formigas-de-fogo e equipamentos elétricos Folhas de plástico para embrulhar alimentos Moscas no teto e lagartixas na parede Torta de merengue Molho bearnês Ímãs naturais O campo magnético da Terra e a arqueologia Complicações em exames de ressonância magnética

5.41

CURIOSIDADE: Busca magnética da bala que matou Garfield

5.42 5.43 5.44 5.45 5.46 5.47 5.48 5.49 5.50

Ímãs, tatuagens e jóias corporais Magnetismo no desjejum e nas vacas Guitarras elétricas Amplificadores das guitarras elétricas Auroras polares Erupções solares e quedas de energia Levitação de rãs O chiado de um ímã Correntes elétricas no corpo humano em uma estação de trem

CAPÍTULO 6 Espalhando Cores por Toda Parte, como um Arco-Íris (ÓPTICA) 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24 6.25 6.26 6.27 6.28 6.29 6.30 6.31 6.32 6.33 6.34 6.35

Arco-íris Arco-íris incomuns Arco-íris artificiais O céu não é escuro de dia As cores do céu Montanhas azuis, montanhas brancas e nuvens vermelhas O provérbio dos marinheiros Crepúsculos e vulcões O anel do bispo Contraste das nuvens Cores do céu durante um eclipse solar Quando o céu ficar esverdeado, corra para o porão O realce do azul do céu Mancha escura e borda rosada ao crepúsculo Colunas claras e escuras no céu Neblina azulada; neblina avermelhada e neblina amarronzada Luzes de uma cidade distante A que distância fica o horizonte? A cor do céu em um dia nublado Mapas no céu Mais claro quando neva A extremidade do facho da luz de um holofote CURIOSIDADE: Os raios de Sol do solstício de inverno em Newgrange O raio verde Distorções do Sol perto do horizonte Lua vermelha durante um eclipse lunar Raio em coroa Miragens de oásis Miragem de parede Monstros aquáticos, tritões e grandes miragens Um fantasma entre as flores Shimmy e estrelas que cintilam Faixas de sombra O halo de 22° e parélios Um céu cheio de halos, arcos e pontos

6.36 6.37 6.38 6.39 6.40 6.41 6.42 6.43 6.44 6.45 6.46 6.47 6.48 6.49 6.50 6.51 6.52 6.53 6.54 6.55 6.56 6.57 6.58 6.59 6.60 6.61 6.62 6.63 6.64 6.65 6.66 6.67 6.68 6.69 6.70 6.71 6.72 6.73 6.74 6.75 6.76 6.77 6.78 6.79 6.80 6.81 6.82 6.83 6.84

Sombras das montanhas Sombras de nuvens que desaparecem As cores do mar Reflexo do Sol e da Lua na água Anéis de luz Sombras e cores na água A cor de nossa sombra Vendo a parte escura da Lua Heilingenschein e efeito de oposição Ondas em plantações Glória Coroa Coroa em uma vidraça embaçada Nuvens iridescentes Lua azul Faróis de neblina amarelos Escuro quando molhado Cores da neve e do gelo Firnspiegel e o brilho da neve O branco total e a cegueira da neve Óculos de esquiação amarelos Quando o gelo fica escuro Nuvens brancas e nuvens escuras Nuvens noctilucentes Olhando no espelho Reflexos na água e o espelho de um cenário O fantasma de Pepper e a cabeça sem corpo A inclinação das janelas das torres de controle do tráfego aéreo Imagens em dois ou três espelhos Caleidoscópios Labirintos de espelhos Atirando com laser em um parque de diversões Triângulos escuros entre bolas de Natal Prateado vira preto; mais preto que o preto Retrorrefletores CURIOSIDADE: Pousando no escuro atrás das linhas inimigas Espelho unidirecional Espelho retrovisor Espelho lateral Um bar no Folies-Bergère A arte renascentista e os projetores ópticos A anamorfose na arte Os pontos claros e escuros da iluminação pública Imagens múltiplas em janelas de vidro duplo O holofote mais forte do mundo O raio da morte de Arquimedes CURIOSIDADE: Dando luzes a um árbitro Luzes fantasmagóricas no cemitério Como um pescador vê o peixe

6.85 6.86 6.87 6.88 6.89 6.90 6.91 6.92 6.93 6.94 6.95 6.96 6.97 6.98 6.99 6.100 6.101 6.102 6.103 6.104 6.105 6.106 6.107 6.108 6.109 6.110 6.111 6.112 6.113 6.114 6.115 6.116 6.117 6.118 6.119 6.120 6.121 6.122 6.123 6.124 6.125 6.126 6.127 6.128 6.129 6.130 6.131 6.132 6.133

Como um peixe vê o pescador Lendo através de um envelope fechado CURIOSIDADE: Engolidores de espadas e esofagoscopia Óptica da porta do boxe A mágica da refração O homem invisível e animais transparentes Uma estrada que parece torta por causa da refração Regando plantas ao sol Acendendo fogo com gelo Diamantes Opalas Efeito alexandrita Safira-estrela Figuras em uma taça de vinho, uma janela e uma gota d’água Sombras com bordas e faixas claras Faixas claras e escuras sobre a asa de um avião CURIOSIDADE: Ondas de choque produzidas pelo Thrust SSC Câmara obscura e câmara pinspeck Imagens do Sol atrás de uma árvore Luzes vistas através de uma tela; linhas entre os dedos Riscos luminosos e teias coloridas Listras luminosas no pára-brisa de um carro Reflexos de um disco de vinil Cores em objetos com ranhuras finas Combate à falsificação: dispositivos opticamente variáveis Anéis coloridos em um espelho embaçado ou empoeirado A cor do leite na água A cor da fumaça de uma fogueira O efeito uzo As cores das manchas de óleo, películas de sabão e panelas de metal As cores de insetos, peixes, aves e traseiros de macacos Pérolas Protuberâncias dos olhos dos insetos e aviões invisíveis Plantas iridescentes Combate à falsificação: tintas que mudam de cor Saturação de cor em pétalas de flores O brilho amarelo da faia-preta A cor dos olhos Azul de frio Figuras de speckle As cores de objetos iluminados por lâmpadas fluorescentes Óculos de sol polarizados Polarização da luz do céu O senso de direção das formigas Polarização: cores e manchas Espumas e pós incolores Veludo preto lustroso; verniz lustroso As cores do vidro verde e do veludo verde Pele aveludada e maciez aparente

6.134 6.135 6.136 6.137 6.138 6.139 6.140 6.141 6.142 6.143 6.144 6.145 6.146 6.147 6.148 6.149 6.150 6.151 6.152 6.153 6.154 6.155 6.156

Festas com vaselina e Twinkies As cores da carne Canecos de cerveja “Lava mais branco” A moeda que desaparece Óculos de sol e smog O brilho do mar Fita azul no horizonte do mar O cair da noite Contrail colorido Nuvens nacaradas Luz púrpura do crepúsculo Ondas no céu Linhas que cortam a chuva distante Noites claras Luz zodiacal, gegenschein e outras luzes noturnas Reflexos no mar perto do horizonte Usando uma esfera de metal maciça para focalizar a luz Uma rotação rápida em um espelho curvo A cor da fumaça de cigarro Como seria a visão humana em ultravioleta Alfabeto difratado Um jogo de reflexos

CAPÍTULO 7 Tatus Dançando à Luz de uma Lua Inchada (VISÃO) 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 7.18 7.19 7.20 7.21

O aumento da Lua A forma do céu Decapitação com o ponto cego Riscos cinzentos de manhã; pontos móveis à luz do dia Moscas volantes e outras manchas nos olhos Halos dos postes de iluminação; auras das velas; pontas das estrelas Fosfenos: visões psicodélicas Criando um estroboscópio com zumbidos De olho na bola de beisebol Impressionismo Pontilhismo Fuguras de moiré Op art Profundidade nos quadros a óleo Lendo no escuro Luz-fantasma Reflexos dos olhos A visão de pessoas, pingüins e crocodilos debaixo d’água A visão submarina do “peixe de quatro olhos” debaixo d’água O efeito gato de Cheshire Efeito rinóptico

7.22

Nuvens voadoras e os Blue Meanies

7.23 7.24 7.25 7.26 7.27 7.28 7.29 7.30 7.31 7.32 7.33 7.34 7.35 7.36 7.37 7.38 7.39 7.40 7.41 7.42 7.43 7.44 7.45 7.46 7.47 7.48 7.49 7.50

Fenômeno de Pulfrich Seqüência de acendimento das lâmpadas de rua Bandas de Mach Um mundo de cabeça para baixo Sombras invertidas; o efeito bolha Reflexos curiosos em uma bola de Natal Figuras geométricas obtidas a partir de pontos aleatórios Figuras geométricas no “chuvisco” da televisão O sorriso da Mona Lisa Imagens distorcidas em uma tela de televisão Lendo através de pequenos furos As cores de um dedo Estrelas vistas de dia através de um tubo O olhar de um observador de estrelas A resolução de objetos vistos na Terra por astronautas Abelhas, formigas do deserto e luz polarizada O pincel de Haidinger As cores das sombras A segurança dos óculos escuros O olho dos peixes Profundidade em cartazes com vermelho e azul Arcos azuis de Purkinje A mancha de Maxwell Sensações visuais causadas pela radiação Luz vermelha em painéis de controle A visão de raios X do Super-Homem A ilusão dos fogos de artifício Olhando para o teto

1.1 • Correr ou andar na chuva? Uma pessoa deve correr ou andar ao atravessar a rua debaixo de chuva sem guarda-chuva? Correndo, a pessoa passa menos tempo na chuva, mas provavelmente encontra um número maior de gotas de chuva. A resposta muda se um vento soprar as gotas de chuva na direção da pessoa ou na direção oposta? Ao dirigir na chuva, que velocidade uma pessoa deve manter para minimizar a quantidade de água que cai no pára-brisa dianteiro e, assim, manter uma visibilidade razoável?

Resposta Se a chuva cai verticalmente ou o vento a empurra na direção da pessoa, esta deve correr o mais depressa que puder. Embora a pessoa colete gotas de chuva, a redução do tempo passado na chuva a deixa menos molhada do que se ela se movimentar mais devagar. Para reduzir o número de gotas coletadas, a pessoa deve minimizar sua seção reta vertical inclinando o corpo para a frente enquanto corre. Para se movimentar depressa com o corpo inclinado, você pode, como um pesquisador sugeriu, andar na chuva de skate, mas isto certamente chamará a atenção; além disso, é mais prático carregar um guarda-chuva do que um skate. Se o vento bater nas costas da pessoa, a melhor estratégia é correr a um ritmo equivalente à velocidade horizontal das gotas de chuva. Dessa forma, a pessoa vai molhar a cabeça e os ombros, mas não vai coletar gotas de chuva com a parte da frente, nem elas colidirão com a parte de trás. Entretanto, essa estratégia não funciona para um objeto que se movimente na chuva se ele tiver uma seção reta muito maior que a de uma pessoa. Um objeto assim vai coletar uma quantidade considerável de água na superfície de cima mesmo que sua velocidade seja igual à velocidade horizontal das gotas de chuva. Para se molhar o mínimo possível, tal objeto deveria se deslocar o mais rápido possível. Ao dirigir na chuva, o importante é manter a visibilidade, e não manter o carro o mais seco possível. Se as gotas de chuva caem verticalmente ou caem no sentido oposto ao do movimento do carro, é aconselhável dirigir devagar. Se a chuva cai no sentido do movimento do carro, o ideal é andar na velocidade horizontal das gotas de chuva, embora isto nem sempre seja viável.

1.2 • Filas no trânsito e trânsito parado Qual deve ser a seqüência de fechamento e abertura dos sinais de trânsito nos cruzamentos para que um tráfego intenso flua tranqüilamente em uma rua, sem engarrafamentos? A seqüência deve mudar quando chega a hora de maior movimento? Por que o esquema falha às vezes, como em uma tempestade, quando os cruzamentos ficam bloqueados, paralisando o trânsito?

Figura 1-1 / Item 1.1

Resposta Os carros se movimentam em filas de trânsito. Imagine que uma fila tenha parado no sinal vermelho no cruzamento 1. Quando o sinal abre, os primeiros da fila aceleram até atingirem uma certa velocidade de cruzeiro. Antes de alcançarem o cruzamento 2, o sinal correspondente deve abrir para que eles não sejam obrigados a reduzir a velocidade. Conhecendo a distância entre os cruzamentos, a aceleração típica dos primeiros da fila e o tempo gasto na velocidade de cruzeiro, é possível calcular quando o sinal do cruzamento 2 deve abrir. Os carros mais atrás na fila não partem imediatamente porque uma onda de ativação tem que chegar a eles (os motoristas não pisam no acelerador simultaneamente). Esse tempo pode chegar a dezenas de segundos. Se o fim da fila sofre um atraso muito grande, é bloqueado pelo sinal vermelho seguinte, no cruzamento 2. Suponha que a fila seguinte seja tão comprida ou mais que a anterior. Nesse caso, o número de carros parados no próximo sinal vermelho no cruzamento 2 aumenta. A situação se agrava se as filas continuarem a ser longas. A linha de carros parados no cruzamento 2 pode aumentar até se estender de volta até o cruzamento 1 e bloquear o tráfego. Nesse caso, o trânsito pára. Para resolver o problema, a seqüência de fechamento dos sinais dos cruzamentos 1 e 2 tem que ser invertida: o sinal do cruzamento 2 tem que abrir antes do sinal do cruzamento 1, para que os carros parados no cruzamento 2 possam sair antes que chegue a próxima fila de trânsito. A mudança na seqüência pode ser feita manualmente ou por um computador que monitore o número de carros parados no cruzamento 2. As filas também se formam nos túneis (principalmente quando a mudança de faixa é proibida) e nas estradas de mão dupla. Nos dois casos, uma fila começa quando carros mais rápidos encontram um veículo mais lento, como, por exemplo, um caminhão. Nas estradas de mão dupla, a fila desaparece quando os motoristas conseguem ultrapassar o veículo lento.

1.3 • Ondas de choque na auto-estrada Quando a densidade do tráfego aumenta em uma auto-estrada, por que motivo se formam “ondas”, nas quais os motoristas reduzem a velocidade ou aceleram, que se propagam no trânsito? Às vezes se criam ondas quando um acidente ou um carro enguiçado bloqueia uma faixa e às vezes elas são causadas por acidentes fantasmas nos quais o trânsito fica mais lento por causa de motivos menores, tal como um carro mudando de faixa. As ondas se movem na direção dos carros ou na direção oposta? Por que uma onda pode persistir depois da remoção do acidente ou do carro enguiçado?

Resposta Quando a densidade de veículos é bem baixa, as ações de um motorista têm pouco efeito sobre os outros motoristas, principalmente quando é possível ultrapassar. Quando a densidade é maior, os motoristas começam a reduzir a velocidade não apenas por segurança, mas também porque as oportunidades de ultrapassagem diminuem. Suponha que você esteja dirigindo em um trânsito nessas condições. Se o motorista da frente reduz ou aumenta a velocidade, você fará o mesmo após um tempo de resposta de cerca de um segundo. O motorista de trás faz o mesmo após outro tempo de resposta de um segundo e assim por diante. Essa ação de acelerar se propaga como uma onda. Essa onda costuma ser imperceptível para qualquer um que esteja na beira da rua porque as mudanças de velocidade geralmente são pequenas. Imagine agora que o motorista da frente freie bruscamente. Você e o motorista de trás também irão pisar fundo no freio, cada qual levando cerca de um segundo para reagir. A freada repentina também se propaga como uma onda, só que desta vez a ação é visível para um observador na beira da rua. Tal onda é uma onda de choque. Dependendo da concentração de carros antes e depois da passagem da onda, a onda pode propagar-se no sentido do tráfego, no sentido contrário ou pode até ser estacionária.

Imagine que uma onda de choque seja criada quando um carro enguiça em um tráfego moderado e que sejam necessários 15 minutos para que o motorista empurre o carro para fora da rua. Quando os carros começam a acelerar de volta à velocidade normal de cruzeiro, uma onda de liberação se propaga na longa linha de carros parados. Pode levar muito tempo para que a onda de liberação alcance a onda de choque que ainda se propaga no tráfego. Só então o trânsito voltará ao normal.

1.4 • Distância mínima em relação ao carro da frente Se um carro está atrás de outro, qual é a separação mínima que irá possibilitar que o carro de trás pare sem colidir com o carro da frente se o motorista frear bruscamente até parar? Uma regra simples recomenda manter uma distância de pelo menos o comprimento do carro para cada 15 quilômetros por hora. Este conselho é razoável?

Resposta O conselho não é razoável porque se baseia em duas hipóteses duvidosas. Uma é que os condutores têm tempos de resposta idênticos no caso de uma emergência. Se o motorista de trás demora mais tempo que o motorista da frente para responder, é necessária uma distância maior. A outra hipótese, mais sutil, é que os carros freiam na mesma proporção. Se eles não travam as rodas, a hipótese provavelmente não é válida. Evidentemente, a situação de risco ocorre quando o carro da frente freia mais depressa que o carro de trás. Suponha que exista apenas uma pequena diferença nas taxas de frenagem. Existe uma regra simples para se calcular a separação mínima a fim de evitar acidente? Surpreendentemente, a resposta é negativa, porque a separação mínima depende do quadrado da velocidade e, portanto, não é facilmente calculável mentalmente para uma dada situação. Assim sendo, se você trafega depressa atrás de outro carro, é melhor manter uma distância muito maior que a recomendada pela regra simples.

1.5 • Passando no sinal amarelo Imagine que o sinal de um cruzamento fique amarelo pouco antes de você chegar ao cruzamento. Você deve frear até parar antes de alcançar o cruzamento, continuar à mesma velocidade ou acelerar? Você pode tomar uma decisão com base em sua experiência, avaliando sua velocidade, a distância até o cruzamento, a largura do cruzamento e fazendo uma suposição quanto à duração do sinal amarelo. É possível que você infrinja a lei com qualquer das escolhas mesmo sem exceder o limite de velocidade?

Resposta A resposta depende da legislação local, já que em alguns países é considerado infração estar no cruzamento quando o sinal fecha, enquanto em outros é permitido por lei permanecer no cruzamento contanto que você tenha entrado nele antes de o sinal fechar. Na primeira situação, é bem possível que você esteja em uma situação em que não há como evitar a infração, porque pode ser que não haja tempo suficiente para parar ou acelerar o suficiente (sem exceder o limite de velocidade) para sair do cruzamento. Em uma situação dessas, existe um intervalo de distâncias de um cruzamento no qual nenhuma estratégia é capaz de evitar a infração. O problema se agrava quando a duração do sinal amarelo é pequena e a velocidade máxima permitida é baixa, mas o perigo de colisão é reduzido se o sinal da rua transversal demorar um ou dois segundos para abrir depois que o seu sinal fechar.

1.6 • Travamento das rodas durante uma freada brusca Quando alguns modelos de carros sem sistemas de freios antitravamento são freados bruscamente, começam a rodopiar e podem terminar virando ao contrário (Fig. 1-2a). O que produz o rodopio e por que nem todos os modelos de carro rodopiam? Se o seu carro começa a rodopiar, qual é a melhor estratégia para recuperar o controle: virar as rodas dianteiras na direção da derrapagem ou na direção oposta?

Resposta Um giro completo é mais comum nos carros com motor dianteiro, porque as rodas dianteiras sustentam mais peso que as rodas traseiras. Por isso, as rodas traseiras provavelmente vão travar e começar a deslizar antes das rodas dianteiras e, a partir de então, uma pequena rotação (causada, por exemplo, por uma irregularidade na rua) é suficiente para fazer o carro virar ao contrário.

Figura 1-2 / Item 1.6 (a) Cavalo-de-pau produzido por uma freada brusca. Forças de atrito nos pneus (b) para motores dianteiros e (c) para motores traseiros.

Para visualizar o fenômeno, considere o atrito nas rodas quando um carro começa a rodar para a esquerda em relação à direção na qual estava se movendo (Fig. 1-2b). As rodas traseiras, que estão deslizando, sofrem forças de atrito diretamente para trás. As rodas dianteiras, que ainda estão rolando, sofrem forças de atrito paralelas ao eixo frontal que aponta parcialmente para a traseira esquerda. Todas as forças criam torques que tentam fazer o carro girar horizontalmente em torno de seu centro de massa. Os torques do atrito das rodas dianteiras predominam porque tentam provocar rotação na mesma direção, a direção em que o carro começou a rodar. Assim sendo, a rotação se intensifica e o carro vira ao contrário.

Figura 1-3 / Item 1.7 Um carro se inclina para a frente durante uma freada.

Se o carro possui motor traseiro, os papéis das forças de atrito nas rodas dianteiras e traseiras se invertem, e os torques das rodas traseiras dominam, compensando a rotação inicial (Fig. 1-2c). O procedimento padrão se o seu carro começa a rodar é virar as rodas dianteiras na direção em que você deseja ir. Ao fazêlo, você cria um torque nas rodas dianteiras que compensa a rotação, mas trata-se de uma manobra difícil, pois, se você virar demais, irá rodar no sentido contrário.

1.7 • Deslizar ou não deslizar Suponha que você esteja dirigindo em uma estrada quando um grande alce invade a pista. Leve em conta que seu carro não tem sistema de freios antitravamento. Você deve travar as rodas pressionando o freio com toda a força, ou deve pressionar o freio o máximo possível sem travar as rodas? Se o carro derrapa, por que a derrapagem termina tão bruscamente?

Resposta Os livros tradicionalmente defendem a segunda opção, apontando corretamente que é o atrito das rodas que pára o carro. Quando as rodas estão girando, o atrito pode aumentar até um valor máximo de acordo com a pressão exercida nos freios. Se o freio foi pressionado com mais força, as rodas travam e os pneus deslizam. O atrito é menor nesse momento e, portanto, a distância percorrida até parar é maior. A melhor opção é frear apenas o suficiente para colocar as rodas na iminência de deslizar e, dessa forma, você percorre a menor distância até parar, certo? Não necessariamente, porque esta opção pode levar o carro a percorrer uma distância 25% maior do que se você travasse as rodas e deslizasse completamente. A recomendação teórica pode não ser a melhor em uma situação de emergência, por dois motivos. Um é que você mal terá tempo de experimentar os freios. O outro tem a ver com os torques exercidos no carro pelas forças de atrito das rodas: esses torques tendem a lançar o carro para a frente ao tentar rodar o carro em torno de um eixo horizontal que passa pelo centro de massa (Fig. 1-3). A tentativa de rotação reduz a carga nas rodas traseiras e aumenta a carga nas rodas dianteiras. Suponha que você tenha freado o suficiente para que o carro ficasse na iminência de deslizar. Como todas as rodas ainda estão girando e a carga nas rodas traseiras está menor, são as rodas traseiras que estão na iminência de deslizar (e não as rodas dianteiras com a carga extra) e o atrito nas rodas traseiras é pequeno. Se os freios dianteiro e traseiro forem idênticos, o atrito nas rodas dianteiras é a mesma quantidade reduzida e, portanto, o atrito total no carro é pequeno e a distância percorrida pelo carro até parar é grande. Imagine agora que você freie o suficiente para travar todas as rodas e deslizar completamente. Com as rodas deslizando, o atrito depende da carga. Como a carga nas rodas dianteiras está maior, o atrito nelas é grande. Embora o atrito nas rodas traseiras seja pequeno, o atrito aumentado nas rodas dianteiras produz um atrito total no carro maior que na situação anterior e, portanto, a distância percorrida pelo carro até parar é menor. Entretanto, travar as rodas não é desejável, porque o deslizamento deixa o carro desgovernado; você pode facilmente rodar (veja o item anterior), colidindo com carros em outras faixas ou na mão contrária. O fim abrupto de um deslizamento total se deve a um aumento súbito no atrito das rodas. Durante o deslizamento, a região de contato entre as rodas e a rua é lubrificada com borracha e alcatrão fundidos (veja o próximo item). Quando o carro reduz a velocidade, porém, a quantidade de material fundido diminui, reduzindo a lubrificação, o que causa um aumento repentino no atrito.

1.8 • Derrapando até parar Se as rodas de um carro são travadas durante uma freada de emergência, os pneus vão deslizar no pavimento e deixar marcas de derrapagem. Suponha que um carro derrape até parar. O peso do carro influencia a extensão das marcas de derrapagem? E a banda de rodagem e a largura do pneu? E se o pneu for liso? Por que é mais difícil parar um carro quando a estrada está um pouco molhada do que quando está coberta por água corrente?

Resposta Em uma freada de emergência o atrito da estrada sobre os pneus primeiro aumenta até um valor máximo e, em seguida, cai quando as rodas travam e os pneus começam a deslizar. A derrapagem arranca pedaços do pneu e aquece os pneus e a estrada. O pneu pode fundir e a estrada, se for feita de material betuminoso, também pode fundir. Quando qualquer um dos dois funde, produz um fluido que lubrifica a derrapagem, o que reduz ainda mais o atrito. O material fundido logo volta ao estado sólido, mas o rastro (a marca de derrapagem) permanece, às vezes durante meses. O rastro muitas vezes tem estrias ao longo do comprimento, devidas às nervuras de um pneu ou ao cascalho solto espalhado na estrada. Em superfícies de concreto, as marcas de derrapagem são mais raras e praticamente invisíveis, compostas principalmente de pedaços de pneu fundidos ou arrancados. Quando um carro derrapa até parar sem bater em nada, o comprimento de suas marcas de derrapagem possibilita a um investigador estimar a velocidade do carro quando começou a derrapar. Entretanto, são tantas as variáveis envolvidas que o cálculo não passa de uma estimativa. Uma das variáveis é a massa (ou peso) do carro: um carro pesado necessita de uma distância um pouco maior para parar do que um carro mais leve, devido principalmente ao aumento de lubrificação que o peso maior produz. (No juizado de trânsito e em muitos livros de física, esse efeito costuma ser ignorado.) O comprimento de uma marca de derrapagem também depende das condições da pista (as marcas costumam ser mais curtas quando a superfície da estrada é coberta de seixos e mais compridas quando foi polida pelo uso extensivo). A distância percorrida até parar não depende da largura do pneu, porque geralmente a força de atrito em um pneu depende apenas do peso exercido sobre o pneu e da textura e das propriedades de união do pneu e da superfície da estrada. A banda de rodagem de um pneu tem pouco efeito sobre a distância percorrida até parar quando a estrada está seca, mas pode ser crucial quando a estrada está molhada. Se houver muita água, como acontece durante uma chuva intensa, os pneus podem hidroplanar sobre um fina camada de água que praticamente não oferece atrito. Ou seja, o pneu não toca a pista porque a água não consegue sair do caminho ou sair de debaixo do pneu. A hidroplanagem é ainda pior quando a estrada está suja e a chuva acabou de começar, porque a água e a sujeira se misturam para formar um lubrificante muito viscoso, bem parecido com lodo. Dessa forma, o atrito entre o pneu e a estrada diminui consideravelmente, surpreendendo muitos motoristas em uma parada de emergência: eles acreditam que, quando a chuva começa, a estrada ainda não está molhada o suficiente para provocar hidroplanagem. Depois da chuva, com a estrada limpa e seca, o atrito entre o pneu e a estrada é maior do que antes da chuva, porque a contaminação foi removida. Pneus que são projetados para minimizar a hidroplanagem possuem bandas de rodagem que canalizam a água ou a desviam de debaixo do pneu para o lado. Se a água não é suficiente para fazer o carro hidroplanar, ainda assim pode reduzir consideravelmente o atrito nos pneus. O pneu adere na superfície de uma estrada seca porque o peso exercido sobre ele momentaneamente une a base do pneu à superfície. Essa união possibilita que o pneu se acomode a superfícies irregulares, acomodando-se nos pequenos vales e agarrando nas pequenas saliências. O encaixe do pneu na superfície irregular da estrada é responsável por boa parte do atrito de que o pneu necessita durante uma parada de emergência. Entretanto, quando a superfície da estrada está molhada, os vales ficam cheios de água. Assim sendo, quando o pneu está momentaneamente enganchado na estrada, a água fica presa nos vales, tornando lisa a superfície da estrada e eliminando as saliências. Portanto, o pneu não é mais capaz de agarrar nessas saliências. Se o carro começar a rodar durante uma parada de emergência, as marcas deixadas na estrada serão curvas. Tal rodada pode começar se as rodas traseiras travarem antes das rodas dianteiras, ou pode ser devida a uma inclinação na estrada. (Muitas vezes a coroa é mais alta que os lados para escoar a água da chuva.) Se uma roda ainda estiver girando durante uma rodada, ela arranha a estrada de lado e deixa uma marca de desgaste que não possui as estrias que caracterizam a marca de derrapagem. Os dois tipos de marca podem ser interrompidos se a estrada for irregular o suficiente para fazer o carro saltar ou se a freada não for uniforme. Pequenos intervalos nas marcas geralmente são devidos a saltos, enquanto intervalos maiores podem indicar que o motorista tirou o pé do freio.

CURIOSIDADE 1.9 • Alguns recordes de marcas de derrapagem O recorde de marcas de derrapagem em uma via pública aparentemente foi estabelecido em 1960 pelo motorista de um Jaguar na rodovia M1, na Inglaterra: as marcas têm 290 metros de extensão. Em juízo, a velocidade foi avaliada em mais de 160 quilômetros por hora quando as rodas foram travadas pela primeira vez. Se admitirmos que o coeficiente de atrito entre os pneus e a pista era 0,7, podemos calcular que a velocidade do carro era cerca de 225 quilômetros por hora. As marcas de derrapagem do Jaguar foram impressionantes, mas não se comparam às marcas deixadas por Craig Breedlove em outubro de 1964 nas Bonneville Salt Flats, em Utah. Para tentar derrubar o recorde terrestre e romper a “barreira” das 500 milhas por hora (805 quilômetros por hora), Breedlove conduziu seu Spirit of America movido a foguete por uma milha medida, primeiro em um sentido e depois no sentido contrário, para tirar uma média e descartar os efeitos do vento. Quando passou a segunda vez pela milha, estava percorrendo cerca de 870 quilômetros por hora. Para reduzir a velocidade, lançou um pára-quedas, mas a corda arrebentou com a tensão; o pára-quedas-reserva também falhou. Em seguida, pressionou os freios, afundando o pedal até o chão, mas eles só serviram para deixar marcas de derrapagem de quase dez quilômetros de comprimento antes de se extinguirem. O veículo estava viajando a cerca de 800 quilômetros por hora quando tirou um fino de duas linhas de postes telefônicos. Finalmente parou quando subiu em um aterro e em seguida despencou, com o nariz para baixo e a 260 quilômetros por hora, em um lago de salmoura de 5 metros de profundidade. Como Breedlove estava firmemente amarrado no banco, quase se afogou no compartimento submerso. Ainda assim, as duas passagens de Breedlove pela pista quebraram o recorde de velocidade e romperam a barreira de 500 milhas por hora, com uma velocidade média de 847 quilômetros por hora.

1.10 • Pica-paus, carneiros monteses e concussões O pica-pau bica o tronco de uma árvore em busca de insetos para comer, criar espaço de armazenamento ou, com o barulho, chamar a atenção de uma parceira. Durante o impacto, a taxa à qual a cabeça freia é cerca de 1000 g (1000 vezes a aceleração da gravidade). Tal desaceleração seria fatal para uma pessoa ou, na melhor das hipóteses, causaria sérios danos ao cérebro e deixaria a pessoa com uma concussão. Por que, então, o pica-pau não cai da árvore morto ou inconsciente toda vez que bica o tronco? Para determinar a dominância durante a época de acasalamento, os carneiros monteses machos arremetem uns contra os outros e batem com os chifres e a cabeça, em uma colisão violenta. Apesar disso, não caem no chão inconscientes (a fêmea dificilmente escolheria um carneiro inconsciente, estatelado no chão). Alguns tipos de dinossauros dotados de chifres (como o triceratope) talvez experimentassem colisões semelhantes. Por que as colisões não machucam os carneiros?

Resposta A capacidade de um pica-pau de resistir à grande desaceleração quando bica o tronco de uma árvore não é bem compreendida, mas existem dois argumentos principais. (1) O movimento do pica-pau se dá quase em linha reta. Alguns pesquisadores acreditam que as concussões podem acontecer nas pessoas e nos animais quando a cabeça sofre uma rotação rápida em torno do pescoço (e do tronco cerebral), mas é menos provável que isso aconteça em um movimento em linha reta. (2) O cérebro do pica-pau é tão bem afixado no crânio, que existem pouco movimento residual ou oscilações no cérebro logo após o impacto e não há risco de romper o tecido que liga o crânio e o cérebro. Carneiros que batem com a cabeça costumam ser protegidos por três características. (1) Seus chifres se dobram para prolongar a duração da colisão e, assim, reduzir sua força. (2) Os ossos do crânio também se deslocam ou rodam em torno de suas articulações (suturas) como uma mola ou uma dobradiça para amortecer o impacto na cabeça. (3) A maior parte da energia de uma colisão se concentra nos fortes músculos do pescoço dos animais. Embora as colisões pareçam terrivelmente violentas,

os músculos e os chifres dos animais evoluíram a tal ponto que quebrar um chifre ou danificar o cérebro é raro. O triceratope provavelmente também se beneficiou de um amplo sistema de cavidades que cobriu a caixa craniana e que pode ter atuado como um absorvedor de impactos.

CURIOSIDADE 1.11 • Altas acelerações Em julho de 1977, no lago seco El Mirage, na Califórnia, Kitty O’Neil bateu dois recordes de dragster em um percurso de 402 m. Partindo do repouso, alcançou a maior velocidade terminal (velocidade no fim da corrida) jamais registrada e também marcou o melhor tempo com a marca de 3,72 segundos. Alcançou a velocidade de incríveis 632,1 quilômetros por hora. Sua aceleração média durante a corrida foi de 47,1 metros por segundo ao quadrado, o que equivale a 4,81 vezes a aceleração da gravidade (4,81 g). Em dezembro de 1954, na Base da Força Aérea de Holloman, no Novo México, o dr. John Stapp, coronel da Força Aérea, foi amarrado ao assento de um trenó movido por nove foguetes. Quando os foguetes foram acionados, Stapp e o trenó foram impulsionados ao longo da pista durante 5 segundos, alcançando a velocidade de 1018 quilômetros por hora. Sua aceleração durante o estágio de propulsão foi de aproximadamente 56,4 metros por segundo ao quadrado, ou 5,76 g. Os números certamente impressionam, mas o verdadeiro desafio do coronel Stapp foi a parada através dos freios a água, que levou apenas 1,4 segundo: ele freou (desacelerou) a uma taxa de 20,6 g. Em maio de 1958, em um trenó semelhante em Holloman, Eli L. Beeding Jr. alcançou a velocidade de 117 quilômetros por hora. Esta velocidade não chega a impressionar, uma vez que é comum em algumas auto-estradas; o que chama a atenção é o tempo de aceleração. A aceleração ocorreu em 0,04 segundo, mais rápido que um piscar de olhos. A aceleração de 82,6 g permanece um recorde em situações controladas. Em julho de 1977, em Northamptonshire, na Inglaterra, o carro de corrida de David Purley bateu e sua velocidade caiu de 174 quilômetros por hora para zero em uma distância de apenas 67 cm. A desaceleração foi de 179,8 g (um valor aparentemente letal), mas, embora tenha sofrido 29 fraturas, três luxações e seis paradas cardíacas, Purley sobreviveu.

1.12 • Colisão frontal de automóveis Você está dirigindo em um túnel de mão única e, de repente, avista um automóvel na contramão. Para minimizar o risco de um acidente, você deve andar à mesma velocidade que o outro automóvel, ir ainda mais depressa ou reduzir até parar? Uma colisão frontal é o tipo mais perigoso de colisão de automóveis. Por incrível que pareça, os dados coletados a respeito de colisões frontais sugerem que o risco (ou probabilidade) de morte de um motorista diminui se o motorista leva um passageiro no automóvel. Por que isto acontece?

Resposta O melhor conselho é parar e, se possível, dar marcha a ré. Para se ter uma noção da gravidade da colisão, é só considerar a energia cinética total ou o momento total dos automóveis antes da colisão. Se você não reduzir a velocidade em direção ao outro automóvel, as duas grandezas terão valores elevados e, portanto, a colisão será violenta. A situação é diferente no futebol americano, em que um jogador pode preferir acelerar durante a corrida em direção a outro jogador. A diferença é que um jogador pode querer que a colisão seja violenta; orientando o corpo de maneira adequada, é possível transferir a colisão para a área vulnerável do adversário ou fazê-lo perder o equilíbrio e cair. Dados coletados a respeito de colisões frontais de automóveis sugerem que acrescentar um passageiro ao automóvel reduz o risco de morte. O risco depende da variação de velocidade durante a colisão: uma variação grande significa que houve uma aceleração intensa devido a uma força intensa. Por exemplo, se o seu automóvel tem uma massa pequena enquanto o outro tem uma massa grande, sua velocidade pode ser alterada de tal forma que o seu automóvel termine indo para trás. Levando uma massa adicional no seu automóvel (que pode ser desde um passageiro até um saco de areia na mala) você reduz a variação da velocidade e, portanto, também o risco. Eis um resultado numérico: suponha que o seu automóvel e o outro sejam idênticos e que sua massa e a massa do outro motorista também o são. Seu risco de morte diminui em cerca de 9% se você levar um passageiro de 80 quilos no seu automóvel.

CURIOSIDADE 1.13 • Brincando com locomotivas Waco, Texas, 15 de setembro de 1896: William Crush, do Missouri, no Kansas, e a Texas Railroads tiveram uma idéia infalível

para um espetáculo. Ele dispôs duas locomotivas obsoletas nos extremos opostos de uma pista de 6,5 m. Uma foi pintada de vermelho, a outra de verde. A idéia era fazer as locomotivas se chocarem à velocidade máxima. Nada como a violência para atrair a atenção das pessoas: 50.000 espectadores pagaram para assistir à colisão. Depois dos motores abastecidos e das válvulas reguladoras abertas, as locomotivas aceleraram uma em direção à outra. Quando se encontraram, estavam a 145 quilômetros por hora. Vários dos espectadores foram mortos pelos destroços lançados e centenas ficaram feridos. O resto da multidão provavelmente achou que o espetáculo valeu a pena. O que aconteceu nas proximidades da colisão, com a transformação da energia cinética dos trens em energia cinética dos fragmentos ejetados, foi como uma explosão moderada.

1.14 • Colisões traseiras e o efeito chicote Em uma colisão traseira, um automóvel é atingido por trás por outro automóvel. Durante décadas, engenheiros e pesquisadores de medicina tentaram explicar por que o pescoço de um ocupante do carro da frente sofre lesão em uma colisão desse tipo. Nos anos 1970, concluíram que a lesão ocorria porque a cabeça do ocupante era jogada para trás por cima do banco quando o carro era empurrado para a frente, fenômeno que ganhou a denominação “efeito chicote”. Aparentemente, o pescoço estava indo longe demais por causa do movimento da cabeça. Como resultado dessa descoberta, foram instalados encostos de cabeça nos carros, o que não resolveu o problema das lesões de pescoço nas colisões traseiras. O que realmente causa essas lesões?

Resposta A principal causa do efeito chicote é o fato de que a cabeça da vítima só começa a acelerar para a frente depois do torso. Portanto, quando a cabeça finalmente se movimenta para a frente, o torso já tem uma velocidade considerável. Essa diferença de movimentos provoca uma tensão violenta no pescoço, causando uma lesão. Em seguida, a cabeça volta para trás, o que pode, principalmente se não houve encosto para a cabeça, agravar a lesão.

1.15 • Curvas dos carros de corrida As corridas de automóveis freqüentemente são decididas pelo desempenho do carro e do piloto nas curvas, onde a velocidade é menor. Considere uma curva de 90° em uma pista plana, como em uma corrida de Fórmula Um. Obviamente, a melhor maneira de fazer a curva depende das características do carro, da habilidade e da experiência do piloto e das condições da pista. De modo geral, porém, o piloto deve escolher uma trajetória circular para fazer a curva? Essa escolha garante que o tempo gasto para fazer a curva será o menor possível; por que, então, esta pode não ser a melhor opção? Por que os pilotos experientes nas pistas planas dos circuitos de Fórmula Um têm dificuldade de se adaptar à Fórmula Indy, que costuma ter curvas inclinadas? Em especial, por que esse piloto pode rodar com o carro ao entrar na curva?

Resposta Um piloto novato faz uma curva em uma trajetória circular. Um piloto experiente freia enquanto vira um pouco, em seguida dá uma guinada e, finalmente, faz um trajeto menos curvo enquanto acelera. Com isso, o carro leva mais tempo para fazer a curva, mas entra na reta com maior velocidade. A maior velocidade na reta compensa de longe o tempo perdido na curva. O procedimento apresenta outra vantagem. Se a curva for abordada rápido demais, o limite das forças de atrito nos pneus será excedido, e o carro vai derrapar e o piloto perderá o controle. Para manter o atrito, o piloto experiente primeiro freia e só depois dá uma guinada. Como o resto da curva é gradual, o piloto pode acelerar sem que as rodas percam a aderência. Um piloto de Fórmula Um experiente sente intuitivamente a força e o movimento durante uma curva plana. As sensações em uma curva inclinada são bem diferentes, e um piloto de Fórmula Um provavelmente vai demorar demais para dar a guinada durante a curva.

1.16 • Pistas de atletismo Por que uma corrida em uma pista reta geralmente é mais rápida que uma corrida na mesma distância em uma pista curva? Quando a pista é plana e oval, por que o corredor que segue na raia externa geralmente leva vantagem sobre o corredor na raia interna, apesar de as distâncias percorridas serem iguais? Por que a velocidade de uma corrida em uma pista curva depende do formato oval?

Resposta Ao entrar em uma curva, o corredor reduz a velocidade; ao deixar a curva, o corredor retoma a velocidade normal. Para fazer qualquer curva, é necessária uma força centrípeta, isto é, voltada para o centro da curva. Neste caso, a força centrípeta é fornecida pelo atrito entre o solo e os sapatos do corredor. Quando essa força para dentro atua sobre

os sapatos, o corpo do corredor tende a se inclinar, como se estivesse sendo empurrado para fora da curva. Portanto, para manter o equilíbrio, o corredor reduz a velocidade para diminuir as forças e se inclina para dentro para compensar a tendência de inclinação para fora. Quanto mais acentuada a curva, mais o corredor tem que reduzir a velocidade e se inclinar. Portanto, o corredor que segue na raia externa (que tem uma curvatura menor) geralmente leva vantagem sobre o corredor na raia interna (que tem uma curvatura maior). Quando a pista é plana e oval, a proporção da corrida ao longo das porções curvas ajuda a definir a velocidade da corrida. Em geral, uma oval aberta permite uma corrida mais rápida que uma oval fechada, porque a curvatura das porções curvas da oval aberta é menor que a das curvas acentuadas da oval fechada. A melhor forma geométrica (com exceção da pista reta, é claro) é o círculo, que possui a menor curvatura.

1.17 • Ilusão de decolagem Um avião a jato que decole de um porta-aviões é movido por poderosos motores enquanto é arremessado para a frente por um mecanismo de catapulta instalado no convés do navio. A elevada aceleração resultante possibilita que o avião alcance a velocidade de decolagem em um pequeno trecho do convés. Entretanto, a alta aceleração também induz o piloto a inclinar o avião bruscamente para baixo quando deixa o convés. Os pilotos são treinados para ignorar essa tendência, mas às vezes o avião vai direto para o mar. O que causa essa compulsão?

Resposta A sensação de orientação vertical depende de indicações visuais e do sistema vestibular, situado no ouvido interno. Esse sistema contém pequenas células pilosas imersas em um fluido. Quando você mantém a cabeça erguida, os pêlos se alinham com a força da gravidade, que é vertical, e o sistema avisa ao cérebro que a cabeça está erguida. Quando você inclina a cabeça para trás, os pêlos se inclinam e o sistema avisa ao cérebro a respeito da inclinação. Os pêlos também se inclinam quando você é acelerado para a frente por uma força horizontal. Nesse caso, o sinal enviado ao cérebro indica, erroneamente, que a cabeça está inclinada para trás. Entretanto, o falso sinal é ignorado quando indicações visuais mostram claramente que não há inclinação alguma, como acontece quando você acelera um carro. Um piloto que é arremessado do convés de um porta-aviões à noite praticamente não tem pistas visuais. A ilusão de inclinação é forte e muito convincente, de modo que o piloto tem a nítida impressão de que o avião deixou o convés com o nariz muito inclinado para cima. Sem treinamento adequado, o piloto tenta nivelar o avião baixando bruscamente o nariz, o que faz o avião cair no mar.

CURIOSIDADE 1.18 • Vôo 143 da Air Canada Em 23 de julho de 1983, o vôo 143 da Air Canada estava sendo preparado para uma longa viagem de Montreal a Edmonton quando os tripulantes pediram ao pessoal de terra para calcular a quantidade de combustível que já estava disponível nos tanques. Os tripulantes sabiam que o avião precisava começar a viagem com 11.300 quilogramas de combustível. O valor estava especificado em quilogramas porque o Canadá havia mudado recentemente para o sistema métrico; até então, o combustível era medido em libras. O pessoal de terra, que só podia medir o combustível em litros, respondeu que havia 7682 litros nos tanques. Para poder calcular a quantidade que precisava ser acrescentada, os tripulantes perguntaram ao pessoal de terra qual era o fator de conversão de litros para quilos de combustível. A resposta foi 1,77, número que os tripulantes usaram (1,77 quilo de querosene de aviação corresponde a 1 litro) para calcular que havia 13.597 quilos de combustível nos tanques e faltavam 4917 litros. Infelizmente, a resposta do pessoal de terra foi baseada nos hábitos anteriores à implantação do sistema métrico: 1,77 era o fator de conversão de litros para libras de combustível (1,77 libras correspondem a 1 litro), e não de litros para quilos. Na verdade, só havia 6172 quilos de combustível a bordo e deviam ter sido acrescentados 20.075 litros. Por causa dessa confusão, o vôo 143 saiu de Montreal com apenas 45% do combustível necessário para o vôo. A caminho de Edmonton, a uma altitude de 7,9 quilômetros, o combustível acabou e a aeronave começou a cair. Embora o avião estivesse sem energia, o piloto conseguiu fazê-lo descer planando. Como o aeroporto operacional mais próximo estava longe demais para ser alcançado dessa forma, o piloto dirigiu o avião para um aeroporto antigo, já desativado. Infelizmente, esse aeroporto havia sido convertido para corridas de automóveis e havia uma barreira de aço atravessando a pista. Por sorte, no momento da aterrissagem, o trem de pouso da frente quebrou, o que fez o nariz do avião tocar na pista. O atrito reduziu a velocidade, fazendo com que o avião parasse a poucos metros da barreira de aço, sob os olhares petrificados dos pilotos de corrida e dos espectadores. Todos os passageiros e tripulantes escaparam incólumes. A moral da história é a seguinte:

fatores de conversão sem unidades apropriadas são números sem sentido.

1.19 • Medo e arrepios no parque de diversões Por que andar de montanha-russa é emocionante? Certamente as alturas, as velocidades e as ilusões de queda contribuem, mas todas essas sensações podem ser vivencidas em um elevador externo veloz, cercado de vidro. Ninguém faz fila nem paga para andar de elevador. E o que dizer dos brinquedos que jogam você de um lado para outro? Por que você se segura e às vezes até grita nesses brinquedos? As montanhas-russas são projetadas para dar a ilusão de perigo (isto faz parte da graça), mas na verdade os engenheiros fazem um grande esforço para torná-las extremamente seguras. Apesar dessa atenção em relação à segurança, alguns azarados entre os milhões de pessoas que andam todo ano em montanhas-russas acabam com um problema de saúde conhecido como dor de cabeça da montanha-russa. Os sintomas, que em alguns casos se manifestam somente alguns dias depois, são vertigem e dor de cabeça, ambos graves o suficiente para necessitar de tratamento médico. O que causa a dor de cabeça da montanha-russa?

Resposta Alguns passeios são emocionantes por causa das alturas, das altas velocidades ou das grandes acelerações (até 4 g em uma montanha-russa), ou porque a rotação veloz cria uma sensação agradável de força centrífuga (voltada para fora), mas os passeios mais assustadores são geralmente aqueles que produzem em você forças que mudam bruscamente e sem aviso prévio. Ao experimentar força e aceleração constantes, tudo parece estar sob controle, mas quando as forças começam a mudar de intensidade ou direção, causando uma aceleração inesperada, subconscientemente você tem uma sensação de perigo. O elemento surpresa em um nível subconsciente produz um flerte existencial com a morte. Montanha-russa comum: as alturas e as altas velocidades são atraentes, como também é o estardalhaço de uma velha montanha-russa de madeira. Ao passar rapidamente por uma seção baixa e curva, uma aparente força centrífuga parece comprimi-lo na cadeira; ao passar por uma subida curta porém muito inclinada, a força parece puxá-lo para fora da cadeira. Quando passa do topo da primeira e mais alta subida, tem uma sensação de queda diferente. A ilusão é melhor para quem está sentado no carro da frente, pois apenas uma pequena fração da montanha-russa é visível. Entretanto, acho que sentar atrás é ainda mais assustador. Ao se aproximar do alto, quando a maior parte do carro começa a descer, a força nas suas costas aumenta, gradualmente no início e em seguida cada vez mais depressa (a taxa é exponencial), até que, no momento em que você chega lá em cima, a força desaparece. A experiência é como se um agente diabólico o empurrasse freneticamente em direção ao alto e, em seguida, o arremessasse em queda livre. Montanhas-russas rato louco: os carros andam separados na pista. A cabine em que você está pode girar em torno de uma armação com rodas que segue a pista e cujo eixo está situado perto da traseira do carro. Ao chegar a uma curva fechada, a armação continua a seguir a pista, mas a cabine continua em frente por um momento antes de mudar de direção. Nesse momento, você tem a sensação de que a cabine vai sair da pista. Montanhas-russas modernas: loops verticais e parafusos produzem sensações de forças centrífugas que mudam rapidamente de intensidade e direção, além de virar você de cabeça para baixo. Ambos os fatores causam medo. Ao subir em um loop vertical, a aparente força centrífuga deveria diminuir à medida que a velocidade diminui, mas a curvatura da pista aumenta de maneira pronunciada para manter essa força aparente. Em algumas montanhas-russas você anda de costas em alguns trechos para não ter como prever quaisquer mudanças de força, velocidade ou aceleração que estiver prestes a vivenciar. Andar de montanha-russa no escuro também elimina a capacidade de previsão, o que aumenta o medo. Rotor: ao ficar encostado à parede interna de um grande cilindro giratório, você se sente preso por uma poderosa força centrífuga (Fig. 1-4a). A força pode alterar sua percepção da direção para baixo e criar a ilusão de que você está inclinado para trás. Se a força for grande o bastante, o chão pode se afastar enquanto você é mantido no lugar pela força de atrito entre você e a parede. Embora a sensação seja a de que existe uma força empurrando-o para fora, contra a parede, a força que realmente o segura é uma força para dentro: a parede o empurra em direção ao centro do cilindro para manter você girando em círculos. Como você não escorrega parede abaixo, a força de atrito que atua em você tem que ser para cima e igual ao seu peso. Roda-gigante, carrossel e balanços giratórios: estes brinquedos proporcionam sensações mais brandas de força centrífuga. Quando a sua cadeira em uma roda-gigante gira em direção ao alto do círculo, a sensação é como se você estivesse

sendo levantado pela força. Na parte inferior do círculo, a sensação é de que você está sendo empurrado para baixo, contra o banco. Em um carrossel, a força centrífuga parece projetá-lo para fora (Fig. 1-4b), principalmente se você montar um cavalo externo, que se move mais depressa que os cavalos do centro. Quando você está em um balanço que gira em torno de um eixo central, as correntes se afastam da vertical como se a força centrífuga estivesse empurrando você para fora. Na verdade, em nenhum dos três brinquedos existe força centrífuga. Existe, sim, uma força centrípeta (exercida pelo banco na roda-gigante, pelo cavalo no carrossel e pelas correntes no balanço), e é essa força que mantém você rodando.

Figura 1-4 / Item 1.19 Forças envolvidas (a) em um rotor e (b) em um carrossel.

Brinquedos com braços giratórios: você fica em uma cabine presa na extremidade externa de um braço que gira em torno da extremidade externa de outro braço, mais central. Se os braços rodam em torno dos respectivos eixos no mesmo sentido, você experimenta a maior força centrífuga e a maior velocidade ao passar pelo ponto mais distante do centro do brinquedo. Quando os sentidos de rotação são contrários, a velocidade é mínima no ponto mais distante (devido às rotações contrárias), mas a força a que você está sujeito varia mais depressa nesse ponto, porque você está descrevendo uma curva muito fechada. Quedas verticais: você fica a cerca de 40 metros de altura em uma plataforma, que é solta de repente e cai praticamente em queda livre. A sensação é de ausência de peso, porque você e a cadeira em que está sentado caem com a mesma aceleração e, portanto, a cadeira não exerce nenhuma força sobre você. Algumas pessoas gostam dessa sensação. A dor de cabeça causada pela montanha-russa pode se manifestar em qualquer brinquedo de parque de diversões no qual a aceleração seja elevada e mude de direção rapidamente. A grande aceleração exerce pressão sobre o cérebro, e uma mudança brusca de direção pode fazer o cérebro se deslocar em relação ao crânio, rompendo as veias que ligam um ao outro.

CURIOSIDADE 1.20 • Loopings de bicicleta Os modernos parques de diversões podem ser muito emocionantes, mas não têm a mínima graça se comparados com algumas das acrobacias circenses que eram realizadas com bicicletas entre 1900 e 1912. Enquanto um circo tentava superar o outro, números ousados eram inventados e executados, alguns mais de uma vez se os acrobatas escapassem ilesos. Uma das primeiras acrobacias foi apresentada em 1901 pelo circo Adam Forepaugh & Sells Bros. Um homem conhecido como “Starr” desceu em uma bicicleta de uma altura de 18 metros por uma rampa de 52°. Pode não parecer nada demais, mas a rampa era formada por três escadas emendadas uma na outra, o que tornava a descida bastante acidentada.

No ano seguinte, no Madison Square Garden, em Nova York, Forepaugh & Sells apresentaram Diavolo e seu número de looping em bicicleta. Com uma ambulância por perto, o Diavolo começou a descer a rampa logo abaixo das lâmpadas incandescentes do teto e em seguida descreveu um loop vertical com um diâmetro de 11 metros, aterrissando em redes, para amortecer a queda. Em 1904, o mesmo circo apresentou o “Prodigioso Porthos” em outro número de bicicleta. A rampa era parecida, mas a parte de cima do loop tinha sido removida, obrigando Porthos a percorrer 15 metros no ar, de cabeça para baixo, para alcançar a segunda parte do loop. Talvez a acrobacia mais ousada realizada em bicicleta tenha acontecido em 1905, quando o circo Barnum & Bailey se apresentou no Madison Square Garden. O número começou com Ugo Ancillotti em uma bicicleta sobre uma rampa e o irmão Ferdinand em outra rampa, um pouco mais alta, voltada para a primeira (Fig. 1-5). A um sinal, os irmãos começaram a descida. Ao chegar à parte inferior da rampa, extremamente curva, Ugo foi projetado 14 metros, aterrissou na outra rampa e repetiu a proeza em um vôo de 9 metros. Enquanto isso, Ferdinand foi lançado da parte inferior de sua rampa de modo a voar de cabeça para baixo em direção à outra rampa. O momento mais impressionante do número foi quando Ferdinand passou de cabeça para baixo menos de um metro abaixo de Ugo, que estava executando seu primeiro vôo. O risco da apresentação era bem real: quando o número foi apresentado novamente no espetáculo da noite, Ferdinand caiu de mau jeito durante o “salto sobre o vão” e o número foi, obviamente, cancelado.

Figura 1-5 / Item 1.20 O número de bicicleta de Ugo e Ferdinand Ancillotti.

Os circos começaram a substituir as bicicletas por automóveis em parte porque eram uma novidade na época. Um ou dois ocupantes desciam uma rampa de carro e davam uma ou duas cambalhotas antes de alcançarem a segunda rampa. Entretanto, esse tipo de acrobacia perdeu força a partir de 1912, provavelmente porque o público se acostumou com os riscos envolvidos. A física só recebeu uma nova dose de acrobacias mais recentemente, quando Evel Knievel, seu filho Robbie Knievel e outros acrobatas começaram saltar de motocicleta por cima de carros e caminhões.

1.21 • Apanhando uma bola voadora No beisebol, quando uma bola voadora é rebatida em direção ao jardim externo, como o jogador que está nas proximidades faz para saber onde deve estar para apanhá-la? O defensor pode correr até o local e esperar pela bola. Outra opção é correr a uma certa velocidade e chegar ao local no mesmo instante que a bola. Qualquer que seja a escolha, a experiência em jogo conta, mas será que existem pistas ocultas no movimento da bola que podem orientar o defensor? Para ilustrar a habilidade de um defensor, Robert Weinstock, da Oberlin College, relata o modo como Babe Ruth apanhou uma bola rebatida por Jimmy Foxx, do Philadelphia Athletics. Ruth estava esperando no fundo do campo esquerdo, imaginando uma bola voadora longa de Foxx, mas Foxx rebateu mal a bola, mandando-a para o alto, a uma distância pequena. Assim que ouviu o som da rebatida, Ruth correu para o ponto exato no campo, esperou um pouco e apanhou a bola com a luva.

Resposta Embora um defensor use muitas pistas para apanhar uma bola voadora, dois ângulos merecem destaque. Um é o ângulo vertical α através do qual a bola se movimenta na visão do jogador em direção ao jardim externo (Fig. 1-6a). Se o jogador já está no local apropriado para apanhar a bola, esse ângulo aumenta, mas a uma taxa decrescente (no início, aumenta rapidamente e, em seguida, mais devagar). Se o jogador está perto demais (e tem que recuar), o ângulo vertical aumenta a uma taxa crescente; se o jogador está afastado demais (e tem que avançar), o ângulo vertical

aumenta no início e, em seguida, começa a cair. O jogador aprende com a experiência a se mover até que, na parte final do vôo da bola, o ângulo vertical aumente à taxa decrescente adequada. O outro ângulo importante entra em cena quando a bola é rebatida para a esquerda ou a direita do jogador. Enquanto voa em direção ao campo, a bola se move horizontalmente formando um ângulo θ na visão do jogador (Fig. 1-6b). O jogador corre de modo que esse ângulo aumente a uma taxa constante. Dessa forma, o jogador pode correr para o local adequado para apanhar a bola a um ritmo praticamente uniforme, em vez de disparar no último segundo. Realizar todas essas operações requer uma certa prática, mas elas são até certo ponto intuitivas, porque os cachorros, como, por exemplo, aqueles que apanham frisbees com a boca, usam o mesmo procedimento (como foi observado através de câmaras de vídeo instaladas nos animais).

Figura 1-6 / Item 1.21 (a) Vista lateral da trajetória da bola voadora. (b) Vista superior da trajetória.

CURIOSIDADE 1.22 • Bola alta Em agosto de 1938, Frankie Pytlak e Hank Helf, dois receptores dos Cleveland Indians, tentaram quebrar o recorde mundial de apanhar uma bola de beisebol lançada de grande altura. Enquanto eles esperavam na calçada ao lado da Terminal Tower, em Cleveland, Ken Keltner, a terceira base, preparava-se para lançar as bolas do alto do edifício, a 213 metros de altura. O recorde anterior de 169 metros fora estabelecido em 1908 por dois receptores de outra equipe, que apanharam bolas de beisebol arremessadas do Monumento de Washington, em Washington, DC. Keltner não tinha meios de ver os colegas de profissão na rua e, portanto, arremessou as bolas às cegas. Pytlak e Helf estavam usando capacetes de aço para se protegerem contra o impacto das bolas, que alcançaram velocidades estimadas de 225 quilômetros por hora. Helf foi o primeiro a conseguir apanhar uma bola, afirmando com um sorriso que tinha sido muito fácil, mas as cinco bolas lançadas em seguida para Pytlak erraram o alvo. Uma delas quicou na primeira vez até o 13o andar e foi apanhada por um sargento da polícia após quicar três vezes. Na sexta tentativa, Pytlak conseguiu apanhar a bola e dividiu o recorde com Helf. No ano seguinte, Joe Sprinz, do San Francisco Baseball Club, tentou apanhar uma bola de beisebol arremessada de um dirigível a 244 metros de altura (segundo alguns relatos, a altura era muito maior). Na quinta tentativa, conseguiu aparar a bola com a luva, mas o impacto levou mão, luva e bola em direção ao seu rosto, fraturando seu maxilar superior em 12 lugares, quebrando cinco dentes, deixando-o desacordado... e fazendo-o soltar a bola. Mais engraçada foi a tentativa, em 1916, de apanhar uma bola de beisebol lançada de um pequeno avião. Wilbert Robinson, gerente dos Brooklyn Dodgers e ex-receptor, pediu ao treinador dos Dodgers, Frank Kelly, que lançasse uma bola de um avião a 120 metros de altura. Entretanto, sem que Robinson soubesse, Kelly trocou a bola por uma toranja vermelha. Quando o impacto com a luva fez a fruta se despedaçar, a polpa vermelha empapou Robinson, que gritou: “Ela abriu um buraco na minha mão!

Estou coberto de sangue!”

1.23 • Rebatendo uma bola de beisebol Se você é destro, por que segura o bastão de beisebol com a mão direita acima da esquerda e vira o lado esquerdo para o arremessador? Quanto tempo uma bola de beisebol leva para chegar à base principal? De quanto tempo você dispõe para balançar o taco? Qual é o maior erro que você pode cometer no movimento do taco sem deixar de acertar a bola? Alguns bons rebatedores preferem tacos pesados, argumentando que a massa adicional possibilita uma rebatida mais forte. Outros jogadores optam por tacos leves ou de peso moderado, por acreditarem que assim rebaterão com mais força. (Às vezes, quando o taco é de madeira, o jogador substitui ilegalmente o miolo por um de cortiça para diminuir o peso.) Quem tem razão na discussão sobre o peso? O jogador deve se aquecer com um taco comum, que tem um peso de chumbo na ponta, ou com um taco muito mais leve ou muito mais pesado que o taco que será usado na partida? Que parte do taco deve bater na bola para imprimir maior velocidade? Por que às vezes o taco quase escapa das mãos do rebatedor ao se chocar com a bola? Os arremessadores tinham tanto medo da força do lendário rebatedor Babe Ruth que, às vezes, arremessavam contra ele uma bola lenta em vez de uma bola rápida. Achavam que, se a bola batesse no taco com uma velocidade baixa, voltaria com uma velocidade baixa e não iria tão longe. Este raciocínio está certo?

Resposta Se você é destro, costuma usar a mão direita para realizar tarefas que exigem controle fino, tal como escrever. Movimentar um taco é uma dessas tarefas, já que, para acertar a bola, o movimento tem que ser praticamente perfeito. Ao rebater, você empurra o taco para a frente com a mão e o braço direitos enquanto o puxa para trás com a mão e o braço esquerdos. O lado esquerdo é responsável pela maior parte do esforço; ao lado direito cabe principalmente imprimir a direção. Você consegue orientar o taco melhor se a sua mão direita estiver mais alta e é capaz de imprimir uma força maior se a mão esquerda estiver mais baixa. Na postura típica, com o lado esquerdo voltado para o arremessador, você pode se virar para o arremesso com a mão controladora atrás do taco, onde é mais fácil orientar o movimento. Mesmo uma bola lenta leva menos de 1 segundo para alcançar a base principal, enquanto uma bola rápida pode levar apenas 0,4 segundo. (O recorde de velocidade para uma bola rápida, 162,4 quilômetros por hora, foi estabelecido em 20 de agosto de 1974 por Nolan Ryan, que na época jogava no California Angels.) Na verdade, você dispõe de menos de 0,4 segundo para movimentar o taco, porque primeiro vai ter que avaliar o arremesso e extrapolar mentalmente o movimento da bola em direção à base principal. Jogadores profissionais conseguem movimentar o taco em cerca de 0,28 segundo, mas alguns rebatedores mais experientes conseguem movimentar o taco em apenas 0,23 segundo. Um movimento mais rápido proporciona ao jogador a oportunidade de estudar o movimento da bola por um pouco mais de tempo antes de entrar em ação. Para rebater a bola para fora da área de jogo, o taco tem que estar orientado com uma precisão de milímetros. Se o taco estiver um pouco mais baixo, a bola sobe. Se estiver um pouco mais alto, a bola bate no chão antes de ir muito longe. Além disso, o tempo da rebatida exige uma precisão de milissegundos. Para piorar as coisas, tudo isso precisa ser feito sem ver a bola, porque o nosso sistema visual não consegue acompanhá-la durante a parte final do vôo. É impressionante que alguns jogadores consigam acertar a bola com tanta freqüência. Experimentos mostraram que a velocidade de uma bola rebatida aumenta com o peso do taco até que o peso ultrapasse cerca de 1 quilograma. Um taco de peso moderado (900 gramas) é melhor que um taco mais pesado por pelo menos três motivos. Dois são óbvios para a maioria dos jogadores: o taco de peso moderado é mais fácil de movimentar e controlar do que um taco pesado. Os dois fatores decorrem da menor inércia rotacional do taco, que é a distribuição de massa em relação ao centro (ou centros) em relação ao qual o taco gira durante a rebatida. O terceiro motivo tem a ver com a transferência de energia durante a colisão taco–bola. Em geral, quanto menor a diferença de massa (ou de peso) entre dois objetos, maior a transferência de energia em uma colisão entre eles. Assim, em uma colisão bola–taco, a quantidade de energia transferida do taco para a bola é maior com um taco de peso moderado do que com um taco pesado. Se é assim, por que alguns rebatedores preferem um taco pesado? A escolha pode basear-se no comprimento do taco. Um taco leve é curto, exigindo que o jogador fique perto da base. Se a bola passa pela parte da zona de strike mais próxima do jogador, este pode ter que golpeá-la com a parte do taco mais próxima das mãos. Como será explicado mais adiante, esse tipo de colisão diminui em muito a chance de uma boa rebatida. Para evitar o problema, os jogadores podem optar por um taco mais pesado por causa do comprimento adicional. Eles podem ficar mais longe da base e as colisões ocorrem em uma região melhor do taco. Experimentos revelam que o jogador balança o taco com menos velocidade se ele se aquecer com um taco mais leve ou com

o mesmo taco com um peso de chumbo na ponta. O motivo parece ser que, ao se aquecer com um taco, o jogador cria um programa mental (o modo de usar os músculos) para movimentar esse taco. Se o taco de aquecimento é muito diferente do que será usado no jogo, o programa mental não é adequado e o taco não se movimenta bem. As forças experimentadas durante a colisão dependem do ponto do taco que se choca com a bola. A colisão geralmente sacode o cabo e o faz girar, mas isto não acontece se a bola atingir um ponto especial do taco, que é conhecido como centro de percussão. Se a colisão ocorre entre o centro de massa e o centro de percussão, o cabo é empurrado na direção do arremesso. Se a colisão acontece fora dessa região, o cabo é empurrado na direção do arremessador.

Figura 1-7 / Item 1.24 Um passe de rúgbi para trás e para a esquerda pode parecer legal em relação ao jogador (a), mas na verdade pode ser para a frente em relação ao campo (b).

Outro ponto especial está associado às oscilações que uma colisão pode provocar no taco. Na maioria dos casos, existem dois tipos de oscilações. O tipo mais simples, chamado de fundamental, é aquele em que a ponta do taco sofre a maior oscilação. Essa oscilação geralmente não é sentida, por causa de sua baixa freqüência. A outra oscilação, chamada de segundo harmônico, é fácil de sentir e pode até machucar as mãos do rebatedor. Nesse modo, a extremidade livre do taco oscila vigorosamente, mas existe um ponto, chamado de nó, um pouco mais próximo do rebatedor, que permanece estático. O nó é um ponto especial porque, se a bola atinge o taco nesse lugar, o segundo harmônico não é excitado e, portanto, não existe oscilação perceptível nas mãos. Para encontrar o nó de um taco, basta deixá-lo pender e dar umas batidinhas ao longo do seu comprimento. Quando você bate no taco na posição do nó, a oscilação é pequena ou inexistente. Quando você bate em outros pontos, porém, principalmente perto do centro do taco, as oscilações podem ser sentidas e ouvidas. Para imprimir a maior velocidade possível à bola, o mais normal é acertá-la em um ponto entre os pontos especiais e o centro de massa, mas o local exato depende da velocidade inicial da bola e da relação entre a massa do taco e a massa da bola. Quanto mais rápida a bola ou mais leve o taco, mais próximo da mão do rebatedor a bola deve acertar o taco. Acho que, quando Ruth viu uma bola lenta vindo em sua direção, abriu um largo sorriso. Mandar a bola para fora da área de jogo depende principalmente de controle do taco durante a rebatida e de uma avaliação precisa do percurso da bola até a base. A bola lenta possibilitou que Ruth estudasse o movimento com todo o cuidado, para depois se posicionar e rebater no momento exato.

1.24 • Passes legais no rúgbi No rúgbi, um jogador pode passar a bola legalmente para um companheiro de equipe se o companheiro não estiver à sua frente. Se o jogador que tem posse da bola está correndo em direção ao gol adversário, que direção de arremesso é permitida? É possível que um jogador arremesse a bola para trás e a jogada seja invalidada, por se tratar de um passe para a frente?

Resposta O problema tem a ver com a velocidade do jogador. Quando ele arremessa a bola para trás, o movimento da bola pode, na verdade, ser para a frente em relação ao campo. Na Fig. 1-7a, por exemplo, a velocidade da bola em relação ao jogador é para trás; mas, ao ser somada com a velocidade com a qual o jogador está correndo, a resultante aponta para a frente (Fig. 1-7b). Se o juiz estiver correndo enquanto observa o passe, terá a impressão de que a velocidade da bola tem outra direção, por

causa da sua própria velocidade. Apenas os espectadores estacionários estão em posição de decidir se a bola foi lançada para a frente ou não.

1.25 • Malabarismo O recorde mundial de malabarismo com aros é, atualmente, 11; os recordes para outros objetos envolvem números menores. É evidente que o malabarismo exige boa coordenação olho–mão e treinamento de arremesso e recepção, mas será que existe outro fator que limita o número de objetos envolvidos no malabarismo?

Resposta A gravidade, naturalmente, impõe um limite. A cada novo objeto acrescentado, é preciso arremessar mais alto os objetos para ganhar tempo para acomodar os novos objetos. Entretanto, o ganho de tempo é sempre pequeno. Ao lançar um objeto duas vezes mais alto, o ganho de tempo é de apenas 40%. Além disso, é preciso lançá-lo com 40% mais velocidade, o que aumenta as chances de o lançamento sair torto.

1.26 • Salto com vara As varas de fibra de vidro revolucionaram o salto com vara no início dos anos 1960. Nos primórdios do esporte, as varas eram de bambu. As varas de aço e alumínio tornaram-se populares nos anos 1950. Nada, porém, foi capaz de superar as varas de fibra de vidro; desde que foram introduzidas, o salto recorde aumentou rapidamente de 4,8 metros para mais de 5,8 metros. Alguns dizem que o recorde vai passar com folga de 6,0 metros. Por que a vara de fibra de vidro foi tão importante para o aumento do recorde?

Resposta A vara de fibra de vidro é muito mais flexível que as antigas varas de bambu, aço e alumínio. Essa flexibilidade confere duas vantagens ao saltador. O atleta pode converter de forma mais eficiente a energia cinética da corrida em energia potencial da vara enquanto ela se curva. (Essa energia armazenada vem da corrida, e não do esforço muscular do atleta para encurvar a vara.) Até aqui, nenhuma surpresa. O que não é tão óbvio é que a flexibilidade da vara retarda a conversão da energia potencial elástica de volta em energia cinética do atleta no momento da subida. Esse retardo permite ao atleta reposicionar o corpo de modo que o ganho de energia com o endireitamento da vara provoca um movimento para cima, e não para a frente. Para realizar um bom salto, o atleta precisa não apenas correr em direção ao local do salto para garantir que terá energia cinética suficiente, mas precisa também regular as passadas para posicionar a ponta da vara na caixa. Quando a vara entra na caixa, o atleta precisa saltar para a frente para manter o movimento nessa direção e curvar a vara adequadamente. Quando a vara se deforma, armazena parte da energia cinética inicial do atleta. Durante a arqueação até o endireitamento, o atleta dobra as pernas e se inclina para trás, visando rodar as pernas e o corpo para atingir uma orientação vertical. Para ajudar a desentortar a vara de modo a recuperar mais energia e reorientar o corpo, o atleta empurra para a frente com a mão de cima enquanto puxa para trás com a mão de baixo. Se tudo for bem sincronizado, a vara devolve a energia armazenada ao atleta, lançando-o para cima.

1.27 • O disparo de um atlatl e a língua de um sapo Vários povos antigos, como os astecas e as tribos do extremo norte da América do Norte, desenvolveram um mecanismo de disparo no qual uma lança (ou dardo) é propelida por meio de um bastão de madeira que é rapidamente movido para a frente até que a lança se desprende do bastão (Fig. 1-8). Por que o mecanismo de disparo, chamado atualmente de atlatl, confere à lança uma velocidade maior do que se ela fosse arremessada manualmente? A velocidade era grande o suficiente para que a lança percorresse cerca de 100 metros e penetrasse, por exemplo, na armadura de um conquistador espanhol em combate com os astecas. Por que muitas vezes era amarrada uma pedra ao lançador? Como é que um sapo consegue pôr a língua para fora a uma velocidade surpreendente e a uma distância incrível para apanhar uma mosca?

Resposta No arremesso convencional de uma lança, a energia cinética da lança é igual ao trabalho que a mão efetua ao mover a lança para a frente ao longo de uma certa distância. O mecanismo de disparo que as culturas antigas inventaram aumenta a distância ao longo da qual a lança é impulsionada e, portanto, aumenta também a energia conferida a ela. A vantagem de amarrar uma pedra ao lançador não é conhecida. Na verdade, os experimentos mostram que a massa adicional faz com que a lança seja arremessada com uma velocidade um pouco menor.

Um sapo aparentemente apanha sua presa com a língua através de um mecanismo similar ao do atlatl. Quando avista a presa, o sapo rapidamente projeta a língua em direção a ela, mas a extremidade da língua permanece dobrada sobre o resto. Quando a língua se aproxima da presa, a extremidade sofre de repente uma rotação para a frente, em direção à presa. Fazendo girar dessa forma a ponta enquanto o resto da língua ainda está se movendo para a frente, o sapo aumenta a energia cinética da ponta da língua. Essa energia adicional aumenta a chance de que a presa fique grudada na ponta da língua, mesmo que esteja em uma superfície (tal como uma folha) que cede quando a presa é golpeada. Uma vez capturada a presa, o sapo a recolhe junto com a língua.

Figura 1-8 / Item 1.27 O arremesso de uma lança por um atlatl.

1.28 • Fundas Uma pessoa que tenha certa prática com fundas consegue arremessar uma pedra de 25 gramas a uma velocidade de 100 quilômetros por hora para acertar um alvo a 200 metros de distância ou mais. De que maneira a pedra ganha uma velocidade tão grande, ou, mais objetivamente, um momento tão grande? Em algumas batalhas do passado a arma se mostrava mais útil que uma flecha, pois mesmo que o soldado inimigo usasse uma armadura de couro, a colisão da pedra era capaz de causar lesões

internas mortais, ao passo que uma flecha podia simplesmente ricochetear. Quando um soldado estava sem armadura, a pedra podia facilmente penetrar em seu corpo. A funda também era mais precisa que uma flecha e muitas vezes alcançava distâncias maiores. Por esse motivo, os fundibulários costumavam se posicionar atrás dos arqueiros, que precisavam estar mais próximos do inimigo para serem eficazes. A batalha mais famosa envolvendo uma funda foi, naturalmente, o breve embate entre Davi e Golias. Durante 40 dias, o gigante filisteu desafiou os israelitas, mas ninguém ousou enfrentá-lo antes de Davi. Este escolheu cinco pedras lisas em um riacho e se aproximou de Golias, mantendo-se, porém, a uma distância segura, fora do alcance da espada do gigante. Davi pegou a primeira pedra no alforje e arremessou-a contra o adversário. A pedra o atingiu com tamanho momento que ficou encravada na testa do gigante.

Resposta A pedra, que pode ser natural ou feita de barro ou metal, é posta em uma bolsa flexível à qual estão amarradas duas tiras. Uma das mãos (a mão direita, se a pessoa for destra) segura as pontas das tiras. Uma das tiras é enrolada em torno dos dedos, enquanto a outra tem um nó que fica entre o polegar e o indicador. Usa-se a mão esquerda para esticar as tiras enquanto o conjunto é erguido acima da cabeça. Em seguida, a mão esquerda larga a bolsa e a mão direita realiza trabalho sobre a pedra, puxando a bolsa para trás e depois para baixo e para a frente. Esse movimento é feito principalmente com o pulso, e não com o braço inteiro. Em seguida, faz-se girar a pedra em um círculo vertical três ou quatro vezes para que acumule energia cinética. No momento em que a pedra alcança o ponto inferior do último círculo, solta-se a tira com o nó, liberando a pedra, que voa em direção ao alvo. A vantagem da arma é que é possível exercer trabalho sobre a pedra ao longo de uma distância maior e durante mais tempo do que se a pedra fosse simplesmente jogada para a frente como uma bola de beisebol. O raio do círculo também é importante, uma vez que, quanto maior esse raio, maior a velocidade de lançamento da pedra e, em conseqüência, maior o alcance. No passado, alguns soldados carregavam fundas com tiras de vários comprimentos para arremessar pedras a diferentes distâncias.

1.29 • Tomahawks Uma pessoa acostumada a acertar a ponta afiada de um tomahawk em um alvo pode ser apenas experiente, mas existe alguma base científica para essa capacidade? Conhecendo a teoria, você conseguiria acertar um alvo na primeira tentativa?

Resposta Para arremessar um tomahawk, segure o cabo perpendicularmente ao antebraço, leve o braço para trás além da cabeça e, em seguida, rode o antebraço e o tomahawk para a frente ao redor do cotovelo, soltando o tomahawk de modo que sua velocidade seja horizontal e para a frente. A arma vai girar em torno do centro de massa (situado na pesada cabeça) enquanto voa pelo ar. A menos que você tenha muita prática em arremessá-lo, um tomahawk provavelmente terá uma velocidade de lançamento e uma taxa de rotação diferentes a cada arremesso. Parece uma indicação de que acertar um alvo a uma certa distância depende da sorte. Entretanto, uma característica curiosa do arremesso é que a relação entre a velocidade de lançamento e a velocidade de rotação independe da velocidade com que você move o antebraço para a frente. Graças a essa independência, seja qual for o seu lançamento, o tomahawk vai rodar de modo que estará na orientação cortante a certas distâncias em relação a você. Portanto, para acertar um alvo, tudo o que você precisa fazer é ficar em uma dessas distâncias (que podem ser conhecidas por observação ou por cálculo) e lançar o tomahawk. É provável que você acerte na primeira tentativa. Evidentemente, quando os tomahawks eram de fato usados como armas nos primórdios da história dos Estados Unidos, um guerreiro não podia se dar o luxo de ajustar sua distância em relação ao alvo antes de lançar o tomahawk. Em vez disso, ajustava rapidamente a distância entre a mão e a cabeça da arma. A distância mão–cabeça determina os valores das distâncias do alvo nas quais a arma estará na orientação cortante. Para que seja possível realizar esse ajuste para a distância de qualquer alvo em uma situação de combate, o cabo do tomahawk tem que ser longo; de fato, os primeiros tomahawks possuíam cabos longos.

1.30 • Boleadeiras Uma boleadeira é composta de três esferas pesadas ligadas a um ponto comum por cordas resistentes e de comprimento idêntico (Fig. 1-9a). Para lançar essa arma, inventada na América do Sul, segure uma das esferas acima da cabeça e, em seguida, rode a mão em volta do punho para girar as outras duas esferas em um trajeto horizontal em volta da mão. Ao atingir uma rotação suficiente, arremesse a arma no alvo. Durante o vôo da arma, a taxa de rotação aumenta, e, ao alcançar o alvo, a corda se enrola nele rapidamente até que as esferas o atingem. Por que a velocidade de rotação das esferas aumenta durante o vôo?

Resposta Seja L o comprimento da corda de uma das esferas até o ponto comum no qual elas estão presas. Quando você roda a boleadeira segurando uma das esferas na mão, as outras duas começam a girar em torno dela a uma distância de 2L. Entretanto, assim que você arremessa a boleadeira e ela voa livremente pelo ar, essa configuração de duas esferas girando em torno da terceira torna-se instável e a boleadeira começa a girar em torno do ponto de união das três cordas, a uma distância de L e com as três esferas simetricamente afastadas desse ponto (Fig. 1-9b). Esta mudança de configuração reduz a distribuição de massa da boleadeira. Como a boleadeira está voando livremente, seu momento angular não pode mudar. Portanto, com a diminuição da distribuição de massa, a taxa de rotação aumenta. A situação é parecida com a de um patinador no gelo girando na ponta dos pés que encolhe os braços para reduzir a distribuição de massa e, assim, aumentar a velocidade de rotação.

Figura 1-9 / Item 1.30 Uma boleadeira (a) quando é arremessada e (b) quando está no ar.

1.31 • Máquinas de cerco Imagine que você esteja em um cerco medieval de um castelo muito fortificado. Você não quer se aproximar demais do castelo por causa dos arqueiros postados nas muralhas da fortaleza. De que maneira é possível atacar as muralhas a distância?

Resposta Havia dois tipos principais de máquinas de cerco usadas para atacar muralhas fortificadas: a catapulta e o trebuchet. A catapulta era nada mais que um arco que disparava uma flecha ou uma pedra (que podia chegar a pesar 25 quilos). Como a máquina era muito maior que o arco de um arqueiro, a flecha podia ter 2 metros de comprimento e a corda era puxada passando por uma roldana, o que aumentava consideravelmente a energia armazenada e transferida para a flecha durante o lançamento. Ainda assim, as flechas não tinham muito efeito contra uma muralha de pedra, porque tanto a energia quanto o momento da flecha não eram grandes. O trebuchet causava um estrago muito maior: alguns modelos conseguiam arremessar pedras de 1300 quilos. Eram capazes de arremessar também cavalos mortos ou até pilhas de cadáveres humanos. A última opção era usada quando um exército de ataque era dizimado pela peste negra e queria lançar a doença para dentro da fortaleza para infectar os defensores. Em situações mais descontraídas, trebuchets modernos foram usados para arremessar pianos e até pequenos carros. A Figura 1-10 mostra o desenho básico de um trebuchet. O projétil fica em uma bolsa amarrada na extremidade A de uma longa viga de madeira. Aplica-se uma grande força para baixo à extremidade B de modo que a viga roda em torno de um eixo e a bolsa sobe rapidamente e é lançada por cima da máquina. Enquanto a bolsa e o projétil passam por cima da máquina, a corda que prende a bolsa à viga se solta e o conjunto é arremessado. A energia dada ao projétil vem, portanto, do trabalho realizado pela força aplicada à extremidade B.

Figura 1-10 / Item 1.31 Trebuchet.

Essa força podia ser simplesmente o resultado do esforço coordenado de vários homens puxando para baixo. Entretanto, os trebuchets capazes de arremessar grandes objetos a distâncias consideráveis usavam um pesado contrapeso em B; dessa forma, a força aplicada era a força da gravidade que atuava no contrapeso. O contrapeso era primeiro erguido gradualmente por homens através de uma roldana. Em seguida, o contrapeso era solto para que parte da energia potencial gravitacional nele armazenada pelos homens pudesse ser transformada em energia cinética do projétil. A energia cinética e o momento do projétil eram muito grandes e, se o projétil fosse uma pedra, era capaz de abrir um buraco na muralha de uma fortaleza. Quando o uso do trebuchet se difundiu, as muralhas dos castelos foram reprojetadas para que pudessem resistir melhor aos impactos. Assim, por exemplo, algumas muralhas passaram a ser inclinadas em vez de verticais, para que os projéteis as atingissem de raspão, e não diretamente.

1.32 • Canhão humano O número de circo em que uma pessoa é lançada no ar a partir de um canhão ou outro dispositivo começou no início dos anos 1870, quando um homem disparado de um canhão a uma curta distância foi apanhado por um assistente em um trapézio. Quando a família Zacchini reviveu o número em 1922, resolveu executar vôos mais ousados, em que o artista percorresse uma distância maior e aterrissasse em uma rede. Os primeiros canhões usavam molas para impulsionar o artista, mas em 1927 passou-se a usar ar comprimido. Para aumentar a emoção do número, a família Zacchini começou a lançar o artista por cima de rodas-gigantes. No começo, era apenas uma, mas em 1939 ou 1940 chegaram a um grau de risco que beirava o absurdo, quando Emanuel Zacchini voou por cima de três rodas-gigantes, percorrendo uma distância horizontal de 70 metros. O número do canhão humano talvez seja uma das demonstrações mais impressionantes do movimento de projéteis, pois envolve a possibilidade evidente de o artista cair fora da rede. Existem outros riscos menos óbvios?

Resposta Para se preparar para um disparo, o artista colocava as pernas no interior de “calças de metal” situadas no interior do canhão. As calças eram ajustadas com precisão à forma das pernas e eram necessárias para manter a pressão quando o pistão era rapidamente deslocado para cima. Um risco pouco conhecido envolvia esse deslocamento, pois a aceleração necessária para um vôo longo era tão grande que o artista podia perder temporariamente a consciência. Parte do treinamento do artista envolvia recuperar a consciência durante o vôo para que pudesse realizar um rolamento controlado na rede. Se o pouso fosse descontrolado, a colisão e o ricochete da rede podiam facilmente quebrar os membros ou o pescoço do artista. A família Zacchini afirmava que a velocidade do artista chegava a 600 quilômetros por hora na boca do canhão, mas provavelmente a velocidade não passava de 160 quilômetros por hora. Outro risco pouco conhecido era a resistência do ar enfrentada pelo artista. O efeito da resistência do ar dependia da orientação do corpo durante o vôo: era menor se o corpo estivesse orientado na direção do percurso e maior se o corpo tivesse uma orientação perpendicular a essa direção (o que podia acontecer durante a queda). Uma resistência do ar pequena aumentava o alcance do disparo; uma resistência do ar maior reduzia o alcance. Como a orientação do artista variava de um disparo para outro, alguém tinha que calcular (ou estimar) a distância que o artista iria percorrer e depois instalar uma rede larga o suficiente para dar conta das possíveis variações devidas à resistência do ar.

1.33 • Arremessos de basquete O basquete é, naturalmente, um jogo que envolve habilidade e sorte. Existe uma maneira de arremessar a bola que aumente a probabilidade de fazer uma cesta? Por exemplo: é melhor arremessar a bola em um arco alto, ou arremessá-la em uma trajetória mais reta? Em que circunstâncias arremessar a bola girando pode ser benéfico e em que circunstâncias é indesejável? Em um lance livre (em que um jogador pode arremessar a bola sem ser pressionado, a cerca de 4,3 metros de distância da cesta), o jogador pode lançar a bola usando o arremesso alto, no qual a bola é empurrada a partir da altura do ombro e depois é solta. Em vez disso, o jogador pode preferir usar o arremesso lavadeira, no qual a bola é levada para cima a partir da linha da cintura e depois é solta. A primeira técnica é usada pela maioria absoluta dos jogadores profissionais, mas o legendário Rick Barry estabeleceu o recorde de arremessos de lances livres usando a técnica da lavadeira. Alguma das duas técnicas é realmente melhor que a outra?

Resposta De qualquer posição da quadra, existe um grande número de ângulos dos quais é possível arremessar a bola e acertar a cesta, contanto que o jogador imprima à bola a velocidade correta. Entretanto, o fato de que a bola tem um diâmetro menor que o da cesta permite uma certa margem de erro na velocidade de lançamento. Optando por um ângulo pequeno, a margem de erro é pequena e o arremesso tem que ser muito preciso. É necessário dar à bola uma grande velocidade, o que exige mais força e trabalha contra a precisão. Se, por outro lado, o jogador opta por um ângulo intermediário, a margem de erro na velocidade é maior e a velocidade e a força são menores, o que aumenta a probabilidade de acertar a cesta. Para ângulos ainda maiores, a margem de erro é aproximadamente a mesma, mas, uma vez as velocidades e as forças necessárias são maiores, esses ângulos devem ser evitados. Jogadores novatos costumam lançar a bola ao longo de uma trajetória reta demais, enquanto jogadores experientes aprendem com a prática a arremessar a bola de modo a que percorra um arco até a cesta. Quanto maior a altura da qual a bola é arremessada, menor pode ser a velocidade, o que dá uma vantagem aos jogadores altos. A vantagem da altura é tão grande que alguns jogadores optam por saltar antes de arremessar a bola, mesmo que não estejam sendo marcados por um adversário. Se você imprime um efeito reverso à bola e acerta a tabela em vez da cesta, a rotação cria um atrito que pode fazer a bola cair dentro da cesta na volta. Quando o arremesso é feito lateralmente, uma rotação na bola em torno de um eixo vertical também pode ajudar. O arremesso lavadeira tem uma chance maior de sucesso do que o lançamento alto, mas as razões ainda estão sendo discutidas. O sucesso pode ser devido ao fato de que o lançamento lavadeira é mais fácil de executar, mas uma vantagem mais importante parece estar no fato de que o arremesso permite que o jogador imprima mais efeito reverso à bola, o que pode ajudar a converter um arremesso que acerte na tabela.

CURIOSIDADE 1.34 • Recordes de lances livres Em 1977, Ted St. Martin bateu o recorde de cestas consecutivas arremessando da linha de lance livre: acertou 2036 vezes seguidas. No ano seguinte, Fred L. Newman estabeleceu um recorde mais estranho. De olhos vendados, acertou a cesta 88 vezes consecutivas a partir da linha. Durante um período de 24 horas nos anos seguintes, com os olhos abertos, Newman conseguiu encestar 12.874 vezes em 13.116 tentativas.

1.35 • Tempo de vôo no basquete e no balé Alguns jogadores de basquete experientes parecem flutuar no ar durante um salto em direção à cesta, o que lhes confere mais tempo para trocar a bola de mão antes de encestá-la. Da mesma forma, algumas bailarinas experientes parecem flutuar pelo palco durante um salto conhecido como grand jeté. É óbvio que ninguém pode desligar a gravitação durante um salto; qual é a explicação para esses dois exemplos de aparente flutuação no ar?

Resposta A flutuação no ar, tanto do jogador de basquete quanto da bailarina, não passa de ilusão. No basquete, a ilusão se deve principalmente à agilidade do jogador ao realizar muitos movimentos durante o salto. No grand jeté do balé, a ilusão vem de uma mudança da posição dos braços e das pernas da bailarina durante o salto: ela levanta os braços e estica as pernas horizontalmente assim que os pés deixam o palco. Essas ações elevam seu centro de massa (Fig. 1-11). Embora o centro de massa siga rigorosamente uma trajetória parabólica (curva) ao longo do palco, conforme exige a lei da gravitação, seu movimento em relação ao corpo diminui a altura que seria alcançada pela

cabeça e o torso em um salto comum. O resultado é que a cabeça e o torso seguem uma trajetória praticamente horizontal durante a parte central do salto. Essa trajetória parece estranha para o público que, pela experiência cotidiana, espera uma trajetória parabólica mesmo que desconheça o termo. Um jogador de basquete pode retificar da mesma forma o trajeto percorrido pela cabeça durante um salto se levantar as pernas e erguer os braços e a bola. Entretanto, não acho que esta técnica seja empregada de forma consciente pelos jogadores. Ainda que erga os braços e a bola em direção à cesta durante um salto próximo à cesta, o jogador raramente levanta as pernas, e a ligeira retificação do trajeto sofrida pela cabeça dificilmente vai confundir um jogador da defesa que salta ao lado do jogador que tenta o arremesso.

Figura 1-11 / Item 1.35 Trajetória do centro de massa durante um grand jeté.

1.36 • Golfe Como você deve movimentar um taco de golfe para golpear a bola da melhor maneira possível? Por exemplo: você deve descer o braço com toda a força, mais ou menos como atacaria um oponente com um taco durante uma briga? Se, por outro lado, você aumentar ou reduzir o esforço em algum momento do movimento, o melhor momento para fazer essa mudança depende da flexibilidade da haste do taco de golfe? Por que acertar um buraco a 1 metro de distância é muito mais difícil do que acertar um buraco a meio metro? Acertar um buraco a 3,5 metros é muito mais difícil do que acertar um buraco a 3,0 metros? Por que a bola pode estar rolando diretamente para o buraco e, ainda assim, não cair nele?

Resposta Ao movimentar-se o taco de golfe para baixo durante uma tacada, o movimento começa com os pulsos virados de modo que o taco faça um ângulo de cerca de 90° com os braços. Se você movimentar o taco como em uma luta, automaticamente vai desvirar os pulsos durante o movimento. A cabeça do taco terá uma velocidade muito maior se você resistir a desvirar os pulsos, reduzindo o torque aplicado ao taco durante a tacada. O momento exato em que os pulsos devem ser desvirados se aprende com a prática. Uma vez que os pulsos são desvirados, o taco se movimenta em volta dos pulsos enquanto estes se movimentam em volta dos ombros, o que aumenta a velocidade da cabeça do taco. Muitos jogadores acreditam que a flexibilidade da haste do taco afeta o vôo da bola porque determina o ângulo ao qual a cabeça do taco encontra a bola. O argumento é que uma haste mais flexível primeiro se entorta para trás durante o movimento e, em seguida, pouco antes do impacto com a bola, avança mais para a frente do que acontece com uma haste mais rígida, transferindo assim mais energia para a bola. Entretanto, estudos mostram que a flexibilidade do taco tem pouco efeito sobre o vôo da bola: na verdade, uma maior flexibilidade pode causar redução da energia transferida para a bola, porque o impacto faz o taco oscilar. Portanto, um taco mais rígido é mais desejável, porque dá mais controle ao permitir acertar a bola com firmeza. Uma medida da dificuldade de uma tacada é o ângulo ocupado pelo buraco, do ponto de vista da bola. Quando a bola é

afastada do buraco, o ângulo a princípio diminui rapidamente, de modo que a dificuldade de acertar o buraco aumenta rapidamente. Entretanto, para distâncias maiores que 1 metro, aproximadamente, o ângulo diminui mais devagar, de modo que a dificuldade passa a aumentar mais devagar. Naturalmente, esta análise simples não leva em consideração outras dificuldades de uma tacada longa, como o maior número de variações da textura da grama e da inclinação do terreno ao longo da trajetória em direção ao buraco. Se a bola está rolando diretamente em direção ao buraco, ela não vai entrar se a velocidade for maior que um certo valor crítico ao chegar à borda do buraco. Uma bola a essa velocidade atravessa a boca do buraco, caindo durante o percurso, mas essa queda é insuficiente para impedir a bola de rolar para fora do buraco ao se chocar com a outra borda.

CURIOSIDADE 1.37 • Cortina da morte do impacto de um meteoro Sempre que um asteróide metálico chega ao solo (em vez de queimar na atmosfera), abre uma cratera, lançando pedras no ar. Entretanto, o material não é ejetado de maneira aleatória. Em vez disso, as pedras que se movem mais depressa tendem a ser ejetadas em ângulos maiores em relação ao chão. Se testemunhasse essa ejeção em sua direção, você perceberia que, em certo momento, ela forma uma cortina estreita e curva (Fig. 1-12): as partículas superiores da cortina são ejetadas a velocidades e ângulos maiores que as partículas inferiores. As pedras mais lentas chegam ao solo antes das pedras superiores; isto faz com que você veja e ouça pancadas constantes no chão enquanto a cortina se move em sua direção.

Figura 1-12 / Item 1.37 Pedras ejetadas pelo impacto de um meteorito.

1.38 • O salto em altura e o salto em distância Um novato na modalidade esportiva de salto em altura pode ser tentado a saltar sobre o sarrafo jogando uma perna por cima dele e trazendo em seguida a outra, com o corpo inclinado para a frente na cintura. Esta técnica é conhecida como tesoura. Um salto com maiores chances de sucesso é o rolo, no qual a pessoa basicamente rola por cima do sarrafo deitada de bruços, com o corpo paralelo ao sarrafo. Quando Dick Fosbury venceu a prova de salto em altura nos Jogos Olímpicos da Cidade do México, em 1968, inaugurou o que parecia ser um jeito muito estranho de saltar. Esta técnica ficou conhecida como Fosbury flop e é usada atualmente por quase todos os atletas dessa modalidade. Para executar o salto, o atleta corre a um ritmo cadenciado até o sarrafo e, no último instante, vira o corpo, passando por cima do sarrafo de costas, com a barriga para cima. Qual é a vantagem desse estilo? Por que a aproximação ao sarrafo é feita a um ritmo cadenciado? Certamente um ritmo mais rápido daria ao atleta mais energia para saltar mais alto. Um dos eventos mais incríveis na história do atletismo também aconteceu nos Jogos Olímpicos da Cidade do México. Na tarde de 18 de outubro, Bob Beamon se preparou para a primeira das três tentativas permitidas no salto em distância, contando os passos ao longo da pista de aproximação. Virou-se, correu de volta pela pista, pisou na tábua de impulsão e voou pelo ar. O salto foi tão longo que o instrumento óptico de medição não foi capaz de registrá-lo, e tiveram que trazer uma fita métrica. Um juiz disse a Beamon, que estava sentado ao seu lado: “Fantástico, fantástico”. A marca tinha sido realmente impressionante: 8,90 metros, batendo com facilidade o recorde anterior de 8,10 (uma diferença de quase 1 metro!). Beamon certamente se beneficiou do vento a favor, que estava exatamente no limite superior de 2,0 metros por segundo. Será que ele se beneficiou também da altitude elevada e da baixa latitude da Cidade do México? Em outras palavras, a densidade do ar e a força da gravidade ajudaram-no a conseguir esse salto histórico? O comprimento de um salto em distância é medido em relação ao ponto em que os calcanhares do atleta marcam a areia na aterrissagem, a menos que as nádegas do atleta apaguem as marcas dos calcanhares. Se essas marcas forem apagadas, o comprimento do salto é medido apenas até a borda mais próxima do buraco deixado na areia pelas nádegas. Isto significa que aterrissar na orientação apropriada é importante no salto em distância.

Quando um saltador de distância sai do chão, com o último passo na tábua de impulsão, o torso está aproximadamente vertical, a perna de impulsão está atrás do torso e a outra perna está estendida para a frente. Quando o saltador de distância aterrissa, as pernas devem estar juntas e estendidas para a frente para que os calcanhares marquem a areia à maior distância possível, mas sem que as nádegas apaguem a marca. De que maneira um saltador consegue passar da orientação de decolagem para a orientação de aterrissagem durante o salto? No salto em distância das Olimpíadas antigas, por que alguns atletas saltavam levando na mão halteres que chegavam a pesar vários quilos?

Resposta A altura que é registrada no salto em altura é, evidentemente, a altura do sarrafo, não a altura máxima da cabeça ou alguma outra parte do corpo do saltador. Suponha que, durante o salto, o atleta seja capaz de elevar o centro de massa a uma altura L. Se o atleta escolhe a tesoura, o sarrafo tem que estar muito abaixo de L para não ser derrubado e, portanto, a altura do salto não é muito grande (Fig. 1-13a). No rolo, o corpo se estende horizontalmente e pode passar com o centro de massa muito mais próximo do sarrafo, que, assim, pode ficar mais alto (Fig. 1-13b). Em um flop, a curvatura do corpo em volta do sarrafo faz o centro de massa descer abaixo do corpo e o atleta consegue passar por cima de um sarrafo ainda mais alto do que com o rolo (Fig. 1-13c). A virada e o salto para trás no último momento do flop também possibilitam uma decolagem mais forte. A aproximação para o salto é mais lenta do que em uma corrida, porque a chave para o sucesso é uma execução impecável, de modo que o sincronismo é essencial. No fim da aproximação, o atleta planta o pé de impulsão muito à frente do centro de massa do corpo e gira o corpo em torno do pé enquanto flexiona a perna de impulsão. Esta manobra faz com que parte da energia cinética da corrida seja armazenada na perna flexionada. Em seguida, quando a perna exerce pressão contra o chão, impulsiona o atleta para cima, transferindo para o lançamento do atleta a energia armazenada e também a energia adicional proporcionada pela força muscular.

Figura 1-13 / Item 1.38 Os estilos (a) tesoura, (b) rolo e (c) flop de salto em altura.

O salto em distância de Beamon sofreu apenas uma pequena ajuda do vento e da localização. A Cidade do México fica a uma altitude de 2300 metros, consideravelmente maior que a de muitos outros lugares onde foram realizados Jogos Olímpicos. Por causa da altitude elevada, a densidade do ar é baixa e, portanto, a resistência do ar é menor do que em altitudes mais baixas. A altitude elevada também está associada a uma aceleração gravitacional menor e, portanto, a uma força de atração menor sobre o corpo do atleta. A aceleração e a atração são ainda menores por causa da força centrífuga efetiva exercida sobre o atleta pela rotação da Terra. Essa força efetiva é maior em baixas latitudes, porque a velocidade tangencial é maior. Entretanto, a influência de todos esses fatores, embora não seja desprezível, é relativamente pequena. Sendo assim, por que Beamon conseguiu saltar tão longe? O principal motivo foi que ele chegou à tábua de impulsão em alta velocidade. A maioria dos saltadores de distância se aproximam mais devagar para não pisar fora da tábua, o que invalida o salto. Por outro lado, se saltarem antes da tábua, perdem o apoio firme que ela proporciona durante a decolagem, além de perderem distância no salto, uma vez que o salto é medido a partir da tábua. Como a tábua tem apenas 20 centímetros de extensão, o passo final tem que ser bem calculado. Beamon, que costumava “queimar” muitos saltos, aparentemente decidiu arriscar na primeira tentativa e chegou até a tábua em alta velocidade. Seu último passo por pouco não ultrapassou a tábua. Se tivesse queimado o salto, provavelmente seria mais cauteloso nos dois saltos seguintes e reduziria a velocidade.

Ninguém, nem o próprio Beamon, conseguiu superar aquele salto nos 23 anos seguintes. Finalmente, no Campeonato Mundial de Atletismo de 1991, Mike Powell saltou 8,95 metros (5 centímetros a mais que Beamon). Ele conseguiu essa proeza em Tóquio, sem qualquer benefício de uma altitude mais elevada e com um vento a favor de apenas 0,3 metro por segundo nas costas. Powell demonstrou de maneira extraordinária que os efeitos da altitude e do vento são muito menos importantes que a condição atlética. Para levar em conta a reorientação de um saltador de distância durante o vôo, suponha que o salto, do seu ponto de vista, seja para a direita. No instante em que o atleta inicia o salto, a força que a tábua exerce sobre o pé de impulsão produz uma rotação do corpo no sentido horário, que tende a levar o tronco para a frente e a perna da frente para trás. Essa tendência de rotação no sentido horário aumenta quando a perna de trás é levada para a frente como preparação para a aterrissagem. O motivo é que o saltador não está em contato com o chão nesse momento e, por isso, o momento angular do corpo deve permanecer constante. Assim, quando a perna de trás gira no sentido anti-horário para ir para a frente, o resto do corpo tende a girar no sentido horário. Para reduzir a rotação no sentido horário, a fim de que o saltador fique na orientação adequada para aterrissar, o atleta movimenta rapidamente os braços no sentido horário. Além disso, as pernas podem continuar a se movimentar como durante a corrida, com uma perna esticada quando gira no sentido horário para trás e encolhida quando gira no sentido anti-horário para a frente. (Nenhum desses movimentos altera a distância do salto; muda apenas a orientação do corpo.) Os saltadores novatos muitas vezes não movimentam suficientemente os braços ou, o que é pior, movimentam os braços no sentido errado. O tronco e as pernas nesse caso não ficam na melhor orientação, e o salto é curto porque as marcas dos calcanhares são feitas com as pernas encolhidas ou as nádegas apagam as marcas dos calcanhares. Os halteres usados pelos saltadores nas antigas Olimpíadas podiam aumentar a distância do salto. O atleta balançava os objetos na mão para a frente e para trás em preparação para o salto, depois os balançava para a frente durante a primeira parte do salto e, finalmente, os balançava para trás na preparação para a aterrissagem. Aplicada corretamente, esta técnica podia acrescentar 10 ou 20 centímetros à distância do salto por duas razões. (1) Quando o centro de massa do sistema atleta–halteres se movimentava pelo ar, o último movimento do braço para trás deslocava os halteres para trás em relação ao centro de massa e, portanto, deslocava o atleta para a frente em relação ao centro de massa. (2) Durante a decolagem, o balanço dos halteres para a frente aumentava a força para baixo no ponto de decolagem, proporcionando dessa forma uma força de decolagem maior ao atleta. (Na verdade, além dos músculos da perna, o atleta estava usando também os músculos do ombro e do braço durante a decolagem.) O salto podia ir um pouco mais longe se o atleta jogasse os halteres para trás durante a parte final do vôo, lançando o corpo para a frente como um foguete. O centro de massa do sistema atleta–halteres continuaria aterrissando no mesmo ponto, mas o atleta chegaria um pouco à frente desse ponto.

1.39 • Feijões saltitantes Se uma menina sentada em um cobertor segura as quatro pontas do cobertor e as puxa para cima com muita força, será que consegue erguer a si mesma? Claro que não, embora eu saiba de uma menina que tentou com todas as suas forças. De que maneira, então, os feijões saltitantes conseguem saltar?

Resposta O feijão contém um pequeno verme que decola da parte inferior do feijão e colide com a parte superior, impulsionando o feijão para cima. A força externa (a força fora do sistema verme–feijão) responsável pelo movimento é a força para cima exercida sobre o verme quando ele inicia o salto.

1.40 • Acrobacia de um salta-martim; ataque de uma tamarutaca Se você cutucar um besouro salta-martim deitado de costas, ele se lança no ar a uma altura de até 25 centímetros, com um estalo audível. Durante o salto ele pode virar ao contrário e aterrissar de pé. A decolagem envolve uma aceleração que chega a 400 g (ou seja, 400 vezes a aceleração da gravidade) e exige uma força que pode chegar a 100 vezes a força que qualquer dos músculos do besouro é capaz de produzir. De que maneira o besouro produz essa força tão grande, que, evidentemente, não pode ser exercida pelas patas, já que começa nas costas? Uma pista é o estalido e outra é o fato de que o besouro não consegue repetir a façanha imediatamente. A tamarutaca (Odontodactylus scyllarus), um tipo de camarão, ataca sua presa rodando rapidamente um apêndice em direção a ela. O apêndice não atinge a presa, mas produz bolhas de ar que geram uma onda de som destrutiva ao se desfazerem bruscamente. A aceleração da extremidade do apêndice pode chegar a 10.000 g. Como um camarão consegue uma aceleração tão elevada?

Resposta O salto do besouro é mais ou menos como o disparo de uma ratoeira: ambos envolvem um rápido

movimento de rotação de uma peça em relação a outra. No besouro, um músculo na frente do corpo lentamente se contrai e movimenta uma seção pediforme por cima do mesosterno até que uma saliência na agulha (espinho ventral) encaixa no lábio do mesosterno, arqueando o besouro (Fig. 1-14a). Depois que a tensão se acumula no músculo, a agulha subitamente desliza por cima do lábio e escorrega até uma fossa. O deslizamento repentino força a parte frontal do besouro a girar para cima e faz a parte traseira exercer uma força para baixo sobre o chão (Fig. 1-14b). O empurrão arremessa o besouro para cima e a rotação iniciada pelo deslizamento da agulha possibilita ao besouro rodar em volta do seu centro de massa enquanto está no ar. O besouro pode girar o suficiente para aterrissar na posição normal. O estalo emitido pelo besouro é produzido pelo deslizamento do espinho dorsal por cima do lábio ou pela parada abrupta da agulha depois de entrar na fossa. A lenta contração inicial do músculo possibilita ao besouro armazenar energia. A liberação repentina dessa energia é responsável pela grande energia do salto. Antes que o salto possa ser repetido, a energia precisa ser armazenada novamente, o que leva algum tempo. Esse tipo de armazenamento e de liberação brusca de energia é usado por muitos animais para executar movimentos rápidos, seja para conseguir alimento, seja para não se tornar alimento.

Figura 1-14 / Item 1.40 (a) Salta-martim de costas, com o espinho ventral encaixado e os músculos tensionados. (b) A agulha desliza por cima do encaixe e o besouro dobra o corpo como um canivete.

Um processo similar é empregado pela tamarutaca. O apêndice usado em um ataque é mantido junto ao corpo enquanto um elemento em forma de sela é lentamente colocado sob tensão, como uma mola comprimida. O apêndice é mantido no lugar por um fecho. Quando o elemento em forma de sela está sob tensão máxima, o fecho é aberto e o elemento provoca a rápida rotação do apêndice.

CURIOSIDADE 1.41 • Alguns recordes de levantamento de peso Na modalidade esportiva de levantamento de peso, os recordes são quebrados com freqüência, mas o recorde para o maior levantamento de peso de qualquer tipo foi estabelecido em 1957 por Paul Anderson e permanece até hoje. Ele empregou um levantamento dorsal, no qual se colocou debaixo de uma plataforma de madeira sustentada por cavaletes. À sua frente havia um banquinho que ele podia usar para se firmar. Na plataforma havia peças de automóvel e um cofre cheio de chumbo. Com um esforço inimaginável tanto nos braços quanto nas pernas, levantou a plataforma, cujo peso total era de 2850 quilos (27.900 newtons)! Igualmente impressionante foi um levantamento executado pela Sra. Maxwell Rogers, em Tampa, na Flórida, em abril de 1960. Ao descobrir que um carro havia caído do macaco em cima do filho que trabalhava debaixo do veículo, levantou um lado do carro para que o filho fosse retirado por um vizinho. O carro pesava 1630 quilos (16.000 newtons), dos quais ela provavelmente levantou pelo menos 25%. Ela fraturou várias vértebras. (Relatos parecidos aparecem às vezes nos jornais. Em situações de emergência, uma pessoa sem treinamento consegue levantar um peso muito maior do que o seu próprio peso, o

qual, em circunstâncias normais, ela jamais conseguiria levantar.)

1.42 • Colisões em cadeia Se uma bola se choca com uma bola estacionária, em que condições a segunda bola recebe o máximo de energia? Será que nas mesmas condições a segunda esfera recebe o máximo de velocidade possível? Quais são as respostas se a bola se choca com uma série de bolas inicialmente estacionárias? Suponha que inicialmente existam uma bola grande que está em movimento e uma bola menor que permanece estacionária. Será que é possível aumentar a energia que é transferida para a bola menor introduzindo outras bolas entre as duas? Se a resposta for afirmativa, quais devem ser as massas das bolas intermediárias? Uma bola de golfe está voando em direção à sua cabeça. Se você quer reduzir a energia que será transferida para a sua cabeça, deve colocar a mão na frente para que a mão bata na cabeça em vez da bola?

Figura 1-15 / Item 1.42 (a) A primeira esfera é solta; a última é empurrada para o lado. (b) Antes e (c) depois de uma colisão de uma esfera muito grande e uma muito pequena. (d) Antes e (e) depois da colisão do ponto de vista da esfera maior.

Um brinquedo popular utiliza uma série de bolas que podem balançar como pêndulos (Fig. 1-15a). As bolas são elásticas, ou seja, apenas uma pequena quantidade de energia é perdida quando colidem com outros objetos. Você levanta uma bola de uma das extremidades e depois a solta para que colida com a bola seguinte. Por que apenas a bola da extremidade oposta se move? Reposicione as bolas de modo a que exista um pequeno espaço entre elas e depois solte a primeira bola para que colida com a segunda fazendo um pequeno ângulo com a direção de alinhamento das outras bolas. Embora as colisões iniciais sejam tortas, o desalinhamento desaparece gradualmente nas colisões seguintes. Entretanto, se você aumentar o espaço entre as esferas e repetir a experiência, o desalinhamento aumentará a cada colisão. As colisões podem até cessar se uma bola for golpeada tão obliquamente que não se choque com a bola seguinte. Por que o comportamento de alinhamento–desalinhamento depende do espaçamento entre as bolas?

Resposta A segunda bola recebe a máxima energia quando sua massa é igual à da primeira bola. Se as bolas são elásticas, quase toda a energia é transferida, caso em que a velocidade final da segunda bola é praticamente igual à velocidade inicial da primeira bola e a velocidade da primeira bola após a colisão é praticamente nula. A velocidade da segunda bola é a maior possível quando sua massa é muito menor que a massa da primeira bola. Seja V a velocidade da primeira bola (Fig. 1-15b). Se a razão das massas é muito grande e a colisão é elástica, a segunda bola pode receber uma velocidade igual a 2V (Fig. 1-15c). Isto pode parecer incorreto, mas assuma por um momento o ponto de vista da

primeira bola, como se você fosse essa bola. A segunda bola parece se aproximar de você com velocidade V (Fig. 1-15d), colidir elasticamente e depois se afastar com velocidade V (Fig. 1-15e). Agora volte ao ponto de vista original. A segunda bola se afasta da primeira com uma velocidade relativa V. O que a primeira bola está fazendo? Como a segunda bola tem uma massa muito pequena, a colisão praticamente não altera a velocidade da primeira bola, que continua a ser (aproximadamente) V. Assim, a velocidade da segunda bola tem que ser V + V = 2V. Se houver uma série de colisões desse tipo, a velocidade transferida a cada colisão será (aproximadamente) o dobro da transferida na colisão anterior. Quando as bolas das extremidades já estão escolhidas e você quer aumentar a transferência de energia para a bola menor, introduza esferas intermediárias de modo que cada uma tenha uma massa que seja a média geométrica das massas mais próximas. (A média geométrica das massas é a raiz quadrada do produto das massas.) Outras escolhas de massas intermediárias também podem aumentar a transferência de energia, mas não tanto. Esta conclusão ajuda a responder à pergunta sobre a bola de golfe. Se você proteger a cabeça com a mão, pode na verdade aumentar a transferência de energia para a cabeça, porque a mão tem uma massa intermediária em relação às massas da bola e da cabeça. Ainda assim, colocar a mão é uma boa idéia porque ela é larga e distribui melhor a força da pancada que você vai receber na cabeça. O brinquedo com uma série de bolas oscilantes costuma ser explicado em termos do momento e da energia cinética da bola que está inicialmente em movimento. Para que essas grandezas permaneçam inalteradas enquanto são transmitidas ao longo da cadeia, é preciso que a última bola termine o processo com todo o momento e a energia cinética. Assim, no final, é apenas ela que se movimenta. Entretanto, esta explicação é simples demais, porque o comportamento real das bolas intermediárias pode ser muito complexo se elas estiverem inicialmente em contato. Na demonstração em que a primeira bola se choca com a segunda fazendo um ângulo com a direção de alinhamento das outras bolas, a razão entre a distância D entre as bolas e seus raios R é importante. Se D/R for menor que 4, o desalinhamento diminui durante as colisões porque elas vão se deslocando gradualmente para dentro, ficando mais frontais. Se a razão for maior que 4, o desalinhamento aumenta porque as colisões vão se deslocando gradualmente para fora nas superfícies curvas das esferas.

1.43 • Deixando cair uma pilha de bolas Segure uma bola de tênis um pouco acima de uma bola de vôlei e deixe cair as duas bolas mais ou menos da altura da cintura (Fig. 1-16a). Embora nenhuma das bolas quique muito alto sozinha, a combinação das duas produz um resultado surpreendente: a bola de vôlei praticamente pára no chão e a bola de tênis pode quicar até o teto (Fig. 1-16b). A altura alcançada pela bola de tênis é maior que a soma das alturas que as bolas alcançariam se quicassem separadamente. (Tome cuidado; se as bolas estiverem desalinhadas, a bola de tênis será lançada lateralmente com tanta velocidade que poderá machucar você.) Se você repetir a experiência acrescentando uma pequena bola de borracha no alto da pilha, a terceira bola vai decolar como um foguete e pode ir mais alto que a bola de tênis, embora receba menos energia. Em tese, e se as bolas forem escolhidas de maneira apropriada, a bola de cima de uma pilha de duas bolas solta no ar pode alcançar uma altura nove vezes maior que a altura da qual foi solta. Com três bolas, mais uma vez apropriadamente escolhidas e em condições ideais, a bola de cima pode alcançar uma altura 49 vezes maior que a da queda. Você pode realizar experiências com várias bolas diferentes, tais como uma bola de pingue-pongue, uma “Super Ball” (uma bola quase perfeitamente elástica, marca registrada da empresa Wham-O) ou uma bola de squash. De que maneira devem ser escolhidas as bolas da pilha para que a bola de cima seja lançada à maior altura possível, e por que ela vai tão longe?

Resposta Quando se deixa cair uma pilha de duas bolas, a bola de baixo quica no chão e depois colide com a segunda bola, que ainda está caindo. A colisão transfere energia para a bola de cima e lhe imprime uma velocidade para cima. Suponha que você esteja interessado em maximizar a transferência de energia para que a bola de baixo pare no chão. Se as bolas forem elásticas, a maior transferência de energia acontece quando a bola de baixo tem uma massa três a quatro vezes maior que a da bola de cima, como no caso da bola de tênis e da bola de vôlei.

Figura 1-16 / Item 1.43 (a) Antes e (b) depois que uma bola de tênis e uma bola de vôlei caem juntas em uma superfície dura. (c) Antes e (d) depois de uma colisão de uma esfera muito grande e uma esfera muito pequena. (e) Antes e (f) depois da colisão do ponto de vista da esfera grande.

Se, por outro lado, você quer que a bola de cima atinja a maior altura possível, deve escolher uma bola que seja muito mais leve que a de baixo. A altura alcançada pela bola de cima depende do quadrado da velocidade que ela recebe na colisão. Se a massa da bola de cima é muito menor que a massa da bola de baixo, a bola de cima ganha uma grande velocidade ao quadrado e pode alcançar uma altura que é nove vezes a altura de queda. Para visualizar o resultado, examine primeiro as velocidades das bolas pouco antes da colisão. A bola de cima cai a uma velocidade V enquanto a bola de baixo sobe com a mesma velocidade V (Fig. 1-16c). Se a colisão for elástica, a segunda bola ganha uma velocidade de praticamente 3V (Fig. 1-16d). Pode parecer que esse cálculo esteja errado, mas assuma por um momento o ponto de vista da primeira bola, como se você fosse essa bola. A segunda bola parece se aproximar de você com uma velocidade de 2V (Fig. 1-16e), quica elasticamente e depois se afasta com uma velocidade de 2V (Fig. 1-16f). Agora volte

ao ponto de vista original. A segunda bola se afasta da primeira com uma velocidade relativa de 2V. O que a primeira bola está fazendo? Como a segunda bola tem uma massa muito pequena, a colisão não altera significativamente a velocidade da primeira bola e ela continua com uma velocidade aproximadamente igual a V. Assim, a velocidade da segunda bola é V + 2V = 3V. Se você usar uma pilha maior de bolas, deverá posicioná-las de tal modo que as bolas de massa menor fiquem acima das bolas de massa maior. Quando a bola de baixo quica, choca-se com a segunda bola e transfere parte de sua energia. Depois que a segunda bola é redirecionada para cima, ela se choca com a terceira bola, que ainda está caindo, e transfere parte de sua energia. A terceira bola inverte seu movimento e se choca com a quarta bola, e assim por diante. Se a pilha tivesse um número suficiente de bolas, você poderia, teoricamente, colocar a última bola em órbita.

CURIOSIDADE 1.44 • Uma demonstração arrasadora Quando era estudante nos anos 1970, John McBryde, de Houston, e dois colegas testaram a física das bolas soltas no ar deixando cair uma bola de softball e uma bola de basquete de uma passarela que ligava dois dormitórios na altura do terceiro andar. Repetidas vezes, a bola de basquete ficou parada no solo e a bola de softball foi arremessada muito acima da passarela, a pelo menos 10 metros de altura. A experiência estava sendo muito divertida até que, na última tentativa, as bolas foram mal alinhadas e a bola de softball entrou pela janela do chefe do alojamento, espalhando vidro pelo quarto inteiro. O conserto da janela custou 250 dólares, mas o prejuízo poderia ter sido muito maior se o chefe do alojamento estivesse no quarto.

1.45 • Caratê Imagine um soco em que o punho fechado começa com a palma para cima perto da cintura e é impulsionado para a frente e virado com a palma para baixo. Por que essa manobra é ensinada com duas precauções: vá até o comprimento do braço, mas não além disso (não incline o corpo para a frente), e faça contato com o adversário quando o punho tiver percorrido cerca de 90% da distância (e, portanto, aja como se o seu braço fosse atingir a maior extensão depois de percorrer 10% do caminho no interior do corpo do adversário)? Por que o quadril e o torso giram na parte inicial do golpe? Por que um soco, um tapa, um chute e outros golpes são geralmente executados com uma pequena superfície de contato? Com que rapidez um especialista consegue mover o punho ou o pé e quanto de força e energia pode ser aplicado? Quando um carateca experiente quebra o osso de um adversário, por que o osso do mestre não quebra também? Quando uma pilha de objetos, tais como tábuas de madeira, é quebrada, por que os objetos são dispostos intercalados com separadores, como lápis, por exemplo? Nunca quebrei tábuas de madeira em uma aula de caratê, mas quando comecei a ensinar pensei que quebrar tábuas seria uma demonstração vívida das forças envolvidas em uma colisão. Por isso, um dia, quando me dirigia para uma aula, peguei às pressas duas tábuas de pinho que encontrei no laboratório. Na sala de aula, escolhi um estudante corpulento para segurar as tábuas verticalmente para que eu pudesse socá-las com os primeiros dois nós dos dedos do punho direito. Infelizmente, o estudante recuou quando eu golpeei as tábuas e elas não quebraram. Tentei de novo várias vezes, sem sucesso. Depois de cobrir parcialmente de sangue a primeira tábua e ficar com os nós dos dedos inchados, dei-me por vencido e deixei a sala de aula em silêncio. Atualmente, uso um ladrilho sustentado por apoios rígidos nas extremidades e o golpeio com a parte inferior do punho cerrado. Por que essa nova estratégia é mais bem-sucedida que a anterior?

Resposta Você não deve inclinar o corpo para a frente ao desferir um soco, pelo menos por duas razões. Você quer permanecer estável para que possa desferir outro golpe imediatamente, e quer manter uma postura adequada para que a força que você experimenta não quebre um dos seus ossos. Caratecas experientes conseguem desferir uma saraivada de golpes tão depressa que não se consegue vê-los claramente. Ron McNair, um dos astronautas mortos na explosão do ônibus espacial Challenger, foi um desses especialistas. Era capaz de desferir uma saraivada de golpes com as mãos, os pés, os joelhos e os ombros tão depressa que parecia um fluido circulando em volta do adversário. Ao lutar caratê, você quer fazer contato com o adversário no momento em que seu punho está se movendo mais depressa, porque é nesse instante que ele possui o maior momento e você vai aplicar as maiores força e energia. O ponto ótimo ocorre quando o punho percorreu cerca de 90% da distância e, portanto, você visualiza mentalmente o soco como se o punho fosse alcançar a extensão total do braço depois de penetrar cerca de 10% dessa extensão no interior do corpo do adversário. Se você fizer contato cedo ou tarde demais, a força e a energia da colisão serão menores. Você deve usar no golpe uma pequena parte do corpo para que a força por unidade de área no seu adversário seja maior e você transfira energia para apenas uma pequena parte do corpo do seu adversário. O golpe pode, nesse caso, entortar e quebrar

um osso do adversário. A técnica também serve para protegê-lo. Quando você desfere corretamente um soco, como, por exemplo, com os dois primeiros nós do punho, com o lado da mão aberta e rígida ou com a ponta do pé, e também orienta o corpo corretamente, a força da colisão não quebra nenhum de seus ossos. O fato de que entortar é importante para quebrar um objeto é demonstrado quando um carateca experiente golpeia uma tábua ou um bloco de concreto sustentado por dois apoios. Cada apoio fica posicionado em uma extremidade do objeto de modo que, no momento em que o golpe é desferido no centro do objeto, a força cria um grande torque em relação aos pontos de apoio. Os torques fazem girar as partes esquerda e direita do objeto em torno dos pontos de apoio e o objeto entorta para baixo. Se a deformação ultrapassa um certo limite, surge uma trinca na superfície inferior, que se propaga para cima até que o objeto se parta em dois. Quando uma pilha de objetos separados é quebrada, o carateca experiente quebra o primeiro objeto, cujos fragmentos quebram o segundo objeto e assim por diante. As quebras avançam ao longo da pilha mais depressa que a mão do carateca. Tábuas de pinho e ladrilhos são acessórios típicos para essas demonstrações. As tábuas são cortadas e montadas com os veios no sentido da largura; uma tábua com essa disposição resiste menos a um golpe do que uma outra com os veios no sentido do comprimento. Os ladrilhos costumam ser colocados previamente em um forno, para perderem a água contida em seu interior, que pode aumentar a resistência do material. Colisões com tábuas ou ladrilhos geralmente duram 0,005 segundo. A velocidade do punho em um soco direto pode chegar a 10 metros por segundo. Chutes e golpes para baixo podem ser ainda mais rápidos. Um golpe com o punho pode aplicar uma força de até 4000 newtons quando quebra uma tábua típica. A força é maior quando a tábua não quebra porque a mão, nesse caso, não penetra na tábua com um momento residual. Em vez disso, a mão tem que parar ou até ricochetear, situações que exigem mais força na colisão do que quebrar a tábua. Quando meu aluno recuou, permitiu que as tábuas se movimentassem em sua direção. A ação aumentou a duração da colisão e, como minha força na colisão dependia inversamente da duração, ele reduziu minha força, que foi insuficiente para quebrar as tábuas. A demonstração com um tijolo é mais impressionante mas é também mais confiável, porque o tijolo está rigidamente montado e a duração da colisão é curta. Também é mais segura porque a parte que sofre o impacto é a parte inferior, carnuda, do punho, em vez dos nós dos dedos, que são muito vulneráveis, como pode atestar alguém que tenha acertado com os nós dos dedos no queixo do adversário.

1.46 • Boxe Por que, exatamente, as luvas de boxe tornam o esporte mais seguro? Por que, apesar disso, o boxe pode produzir danos cerebrais a longo prazo e muitos lutadores já morreram no ringue?

Resposta Antigamente, quando os homens lutavam com os punhos descobertos, lesões e mortes ocorriam com maior freqüência. A luva serve para distribuir a força por uma área maior, o que torna menos provável que os dois lutadores se machuquem. A luva também amortece os golpes, porque o material de que é feita se deforma durante o impacto. Isso aumenta a duração da colisão, o que reduz sua força. Ainda assim, principalmente no boxe de pesos-pesados, a força aplicada por um lutador vigoroso é tão grande que pode causar ferimentos sérios ou mesmo letais. Um lutador experiente sabe como lidar com um soco na cabeça: ele inclina a cabeça para trás. Se mantivesse a cabeça parada ou, pior, avançasse na direção no soco, a força da colisão seria maior. Os momentos mais perigosos de uma luta acontecem nos últimos assaltos, quando os pugilistas estão cansados e não conseguem prever um soco a tempo de recuar. O soco mais perigoso é o que atinge o queixo ou a testa, principalmente quando é inclinado, porque faz girar a cabeça para trás, comprimindo o tronco cerebral e provocando um cisalhamento no cérebro (uma parte do cérebro tenta deslizar em relação à outra). Mesmo que o lutador não perca os sentidos por causa do soco, o cérebro pode ser danificado, porque o crânio colide com ele ao iniciar o movimento para trás. A colisão interrompe o fluxo sangüíneo na área da colisão e afeta a superfície do

cérebro. O cisalhamento provocado pela rotação para trás danifica o interior do cérebro. Danos adicionais ocorrem no lado do cérebro contrário ao soco, porque, quando o crânio começa a se movimentar para trás, afastando-se do cérebro, a pressão dos fluidos no espaço que separa o crânio e o cérebro diminui, provocando o rompimento de vasos capilares. Com o acúmulo de lesões, a capacidade do lutador de pensar, lembrar e falar diminui, uma condição irreversível conhecida como dementia pugilistica. O esporte pode ser uma competição de adultos, mas pode reduzir a capacidade dos participantes à de uma criança.

1.47 • Queda de uma passarela Dia 17 de julho de 1981, Kansas City: o hotel Hyatt Regency, recém-inaugurado, estava abarrotado de pessoas que dançavam ao som de uma banda que tocava sucessos dos anos 1940. Muitas das pessoas se aglomeravam nas passarelas que se estendiam como pontes por cima de um grande salão. De repente, duas passarelas cederam, caindo sobre os dançarinos, matando 114 pessoas e deixando quase 200 feridos. A que atribuir o desastre? Certamente o peso das pessoas que estavam nas passarelas contribuíra para o acidente, mas será que havia uma falha estrutural no projeto das passarelas? Após vários dias de investigação, um jornal de Kansas City observou que um detalhe do projeto original havia sido alterado durante a construção. No projeto original, as extremidades de três passarelas seriam sustentadas por uma única haste presa ao teto. Uma arruela e uma porca atarraxada na haste, logo abaixo de cada passarela, sustentariam seu peso (Fig. 1-17a).

Figura 1-17 / Item 1.47 (a) O projeto original e (b) o projeto usado de fato para sustentar as passarelas.

Aparentemente, um dos responsáveis pela construção se deu conta de que esse sistema de suspensão seria praticamente impossível de implementar, e por isso, no lugar onde uma haste única deveria passar por dentro das três passarelas, foram usadas duas hastes partindo de cada passarela (Fig. 1-17b). De que forma uma alteração tão simples e razoável levou a uma tragédia com mortos e feridos durante as comemorações daquela noite de sexta-feira?

Resposta Considere a maneira pela qual o peso era sustentado na extremidade da passarela mais alta. No projeto original, o peso da passarela e das pessoas que estavam em cima dela teria sido sustentado pela porca que seria atarraxada na haste. Qual era a situação no novo projeto, em que foram usadas duas porcas? Na passarela de cima, a porca da haste que se estendia para baixo tinha que sustentar o peso das duas passarelas inferiores e das pessoas em cima delas. Pior que isso: a porca da haste que se estendia para cima tinha que sustentar o peso das três passarelas e de todas as pessoas em cima delas. Tudo indica que, quando as passarelas ficaram lotadas, o peso total entortou ou quebrou algumas dessas porcas e fez a estrutura desabar. Uma pequena mudança produziu uma diferença trágica.

1.48 • Queda do World Trade Center Por que as Torres Gêmeas do WTC desabaram após serem atingidas por aviões em 11 de setembro de 2001?

Resposta Houve duas explicações principais para a queda das Torres Gêmeas. (1) A colisão e a ignição do combustível de um avião provocaram um incêndio no qual a temperatura passou de 800°C. Como a colisão removeu o isolamento térmico das colunas verticais de aço, a temperatura elevada amoleceu as colunas, que

envergaram sob o peso dos andares acima do ponto da colisão. De repente, muitas dessas colunas cederam e a parte de cima do edifício caiu em um andar mais abaixo. Mesmo que as colunas do andar de baixo não estivessem aquecidas, esse impacto repentino e de grandes proporções seria suficiente para fazer com que as colunas de sustentação envergassem. Essa destruição sucessiva dos andares de baixo pelos de cima ganhou o nome de efeito panqueca. (2) A colisão e a ignição do combustível produziram um incêndio, mas a temperatura não foi suficiente para amolecer as colunas verticais de sustentação. (Como argumentaram alguns pesquisadores, os andares danificados pelo avião não tinham ventilação suficiente para alimentar um grande incêndio e a fumaça que escapou pelo buraco criado pelo avião não indicava um incêndio de grandes proporções.) Em vez disso, o incêndio fez um ou mais andares e suas vigas de sustentação (treliças) se expandirem. Como as vigas e os andares estavam amarrados, só podiam se expandir envergando, o que puxou para dentro as colunas verticais de sustentação. Esse puxão para dentro pode ter sido acentuado pelo fato de as colunas e as vigas estarem amolecidas pelo calor do incêndio. Uma vez que as colunas foram puxadas para dentro, deixaram de sustentar a parte superior do edifício, que desabou.

1.49 • Recordes de queda livre Fevereiro de 1955: um pára-quedista caiu 370 metros de um avião C-119 sem conseguir abrir o pára-quedas. Aterrissou de costas na neve, criando uma cratera de um metro de profundidade. Levado de avião para um hospital, constatou-se que sofrera apenas pequenas fraturas e alguns arranhões. Março de 1944: o sargento Nicholas Alkemade, artilheiro de base da RAF a bordo do bombardeiro Lancaster em uma missão de bombardeio sobre a Alemanha, descobriu que seu avião estava em chamas e não tinha como chegar até o páraquedas. Depois de saltar de uma altura de 5500 metros, chocou-se com uma árvore, caiu na neve e sofreu apenas arranhões e hematomas. Segunda Guerra Mundial: I. M. Chissov, um tenente da força aérea soviética, decidiu saltar de pára-quedas de seu avião quando estava sendo atacado por uma dezena de Messerschmitts. Como não queria ser um alvo fácil para os pilotos alemães, decidiu retardar a abertura do pára-quedas até que estivesse bem abaixo deles. Infelizmente, perdeu a consciência durante a queda de 7000 metros. Por sorte, caiu em um desfiladeiro coberto de neve. Embora tenha sofrido ferimentos na queda, voltou à ativa em menos de quatro meses. Talvez ainda mais estranha seja a acrobacia realizada durante muito tempo por Henri LaMothe. Ele mergulhava de uma altura de 12 metros e caía de barriga em um lago de apenas 30 centímetros de profundidade, suportando uma força que era cerca de 70 vezes o seu peso. (Essa acrobacia é muito perigosa e não deve ser repetida. Ouvi falar de um jovem insensato que tentou realizá-la e acabou paralítico do pescoço para baixo.) Os noticiários anunciam com freqüência histórias de outros sobreviventes de quedas de grandes alturas (e muitas histórias de não-sobreviventes). Por que os sobreviventes sobrevivem?

Resposta O fator letal em uma queda é, naturalmente, a força que a vítima experimenta durante a colisão com o solo (ou alguma outra superfície sólida). A força depende diretamente do momento da vítima pouco antes da colisão e inversamente da duração da colisão. O momento depende da velocidade e da massa da vítima. Quando a queda é de uma grande altura, a vítima atinge uma velocidade terminal em algum instante da queda. Embora a gravidade certamente continue a puxá-la para baixo, a aceleração da vítima é eliminada pela resistência do ar, que se torna igual à atração da gravidade. O valor da velocidade terminal depende da orientação da vítima: na posição horizontal, de braços e pernas abertos, a resistência do ar é muito maior do que em pé ou de cabeça para baixo e, portanto, a velocidade terminal é menor. Entretanto, aterrissar esparramado após cair de uma grande altura não é muito aconselhável. O tempo de duração da colisão é um fator mais importante. Se a colisão é “dura”, pode levar de 0,001 a 0,01 segundo e a força exercida sobre a vítima é suficiente para matá-la. Se, porém, a colisão é “macia” (a vítima leva mais tempo para parar), a força é menor e a vítima pode sobreviver. Uma queda em neve profunda pode prolongar a colisão o suficiente para reduzir a força a um nível da sobrevivência. Aparentemente, os 30 centímetros de água foram suficientes para que La Mothe sobrevivesse a seus mergulhos. Uma vítima que cai de cabeça para baixo tem maior probabilidade de morrer que em qualquer outra orientação, por causa da grande vulnerabilidade da espinha dorsal, do tronco cerebral e do cérebro.

1.50 • Um ousado salvamento de pára-quedas Em abril de 1987, durante um salto, o pára-quedista Gregory Robertson percebeu que sua colega Debbie Williams havia

desmaiado em uma colisão com um terceiro pára-quedista e, portanto, não tinha como abrir o pára-quedas. Robertson, que estava muito acima de Debbie no momento e ainda não tinha aberto o seu pára-quedas para a descida de 4 mil metros, conseguiu alcançar a moça e, depois de emparelhar com ela, abraçou-a. Abriu o pára-quedas dela e em seguida, após soltála, abriu seu próprio pára-quedas, quando faltavam apenas 10 segundos para o impacto. Williams sofreu várias lesões internas devido à falta de controle na aterrissagem, mas sobreviveu. O que fez Robertson para alcançar Debbie?

Resposta Robertson conseguiu salvar Debbie manipulando a resistência do ar que ele experimentou durante a queda. Quando um pára-quedista começa a cair e a velocidade de descida aumenta, essa força, que se opõe à força da gravidade que puxa o pára-quedista para baixo, aumenta de intensidade até se igualar à força da gravidade. Daí em diante, o pára-quedista passa a cair com velocidade constante, a chamada velocidade terminal. O valor da velocidade terminal depende da área transversal que o pára-quedista opõe à corrente de ar. A área transversal é menor e a velocidade terminal é maior quando o pára-quedista está em pé ou de cabeça para baixo do que quando está deitado e com braços e pernas abertos. Assim que Robertson percebeu o risco que Debbie estava correndo, ficou de cabeça para baixo de modo a reduzir a resistência do ar e aumentar a velocidade da queda. Debbie, caindo em rodopios, estava experimentando uma resistência do ar muito maior e atingira uma velocidade terminal de cerca de 190 quilômetros por hora. Robertson, com sua orientação mais aerodinâmica, atingiu uma velocidade estimada de 300 quilômetros por hora, alcançou Debbie e, quando se aproximou da jovem, colocou-se na horizontal e abriu braços e pernas para aumentar a resistência do ar e reduzir sua velocidade até igualá-la à de Debbie.

1.51 • Gatos caindo de grandes alturas O homem raramente sobrevive a quedas de grandes alturas, mas os gatos aparentemente se saem muito melhor. Um estudo publicado em 1987 examinou 132 gatos que haviam caído acidentalmente do segundo ao 32o andar (6 a 98 metros), a maioria sobre um piso de concreto. Cerca de 90% sobreviveram e 60% não se machucaram. Curiosamente, a gravidade dos ferimentos (tais como número de ossos fraturados ou a certeza da morte) diminuía com a altura se o animal caísse de mais de sete ou oito andares. (O gato que caiu do 32o andar teve apenas uma pequena lesão no tórax e em um dente, e foi liberado após 48 horas de observação.) Por que um gato pode ter maior chance de sobreviver se cair de uma altura maior? (A sobrevivência não é garantida, de modo que, se você mora em um edifício, mantenha o gato longe de qualquer janela aberta.)

Resposta Se um gato distraído cai acidentalmente do peitoril de uma janela, ele rápida e instintivamente reorienta o corpo até que as pernas estejam embaixo do corpo. O gato usa a flexibilidade das pernas para absorver o choque da aterrissagem: a flexibilidade aumenta o tempo do impacto, reduzindo assim a força experimentada pelo gato. Enquanto o gato cai, a força exercida pela resistência do ar aumenta. Se a queda é de uma altura pequena, a resistência do ar não é muito importante. Entretanto, se a queda for de um andar alto, a resistência do ar pode aumentar o suficiente para reduzir a aceleração do gato. Na verdade, se o gato cair de mais de uns seis andares, a resistência do ar poderá se tornar igual à força da gravidade. Nesse caso, o gato passará a cair sem aceleração, com uma velocidade constante chamada velocidade terminal. Até que a velocidade terminal seja alcançada, o gato fica assustado com a aceleração e mantém as pernas embaixo do corpo, pronto para a aterrissagem. (O corpo humano também é sensível a acelerações e não a velocidades.) Quando a velocidade terminal é alcançada, porém, a aceleração desaparece e o gato relaxa, esticando as pernas instintivamente (para aumentar a resistência do ar) até o momento que precede a aterrissagem. Quando o gato estica as pernas, a resistência do ar aumenta automaticamente, o que reduz a velocidade de queda. Quanto mais longa a queda, maior a redução da velocidade, até que uma nova velocidade terminal de cerca de 100 quilômetros por hora seja alcançada. Assim, um gato que cai do 10o andar, por exemplo, aterrissa com uma velocidade menor que um gato que caia do 5o andar, e tem mais chance de escapar sem nenhum ferimento grave.

1.52 • Land dive e bungee jump Na ilha de Pentecostes, nas Novas Hébridas, um teste de coragem consiste em saltar de uma plataforma elevada, confiando que os cipós amarrados aos tornozelos e presos à plataforma vão interromper a queda antes que o indivíduo chegue ao solo. Em maio de 1982, um jovem realizou um desses saltos de uma altura de mais de 25 metros. Pouco antes de ser parado pelos cipós, acredita-se que sua velocidade tenha atingido 55 quilômetros por hora. A aceleração que ele experimentou nesse momento foi estimada em 110 g (110 vezes a aceleração da gravidade). Não se sabe se o jovem voltou a andar depois da experiência. Uma versão mais branda do salto com cipós, mas que vez ou outra provoca sérios ferimentos ou até a morte, é o bungee

jump, em que a pessoa salta de uma plataforma elevada com uma tira elástica presa nas pernas e na plataforma. Esta prática começou no dia 1o de abril (é claro!) de 1979, quando membros do Dangerous Sports Club (“Clube dos Esportes Perigosos”) saltaram de uma ponte em Bristol, na Inglaterra. Imagine que você salte de bungee jump de uma ponte (e, naturalmente, pare de cair pouco antes de bater no que está lá embaixo, o que nem sempre acontece). Em que momento você experimenta as maiores força e aceleração? Se você estiver com medo e decidir usar um elástico com apenas metade do comprimento, as maiores força e aceleração também serão reduzidas a metade?

Resposta Você é submetido à maior força e à maior aceleração, ambas para cima, ao chegar ao ponto mais baixo do percurso, quando o elástico está esticado ao máximo e você se encontra momentaneamente parado. Supondo que o elástico é uma mola ideal, como a dos livros de física, os valores da maior força e da maior aceleração são independentes do comprimento da corda e, portanto, também não dependem da extensão da queda. Embora uma queda mais curta dê a você menor velocidade para baixo para ser compensada pelo elástico, o elástico proporcionalmente mais curto que você usaria será mais rígido (do mesmo modo como uma mola mais curta é mais rígida) e irá reduzir a zero sua menor velocidade com a mesma aceleração com que um elástico menos rígido reduziria a zero uma velocidade maior. A aceleração para cima que pára o saltador é às vezes suficientemente elevada para machucá-lo. Os olhos são especialmente vulneráveis, porque, com a cabeça para baixo durante a parada, o aumento da pressão sangüínea nos olhos pode causar hemorragia.

1.53 • Preso em um elevador em queda livre Pode acontecer a qualquer um: você está em um elevador antigo, sem sistema de segurança, quando o cabo arrebenta e a cabine do elevador começa a cair. O que você deve fazer para aumentar suas chances de sobrevivência, por menores que sejam? Por exemplo: você deve saltar pouco antes da colisão da cabine com o fundo do poço?

Resposta A melhor opção é deitar no chão. Você pode achar que o movimento é impossível, já que tanto você quanto o chão estão caindo, mas certamente os trilhos que mantêm a cabine na vertical e o ar opõem alguma resistência. Portanto, é possível deitar no chão. Você deve se deitar com pernas e braços bem abertos, de preferência de barriga para cima. A idéia é distribuir pela maior área possível a força que você está prestes a experimentar. Permanecer de pé não é uma boa idéia, porque nesse caso a força se distribui por uma área menor, como, por exemplo, a seção reta dos seus tornozelos. Se a colisão for forte, vai quebrar seus tornozelos e, em seguida, seu tronco vai se espatifar no chão. Saltar no último instante (embora seja impossível saber a hora certa dentro de uma cabine fechada) talvez seja a pior coisa a fazer. Se você saltar em algum momento da queda, provavelmente só vai reduzir a velocidade para baixo. Imagine que a cabine ricocheteie no fundo do poço. Você estará nesse momento se deslocando para baixo em alta velocidade enquanto o chão da cabine está se deslocando para cima; no instante seguinte... bem, deixemos de lado os detalhes desagradáveis.

CURIOSIDADE 1.54 • Bombardeiro colide com o edifício Empire State Às 9:45 da manhã de sábado, 28 de julho de 1945, um bombardeiro B-25 do exército americano bateu entre o 78o e o 79o andares do edifício Empire State, na cidade de Nova York, quando voava dentro de uma espessa neblina. Os três ocupantes do avião e dez trabalhadores dentro do prédio morreram e 26 outros ficaram feridos. Se fosse um dia normal de trabalho, esses números poderiam ter sido muito maiores. A colisão arrancou as asas do avião, e a fuselagem e os dois motores foram parar no interior do prédio, onde o combustível pegou fogo, produzindo chamas tão fortes que os pedestres puderam enxergá-las apesar da neblina. Um dos motores atravessou o edifício e saiu do outro lado, caindo no teto de um prédio de 12 andares, onde provocou outro incêndio. Ao atravessar o edifício Empire State, o avião se chocou com uma das vigas mestras da região do elevador, danificando-a, juntamente com alguns cabos do elevador. Uma ascensorista, que tinha acabado de abrir a porta do 75o andar, foi arremessada para fora do elevador pela explosão do avião e seu corpo começou a pegar fogo por causa do combustível em chamas que havia descido pelo poço. O fogo foi apagado por duas colegas de escritório. Depois dos primeiros-socorros, conduziram-na a outro elevador, onde uma colega ascensorista concordou em levá-la para o térreo para esperar uma ambulância. Assim que a porta se fechou, os cabos do elevador “rebentaram com um som parecido com um tiro de rifle” e a cabine do elevador caiu até o segundo

subsolo do edifício. A equipe de resgate que chegou pouco depois ao segundo subsolo esperava encontrar mortas as duas ocupantes da cabine. Entretanto, depois de abrir um buraco na parede do subsolo para chegar à cabine, os membros da equipe encontraram as duas mulheres vivas, embora gravemente feridas. Haviam caído mais de 75 andares, mas os mecanismos de segurança do elevador tinham aparentemente reduzido a velocidade da queda o suficiente para salvar suas vidas. Não se sabe em que posição as mulheres ficaram durante a queda, mas duvido que tenham permanecido de pé, assustadas como estavam e com o elevador balançando de um lado para outro.

1.55 • Quedas em lutas e ao descer de pára-quedas Ao ser derrubado por um golpe em uma luta de judô ou aiquidô, como se deve cair para minimizar a chance de sofrer lesões? Como os lutadores profissionais de luta-livre conseguem sair ilesos quando se jogam ou são jogados no tablado? Em qualquer circunstância, se uma pessoa cai de mau jeito, pode muito bem quebrar um osso ou sofrer alguma lesão interna. De que maneira um pára-quedista deve aterrissar para reduzir o risco de se machucar? Embora o pára-quedas reduza a velocidade da queda, esta é apreciável, o equivalente a um salto de uma janela do segundo andar.

Resposta Você deve cair de modo a maximizar a região de contato. A técnica reduz a força por unidade de área sobre a parte do corpo que bate no chão e reduz a probabilidade de que um osso entorte ou torça a ponto de quebrar e de que um órgão interno seja comprimido a ponto de se romper. Se você é derrubado no judô ou no aiquidô, deve golpear o tatame com a mão aberta no instante em que o tronco atingir o solo. O braço aumenta a área de contato e o golpe também ajuda a levantar o corpo e reduz a força de colisão sobre a caixa torácica. Lutadores profissionais de luta-livre costumam estar em excelentes condições físicas e conseguem suportar quedas violentas (como quando saltam do alto das cordas sobre um adversário deitado no chão). Além disso, as lutas são travadas em um piso extremamente flexível. Isto aumenta a duração dos impactos, reduzindo a força a que são submetidos os lutadores ao se chocarem com o piso. Os pára-quedistas são treinados para relaxar o corpo e rolar, fazendo contato com as bolas dos pés e, em seguida, dobrando os joelhos e girando o corpo para apoiar-se no lado da perna e, finalmente, deitar-se de costas. O procedimento tem duas vantagens: prolonga a colisão (e, portanto, reduz a força sobre o pára-quedista) e distribui a força da colisão por uma área mais extensa. Se o pára-quedista aterrissasse de pé, a compressão dos ossos dos calcanhares provavelmente quebraria os ossos.

1.56 • Camas de pregos Eu introduzi a demonstração da cama de pregos nas aulas de física depois de vê-la como parte de um espetáculo teatral de caratê. Minha versão é dividida em duas partes: na primeira, sou imprensado sem camisa entre duas camas de pregos com uma ou duas pessoas em cima do conjunto. Embora os pregos machuquem, raramente perfuram minha pele. Que fator diminui o risco de perfuração? Na segunda parte, estou novamente imprensado entre duas camas de pregos quando um assistente coloca um bloco de concreto na cama de cima e depois o golpeia com uma marreta. Esta parte é perigosa por muitas razões, entre as quais o fato de que os fragmentos podem atingir meus olhos e meus dentes. (Certa vez, durante uma apresentação do “Circo Voador” em que a demonstração das camas de pregos era o número final, meu assistente não pudera viajar e recorri à ajuda do professor que havia me convidado. Ela bateu com força no bloco de concreto, mas o ângulo do golpe foi tal que a maior parte dos fragmentos me atingiu no rosto. Um dos pedaços abriu um corte profundo no meu queixo, e quando me levantei, cambaleante, para me despedir da platéia, estava com o corpo, as calças e os sapatos cobertos de sangue. Jamais concluí uma demonstração de forma tão dramática, e nunca fui tão aplaudido pelo público.) Por que um bloco grande é um pouco mais seguro que um bloco pequeno?

Resposta Quando as pessoas sobem em cima de mim, o peso delas se distribui por tantos pregos na cama de cima que a força de cada prego geralmente não é suficiente para perfurar minha pele. A força dos pregos nas minhas costas é maior, porque eles também têm que sustentar o meu peso. Por meio da experiência descobri quanto peso podiam ter as pessoas em cima de mim antes que os pregos me perfurassem. (Não pense que é fácil, porque a dor é muito grande.) O uso de um grande bloco de concreto não apenas empresta um ar dramático à demonstração mas também aumenta a segurança, de três maneiras sutis. (1) Para que eu seja comprimido com força, é preciso que o bloco e a cama de cima sejam acelerados para baixo; um bloco maior diminui a aceleração por causa da massa maior. (2) Grande parte da energia da marreta é usada para fragmentar o bloco e não para movimentar a cama. (3) Como o bloco se desintegra, o tempo de colisão é mais longo do que se o bloco não estivesse presente e, portanto, a força envolvida na colisão também é menor. A primeira vez que eu fiz a

demonstração da cama de pregos em classe, usei um pequeno tijolo em vez de um grande bloco. O impacto da marreta do meu assistente me deixou atordoado por vários minutos.

1.57 • Colheres penduradas Limpe bem uma colher leve e a pele do nariz, sopre levemente na parte côncava da colher e encoste a colher no nariz. Teste a aderência reposicionando a colher e soltando-a parcialmente. Quando sentir que está presa, solte-a. Pronto, você está com aquilo que sempre desejou: uma colher pendurada no nariz. Quem vai resistir a você agora? Por que a colher fica pendurada? Qual o objetivo de soprar na colher? Será que é possível pendurar colheres em outras partes do rosto, ou, se você gostou da brincadeira, em outras partes do corpo? Quanto tempo será que você consegue manter uma colher pendurada no nariz? Há muito venho afirmando que meu recorde é de 1 hora e 15 minutos, estabelecido em um restaurante francês de Toronto. A verdade, porém, é que minha melhor marca foi obtida em uma parada de caminhões em Youngstown, em Ohio, depois que um valentão de um bando de motoqueiros insinuou que seria mais fácil pendurar a colher se ele reformasse meu nariz.

Resposta Se a colher e o seu nariz estiverem desengordurados, pode haver atrito suficiente entre a colher e a pele para manter a colher no lugar. A colher fica estável contanto que o centro de sua distribuição de massa fique ao longo de uma linha vertical passando pela região em que ela encosta no nariz. Caso contrário, a gravidade faz a colher girar quando você a solta e o movimento pode fazer a colher escorregar. A condensação do vapor d’água da sua respiração ajuda a grudar a colher no nariz. Embora uma camada de água atue como um lubrificante quando é relativamente espessa, uma camada muito fina funciona como uma cola, por causa da atração elétrica entre as moléculas de água e as superfícies da colher e da pele.

1.58 • Rastros deixados por pedras As pedras dos leitos de lagos secos espalhados pelos estados da Califórnia e de Nevada às vezes deixam extensos rastros que vão até o solo duro do deserto. Os rastros podem ter dezenas de metros de comprimento e a massa das pedras pode chegar a 300 quilos. O que causa os rastros? Será que as pedras estão tentando chegar aos cassinos de Las Vegas? Será que algum maluco anda empurrando-as por aí? Seja qual for a causa, os rastros são difíceis de produzir, porque o atrito entre uma pedra e o solo do deserto certamente é grande.

Resposta Muitas teorias têm sido propostas para explicar de que maneira as pedras deixam rastros. Uma delas envolve o raro congelamento da água da chuva. As pedras aprisionadas em uma fina camada de gelo são submetidas a rajadas de vento e deixam marcas no solo do deserto subjacente quando as rajadas são suficientemente fortes para deslocar as pedras e a camada de gelo. Outra teoria é de que uma pedra deixa um rastro quando é empurrada pelo vento durante uma das raras tempestades da região. Depois que a água lubrifica o solo, o vento da tempestade pode empurrar ou rolar uma pedra de modo a fazer com que ela deixe um rastro. O atrito entre a pedra e o solo é menor quando a água forma uma fina camada de lama por cima de uma base ainda sólida. Uma rajada de vento pode então remover abruptamente a pedra da posição em que ela se encontra. Uma vez deslocada, a pedra precisa de menos força para se manter em movimento.

1.59 • Nós O nó conhecido como volta do fiel, ilustrado na Fig. 1-18a, possui uma extremidade livre e outra submetida a carga. Se a carga aumenta, o nó pode escorregar, ou seja, a extremidade livre pode ser puxada até que o nó se desfaça? Ou será que a carga ajuda a apertar o nó?

Resposta Podem-se analisar matematicamente para as forças de atrito e a tensão em um nó determinar se o nó vai se manter ou se desfazer ao ser submetido a uma carga arbitrariamente elevada. Vamos fazer uma análise simples, começando pela extremidade livre, que não está sob tensão (Fig. 1-18b). A corda passa por baixo de si mesma em uma volta por cima: a parte de cima faz pressão sobre a parte de baixo. Para que a extremidade livre não deslize por dentro da volta por cima, é preciso que o atrito criado por essa pressão seja igual ou maior que a tensão a que será submetida a extremidade livre. Em seguida, a corda envolve o bastão com duas voltas pelo lado. A extremidade dessa parte enrolada que está mais próxima

da extremidade livre está submetida a uma tensão pequena, enquanto a outra extremidade está submetida a uma tensão maior. Para que essa parte fique parada, o atrito entre a corda e o bastão tem que ser grande o bastante para suportar a diferença de tensão entre as duas extremidades. Finalmente, a corda passa por outra volta por cima. Do outro lado, a corda está sendo submetida a toda a tensão criada pela carga. Se a parte superior da volta por cima comprime a parte inferior com força suficiente, a volta por cima é estável. Assim, na volta do fiel existem três exigências do atrito em pontos ao longo da corda. Se as voltas por cima ou as voltas pelo lado forem razoavelmente fortes, o nó vai agüentar, seja qual for a carga. Se qualquer delas, porém, for fraca, o nó vai se desfazer se a carga for muito alta. Outros tipos de nós podem se desmanchar ao serem submetidos a uma carga elevada mesmo que as voltas por cima e as voltas pelo lado sejam fortes, enquanto outros nós se apertam automaticamente para resistir a qualquer carga e só se desmancham se a corda arrebentar.

Figura 1-18 / Item 1.59 (a) Volta do fiel. (b) Os elementos de uma volta do fiel.

1.60 • Escaladas Ao escalar uma fenda na encosta de uma montanha, você pode usar a técnica conhecida como chaminé, pressionando os ombros contra uma parede e os pés contra a parede oposta (Fig. 1-19). Você fica estável enquanto a pressão na pedra for grande o bastante, mas o procedimento é cansativo. Existe uma distância vertical específica entre os pés e os ombros que minimiza a pressão que você precisa aplicar? Uma fenda estreita e vertical na qual a pedra se projeta mais em um dos lados da fenda pode ser escalada por meio de um procedimento que leva o nome de oposição. Você encosta o corpo do lado oposto àquele em que a pedra se projeta, firma as mãos no lado mais próximo da fenda e empurra com os pés a parte exposta do lado oposto. A técnica é muito cansativa por causa da tensão nos braços. Qual deve ser a distância entre os pés e as mãos para minimizar a tensão? Eis mais algumas das muitas perguntas possíveis: (a) Se, durante a escalada de um rochedo quase vertical, você encontra uma saliência estreita na altura dos pés, deve se apoiar nela com a ponta ou com o lado do calçado? (b) Imagine que você se depara com uma escarpa muito íngreme sobre a qual você consegue ficar de pé. Será que aumenta a

estabilidade se você se curvar para a frente e apoiar as mãos na escarpa para conseguir algum atrito nas mãos? (c) Se duas encostas se encontram formando um ângulo agudo, é mais seguro escalá-las subindo por uma das encostas ou pela junção entre elas? (d) Como é possível subir em fendas verticais na pedra sem utilizar a técnica de oposição? (e) Por que os alpinistas freqüentemente colocam os dedos em sacos que levam na cintura para cobri-los de “magnésio” (na verdade, trata-se de carbonato de magnésio)? (f) Quando você sobe por uma corda, ela chega até um companheiro passando por um ou mais grampos (aros de metal fincados na pedra). Você deve usar uma corda muito elástica ou uma praticamente inelástica?

Figura 1-19 / Item 1.60 Chaminé.

(g) A vantagem de se usarem grampos é que o alpinista pode cair apenas uma certa distância abaixo do grampo mais alto. Um perigo sutil, porém, é que a corda pode arrebentar no momento da queda. Muitos alpinistas principiantes acham que o perigo depende da altura em que o alpinista se encontra em relação ao último gancho no momento da queda: quanto maior a altura, maior a tensão a que a corda é submetida e, portanto, maior o risco de que a corda arrebente. Por que este raciocínio está errado? (h) Alguns tipos de aranhas escalam com um fio de segurança, chamado drag-line, que ajuda a interromper uma queda. Surpreendentemente, o drag-line tem pouca elasticidade e arrebentaria mesmo que a aranha caísse de uma pequena altura moderada. Por que, então, a aranha usa um drag-line? (i) Muitos alpinistas experientes sofrem de dores crônicas que correm ao longo dos dedos, e alguns também exibem um inchaço visível no lado da palma de um dedo machucado quando o flexionam. Qual é a conexão entre o inchaço, a dor e a física das escaladas?

Resposta Primeiro, uma advertência séria: nenhum dos exemplos de escalada aqui discutidos deve ser testado sem se consultar um especialista, porque existem tantas variáveis e hipóteses envolvidas que as explicações são apenas aproximadas. Na escalada do tipo chaminé, existe uma localização ótima para os pés se você quer minimizar a força que precisa ser exercida sobre a pedra pelos pés e pelos ombros. Em princípio, você pode encontrá-la colocando os pés em uma posição baixa e diminuindo a força até que estejam prestes a escorregar. Se você levantar os pés enquanto continua a mantê-los na iminência de escorregar, diminuirá ainda mais a força necessária. Entretanto, a ação aumenta o atrito necessário nos ombros porque o atrito nos pés agora é menor e a soma das forças de atrito tem que ser igual ao seu peso para que você não caia. Se você continuar a deslocar os pés para cima até que os ombros também estejam prestes a escorregar, estará na posição que exige a menor força contra a rocha. A técnica de oposição também tem uma localização ótima para os pés, nos quais a tensão nos braços é minimizada. Comece com os pés altos e desça-os aos poucos enquanto diminui a tensão. Quando estiverem baixos o suficiente para que estejam prestes a escorregar, a tensão será mínima.

Respostas para as perguntas restantes, em ordem: (a) O menor esforço é obtido se você usar o lado do calçado. Para estabilizar o pé, os músculos da perna têm que compensar o torque exercido pela força da saliência. O torque é maior quando a ponta do pé é usada, porque a distância entre a ponta do pé e o osso da perna é maior que a distância entre o lado do pé e o osso da perna. (b) De modo geral, você tem mais estabilidade se ficar de pé. Inclinar-se para a frente pode facilmente exigir atrito demais dos pés, de modo que eles podem escorregar. Além disso, você ganha pouco atrito usando as mãos e, caso se incline demais para a frente, o atrito pode atuar encosta abaixo, diminuindo sua estabilidade. (c) Escale na junção porque ela é necessariamente menos inclinada que qualquer das encostas. (d) Muitas fendas verticais podem oferecer apoio se você enfiar os dedos, a mão, o braço ou o pé e fizer força contra os lados. (e) O magnésio é usado pelos alpinistas para absorver a umidade da ponta dos dedos, com o objetivo de permitir uma pega mais firme na superfície da pedra. A crença popular é de que a umidade reduz o atrito estático entre os dedos e a pedra e, portanto, o magnésio deve aumentar o atrito. Entretanto, um estudo revelou que o magnésio na verdade reduz o atrito, por duas razões: (1) ao secar a pele, o magnésio reduz a elasticidade da ponta dos dedos. (2) As partículas de magnésio formam uma camada escorregadia entre a ponta dos dedos e a pedra. Apesar disso, o magnésio é muito usado pelos alpinistas; este assunto precisa ser aprofundado. (f) Os alpinistas (diferentemente dos espeleólogos) usam cordas que esticam consideravelmente sob tensão, de modo que, se você cair, a parada no final da queda não será brusca e a força necessária para freá-lo não será grande. Quando a corda começa a esticar, as moléculas da corda se atritam umas contra as outras e a corda se aquece; a maior parte da energia potencial e cinética que você perde durante a queda é transformada em energia térmica no interior da corda. (g) Alpinistas experientes sabem que o perigo de a corda arrebentar depende do fator de queda 2H/L, sendo H a altura do alpinista acima do gancho mais elevado e L o comprimento da corda entre o alpinista e o ponto em que a corda está presa, provavelmente nas mãos do segurador. Dependendo dos valores de H e L, o fator de queda pode ser perigosamente alto mesmo quando H é pequeno, se L também for pequeno. Quando o alpinista sobe e L aumenta, o mesmo valor de H deixa de ser tão perigoso. (h) Quando a aranha chega ao fim do drag-line durante uma queda, a força que o drag-line exerce sobre ela puxa mais linha das fiandeiras da aranha. A força que o drag-line exerce sobre a aranha não é intensa o suficiente para arrebentar o drag-line quando a aranha tem a queda interrompida. (i) Muitos alpinistas machucaram os dedos durante uma escalada ao usá-los para realizar uma pegada conhecida como pinça, na qual o alpinista pressiona para baixo com quatro dedos para se apoiar em uma saliência estreita, situada acima dos ombros. O alpinista que sustenta todo o peso do corpo dessa forma pode machucar os dedos. Especificamente, os dedos são mantidos no lugar por meio de tendões que passam por estruturas fibrosas, chamadas polias, que estão ancoradas nos ossos do dedo. Quando o peso do corpo é sustentado pelos dedos, as forças exigidas desses tendões podem fazer com que eles saiam das polias. Quando isso acontece, o alpinista não apenas sente muita dor nos dedos, como também observa uma saliência quando os dedos são dobrados porque os tendões não estão mais sendo contidos pelas polias.

1.61 • Escaladas de carneiros monteses Os alpinistas usam calçados com solas especiais para aumentar o atrito entre o calçado e a pedra que estão escalando. Se a pedra estiver úmida, a escalada pode ser perigosa. De fato, é difícil para uma pessoa atravessar um piso molhado sem escorregar. Os carneiros monteses não usam calçados com solas especiais e ainda assim conseguem subir em encostas rochosas sem cuidados evidentes, mesmo quando a pedra está úmida ou coberta de limo. Como os carneiros conseguem andar nas pedras sem escorregar?

Resposta Quando está andando, uma pessoa encosta primeiro no chão o calcanhar do pé que dá o passo. Se o piso estiver molhado, o calcanhar encontra pouca força de atrito para fazê-lo parar no ponto de contato e pode escorregar para a frente, provocando a queda. Um carneiro montês encosta primeiro na pedra a parte traseira do casco fendido, no ponto em que as duas metades do casco se encontram. Essa parte é tão estreita que penetra no limo ou qualquer outra substância que cubra a pedra. Quando o peso inteiro do corpo começa a ser apoiado no casco, as duas metades escorregam para os lados, formando com a pedra uma região de contato em forma de V. Deslizando dessa forma, as duas metades raspam a pedra, removendo substâncias escorregadias, e ficam presas em irregularidades da pedra, evitando assim que o casco escorregue para a frente quando o peso total é apoiado no casco.

1.62 • O deslocamento de estátuas na ilha da Páscoa O povo pré-histórico da ilha da Páscoa esculpiu em algumas pedreiras centenas de estátuas gigantescas de pedra e, em seguida, transportou-as para lugares espalhados por toda a ilha. Como conseguiram fazer isso usando apenas recursos primitivos?

Resposta Os ilhéus pré-históricos provavelmente deslocaram as gigantescas estátuas de pedra da ilha da Páscoa colocando cada estátua em um trenó de madeira e puxando o trenó ao longo de uma “pista” formada por troncos quase idênticos que atuavam como roletes. Embora puxar o trenó exigisse um enorme esforço dos ilhéus (uma enorme quantidade de energia), era muito mais fácil do que arrastar uma estátua pelo chão, o que exigiria vencer o atrito do solo. Em uma reconstituição recente da técnica dos roletes, 25 homens conseguiram deslocar uma estátua de 9000 quilos, semelhante às da Ilha da Páscoa, por uma distância de 45 metros, em solo plano, em 2 minutos.

1.63 • A construção de Stonehenge De que forma os blocos de pedra de Stonehenge, a construção megalítica da planície de Salisbury, na Inglaterra, foram transportados para o local e colocados de pé? Os sarsens são grandes blocos de pedra em posição vertical; os lintéis são blocos horizontais de pedra, um pouco menores, que se apóiam em pares de sarsens.

Resposta Apesar das histórias românticas e dos projetos engenhosos que foram atribuídos aos construtores de Stonehenge, é pouco provável que os blocos de pedra tenham sido transportados por mais de 5 ou 10 quilômetros. Os blocos estavam disponíveis na região, talvez após terem sido deslocados da rocha-mãe por geleiras durante eras glaciais, muito tempo antes da construção de Stonehenge. Para movimentar um bloco, os construtores podem ter amarrado toras e blocos menores em torno do bloco principal para formar um cilindro, ainda que imperfeito. Em seguida, com vários homens puxando cordas, o cilindro podia ser rolado ao longo de um terreno plano ou até mesmo encosta acima. Entusiastas modernos deslocaram blocos dessa maneira. Um procedimento mais provável para os antigos construtores seria colocar um bloco em um trenó feito de toras amarradas umas nas outras. O trenó seria arrastado por grupos de pessoas ou animais de carga, puxando cordas, e o avanço seria facilitado por gordura despejada no chão na frente dos patins do trenó. Entusiastas modernos também deslocaram blocos dessa maneira. Para colocar de pé um sarsen no local da construção, provavelmente o trenó era puxado até o alto de um monte de terra que terminava abruptamente em um buraco (Fig. 1-20a). Um bloco de contrapeso era provavelmente colocado acima da parte traseira do sarsen quando este era puxado além da borda do monte. O contrapeso servia para controlar o movimento do sarsen e também possibilitava que o ponto central do sarsen fosse puxado além da borda. Com o sarsen equilibrado dessa maneira, o contrapeso era puxado para a frente até o sarsen girar e cair no buraco. Cordas em volta do topo do sarsen inclinado eram puxadas para colocá-lo na vertical. Uma das maneiras possíveis de erguer um lintel até o alto de um par de sarsens adjacentes foi testada em tempos modernos em uma pequena cidade tcheca. Um bloco de concreto (de 5124 quilogramas) foi puxado ao longo de duas vigas de carvalho com superfícies que haviam sido descascadas e lubrificadas com gordura (Fig. 1-20b). Cada uma dessas vigas de 10 metros se estendia do chão até o alto de uma de duas colunas verticais nas quais o bloco seria apoiado. O bloco foi puxado por meio de cordas amarradas em volta dele e em volta de duas toras de espruce. Uma plataforma foi instalada na extremidade oposta de cada tora. Quando um número suficiente de operários ocupava a plataforma, a tora de espruce girava em volta do topo de sua coluna vertical e puxava uma das extremidades do bloco uma pequena distância viga acima. Depois de movimentado o bloco, eram posicionadas travas em sua extremidade inferior para evitar que escorregasse de volta para baixo quando a plataforma fosse reposicionada para puxar novamente o bloco. Içando o bloco aos poucos pelas vigas de carvalho (movendo um lado e depois o outro), apenas oito ou nove pessoas eram necessárias na plataforma.

Figura 1-20 / Item 1.63 (a) Colocando de pé um sarsen em Stonehenge. (b) Erguendo um lintel.

1.64 • O levantamento dos blocos das pirâmides do Egito Na pedreira, os construtores das pirâmides do Egito tinham que levantar as pedras (que pesavam em média 2300 quilos e chegavam a pesar 14.000 quilos) para colocá-las em trenós, que eram em seguida deslocados para fora da pedreira. Como as pedras podiam ser erguidas sem máquinas, sistemas de roldanas ou qualquer dispositivo com rodas? Pode ter sido empregado o seguinte método: um bloco é levantado para possibilitar que vários galhos flexíveis sejam enfiados embaixo dele, estendendo-se além das laterais do bloco. Em seguida, as pontas salientes de um ou mais galhos são erguidas ligeiramente (meio centímetro, por exemplo) e mantidas no lugar por um material resistente enfiado sob as extremidades. O procedimento é repetido em seguida para outros galhos, até que todos estejam na mesma altura. Nesse momento, o bloco está mais alto. De que forma a técnica possibilita que um peso enorme possa ser levantado por poucas pessoas e por que a flexibilidade dos galhos é fundamental? No local da pirâmide, como os operários conseguiram erguer os blocos até os locais que eles ocupam atualmente na pirâmide? Em especial, será que foram usadas rampas de terra?

Resposta Erguer um grande bloco de pedra com galhos flexíveis é muito mais fácil do que fazê-lo com galhos rígidos. Imagine que os galhos rígidos estejam no lugar. Para erguer as pontas salientes de um deles, na extremidade do bloco, por exemplo, os operários teriam que aplicar uma força para cima quase igual ao peso da pedra. A explicação é que, quando a pedra é erguida por esse galho, perde contato com todos os outros galhos menos um. Nesse caso, os operários teriam que ter uma força extraordinária. Entretanto, com os galhos flexíveis no lugar, uma única pessoa é capaz de levantar a ponta de qualquer galho com uma força

muito menor que o peso do bloco. A explicação é que, quando uma ponta é erguida, o bloco não perde contato com os outros galhos, que continuam a sustentá-lo.

Figura 1-21 / Item 1.64 Dois métodos para se puxar um bloco de pedra até o alto de uma pirâmide.

Para colocar os blocos em seus devidos lugares na pirâmide, os operários podem ter usado rampas de terra, subindo diretamente pelo lado da pirâmide ou percorrendo uma espiral em volta da pirâmide. Provavelmente, grupos de operários usavam cordas para puxar as pedras rampa acima, molhando a terra para reduzir o atrito entre a pedra e a rampa. O uso de uma rampa de pequena inclinação diminuiria a força necessária e, portanto, o número de operários necessário para a tarefa. Entretanto, por mais sedutora que seja esta explicação, as rampas teriam que ser enormes (com até 1,5 quilômetro de comprimento), e puxar um grande bloco por uma rampa em espiral seria um trabalho lento e desafiador. O mais provável é que os blocos tenham sido erguidos diretamente em trenós, usando-se como rampa o lado da pirâmide (Fig. 1-21a). No momento em que uma camada da pirâmide era concluída, os operários encaixavam blocos na superfície externa e em seguida os aplainavam. Um trenó puxado ao longo da pedra lisa, com a água lubrificando os roletes, encontraria muito pouco atrito. Os cálculos sugerem que uma equipe de 50 homens conseguiria erguer um bloco típico em questão de minutos, um ritmo de trabalho que possibilitaria que as pirâmides fossem construídas nos intervalos de tempo registrados historicamente. O número de homens necessários seria ainda menor se as cordas dessem a volta por cima da pirâmide em construção e fossem até um trenó no lado oposto (Fig. 1-21b). Esse trenó e os homens que estariam dentro dele funcionariam como contrapeso. Uma vez que os homens no alto da pirâmide em construção conseguissem colocar em movimento o trenó carregado, o outro trenó ajudaria a arrastá-lo para o alto. Este plano tinha a vantagem de levar trenós vazios de volta para o solo, onde podiam ser carregados novamente.

1.65 • Molamania A Molamania é um brinquedo muito conhecido. Trata-se de uma mola que é capaz de descer um lance de escadas, dando cambalhotas. Você coloca a mola no degrau mais alto, estica a parte de cima da mola, coloca-a no segundo degrau e solta o conjunto. Se as dimensões dos degraus forem adequadas, a Molamania desce a escada até o fim. O tempo que a Molamania leva para descer a escada depende do número de degraus que ela avança a cada passo (você pode posicioná-la para que avance dois degraus de uma vez), mas não depende da altura de cada degrau. (A Molamania leva o mesmo tempo para descer um degrau alto e um degrau baixo.) Como é que a Molamania consegue se movimentar dessa maneira?

Resposta Ao esticar a mola e colocar sua extremidade superior no segundo degrau, mais baixo que o primeiro, você produz uma onda que se propaga ao longo da mola. Quando a onda avança, mais espiras se deslocam para o segundo degrau, subindo, contornando o arco da mola e, finalmente, descendo até o segundo degrau. Quando a onda chega às últimas espiras do primeiro degrau, estas são puxadas para cima com tanta velocidade ao longo do arco que passam direto pelo segundo degrau (supondo-se que as dimensões do degrau sejam apropriadas), indo cair no terceiro degrau. O processo se repete várias vezes. O sucesso da Molamania em descer escadas (e fazê-lo devagar o bastante para que você possa acompanhar a descida) se deve ao fato de que o fio tem uma seção reta retangular. Essa forma, patenteada por Richard T. James em 1947, faz com que a razão entre a rigidez da mola e sua massa seja muito menor que em uma mola feita de um fio com uma seção reta circular. Essa razão menor resulta em uma velocidade menor da onda que se propaga ao longo da mola. A Molamania de plástico, com uma razão diferente e, portanto, uma velocidade de onda diferente, desce uma escada duas vezes mais devagar que a Molamania

original, que é feita de aço. Seja qual for o tipo, o tempo necessário para a Molamania descer um degrau é definido pela razão entre a rigidez e a massa, e não pela altura do degrau. Em um degrau baixo, a onda se propaga devagar; em um degrau alto, a onda se propaga mais depressa; o tempo necessário para que a onda atravesse a Molamania é o mesmo nos dois casos.

1.66 • Torre inclinada de peças Usando blocos, livros, dominós, cartas, moedas ou qualquer outro conjunto de objetos idênticos, construa uma pilha que se projete além da borda de uma mesa. Para um dado número de objetos, que disposição maximiza a projeção (a distância horizontal da borda da mesa até o ponto mais afastado da pilha)? Suponha que os objetos sejam dominós de comprimento L. Quantos são necessários para se obter uma projeção de comprimento L? E uma projeção de comprimento 3L? Com um jogo completo de 28 dominós, construa um arco que atravesse o vão entre duas mesas de igual altura. Que disposição maximiza o vão? O Lego (patenteado pela empresa Wham-O) é um brinquedo que consiste em pequenas peças de plástico. Em um dos lados largos de uma peça existem quatro buracos e, no lado contrário, quatro saliências. Uma peça pode ser empilhada diretamente sobre outra de modo que sejam feitos quatro encaixes ou a peça de cima pode ser deslocada lateralmente de modo que sejam feitos apenas dois encaixes. Chame de x a metade do comprimento de uma peça e n o número de peças disponíveis. Quantas diferentes torres estáveis (que ficam de pé sem apoio externo) é possível construir com todas as n peças?

Figura 1-22 / Item 1.66 Modos de empilhar (a) a (b) peças de dominó e (c) a (d) peças de Lego.

Considere uma torre em que cada peça, exceto a última, esteja diretamente acima ou deslocada para a direita em relação à peça imediatamente abaixo. Qual é o número mínimo de peças necessário para se obter uma projeção de, por exemplo, 4x? Existe um modo mais eficiente de empilhá-las para se obter a mesma projeção?

Resposta Uma pilha é estável se uma reta vertical que passe pelo centro de massa encontrar a mesa. É evidente, portanto, que, para se obter a maior projeção possível, é preciso que a reta passe pela borda da mesa. Uma maneira fácil de conseguir uma grande projeção se baseia na série harmônica (Fig. 1-22a). Suponha que você use dominós. Para equilibrar um dominó, você coloca o centro da peça na borda e consegue uma projeção de L/2. Em seguida, você substitui a borda da mesa pela borda de outro dominó e o posiciona de tal forma que o centro de massa dos dois dominós fica verticalmente acima da borda da mesa. A projeção é agora (L/2)(1 + 1/2). Em seguida, você substitui a

borda da mesa pela borda de um terceiro dominó e o posiciona de modo que o centro de massa combinado dos três dominós fique verticalmente acima da borda da mesa. A projeção agora é (L/2)(1 + 1/2 + 1/3). Com n dominós dispostos dessa forma, a projeção é (L/2)(1 + 1/2 + 1/3 + ... + 1/n), sendo a expressão entre parênteses a série harmônica. Eis alguns resultados: Projeção   L 2L 3L 4L

Número de peças       4     31   227 1674

Não existe limite teórico para esse arranjo, mas apenas limites práticos. Arranjos mais econômicos usam dominós como contrapeso para os que se estendem além da borda. Assim, por exemplo, em um desses arranjos quatro dominós possibilitam obter uma projeção um pouco maior que L (Fig. 1-22b), e em outro usam-se apenas 63 dominós para se conseguir uma projeção de 3L. O uso de contrapesos também ajuda se você quiser construir um arco com um jogo completo de 28 dominós. Se os lados esquerdo e direito são estáveis, o vão pode ser de cerca de 3,97L, mas existe pelo menos um arranjo no qual os lados não são individualmente estáveis e o vão é aproximadamente 4,35L. Todas as projeções e todos os arcos podem ser melhorados se você arrumar os dominós para que as diagonais, e não os lados mais compridos, sejam perpendiculares à borda da mesa. Com três peças de Lego, é possível construir cinco torres diferentes (excluindo-se os arranjos com simetria especular) e quatro delas são bem estáveis. Uma das torres é marginalmente estável: a menor perturbação pode derrubá-la, já que o centro de massa está verticalmente acima da borda da peça mais baixa. A projeção máxima é 2x (o comprimento de uma peça) para a torre marginalmente estável, x para três das outras torres e zero para a torre mais estável (que é vertical). As regras de construção que uma torre inclinada deve seguir determinam a estratégia apropriada para se obter a projeção máxima. Suponha que você queira evitar qualquer torre marginalmente estável e seja obrigatório colocar uma peça diretamente acima de outra ou deslocada para a direita. Nesse caso, o plano mais econômico é construir uma torre vertical exceto pelos últimos blocos, que formam uma escada para a direita. Assim, por exemplo, para se conseguir uma projeção de 4x, é preciso um mínimo de 11 peças, com as quatro de cima formando degraus (Fig. 1-22c). Para obter uma projeção de nx, precisamos no mínimo de 0,5n(n + 1) + 1 peças, com as n peças de cima formando degraus. Se for permitida uma torre com equilíbrio marginalmente estável, deixe de fora a peça mais baixa. O número de peças necessárias para se obter uma dada projeção diminui se as peças puderem ser deslocadas tanto para a esquerda como para a direita. Assim, por exemplo, uma projeção estável de 5x pode ser conseguida com apenas 11 peças (Fig. 1-22d).

1.67 • Torre inclinada de Pisa A famosa torre de Pisa, na Itália, começou a se inclinar para o sul ainda durante a construção, que durou dois séculos. De fato, quando o campanário foi finalmente instalado no topo, a construção foi erguida verticalmente na esperança de impedir que a inclinação do resto da torre aumentasse. (Se você observar a torre pessoalmente ou em uma fotografia, verá que o campanário dá à torre uma forma de banana.) A torre foi fechada aos turistas durante muitos anos depois que uma torre em Pavia caiu, matando quatro pessoas. Mas, será que a torre de Pisa estava prestes a cair? Afinal, ela estava inclinada para o sul pouco mais que 5o e, embora a inclinação estivesse aumentando anualmente, o aumento não passava de 0,001o por ano. Para que a torre caísse, não seria necessário que o centro de massa se deslocasse para fora da base da torre? Isso levaria muito tempo para acontecer.

Resposta Embora a inclinação da torre tenha sido sempre pequena e o centro de massa estivesse bem dentro da área de sustentação da base da torre, antes de um conserto realizado recentemente, a inclinação havia deslocado a sustentação do peso da torre para a parede externa no lado sul. Esse deslocamento colocou a seção inferior da parede sul sob uma imensa compressão, que ameaçava envergar a parede para fora, fazendo-a desmoronar. O perigo era maior por causa de uma escada espiral que circunda a torre, enfraquecendo a parede. Desde o começo, a inclinação se deveu ao solo compressível abaixo da torre e a situação piorava cada vez que chovia forte. Para estabilizar a torre e reverter parcialmente a inclinação, engenheiros instalaram um sistema de drenagem subterrâneo para reduzir a quantidade de

água no solo e escavaram o solo debaixo do lado norte da torre.

1.68 • Queda de peças de dominó Quando a primeira peça de dominó de uma longa fila de peças regularmente espaçadas é derrubada sobre a segunda, a queda produz uma onda que se propaga por toda a fila. Depois que a onda começa, quantas peças de dominó estão em movimento em um dado momento e o que determina a velocidade da onda? Obviamente, as peças de dominó não devem estar separadas de uma distância maior que o comprimento de uma peça, mas será que existe também um espaçamento mínimo? Por que uma fila de cubos de madeira não cai da mesma maneira que as peças de dominó? É possível produzir uma reação em cadeia em uma fila de peças de dominós na qual a primeira peça é pequena e cada umas das peças seguintes aumenta de tamanho de acordo com um fator constante?

Resposta Quando está em pé, uma peça de dominó possui duas posições de equilíbrio. Uma corresponde à posição vertical (Fig. 1-23a) e, a outra, a uma inclinação tal que o centro de massa fica diretamente acima da borda de sustentação (Fig. 1-23b). Nas duas posições, a força da gravidade passa por um ponto de sustentação. A segunda posição, porém, é de equilíbrio instável porque qualquer perturbação, por menor que seja, pode movimentar a peça, deslocando a força da gravidade para a direita ou para a esquerda da borda de sustentação. Se o deslocamento for para a direita, como na Fig. 1-23c, a peça tomba.

Figura 1-23 / Item 1.68 Peças de dominó passando pela posição de equilíbrio instável.

Quando você derruba a primeira peça de dominó de uma fila, ela gira, passando pela posição de equilíbrio instável e, em seguida, tomba, chocando-se com a segunda peça. Se você deu apenas um leve toque na primeira peça, a energia do choque vem da queda a partir da posição de equilíbrio instável. Quando as peças estão muito próximas, a queda é curta demais para fornecer energia suficiente para derrubar a segunda peça. A queda da segunda peça é mais provável com um espaçamento maior, contanto que não ultrapasse o comprimento de uma peça. O mesmo vale para os dominós mais adiante na fila. (É claro que você pode dar um peteleco forte na primeira peça e não se preocupar com o espaçamento, mas nesse caso a brincadeira perde a graça.) A qualquer instante pode haver cinco ou seis peças em movimento. A onda ganha velocidade enquanto avança na fila, com a velocidade se aproximando de um certo valor que depende do espaçamento, do atrito entre as peças e da elasticidade das colisões entre as peças. Quando o espaçamento é menor, a onda se propaga mais depressa e o ruído das colisões é mais agudo. Lorne Whitehead, de Vancouver, descreveu de que forma uma reação em cadeia se propaga em uma fila de peças de dominó que aumentam de um fator de 1,5 (em todos as dimensões) de uma peça para a seguinte. Quando ele derruba a primeira “cutucando-a com um cotonete longo e macio”, a energia é amplificada em cerca de 2 bilhões de vezes pela reação em cadeia quando a 13a e última peça é derrubada. Ele menciona que, com um conjunto adequado de dominós, bastaria uma fila de 32 peças de dominó para derrubar uma peça da altura do edifício Empire State (uma proeza que nem o King Kong conseguiria).

1.69 • Queda de chaminés, lápis e árvores Quando uma chaminé alta cai, geralmente ela se parte em algum lugar ao longo do comprimento. O que causa a ruptura, onde

fica localizada e para que lado a chaminé se curva após a ruptura (Fig. 1-24a)? Você pode verificar se a sua resposta está correta derrubando uma pilha de cubos de madeira e prestando atenção na direção que a pilha toma durante a queda. Você também pode erguer uma pilha de cilindros curtos e ocos que são mantidos unidos internamente por elásticos. Se você coloca um lápis de pé sobre a ponta e o deixa cair, a ponta se movimenta no sentido da queda ou no sentido contrário? Quando uma árvore cai, em que sentido a parte inferior se movimenta e que formato a árvore assume durante a queda? Uma árvore se quebra como uma chaminé? Por que uma árvore às vezes parece flutuar pouco antes de chegar ao chão? Por que a parte de cima às vezes se choca com a parte de baixo com tanta força que as raízes são arrancadas? (Lá está você, no meio da floresta, bancando o lenhador e assistindo à queda de sua primeira árvore grande. Você não é bobo: percebe para que lado a árvore vai cair e fica do outro lado. Logo depois que a árvore bate no chão, porém, ela volta em sua direção para se vingar, acertando-o no peito e quebrando-lhe três costelas. Está na hora de aposentar o machado.)

Figura 1-24 / Item 1.69 (a) De que modo a chaminé vai rachar? Uma árvore velha (b) inicialmente e (c) quando a parte de cima bate no chão e parte a árvore ao meio.

Resposta Quando a chaminé gira em torno da base, a parte de baixo tenta girar mais depressa que a parte de cima e a chaminé começa a se curvar para trás. Se a chaminé é um cilindro uniforme, a maior tendência de curvatura acontece em 1/3 da altura da chaminé, o local mais provável de ruptura. Se a chaminé tem outro formato, o ponto de ruptura é em outro lugar. A ruptura começa a se propagar ao longo da largura da chaminé a partir da frente da queda, mas a compressão no lado de trás conduz a rachadura um pouco para baixo. Um segundo ponto de ruptura às vezes acontece mais abaixo quando a parte de cima tenta escorregar para trás por cima da parte de baixo, exercendo assim uma força no sentido contrário ao da queda da superfície superior da parte de baixo. O sentido em que a ponta do lápis se movimenta quando o lápis tomba depende do atrito entre a ponta e a superfície que ele toca. Se o atrito for pequeno, a ponta se movimentará no sentido contrário ao da queda. Com um atrito maior, a ponta se movimentará no sentido da queda, mesmo que se movimente inicialmente no sentido contrário. Uma árvore derrubada se curva para trás como uma chaminé, mas só se parte se estiver morta e podre. Se a ruptura acontece no início da queda, a parte de cima pode cair no sentido contrário ao da parte de baixo, criando uma situação perigosa para quem está nas imediações. Se você fizer uma cunha em um lado de uma árvore viva e depois um corte horizontal que quase chegue ao outro lado, a árvore cairá para o lado da cunha, as duas partes acabarão de se separar e a parte de cima será arremessada para o alto. Se a árvore tiver muitos galhos, eles serão comprimidos quando a árvore se chocar com o solo, e seu recuo poderá impulsionar a parte de cima de volta na direção do toco. A impressão de flutuação vem da resistência do ar que

uma árvore frondosa encontra ao se aproximar do solo. Algumas árvores terminam em pedaços por causa da maneira como batem no chão. Se a ruptura inicial se deve, por exemplo, a ventos fortes e acontece perto do solo (Fig. 1-24b), a parte de cima da árvore pode bater no chão primeiro. Nesse caso, a parte que está caindo pode se partir ao meio (Fig. 1-24c). Fica faltando uma parte mais curta que cai pouco depois; ela também se parte ao meio. Antes que o último pedaço chegue ao solo, partes da árvore podem se partir ao meio várias vezes.

1.70 • Quebrando pontas de lápis A ponta de um lápis quebra com freqüência quando escrevo com entusiasmo. Onde exatamente acontece a quebra? Por que será que a quebra é mais provável se a ponta estiver afiada e menos provável se ela estiver rombuda devido ao uso?

Resposta Ao escrever, você pressiona a ponta do lápis para baixo com o lápis inclinado. A ação cria forças que tentam entortar a parte exposta da grafita, tracionando o lado de baixo (o lado voltado para o papel) e comprimindo o lado de cima. Como a grafita é menos resistente a forças de tração, a fratura começa no lado de baixo. Enquanto a fratura se propaga para o lado de cima, ela também se propaga para trás, em direção ao revestimento de madeira, já que um lado da fratura tenta se deslocar lateralmente em relação ao outro. A ruptura começa no ponto em que a força de tração é maior. Para localizar esse ponto, complete mentalmente o cone do qual a ponta do lápis faz parte (Fig. 1-25). Se o comprimento que falta é L, a ruptura começa L/2 acima da ponta real ou 3L/2 acima da ponta imaginária do cone completo. Isso significa que a ruptura começa no ponto em que o diâmetro da grafita é 3/2 vezes o diâmetro da ponta real, um resultado que pode ser testado se você estiver disposto a sacrificar alguns lápis. (Você não deve fazer a experiência em público, porque quebrar pontas de lápis de propósito é considerado sinal de desequilíbrio mental; os psiquiatras chamam isso de síndrome do quebrador de lápis, ou algo parecido.)

Figura 1-25 / Item 1.70 Linha de ruptura na ponta de um lápis.

Quando o lápis acaba de ser apontado, a fratura ocorre em uma seção estreita e por isso requer apenas uma pequena força para iniciá-la. Se a ponta estiver mais rombuda, o ponto de tração máxima estará mais acima e em um ponto em que a seção reta é maior, de modo que a força necessária é maior. Nesse caso, a quebra é menos provável. Se a ponta estiver tão cega que o ponto de tração máxima está dentro do revestimento de madeira, a análise que apresentamos não se aplica e a ponta só vai quebrar se você bater com força na mesa com o lápis com a ponta voltada para baixo (o que, sem sombra de dúvida, é sinal de desequilíbrio mental).

1.71 • Queda de uma ponte Em 28 de junho de 1983, Greenwich, Connecticut, EUA: à 1:28 da manhã, um vão de 30 metros de comprimento da ponte sobre o rio Mianus, na rodovia I-95, desabou. No escuro, os ocupantes de dois veículos, um caminhão com reboque e outro caminhão, não conseguiram perceber a tempo que uma parte da ponte estava faltando e caíram no rio de uma altura de 20 metros. Três pessoas morreram e outras três ficaram feridas. As pontes caem às vezes por causa da idade ou do mau estado de conservação, mas essa ponte da I-95 parecia estar em boas

condições. Será que havia algo diferente no projeto ou na maneira como o tráfego a cruzava que pudesse ter levado à tragédia? Eis algumas pistas. Por causa da aproximação angular que a rodovia tem em relação ao rio, as seções da ponte têm forma de losango. Cada seção era sustentada em duas extremidades. Na extremidade sul da seção que desabou, a sustentação era dada por duas montagens do tipo passador e estribo, uma em cada vértice (Fig. 1-26a). Cada montagem consistia em duas barras de aço através das quais passavam pinos de aço. Nas duas extremidades de cada pino uma grande porca havia sido apertada e soldada para segurar o pino.

Figura 1-26 / Item 1.71 (a) Um sistema de passador e estribo sustenta a ponte. (b) Tendência de rotação produzida pelo caminhão.

As montagens possibilitavam uma certa flexibilidade da seção da ponte para que ela pudesse responder às vibrações produzidas pelos veículos e às variações de comprimento devidas a mudanças de temperatura. Aparentemente, uma das porcas do vértice mais afastado do centro da seção enfraqueceu-se pela fadiga, o que soltou o pino e fez a seção cair no rio. Que força lateral expulsou o pino? A resposta se revelou um estudo valioso para evitar que catástrofes como esta se repitam.

Resposta Considere um caminhão na pista da esquerda atravessando uma seção da ponte. Para o caminhão manter a velocidade, os pneus tinham que empurrar a seção para trás, criando um torque que tentava fazer a seção girar em torno do centro (Fig. 1-26b). A tentativa de rotação produzia uma força lateral nos dois conjuntos de pinos e porcas de sustentação da extremidade sul, mas a força era maior no vértice mais distante porque estava mais longe do centro. Depois de sofrer vibrações e tensões consideráveis, uma das porcas desse vértice cedeu e seu pino saiu do lugar, deixando o vértice sem apoio. A sustentação reduzida da seção sobrecarregou os outros pontos de sustentação e a seção caiu. Se a seção fosse quadrada e não em forma de losango, a resistência à rotação teria sido compartilhada uniformemente pelos quatro vértices e, portanto, a falha de um dos vértices seria muito menos provável.

1.72 • Engavetamento de um trem Quando uma locomotiva colide com um obstáculo e descarrila, por que a locomotiva e os vagões geralmente saem para lados alternados em vez de serem desviados para o mesmo lado? Por que será que esse engavetamento em ziguezague só acontece nos

primeiros vagões?

Resposta Suponha que a frente de uma locomotiva bata em um obstáculo volumoso que obstrui parcialmente os trilhos. A força exercida sobre a locomotiva pode ser dividida em duas partes: uma força paralela aos trilhos, que reduz a velocidade do trem, e uma força perpendicular aos trilhos, que faz a locomotiva descarrilar. Essa força perpendicular também tende a fazer a locomotiva girar em torno do seu centro de massa. Suponha que a frente da locomotiva seja desviada para a direita dos trilhos. Nesse caso, a rotação tende a levar a parte traseira da locomotiva para o lado esquerdo dos trilhos. Como a parte traseira da locomotiva está engatada no primeiro vagão, o desvio para a esquerda não é tão grande quanto o desvio para a direita da frente da locomotiva. Quando a frente do primeiro vagão é desviada para a esquerda, o vagão tende a girar em torno do seu centro de massa, o que leva a sua traseira para o lado direito dos trilhos. Por causa do engate entre o primeiro e o segundo vagões, a frente do segundo vagão também é desviada para a direita. Esse desvio, porém, é menor que o da locomotiva e o do primeiro vagão. O mesmo acontece com o resto dos vagões.

Figura 1-27 / Item 1.73 Trajetória de uma bola de boliche.

1.73 • Strikes no boliche No boliche (Fig. 1-27) de que forma você deve lançar a bola para maximizar as chances de um strike, no qual todos os pinos são derrubados? Jogadores novatos miram no pino mestre (que fica no centro e na frente) e lançam a bola do meio da pista, mas os jogadores experientes lançam a bola de um dos lados da pista, imprimindo um efeito lateral. A bola “quebra” (muda bruscamente de trajetória) em algum ponto da pista e atinge os pinos ao longo de uma trajetória oblíqua. O ideal é que a bola chegue aos pinos entre o pino mestre e o pino vizinho, local conhecido como pocket (geralmente do lado direito se a bola for lançada do lado direito da pista). A quebra é real, ou não passa de uma ilusão? Será que a estratégia dos jogadores experientes de tentar jogar a bola com efeito funciona mesmo?

Resposta Conseguir strikes com a estratégia dos novatos é difícil, pelo menos por duas razões. A bola pode derrubar muitos pinos, mas os pinos da extremidade esquerda e da extremidade direita provavelmente vão ficar de pé. Se a bola bater de raspão no pino mestre, a colisão pode desviá-la de tal maneira para o lado, que ela não atingirá o resto dos pinos. Se a bola bate nos pinos seguindo uma trajetória diagonal que passa pelo pocket, um ricochete para longe é muito menos provável e, portanto, mais pinos serão derrubados. Se a trajetória tiver uma inclinação suficiente em relação ao eixo central da pista e a bola acertar lateralmente no pino mestre, os pinos externos dos dois lados do arranjo triangular vão cair como peças de dominó e a bola derrubará dois dos pinos internos, fazendo com que eles derrubem o terceiro. O ângulo de aproximação da bola até o pocket depende da razão inicial entre o efeito lateral e a velocidade da bola e também do aumento de atrito que a bola encontra ao se deslocar na pista. Normalmente, os primeiros 50% da pista são encerados para reduzir o atrito. Logo após o lançamento, a bola escorrega na pista encerada e se move em direção aos pinos, descrevendo uma trajetória curva. Quando a bola subitamente começa a rolar sem escorregar, em algum lugar da região não encerada da pista, a trajetória se torna uma reta. A quebra é a mudança brusca de trajetória que a bola sofre pouco antes de começar a rolar sem escorregar. A capacidade de um jogador de conseguir uma quebra depende principalmente da mudança do atrito ao longo da trajetória da bola, mas também depende do fato de que a bola não é uma esfera uniforme por causa dos buracos para os dedos.

1.74 • Tacadas de bilhar e sinuca Onde o taco de bilhar deve golpear a bola branca para produzir os seguintes resultados, e por que eles acontecem? (1) A bola branca rola sem deslizar. (2) A bola branca bate em outra bola e continua na mesma direção: uma seguida. (3) A bola branca bate em outra bola e volta em direção ao jogador: uma puxada. (4) A bola branca bate em outra bola e pára: uma presa. Quando a bola branca é golpeada pelo taco em qualquer ponto ao longo de um plano vertical que passe por seu centro e em seguida bate em outra bola, qual é o ângulo entre as trajetórias das duas bolas? Se a bola branca bate na tabela (a borda da mesa) fazendo um certo ângulo, em que direção ela volta? Se a tacada foi em um dos lados da bola, fora do plano vertical central, e a bola bate na tabela, qual é a nova direção da bola? É possível fazer a bola branca contornar uma bola que esteja no caminho (Fig. 1-28a). Como essa jogada (que recebe o nome de macê) é executada e o que produz a trajetória curva seguida pela bola? (Essa jogada é proibida na maioria dos salões de bilhar, porque existe o risco de rasgar o pano da mesa.) Por que a altura da tabela é sempre

do raio R das bolas?

Figura 1-28 / Item 1.74 (a) Jogada massê. (b) Um golpe no alto produz uma força de atrito para a frente. (c) Colisão de raspão. Reflexão na tabela (d) sem efeito e (e) com efeito para a esquerda.

Resposta As situações 1 a 4 implicam golpear a bola branca em algum ponto ao longo do plano vertical central que passa pela bola. Para 1 e 4, golpeie a bola a uma altura de R (ou seja, R acima do centro). Para 2, golpeie-a acima desse ponto e, para 3, golpeie-a abaixo desse ponto. As respostas dependem da maneira como o taco coloca efeito na bola. Quando a bola é acertada a uma altura de R, no chamado centro de percussão, o impacto produz o efeito exato para que a bola role sem deslizar. Se a bola se choca com outra, a energia associada ao movimento para a frente é transferida para a segunda bola e a bola branca gira no mesmo lugar até que o atrito com o pano esgote sua energia rotacional. (O atrito empurra a bola para a frente e pode fazê-la percorrer uma pequena distância antes de parar de girar.) Se a bola for golpeada em qualquer lugar acima do centro de percussão, ela rola para a frente ao mesmo tempo em que gira sobre si própria, deslizando sobre a mesa (Fig. 1.28b). O deslizamento produz atrito, o que diminui a rotação, de modo que, após certo tempo, a bola passa a rolar sem deslizar. Se a bola se choca com outra antes que isto ocorra, ela transfere seu movimento para a frente e roda por um breve tempo no mesmo lugar, mas o forte atrito a obriga a rolar na mesma direção que a outra bola.

Se a bola for golpeada abaixo do centro de percussão, rola para a frente ao mesmo tempo em que gira sobre si própria no sentido oposto ao do caso anterior. O atrito diminui a rotação, de modo que, após um certo tempo, a bola passa a rolar sem deslizar. Se a bola se choca com outra antes que isso ocorra, ela transfere seu movimento para a frente e roda por um breve tempo no mesmo lugar, mas o forte atrito a obriga a rolar na direção oposta à da outra bola. Quando uma bola branca se choca de raspão com outra bola, a segunda bola é impulsionada para o lado ao longo de uma reta que passa pelos centros das bolas no momento do impacto (Fig. 1-28c). A bola branca é desviada para o outro lado. O ângulo entre as trajetórias finais é muitas vezes citado como sendo 90°, mas ele só tem esse valor quando a bola branca tangencia a bolaalvo. (A trajetória inicial da bola branca é na verdade curva, porque a bola desliza na mesa logo após a colisão, mas a parte curva em geral é curta demais para ser observada.)

Se a bola branca rola sem efeito até a tabela, o ângulo de aproximação é igual ao ângulo de retorno (como um raio de luz refletido em um espelho). Um modo de visualizar a reflexão é imaginar que o alvo (caçapa ou bola) está do outro lado da tabela, à mesma distância da tabela na qual realmente se encontra (Fig. 1-28d). É como uma imagem “dentro” de um espelho. Aponte a bola branca para essa imagem e a bola vai bater na tabela com o ângulo adequado para acertar o alvo. Entretanto, se a bola tem um efeito lateral (girando em torno de um eixo vertical ou inclinado, além de estar rolando em torno de um eixo horizontal), o ângulo de reflexão é outro. Esse efeito é criado quando a bola é golpeada à esquerda ou à direita da linha central. Do ponto de vista do jogador, o efeito pela esquerda (a bola é golpeada do lado esquerdo) faz a bola girar no sentido horário (Fig. 1-28e) e o efeito pela direita faz a bola girar no sentido anti-horário. A jogada macê é feita golpeando-se a bola branca para baixo em um dos lados. O golpe faz a bola girar com uma combinação de puxada e efeito lateral. O impacto também impulsiona a bola em uma direção, mas o atrito produzido pela rotação altera a trajetória, tornando-a curva. A altura da tabela, que é a mesma do centro de percussão, é escolhida de tal modo que a colisão de uma bola com a tabela não faz a bola girar sobre si mesma, o que a levaria a perder energia por atrito. Em vez disso, a bola rola sem deslizar após a colisão.

1.75 • Minigolfe No jogo de golfinho, ou minigolfe, uma bola de golfe é golpeada ao longo de um pequeno campo cercado por uma mureta. A idéia, naturalmente, é colocar a bola em um buraco com o menor número possível de tacadas. Muitas vezes o buraco fica atrás de um obstáculo e, para chegar a ele com poucos golpes, o jogador tem que fazer a bola bater na mureta. De que forma a bola deve ser jogada para entrar no buraco com apenas uma tacada?

Resposta Quando uma bola de golfe bate na mureta, ela é refletida como um raio de luz por um espelho: o ângulo de reflexão é igual ao ângulo de incidência. Isto possibilita que o jogador visualize uma jogada difícil como se fosse lançar um raio de luz em um espelho. A Figura 1-29 mostra um exemplo no qual uma bola precisa bater na mureta para chegar ao buraco. Finja que a mureta é um espelho que produz uma imagem do buraco. Essa imagem, que parece estar atrás da mureta, está à mesma distância da mureta que o buraco. Se você apontar a bola na direção da imagem do buraco, ela vai ser rebatida pela parede e cair no buraco.

Figura 1-29 / Item 1.75 Vista superior de um campo de minigolfe.

Jogadores experientes de minigolfe (e de sinuca, em que acontecem jogadas parecidas) conseguem visualizar mentalmente a seqüência dessas reflexões. É claro que várias questões práticas, tais como terrenos irregulares e inclinados, além de detalhes em relação à colisão real com a parede, tornam esta análise incompleta, de modo que o minigolfe continua exigindo uma certa parcela de sorte.

1.76 • Truques com uma Superbola Quando você deixa cair uma Superbola, (bola de borracha altamente elástica), ela quica de volta quase até a sua mão. Suponha que você jogue a bola para baixo com força e com um pouco de efeito. Para onde ela vai? Se você arremessa a bola para baixo com uma certa inclinação e com efeito para trás, ela quica para trás e para a frente entre dois pontos no chão (Fig. 1-30a). Se, em vez disso, você imprimir um efeito para a frente, ela vai alternar quiques longos e curtos enquanto se afasta de você (Fig. 1-30b). (A altura dos saltos pode parecer variável, mas é apenas uma ilusão.) Se você imprimir um efeito para trás enquanto arremessa a bola debaixo de uma mesa plana, ela pode recusar a continuar embaixo da mesa e voar em sua direção (Fig. 1-30c). Se você imprimir um efeito para a frente e permitir que a bola se choque com uma parede depois de quicar no chão, ela provavelmente voltará às suas mãos (Fig. 1.30d). O mesmo acontecerá se você jogar a bola contra uma parede e houver outra parede nas proximidades (Fig. 1-30e). O que explica esse comportamento tão estranho e voluntarioso, e por que a Superbola quica mais que uma bola de borracha normal?

Figura 1-30 / Item 1.76 Truques da Superbola com (a) a (d) um ou mais superfícies horizontais e (e) duas superfícies verticais próximas. (f) Atrito em uma bola com efeito durante uma colisão.

Resposta Quando a bola está girando, sua superfície áspera adere momentaneamente ao chão e o atrito gerado

arremessa a bola em uma direção inesperada. O atrito também altera a rotação da bola e, portanto, o quique seguinte pode ser muito diferente. Assim, por exemplo, se a bola é lançada para baixo com uma rotação no sentido horário, quando vista de lado, o atrito aponta para a direita (Fig. 1-30f). A bola também recebe do chão uma força para cima durante a colisão. A combinação das duas forças direciona a bola para cima e para a direita. Quando a bola é arremessada para baixo com certa inclinação e com efeito, pode quicar para longe de você, na vertical, ou até voltar em sua direção, dependendo da direção e da velocidade da rotação, que determinam a direção e a intensidade do atrito. A ilusão de que a altura dos quiques é variável resulta das mudanças de inclinação da trajetória da bola. Como a bola alterna saltos curtos e longos, o ângulo do quique também alterna. (A ilusão é tão forte que duas vezes dei crédito a ela nos meus escritos, apesar de ter acabado de argumentar que a altura não podia variar.) A Superbola quica tão bem por causa do modo como as colisões produzem oscilações em seu interior. Quando uma bola de borracha comum colide com o chão, a compressão súbita da parte de baixo faz a bola oscilar. O tempo de uma oscilação depende do material de que é feita a bola. É provável que o tempo seja diferente do tempo necessário para a colisão completa, caso em que a bola continua a oscilar após ter deixado o solo. Como as oscilações consomem energia, a bola fica com menos energia e não sobe muito. Uma Superbola é composta por um núcleo coberto por uma camada de outro material. Essa combinação altera as oscilações de modo que o tempo em que o primeiro material leva para oscilar é igual ao tempo em que a bola permanece no chão. No momento em que a parte de baixo da bola começa a se descomprimir e está se desprendendo do chão, a oscilação é para fora, contra o chão, ajudando a lançar a bola. Em conseqüência, a energia de oscilação é devolvida ao movimento de subida da bola, possibilitando à bola quicar mais alto. Para determinar a direção em que uma Superbola que está girando vai quicar, aqui vai uma receita que decorre da necessidade de manter constantes a energia cinética e o momento angular durante o quique. A velocidade vertical é simplesmente invertida. A velocidade horizontal do ponto mais baixo da bola também é invertida, mas isso é mais difícil de visualizar porque consiste tanto na rotação da bola quanto na velocidade horizontal de seu centro. Se você combinar as direções das velocidades vertical e horizontal após a colisão, terá a direção em que a bola quica.

1.77 • Golpes de raquetebol O quique de uma raquetebol, que é uma bola razoavelmente elástica, é determinado, em parte, pela rotação da bola. Você pode imprimir efeito golpeando a bola com a raquete acima ou abaixo do centro. Outra opção é golpear a bola em uma parede ou no teto, de modo que a colisão produza rotação. Uma vez criado, o efeito pode dar à bola um quique que surpreenda o adversário. Por exemplo: o que a bola faz se bater horizontalmente na parede da frente com efeito para a frente ou para trás? Uma das melhores jogadas de raquetebol é a rebatida em Z, que foi inventada nos anos 1970. Como mostra a Fig. 1-31a, a bola é golpeada do lado direito da quadra. Depois que ela bate no alto do lado esquerdo da parede da frente e, em seguida, na parte da frente da parede da esquerda, bate na parte de baixo e de trás da parede da direita e corre paralelamente à parede de trás, tão perto da parede que o adversário tem muita dificuldade para devolver a bola. Uma explicação é que a bola atravessa a quadra na largura, uma situação atípica no jogo. A outra razão é que a bola passa tão perto da parede que o adversário não consegue se posicionar atrás dela para devolvê-la para a frente. A única esperança é rebater a bola na parede de trás com tanta força que ela chegue até a parede da frente. O que explica a trajetória da bola em uma rebatida em Z?

Resposta Os papéis do efeito e do atrito em uma bola que quica foram explicados no item anterior. Se você rebater a bola horizontalmente na parede da frente com efeito para a frente, a bola tenderá a subir, dirigindo-se para a outra extremidade da quadra (Fig. 1-31b). Se, em vez disso, você imprimir um efeito para trás, ela tenderá a descer para um ponto próximo da parede da frente (Fig. 1-31c). (Assim, usando efeitos, é possível fazer o adversário correr por toda a quadra.)

Figura 1-31 / Item 1.77 (a) Rebatida em Z no raquetebol. Rebatida na parede com (b) efeito para a frente e (c) efeito para trás.

Em uma rebatida em Z você acerta a bola sem colocar efeito, mas ela ganha rotação no sentido horário (vista de cima) nos dois primeiros quiques. Quando a bola quica pela terceira vez, o atrito gerado pela rotação freia o movimento da bola para trás e a colisão impulsiona a bola ao longo de uma trajetória perpendicular à parede da direita. O jogador que descobriu essa rebatida deixou os adversários sem ação, porque a trajetória final da bola era tão diferente que, com toda a experiência de jogo deles, não eram capazes de prevê-la.

CURIOSIDADE 1.78 • Um gol polêmico Na final da Copa do Mundo de hóquei sobre grama de 1975, a Índia marcou um gol em uma jogada em que o árbitro decidiu que a bola cruzara a linha do gol, batera na baliza direita (que fica dentro do gol) e quicara de volta para o campo de jogo (Fig. 1-32, que é uma vista de cima e fora de escala). Embora seja altamente improvável e certamente incomum no esporte, esse tipo de quique pode acontecer se a bola for para o gol com certo efeito. O efeito necessário diminui se a tacada vem do lado esquerdo do gol. Se o ângulo em relação ao gol (entre a trajetória inicial e a linha do gol) excede 25°, é impossível a bola quicar para trás. Ninguém se lembra dos detalhes da tacada em questão, mas a decisão do árbitro foi pelo menos plausível.

Figura 1-32 / Item 1.78 Vista superior de uma bola de hóquei sobre a grama batendo na trave e voltando para o campo.

1.79 • Tênis Com que parte da raquete de tênis você deve golpear a bola para conseguir (a) a maior velocidade da bola, (b) a menor força em

sua mão em decorrência da colisão ou a menor tendência de o cabo da raquete girar durante a colisão e (c) a menor oscilação da raquete por causa da colisão (e, portanto, a menor oscilação do cabo na sua mão)? Será que a firmeza da sua empunhadura afeta a velocidade de devolução da bola? Será que existem mesmo quadras rápidas e quadras lentas?

Resposta Ao rebater a bola, você deve tentar fazer com que a colisão aconteça em algum ponto do eixo maior da raquete; com isso, você vai não apenas imprimir à bola maior velocidade, mas vai também evitar a torção da raquete na sua mão. O lugar ao longo desse eixo em que você deve golpear a bola, porém, depende do tipo de raquete e de que objetivo, entre os que aparecem na pergunta, você deseja alcançar. Cada uma das regiões do encordoamento que realiza um daqueles objetivos é chamada de sweet spot. Isso significa que a expressão é ambígua, a menos que o objetivo seja explicitado. O sweet spot 1 é a região em que a colisão confere à bola a maior velocidade. Esse sweet spot está próximo da forquilha da raquete e não, como talvez você esperasse, do centro da cabeça. A posição tem a ver com a energia perdida na colisão. Durante a colisão, tanto a raquete quanto a bola se deformam e, em seguida, retornam à forma original. A energia usada para deformar a raquete não é devolvida à bola porque a bola deixa o encordoamento antes que este volte à posição normal. Assim, para minimizar essa perda de energia, a bola deve bater perto da forquilha, onde a estrutura da raquete é mais rígida por causa da proximidade do cabo. Entretanto, a perda de energia com a deformação da bola desloca o sweet spot para um ponto pouco acima da forquilha. Essa perda é maior muito perto da forquilha, onde o encordoamento é mais apertado e por isso apresenta uma estrutura mais rígida para a bola do que perto do centro. Assim, o sweet spot 1 fica perto da forquilha por causa da dureza da raquete, mas um pouco acima da forquilha porque o encordoamento é mais frouxo nessa região. O sweet spot 2 é a região em que a colisão não produz força na mão que segura a raquete. Embora a colisão tenda a empurrar tanto a raquete quanto a mão para trás, tende também a rodar a raquete. Quando a colisão acontece no sweet spot 2, o impulso para trás na mão é compensado pelo movimento para a frente do cabo devido à rotação. Se a bola for golpeada mais longe da mão do que no sweet spot 2, a rotação da raquete puxa o cabo para fora da mão. Se ela bate mais perto da mão do que no sweet spot, a rotação empurra o cabo de encontro à mão. O sweet spot 3 fica na região em que a colisão produz poucas oscilações da raquete (e, portanto, poucas oscilações na mão que segura a raquete). Se a raquete for atingida em outro lugar, ela oscila por pouco tempo e talvez com grande intensidade, como uma lâmina de um xilofone oscila quando golpeada. Existe também um sweet spot 4, maldefinido, no qual o jogador avalia subjetivamente que a colisão é melhor, por várias razões. Embora alguns professores de tênis instruam o jogador a segurar a raquete com muita firmeza durante a colisão entre a bola e a raquete, para aumentar a velocidade de devolução da bola, as pesquisas mostram que a velocidade de devolução não depende da firmeza da empunhadura. A principal vantagem de uma empunhadura mais firme parece ser um controle melhor contra a torção na raquete quando a colisão ocorre fora do eixo longo da raquete. A principal desvantagem de uma empunhadura mais firme é que a força de impacto e as oscilações resultantes da raquete são transmitidas para o braço com maior intensidade, o que pode contribuir para a contusão conhecida como cotovelo de tenista. Talvez para diminuir essa transferência, um jogador experiente relaxa parcialmente a empunhadura da raquete pouco antes do impacto com a bola, deixando de acelerar a raquete nesse instante. O material da quadra (saibro, madeira, grama, carpete ou outros revestimentos) pode afetar a velocidade horizontal de uma bola que seja golpeada pouco acima da rede e depois bata na quadra, deslizando na quadra antes de quicar. A parcela da velocidade horizontal da bola que é conservada após a bola quicar na quadra determina se a quadra é rápida ou lenta: em uma quadra rápida, o atrito é pequeno e uma parcela maior da velocidade horizontal é conservada. Em uma quadra lenta, o atrito é elevado e uma parcela menor da velocidade horizontal é conservada. Quando a bola é lançada para cima em um lob, cai de volta em um ângulo tão próximo da perpendicular que rola (em vez de deslizar) na quadra, perdendo sempre cerca de 40% de sua velocidade horizontal, seja qual for o tipo de quadra.

1.80 • Bicicletas e motocicletas Por que uma bicicleta ou motocicleta em movimento é estável mesmo que você não use o guidom? Como se deve iniciar uma curva? É possível fazer uma curva de bicicleta sem usar o guidom? Por que as bicicletas modernas são muito mais estáveis que as antigas? Em especial, por que as bicicletas modernas têm um garfo na roda da frente que se encurva para longe do ciclista? Que vantagem uma bicicleta que tenha um centro de massa baixo proporciona em uma corrida?

Resposta A pergunta sobre a estabilidade de uma bicicleta ou motocicleta em movimento vem sendo debatida há muito tempo. Alguns pesquisadores defendem a idéia de que as rodas funcionam como um giroscópio: tendem a resistir a qualquer mudança de orientação por causa do momento angular que possuem. Entretanto, as pesquisas mostraram que o efeito é pequeno, especialmente no caso das bicicletas. Outro argumento é que o ciclista gira a roda dianteira na direção do desvio e o movimento para a frente do ciclista e da bicicleta endireita a bicicleta. Todavia, isso não explica tudo, como sabe qualquer um que tenha guiado uma bicicleta sem segurar o guidom. As duas teorias também não explicam de que maneira o ciclista consegue manter a bicicleta de pé mesmo que esteja parada. A melhor explicação parece ser a que envolve o trail da roda dianteira, ou seja, a distância ao longo do solo entre os pontos em que uma reta vertical que passe pelo eixo dianteiro toca o solo e o ponto em que uma projeção do eixo de direção toca o solo. Se o trail está à frente do pneu dianteiro (como acontece com a maioria das bicicletas, talvez todas), quando a bicicleta se inclina a roda dianteira automaticamente vira na direção dessa inclinação, reduzindo-a. Ao virar manualmente a roda, você ajuda a corrigir a inclinação, mas essa intervenção não é obrigatória. Se a bicicleta tivesse um trail para trás do pneu dianteiro, a roda dianteira não viraria automaticamente para corrigir a inclinação e, portanto, você teria que fazer a correção manualmente, o que tornaria a bicicleta difícil de controlar. A pergunta sobre a melhor maneira de começar uma curva em uma bicicleta ou uma motocicleta vem sendo debatida há muito tempo, em parte porque a explicação correta parece não fazer sentido. Se você quer virar a bicicleta para a direita, por exemplo, você tem que virar a roda dianteira para a esquerda, no que é chamado de contra-esterço, ou contrabrecagem (countersteering). Você, o quadro da bicicleta e a roda dianteira se inclinam automaticamente para a direita, ou seja, na direção desejada. Essa inclinação provoca um torque que se opõe ao contra-esterço, virando você, o quadro da bicicleta e a roda dianteira para a direita. A bicicleta em seguida volta à posição normal. Em uma corrida de bicicletas na qual o ciclista esteja ereto e pedalando rapidamente, a bicicleta é jogada violentamente para a esquerda e para a direita, oscilando em torno dos pontos de contato dos pneus com o piso. Quanto mais baixo o centro de massa da bicicleta, mais perto está dos pontos de contato e mais suaves são as oscilações para a esquerda e para a direita.

1.81 • Saltos em distância de motocicleta O dublê de cinema Evel Knievel realizou vários saltos impressionantes no anos 1960 e 1970, nos quais subia uma rampa guiando uma motocicleta, saltava por cima de vários carros e caminhões e aterrissava em outra rampa. Ele costumava executar os saltos com sucesso, mas uma vez perdeu o controle da motocicleta durante a aterrissagem e ficou gravemente ferido. Em 1978, um jovem tentou um salto similar por cima das asas de um avião DC 3, mas cometeu o erro fatal de manter a motocicleta acelerada durante o salto. Por que esse erro lhe custou a vida?

Resposta Quando a roda traseira deixa a primeira rampa, o atrito que retarda o seu movimento desaparece de repente. Se a motocicleta ainda estiver acelerada, ela gira mais depressa do que quando estava em contato com a rampa. Como a motocicleta e o motociclista estão no ar, livres de qualquer torque externo, o momento angular do conjunto não pode variar. Assim, quando a roda traseira começa a girar mais rápido, a motocicleta e o motociclista têm que girar no sentido oposto para manter o momento angular inicial. A rotação leva a frente da motocicleta para cima, podendo chegar a 90°, o que torna quase impossível aterrissar na rampa de chegada. Desacelerar a motocicleta no instante da decolagem evitaria essa rotação perigosa. Frear é ainda melhor, porque inclina a frente da motocicleta para baixo, preparando-a para a aterrissagem.

1.82 • Skates Por que é mais fácil manter o equilíbrio sobre um skate quando ele está em movimento do que quando está parado? Como é possível fazer um skate pular por cima de um obstáculo (junto com você), manobra conhecida como ollie?

Resposta A sua instabilidade decorre de uma inclinação inevitável para a esquerda ou para a direita. Um pesquisador mostrou que, em um modelo simples de skate, a inclinação é automaticamente corrigida pelo movimento do skate para a frente, contanto que a velocidade exceda um valor crítico, cerca de 0,8 metro por segundo. Nesse caso, qualquer inclinação fortuita faz virarem as rodas dianteiras e traseiras e produz uma pequena oscilação para a esquerda e para a direita sem jogar você para fora do skate. A freqüência da oscilação aumenta com a velocidade. Em um modelo mais sofisticado, o pesquisador descobriu que, quando a velocidade excede um segundo valor crítico, o skate volta a ficar instável em relação a inclinações fortuitas, exigindo agilidade por parte do piloto. A estabilidade parece voltar quando a velocidade excede um terceiro valor crítico, mas, na prática, essa velocidade é raramente atingida, por ser muito alta. Para executar um ollie, você deve fazer o seguinte: no momento apropriado, deslize o pé da frente para trás, baixe o corpo e empurre o skate para baixo com força. Como seu pé de trás está na parte traseira do skate, atrás das rodas traseiras, o impulso para baixo faz a parte traseira do skate bater na calçada. O impacto joga o skate para cima e ele também começa a girar em torno do centro de massa. Quando o skate subir e girar, encolha as duas pernas para não impedir a subida e, além disso, deslize para a frente o pé da frente para controlar a rotação. Se for bem-sucedido, o pé da frente irá nivelar o skate perto do ponto mais alto da subida. Você deve se preparar em seguida para a aterrissagem deixando que as pernas se flexionem no momento da queda para amortecer o impacto.

1.83 • Arremesso de ferraduras No jogo de ferraduras, você arremessa uma ferradura especial em uma estaca de metal situada a 12 metros de distância. Para arremessar, você abaixa o braço e leva-o para trás e, em seguida, descreve um movimento rápido para a frente, soltando a ferradura no momento em que o braço chega na horizontal. O objetivo é fazer com que a ferradura caia com os braços em volta da estaca. A ferradura pode terminar nessa posição se deslizar pelo chão, mas as chances são maiores se ela se chocar com a estaca enquanto ainda está no ar e escorregar para baixo. Se você não está acostumado com o jogo, pode experimentar arremessar a ferradura de um modo chamado flip, segurando o ponto médio, como mostra a Fig. 1-33a. Quando você solta a ferradura, ela está na horizontal e os braços apontam na direção da estaca. Ao soltar a ferradura, você imprime um movimento de rotação que faz com que ela gire durante o percurso. O flip foi originalmente a técnica mais comum de arremesso, mas os jogadores experientes descobriram outras formas de segurar, orientar e girar a ferradura. Em uma das técnicas, a empunhadura é feita em um dos braços, com o plano da ferradura inclinado em relação à vertical e os braços apontando para cima (Fig. 1-33b). Dependendo da velocidade de rotação que você imprime à ferradura, ela descreve , 1 ou até 2 revoluções antes de se chocar com a estaca. Em outra técnica, a empunhadura também é assimétrica, mas os braços apontam para baixo e a ferradura descreve , 1 ou 2 revoluções. Por que essas técnicas modernas produzem mais ringers (a ferradura acerta na estaca, gira em volta dela e cai no lugar) do que um flip?

Resposta Se a parte interna da ferradura bater na estaca em um flip tradicional, a ferradura provavelmente vai quicar e cair longe da estaca (Fig. 1-33c). Nos arremessos modernos, a ferradura gira também em torno de um eixo vertical. Quando a parte interna da ferradura se choca com a estaca, essa parte da rotação continua, fazendo a ferradura girar em torno da estaca. Em seguida, uma projeção que existe nas extremidades dos braços fica presa na estaca, fazendo a ferradura cair sem se afastar da estaca (Fig. 1-33d). O nome ringer provavelmente vem do fato de que a ferradura fica circulando em volta da estaca, ou do barulho que a rotação produz (em inglês, ring pode significar tanto “aro”, “argola” como “toque de campainha”).

Figura 1-33 / Item 1.83 (a) Técnica de arremesso flip. (b) Uma técnica melhor. (c) Ricochete na estaca. (d) Um ringer.

1.84 • O giro dos bambolês e dos laços de vaqueiro

Como é possível manter um bambolê no ar e girando em volta do corpo em um plano praticamente horizontal? Como é que um vaqueiro consegue um movimento semelhante com o laço?

Resposta Os dois tipos de movimento se devem à força exercida em um ponto de apoio sobre o objeto que está girando. No bambolê, a força é aplicada no ponto de contato do brinquedo com o corpo. No caso do laço, a força é exercida pela mão que puxa o pequeno pedaço de corda entre a mão e o laço. Nos dois casos, o ponto de apoio se desloca em uma pequena circunferência e empurra ou puxa para fora o bambolê ou o laço, de modo que a força tende a aproximar da horizontal o plano de rotação do objeto. Para manter a rotação, o movimento circular do ponto de apoio tem que estar um pouco adiantado em relação ao movimento circular do objeto.

1.85 • Ioiôs Quando um ioiô é arremessado para baixo da forma convencional, de que modo a rotação acumula energia? Por que a velocidade para baixo aumenta num primeiro momento e depois diminui? Por que alguns tipos de ioiôs fazem um dorminhoco — ou seja, continuam girando no fim da corda —, enquanto outros começam a subir na corda assim que ela se desenrola totalmente? Como se interrompe um dorminhoco para iniciar a subida? Por que o ioiô sobe mais devagar, ou nem sobe, se você deixar o dorminhoco demorar demais? Quando o ioiô está perto da mão, por que seu plano gira em volta da corda (movimento conhecido como precessão)? Por que, durante um dorminhoco, a chance de o ioiô entrar em precessão é muito menor? É possível fazer vários truques com o ioiô, como volta ao mundo e cachorrinho passeando. No primeiro, o ioiô em rotação é posto para girar em volta de um grande círculo vertical enquanto está na ponta da corda. O segundo é feito durante um dorminhoco e consiste em baixar o ioiô até o chão, onde ele começa a rolar. Se a corda for mantida esticada na horizontal, em que direção o ioiô vai se movimentar se a corda for sacudida bruscamente? Existem vários modelos de ioiô, mas um dos mais impressionantes foi construído no MIT em 1977. A corda, feita de náilon, tinha 81 metros de comprimento; a estrutura do ioiô consistia em duas rodas de bicicleta de 66 centímetros unidas por um eixo de aço; o ioiô foi jogado do alto de um edifício de 21 andares. Ainda mais incrível foi um ioiô de 116 quilos que Thomas Kuhn jogou do alto de um guindaste, em 1979, para estabelecer o recorde do ioiô mais pesado. O ioiô, de 1,3 metro de altura e quase 0,80 metro de largura, tinha as mesmas dimensões relativas de um ioiô comum e foi lançado de uma altura de aproximadamente 30 metros. Ioiôs no espaço: se tiver oportunidade, um astronauta em órbita pode jogar ioiô. Por que seria difícil fazer um dorminhoco nesse tipo de ambiente?

Resposta Suponha que você deixe o ioiô cair em vez de jogá-lo para baixo. Normalmente, quando você deixa um objeto cair, a energia potencial se transforma em energia cinética e a velocidade do objeto aumenta durante a queda. Um ioiô é diferente por duas razões: ele está girando e a velocidade de rotação depende do número de voltas da corda em torno do ioiô. Quando o ioiô desce e a corda se desenrola, o ioiô gira cada vez mais depressa, o que deixa pouca energia para acelerálo. Em conseqüência, a velocidade de descida do ioiô primeiro aumenta e depois, mais ou menos na metade do caminho, começa a diminuir. Quando o ioiô chega ao final do percurso e a corda está completamente desenrolada, ele continua a girar no mesmo sentido. Se a corda estiver presa no eixo (geralmente passando por um buraco), o ioiô imediatamente começa a se enrolar de volta no eixo. Se, em vez disso, a corda passa em volta do eixo e a velocidade de rotação não for muito grande, o ioiô faz um dorminhoco. Você pode acordá-lo dando um puxão na corda. Isto faz o ioiô subir e alivia momentaneamente a tensão da corda. Como o ioiô está girando, ele enrola a corda frouxa do eixo. Se o atrito for suficiente, a parte capturada de corda fica presa no eixo e o ioiô é forçado a enrolar uma parte maior da corda, o que o faz subir. Se você esperar demais para interromper o dorminhoco, a quantidade de energia perdida no atrito entre o eixo e a corda será grande demais e o ioiô não conseguirá subir de volta para sua mão. No espaço, o efeito da gravidade praticamente não existe, porque tanto o astronauta quanto o ioiô estão em queda livre. Para jogar ioiô, o astronauta tem que lançá-lo: ele não vai cair por conta própria. Quando o ioiô chegar ao fim da corda, provavelmente vai começar a enrolar a corda e inverter o sentido do movimento. Para fazer um dorminhoco, o astronauta tem que puxar suavemente a corda quando o ioiô chegar ao final do curso a fim de que a tensão evite que a corda se enrole novamente. O astronauta pode também fazer o ioiô girar em círculos para manter a tensão. Perturbações espúrias podem fazer o ioiô entrar em precessão, mas a precessão geralmente só é apreciável quando o ioiô está perto da mão e, portanto, gira devagar. Durante um dorminhoco, a alta velocidade de rotação cria um momento angular

elevado que estabiliza o ioiô contra perturbações. O ioiô, nesse caso, se comporta como um giroscópio. Deixo a análise dos truques por conta do leitor; mas, em relação ao cachorrinho passeando, você pode querer levar em conta algumas variações da orientação da corda, tais como as sugeridas no próximo item.

1.86 • Desenrolando um ioiô Suponha que você desenrole uma pequena parte da corda de um ioiô, coloque o ioiô sobre uma mesa de modo que a corda desenrole a partir da extremidade inferior do eixo central e puxe a corda horizontalmente em sua direção. O ioiô vai se mover na sua direção, na direção oposta ou vai ficar girando no mesmo lugar? O que ele vai fazer se você puxá-lo para cima com uma inclinação em relação ao topo da mesa? Como ele se comporta se você virá-lo de cabeça para baixo de modo que a corda desenrole a partir da extremidade superior do eixo central? Antes de fazer os testes com um ioiô, procure imaginar o que vai acontecer. Se você não tem um ioiô, pode substituí-lo por vários tipos de carretéis, como, por exemplo, um carretel de linha. Apóie uma bicicleta em uma mesa, coloque o pedal na posição mais baixa e puxe o pedal em direção à parte traseira da bicicleta. A bicicleta se move? Em que direção?

Resposta A análise do ioiô ficará facilitada se você se lembrar de que o ponto de contato entre o ioiô e a mesa é o ponto em volta do qual um torque será exercido. Como o atrito da mesa com o ioiô atua nesse ponto, não cria nenhum torque para fazer girar o ioiô. Para determinar a direção em que o ioiô se movimenta, é preciso considerar apenas o torque exercido pela corda. Se o torque estiver orientado no sentido horário (veja as figuras), o centro do ioiô tem que se movimentar além do ponto de contato no sentido horário e, portanto, se aproxima de você. Se o torque estiver orientado no sentido anti-horário, o movimento é no sentido oposto. Suponha que a corda se desenrola a partir da extremidade inferior do eixo. Quando você puxa a corda horizontalmente, o torque que ela cria em relação ao ponto de contato tem o sentido horário e o ioiô se aproxima de você (Fig. 1-34a). Para visualizar o que acontece quando você puxa um pouco para cima, prolongue o vetor força da corda para trás até que o prolongamento chegue à mesa. Se o prolongamento estiver à esquerda do ponto de contato ilustrado na Fig. 1-34b, o torque continuará sendo exercido no sentido horário e o ioiô continuará se aproximando de você. Se o prolongamento passar pelo ponto de contato (seu puxão tiver uma inclinação maior), o torque será eliminado e o ioiô ficará girando no mesmo lugar (Fig. 1-34c). Se o prolongamento estiver à direita do ponto de contato (seu puxão tiver uma inclinação ainda maior), o torque será exercido no sentido anti-horário e o ioiô se afastará de você (Fig. 1-34d).

Figura 1-34 / Item 1.86 (a) a (d) A direção de tração determina o sentido de rolamento do ioiô.

Quando a corda se desenrola a partir do alto, o ioiô enrola a corda e se aproxima de você qualquer que seja o ângulo do puxão, porque o prolongamento está sempre à esquerda do ponto de contato. No caso da bicicleta, ela anda para trás por causa do seu puxão. As forças de atrito dos pneus, que apontam para a frente, apesar de menores que o seu puxão, atuam sobre um raio grande e dominam o giro das rodas, fazendo girar o pedal para a frente, no sentido contrário ao do seu puxão.

1.87 • Rompendo a barreira do som em um carro O recorde de velocidade em terra foi estabelecido no deserto de Black Rock, no estado americano de Nevada, em 1997, pelo automóvel a jato Thrust SSC. A velocidade do automóvel foi de 1222 quilômetros por hora em um sentido e 1233 quilômetros por hora no sentido contrário. Ambas excederam a velocidade do som no local (1207 quilômetros por hora) e o automóvel produziu ondas de choque (estrondos sônicos) que se propagaram ao longo do solo do deserto até o local em que estavam os observadores. Superar o recorde de velocidade em terra era muito perigoso, por muitas razões óbvias, tais como a possibilidade de que a pressão do ar debaixo do bico do carro pudesse levantá-lo e fazê-lo capotar (a uma velocidade maior que a do som!). Outro risco menos óbvio tem a ver com as rodas do automóvel. Será que você consegue descobrir que risco é esse?

Resposta Com o carro trafegando mais depressa que a velocidade do som no chão do deserto, cada roda girava a mais de 6800 revoluções por minuto com uma enorme aceleração centrípeta de 35.000 g (35.000 vezes a aceleração da gravidade) na periferia. Embora as rodas fossem feitas de alumínio fundido, a aceleração radial colocava o material da roda no limite do que ele poderia suportar sem se romper. O que não se sabia era de que maneira esse material iria se comportar quando as rodas girassem no deserto. Se uma roda se chocasse mesmo com um objeto pequeno, o impacto poderia fazê-la se desintegrar, provocando um desastre. Como aquela parte do deserto já havia sido usada para prática de artilharia, a equipe de terra teve que inspecionar cuidadosamente o percurso em busca de cartuchos vazios parcialmente enterrados e detritos similares antes que a tentativa de quebra de recorde fosse iniciada.

CURIOSIDADE

1.88 • Explosão em um teste de rotação As peças de máquinas que serão submetidas a rotações prolongadas em alta velocidade costumam ser ensaiadas em um sistema de teste de rotação. Nesse sistema, a peça é posta para girar rapidamente no interior de uma montagem cilíndrica de tijolos de chumbo com um revestimento de contenção, tudo isso dentro de uma câmara de aço fechada por uma tampa lacrada. Se a rotação faz a peça se estilhaçar, os tijolos de chumbo, macios, capturam os fragmentos para análise. No início de 1985, um teste de rotação estava sendo executado em um rotor (um disco) de aço maciço com uma massa de 272 quilos e um raio de 38 centímetros. Quando a peça atingiu uma velocidade angular de 14.000 revoluções por minuto, os engenheiros que realizavam o teste ouviram um ruído seco na câmara, que ficava um andar abaixo e a uma sala de distância. Na investigação, descobriram que os tijolos de chumbo haviam sido lançados no corredor que levava à sala de teste, uma das portas da sala havia sido arremessada no estacionamento do lado de fora do prédio, um tijolo de chumbo havia atravessado a parede e invadido a cozinha de um vizinho, as vigas estruturais do edifício de teste tinham sido danificadas, o chão de concreto abaixo da câmara de teste fora deslocado para baixo em cerca de 0,5 centímetro e a tampa de 900 quilogramas fora lançada para cima, atravessara o teto e caíra de volta, destruindo o equipamento de teste. Os fragmentos da explosão só não penetraram na sala dos engenheiros por pura sorte.

1.89 • Rolamento de esquimó Você está remando em uma corredeira de águas espumantes quando seu caiaque vira. Percebendo que não seria uma boa idéia continuar a viagem de cabeça para baixo, você tenta endireitar o caiaque sem deixar a embarcação, para não correr o risco de se separar dela. Como fazer isso?

Resposta Aí vai uma estratégia. Quando você estiver exatamente de cabeça para baixo, curve o corpo para a frente e estenda o remo em direção à superfície da água, no sentido do rolamento. Em seguida, reme com força para baixo de modo que a resistência sofrida pelo remo produza um torque que vai acentuar o rolamento e levar você à superfície. Outra opção é inclinar o plano do remo e remar paralelamente ao comprimento do caiaque. Nesse caso, a força para cima no remo vem do desvio que a água é obrigada a tomar por causa do remo. Até seu corpo emergir na superfície, estará sujeito a um empuxo que cancela seu peso. Entretanto, quando seu corpo chega à superfície, o peso se torna importante e pode facilmente interromper a rotação. Para evitar que isso aconteça, mantenha o corpo na água o maior tempo possível, inclinando-se para o lado, e deixe o caiaque continuar a rolar para a posição normal enquanto você continua a remar para baixo ou para trás. No instante em que o caiaque ficar na posição normal, endireite o corpo. Alguns caiaqueiros usam a técnica de quebrar os quadris quando capotam. Movimentando os quadris no sentido contrário ao do rolamento desejado, forçam o caiaque a rolar. Este método é útil quando o remo foi perdido e apenas os braços esticados podem ser usados para substituí-los.

1.90 • Curling No esporte chamado curling, uma pedra é lançada com um movimento de rotação e desliza ao longo de uma pista de gelo. A pedra, um objeto pesado, é sustentada por uma estreita faixa circular. O caminho que a pedra segue é inicialmente reto, mas aos poucos começa a se encurvar para um lado e a curvatura aumenta quando a pedra se aproxima do fim da trajetória. Assim, por exemplo, se a pedra é lançada com uma rotação no sentido horário, quando vista de cima, a trajetória se desvia para a direita. Jogadores experientes aproveitam o desvio para fazer suas pedras contornarem outras que estão no caminho. Por que a pedra descreve uma trajetória curva? O curling costuma ser praticado em superfícies geladas dotadas de pequenas protuberâncias que se forma quando se borrifa água na pista, talvez porque esse tipo de superfície permita um desvio maior. Varrer vigorosamente o gelo logo à frente da pedra é um método que muitos jogadores adotam para aumentar a distância percorrida e também aumentar o desvio. O que provoca esses efeitos?

Resposta A força lateral que encurva a trajetória da pedra se deve ao atrito do gelo com a estreita faixa de sustentação da pedra. O atrito não é um atrito seco entre a pedra e o gelo, e sim um atrito úmido entre a pedra e uma fina camada de água produzida quando o gelo se derrete ao entrar em atrito com a faixa. O atrito não é uniforme ao longo da circunferência da pedra, porque o atrito em qualquer ponto depende da velocidade nesse ponto. Se a pedra fosse lançada deslizando sem rotação, todos os pontos teriam a mesma velocidade e sofreriam o mesmo atrito. No jogo, porém, a pedra é lançada com um movimento de rotação. A combinação do movimento para a frente com essa rotação

faz com que diferentes pontos da periferia se movam a velocidades diferentes e, portanto, fiquem sujeitos a diferentes valores de atrito. O resultado dessa distribuição desigual do atrito é uma força lateral que desvia a pedra. Se a pedra está girando no sentido horário, a força resultante e o desvio são para a direita. A distribuição desigual de atrito é responsável também pelo comportamento da pedra no final da trajetória: durante um certo tempo depois que o movimento para a frente cessa, ela gira em torno de um ponto da periferia como se estivesse pregada nesse ponto. A questão do gelo irregular não é bem compreendida e a prática de varrer é às vezes injustamente ridicularizada. Uma superfície irregular pode tornar o atrito mais dependente da velocidade. Varrer certamente remove sujeira e gelo solto, que iriam frear a pedra mas, também, lubrificar o movimento da pedra, derretendo parcialmente o gelo.

1.91 • Andando na corda bamba De que forma uma vara comprida e pesada ajuda um equilibrista a andar na corda bamba, principalmente se a apresentação é ao ar livre, com vento moderado? Algumas apresentações de corda bamba foram incrivelmente perigosas. Em 1981, Steven McPeak andou sobre uma corda que ia de um pico a outro do Zugspitze, que fica na fronteira entre a Áustria e a Alemanha. Durante parte da travessia, ficou a um quilômetro do solo. No mesmo dia, subiu por um cabo que costuma ser usado pelos teleféricos da montanha, tendo que enfrentar inclinações superiores a 30°. Em 1974, Philippe Petit andou em uma corda que estava entre as torres gêmeas do World Trade Center, na cidade de Nova York, 400 metros acima no nível da rua. Ele havia disparado a corda de uma das torres à outra com arco e flecha. Após pelo menos sete passagens, foi preso pela polícia por invasão de propriedade. Presumivelmente, não conseguiram imaginar nenhum outro motivo para detê-lo, já que os juristas não haviam imaginado a possibilidade de alguém andar ilegalmente em uma corda bamba.

Resposta O equilíbrio é mantido se o centro de massa permanecer, em média, sobre a corda. Quando o equilibrista se inclina demais para um lado, o corpo tem que se curvar para o outro lado para corrigir o problema. Uma vara pesada ajuda: se o equilibrista se inclina, por exemplo, para a esquerda, a vara é movimentada para a direita a fim de que o centro de massa combinado do equilibrista e da vara se mantenha sobre a corda. O procedimento tem que ser executado rapidamente, antes que o equilibrista se incline demais. Uma vara leve não ajuda muito: com uma massa pequena, o deslocamento teria que ser grande demais para ser praticável.

1.92 • Montando em touros Por que razão montar um touro selvagem ou um potro chucro em um rodeio (ou em um touro mecânico, como era popular nos anos 1970) é tão difícil? Existe alguma coisa que um vaqueiro experiente faz para ajudá-lo a ficar sobre o touro além de simplesmente segurar a rédea presa ao peito do animal?

Resposta A posição de equilíbrio do vaqueiro depende da posição do touro abaixo dele, mas o touro está sempre se contorcendo, acelerando e freando bruscamente. A cada movimento do touro, o momento linear e o momento angular do vaqueiro tendem a derrubá-lo para a frente, para trás ou para os lados. Se ele simplesmente agarrar a rédea com as duas mãos, terá que usar toda a sua força para interromper o movimento da parte superior do tronco para longe da posição de equilíbrio. Uma opção melhor é levantar um dos braços e segurar a rédea com a mão do outro braço. O braço livre pode ser deslocado em uma direção que compense qualquer rotação repentina do touro. O braço livre tem que ser mantido no alto para que sua massa fique longe do centro em volta do qual o vaqueiro tende a girar; apenas nesse caso o movimento do braço livre pode compensar a rotação da parte superior do tronco, que possui uma massa muito maior. Se o vaqueiro segura um chapéu de aba larga com a mão livre, a resistência que o ar exerce sobre o chapéu enquanto ele é agitado pode proporcionar uma dose extra de resistência à rotação da parte superior do tronco. Um patinador inexperiente, sobre rodas ou sobre o gelo, faz algo parecido para tentar manter o equilíbrio. Na primeira vez em que andei de patins de rodas, quando os patins tendiam a correr na minha frente eu, instintivamente, rodava os braços em círculos verticais (como um moinho de vento) para manter o centro de massa sobre os patins e, assim, conservar o equilíbrio e o pouco que me restava de orgulho.

1.93 • Rasgando papel higiênico

Uma das frustrações freqüentes na vida, apesar de trivial, é puxar um rolo de papel higiênico picotado e destacar apenas uma folha, o que, obviamente, é inútil para o seu propósito. O problema é característico de rolos novos e mais raro naqueles que estão quase no fim. Por que os rolos novos são tão problemáticos? O ângulo do puxão faz alguma diferença? O problema se agrava se o papel for puxado da parte de cima do rolo ou, estando o rolo virado, da parte de baixo?

Resposta A força que você exerce na ponta da tira de papel higiênico cria um torque que tenta fazer o rolo girar. No sentido contrário do seu torque, existe um torque gerado pelo atrito entre o tubo de papelão que fica dentro do rolo e o eixo de madeira ou plástico. Quando você puxa com pouca força, o atrito é pequeno, suficiente apenas para evitar que o rolo gire. Quando você puxa com mais força, o atrito aumenta até que atingir um limite superior. Qualquer puxão mais forte obriga o rolo a girar e, quando ele inicia o movimento, o atrito diminui bruscamente. Se o puxão for forte demais, porém, o papel rasga. Quando o rolo é novo, o peso que ele exerce sobre o eixo aumenta o limite superior do atrito, fazendo com que o puxão necessário para fazê-lo girar rasgue o papel. Quando o rolo está quase no fim e pesa menos, o limite superior é menor e, portanto, você pode superar o atrito puxando com menos força, provavelmente sem rasgar o papel. Se você puxa para cima, como costuma acontecer quando a ponta está na parte de baixo do rolo, você ajuda a sustentar o rolo e o limite superior do atrito é menor. Nesse caso, é menos provável que você rasgue o papel. (Nesta explicação, ignorei o papel exercido pelos braços de alavanca dos torques. Você pode querer reexaminar minhas conclusões investigando de que maneira o braço de alavanca do puxão varia enquanto o rolo é consumido.) Infelizmente, não há como escapar da física, nem mesmo no banheiro.

1.94 • Pedras e bombas saltitantes Como se faz uma pedra chata saltar sobre a água? Será possível aumentar o número de saltos aumentando a velocidade ou a rotação que você imprime à pedra? De que forma uma pedra salta sobre areia úmida e por que, nesse caso, a trajetória é caracterizada por pares muito afastados de marcas próximas? Durante a Segunda Guerra Mundial, o salto de pedras sobre a água inspirou uma das armas da Real Força Aérea Britânica. A RAF estava interessada em demolir algumas represas alemãs, mas as represas eram tão resistentes que só poderiam ser rompidas se os explosivos fossem instalados perto da base. Bombardear a parte de cima das represas seria inútil, e torpedos lançados por aviões na água seriam capturados pelas redes colocadas perto das represas. A dificuldade da operação era ainda maior pelo fato de que as represas ficavam em vales estreitos e profundos que iriam dificultar um ataque aéreo e qualquer ataque teria que ser feito em uma noite escura, para que os aviões evitassem a artilharia antiaérea que protegia os vales. Para resolver o problema, a RAF desenvolveu uma bomba cilíndrica com cerca de 1,5 metro de comprimento e um diâmetro ligeiramente menor. Quando um avião se aproximava de uma represa, um motor conferia à bomba uma rotação para trás (a parte de cima se movia no sentido oposto ao do movimento do avião) e a bomba era lançada 20 metros acima da superfície da água. (A aeronave era equipada com dois holofotes cujos fachos se cruzavam 20 metros abaixo da aeronave. Buscando a altitude que produzia o menor ponto luminoso na água, o piloto conseguia posicionar o avião na altitude correta.) O que a bomba fazia ao entrar na água? Sua rotação servia para mais alguma coisa ao chegar à represa?

Resposta Para conseguir um bom salto você precisa fazer a pedra deslizar sobre a água de tal forma que seu plano e sua trajetória sejam ambos praticamente horizontais. Você deve também imprimir a maior rotação possível, porque a rotação estabiliza a orientação da pedra, como acontece em um giroscópio. Quando a pedra bate na água da maneira apropriada, uma pequena onda se forma à frente da pedra, fazendo-a subir. A velocidade inicial da pedra determina a distância entre os saltos. O número de saltos é definido pela perda de energia em cada salto. A pedra não apenas perde energia para formar a onda, mas também sofre o atrito com a superfície da água durante os breves intervalos entre os saltos. Fazer pedras saltarem é um antigo passatempo, mas recentemente foi inventada uma “pedra” artificial feita de areia e argamassa. A superfície inferior é côncava para reduzir o atrito com a água e, portanto, a perda de energia. Enquanto o recorde mundial com uma pedra natural é atualmente cerca de 30 saltos, as pedras artificiais dão entre 30 e 40 saltos. Para explicar as marcas irregulares da pedra na areia, suponha que é a parte de trás que bate primeiro. A colisão abre um buraco raso e faz a borda da frente se chocar com a areia, abrindo outro buraco bem próximo. A segunda colisão lança a pedra para o alto e também a faz girar sobre si mesma; depois que a pedra percorre uma certa distância, o fenômeno se repete. Quando a bomba da RAF entrava na água, sua rotação a obrigava a saltar por causa do movimento rápido da superfície

inferior em relação à água. A perda gradual de energia durante os saltos reduzia o comprimento de cada salto, mas os saltos ainda eram grandes o suficiente para passar por cima das redes para torpedos. Quando a bomba se chocava com a parede da represa, a rotação fazia o cilindro rolar parede abaixo. Uma carga hidrostática, ajustada para uma profundidade de 10 metros, fazia a bomba explodir. Um historiador comentou: “Foi uma solução brilhantemente simples para se posicionar, com uma precisão de alguns pés, uma bomba que pesava quase 10.000 libras”. Bombas parecidas, só que menores e de forma esférica, foram inventadas para afundar navios. As bombas receberiam uma rotação de 1000 revoluções por minuto antes de serem lançadas de uma altura de 8 metros a cerca de 1,5 quilômetro do alvo. A idéia era que, enquanto estavam saltando sobre a superfície da água como peixes-voadores, as bombas poderiam evitar as redes e paus de carga que protegiam o alvo. Depois de colidirem com o casco, rolariam para baixo até que, a uma profundidade préescolhida, a carga de 600 libras fosse detonada. As bombas também poderiam ser usadas para penetrar em túneis compridos: lançadas na entrada de um túnel, iriam avançar aos saltos pelo túnel antes de explodir. Por várias razões, essas bombas nunca chegaram a ser usadas. (A física, embora seja sempre interessante, pode ser aplicada de maneiras terríveis.)

1.95 • Rodopio de um patinador no gelo Um patinador no gelo girando na ponta do pé é um exemplo perfeito de conservação do momento angular. Quando encolhe os braços, ele passa a girar mais depressa. O aumento da rotação se deve ao fato de que não existem torques externos atuando sobre ele, de modo que seus movimentos não podem alterar o momento angular. Assim, quando ele movimenta parte de sua massa (os braços e talvez uma perna) em direção ao eixo de rotação, a velocidade de rotação tem que aumentar. Este argumento certamente está correto, mas qual é a força que faz o patinador girar mais depressa e por que, exatamente, sua energia cinética aumenta?

Resposta As duas perguntas podem ser respondidas em termos de duas forças fictícias experimentadas pelo patinador. As forças são consideradas fictícias porque, embora pareçam reais do ponto de vista do patinador, não existem para um observador estacionário. Não se trata de empurrões ou puxões de verdade, mas apenas de uma interpretação do fenômeno por parte do patinador. Uma dessas forças fictícias atua radialmente para fora, e por isso é chamada de força centrífuga. Quando o patinador encolhe os braços e uma perna, precisa se esforçar para vencer essa força aparente. Esse esforço resulta em um aumento da energia cinética. A outra força fictícia, a força de Coriolis, acelera seu movimento de rotação. Quando encolhe os braços e as pernas, o patinador sente como se um agente invisível estivesse empurrando-o com essa força, fazendo-o girar mais depressa.

1.96 • Rodopio de um livro Amarre um elástico em volta de um livro para mantê-lo fechado e arremesse-o no ar, fazendo-o girar em torno de um dos três eixos fundamentais mostrados na Fig. 1-35a. Para dois desses eixos, o rodopio é estável. Por que o livro balança visivelmente quando está girando em torno do outro eixo? Instabilidades semelhantes podem ser vistas quando um martelo, uma raquete de tênis e outros objetos assimétricos giram no ar.

Resposta Os eixos do livro são caracterizados pelas inércias rotacionais associadas a eles. A inércia rotacional tem a ver com o modo como a massa está distribuída em relação ao eixo em torno do qual o livro gira. Em um dos eixos a massa está o mais longe possível do eixo (a inércia rotacional é a maior possível), enquanto em outro a massa está o mais próxima possível do eixo (a inércia rotacional é a menor possível). (Veja a Fig. 1-35b.) Quando você faz o livro girar em torno de um desses eixos, o rodopio é estável.

Figura 1-35 / Item 1.96 (a) Três eixos passando pelo livro. (b) Os momentos de inércia associados aos eixos.

O eixo problemático é aquele em que a distribuição de massa e a inércia rotacional são intermediárias. Se você girasse o livro perfeitamente em torno desse eixo, o rodopio seria estável. O problema é que você não consegue executar esse rodopio ideal. Inevitavelmente você comete um erro, e esse erro produz uma oscilação que cresce rapidamente. Uma maneira de ver as coisas é que o erro no alinhamento inicial produz uma força centrífuga efetiva (uma força fictícia que atua radialmente para fora) no livro que o faz rodar em torno do eixo com a maior inércia rotacional. A oscilação que você vê é a combinação do rodopio que você tinha em mente com o rodopio adicional produzido pela força centrífuga. O eixo problemático com uma distribuição de massa intermediária está presente em muitos objetos. Entretanto, se dois eixos tiverem inércias rotacionais iguais, a rotação em torno de qualquer dos eixos será instável e a rotação poderá ocorrer mais lentamente em torno de um eixo em vez de apresentar uma oscilação evidente. Além disso, se a resistência do ar for significativa, a rotação em torno do eixo com a maior inércia rotacional também será instável. Para observar esse comportamento, arremesse um cartão de visitas no ar enquanto o faz girar em torno do eixo maior; é provável que o cartão acabe girando em torno do eixo com a menor inércia rotacional.

1.97 • Gatos em queda livre, proezas dos astronautas e saltos ornamentais Se um gato for solto de cabeça para baixo de um metro de altura ou mais, ele rapidamente endireita o corpo para aterrissar sobre as patas. A ação parece violar uma lei fundamental da física: se não existe nenhum torque externo atuando sobre um objeto, seu momento angular permanece constante. O gato é um desses objetos. Ele começa a queda sem rotação – portanto, sem momento angular – e não existe nenhum torque externo atuando sobre ele. Ainda assim, sua rotação parece significar que o momento angular não permaneceu nulo. Será que o gato viola a regra? Em uma espaçonave em órbita, como um astronauta é capaz de guinar, ou seja, virar para a esquerda ou para a direita, sem se apoiar em nada? Como o astronauta consegue arfar, ou seja, girar para a frente ou para trás em torno de um eixo horizontal que se estende para a esquerda e a direita? Como consegue rolar, isto é, girar em torno de um eixo horizontal que se estende para a frente e para trás? (Novamente estamos diante de um objeto com momento angular nulo e sem estar submetido a um torque externo e que, apesar disso, de alguma maneira consegue girar.) O caso de um mergulhador que salta de um trampolim ou de uma plataforma é diferente porque a queda geralmente começa com um certo momento angular quando o mergulhador deixa a superfície de mergulho para iniciar o salto. No mergulho mais simples, o mergulhador vira de cabeça para baixo para que as mãos entrem na água antes do resto do corpo. Por que a taxa de

rotação aumenta quando o mergulhador fica na posição carpada ou grupada antes de esticar o corpo para entrar na água? Uma rotação rápida é necessária para que o mergulhador possa dar várias cambalhotas antes de chegar na água. Como um mergulhador consegue incluir um parafuso ao seu salto? O mergulhador pode, por exemplo, acrescentar três parafusos a um e meio mortal para a frente. Será que o movimento de rotação tem que ser conseguido com um movimento dos pés na superfície do trampolim ou plataforma, ou o mergulhador pode deixar a superfície com o movimento puro de um mortal e, em seguida, iniciar a rotação em pleno ar? Muitas das técnicas empregada pelos mergulhadores também são usadas por esquiadores que fazem acrobacias aéreas, ginastas, skatistas e ciclistas da categoria BMX. Alguns mergulhos e alguns saltos de cama elástica são parecidos com a queda de um gato pelo fato de que começam sem momento angular. De algum modo, porém, sem a ajuda de um torque externo, o atleta consegue fazer o corpo girar.

Resposta Explicações para o modo como um gato consegue virar o corpo vêm sendo propostas há mais de um século e ainda não existe consenso. Apresentarei duas das explicações (ambas apoiadas por fotografias), mas tenha em mente que, uma vez que os gatos não estudam física, pode ser que nem todos usem a mesma técnica. 1a Explicação Pense no gato como duas partes unidas por uma articulação flexível que fica no meio da coluna vertebral. A cada parte está associado um eixo e os dois eixos inicialmente formam um ângulo diferente de zero, uma vez que o corpo apresenta uma convexidade para baixo. Quando o gato começa a cair, as duas partes giram em torno de seus eixos no mesmo sentido, enquanto a articulação gira em torno de um eixo horizontal no sentido contrário. Assim, por exemplo, se as duas partes do gato giram no sentido horário, a articulação gira no sentido anti-horário. (Observe que, como as duas partes giram no mesmo sentido, o corpo do gato não é torcido.) Cada uma dessas rotações envolve um certo momento angular, mas o sinal do momento angular é negativo para rotações no sentido horário e positivo para rotações no sentido anti-horário. Assim, o momento angular total do gato durante o giro permanece nulo, como quando o gato iniciou a queda. 2a Explicação Imagine que você esteja observando o gato a partir de uma das extremidades. O gato encolhe as patas dianteiras, mantém as patas traseiras estendidas e gira a cauda no sentido anti-horário. Isto produz uma rotação no sentido horário tanto da cabeça quanto do corpo; mas, como as patas dianteiras estão encolhidas, a parte da frente do gato gira mais depressa que a parte de trás. (Repare que, nesta explicação, o corpo do gato sofre uma torção.) Enquanto a cauda continua a girar, o gato estende as patas dianteiras e encolhe as patas traseiras. A mudança faz a parte de trás girar no sentido horário mais depressa que a parte da frente e, portanto, a torção do corpo diminui. Depois de certo tempo, o gato volta à posição normal, tocando no chão com as patas dianteiras. (Se o gato não tem cauda, uma das patas traseiras assume o papel da cauda.) Como na primeira explicação, o momento angular total permanece nulo durante a queda. Se você pretende se tornar astronauta, aqui está uma forma de guinar: estenda a perna direita para a frente e a perna esquerda para trás. Em seguida, junte novamente as pernas depois de movimentar a perna direita para a direita e para trás e a perna esquerda para a esquerda e para a frente. Olhando de cima, as pernas se movimentam no sentido horário. Durante a movimentação, seu tronco precisa girar no sentido anti-horário para que o momento angular total continue nulo. Para arfar, estenda os braços e movimente-os em círculos no mesmo sentido, como se estivesse nadando. Seu tronco gira no sentido oposto e, novamente, o momento angular total permanece nulo. Um rolamento pode ser conseguido através de uma combinação de arfagem e guinada. (Você acaba voltado para qual direção, se realizar uma seqüência de guinada para a esquerda, arfagem para a frente e guinada para a direita? Que tal uma seqüência de arfagem para a frente, guinada para a direita e arfagem para trás? Surpreendentemente, você termina na mesma orientação, embora fique parecendo um dos Três Patetas enquanto executa essas seqüências.) Se você ficar na posição carpada ou grupada durante um salto mortal, a velocidade de rotação aumenta, já que a massa do corpo fica mais próxima do eixo em torno do qual você está girando. (É como o patinador que encolhe os braços e uma perna enquanto gira na ponta do pé.) O encolhimento diminui o momento de inércia. O momento angular, que é o produto do momento de inércia pela velocidade de rotação, permanece inalterado. Se, durante uma cambalhota, você levantar o braço direito e baixar o braço esquerdo, o tronco começará a girar, e a sua cabeça se deslocará para a direita. O movimento não muda o momento angular, mas faz com que o eixo em torno do qual você está dando a cambalhota perca o alinhamento com a direção do momento angular. O resultado é um parafuso. Assim, você não precisa iniciar um parafuso por meio de um impulso especial na superfície de salto, mas pode produzi-lo em pleno ar.

1.98 • Salto mortal quádruplo Dia 10 de julho de 1982, Tucson, Arizona, EUA: o acrobata Miguel Vazquez largou o trapézio em que se balançava durante

uma apresentação do circo Ringling Brothers and Barnum & Bailey, assumiu a posição grupada, deu quatro cambalhotas completas e foi seguro pelo irmão, Juan, que estava de cabeça para baixo em outro trapézio. Foi a primeira vez que um quádruplo mortal foi realizado diante de um público de circo, embora isso viesse sendo tentado desde 1897, quando o primeiro triplo mortal foi conseguido. O que torna um quádruplo mortal tão difícil (provavelmente inviabilizando um quádruplo e meio mortal)?

Resposta Para preparar o salto, o trapezista e seu parceiro se balançam cada qual em um trapézio. Quando o trapezista está se movimentando para cima em direção ao parceiro, ele solta o trapézio, assume imediatamente a posição grupada e inicia o salto mortal. Ao completar a quarta cambalhota, ele precisa se esticar para que seu parceiro possa segurá-lo pelos braços. O salto envolve, portanto, dois requisitos importantes: (1) o trapezista tem que girar com rapidez suficiente para completar quatro cambalhotas antes de chegar onde está o parceiro. (2) Ele tem que parar de girar ao se aproximar do parceiro; caso contrário, estará girando depressa demais para ser agarrado. Para satisfazer a primeira exigência, o trapezista adota a posição grupada, que lhe permite aproximar a massa do corpo do eixo em torno do qual está girando. Esse movimento aumenta a velocidade de rotação, da mesma forma que a velocidade de rotação aumenta quando um patinador no gelo que está girando encolhe os braços e uma perna. Entretanto, a maioria dos trapezistas não consegue se encolher o suficiente para alcançar a velocidade de rotação necessária para um quádruplo mortal. Para satisfazer a segunda exigência, o trapezista tem que observar o ambiente para saber quantas vezes girou e interromper o movimento de rotação no momento certo para ser apanhado. Entretanto, a velocidade de rotação para um quádruplo mortal (e, portanto, também para um quádruplo e meio mortal) é tão grande que fica difícil para o trapezista avaliar corretamente sua posição. É por isso que o salto é tão difícil de executar.

1.99 • A queda da torrada Uma fatia de torrada repousa com o lado da manteiga para cima na borda de uma mesa de cozinha quando alguém esbarra na mesa, derrubando a torrada no chão. Existe algum fundo de verdade na idéia de que a torrada sempre cai com o lado da manteiga para baixo? (Este fenômeno é freqüentemente citado como um exemplo da lei de Murphy, segundo a qual, se alguma coisa pode dar errado, dará.)

Resposta Se a torrada cai da mesa por causa de um leve toque (e não de uma pancada forte), o lado que atinge o chão pode ser previsto se conhecermos três grandezas: a altura da mesa, o atrito entre a torrada e a borda da mesa, e a projeção horizontal da torrada (a distância entre o centro de massa da torrada e a borda da mesa no instante inicial da queda). Quando alguém esbarra na mesa, o centro de massa da torrada passa da borda da mesa e a torrada começa a girar em torno da borda. A torrada também desliza ao longo da borda. Tanto a rotação quanto o deslizamento afetam a velocidade de rotação da torrada durante a queda. Se a velocidade for suficiente para fazer a torrada girar de 90° a 270° durante a queda, a torrada chega ao chão com o lado da manteiga para baixo. Para uma altura de mesa e atrito típicos e uma fatia de torrada comum, pequenos valores de projeção e grandes valores de projeção fazem com que a torrada caia com o lado da manteiga para baixo, enquanto valores intermediários de projeção fazem com que a torrada caia com o lado da manteiga para cima. Você pode confirmar esta observação fazendo seus próprios experimentos.

1.100 • Balé A graça e a beleza do balé devem-se, em parte, à participação sutil das leis da física. Se a bailarina for talentosa, você não irá reparar na física. Em vez disso, verá movimentos que parecem estranhamente errados, como se desafiassem alguma lei da física, sem que você seja capaz de dizer exatamente o que há de errado com eles. Eis alguns exemplos: Em um tour jeté, a bailarina salta sem nenhum giro aparente e, de alguma maneira, inicia uma rotação em pleno ar. (A bailarina não executa os movimentos de astronauta que foram descritos em um item anterior: provavelmente não seriam considerados graciosos e, além disso, poderiam levar tempo demais.) Pouco antes de completar o salto, a bailarina pára de girar. O fouetté turn é uma série contínua de piruetas nas quais a bailarina gira em torno de um pé enquanto alternadamente estica e encolhe a perna oposta. Um dos exemplos mais difíceis de fouetté no balé clássico acontece no terceiro ato do Lago dos Cisnes, quando o Cisne Negro tem que executar 32 piruetas. Como a bailarina consegue girar nesses dois exemplos?

Resposta Em um tour jeté, a ilusão de que a rotação começa e termina em pleno ar deve-se à maneira como a

bailarina encolhe e estica os braços e as pernas durante o salto. Esses movimentos alteram seu momento de inércia, que depende da massa da bailarina e do modo como está distribuída em relação ao eixo de rotação. O momento angular da bailarina é o produto do momento de inércia pela velocidade de rotação. Durante um salto, a bailarina não pode mudar seu momento angular. Ela começa o salto com os braços e uma perna esticados e com uma pequena velocidade de rotação, pequena demais para que o público perceba. Uma vez no ar, flexiona graciosamente os braços e uma perna para reduzir o momento de inércia. Como o momento angular não pode mudar, a velocidade de rotação aumenta, o que é logo percebido pelo público, que conclui que a rotação foi iniciada magicamente depois que a bailarina iniciou o salto. Quando a bailarina se prepara para aterrissar, estica novamente os braços e uma perna e o momento de inércia volta ao valor inicial. A velocidade de rotação volta a ser pequena demais para ser percebida pelo público, que tem a impressão de que a bailarina eliminou a rotação em pleno ar. Em um fouetté turn, a bailarina toma impulso no chão para iniciar a rotação e fica na ponta de um dos pés. Em seguida, aproxima a outra perna do corpo para aumentar a velocidade de rotação. Quando ela vira de frente para o público, estica a perna livre para que absorva gradualmente o momento angular do resto do corpo e, por um momento, a perna continua a girar enquanto o resto do corpo reduz a velocidade. A pausa lhe permite pousar momentaneamente todo o pé no chão e dar um novo impulso para executar outra pirueta.

1.101 • Esquiação Existem vários modos de fazer uma curva quando você está descendo uma encosta de esqui, mas o que, exatamente, possibilita que você mude de direção? Na curva austríaca, você abaixa o corpo e em seguida o levanta rapidamente enquanto faz girar a parte superior no sentido contrário ao da curva desejada. Outra técnica exige que você mantenha os esquis retos na neve enquanto desloca o peso para a frente ou para trás. O lado para o qual você vira depende da inclinação da encosta. O caminho diretamente encosta abaixo é a linha de queda. Se você se colocar à esquerda da linha de queda e deslocar o peso para a frente, fará uma curva no sentido horário quando vista de cima. Um deslocamento do peso para trás produz uma curva para o lado oposto. Os resultados serão invertidos se você estiver à direita da linha de queda. Também é possível fazer uma curva virando os esquis de tal forma que a borda voltada encosta acima corte a neve. Assim, por exemplo, se você deslocar o peso para a frente, virando os esquis enquanto esquia à esquerda da linha de queda, fará uma curva no sentido anti-horário. Repare que, nesse caso, a curva é no sentido oposto ao do caso anterior, em que os esquis eram mantidos retos. Por que a borda externa de um esqui de corrida é arqueada da frente para trás? Por que alguns esquiadores preferem usar esquis compridos em vez de esquis curtos? Quando uma pessoa esquia ao longo da linha de queda, por que deve se inclinar para a frente, fazendo com que seu corpo fique perpendicular à encosta? Por que, nesse caso, você vai cair se insistir em permanecer na vertical? Um modo inovador de fazer curvas usando esquis foi inventado em 1971 por Derek Swinson, da University of New Mexico. Em vez de bastões de esquiação, Swinson usou uma roda de bicicleta que girava rapidamente, segurando-a por um eixo com as duas mãos. O plano da roda foi mantido na vertical e a parte superior da roda girava para longe dele. Quando queria fazer uma curva para a direita, abaixava a mão direita e levantava a mão esquerda. Para virar para a esquerda, fazia o movimento contrário. Por que esse método funciona?

Resposta A curva austríaca se parece com as rotações discutidas nos itens anteriores. Ao levantar o corpo rapidamente, você reduz o contato entre os esquis e a neve, reduzindo ou eliminando momentaneamente o atrito dos esquis. Seu momento angular nesse momento é nulo e, uma vez que o atrito deixa de atuar, não pode produzir um torque em você e o momento angular não pode mudar. Assim, se você fizer girar a parte superior do corpo para a esquerda, a parte inferior do corpo e os esquis terão que girar para a direita. Quando seu peso volta a ser sentido pelos esquis e o atrito retorna, o atrito lhe permite girar a parte superior do corpo para a nova orientação. Para entender como funcionam as outras técnicas de fazer curvas, considere o caso em que você se coloca à esquerda da linha de queda e suponha que sua postura normal coloque o seu peso sobre o centro do esqui. Suponha também que o atrito no esqui seja uniformemente distribuído ao longo do seu comprimento. O atrito na parte dianteira do esqui está dirigido parcialmente encosta acima e cria um torque que tenta fazê-lo girar para a esquerda em torno do centro de massa (Fig. 1-36a). O atrito na parte de trás resiste a esse movimento com um torque que tenta fazê-lo girar para a direita. Nos dois casos, o valor do torque depende do valor do atrito e também da maneira como está distribuído em relação ao seu centro de massa. O atrito em

um ponto distante do centro de massa cria um torque maior que o atrito em um ponto próximo. Se o valor e a distribuição do atrito nas partes dianteira e traseira do esqui se compensam exatamente, o movimento é retilíneo.

Figura 1-36 / Item 1.101 Forças no esqui (a) na postura normal, (b) com o corpo para a frente e (c) com o corpo para trás.

Se você desloca o seu centro de massa para a frente, o equilíbrio dos torques é rompido (Fig. 1-36b). Existe agora mais esqui atrás do centro de massa e menos na frente, de modo que o atrito total atrás é maior que o atrito total na frente. Além disso, o atrito em muitos dos pontos da parte de trás está agora mais longe do centro de massa, enquanto a maior parte do atrito na parte da frente está mais próximo. Nesse caso, o torque da parte de trás vence e você faz uma curva para a direita. Se você virar o esqui enquanto se desloca para a frente, o corte na neve aumenta o valor do atrito na frente e o reduz na parte de trás (Fig. 1-36c). Nesse caso, o torque da frente ganha e você vira para a esquerda. A borda de um esqui de corrida é levemente arqueada para possibilitar que o esquiador faça curvas com mais facilidade. Quando você afunda a borda na neve, o esqui encontra a menor resistência deslizando ao longo de um caminho que é uma

continuação da curva. Esquis curtos vibram com tanta facilidade em contato com um terreno irregular que podem fazer o esquiador perder o equilíbrio. Embora sejam mais difíceis de manobrar, os esquis longos vibram menos. Para perceber por que você tem que se inclinar para a frente enquanto desce de esqui pela linha de queda, imagine que seu peso seja representado por um vetor que passe pelo centro de massa. O vetor pode ser considerado a soma de duas componentes. Uma componente é paralela à encosta e é responsável pelo seu movimento, e a segunda é perpendicular à encosta. Para que o seu equilíbrio seja estável, é preciso que a segunda componente passe pelos seus pés. Se você insistir em se manter na vertical, a segunda componente irá criar um torque em torno de seus pés, fazendo-o girar para trás, em direção à neve. Na demonstração de Swinson, suponha que o atrito nos esquis possa ser desprezado. Nesse caso, ele e a roda não estão submetidos a nenhum torque externo. Imagine que você esteja observando o esquiador de cima. Como a roda inicialmente gira em torno de um eixo horizontal, não existe rotação nem da roda nem de Swinson em torno da sua linha de visão. Isto quer dizer que não existe momento angular na roda nem em Swinson em torno da vertical, situação que não pode mudar por causa da ausência de torques externos. Se Swinson abaixa o lado direito do eixo e levanta o lado esquerdo, você vê a roda girar no sentido anti-horário, o que significa que ela agora possui um momento angular em relação a um eixo vertical. Para que o momento angular total permaneça nulo, Swinson tem que girar no sentido horário. Assim, a manobra produz uma curva para a direita.

1.102 • Abandonado no gelo Você acorda e descobre que o deixaram no meio de um grande lago coberto de gelo, tão escorregadio que você não consegue andar nem engatinhar. Como vai escapar? Imagine que você tenha sido deixado deitado de bruços no gelo. Analisando a situação, você conclui que precisa virar o corpo para não morrer de frio. O que você deve fazer para se virar?

Resposta Jogue um sapato ou qualquer outro objeto em uma direção; você vai se mover (ainda que lentamente) na direção oposta. Uma vez que o gelo não exerce força sobre você, o momento total não pode variar. Ao fornecer momento ao objeto, você também fornece a mesma quantidade de momento ao seu corpo na direção oposta. Uma coisa parecida acontece quando alguém tenta jogar uma bola de boliche enquanto anda de patins. Eu fiz esta experiência. Embora os patins tenham começado a se mover para trás, meu tronco não acompanhou o movimento e tive que me apoiar na pessoa mais próxima para não cair de cara no chão. Para rolar em uma superfície escorregadia, estique o braço e bata com força na superfície. Mesmo que não haja atrito entre a sua mão e a superfície, sua mão sofre uma força vertical para cima que lhe possibilita girar o corpo até ficar de barriga para cima.

CURIOSIDADE 1.103 • A ordem das rotações é importante Se você andar 3 metros para o norte, 3 metros para o leste e 3 metros para o sul, terminará no mesmo local, qualquer que seja a ordem em que essas três pequenas caminhadas foram executadas. Nas rotações, isto nem sempre acontece. Baixe o braço direito, com a palma voltada para a coxa. Mantendo o pulso firme, (1) levante o braço até que ele fique horizontal e para a frente, (2) mova-o horizontalmente até que aponte para a direita e (3) baixe o braço até o lado do corpo. Sua palma estará voltada para a frente. Se você repetir os movimentos na ordem inversa, sua palma terminará voltada para onde?

1.104 • Idiossincrasias dos piões Por que um pião não tomba quando está girando, mesmo quando se inclina apreciavelmente em relação à vertical? Por que alguns piões inicialmente dormem (ou seja, permanecem na vertical), enquanto outros entram em precessão (o eixo de rotação do pião começa a girar em torno de um eixo vertical, como na Fig. 1-37a)? Por que a precessão muitas vezes envolve nutação, uma inclinação para cima e para baixo do eixo de rotação do pião? Existem tipos diferentes de nutação? Por que alguns piões em rotação param rapidamente enquanto outros passam mais tempo girando?

Resposta Em geral, quando uma força atua sobre um objeto, o objeto se move na direção da força. Se o objeto está girando, porém, a força pode fazê-lo se movimentar perpendicularmente à direção da força. Esse movimento parece estranho, e esta é uma razão pela qual os piões são tão fascinantes. Mesmo uma criança que não sabe nada a respeito

das leis da física tem a impressão de que um pião inclinado deveria simplesmente tombar e não realizar um movimento de precessão.

Figura 1-37 / Item 1.104 (a) Precessão de um pião em torno de um eixo vertical passando pelo ponto de contato. (b) O vetor momento angular do pião gira em torno da vertical. (c) Nutação durante a precessão.

A explicação tradicional da precessão envolve o momento angular do pião. Esta grandeza depende da velocidade de rotação do pião. Além disso, é uma grandeza vetorial que aponta ao longo do eixo de rotação. Considere a posição instantânea de um pião inclinado que gira rapidamente no sentido anti-horário quando visto de cima. Na Fig. 1-37b, o momento angular do pião é representado por um vetor que aponta para cima ao longo do eixo de rotação. Como a força da gravidade exerce no pião uma força para baixo, cria um torque sobre o pião que tende a fazê-lo girar em torno do ponto de apoio e, portanto, a fazê-lo tombar. De fato, se o pião não estivesse girando, tombaria. Entretanto, como o pião está girando e já possui um momento angular, o torque simplesmente altera a orientação desse momento angular, fazendo o vetor girar em torno de sua própria cauda de tal modo que sua ponta descreve um cone no espaço. Como o momento angular coincide com o eixo de rotação do pião, o eixo de rotação também descreve um cone. Depois que um pião é lançado, pode se inclinar, o que faz com que seu centro de massa desça um pouco. Duas regras têm que ser respeitadas: tanto o momento angular em relação a um eixo vertical quanto a energia total têm que permanecer constantes. Quando o eixo de rotação do pião se inclina, desviando-se da vertical, a precessão tem que ser suficientemente rápida para manter constante o momento angular em torno de um eixo vertical. A energia cinética necessária para a precessão é resultante da descida do centro de massa do pião e a conseqüente redução da energia potencial.

Como o pião não pode continuar a tombar indefinidamente e ainda assim obedecer às duas regras, o centro de massa acaba por chegar a um ponto mínimo. A partir desse ponto, começa a subir de novo e a precessão se torna mais lenta. As oscilações para cima e para baixo entre os pontos extremos permitidos pelas regras recebem o nome de nutação e se sobrepõem à precessão. Existem três tipos de nutação, caracterizados pelo que faz o centro de massa no ponto mais elevado. O pião pode interromper momentaneamente a precessão, continuar a se mover no mesmo sentido, como faz ao atingir o ponto inferior, ou se mover por um breve período no sentido oposto (Fig. 1-37c). O que acontece depende da precessão conferida ao pião no instante do lançamento, que pode ter o mesmo sentido que a precessão gerada pela gravidade, o sentido contrário, ou simplesmente não existir. Se você lançar um pião com uma velocidade de rotação suficiente, ele permanecerá por algum tempo na vertical sem precessão nem nutação. Entretanto, quando a resistência do ar e o atrito no ponto de apoio fizerem a energia diminuir, a velocidade de rotação cairá abaixo de um certo valor crítico e o pião começará a tombar, entrar em precessão e entrar em nutação. Com uma perda de energia ainda maior, o pião se inclina mais, a precessão fica mais rápida e a nutação mais intensa, até que ele finalmente bate no chão. Um dorminhoco é um pião com um formato que lhe permite girar acima do valor crítico durante um tempo suficiente para que o atrito no ponto de apoio o faça voltar a assumir a posição vertical. Um pião desse tipo em geral é largo e tem a ponta rombuda, mas a superfície em que ele está girando também é importante. O atrito acontece porque a ponta escorrega enquanto descreve um círculo no chão devido à precessão.

CURIOSIDADE 1.105 • Mala empacada Robert Wood, famoso médico do Johns Hopkins, supostamente pregou uma peça em um inocente porteiro de hotel. Segundo a história, Wood pôs para girar um grande volante e o colocou em uma mala antes que o porteiro chegasse. Quando o porteiro caminhou com a mala ao longo de um corredor reto, reparou apenas no peso. Quando tentou dobrar uma esquina, porém, a mala misteriosamente se recusou a virar. De acordo com os relatos, o porteiro ficou tão assustado que largou a mala “possuída” e saiu correndo.

1.106 • Piões invertidos Um tipo peculiar de pião, chamado pião invertido ou tippe top, consiste em parte de uma esfera com uma haste substituindo a parte que falta. Você faz o pião girar torcendo a haste entre o polegar e o indicador e solta-o com o lado esférico (e mais pesado) para baixo. Havendo atrito suficiente entre o pião e o chão, o pião vira de cabeça para baixo e depois passa a girar apoiado na haste. Em relação a você o sentido de rotação não muda, mas em relação ao pião ele se inverte. Você pode ver o mesmo tipo de inversão ao fazer girar uma bola de futebol americano, um ovo cozido ou o tipo de anel de formatura que tem uma pedra lisa. Nesses casos, por que o centro de massa do objeto se move para cima, contra a força da gravidade?

Resposta Não existe explicação simples para o pião invertido, apenas explicações baseadas em complicadas expressões matemáticas. Entretanto, o elemento-chave é o atrito na parte do pião em contato com o solo. De alguma maneira o atrito cria um torque que faz o pião virar de cabeça para baixo, mas os detalhes do processo são difíceis de entender. Eis uma possibilidade simples: o atrito aumenta a precessão (veja anteriormente), o que faz o centro de massa se mover para cima, como acontece com outros tipos de piões.

1.107 • Ovos giratórios Para saber se um ovo está cru ou cozido sem quebrá-lo, basta fazê-lo girar em torno do eixo menor. O ovo cru gira com dificuldade, enquanto o ovo cozido gira com facilidade. Se você fizer girar um ovo cozido com velocidade suficiente, ele ficará de pé. Se você toca por um breve instante a parte central superior de um ovo fresco que está girando de lado, a rotação recomeça depois do toque, mas, com um ovo cozido, o toque elimina qualquer movimento posterior. Será que você consegue explicar esses comportamentos?

Resposta A diferença entre os dois tipos de ovo é, naturalmente, que um está cheio de um fluido que se move de um lado para outro, enquanto o outro é um corpo rígido. O movimento do fluido prejudica a rotação do ovo cru e reinicia a rotação quando você o toca por um breve instante, impedindo-o de girar. Quando o ovo cozido está girando muito

depressa, ele se comporta como um pião invertido (veja o item anterior) e fica de pé.

1.108 • Diabolôs O diabolô é um brinquedo tradicional que consiste em um carretel com extremidades cônicas que se unem em uma cintura estreita (Fig. 1-38). Ele é posto para girar por meio de uma corda com cabos nas pontas que passa por baixo da cintura. Você começa com o brinquedo no chão e (se for destro) com a mão direita baixada e a mão esquerda levantada. Em seguida, estica a corda, levantando a mão direita rapidamente e deixando a corda arrastar a mão esquerda para baixo. O atrito entre a corda e a cintura faz o diabolô girar. Você aumenta a velocidade afrouxando um pouco a corda, permitindo que o diabolô desça, reposicionando as mãos e repetindo o procedimento. Se a velocidade for suficiente, o diabolô irá girar na corda de forma estável. Levantando rapidamente as duas mãos, você consegue até lançar o diabolô no ar e apanhá-lo de novo na corda quando ele desce. Por que a rotação estabiliza o diabolô? (Sem ela, o brinquedo simplesmente cai da corda.) Se ele começa a se inclinar, o que se faz para estabilizá-lo? Por exemplo: se uma das extremidades começa a baixar, como é possível fazê-la subir de novo? Como se faz para virar o diabolô para a esquerda ou para a direita? (Procure na Internet a palavra “diabolô” e visite sites que demonstram truques de diabolô.)

Resposta Se você pegar o diabolô com a corda sem fazêlo girar, ele provavelmente não se manterá equilibrado na corda e cairá. Se, em vez disso, você fizer o diabolô girar rapidamente, você dará a ele momento angular, que estabiliza sua posição. O momento angular é um vetor que coincide com o eixo principal do brinquedo. Com o lançamento descrito no início deste item, um vetor fica na horizontal e aponta na sua direção. Um diabolô em rotação é estável porque apenas um torque é capaz de alterar a direção de seu momento angular. Se o diabolô estiver equilibrado na corda, o centro do diabolô estará logo acima da corda e a atração da gravidade sobre o diabolô passará pela corda e não exercerá torque algum em relação à corda; assim, o momento angular não pode variar. Se o diabolô está quase em equilíbrio, a atração da gravidade sobre o lado mais pesado cria um pequeno torque e fornece ao diabolô um pequeno vetor adicional de momento angular que aponta para a esquerda ou para a direita. Em conseqüência, o diabolô não tomba por causa da gravidade, mas sofre uma precessão para a esquerda ou para a direita; ou seja, seu eixo central gira para a esquerda ou para a direita. (O atrito da corda também cria um torque, mas se a corda estiver centralizada ou quase centralizada, esse torque só reduz a rotação gradualmente.) Se uma das extremidades começa a descer, você pode usar a corda para criar um torque que a faça subir de novo. Puxe a corda com a mão direita em sua direção e contra o lado direito do diabolô. A pressão contra o lado produz um torque para baixo, que leva o vetor momento angular do brinquedo de volta para a horizontal. Para fazer o diabolô virar para a direita, afaste as mãos e aproxime-as do corpo. Ou a corda exerce um puxão na parte de baixo do diabolô ou ela escorrega na sua direção, o que torna a extremidade distante do diabolô mais pesada que a extremidade próxima. Se a corda não escorregar, a pressão no lado de baixo cria um torque que vira o diabolô. Se escorregar, o torque causado pela gravidade no lado mais pesado faz o diabolô virar.

Figura 1-38 / Item 1.108 Vista superior de um diabolô girando.

1.109 • Pedras celtas Uma pedra celta é um tipo curioso de pião que tem uma superfície inferior elipsoidal oblíqua. As que são vendidas como brinquedo insistem em girar em apenas um sentido. Se você tenta fazê-la girar no outro sentido, ela pára, balança para cima e para baixo e passa a girar no sentido preferido. Alguns seixos se comportam da mesma maneira, mas você pode encontrar um tipo raro que inverte a rotação várias vezes antes que sua energia se esgote. Por que uma pedra celta inverte o sentido de rotação?

Resposta O comportamento da pedra celta é difícil de explicar em detalhes, mas a mudança do sentido de rotação deve-se ao fato de que sua superfície inferior é um elipsóide desalinhado com a forma geral da pedra. Em outras palavras, os eixos maior e menor do elipsóide não estão alinhados com o comprimento e a largura da pedra. Quando se faz a pedra girar em torno da vertical no sentido “errado”, o desalinhamento torna a rotação instável e a pedra começa a balançar. O atrito da pedra com a superfície sobre a qual ela está girando transfere a energia da rotação para a oscilação. Quando a transferência está quase completa, o atrito inverte a transferência, mas dessa vez a pedra passa a girar no sentido contrário. No caso de algumas pedras celtas, a rotação no sentido “correto” também é instável, caso em que a oscilação volta a aparecer e o sentido de rotação se inverte novamente.

1.110 • Moedas e garrafas que balançam Ponha uma moeda para girar em cima de uma mesa com um peteleco e fique atento ao movimento e ao som que a moeda produz. Quando a moeda começa a tombar, o som produzido fica, de início, mais grave e depois fica mais agudo. Será que a moeda simplesmente passou a girar mais depressa? Não; se você olhá-la de cima, verá que os lados estão inicialmente borrados pelo movimento e mais tarde se tornam suficientemente nítidos para serem reconhecidos. Equilibre uma garrafa em uma borda e faça-a girar com as mãos. Enquanto gira, ela se aproxima aos poucos da vertical e o ruído fica mais agudo. Você também pode girar uma garrafa que está quase deitada, mas é mais difícil iniciar o movimento. Se você consegue, a garrafa tende a girar cada vez mais próximo da horizontal, mas, ao contrário do que acontece com a moeda, o ruído se torna mais grave até a garrafa parar. Será que você consegue explicar esses comportamentos?

Resposta A moeda gira em torno de seu eixo central, mas o eixo também gira em torno da vertical, movimento conhecido como precessão. A precessão vem de um torque criado pelo peso da moeda, que atua sobre o centro de massa. Como o atrito e a resistência do ar a fazem perder energia, a moeda começa a tombar e também a girar mais

devagar em torno do eixo central, o que facilita a visualização dos seus lados. Inicialmente, a perda de energia reduz a velocidade de precessão, mas em seguida a descida do centro de massa começa a converter energia potencial em energia cinética, que contribui para a precessão. O tilintar que você ouve é causado pela precessão, que faz a borda da moeda bater na superfície da mesa. O som se torna mais agudo quando a velocidade de precessão aumenta. Quando a garrafa é posta para girar com uma orientação próxima da vertical, ela também entra em precessão. Quando o eixo central se aproxima gradualmente da vertical, o centro de massa desce e a energia potencial se transforma em energia cinética, que contribui para a precessão, fazendo o som se tornar mais agudo. Quando a garrafa é posta para girar quase na horizontal, a precessão diminui continuamente até alcançar um valor final muito pequeno. Em seguida, a garrafa assume a posição horizontal e começa a rolar.

1.111 • Judô, aiquidô e luta greco-romana No caratê, muitas vezes é preciso vigor físico e o uso de golpes potentes, mas no judô, no aiquidô e na luta greco-romana costumam ser empregadas técnicas através das quais você faz o adversário perder o equilíbrio e cair no chão. A mais comum é a projeção de quadril no judô: você de algum modo faz o adversário rodar por cima de seu quadril para derrubá-lo no tatame. Você talvez fique surpreso ao saber que, a menos que você leve em consideração as leis da física, a técnica provavelmente vai falhar, sobretudo se o seu adversário for maior e mais forte que você. Como se faz para executar apropriadamente uma projeção de quadril? Considere também o seguinte exemplo do aiquidô. O adversário agarra você pelas costas, com os braços em volta dos seus e as mãos segurando-o firmemente pelos pulsos. Como você faz para jogá-lo no tatame? O aiquidô envolve lutas com bastões, nas quais pode acontecer o seguinte: o adversário investe contra você com a ponta de um longo bastão. O adversário está perto demais de você para que você agarre o bastão e puxe-o para a frente ainda mais; além disso, este plano iria colocar força contra força. Será que existe uma forma melhor de derrubar o adversário?

Resposta Para executar uma projeção de quadril, espere que o adversário dê um passo adiante com o pé direito, e coloque o seu pé direito entre os pés dele, dê um puxão para baixo e para a direita no quimono dele, para fazer com que o corpo dele se curve para a frente, deslocando o centro de massa para fora, para as proximidades do umbigo, e, simultaneamente, vire o corpo para a esquerda e leve os quadris para cima, aproximando-os do corpo do adversário. O centro de massa do adversário está nesse momento aproximadamente no seu quadril direito (Fig. 1-39a). Puxando o ombro direito do seu quimono, você consegue facilmente fazê-lo girar em torno do seu quadril direito e derrubá-lo no tatame. Um elemento fundamental é fazê-lo curvar o corpo no movimento inicial. Se você não fizer isso, o centro de massa dele continuará no interior do corpo (Fig. 1-39b). Se você em seguida girar o corpo e tentar fazê-lo passar por cima do seu quadril, terá que lutar contra o peso dele, que cria um torque contrário ao seu e, portanto, contrário à sua tentativa. Nesse caso, você terá que fazer muita força, pois será preciso literalmente levantá-lo do chão; se ele for pesado, você provavelmente não vai conseguir.

Figura 1-39 / Item 1.111 Uma projeção de quadril no judô (a) executada corretamente e (b) executada incorretamente.

Na primeira pergunta sobre aiquidô, você deve levar as mãos vigorosamente em direção ao peito (para prender os braços do adversário) enquanto desliza o pé direito para a frente, inclinando-se para baixo e rodando o corpo para a direita. Ao fazê-lo, você faz com que o adversário se encurve e desloca o centro de massa dele para um ponto de rotação nas suas costas. Nesse caso, ele não consegue evitar ser jogado por cima de você sobre o tatame.

A arte de lutar com bastões é muito difícil e minha resposta aqui é extremamente resumida. Quando seu adversário investe contra você, você deve dar um passo à direita do bastão, virando o corpo de modo que sua mão esquerda possa agarrar a extremidade do bastão e sua mão direita possa agarrar a parte que está entre as mãos do adversário. Em seguida, empurre o bastão para cima e para trás, por cima da cabeça do adversário, fazendo com que ele caia para trás. É importante que você aplique o golpe enquanto o bastão está sendo movimentado para a frente, porque nesse momento seu adversário adquiriu um momento para a frente e não consegue evitar que você desvie o bastão para cima.

1.112 • Rotação dos projéteis e passes longos Por que um rifle possui raias (sulcos helicoidais ao longo da face interna do cano) que fazem a bala girar? Quando o disparo é longo e em curva, o que faz a bala embicar, acertando o alvo de frente? No futebol americano, por que o lançador (quarterback) tem que imprimir uma forte rotação à bola para que ela voe em linha reta e caia de repente na parte final da trajetória? Este procedimento não apenas faz a bola ir mais longe, mas também facilita a captura da bola pelo recebedor (receiver). Um chutador (punter) chuta a bola com um pouco de efeito para obter a mesma trajetória curva, mas por que ele faz isso? Ele não está tornando a bola mais fácil de apanhar por um jogador da equipe adversária?

Resposta Se a bala ou a bola de futebol americano arremessada ou chutada recebe uma rotação suficiente em torno do eixo maior, comporta-se como um giroscópio, pois tende a manter a orientação em vez de balançar, o que iria desestabilizar e, portanto, encurtar o trajeto. Enquanto percorre a trajetória, que é curva por causa da atração da gravidade, ela encontra resistência do ar na parte inferior. Podemos imaginar que a resistência do ar atua sobre um ponto um pouco à frente do centro do objeto. Se a velocidade de rotação for suficiente, o objeto se comportará como um pião e tentará se alinhar com a força a que está submetido, ou seja, a resistência do ar. Assim, no final da trajetória ele estará apontando para baixo. Alguns lançadores não conseguem fazer um arremesso perfeito porque não são capazes de fazer a bola girar apenas em torno do eixo maior. A rotação adicional em torno do eixo menor produz uma oscilação, que é um exemplo de precessão: o eixo longo em torno do qual a bola está girando passa a rodar em círculos. A rotação e a precessão ocorrem no mesmo sentido (o sentido horário, se o lançador for destro) e a velocidade de precessão é cerca de da velocidade de rotação. Se o lançador faz a bola girar corretamente ao arremessá-la, não só ela atinge uma distância maior por causa da orientação favorável, mas também o recebedor pode estimar com maior precisão o local em que a bola vai cair. Quando um chutador coloca efeito em uma bola, geralmente o objetivo é fazer a bola chegar mais longe, mas uma intenção secundária é manter a bola no ar por um tempo suficiente para que os companheiros de equipe do chutador se aproximem antes que a bola desça. O tempo que a bola passa no ar é o chamado tempo de vôo. Quando a bola é chutada sem efeito ou posta a girar de maneira errática, a resistência do ar remove mais rapidamente a energia cinética e o tempo de vôo diminui. Quando uma bala é disparada na vertical, às vezes mantém a estabilidade durante o vôo, voltando ao solo com a base para baixo. Nesse caso, provavelmente não teria força suficiente para matar, mas poderia causar algum tipo de ferimento. Se a bala girar descontroladamente durante a queda, sua velocidade na descida será muito menor do que na subida e a probabilidade de causar ferimentos será muito menor. Mesmo assim, se alguém perto de você começar a dar tiros para o alto, é melhor se esconder em vez de ficar parado apreciando a cena.

1.113 • Movimento de um balanço Como é que se faz para bombear um balanço, fazendo-o chegar mais alto? Se o balanço está inicialmente parado, como você consegue colocá-lo em movimento sem tomar impulso no chão ou pedir para alguém empurrá-lo?

Resposta Um dos métodos consiste em ficar de pé no balanço e bombeá-lo agachando-se nos pontos mais altos do arco e esticando o corpo no ponto mais baixo. Ao ficar de pé, você aumenta sua velocidade. É possível explicar o aumento por argumentos tanto de energia quanto de momento angular. Ao ficar de pé, você levanta o centro de massa e realiza trabalho contra a força centrífuga. O trabalho é transformado em energia cinética e aumenta sua velocidade. Ficando de pé, você também desloca o centro de massa em direção ao centro de rotação. A ação se parece com a de um patinador no gelo que flexiona os braços enquanto está girando: como o momento angular não pode variar, a velocidade de rotação tem que aumentar. Em um balanço, a velocidade de rotação também aumenta. Os dois raciocínios levam à conclusão de que a maior velocidade no ponto baixo da trajetória faz aumentar a altura do arco. Embora a altura do seu corpo influencie a rapidez com que você transfere energia para o balanço, sua massa é irrelevante. Você também pode bombear um balanço puxando as cordas ao balançar para a frente e empurrando-as ao balançar para trás. A distorção que você cria nas cordas produz forças nas mãos que impulsionam você para a frente ao puxar e para trás ao empurrar. Um modo de colocar o balanço em movimento é ficar de pé ou sentado na posição ereta, com as mãos nas cordas e os braços dobrados, e deixar o corpo cair para trás até que os braços fiquem totalmente estendidos. Seu centro de massa gira em torno do assento do balanço enquanto o assento gira em torno da barra que sustenta o balanço. Sua breve queda fornece a energia cinética e o momento angular para o movimento.

1.114 • Movimento de um turíbulo Nos últimos 700 anos, cerimônias na catedral de Santiago de Compostela, no noroeste da Espanha, foram marcadas pela oscilação dramática de um grande turíbulo que pende a cerca de 20 metros de seu apoio. O turíbulo, que pesa mais ou menos tanto quanto um homem magro, é sustentado por uma corda que se enrola em torno de um apoio e estende para baixo até o nível do chão, onde é controlado por uma equipe de voluntários (Fig. 1-40).

Depois que alguém inicia o movimento pendular com um puxão, a equipe bombeia as oscilações puxando a corda com força quando o turíbulo passa pelo ponto mais baixo e soltando a corda quando ele chega ao ponto mais alto. O puxão reduz o comprimento do pêndulo em cerca de três metros e a redução da tensão na corda restaura o comprimento. Depois de 17 puxões, o que leva menos de dois minutos, a oscilação do turíbulo chega a quase 90° e o turíbulo se aproxima do teto. A passagem rápida pelo ponto mais baixo atiça as brasas e o incenso que queimam em seu interior Por que a ação sincronizada da equipe fornece energia ao pêndulo?

Resposta A energia é fornecida ao turíbulo pela mesma mecânica que envolve o procedimento de abaixar e levantar do item anterior. Quando os membros da equipe reduzem o comprimento do pêndulo, o turíbulo está se movendo rapidamente ao passar pelo ponto mais baixo de seu arco circular e eles têm que puxar com muita força. Assim, realizam uma grande quantidade de trabalho sobre o turíbulo para reduzir o comprimento do pêndulo, e esse trabalho é convertido em energia cinética do turíbulo. Quando a equipe relaxa a tensão da corda no ponto mais alto do movimento, o turíbulo está se movendo devagar ou está momentaneamente parado.

Figura 1-40 / Item 1.114 Bombeando um turíbulo.

1.115 • O pêndulo no poço No conto “O Poço e o Pêndulo”, obra-prima de terror de Edgar Allan Poe, um prisioneiro está acorrentado ao chão abaixo de um pêndulo situado a uma altura de 9 a 12 m. Inicialmente, o pêndulo parece estar parado, mas quando o prisioneiro olha para cima de novo, descobre que está descrevendo um arco com um metro de extensão e parece ter descido ligeiramente. Para seu horror, descobre que a parte inferior é um “crescente feito de aço reluzente, [...] a borda inferior era afiada como uma navalha...”. Enquanto passam as horas, o movimento do pêndulo torna-se hipnótico: a lâmina desce gradualmente e a amplitude da oscilação aumenta, tornando-se “nove metros ou mais”. Seu propósito fica claro: penetrar diretamente no coração do prisioneiro. “Descia... cada vez descia mais a lâmina. Eu sentia um prazer frenético ao comparar sua velocidade para baixo com sua velocidade lateral. Direita... esquerda... num amplo oscilar... com o grito agudo de uma alma penada! [...] Sempre para baixo... certa e inevitavelmente!” Suponha que a lâmina esteja suspensa por uma corda que é solta aos poucos. Por que a amplitude da oscilação aumentaria com a descida da lâmina?

Resposta A amplitude da oscilação aumenta porque, à medida que a lâmina desce, sua energia potencial é convertida gradualmente em energia cinética. Entretanto, os cálculos revelam que, para a altura e amplitude iniciais descritas por Poe, a lâmina provavelmente não oscilaria para a esquerda e para a direita mais do que 3 m ao chegar ao prisioneiro, não os 9 m ou mais mencionados na narrativa. (O erro matemático dificilmente serviria de consolo para o prisioneiro desse conto de Poe.)

1.116 • Pêndulos invertidos; monociclistas

Se um pêndulo comum for invertido, ele fica, naturalmente, instável e vai tombar facilmente. Entretanto, se o seu apoio oscila rapidamente na vertical e houver um pouco de atrito entre o pêndulo e o apoio, por que o pêndulo permanece de pé? Ele fica tão estável que se alguém o empurrar levemente para o lado, ele volta rapidamente a ficar de pé. Se, em vez disso, o apoio do pêndulo oscila rapidamente na horizontal, o pêndulo oscila em torno da vertical de cabeça para baixo, como se a gravidade tivesse mudado de sentido. Um monociclista usa uma técnica parecida. Quando o ciclista começa a tombar (para a frente, por exemplo), recupera a estabilidade pedalando para a frente. Quando o ciclista começa a cair para trás, pedala para trás. Será que vários bastões, ligados em série, podem ser postos de pé como uma série de pêndulos invertidos se o bastão de baixo estiver oscilando verticalmente? Será que um fio comprido pode ser posto de pé dessa forma? A maior pergunta de todas, porém, é: será que uma corda pode ficar de pé como no truque indiano, em que uma corda fica de pé sem nenhum apoio na extremidade superior?

Resposta Quando o apoio está oscilando verticalmente, um pêndulo invertido pode se comportar como um pêndulo comum se a aceleração produzida pelas oscilações for maior que a aceleração da gravidade. De certa maneira, o pêndulo não pode tombar, já que ele é periodicamente puxado rapidamente para baixo, o que faz com que a corda se estique. Se o apoio oscila na horizontal com rapidez suficiente, o pêndulo também não tem como cair. Como na estratégia do monociclista para manter o equilíbrio, tão logo o pêndulo começa a tombar para um lado, o apoio é levado para baixo dele nessa direção e a queda é interrompida. Vários bastões ligados em série podem ser postos de pé se o bastão de baixo oscilar na vertical com rapidez suficiente. Um fio longo demais para ficar de pé sozinho (ele entortaria por causa do próprio peso) pode ser posto de pé se estiver oscilando. Entretanto, uma corda não pode ficar de pé porque é flexível demais; o truque indiano da corda continua sendo apenas uma ilusão.

1.117 • Transporte de cargas na cabeça Em algumas culturas, tais como no Quênia, as pessoas (especialmente as mulheres) conseguem transportar cargas enormes na cabeça. Algumas têm músculos fortes no pescoço e grande senso de equilíbrio, mas a característica realmente surpreendente é que o esforço exigido é muito pequeno. Assim, por exemplo, uma mulher pode ser capaz de carregar uma carga de até 20% do seu peso sem ficar ofegante (na verdade, sem qualquer esforço aparente), enquanto uma mulher européia ou americana de saúde e força comparáveis achariam muito difícil transportar uma carga tão grande. Qual é o segredo dessas mulheres?

Resposta Enquanto uma pessoa caminha, o centro de massa se desloca periodicamente para cima e para baixo. O ponto mais elevado acontece quando o corpo está acima de um pé enquanto o outro pé está passando por esse pé, movendo-se para a frente. O ponto mais baixo acontece quando os dois pés estão no chão e o peso do corpo está sendo deslocado do pé de trás para o pé da frente. Esse movimento vertical periódico do centro de massa, com o ponto de apoio periodicamente se movimentando horizontalmente abaixo do centro de massa, é parecido com o movimento de um monociclista que se movimenta para trás e para frente para manter o equilíbrio. Em especial, parte da energia da mulher é convertida periodicamente de energia potencial (relacionada à altura do centro de massa) em energia cinética (a velocidade à qual seu centro de massa se movimenta para a frente). Normalmente, uma pessoa é ineficiente na transferência de energia por cerca de 15 milissegundos após o ponto mais alto ser alcançado. Em outras palavras, quando o centro de massa começa a descer, nem toda a energia potencial é convertida em energia cinética, e os músculos são usados para impulsionar a pessoa para a frente. Uma mulher acostumada a transportar cargas na cabeça, como, por exemplo, uma queniana, caminha de modo normal e um pouco ineficiente quando não está transportando uma carga. Entretanto, ao carregar um fardo, o intervalo de ineficiência logo após o ponto mais elevado ser alcançado é menor. Na verdade, transportar uma carga moderada (20% do peso do corpo) pode exigir o mesmo esforço que não transportar carga alguma, se a carga leva a mulher a transferir energia potencial para energia cinética de modo mais eficiente que o normal. Somente se a carga exceder 20% do peso do corpo é que a mulher tem que gastar mais energia do que quando não está transportando uma carga, mas ainda assim gasta menos energia do que, por exemplo, uma mulher européia que caminha de forma diferente.

1.118 • Transporte de cargas em varas oscilantes Na Ásia, algumas pessoas transportam cargas leves ou moderadas amarrando-as em extremidades opostas de uma vara flexível, como um bambu, por exemplo (Fig. 1-41). Quando a pessoa anda ou corre, a carga e a vara oscilam verticalmente. Será que esse arranjo oferece alguma vantagem no transporte de cargas?

Figura 1-41 / Item 1.118 Cargas pesadas são transportadas em varas que oscilam.

Resposta As oscilações verticais do tronco da pessoa fazem a vara e a carga oscilar verticalmente. Suponha que seja usada uma vara rígida, apoiada no ombro. Nesse caso, quando o tronco se move para cima, o ombro tem que aplicar uma grande força para levantar a vara e sua carga. Quando o tronco se move para baixo, o ombro aplica pouca força porque a vara e sua carga descem com o ombro. Assim, pode haver uma variação considerável da força exercida pelo ombro quando a pessoa está andando ou correndo. A função principal de uma vara flexível é diminuir a variação da força exercida pelo ombro. O segredo é que, uma vez que a vara começa a oscilar, as cargas oscilam fora de sincronia com o centro da vara: quando as cargas se movimentam para cima, o centro se movimenta para baixo e vice-versa. O centro também oscila fora de sincronia com o ombro: quando o ombro se movimenta para cima, o centro se move para baixo. Assim, o ombro fica em sincronia com a carga e tem que fornecer uma força quase constante. Quando o ombro se movimenta para cima, a oscilação da vara está movimentando a carga para cima. Quando o ombro se move para baixo, o movimento do centro da vara para cima ajuda a sustentar a carga que se movimenta para baixo.

1.119 • Pêndulos acoplados Faça um sistema de pêndulos amarrando dois pedaços de corda de igual comprimento a um apoio e enrolando as cordas em um bastão horizontal (Fig. 1-42a). Pendure pesos iguais nas extremidades inferiores das cordas e posicione o bastão a cerca de um terço da distância entre o apoio e os pesos. Segure um dos pesos, afaste o outro para o lado, paralelamente ao bastão, e solte os dois pesos. Você pode ter pensado que o pêndulo deslocado seria o único a oscilar, mas o movimento é gradualmente transferido para o segundo pêndulo. Quando a transferência se completa e o primeiro pêndulo está estacionário, a transferência se inverte. A partir de então, o movimento passa periodicamente de um pêndulo para o outro.

Figura 1-42 / Item 1.119 (a) a (d) Pêndulos acoplados. (e) a (f) Modos normais.

Comportamento semelhante é mostrado pelos outros sistemas da Fig. 1-42. Na Fig. 1-42b, dois pêndulos estão ligados por uma mola. No terceiro sistema (Fig. 1-42c), os pêndulos estão amarrados a um tubo estreito que pode girar em torno de um fio horizontal e os pêndulos oscilam perpendicularmente ao tubo. No quarto (Fig. 1-42d), os pêndulos estão ligados por um fio curto e oscilam perpendicularmente a ele. Talvez surpreendentemente, a troca de oscilações pode ser observada com duas bússolas de brinquedo iguais. Coloque uma das bússolas sobre uma mesa e a outra nas proximidades, depois de sacudi-la para fazer a agulha oscilar. As oscilações são transferidas periodicamente de uma bússola para a outra. Como se explica esse comportamento?

Resposta Vamos considerar apenas o primeiro sistema descrito. A transferência de movimento resulta de uma transferência de energia enquanto os pêndulos interagem através do bastão. Se você balançasse os pêndulos em uma de duas maneiras especiais, os chamados modos normais, não haveria transferência de energia. Em um desses modos, os pêndulos oscilam em fase (Fig. 1-42e), de modo que o comprimento inteiro dos fios participa do movimento e a oscilação tem baixa freqüência. No outro modo normal, os pêndulos oscilam com fases diametralmente opostas (Fig. 142f). Os movimentos opostos impedem que a parte do fio que está acima do bastão participe do movimento e, portanto, o comprimento efetivo dos pêndulos se torna menor do que no primeiro modo normal e a oscilação tem uma freqüência maior.

Se você perturba apenas um pêndulo, os dois modos são excitados e competem entre si. Nesse caso, os pêndulos oscilam com uma freqüência que é a média das freqüências associadas a cada modo. A amplitude (a extensão de cada oscilação) varia a uma taxa que é igual à diferença das freqüências dos modos. Enquanto a amplitude do movimento de um pêndulo diminui, a do outro aumenta e, em seguida, as mudanças são invertidas. Uma troca de movimento parecida ocorre com a bússola porque as agulhas oscilam em torno da direção do norte magnético da mesma forma que os pêndulos oscilam em torno da direção da gravidade.

1.120 • Pêndulo elástico Pendure uma mola razoavelmente rígida por uma extremidade e depois prenda um peso na extremidade inferior para que a mola seja esticada até cerca de 4/3 do comprimento original. Puxe o peso para baixo e solte-o. O peso, de início, oscila verticalmente (Fig. 1-43a), mas logo a oscilação é substituída por um movimento pendular (Fig. 1-43b). Depois que a oscilação desaparece, o movimento pendular começa a diminuir e a oscilação reaparece. A partir de então, o movimento é transferido periodicamente entre os dois tipos. Você também pode iniciar o comportamento bimodal produzindo o movimento pendular em vez da oscilação vertical. Uma troca semelhante de movimentos é exibida pelo sistema da Fig. 1-43c. Os pêndulos estão ligados por uma haste flexível que oscila a uma freqüência que é duas vezes a freqüência natural dos pêndulos. Nesse caso, a energia é trocada periodicamente entre o movimento dos pêndulos e as oscilações da haste. Um exemplo igualmente complicado aparece na Fig. 1-43d. A barra horizontal pode girar em torno do bastão de apoio. Em uma extremidade da barra, uma barra vertical está presa no lugar, enquanto na outra uma segunda barra vertical está livre para oscilar em torno de um eixo. Nesse caso, existem dois pêndulos: o pêndulo A é a segunda barra vertical e o pêndulo B é a combinação da barra horizontal com a barra vertical fixa. Se os comprimentos das barras forem ajustados de modo que a freqüência de oscilação de A seja duas vezes a de B, haverá uma troca periódica de movimento depois que as oscilações de A tiverem sido iniciadas manualmente. Nesses exemplos, a que se deve a troca periódica de movimento?

Resposta Vamos considerar apenas o primeiro arranjo. Se você pudesse puxar o peso para baixo e em seguida soltálo exatamente na vertical, o peso poderia apenas oscilar verticalmente, mas esta perfeição é pouco provável; é quase certo que você imprimirá ao peso um pequeno movimento lateral. Nesse caso, a freqüência da oscilação vertical puro é duas vezes maior que a freqüência do movimento pendular puro. Suponha que em certo instante o peso esteja principalmente oscilando para baixo e para cima. Em seguida a energia começa a passar da oscilação vertical para o movimento pendular. A transferência se dá pelo fato de que o comprimento do pêndulo muda durante a oscilação vertical. A situação lembra a de uma criança que ficasse de pé e se agachasse duas vezes a cada oscilação completa de um balanço de brinquedo. A criança altera o comprimento efetivo do balanço, o que transfere energia para o movimento do balanço, fazendo com que ele vá mais alto. Depois que a transferência se completa, ela é invertida por causa da força que o peso exerce sobre a mola cada vez que atinge um ponto extremo. Essa força é aplicada duas vezes a cada oscilação completa de pêndulo e, portanto, sua freqüência equivale à freqüência do movimento puro para cima e para baixo, que aparece de novo. Quando ele volta a dominar, a energia é transferida de volta para o movimento pendular. O fenômeno se repete indefinidamente.

1.121 • O sino que não tocava Um sino que foi instalado na catedral de Colônia não tocava ao ser balançado, porque o sino e o badalo oscilavam em fase, de modo que o badalo nunca se chocava com o interior do sino. O que podia ser feito para resolver o problema sem trocar o sino?

Resposta Quando dois pêndulos são pendurados juntos e um é mais curto e mais leve que o outro, eles tendem a balançar em fase. Na catedral, o sino era o pêndulo mais comprido e pesado e o badalo era o pêndulo mais curto e leve. O badalo era curto demais. Depois que o sino batia nele, o badalo se afastava do sino e entrava em fase com o seu movimento. Assim, os dois balançavam juntos e não tornavam a se encontrar. Para eliminar o movimento síncrono, o badalo teve seu comprimento aumentado, ficando assim também mais pesado. Dessa forma, quando o sino bate nele, o badalo se movimenta mais devagar e não se mantém em fase com o sino. Assim, ao balançar para a frente e para trás, o sino bate no badalo.

Figura 1-43 / Item 1.120 As oscilações alternam entre (a) oscilações elásticas e (b) oscilações pendulares. (c) As oscilações alternam entre oscilações pendulares e oscilações verticais da viga de ligação. (d) As oscilações alternam entre oscilações pendulares da peça A e da peça B.

1.122 • Efeito espaguete Por que espirra molho em todas as direções quando você suga um longo fio de espaguete para dentro da boca? Além de ser divertido na mesa de jantar, o efeito é de interesse dos engenheiros que projetam equipamentos para puxar folhas de papel (que podem exibir o chamado efeito espaguete) ou ejetam folhas de papel (que podem exibir o chamado efeito espaguete invertido).

Resposta Eis uma explicação: suponha que o fio saia do prato com um certo movimento lateral. Quando você suga o fio para dentro da boca a velocidade constante e reduz o comprimento da extremidade livre, a energia cinética associada ao movimento lateral fica concentrada em uma pequena quantidade de massa. Para que a quantidade de energia cinética não mude, a velocidade do movimento lateral tem que aumentar. Quando a outra extremidade do fio se aproxima da sua boca, a velocidade se torna suficientemente elevada para que o molho espirre. Uma explicação compatível envolve o momento angular. Se a extremidade livre do fio inicialmente gira em torno do ponto de entrada da boca, ela tem que girar mais rápido à medida que se aproxima desse ponto. É como um patinador que inicialmente gira na ponta do pé com os braços estendidos e em seguida os encolhe. O efeito espaguete também pode ser observado em uma trena de metal que é recolhida automaticamente para dentro da caixa quando um botão é apertado. Quando o fim da fita se aproxima da caixa, a fita pode dar perigosas chicotadas laterais. As instruções sugerem recolher a parte final devagar para evitar o problema.

1.123 • A aranha e a mosca De que maneira uma aranha que está no centro de uma teia circular sabe onde uma mosca ficou presa na teia? Por que a teia não se rompe quando uma mosca se choca com ela? Depois de se chocar com a teia, por que a mosca simplesmente não voa para longe?

Resposta Ao se debater, a mosca envia ondas ao longo dos fios da teia, entre eles alguns fios radiais em cuja extremidade está a aranha. As ondas dos fios radiais podem ser divididas em três tipos, de acordo com a direção das oscilações. Em dois desses tipos, as oscilações são perpendiculares ao fio, seja no plano da teia seja perpendiculares ao plano. No terceiro tipo, as oscilações são paralelas ao fio. É o terceiro tipo que alerta a aranha. Se a aranha detecta essas oscilações em dois ou três fios adjacentes, pode determinar rapidamente em que direção está a mosca, porque o fio que corre em direção à mosca transporta as oscilações mais fortes. Se uma presa capturada não se debater durante tempo suficiente para ser detectada, a aranha pode localizá-la fazendo balançar com as patas as linhas radiais. Qualquer linha submetida ao peso da presa vai oscilar diferentemente de uma linha livre, informando à aranha a direção e talvez até a distância da presa. (Existem algumas evidências experimentais de que uma pessoa também consegue determinar a distância de uma carga presa a uma corda esticada, sem olhar, simplesmente balançando a corda.) Algumas aranhas calibram suas teias ajustando a tensão dos fios. Quando estão com muita fome, aumentam a tensão para que até a agitação de uma pequena presa envie ondas perceptíveis através da teia. Quando estão com menos fome, diminuem a tensão para que apenas a agitação de uma presa grande envie ondas perceptíveis. Em 1880, C. V. Boys (famoso por seu conhecido livro sobre películas de sabão) descreveu o modo como conseguia chamar a atenção de uma aranha de jardim encostando um diapasão (nota lá) na periferia da teia ou no suporte da teia e fazendo o diapasão vibrar. Se a aranha estivesse no centro da teia, conseguia encontrar o diapasão com facilidade. Quando não estava no centro, tinha que ir até o centro para conseguir encontrar o diapasão. Quando Boys colocou o diapasão perto da aranha em vez de colocá-lo em uma parte da teia afastada dela, a aranha entendeu as vibrações como uma ameaça e rapidamente desceu da teia por um fio de segurança. Uma certa espécie de aranhas tropicais é chamada cleptoparasita, porque não tece a própria teia, mas rouba as presas de uma aranha hospedeira que tece uma teia. Para monitorar a teia, a aranha cleptoparasita dispõe de fios (de 20 a 30 centímetros de comprimento) que vão do lugar em que ela se encontra até o centro da teia, onde encontram as linhas radiais da teia. Sempre que a teia da aranha hospedeira captura, por exemplo, uma mosca, são enviadas oscilações ao longo dos fios de monitoramento. A partir dos padrões de oscilação, a aranha cleptoparasita consegue saber até mesmo se a mosca foi embrulhada pela aranha hospedeira para consumo posterior. Se é esse o caso, ela entra sorrateiramente na teia para roubar o alimento.

Uma teia funciona como um filtro para apanhar presas voadoras que são aproximadamente do tamanho da aranha ou menores que ela, absorvendo a energia cinética e o momento da presa. A teia é projetada para se romper se a presa for maior que a aranha, já que, nesse caso, a presa poderia oferecer resistência. Quando uma presa se choca com a teia, os fios esticam mas funcionam como um líquido viscoso, retendo internamente a maior parte da energia da colisão. Assim, a presa não pode simplesmente ricochetear na teia. Além disso, gotas de adesivo (que parecem contas microscópicas) são posicionadas ao longo de alguns dos fios (os fios de captura) para reterem a presa. (As contas ficam tão afastadas umas das outras que a própria aranha pode andar ao longo do fio sem ficar presa.) A presa pode se debater, mas, como o fio estica com facilidade, ela não consegue encontrar apoio para se desgrudar da teia.

1.124 • Oscilações de passarelas e pistas de dança Em 1831, soldados de cavalaria atravessavam uma ponte pênsil perto de Manchester, na Inglaterra, supondo que marchavam ao ritmo das oscilações que haviam criado na ponte. A ponte caiu quando um dos parafusos que a sustentavam se rompeu, e a maioria dos homens caiu na água. Desde então, os soldados recebem ordem de marchar sem cadência ao cruzar uma ponte. Por que um pelotão de soldados em marcha pode fazer uma ponte cair? Em 2001, foi inaugurada em Londres uma passarela para pedestres, baixa e graciosa, sobre o rio Tâmisa, para ligar a galeria de arte Tate Modern à vizinhança da catedral de St. Paul e simbolizar o novo milênio. Entretanto, quando a primeira onda de pedestres começou a caminhar sobre ela, a Ponte do Milênio, como é conhecida, começou a oscilar tanto que alguns pedestres só conseguiram manter o equilíbrio apoiando-se no corrimão. O que causou as oscilações? Por que oscilações parecidas ocorrem nas pistas de dança ou nos concertos de rock?

Resposta O perigo é que, se os soldados marcharem ao ritmo das oscilações que eles produzem na ponte, as oscilações podem crescer a ponto de romper parte da sustentação da ponte. (Não sei dizer se esse foi realmente o caso em Manchester.) Quando os soldados marcham sem cadência, seus passos deixam de ser sincronizados e as oscilações não aumentam. Ao atravessarem a Ponte do Milênio, os pedestres produziram forças na passarela não só para baixo, mas também para a esquerda e para a direita. Essas forças laterais acontecem porque uma pessoa normalmente balança o corpo para a esquerda e para a direita enquanto anda. Tais forças são pequenas, mas na passarela elas aconteciam com uma freqüência (0,5 hertz ou 0,5 vez por segundo) que era aproximadamente igual à freqüência natural de oscilação da passarela para a esquerda e para a direita. Essa coincidência de freqüências é chamada ressonância e faz com que as oscilações aumentem rapidamente de amplitude, como acontece com as oscilações de uma criança em um balanço de brinquedo quando o balanço é empurrado com a mesma freqüência que a freqüência de oscilação. Inicialmente, os pedestres estavam caminhando sem nenhum sincronismo e a amplitude das oscilações era pequena. Acontece porém que, por causa desse balanço, alguns pedestres procuraram manter o equilíbrio andando no ritmo das oscilações. Quanto maior o número de pedestres que entravam no ritmo, maior a amplitude das oscilações, o que tornava ainda mais difícil atravessar a passarela e fazia mais pedestres entrarem no ritmo. Quando cerca de 40% dos pedestres entraram no ritmo, as oscilações para a esquerda e para a direita tornaram-se quase intoleráveis e começaram a produzir oscilações para cima e para baixo. Para consertar a ponte, engenheiros instalaram mecanismos capazes de absorver a energia das oscilações laterais. Oscilações parecidas, mas causadas principalmente por impactos verticais, podem ocorrer nos pisos de escritórios, ginásios e discotecas. Elas são especialmente perceptíveis quando os espectadores saltam de forma sincronizada, o que acontece em algumas formas de dança, como o pogo. As oscilações também podem acontecer na platéia de um concerto se o público bater os pés ou até as mãos no ritmo da música. Essas manifestações do público geralmente têm uma freqüência de 1 a 3 hertz. Se esse valor estiver próximo da menor freqüência de ressonância da pista de dança ou da platéia, pode haver ressonância e, nesse caso, a amplitude do movimento pode ser não só perceptível mas até assustadora. Para evitar ressonância e um possível dano ou queda da estrutura, os códigos de construção geralmente recomendam que a menor freqüência de ressonância não seja menor que 5 hertz.

1.125 • Construções e pedras precariamente equilibradas Durante alguns terremotos, estruturas retangulares aparentemente estáveis foram derrubadas enquanto estruturas colunares permaneceram de pé. Até mesmo estruturas como caixas d’água esféricas no alto de torres sobreviveram a terremotos enquanto caixas d’água cilíndricas foram destruídas. O que explica a estabilidade dessas estruturas aparentemente instáveis? Esta pergunta é obviamente importante para o projeto de estruturas modernas em regiões em que exista atividade sísmica. É importante também para a preservação de estruturas antigas, tais como as estátuas e colunas clássicas em regiões como a

Grécia. Se um terreno contém pedras que ficaram expostas durante muito tempo à erosão, essas pedras podem revelar se ocorreu atividade sísmica apreciável na região. Assim, por exemplo, as pedras em algumas partes da Califórnia, algumas a menos de 30 quilômetros da famosa falha de San Andreas, indicam que não houve atividade sísmica apreciável na região nos últimos milhares de anos. Que característica simples das pedras pode indicar essa ausência de atividade?

Resposta Os tremores do solo (um único pulso, uma série de pulsos ou movimentos de vaivém) podem fazer uma estrutura sem sustentação balançar nas extremidades (Fig. 1-44a). Se, em uma dessas oscilações, o centro de massa da estrutura ultrapassa a borda da base de sustentação, a estrutura tomba. Se você tenta derrubar a estrutura com um empurrão no alto (como faria com uma peça de dominó), a instabilidade da estrutura aumenta de acordo com a altura. Entretanto, um terremoto derruba as estruturas por um mecanismo diferente, já que o empurrão acontece na base da estrutura. Ora, a estabilidade de uma estrutura depende da distância R entre o centro de massa da estrutura e uma extremidade (Fig. 1-44b); um R maior geralmente significa maior estabilidade. Embora o efeito de um terremoto dependa de muitas variáveis, uma coluna elevada, com um grande valor de R, pode ser mais estável que uma coluna baixa, com um valor pequeno de R, quando ambas são atingidas pelo terremoto.

Figura 1-44 / Item 1.125 (a) Balanço de estruturas retangulares devido a um terremoto. (b) O risco de tombamento depende da distância R. (c) Uma mala de duas rodas pode balançar e depois tombar.

Você pode ter visto oscilações parecidas ao puxar uma mala de duas rodas em um aeroporto (Fig. 1-44c). Se você anda devagar e puxa a mala com velocidade constante, ela permanece estável (fica em pé). Se você aperta o passo, porém, e começa a rebocar a mala aos puxões, ela começa a balançar para a esquerda e para a direita. Se a oscilação for suficientemente grande, a mala vai tombar, mesmo que você tente evitar a queda torcendo a alça no sentido contrário. Em alguns terrenos que contêm pedras, a erosão deixou algumas delas equilibradas em um pedestal estreito. Essas pedras precariamente equilibradas (como são chamadas) geralmente podem ser derrubadas com facilidade e tombariam até se acontecesse um tremor de terra moderado durante uma atividade sísmica. Assim, o fato de as pedras terem estado de pé durante milhares de anos indica que a região não teve atividade sísmica apreciável durante esse período.

1.126 • Naufrágio do submarino nuclear Kursk Em agosto de 2000, quando a Frota Russa do Norte realizava manobras no mar de Barents, no norte da Rússia, o submarino nuclear Kursk naufragou misteriosamente. Enquanto a notícia da perda se espalhava, sismólogos de todo o hemisfério norte perceberam que, no dia em que o Kursk naufragou, haviam registrado ondas sísmicas atípicas provenientes do mar de Barents.

A análise dos dados sugeriu a causa do naufrágio do submarino e, por incrível que pareça, revelou também a sua profundidade. Como é que a profundidade do submarino pôde ser determinada a partir de medidas feitas a uma distância tão grande?

Resposta Ondas sísmicas são ondas que se propagam ou pelo interior da Terra ou ao longo da superfície. As estações sismológicas são usadas principalmente para registrar ondas sísmicas geradas por terremotos, mas também registram ondas sísmicas geradas por qualquer grande liberação de energia perto da superfície da Terra, como uma explosão. Ao passar por uma estação, as ondas sísmicas fazem oscilar uma pena registradora, que traça um gráfico. Os traços atribuídos ao Kursk consistiam em um conjunto inicial de oscilações de pequena amplitude; 134 segundos mais tarde, apareceram oscilações com amplitudes muito maiores. A partir desses traços, analistas concluíram que as primeiras ondas sísmicas foram geradas por uma explosão a bordo, possivelmente um torpedo que não foi lançado ao ser disparado. A explosão presumivelmente abriu um buraco no casco, provocou um incêndio e afundou o submarino. Ondas sísmicas muito mais fortes foram geradas depois que o submarino naufragou e podem ter sido geradas quando o incêndio provocou a explosão simultânea de vários (talvez cinco) dos poderosos mísseis a bordo. Essas ondas mais fortes chegaram às estações sismológicas como pulsos separados por um intervalo de tempo de cerca de 0,11 segundo. A partir desse intervalo de tempo, os analistas puderam calcular a profundidade em que estava o submarino afundado. A explosão mais forte ocorreu quando o submarino se encontrava no fundo do mar. Ela produziu um pulso que penetrou no solo do fundo do mar e um pulso que se propagou para cima através da água. O pulso que se propagou na água “ricocheteou” várias vezes entre a superfície da água e o fundo do mar. Cada vez que atingia o fundo do mar, produzia outro pulso no solo, que as estações sismológicas podiam captar. Assim, o intervalo de 0,11 segundo entre dois pulsos sucessivos no solo era igual ao tempo necessário para o pulso na água subir até a superfície da água e voltar ao fundo do mar. Usando esse intervalo de tempo, os analistas calcularam que o submarino estava a uma profundidade de aproximadamente 80 metros. Mais tarde, o submarino foi encontrado a uma profundidade de 115 metros — perto, portanto, da profundidade calculada. Os sismólogos registraram outras grandes explosões, como a de um caminhão-bomba em Nairóbi, no Quênia, em 1998, em um ataque terrorista à embaixada dos EUA. Em 1989, registraram as ondas sísmicas produzidas pela onda de choque (acústica) gerada pelo ônibus espacial Columbia enquanto sobrevoava Los Angeles em seu retorno (bem-sucedido) à Edwards Air Force Base. Finalmente, em 11 de setembro de 2001, sismólogos registraram as colisões dos aviões seqüestrados com as torres do World Trade Center e o subseqüente desmoronamento das torres.

1.127 • O mecanismo de detecção dos escorpiões da areia Quando um besouro se movimenta pela areia a algumas dezenas de centímetros de um escorpião da areia, o escorpião imediatamente se volta na direção do besouro e investe contra ele (para almoçar). O escorpião consegue fazer isso sem ver (ele é noturno) ou ouvir o besouro. Como o escorpião consegue localizar a presa com tanta precisão?

Resposta Um escorpião da areia determina a direção e a distância da presa a partir das ondas que o movimento da presa produz na superfície da areia. Em um tipo de onda, as ondas transversais, a areia da superfície se desloca verticalmente e, portanto, perpendicularmente à direção de propagação da onda. No outro tipo, as ondas longitudinais, a areia se movimenta paralelamente à direção de propagação da onda. As ondas longitudinais se propagam três vezes mais depressa que as ondas transversais. O escorpião, com suas oito patas espalhadas mais ou menos em um círculo de cerca de 5 centímetros de diâmetro, intercepta primeiro as ondas longitudinais, mais rápidas, e descobre a direção do besouro; é a direção da primeira perna perturbada pelas ondas (Fig. 1-45). O escorpião detecta em seguida o intervalo de tempo entre a primeira intercepção e a intercepção das ondas transversais, mais lentas, e usa a informação para determinar a distância em que se encontra o besouro. Assim, por exemplo, um intervalo de tempo de 0,004 segundo entre as chegadas dos dois tipos de onda indica que as ondas foram produzidas a 30 centímetros do escorpião. Dessa forma, o escorpião determina rapidamente a direção e a distância da presa.

Figura 1-45 / Item 1.127 As ondas alertam o escorpião sobre os movimentos do besouro.

1.128 • Ondas de neve Por que será que, em circunstâncias aparentemente raras, pisar em um campo de neve pode desencadear um tremor de neve que se propaga a grandes distâncias, em geral acompanhado de um som de baixa freqüência?

Resposta Um tremor de neve é provavelmente o rebaixamento progressivo da superfície de neve devido à quebra de uma camada estruturalmente frágil de gelo que existe debaixo da neve (e, portanto, está oculta). A pisada quebra o gelo, abalando o gelo vizinho, que também quebra e assim por diante. Quando o gelo é quebrado, a neve afunda, emitindo um som parecido com o que emite quando cai do galho de uma árvore em um leito de neve.

1.129 • Olas em estádios esportivos Uma ola é um pulso, criado pela torcida, que se propaga em estádios durante eventos esportivos. A ola ganhou atenção mundial pela primeira vez na Copa do Mundo de 1986, no México. Enquanto o pulso se propaga pelo estádio, a torcida fica de pé com os braços levantados e depois baixa os braços e senta de novo. De que maneira a onda começa (não existe uma ordem, por exemplo, do locutor do evento) e a que velocidade se propaga?

Resposta A onda só pode começar se for visível. Não basta que uma ou até mesmo algumas pessoas fiquem em pé e se sentem de novo, porque este comportamento se perderia na movimentação normal da torcida. Em vez disso, é preciso que um grande número de participantes se levante e sente ao mesmo tempo. Assim, a onda só pode começar se um ou mais organizadores conseguirem mobilizar o primeiro grupo de, digamos, 20 ou 30 participantes. Os organizadores podem se virar de frente para o grupo, talvez com uma bandeira para chamar atenção. O movimento simultâneo do primeiro grupo seria nesse caso percebido pelo grupo adjacente de pessoas, que iria nesse momento levantar e sentar-se, e assim por diante. Estudos mostram que a onda geralmente se propaga no sentido horário em torno do estádio (vista de cima), mas não sei explicar por quê. A velocidade é de aproximadamente 12 metros por segundo e parece depender do tempo necessário para um torcedor reagir ficando de pé depois de ver um grupo adjacente de torcedores se levantar.

1.130 • Colete à prova de balas Por que o tecido de um colete à prova de balas resiste a projéteis de pequeno calibre (balas de revólver e fragmentos de bombas e granadas)? Por que não resiste a uma facada?

Resposta Quando um projétil em alta velocidade atinge um colete à prova de balas, o tecido impede a passagem do projétil distribuindo rapidamente sua energia por uma área extensa. Essa distribuição é feita através de pulsos

longitudinais e transversais que se propagam radialmente a partir do ponto de impacto, onde o projétil produz uma depressão em forma de cone no tecido. O pulso longitudinal, propagando-se ao longo das fibras do tecido à frente da depressão, faz as fibras afinarem e esticarem, introduzindo o projétil na depressão. Uma dessas fibras radiais é ilustrada na Fig. 1-46. Parte da energia do projétil é consumida nessa deformação. O pulso transversal, que se move a uma velocidade mais baixa, é produzido pelo alargamento da depressão. Quando o projétil penetra na depressão, esta aumenta de raio, fazendo o material nas fibras se mover na mesma direção que o projétil (perpendicularmente à direção de propagação do pulso transversal). Parte da energia do projétil vai para esse movimento. Parte da energia é dissipada pelo atrito entre as fibras nos locais em que elas se cruzam na trama do tecido, ou entre si na tecedura, ou em coletes à prova de balas feitos de várias camadas, pelo estiramento e rompimento das fibras. O colete à prova de balas feito de tecido não resiste a uma facada porque a ponta da faca consegue penetrar com facilidade no espaço entre as fibras e a ponta afiada pode cortar as fibras enquanto a faca continua a penetrar no material. Você pode imaginar que a malha, a armadura flexível usada na época dos cavaleiros medievais, funcionaria melhor, mas ela foi projetada para resistir à lâmina larga de uma espada, não à ponta fina de uma faca.

Figura 1-46 / Item 1.130 Mossa em um colete à prova de balas produzida por um projétil.

1.131 • O paradoxo do arqueiro Por melhor que seja a pontaria do arqueiro, uma flecha, depois de lançada, sofre um desvio que pode chegar a 7°. Ainda assim, ela acerta exatamente no ponto para o qual o arqueiro apontou. O desvio da flecha é ainda mais estranho se a cena for filmada em câmara lenta. Embora esteja apoiada no arco na hora de fazer pontaria, a flecha não volta a tocar o arco depois que é lançada. Em vez de roçar no arco, a flecha o contorna. O que explica esse comportamento e como a flecha, ainda assim, acerta o alvo? Nos tempos em que o arco longo era usado em combate, por que a flecha era preparada com uma bola de cera de abelha na ponta?

Resposta Suponha que a flecha esteja do lado esquerdo do arco. No instante em que ela é solta, tanto a corda quanto o arco empurram suas extremidades para a esquerda; a flecha se encurva e começa a oscilar para a esquerda e para a direita. As oscilações permitem que a flecha contorne o arco sem perder energia por atrito e sem que a extremidade emplumada roce no arco. Embora a ponta da flecha nem sempre aponte em direção ao alvo durante as oscilações, o vôo é nessa direção. Logo após a flecha deixar o arco, as oscilações cessam e a flecha volta a apontar na direção desejada. Para que a flecha contorne o arco, ela deve sofrer uma oscilação completa no momento em que deixa a corda. A exigência requer uma certa flexibilidade por parte da flecha. Se ela for flexível demais, as oscilações ocorrerão muito devagar e a extremidade emplumada baterá no arco. Se for muito rígida, as oscilações ocorrerão muito depressa ou a amplitude do movimento lateral será pequena demais e, portanto, a flecha não conseguirá deixar o arco com a energia total devido ao atrito com a haste ou a uma colisão com a extremidade emplumada. De acordo com os registros, uma bola de cera de abelha era colocada na ponta da flecha para que a flecha pudesse penetrar melhor na armadura do soldado. O motivo alegado é que a bola se choca com a armadura primeiro, fazendo com que a flecha fique perpendicular à armadura no instante em que a ponta da flecha a atinge. Com essa orientação, a flecha tem maior probabilidade de penetrar na armadura em vez de ser desviada.

1.132 • Oscilações das plantas Uma árvore pode ser partida ou arrancada se for dobrada pelo vento de um furacão ou tufão. Por que motivo ela corre o mesmo

risco ao ser submetida a ventos consideravelmente mais fracos?

Resposta Toda árvore balança na chamada freqüência natural, em que a base não se move, o topo é a parte que oscila com maior amplitude e pontos intermediários oscilam com uma amplitude intermediária. O valor da freqüência natural depende do comprimento da árvore, da resistência do material (sua capacidade de se encurvar) e da resistência do ar aos galhos e folhas. Embora uma única rajada de vento possa fazer uma árvore balançar, o movimento logo se extingue e é pouco provável que dobre a árvore o suficiente para parti-la ou arrancá-la. Esses riscos existem quando uma série de rajadas atinge a árvore com uma freqüência próxima da freqüência natural de oscilação da árvore, fenômeno conhecido como ressonância. A situação é análoga àquela que acontece quando você empurra com força moderada um balanço de brinquedo. Se você empurrar com a freqüência natural do balanço, conseguirá aumentar gradualmente a amplitude das oscilações. No caso de rajadas de vento e árvores, a amplitude das oscilações também pode aumentar se a freqüência da força (do vento, no caso) coincidir com a freqüência de ressonância. É claro que rajadas de vento não ocorrem a uma freqüência fixa; mas, se a freqüência média estiver próxima da freqüência de ressonância de uma árvore, as oscilações podem ser suficientes para partir ou arrancar a árvore. Entretanto, se uma árvore estiver cercada por outras árvores, não só a árvore está parcialmente protegida das rajadas de vento, mas também a energia do seu movimento é gradualmente perdida por causa do atrito entre seus ramos e os ramos de outras árvores. Qualquer árvore, isolada ou não, também perde energia por causa da resistência que o ar oferece às folhas e galhos e por causa da deformação dos galhos e do tronco. Plantas cultivadas também estão sujeitas a oscilações ressonantes causadas por rajadas de vento e, portanto, também podem ser partidas ou arrancadas por rajadas persistentes que ocorram a uma freqüência próxima da freqüência de ressonância. No caso dos pés de milho, a freqüência é de 1 a 2 hertz, pouco maior do que para as árvores.

1.133 • Oscilações dos edifícios altos O impacto do vento em um edifício alto pode fazê-lo oscilar, o que pode ser irritante para os moradores ou mesmo deixá-los mareados. Tornar o edifício mais rígido para reduzir a amplitude das oscilações causadas pelo vento não é prático nem econômico. Como se faz para reduzir as oscilações a um nível aceitável?

Resposta Uma maneira de reduzir as oscilações é instalar no telhado um sistema bloco–mola, com a mola alinhada na direção preferencial do vento. Uma extremidade da mola fica presa no telhado; a outra estará ligada a um bloco que pode se movimentar ao longo de um curso paralelo à mola. A freqüência natural de oscilação do sistema é ajustada para ser igual à freqüência de oscilação do edifício. Quando o edifício balança, a mola é distendida, fazendo o bloco oscilar à mesma freqüência. Entretanto, a oscilação do bloco é retardada em relação à oscilação do edifício, de modo que as duas oscilações têm fases diametralmente opostas. Assim, por exemplo, quando o edifício balança para a esquerda, o bloco está oscilando para a direita e, portanto, tende a compensar a oscilação do edifício. Alguns edifícios têm osciladores bloco–mola duplos, formados por um oscilador bloco–mola instalado no bloco de um oscilador bloco–mola maior. As oscilações do oscilador menor são ajustadas com precisão por um circuito eletrônico que monitora as oscilações do edifício. Outros edifícios dispõem de um oscilador de água no qual a água balança de um lado para o outro para compensar as oscilações do edifício. Para reduzir as oscilações das torres Petronas, em Kuala Lumpur, na Maláisia, que tem 101 andares (508 metros) de altura, foi instalado um pêndulo com uma esfera de 680.000 quilos no 92o andar.

1.134 • Saltando de um trampolim No salto de trampolim, um saltador experiente sabe como fazer um running dive: o saltador primeiro dá três passos rápidos no trampolim para que este comece a oscilar e, em seguida, salta até a ponta livre do trampolim para ser arremessado para cima. Um saltador novato pode tentar imitar o procedimento e falhar seriamente, ganhando pouco impulso e podendo até cair do trampolim. Qual é o “segredo” de um saltador experiente para conseguir um bom impulso?

Resposta Um trampolim de competição está apoiado em um suporte que fica a cerca de um terço do trajeto entre a extremidade fixa e a extremidade livre do trampolim. Em um running dive, o saltador dá três passos rápidos no trampolim, passando pelo suporte e fazendo a extremidade livre do trampolim se deslocar para baixo. Quando o trampolim volta à posição horizontal, o atleta salta para cima e para a frente em direção à ponta livre do trampolim. Um saltador experiente procura chegar à extremidade livre no instante em que o trampolim completou 2,5 oscilações. Com

esse sincronismo, o saltador aterrissa quando a ponta livre estiver descendo com a maior velocidade possível. A aterrissagem empurra a ponta livre ainda mais para baixo e o saltador consegue um bom impulso quando o trampolim começa a subir novamente.

1.135 • Lançando um anzol Se você arremessar um anzol com a mão, ele percorre uma distância relativamente pequena por causa da resistência do ar. De que maneira, então, é possível arremessar um anzol e uma linha a uma grande distância com uma vara de pescar? A tarefa é ainda mais difícil porque a linha também tem que vencer a resistência do ar; apesar disso, o método possibilita imprimir uma grande velocidade ao anzol.

Resposta Para lançar o anzol, você levanta a vara até uma posição pouco atrás da cabeça e, em seguida, puxa-a bruscamente para a frente para arremessar a linha e o anzol. A força sobre o anzol e a linha é exercida a partir da ponta da vara. Se você lançasse o anzol à mão com a mesma força, realizaria um trabalho muito menor e a energia cinética transferida para o anzol seria muito menor, porque a distância que a sua mão percorre é relativamente pequena. Como a ponta da vara percorre uma distância maior, o trabalho e a energia transferidos para o anzol e a linha são maiores. Depois que a ponta da vara está à frente do seu corpo e pára de se mover (Fig. 1-47a), a energia cinética e a velocidade do anzol continuam a aumentar, embora você já não esteja realizando nenhum trabalho. Para compreender por que isso acontece, observe qual é a forma da linha nesse instante (Fig. 1-47b): ela se estende horizontalmente para a frente a partir da ponta da vara, faz uma curva para cima e para trás e se estende para trás, quase horizontalmente, até o anzol. A primeira parte não se move porque a vara não está se movendo, enquanto a última parte se move junto com o anzol. Enquanto o anzol se move para a frente, uma fração cada vez maior da linha passa a pertencer à parte estacionária, fazendo com que a energia cinética fique concentrada no anzol e na parte da linha que ainda está em movimento. Quando a linha fica totalmente esticada, o anzol concentra toda a energia cinética e se movimenta rapidamente, muito mais depressa do que se você o lançasse à mão. Se você der linha nesse momento, o anzol pode puxar a linha e alcançar uma distância muito grande sobre a água.

Figura 1-47 / Item 1.135 Uma linha de pescar arremessada para a frente. (a) A maior parte da linha está em movimento. (b) Uma parte menor da linha está em movimento.

A distância percorrida pelo anzol é limitada pela resistência do ar. Esta é a razão pela qual os pescadores tentam conseguir que a linha forme um pequeno laço, o que diminui a resistência do ar. De preferência, esse laço deve ser assimétrico, com uma parte de cima que aponta para a frente e uma parte de baixo menos curva. A resistência do ar na parte de baixo do laço produz uma sustentação vertical da linha que possibilita um lançamento mais longo. Esta é a técnica usada por pescadores nas competições de arremesso de anzol. Alguns pescadores acreditam que a deformação da vara no arremesso preliminar da linha para trás seja a principal fonte de energia para o anzol durante o arremesso, mas os estudos revelam que essa contribuição é pequena. Entretanto, a flexibilidade da vara é importante para a precisão do arremesso e na hora de fisgar o peixe. A rigidez de uma vara de pescar é medida pelo valor da força necessária para envergá-la até atingir uma certa deformação. Os pescadores geralmente escolhem uma vara mais dura quando estão em busca de peixes maiores, porque não querem que a vara dobre. A freqüência natural de uma vara é a sua freqüência de oscilação quando uma das extremidades é mantida estacionária e a outra é deslocada ligeiramente e, em seguida, liberada. Varas com alta freqüência natural, conhecidas como “vivas”, são, muitas vezes, preferidas para arremessos longos. Varas de baixa freqüência possibilitam maior controle e são usadas para posicionar o anzol com precisão.

1.136 • Batalha das Malvinas; Big Bertha Durante a Primeira Guerra Mundial, as marinhas inglesa e alemã lutaram perto das ilhas Malvinas, que ficam a uma latitude de cerca de 50° S. Embora os disparos ingleses devessem ser extremamente precisos, os projéteis chegavam ao destino cerca de 100 metros à esquerda dos alvos. Será que as miras dos canhões estavam descalibradas? Aparentemente não, pois tinham sido testadas na Inglaterra. O que havia de errado? Durante o bombardeio de Paris pelos alemães, na mesma guerra, uma grande peça de artilharia chamada Big Bertha lançou projéteis contra a cidade, de 110 quilômetros de distância. Se os alemães não tivessem levado em conta os princípios científicos, esses disparos teriam errado o alvo por uma distância de quase 2 quilômetros. Quando os alemães começaram a testar a artilharia de longo alcance, ficaram surpresos ao descobrir que, se uma bomba fosse disparada com um ângulo grande, maior que 45°, iria muito mais longe, talvez duas vezes mais longe que se o ângulo fosse de 45°. Como, em tese, o lançamento a 45° é o que proporciona o maior alcance, por que esses projéteis estavam indo mais longe com um ângulo maior?

Resposta Geralmente usamos uma força fictícia, a força de Coriolis, para explicar o desvio aparente de um projétil de longo alcance que se deve, na verdade, à rotação da Terra durante o percurso do projétil. O desvio aparente é para a direita no hemisfério Norte e para a esquerda no hemisfério Sul, e é maior a altas latitudes e nulo no equador. Quando um projétil de longo alcance é lançado, ele tem não apenas a velocidade que lhe é impressa pelo canhão, mas também uma certa velocidade devido à rotação da Terra no local do lançamento. Durante o percurso do projétil, o alvo continua a girar em torno do eixo da Terra por causa do movimento de rotação. Se o movimento do alvo não for levado em conta, o projétil não acertará no alvo. Por exemplo: no hemisfério Norte, suponha que o alvo esteja diretamente ao norte do local em que está o canhão. Tanto o alvo quanto o canhão giram para leste em torno do eixo da Terra, mas o alvo, por estar a uma latitude mais elevada, percorre um círculo menor do que o círculo percorrido pelo canhão. Como os dois objetos têm que completar uma circunferência em um dia, o alvo se move mais devagar que o canhão. Quando o projétil é lançado na direção norte, ele tem a mesma velocidade para leste que o canhão. Durante o percurso, move-se para leste mais depressa que o alvo e, portanto, chega ao destino a leste do alvo. Do ponto de vista de um observador estacionário no local de lançamento, o projétil sofre um desvio para leste, ou seja, para a direita do alvo. Os artilheiros corrigem esse desvio empiricamente, através de tabelas, mas a correção das miras dos canhões depende da latitude e tem sinais opostos nos dois hemisférios. Os canhões ingleses tinham sido calibrados para a latitude da Inglaterra, mas estavam totalmente descalibrados para a latitude meridional das ilhas Malvinas. No caso do longo percurso dos projéteis lançados pela Big Bertha, os alemães sabiam como corrigir o desvio causado pela força de Coriolis: durante o percurso do projétil, Paris se movia. Quando os alemães dispararam bombas de longo alcance com um ângulo maior que 45°, as bombas passaram por camadas mais rarefeitas da atmosfera, o que reduziu a resistência do ar; por isso, atingiram distâncias maiores.

1.137 • João e o pé de feijão rumo ao espaço

Será que existe um meio de colocar um satélite em órbita e deixar cair uma linha dele até o chão, o que tornaria possível içar equipamentos até o satélite? Será que existe um meio de movimentar o satélite e deixar a linha solta no lugar? (Nesse caso, teríamos um “pé de feijão” sem gigante.)

Resposta Se o satélite estiver em órbita equatorial e à altitude apropriada para girar em torno da Terra com um período de rotação exatamente igual a um dia, em princípio poderia ser possível baixar uma linha até a Terra e instalar um sistema de elevadores. Se o satélite ficar a uma altura maior, a força centrífuga resultante puxará a linha: o arranjo seria nesse caso um gancho celeste que poderia fazer equipamentos subirem ao longo da linha sem a necessidade de um sistema de elevadores. Na verdade, seria possível deixar no local apenas uma linha forte e leve, sem apoio externo, como o pé de feijão da fábula, se a força centrífuga efetiva equilibrasse o peso da linha, mas os cálculos revelam que a linha precisaria ter 143 milhões de metros de comprimento, valor um pouco excessivo para a tecnologia atual. Se o satélite estiver em uma órbita que deixa a extremidade inferior da linha praticamente na superfície da Terra e a linha for elástica, ela poderá proporcionar um meio de transporte praticamente gratuito. Um compartimento para passageiros poderia ser ligado à extremidade inferior da linha e, quando a linha fosse esticada por causa da força exercida pelo satélite, o compartimento saltaria na atmosfera e cairia de volta depois de percorrer uma grande distância. Embora durante a subida a força exercida pelo compartimento sobre o satélite reduzisse a energia do satélite, a maior parte da energia seria recuperada durante a descida, quando o compartimento puxasse o satélite. Para compensar as inevitáveis perdas de energia, o satélite poderia ser equipado com um pequeno foguete.

1.138 • O equinócio de primavera e ovos em pé Tente colocar em pé um ovo cru. É provável que ele simplesmente tombe. Será mais fácil colocá-lo em pé no equinócio de primavera, como acreditam algumas pessoas?

Resposta Para entender o equinócio de primavera, imagine um plano que passa pela linha do equador. Imagine também que o Sol gire em órbita da Terra e não o contrário. A órbita do Sol é inclinada em relação a esse plano e o Sol passa por ele duas vezes por ano. Um desses dias é o equinócio de primavera. De acordo com o mito, a atração da gravidade exercida pelo Sol sobre objetos da Terra, particularmente ovos, é de algum modo diferente nesse dia. O mito é simplesmente falso. Por que, então, o mito continua? Uma razão pode ser que umas poucas pessoas fazem um esforço concentrado no equinócio de primavera, e somente nesse dia, para colocar ovos em pé. (Essas pessoas não devem ter mais o que fazer.) Se conseguirem algum sucesso, dirão que existe algo especial em relação à gravidade nesse dia. Se a idéia fosse verdadeira, certamente você sentiria a diferença: sua massa é muito maior que a de um ovo e, portanto, você deveria sentir a atração estabilizadora do Sol com muito maior intensidade. Evidentemente, você não sente diferença alguma no equinócio de primavera e provavelmente nem sabe quando ele ocorre. Se você encontrar um ovo que fica em pé sobre uma extremidade, essa extremidade provavelmente será ligeiramente plana, mesmo que seja apenas em uma pequena área. Um modo esperto de colocar em pé praticamente qualquer ovo é o seguinte: faça um montinho de sal, pressione levemente a extremidade do ovo no montinho, ajuste o ovo para que fique na vertical e, em seguida, remova o sal da superfície do ovo com um sopro. Os poucos cristais de sal que restarem fornecerão apoio suficiente para manter o ovo em pé. Uma pessoa que não conhece o truque não vai reparar nos cristais de sal; você pode explicar que o ovo ficou em pé, por exemplo, por causa de um aumento do fluxo de raios cósmicos. (Por que não? Faz tanto sentido quanto atribuir o fenômeno ao equinócio de primavera.) Outro truque consiste em aplainar a extremidade do ovo com uma lixa. Eis outra maneira que às vezes funciona. Sacuda o ovo para romper a membrana que segura a gema. Em seguida, mantenha o ovo de pé em uma mesa por alguns minutos para que a gema se acumule no fundo, fazendo baixar o centro de massa do ovo. A extremidade de baixo do ovo, agora mais pesada, pode mantê-lo de pé quando você largá-lo. O hábito de colocar ovos em pé no primeiro dia da primavera parece ter surgido na China, há milhares de anos. Desde então, um número incontável de ovos foram colocados em pé nesse dia em especial. Você poderia pensar que esse sucesso prova que o dia é especial. Nada disso. O primeiro dia de primavera no calendário chinês ocorre cerca de 90 dias antes do equinócio de primavera.

1.139 • Loucura da Lua Muitas pessoas acreditam que o número de nascimentos, acidentes de carro, atendimentos nas emergências dos hospitais, agressões e outros acontecimentos ligados às atividades humanas aumenta nas noites de lua cheia. Esse efeito se deve à força

gravitacional da Lua, é psicológico ou simplesmente não existe?

Resposta Será que a gravitação pode ser a causa? Não; a força gravitacional exercida sobre nós pela Lua é extremamente pequena. Se fosse grande a ponto de ser perceptível, você sentiria o efeito quando a Lua subisse no céu, aproximando-se de você e aumentando assim sua atração gravitacional. Você se sente mais leve quando a Lua está a pino? Não, é claro que não. Um efeito de maré poderia ser a causa? A Lua certamente tem um efeito apreciável e facilmente visível sobre os oceanos ao causar as marés. Será que as pessoas de alguma forma respondem ao mesmo efeito? Não; as marés se devem à variação da força gravitacional da Lua (e do Sol) ao longo da Terra. Essa variação ao longo de uma distância tão grande produz um acúmulo de água. Enquanto a Terra gira, algumas regiões dos oceanos passam por esse acúmulo e experimentam maré alta. A variação da força gravitacional da Lua ao longo da largura (ou comprimento) de uma pessoa é pequena demais para produzir um efeito semelhante. Assim, esta também não é a resposta. Por que, afinal de contas, considerar a gravitação? A expressão lua cheia é usada porque uma face inteira da Lua (do nosso ponto de vista) é iluminada pelo Sol. Esse grau de iluminação não alteraria de maneira alguma a força gravitacional sobre nós produzida pela Lua. Podemos imaginar que o efeito da Lua é psicológico: as pessoas ficam de alguma forma excitadas por causa da luz do luar, mesmo que vivam em cidades bem iluminadas ou não saiam à noite. Entretanto, se você plotar o número de nascimentos, acidentes de carro, atendimentos em emergências de hospital, agressões etc. em função da fase da Lua, não encontrará nenhum pico nos dias de lua cheia. O efeito lunar é apenas um mito perpetuado por muita gente, até mesmo por profissionais da área de saúde, que deveriam ser os primeiros a desmenti-lo.

1.140 • Subindo na descida Existem no mundo alguns lugares em que a gravidade parece puxar um carro ladeira acima. Um desses lugares fica nos arredores de Mentor, Ohio. Quando eu desço a encosta em ponto morto, o carro gradualmente reduz a velocidade até parar e, em seguida, começa a se mover no sentido oposto, em direção ao alto da colina. Será que a gravidade realmente atua para cima nesses lugares? (Se você visitar uma dessas colinas e quiser fazer a mesma experiência, tome muito cuidado para não ser atingido por outro carro: ninguém espera encontrar um carro parado na pista ou trafegando de marcha a ré.)

Resposta O efeito é uma ilusão, mas tão convincente que a experiência chega a ser assustadora. (A primeira vez que experimentei essa ilusão, perto de Mentor, uma de minhas filhas, na época uma criança, estava no carro. Embora não entendesse muita coisa de gravidade, ela sabia o suficiente para começar a chorar quando o carro subiu a colina em ponto morto.) Se você saltar do carro e olhar ao longo da superfície da estrada, a ilusão desaparecerá e você perceberá qual é a verdadeira inclinação. Uma observação mais completa mostrará que existe uma depressão suave no meio de uma encosta cuja inclinação global é moderada. (Tome cuidado com os outros carros!) Quando o carro rola para trás em direção ao alto da colina, ele está na verdade rolando para trás em direção à depressão. Quando você está dentro do carro, a depressão é imperceptível e a impressão de que o carro está subindo a colina é muito forte. Se as árvores que ladeiam a estrada estiverem de certa forma inclinadas, podem reforçar a ilusão. A ilusão de uma inclinação no sentido contrário ao verdadeiro às vezes se deve a uma inclinação muito maior da estrada antes e depois do trecho em questão. Assim, por exemplo, se os trechos anterior e posterior de uma estrada tiverem declives acentuados e o trecho do meio tiver uma pequena inclinação para baixo, o motorista pode ter a impressão de que a inclinação do trecho do meio é para cima. A horizontal aparente também pode afetar a percepção de inclinação. Imagine, por exemplo, uma rua horizontal que faça uma curva para a esquerda ao lado de uma encosta que esconde o verdadeiro horizonte. Você fica com a impressão de que, ao se aproximar da colina, a estrada apresenta um declive, já que o horizonte aparente está no topo da colina e, portanto, no alto.

1.141 • Passando pelo centro da Terra Imagine um buraco que se estenda ao longo do eixo de rotação da Terra, de um pólo a outro. Se você caísse em um buraco assim, quanto tempo levaria para chegar ao outro lado? O que aconteceria em seguida? Faria alguma diferença se o buraco passasse pelo interior da Terra em outro lugar? Uma versão mais curta de um túnel desse tipo foi proposta para ligar cidades populosas, como Nova York e Washington. Seria escavado um túnel ligando as duas cidades e construída uma ferrovia. O trem não precisaria de locomotiva para realizar o

percurso. O que iria movimentá-lo e quanto tempo levaria a viagem? Em De Pólo a Pólo, um conto de ficção científica de George Griffith, três pessoas tentam realizar uma viagem através da Terra usando um buraco formado naturalmente (evidentemente fictício) que liga o pólo Norte ao pólo Sul. Partindo do pólo Sul, sua cápsula cai em direção ao centro da Terra enquanto é freada por balões cheios de hélio ou hidrogênio. Na história, a força gravitacional se torna perigosamente elevada quando eles se aproximam do centro da Terra e desaparece no momento exato em que atingem o centro. A subida posterior em direção ao pólo Norte se revela mais lenta que o previsto e é feita com a ajuda de balões, mas os cálculos do cientista de bordo revelam que a cápsula só vai subir até uma certa altura e, em seguida, frear até parar, deixando os passageiros ilhados. Nem mesmo jogando máquinas pesadas para fora da cápsula os tripulantes conseguem reduzir suficientemente o peso. Desesperado, o cientista sai por um alçapão no fundo da cápsula, fica pendurado por alguns momentos e depois se deixa cair. A perda de sua massa é suficiente para possibilitar que a cápsula chegue ao fim do túnel e os outros dois passageiros se salvam. (Os cientistas estão acostumados a se sacrificar para salvar outras pessoas.) Esta história faz algum sentido?

Resposta Suponha que você caia em um túnel que liga diretamente os pólos. Congele a imagem depois que você tiver caído até uma certa distância do centro. Imagine uma esfera cujo raio seja essa distância, com o centro no centro da Terra. A massa no interior da esfera exerce uma atração sobre você, mas a casca formada pela massa do lado de fora não faz a menor diferença, porque, para cada atração exercida por uma parte dessa casca situada de um lado da Terra, existe uma atração igual exercida por uma parte da casca situada do outro lado da Terra. Continue a cair. Quando você se aproxima do centro, a massa da esfera que exerce atração gravitacional sobre você diminui cada vez mais e o mesmo acontece com a atração gravitacional. Quando você passa pelo centro, a atração é momentaneamente nula. A subida, passando pelo resto do túnel, é o inverso da descida. Em condições ideais, tais como a ausência de resistência do ar, distâncias iguais para a descida e a subida, além da idéia de que você conseguiu de alguma forma miraculosa sobreviver ao calor e outras condições letais existentes no núcleo da Terra, você iria parar logo que chegasse à abertura de saída do túnel. O tempo total de trânsito seria cerca de 42 minutos. (Esse resultado foi obtido com base na suposição de que a densidade da Terra é uniforme. Como o núcleo é mais denso que o resto da Terra, a viagem levaria um tempo pouco menor.) Se você não saísse ao chegar ao outro lado, iria se movimentar para baixo e para cima no túnel para sempre. Se o túnel ficasse em algum outro lugar, teria que ser curvo para que você não se chocasse com os lados. O problema é que você começaria a descida com a velocidade de rotação do local escolhido para entrada do túnel. Quando você caísse em direção ao centro, passaria por trechos com menor velocidade de rotação e se chocaria com as paredes do túnel. O túnel em linha reta entre as cidades estaria mais próximo do centro da Terra no ponto médio do túnel. Um trem iria essencialmente cair na primeira parte da ferrovia e subir de volta na segunda parte. Seria necessário apenas fornecer ao trem um pouco de energia para superar o atrito e a resistência do ar. A viagem levaria 42 minutos, o mesmo tempo que o necessário para ir de um pólo a outro. Deixo os detalhes da história de ficção científica por conta do leitor.

1.142 • A distensão de sacolas plásticas de compras Quando você enche uma sacola plástica com artigos de supermercado e carrega a sacola pelas alças, por que as alças inicialmente agüentam a carga mas, alguns minutos depois, começam a ceder, às vezes a ponto de rasgar?

Resposta Se você pendura uma carga na extremidade inferior de uma mola que pende do teto, a mola se distende até certo ponto e depois permanece como está. O plástico, que é composto de polímeros, apresenta um comportamento diferente. Se você pendura uma carga na parte inferior de uma faixa de plástico, a faixa inicialmente se distende como uma mola mas, em seguida, passa a se distender de uma forma diferente, conhecida como fluência viscoelástica. O mecanismo dessa fluência pode variar de polímero para polímero, mas uma explicação simplificada é a seguinte: o polímero é formado por muitas moléculas longas e emaranhadas, assim como um prato de espaguete. Quando o polímero é submetido a uma carga, essas moléculas se desembaraçam parcialmente porque são puxadas na direção da carga. A reorientação global das moléculas possibilita que o plástico se distenda. Se o plástico esticar muito, pode afinar perpendicularmente à direção da carga, processo conhecido como empescoçamento. Você pode observar o empescoçamento em um pedaço de plástico usado para embrulhar alimentos. Corte uma faixa de um palmo de comprimento e dois dedos de largura e estique-a até observar o empescoçamento.

1.143 • A Calçada do Gigante e colunas de amido A Calçada do Gigante, na Irlanda do Norte, é um antigo campo de lava que hoje é formado por colunas de basalto de várias alturas. As colunas são impressionantes, porque apresentam uma seção reta poligonal, e muitos desses polígonos são hexágonos. Por que a lava, ao se solidificar, produziu colunas verticais de seção reta poligonal? Você pode produzir colunas parecidas secando uma mistura de água e amido de milho com uma lâmpada de infravermelho.

Resposta Quando a lava esfria lentamente, trincas (fraturas) dispostas aleatoriamente se formam na superfície e penetram no interior da lava. As trincas acontecem porque, quando a lava esfria, tende a se contrair, o que a submete a uma tensão trativa (tendência a separar-se em várias partes). Quando a tensão é tão grande que supera a resistência mecânica da lava, forma-se uma trinca, o que alivia a tensão. Quando uma trinca em formação se encontra com uma trinca já existente, a tensão ao longo da trinca mais antiga guia a trinca em formação, produzindo uma interseção perpendicular. Após esse estágio inicial de formação de trincas, um sistema de trincas secundárias se forma na lava. Essas trincas podem começar em linha reta, mas, quando penetram na lava, tendem a se dividir (bifurcar-se). Dependendo da taxa de resfriamento da lava, a interseção das trincas secundárias com as trincas primárias tende a dividir a lava em colunas de seção reta pentagonal ou hexagonal. A formação de trincas primárias e secundárias pode ser observada em muitas situações, tais como na secagem da lama. Você também pode estudar a formação de trincas de modo controlado usando uma mistura de água e amido. Quando a água se difunde (se espalha) pela mistura e evapora, a mistura tende a se contrair e, portanto, é submetida a uma tensão trativa, com formação de trincas. Dependendo da taxa de evaporação da água, as trincas secundárias podem produzir colunas pentagonais ou hexagonais de amido seco.

1.144 • Unhas quebradas Se você racha uma unha, por que a trinca tende a seguir para a esquerda ou para a direita e não para a base da unha?

Resposta Quando uma trinca aparece na ponta da unha, ela tende a se propagar na direção que exige menor energia para separar as células. A unha consiste em três camadas: a camada inferior é uma ceratina moderadamente dura; a camada central, mais espessa, é uma ceratina mais dura; e a camada superior é uma ceratina mais macia. A resistência da unha é determinada principalmente pela camada central, que é formada por células compridas e estreitas cuja maior dimensão é paralela à borda da unha. Menos energia (cerca de metade) é necessária para separar duas dessas filas do que para partilas. Assim, a trinca tende a se desviar para a esquerda ou para a direita em vez de se propagar na direção da base da unha.

1.145 • Fazendo bolas de papel Pegue uma folha de papel e faça uma bola, amassando a folha com as mãos. Rapidamente você chega a um ponto em que não é mais possível amassar a bola. Mesmo assim, 75% da bola são constituídos apenas de ar. O que o impede de continuar a amassar a bola?

Resposta Ao amassar o papel, você forma arestas curvas (dobras) e pontos cônicos (pontas). É preciso despender energia para reorientar as fibras do papel, colocando-as nessas novas configurações, e é necessário fazer força para vencer o atrito entre as fibras e entre as superfícies do papel. Em outras palavras, a energia fica armazenada nos lugares em que o papel está submetido a tensões. Se você desdobrar a folha, verá as linhas e regiões de distorção permanente produzidas pela tensão. Para amassar uma bola de papel ainda mais, você tem que romper arestas existentes e também criar arestas novas, o que exige mais energia. É cada vez mais difícil reorganizar as fibras. Finalmente você chega a um estágio em que novas quebras exigem mais energia e força do que você é capaz de fornecer. Ainda assim, se você colocasse a bola de papel debaixo de um peso, ela cederia gradualmente, durante semanas ou mesmo anos. As fibras se movem gradualmente, sofrendo um escoamento plástico, como se estivessem em um plástico viscoso.

1.146 • Exemplos divertidos e trágicos de expansões explosivas

Um dia, R. V. Jones, da Universidade de Aberdeen, estava portando uma pistola quando encontrou um béquer com água do lado de fora de um laboratório de Oxford. Só de brincadeira, atirou no béquer, imaginando que ele se despedaçaria em uma pilha de fragmentos ao ser atingido pela bala. Em vez disso, o béquer desapareceu. Mais tarde, ele deu uma aula explicando por quê. Anos mais tarde, tendo em mente a aula de Jones, os Engenheiros Reais de Aberdeen saíram para derrubar uma grande chaminé industrial. Colocaram uma carga explosiva na parte inferior da chaminé de tijolos e depois encheram a chaminé com 2 metros de água. Esperavam que a detonação destruísse a fundação e derrubasse a chaminé. Metade da previsão deu certo. Os 2 metros inferiores da chaminé realmente foram destruídos, mas a detonação foi tão uniforme que o resto da chaminé caiu verticalmente nos restos da antiga base e permaneceu intacto. Assim, os Engenheiros Reais ficaram com um problema ainda pior para resolver. Por que o béquer e os 2 metros inferiores da chaminé foram destruídos de forma tão completa? Uma seqüência de fotografias impressionantes feitas por “Doc” Edgerton, do MIT, algumas das primeiras fotografias estroboscópicas, mostra o que acontece quando uma lâmpada incandescente comum é atingida por uma bala de revólver. Quando a bala penetra na lâmpada, reduz a pó o vidro no ponto de entrada e parte do pó é lançada de volta em direção à arma. As leis das forças e do momento não deveriam exigir que o pó fosse lançado apenas no sentido de movimento da bala? Quando o presidente John F. Kennedy foi assassinado, parte da massa encefálica foi jogada na parte traseira do carro, na direção genérica de Lee Harvey Oswald, a pessoa que, segundo a maioria dos investigadores, disparou o tiro fatal. Entretanto, alguns investigadores acreditam que esse fato é, na verdade, uma prova de que outro tiro veio de um segundo atirador de tocaia em um outeiro situado à frente do carro. Esse raciocínio está correto?

Resposta Quando uma bala atinge um béquer vazio, o vidro nas proximidades dos pontos de entrada e saída vira pó, enquanto o resto do vidro se parte em pedaços maiores quando linhas de fratura se propagam nos lados do béquer. Se o béquer estiver cheio de água, a água não pode se expandir para cima com velocidade suficiente para acomodar o espaço ocupado pela bala e pelos efeitos de sua onda de choque, o que faz a água pressionar as paredes do béquer para fora, reduzindo todo o béquer a pó e arremessando as partículas em todas as direções. O mesmo aconteceu com os tijolos nos 2 metros inferiores da chaminé quando a explosão aumentou bruscamente a pressão da água no interior da chaminé. O jorro de pó de vidro para trás na fotografia de Edgerton também se deve à expansão de um fluido, o gás contido na lâmpada. Não quero entrar no debate em relação ao assassinato do presidente Kennedy, mas o fato de que foi encontrada massa encefálica na parte traseira do carro provavelmente se deve à resposta do fluido presente no cérebro ao impacto súbito da bala de Oswald.

1.147 • Por que um quadro pendurado na parede fica torto Se você pendurar um quadro com um fio curto passando por cima de um apoio, como um prego, por exemplo, é provável que ele acabe ficando torto. O que torna o quadro instável? Será que você pode fazer alguma coisa para estabilizá-lo, além de amarrar o fio no prego ou usar dois pregos muito espaçados?

Figura 1-48 / Item 1.147 Os ângulos são importantes para a estabilidade do quadro.

Resposta Quando o fio é curto, o quadro fica instável porque qualquer perturbação fortuita permite que o centro da sua distribuição de massa atinja um nível menor através de uma inclinação do quadro. Você pode eliminar a instabilidade usando um fio comprido. O comprimento mínimo depende do ângulo entre as seções do fio na posição do prego e do ângulo à esquerda e à direita entre as diagonais do quadro (Fig. 1-48). Quando o ângulo entre as diagonais é menor que o ângulo na posição do prego, o quadro fica instável. Usando um fio mais comprido, é possível reduzir o ângulo na posição do prego. Quando ele se torna menor que o ângulo entre as diagonais, o quadro não consegue baixar o centro de massa assumindo uma posição inclinada, e por isso fica estável.

1.148 • Duas molas e uma surpresa Tome duas molas de comprimento e rigidez aproximadamente iguais e use-as, juntamente com três pedaços de corda, para sustentar um bloco, como mostra a Fig. 1-49. Uma das cordas é usada para ligar as molas e encontra-se sob tensão. As outras duas cordas têm o mesmo tamanho, mas são compridas demais para ajudar a sustentar o bloco e, portanto, ficam frouxas. Se você corta a corda curta de ligação para que as cordas mais compridas passem a ajudar a sustentar o bloco, será que o bloco desce?

Resposta Quando você corta a corda curta, a nova posição do bloco é determinada por dois fatores. O primeiro é que o bloco agora pende de duas cordas mais compridas; como essas cordas estavam originalmente frouxas e agora estão sob tensão, o bloco tende a ficar em um nível mais baixo. O segundo fator tem a ver com o grau de extensão das molas. No arranjo original, cada mola sustentava o peso total do bloco, mas, no novo arranjo, cada uma sustenta apenas metade desse peso. Assim, nesse novo arranjo, as molas estão menos distendidas e, portanto, o bloco tende a ficar mais para cima. Contanto que as cordas mais compridas não sejam compridas demais, este segundo fator prevalece e o bloco acaba ficando acima da posição inicial.

Figura 1-49 / Item 1.148 Arranjo de duas molas e cordas frouxas.

1.149 • A estabilidade de uma lata de refrigerante A estabilidade de uma lata de refrigerante ou de cerveja em uma mesa é medida pela energia necessária para incliná-la em relação à sua posição normal até o ponto em que seu centro de massa fica diretamente acima da borda que ainda está apoiada na mesa. Uma lata cheia é mais ou menos estável que uma lata vazia? A lata é mais estável para alguma altura intermediária do líquido? A pergunta pode ser importante se a mesa estiver em um avião que passa por uma turbulência ou se um garçom tentar fazer deslizar a lata ao longo da superfície do balcão.

Resposta Uma lata completamente cheia é mais estável que uma lata vazia. Embora o centro de massa fique na mesma altura nos dois casos, é preciso mais energia para inclinar uma lata cheia a ponto de fazê-la tombar. Se você drena lentamente o líquido de uma lata, três fatores influenciam a estabilidade da lata. O centro de massa cai até atingir a superfície do líquido e depois começa a subir. A massa do líquido diminui. Quando a lata é inclinada, o líquido restante se desloca de tal modo que a superfície superior permanece na horizontal. Levando em conta esses fatores, chega-se à conclusão de que uma lata típica de cerveja ou refrigerante é mais estável quando a altura do líquido é ligeiramente maior que o raio da lata.

1.150 • Pêndulo de Wilberforce O curioso pêndulo mostrado na Fig. 1-50 tem o nome de L. R. Wilberforce, físico inglês que o investigou em 1894. Consiste em uma mola presa a um pequeno objeto com braços ajustáveis. Quando a mola é puxada para baixo e solta, o objeto primeiro oscila para cima e para baixo, mas o movimento é logo substituído por um movimento de rotação. Daí em diante, o movimento

passa a mudar periodicamente de linear para rotativo. Os braços do objeto são necessários porque, para que o sistema exiba esse comportamento, a freqüência das oscilações puramente lineares tem que ser igual à freqüência das oscilações puramente rotativas. Para isso, os comprimentos dos braços precisam ser ajustados. Por que o pêndulo de Wilberforce se comporta de modo tão peculiar?

Resposta O pêndulo de Wilberforce é semelhante aos pêndulos acoplados que foram descritos em um item anterior. Neste caso, os modos normais de movimento são as oscilações lineares e rotativas do objeto. Os modos estão acoplados porque, quando a mola oscila e muda de comprimento, o enrolamento e o desenrolamento das espiras exigem que ela também gire. A rotação é inicialmente pequena, mas logo absorve toda a energia. Enquanto gira, o objeto enrola e desenrola a mola, o que altera seu comprimento. A variação é pequena no início, mas logo absorve toda a energia. O processo de transferência se repete indefinidamente.

Figura 1-50 / Item 1.150 O pêndulo de Wilberforce alterna oscilações verticais e oscilações rotativas.

1.151 • Largadas das corridas de dragster Nas corridas de dragster, realizadas em uma pista de um quarto de milha, existem duas grandezas importantes: a velocidade final e o tempo decorrido. Por que, para se preparar para a corrida, o piloto acelera o motor, fazendo girar as rodas traseiras? Por que essa medida reduz o tempo gasto no percurso mas não aumenta apreciavelmente a velocidade final?

Resposta Os pneus traseiros são postos para girar para que parte do material se funda. Depois de esfriar por alguns segundos, o material fica pegajoso e, portanto, aumenta a tração das rodas quando começa a corrida. A maior tração possibilita uma grande aceleração inicial e, portanto, reduz o tempo gasto no percurso, mas a velocidade final é definida principalmente pela potência do motor, ou seja, a taxa máxima à qual o motor pode fornecer energia.

1.152 • Desviar ou frear

É difícil encontrar uma física com mais impacto no mundo real do que uma que envolva a possibilidade de nossa morte. Suponha, por exemplo, que você descubra de repente que seu carro está rumando na direção de uma parede de tijolos em um cruzamento em T. Você deve pisar fundo no freio, desviar para a esquerda ou para a direita a toda velocidade, ou desviar enquanto pisa no freio? Suponha, em vez disso, que você veja um caixote à sua frente em um trecho reto de uma rodovia. Para não bater no caixote você deve pisar fundo no freio ou tentar se desviar? Se o seu carro e outro carro estão se dirigindo para um cruzamento ao longo de ruas perpendiculares e com a mesma velocidade, você e o outro motorista devem pisar fundo no freio sem mudar de direção ou cada um de vocês deve se desviar do outro de modo que os carros terminem deixando o cruzamento ao longo de caminhos que não se cruzam?

Resposta Vamos ignorar todas as questões práticas, tais como o estado dos freios, o tempo de reação e as condições do pavimento. Nesse caso, de acordo com um estudo, frear sem desviar da parede é a melhor opção. Considere a situação em que a força de atrito nos pneus é máxima e permite que você pare a uma pequena distância da parede. Uma curva circular para uma rua lateral necessitaria de uma força nos pneus duas vezes maior, porque é necessária uma força adicional para fazer o carro mudar de direção. Assim, se você tentar se desviar, a força vai superar o atrito e o carro vai derrapar, rodopiar e finalmente bater na parede. Mesmo que você freasse na curva, isso não o impediria de bater na parede. A possibilidade de se desviar de um caixote depende da razão entre a largura do caixote e a distância entre você e o caixote quando inicia a manobra. O caso marginal acontece quando a largura é cerca de metade da distância. Se o caixote for mais largo, os estudos sugerem que você deve frear sem mudar de direção. Se o caixote for mais estreito, você deve tentar se desviar. Na situação em que dois carros estão a ponto de colidir em um cruzamento, a melhor opção pode ser que os motoristas tentem se desviar. Entretanto, o risco não diminui muito, já que os carros saem da pista e podem colidir com outros objetos.

1.153 • Ultrapassando um ônibus Um ônibus reduz a velocidade para fazer uma curva em um cruzamento, mas existe espaço suficiente na outra faixa para você ultrapassá-lo (Fig. 1-51). Será que esta é uma manobra aconselhável?

Figura 1-51 / Item 1.153 Carro ultrapassando um ônibus em uma curva.

Resposta Quando o ônibus faz uma curva, sua traseira gira em torno das rodas traseiras e é projetada no sentido contrário ao da curva. A menos que a curva seja suave, a traseira do ônibus pode invadir a faixa ao lado um metro ou mais e, portanto, bater no seu carro se você estiver tentando ultrapassá-lo. Quanto mais fechada for a curva, maior a parte do ônibus que vai invadir a sua pista.

1.154 • A região de compressão de uma fita adesiva Em muitos tipos de fita adesiva, quando você puxa a fita do rolo, uma curta região de compressão (na qual a fita fica claramente comprimida no rolo) se forma logo à frente do ponto em que a fita deixa o rolo. Você pode ver melhor a região de compressão se grudar dois pedaços de fita e, em seguida, desgrudá-los lentamente. O que causa a linha de compressão?

Resposta Quando a fita é puxada do rolo, a parte separada gira para longe do rolo em volta da linha em que a fita se separa do rolo. A fita é suficientemente rígida para que essa rotação da parte separada cause uma rotação da porção que está prestes a ser separada, pressionando o adesivo viscoso contra o rolo. Quando você deixa de separar a fita do rolo, elimina a rotação e, portanto, a região de compressão desaparece.

1.155 • Bobsled em uma curva No bobsled, o objetivo é, naturalmente, concluir a corrida do alto do circuito até a base no menor tempo possível. Muitas vezes, a vitória é decidida por uma fração de segundo, uma margem que pode ser apenas uma parte em 1000. Nas partes retas da pista, a idéia é deslizar da maneira mais suave possível. Que estratégia deve ser usada em uma curva? Ao entrar na curva, você deve usar a parte superior da pista ou a parte inferior? Existe risco de capotar nos dois casos?

Resposta Imagine que você esteja fazendo uma curva circular em uma pista rápida. Para que possa mudar de direção, uma força centrípeta precisa atuar sobre você na direção do centro do círculo. Quanto mais rápido você faz a curva, maior deve ser a força centrípeta. Esta força é fornecida pelo atrito do trenó com a pista, que compensa a tendência do trenó de continuar em linha reta. (Estamos falando do atrito perpendicular aos patins do trenó, não do atrito ao longo dos patins, que tende a frear o trenó.) Se você entra em uma curva depressa demais, esse atrito é insuficiente, o trenó derrapa e você sofre um acidente. As curvas de uma pista de bobsled são inclinadas para que possam ser feitas em alta velocidade. A inclinação muda a direção que a superfície de gelo exerce sobre o trenó. Essa inclinação é em direção ao centro da curva para que a força de reação da superfície do gelo forneça uma força centrípeta adicional. Isto permite que você faça a curva mais depressa sem derrapar, contanto que use a parte mais alta da pista. Entretanto, você não deve subir mais que o necessário, por três razões: (1) quanto mais alto você sobe, maior a distância percorrida para completar a curva, de modo que você aumenta o tempo do percurso. (2) Se você sobe, tanto o atrito ao longo dos patins do trenó como a resistência do ar têm mais tempo para atuar sobre o trenó, de modo que você sai da curva com uma velocidade menor do que se tivesse ficado mais baixo. (3) Subir em baixa velocidade pode resultar em uma capotagem, por causa da inclinação excessiva.

Figura 1-52 / Item 1.156 As oscilações podem manter o anel no bastão.

1.156 • Rápido demais para escorregar O aparelho original da Fig. 1-52 é formado por um anel livre para deslizar ao longo de uma haste. A extremidade superior da haste (que contém um eixo) é forçada a oscilar horizontalmente ao longo de uma pequena distância. Se as oscilações são lentas, o anel escorrega para fora da haste; mas, se são rápidas, o anel permanece na haste apesar de ser puxado para baixo pelo peso. O que o mantém na haste?

Resposta Se o eixo ficasse parado ou oscilasse devagar, a gravidade iria, evidentemente, puxar o anel para fora da

haste. Quando as oscilações são rápidas, porém, a gravidade não consegue fazer isso. O eixo se movimenta mais devagar perto das extremidades de suas oscilações e mais depressa no centro. Assim, o bastão permanece inclinado a maior parte do tempo. Suponha que a inclinação seja para a esquerda (o eixo se encontra na extremidade esquerda). Embora a gravidade tente fazer o anel escorregar para baixo e para a direita ao longo da haste, antes que o anel possa se deslocar o eixo se move para a direita e a haste se inclina para a direita. Nesse momento, a gravidade tenta movimentar o anel para baixo e para a esquerda, mas, novamente, antes que o anel possa se deslocar, a haste muda de orientação.

1.157 • A casa do Pequeno Príncipe O visitante misterioso que aparece na encantadora parábola O Pequeno Príncipe vinha supostamente de um planeta pouco maior que uma casa. Como seria a vida em um planeta assim? Por exemplo: será que o Pequeno Príncipe conseguiria andar nesse planeta?

Resposta O inspirador deste item extravagante, J. Strnad, imagina um planeta um tanto maior que o do livro e descobre que até andar no planeta seria muito difícil por causa da reduzida atração da gravidade. Se o Príncipe andasse mais depressa que 11 centímetros por segundo, seria lançado no espaço, sem possibilidade de retorno; se andasse mais devagar, mas, ainda assim, mais depressa que 80 milímetros por segundo, seria lançado em órbita em torno do planeta. Algum dia os astronautas terão que lidar com condições semelhantes se tiverem que explorar asteróides do tamanho de casas.

1.158 • Saltando de pára-quedas com uma abóbora Em 1987, em uma brincadeira de Halloween, dois pára-quedistas trocaram uma abóbora entre si enquanto estavam em queda livre, a oeste de Chicago. A brincadeira foi muito divertida até que o homem que estava com a abóbora abriu o pára-quedas. A ação fez a abóbora ser arrancada de suas mãos. Infelizmente, a abóbora despencou de cerca de meio quilômetro, atravessou o telhado de uma casa, bateu no chão da cozinha e se espalhou por toda a cozinha recém-reformada. O que fez o pára-quedista deixar cair a abóbora?

Resposta Quando o homem que estava com a abóbora abriu o pára-quedas, este exerceu sobre ele uma força para cima, que reduziu bruscamente sua velocidade. A força foi mais do que suficiente para arrancar de suas mãos a pobre abóbora, que se espatifou naquela casa a oeste de Chicago.

1.159 • Fisgando um peixe grande Se o peixe que você fisgou é pequeno, você pode recolhê-lo simplesmente rodando o cabo do molinete; mas, se for grande e combativo, o que você deve fazer para recolhê-lo?

Resposta Recolher um peixe envolve uma batalha de torques. Para recolher um peixe grande e combativo, você tem que aplicar uma força considerável à manivela do molinete para gerar torque suficiente para fazê-lo girar. O problema é o braço de alavanca curto com o qual você trabalha: a distância entre a manivela e o seu centro de rotação. Você terá mais facilidade se segurar a vara acima do molinete e puxá-la, de modo a fazê-la girar em torno da extremidade inferior. Se o peixe for muito forte, você pode apoiar a extremidade inferior da vara em algum lugar e puxar a extremidade superior com as duas mãos. Agindo dessa forma, você estará trabalhando com um braço de alavanca maior, de modo que precisará de menos força para puxar o peixe. Depois de levantar a ponta da vara, você deve baixála gradualmente para enrolar a linha. Cansar o peixe, mantendo-o sob controle, é mais fácil com uma vara flexível, porque a vara, ao se encurvar, reduz a distância entre sua mão e a ponta da vara, diminuindo o torque criado pelo peixe. Isto significa que você precisa fazer menos força para manter a vara no lugar.

1.160 • Fiddlesticks Fiddlesticks é um brinquedo no qual um anel de plástico gira em torno de um bastão de madeira. Se você segura o bastão verticalmente, com o anel no alto, e faz o anel girar, este se move lentamente para baixo ao longo do bastão. Por que será que a velocidade de descida diminui e a velocidade de rotação aumenta durante a descida? Se você inverte rapidamente o bastão antes que o anel complete a descida, pode manter indefinidamente o movimento.

Resposta Se você pusesse o anel para rolar em um plano inclinado, ele iria rolar cada vez mais depressa a descida; o aumento de energia cinética seria compensado pela redução da energia potencial. O anel no bastão essencialmente rola bastão abaixo de maneira semelhante, mas usando a superfície interna e não a superfície externa. Em um instante qualquer, o anel está inclinado, com parte da superfície interna tocando o bastão. No instante seguinte, o ponto de contato se moveu em volta do bastão e também para baixo (Fig. 1-53). O ponto de contato continua a descer em espiral ao longo do bastão. Enquanto o anel desce, a energia potencial é convertida na energia cinética responsável pelo aumento da velocidade de rotação.

Figura 1-53 / Item 1.160 O anel está inicialmente inclinado e gira devagar. Mais abaixo, fica menos inclinado e gira mais depressa.

A velocidade de descida depende do passo da espiral, que é função da inclinação do anel. Quanto maior a velocidade de rotação do anel, menor a sua inclinação. O passo da espiral e a velocidade de descida também diminuem. Se dois anéis são postos para girar perto do topo do bastão, o anel de cima pode alcançar o anel de baixo. Quando eles se encontram, a colisão arremessa o anel de cima para o alto, fazendo-o descrever uma espiral para cima.

1.161 • Cata-vento mágico Um brinquedo rústico que deixa muitas pessoas sem saber o que pensar é composto por um bastão oco com vários entalhes e uma hélice na ponta e um segundo bastão que é esfregado nos entalhes (Fig. 1-54). A hélice de madeira é sustentada por um pino que passa por um furo na hélice e penetra no bastão. Mantendo o indicador em um lado do bastão com entalhes e o polegar no lado oposto, você esfrega o segundo bastão nos entalhes. Se você aperta o bastão com força usando o indicador, a hélice gira em um sentido; se você aperta usando o polegar, a hélice gira no sentido oposto. Ao mostrar o brinquedo a alguém pouco familiarizado com ele, você pode disfarçadamente deslocar a pressão do polegar para o indicador para inverter o sentido de rotação. Não existe limite para o número de causas às quais você pode atribuir a inversão, tais como a variação da intensidade dos raios cósmicos. Como funciona o brinquedo?

Resposta Se você não aplica pressão nos lados do bastão com entalhes, as vibrações só fazem a hélice tremer. Quando você aperta um dos lados, porém, a pressão retarda a resposta desse lado às vibrações. A assimetria na resposta dos dois lados força o pino a percorrer uma trajetória elíptica e o atrito entre a hélice e o pino faz a hélice girar no mesmo sentido. Quando você transfere a pressão para o lado oposto do bastão, o pino descreve a elipse no sentido oposto e o sentido de rotação da hélice se inverte.

Figura 1-54 / Item 1.161 A hélice gira na ponta do pino depois que o bastão é posto para oscilar.

1.162 • Lançamento de peso e arremesso de martelo A que ângulo um peso deve ser lançado para maximizar a distância do arremesso? Será que o ângulo ideal é de 45o, como garantem os livros didáticos? Se não é, a diferença se deve à resistência do ar que o peso encontra durante o percurso? A que ângulo um martelo deve ser lançado? Por que razão o atleta gira em torno de si mesmo antes de soltar o martelo, enquanto ao mesmo tempo se move para a frente? Por que o atleta aproxima o martelo do corpo pouco antes de arremessá-lo?

Resposta Se o lançamento fosse efetuado por uma máquina na altura do solo, o ângulo ótimo seria, em tese, de 45°. Se o peso fosse lançado por uma máquina à altura típica de um ser humano, o ângulo ótimo seria, em tese, de cerca de 42°. Entretanto, a maioria dos lançadores de peso prefere um ângulo bem menor, da ordem de 29°, porque o lançamento é, neste caso, fisicamente mais eficiente, e por isso é efetuado com uma velocidade maior. Embora o ângulo menor tenda a diminuir a distância alcançada, a maior velocidade de lançamento mais do que compensa essa redução. (A resistência do ar tem pouca influência.) Para aumentar a energia cinética do martelo, o atleta gira o martelo no ar várias vezes (com os pé plantados no chão) e, em seguida, gira o corpo várias vezes junto com o martelo enquanto também se movimenta ao longo do círculo de lançamento para aumentar ainda mais a velocidade do martelo. O movimento do martelo não é horizontal. Em vez disso, o martelo sobe até um ponto mais alto quando o atleta está voltado para a direção em que pretende arremessá-lo e desce até um ponto mais baixo na direção oposta. Durante a descida, o atleta, com os dois pés momentaneamente plantados no chão, dá um puxão no sentido do movimento do martelo, aumentando assim a energia cinética. Quando está prestes a completar a última rotação e alcança a extremidade do círculo de lançamento, o atleta aproxima o martelo do corpo para aumentar a velocidade. (A situação é como a de um patinador que encolhe os braços e uma perna enquanto gira na ponta do pé, fazendo com isso aumentar a velocidade de rotação.) O martelo é solto em seguida, mais ou menos na altura dos ombros. Assim, o martelo deve ser solto a um ângulo bem menor que 45°, por causa da altura do ponto de arremesso.

1.163 • Saltos de um esquiador descendo uma encosta Se um esquiador experiente que está descendo uma encosta percebe que a inclinação vai aumentar bruscamente, ele se agacha e depois salta para que os esquis deixem a neve antes que ele chegue ao local em que a inclinação aumenta. Por que o esquiador não espera chegar ao local em que a inclinação aumenta para saltar?

Resposta Se não saltar antes de chegar ao local em que a inclinação aumenta, mas, em vez disso, usar esse aumento para ganhar impulso, o esquiador vai percorrer uma distância maior no ar e, portanto, vai cair mais adiante na neve. A queda mais longa resulta em uma aterrissagem mais violenta, que pode facilmente derrubar o esquiador.

1.164 • Puxando a toalha com os pratos na mesa Puxar uma toalha com a mesa posta é uma demonstração clássica das aulas de física. Quando eu era solteiro e tinha dificuldade para começar uma conversa no primeiro encontro, muitas vezes executava o truque para minha companheira, só que não usava pratos e copos comuns, mas béqueres de laboratório e jarras de vinho. A técnica sempre mantinha a conversa acesa. Entretanto, se você experimentar a demonstração com uma namorada, lembre-se de que mostrar não é o bastante. Para dar prosseguimento

à conversa, você precisa explicar como funciona a demonstração. Como ela funciona?

Resposta Ao puxar a toalha com um movimento rápido e firme, você imediatamente reduz o atrito entre a toalha e os pratos. Essa redução é esperada. Quando duas superfícies começam a deslizar uma sobre a outra, o atrito é geralmente menor do que quando elas estão prestes a deslizar. No caso da toalha, boa parte da redução vem dos saltos que os pratos experimentam. Como eles não estão sempre em contato com a toalha, o atrito é menor e a toalha pode deslizar por baixo deles. Entretanto, mesmo esse atrito menor vai movimentar os pratos na sua direção. Quanto mais tempo você puxar, maior será o deslocamento dos pratos, outra razão pela qual você deve puxar rapidamente para reduzir esse tempo.

CURIOSIDADE 1.165 • Puxando com os dentes Em 4 de abril de 1974, John Massis, da Bélgica, conseguiu puxar dois vagões de passageiros da Long Island Railroad, de Nova York, mordendo um freio preso por uma corda aos vagões e se inclinando para trás com as pernas apoiadas nos dormentes da ferrovia. Os vagões pesavam cerca de 80 toneladas (700.000 newtons), mas, como Massis não os levantou, o que importava era a massa. De alguma forma, ele conseguiu movimentar uma massa de cerca de 71.000 quilogramas por uma distância considerável. (Nas aulas de física, a idéia de que o trabalho é o produto da força pela distância que um objeto percorre sob a ação da força pode ser vista apenas de forma abstrata, mas Massis deu nova vida, se bem que estranha, ao conceito.)

1.166 • Cadeira sacolejante Se você está sentado em uma cadeira sobre um piso comum, liso, pode se movimentar junto com a cadeira através de uma série de solavancos, sem encostar os pés no chão. Acontece que um objeto inicialmente estacionário (você e a cadeira, no caso) não pode se movimentar a menos que haja alguma força externa atuando sobre ele. Qual é a força que impulsiona você e a cadeira?

Resposta Para se movimentar junto com a cadeira, primeiro você joga as mãos bruscamente para baixo e para trás. A força para baixo aumenta a pressão da cadeira contra o chão, aumentando o atrito entre a cadeira e o chão, o que evita que a cadeira deslize para trás. A força que você exerce sobre a cadeira também impulsiona seu corpo para a frente. Depois de entrar em movimento, você puxa bruscamente a cadeira para cima e para a frente. O puxão para cima reduz a pressão da cadeira contra o chão e, portanto, reduz também o atrito entre a cadeira e o chão, permitindo que a cadeira deslize para a frente. Assim, a força externa que movimenta você é, na verdade, o atrito encontrado na primeira etapa do processo.

1.167 • Levantando uma pessoa com os dedos Talvez você tenha visto o número a seguir em um espetáculo de mágica: um mágico escolhe três pessoas da platéia para ajudálo a levantar uma quarta pessoa, em geral corpulenta, também escolhida na platéia. O número exige que o mágico e seus três novos assistentes levantem a quarta pessoa de uma cadeira usando apenas um dedo cada. O mágico coloca o dedo indicador sob a axila da pessoa sentada. Os assistentes também usam o dedo indicador: um fica debaixo da outra axila, um debaixo do joelho esquerdo e o último debaixo do joelho direito. Com grande esforço, o mágico e os três assistentes tentam, sem sucesso, levantar a pessoa sentada: ela é simplesmente pesada demais. Para executar o truque, o mágico e os assistentes colocam as mãos na cabeça da pessoa sentada e fazem uma pequena pressão para baixo. Essa pressão supostamente reduz o peso da pessoa. Os dedos são colocados na posição anterior para o levantamento, que é executado a um sinal do mágico, desta vez com sucesso. O que está acontecendo? Obviamente, se uma ligeira pressão para baixo na minha cabeça pudesse reduzir meu peso, eu jamais teria que me preocupar com o excesso de peso.

Resposta Na primeira tentativa, os três assistentes e o mágico executam os movimentos de maneira desordenada, com algumas forças sendo aplicadas mais cedo que outras. As forças desiguais nos quatro pontos do corpo da pessoa que está sentada fazem a pessoa se inclinar, por causa do torque que essas forças desiguais produzem, mas ela não é levantada do chão. Na verdade, o próprio mágico assegura que isso não aconteça, agindo fora de sincronismo com os outros.

Na segunda tentativa, as quatro forças são aplicadas simultaneamente, devido ao sinal de coordenação do mágico. Não existe, portanto, um torque sobre a pessoa sentada e, com o peso distribuído igualmente pelas quatro pessoas, a pessoa pode ser erguida com um esforço razoável.

1.168 • Foguetes e um problema com um trenó a vela Suponha que um foguete inicialmente estacionário seja acionado enquanto está no espaço. Será que ele consegue alcançar uma velocidade maior que a velocidade com a qual seu propelente é ejetado? A velocidade final depende do fato de o combustível queimar mais devagar ou mais depressa? Por que muitos foguetes lançados do solo são construídos para serem disparados em etapas? (A idéia surgiu na China por volta de 1000 d.C.) Será que existe algum número ótimo de estágios? É possível construir um foguete de um único estágio capaz de lançar um satélite em órbita ou enviar pessoas para a Lua? Qual é a viabilidade da idéia de um dos livros de Júlio Verne em que uma cápsula tripulada foi disparada como uma bala por um grande canhão enterrado no solo? Você está em um pequeno trenó em um lago congelado, o qual você pretende atravessar. A margem está coalhada de pedras. Você decide colocar algumas delas no barco para poder impulsioná-lo lançando as pedras em direção à margem, mas só há espaço para muitas pedras. Para imprimir ao trenó uma velocidade final maior, você deve escolher muitas pedras pequenas ou um número menor de pedras grandes? Em outras palavras, você deve lançar massas grandes ou pequenas em cada arremesso? Suponha, para simplificar o problema, que você sempre lance as pedras, grandes ou pequenas, com a mesma velocidade em relação a você e ao trenó.

Resposta O foguete alcançará uma velocidade maior que a velocidade do propelente ejetado se a razão entre a massa inicial do foguete e a massa final for maior que 2,72 (que equivale à exponencial de 1,0). A rapidez à qual o combustível é queimado não afeta a velocidade final do foguete. Um foguete de um único estágio não é capaz de colocar um objeto em órbita da Terra, porque não consegue atingir a velocidade final necessária, que é de aproximadamente 11,2 quilômetros por segundo. É por isso que são usados foguetes de vários estágios. Quando o primeiro estágio esgotou o combustível, ele é descartado para que sua massa não precise mais ser acelerada e o estágio seguinte é acionado. Existe um número ótimo de estágios, quatro ou cinco para foguetes comuns, devido ao custo associado ao uso de um número maior de estágios. Na história de Júlio Verne, os tripulantes não sobreviveriam à aceleração da partida. Você dará ao trenó uma velocidade final maior se lançar um grande número de pedras pequenas em vez de um pequeno número de pedras grandes. Para entender por quê, imagine que você lance apenas uma pedra grande e, em seguida, lance duas pedras menores, cada qual com metade da massa da pedra maior. No segundo caso, a primeira pedra imprime uma certa velocidade para a frente ao trenó e também à segunda pedra, que ainda está dentro do trenó. Isso quer dizer que, quando você lança a segunda pedra, o aumento da velocidade do barco é maior do que quando você lançou a primeira pedra.

CURIOSIDADE 1.169 • Da Terra a Vênus A primeira tentativa de enviar um homem a Vênus aconteceu em Baltimore, Maryland, em 1928. Robert Condit e dois assistentes construíram um foguete com peças de ferro e pano de vela. Era movido a gasolina vaporizada e borrifada em tubos de aço e inflamada por velas de ignição. Condit iria realizar a viagem sozinho, levando comida, água, duas lanternas e um estojo de primeiros socorros. A navegação não era problema, porque ele pretendia orientar a nave cuidadosamente antes da decolagem. Ao chegar a Vênus, usaria um páraquedas de seda de 8 metros para frear a descida. Como, exatamente, ele voltaria para a Terra não estava muito claro, mas, se não houvesse comida ou água no planeta, ele não pretendia ficar muito tempo. No dia do primeiro teste, Condit subiu na nave e ligou o motor para subir cerca de meio quilômetro. Grandes bolas de fogo e fumaça foram expelidas pelos tubos de aço, mas a nave permaneceu no mesmo lugar. Condit aumentou a vazão de gasolina e o fogo ficou tão impressionante que parou o trânsito na rua. A nave, porém, não saiu do chão. Condit manteve o motor ligado até o combustível acabar. É claro que ele jamais chegou a Vênus, senão você já conheceria esta história.

1.170 • A escolha do martelo

Para abrir um buraco em madeira ou pedra macia com um cinzel, você deve usar uma marreta de madeira ou de aço? Qual é a melhor se você quiser abrir um buraco em algo muito mais duro, como granito? Por que um martelo de aço funciona melhor do que um martelo de madeira para cravar um prego?

Resposta Quando o material é macio e requer apenas uma pequena força para penetrá-lo, a idéia é transferir o máximo de energia possível para o buraco. Nesse caso, uma marreta de madeira funciona melhor porque, embora aplique uma força apenas moderada ao cinzel — e, portanto, ao material —, transfere boa parte de sua energia. Quando o material é duro, o buraco é mais difícil de abrir e, portanto, a força é mais importante. Um martelo de aço produz uma força maior porque é mais denso e porque ricocheteia no cinzel e volta. Entretanto, como o choque do martelo de aço com o cinzel é elástico, pouca energia é transferida e a maior parte fica no martelo. Um martelo de aço é, naturalmente, a escolha correta para se cravar um prego. Uma marreta de madeira se deforma ao bater na cabeça do prego, desperdiçando parte da energia da marreta.

1.171 • Regulador de pressão Uma panela de pressão convencional é um recipiente totalmente vedado, com exceção de um tubo central no qual repousa um cilindro. O cilindro tem três furos, cada qual com um diâmetro diferente. Para determinar a pressão no interior da panela, você escolhe qual dos buracos ficará alinhado com o tubo. Como funciona o sistema? Afinal, o peso do cilindro não muda quando um furo diferente é alinhado com o tubo.

Resposta O vapor gerado no interior da panela exerce uma pressão para cima, que tende a levantar o cilindro. A pressão na panela se mantém praticamente igual à pressão necessária para sustentar o cilindro. Quando a pressão excede esse valor, levanta o cilindro e o vapor escapa até que a pressão volte ao nível desejado. Se você alinha o tubo com um furo maior do cilindro, a pressão do vapor é exercida em uma área maior e a pressão necessária para levantar o cilindro é menor. Um furo menor corresponde a uma pressão maior na panela.

1.172 • Uma régua deslizando sobre os dedos Apóie uma régua de um metro horizontalmente nos dedos indicadores, posicionando os dedos nas extremidades da régua, e aproxime os dedos devagar. Os dedos deslizam suavemente sob a régua? Não; primeiro um dedo desliza, depois o outro, e os movimentos dos dois dedos se alternam até que cheguem ao centro da régua. Por quê?

Resposta Apesar das aparências, as condições iniciais dos dedos não são simétricas. Você inevitavelmente faz um pouco mais de força com um dos dedos (o direito, por exemplo) e esse dedo vence primeiro o atrito estático da régua, passando a deslizar. O atrito nesse dedo passa a ser o atrito cinético, que é inicialmente menor que o atrito estático no dedo esquerdo. Quando o dedo direito se move em direção ao centro, porém, a parte da régua sustentada por esse dedo aumenta e o mesmo acontece com o atrito de deslizamento, até que o atrito no dedo direito se torna maior que o atrito no dedo esquerdo. Nesse momento, o dedo direito deixa de se mover e o dedo esquerdo começa a deslizar. Depois de algum tempo, o dedo esquerdo passa a sustentar mais peso que o dedo direito, deixa de se mover e o dedo direito começa a deslizar de novo. O ciclo se repete até que os dedos se aproximem do centro da régua e a régua tombe.

CURIOSIDADE 1.173 • Cabo-de-guerra gigante Harrisburg, Pensilvânia, 13 de junho de 1978: cerca de 2200 alunos e professores tentavam estabelecer o recorde mundial de cabo-de-guerra. A corda de náilon trançado tinha 600 metros de comprimento, 2,5 milímetros de espessura e podia suportar uma força de 57.000 newtons (5.800 quilos). Entretanto, logo depois de iniciada a competição, a corda arrebentou. Os competidores próximos do centro afrouxaram imediatamente os dedos, mas os que estavam mais longe continuaram a puxar com toda a força, fazendo a corda deslizar rapidamente por entre os dedos dos primeiros. Pelo menos quatro alunos perderam dedos ou pontas de dedos por causa do atrito.

1.174 • Atirando ladeira acima e ladeira abaixo Suponha que você tenha ajustado a mira de um rifle para uma certa distância em um estande de tiro. Se você atira em um alvo à

mesma distância mas ladeira acima ou ladeira abaixo, os tiros atingem o alvo na mosca, acima da mosca ou abaixo da mosca?

Resposta Por estranho que pareça, os tiros atingem o alvo acima da mosca, esteja você atirando ladeira acima ou ladeira abaixo. Para corrigir a mira, é preciso multiplicar a distância até o alvo pelo co-seno do ângulo da encosta com a horizontal.

1.175 • Saindo com o carro em uma rua escorregadia Quando a rua está muito escorregadia e um carro tem mudança manual, é melhor arrancar com o carro em primeira ou em segunda marcha?

Resposta Como a rua está escorregadia, o atrito dos pneus é pequeno, o que os leva a deslizar. Para evitar que isso aconteça, você inicialmente deve aplicar às rodas apenas um pequeno torque. Você deve usar apenas a primeira marcha se for capaz de soltar a embreagem bem devagar; caso contrário, engate a segunda para reduzir o torque.

1.176 • Balanceando um pneu Quando um pneu novo é montado em uma roda, precisa ser balanceado, procedimento no qual um pequeno peso de chumbo é preso ao aro. Se o pneu não for balanceado, não rolará suavemente e terá tendência a trepidar ou bater no aro. Os dois problemas se devem ao fato de que a massa da roda não está uniformemente distribuída em torno do centro: a roda se comporta como se tivesse uma massa adicional em algum ponto dentro dela. Quando a roda está balanceada, a massa de chumbo compensa essa massa adicional e a roda passa a girar de modo mais suave. Uma maneira de balancear a roda é pousá-la em uma mesa articulada que dispõe de um nível de bolha. A roda e a mesa funcionam como uma gangorra; a massa adicional faz com que a mesa se incline em uma certa direção. O operador coloca um peso de chumbo do lado oposto da inclinação e apara o peso com um alicate até que a mesa fique nivelada, o que é indicado pelo nível de bolha. Esta técnica é chamada de balanceamento estático. No balanceamento dinâmico, a roda é posta para girar horizontalmente. A massa adicional de um lado faz a roda oscilar, mas, quando um peso de chumbo é adicionado ao aro e aparado apropriadamente, a oscilação desaparece. As duas técnicas de balanceamento são equivalentes? Em outras palavras, as duas eliminam tanto os solavancos quanto a trepidação?

Resposta As duas técnicas de balanceamento não são equivalentes. O balanceamento estático elimina os solavancos; o balanceamento dinâmico elimina a trepidação. Embora o peso de chumbo possa terminar no mesmo lugar, ele será aparado até ficar com tamanhos diferentes nas duas técnicas. Para entender a diferença, considere primeiro o arranjo de gangorra em um balanceamento estático. O peso adicional de um lado da roda cria um torque que tenta fazer a roda girar em um certo sentido. O torque depende do valor da massa adicional e da distância horizontal a que ela se encontra do centro. O peso de chumbo cria um torque no sentido oposto. Como o peso tem que estar no aro da roda, sua distância até o centro é fixa. Assim, para igualar os dois torques, começamos com um peso de chumbo que é grande demais e o aparamos até que seu torque seja igual ao outro. Quando a roda é colocada no carro, ela não vai bater no cubo. A trepidação depende da profundidade a que a massa adicional se encontra no interior da roda. Considere novamente a roda quando ela está na horizontal. Para rodar suavemente, ela tem que girar em torno do eixo vertical que passa pelo centro. Entretanto, a massa adicional a faz girar em torno de um eixo inclinado em relação à vertical; a roda oscila. Para corrigir o eixo de rotação, um peso de chumbo é instalado em algum ponto do aro, como antes, mas agora ele precisa ter um tamanho diferente

e sua posição também pode ser diferente. Embora elimine a oscilação, esse peso não equilibra mais os torques com exatidão e alguns solavancos persistem. Como esses solavancos são pequenos, o balanceamento dinâmico é considerado melhor que o estático.

1.177 • Derrubando uma garrafa com um pêndulo Durante um passeio em um parque de diversões, você se depara com uma barraca em que o jogo consiste em derrubar uma garrafa com um pêndulo suspenso na altura da garrafa. O dono da barraca explica que você não pode arremessar o pêndulo diretamente na garrafa; o desafio está em fazer o pêndulo acertar a garrafa na volta. Não parece muito difícil, não é mesmo? Com um pouquinho de prática, você deve ganhar um prêmio, certo?

Resposta O jogo é desonesto porque o pêndulo vai sempre girar em torno da garrafa se não acertar na garrafa no percurso de ida. Para que ele acertasse na garrafa apenas na volta, seu momento angular teria que mudar durante o percurso e isso não pode acontecer, porque ele não está sujeito a nenhum torque. Entretanto, você pode ser esperto e torcer a corda antes de soltar o pêndulo. Nesse caso, o pêndulo vai girar em torno de si mesmo durante a oscilação e pode interagir com o ar da mesma maneira que uma bola de futebol chutada com efeito. Essa interação pode alterar o trajeto de volta o suficiente para que o pêndulo derrube a garrafa. (É melhor você tomar cuidado, porém, porque o dono da barraca vai ficar furioso.)

1.178 • Taça suspensa, pronta para quebrar Amarre uma taça de vidro ou outro objeto pesado a um objeto menor e mais leve, como, por exemplo, uma borracha, usando uma corda de um metro de comprimento. Segure um lápis horizontalmente, passe a corda por cima dele e puxe o objeto mais leve para a sua esquerda ou a sua direita até que a taça fique logo abaixo do lápis e o objeto mais leve fique aproximadamente horizontal em relação ao lápis. Se você soltar o objeto mais leve, o que vai acontecer? É uma pergunta boba, eu sei. A taça pesada vai puxar a corda (e depois o objeto mais leve) por cima do lápis, cair e se espatifar no chão. Certo?

Resposta No momento em que você larga o objeto mais leve, ele começa a cair, enquanto também é puxado em direção ao lápis pela corda, por causa da taça que está caindo. O movimento combinado faz com que o objeto mais leve se enrole no lápis. A situação se assemelha à de um patinador no gelo encolhendo os braços enquanto gira na ponta do pé: a velocidade angular (de rotação) aumenta para manter constante o momento angular. Neste caso, o momento angular também tem que ser preservado porque não existe torque para alterálo. Assim, a velocidade de rotação do objeto mais leve cresce, o que aumenta a tensão na corda, retardando a queda da taça. Depois que o objeto mais leve gira várias vezes em volta do lápis, o atrito da corda com o lápis é suficiente para interromper a queda da taça, que jamais atinge o chão.

1.179 • Quebrando uma ponta de broca Se uma furadeira de alta velocidade é comprimida com muita força contra a superfície de trabalho, por que a ponta quebra?

Resposta As forças nas extremidades da ponta tendem a envergá-la ligeiramente. Se a velocidade de rotação for maior que um certo valor crítico, essa pequena deformação é rapidamente amplificada a ponto de quebrar a ponta.

1.180 • Relógios balançantes Os relógios de bolso de corda, populares no passado, mantinham a hora certa quando estavam sendo usados mas não quando ficavam em casa, pendurados pela corrente. Neste último caso, o relógio podia adiantar ou atrasar 10 ou mais minutos por dia, enquanto ao mesmo tempo balançava misteriosamente como um pêndulo. Um investigador relatou a estranha visão de uma parede repleta de relógios pendurados pelas correntes, balançando alegremente. O que explica esse comportamento inesperado?

Resposta O movimento pêndular é produzido pelas oscilações rotacionais do balanço (parte do mecanismo de sincronismo) quando a freqüência das oscilações do balanço está próxima da freqüência natural de oscilação do relógio como um todo. Quando a freqüência do balanço é ligeiramente menor que a freqüência de oscilação, os dois movimentos estão fora de fase e o relógio adianta. Quando a freqüência do balanço é maior que a freqüência de oscilação, o relógio atrasa.

CURIOSIDADE 1.181 • Achatando a ponte Golden Gate Em seu 50o aniversário, em 1987, a ponte Golden Gate foi aberta aos pedestres, que a atravessaram para comemorar a data. Um número surpreendente de pessoas apareceu. Quando 250.000 visitantes se aglomeraram na ponte, a parte central ficou plana em vez de formar o arco normal e alguns cabos de sustentação ficaram frouxos. A ponte então começou a oscilar lateralmente (como aconteceu com a Ponte do Milênio em Londres, em 2001). Esse dia de comemoração se tornou um teste de resistência não programado da ponte Golden Gate. Felizmente, ela passou no teste.

1.182 • O balanço dos trens Nos trens convencionais, as rodas são inclinadas, obrigadas a permanecer nos trilhos por um flange e ligadas aos pares através de eixos. Os trilhos, com um boleto arredondado, geralmente se inclinam ligeiramente para dentro. Por que os vagões balançam de um lado para outro quando o trem está passando por um trecho reto da ferrovia? O balanço não só limita a velocidade dos trens, como também tende a deformar os trilhos e o leito da ferrovia. Como o desgaste resultante não é o mesmo nos dois lados, os vagões costumam ser virados ao contrário de tempos em tempos para igualar o desgaste nos dois lados.

Resposta Se o vagão se desloca para a direita, digamos, uma roda da direita passa a girar com um raio maior, enquanto a roda da esquerda gira com um raio menor, devido à inclinação das rodas. Como as rodas estão ligadas rigidamente entre si, têm a mesma velocidade angular, mas a diferença entre os raios faz com que a roda da direita percorra uma distância maior ao longo dos trilhos que a roda da esquerda em um mesmo intervalo de tempo. Essa diferença de velocidade faz com que o eixo deixe de ficar perpendicular aos trilhos e o vagão sofre um deslocamento para a esquerda que faz com que a situação se inverta. Essas oscilações, que podem continuar indefinidamente, são responsáveis pelo balanço do trem.

Figura 1-55 / Item 1.183 A oscilação da antena de um carro (a) a baixa velocidade e (b) a alta velocidade.

Um desvio casual pode iniciar o balanço, mas as forças de atrito resultantes de deformações dos trilhos e das rodas causadas pelo peso do trem também podem iniciar a oscilação. Se a velocidade do trem estiver abaixo de um certo valor crítico, as oscilações causadas por um desvio diminuem com o tempo. Quando a velocidade é maior, porém, as oscilações crescem e o trem só não descarrila por causa dos flanges. Às vezes as oscilações são tão intensas que a roda sai do trilho apesar dos flanges.

1.183 • A oscilação da antena de um carro Algumas antenas verticais para automóveis, especialmente do tipo chicote, podem começar a oscilar quando o veículo está em movimento. Por que a antena balança no padrão da Fig. 1-55a se a velocidade for baixa ou moderada e no padrão da Fig. 1-55b se a velocidade for alta?

Resposta Se prendêssemos a antena em um torno e a fizéssemos balançar, ela oscilaria nos chamados modos (ou padrões) de ressonância e às freqüências de ressonância. Ressonância é o nome dado às oscilações que seguem esses padrões. O padrão mais simples é chamado de modo fundamental e é o que apresenta a menor freqüência (Fig. 1-55a). Nesse padrão, a base da antena não se movimenta (porque está fixa no lugar), a extremidade superior sofre a maior deflexão e os pontos intermediários sofrem deflexões intermediárias. O segundo modo mais complicado, o segundo harmônico, tem um ponto estacionário pouco abaixo da extremidade superior. Quando a antena está em um carro em movimento, o ar tende a criar vórtices atrás da antena. As variações da pressão do ar causadas pelos vórtices fazem a

antena oscilar. A velocidades baixas e moderadas, é excitado o modo fundamental. A velocidades maiores, com os vórtices sendo emitidos pela antena com maior freqüência, é excitado o segundo harmônico.

1.184 • O tanque de estabilização de um navio O balanço de um navio é muitas vezes apenas desagradável, mas se as ondas baterem no lado do navio com a mesma freqüência que o balanço, este pode crescer e atingir níveis perigosos. (Esta igualdade de freqüências é um exemplo de ressonância; um fenômeno parecido pode ser observado quando você empurra uma criança em um balanço cada vez que a criança passa por você.) Para reduzir o risco, antigamente alguns navios eram equipados com um tanque que ia de um lado ao outro do navio e era parcialmente preenchido com água. As dimensões do tanque eram escolhidas de tal modo que o movimento da água no tanque tinha a mesma freqüência que o balanço do navio. Por que esta solução funciona, uma vez que, intuitivamente, o balanço da água deveria aumentar o balanço do navio?

Resposta Imagine que as ondas batem no lado direito do navio com uma freqüência igual à freqüência de ressonância do navio. O balanço do navio não é instantâneo mas, por causa da massa do navio, está defasado cerca de um quarto de oscilação em relação ao impacto, ou seja, um quarto de um balanço completo para a esquerda e para a direita. Da mesma forma, o balanço da água no tanque está defasado um quarto de oscilação em relação ao balanço do navio, o que o faz ficar defasado meia oscilação em relação ao impacto das ondas no navio. Assim, quando as ondas tentam empurrar o navio para a esquerda, o balanço da água tenta empurrar o navio para a direita e o navio tende a ficar parado. Os tanques de estabilização foram usados principalmente em navios alemães por volta do início do século XX. Embora funcionassem bem com ondas regulares, não eram muito úteis quando as ondas eram irregulares e, em alguns casos, chegavam a aumentar o balanço.

1.185 • As costelas das estradas A superfície de muitas estradas de terra é lisa logo que a estrada é construída, mas em pouco tempo começa a apresentar pequenos vales e cristas, separados por distâncias de 0,5 a 1 metro, perpendiculares às margens da estrada. O fato de serem periódicas mostra que essas irregularidades não são causadas pela erosão, como os buracos comuns. Como são produzidas? Por que não são eliminadas pelo peso dos carros? Costelas semelhantes podem ser encontradas em trilhos de trem e de bonde e nas encostas das estações de esqui. Será que esses defeitos se propagam ao longo de estradas, linhas férreas e caminhos?

Resposta As costelas de uma estrada começam a se formar no instante em que uma irregularidade aparece pela primeira vez na superfície inicialmente lisa. Quando um pneu atinge uma irregularidade com velocidade suficiente, pode saltar ligeiramente e produzir uma depressão ao aterrissar. Mesmo que o pneu não perca o contato com a superfície da estrada, a tendência a saltar diminui momentaneamente o peso do pneu e, em seguida, faz com que a roda exerça sobre a estrada uma força maior do que o normal. O impacto produz um pequeno vale que o pneu precisa vencer, de modo que tende a saltar novamente. Quando outros carros passam pelo local, o padrão é acentuado e se propaga ao longo da estrada, mas não se propaga.

1.186 • Vendo apenas uma face da Lua Por que podemos ver metade da Lua? (Na verdade, metade e mais um pouquinho.) Como a Lua gira em órbita da Terra, não deveríamos ver toda a superfície da Lua?

Resposta A força do campo gravitacional terrestre varia com a distância em relação à Terra. Por isso, o campo gravitacional na face mais distante da Lua é mais fraco do que na face mais próxima. Essa variação do campo criou pequenas protuberâncias na Lua, uma na face mais distante e outra na face mais próxima, de modo que a Lua não é esférica. Por causa dessas protuberâncias, o campo gravitacional terrestre faz a Lua girar em torno de si mesma enquanto gira em órbita da Terra. O resultado é que a Lua tem sempre (praticamente) a mesma face voltada para a Terra. Muitos outros satélites naturais no sistema solar também têm a mesma face voltada para o planeta que orbitam.

1.187 • Satélites espiões Quando se quer monitorar as atividades em alguma região da superfície da Terra a partir do espaço, satélites de espionagem

fotografam a região. Os satélites são sincronizados de modo que, quando um satélite deixa de observar uma região, é substituído por outro. Não seria mais fácil manter um satélite sobre a região, deslocando-se em órbita à mesma velocidade que a região de interesse gira em torno do eixo terrestre? Esta estratégia pode parecer boa, mas na maior parte das regiões da Terra é impossível de conseguir. Por que isso acontece e onde a estratégia funciona?

Resposta Um satélite em órbita se mantém em órbita por causa da atração gravitacional da Terra. Essa atração aponta sempre em direção ao centro da Terra, de modo que a órbita tem que ser em torno do centro. Esse fato elimina a possibilidade de um satélite ficar sobre, por exemplo, a cidade de Nova York, porque a órbita seria nesse caso em volta do hemisfério norte da Terra em vez de ser em torno do centro da Terra. Entretanto, um satélite, chamado satélite geoestacionário, pode ficar sobre um ponto na linha do equador, já que a órbita nesse caso será em torno do centro da Terra. O satélite deve ser colocado à altitude adequada (cerca de 1/10 da distância até a Lua) para que gire em órbita com uma velocidade angular igual à de um ponto do equador. Para qualquer outro ponto da superfície terrestre, um satélite espião deve tirar fotografias ao longo de uma linha oblíqua.

1.188 • A resistência do ar acelera os satélites A maioria dos satélites gira em torno da Terra nas camadas superiores da atmosfera, onde a resistência do ar é muito pequena. A resistência do ar deveria frear um satélite da mesma forma que freia um carro de corrida. Entretanto, no caso do satélite, a resistência do ar faz a velocidade do satélite aumentar. De que maneira uma força de frenagem pode causar um aumento da velocidade e, portanto, da energia cinética?

Resposta A resistência do ar reduz a energia total do satélite, que é a soma da energia cinética com a energia potencial, e o satélite desce gradualmente para uma órbita de raio menor. Com a queda, a energia potencial do satélite diminui, mas apenas metade do decréscimo é convertida em energia térmica pelo atrito com a atmosfera. A outra metade se transforma em energia cinética, provocando o aumento de velocidade necessário para manter o satélite em uma órbita de raio menor. Na verdade, esse resultado nada tem de surpreendente: os corpos que caem em direção à Terra costumam ganhar velocidade.

1.189 • Rota para a Lua em forma de oito Quando uma espaçonave é enviada para a Lua, por que sua rota tem a forma de um número oito distorcido em vez de uma elipse que passe pela Terra e pela Lua?

Resposta A rota em formato de oito requer menos energia porque durante boa parte da viagem a nave fica perto da reta que liga os centros da Terra e da Lua. Como ao longo dessa linha a atração gravitacional da Terra e da Lua competem, a força a que a nave está submetida é menor do que seria se a nave percorresse uma órbita elíptica. Assim, é necessária uma energia menor para superar a força resultante.

1.190 • A atração gravitacional da Terra e do Sol sobre a Lua Como a Lua está em órbita em torno da Terra, a atração gravitacional da Terra sobre a Lua tem que ser maior que a atração do Sol, certo? Errado: a atração do Sol sobre a Lua é mais de duas vezes maior que a atração da Terra. Por que, então, não perdemos a Lua?

Resposta A força do Sol realmente domina o movimento da Lua: a Lua gira em torno do Sol. A força da Terra, que é menor, atua como uma perturbação do movimento principal e faz com que a Lua descreva voltas menores Podemos explicar o movimento da Lua dizendo o seguinte: “A Lua gira em torno da Terra enquanto a Terra gira em torno do Sol”.

1.191 • O efeito estilingue gravitacional Se uma cápsula espacial se aproxima o suficiente de um planeta, pode receber uma assistência gravitacional ou efeito estilingue que a faz ganhar energia. Será que não existe uma falha nesta explicação? Imagine que você esteja observando a cápsula a partir de um planeta. Enquanto a cápsula está se aproximando, é natural que ganhe energia devido à atração gravitacional do planeta, mas será que o ganho não é perdido quando a cápsula começa a se afastar?

Resposta O problema da interpretação apresentada está na sua posição: o planeta em que você se encontra está em movimento. A partir desse ponto de vista, parece que a cápsula não vai ganhar energia. Assuma, porém, o ponto de vista de alguém que esteja parado em relação ao Sol. Esse observador veria a cápsula ser atraída gravitacionalmente pelo planeta. Se a cápsula passa perto do planeta atrás da órbita do planeta, a cápsula é efetivamente arrastada ao longo da órbita pelo planeta e, portanto, ganha energia. O planeta perde uma quantidade igual de energia, mas a variação é desprezível por causa da enorme massa do planeta, enquanto o aumento de energia da cápsula é apreciável por causa da massa muito menor da cápsula.

1.192 • Fazendo um mapa da Índia Há muito tempo, quando fizeram os primeiros mapas da Índia, as medidas foram imprecisas, supostamente porque a linha de prumo não ficou exatamente na vertical, principalmente na parte norte do país. Por que esta história é plausível?

Resposta O peso que fica na ponta da linha de prumo pode ser puxado em direção à cordilheira do Himalaia pela atração gravitacional das montanhas, sofrendo um desvio de alguns segundos de arco em relação à vertical. Em outras regiões, uma distribuição não-uniforme de massa introduz erros similares.

1.193 • Barbeando-se com duas lâminas Se uma pessoa se barbeia com duas lâminas, será que existe uma velocidade ótima à qual as lâminas devem percorrer a pele, ou as lâminas devem ser movimentadas o mais depressa possível ou o mais devagar possível?

Resposta Quando a primeira lâmina encontra um pêlo, a primeira coisa que faz é arrastá-lo ao longo da pele na direção do seu movimento, puxando a base do pêlo para cima. Em algum ponto durante o arrasto, a primeira lâmina corta a parte do pêlo que inicialmente estava acima da pele. O restante do pêlo fica novamente na vertical e começa a retrair-se para dentro da pele. Se a segunda lâmina alcança o pêlo depois que ele voltou para a vertical e antes que se retraia, pode cortar uma parte maior do pêlo, o que possibilita que a pessoa fique mais tempo sem se barbear novamente. Para um barbear tão rente, a lâmina não deve ser movimentada tão depressa que o recuo não ocorra nem tão devagar que a retração seja completa. A velocidade ótima é cerca de 4 centímetros por segundo, mas o valor varia de uma pessoa para outra por causa de propriedades diferentes da pele e do pêlo (principalmente a elasticidade).

1.194 • A lateralidade da erosão fluvial Existem argumentos de que, em média, a margem direita de um rio no hemisfério Norte sofre mais erosão que a margem esquerda, enquanto no hemisfério Sul acontece o contrário. Embora o efeito seja pequeno e mascarado por outros fatores, por que essa idéia pode estar correta?

Resposta A rotação da Terra pode produzir um aparente desvio dos rios para a direita no hemisfério Norte e para a esquerda no hemisfério Sul. Os desvios não são verdadeiros porque observamos os rios a partir de uma superfície em rotação. Entretanto, podem ser visíveis em movimentos em larga escala, como as correntes atmosféricas que fazem os furacões girarem no sentido anti-horário no hemisfério Norte. A correnteza de um rio caudaloso, como o rio Mississippi, também pode exibir o desvio aparente.

2.1 • Carros de corrida no teto Um carro que faz uma curva não compensada em uma prova automobilística depende apenas do atrito para permanecer na prova. Se a velocidade for excessiva, o atrito é insuficiente e o carro derrapa para fora da pista. Antigamente, os carros tinham que fazer as curvas bem devagar. Os carros de corrida modernos, porém, são projetados para serem literalmente empurrados para baixo, em direção ao piso, para dar às rodas uma boa aderência. Essa pressão para baixo, chamada sustentação negativa, é tão forte que alguns pilotos se vangloriam de que poderiam dirigir o carro de cabeça para baixo, desafiando a gravidade. O que causa a sustentação negativa? Será que um carro de corrida pode realmente ser pilotado de cabeça para baixo, como aconteceu com um carro de passeio no primeiro filme Homens de Preto? A sustentação negativa é garantida quando um carro é o único a fazer uma curva, em uma tomada de tempo, por exemplo, mas um piloto experiente sabe que a sustentação negativa pode desaparecer durante a corrida. O que a faz desaparecer?

Resposta Cerca de 70% da sustentação negativa em um carro se devem a um ou mais aerofólios que desviam o ar que passa por cima do veículo. O resto da sustentação negativa é chamado efeito solo e tem a ver com o escoamento de ar por baixo do carro. Quanto mais depressa o carro se move, maiores ficam ambas as causas da sustentação negativa. Nas velocidades elevadas típicas de uma prova de Fórmula Um, a sustentação negativa é maior que a força gravitacional. Assim, se o carro passasse de uma pista normal para uma pista invertida (sem reduzir a velocidade), a sustentação negativa, agora dirigida para cima, compensaria com sobras a força gravitacional para baixo. Isso significa que o carro realmente poderia correr de cabeça para baixo, como no filme Homens de Preto. O efeito solo se deve ao modo como acontece o escoamento do ar embaixo do carro. Quando o ar é comprimido no pequeno espaço que existe entre o carro e o piso, sua velocidade aumenta, ao mesmo tempo que a pressão diminui. Assim, a pressão atmosférica fica menor embaixo do carro do que em cima, e a diferença de pressão empurra o carro contra a pista. Em uma corrida, o piloto pode reduzir a resistência do ar seguindo outro carro de perto, procedimento conhecido como pegar o vácuo. Entretanto, o carro da frente perturba o escoamento do ar embaixo do carro de trás, eliminando o efeito solo. Se o piloto do carro de trás não antecipar a eliminação e reduzir a velocidade de forma proporcional, pode acabar derrapando.

Figura 2-1 / Item 2.1

O Chaparral 2J era um antigo carro de corrida que usava o efeito solo. Era equipado com dois ventiladores na traseira para sugar o ar que passava debaixo do carro depois de entrar por aberturas na parte da frente. Uma saia colada ao piso, dos dois lados do carro, evitava a entrada lateral de ar. A baixa pressão embaixo do carro mantinha o carro na pista nas curvas e o vento para trás produzido pelos ventiladores diminuía a formação de vórtices atrás do carro, reduzindo o arrasto. Em conseqüência, o carro era razoavelmente rápido nas partes retas da pista e imbatível nas curvas. Era, na verdade, tão bom, que foi banido das corridas.

2.2 • Pegando o vácuo Os pilotos de carros de corrida de várias categorias se beneficiam mutuamente pegando o vácuo, procedimento no qual o carro de trás se posiciona quase colado ao carro da frente. Esta manobra é, obviamente, perigosa. Que vantagens ela oferece?

Resposta Apesar do desenho aerodinâmico, um carro de corrida encontra muita resistência do ar. Uma das causas dessa resistência é a diferença de pressão entre a frente e a traseira do carro. Na frente, o impacto do ar cria alta pressão. Na traseira, o escoamento do ar se divide em vórtices, que têm uma pressão atmosférica menor. A diferença de pressão entre a frente e a traseira tende a frear o carro, exigindo maior consumo de combustível para manter a velocidade. Se o carro de trás se mantém quase colado ao carro da frente, os dois pilotos se beneficiam. O carro de trás desfaz a formação de vórtices na traseira do carro da frente e o carro da frente tem uma diferença de pressão menor da frente para a traseira. O carro de trás tem menos impacto do ar na frente e, portanto, também tem uma diferença de pressão menor da frente para a traseira. O piloto de trás pode usar um slingshot pass (uma ultrapassagem tipo estilingue) para surpreender o piloto da frente. Para isso, ele se afasta do carro da frente o suficiente para permitir a formação de vórtices atrás do carro do adversário. Os vórtices de baixa pressão tendem a frear o carro da frente e acelerar o carro de trás. Sincronizando a manobra adequadamente, o piloto de trás pode acelerar, entrar na região dos vórtices e ultrapassar o carro da frente. Pelo que consta, Junior Johnson foi o primeiro a empregar essas técnicas aerodinâmicas em 1960, quando venceu a prova das 500 milhas de Daytona, apesar de estar competindo com outros carros considerados mais rápidos. Pegar o vácuo é um recurso também usado em outros esportes, principalmente em corridas de bicicleta. Também é praticado por animais, como quando a mãe pata leva os patinhos para nadar em fila indiana. A velocidade dos patos, naturalmente, não é suficiente para que tenham que se preocupar com a aerodinâmica, mas os patinhos podem se beneficiar da esteira deixada pela mãe pata, que é sempre a primeira da fila.

2.3 • Aerodinâmica de trens em movimento Um trem de alta velocidade, que se movimenta a 270 quilômetros ou mais por hora, produz uma onda de compressão enquanto

abre caminho no ar, forçando o ar a escoar pelos lados e por cima do teto do trem. O que acontece quando o trem entra em um túnel? O que ocorre quando dois trens desse tipo passam perto um do outro em sentidos contrários? Se um trem de alta velocidade passar por uma pessoa que esteja de pé ao lado dos trilhos (como pode acontecer em uma estação em que o trem não pára), será que a pessoa corre perigo?

Resposta Quando um trem passa por um túnel, podemos simplificar a situação supondo que o trem esteja parado e o ar escoa ao redor dele. Enquanto o ar é empurrado para dentro do espaço apertado entre o trem e a parede do túnel, sua velocidade aumenta. A energia necessária para esse aumento tem que vir da reserva de energia associada à pressão do ar e, portanto, a pressão diminui. Um passageiro do trem pode sentir essa redução de pressão nos ouvidos quando o ar do ouvido médio exerce nos tímpanos uma pressão para fora. (A sensação é parecida com a que experimentamos quando estamos em um avião que sobe rapidamente.) Quando dois trens passam um pelo outro, a pressão do ar entre eles também diminui. Se os trens estiverem dentro de um túnel, a redução pode ser ainda maior. Antigamente, quando as velocidades dos trens começaram a aumentar, as janelas às vezes eram arrancadas dos trens durante a passagem. Tanto nos túneis como fora deles, o escoamento do ar em volta de trens que se aproximam, se cruzam e se afastam é muito complicado e só pode ser modelado em computador. Entretanto, podemos dar uma explicação simplificada para a redução de pressão. Cada trem arrasta o ar do espaço entre eles e, portanto, com menos ar nessa região, a pressão fica menor. Quando um trem de alta velocidade passa por uma pessoa, a onda de compressão emitida pela frente do trem e o escoamento de ar altamente turbulento que se segue podem derrubar uma pessoa no chão ou, pior ainda, contra o trem ou sobre os trilhos.

2.4 • Queda da velha ponte de Tacoma Narrows Um dos filmes mais impressionantes da história da física é o que mostra as torções violentas da velha ponte de Tacoma Narrows em 7 de novembro de 1941. O vento estava apenas moderado naquela manhã (cerca de 68 quilômetros por hora), o que não impediu que a ponte, considerada extremamente robusta, fosse destruída poucas horas depois que as oscilações começaram. Durante a construção da ponte, os operários a apelidaram de “Galloping Gertie” (Gertrudes Galopante), devido à sua tendência de oscilar longitudinalmente, que a fazia lembrar uma montanha-russa. De fato, depois que a ponte foi inaugurada, muitos motoristas usavam a ponte apenas por causa da novidade das oscilações, que eram às vezes suficientes para fazer os carros à frente desaparecerem. Embora muitas pessoas tenham atribuído a queda da ponte a essas oscilações longitudinais, tudo indica que elas pouco tiveram a ver com a queda. O que causou de fato a queda?

Resposta A viga-mestra da ponte tinha a forma de um H achatado, com uma viga de reforço de cada lado. Quando o vento encontrava o lado rombudo no lado da ponte voltado para o vento, vórtices se formavam acima e abaixo do tabuleiro da ponte. Quando esses vórtices varriam o tabuleiro, faziam a ponte tremular como uma bandeira ao vento. O projeto da ponte tinha uma falha (embora ninguém pudesse saber na época): ela não era capaz de resistir à presença simultânea de oscilações longitudinais e de torção, como as que podem ser vistas no filme do acidente. Quando as oscilações ficaram violentas (e assustadoras), duas pessoas foram forçadas a rastejar para sair da ponte. Um professor voltou à ponte para resgatar um cachorro esquecido em um carro abandonado, mas desistiu quando o cão assustado tentou mordê-lo. O filme o mostra saindo do carro e tentando caminhar ao longo da linha central, relativamente estável, em torno da qual a ponte estava se torcendo. Pouco depois, parte da ponte caiu e as oscilações longitudinais pararam, mas recomeçaram logo depois e boa parte do resto da ponte caiu no rio. Embora muitos professores de física tenham usado a queda da ponte como um exemplo de ressonância, a queda se deveu a oscilações não-periódicas longitudinais e de torção, e não a um fenômeno de ressonância. Na verdade, a força responsável pela queda foi um vento regular, não um vento pulsante que de alguma forma pudesse excitar o modo natural de oscilação da ponte. O que a ponte fez foi produzir vórtices, como um cabo que balança ao vento. Esses vórtices podem produzir oscilações longitudinais se a freqüência com que são formados corresponder à freqüência natural de oscilação do cabo. Entretanto, as oscilações longitudinais da ponte jamais poderiam ter sido suficientes para derrubá-la.

2.5 • A aerodinâmica dos edifícios Em um dia ventoso, por que o vento é especialmente forte para as pessoas que caminham perto de um edifício? Se você quer evitar as rajadas de vento mas tem que se aproximar de um edifício, onde deve ficar? Por que o vento faz os edifícios balançarem? Alguns edifícios têm uma área aberta no nível do solo, para o trânsito ou para os pedestres. Por que o vento que passa por essa área aberta pode ser especialmente forte?

Resposta O vento se divide em vórtices (redemoinhos) ao passar pelas arestas de uma construção (Fig. 2-2a). Assim, um pedestre vai encontrar o vento mais forte nos cantos do edifício ou perto deles. O vento é mais fraco atrás do edifício, onde o ar pode estar quase parado. A pressão do ar nessa área provavelmente é menor, o que faz as janelas se projetarem para fora. Em casos extremos, as janelas podem até ser arrancadas. As rajadas de vento também são mais fracas no lado voltado para o vento, onde o vento se divide ao meio, de modo que metade do ar passa por um lado do edifício e metade passa pelo outro. Se o edifício tem uma passagem aberta, o vento aumenta de velocidade para se acomodar a essa passagem. Esse aumento de velocidade tem duas conseqüências: primeiro, o vento pode empurrar (ou mesmo derrubar) os pedestres e pode ser difícil abrir as portas situadas na passagem, se a porta abrir contra o vento. Segundo, a pressão do ar na passagem diminui porque a energia é usada para aumentar a velocidade do vento. Isto faz com que janelas e portas ao longo da passagem se projetem em direção à passagem. Em alguns casos, janelas se quebram e não é possível fechar portas. Em lugares em que se aglomeram vários edifícios altos, a separação do vento e a formação de vórtices podem ser fenômenos complexos. Por exemplo: se dois edifícios não estiverem perfeitamente alinhados, a região de baixa pressão criada pelo primeiro edifício a ser atingido pelo vento pode desviar o vento do outro edifício, criando vórtices muito fortes entre os dois edifícios (Fig. 2-2b). Em outras situações, em que edifícios altos estão aglomerados em retângulos com ruas entre os quarteirões, ruas paralelas à direção do vento podem se tornar verdadeiros túneis de vento. Ao sair de um edifício e entrar em uma dessas ruas, você pode ser derrubado. Além disso, como o vento se afunila na rua, a pressão do ar diminui, fazendo as janelas voltadas para a rua se projetarem para fora.

Figura 2-2 / Item 2.5 (a) O vento se decompõe em vórtices ao passar pelos lados de um edifício. (b) Os espaços entre os edifícios que não estão perfeitamente alinhados podem ser muito ventosos.

A variação de pressão no lado do edifício voltado para o vento pode fazer o edifício balançar para a frente e para trás ou de um lado para outro, com a parte mais alta do edifício se movimentando mais. Esse balanço pode provocar náuseas em alguns ocupantes do edifício. Eles também podem ficar enjoados pelo infra-som e o uivo audível que um vento forte gera quando produz vórtices nos cantos de um edifício. Edifícios altos propensos a balançar em ventos fortes costumam ser equipados com dispositivos antibalanço, tais como um sistema bloco-mola instalado no topo, no qual um bloco pesado se desloca para compensar o movimento do edifício. Ventos muito fortes produzidos por um furacão ou um tornado podem derrubar uma casa ou uma construção um pouco maior. Podem também arrancar o telhado apanhando-o por baixo do lado voltado para o vento ou reduzindo substancialmente a pressão do ar sobre o telhado até que partes do telhado sejam arrancadas. Além disso, esses ventos extremos podem não só soprar janelas para dentro em um edifício no lado voltado para o vento, mas também sugar janelas no lado contrário ou nos lados do edifício em que os vórtices são formados.

2.6 • Pipas O que mantém uma pipa no ar e o que determina que seu vôo será estável e não um vôo caótico em que a pipa rodopia e tremula?

Resposta Uma pipa triangular é uma superfície flexível que recebe o vento com uma certa inclinação, o chamado ângulo de ataque. Quatro forças atuam sobre a pipa. (1) A força da gravidade, é claro, puxa para baixo. (2) Como o vento é desviado para baixo pela superfície da pipa, a pipa experimenta uma força de sustentação para cima. (3) O vento também produz uma força de arrasto na direção do vento. (4) A linha produz uma força para baixo e na direção oposta à do vento. Se a pipa não estiver em uma posição estável, os torques produzidos pelas quatro forças fazem a pipa girar em torno do cabresto (ponto em que a longa linha principal se ramifica em linhas separadas que estão presas a vários pontos da armação da pipa). A rotação muda o ângulo de ataque da pipa, alterando assim a sustentação e o arrasto. Em conseqüência, a pipa não apenas gira, mas também se move na vertical. Esse movimento muda o ângulo ao qual a linha puxa o cabresto e, portanto, altera também a tração horizontal e vertical sobre a linha. O vôo da pipa se torna estável quando três grandezas se anulam: (1) os torques, (2) a força resultante vertical e (3) a força resultante horizontal. Para que estas forças desapareçam, não apenas a pipa deve ter a orientação apropriada, mas a linha tem que exercer tração no ângulo apropriado e com a força apropriada. Diz-se que nesse momento a pipa está em estado de equilíbrio. Para uma dada velocidade do vento, pode haver mais de um estado de equilíbrio. Se a velocidade do vento muda, tanto a orientação da pipa quanto o ângulo da linha têm que mudar para que a pipa encontre um novo estado de equilíbrio.

2.7 • Saltos de esqui Por que um esquiador consegue saltar cerca de 200 metros usando uma boa postura, mas a distância é drasticamente menor se ele adotar uma postura incorreta? Por que alguns saltos terminam em um rodopio perigoso e de que maneira um saltador evita um rodopio?

Resposta O que assegura ao esquiador um salto longo é a sustentação produzida pelo ar no corpo e nos esquis, que são mantidos em V aberto em relação ao movimento relativo do ar. Se o salto for executado corretamente, o esquiador desliza pelo ar como um avião de papel. Entretanto, a força do ar também apresenta um perigo sério, porque pode produzir subitamente mais sustentação na parte da frente do que na parte de trás dos esquis. O desequilíbrio de forças cria um torque que faz o esquiador girar; de repente, o desequilíbrio fica muito pior e o saltador perde o controle e começa a rodopiar. A aterrissagem descontrolada pode ser fatal. Um esquiador experiente sabe como colocar o corpo e os esquis na orientação apropriada para maximizar a sustentação no início do salto. O segredo está em um pulo para cima na extremidade da rampa de decolagem. Esse pulo tem que produzir uma rotação para a frente para colocar o esquiador e os esquis na orientação apropriada para baixo, de modo que os esquis e o corpo façam o ângulo correto com a direção do movimento do ar. Além disso, o esquiador precisa calcular essa rotação para a frente para que o torque sobre os esquis e o corpo desapareça no instante em que a orientação correta é alcançada. Toda essa manobra é essencial para um salto eficiente e seguro, mas é complicada pela influência da densidade do ar, que determina parcialmente a força do ar sobre o saltador. Se o saltador está acostumado, por exemplo, com a densidade do ar a baixas altitudes e tenta saltar em uma altitude elevada, onde o ar é menos denso, pode errar o cálculo e executar um mau salto.

2.8 • Velocidade de um esquiador A velocidade é a meta de muitas provas de esquiação, principalmente para esquiadores interessados em quebrar o recorde mundial de velocidade em esquis (240 quilômetros por hora). A resistência do ar é o principal obstáculo nesses eventos. Na verdade, ela é mais importante que o atrito dos esquis com a neve. De que maneira um esquiador pode minimizar a resistência do ar?

Resposta Eis algumas coisas que um esquiador profissional faz para reduzir a resistência do ar. A roupa é justa para eliminar a tremulação. O capacete não só tem um formato arredondado para oferecer pouca resistência ao ar, mas também encaixa nos ombros para que o ar não encontre uma descontinuidade nos ombros ou nas costas e para que não sejam produzidos vórtices atrás do capacete. (Um esquiador pequeno pode conseguir esconder boa parte dos ombros debaixo do capacete.) As pernas encontram o ar com caneleiras projetadas para cortar o ar e evitar a formação de vórtices atrás das pernas. Esses vórtices são pontos de baixa pressão. Com alta pressão à frente das pernas e baixa pressão atrás, a diferença de pressão pode produzir um arrasto considerável. Os bastões de esqui se inclinam para dentro, em vez de se projetarem de encontro ao ar. O esquiador se agacha para minimizar a superfície exposta ao ar.

Uma das muitas dificuldades em uma descida rápida é o esforço necessário para manter as pernas na posição adequada. Como o ar se afunila entre as coxas, a velocidade do ar nessa região é maior do que na parte externa das coxas. A energia necessária para o aumento de velocidade vem da pressão do ar. Assim, a pressão do ar é menor entre as coxas do que do lado de fora, e as coxas tendem a se encostar uma na outra. O esquiador precisa combater essa tendência o tempo todo.

2.9 • Bumerangues Por que os bumerangues voltam? Alguns bumerangues podem fazer uma volta de até 200 metros e alguns podem dar várias voltas antes de cair. Você joga um bumerangue quase na vertical. Por que o plano geralmente fica horizontal durante o vôo? Existem vários formatos de bumerangue além da clássica forma de banana. Será que uma vara reta pode fazer uma volta ao ser arremessada?

Resposta Cada braço de um bumerangue lembra um aerofólio clássico (a forma da asa dos primeiros aviões). Possui uma borda frontal rombuda e uma borda traseira mais fina; a superfície superior é curva e a superfície inferior é plana. Quando o bumerangue está no ar, essa forma de aerofólio desvia o ar que passa, fazendo com que o bumerangue experimente uma força de sustentação no sentido contrário. Para arremessar o bumerangue com a mão direita, segureo perto da cabeça, com a superfície curva voltada para você, mas com o plano do bumerangue um pouco inclinado para a direita em relação à vertical. Leve rapidamente o braço de lançamento para a frente, enquanto quebra o pulso. A sustentação do bumerangue é para cima e para a esquerda; a componente da força para cima é que mantém o bumerangue no ar. A força de sustentação exercida sobre o braço do bumerangue depende da velocidade à qual o ar passa pelo braço. Como em qualquer instante dado o braço de cima gira para a frente (no mesmo sentido que o movimento do bumerangue) e o braço de baixo gira para trás, existe mais sustentação no braço de cima do que no de baixo. Como a força de sustentação atua para cima no braço superior, aplicada a uma certa distância do centro do bumerangue ela cria um torque que tenta fazer girar o plano do bumerangue. Como o bumerangue está girando como um pião, o torque faz girar o eixo de rotação do bumerangue, que passa a apontar mais em sua direção, fazendo com que você veja uma parte maior da superfície superior do bumerangue. Enquanto o bumerangue gira, sua trajetória se encurva. O resultado é uma trajetória curva que leva o bumerangue de volta às suas mãos. Uma vara reta pode voltar se for arremessada como um bumerangue. A rotação inicial em torno do eixo mais curto é instável e a rotação se desloca para o eixo mais longo, na direção do comprimento da vara. A mudança reorienta a vara, mas a direção em torno da qual a vara está girando não muda. Durante o vôo de volta, a rotação desvia o ar para baixo, o que sustenta a vara no ar.

2.10 • Lançamento de cartões de crédito e cartas de baralho Deixe cair um cartão de crédito (ou qualquer outro cartão rígido) com a borda mais comprida para baixo e na horizontal (e os lados para a esquerda e a direita). Por que o cartão não cai na vertical e chega ao chão diretamente abaixo do ponto em que foi solto? Uma brincadeira comum é tentar acertar cartas de baralho em uma caixa sem tampa. Eu uso um cartão de crédito. Se a carta for lançada aleatoriamente, ela quase imediatamente vira de lado, perde velocidade e cai. Existe algum modo de estabilizar a trajetória da carta para aumentar a probabilidade de atingirmos o alvo?

Resposta A trajetória de uma carta que cai com a borda mais comprida para baixo é muito difícil de explicar, e fórmulas matemáticas vêm sendo propostas desde 1854. A trajetória pode ser caótica, mas também pode seguir os seguintes padrões: (1) vibração, quando a carta desliza no ar, alternando entre tombar para a esquerda e para a direita. (2) Rodopio, quando a carta gira em torno de um eixo enquanto plana para a esquerda ou para a direita. O comportamento observado depende das dimensões da carta. Uma carta de baralho comum geralmente apresenta uma oscilação regular enquanto cai fazendo um certo ângulo com a vertical. No momento em que a carta começa a cair, ela se desvia para a esquerda ou para a direita da orientação vertical. Em seguida, enquanto a carta cai fazendo um certo ângulo com a vertical, o escoamento do ar que passa por ela cria um ponto de alta pressão abaixo da borda dianteira e acima da borda traseira. Essas regiões de alta pressão fazem a carta girar em torno do eixo central ao longo de sua maior dimensão. Quando o plano da carta fica horizontal, a carta começa a cair mais devagar, mas a rotação continua até que a carta volta a ficar quase vertical. Nesse instante, ela desliza pelo ar com mais facilidade e, portanto, sua

velocidade para baixo aumenta. O processo se repete várias vezes. O segredo para lançar uma carta com sucesso é estabilizála para que ela não sofra vibrações nem rodopios. Uma maneira de conseguir isso é segurar a carta na horizontal, com o polegar em cima da carta, o dedo indicador da borda mais comprida e o dedo médio embaixo da carta. Com uma quebra do pulso, a carta é puxada para trás até encostar na palma da mão. Em seguida, com um movimento rápido do pulso para a frente, a carta é lançada enquanto gira em torno de um eixo vertical. As forças do ar que atuam sobre a carta a fazem girar até ficar na vertical, girando em torno de um eixo horizontal. A partir desse momento, a trajetória torna-se praticamente retilínea e a carta pode se chocar violentamente com o alvo. Na verdade, é preciso tomar cuidado para que a carta não bata no olho de alguém. Algumas pessoas muito habilidosas conseguem lançar cartas de baralho à platéia, fazendo-as chegar até o balcão ou mesmo descrever uma trajetória curva.

2.11 • Sementes que giram De que forma sementes de freixo, olmo e bordo conseguem permanecer no ar por um tempo suficiente para que uma brisa as leve para longe da árvore-mãe?

Resposta Uma semente de uma dessas árvores possui asas e gira para retardar a queda. Assim, por exemplo, uma sâmara de asa única de um bordo gira em torno do centro de massa (o centro de sua distribuição de massa), que fica entre a parte saliente e a asa. O plano da asa pode ter uma inclinação de até 45°. Quando a asa gira durante a queda da semente, impulsiona o ar para baixo, de modo que a semente é submetida a uma força para cima. A força também pode empurrar a semente para o lado, fazendo-a descrever uma trajetória helicoidal até o chão (Fig. 2-3). Provavelmente o movimento é mais fácil de imaginar se você assumir o ponto de vista da semente. Quando o ar passa por você, exerce uma força sobre o lado de baixo da asa. A componente (ou parte) da força perpendicular à asa é a força de sustentação, a força que ajuda a manter a semente no ar. A força exercida pelo ar faz a asa girar como a pá de um helicóptero e também possibita que a semente plane lateralmente. Muitas vezes, a combinação de rotação e movimento lateral faz com que a semente desça em espiral enquanto gira em torno do seu centro de massa.

Figura 2-3 / Item 2.11 Movimento possível de uma semente alada, seguindo uma trajetória helicoidal no sentido oposto ao da rotação.

2.12 • Cobras voadoras Para quem tem medo de cobras, existe uma que pode causar pesadelos pelo resto da vida. A cobra arborícola do paraíso (Chrysopelea paradisi) é capaz de subir em uma árvore, saltar de um galho e planar até o chão. Ela consegue até mudar de direção durante o salto para alcançar seu objetivo, como outra árvore, por exemplo. Como uma cobra consegue planar no ar?

Resposta A cobra, pendurada em um galho, salta para cima e para longe do galho. Quando seu corpo se endireita, a parte de baixo se achata, começando pela cabeça e avançando até o rabo (mas o rabo em si não participa). Além disso, o lado de baixo na metade de trás da cobra torna-se um pouco côncavo, com a maior parte plana, mas com bordas para baixo dos dois lados. A cobra fica duas vezes mais larga na parte central do corpo. A região achatada funciona como um aerofólio para dar sustentação ao animal. Assim, o vôo da cobra se parece com o de um avião de papel. Entretanto, depois de ganhar velocidade, a cobra faz algo bem diferente: assume uma forma de S e em seguida começa a oscilar horizontalmente a uma freqüência de cerca de 1,3 vez por segundo. Imediatamente, sua trajetória torna-se menos inclinada. Isto significa que as oscilações, de alguma maneira, aumentam a sustentação da cobra. A cobra tem uma velocidade da ordem de 8 metros por segundo e desce a uma velocidade de cerca de 5 metros por segundo, com um ângulo de cerca de 30°. Ela pode mudar de direção inclinando a metade posterior do corpo ao mesmo tempo em que a cabeça se movimenta na nova direção durante a oscilação da cabeça. A sustentação criada pela oscilação da cobra não é bem compreendida. Entretanto, podemos especular que, durante a movimentação da esquerda para a direita da metade posterior côncava do corpo, a orientação da parte de baixo pode mudar. Ao se inclinar alternadamente para a esquerda e para a direita, ela pode aumentar a sustentação.

2.13 • O efeito da resistência do ar sobre as bolas de tênis Por que uma bola de tênis usada costuma chegar ao recebedor mais depressa do que uma bola de tênis nova golpeada exatamente da mesma maneira?

Resposta O tempo de percurso de uma bola de tênis é determinado pela resistência do ar. Se uma certa rebatida (velocidade e ângulo) é repetida muitas vezes, começando com uma bola nova, a resistência do ar aumenta de início e depois diminui gradualmente até um valor mínimo. A explicação deve estar no feltro (a penugem da superfície). As primeiras rebatidas levantam o feltro, que passa a “apanhar” mais ar e, portanto, aumenta o arrasto. Entretanto, o feltro acaba sendo arrancado ou alisado, o que faz a resistência do ar diminuir. Assim, o jogador leva uma pequena vantagem quando saca com uma bola muito usada porque a bola encontra menos resistência do que uma bola nova e chega ao recebedor em menos tempo, o que dificulta a devolução.

2.14 • Desviando a bola da barreira Como um jogador de futebol consegue cobrar uma falta fazendo a bola percorrer uma trajetória curva, contornando a barreira para entrar no gol? Esse tipo de chute, chamado chute de trivela, parece impossível e muitas vezes pega ao goleiro totalmente de surpresa, principalmente se a barreira obstruir sua visão durante a primeira fase da trajetória da bola.

Resposta A Figura 2-4a mostra uma bola em movimento vista de cima. Vamos imaginar que estamos nos movendo com a bola, de modo que o ar passa por nós, como na Fig. 2-4b. Se a bola não estiver girando, o ar passa simetricamente pelos dois lados; em algum lugar atrás da bola, as duas correntes de ar se desprendem e formam vórtices atrás da bola. Entretanto, se a bola estiver girando — por exemplo, no sentido horário, como na Fig. 2-4c —, as correntes de ar não serão simétricas. Nesse caso, a corrente que se movimenta no sentido contrário da superfície se divide mais cedo em vórtices e a corrente que se movimenta no mesmo sentido que a superfície adere à superfície e se separa dela mais tarde. Podemos imaginar que a corrente de ar é arremessada pela rotação da bola, da mesma forma como a lama é arremessada pela rotação de um pneu. Como a rotação da bola desvia as correntes de ar, a bola é submetida a uma força no sentido contrário. Assim, o desvio do ar provocado pela rotação da bola a faz mudar de direção. Esse efeito é chamado de efeito Magnus, em homenagem a um dos primeiros cientistas a investigarem o fenômeno. Na cobrança de uma falta no futebol, vamos supor que a bola seja chutada na direção do lado esquerdo da barreira, com um efeito lateral no sentido horário (Fig. 2-4d). A bola deve ser chutada a um ângulo de cerca de 17° em relação ao gramado e com

um desvio lateral suficiente para passar ao lado do último homem da barreira. Enquanto a bola se desloca pelo ar, a rotação faz a corrente de ar ser desviada para a esquerda e, portanto, a bola faz uma curva para a direita. Se o chute for bem executado, a bola contorna a barreira e toma a direção do gol.

Figura 2-4 / Item 2.14 (a) Trajetória da bola. (b) Ponto de vista da bola. (c) A rotação da bola desvia o ar e a bola é desviada para um lado. (d) O desvio possibilita que a bola contorne a barreira e entre no gol.

Parte da surpresa do chute pode vir da mudança de velocidade da bola durante o percurso. A resistência do ar se deve principalmente à diferença entre a alta pressão do ar à frente da bola e a baixa pressão criada pelos vórtices atrás da bola. Quando a bola diminui de velocidade, a extensão da região em que existem vórtices muda, aumentando primeiro para depois diminuir, o que faz a resistência do ar variar da mesma maneira. Assim, a velocidade da bola primeiro diminui e depois aumenta, o que pode enganar o goleiro. Existem outros esportes em que a bola muda de direção quando está girando, como o tênis, o pingue-pongue e o vôlei. (Antigamente, o mesmo acontecia com as balas de canhão e de rifle.) Naturalmente, lançar uma bola em uma trajetória curva pode confundir o adversário. Uma bola que gira também tem a vantagem de assumir uma trajetória imprevisível depois de quicar no campo, na quadra ou na parede. Entretanto, uma bola de praia lisa se comporta de outro modo, pois é capaz de mudar de direção primeiro em um sentido e depois no outro, seguindo uma trajetória que parece mais um S do que a de um chute de trivela. Esse segundo desvio, ainda mais surpreendente, chamado efeito anti-Magnus, ocorre quando a velocidade linear e a velocidade de rotação da bola atingem valores pequenos.

2.15 • A aerodinâmica da bola de golfe Por que as bolas de golfe têm pequenas depressões? Se uma bola de golfe for golpeada com efeito para a frente (com a parte de cima girando no mesmo sentido que o movimento da bola), a bola rola para a frente ao cair na grama. Será que isto é desejável para um jogador que costuma lançar a bola bem perto do buraco?

Resposta As primeiras bolas de golfe eram lisas, mas os golfistas perceberam que, depois de velha e cheia de defeitos, a bola costumava ir mais longe. Depois de algum tempo, as bolas passaram a ser fabricadas já com depressões, o que possibilita que atinjam distâncias muito maiores que uma bola lisa que tenha as mesmas dimensões. A principal função das depressões é reduzir a resistência do ar, reduzindo a diferença de pressão entre a parte da frente e a

parte de trás da bola. Na frente, a pressão é alta porque a bola está colidindo com o ar. Quando a bola atravessa o ar, o ar fica preso à bola até se desprender, em algum ponto atrás dela. Ao se desprender, forma vórtices nos quais a pressão do ar é menor. Se a região de formação de vórtices na parte de trás da bola for extensa, a diferença de pressão entre a parte da frente e a parte de trás da bola pode ser grande. Nesse caso, a resistência do ar é grande e a bola não vai muito longe. Em uma bola que tenha depressões (ou defeitos), o fluxo de ar nos lados da bola é turbulento, o que permite que o ar se prenda mais à superfície e se aproxime mais da extremidade traseira da bola antes de se desprender e formar vórtices. Assim, em uma bola que apresente depressões a região de formação de vórtices na parte de trás é menor (e, portanto, a resistência é menor) do que em uma bola lisa. Como uma bola com depressões vai mais longe, a probabilidade de que vá parar fora da pista em uma tacada de mau jeito também é maior. Em outras palavras, as depressões aumentam a distância, não o controle.

Figura 2-5 / Item 2.15 Bola de golfe deslocando-se para a direita. O ar passa à esquerda e é desviado para baixo pela rotação da bola; a bola ganha sustentação.

Uma bola que gira ganha sustentação. Se o taco atingir a bola na parte de baixo, ela adquire um efeito para trás e a sustentação é positiva, ou seja, aponta para cima, mantendo a bola no ar por mais tempo. Se o taco atingir a bola na parte de cima, ela adquire um efeito para a frente e a sustentação é negativa, ou seja, aponta para baixo, reduzindo o tempo que a bola passa no ar. Assim, o efeito para a frente pode fazer a bola rolar mais na pista, mas faz com que ela passe menos tempo no ar. A sustentação (positiva ou negativa) de uma bola de golfe se deve ao modo como o ar se desprende de uma bola em rotação. No caso do efeito para trás, o ar é lançado para baixo pela rotação da bola (Fig. 2-5). Como o ar é empurrado para baixo pela rotação, a bola é empurrada para cima, ou seja, recebe uma sustentação positiva. No caso do efeito para a frente, o ar é empurrado para cima e a bola é empurrada para baixo, ou seja, recebe uma sustentação negativa.

2.16 • A aerodinâmica da bola de beisebol O que um arremessador de beisebol faz para lançar uma bola rápida, que não caia tão depressa quanto faria apenas sob a influência da gravidade no trajeto até o rebatedor? Se o rebatedor não antecipar uma bola rápida, o taco pode estar baixo demais para acertar a bola em cheio. O que o arremessador faz para lançar a bola em curva, que se aproxima ou se afasta do rebatedor, ou desvia para o chão na parte final da trajetória?

Resposta A bola rápida é lançada quebrando-se o pulso na direção do rebatedor depois que a bola é levada para a frente com um movimento vigoroso do ombro. Isto imprime à bola um efeito para trás, ou seja, a parte superior da bola gira para trás, na direção do arremessador. Durante o trajeto, o ar que passa por cima da bola se desprende da bola em direção ao chão por causa da rotação. Esse desvio do ar para baixo faz com que a bola seja submetida a uma força para cima (sustentação positiva). A bola não chega a subir, pois está em uma trajetória descendente, mas cai mais devagar do que se não estivesse girando, o que pode surpreender o rebatedor. Além desse desvio básico, a costura de uma bola que está girando sofre o efeito da resistência do ar, que pode mudar a trajetória da bola e freá-la. A costura serve para unir os dois pedaços de couro que compõem a superfície da bola. O modo como a bola é segurada e lançada costuma ser descrito em termos do que o rebatedor vê. Em um arremesso básico, chamado bola rápida de duas costuras, o rebatedor sempre vê duas partes da costura da bola enquanto a bola gira durante o percurso. Em uma bola rápida de quatro costuras, o rebatedor observa partes sucessivas da bola se tornarem visíveis durante o percurso. Embora os dois tipos de bola rápida pareçam proporcionar a mesma sustentação positiva, alguns arremessadores afirmam que um ou outro dos dois tipos é melhor. Uma bola em curva é lançada com efeito lateral ou efeito para a frente. Se o efeito lateral lança o ar para longe da bola do lado esquerdo do arremessador, a bola sofre um desvio para a direita, na direção do rebatedor ou na direção oposta, dependendo de o rebatedor ser destro ou canhoto. Se a bola recebe um efeito para a frente em um arremesso chamado drop, o ar é lançado para cima, o que produz um desvio para baixo (sustentação negativa). Um slider é um arremesso com efeito lateral mas com

menos rotação, de modo que o desvio é menor, o que pode surpreender o rebatedor. Esses são arremessos básicos. Um bom arremessador pode inclinar o efeito na bola para obter qualquer direção desejada de sustentação e desvio, fazendo-a variar de arremesso para arremesso para confundir o rebatedor. Os rebatedores profissionais procuram pistas para saber que arremesso está por vir, tal como a última orientação da mão do arremessador ou a rotação das costuras da bola. A tarefa é difícil, porque o rebatedor pode ver a bola claramente apenas na primeira parte do percurso, pois em seguida a bola se torna um borrão e o movimento do taco tem que começar.

2.17 • A aerodinâmica da bola de críquete No críquete, o arremessador lança a bola com o braço esticado, jogando a bola no chão de modo a fazê-la quicar na direção genérica do rebatedor, que tenta acertá-la com o taco. Embora esta descrição básica não pareça nada estimulante, o jogo pode ser repleto de surpresas e nações inteiras páram para assistir aos jogos. Como o arremessador controla (pelo menos aproximadamente) a direção da bola?

Resposta O arremessador tem várias maneiras de confundir o rebatedor. (1) Pode fazer a bola quicar no chão de maneira inesperada lançando a bola com efeito. (2) Pode fazer a bola mudar de direção antes de chegar ao chão escolhendo a posição da costura da bola. (3) Pode fazer a bola mudar de direção imprimindo nela um efeito. Naturalmente, também pode usar uma combinação dessas técnicas. Na técnica 2, a bola apresenta uma face aproximadamente constante para o ar. Na vista de cima da Fig. 2-6a, supõe-se que a bola esteja parada e que o ar está se movimentando para esquerda. Nessa vista, a costura está na parte inferior do lado frontal e o ar passa por cima e por baixo da bola. Em cima, o fluxo de ar é uniforme, o que deixa instável a camada em contato com a superfície da bola. O ar se desprende da bola antes de alcançar o lado de trás. Em baixo, o fluxo inicialmente também é uniforme, mas a costura perturba o fluxo, tornando-o turbulento. A turbulência nas camadas de ar próximas da superfície da bola faz com que o ar permaneça em contato com a bola até chegar à extremidade traseira, onde se desprende. Podemos dizer que a costura faz a corrente de ar se desviar para cima no diagrama, ou seja, para a esquerda do arremessador. Assim, do ponto de vista do arremessador, como o ar é empurrado para a sua esquerda, a bola é empurrada para sua direita, ou seja, a bola faz uma curva para a direita.

Figura 2-6 / Item 2.17 O ar que passa por uma bola de críquete e a força que atua sobre a bola. (a) Bola nova. (b) Bola desgastada pelo uso e com um lado polido pelo arremessador.

No efeito inverso, o desvio da bola é o oposto do que mostra a Fig. 2-6a. O arremessador lustra repetidamente a bola na calça para alisar um lado e deixar o lado oposto irregular por causa do desgaste natural. Em seguida, arremessa a bola com o lado irregular voltado para a frente (Fig. 2-6b). Nesse caso, as correntes de ar que passam pelos dois lados da bola ficam imediatamente turbulentas e, portanto, tendem a se prender à bola. Entretanto, a costura no lado direito atua agora como uma rampa de lançamento, pois afasta o fluxo turbulento da bola. O resultado é que o fluxo no lado de cima da figura só deixa a bola ao chegar à extremidade traseira, enquanto o fluxo no lado de baixo da figura deixa a bola ao chegar à costura. Do ponto de vista do arremessador, a corrente de ar é empurrada para a direita e, portanto, a bola é empurrada para a esquerda: esse é o efeito inverso.

2.18 • Pássaros voando em V

Por que muitos bandos de pássaros adotam uma formação em V quando têm que voar grandes distâncias?

Resposta Quando um pássaro voa batendo as asas (em vez de planar), cada vez que uma asa empurra o ar para baixo, cria um vórtice (redemoinho) vertical no ar atrás do pássaro. O vórtice circula para baixo ao lado do pássaro, para fora abaixo dele, para cima do outro lado e para dentro acima dele. Se um pássaro que vai atrás se posiciona na parte do vórtice em que a corrente é ascendente, ganha uma sustentação gratuita. Continua tendo que bater as asas para se manter no ar, mas com menos força e, portanto, com menos gasto de energia. A economia pode ser considerável em uma viagem longa. Para entrar na corrente ascendente, o pássaro que vai atrás deve estar deslocado para o lado do pássaro à frente, e a formação em V é uma das melhores para os pássaros se posicionarem de maneira adequada. Além disso, possibilita a eles também contato visual. Entretanto, os pássaros raramente estão na melhor posição para economizar energia, e a distância dentro de uma formação em V é muitas vezes irregular, o que sugere que voar em formação é, na verdade, bem difícil. Embora o pássaro da frente experimente parte da corrente ascendente dos pássaros à sua esquerda e à direita, a posição de líder costuma ser a mais cansativa. Provavelmente, muitos dos pássaros de um bando se revezam na posição de líder. Os pássaros poderiam, em vez disso, voar em um V achatado ou em linha reta e, assim, a posição de líder não seria tão cansativa. A economia de energia também pode ser um dos motivos pelos quais os peixes nadam em cardumes. Os vórtices formados pelo peixe líder podem ajudar a reduzir o consumo de energia dos peixes que vêm mais atrás no cardume.

2.19 • Nadando em melado Um nadador precisa empurrar ou puxar a água para se movimentar. A água é, naturalmente, fluida e, portanto, o empurrão ou puxão não é tão eficaz como se fosse exercido em um objeto sólido. Imagine que acrescentássemos alguma coisa à água para torná-la mais viscosa, ou seja, menos fluida. Será que alguém conseguiria nadar mais depressa em uma água assim modificada?

Resposta Em um experimento, foi misturada goma de guar à água de uma piscina, produzindo um fluido com o dobro da viscosidade da água. Foi medido o tempo que alguns atletas levaram para nadar 25 jardas (≈25 metros). Os resultados mostraram que o aumento da viscosidade não melhorou os tempos. Em um meio mais viscoso, os nadadores podiam empurrar ou puxar com mais força, mas o arrasto era maior e os dois efeitos se cancelavam.

2.20 • Contrails Por que os aviões às vezes deixam linhas brancas no céu? Por que os rastros às vezes se expandem ou formam laços?

Resposta Quando um avião passa por uma área em que há muito vapor d’água a altitudes elevadas, pode deixar um rastro conhecido como contrail (contração de condensation trail, ou seja, rastro de condensação). Geralmente um contrail é formado por pelo menos duas linhas brancas que começam pouco atrás do avião. Quando o avião abre caminho no ar, vórtices (redemoinhos) são deixados pelas pontas das asas (e outras partes salientes). O ar no vórtice da ponta de uma asa se movimenta para cima, em direção ao avião, para baixo e depois para fora. Os motores injetam fuligem nesse fluxo circular, fazendo o vapor d’água formar gotas ou cristais de gelo, que espalham fortemente a luz do sol, tornando visíveis os rastros dos vórtices. Como o espalhamento geralmente não depende do comprimento de onda (ou da cor), os contrails costumam ser brancos. Esses vórtices podem ser perigosos para outros aviões, principalmente aviões pequenos e leves, que podem ser virados de cabeça para baixo por um vórtice. Assim, os pilotos de aeronaves pequenas tomam muito cuidado para evitar o rastro de aviões maiores. Entretanto, vórtices de pontas de asas foram supostamente usados para o bem nos céus ingleses na Segunda Guerra Mundial: durante um ataque de bombas voadoras V-1, um piloto britânico teria voado ao lado de uma das bombas e usado um vórtice de ponta da asa para virá-la de cabeça para baixo, fazendo-a cair. O comprimento de um contrail composto de gotas costuma ser pequeno, porque as gotas tendem a evaporar. O gelo, porém, pode persistir, gerando um contrail comprido e duradouro, contanto que o gelo não se torne tão grande a ponto de cair. Um contrail de longa duração pode se expandir quando o vapor d’água forma novas gotas ou cristais. Em algumas regiões de alta densidade de tráfego aéreo, contrails em expansão podem se sobrepor e cobrir boa parte do céu. Contrails às vezes se transformam em laços quando começam a se dissipar; nesse momento apenas o núcleo dos vórtices continua visível. Um contrail também pode se transformar em uma nuvem arredondada conhecida como popcorn (pipoca) se uma parte descer e se expandir.

Se um contrail iluminado pela luz solar projeta uma sombra em aerossóis subjacentes (tais como fumaça ou neblina), a sombra aparece como uma linha escura no céu. Quando o sol está atrás do avião, a linha escura pode aparecer na frente do avião, como se fosse uma extensão escura do contrail. Um avião também pode produzir uma linha escura conhecida como distrail ao passar por dentro de uma nuvem fina, eliminando as gotas d’água e os cristais de gelo ao evaporá-los com a energia térmica dos motores ou submetê-los ao ar mais quente do exterior da nuvem. Pode também produzir um distrail se os motores despejarem tanta umidade na nuvem que os cristais de gelo cresçam o suficiente para cair da nuvem.

2.21 • O movimento da cortina para o interior do boxe Durante o banho, a cortina sempre se move para dentro do boxe e roça na minha perna. Não há nada de errado com minha cortina, pois, a menos que tenham um peso na base ou sejam equipadas com pequenos ímãs, as cortinas em geral apresentam essa característica irritante. O que faz as cortinas entrarem no boxe?

Resposta Uma explicação bastante comum é que, quando é aquecido pela água quente, o ar sobe acima da cortina, de modo que o ar mais frio do banheiro tem que soprar para dentro do boxe por baixo da cortina. Esse tipo de fluxo, semelhante ao de uma chaminé, certamente existe quando você toma um banho quente; acontece que a cortina entra no boxe mesmo se você tomar banho com água mais fria que o ar do banheiro. A principal causa do movimento da cortina é que, quando a água cai, ela arrasta (capta e leva com ela) o ar adjacente (Fig. 2-7). Portanto, precisa haver um fluxo contínuo de ar em direção à água para repor o ar perdido. Parte desse fluxo passa por baixo da cortina do boxe, empurrando-a para dentro. Se a água estiver quente, a água que se acumula no chão do boxe aquece o ar logo acima e esse ar sobe, atuando contra o movimento da cortina para dentro e ajudando a mantê-la no lugar. O movimento do ar devido ao arrasto do ar pela água corrente também pode acontecer quando a água escoa em um complexo de cavernas. O arrasto leva o ar para dentro da caverna junto com a água, o que quer dizer que uma quantidade igual de ar tem que sair da caverna. Em alguns complexos, os espeleólogos podem sentir a corrente de ar para fora.

Figura 2-7 / Item 2.21 O ar é arrastado pela água e a cortina é empurrada para dentro do boxe.

2.22 • Cães-da-pradaria e formigueiros gigantes O cão-da-pradaria, um roedor que vive nas planícies do Meio-Oeste dos EUA e em muitas áreas residenciais, constrói longos túneis a uma profundidade de 1 a 5 metros, ligando duas ou mais entradas. O vento não consegue entrar nos túneis para levar oxigênio aos cães-da-pradaria. Por que eles não morrem asfixiados? As formigas saúvas constroem enormes formigueiros, que podem chegar a 6 metros de profundidade e abrigar cinco milhões de formigas. Não apenas as formigas precisam respirar dentro do complexo labirinto de passagens subterrâneas, mas também os fungos que elas cultivam para seus filhotes necessitam de oxigênio e não conseguem resistir a temperaturas acima de 30°C. A atividade de todas essas formigas poderia facilmente elevar a temperatura do formigueiro acima desse valor. Como esses formigueiros são ventilados para controlar tanto o oxigênio como a temperatura?

Resposta Um cão-da-pradaria constrói montes de terra em volta das entradas do túnel, geralmente um monte arredondado em forma de cúpula em uma das entradas e um monte mais íngreme, em forma de cone, na outra (Fig. 28). Os montes, que são feitos com material retirado do túnel e com terra das vizinhanças (e que são cuidadosamente

conservados pelos animais), podem servir de pontos de observação, mas sua principal função é ventilar o túnel. Quando o vento sopra em uma dessas aberturas, ele tende a arrastar (capturar e remover) as moléculas de ar da entrada. Como os montes têm formas e alturas diferentes, o arrasto é mais acentuado em uma entrada do que na outra. Assim, o ar é puxado para fora de uma das aberturas, o que faz entrar ar pela outra abertura e passar por dentro do túnel. Com esse suprimento constante de oxigênio, os animais não correm o risco de morrer asfixiados.

Figura 2-8 / Item 2.22 O vento pode passar entre dois montes de terra de um túnel dos cães-da-pradaria.

As formigas e os fungos dos gigantescos formigueiros das saúvas geram muita energia térmica e, portanto, aquecem o ar. Embora esse ar aquecido tenda a subir para fora do formigueiro, os formigueiros são grandes e complexos demais para serem ventilados dessa forma. Em vez disso, são ventilados pelo arrasto de ar pelo vento que passa pelas aberturas na superfície, como acontece com os túneis dos cães-da-pradaria.

2.23 • Redemoinho na banheira Quando a água escoa de uma banheira, por que ela gira acima do ralo, formando um redemoinho? Qual é o sentido de rotação: horário ou anti-horário? Se o sentido de rotação depende do hemisfério em que se encontra a banheira, qual é o sentido quando a banheira está perto do equador? O redemoinho se forma a partir da superfície da água, como se fosse um cano ligando a superfície da água ao ralo da banheira? O que determina a profundidade do redemoinho? (O redemoinho poderia ser uma simples reentrância na superfície da água, ou poderia ser uma coluna de ar até o interior do ralo.) Por que o sentido de rotação às vezes muda bruscamente quando a banheira está quase vazia? Por que alguns redemoinhos de banheira produzem ruído?

Resposta A lenda a respeito do sentido de rotação dos redemoinhos nas banheiras teve origem nas circulações atmosféricas observadas em sistemas de grandes dimensões, tais como os furacões. Quando o ar percorre uma grande extensão, a rotação da Terra produz um desvio nos ventos através do chamado efeito Coriolis. Os desvios provocam um fluxo de ar no sentido anti-horário no hemisfério Norte e no sentido horário no hemisfério Sul. O fluxo de água em uma banheira é um sistema de pequenas dimensões que está sujeito a efeitos muito maiores que o efeito Coriolis. O sentido de rotação do redemoinho é determinado principalmente pelo sentido de rotação da água quando ela cai na banheira ou quando alguém a faz girar. Se for dominada, por exemplo, por um movimento no sentido horário, a água pode manter esse sentido de rotação por uma hora ou mais. Se a água escoar enquanto ainda gira no sentido horário, o redemoinho sobre o ralo irá girar no sentido horário. Outros fatores que podem determinar o sentido do movimento da água são a falta de simetria na banheira (o ralo pode não estar posicionado simetricamente), a perturbação causada ao se tirar a tampa do ralo e diferenças de temperatura entre a água de um lado (o lado voltado para o resto do banheiro, por exemplo) e o outro lado (o lado voltado para a parede). O efeito Coriolis foi demonstrado em uma banheira especial quando foram tomadas certas precauções: a banheira era circular, o ralo era central, esperou-se um longo período para que a água se acomodasse, a temperatura da água foi estabilizada, a água foi isolada de perturbações causadas pelas pessoas presentes e a tampa do ralo foi retirada com muito cuidado. Com essas precauções, o sentido de rotação do redemoinho foi ditado pelo efeito Coriolis e, como a banheira estava em Boston, a água escoou no sentido anti-horário. A maior parte da água que desce por um ralo se movimenta em direção ao ralo perto do fundo da banheira. Quando a água

chega ao ralo, parte desce imediatamente pelo ralo, mas a maior parte espirala para cima antes de descer pelo ralo. A água que desce pelo centro do ralo vem da superfície da água: ou seja, da depressão que se forma acima do ralo. Se o redemoinho for forte, a parte inferior da depressão é fina e instável, com bolhas de ar se desprendendo. A extensão do redemoinho (a profundidade da coluna de ar no centro) é determinada em parte pelo diâmetro do ralo. Um ralo largo geralmente produz apenas uma reentrância na superfície da água. Um ralo estreito costuma produzir um redemoinho estreito e forte, com uma coluna de ar que entra no ralo. Um ralo intermediário pode produzir um redemoinho que inicialmente cresce para baixo e em seguida recua para cima. O motivo de uma inversão de última hora do sentido de rotação não é bem compreendida. Uma explicação é que, quando a camada de água fica rasa demais, o escoamento que forma o redemoinho sofre repentinamente o efeito do atrito com o fundo da banheira. Um redemoinho na banheira pode produzir ruído se for forte o suficiente para arrastar (capturar) o ar em forma de bolhas, que emitem sons ao oscilarem e estourarem. A superfície da água também pode oscilar, provocando variações na pressão do ar que se manifestam como ondas sonoras.

2.24 • Redemoinho em uma xícara de café Mexa com cuidado uma xícara de café preto e depois retire a colher. Enquanto o café gira na xícara, despeje devagar e com cuidado leite frio ou creme no centro da xícara. Por que aparece uma depressão no centro? Por que a depressão não aparece se o leite estiver morno ou quente?

Resposta Você deixa muitos redemoinhos pequenos dentro da rotação geral que observa no café. Como o leite frio é mais denso que o café, afunda ao longo do eixo central de rotação, puxando alguns desses redemoinhos para o centro e estendendo-os para baixo. Essa união e esse estiramento aumentam a velocidade de rotação do líquido perto do centro. A superfície perto do centro torna-se côncava, como costuma acontecer com um líquido em rotação, mas neste caso a forma côncava é mais pronunciada.

2.25 • Aglomeração de folhas de chá; rotação de azeitonas Se você mexe uma xícara de chá com folhas de chá espalhadas no fundo (e depois retira a colher), por que as folhas de chá se aglomeram no centro? Por que, pouco antes de chegar ao centro, elas formam um anel e depois se movem para o centro? Ao mexer um martíni que contém uma azeitona, ela se move em torno do centro do copo, juntamente com o líquido, mas também gira em torno de si mesma. Por que o sentido de rotação da azeitona tende a ser o oposto do sentido de rotação do líquido?

Resposta Como explicou Albert Einstein, o movimento das folhas de chá revela um padrão de circulação do chá na xícara. Como a mexida faz a água girar em torno do eixo vertical central, a água tende a espiralar para fora. Isto significa que as moléculas da água se movem como se estivessem em um carrossel. Entretanto, em uma xícara de chá, a água perto do fundo é freada pelo atrito e, portanto, não gira tão rapidamente quanto a água que está perto da superfície. Assim, a tendência de espiralar para fora é forte na superfície e fraca no fundo. Essa diferença cria um sistema de circulação chamado fluxo secundário. Enquanto gira em torno de um eixo central, o líquido também se movimenta para fora ao longo da superfície, para baixo ao longo da parede, para dentro ao longo do fundo e para cima ao longo do eixo central (Fig. 2-9). O escoamento ao longo do fundo arrasta as folhas de chá para o centro e depois as abandona. O que Einstein não percebeu foi que as folhas de chá formam um anel pouco depois que a colher é retirada e antes de chegarem ao centro. As folhas de chá mais distantes do centro do que esse anel são arrastadas para ele pelo fluxo secundário. As folhas de chá mais próximas do centro espiralam para fora até o anel. Quando a velocidade de rotação da água na xícara diminui, o raio do anel diminui, de modo que as folhas se movem gradualmente até o centro, onde finalmente ficam em repouso.

Figura 2-9 / Item 2.25 Fluxo secundário em uma xícara de chá.

Se o chá for mexido ao se colocar a xícara em uma base giratória, como um toca-discos, a mexida começará no fundo do líquido por causa do atrito entre o líquido nessa região e as paredes internas da xícara. A rotação do líquido irá gradualmente subir até a superfície. Durante a subida, o líquido do fundo tende a espiralar para fora e o líquido da superfície não tem tendência a espiralar. Em conseqüência, um fluxo secundário se estabelece: para fora no fundo, para cima na parede, para dentro na superfície e para baixo no eixo central. Esse escoamento é o contrário do escoamento produzido pela mexida com a colher, e por isso as folhas de chá vão acabar formando um anel colado à parede. Quando um martíni contendo uma azeitona é mexido, a azeitona fica entre o líquido que se movimenta mais depressa, perto do centro do copo, e o líquido que se movimenta mais devagar, longe do centro. Assim, a força que o líquido exerce sobre a azeitona é maior perto do centro, fazendo-a girar no sentido oposto ao da rotação do líquido. (Uma vez que estão envolvidas muitas variáveis, tais como a distribuição de massa na azeitona descaroçada e recheada, a azeitona pode, em vez disso, girar no sentido de rotação do líquido ou girar caoticamente.)

2.26 • Rios tortuosos Por que os rios tendem a serpentear (formando meandros) em vez de seguir em linha reta? Olhando de um avião, você pode observar que alguns rios têm muitos meandros. O que produz os alagadiços, chamados lagos de meandro, que se formam ao longo dos rios muito tortuosos?

Resposta Os meandros começam por acaso no complexo fluxo de água de um rio; mas, uma vez que uma pequena alteração de curso acontece, o movimento da água pode acentuar a mudança, criando uma curva e depois um lago. A água produz essas alterações erodindo a terra e as pedras que formam as margens e o leito do rio. O processo pode ser muito complicado e depende das características específicas do rio, mas aqui está uma explicação simples: a Fig. 2-10a ilustra uma curva de rio vista de cima e a Fig. 2-10b mostra um corte vertical da mesma curva. Quando a água passa por essa curva, tende a se acumular do lado de fora da curva, como se houvesse uma força empurrando-a nessa direção. A água que se move no fundo do rio é freada pelo atrito com o fundo, que reduz o movimento para fora. A água que se move na superfície não é freada. Assim, enquanto toda a água corre para fora da curva, existe também um fluxo secundário, que é para fora na superfície, para baixo ao longo da margem externa, para dentro ao longo do leito e para cima ao longo da margem interna. O fluxo secundário retira material da margem externa e o deposita rio abaixo na margem interna. Assim, a curva cresce para fora, pois a margem externa é gradualmente removida.

Figura 2-10 / Item 2.26 (a) Meandro de rio visto de cima. (b) Fluxo secundário em um meandro, visto de perfil.

Se o meandro cresce demais, a erosão pode separá-lo do resto do rio, transformando-o em um lago de meandro.

2.27 • Um pássaro que gira na água Por que um falaropo (pequena ave pernalta) gira rapidamente na água enquanto abaixa a cabeça para bicar a superfície?

Resposta Quando não existem presas suficientes na superfície da água, o falaropo gira o corpo e exerce uma forte pressão sobre a água, mantendo primeiro os dedos esticados e depois dobrando os dedos e levantando as patas. Esse movimento provoca uma corrente ascendente na água, que faz as presas subirem à superfície, girando no sentido contrário ao da ave. A ave apanha as presas rapidamente quando elas chegam à superfície. Os melhores resultados provavelmente acontecem quando a corrente ascendente recolhe as presas de um fundo relativamente raso, que de outra formam estaria fora do alcance da ave.

2.28 • A subida da água em um ovo que gira Se você faz um ovo cozido girar como um pião, ele fica em pé. Se você faz o ovo girar em uma poça rasa (com alguns milímetros de profundidade), por que a água sobe pela casca do ovo antes de ser jogada para longe?

Resposta Normalmente, quando mexemos a água como em uma xícara de chá, a água se move para fora, deixando uma concavidade no centro e, portanto, criando um redemoinho no local. Quando um ovo gira na água, a água tende a se movimentar para fora, mas também adere ao ovo. Ao subir na parte de baixo da casca curva, a água pode continuar em contato com o ovo e ao mesmo tempo se mover para fora. Em algum ponto da curva da casca, a força da gravidade e a instabilidade fazem a água se liberar da casca. A água se desprende em forma de gotas, que aterrissam para formar uma circunferência em torno do ovo.

2.29 • O movimento circular da água da pia Quando o fluxo contínuo de água de uma torneira atinge a superfície de uma pia plana com o ralo aberto, por que se forma uma circunferência no ponto de impacto, com a água mais profunda do lado de fora da circunferência?

Resposta Quando a água da torneira se choca com a superfície da pia, ela se espalha radialmente a uma velocidade que é chamada de supercrítica, porque é maior que a velocidade das ondas na água. De início, o movimento é estável porque qualquer perturbação casual é rapidamente eliminada. Entretanto, quando a água se espalha para fora, os efeitos da viscosidade passam a ser importantes e o movimento se torna instável. Em uma das descrições do fenômeno, o movimento viscoso começa na superfície da pia e gradualmente se estende para cima. Em certo raio do ponto de

impacto, o movimento viscoso alcança a superfície e a profundidade da água aumenta bruscamente, efeito conhecido como salto hidráulico (Fig. 2-11). Além desse ponto, a velocidade da água é menor (subcrítica). Assim, o salto hidráulico é a transição de um movimento mais rápido, em águas mais rasas, para um movimento mais lento, em águas mais profundas.

Figura 2-11 / Item 2.29 Parede circular de água em volta do ponto de impacto da água na pia.

O salto hidráulico acontece com freqüência em situações corriqueiras, tais como o movimento da água em calçadas estreitas, ao longo de meio-fios, em tubulações de esgoto e em canais de irrigação. Procure uma onda estacionária, principalmente nos locais em que exista um obstáculo ao movimento da água. Ondas são criadas nos locais em que a água tem que contornar um obstáculo. A maior parte dessas ondas simplesmente perde sua energia e desaparece, mas uma onda com um certo comprimento de onda se propaga no sentido contrário ao do movimento da água e à mesma velocidade, formando uma onda estacionária. A perturbação contínua da água pelo obstáculo fornece continuamente energia à onda, possibilitando que ela persista. Você pode observar uma série de cristas e vales estacionários em vez de uma única parede, como acontece em uma pia. Saltos hidráulicos em corredeiras podem ser um problema sério (ou até fatal) para a canoagem em águas brancas, porque a canoa pode ficar retida no local do salto e virar por causa da turbulência. Se você pingar cuidadosamente uma gota d’água perto de um salto hidráulico em uma pia de cozinha, a gota pode ficar presa na parede do salto e continuar flutuando durante um longo tempo (em vez de simplesmente se misturar com a água) porque o ar está continuamente sendo arrastado para baixo dela pela água corrente. Um fluxo de um fluido viscoso, tal como anticongelante (etilenoglicol), pode formar um salto hidráulico circular, mas também pode espontaneamente se transformar em um salto hidráulico poligonal com arestas e vértices.

2.30 • O nível da água nos canais Imagine que você esteja em um barco que se move em um canal estreito e raso. Quando a proa passa por um ponto do canal, o nível da água nesse ponto sobe ou desce?

Resposta Quando o barco se move ao longo do canal, a água à frente do barco tem que passar pelos espaços estreitos entre o barco e as margens para terminar atrás do barco. Esse movimento da água é realizado através de uma depressão que se forma na posição da proa. Como a pressão da água é menor na depressão, esta suga a água da frente do barco e a envia para os lados do barco, fenômeno que recebe o nome de rebaixamento. Assim, enquanto o barco avança, a água desce no espaço entre o barco e o canal, no chamado efeito canal. As variações resultantes da pressão e da vazão da água no espaço entre o navio e as margens podem tornar perigosa a navegação em um canal e o pulso de baixa pressão pode afetar equipamentos situados nas margens do canal ou mesmo em canais próximos.

2.31 • Ondas solitárias Em 1834, o engenheiro e arquiteto naval inglês John Scott Russell observou uma estranha onda em um canal perto de Edimburgo. Um barco estava sendo rapidamente puxado por cavalos quando de repente os cavalos e o barco pararam. Entretanto, o monte de água que se havia formado à proa do barco não parou; em vez disso, continuou a se mover ao longo do canal a cerca de 4 metros por segundo. Montado a cavalo, Russell conseguiu seguir esse monte, que tinha mais ou menos 30 centímetros de altura e cerca de 10 metros de largura (a largura do canal) por cerca de 3 quilômetros antes de perdê-lo de vista nas “sinuosidades do canal”. Russell ficou atônito com o fato de que a onda não parecia diminuir enquanto avançava. Se você agita a água de um rio, as ondas produzidas diminuem rapidamente de amplitude e certamente não percorrem vários quilômetros, mesmo que o rio seja largo. O que havia de tão diferente na onda de Russell?

Resposta Se um barco está navegando em um canal mais depressa que a velocidade das ondas na água, a proa faz a água se acumular na frente do barco. Se a velocidade do barco é apenas ligeiramente maior que a velocidade das ondas, a água forma várias cristas e vales. Se a velocidade do barco aumenta, os vales desaparecem e a água se acumula em uma única protuberância denominada onda solitária ou sóliton. Russell viu uma onda solitária que foi liberada do barco quando o barco parou de repente. A matemática de uma onda assim é sabidamente difícil, mas a onda solitária propriamente dita é simples. Normalmente, a velocidade das ondas que se propagam na água varia de acordo com o comprimento de onda, processo conhecido como dispersão. Assim, se uma agitação na água produz um pacote de ondas com vários comprimentos de onda, as ondas se dispersam e, ao mesmo tempo, sua intensidade diminui com o tempo. Em uma onda solitária, a perturbação do nível da água é amplificada pela própria onda, o que impede a dispersão e mantém a forma da onda. Na verdade, uma onda solitária pode percorrer uma distância muito grande, já que perde energia muito devagar por causa da baixa viscosidade (atrito interno) da água. Em uma onda comum, a água se movimenta em uma trajetória circular ou elíptica mas não é transportada na direção de propagação da onda. Assim, por exemplo, se você agita a água para produzir ondas em um lago, o que se move na superfície do lago são as ondas, não a água. Uma onda solitária é diferente porque ela realmente envolve o transporte de água. Para mostrar que isto é verdade, Russell fez vários barcos puxados por cavalos produzirem ondas solitárias em um canal comprido. Russell descobriu que a profundidade da água aumentava na extremidade do canal para a qual as ondas estavam se propagando e diminuía (na mesma proporção) na extremidade oposta.

2.32 • Pororocas Por que, quando a maré entra em alguns rios, a água do mar forma uma parede turbulenta, chamada pororoca, que pode aumentar sensivelmente a profundidade da água ao passar por um certo ponto do rio? Em alguns rios (como o rio Severn, na Inglaterra) e em certas ocasiões (a maré tem que ser propícia), a onda que sobe o rio pode ser tão alta que os surfistas podem acompanhá-la por vários quilômetros. Muito antes de o surfe se tornar um esporte, os pescadores colocavam rotineiramente seus barcos na foz dos rios para pegar carona e seguir rio acima com uma pororoca. O fenômeno aparentemente era desconhecido dos capitães e tripulações dos navios da Marinha Real Britânica que faziam um levantamento do rio Chien-tang-kiang, na China, em 1888. Uma noite, com os navios ancorados no rio, as tripulações ouviram um estrondo muito forte. Cerca de 30 minutos depois, uma pororoca apanhou os navios e os arrastou um quilômetro rio acima, apesar de os motores estarem funcionando com força total no sentido contrário. O estrondo era causado pela turbulência da pororoca, que poderia ter virado os navios.

Resposta Uma pororoca pode acontecer quando um grande volume de água se movimenta contra a correnteza de um rio, formando uma parede de água turbulenta ou uma série de cristas e vales. As melhores condições para a formação de uma pororoca são as seguintes: (1) grandes variações entre a maré baixa e a maré alta na foz do rio. (2) O rio deve ser raso, com margens íngremes e um estuário em forma de funil. Quando as ondas de grande comprimento de onda das águas mais profundas são confinadas à água rasa do estuário e depois ao interior do rio, a água forma uma frente ou parede. Em um salto ondular, as cristas e os vales das ondas aumentam de altura e profundidade e a frente das cristas torna-se mais íngreme até que as cristas ultrapassam os vales. O resultado é uma única parede de água, chamada onda solitária, que se move rio acima, contra a correnteza. Uma pororoca pode ser devastadora se apanhar um barqueiro de surpresa. Como exemplo histórico, em 1843 a filha de Victor Hugo, o famoso escritor francês do século XIX, foi arrancada do seu barco no baixo Sena por uma pororoca inesperada e, como não sabia nadar, morreu afogada.

2.33 • Marés O que causa as marés? Por que na maioria das localidades costeiras acontecem duas marés por dia, mas existem lugares em que só acontece uma?

Resposta Eis uma resposta simples: a principal responsável pelas marés é a atração gravitacional da Lua sobre os oceanos, apesar de essa força não ser suficiente para levantar a água. Como a força varia ao longo da superfície da Terra (é mais forte no lado voltado para a Lua, mais fraca no outro lado), ela altera a distribuição da água dos oceanos, esticando-a paralelamente à linha que liga a Terra à Lua. Esse estiramento produz duas protuberâncias na distribuição da água, uma no lado voltado para a Lua e outra no lado oposto. Se a Terra não girasse em torno de si mesma, um litoral situado em um ponto da Terra voltado para a Lua teria maré alta o dia inteiro, e o mesmo aconteceria com um

litoral situado do lado oposto do nosso planeta. Entretanto, a rotação da Terra faz com que os litorais passem pelos dois pontos de maré alta mais ou menos uma vez por dia e, portanto, tenham dois episódios de maré alta por dia. Eis alguns fatores complicadores. As protuberâncias não ficam exatamente em uma linha que passa pela Terra e pela Lua porque o movimento da água está sujeito ao atrito com a própria água e com os litorais. O atrito retarda a resposta da água ao estiramento provocado pela Lua. Assim, o ponto de maré alta em uma cidade portuária pode acontecer uma hora ou mais depois de a Lua atingir o ponto mais alto do céu. O ponto de maré alta no canal da Mancha, por exemplo, é retardado várias horas porque o movimento da água encontra uma resistência considerável. Outro fator complicador é que a força gravitacional do Sol também tende a esticar a distribuição de água. Entretanto, o efeito do Sol é aproximadamente duas vezes mais fraco que o efeito da Lua. Embora o Sol seja muito maior que a Lua, está muito mais longe da Terra. Na lua nova e na lua cheia, o Sol e a Lua estão alinhados e seus efeitos se somam, produzindo uma maré especialmente intensa, conhecida como maré de sizígia. Quando as direções do Sol e da Lua estão separadas 90°, acontece a chamada maré de quadratura, muito mais fraca. Por causa dessas complicações, alguns litorais podem ter apenas uma maré perceptível por dia.

2.34 • As marés da baía de Fundy As marés da baía de Fundy (Nova Escócia, Canadá) são muito fortes, às vezes com uma diferença de 15 metros do nível mais baixo para o mais alto em um intervalo de poucas horas. Por que a variação de altura da maré é tão grande em lugares como este e muito menor em outros lugares?

Resposta Você pode fazer a água de uma banheira oscilar (jogar de um lado para o outro) se uma pá exercer pressão sobre a água de forma periódica. Você obtém as oscilações mais fortes se sincronizar o movimento de modo que cada impulso aconteça quando a água estiver mais alta na borda da banheira. Assim agindo, você está excitando a água de forma ressonante e o intervalo de tempo entre dois impulsos é igual ao período de oscilação da banheira. A água de uma baía também pode ser posta para oscilar se for excitada de forma ressonante. Os efeitos de maré causados pela Lua tendem a criar oscilações em uma baía, fazendo a água jogar de um lado para outro. Na maioria das baías, porém, as oscilações são pequenas porque o período das marés não coincide com o período de oscilação da baía. A baía de Fundy é diferente: seu período de oscilação é cerca de 13,3 horas, valor razoavelmente próximo do intervalo de 12,4 horas entre marés altas sucessivas. Assim, o balanço da água da Baía de Fundy é considerável. Os registros históricos sugerem que as variações das marés na baía de Fundy aumentaram gradualmente porque o período de ressonância da baía vem se aproximando gradualmente do período das marés. Isto pode se dever a uma mudança na forma da baía por causa da elevação no nível do mar.

2.35 • Água morta Durante uma expedição polar, em agosto de 1893, o navio Fram encontrou o que passou a ser chamado de água morta na costa norte da Sibéria. O navio tinha capacidade para viajar a 6 ou 7 nós, mas na água morta conseguiu alcançar apenas 1,5 nó, embora tanto a água quanto o tempo estivessem calmos. Além disso, o navio ficou difícil de controlar; o capitão foi obrigado a seguir em ziguezague para escapar da região de água morta. A água não tinha aspecto diferente do de qualquer água do oceano. O que causou a redução de velocidade e perda do controle do leme?

Resposta A água morta se forma quando uma camada de água relativamente doce fica por cima da água salgada, o que pode acontecer quando um rio deságua no oceano. Duas interfaces desempenham papel importante: a interface entre o ar e a água doce e a interface entre a água doce e a água salgada. Normalmente, boa parte da energia do motor de um navio é usada para criar ondas na primeira dessas interfaces: pense na produção de ondas como uma forma de resistência ao movimento do navio. Na água morta, o navio produz dois conjuntos de ondas, um em cada interface, e portanto a resistência é significativamente maior. Quanto mais depressa o navio tenta se deslocar, mais depressa sua energia é transferida para as chamadas ondas internas, que se formam na interface da água doce com a água salgada. A proa do navio fica acima da primeira crista da onda interna. A água logo abaixo dessa crista se movimenta no sentido contrário ao do navio, opondo-se ao seu movimento. O comprimento do Fram era tal que o leme também ficava acima de uma crista da onda interna, de modo que o leme não conseguia controlar o navio.

2.36 • Tornados

Tornados podem ocorrer em vários lugares do mundo, mas são uma ameaça constante no corredor dos tornados, uma larga faixa que passa pelo centro dos Estados Unidos. Em todos que os observam ou se escondem deles, eles causam admiração e medo, pois são uma combinação simultânea de beleza e desgraça. O que causa os tornados e por que eles acontecem com tanta freqüência no corredor dos tornados? Um tornado destrói uma casa empurrando as paredes para dentro ou puxando-as para fora? Os ventos de um tornado podem realmente fazer a palha penetrar na madeira, como às vezes noticia a imprensa popular?

Resposta Um tornado é um grande redemoinho atmosférico que pode se formar a partir de uma tempestade quando o ar quente e úmido desliza por baixo de ar frio e seco, e as duas massas de ar se movem em sentidos contrários. Quando o ar quente sobe passando pelo ar frio e seu vapor d’água começa a formar gotas d’água, uma grande quantidade de energia térmica é liberada pela transição de vapor para líquido. Essa liberação de energia faz o ar quente subir ainda mais depressa. O complexo movimento do ar (massas se movendo em sentidos contrários e um ar ascendente acelerado) produz uma tesoura de vento no lugar em que fluxos de ar adjacentes têm velocidades e direções muito diferentes. De um modo que não é bem compreendido, essas condições podem levar a um turbilhão e, em seguida, a um tornado. Embora esses fatores possam ser simulados em computadores de grande porte, as simulações não fornecem uma resposta simples a respeito das causas de um tornado ou da maneira como os grandes tornados adquirem tanta energia. Um tornado só se torna visível quando recolhe terra e outros detritos do chão e os levanta ao longo do funil ou quando faz com que a água se condense em gotas. Os maiores tornados são provavelmente combinações de redemoinhos simultâneos: vários redemoinhos pequenos girando em torno de um redemoinho maior. Existem vários formatos de tornado, como os que lembram funis, colunas e cordas (ou cobras). Alguns tornados são quase verticais, enquanto outros avançam horizontalmente antes de mergulhar em direção ao solo. Todos os tornados parecem se movimentar de modo imprevisível, saltando pelo terreno e tocando o solo ocasionalmente para produzir grandes estragos. Contrariamente à crença popular, o perigo que um tornado representa para uma casa não é o de causar uma redução brusca da pressão do ar do lado de fora, que faria as paredes da casa explodirem. Na verdade, a pressão atmosférica não cai muito. Assim, se um tornando estiver a caminho, não perca tempo abrindo janelas na esperança de que a pressão do ar no interior da casa equilibre a pressão do lado de fora. Fuja! Procure abrigo! O porão pode oferecer a melhor proteção, mas, como segunda opção, o banheiro, com uma banheira e um encanamento, pode ser um lugar mais seguro que o resto da casa. O risco para uma casa está nos ventos de alta velocidade que acompanham um tornado. Se entrarem por baixo das telhas, podem arrancar o teto da casa. Em seguida, com a integridade estrutural da casa comprometida, a parede voltada para o vento pode tombar para dentro e as outras três paredes podem tombar para fora. Apesar do que vemos em O Mágico de Oz, é pouco provável que uma casa inteira seja levantada e transportada por um tornado. Em vez disso, é mais provável que ela seja feita em pedaços e os escombros sejam transportados, talvez até contribuindo para a destruição de uma casa vizinha. Se a casa não for feita em pedaços, pode girar em torno de um ponto fixo, como o encanamento do banheiro, assumindo uma nova orientação. Os ventos de um tornado podem ser suficientemente fortes para fazer a palha penetrar na madeira ou um graveto furar um cano de aço. Nas simulações em laboratório dos ventos de tornados, lascas, palitos e pêlos de vassoura atravessaram vários tipos de alvos de madeira ao serem disparados de uma arma pneumática.

CURIOSIDADE 2.37 • No olho de um tornado Poucas pessoas sobreviveram à experiência de olhar para cima no funil de um tornado. A descrição mais detalhada de que se tem notícia é a do capitão Roy S. Hall, cuja casa foi atingida por um tornado em maio de 1948. Depois que o telhado foi carregado e algumas paredes desabaram, Hall pôde ver a casa do vizinho e ficou aliviado ao constatar que sua casa não estava voando, como chegara a temer. Entretanto, viu uma coisa terrível: a 20 metros de distância, alguma coisa desceu a cerca de 6 metros do chão e adejou com uma lenta oscilação vertical. A coisa era curva, com uma superfície côncava voltada para ele. Com um choque, percebeu que a coisa flutuante era a superfície interna do funil do tornado e, portanto, ele estava dentro do funil! Ao olhar para cima dentro do funil, o tornado parecia se estender por 300 metros, balançando de um lado para outro e gradualmente se curvando. Havia uma região central que brilhava como uma lâmpada fluorescente. Quando o funil se encurvou, anéis se formavam ao longo de seu comprimento. Hall não viu nada subindo pelo funil, não teve problema para respirar (e, portanto, a pressão atmosférica não podia estar muito baixa) e ficou maravilhado com o silêncio absoluto (em contraste com o

barulho intenso durante a aproximação do tornado). De repente, o funil se afastou e a família de Hall saiu do abrigo para procurá-lo.

2.38 • Trombas d’água e nuvens em forma de funil O que causa as trombas d’água, esses grandes redemoinhos observados no mar? Como um barco pode sobreviver a um encontro com uma tromba d’água?

Resposta Uma tromba d’água se forma geralmente sobre a água nos locais em que existe uma forte corrente ascendente cercada por uma região de ar descendente. O ar puxado para dentro da corrente ascendente coleta umidade e energia térmica da água subjacente. Enquanto sobe pelo funil, é mais quente e úmido que o ar circundante. Devido ao fato de ser mais quente, o ar acelera para cima, mas em seguida a umidade começa a se condensar, formando gotas. Essa mudança de fase libera muita energia térmica, que aquece o ar ainda mais, aumentando a aceleração para cima. Esse processo é o chamado motor térmico que alimenta uma tromba d’água. O ar da região circundante, especialmente o ar esfriado pela chuva, desce para tomar o lugar do ar perdido para o funil. Embora uma tromba d’água lembre um tornado e seja muitas vezes descrita como sendo um tornado muito fraco, o motor térmico que o aciona e a instabilidade do ar que produz as correntes ascendentes lembram mais as manifestações associadas a um redemoinho de poeira. Embora os barcos freqüentemente sobrevivam a trombas d’água fracas, trombas d’água maiores podem causar danos consideráveis e facilmente tombar até um barco de tamanho médio. As grandes trombas d’água são provavelmente responsáveis por histórias de peixes que chovem do céu: uma tromba d’água pode levantar muita água e muitos peixes antes de se deslocar para o continente, onde perde seu motor térmico, dissipa-se e deixa cair sua carga. A extremidade inferior é cercada por uma bainha de aspersão, um cilindro curto de espuma. O terço inferior do funil é visível principalmente por causa da água que é puxada para dentro do funil, e o resto pode ser visível se o vapor d’água se condensar em gotas, que podem espalhar a luz solar.

2.39 • Redemoinhos de poeira, de neblina e de vapor Redemoinhos de poeira são turbilhões que muitas vezes aparecem em regiões quentes, mas também estão presentes na superfície fria de Marte. Tornam-se visíveis por causa da terra, de sujeira e de outros detritos coletados no chão e levados para cima. Muitos redemoinhos de poeira são pequenos e inofensivos, mas alguns têm um quilômetro de altura e são suficientemente fortes para levantar pequenos animais (ou mesmo crianças). Os redemoinhos de poeira em Marte são ainda maiores, alcançando 6 quilômetros de altura. Redemoinhos de neblina são turbilhões que podem aparecer em neblinas e redemoinhos de vapor são turbilhões que podem aparecer sobre a água em dias frios. Ambos são fugazes e inofensivos. O que causa esses tipos de turbilhões?

Resposta Esses turbilhões se devem a uma situação instável na qual o ar mais frio fica por cima do ar mais quente. Assim, por exemplo, um redemoinho de poeira pode se formar quando a luz solar aquece intensamente o chão, que, por sua vez, aquece uma camada fina de ar sobrejacente. Esse ar quente (de baixa densidade) tende a subir, afastando-se do chão; mas, se a região tem pouco ou nenhum vento, o ar mais frio repousa como um cobertor sobre a camada de ar quente. A situação é instável e até um coelho que passe correndo pela região pode provocar uma rajada ascendente de ar quente. Nesse caso, mais ar quente corre pelo chão até o ponto da rajada, adquirindo um movimento de rotação ao entrar na coluna ascendente de ar quente: assim é o redemoinho de poeira (Fig. 2-12). A rotação pode ocorrer no sentido horário ou anti-horário, dependendo do sentido do fluxo de ar no solo e dos obstáculos encontrados. Na região circundante, o ar mais frio desce para substituir o ar quente perdido para o redemoinho de poeira.

Figura 2-12 / Item 2.39 O ar quente corre pelo chão quente e depois sobe em espiral. O ar frio desce.

Um redemoinho de poeira pode se movimentar da terra para a água, mas, a menos que recolha muita água, pode ser difícil de ver e a única indicação pode ser a crista circular que produz na água. Um redemoinho de neblina pode se formar quando a neblina sobe de uma grama úmida intensamente iluminada. A grama aquece o ar logo acima dela, que começa a subir mais ou menos como o ar quente em um redemoinho de poeira. Entretanto, a umidade do ar se condensa para formar gotas, processo que libera uma grande quantidade de energia térmica e faz o ar quente subir ainda mais depressa. Um redemoinho de vapor pode ocorrer sobre a água quando a temperatura do ar está abaixo de zero e a temperatura da água está acima de zero. Isto faz com que o ar que está perto da água fique mais quente que o ar mais acima, uma situação instável. Você pode produzir redemoinhos de vapor em miniatura em um dia frio. Coloque um recipiente de boca larga debaixo de uma janela e encha-o de água bem quente. Em seguida, abra a janela para que o ar frio entre e passe sobre a água. O ar quente e o vapor d’água que emana da água são acelerados para cima quando encontram o ar frio porque o ar frio é mais denso e porque o vapor d’água começa a se condensar, liberando energia térmica. Eles também são empurrados horizontalmente pela corrente de ar frio. A combinação dos movimentos vertical e horizontal, somada a alguma turbulência, pode produzir redemoinhos fugazes, que se tornam visíveis devido à condensação das gotas de água.

2.40 • Vórtices anulares Como um fumante consegue soprar um anel de fumaça? Por que o anel de fumaça se expande ao se aproximar de uma parede? Como um golfinho produz um anel de ar na água?

Resposta Um anel de fumaça é um vórtice anular criado por uma forte baforada. Quando a fumaça e o ar saem pela abertura redonda da boca, o fluxo perto dos lábios é freado pelo atrito, de modo que o fluxo que passa pela parte central da abertura tende a ultrapassá-lo. A tendência faz o fluxo girar em torno dos lábios, iniciando assim o movimento do vórtice. A fumaça atua meramente como um contraste, tornando visível o movimento do ar. Quando o anel de fumaça se aproxima de uma parede, o atrito do ar com a parede faz o anel se expandir. A velocidade de rotação do ar diminui, mais ou menos do mesmo modo que a velocidade de rotação de um patinador diminui quando ele abre os braços. Os golfinhos também gostam de brincar com vórtices anulares e são capazes de produzi-los de várias maneiras. Eis a maneira mais provável: o golfinho nada de lado enquanto move de um lado para outro a nadadeira traseira que nesse momento está na vertical. Quando a nadadeira se move na água, o fluxo de água perto da nadadeira é freado pelo atrito, provocando um movimento espiral que se transforma em um vórtice anular no plano vertical. O golfinho dá meia volta, vira o orifício respiratório para o vórtice anular e sopra ar no centro do vórtice, onde é rapidamente distribuído pelo vórtice. O ar afeta o empuxo do vórtice e também funciona como um contraste. O golfinho pode brincar com o vórtice seguindo-o, nadando através dele, produzindo um segundo vórtice anular para interagir com ele ou destacando uma parte que se fecha para formar um vórtice menor. Em uma sala de aula, um vórtice pode ser criado com um canhão de ar, que é uma caixa com um orifício circular na frente e uma cobertura flexível (tal como um saco plástico de lixo) fechando a parte de trás. Quando é puxada para trás e liberada, a cobertura flexível empurra o ar, fazendo-o passar pelo orifício circular. Como no caso dos anéis de fumaça, o fluxo de ar forma um vórtice anular, mas sem o benefício de um contraste. Com um canhão de ar, você consegue surpreender alguém do outro lado da sala com um grande vórtice anular que se aproxima sem aviso prévio. Pode-se também produzir um vórtice anular permitindo que uma gota caia no mesmo tipo de fluido ou em um fluido com o qual ela possa se misturar. Quando a gota penetra no fluido, dá origem a um vórtice anular. A formação é mais fácil de observar se a gota contiver uma pequena quantidade de tinta.

Se um vórtice anular segue outro, com os dois centrados mais ou menos no mesmo eixo, o vórtice de trás pode capturar o da frente. Dependendo das circunstâncias, os dois vórtices podem se fundir para formar um único vórtice ou podem jogar o seguinte jogo (Fig. 2-13): o vórtice de trás se contrai e gira mais depressa enquanto o vórtice da frente se expande e gira mais devagar. O vórtice de trás passa por dentro do vórtice da frente para se tornar o novo líder. Essa troca de posições pode acontecer várias vezes. Você pode observar uma troca de posições semelhante se deixar uma segunda gota cair em um líquido logo depois que a primeira gota entra no líquido. Se cada gota se torna um vórtice anular, o segundo vórtice pode passar por dentro do primeiro.

Figura 2-13 / Item 2.40 O anel de fumaça de trás passa por dentro do anel de fumaça da frente.

2.41 • Sifões e privadas Como um líquido pode ser extraído de um recipiente por meio de um sifão (Fig. 2-14)? Ou seja, por que um líquido sobe pelo tubo que é introduzido nele? Em especial, é a pressão atmosférica sobre o líquido que o faz subir pelo tubo? O que limita a altura de subida? Por que a extremidade livre do tubo tem que estar abaixo da extremidade que está no interior do recipiente?

Resposta Para iniciar o processo, o tubo introduzido no recipiente tem que estar totalmente cheio de líquido. (Ele pode ter sido enchido com a ajuda de uma pêra de borracha, usada para aspirar o líquido até a extremidade do tubo.) Embora escoe e não possua a rigidez de um sólido, o líquido está sujeito a forças de coesão. Isto significa que cada parte de um líquido é atraída pelas partes vizinhas. Quando o líquido da parte do tubo voltada para baixo começa a escoar, as partes perto do topo puxam as partes que estão do outro lado do topo, fazendo-as passar pelo topo e arrastar outras partes até o topo. Todo o processo acontece como se houvesse uma corda no interior do tubo. Enquanto a parte da corda que está fora do recipiente é mais comprida que a parte que está dentro, a gravidade faz a corda subir a partir do recipiente, passar pela parte mais alta do tubo e descer do outro lado. Ao contrário da crença popular, a pressão atmosférica não empurra o líquido tubo acima. Na verdade, o efeito sifão não depende da pressão atmosférica. Quando um líquido escoa por um sifão, dizemos que está submetido a um esforço trativo, porque a parte do líquido que está subindo é submetida simultaneamente a uma força para cima e uma força para baixo. Surpreendentemente, a água pode suportar esforços trativos apenas até um certo limite. Quando esse limite é ultrapassado, a água começa a evaporar. A altura do sifão pode ser aumentada até que essa transformação ocorra na parte mais alta do tubo. Quando as cavidades com vapor interrompem a continuidade da água, a coesão desaparece e a parte da água que ainda não chegou ao alto do tubo escorre de volta para o recipiente. O efeito sifão também é interrompido se o ar se infiltrar na água que está subindo e se acumula na parte mais alta do tubo, quebrando a continuidade da água. Esse tipo de interrupção acontece nos banheiros. Quando a água é despejada no vaso sanitário, o aumento da pressão empurra a água para o sistema de escoamento, que tem a forma de um sifão. A água e tudo que ela contém escoa pelo cano até que a quantidade de água que resta no vaso seja muito pequena. O ar pode então borbulhar para dentro do sifão, quebrando a continuidade da água no alto do sifão e interrompendo o efeito sifão. Geralmente a água do tanque continua a entrar no vaso durante mais algum tempo, mas não em quantidade suficiente para restabelecer o efeito sifão. Essa água funciona como uma barreira para impedir que os odores do sistema de esgoto invadam o banheiro.

Figura 2-14 / Item 2.41 Sifão.

2.42 • Lagartos andando sobre a água Como um basilisco consegue correr sobre a água sem afundar? Não apenas os lagartos jovens e leves escapam dos predadores dessa maneira, mas os adultos, mais velhos e mais pesados, fazem o mesmo.

Resposta Durante uma corrida, um passo começa quando o lagarto bate o pé na água. O impacto produz uma força de sustentação para cima, mas, como a água é um fluido de baixa viscosidade (atrito interno), o pé logo começa a afundar na água. Ao afundar, o pé cria um bolsão de ar, primeiro para baixo e depois para trás. O empurrão para trás exerce no lagarto uma força para a frente, que possibilita que ele corra. Como o lagarto não quer lutar contra a resistência da água, puxa a perna para fora da cavidade antes que a água a invada e envolva o pé e a perna. Nesse instante, a outra perna começou a dar um passo, batendo na água. Embora o lagarto realmente afunde um pouco, a força média para cima que ele experimenta com a seqüência de batidas com os pés é suficiente para sustentar até mesmo um adulto.

2.43 • Uma barra de chumbo em um barco Suponha que você esteja em um barco que flutua em um pequeno lago. Dentro do barco você tem uma rolha muito grande e uma barra de chumbo. O que acontece com o nível da água do lago se você joga a rolha na margem, a rolha na água, a barra na margem e a barra na água? O que acontece com o nível da água se existe um furo no fundo do barco e a água entra aos poucos para afundá-lo? Se o nível de água muda, começa a mudar assim que a água começa a entrar no barco?

Resposta Quando um objeto flutua, desloca água, ou seja, ocupa um certo volume que estaria sendo ocupado pela água. O volume ocupado é definido por uma regra simples: a massa da água deslocada é igual à massa do objeto. Assim, se uma rolha com uma massa de 1 quilograma flutua na água, ela afunda na água até que tenha deslocado um volume de água com uma massa de 1 quilograma. A rolha desloca essa quantidade de água esteja flutuando diretamente na água, esteja no interior do barco. Quando você joga a rolha na água, o volume da água deslocada não muda e o mesmo acontece com o nível de água do lago. Se você joga a rolha na margem, ela deixa de deslocar água do lago. Assim, o nível da água baixa. Quando uma barra de chumbo está no barco, a mesma regra se aplica. Suponha que a barra tem uma massa de 1 quilograma. Nesse caso, ela desloca uma quantidade de água equivalente a uma massa de 1 quilograma. Trata-se de uma quantidade considerável de água; o volume é cerca de 11 vezes o volume da barra. Se você joga a barra na margem, ela deixa de deslocar essa grande quantidade de água e o nível da água no lago baixa. Se, em vez de disso, você joga a barra na água, ela afunda

totalmente. Nesse caso, a quantidade de água deslocada tem o volume da barra. Essa quantidade é 1/11 daquela que era deslocada quando a barra estava flutuando com o auxílio do barco. Assim, o nível da água baixa. Quando o barco começa a fazer água, ainda está flutuando e, portanto, desloca a mesma quantidade de água. O nível da água só muda quando o barco deixa de flutuar, ou seja, quando está totalmente submerso. Nesse momento, o nível da água baixa bruscamente.

2.44 • Barras e embalagens flutuantes Um recipiente aberto, tal como um recipiente de comida ou bebida, flutua na vertical ou inclinado? Se uma barra comprida de seção reta quadrada flutua no líquido, qual das orientações ilustradas da Fig. 2-15 ela assume?

Resposta Em qualquer situação de flutuação, uma força de empuxo empurra o objeto para cima, equilibrando a força gravitacional para baixo. Esse equilíbrio geralmente pode ser alcançado com muitas orientações se o recipiente for submerso de maneira adequada. Entretanto, a maioria das orientações é instável no sentido de que a força de empuxo faz o recipiente rodar. A orientação mais estável em geral é difícil de calcular; você pode fazer algumas experiências em uma pia ou durante o banho. Eis alguns resultados previsíveis: um recipiente curto tende a flutuar na vertical (com o fundo para baixo), mas um recipiente alto e estreito deve adernar, talvez a ponto de capotar. Talvez o comportamento mais curioso seja o de um recipiente leve quando o enchemos gradualmente com água. O recipiente fica na vertical quando está vazio, começa a adernar quando está parcialmente cheio e se aproxima novamente da vertical quando está quase totalmente cheio, voltando a assumir a posição vertical quando está prestes a afundar. A orientação de uma barra quadrada depende da razão entre a densidade da barra e a densidade do líquido. Como a barra flutua, a razão não pode ser maior que 1. Quando o valor se aproxima de 0, a barra fica tão leve que a parte submersa é muito pequena e a barra flutua apoiada em uma das faces. Quando reduzimos gradualmente a densidade do líquido, a barra afunda cada vez mais, mas continua a flutuar apoiada em uma das faces. Entretanto, quando a razão chega a aproximadamente 0,21, a barra começa a adernar, e quando a razão chega a cerca de 0,28, passa a flutuar com as faces fazendo um ângulo de 45° com a horizontal.

Figura 2-15 / Item 2.44 Duas orientações de uma barra quadrada flutuante.

Se continuarmos a reduzir a densidade do líquido, a orientação não muda até que a razão chega a cerca de 0,72; em seguida, a inclinação diminui até que a barra volte a ficar apoiada em uma das faces quando a razão é cerca de 0,79. Quando a razão chega a 1, a barra está completamente submersa e continua apoiada em uma das faces.

2.45 • Buraco em uma represa; navio em um dique seco Uma história popular fala de um menino holandês que salva sua aldeia de uma inundação enfiando o dedo em um buraco que encontrou no dique que protege a aldeia do mar do Norte. Como um simples menino é capaz de conter todo o mar do Norte? Se um barco é colocado em um dique seco, a água é escoada enquanto as paredes se movem para dentro até que finalmente o barco é mantido no lugar pelas paredes. Durante o processo de escoamento, qual é a menor quantidade de água necessária para fazer o barco flutuar?

Resposta A pressão da água sobre o dedo do menino depende da profundidade do furo em relação à superfície da água, não da largura nem da profundidade do oceano. Assim, contanto que a profundidade em que se encontrava o buraco não fosse muito grande, é possível que a história seja verdadeira. A pergunta a respeito do dique seco não tem uma resposta completa. Entretanto, a capacidade do barco de flutuar não depende da profundidade ou da largura do local em que ele se encontra; o que importa é a altura da água ao lado do barco. Em princípio, se a altura for mantida, a pressão da água sobre o barco sempre fornece o empuxo para cima necessário para compensar a força gravitacional para baixo a que o barco está sujeito. Assim, até uma camada fina de água que envolvesse o

casco bastaria. Entretanto, no caso de uma camada muito fina, a camada se torna instável e uma perturbação fortuita pode fazer o barco e a parede do dique seco se tocarem, acabando com a flutuação.

2.46 • Perda de consciência dos pilotos Os pilotos de caça evitam fazer curvas muito fechadas porque podem sofrer a chamada g-LOC (g-induced loss of consciousness, perda de consciência induzida por g). Existem vários sinais de advertência. Quando a aceleração centrípeta está em 2 ou 3 g, o piloto se sente pesado. Por volta de 4 g, o piloto passa a enxergar em preto e branco e o campo visual se estreita, fenômeno conhecido como visão em túnel, no qual a visão periférica desaparece e apenas a visão frontal persiste (como se o piloto estivesse em um túnel). Se a aceleração é mantida em 4 g ou aumenta, a visão cessa totalmente e, pouco depois, o piloto perde a consciência. O que provoca essas mudanças no piloto?

Resposta Se o piloto faz uma curva com a cabeça voltada para o centro da curva, como é comum, a pressão arterial no cérebro cai, prejudicando a visão e, finalmente, causando a perda de consciência. Os jatos modernos são potentes e altamente manobráveis, de modo que o piloto pode com facilidade fazer uma curva depressa demais, especialmente quando está em combate com outro caça. Nesse caso, o piloto pode entrar em g-LOC sem aviso prévio. Se o piloto não recuperar rapidamente a consciência, o avião pode estolar ou se chocar com o solo.

2.47 • Circulação sanguínea nas cobras, nas girafas e nos dinossauros altos Por que o coração fica no ponto médio em uma cobra-d’água, um pouco mais perto da cabeça em uma cobra terrestre e bem mais perto da cabeça em uma cobra arborícola? Como uma girafa consegue enviar sangue para a cabeça e evitar que o sangue se acumule nas pernas? Por que ela não sofre lesões cerebrais ou pelo menos fica tonta quando se curva para beber água, por exemplo, em um lago? Os dinossauros saurópodes eram enormes e tinham o pescoço muito comprido. Como conseguiam enviar sangue para a cabeça e beber água?

Resposta Se uma cobra está na vertical, com a cabeça para cima, o coração precisa bombear sangue para o alto até o cérebro e o sangue tende a se acumular na parte inferior do corpo. Entretanto, nenhum dos dois efeitos é problema para uma cobra-d’água porque a pressão da água sobre a cobra aumenta com a profundidade. A pressão maior na metade inferior da cobra evita o acúmulo de sangue. O coração fica no ponto médio da cobra, de modo que a maior pressão da água nessa região e a menor pressão da água na cabeça ajudam a levar o sangue para o cérebro. Uma cobra terrestre na posição vertical não pode contar com a pressão da água e, portanto, tem que enfrentar o acúmulo de sangue na parte inferior do corpo. Entretanto, seu coração é mais bem localizado, já que fica mais perto do cérebro que o ponto médio da cobra. Nas cobras arborícolas, o processo vai mais longe: o coração fica ainda mais perto do cérebro e os vasos sanguíneos da parte inferior da cobra são mais estreitos para evitar que o sangue se acumule. É por isso que uma cobra arborícola pode subir em uma árvore sem desmaiar. Uma girafa tem um problema de circulação sanguínea ainda mais sério. Como a cabeça fica muito acima do coração, a pressão arterial precisa ser muito elevada. Por exemplo: no caso de uma girafa de 4 metros de altura, a pressão arterial média na aorta precisa ser de cerca de 250 mm Hg (milímetros de mercúrio) para que a pressão arterial no cérebro chegue a uns razoáveis 90 mm Hg. Como os pés ficam muito abaixo do coração, uma pressão arterial tão alta faria o sangue se acumular nas pernas e nos pés se eles não tivessem propriedades especiais. As pernas são musculosas e têm uma pele apertada que funciona mais ou menos como uma meia elástica. Quando a girafa baixa a cabeça para beber, ela se movimenta devagar para possibilitar que a pressão arterial se ajuste. Ela também afasta as pernas dianteiras para baixar o coração. Embora a rede de capilares que abastece de sangue o cérebro ajude a protegê-lo, um aumento súbito da pressão arterial poderia fazer o animal desmaiar ou sofrer uma lesão cerebral. Os saurópodes tinham um problema ainda mais grave de circulação sanguínea, embora não levantassem muito a cabeça. Provavelmente se locomoviam lentamente para possibilitar que a pressão se ajustasse. Tinham também um coração enorme, que chegava a 5% do peso do corpo.

2.48 • Os saurópodes nadavam? Os dinossauros conhecidos como saurópodes, como o apatossauro (que já foi chamado de brontossauro) e o mamenquissauro, que tinha um pescoço incrivelmente comprido, eram grandes, mesmo para os padrões dos dinossauros. Uma antiga dúvida é a seguinte: como eles conseguiam se locomover e, mais ainda, correr? Uma hipótese é que passavam boa parte do tempo nadando ou caminhando na água. Será que um dinossauro tão grande conseguia nadar?

Resposta Como não temos saurópodes para observar, a melhor maneira de tirar a dúvida é fabricar modelos em miniatura e verificar se eles flutuam. (A parte difícil é levar em conta os pulmões.) Os testes mostraram que o centro das forças de empuxo que sustentam o modelo fica um pouco atrás do centro das forças gravitacionais que puxam o modelo para baixo. Esse arranjo seria instável, porque o binário resultante faria um saurópode rolar para a frente até seu pescoço ficar submerso pelo menos em parte. Na verdade, o saurópode provavelmente também rolaria para um lado ou para outro. Em suma, não seria nada agradável para um saurópode passar o dia nadando na praia. Entretanto, os saurópodes podiam caminhar com água até o peito sem nenhum problema, e os que possuíam patas dianteiras mais longas talvez se movimentassem usando as patas dianteiras para obter uma propulsão auxiliar, como fazem os gondoleiros de Veneza com suas varas compridas. Na verdade, foram encontrados rastros deixados pelos dinossauros que se movimentavam dessa forma: os rastros são diferentes das pegadas deixadas pelos dinossauros terrestres, porque um dinossauro que se movimenta apoiando-se no fundo enfia as garras na lama, e em seguida, as arrasta para trás, deixando um sulco estreito e jogando lama para trás.

2.49 • Os gastrólitos dos dinossauros e dos crocodilos Por que o estômago de muitos tetrápodes, tanto dos atuais, como os crocodilos, quanto dos antigos, como os plesiossauros, contém pedras, que são chamadas de gastrólitos ou pedras estomacais?

Resposta Durante muito tempo acreditou-se que os gastrólitos fizessem parte do processo da digestão, sendo usados pelo animal para triturar os alimentos no estômago. Entretanto, a idéia mais aceita hoje em dia é que as pedras estomacais servem como lastro para o animal, ajudando-o a boiar e nadar com o corpo quase todo imerso na água. Esse posicionamento possibilita que o crocodilo bóie com apenas os olhos e o nariz fora da água e, assim, surpreenda a presa. As pedras também serviriam para equilibrar o corpo do animal, reduzindo a energia necessária para combater a rolagem quando a correnteza é forte, além de ajudá-lo a afundar a presa na água. No plesiossauro, os gastrólitos também serviam como lastros de estabilização, possibilitando que o animal afundasse mais na água. Como o plesiossauro tinha um pescoço longo e pesado na frente dos pulmões cheios de ar, seu corpo tendia a rolar quando a água estava agitada. A presença de pedras no estômago, atrás dos pulmões, era uma forma de combater essa tendência.

2.50 • O efeito Coanda Se um fluido (líquido ou gás) se desloca nas proximidades de uma superfície sólida, por que o fluido tende a aderir à superfície? Você pode facilmente ver esse efeito em uma pia de cozinha, segurando um objeto curvo debaixo da água que sai da torneira. Por exemplo: segure uma jarra de vidro horizontalmente, deixando que a água atinja a parte mais alta da superfície curva e escorra por um lado (Fig. 2-16a). O filete pode aderir à superfície tão bem que contorna o fundo e quase sobe de volta ao topo do outro lado. Se você puser uma vara inclinada debaixo da torneira e ajustar a velocidade da água, esta pode aderir à vara e dar várias voltas em torno da vara antes de desprender-se e cair (Fig. 2-16b). Ao ser provocado por formigas, o besouro-bombardeiro produz um esguicho quente (100°C) e tóxico. O tipo mais comum de besouro-bombardeiro (obraquino) pode direcionar o esguicho fazendo girar o abdome como a torreta de um tanque. Se uma formiga ataca, por exemplo, uma pata dianteira, o abdome é apontado para baixo e para a frente, na direção da perna. O esguicho encharca a formiga, que imediatamente se põe em retirada. O paussino, um tipo menos comum de besourobombardeiro, não tem o abdome tão flexível; seu esguicho pode ser lançado apenas para trás ou para o lado. Ainda assim, o besouro consegue acertar uma formiga com precisão mesmo que ela esteja à sua frente ou sobre uma pata dianteira. Como o besouro consegue disparar o esguicho para a frente se ele não é capaz de virar o abdome para a frente?

Figura 2-16 / Item 2.50 Um filete de água corre em volta (a) de uma jarra e (b) de uma vara inclinada.

Resposta A atração de um fluido em movimento para uma superfície sólida é chamada de efeito Coanda, em homenagem a Henri Coanda, engenheiro romeno que estudou o fenômeno. Suponha que a água esteja correndo nas proximidades de uma superfície sólida. A água arrasta o ar, ou seja, capta algumas moléculas do ar, forçando-as a participar do movimento. Com isso, são removidas moléculas do ar no espaço entre a água e a superfície sólida, diminuindo a pressão nessa região. Como o ar do outro lado da água continua à pressão atmosférica, isto faz com que a água seja empurrada em direção à superfície até aderir a ela. Essa aderência pode continuar mesmo que a superfície se encurve para longe da direção original da água. Os paussinos possuem abas na frente da abertura da glândula que expele o esguicho. Para disparar o esguicho para a frente, a abertura é controlada de tal modo que o esguicho atinge uma aba. Nesse ponto ele pode ser desviado até 50° enquanto acompanha a curvatura da aba, graças ao efeito Coanda. Depois de deixar o flange, o esguicho atravessa o ar como um jato fino. O besouro pode controlar a direção final do jato controlando o ponto da aba que o esguicho atinge depois de ser emitido pela glândula.

2.51 • O efeito chaleira Um bico de chaleira bem projetado (ou o bico de qualquer outro recipiente para líquidos) posibilita que a água escoe livremente, caindo onde você deseja, como, por exemplo, em uma xícara. Um bico de chaleira mal projetado apresenta o chamado efeito chaleira: em vez de escoar livremente, a água faz uma curva e corre por baixo do bico, talvez por vários centímetros, antes de se desprender e cair (Fig. 2-17). Mesmo sem aderir à parte inferior do bico, o líquido pode se mover para trás, em direção à chaleira. Naturalmente, a aderência ou inclinação imprevisível para trás pode fazer o líquido cair fora da xícara. Qual é a causa do efeito chaleira?

Resposta Se a água for despejada com velocidade suficiente, provavelmente descreverá uma trajetória esperada e conhecida, muitas vezes chamada trajetória balística porque uma bala disparada a partir do bico seguiria a mesma trajetória. O comportamento inesperado acontece quando a água deixa o bico mais devagar. A água é submetida a uma diferença de pressão, com a pressão atmosférica na superfície ar–água e uma pressão menor perto do ponto em que a água se movimenta rapidamente nas proximidades do bico. A maior pressão externa empurra a água contra o bico. Se a velocidade da água for pequena, a água se mantém em contato com o bico por algum tempo antes de se desprender, curvando-se para trás em direção à chaleira. Se a água estiver se movendo muito devagar, o ponto em que a água toca o bico pela última vez pode se deslocar para o lado de baixo do bico. Essa adesão geralmente é atribuída à atração mútua entre as moléculas da água e as moléculas do bico. Alegase vagamente que o fenômeno se deve à tensão superficial e afirma-se que se trata de um exemplo de molhamento. Entretanto, a principal razão pela qual a água faz uma curva e escorre pelo lado de fora do bico é que a pressão atmosférica empurra a água na direção do bico. Mesmo que você passe manteiga no lado de fora do bico, para reduzir a atração molecular e eliminar o molhamento, a água continuará a escorrer pelo bico.

Figura 2-17 / Item 2.51 Filete de água correndo pelo bico de uma chaleira.

Muitos fatores determinam o ponto em que a água se desprende do bico. Se você fizer experiências com a mesma chaleira, usando a mesma vazão de água, a distância que a água percorre ao longo do bico provavelmente será diferente em cada tentativa. Para eliminar o efeito chaleira, o bico pode ter um pequeno furo na parte inferior, perto da borda. Quando a água chega ao furo, a mudança abrupta de curvatura da superfície faz a água se desprender. Técnica semelhante é usada no parapeito das janelas para combater o efeito chaleira, evitando que a água da chuva se infiltre na parede ao escorrer por baixo do parapeito: o lado de baixo do parapeito tem um corte paralelo à parede que faz a água se desprender. Para evitar o efeito chaleira ao despejar um líquido de uma panela, posicione verticalmente uma faca no ponto em que o líquido deixa a panela. O líquido vai aderir à faca, descendo por ela em vez de escorrer pela superfície externa da panela. O efeito chaleira também pode ser observado em algumas fontes ornamentais em que a água transborda de um recipiente e escorre pela superfície externa ou se curva para trás em direção ao recipiente como uma cortina. Se a borda é circular, a água pode formar uma superfície fechada chamada sino de água.

2.52 • Subindo após um mergulho profundo Quando um mergulhador de águas profundas volta à superfície, por que precisa esperar em certas profundidades durante certos intervalos de tempo em vez de voltar à tona de uma vez? Por que muitos mergulhadores sentem dores se viajarem de avião pouco depois de um mergulho? (A dor se manifesta logo após a decolagem.) As baleias freqüentemente mergulham até grandes profundidades. Isso não lhes causa problemas?

Resposta Se o mergulhador respira ar pressurizado, as moléculas de nitrogênio do ar entram em solução na corrente sanguínea. Quando o mergulhador volta à superfície, a redução de pressão possibilita que o nitrogênio dissolvido no sangue forme bolhas. (A formação de bolhas em um refrigerante gasoso no momento em que a garrafa é aberta acontece nas paredes do recipiente, mas a formação de bolhas de nitrogênio nesse caso acontece no interior do fluido, ou seja, no sangue.) As bolhas tendem a acompanhar a corrente sanguínea, fundindo-se para formar bolhas maiores ao entrarem em vasos de grosso calibre ou ficando entaladas e obstruindo a corrente sanguínea ao entrarem em capilares. Essa intoxicação por nitrogênio, chamada embolia gasosa, pode causar dores terríveis, deixar seqüelas ou até mesmo matar. A vítima costuma ser repressurizada e forçada a respirar ar com elevado teor de oxigênio para que o nitrogênio saia de solução no sangue e se dissipe. Para evitar a embolia gasosa, o mergulhador sobe à superfície por etapas, parando a cada etapa durante um tempo suficiente para que o nitrogênio saia de solução. O programa de subida tem por objetivo eliminar uma quantidade suficiente do nitrogênio dissolvido para que não se formem bolhas no sangue quando o mergulhador voltar à superfície. Entretanto, o nitrogênio que continua dissolvido pode formar bolhas se o mergulhador fizer uma viagem de avião logo após o mergulho. Embora os aviões modernos tenham cabinas pressurizadas, a pressão do ar a bordo de um avião é menor que a pressão atmosférica ao nível do mar e essa pressão reduzida pode provocar a formação de bolhas de nitrogênio. Embora se acreditasse que as baleias fossem imunes aos riscos dos mergulhos profundos, existem certos indícios de que elas também podem sofrer de embolia gasosa, principalmente se forem forçadas a subir à superfície muito depressa. Em inglês, a embolia gasosa é chamada de bends (dobras). O termo foi usado pela primeira vez para descrever os sintomas apresentados pelos operários que construíam túneis suficientemente profundos para exigir pressurização, como aconteceu durante a construção dos pilares da ponte do Brooklyn, nos anos 1860. Ao subir à superfície, alguns operários sentiam tantas dores musculares que se curvavam para a frente, mais ou menos como as mulheres da alta sociedade da época, que andavam

com uma postura afetada chamada Grecian bend (dobra grega). Por essa razão, o nome bends começou a ser aplicado aos sintomas causados pela inalação de ar pressurizado.

2.53 • Nado com tubo de respiração, praticado por pessoas e elefantes No nado com tudo de respiração (snorkeling), o nadador respira através de um tubo cuja extremidade fica acima do nível da água. Por que o comprimento do tubo não deve passar de cerca de 20 centímetros? Qual é o risco de usar um tubo mais longo, além da dificuldade de fazer o ar entrar e sair do tubo? O elefante usa a tromba como tubo de respiração. Como ele consegue praticar esse tipo de nado a 2 metros de profundidade?

Resposta Como a pressão que a água exerce sobre o mergulhador aumenta com a profundidade, a pressão arterial também aumenta. Se o mergulhador prende a respiração, a pressão nos pulmões também aumenta. A igualdade entre a pressão arterial e a pressão do ar nos pulmões possibilita a transferência de oxigênio para o sangue e a remoção de dióxido de carbono do sangue. Se o mergulhador começa a respirar através de um tubo, a pressão do ar nos pulmões cai para a pressão atmosférica. Essa queda é pequena se o mergulhador não estiver muito abaixo da superfície, mas em profundidades maiores a diferença entre a pressão arterial e a pressão do ar nos pulmões pode ser fatal, criando um estado conhecido como compressão pulmonar. Nesse caso, os capilares na superfície do pulmão se rompem e o sangue se infiltra nos pulmões. Um elefante adulto deveria sofrer compressão pulmonar cada vez que nadasse submerso, já que os pulmões do animal estão cerca de dois metros abaixo da superfície da água e, portanto, a diferença entre a pressão arterial e a pressão do ar nos pulmões é significativa. Entretanto, os pulmões do elefante contam com uma proteção especial. A pleura é uma membrana que reveste os pulmões de todos os mamíferos. Ao contrário do que ocorre nos outros mamíferos, no elefante existe, entre a pleura e os pulmões, um tecido conectivo que sustenta e protege os capilares da superfície dos pulmões. Assim, os vasos não se rompem durante o nado com tubo de respiração.

2.54 • Mergulhos profundos; fuga de um submarino Uma medida de emergência nos mergulhos com aparelhos é usar o tanque de um companheiro para encher os pulmões de ar e subir rapidamente para a superfície. Qual é o risco que esse procedimento envolve? É possível escapar de um submarino acidentado enchendo os pulmões de ar no submarino antes de nadar até a superfície? Qual é o risco de se encherem os pulmões de ar na superfície e mergulhar em seguida, como algumas pessoas fazem por esporte (mergulho livre) ou como profissão (os mergulhadores ama do Pacífico Sul)? Qual é o perigo de perder a pressão do ar ao mergulhar em águas profundas usando um escafandro?

Resposta A pressão a que é submetido o corpo do nadador aumenta rapidamente com a profundidade. Se alguém respira em um tanque de mergulho no fundo de uma piscina e sobe prendendo a respiração, a pressão diminui e os pulmões se expandem até alcançarem seu limite de expansão. A menos que a pessoa solte o ar para evitar a expansão, a pressão nos pulmões pode exceder a pressão arterial, caso em que o ar é lançado na corrente sanguínea, o que pode ser fatal. Todo ano algumas pessoas morrem durante a prática de mergulho com aparelhos porque se esquecem de soltar o ar. Em princípio, uma pessoa pode sair de um submarino acidentado e nadar até a superfície se o submarino não estiver em uma profundidade muito grande e a pessoa soltar o ar durante a subida. Entretanto, soltar o ar exige muita disciplina, já que a tendência é manter o ar nos pulmões para o aterrorizante nado até a superfície. A ânsia de respirar é ainda pior. Essa ânsia depende da pressão parcial de dióxido de carbono nos pulmões. Quando essa pressão atinge um certo valor crítico, a necessidade de respirar torna-se incontrolável. Se a pessoa solta o ar de maneira adequada durante a subida, o valor crítico não é alcançado perto da superfície, e sim mais abaixo. Se a pessoa consegue passar por esse ponto, o resto da subida pode ser relativamente fácil. Os ocupantes do submarino também podem ser resgatados se uma câmara de mergulho for baixada até o submarino. Uma câmara desse tipo foi usada em maio de 1939 para resgatar 33 tripulantes do submarino americano Squalus, e estava enguiçado a 80 metros de profundidade. Mergulhadores estenderam cabos entre um navio na superfície e uma escotilha do submarino. Em seguida, a câmara foi baixada ao longo dos cabos-guia. A câmara, que era aberta no fundo, não se encheu de água porque foi injetado ar no interior com o auxílio de tanques. Quando a câmara chegou à escotilha, fez um contato estanque com um anel em volta da escotilha. Depois que a câmara foi aparafusada ao anel e a pressão do ar reduzida, a escotilha foi aberta para que os sobreviventes da tripulação entrassem na câmara para serem trazidos à superfície.

No mergulho livre, a capacidade de prender a respiração para um longo mergulho depende de treinamento, do choque da água fria no rosto (o chamado reflexo de mergulho) e da disposição de enfrentar situações de risco. O treinamento pode aumentar a capacidade pulmonar e o tempo entre as inspirações. O contato com a água gelada diminui o consumo de oxigênio. A descida costuma ser facilitada por um objeto pesado (talvez preso a um cinto) que é liberado no final da descida. Entretanto, mesmo sem esse objeto, o mergulhador desenvolve um empuxo negativo (força resultante para baixo) durante a descida. O empuxo normal (empuxo positivo) é para cima e deve-se ao fato de o mergulhador deslocar um certo volume de água. Quando o mergulhador desce, porém, os pulmões são comprimidos e o mergulhador ocupa menos volume. O empuxo diminui e torna-se menor que a força da gravidade. O resultado é que a força resultante no mergulhador aponta para baixo e o mergulhador afunda. Os pulmões são comprimidos até o tamanho de uma lata de refrigerante e o sangue vaza para o espaço que eles deveriam estar ocupando.

Essas alterações fisiológicas acontecem se o mergulhador partir da superfície com os pulmões cheios de ar. Entretanto, se o mergulhador partir de uma câmara submersa, respirando ar (ou outra mistura que contenha oxigênio) com a mesma pressão da água a essa profundidade, pode não sentir desconforto algum. Embora mergulhos nas partes mais profundas dos oceanos pareçam improváveis, não são fisiologicamente impossíveis. Quando uma pessoa trabalha usando um escafandro, o ar é fornecido através de uma mangueira até um capacete, e uma bomba na outra extremidade da mangueira aumenta a pressão do ar no traje para igualá-la à pressão da água. Se a bomba engasga ou pára, as válvulas de segurança fecham-se automaticamente para evitar que a pressão no interior do traje se torne igual à pressão na superfície. Antigamente, quando essas válvulas não eram usadas, qualquer falha na bomba fazia a pressão da água literalmente esmagar o mergulhador.

2.55 • A tragédia do lago Nyos Em agosto de 1986, no vale abaixo do lago Nyos, em Camarões, na África, uma nuvem de gás ou aerossol matou cerca de 1700 pessoas e um número desconhecido de animais. Os investigadores que chegaram ao local dias depois declararam que o culpado tinha sido o lago e não algum tipo de gás vulcânico tóxico. Como um lago pode emitir um gás tóxico?

Resposta O lago contém uma alta concentração de dióxido de carbono dissolvido, especialmente perto do fundo, por causa da maior pressão da água. Tudo indica que alguma coisa fez a água do fundo subir, permitindo que boa parte do dióxido de carbono da água formasse bolhas, que chegaram até a superfície. Essas bolhas emergiram da água com tanta violência que formaram ondas no lago. O dióxido de carbono se acumulou acima da água e ultrapassou a margem do lago, invadindo o vale, onde asfixiou as vítimas. As vítimas ficaram submersas no dióxido de carbono e morreram por falta de oxigênio. Provavelmente jamais saberemos com certeza o que provocou a subida inicial da água do fundo do lago. O evento responsável pode ter sido uma combinação de um escoamento de água da chuva para o lago e um vento especialmente forte soprando sobre o lago no mesmo sentido. Como a água da chuva era um pouco mais fria e, portanto, mais densa que a água do lago, a posição da água da chuva acima da água do lago era instável. Se um vento forte soprou a camada de água da chuva até o outro lado do lago antes que a água da chuva começasse a afundar, esse afundamento pode ter feito com que a água do fundo subisse do lado oposto do lago. Quando a água do fundo subiu para uma região em que a pressão da água era menor, o gás pode ter saído da solução. O lago Nyos ainda contém uma grande quantidade de dióxido de carbono dissolvido e os cientistas temem que possa ocorrer outra emissão letal. Por isso, recomendam que as pessoas não se aproximem do lago, especialmente na época das chuvas.

CURIOSIDADE

2.56 • Saltando sobre uma casa e voando em uma cadeira de jardim Em setembro de 1937, em um campo de golfe em Old Orchard Beach, no estado do Maine, Al Mingalone, cinegrafista de um jornal, passou o fim da tarde tentando filmar uma acrobacia chamada salto sobre uma casa. Usando um arnês no qual estavam amarrados 27 grandes balões cheios de hidrogênio, correu várias vezes em direção a uma casa e saltou, na esperança de que a força dos balões o ajudasse a passar por cima da casa. Entretanto, todas as tentativas falharam, pois ele só conseguiu subir 7,5 metros, o que não era suficiente para executar a proeza. Quando já estava começando a escurecer, exclamou: “Desta vez vamos aumentar o número de balões e acabar logo com isso”. Cinco outros balões foram inflados e presos ao arnês, e Mingalone deu o último salto do dia. Quando começou a subir, porém, o cabo de segurança que prendia o arnês ao párachoque de um carro arrebentou. Com a noite chegando e uma tempestade a caminho, Mingalone começou a ser levado pelos balões em direção ao oceano Atlântico. O pai e um ajudante primeiro assistiram à cena, horrorizados, e em seguida correram para o carro. Foram acompanhados pelo padre Mullen, de uma paróquia local, que teve a presença de espírito de apanhar um rifle de calibre 22 de alta potência. O trio partiu em busca de Mingalone, mas o balonista de vez em quando desaparecia no interior de uma nuvem de chuva. Além disso, o carro tinha que seguir por estradas que, é claro, não acompanhavam exatamente o percurso seguido por Mingalone. Uma hora depois, quando Mingalone estava a cerca de 250 metros do solo, os motoristas que o seguiam conseguiram avistálo. Pararam o carro, saltaram e o padre Mullen atirou em três dos balões, fazendo com que Mingalone voltasse para o solo ileso. A perda de sustentação foi suficiente para que ele descesse devagar; naturalmente, se o padre tivesse atirado em um número excessivo de balões, o desfecho teria sido trágico. Durante o vôo, Mingalone deixou cair a câmara, mas ela foi descoberta mais tarde, intacta, em uma plantação de batatas. A câmara havia registrado um evento muito mais emocionante do que Mingalone pretendia. Em julho de 1982, Larry Walters, de San Pedro, Califórnia, realizou um vôo semelhante, porém intencionalmente. Decolando de uma entrada de garagem naquele subúrbio de Los Angeles, Walters viajou em uma cadeira de jardim amarrada em 42 balões meteorológicos cheios de hélio. Inicialmente, subiu a cerca de 250 metros por minuto, logo alcançando uma altitude de 5 quilômetros, onde foi avistado pelos pilotos de dois aviões de passageiros. O comunicado de que haviam visto um homem em uma cadeira de jardim sustentada por balões poderia ter soado estranho aos controladores de tráfego aéreo do Aeroporto Internacional de Los Angeles se um amigo de Walters não tivesse ligado antes para os controladores. Quando se deu por satisfeito com a aventura, Walters começou a reduzir a sustentação atirando nos balões com uma espingarda de ar comprimido. Desastradamente, porém, talvez pela de falta de oxigênio, deixou a arma cair. Embora a falta de oxigênio produza uma certa euforia, Walters ficou assustado quando a cadeira começou a subir de novo por alguns instantes. Depois que a cadeira voltou a descer, controlou a queda deixando cair periodicamente recipientes cheios de água para aliviar o peso. Ao se aproximar do solo, os balões ficaram presos em linhas de transmissão, mas, felizmente, Walters acabou pendurado a cerca de 2 metros do chão. A distância foi suficiente para eliminar a possibilidade imediata de um choque elétrico. Para evitar o risco de eletrocução, a equipe de resgate mandou desligar a energia na área antes de baixar Walters. A viagem de Walters durou 1,5 hora e se estendeu 5 quilômetros para cima e 16 quilômetros horizontalmente. A princípio, a Agência Federal de Aviação não sabia de que crime poderia acusar Walters (não existia lei que proibisse alguém de pilotar cadeiras de jardim em rotas da aviação comercial); mas, após uma discussão que levou 6 meses, o órgão lhe aplicou uma pesada multa por violações diversas, entre elas a de pilotar uma aeronave sem registro.

2.57 • A fluência do vidro nas janelas das catedrais medievais Algumas vidraças das catedrais medievais são mais espessas na parte de baixo. Será que o vidro escorreu para baixo com o passar dos séculos?

Resposta O vidro pode ser considerado um fluido viscoso, capaz de escorrer ou assentar. Entretanto, os cálculos revelam que o fenômeno é lento demais para produzir alterações perceptíveis nas vidraças medievais. Na verdade, seriam necessárias centenas de milhares de anos para que houvesse uma alteração perceptível. Outras explicações para a forma das vidraças envolvem o processo de fabricação. Por exemplo: o vidro pode ter sido soprado inicialmente como um cilindro, depois cortado e finalmente aplainado. Nesse caso, a parte inferior do cilindro seria mais espessa que a parte superior, o que faria uma parte da vidraça acabada ficar mais espessa. Os operários, naturalmente, teriam instalado essas vidraças com a parte mais espessa do lado de baixo.

2.58 • Fluidos de viscosidade incomum Por que o ketchup sai do frasco com mais facilidade se o frasco for sacudido? Você talvez tenha observado esse efeito ao colocar ketchup no hambúrguer e descobrir que alguém na mesa acabou de sacudir o frasco: quando isso acontece, em geral a pessoa acaba com mais ketchup do que hambúrguer no prato. Por que a tinta de uma caneta esferográfica sai com facilidade da caneta quando você escreve, mas não quando a caneta está no seu bolso? Por que uma tinta de parede é fácil de aplicar mas não escorre pela parede até o chão? Por que a manteiga tem que ser espalhada no pão com uma faca? Por que uma mistura espessa de água e amido de milho é difícil de mexer se você tenta mexer depressa mas é fácil de mexer se você mexe devagar? Por que a massa de modelar de silicone e uma mistura derivada de álcool de polivinila são rígidas quando as submetemos a um golpe seco, razoavelmente elásticas quando as fazemos quicar no chão e bastante fluidas quando as penduramos em uma vara?

Resposta As propriedades incomuns desses fluidos variados devem-se à sua viscosidade, que é uma medida da facilidade com que um fluido escorre. O melado, por exemplo, tem alta viscosidade e escorre devagar, enquanto a água tem baixa viscosidade e escorre muito mais depressa. A viscosidade costuma ser função da temperatura; a uma dada temperatura, porém, a maioria dos fluidos tem sempre a mesma viscosidade. Esses fluidos são chamados de fluidos newtonianos. Existe outro tipo de fluidos, os chamados fluidos nãonewtonianos, cuja viscosidade depende do modo como são tratados. O ketchup é um bom exemplo: quando é deixado em repouso por um certo tempo, adquire alta viscosidade, e é difícil de despejar de um frasco que tenha boca estreita. Entretanto, quando é sacudido ou mexido por alguns segundos, a viscosidade torna-se muito menor. Assim, para fazer o ketchup escorrer facilmente do frasco, basta sacudi-lo várias vezes. As sacudidelas fazem com que partes do fluido deslizem por cima de outras partes e o movimento relativo (cujo nome técnico é cisalhamento) provavelmente desembaraça parte das moléculas de cadeias longas que existem no ketchup, possibilitando que escorra com mais facilidade. Quando o cisalhamento reduz a viscosidade de um fluido, o fluido é chamado pseudoplástico ou tixotrópico. A tinta de uma caneta esferográfica, a tinta de parede e a manteiga são fluidos pseudoplásticos. Quando você exerce pressão sobre esses fluidos usando a esfera da caneta, um pincel ou uma faca, a pressão e o movimento reduzem a viscosidade e a substância escorre com facilidade. Assim que a pressão e o movimento cessam, a viscosidade volta a assumir valores elevados, impedindo que o material escorra. Diz-se que uma mistura espessa de amido de milho e água é dilatante porque o movimento aumenta a viscosidade. (Uma mistura de água e amido de milho diluída não apresenta esse efeito.) Se você bate na mistura espessa com a palma da mão, o movimento relativo imediatamente aumenta a viscosidade de tal forma que a mistura fica quase rígida e certamente não espirra, mas a viscosidade e a capacidade de escorrer retornam em questão de segundos. O aumento momentâneo de viscosidade provavelmente se deve ao alinhamento das moléculas de amido perpendicularmente à direção do movimento, interrompendo dessa forma o movimento. Assim que cessa o movimento, o alinhamento desaparece. Se você joga um punhado da mistura no chão, ela se comporta de forma quase rígida no momento da colisão, mas, logo em seguida, se espalha pelo piso. Se você enfia uma vara ou uma colher de sopa na mistura e dá um puxão, pode conseguir levantar a mistura e o recipiente, pelo menos por alguns instantes. Tanto a Silly Putty quanto a Geleca são fluidos viscosos não-newtonianos. Quando são penduradas em uma vara de tal forma que a gravidade atua suavemente, escorrem para baixo. Se uma força maior e mais brusca for aplicada, tal como em uma colisão, elas reagem como uma bola elástica, porque as longas moléculas do material estão enroladas e se comportam como molas. Se uma força ainda maior for aplicada, elas se quebram. Assim, por exemplo, se você puxar bruscamente as duas pontas de uma tira de Silly Putty em sentidos contrários, a tira vai se quebrar como se fosse feita de vidro. Você também pode cortar a Silly Putty e a Geleca com uma tesoura: quando as lâminas aplicam bruscamente altas pressões, provocando um cisalhamento do fluido, ele fica rígido e frágil. Você pode observar outro efeito curioso se enfiar Silly Putty em um tubo oco. Ao sair do outro lado, ele se expande, no chamado inchamento do extrusado. A expansão deve-se ao fato de que as longas moléculas tornam a se dilatar ao saírem do tubo, depois de serem comprimidas quando o material é empurrado para o interior do tubo. Alguns tipos de fluido não-newtoniano são capazes de escoar para fora de um recipiente, desafiando a força da gravidade. Se você puxa parte do fluido para fora de um béquer e deixa essa parte pendurada, ela pode puxar o resto do material para fora do recipiente.

2.59 • A inversão do sentido de rotação da sopa Quando você mexe certas sopas enlatadas, tal como sopa de tomate, e em seguida retira a colher, por que a rotação se inverte pouco antes de cessar? Para observar essa inversão, misture uma lata de sopa de tomate concentrado com uma pequena quantidade de água (menor que a quantidade normal). Em seguida, ajuste a iluminação na superfície da sopa.

Resposta Ao mexer a sopa, você não só abre caminho para a colher no interior da sopa, mas também obriga as camadas da sopa a se movimentarem umas em relação às outras. O movimento relativo, denominado cisalhamento, estica as moléculas de longas cadeias da sopa, que normalmente estão enroladas. Quando o movimento e o cisalhamento diminuem, as moléculas voltam a se enrolar, invertendo o sentido de rotação como se o molho fosse uma membrana elástica.

2.60 • Jato de líquido saltitante Despeje um filete de xampu ou sabonete líquido em uma superfície plana na qual o filete possa formar um montículo antes de escorrer para os lados. Por que, para certas alturas de despejo e certos líquidos, o filete às vezes dá um grande salto para o lado? (Freqüentemente, consigo saltos muito bons com o sabonete Ivory Hand.)

Resposta O tipo de xampu que salta é chamado de viscoelástico porque é viscoso (tem atrito interno que se opõe ao movimento) e também elástico (comporta-se como uma membrana de borracha). A viscosidade do xampu é relativamente elevada quando o xampu se movimenta devagar no filete e no montículo. Entretanto, quando o filete se choca com o montículo, a colisão provoca um cisalhamento, ou seja, faz com que uma camada viscosa se mova rapidamente em relação a outra camada viscosa. O movimento reduz a viscosidade dessa parte do filete. Como o líquido é elástico, essa redução súbita da viscosidade faz com que a parte que está colidindo seja rebatida, mais ou menos como uma bola de borracha. Em conseqüência, o filete forma um grande laço que se projeta para longe do filete e do monte (Fig. 2-18). Isso acontece tão depressa que vemos apenas a parte de cima e temos a impressão de que o filete quicou no montículo.

Figura 2-18 / Item 2.60 O filete de xampu parece quicar no monte de xampu.

2.61 • Fluidos que sobem em bastões Se você insere um bastão giratório em uma bacia com água, o bastão faz a água girar e formar um redemoinho que desce pelo bastão. Se você substitui a água por clara de ovo, aditivo STP para óleo de motor ou alguns outros fluidos, por que o fluido em rotação sobe no bastão, comportamento conhecido como efeito Weissenberg?

Resposta Essa tendência de alguns fluidos a subir deve-se à maneira como o bastão força o fluido a girar. Para observar esse efeito cisalhante, imagine que o fluido seja composto de cascas cilíndricas cujo centro é o bastão. A rotação do bastão põe a casca interna para girar. Como essa casca está em contato com a casca seguinte, arrasta-a e coloca-a em rotação. Assim, casca por casca, o fluido é posto para girar. Como o movimento é causado por arrasto e escorregamento, diz-se que as cascas sofrem cisalhamento. Quando o fluido é a água, o cisalhamento só atinge as primeiras cascas e, portanto, a rotação diminui com a distância do centro. No caso desses fluidos especiais, porém, as moléculas estão tão emaranhadas que se comportam como elásticos: quando o bastão gira, esses elásticos se enrolam no bastão, são puxados por ele e sobem.

2.62 • Rolo de barbante líquido

Se você despeja mel em uma torrada e ajusta a altura de despejo, pode fazer o filete de mel formar uma hélice sobre a torrada (Fig. 2-19). Outros fluidos também se dobram sobre si mesmos se forem despejados corretamente. Assim, por exemplo, uma tira grossa de massa de bolo dá voltas para a frente e para trás, formando dobras. O que causa esse comportamento?

Resposta Os fluidos que adquirem a forma de rolos de barbante são viscoelásticos, ou seja, são ao mesmo tempo viscosos e elásticos. Quando o mel é despejado a partir de uma altura apropriada, ele se enrola por causa de dois fatores: (1) ao chegar à poça de mel que já está na torrada, sua elevada velocidade e alta viscosidade evitam que ele entre na poça. Assim, o mel é freado bruscamente pela colisão com a poça, o que exerce uma tensão sobre o filete. (2) O filete afina durante a queda e chega à poça como um filete cilíndrico fino ou uma fita larga e fina. Se for suficientemente fino, as tensões o farão se curvar para o lado. Um filete cilíndrico continua a se curvar, de modo que gira em círculos, formando uma hélice. Um filete mais largo dobra para a frente e para trás: ao dobrar para um lado, a coesão o puxa de volta para o centro, onde se curva no sentido oposto, e assim por diante. Geralmente, uma queda mais alta significa uma freqüência maior de formação de espirais ou dobras, mas o efeito desaparece se a queda for alta demais, porque nesse caso o fluido sai do recipiente em jorros em vez de sair em forma de um filete que escorre lentamente.

Figura 2-19 / Item 2.62 O mel se enrola como uma corda.

2.63 • Ondas do mar O que provoca as ondas do mar? Ou seja, como elas são geradas?

Resposta Estas duas perguntas simples ainda não foram perfeitamente respondidas. Entretanto, uma explicação simples é a seguinte: uma brisa ou alguma perturbação do ar ou da água cria pequenas ondulações. Essas ondulações podem se transformar em ondas por ação do vento. Em especial, o vento exerce pressão de um lado de uma crista, passa por cima dela e se decompõe em vórtices do outro lado. Como os vórtices reduzem a pressão do ar, a diferença de pressão entre os lados da crista pode empurrá-la e fazê-la crescer. Em outras palavras, o vento pode fornecer energia à crista. Se o vento fica mais forte, as ondas ficam maiores (e os comprimentos de onda também mudam).

2.64 • Ondas extremas e ondas traiçoeiras A maioria das ondas do mar tem alturas dentro de uma certa faixa de valores, que dependem da força do vento e da existência ou não de tempestades. Entretanto, às vezes surgem ondas maiores. Se uma onda extrema é descrita como tendo uma altura assustadora, uma onda traiçoeira pode ser descrita como tendo uma altura aterrorizante. Esse tipo de onda é precedido de uma depressão que já foi descrita como um “buraco na água”. Navios de grande porte, feitos para resistirem a tempestades violentas, foram despedaçados ao mergulharem em um desses buracos e serem arremessados para cima por uma onda de mais de 30 metros de altura. A altura da onda traiçoeira que atingiu em 1933 o navio a vapor Ramapo, da Marinha americana, tinha 34 metros, de acordo com a estimativa do oficial de guarda, que comparou suas visadas do cesto de gávea e da crista da onda. (Pensar em física diante de um perigo mortal exige grande coragem.) Tanto as ondas extremas quanto as traiçoeiras foram observadas no mundo inteiro, mas as ondas traiçoeiras são mais freqüentes nas águas da costa sudeste da África, onde já afundaram muitos navios. O que causa as ondas extremas e as ondas traiçoeiras?

Resposta Ao pensar em uma onda do mar, você provavelmente imagina uma onda senoidal (em forma de senóide, com cristas e vales) movendo-se sobre a superfície do oceano. Se duas ondas que se propagam na mesma direção se sobrepõem, você poderia imaginar que a onda resultante (o que você vê) seria simplesmente a soma das duas ondas. Se as ondas estiverem perfeitamente alinhadas (em fase), as cristas e os vales da onda resultante serão mais acentuados que os das ondas individuais. Se muitas ondas se sobrepõem, movimentando-se em direções diferentes, a resultante pode ser difícil de imaginar, mas a simples soma das ondas individuais ainda fornece a altura e a profundidade da onda resultante. Essa soma simples de ondas é chamada combinação linear das ondas. As ondas extremas parecem ser uma combinação não-linear; em outras palavras, a combinação de ondas individuais de alguma forma produz cristas e vales grandes demais. Pode ser que, enquanto as cristas crescem, o vento proporcione uma contribuição adicional, fazendo com que a altura final da crista seja maior que o esperado. Outra hipótese é que, em certas situações, a formação de uma onda resultante, além de um ponto crítico, modifica as ondas individuais e cria uma onda resultante ainda maior. Em suma, algum fenômeno amplia a onda resultante. As chances de uma onda extrema ocorrer são pequenas, mas às vezes uma onda desse tipo atinge um navio de passageiros cruzador ou alguma outra embarcação, surpreendendo capitães que tendem a pensar em termos de combinações lineares. As ondas traiçoeiras (também chamadas ondas gigantes ou ondas anômalas) são ainda mais difíceis de explicar, mas também são produzidas por uma combinação não-linear de ondas. Entretanto, sua ocorrência na costa sudeste da África certamente se deve ao encontro da corrente das Agulhas com as ondas produzidas pelo vento na região. A forte corrente das Agulhas flui na direção sudoeste em um caminho tortuoso; as ondas produzidas pelo vento costumam se deslocar para nordeste. Quando as ondas forçam a corrente a serpentear, elas podem ser focalizadas da mesma forma que as ondas luminosas são focalizadas por uma lente. Em condições adequadas, essa focalização gera o buraco na água que é seguido por uma enorme onda.

2.65 • Mudança de direção das ondas As ondas podem se aproximar de uma praia de várias direções, dependendo do vento e da localização de tempestades distantes. Por que as ondas geralmente se desviam no último momento para ficarem paralelas à praia (Fig. 2-20)?

Resposta Essa tendência a mudar de direção, uma forma de refração que é geralmente discutida no campo da óptica, deve-se à redução da velocidade das ondas no momento em que a profundidade do mar começa a diminuir. Quando a crista de uma onda passa de águas mais profundas para águas mais rasas, a parte da crista que chega primeiro perde velocidade e se atrasa em relação ao resto da crista. Esse retardo cria um quebra na crista: a parte mais lenta, que se propaga na água mais rasa, passa a avançar mais diretamente em direção à costa do que a parte que ainda está na água mais profunda. Depois de algum tempo, toda a crista está na água mais rasa e se dirige mais diretamente para a costa.

Figura 2-20 / Item 2.65 As ondas do mar mudam de direção quando a profundidade da água diminui.

A forma das ondas também muda, porque o que vemos se propagar na água é, na verdade, a soma de muitas ondas individuais com diferentes comprimentos de onda. A extensão do retardo — e, portanto, do desvio — depende do comprimento de onda, de modo que as ondas individuais diminuem de velocidade e se desviam de modo diferente.

2.66 • Ondas que passam por uma abertura estreita Quando as ondas do mar passam por uma abertura um pouco mais larga que o seu comprimento de onda, por que se espalham a partir da abertura em vez de se propagarem na direção original (Fig. 2-21)?

Resposta Essa tendência ao espalhamento, uma forma de difração, deve-se à interferência de uma onda ao passar pela abertura. Normalmente, uma frente de onda reta é modelada como uma série de pequenas fontes de ondas, cada qual emitindo uma onda semicircular. A superposição e a interferência de todas essas ondas geram continuamente uma frente de onda reta. Quando, porém, a onda penetra em uma abertura estreita, apenas as fontes de ondas que passam pela abertura sobrevivem. Suas ondas semicirculares se sobrepõem e interferem, mas são insuficientes para produzir uma frente de onda reta. Em vez disso, produzem uma onda que se espalha a partir da abertura. Além disso, a amplitude do movimento vertical da água varia ao longo dessa nova onda. Em alguns pontos, o movimento vertical da água é significativo, mas em pontos intermediários é zero. Assim, se a abertura for um espaço aberto no quebra-mar e a onda espalhada chegar à praia, alguns pontos da praia serão mais atingidos pelas ondas e em outros pontos praticamente não haverá ondas.

Figura 2-21 / Item 2.66 As ondas do mar sofrem difração quando passam por uma abertura de um quebra-mar.

A difração também pode acontecer quando uma onda passa pela extremidade de uma barreira: a parte próxima da barreira se espalha para o interior da região de sombra, ou seja, para a região atrás da barreira que aparentemente estaria protegida das ondas.

2.67 • Seiches e a oscilação da água Quando você carrega um recipiente cheio de líquido, como, por exemplo, uma bacia com água, por que o líquido oscila? O que determina a freqüência de oscilação, ou seja, o número de vezes por segundo que a água oscila? A água de uma banheira ou de uma piscina pode oscilar? E a água de um lago ou de um porto?

Resposta Quando você anda, seus movimentos fazem o líquido que você está carregando se movimentar horizontal e verticalmente, ou seja, ondas se formam na superfície do líquido. A maioria das ondas interferem umas nas outras de forma aleatória, mas certas ondas formam ondas estacionárias, nas quais o padrão de oscilações verticais se repete: alguns pontos oscilam fortemente, enquanto outros não oscilam. A onda estacionária de freqüência mais baixa é chamada modo fundamental e quase sempre é responsável pelas oscilações mais fortes. A freqüência do modo fundamental depende (ao menos aproximadamente) das dimensões horizontais do recipiente e da profundidade da água. Quando a freqüência dos seus passos é aproximadamente igual à freqüência do modo fundamental, as oscilações podem ser tão fortes que o líquido derrama. Você pode neutralizar essa tendência andando mais devagar ou mudando de postura. Você consegue fazer a água de uma banheira oscilar se movimentar uma pá para trás e para a frente na água. Experimente várias freqüências até encontrar a freqüência do modo fundamental. Nesse momento você conseguirá oscilações tão fortes que poderá facilmente inundar o chão do banheiro. As oscilações também podem acontecer em grandes recipientes de líquido, tais como caminhões-tanque e em vagõestanque. Nesses casos, naturalmente, as oscilações podem tornar o veículo instável e provocar acidentes; por isso, muitas vezes são instaladas placas defletoras no interior do veículo para reduzir as oscilações. Uma piscina pode ser posta para oscilar a uma freqüência relativamente baixa se as pessoas saltarem na água de maneira

coordenada e repetida, para excitar o modo fundamental. Uma grande pá mecânica oscilando em uma extremidade da piscina pode fazer a mesma coisa, só que de maneira bem menos divertida. Grandes extensões de água, tais como lagos e enseadas, oscilam em seus modos fundamentais se a água for excitada por ondas sísmicas ou variações na pressão do ar (tais como o vento). Essas grandes oscilações naturais são chamadas de seiches. Em um evento famoso, ocorrido em março de 1964, um terremoto no Alasca formou seiches até no golfo do México. Muitas dessas oscilações eram pequenas demais para serem notadas, mas uma media 2 metros do ponto mais alto ao ponto mais baixo. A água dos portos e lagos artificiais também pode oscilar se for excitada pelas marés ou por uma perturbação como uma tempestade ou uma tsunami. Nesse caso, ela se comporta mais ou menos como uma garrafa ou um tubo de órgão excitado por uma fonte oscilatória de ar, a não ser pelo fato de que o resultado é uma oscilação do nível da água em vez de uma onda sonora. A amplitude das oscilações em um porto (e, portanto, a possibilidade de provocar danos) é geralmente maior para uma largura menor de entrada do porto (a passagem para o mar). Uma explicação para esse fenômeno, conhecido como paradoxo do porto, é que uma entrada ampla possibilita que a energia das ondas retorne ao oceano, enquanto uma entrada estreita retém quase toda a energia. Um resultado parecido acontece com as ondas sonoras: se você sopra no gargalo estreito de uma garrafa de refrigerante parcialmente cheia, consegue produzir um som alto e ressonante no espaço vazio da garrafa. Se soprar em uma garrafa de gargalo mais largo, o som ressonante será difícil ou mesmo impossível de produzir.

2.68 • Esteiras deixadas por patos e porta-aviões Por que uma esteira em V se forma atrás de objetos, tais como patos e porta-aviões, que se movimentam na água (Fig. 2-22)? A forma e o ângulo da esteira dependem da velocidade do objeto?

Resposta A esteira deixada por um objeto que se movimenta na água é aproximadamente a mesma para qualquer objeto a qualquer velocidade viável, contanto que o movimento produza ondas de gravidade (ou seja, oscilações controladas pela gravidade) em vez de ondas capilares (oscilações controladas pela tensão superficial). Assim, um pato e um porta-aviões deixam uma esteira com o mesmo ângulo, cerca de 39°. Entretanto, detalhes da estrutura das ondas dentro da esteira podem ser diferentes para diferentes objetos, especialmente quando vistas de cima por um radar (assunto que é de interesse da inteligência militar). O padrão se deve principalmente às ondas de fase criadas na superfície da água pela perturbação, como, por exemplo, de um barco em movimento. Uma onda de fase, que tem a forma de uma onda senoidal, se propaga fazendo oscilar a superfície da água. Entretanto, você não consegue ver a onda de fase na água porque o barco produz muitas delas, que se sobrepõem (ou interferem) umas às outras. Você só consegue observar as ondas de grupo, que são o resultado da superposição. As ondas de grupo parecem se propagar na água, mas na verdade são continuamente recriadas pela interferência das ondas de fase, que se propagam duas vezes mais depressa que as ondas de grupo.

Figura 2-22 / Item 2.68 Esteira deixada por um objeto que se move na superfície da água, vista de cima.

As ondas do mar são ainda mais complicadas pelo fato de que as ondas com comprimentos de onda maiores se propagam mais depressa que as ondas com comprimentos de onda menores. Assim, as ondas de fase de grande comprimento de onda tendem a ultrapassar as ondas de fase de pequeno comprimento de onda. Quando um barco perturba a água no ponto A enquanto se movimenta para a frente, as ondas de fase se afastam de A com o dobro da velocidade das ondas de grupo criadas pela sua interferência. Como as ondas têm muitos valores de comprimento de

onda, as ondas de fase e suas ondas de grupo têm muitos valores de velocidade. Assim, o padrão das ondas que partem de A e de todos os outros pontos ao longo do percurso seguido pelo barco é uma confusão total. Entretanto, as ondas produzem ondas de grupo mais fortes nos limites de uma esteira em forma de V, com o barco no vértice de um ângulo de 39°. Assim, essa é a forma de esteira que chama nossa atenção. Se você examinar com atenção a fotografia de uma esteira, verá que o interior do V tem muitas linhas curvas que fazem a esteira lembrar a forma de uma pena. Essas linhas internas devem-se à interferência de ondas de grupo originárias de muitos pontos ao longo do percurso seguido pelo barco. Se você se aproxima de um barco e de sua esteira quando o mar está sendo iluminado pelo sol, pode perceber que a esteira é mais calma que a água ao redor. Apesar de todas as ondas geradas pela perturbação do barco, um resultado é que a esteira provavelmente contém menos ondas de grupo de pequeno comprimento de onda do que a água do lado de fora da esteira. Às vezes essa condição faz com que o reflexo da luz solar se pareça mais com o de um espelho do lado de dentro da esteira do que do lado de fora.

2.69 • Surfe O que faz um surfista se aproximar da praia ou acompanhar uma onda? É possível surfar na crista da onda ou atrás dela?

Resposta Em mar aberto, longe da costa, as ondas se propagam a velocidade constante. Perto da costa, porém, a velocidade da onda diminui porque a profundidade da água diminui. Quando uma onda do mar avança em direção a águas cada vez mais rasas, ao se aproximar da praia a parte inferior da onda se move mais devagar. Como a parte de cima da onda não diminui de velocidade, tende a ultrapassar a parte inferior da onda, fazendo a onda se inclinar para a frente. A altura da onda também pode aumentar. Se a onda simplesmente quebra ou encapela, ela se espalha para a frente, perde altura e, portanto, não serve para o surfe. Entretanto, se a onda derrama (a parte de cima ultrapassa a de baixo) ou mergulha (a parte de cima ultrapassa de tal maneira a parte de baixo, que chega à parte da frente da onda e desce, formando um tubo de água), está na hora de os surfistas entrarem em ação. A manobra envolve a ação de três forças sobre o surfista. (1) O empuxo, perpendicular à superfície da água, acontece porque a prancha está parcialmente submersa. (2) A gravidade, orientada para baixo, tenta fazer o surfista escorregar pelo lado da onda. (3) O arrasto, orientado paralelamente à superfície da água, opõe-se ao movimento da prancha e deve-se à pressão da água à frente da prancha e ao atrito entre a prancha e a água. Remando para ganhar velocidade, um surfista ajoelhado pode começar na parte traseira da onda, passar pela crista e chegar à face frontal. Uma vez posicionado, o surfista fica em pé para pegar carona na onda (não precisa mais remar). Escolhendo a orientação da prancha na água, o surfista pode ajustar o arrasto e a posição da prancha na face frontal. As três forças podem se cancelar mutuamente (o surfista fica em equilíbrio) em algum ponto da parte inferior da face frontal da onda. Nesse ponto, a força de empuxo é inclinada na direção de propagação da onda e, portanto, tende a acelerar o surfista. A gravidade tende a puxar o surfista para baixo, mas a resistência da água se opõe a esse movimento, de modo que o surfista se move com a onda. Para se deslocar em relação à onda, o surfista altera a orientação da prancha e com isso a resistência da água. Geralmente, chegar o corpo para trás faz com que a parte traseira da prancha afunde mais na água, aumentando o arrasto e freando a prancha, de modo que o surfista sobe em direção à crista. Chegar o corpo para a frente faz o surfista aumentar a velocidade e descer na face frontal da onda. Um surfista não consegue pegar uma onda se a onda quebrar ou mergulhar o suficiente para criar turbulência. Se a turbulência aparece simultaneamente ao longo de todo o comprimento de uma onda, o surfista tem que esperar pela onda seguinte. Entretanto, se a onda chega com certa inclinação em relação à costa, a quebra e a turbulência começam em uma extremidade da onda e se deslocam ao longo do comprimento da onda (diz-se que a onda descasca). O surfista tenta pegar a onda na região de quebra, logo à frente da turbulência. Se a onda descasca muito depressa, o ponto de turbulência alcança o surfista e ele não pode continuar. Provavelmente, a mais impressionante de todas as manobras é o tubo, em que a parte superior de uma onda muito grande mergulha até a base da onda, deixando um túnel entre a crista e o resto da onda. Se o surfista chega à face frontal da onda antes que o tubo se forme, consegue percorrer parte do seu interior.

2.70 • O movimento dos botos e dos golfinhos Botos e golfinhos muitas vezes seguem barcos e navios, nadando ao lado da embarcação, a cerca de um metro de profundidade. Eles podem se manter na vertical, ficar de lado ou mesmo se exibir, fazendo o corpo girar. Entretanto, não parecem nadar: apenas se movem como se estivessem presos ao navio, às vezes durante horas. O que os impulsiona?

Resposta A principal força de propulsão são as ondas produzidas pela proa (ou, às vezes, pela popa). O boto ou golfinho se posiciona na borda frontal da onda, não muito abaixo da superfície (inclinada). Quando a proa exerce pressão sobre a água, empurrando-a para a frente, para cima e para fora, a água exerce pressão sobre o animal, impulsionando-o para a frente. Se o animal simplesmente quer pegar onda em vez de brincar, procura a profundidade na qual essa força para a frente equilibra a resistência da água. Às vezes o animal consegue uma carona mesmo se a onda da proa for pequena, talvez imperceptível para alguém que esteja no barco que criou a onda.

2.71 • Ondas de borda Quando se faz oscilar um remo verticalmente ou horizontalmente na água, pode se formar um belo padrão de ondas, com cristas estacionárias que são perpendiculares ao remo, lembrando os dentes de um pente (Fig. 2-23). Elas são, portanto, diferentes das ondas comuns produzidas por um remo, cujas cristas são paralelas ao remo. Essas ondas peculiares, chamadas ondas de borda, foram descobertas por Michael Faraday em 1o de julho de 1831, como ele relatou em seu meticuloso diário de observações científicas. As oscilações precisam ser uniformes, a profundidade da inserção dos remos precisa ser adequada e pode ser necessário cerca de um minuto para que as ondas apareçam. Você também pode observar ondas de borda em um copo de vinho cheio ou quase cheio. Esfregue um dedo limpo e seco na borda. Quando executado corretamente, o processo de esfregar produz ondas de borda perpendiculares à borda do copo. Elas podem ser tão fortes que fazem o vinho espirrar para fora do copo. Por que essas ondas são produzidas quando você esfrega o copo?

Resposta As ondas normais produzidas por um remo que oscila na água são do tipo capilar, ou seja, ondas cujas oscilações são controladas pela tensão superficial e não pela gravidade. Podemos chamá-las de ondulações para distinguilas das ondas gravitacionais, muito maiores. Em condições favoráveis, as oscilações de um remo também formam um padrão estacionário de água que oscila ao longo da dimensão horizontal da pá do remo. Uma característica surpreendente dessas ondas é que a freqüência das oscilações da água é metade da freqüência das oscilações do remo.

Figura 2-23 / Item 2.71 As ondas de borda são perpendiculares a um remo que oscila horizontalmente.

Se você fizesse um vídeo em câmara lenta de um remo oscilando horizontalmente, descobriria a seguinte seqüência: quando o remo se movimenta para a frente, levanta uma crista ao longo de sua dimensão horizontal; ao recuar, deixa um vale ao longo da mesma dimensão. Depois de criados, as cristas e vales se afastam do remo como ondas capilares normais. Depois de mais ou menos um minuto de oscilação do remo, você descobriria que, cada vez que se movimenta para a frente, o remo cria uma série de cristas perpendiculares ao remo e superpostas à crista capilar normal. Mais ainda: existem dois conjuntos dessas cristas. O movimento do remo para a frente excita um desses conjuntos, o movimento seguinte para a frente excita o outro conjunto e assim por diante. As cristas de um conjunto coincidem com o ponto médio entre as cristas do outro conjunto. Assim, a freqüência dos dois conjuntos é metade da freqüência das oscilações do remo. Se você esfrega a borda de uma taça de vinho de maneira apropriada, faz a borda oscilar como um sino e, na verdade, pode ouvir a taça ressoar. Como a borda tem a forma de uma circunferência, as oscilações ocorrem no sentido do centro da circunferência e no sentido oposto. A Figura 3-4 (do Capítulo 3) traz uma ilustração do instante em que o dedo passa pela posição de 12 horas da borda. Os deslocamentos máximos acontecem nas posições de 3, 6 e 9 horas e os pontos em que não há deslocamento acontecem nos pontos médios entre essas posições. O padrão acompanha o movimento do dedo. A borda funciona como um remo oscilante, dando origem ao padrão de ondas de borda.

Ondas de borda também podem ser produzidas em uma bacia chinesa de latão. Nesse caso, são as alças que devem ser esfregadas. Se as ondas de borda forem excitadas corretamente, poderão jogar a água a uma altura de meio metro. Os padrões das ondas de borda e outros muito mais complexos (como lindos desenhos de listras, hexágonos e círculos) podem ser produzidos em uma camada fina de água e glicerina se o líquido for submetido a oscilações verticais.

2.72 • Cúspides praianas O que forma o padrão de cúspides que enfeita muitas praias?

Resposta O movimento da água responsável pelas cúspides é matematicamente semelhante aos padrões das ondas de borda do item anterior. Entretanto, como a matemática é complicada, vamos nos ater a uma descrição simples: quando uma onda chega a uma praia, sua frente tem mais ou menos a forma de uma senóide (Fig. 2-24). No ponto em que a onda mais avança, ela carrega areia até a praia, formando uma cúspide de areia úmida. Ao recuar, a água se move até o centro da cúspide e escorre pela depressão cavada na areia. Esse refluxo evita um fluxo semelhante quando chega a onda seguinte. Em vez disso, o fluxo da onda seguinte acontece dos dois lados da cúspide, nos lugares em que a onda anterior avançou menos. A água deposita areia e volta a recuar ao longo de uma depressão central, e esse refluxo evita que a onda seguinte avance nessa cúspide. Assim, o padrão que observamos na praia se deve a fluxos alternados em cúspides vizinhas.

Figura 2-24 / Item 2.72 A chegada de uma onda à praia, vista de cima. A linha tracejada mostra a chegada da onda seguinte.

2.73 • O petróleo e as ondas Desde tempos imemoriais, as pessoas sabem que uma camada de óleo (tal como azeite de oliva) lançado em mar aberto pode reduzir ou eliminar as ondas, mesmo quando o vento é forte o bastante para produzir ondas. Benjamin Franklin conhecia bem esse efeito: costumava carregar uma pequena quantidade de óleo para poder demonstrar o efeito se houvesse oportunidade. Certa vez, estando em uma festa em local próximo de um rio em que uma brisa criava pequenas ondas, andou um pouco rio acima e fez vários passes de “mágica” com a bengala, sem deixar que os outros convidados vissem que estava borrifando óleo. Para surpresa geral, as ondas desapareceram quase imediatamente e o rio ficou calmo. Ao sobrevoar o mar, é fácil avistar manchas de óleo. Elas refletem melhor a luz do que a água, mas o mais importante é que, como a mancha reduz ou elimina as ondas, a superfície lisa brilha mais à luz do sol do que uma superfície de água próxima que não esteja contaminada. Por que o óleo enfraquece as ondas?

Resposta Uma camada de óleo ou outra contaminação acalma a água por três razões: (1) trata-se de uma camada viscosa (o atrito interno resiste ao movimento de uma camada em relação a outra). Assim, quando uma onda começa, sua energia é rapidamente removida. Esse efeito é especialmente importante no caso de ondas de pequeno comprimento de onda (ondas com pequena distância entre cristas sucessivas). (2) Normalmente, as ondas se formam a partir de ondulações quando o vento incide nessas ondulações e as faz crescer. Se as ondulações são eliminadas, ondas maiores não podem aparecer. (3) A camada pode interferir na transferência de energia entre ondas de grande comprimento de onda e ondas de pequeno comprimento de onda, com uma redução geral da atividade das ondas.

2.74 • Gotas flutuantes Em algumas cafeteiras, gotas isoladas de café caem em uma poça de café. Essas gotas deveriam se misturar imediatamente à

poça, mas, em vez disso, correm sobre a poça, às vezes percorrendo o recipiente várias vezes de um lado para outro. Gotas flutuantes também podem ser produzidas quando um copo de isopor contendo café (ou qualquer outra bebida) é esfregado em uma mesa de modo a sofrer um movimento intermitente. Se o movimento for suficientemente rápido, as ondulações que ele produz no líquido jogam gotas para cima. Ao cair, essas gotas podem flutuar no líquido em vez de se misturarem imediatamente com ele. Quando o movimento intermitente cessa, as gotas se misturam rapidamente. Quando um fluxo contínuo de água de uma torneira cai em uma pia plana, pode formar um padrão circular em torno do ponto de impacto. No interior de uma circunferência, o fluxo de água é rápido e raso; do lado de fora, é lento e menos raso. Assim, a circunferência é, na verdade, uma barreira que separa dois estados diferentes do fluxo de água. Se você deixa cair uma gota de um conta-gotas do lado de dentro da circunferência, a gota pode flutuar durante algum tempo enquanto fica presa na parede. Em todos esses casos, por que as gotas flutuam?

Resposta Uma gota pode ficar suspensa acima de uma poça por causa da repulsão elétrica entre as moléculas da gota e as moléculas da superfície da poça. Se o líquido da poça e o líquido das gotas contém um detergente, as moléculas de detergente tendem a se acumular na superfície da água com as extremidades hidrofílicas (atraídas pela água) mergulhadas na água e as extremidades hidrofóbicas (repelidas pela água) do lado de fora da água. As extremidades hidrofóbicas da parte inferior da gota e da superfície da poça se repelem mutuamente, fazendo levitar a gota. Entretanto, nos exemplos mencionados, um argumento mais convincente para a levitação é que a gota é sustentada por uma camada de ar entre ela e a poça. Vamos considerar em primeiro lugar a situação comum de uma gota solta logo acima de uma poça estacionária, já que essa situação também envolve uma camada de ar. Quando a gota desce, o ar que está embaixo da gota é expulso até que a gota colide com a poça. Nesse instante, uma onda atravessa a gota, arrancando a parte inferior, que imediatamente é incorporada à poça. Quando a parte superior desce, o ar que está embaixo da gota a sustenta parcialmente, mas é expulso até que o que resta da gota colide com a poça. Mais uma vez, uma onda atravessa a gota, arrancando a parte inferior, que imediatamente é incorporada à poça. O ciclo se repete, talvez várias vezes, até que a última parte da gota original se misture com a poça em vez de ter a parte inferior arrancada. Considere em seguida uma série de gotas caindo em uma cafeteira. No processo de respingo que será discutido no próximo item, uma gota pode chegar à poça no momento em que a depressão deixada pela gota anterior está começando a ser preenchida pelo líquido em volta. O movimento do líquido faz a segunda gota quicar um pouco para o lado. Quando a gota desce de novo, tende a expulsar o ar que está embaixo. Entretanto, como a gota agora tem um movimento lateral, um novo ar está sempre sendo empurrado para baixo dela e, portanto, ela está sempre sustentada por uma camada de ar. O exemplo da pia é semelhante, exceto pelo fato de que a gota está presa na barreira e o fluxo de água arrasta o ar para baixo da gota, mantendo a sustentação. Se a poça e a gota estão oscilando, o movimento pode introduzir ar embaixo da gota com rapidez suficiente para sustentá-la. Esse mesmo processo acontece no copo de isopor que é arrastado pela mesa de modo intermitente. Qualquer outro modo de fazer a gota e a poça oscilarem verticalmente provavelmente funcionará se a freqüência de oscilação for mais ou menos a mesma que a do copo de isopor. Uma gota também pode levitar se sua temperatura ou a temperatura da poça for elevada. Nesse caso, a evaporação da água pode fornecer o gás que sustenta a gota. Esse mecanismo é chamado efeito Leidenfrost e será discutido mais adiante, no Capítulo 4.

2.75 • Gotas que respingam O que acontece com uma gota d’água — como, por exemplo, uma gota de chuva — quando colide com uma superfície horizontal sólida ou uma poça d’água? Por que algumas gotas respingam (ou seja, lançam partículas de si mesmas para cima ou para o lado) e outras não? Quando uma gota de sangue cai ou é lançada de uma vítima de um crime, a polícia precisa determinar a velocidade e o tamanho da gota a partir da mancha que ela deixou em uma superfície. Uma dificuldade é que o tamanho da mancha depende tanto da velocidade como do tamanho da gota. Em outras palavras, uma mancha grande pode ter sido causada por uma gota pequena que se deslocou depressa ou por uma gota grande que se moveu devagar. Existe algum modo de analisar uma mancha de sangue para apurar a verdade? (Imagine o que faria Sherlock Holmes.)

Resposta Superfície sólida: dependendo das circunstâncias, uma gota que se choca com uma superfície sólida pode respingar, espalhar-se e cobrir (molhar) a superfície sem respingar, ou primeiro quicar e depois respingar ou se espalhar. Ao respingar, a gota forma uma camada rasa com uma coroa (uma borda levantada) que em geral lança

gotículas ao subir. As gotículas se formam porque a borda fica instável ao reduzir seu movimento para fora. Uma das ondas que tendem a se formar nesse estágio ao longo da borda torna-se dominante e seus pontos altos formam cristas ou dedos que podem se desprender para formar as gotículas. Muitas vezes, os dedos podem ser observados no padrão deixado por um respingo. O comprimento de onda que domina a instabilidade é aproximadamente o perímetro da circunferência do padrão dividido pelo número de dedos deixados no padrão. Superfície líquida: uma gota que bate na superfície de uma poça d’água pode respingar, ser absorvida pela poça ou flutuar logo acima dela. A flutuação, que foi discutida no item anterior, só pode acontecer se a gota cair de uma distância pequena. No caso de uma queda maior, a gota normalmente produz uma depressão hemisférica na superfície da água e, em seguida, forma uma coroa no perímetro da cratera. Quando a coroa baixa e a água corre de volta para a depressão, o fluxo rápido joga água para cima em um jato central. O jato pode produzir uma ou mais gotas ao chegar à altura máxima. Finalmente, o jato baixa e a superfície da água se acalma. Em alguns casos, a coroa fecha sobre si mesma para formar uma cúpula e o jato central é invisível. Se a gota se choca com a água sem formar coroa, produz um redemoinho descendente em forma de uma rosquinha horizontal: a água desce em espiral dentro da rosquinha e sobe fora dela. Para tornar o redemoinho visível, basta colocar anilina na gota. Uma gota lançada por um jato central também pode produzir um redemoinho. O jato central é mais pronunciado em uma camada fina de água porque um fundo sólido faz a coroa se transformar mais vigorosamente no jato central. O jato mais alto acontece quando a profundidade da camada de água é igual ao raio da depressão produzida pela gota. (Surpreendentemente, se o ar acima da camada de água for removido ou substituído por um gás mais leve, o respingo pode desaparecer.) Gotas caindo na água em rápida sucessão podem quicar na água porque, após as primeiras gotas, as gotas seguintes batem na cavidade no momento em que a água está começando a subir para preenchê-la. Assim, essas gotas retardatárias podem ser literalmente jogadas para cima. Gotas de cera derretida caindo em uma superfície lisa de metal podem sofrer o mesmo tipo de respingo que as gotas d’água, mas solidificam-se nas etapas finais. Os padrões finais são interessantes quando a crista ou coroa forma gotículas, porque nesse caso as gotículas solidificadas permanecem em torno da região de respingo principal. Gotas de metal derretido caindo em uma superfície lisa de metal também formam padrões interessantes ao se solidificarem. Entretanto, nesse caso, a coroa se transforma em uma figura achatada e os dedos se formam na horizontal. As pontas de alguns dedos se desprendem para formar gotículas de metal fundido. Em geral, quanto mais irregular a superfície, menor o número de dedos e maior a sua largura. Para determinar a velocidade e o tamanho de uma gota de sangue de uma vítima de um crime, o perito precisa examinar não apenas o tamanho da mancha, mas também o número de dedos que se formaram. Uma velocidade maior produz um número maior de dedos. Entretanto, a análise é complicada pela natureza da superfície atingida pela gota. Uma superfície mais irregular tende a sobrepor os dedos e reduz o tamanho da mancha. Assim, seria necessário um extenso trabalho experimental para catalogar as propriedades da mancha de sangue em tipos comuns de superfície, tais como concreto, papel e vidro. Em vez disso, quando manchas de sangue são encontradas na cena do crime, é mais fácil levar uma amostra da superfície sólida contendo as manchas para um laboratório, onde experimentos em que se usem gotas de sangue de tamanho e altura de queda conhecidos poderão ser executados nessa superfície.

2.76 • Bolhas em refrigerantes, cerveja e champanhe Por que se formam bolhas em refrigerantes, cerveja, champanhe e outras bebidas gasosas quando o recipiente é aberto? Por que as bolhas se formam somente na superfície interna do recipiente e não no interior do líquido? Por que elas crescem enquanto sobem e por que, especialmente no champanhe, formam filas de bolhas? Por que as bolhas geralmente sobem mais depressa no champanhe do que na cerveja? Se você limpa um copo com detergente e o seca no ar antes de despejar a bebida gasosa, por que a produção de bolhas é quase eliminada? Quando acrescentamos gelo ou sal a um copo de cerveja recém-despejada, por que a produção de bolhas aumenta sensivelmente, às vezes a ponto de o líquido transbordar? Por que uma bebida gaseificada jorra para fora do recipiente se este for sacudido antes de ser aberto? O shandy é uma mistura de cerveja com uma bebida nãoalcoólica, geralmente limonada ou ginger ale. Se a cerveja for despejada na bebida não-alcoólica, nada de interessante acontece. Se a bebida não-alcoólica for despejada na cerveja, porém, formam-se tantas bolhas que a bebida pode transbordar. Qual é a diferença? Se pequenos pedaços de lima são colocados em um copo de cerveja, por que ficam se movendo para cima e para baixo? Quando a cerveja escura, do tipo stout, da Guinness é despejada rapidamente em um copo, por que se formam camadas de bolhas perto das paredes do copo e por que essas camadas se movem para baixo?

Resposta Uma bebida gasosa é um líquido com muito dióxido de carbono em solução, mantido sob pressão. No champanhe, essa pressão pode ser seis vezes maior que a pressão atmosférica. Tanto o líquido quanto o bolsão de gás acima do líquido estão submetidos a essa pressão. (Se a rolha de uma garrafa de champanhe não for retirada com cuidado, a pressão a que a rolha está submetida pode lançá-la com uma velocidade de 50 quilômetros por hora, mais do que suficiente para machucar seriamente um olho.) Quando o recipiente é aberto, a saída de gás reduz a pressão interna, que se torna pequena demais para manter a quantidade total de dióxido de carbono em solução. Assim, o dióxido de carbono começa a sair da solução, atravessando a superfície do líquido (se possível) ou formando bolhas.

Em geral, uma bolha só pode se formar e crescer se o seu tamanho exceder um certo valor crítico. O problema de uma bolha pequena é que ela tem uma superfície altamente curva. A atração mútua das moléculas de água ao longo da superfície tende a fazer a bolha murchar, apesar da pressão para fora exercida pelo gás contido no interior da bolha. A superfície de uma bolha grande tem uma curvatura menor e a força para dentro exercida pelas moléculas de água da superfície não é suficiente para fazer a bolha murchar. Entretanto, bolhas maiores que o tamanho crítico têm pouca probabilidade de se formar no interior do líquido: não podem nem crescer nem aparecer de repente já crescidas. Assim, a nucleação (produção) de bolhas acontece apenas em uma superfície, principalmente nas paredes e no fundo do recipiente, mas também em qualquer partícula sólida imersa no líquido. Depois de algum tempo, a quantidade de dióxido de carbono que resta no líquido é pequena demais para formar bolhas. A explicação mais comum para a nucleação de bolhas envolve um arranhão com uma bolha preexistente. Se a largura do arranhão for apropriada, a superfície da bolha não é muito curva e, portanto, a bolha não murcha. Além disso, o dióxido de carbono pode passar lentamente do líquido para a bolha, inflando a bolha e aumentando seu empuxo. Por fim, a bolha fica suficientemente grande para que a maior parte dela se desprenda do arranhão e suba. A produção de bolhas recomeça com a pequena quantidade de gás que restou no lugar do arranhão. Pesquisas recentes indicam que a maioria das bolhas que se formam em um copo não tem origem em arranhões. Em vez disso, elas começam em fibras de celulose que ficaram grudadas no vidro quando o copo foi lavado pela última vez ou enxugado com uma toalha de papel ou de pano. Essas fibras ocas contêm ar no seu interior, que inicia o processo de formação de bolhas. Quando o recipiente é aberto, o dióxido de carbono penetra nas bolhas de ar pelas extremidades abertas da fibra. Quando uma bolha se torna suficientemente grande, parte dela se desprende de uma extremidade da fibra e o processo se repete. Se o copo não é enxugado com uma toalha de papel ou de pano, mas lavado com detergente e seco com um jato de ar, não possui essas fibras de celulose e, portanto, não pode produzir bolhas. As únicas bolhas são as produzidas pela turbulência durante o enchimento do copo. Se uma lata de bebida gasosa for aberta através de um anel, quase toda a produção de bolhas ocorre na parte submersa do anel. (Use uma lanterna para observar o interior da lata.) Presumivelmente, as bolhas se formam em partículas de poeira do anel. Se a tampa da lata foi limpa com um pano ou uma toalha de papel por razões higiênicas, em vez de poeira podem existir fibras de celulose. O gelo contém ar aprisionado em seu interior e, portanto, ao derreter, também pode contribuir com centros de nucleação de bolhas. O caso do sal, porém, é diferente. Quando alguém põe sal numa cerveja, o sal entra em solução e reduz a quantidade de dióxido de carbono que pode ser dissolvida no líquido. Como o líquido já estava saturado de dióxido de carbono, o dióxido de carbono sai rapidamente da solução. Assim que as bolhas são liberadas, o empuxo tende a acelerá-las para cima, já que elas são mais leves que o líquido circundante. Entretanto, moléculas tais como proteínas logo aderem à bolha, aumentando o arrasto e reduzindo a velocidade de subida. Essa redução da velocidade é mais acentuada na cerveja do que no champanhe, porque a cerveja contém mais proteínas; por isso, as bolhas do champanhe sobem mais depressa que as bolhas da cerveja. Se um recipiente de uma bebida gasosa for sacudido antes de ser aberto, o gás que fica normalmente acima do líquido se mistura com o líquido, em forma de pequenas bolhas. Quando a pressão diminui, o dióxido de carbono pode sair bruscamente

da solução entrando nessas bolhas, e o crescimento das bolhas pode ser tão rápido que as bolhas expulsam o líquido do recipiente, às vezes até fazendo-o jorrar. Para evitar que isso aconteça, um recipiente que foi sacudido deve ser deixado em repouso por um certo tempo antes de ser aberto, para que as bolhas cheguem à superfície e estourem. (Não consigo imaginar por que dar tapinhas no recipiente aceleraria esse processo, a menos que, de alguma forma, desaloje bolhas que estejam presas na parede do recipiente.) A produção de bolhas em um shandy depende da posição da cerveja em relação às paredes do recipiente em que as bolhas se formam. Se a cerveja for despejada em uma limonada, digamos, a maior parte da cerveja forma inicialmente uma camada sobre a limonada. Assim, as bolhas são produzidas principalmente na camada superior e podem facilmente escapar para a superfície da maneira normal. Entretanto, se a limonada for despejada sobre a cerveja, as bolhas são produzidas na camada inferior e têm que passar pela limonada para chegar à superfície. Além disso, enquanto a limonada se mistura com a cerveja, partículas em suspensão na limonada (tal como a polpa do limão) podem servir de centros de nucleação de bolhas. Assim, a taxa de produção de bolhas aumenta e todas essas bolhas têm que atravessar a limonada para chegar à superfície. O resultado é uma rápida produção de espuma e uma alta probabilidade de que a bebida transborde. Um pequeno pedaço de lima, um amendoim (não do tipo torrado) e outros objetos podem coletar bolhas suficientes perto do fundo do recipiente para serem içadas até a superfície. Em seguida, muitas das bolhas estouram e o objeto afunda de volta. O processo pode se repetir várias vezes. Quando a cerveja do tipo stout da Guinness é despejada em um copo, a cerveja fica inicialmente cheia de bolhas. Quando as bolhas se chocam, podem aderir umas às outras para formar aglomerados de bolhas, o que faz as bolhas subirem mais devagar. Os aglomerados são separados verticalmente por uma distância que depende da diferença entre as velocidades de uma bolha isolada e um aglomerado de bolhas. (Aglomerados de bolhas podem se formar no magma basáltico e em erupções de lava se a camada for suficientemente espessa para possibilitar que as bolhas formem aglomerados antes de chegar à superfície.) Algumas pessoas afirmam que o movimento dos aglomerados para baixo é uma ilusão, mas o movimento parece real e pode ser causado por um dos efeitos a seguir, ou ambos: (1) as bolhas no meio do copo sobem mais depressa do que aquelas que estão perto da parede, que são retardadas pelo atrito com a parede e pelo arrasto dos aglomerados. Assim, o líquido no meio do copo é puxado para cima pelas bolhas ascendentes, fazendo com que o líquido se mova para baixo perto da parede para substituir o líquido que subiu. Logo, os aglomerados perto da parede se movimentam para baixo; (2) as bolhas que se soltam do alto de um aglomerado são aceleradas para cima até a base do aglomerado seguinte. Assim, o aglomerado perde bolhas na parte de cima e ganha bolhas na parte de baixo, o que faz com que o plano central do aglomerado se mova para baixo.

2.77 • Bolhas de sabão e a espuma da cerveja O que dá coesão a uma bolha de sabão, do tipo que você costumava fazer quando criança? Por que é preciso usar sabão ou detergente? É possível fazer uma bolha de água pura? Por que uma bolha de sabão dura mais se também contiver glicerina? (Misture detergente, água e glicerina na proporção de aproximadamente 1:3:3.) Por que o líquido da parede da bolha não escorre para o fundo da bolha, fazendo a parte de cima estourar? Por que a espuma da cerveja (o colarinho) leva muito mais tempo para se desfazer do que a espuma de um refrigerante? Por que a espuma da cerveja acaba desaparecendo?

Resposta A parede de uma bolha de sabão é uma camada muito fina de água com moléculas de detergente nas superfícies interna e externa. Uma extremidade de uma molécula de detergente se liga à água (é hidrofílica) e, portanto, mergulha na água. A outra extremidade não se liga à água (é hidrofóbica) e se projeta para fora da superfície. As forças que dão coesão a uma bolha devem-se à tensão superficial da água, ou seja, à atração mútua das moléculas da água. Entretanto, a tensão superficial de água pura é forte demais para possibilitar que uma película fina de água inflada forme uma bolha. As moléculas de detergente aglomeradas na superfície reduzem a tensão superficial o suficiente para que a bolha não murche. A água da bolha tende a escorrer para o fundo por causa da gravidade. Entretanto, quando a parte de cima fica mais fina, as moléculas de detergente da superfície externa começam a ser repelidas pelas moléculas de detergente da superfície interna, e o afinamento torna-se mais lento ou cessa por completo. Mesmo assim, a parede é suficientemente fina para que a película possa se romper devido à evaporação, a perturbações fortuitas ou à difusão (passagem) de ar pela película. A glicerina estabiliza uma bolha de sabão porque sua alta viscosidade (atrito interno) torna mais lento o escoamento de água para o fundo da bolha. Ela também reduz a evaporação da bolha. Na espuma da cerveja, o líquido das paredes da bolha escorre lentamente, afinando as paredes até a bolha estourar. Entretanto, o escorrimento é retardado propositalmente por meio do acréscimo ao produto, de certas moléculas que se atraem

mutuamente, além de atraírem o líquido. Essa estabilização não é usada em outras bebidas gasosas, nas quais não é desejada uma espuma duradoura. A espuma da cerveja pode ser eliminada quase instantaneamente se acrescentarmos óleo, o que pode acontecer se a pessoa que está bebendo a cerveja ao mesmo tempo comer frituras ou usar batom. O óleo reduz a tensão superficial de uma bolha e o líquido circundante a faz estourar. Partes das paredes da bolha também afinam porque o líquido tende a ser sugado para as junções curvas nas quais várias bolhas se encontram, conhecidas como junções de Plateau em homenagem ao cientista belga Joseph Antoine Ferdinand Plateau, do século XIX. A pressão do líquido é determinada pela curvatura da superfície produzida pela tensão superficial: uma curvatura maior implica menos pressão nas paredes do líquido. Por isso, a pressão do líquido é menor nas junções de Plateau do que nas paredes das bolhas. Assim, o líquido é transferido das paredes das bolhas para as junções de Plateau, convertendo uma espuma úmida em uma espuma seca. As proteínas que se acumulam nas paredes das bolhas ajudam a estabilizar a espuma de cerveja pelo menos por duas razões: (1) aumentam a viscosidade e, portanto, tornam mais lento o escorrimento; (2) tendem a evitar que os dois lados de uma parede se aproximem o suficiente para rompê-la devido a alguma perturbação fortuita, possibilitando que as bolhas coalesçam (unamse). Mesmo se as paredes forem estáveis, a espuma da cerveja muda gradualmente porque o dióxido de carbono contido em uma bolha se difunde (passa) pelas paredes. Por causa disso, as bolhas da parte de cima da espuma perdem o gás e murcham. As bolhas menores murcham mais depressa porque, por terem uma curvatura maior, o gás é comprimido com mais força pela tensão superficial em suas paredes do que nas bolhas maiores. As bolhas menores também murcham porque a compressão faz o dióxido de carbono nelas contido se difundir pelas bolhas maiores adjacentes, onde a compressão é menor porque a curvatura é menor. Assim, as bolhas maiores tendem a crescer à custa das bolhas menores adjacentes. Um modo de tornar mais lenta a difusão e conservar a espuma por mais tempo é usar nitrogênio na cerveja em vez de apenas dióxido de carbono. O nitrogênio se difunde muito mais devagar pelas paredes do líquido. Entretanto, como a espuma de uma cerveja que contenha nitrogênio dissolvido é mais estável, despejar a cerveja sem que o excesso de espuma faça o líquido derramar exige paciência. O chope do tipo stout da Guinness, por exemplo, é famosa pelo tempo que leva para sair da torneira por causa do nitrogênio. Outra forma de retardar a difusão é esfriar o copo. Nesse caso, as bolhas que se formam na parede do copo contêm gás mais frio ao se unirem com a espuma na superfície. A temperatura mais baixa reduz a velocidade de difusão das moléculas de gás pelas paredes do líquido. Às vezes, a parte de cima do colarinho de um copo de cerveja parece sofrer uma perda súbita de bolhas, processo conhecido como estouro em cascata. As bolhas de cima estão mais secas e, portanto, são mais frágeis. Quando uma estoura, as vibrações da espuma ou do ar fazem outras bolhas estourarem. As pessoas acostumadas a beber a cerveja stout da Guinness conhecem a maneira correta de despejá-la no copo: a garrafa deve ser invertida bruscamente dentro do copo. A cerveja é instável e, naturalmente, começa a cair. Entretanto, o escoamento inicia um processo conhecido como gluglu, no qual a cerveja sai em surtos por um lado da boca da garrafa, enquanto o ar entra pelo outro lado. Se a boca da garrafa for introduzida na camada de espuma que se forma acima do líquido despejado, a espuma é arrastada pela corrente de ar e sugada para o interior da garrafa. No fim, o copo fica cheio de cerveja e a garrafa fica cheia de espuma.

2.78 • Estourando bolhas Quando uma bolha estoura na superfície de um líquido, tal como a água, por que lança no ar gotículas de líquido? Quando uma bolha em uma camada de bolhas de champanhe estoura, por que as bolhas próximas formam um padrão que lembra uma flor, como se fossem pétalas? Uma bolha de sabão soprada de um anel de plástico pode flutuar no ar por alguns segundos antes de estourar. A bolha desaparece instantaneamente? Para onde vão todas as moléculas de sabão e de água?

Resposta Uma bolha na superfície de um líquido estoura porque o líquido na fina camada que compõe sua superfície superior escorre até que a bolha fure. Quando a explosão abre a parte de cima da bolha, seus lados são puxados para baixo pela tensão superficial, ou seja, pela atração mútua das moléculas da parede da bolha. Os líquidos que descem de lados opostos da bolha se chocam no fundo e jorram para cima, formando um jato (coluna de água). O jato é instável e a tensão superficial logo o desfaz em gotículas, que são lançadas no ar. Se a bolha estoura na superfície do champanhe no momento em que está sendo bebida, os jatos e as gotículas liberam aromas que alcançam a parte interna do nariz, realçando o prazer de beber o champanhe.

Se uma bolha que estoura estiver cercada de outras bolhas, a corrente de ar descendente durante o estouro suga as bolhas vizinhas, fazendo-as assumir a forma de pétalas que parecem brotar do centro da explosão. Uma bolha de sabão flutuando no ar estoura quando surge um furo em algum ponto da superfície. O furo se espalha como um círculo, com a borda do círculo acumulando o líquido que encontra no caminho enquanto avança pelo resto da película a cerca de 10 metros por segundo, depressa demais para ser visível a olho nu. A borda continuamente lança gotas (muitos milhares, no total) até desaparecer no ponto diametralmente oposto ao furo inicial.

2.79 • Baleias e redes de bolhas Por que várias espécies de baleias liberam ar para formar bolhas quando saem em busca de alimentos como o krill?

Resposta As baleias aparentemente são capazes de capturar presas em redes (ou cortinas) de bolhas. As presas podem, é claro, simplesmente atravessar a rede de bolhas, mas têm medo de fazê-lo quando estão em um grupo numeroso. Assim, produzindo uma rede de bolhas em volta ou embaixo de um cardume de peixes, a baleia consegue confinar os peixes em uma pequena região, onde pode comê-los sem pressa. Os peixes não parecem responder visualmente a uma rede de bolhas, já que o aprisionamento pode ocorrer à noite. Em vez disso, os peixes parecem reagir ao ruído produzido quando as bolhas da rede oscilam.

2.80 • Baratas-d’água De que maneira uma barata-d’água consegue ficar sobre a água ou caminhar na superfície da água? Por que o movimento produz ondas na frente e atrás do inseto? Uma barata-d’água não faz nenhum ruído e é pouco visível acima da superfície da água. O que ela faz para chamar a atenção de parceiro ou para afugentar as rivais?

Resposta Quando uma barata-d’água está em pé, seu peso se concentra principalmente nas patas médias e traseiras, que criam uma pequena depressão na superfície da água. As patas não rompem a superfície por causa da tensão superficial da água, ou seja, a atração mútua das moléculas de água que faz a superfície da água se comportar como uma membrana elástica. Uma barata-d’água consegue até se apoiar na superfície para dar um salto e mesmo assim não a rompe. Se a água for rasa e o inseto estiver bem iluminado pela luz do sol, as depressões produzem sombras ovais no fundo. Essas regiões ficam menos iluminadas porque, quando os raios luminosos passam pelas superfícies curvas das depressões, são desviados para o lado. Evidentemente, se as baratas-d’água fossem muito grandes, afundariam na água e teriam que ser chamadas de baratas submarinas. A capacidade da superfície da água de sustentar uma barata normal (leve) deve-se à resistência da água à parte (tarso) de cada pata que está em contato com a água: o tarso é não-molhável. Se o tarso se molhasse com facilidade, a água poderia subir pela pata e o inseto afundaria. A não-molhabilidade deve-se em parte a uma secreção cerosa que cobre o tarso, tornando-o hidrófobo. Entretanto, a principal razão pela qual o inseto não afunda é a estrutura microscópica do tarso: ele é coberto de pêlos minúsculos (microsetae) ao longo dos quais existem pequenas ranhuras. Essa superfície hidrofóbica, microscopicamente rugosa, impede com muita eficiência que a água suba pelas patas. Sem ela, a barata-d’água conseguiria ficar sobre a água mas jamais poderia correr ou saltar, e seria presa fácil para outros animais. Para correr, a barata-d’água usa as patas médias e traseiras. A propulsão vem principalmente das patas médias, que funcionam como remos. Quando uma pata vai para trás, produz na água um tubo de vórtices em forma de U. A parte de cima do U na superfície da água são dois vórtices muito próximos que giram em sentidos contrários; esses dois vórtices estão unidos pelo resto do U, que se mantém abaixo da superfície da água. Como parte do movimento da água nos vórtices do tubo é para trás, o inseto é impulsionado para a frente. O grupo de pesquisa que descobriu essa forma de locomoção por produção de vórtices construiu uma barata mecânica (apelidada barata-d’água robô) com pernas de aço e corpo de alumínio, que era movido por um elástico enrolado em uma polia. Quando a barata-robô remava com as patas, um par de vórtices era produzido de cada lado. As baratas-d’água não gostaram nem um pouco. Os vórtices produzidos pelas patas médias geralmente são difíceis de ver. Pouco atrás do inseto, o movimento dos vórtices pode se transformar em ondas; mas, como as ondas são rasas e têm um comprimento de onda relativamente grande, também são difíceis de ver. Mais visíveis são as ondas de pequeno comprimento de onda que o movimento do inseto projeta para a frente. O inseto usa essas ondas, que podem ser vistas a uma distância seis ou sete vezes maior que o seu comprimento, para detectar presas, obstáculos ou outras baratas-d’água enquanto correm e ziguezagueiam na superfície da água. (Observe-as por alguns momentos. Apesar das manobras arriscadas, elas jamais colidem.)

As baratas-d’água se comunicam entre si perturbando a superfície da água para criar ondas de amplitude relativamente grande e uma freqüência da ordem de 20 hertz. Se uma formiga cai na água e começa a se debater, produzindo ondas, as baratas-d’água das vizinhanças detectam as ondas e correm na direção da formiga com uma velocidade espantosa, em busca de alimento. Os percevejos-d’água evitam partes da superfície da água cobertas com uma película fina de contaminação, tais como líquidos oleosos, porque não conseguem correr na superfície nem enviar seus sinais através dela. Se entrarem acidentalmente em uma dessas regiões, só podem escapar saltando.

2.81 • A formação de nódulos em bastões e fios de saliva Quando ninguém estiver olhando, leve a mão à boca e, com o polegar e o indicador encostados, puxe um pouco de saliva de dentro da sua bochecha. Em seguida, observe a saliva de perto e afaste aos poucos o polegar do indicador, de modo que um fio de saliva se estenda entre eles. Por que o fio de repente forma nódulos de saliva (Fig. 2-25)? Mergulhe um bastonete (ou uma fibra) em uma xícara de óleo ou mel e levante-o verticalmente. Enquanto o fluido escorre pelo bastonete, por que ele forma nódulos, por que um nódulo parece dominar e devorar nódulos menores que encontra no caminho, e por que mais nódulos ainda se formam depois da passagem do nódulo grande?

Resposta A tensão superficial de um fio de saliva (ou seja, a atração mútua das moléculas) tenta minimizar a superfície do fio. Durante a parte inicial do estiramento, na qual o fio tem um diâmetro moderado, a área de superfície mínima é a de um cilindro e, portanto, o fio tem a forma de um cilindro. Ondas causadas por perturbações fortuitas, tais como o ligeiro tremor da sua mão, propagam-se pelo fio, distorcendo sua forma cilíndrica, mas a tensão superficial faz com que a forma seja logo recuperada. Entretanto, o diâmetro do fio diminui quando o polegar e o indicador se afastam, e o fio acaba se tornando instável em relação a ondas cujo comprimento de onda seja maior que a circunferência do fio. A explicação é que a distorção produzida por uma dessas ondas diminui a área da superfície, de modo que, uma vez que acontece a distorção, a tensão superficial a acentua em vez de eliminá-la. As partes que se tornam mais largas se transformam em nódulos por causa da tensão superficial e as outras partes se tornam o fio estreito que liga os nódulos. A distância entre os nódulos é aproximadamente igual ao comprimento de onda da onda responsável para distorção. (Se nódulos maiores forem separados por nódulos menores, isso indica que o processo de formação de nódulos provavelmente aconteceu mais de uma vez, com diferentes comprimentos de onda envolvidos.) O fio final que liga os nódulos pode ser pequeno demais para ser visto.

Figura 2-25 / Item 2.81 Nódulos aparecem em um fio de saliva esticado entre o polegar e o indicador.

Uma fina camada de fluido em um bastão (ou fibra) também é instável da mesma forma; perturbações fortuitas e a tensão superficial transformam a camada em nódulos. Se o bastão estiver na vertical, os nódulos podem escorrer para baixo, especialmente se forem grandes. Um nódulo grande absorve os nódulos menores que encontra no caminho, mas depois que o nódulo grande passa, a película fina que resta pode se decompor em nódulos. Entretanto, se a película for fina demais, o escorrimento para baixo evita a formação de nódulos. Certas aranhas usam a tendência à formação de nódulos quando constroem suas teias. Depois que a teia básica está construída, os fios de captura, que serão usados para capturar moscas, são cobertos com um líquido que imediatamente se transforma em nódulos ligados por fios. Esses nódulos viscosos podem manter uma mosca imobilizada durante tempo suficiente para que a aranha chegue a ela depois de detectar o movimento da mosca através das oscilações na teia.

A formação de nódulos também acontece na soldagem do aço. Se a fonte de calor for deslocada ao longo da chapa dentro de uma certa faixa de velocidades, deixa uma série de cristas (saliências) quando o cordão de solda se solidifica. Depois que a fonte passa por um ponto de aço fundido, a tensão superficial do aço fundido pode formar um nódulo antes que ele se solidifique. Se a fonte de calor se mover muito devagar ou muito depressa, as cristas não se formam.

2.82 • A captação da chuva por lagartos do deserto Alguns lagartos do deserto são extremamente hábeis para obter água potável nas raras ocasiões em que existe orvalho ou chuva. Assim, por exemplo, o diabo-espinhoso-da-austrália (Moloch horridus) extrai água do orvalho sentando em cima dele e de uma chuva fina ficando estirado debaixo dela. De que maneira essas táticas possibilitam que um lagarto consiga água?

Resposta O lagarto absorve água como uma esponja de cozinha. Os espaços (canais) entre as escamas do couro absorvem a água por ação capilar (ou seja, pelas forças atrativas entre as moléculas de água e entre as moléculas de água e as moléculas de um poro). Esse processo é tão eficiente que a água é absorvida pela pele até chegar ao alto da cabeça do lagarto. Para consumir a água, o lagarto realiza movimentos curtos e repetidos do maxilar inferior, removendo a água dos canais perto da boca. Quando um lagarto bebe, a água desses canais é reposta pela água extraída do resto da pele. A gravidade também pode ajudar a movimentar a água na direção da boca se o lagarto estiver com a cabeça baixa e a parte traseira do corpo levantada.

2.83 • A captura da presa pelas aves marinhas Espalhe alguns pedaços pequenos de isopor na água, em uma bacia, e tente pegar um dos pedaços entre o polegar e o indicador. Ao aproximar o polegar e o indicador dentro da água, você provavelmente vai fazer a água e o pedaço de isopor espirrarem para longe. Pense agora nas aves marinhas, que precisam usar o bico para apanhar o plâncton (que é muito pequeno) na água. Elas não vão encontrar a mesma dificuldade que você teve ao tentar pegar os pedaços de isopor?

Resposta Algumas aves marinhas usam a tensão superficial para apanhar o plâncton. Para isso, a ave mergulha o bico na água com a mandíbula quase fechada e, em seguida, abre um pouco mais a mandíbula. Quando retira o bico da água, uma gota d’água fica pendurada nos dois lados do bico por causa da tensão superficial (a força de atração entre a água e o interior do bico). A presa está dentro da gota. Para fazer a gota entrar na garganta para que a presa possa ser ingerida, a ave afasta ainda mais as duas partes do bico. A gota continua pendurada nos dois lados do bico, mas o aumento da distância entre os lados tende a distender a gota. Para vencer essa tendência, a tensão superficial puxa a gota para cima, para uma região em que os dois lados estão mais próximos. O processo continua até a gota chegar à faringe, onde a presa pode ser engolida.

2.84 • Gotas e películas líquidas em superfícies sólidas Por que alguns líquidos se espalham em uma superfície sólida, como uma mesa de vidro, enquanto outros formam gotas? Por que algumas gotas aderem a uma superfície mesmo que a superfície seja inclinada ou virada de cabeça para baixo? Quando uma película líquida escorre em uma superfície de inclinação moderada, por que a borda inferior geralmente assume uma forma irregular ou avança aos arrancos? Você pode observar esse efeito ou usar um rodo para remover água com sabão ou fluido de limpeza do pára-brisa de seu carro. Puxe o rodo para baixo e pare antes de chegar à base do pára-brisa. Por que o líquido se divide em dedos que escorrem pelo pára-brisa? Quando a água da chuva escorre por uma parede vertical de concreto, como acontece nos edifícios, por que o avanço costuma ser assimétrico? Quando a água escoa aos poucos para o interior de uma caverna, por que ela tende a formar estalactites cônicas?

Resposta O espalhamento de um líquido em uma superfície sólida horizontal depende da atração entre as moléculas do líquido e as moléculas do sólido. Se houver uma atração forte, o líquido se espalha e diz-se que ele molha a superfície; se houver pouca atração, o líquido tende a formar gotas. O grau de molhamento (ou de formação de bolhas) é muitas vezes descrito em termos do ângulo (o ângulo de contato) que o líquido faz com a superfície sólida: um ângulo pequeno corresponde ao molhamento e um ângulo grande corresponde à formação de gotas. Entretanto, o ângulo de contato é ambíguo, porque em qualquer situação real (com um líquido real em uma superfície real,

microscopicamente complexa) ele pode assumir uma faixa muito grande de valores. Os detalhes de como um líquido se espalha em um sólido ainda não são bem compreendidos, porque envolvem as interações atômicas na borda do líquido. Em muitos casos, a borda só se move porque uma película precursora muito fina se forma ligeiramente à frente da borda. As moléculas da película líquida atraem as moléculas da borda, fazendo-a avançar. Às vezes a borda fica ancorada (presa) a uma imperfeição na superfície ou a um ponto de forte atração. Se uma gota começa a evaporar, a borda da película tende a se contrair, mas pode novamente ficar ancorada a alguns pontos, tornando irregular a contração (que é chamada da desmolhamento). Alguns líquidos viscosos, tais como óleos e glicerina, têm um modo peculiar de escorrer em um plano inclinado: a linha de avanço logo se divide em dedos uniformemente espaçados e os dedos escorrem pelo plano mais depressa que as regiões entre eles. Os dedos se formam porque a linha de avanço é instável e perturbações fortuitas criam ondas ao longo de sua extensão. Uma dessas ondas domina a linha de avanço, criando fortes correntes descendentes a intervalos regularmente espaçados ao longo da linha. Se uma película líquida escorre por uma encosta, um ponto de ancoragem interrompe o avanço uniforme da película, deixando uma região seca abaixo desse ponto. Você pode ver os resultados da ancoragem e da instabilidade quando usa um rodo para remover água com sabão do pára-brisa de seu carro. Quando a chuva escorre por uma parede de concreto, a borda da frente geralmente não avança uniformemente em direção ao chão. Algumas regiões possibilitam que a água desça mais depressa que outras e esse escorrimento adicional pode formar um grande “dedo” de água parede abaixo. As estalactites são feitas de carbonato de cálcio que se precipita a partir da água que escorre para dentro da caverna. Se a precipitação começa em um ponto do teto da caverna, a água tende a escorrer até a base da saliência que se forma. Como a camada de água tende a ser mais espessa no ponto mais baixo, a precipitação tende a ser maior nesse ponto, fazendo o comprimento da saliência crescer mais depressa que a largura e produzindo, assim, a forma que associamos a uma estalactite ideal. Entretanto, se a velocidade de drenagem da água for pequena em relação à velocidade de precipitação, podem surgir outras formas, tais como bastões e as belas estruturas retorcidas chamadas helictites.

2.85 • A aglomeração do cereal matinal Se dois anéis do cereal Cheerios se aproximam em uma tigela de leite, por que se atraem mutuamente? Se você deixar muitos anéis flutuando no leite em posições aleatórias, por que eles se aglomeram em poucos minutos? Por que os anéis também se acumulam nos lados da tigela? Esses efeitos diversos são conhecidos em conjunto como efeito Cheerios.

Figura 2-26 / Item 2.85 Dois flocos de cereais flutuando no leite.

Resposta Perto de um anel, a superfície do leite se encurva para cima por causa da tensão superficial (Fig. 2-26); ou seja, a atração da água que existe no leite sobre os lados do anel é suficiente para fazer a água subir no anel apesar da força da gravidade. Quando dois anéis se aproximam, a superfície entre eles fica muito encurvada, o que exerce sobre os anéis uma força que tende a aproximá-los. A atração também pode ser explicada em termos de energia: uma superfície curva requer mais energia, de modo que os anéis se aglomeram para aplainar a superfície entre eles, reduzindo assim a energia. A superfície do líquido perto da parede da tigela também é encurvada pela tensão superficial, de modo que, quando um anel se aproxima da parede, a superfície entre a parede e o anel torna-se muito encurvada. Isto faz com que o anel seja atraído para a parede. Se você encher a tigela com leite e em seguida acrescentar um pouco mais de leite para que a superfície do leite fique ligeiramente mais elevada que a borda da tigela, a superfície do líquido perto da borda se encurvará para baixo. Nesse momento, um anel que se aproximar da borda será repelido. Esse fenômeno está por trás de uma brincadeira de bar que envolve um objeto flutuando em um copo d’água: como é possível evitar que o objeto encoste na parede do copo? Uma lâmina de barbear plana, de dois gumes, pode boiar na água se for cuidadosamente pousada. Diferentemente do anel de cereal, a lâmina de barbear bóia ligeiramente abaixo do nível da água, de modo que a superfície da água se encurva para baixo de encontro à lâmina. Mesmo assim, se duas lâminas de barbear boiarem perto uma da outra, a tensão superficial fará com que elas se aproximem para aplainar a superfície entre elas e reduzir a energia.

Em geral, um material é chamado de hidrófilo (“amigo da água”) se a água for atraída por ele, e hidrofóbico (“inimigo da água”) se a água não for atraída por ele. Dois objetos hidrófilos flutuantes se atraem mutuamente, mesmo a uma distância considerável, e o mesmo acontece com dois objetos hidrofóbicos. Entretanto, um objeto hidrofóbico e um objeto hidrófilo se repelem mutuamente porque, para se aproximarem, a curvatura da superfície da água teria que aumentar, o que exigiria uma energia adicional.

2.86 • Castelos de areia O que dá coesão a um castelo de areia? Uma pilha de areia em uma caixa de areia de um parquinho não pode ser muito íngreme e a areia não pode ser transformada em nada mais que um monte; no entanto, a parede de um castelo de areia pode ser vertical e os adornos, tais como uma torre, podem ter bordas agudas. Além disso, muitas formações de areia que ocorrem naturalmente, chamadas escarpas, têm paredes quase verticais. O que permite a existência de paredes verticais?

Resposta A areia seca não tem coesão porque não existe força entre os grãos de areia para mantê-los juntos. A areia submersa não tem coesão porque a água pode facilmente se movimentar entre os grãos, tornando a areia fluida. Entretanto, areia úmida pode ser bem coesiva. A água é atraída para os grãos de areia e molha os grãos. Quando dois grãos vizinhos têm uma pequena quantidade de água entre si, a água adere aos dois grãos, formando uma ponte líquida entre eles. A ponte tem mais ou menos a forma de uma ampulheta: é mais larga nas proximidades dos grãos e mais estreita na parte central. A água fica retida entre os grãos e não escorre devido à ação da gravidade. Ela proporciona uma força de coesão entre os grãos por duas razões: (1) as moléculas de água atraem os grãos e se atraem mutuamente, efeito conhecido como tensão superficial. (2) Como a ponte tem superfícies curvas com a concavidade para fora, a pressão da água dentro da ponte é menor que a pressão atmosférica do lado de fora, de modo que os grãos tendem a ser sugados em direção à menor pressão. Se a areia se torna saturada de água, os grãos não são mais unidos por pontes de água individuais; em vez disso, são lubrificados pela água e se movem. Construtores de castelos de areia experientes borrifam suas construções para que a água penetre nas superfícies, formando pontes de água individuais. Se um castelo de areia começa a secar, as superfícies externas perdem suas pontes devido à evaporação e desmoronam. A areia úmida da praia é mais coesiva que a areia pura (sílica), porque contém partículas de terra e matéria orgânica que podem formar ligações elétricas com os grãos. Além disso, uma camada de areia pode estar coberta com uma crosta de sal que contribui com outras forças de ligação entre os grãos. Na zona de arrebentação, onde a água do mar banha periodicamente a areia, a água introduz bolhas de ar na areia, conferindo à areia uma textura mais macia. Assim, a dureza da areia varia consideravelmente quando você se desloca da areia seca no alto da praia, passa pela areia aerada e parcialmente úmida, depois pela areia encharcada e chega finalmente à areia saturada submersa na água.

2.87 • A aparência do café requentado Se você examinar uma xícara de café requentado (do tipo mantido quente durante horas nos restaurantes de quinta categoria), por que a aparência da superfície muda quando você mergulha e retira a colher? Sem a colher, a superfície parece sem brilho, o que não é nada convidativo. Com a colher, a superfície tem pequenos círculos brilhantes, o que é ainda menos convidativo.

Resposta Geralmente, o café requentado tem uma aparência desagradável porque está coberto por uma camada oleosa, que produz um reflexo fosco e pouco convidativo. Assim, muitas vezes é possível dizer, pela aparência do café, se ele é oleoso. Quando você introduz uma colher, ela comprime a camada oleosa, fazendo com que o óleo se concentre em gotas. Essas gotas, com suas superfícies curvas, podem refletir a luz de uma lâmpada, produzindo assim muitos círculos luminosos. Quando você retira a colher, a camada oleosa volta a se formar e a maioria das reflexões desaparece.

2.88 • Lágrimas de vinho e outros fenômenos em superfícies líquidas Em um copo que contenha uma bebida alcoólica não muito forte, tal como vinho ou vodca de baixo teor alcoólico, por que gotas (chamadas lágrimas de vinho) se formam, crescem e escorrem pela parede do copo acima da superfície do líquido (Fig. 227)?

Resposta Normalmente, a superfície da água sobe ligeiramente na parede do copo porque: (1) as moléculas do vidro

atraem as moléculas da água (existe adesão entre os dois materiais) e (2) as moléculas da água se atraem mutuamente (existe coesão no interior da água). Assim, a água mais próxima da parede é puxada ligeiramente para cima pela adesão para formar uma película, e essa água puxa mais água para cima por coesão, formando uma superfície curva perto da parede. No caso do vinho, o efeito é muito mais pronunciado por causa da diferença entre a tensão superficial da película que sobe na parede do copo e a tensão superficial do líquido. As moléculas da superfície de um líquido se atraem mutuamente e se aglomeram, colocando a superfície em um estado de tensão que chamamos de tensão superficial. A tensão superficial da água é relativamente grande, mas a de uma mistura de álcool com água é menor. Quando uma mistura de álcool e água começa a subir na parede do copo, o álcool logo evapora, deixando na parede uma película de água quase pura. Como a água tem uma tensão superficial maior que a da mistura álcool-água que constitui o líquido, ela é atraída com força para a parede. Com isso, a camada se torna mais espessa e a extremidade superior pode ser puxada mais para cima pela adesão com o vidro, de modo que a película sobe mais alto do que se o copo contivesse apenas água. A altura da subida é limitada pela força da gravidade sobre a película. Quando o álcool evapora da película, a tensão superficial da água tende a dividir a água em gotas. De início, as gotas ficam presas à parede por causa da adesão mas, em algum momento, ficam grandes demais e se desprendem, escorrendo pela parede e caindo no líquido. Elas só se formam se a bebida não for muito fraca nem muito forte: a bebida precisa ter uma mistura de álcool e água para que a ação combinada dos diferentes valores de tensão superficial no líquido e na película que sobe produza o efeito desejado.

Figura 2-27 / Item 2.88 Lágrimas se formam acima da superfície de um vinho forte.

Quando um fluido se move porque a tensão superficial em uma região difere da tensão superficial em outra região, o movimento é chamado de efeito Marangoni, em homenagem a um dos primeiros cientistas que investigaram esse efeito. O efeito Marangoni pode explicar por que algumas gotas se espalham em uma superfície sólida. O espalhamento visível pode ser precedido de uma camada muito fina na qual a evaporação é mais rápida do que no resto da gota. Como acontece com as lágrimas de vinho, se a evaporação da camada fina aumenta a tensão superficial do líquido que permanece na camada, o líquido é atraído do resto da gota para a camada, o que faz a gota se espalhar pela superfície.

2.89 • Estruturas tubulares no licor Tia Maria O licor Tia Maria é freqüentemente servido com alguns milímetros de creme por cima e bebido por meio de um canudo. Se a bebida for deixada em repouso por alguns minutos, por que o líquido se agita e a superfície forma células ou estruturas cilíndricas?

Resposta Em uma ou mais regiões, o álcool se difunde (passa lentamente) para cima através do creme, reduzindo a tensão superficial do creme devido à atração mútua das moléculas da superfície. O líquido álcool-creme (com uma tensão superficial menor) é puxado ao longo da superfície para as regiões em que o creme ainda está puro (e, portanto, a tensão superficial é maior). Mais álcool sobe para substituir o líquido que foi removido e o processo se repete indefinidamente. Por razões complexas, a presença de creme (especificamente, sua resistência ao movimento) faz com que a circulação do líquido se dê através de células isoladas, quando a camada de creme é espessa, e de rolos cilíndricos quando a camada de creme é fina.

2.90 • Desenhos no café quente e em outros fluidos

Se você iluminar obliquamente uma xícara de café quente, pode observar desenhos na superfície do café: regiões esbranquiçadas delineadas por linhas escuras que se formam e se modificam constantemente (Fig. 2-28). Esses desenhos se chamam células de Benard, em homenagem a um dos primeiros investigadores do fenômeno. Se uma camada de óleo for aquecida em uma frigideira em fogo baixo, o óleo apresenta pouco ou nenhum movimento. Se a chama, porém, for aumentada aos poucos, o óleo começa a se mover, formando células de Benard em forma de polígonos. (Geralmente é necessária uma luz oblíqua para tornar visíveis os desenhos.) Com uma chama um pouco maior, os polígonos podem se transformar em um padrão de hexágonos que lembra um favo de mel. Em uma xícara transparente de chá quente, adicione leite aos poucos nas proximidades da parede. O leite vai para o fundo da xícara. Adicione o suficiente para que os 3/4 inferiores da xícara fiquem da cor do leite. Passados alguns minutos, por que surgem faixas horizontais na parte da xícara ocupada pelo leite?

Resposta Quando a água evapora do café a superfície esfria, tornando-se um pouco mais densa. A diferença de temperatura resultante (e a diferença de densidade) entre as camadas de cima e de baixo do café tendem a fazer o café circular. Imagine uma porção de líquido no fundo. Ela está imersa em uma camada de água que e tem a mesma temperatura e a mesma densidade e, portanto, tende a permanecer estacionária. Entretanto, uma perturbação fortuita na xícara pode fazer a porção subir e encontrar um líquido um pouco mais frio e mais denso. Nessa região, ela tende a boiar. Quando sobe e encontra um líquido cada vez mais frio e mais denso, sua aceleração para cima aumenta. Assim, o movimento causado pela perturbação fortuita é amplificado. Uma seqüência semelhante se aplica a uma porção de líquido na superfície. Se, por acaso, essa porção desce e encontra um líquido um pouco mais quente e menos denso, ela é acelerada para baixo e o movimento é amplificado. Como o café tem uma superfície aberta, o movimento na superfície também é afetado pela tensão superficial, que se deve à atração mútua das moléculas de água. Quando a água da superfície esfria, a tensão superficial aumenta ligeiramente. Assim, a tensão superficial na região em que a água (mais fria) está descendo é maior que a tensão superficial na região em que a água (mais quente) está subindo. Essa diferença de tensão superficial tende a levar a água da superfície da região que está subindo para a região que está descendo. Como uma tensão superficial maior tende a fazer a água se encrespar, a região que desce forma uma crista que é um pouco mais elevada que a região que sobe, mais ou menos como uma linha de colinas baixas em torno de um vale. A superfície do café fica coberta de células de regiões amplas (vales) de líquido que sobe e cristas estreitas de líquido que desce.

Figura 2-28 / Item 2.90 Regiões esbranquiçadas e linhas escuras se formam na superfície do café.

Quando a água mais quente chega à superfície, parte dela evapora, mas, dependendo da umidade, o vapor pode se condensar rapidamente, formando gotas de água no ar logo acima da região em que o líquido sobe. As gotas maiores caem de volta na superfície do líquido e as gotas menores são levadas pelas correntes de ar acima do café quente, mas as gotas de tamanho médio podem pairar no ar, suspensas pela corrente de ar e pelo vapor d’água que sobe da superfície do café. Quando a luz de uma lâmpada ou a luz do sol são espalhadas por essa nuvem tênue, a muvem pode ser vista como uma mancha esbranquiçada. As cristas que marcam o líquido que desce não possuem gotas pairando no ar e, portanto, têm a aparência escura do café. Se você aproximar um objeto carregado eletricamente (tal como um pente de plástico usado recentemente) da superfície do café, as gotas que pairam no ar são removidas eletricamente e a mancha esbranquiçada desaparece.

Padrões de circulação semelhantes aparecem em uma camada de óleo aquecida em uma frigideira. Enquanto o café esfria de cima para baixo, o óleo esquenta de baixo para cima, mas a característica importante é que uma diferença de temperatura é estabelecida entre as superfícies superior e inferior do líquido. Se a diferença de temperatura exceder um certo valor crítico, a convecção torna-se instável. Perturbações fortuitas movimentam partes do líquido de várias maneiras, e o empuxo e a tensão superficial podem superar a viscosidade, estabelecendo células de líquido ascendente e descendente. Em alguns líquidos, o movimento produz longas estruturas tubulares, com o líquido subindo de um lado e descendo do outro. Os polígonos observados no óleo consistem em regiões amplas de óleo quente que sobe e linhas estreitas de óleo mais frio que desce. Assim como no café quente, o óleo frio tem uma tensão superficial maior que o óleo quente e, portanto, o óleo se move na superfície de uma região ascendente para uma região descendente. As faixas que aparecem depois que o leite é adicionado ao chá quente devem-se aos rolos horizontais que correm em volta da parede da xícara, um padrão de circulação que pode ser causado pelo resfriamento através da parede. O efeito, que me foi descrito pela primeira vez em 1987, pelo alemão Christian Roos, pode dar origem a até oito faixas, mas você talvez tenha que fazer várias tentativas até conseguir as condições ideais para que elas apareçam. Células de Benard também podem ocorrer na cera derretida de uma vela grande. A tensão superficial da cera quente é menor que a da cera fria, de modo que a variação da tensão superficial do pavio para a borda externa da vela pode dar origem a células de convecção. Se a vela for apagada com cuidado, as células podem deixar cristas na cera quando esfriam e se solidificam.

2.91 • Desenhos nas manchas de café Quando o café é derramado em uma superfície horizontal e evapora, por que a localização da poça é marcada por um anel marrom? Quando poças de água salgada evaporam, digamos, em uma calçada, por que a borda da poça fica marcada com um anel branco? O café turco é uma mistura concentrada de água, açúcar e pó de café bem fino que é aquecida em um ibrik e despejada em uma xícara, juntamente com a borra do café. Enquanto o café esfria o suficiente para ser bebido, a borra desce gradualmente para o fundo da xícara. O consumidor sorve o café até essa camada inferior e despreza o resto. Se a mistura de líquido e pó que fica no fundo da xícara for deixada a evaporar durante algumas horas, o pó forma um desenho surpreendente de linhas claras e escuras. As linhas, com alguns milímetros de comprimento e perpendiculares à borda, têm um espaçamento uniforme, como se tivessem sido desenhadas por um artista. O que produz esse padrão?

Resposta Quando uma poça de café evapora em uma superfície sólida, a poça tende a encolher enquanto perde água. Entretanto, o perímetro (chamado de linha de contato, porque corresponde aos pontos de contato entre o ar, o líquido e a superfície sólida) pode ficar retido em alguma imperfeição da superfície sólida, um ponto que seja saliente ou quimicamente diferente. Em outras palavras, a linha de contato fica ancorada e não pode recuar além desse ponto. A evaporação, que pode ser bem rápida na camada fina que existe na borda da poça, deixa um resíduo de tudo o que está dissolvido na água, o soluto. Como a linha de contato está parada, o café escoa do meio da poça até a borda para substituir a água perdida por evaporação. Assim, uma quantidade cada vez maior do soluto é depositada na borda, formando o anel marrom que acaba se tornando visível. Uma vez que o anel começa a se formar, a linha de contato fica cada vez mais firmemente ancorada. Entretanto, quando o líquido da poça diminui, a linha de contato pode superar o obstáculo e recuar bruscamente. Em seguida, ela volta a se fixar, formando um novo anel, menor que o anterior. Escoamentos parecidos podem deixar um anel branco de sal branco em torno de uma poça de água salgada que evapora. Fenômeno semelhante pode ocorrer no caso do café turco se o resto do líquido estiver em uma xícara com uma parede inclinada, o que faz com que a borda do líquido seja rasa. Além disso, é formada uma série de células de escoamento que levam o pó de café para a borda e transportam o líquido para o centro da xícara. O escoamento para fora deposita o soluto na borda; o escoamento para dentro arrasta para fora todo o soluto. O resultado é um padrão regular de linhas curtas, alternadamente claras e escuras, em torno da parede. Mesmo que o café seja mexido por um momento, as células se recompõem rapidamente. Se o café for preparado sem açúcar, as células não aparecem. Uma explicação simples é que, quando a água evapora na borda rasa, o líquido de reposição escoa até a borda, arrastando parte do pó em direção às paredes da xícara. Esse pó forma uma das linhas escuras do desenho. Quando o líquido de reposição chega à borda e começa a evaporar, torna-se mais concentrado e, portanto, mais denso, de modo que começa a afundar, deslizando para longe da borda ao longo da parede curva da xícara. Esee escoamento para dentro arrasta o pó para longe da borda, limpando uma faixa estreita e formando uma das linhas claras do desenho. Essa distribuição de pó só pode ocorrer se a parede da xícara tiver uma inclinação moderada. Nem uma parede vertical (que não possui uma borda rasa) nem uma parede quase horizontal (que possui uma grande borda rasa) são adequadas.

2.92 • O embaçamento de vidros e lentes Quando você sopra em uma superfície como um espelho ou uma lente de óculos, por que a superfície embaça? Por que um espelho em um banheiro cheio de vapor embaça?

Resposta Quando sua respiração relativamente quente encontra uma superfície mais fria, tal como um espelho, o vapor d’água da sua respiração começa a se condensar na superfície. A superfície provavelmente está coberta de pó e gordura dos dedos. Como as moléculas de água que se condensam na superfície são atraídas com mais força por outras moléculas de água do que por esses contaminantes, tendem a formar gotículas de água entre os contaminantes. Assim, a água não cobre a superfície uniformemente, mas forma gotas. Inicialmente, as gotas são pequenas, mas elas crescem e finalmente começam a coalescer (fundir-se), processo que ainda não está bem compreendido. Como a distância entre as gotas maiores resultantes aumenta, novas gotículas começam a se formar entre as gotas maiores. Esses três tipos de padrões de gotas (primeiro gotas pequenas, depois gotas grandes e, finalmente, gotas grandes intercaladas de gotas pequenas) são chamados, em conjunto, de figuras de respiração (breath figures, em inglês) porque podem ser causados pela respiração. Depois que as figuras de respiração se formam em um espelho, as imagens tornam-se indistintas e o espelho parece estar coberto por uma substância branca porque as gotas espalham a luz branca do aposento. Se você esfrega o dedo na superfície do espelho e repete o processo de embaçamento pela respiração, não se formam gotas nas regiões esfregadas, porque a gordura do seu dedo reduz a tensão superficial da água de tal forma que ela pára de formar gotas. Em vez disso, a água se espalha em uma camada fina, processo chamado de molhamento. Se as gotas continuam a se formar, como acontece durante um longo banho quente em um banheiro frio, as gotas tendem a crescer e coalescer até que algumas ficam pesadas demais para permanecer paradas. A força da gravidade faz essas gotas pesadas escorrerem pelo espelho. Como elas esbarram em outras gotas, uma avalanche de gotas logo começa a descer pelo espelho. As figuras de respiração podem ser perigosas quando se formam em óculos ou no pára-brisa dianteiro do carro em ocasiões em que a visão é essencial. (Ou seja, se você é o motorista, precisa ver a estrada com nitidez, e não apenas vagamente, ou logo não vai ver estrada alguma.) Alguns pára-brisas são conhecidos por reterem as gotas d’água, enquanto outros são projetados especialmente para deixar a água escorrer rapidamente. Algumas pessoas usam soluções caseiras ou produtos comerciais para cobrir o pára-brisa com uma substância que faz a água molhar o pára-brisa em vez de formar gotas.

Figura 2-29 / Item 2.93 Uma gota d’água forma uma esfera quase perfeita sobre os espinhos de uma folha de lótus.

2.93 • O efeito lótus Borrife água em uma folha de lótus e as gotas imediatamente se acumulam e escorrem pela planta. No caminho, podem coletar partículas de pó e, portanto, limpam a folha: trata-se de uma folha autolimpante. A água forma gotas em outras superfícies, tais como folhas cerosas, mas o efeito em uma folha de lótus parece bem diferente. O que causa a formação de gotas em uma folha de lótus?

Resposta A capacidade de uma gota d’água de se espalhar por uma superfície sólida é chamada molhabilidade da superfície. Se você pudesse ter uma visão ampliada da gota, veria o ângulo que a gota faz ao tocar a superfície. Se a gota pode molhar facilmente a superfície, ela se achata como uma panqueca e forma um ângulo pequeno com a superfície. Se a gota não pode molhar a superfície com facilidade, ela não se espalha e forma um ângulo grande com a superfície. Em uma folha de lótus, o ângulo é tão grande que a gota d’água se transforma em uma esfera quase perfeita.

Uma explicação é que o material da superfície da folha não atrai moléculas de água (a superfície é chamada hidrofóbica). Assim, a tensão superficial (devida à atração mútua de moléculas de água) tende a transformar a superfície da água na curva fechada de uma esfera. Muitas outras superfícies sólidas, tais como as de algumas folhas comuns, também são hidrofóbicas e fazem a água formar gotas. A formação de gotas em uma folha de lótus deve-se à estrutura microscópica na qual a água repousa inicialmente. A superfície tem uma distribuição regular de espinhos, que lembra a superfície de uma cama de pregos (Fig. 2-29). A gota não pode se encaixar nos espaços entre os espinhos porque o material é hidrofóbico e os espaços são muito menores que a gota. Assim, os espaços são preenchidos com ar e a gota repousa na ponta dos espinhos. Esse contato reduzido entre a folha e a gota permite que a tensão superficial da gota a transforme em uma esfera quase perfeita. Basta uma inclinação pequena para que a gota role (sem deslizar). A poeira que a gota encontra no caminho adere à água e é removida da folha. Existem alguns utensílios autolimpantes que utilizam o mesmo princípio. Por exemplo, uma vidraça autolimpante, com um arranjo apropriado de projeções microscópicas, não precisa ser limpa porque a neblina e a chuva formam gotas que deslizam pela janela, coletando toda a sujeira. Esta é uma propriedade muito interessante quando a janela é instalada longe do chão, como no alto de um arranha-céu. Da mesma forma, os carros podem ser revestidos com um material que limpa a si mesmo em dias chuvosos.

2.94 • Pulgões e bolas de líquido Um pulgão que se instala em uma galha precisa se livrar de seu excremento, a melada, ou o líquido vai afogá-lo. A solução é rolar o líquido para fora da galha. Como um líquido pode ser rolado?

Resposta Células epidérmicas especiais de um pulgão secretam um material ceroso; com o tempo, esse material se transforma em um pó que reveste a superfície interna da galha. A melada é coberta por esse pó assim que é excretada pelo inseto. O pó também oferece uma superfície microscópica irregular na qual a melada fica pousada quase sem molhar a superfície. Dessa forma, a tensão superficial faz a melada se tornar uma esfera quase perfeita, como a gota de água em uma folha de lótus do item anterior. Como a bola é esférica e não molha nem adere à galha, o inseto pode fazê-la rolar para fora da galha. Você pode fazer uma bola semelhante misturando uma gota de água com fuligem ou pó de licopódio. Como os dois materiais são hidrofóbicos, as partículas de pó ficam na superfície da gota. Uma vez coberta, a gota assume uma forma quase esférica quando é pousada em muitas superfícies comuns, tal como um vidro horizontal. Normalmente, a água se espalha no vidro, mas neste caso ela forma uma gota porque está, na verdade, repousando nas projeções microscópicas que cobrem sua superfície.

2.95 • Pincéis, cabelo molhado e a rosquinha molhada no café Por que os pincéis recolhem tinta e as esponjas de limpeza e toalhas de papel absorvem água e outros líquidos? Por que os cabelos molhados formam mechas? Muitas pessoas gostam de molhar rosquinhas (ou biscoitos) em café ou chá quente porque o aumento de temperatura libera sabores e aromas. Por que a rosquinha amolece e se despedaça se ficar submersa por mais de alguns segundos? De que maneira a rosquinha pode ser mergulhada e liberar o sabor e o aroma e, ainda assim, permanecer firme, para ser mastigada em vez de sorvida?

Resposta As cerdas de um pincel atraem as moléculas de tinta, inserindo-as no espaço entre as cerdas. Uma vez que esse movimento é como o de um líquido ao ser sugado para o interior de um tubo estreito (capilar), a força que o pincel exerce sobre a tinta é chamada de força capilar. Quando o pincel é retirado da lata de tinta, a maior parte da tinta fica entre as cerdas por causa dessa atração. Quando as cerdas são esfregadas em uma superfície, como uma parede ou uma tela, parte da tinta é arrancada, mas boa parte pode escorrer porque as cerdas ficam momentaneamente espalhadas na superfície. Esse espalhamento aumenta a distância entre cerdas vizinhas, diminuindo a força capilar e possibilitando que a tinta escorra. Uma toalha de papel e uma esponja de limpeza têm muitos poros para os quais a água pode ser atraída pela força capilar. As mechas de cabelo são formadas por pontes líquidas que ligam fios de cabelo vizinhos. Se as pontas dos cabelos forem mergulhadas em água, a água sobe nos fios de cabelo e faz com que se aproximem uns dos outros. A rosquinha é formada por grãos de amido unidos por um esqueleto de açúcar. Quando a rosquinha é mergulhada no café, o

líquido é rapidamente atraído para dentro dos poros da rosquinha por forças capilares. O líquido quente rapidamente dissolve o açúcar, destruindo o esqueleto, e a rosquinha se esfarela. Se você quer chá ou café cheio de grãos de amido, mergulhe a rosquinha verticalmente. Se prefere comer a rosquinha, introduza-a obliquamente no líquido para que a parte de cima da rosquinha não fique submersa. Ela pode nesse caso permanecer suficientemente firme para que você possa segurar a parte de baixo, contanto que a imersão seja rápida.

2.96 • Batatas fritas Quando alimentos como batatas em fatias e tortillas são fritos em óleo, a superfície fica crocante e saborosa enquanto o interior permanece macio. Por que o alimento absorve óleo e por que a maior parte do óleo é absorvida depois que o alimento é retirado do banho de óleo?

Resposta Quando uma fatia de batata toca no óleo, a energia transferida do óleo para a batata eleva a temperatura da superfície da batata. Quando a temperatura da superfície se aproxima do ponto de ebulição da água, a água nos poros da superfície começa a evaporar e bolhas de vapor d’água se formam nas aberturas dos poros, tornando turbulento o óleo perto da batata. (Você pode ouvir o que está acontecendo.) Quando a superfície perde a água, ela endurece para formar a crosta própria dos alimentos fritos. A temperatura elevada também provoca certas reações químicas na superfície que lhe dão um sabor característico de alimento frito. Com a continuação do processo, a energia é transferida para o interior da fatia de batata, cozinhando o interior. Entretanto, como ficou retida muita água no interior da fatia, a temperatura nessa região não pode ultrapassar em muito o ponto de ebulição da água. Assim, o interior pode cozinhar sem se tornar desidratado ou ficar quebradiço. Perto da superfície, porém, a água continua a evaporar a partir dos poros, até uma profundidade de um milímetro ou dois. Quando é removida do banho de óleo, a fatia está coberta de óleo, que retém o vapor d’água que restou nos poros. Quando o vapor esfria, ele se condensa e se transforma em água líquida, que ocupa muito menos volume que o vapor. Como isso, a pressão dentro dos poros diminui e o óleo é sugado para dentro dos poros. Essa absorção pode ser reforçada pelas forças de atração entre as moléculas do óleo e as moléculas das paredes do poro, em um efeito conhecido como ação capilar. Na verdade, esse é o efeito dominante quando uma fatia fina de comida, tal como uma lâmina de batata, é frita até não restar praticamente água nenhuma. Para reduzir a absorção de óleo pelos alimentos fritos, é preciso retirar o excesso de óleo assim que o alimento é removido do banho de óleo, sacudindo-o ou limpando-o com uma toalha de papel.

2.97 • Patos enxutos Em climas moderados, os patos (e outras aves aquáticas) precisam permanecer secos, porque, se ficarem molhados, perdem o isolamento térmico da camada de ar entre as penas e a pele. Nesse caso, podem perder energia térmica para a água mais depressa do que seu metabolismo consegue produzir energia. Entretanto, a camada de penas não é impermeável, já que as penas são obviamente porosas. Por que os patos permanecem secos enquanto estão nadando ou boiando?

Resposta As penas, que são feitas de ceratina revestida de cera e ésteres, são hidrofóbicas, ou seja, repelem a água. Assim, as gotas d’água tendem a escorrer por elas, em vez de molhálas, quando o pato está na chuva, por exemplo. Entretanto, esta não é a principal razão pela qual o pato permanece seco, porque, quando o pato bóia, a água deveria ser empurrada para cima através das penas e entre elas, deslocando a camada isolante de ar e esfriando rapidamente a pele do pato. Felizmente para o pato, os poros (espaços abertos) entre as penas e dentro delas são pequenos demais para que a água entre, mesmo quando a pressão da água abaixo do pato tenta empurrá-la para dentro dos poros ou alargá-los. A explicação tem a ver com a forma convexa que a superfície da água assume quando tenta entrar por uma abertura de um material hidrofóbico. Com essa forma, a superfície da água tende a ser atraída de volta para fora da abertura pela tensão superficial (causada pela atração mútua das moléculas de água). Como os poros das penas do pato são muito pequenos, a superfície da água fica muito encurvada e a tensão superficial evita que a água entre nos poros. Algumas cestas de frutas feitas de tiras de plásticos entremeadas podem não parecer capazes de flutuar porque as tiras não formam uma superfície contínua, mas apesar disso bóiam, porque a água não consegue penetrar nos espaços abertos entre as tiras.

2.98 • Batatas cortadas, fezes de passarinho e um carro

Se o limpador de pára-brisa do seu carro enguiça, por que você consegue manter o pára-brisa razoavelmente transparente durante uma chuva fina esfregando-o com uma batata recém-cortada? (Tudo bem, não é muito comum ter uma batata sobrando no carro.) Quando fezes de passarinho ornamentam o carro e ficam molhadas de chuva, por que a região próxima das fezes seca mais depressa que o resto do carro?

Resposta A visibilidade do pára-brisa diminui quando a água forma gotas no vidro, distorcendo a visão do motorista. Se você esfregar a parte externa do vidro com uma batata cortada, o amido deixado pela batata atrai fortemente as moléculas de água, espalhando-o para formar uma camada uniforme. Assim, a visibilidade melhora bastante. Quando fezes de passarinho são parcialmente dissolvidas pela chuva, a solução se espalha por uma pequena região em torno das fezes. A água que cai em outros lugares do carro forma gotas, especialmente se o carro foi encerado recentemente. Quando a chuva pára, as camadas finas em volta das fezes são as primeiras a secar, muito antes que as gotas de água evaporem totalmente. Nem todas as aves produzem esse efeito de molhamento. As aves que se alimentam de peixe, por exemplo, não fazem a água se espalhar porque suas fezes são oleosas. Esse molhamento pode ser um problema sério para as empresas de energia elétrica, porque as aves podem sujar os isoladores das linhas de transmissão. Se os excrementos forem fluidos, podem chegar aos cabos de força logo abaixo do suporte, provocando um curto-circuito na linha e causando uma descarga de alta tensão que pode danificar a linha de transmissão. O acúmulo de fezes de passarinho é perigoso mesmo que não sejam fluidas: durante a chuva ou o derretimento de neve, a água pode absorver partículas eletricamente carregadas das fezes e tornar-se mais condutora. Quando essa água molha a linha de transmissão, pode produzir um curto-circuito.

2.99 • Lançando esporos de cogumelo Os fungos, como, por exemplo, os cogumelos, espalham seus esporos de várias maneiras. O método mais interessante, porém, é o dos fungos blastoconídios, que lançam seus esporos tão depressa que a vista não consegue acompanhar. Cada esporo fica preso em uma haste chamada esterigma. Antes do lançamento do esporo, uma gota d’água se forma na parte de baixo do esporo, perto da ligação do esporo com o esterigma. Em um intervalo de 30 segundos, a gota cresce até atingir um diâmetro de cerca de 10 micrômetros e, em seguida, muito bruscamente, o esporo e a gota são lançados no ar. O que os impulsiona?

Resposta Quando um cogumelo blastoconídio está pronto para lançar um esporo, secreta certos compostos na superfície do esporo para promover a condensação da água do ar. A condensação acontece mais depressa no lugar em que a gota se forma, mas também acontece em outro lugar do esporo, onde forma uma película adesiva de água. Quando a gota aumenta de diâmetro e a película se espalha pelo esporo, a película faz contato com a gota. Nesse momento, a tensão superficial da água na película arranca a água da gota e a introduz na película. Esse puxão confere tanto momento e energia cinética à água que penetra na película, que o esporo é liberado do esterigma e lançado no ar. A aceleração no instante do lançamento foi estimada em cerca de 25.000 g (25.000 vezes a aceleração da gravidade), mas o esporo logo perde velocidade por causa da resistência do ar e, portanto, não chega muito longe. Como a energia e o momento para o lançamento são fornecidos pela tensão superficial, o lançamento foi chamado de catapulta de tensão superficial.

2.100 • Ondas em um filete de água Ajuste a altura de um dedo mantido no filete de água (de poucos milímetros de diâmetro) que sai de uma torneira. Em uma certa faixa de alturas, formam-se ondulações na parte do filete logo acima do dedo (Fig. 2-30). O que causa essas ondulações? Se você molha o dedo em um detergente líquido, por que as ondas passam a se formar a uma distância maior do dedo?

Resposta As ondulações se devem às ondas que sobem pelo filete depois que ele se choca com o dedo. Dizemos que essas ondas são do tipo capilar porque suas oscilações são controladas pela tensão superficial produzida pela atração mútua das moléculas de água. Neste caso, as ondas capilares sobem pelo filete com a mesma velocidade da água que desce e as duas ondas se combinam para formar uma onda estacionária. Se você substitui a torneira por um recipiente com um furo no fundo, a velocidade da água passa a ser função do nível da água no recipiente. À medida que o nível da água diminui, a velocidade da água diminui e o comprimento de onda das ondas (a distância entre cristas sucessivas) aumenta até que o filete se torna instável, decompondo-se em gotas. A existência das ondas depende do fato de que a tensão superficial da água é relativamente elevada. Adicionar detergente

líquido reduz a tensão superficial. Se o dedo estiver coberto de detergente, o produto se mistura com a parte de baixo do filete, reduzindo a tensão superficial o suficiente para eliminar as ondas na região. Nesse momento, o fluxo na parte de baixo do filete passa a ser uniforme, como se a água estivesse em um cano, e as ondas passam a se formar mais acima.

Figura 2-30 / Item 2.100 Ondas estacionárias se formam em um filete de água.

2.101 • Sinos, placas e correntes de água Segure uma colher, ou outro objeto arredondado, com a superfície convexa para cima, no jorro contínuo de uma torneira. A água é desviada como uma cortina fina que se dobra para baixo. Superfícies planas também servem e uma das melhores é a tampa plástica, dessas de atarraxar, de uma garrafa de água mineral. Ponha dois dedos dentro da tampa e, com os dedos para cima, segure a tampa no jorro. Depois de algumas tentativas, você vai conseguir que a cortina se feche quase totalmente, formando um sino de água (Fig. 2-31). Muitas fontes têm essas cortinas, que são usadas para fins ornamentais. O que produz as cortinas de água?

Figura 2-31 / Item 2.101 Sino de água formado por uma cortina de água desviada por uma superfície sólida.

Você pode produzir sinos de água e cortinas relativamente planas direcionando dois jorros livres de turbulência um contra o outro. Se os jorros forem verticais e escoarem mais ou menos à mesma velocidade, colidem e se espalham, formando uma cortina simétrica. A cortina pode se desfazer em gotas ou pode se curvar para formar um sino de água. Se os jorros forem direcionados para baixo e apontados um para o outro, podem formar uma cadeia líquida com uma série

de laços de bordas relativamente espessas. Os laços sucessivos são perpendiculares entre si, o que faz o arranjo lembrar os elos de uma corrente.

Resposta A água está sujeita a uma atração mútua de suas moléculas, efeito conhecido como tensão superficial. Uma cortina é curvada para baixo pela força da gravidade. Se a cortina deixa o objeto que a desvia com muita turbulência, fica instável e rapidamente se desfaz. Com menos turbulência, pode formar um sino de água, que é uma bela figura. Algumas esculturas de água usam uma torrente fina e larga em vez de cilíndrica para criar uma cortina de água que é lançada de um degrau e em seguida se encurva para baixo. Se o fluxo de água for muito pequeno, porém, forma-se uma série de colunas de água regularmente espaçadas em vez de uma só cortina. A distância entre as colunas é estabelecida pela tensão superficial da água, que concentra a água para formar as colunas. Cortinas finas de água corrente também podem se formar se dois jorros cilíndricos forem direcionados um contra o outro com aproximadamente a mesma velocidade, com as saídas separadas por uma pequena distância. O impacto dos jorros faz a água formar uma cortina. Se os jorros forem verticais e direcionados um contra o outro, a cortina tende a ser circular, decompondo-se em gotas ao longo do perímetro. Se os jorros estiverem inclinados um em relação ao outro, a cortina tende a ter forma de uma folha. Se forem inclinados para produzir correntes, os jorros são refletidos nos pontos de impacto e se afastam um do outro, mas permanecem ligados por uma cortina fina. A tensão superficial atrai os jorros de volta até que eles colidem novamente. Dessa vez eles são lançados em direções diferentes e em plano perpendicular ao plano do primeiro elo. A altura do salto e a largura das correntes diminuem enquanto a água continua a cair, até que os elos desaparecem e a água simplesmente forma um cilindro.

2.102 • Pisando na praia molhada e na areia movediça Se você pisa em areia molhada (não tão molhada que os grãos formem redemoinhos) e depois levanta o pé, por que a areia na sua pegada fica relativamente seca e por que ela volta a ficar molhada em poucos minutos? O que causa a areia movediça e como é possível escapar dela?

Resposta Antes de você pisar na areia, os grãos estão muito compactados e a água preenche os espaços intermediários. A areia parece molhada porque você vê reflexos da água na superfície da areia. Quando você pisa, cisalha a areia, fazendo algumas camadas se movimentarem em relação a outras. Esse movimento faz aumentar o espaço entre os grãos. (Dizemos que a areia é um material dilatante porque o cisalhamento aumenta seu volume a partir do estado inicial.) A água escorre da superfície da areia para o espaço entre os grãos, deixando a superfície relativamente seca. Em poucos minutos, ou os grãos voltam a se compactar ou uma água adicional vem dos arredores ou da areia subjacente e a superfície da areia volta a parecer molhada. Depois de colocar uma mistura de água e areia em uma garrafa de plástico, você pode deformar a garrafa apertando-a lentamente, o que faz com que os grãos se desloquem lentamente a partir de seu arranjo compacto e também faz com que a água penetre nos novos espaços para lubrificar os grãos. Entretanto, um aperto brusco tenta deslocar os grãos depressa demais, sem a necessária lubrificação da água. O atrito entre os grãos é tão grande que você não consegue deformar a garrafa. A areia movediça é um banco de areia com uma entrada de água, como uma fonte natural. A água separa um pouco os grãos e os lubrifica, de modo que eles podem deslizar facilmente uns em relação aos outros. Se você pisa nesse tipo de terreno, pode afundar na areia lubrificada. Se você reage tentando levantar a perna rapidamente, a areia movediça fica rígida de repente e você não consegue mover a perna. O problema é que esse movimento brusco tende a aumentar o espaço entre os grãos, mas o deslizamento de grãos contra grãos provoca muito atrito, impedindo o movimento. A areia movediça é um fluido denso e, em princípio, você não pode afundar a ponto de se afogar. Em uma situação ideal, você pode se deitar na areia movediça, dobrando o corpo na altura da cintura, e depois rastejar, firmando as mãos na superfície e retirando as pernas lentamente. Entretanto, pessoas que têm experiência com areia movediça ressaltam que a areia movediça em locais isolados é muito mais perigosa do que essa areia movediça ideal. Pode estar camuflada sob água parada ou corrente e, portanto, mesmo que você não afunde muito na areia movediça, pode facilmente ficar com a cabeça debaixo d’água. Além disso, quando você cai na areia movediça, passa um pouco do nível de equilíbrio, mas, ao contrário do que acontece em uma piscina, não sobe de volta. Pior que isso, pode desviar o fluxo de água que torna movediça a areia, e a partir desse instante a areia que o envolve se imobiliza. Os especialistas alertam que a única maneira garantida de escapar da areia movediça é estar preparado para esse tipo de acidente. Quando existe a possibilidade de encontrar uma areia movediça, a pessoa deve carregar uma corda amarrada no peito e alguém na outra ponta da corda deve estar preparado para puxar com força caso a primeira pessoa caia na areia movediça.

2.103 • A queda de edifícios e de um elevado No momento em que o terceiro jogo da World Series de 1989 estava prestes a começar em Oakland, na Califórnia, ondas sísmicas de um terremoto de magnitude 7,1 perto de Loma Prieta, a 100 quilômetros de distância, atingiram a região, provocando danos extensos e matando 67 pessoas. Fotografias transmitidas para o mundo inteiro mostraram um trecho da rodovia Nimitz no qual a pista de cima caiu sobre a pista de baixo, deixando motoristas presos e causando dezenas de mortes. Obviamente, a queda se deveu aos violentos tremores causados pelas ondas sísmicas. Por que, porém, aquele trecho do elevado, em especial, ficou tão seriamente avariado quando o resto do elevado, de estrutura praticamente igual, não desabou? Em 19 de setembro de 1995, ondas sísmicas de um terremoto na costa oeste do México causaram muitos danos na Cidade do México, situada a cerca de 400 quilômetros do epicentro. Por que as ondas sísmicas causaram tanta destruição na Cidade do México mas relativamente poucos danos no percurso? Além disso, na Cidade do México, por que edifícios de altura média foram derrubados pelas ondas sísmicas mas edifícios mais altos e mais baixos foram poupados?

Resposta A queda da rodovia Nimitz se limitou a um trecho construído em um aterro instável, que sofreu liquefação (ou fluidificação) durante o tremor. Quando as partículas do aterro foram sacudidas, elas se afastaram umas das outras e se tornaram mais fluidas (com a capacidade de fluir) do que sólidas. Com o aterro em um estado fluido, as ondas sísmicas tiveram um efeito muito maior do que sobre as regiões vizinhas, onde a rodovia estava ancorada na rocha. Uma medida da intensidade das ondas sísmicas é a velocidade máxima que elas conferem às partículas que são sacudidas pelas ondas. Na região do aterro, a velocidade máxima foi pelo menos cinco vezes maior do que na região das rochas, de modo que a rodovia foi literalmente sacudida até que a pista de cima caiu sobre a de baixo. Em alguns exemplos de liquefação, casas afundaram no chão, como se tivessem sido tragadas por areia movediça. Além disso, podem se formar gêiseres, com água e areia jorrando do solo. O terremoto do México foi muito intenso (8,1 na escala Richter), mas as ondas sísmicas devem ter sido fracas demais para causar grandes danos quando finalmente chegaram à Cidade do México. Entretanto, a Cidade do México foi construída em sua maior parte no antigo leito de um lago, onde o solo ainda é macio e úmido. Embora a amplitude das ondas sísmicas tenha sido fraca no terreno mais firme que encontraram a caminho da Cidade do México, a amplitude aumentou substancialmente no solo instável da cidade. Além disso, quando as ondas sísmicas entraram na região, parte delas sofreu reflexões entre a parte de cima do solo e o material firme subjacente (embasamento). As ondas com certos comprimentos de onda se reforçaram mutuamente, o que aumentou e prolongou o movimento do solo. As acelerações produzidas pelas ondas chegaram a 0,20 g (0,20 vez a aceleração da gravidade) e a freqüência ficou concentrada em cerca de 0,5 hertz, um valor atípico. Não apenas o solo foi duramente sacudido por um tempo surpreendentemente longo, mas muitos dos edifícios de altura média tinham freqüências naturais de oscilação (freqüências de ressonância) de cerca de 0,5 hertz. Muitos desses edifícios de altura média caíram durante o tremor, enquanto edifícios mais baixos (com freqüências de ressonância maiores) e mais altos (com freqüências de ressonância menores) permaneceram de pé.

CURIOSIDADE 2.104 • O efeito areia movediça em silos Cair em um grande reservatório de grãos, tal como um silo, é perigoso e pode ser fatal. Em um caso, um operário caiu em um silo que continha vários metros de grãos. Ele logo afundou até as axilas e ficou com os braços presos. Como ele tinha uma doença cardíaca, a pressão dos grãos sobre seu peito era perigosa, do modo que a equipe de salvamento tentou puxálo, mas foi impossível vencer o atrito. Quando cavaram em volta, os grãos repetidamente preenchiam os espaços e o pó levantado começou a sufocar tanto a vítima como a equipe de salvamento. Finalmente, baixaram um cilindro em torno do operário e usaram um aspirador de pó industrial para remover os grãos do interior do cilindro, libertando a vítima.

2.105 • Fluxo de pedestres e fugas desordenadas Quando a densidade de pedestres em uma calçada aumenta, o que os pedestres fazem para evitar que o movimento se torne caótico e prejudicial? Quando uma multidão tenta escapar de um recinto (tal como uma sala, um edifício ou um estádio) durante uma emergência ou tenta entrar em um recinto com grande entusiasmo, por que os movimentos ficam lentos e potencialmente letais?

Resposta O movimento de pedestres pode ser uma forma de escoamento granular ou mesmo fluido. Se você quer estudar o fluxo de pedestres, encontre um ponto elevado, que lhe permita observar uma boa parte do fluxo. Quando a densidade de pedestres é baixa, cada pessoa ou grupo (digamos, uma família) geralmente escolhe o caminho mais direto até o seu objetivo, embora esse caminho não seja necessariamente uma linha reta se estiver restrito a calçadas e faixas de pedestres. Assim, por exemplo, se as pessoas podem atravessar uma área aberta em uma feira rural para chegar à barraca de algodãodoce, provavelmente vão se dirigir à barraca em linha reta. Quando a densidade de pessoas aumenta, a rota se torna um ziguezague e o apreciador de algodão-doce precisa parar às vezes para não colidir com outras pessoas. Quando a densidade aumenta ainda mais, as pessoas começam a organizar linhas de fluxo que lembram as faixas de trânsito em uma rua de mão dupla. Quando essa organização por faixas se inicia, as pessoas passam a se movimentar de maneira coordenada, com uma certa velocidade e a certa distância mínima para evitar colisões. Agora, o apreciador de algodão-doce precisa utilizar uma ou mais faixas de trânsito para se aproximar da barraca e a rota global pode ser muito mais longa do que a rota original, que era em linha reta. Quando muitas pessoas sensatas tentam escapar de um recinto por uma saída estreita, organizam-se em fila indiana, produzindo um fluxo lento porém contínuo. Se as pessoas entram em pânico porque estão tentando escapar de um perigo (um incêndio, por exemplo), elas se aglomeram, formando arcos em torno da saída. A pressão das pessoas que estão atrás dos arcos pode ser tão grande que as pessoas dentro dos arcos não conseguem se movimentar em nenhuma direção, não conseguem sequer levantar os braços e não podem respirar direito, o que as leva a desmaiar em pé. Em situações extremas, as pessoas nos arcos podem ser esmagadas até a morte contra paredes e obstáculos, ou as paredes e obstáculos podem ceder, causando quedas e mortes. O lento escoamento de pessoas pelo caminho de saída alivia os arcos, mas o tempo de fuga é maior do que se as pessoas saíssem de maneira organizada. Se algumas pessoas caem enquanto estão correndo para a saída, os corpos fazem as pessoas que estão atrás tropeçarem. A pilha de corpos pode ficar tão alta que funciona como uma barreira, situação obviamente perigosa. Para reduzir o risco das multidões em fuga, podem ser instaladas várias saídas de emergência. Entretanto, quando uma multidão em pânico se aglomera em torno de uma saída, as pessoas podem não perceber que outras saídas ainda estão abertas. Alguns estádios modernos são projetados com corredores de saída especiais para reduzir a possibilidade de aglomerações: os corredores se alargam gradualmente e são sinuosos para que ninguém seja comprimido contra uma parede.

2.106 • Montes de areia e escoamento auto-regulado Despeje areia lentamente em uma superfície horizontal, até formar um monte. É de se esperar que o monte de areia se torne cada vez mais alto e mais largo. Por que a inclinação do monte não pode passar de um certo ângulo? Misture um pouco de Tang (pó alaranjado usado para preparar um refresco com sabor de laranja) com um pouco de Nestea (pó preto usado para preparar chá instantâneo) e despeje a mistura em uma superfície horizontal. O pó vai formar um monte parecido com os montes de areia. Entretanto, os grãos de Nestea tendem a se acumular na base do monte. Qual é a causa da separação?

Figura 2-32 / Item 2.106 Faixas marrons e laranjas se formam quando uma mistura de grãos é despejada em um monte.

Despeje lentamente a mistura Tang-Nestea em um recipiente estreito e transparente enquanto observa através de uma das paredes. Por que os grãos formam faixas alternadas de Tang e Nestea enquanto a pilha cresce (Fig. 2-32)?

Resposta Quando a areia despejada começa a formar um cone, os grãos da encosta permanecem imóveis por causa do

atrito mútuo e o ângulo da encosta cresce gradualmente até alcançar um valor crítico. Em seguida, uns poucos grãos começam a escorregar pela encosta, arrastando outros até que acontece uma avalanche em parte do cone. Depois disso, o ângulo da encosta tem um valor menor, o chamado ângulo de repouso. Assim, um monte de areia organiza a si próprio (ou seja, se ajusta) para alcançar o ângulo de repouso. Diferentes grãos e outros materiais granulares (tais como contas de vidro, sementes diversas, cuscuz seco e ervilhas) têm ângulos de repouso diferentes, dependendo do tamanho médio e da forma. Se dois pós diferentes forem misturados e despejados, provavelmente vão se separar parcialmente enquanto descem pelo lado do monte e se imobilizar. Se a mistura for despejada em um recipiente estreito como o ilustrado na figura, você pode ver uma seção reta do monte. Quando começam as avalanches, os grãos maiores tendem a se acumular na base da encosta e os grãos menores tendem a ficar retidos na encosta, formando uma camada. Em seguida, os grãos maiores começam a se acumular encosta acima até formarem uma camada de grãos maiores. Assim, uma série de avalanches alterna entre formar uma camada de grãos menores (como o Tang na mistura Tang-Nestea) e uma camada de grãos maiores. Uma parede vertical de material granular pode sofrer avalanches ou desabar. Para observar o fenômeno, ponha em pé um tubo com uma extremidade aberta e encha-o com um material granular. Em seguida, levante bruscamente o tubo, deixando os grãos para trás. Você terá que observar atentamente ou filmar em câmara lenta para registrar o que acontece. A coluna se desfaz em cerca de meio segundo, mas a maneira como isso acontece depende da razão entre a altura e a largura da coluna. Quando o valor dessa razão é elevado, a parte de cima logo se espalha, deixando um monte com um pico arredondado. Quando o valor é baixo, a parte externa do monte desaba primeiro e em seguida a porção interna cai, deixando um monte com uma ponta mais aguda.

2.107 • Escoamento em ampulhetas e silos Se você puser uma ampulheta em uma balança sensível para medir seu peso, o resultado muda se a areia estiver caindo? A areia escoa mais ou menos como a água. Por que, então, não existem ampulhetas de água? Quando um material granular, tal como grãos de areia ou contas de vidro, é colocado em uma rampa suficientemente íngreme, ele escorrega pela rampa. Se a rampa é relativamente áspera e o material granular contém partículas de diferentes tamanhos, por que a frente (a borda inferior do escoamento) pode se decompor em dedos que se estendem rampa abaixo? Suponha que o material granular escorra pela rampa ou calha até ser contido por uma barreira. Se o material continua a ser introduzido no alto da rampa a uma taxa constante, por que o escoamento passa a ser intermitente?

Resposta Eis a resposta convencional ao problema da ampulheta: o peso da ampulheta muda ligeiramente quando o escoamento da areia começa e quando termina, mas é normal durante o resto do escoamento. (1) Quando o escoamento começa e antes que os grãos cheguem ao fundo, o peso é menor que o normal porque os grãos em queda livre não contribuem para o peso. (2) Quando os grãos começam a se chocar com o fundo da ampulheta, esses choques compensam a perda de peso dos grãos em queda livre e, portanto, o peso é normal durante a maior parte do tempo. (3) Quando o escoamento está terminando e os grãos ainda se chocam com o fundo da ampulheta mas restam muito poucos grãos em queda livre, o peso é maior que o normal. Eis alguns detalhes que complicam a situação: (1) na verdade, os grãos começam a se mover antes de chegarem à parte mais estreita da ampulheta e têm uma certa velocidade inicial quando entram em queda livre. Assim, sua velocidade no instante da colisão é maior que a velocidade calculada na resposta convencional. (2) A areia se acumula no fundo da ampulheta, fazendo com que o ponto de impacto se desloque para cima. Isto diminui a força das colisões e também reduz a quantidade de areia que está caindo em um dado instante. (3) O escoamento pode não ser uniforme por várias razões. Um pescoço muito estreito pode fazer com que os grãos fiquem entalados, formando arcos momentâneos no pescoço ou logo acima dele. Os arcos podem arrastar o ar para dentro da câmara inferior, aumentando a pressão do ar até que ele escape pelo pescoço, diminuindo ligeiramente o escoamento da areia. Esse fenômeno pode ser suficientemente regular para que a ampulheta faça tique-taque. Arcos também podem se formar no escoamento de grãos em um silo. Em alguns casos, o escoamento intermitente faz um silo oscilar no chamado tremor de silo (silo quaking). Se for grande o bastante, a oscilação pode produzir um som conhecido como buzina de silo (silo honking) e pode romper o silo, fazendo-o desabar. Em uma ampulheta de água, a velocidade à qual a água escoa da câmara superior depende da altura da água nessa câmara: uma altura maior significa um escoamento mais rápido. Em uma ampulheta de areia, com os grãos de areia formando arcos temporários, o escoamento a partir da câmara superior não depende da altura da areia na câmara: enquanto a areia está escoando, a velocidade de escoamento permanece constante.

Figura 2-33 / Item 2.107 Forma da avalanche (a) em uma camada fina e (b) em uma camada mais espessa de material granular.

Quando uma mistura de partículas desce uma rampa, as partículas maiores tendem a se comportar de duas maneiras. Em uma seção reta vertical, elas tendem a subir à superfície e descer rampa abaixo. Quando as outras partículas as alcançam, elas são soterradas e, em seguida, voltam à superfície para repetir o ciclo. Ao mesmo tempo, esses ciclos variam ao longo da largura da rampa, de modo que alguns ocorrem no sentido da maior inclinação, enquanto outros se inclinam para a esquerda ou para a direita. Os primeiros formam os dedos que se estendem rampa abaixo, enquanto os últimos formam o espaço entre os dedos. Se um escoamento granular em uma rampa atinge uma barreira e pára, o material começa a se acumular e a interrupção sobe a rampa até que todo o material da rampa deixe de escoar. Nesse caso, como o material continua a ser introduzido no alto da rampa a uma taxa constante, o novo material começa a escoar por cima dessa “rampa” de material estacionário e o ciclo se repete. Se a rampa for tão áspera que o escoamento granular deixe nela material residual, você pode aumentar um pouco o ângulo da rampa e provocar avalanches nos pontos em que a camada residual for perturbada. Se a camada for rasa, a perturbação (digamos, uma cutucada com um lápis) produz uma região de avalanche em forma de lágrima que se estende encosta abaixo (Fig. 2-33a). Se, em vez disso, a camada é espessa, a perturbação produz uma avalanche em forma de lágrima encosta acima (Fig. 2-33b).

2.108 • O efeito castanha-do-pará e a agitação de grãos Ponha uma castanha-do-pará (ou qualquer outra semente grande) em um recipiente e coloque amendoins (ou qualquer outra semente pequena) em quantidade suficiente para encher o recipiente até a metade. Se você sacode o recipiente verticalmente algumas vezes, por que as castanhas-do-pará sobem, ficando acima dos amendoins? Em um recipiente grande contendo feijões secos, enterre uma bola de pingue-pongue e coloque uma bilha acima dos feijões. Se você mexer os feijões fazendo o recipiente girar na horizontal, a bilha afunda e a bola de pingue-pongue sobe para a tona. Por que a bilha e a bola de pingue-pongue se comportam de modo diferente? Um efeito parecido pode ser observado quando farinha e gordura são misturadas durante a preparação de uma massa. Para verificar se a gordura não foi bem misturada, o cozinheiro pode sacudir a tigela: os pedaços sobem à superfície da farinha. As aborígines australianas usavam um método semelhante, chamado yandying, para separar sementes comestíveis de uma mistura com terra. Elas davam batidinhas ou sacudiam suavemente um recipiente chato que continha a mistura até que as sementes formassem um monte e a terra formasse outro. Despeje um pouco de Tang (pó alaranjado usado para preparar refresco com sabor de laranja) e um pouco de Nestea (pó preto usado para preparar chá instantâneo) em um recipiente transparente, feche o recipiente e sacuda a mistura. Por mais que você tente misturar os dois pós de modo uniforme, irá sempre encontrar ilhas alaranjadas de Tang no Nestea. Por que o Tang não se dispersa?

Resposta Dois fatores podem fazer uma castanha-do-pará subir em um recipiente cheio de amendoins. Um é que, quando as sementes são sacudidas verticalmente, os amendoins, menores que a castanha-do-pará, provavelmente vão ocupar o espaço abaixo da castanha-do-pará e fazê-la subir a cada sacudidela. Para que a castanha-do-pará desça, muitas sementes menores teriam que sair do caminho, um evento improvável. Assim, as probabilidades favorecem a subida da castanha-do-pará até a superfície. A castanha-do-pará pode subir mesmo que esteja em um conjunto de objetos com uma densidade um pouco menor. O segundo fator para a subida é uma circulação de amendoins causada pelas oscilações verticais. Os amendoins que estão no centro do recipiente tendem a subir e os que estão perto da parede do recipiente, cujo movimento é freado pela parede, tendem a ser empurrados para baixo pelo escoamento central ascendente. A castanha-do-pará pode ser apanhada na circulação e levada

até o alto perto do centro. A experiência dos feijões é diferente por dois motivos: a bilha é muito mais densa que os feijões e o atrito entre os feijões é menor que o atrito entre os amendoins, porque os feijões têm uma superfície mais lisa. Se você faz o recipiente girar ou o sacode, a bilha afunda nos feijões, abrindo caminho rapidamente. Se você pudesse de algum modo reduzir ainda mais o atrito entre os feijões, eles iriam se comportar como um líquido e não seria surpresa se a bilha afundasse e a bola de pingue-pongue subisse à superfície sem necessidade de nenhuma agitação. Se você tem uma mistura de dois materiais, com um material muito maior que o outro, pode descobrir que o material maior sobe gradualmente acima do material menor quando a mistura é perturbada ocasionalmente mas não é posta para vibrar. Essa separação de materiais geralmente acontece em embalagens de produtos alimentícios que contenham dois (ou mais) materiais de tamanhos médios diferentes. Esse comportamento faz os fabricantes desses produtos arrancarem os cabelos, porque eles desejam que a distribuição dos materiais seja uniforme quando a embalagem for aberta. Cada perturbação fortuita durante a fabricação, o transporte e a venda do produto leva o material menor a se encaixar nos espaços que ficam abaixo dos materiais maiores. Se você sacode uma mistura de Tang e Nestea, os grãos de Tang, que são menores, tendem a permanecer acima dos grãos de Nestea, que são maiores. Dois mecanismos podem ser responsáveis pela falta de capacidade do Tang de se espalhar. Um mecanismo é o mesmo que o responsável pela subida de uma castanha-do-pará acima dos amendoins. O outro vem das células de circulação que se formam na mistura por causa das vibrações e do modo como as forças resultantes chegam ao centro da mistura. O primeiro mecanismo parece dominar se as vibrações forem de grande amplitude (uma sacudidela vigorosa do recipiente para cima e para baixo). O segundo mecanismo parece dominar se as vibrações forem de pequena amplitude (uma cutucada no recipiente com o dedo, apenas suficiente para deslocar os grãos). Se uma camada de Tang for espalhada sobre um prato que vibra verticalmente, os grãos tendem a se acumular em montes. Uma vez iniciados, os montes menores tendem a se mover em direção aos montes maiores e se fundir com eles. A migração parece ser causada pela diferença entre as oscilações do prato sob um monte grande (oscilações menores) e um monte pequeno (oscilações maiores). As oscilações maiores tendem a lançar mais grãos no ar. Os grãos que caem mais perto do monte maior tendem a permanecer no lugar com maior freqüência do que os grãos que caem mais longe do monte maior. Assim, existe um movimento médio dos grãos em direção ao monte maior. Eis um enigma que permanece sem resposta: encha uma jarra cilíndrica com sal até a metade e acrescente uma porca metálica hexagonal e um percevejo (do tipo usado para prender papéis nos quadros de avisos, que vem com uma cabeça de plástico). Se você segura o cilindro em pé e o sacode verticalmente, a porca sobe até a superfície do sal, enquanto o percevejo afunda e desaparece. Se, em vez disso, você segura o cilindro de lado e o sacode horizontalmente, o percevejo sobe até a superfície, enquanto a porca afunda e desaparece.

2.109 • Balão de avalanche Um balão de avalanche é usado por alguns esquiadores apanhados por uma avalanche de neve. O balão, carregado em uma mochila, está inicialmente vazio. Quando uma avalanche se aproxima, o esquiador puxa uma corda para encher o balão com o nitrogênio de um cilindro; o fluxo de nitrogênio arrasta o ar do exterior para dentro do balão. Quando o esquiador e o balão são colhidos por uma avalanche, tendem a subir para a superfície em vez de afundar na neve. Assim, o esquiador tem mais chances de sobreviver. Por que o esquiador sobe para a superfície?

Resposta Com um balão de avalanche preso às costas, o esquiador apanhado por uma avalanche de neve se comporta como uma castanha-do-pará em um recipiente cheio de amendoins que é sacudido. O balão exerce uma força para cima, já que o gás que ele contém é menos denso que a neve. Entretanto, essa força é insuficiente para arrastar o esquiador para a superfície. Na verdade, o esquiador é levantado pelo aumento de volume produzido pelo balão: a castanha-do-pará (esquiador e balão inflado) é muito maior que os amendoins em volta (pedaços de neve).

Figura 2-34 / Item 2.110 A saltitação de grãos de areia produz ondulações na areia.

2.110 • Ondulações e movimentos da areia Por que se formam ondulações na areia de um deserto (ou do leito seco de um rio)? O que determina o comprimento de onda das ondulações, ou seja, a distância média entre as cristas? De que maneira uma planta, tal como um tufo de grama, altera o padrão das ondulações? Por que não costumam surgir ondulações nas superfícies cobertas pela neve?

Resposta Quando a velocidade é suficientemente elevada, o vento que sopra sobre um terreno arenoso inicialmente plano pode deslocar os grãos de areia. Um grão pode escorregar pelo terreno ou se mover por saltitação, saltando e possivelmente quicando. Se um grão cai em um trecho plano do terreno, ele salta de novo, mas se cair em uma parte mais alta (alguma saliência que exista por acaso), pode ficar preso (Fig. 2-34). À medida que o monte cresce, acumula mais grãos e também protege os grãos do lado contrário ao do vento. Grãos que estão mais distantes, porém, ainda podem saltar e podem, portanto, ficar presos em outro monte. O monte pode crescer com uma encosta íngreme no lado contrário ao do vento e com uma inclinação um pouco mais suave no lado voltado para o vento. O vento que é desviado para passar por cima do monte tende a formar vórtices do outro lado do monte, o que faz o ar subir no lado contrário do vento, removendo a areia para manter a encosta íngreme. Quando o monte se forma, pode também se mover a favor do vento porque os grãos do lado voltado para o vento podem saltar por cima da crista. Como alguns montes se movem mais depressa que outros, muitos montes se fundem ou pelo menos ficam próximos o suficiente para se afetarem mutuamente. Agora imagine que se passaram dias, semanas ou mesmo anos. Essa atividade produz gradualmente as ondulações que observamos na areia. Uma vez formadas, as ondulações são mantidas pelo vento e pela saltitação. Naturalmente, se o vento dominante mudar drasticamente, o padrão será substituído por outro. A formação de padrões pode ser bem mais rápida se a areia estiver no fundo de um rio de águas calmas. Nesse caso, você às vezes pode ver as ondulações se formarem em poucos minutos. Quando o vento interage com a vegetação, formando vórtices (ou pequenos redemoinhos), a orientação e o espaçamento das ondulações podem ser bem diferentes. A saltitação também pode ocorrer com flocos de neve em um campo de neve. Entretanto, as ondulações não aparecem (ou, pelo menos, não são acentuadas nem comuns), por duas razões. (1) Um floco tende a ficar parado no ponto em que caiu, mesmo que esteja em um trecho plano. (2) O campo de neve tende a formar uma crosta congelada, especialmente depois de um dia ensolarado, e nesse caso a saltitação não pode acontecer. Entretanto, antes que a crosta se forme, podem aparecer na neve padrões gerados por ventos fortes, especialmente se produzirem redemoinhos no outro lado de um obstáculo.

2.111 • Dunas de areia Por que as dunas de areia se formam? Por que se deslocam? Quando uma duna de areia encontra outra, como elas podem se fundir e depois se separar de novo? De que maneira uma duna de areia pode fazer outra duna se dividir, criando uma passagem para a primeira? Por que as dunas de alguns desertos, como na Líbia, formam linhas mais ou menos paralelas, como se pode ver em fotografias tiradas por satélites?

Resposta As dunas longitudinais são montes compridos, alinhados com o vento predominante. Barcanas são dunas em forma de crescente que se formam perpendicularmente ao vento, com chifres (pontas) que apontam na direção do vento. Todas as dunas resultam de pequenas ondulações da areia e devem-se à capacidade do vento de deslocar grãos de areia. Durante muitos anos, ou talvez séculos, os grãos se acumulam em montes cada vez maiores. Depois que um monte se forma, ele é tão cioso dos seus grãos de areia que os montes rivais desaparecem ou jamais chegam a se formar. Quando você pensa em uma duna de areia, provavelmente imagina uma barcana (móvel, em forma de crescente), embora esse tipo seja raro. Uma barcana se desloca pelo deserto (ou atravessa ruas e pequenas aldeias) porque os grãos de areia no lado voltado para o vento são levantados pelo vento e lançados do outro lado. O outro lado acaba ficando íngreme demais e avalanches fazem a areia descer até a base, reduzindo o ângulo da encosta até que ela se estabiliza. Isto faz com que as dunas se movam na direção aproximada do vento. As fotografias aéreas de alguns campos de barcanas mostram muitas dunas em um alinhamento peculiar, com a ponta de uma duna situada à frente da parte central de outra (Fig. 2-35a). Esse tipo de arranjo deve-se à maneira como o vento é desviado pela primeira duna. Decorrido um tempo suficiente, o desvio pode remodelar a segunda duna, produzindo esse padrão.

Figura 2-35 / Item 2.111 (a) Duas barcanas vistas de cima. (b) A ilusão de que uma duna pequena passa por dentro de uma duna maior.

Observar uma duna de areia móvel ultrapassar outra é quase impossível durante o tempo de uma vida humana, mas o processo pode acontecer em questão de minutos se dunas em miniatura forem criadas no fundo de um rio. As interações entre duas dunas se devem às alterações do vento causadas pela duna na qual o vento incide primeiro. A presença da primeira duna pode dar origem a um processo de erosão no centro da segunda duna, fazendo com que ela se divida (aparentemente) em duas, para dar passagem à primeira. Em vez disso, uma pequena duna pode se fundir com uma duna maior e outra duna pequena pode emergir da parte de trás da duna (Fig. 2-35b). O processo dá a impressão de que a duna menor passou por dentro da maior. O arranjo quase paralelo de dunas longitudinais deve-se a uma formação de vórtices chamada circulação de Langmuir. Enquanto o vento se move sobre um terreno plano, tende a se decompor em tubos de vórtices horizontais. Se você olhar ao longo de um dos tubos na direção do vento (e usar uma fumaça para poder ver os movimentos do ar), verá o ar circular lentamente no sentido horário ou anti-horário e, ao mesmo tempo, se afastar de você. Tubos adjacentes circulam em sentidos opostos. Suponha que você olhe ao longo de um tubo no qual o ar está circulando no sentido horário; a corrente de ar passa pelo solo da direita para a esquerda. No tubo vizinho, o ar circula no sentido anti-horário e, portanto, a corrente de ar passa pelo solo da esquerda para a direita. Como essas duas correntes convergem, tendem a transportar areia para o ponto de convergência: é nesse ponto que uma duna longitudinal tende a se formar. Do outro lado do nosso tubo, as correntes de ar não convergem e, portanto, nenhuma duna tende a se formar. Como os tubos são aproximadamente retilíneos, as dunas longitudinais se formam ao longo de linhas aproximadamente paralelas, separadas por uma distância duas vezes maior que a largura de um tubo.

2.112 • Yardangs e outras formações na areia Em uma praia arenosa, por que a maioria das pedras se inclina na direção contrária à direção do vento predominante, e por que muitas das pedras estão associadas a um monte de areia? Em algumas praias existem estruturas arenosas em forma de torres: colunas de areia úmida, geralmente com várias camadas diferentes de areia. É como se torres de castelo tivessem sido cavadas em um bolo de várias camadas. A areia circundante é geralmente seca. Algumas das formações mais belas e misteriosas do mundo podem ser encontradas nos desertos arenosos: yardangs são formações rochosas que brotam da areia e lembram cascos de navio invertidos. Alguns têm o tamanho de uma mão; outros têm centenas de metros de comprimento. Existem na Terra e também podem ser encontrados em Marte. Como se formam os yardangs?

Resposta Quando o vento passa por uma pedra da praia que fica pelo menos um pouco acima da areia, o vento cava um fosso na frente da pedra e transporta parte dessa areia para o outro lado da pedra, onde um monte de areia acaba se formando. Com o tempo, a pedra se inclina na direção do fosso e, portanto, na direção contrária à do vento. Se a parte de cima da pedra for plana, o vento cava a areia em volta da pedra, deixando a pedra em um pedestal. Em seguida, o vento cava a areia na frente do pedestal até que a pedra se incline na direção contrária à do vento. Esse processo de escavação e inclinação não acontece se a areia estiver úmida, porque as pontes líquidas que unem os grãos impedem que eles saiam do lugar. Entretanto, o vento pode gradualmente secar a areia da superfície e os grãos podem nesse caso

ser varridos para longe ou bombardeados por grãos transportados pelo ar. Naturalmente, correntes de água, tais como as produzidas pelas ondas, podem erodir a areia em torno das pedras. As torres aparecem em uma areia que se tornou mais coesa por causa da água da chuva, da espuma das ondas ou da infiltração da areia que está mais abaixo pela água do mar. As duas últimas formas de umedecimento podem ocorrer apenas em regiões isoladas. Essas regiões ficam molhadas e a areia fica mais firme. As regiões podem ficar cobertas de areia seca durante um certo tempo, mas no fim acabam sendo expostas pelo vento e pelo bombardeio da areia transportada pelo ar. Os resultados são torres e montes isolados. Yardangs são rochas esculpidas pelo vento e pela erosão da areia. O vento remove a areia, expondo a pedra, e depois bombardeia a pedra com grãos de areia. A pedra se transforma gradualmente em uma estrutura estreita, alinhada com o vento predominante. Muitos yardangs lembram um gato reclinado. Na verdade, a Esfinge pode ter sido inspirada nos yardangs que os antigos egípcios encontraram nos desertos que ladeavam o rio Nilo.

2.113 • Barreiras de proteção contra a neve e depósitos eólicos Uma barreira de proteção contra a neve é uma cerca ou sebe cujo objetivo é manter uma estrada ou ferrovia relativamente protegida das nevascas. Onde deve ficar uma barreira desse tipo? Um muro não seria mais eficaz do que uma cerca com espaços abertos? As cercas são usadas porque são mais baratas? De que maneira a neve se acumula em volta de uma obstrução como uma pedra ou um tronco de árvore? Em especial, o que determina os buracos ou regiões circulares livres de neve que podem ser encontrados em volta dos troncos de árvore?

Resposta O propósito de uma barreira de proteção contra a neve é forçar o vento a descarregar a neve antes de alcançar, digamos, uma estrada, de modo que deve ser instalada de tal forma que o vento predominante passe por ela antes de chegar à estrada. Um muro não funciona tão bem porque faz o vento se desviar para cima, levando a neve com ele. Uma cerca com mais ou menos metade da área aberta para o vento e situada alguns centímetros acima do chão é muito melhor. Inicialmente, uma barreira de proteção contra a neve produz pequenos redemoinhos dos dois lados, o que os mantém relativamente livres de neve. Você pode observar esse efeito no início de uma temporada de neve. Montes de neve se formam nos dois lados da barreira, mas as regiões próximas a ela têm muito menos neve. O espaço abaixo da barreira permite que o vento contribua para a formação de redemoinhos do lado de trás da barreira, mantendo esse lado limpo. Quando os montes de neve aumentam (amadurecem), a parte superior dos montes, nos dois lados da barreira, migra em direção à barreira até encostar nela. Daí em diante, você vê um monte contínuo de neve com o ponto mais elevado no lugar em que se encontra a barreira, mas o que você não vê é o vazio que fica de cada lado da barreira. Depois que o monte contínuo se forma, a barreira perde a utilidade. Quando o vento é desviado por uma pedra grande (ou mesmo por uma pedra pequena e outros obstáculos), tende a depositar neve na parte traseira do objeto enquanto escava a neve na frente e nos lados. As depressões circulares ou anéis livres de neve em torno de um tronco de árvore têm duas causas: a árvore bloqueia o vento, que tende a formar redemoinhos em volta do tronco. Esse movimento remove a neve que cai perto do tronco. Durante o dia, a árvore esquenta, absorvendo raios infravermelhos da luz solar. Os galhos e o tronco tornam a irradiar parte dessa energia em direção ao solo. Como a neve é um excelente absorvente de raios infravermelhos, absorve quase toda a radiação que recebe e derrete, escorrendo para longe do tronco.

2.114 • Avalanches de neve Quando uma avalanche de neve começa, de que maneira a neve desce pela encosta e como ela pode ser contida para não atingir uma aldeia situada no sopé da montanha?

Resposta Quando uma avalanche começa, a neve, especialmente a neve em pó, sobe para o ar e avança como uma nuvem turbulenta de partículas. Logo começa a arrastar o ar, diluindo a concentração de partículas de neve; também recolhe mais neve na encosta. A velocidade das partículas é máxima pouco acima da encosta, bem abaixo do alto da avalanche, mas as partículas percorrem trajetórias complicadas, que estão sempre mudando, em vez de descerem diretamente pela encosta. A frente de uma avalanche pode se mover a uma velocidade de até 100 metros por segundo; a altura de uma avalanche pode chegar a 100 metros. Muros altos, com suportes traseiros robustos, são instalados ao longo da encosta para conter uma avalanche, mas é preciso

roubar energia de uma avalanche antes que ela atinja os muros. Para isso, são construídos montes ao longo da encosta. O objetivo dos montes é desviar a neve para cima, lançando-a no ar, como uma rampa de salto lança um esquiador. Quando a neve volta a se chocar com a encosta, um pouco abaixo do monte, perde boa parte de sua energia.

2.115 • Grandes deslizamentos de terra Quando uma encosta rochosa cede, causando um grande deslizamento de terra, os detritos podem descer até uma encosta de inclinação moderada e se espalhar por vários quilômetros em um vale plano. Na verdade, podem atravessar o vale e subir pela encosta do lado oposto. Por que o atrito entre os detritos e o solo do vale ou as paredes da encosta não interrompe o movimento da terra?

Resposta A maioria dos especialistas acredita que os deslizamentos de terra que excedem um certo volume de material atingem uma área surpreendentemente extensa porque correm por cima de algum tipo de camada lubrificante. Entretanto, houve muitas especulações em relação à composição dessa camada lubrificante. Uma idéia bastante difundida era que o material corria sobre uma camada de ar. Entretanto, o ar provavelmente seria expulso do material bem depressa e esse mecanismo não explicaria os grandes deslizamentos de terra que foram observados na superfície da Lua. Outra idéia era que ondas de pressão levantariam o material, reduzindo assim o atrito com o solo. Entretanto, as observações experimentais não confirmaram a idéia. Talvez a explicação mais promissora seja a de que o material se move por cima de uma camada fina de pequenos detritos oscilantes, incluindo o material que foi arrancado do solo. Esses detritos oscilantes funcionam mais ou menos como rolamentos esféricos, o que explica duas características dos deslizamentos de terra: (1) boa parte do material desce a encosta praticamente intacta, com as camadas de material preservadas; (2) entre o material arrancado do solo pode estar uma certa quantidade de água, que funciona como lubrificante e possibilita que o deslizamento atinja uma distância maior.

2.116 • Avalanches de pedra Uma avalanche de pedra acontece quando uma pedra ou um conjunto de pedras rola pela encosta de uma montanha, geralmente a face de um penhasco. Por que as pedras rolam e o que determina onde elas vão parar? Quando uma avalanche de pedra envolve muitas pedras descendo uma encosta, por que as pedras tendem a se separar, com as maiores chegando ao sopé da montanha e as menores ficando pelo caminho? Em julho de 1996, duas avalanches de pedra consecutivas, envolvendo grandes blocos de granito, aconteceram perto do Happy Isles Nature Center, no Parque Nacional de Yosemite, na Califórnia. Os blocos escorregaram por uma encosta íngreme e foram arremessados no ar, chocando-se com o solo depois de caírem cerca de 550 metros. Os impactos produziram ondas sísmicas que foram registradas a 200 quilômetros de distância. O mais surpreendente, porém, foi o estrago causado mais adiante no vale, a 300 metros do local em que os blocos caíram: mais de 1000 árvores foram derrubadas ou partidas, uma ponte e uma lanchonete foram destruídas, uma pessoa morreu e várias outras ficaram feridas. De que maneira os blocos de granito causaram tantos estragos a 300 metros de distância do ponto da queda?

Resposta A maioria das avalanches de pedra ocorre devido ao intemperismo da rocha-mãe: (1) fissuras que acumulam água podem ser alargadas e prolongadas quando a água congela, porque o gelo ocupa um volume maior que a água; (2) a rocha é enfraquecida pelo intemperismo químico, especialmente quando existe umidade. Embora qualquer rocha possa sofrer intemperismo, as avalanches de pedra só acontecem quando a face da rocha-mãe é íngreme e quando uma parte continua a ser sustentada enquanto fissuras penetram na rocha. Em algum momento, a ligação ou apoio daquela parte não resiste e um pedaço de pedra se desprende. Dependendo das circunstâncias, a pedra que se desprendeu pode cair em queda livre, descer quicando uma encosta muito íngreme, rolar por uma encosta moderada ou escorregar por uma encosta suave. Pode também se partir em pedaços menores. Em qualquer dos casos, perde boa parte da energia nas colisões. Também pode perder energia se colidir com árvores, de modo que um bosque é muitas vezes plantado como uma barreira de proteção contra avalanches de pedra. Quando uma avalanche de pedra envolve muitas pedras de tamanhos variados, as pedras podem se separar ao longo da encosta porque as pedras maiores chegam ao pé da encosta, enquanto as menores tendem a ficar presas em depressões (gretas) ao longo da encosta. Em geral, os detritos tendem a se distribuir ao longo da encosta, com as pedras menores no alto e as maiores na base da encosta. Em algumas avalanches de pedra, a primeira pedra acaba atingindo uma distância muito maior que as outras, talvez porque ganhe energia quando outras pedras a atingem por trás enquanto estão descendo pela encosta.

Nas avalanches de pedra do Happy Isles Nature Center, o impacto de cada bloco de granito produziu uma explosão de ar, que é uma onda de pressão que avança pelo ar a partir do ponto de impacto. A explosão de ar causada pelo segundo bloco, que era três vezes maior que o primeiro, foi especialmente destrutiva, criando ventos de até 120 metros por segundo. Na verdade, a explosão de ar produzida pelo segundo bloco foi supersônica (foi uma onda de choque) porque a poeira levantada pelo primeiro impacto reduziu a velocidade do som no ar do valor normal de 340 metros por segundo para cerca de 220 metros por segundo. Perto do ponto de impacto, a explosão de ar avançou com uma velocidade superior a 220 metros por segundo, ultrapassando assim a velocidade do som.

2.117 • Bandeiras e fitas tremulantes O que faz uma bandeira em um mastro tremular mesmo sob o efeito de uma brisa moderada? Por que uma folha de papel tremula quando é colocada diante de um ventilador? Se você arremessa um rolo de papel higiênico parcialmente desenrolado, por que a parte de trás (desenrolada) logo começa a ondular?

Resposta Imagine que o plano da bandeira esteja inclinado em relação à direção do vento — que, portanto, exerce pressão sobre um lado da bandeira. Essa pressão pode simplesmente esticar a bandeira na direção do vento. Em vez disso, a pressão pode fazer a bandeira se encurvar. Se a velocidade do vento for maior que um certo valor crítico, essa curvatura torna-se instável e a bandeira começa a tremular. A tremulação tem sido muitas vezes atribuída à formação de vórtices. Na verdade, se o vento simplesmente estica a bandeira ou a faz tremular, a extremidade livre da bandeira forma vórtices, que se alternam entre os lados esquerdo e direito da bandeira e se movem na direção do vento (Fig. 2-36). Os vórtices são maiores se a bandeira estiver tremulando, mas eles são uma conseqüência, não a causa, da tremulação e podem existir mesmo que a bandeira não esteja tremulando.

Figura 2-36 / Item 2.117 Os vórtices se alternam entre os lados esquerdo e direito de uma bandeira.

Outros objetos finos e flexíveis, tais como o papel, também podem tremular sob o efeito de uma brisa ou de um vento contínuo se a velocidade do ar exceder um valor crítico que depende do tipo de objeto e de sua flexibilidade. Qualquer fita flexível com um peso em uma extremidade, solta no ar, provavelmente começa a ondular. A onda se propaga para baixo ao longo da fita com metade da velocidade de queda da fita e geralmente a distância entre as cristas da onda é maior em fitas mais longas. A aparência de onda provavelmente se deve à instabilidade da corrente de ar que é forçada a acompanhar a fita enquanto ela atravessa o ar. Em termos simples, a corrente de ar capturada e a própria fita se deformam enquanto caem.

2.118 • Fontes tremulantes e cachoeiras ribombantes Muitas fontes têm bordas das quais a água corrente cai como uma cortina em um lago. Por que, em algumas dessas fontes, a cortina tremula a uma freqüência de algumas vezes por segundo? (A freqüência é baixa demais para que você ouça as ondas sonoras produzidas pela tremulação.) Escoamentos maiores acontecem quando a água em excesso é vertida pelo sangradouro de uma represa ou por cima da represa, para cair em queda livre em um lago ou rio. Por que eles produzem um som de tal maneira intenso que já foi

comparado com o de 20 trens em alta velocidade? Uma cachoeira alta causa uma oscilação apreciável do solo circundante, algo que você sente com o corpo quando está perto da cachoeira. Se você analisasse o tremor, descobriria que a maior parte acontece a uma freqüência relacionada com a altura de queda livre da água na cachoeira: quanto maior a altura, menor a freqüência. De que maneira a cachoeira faz o solo oscilar e por que a freqüência está relacionada à altura da queda?

Resposta O que torna uma fonte tremulante é uma camada de ar aprisionada atrás da cortina de água. Quando uma perturbação fortuita provoca uma pequena oscilação da cortina de água no alto da fonte, a oscilação pode crescer enquanto a água cai: ou seja, existe um ganho. Na parte de baixo da cortina, as oscilações alteram a pressão do ar na camada de ar aprisionado, que, por sua vez, faz a água que está no alto da cortina de água oscilar. Em outras palavras, existe uma realimentação que reforça as oscilações da cortina. Embora os efeitos sejam inicialmente modestos e às vezes até imperceptíveis, esse laço de realimentação e ganho reforça as oscilações até que se tornem apreciáveis. Entretanto, o fenômeno só pode acontecer para certas vazões, velocidades iniciais de água e espessuras da camada de ar e, portanto, nem todas as cortinas de água tremulam. O transbordamento de uma represa dá origem a oscilações semelhantes na coluna de água e no ar entre a coluna e a represa. O movimento resultante da água é chamado pelos engenheiros hidráulicos de oscilação de superfície (mappe oscillation). As represas são muitas vezes construídas com interruptores de oscilação de superfície que impedem o escoamento uniforme da água para evitar que as oscilações criem cortinas de água mais espessas. Em uma cachoeira, a colisão e a turbulência da água no fundo da queda produzem ondas sonoras dentro da coluna d’água. A certas freqüências, essas ondas sonoras criam ressonância (ou seja, as ondas se reforçam mutuamente) e as oscilações podem crescer, tornando-se bem fortes. A situação lembra a maneira como as ondas sonoras criam ressonâncias dentro de um tubo de ar com apenas uma extremidade aberta. A oscilação das moléculas de ar é zero na extremidade fechada e máxima na extremidade aberta. A menor freqüência de ressonância, chamada freqüência fundamental, geralmente domina o som que ouvimos do lado de fora do tubo. Na coluna d’água da cachoeira, a oscilação das moléculas de água é zero no alto da queda e máxima no fundo, e as oscilações são maiores à freqüência fundamental. Ondas sonoras a essa freqüência se propagam para longe das quedas através do ar e através do solo. Quanto mais alta a cachoeira, menor a freqüência. Na maioria das cachoeiras importantes, a freqüência é baixa demais para que se possam ouvir as ondas sonoras que se propagam no ar. Entretanto, você pode sentir essas ondas sonoras com o corpo e pode sentir o solo oscilar debaixo dos seus pés.

2.119 • Fontes pulsantes Muitos projetos decorativos aquáticos, tanto em interiores como em exteriores, incluem fontes que lançam jatos de água no ar. Por que um desses jatos verticais é intermitente mesmo quando a vazão de água é constante? Você consegue ver e ouvir a pulsação.

Resposta Quando o jato é ligado, a água alcança a altura máxima permitida pela gravidade e por sua velocidade inicial. Depois de chegar a essa altura máxima, a água cai de volta sobre o jato que está subindo, achatando sua parte de cima. Depois que essa parte se desfaz em gotas, o jato reaparece e sobe de volta à altura máxima. O ciclo de subida, queda e achatamento se repete. Você pode eliminar esse comportamento periódico se inclinar o jato de modo que a água que sobe não caia de volta no jato, ou se puser um obstáculo no jato para evitar que a água alcance a altura máxima.

2.120 • Despejando líquidos de um copo invertido e de um yard-of-ale Encha parcialmente um recipiente (tal como um copo comum) que possua lados retos e uma boca larga. Corte um quadrado de papel um pouco maior que a boca do recipiente e cubra a boca do recipiente com o papel, segurando-o com os dedos espalhados para pressionar o papel contra a maior parte possível da borda. Com a outra mão, inverta rapidamente o recipiente; em seguida, retire a primeira mão do papel. A força da gravidade atua sobre o papel e sobre a água; por que eles não caem? Se você retirar o papel ou o fizer desaparecer magicamente, a água vai cair do recipiente. Por que a situação é diferente quando o papel está no lugar? Se o recipiente é estreito (assim como um tubo de ensaio), por que a água não cai, mesmo sem o papel? O yard-of-ale é um copo exótico para cerveja (Fig. 2-37) com uma jarda de altura. (Existem modelos mais curtos com o mesmo formato.) Normalmente, você bebe em um copo segurando-o perto dos lábios e inclinando-o para cima para despejar um

pouco do líquido na boca de forma controlada. Por que usar este procedimento com um yard-of-ale o deixaria encharcado? Qual é a maneira certa de beber em um yard-of-ale?

Resposta Com o copo invertido e o papel no lugar, a coluna de água tende a descer, o que reduz a pressão atmosférica no interior do recipiente. Isto faz com que a pressão no alto da coluna seja menor que a pressão na base e a diferença de pressão é suficiente para sustentar a água. Você pode perceber que a água desce porque o papel se encurva visivelmente para baixo. O contato do papel molhado com a borda pode proporcionar alguma aderência, mas não é suficiente para sustentar a água. Se você repetir a experiência com uma placa rígida, tal como uma lâmina de vidro, em lugar do papel, a coluna não poderá descer e a água irá derramar. Se o papel desaparecesse, a pressão atmosférica continuaria sendo suficiente para sustentar a água no copo, ou seja, a explicação sobre a sustentação continuaria valendo. Entretanto, a água ficaria sujeita a perturbações fortuitas, capazes de provocar ondas na interface ar–água. Os pontos de mínimo (os vales) de qualquer onda desse tipo permitem que a água desça e os pontos de máximo (as cristas) permitem que o ar se mova para cima. Uma das ondas cresce rapidamente e o ar sobe por um lado do copo, enquanto a água desce pelo outro.

Figura 2-37 / Item 2.120 Um yard-of-ale.

O ar que sobe tende a se desprender da onda, formando uma bolha, e a água que desce também tende a se desprender da onda, formando uma gota. Quando a bolha sobe e a gota desce, a superfície ar–água tenta restabelecer o estado inicial plano, mas isso não é possível. Assim, uma série de bolhas entra no recipiente enquanto uma série de gotas cai, processo conhecido pelo termo onomatopéico gluglu. A superfície da água pode não ser sensível a perturbações fortuitas se o recipiente for estreito, porque é estabilizada pela tensão superficial. Nesse caso, a aderência da água da superfície à borda do recipiente pode superar as ondas produzidas por uma perturbação. O processo de gluglu é a razão pela qual beber cerveja usando um yard-of-ale é uma operação delicada. O gargalo estreito do copo não permite que o ar entre no copo com facilidade, para que o líquido possa sair. Em vez disso, a instabilidade na superfície líquido–ar permite de repente que uma grande bolha de ar passe pelo gargalo e uma grande quantidade de líquido saia de uma vez, uma quantidade grande demais para ser mantida na boca ou engolida rapidamente. Especialistas em yard-of-ale inclinam o copo enquanto rolam o gargalo entre as mãos. Esse movimento faz o líquido se aproximar das paredes do gargalo e abre uma passagem para o ar na parte central do recipiente. Assim, o ar pode entrar no copo com facilidade e o consumidor pode controlar a quantidade de líquido que sai.

2.121 • Gotejamento Quando a água cai de uma torneira, de que maneira perde contato com a água que resta na torneira? O contato se perde com uma ruptura súbita ou com uma despedida longa e difícil?

Resposta A tensão superficial faz uma gota se formar na extremidade aberta da torneira. Quando a quantidade de água aumenta, a água adquire um formato mais esférico. Quando um certo ponto crítico é alcançado, a força

gravitacional faz a gota cair. Se você pudesse observar a descida em câmara lenta, veria que a gota permanece ligada à água da torneira por um filamento cilíndrico que se afina rapidamente. De repente a base do cilindro forma um filamento ainda mais fino, que logo se rompe. Após o rompimento, a forma da gota em queda começa a oscilar e o restante do cilindro produz ondas que se transformam em gotas muito pequenas. Essas gotas podem se desprender do cilindro e cair, ou podem ser puxadas de volta para a torneira. Um fluido com uma viscosidade maior que a da água pode criar muitos cilindros cada vez mais finos, um após o outro, até que o cilindro mais baixo e mais fino se rompa. A ruptura é causada por perturbações fortuitas, tais como correntes de ar, vibrações na torneira, ou mesmo ruídos.

2.122 • Bolhas de sabão Quando você sopra uma bolha em um anel de plástico, você infla uma película de sabão, formando uma superfície curva que se afasta do interior do anel enquanto se expande. O interior do anel fica vazio nesse momento. Se a película de sabão não é uma superfície fechada, como uma bolha fechada pode se formar quando a película se desprende do anel? Por que uma bolha que flutua livremente é esférica? Se uma película cilíndrica se forma entre dois apoios circulares próximos, que forma a película assume quando os apoios são afastados lentamente?

Resposta Quando você infla uma película de sabão em um anel e uma bolha se forma, a parte da bolha mais próxima do anel cria de repente uma cintura fina e se desprende do anel. Quando a cintura se rompe, a parte da película que permanece no anel assume a forma plana e preenche o interior do anel, enquanto a parte que se desprendeu assume a forma esférica. A bolha é esférica porque a pressão deve ser a mesma em todos os pontos do interior da bolha. Essa pressão é maior que a pressão atmosférica porque a tensão superficial tende a fazer a bolha murchar. Como a pressão interna é uniforme, a curvatura da superfície tem que ser uniforme, de modo que a bolha tem forma esférica. Se uma bolha cobre um curto espaço entre dois apoios em forma de círculo (“raquetes”), a bolha forma um cilindro. O formato é estável porque qualquer perturbação fortuita aumenta a área da superfície, de modo que a tensão superficial faz a película assumir novamente a forma cilíndrica. Entretanto, se a distância entre os apoios é maior que a sua circunferência, a bolha torna-se instável e, a partir daí, uma perturbação fortuita pode fazê-la dividir-se em duas bolhas menores, uma em cada apoio. Você obtém os mesmos resultados se usar dois anéis circulares em vez de raquetes, contanto que a película cubra o interior de cada anel para fechar as extremidades. Se uma dessas películas nas extremidades se rompe, a pressão no interior da bolha torna-se igual à pressão atmosférica, e os dois lados da parede da bolha ficam submetidos à mesma pressão. Essa igualdade significa que a curvatura da superfície da bolha deve ser zero, condição que é satisfeita de um modo interessante: a bolha cria uma cintura e assume a forma de uma ampulheta. Ao longo de uma linha que vai de anel a anel, a curvatura é côncava (para dentro); ao longo de uma linha que contorna a bolha, em torno da cintura, digamos, a curvatura é convexa (para fora). Assim, a curvatura global é nula. Essa bolha só é estável se a distância entre os anéis for muito menor que a circunferência dos anéis. Se a distância for muito grande, a cintura imediatamente afina e se rompe, caso em que as películas restantes em cada anel encolhem e assumem uma forma plana.

2.123 • Trajetórias de bolhas Uma bolha liberada no fundo de um cilindro comprido com água deveria subir na vertical. De fato, bolhas grandes e pequenas se comportam dessa maneira. Por que bolhas de tamanhos intermediários sobem em ziguezague ou seguem uma trajetória helicoidal? Uma bolha que sobe na água deveria ter forma esférica, e isto realmente acontece se a bolha for pequena. Por que as bolhas grandes têm fundo chato?

Resposta A subida de bolhas de tamanho intermediário é um assunto que ainda precisa ser investigado. O ziguezague e o movimento helicoidal parecem ser causados pelos vórtices que se formam na parte de baixo da bolha enquanto ela está subindo. Se os vórtices alternam esquerda e direita, a bolha pode ser desviada para a esquerda e para a direita. A formação de vórtices e os desvios parecem estar associados a oscilações da bolha. Se duas bolhas em ascensão se aproximam, uma pode afetar o movimento da outra. Elas podem rodopiar, afastar-se ou unirse em um beijo. A forma de uma bolha em movimento é definida pela tensão superficial na superfície da bolha e pela resistência que o fluido

opõe ao movimento da bolha. No caso de uma bolha pequena, com uma grande curvatura, a tensão superficial prevalece e a bolha assume a forma esférica para minimizar a área da superfície. Em outras palavras, a bolha tem a menor energia quando é esférica; qualquer distorção aumenta a área de superfície e a energia. No caso de uma bolha grande, com uma curvatura menor, a resistência do fluido é importante e a esteira deixada pela bolha pode achatar a superfície inferior. Quando uma bolha é liberada em um fluido muito viscoso, tal como melado ou xampu, a bolha leva mais tempo para subir e sua forma pode depender do modo como ela é criada. Assim, por exemplo, se a bolha for criada introduzindo ar no fluido, pode ter uma cauda ao se desprender da fonte de ar e conservar essa cauda durante a subida.

2.124 • Antibolhas Prepare uma mistura de água e detergente suave em um recipiente e aspire essa mistura em um borrifador ou conta-gotas (do tipo usado para pingar colírio). Posicione o bico do borrifador ou a ponta do conta-gotas um pouco acima da superfície do líquido no recipiente e pingue uma pequena quantidade de líquido na superfície. Você vai produzir bolhas normais e também algumas bolhas, chamadas antibolhas, que têm um aspecto e um comportamento diferentes. O que é uma antibolha e como se forma?

Resposta Uma bolha normal é uma esfera de ar com moléculas de água e sabão na superfície. As moléculas de sabão ajudam a estabilizar a superfície, como fazem em bolhas de sabão sopradas no ar por uma criança. As antibolhas são formadas por uma casca esférica fina com uma esfera de água no interior e moléculas de água e sabão nas duas superfícies da casca. Como uma antibolha é formada quase inteiramente de água, não tem o empuxo de uma bolha normal e tende a ficar pairando na água em vez de subir. Eis outra maneira de produzir antibolhas: primeiro, obtenha um grupo de três bolhas normais que encostem uma na outra enquanto flutuam na água. Em seguida, deixe que uma gota de água e detergente se aloje na depressão que se forma no espaço entre as bolhas. Uma antibolha aparece debaixo da depressão. Em uma bolha de sabão normal, o fluido escorre de cima para baixo, afinando a parte de cima até que ela se rompe. Em uma antibolha, o ar da casca sobe até a parte de cima, afinando a parte de baixo da casca até que a casca se rompe. Tudo isso acontece muito depressa, o que explica por que as antibolhas não têm vida longa.

2.125 • Levantando arroz com uma vara Introduza uma vara em um recipiente que contenha arroz ou qualquer outro grão cru. Por que a força necessária aumenta rapidamente com a profundidade da vara e por que a resistência se torna muito grande quando a vara se aproxima do fundo do recipiente, a ponto de você ter que fazer muita força para que a vara continue a descer? Depois de introduzir a vara, dê batidinhas no recipiente ou sacuda-o suavemente por alguns minutos. Se você puxa a vara, por que todo o arroz sai junto com a vara?

Resposta Esses efeitos foram observados pela primeira vez há muito tempo, quando mercadores e consumidores enfiavam varas em sacos de grãos para verificar o conteúdo. Quando uma vara é introduzida em um saco de arroz, por exemplo, o atrito aumenta com a profundidade, por dois motivos: (1) mais grãos exercem pressão sobre o bastão; (2) os grãos mais profundos, que sustentam o peso de grãos que estão acima, exercem uma pressão maior. Assim, a resistência ao movimento do bastão aumenta com a profundidade. O atrito aumenta ainda mais depressa quando a vara se aproxima do fundo do recipiente. O efeito não é bem compreendido, mas uma hipótese razoável é que uma grande resistência à reorganização dos grãos vem de arcos de grãos: os grãos ficam presos em arcos que resistem ao movimento da vara. (A resistência dos arcos de grãos se parece com a dos arcos arquitetônicos.) Quando o recipiente recebe batidinhas ou é sacudido depois que a vara é introduzida, o arroz fica bem compactado. Em especial, fica bem compactado em torno do bastão. Quando você puxa a vara, o atrito entre os grãos e a vara segura o bastão com força. Além disso, os grãos em volta da vara estão bem compactados e exercem pressão uns sobre os outros. Para terminar, os grãos que estão em contato com a parede do recipiente exercem pressão sobre a parede. Assim, todo o sistema (vara, grãos e recipiente) está em equilíbrio. Entretanto, se a vara ou o recipiente for muito escorregadio ou o arroz não estiver bem acomodado, você terá que apanhar muito arroz no chão. Se você puxar a vara com força suficiente para extraí-la de maneira lenta e controlada, provavelmente descobrirá que a força do arroz sobre ela varia periodicamente. Embora essa variação não seja bem compreendida, provavelmente se deve à formação

e à ruptura de arcos nas proximidades do bastão.

2.126 • Lançamento de disco Quando um disco é lançado com um vento moderado, vai mais longe se for lançado contra o vento ou a favor do vento? A que ângulo o disco deve ser lançado e qual deve ser a inclinação? Por que o disco deve estar girando?

Resposta O ângulo de lançamento costuma ser de 35°. Alguns atletas acham que o plano do disco deve ter o mesmo ângulo, enquanto outros afirmam que o disco vai mais longe se a inclinação for cerca de 10° menor. O argumento é que a inclinação menor confere ao disco mais sustentação durante a fase de descida, fazendo-o permanecer mais tempo no ar. Se for lançado sem rotação, o disco começa a dar cambalhotas e perde facilmente a orientação desejada. Um disco que gira é mais estável, comportando-se como um giroscópio no sentido de que o eixo de rotação tende a apontar aproximadamente na mesma direção durante toda a trajetória. Durante o percurso, a orientação não é exatamente constante porque a força de arrasto exercida pelo ar sobre o disco não é uniformemente distribuída. Em vez disso, concentrase na frente e no lado esquerdo (supondo-se que o disco seja lançado por um atleta destro, usando a técnica convencional). Os torques causados pela não-uniformidade do arrasto fazem a frente do disco se inclinar um pouco para cima e o lado esquerdo se inclinar um pouco para baixo. Quando um disco é lançado com um vento moderado, a pressão do vento no lado de baixo aumenta a sustentação e possibilita que ele chegue mais longe do que na ausência de vento. A vantagem vale para velocidades de vento de até 15 ou 20 metros por segundo; ventos mais fortes prejudicam a orientação e fazem o disco cair mais cedo. Quando um disco é lançado a favor do vento, o vento exerce pressão na parte de cima, reduzindo a sustentação e a distância percorrida pelo disco.

2.127 • Lançamento de dardo O lançamento de dardo envolve dois ângulos com a horizontal. Um é o ângulo de lançamento; o outro é o ângulo do dardo. Para maximizar a distância do arremesso, quais devem ser os valores desses ângulos? Em especial, eles devem ter o mesmo valor?

Resposta Tradicionalmente, os dois ângulos são de 35°, um valor extraído de muitas experiências que foram prejudicadas por um excesso de variáveis. Mesmo assim, o lançamento tradicional parece razoável. O alinhamento inicial do dardo com a trajetória está em acordo com os princípios da aerodinâmica. Se o dardo tiver uma inclinação maior ou menor, sofrerá um arrasto maior e a distância percorrida será menor. Entretanto, alguns estudos teóricos sugerem que o alcance aumenta se o ângulo de trajetória de lançamento for aumentado para 42° enquanto o ângulo do dardo é mantido em 35°. Outro estudo contesta essa alegação com um argumento de ordem prática: quando o ângulo de lançamento é aumentado, o atleta provavelmente não consegue imprimir uma velocidade de lançamento tão grande porque o lançamento é mais difícil, de modo que a vantagem se perde. Outros estudos sugerem que o ângulo de lançamento deve ser de 32°, e o ângulo do dardo, de cerca de 17°. A orientação do dardo com a ponta mais baixa certamente aumenta a resistência do ar, mas pode aumentar também a sustentação (devida à pressão do ar sobre o lado de baixo do dardo) durante a parte final do arremesso. Com mais sustentação, o dardo ficaria mais tempo no ar. Um dardo normalmente vira o nariz para baixo durante o arremesso e fica cravado no solo. A rotação é devida às forças que atuam sobre o dardo. O peso do dardo é uma força que atua sobre o centro de massa (o centro de distribuição da massa). A força de sustentação, por outro lado, atua sobre o centro de pressão (o centro de distribuição da pressão), que costuma ficar atrás do centro de massa. Durante o percurso, a força de sustentação faz o dardo girar em torno do centro de massa, o que o faz chegar ao solo com a ponta para baixo. Depois de girar, o dardo assume uma trajetória mais aerodinâmica e a sustentação diminui. A distância alcançada pode aumentar se o dardo for projetado de tal maneira que o centro de pressão fique mais próximo do centro de massa. Esta mudança pode reduzir a rotação do dardo e manter a sustentação durante a descida.

2.128 • Dois barcos que se atraem Quando a água passa entre dois barcos próximos que estão navegando contra a correnteza, por que os barcos são atraídos um para o outro?

Resposta Quando a água é forçada a entrar no espaço confinado entre dois barcos, aumenta de velocidade. A única maneira de obter a energia necessária para aumentar a velocidade é tirá-la da reserva de energia associada à pressão. Por causa disso, a pressão da água entre os barcos diminui. Com uma pressão normal do lado de fora dos barcos e uma pressão reduzida do lado de dentro, os barcos são empurrados um contra o outro.

2.129 • A aerodinâmica de cabos e linhas de transmissão Uma rajada de vento forte pode empurrar qualquer cabo ou linha de transmissão de eletricidade na direção do vento. Por que alguns cabos e linhas de transmissão galopam no vento — ou seja, oscilam perpendicularmente ao seu comprimento e na direção do vento? Em alguns casos, essas oscilações podem causar um curto-circuito em linhas vizinhas, arrancar uma linha dos suportes ou derrubar uma torre de sustentação. Os dois últimos acidentes são mais prováveis quando a linha está coberta de gelo. As oscilações de cabos se tornaram um problema sério para a Pont de Normandie, a maior ponte estaiada do mundo quando foi inaugurada em 1995. Embora o galope dos cabos não fosse suficiente para, sozinho, fazer a ponte cair, o movimento teria desgastado os cabos prematuramente, fazendo com que tivessem que ser substituídos antes da época prevista. O que causa o galope dos cabos e linhas de transmissão?

Resposta Quando o vento incide em um cabo, pode se decompor em vórtices do outro lado do cabo. No caso de um cabo horizontal, os vórtices se formam alternadamente acima e abaixo do cabo. Embora esses vórtices se movam para longe do cabo, no sentido do vento, os vórtices que se formam no plano do cabo ou logo atrás dele criam variações da pressão do ar que exercem uma força sobre o cabo. Como a pressão do ar é reduzida no lugar de um vórtice, variações periódicas da pressão do ar acontecem acima e abaixo do cabo. Esses vórtices e as variações da pressão do ar acontecem com uma certa freqüência que depende da velocidade do vento e do diâmetro do cabo. Se essa freqüência por acaso coincide com uma freqüência natural de oscilação do cabo (uma freqüência de ressonância), as oscilações do cabo são especialmente intensas, fenômeno conhecido como ressonância. Em outras palavras, o cabo galopa. Linhas de diferentes comprimentos oscilam com freqüências diferentes, mas um vento com rajadas pode fazer várias linhas oscilarem com suas diferentes freqüências de ressonância. Para resolver o problema da Pont de Normandie, os engenheiros contrataram alpinistas para escalar os cabos e amarrá-los uns aos outros com cordas. Como os cabos vizinhos tinham comprimentos diferentes, suas freqüências de ressonância eram diferentes. Assim, quando dois cabos com freqüências de ressonância diferentes foram amarrados um no outro em pontos apropriados, as oscilações de um cabo cancelaram as oscilações do outro.

2.130 • A prancha “sonrisal” Para andar de sonrisal (prancha circular), jogue a prancha em uma camada de água rasa (como a que se vê na praia, perto da arrebentação) para que ela comece a deslizar. Em seguida, suba na prancha. Se você se posicionar corretamente, poderá deslizar por uns 10 metros. Por que o atrito não faz a prancha parar de deslizar no momento em que você põe todo o seu peso sobre ela?

Resposta Neste caso, a água não funciona como um lubrificante, ao contrário do que acontece quando você tenta frear o carro e a pista está molhada. Em vez disso, a prancha sonrisal usa o movimento relativo da água enquanto se desloca sobre ela. Para andar de sonrisal, a pessoa deve se posicionar de tal modo que a borda da frente da prancha fique levantada. Isto faz

com que a água colida com a parte de baixo da prancha, sustentando-a o suficiente para que não encoste na areia. Entretanto, é preciso ter certa prática para encontrar a posição correta da prancha. Se a borda da frente sobe demais, uma parte muito pequena da prancha colide com a água e a sustentação é insuficiente. Por outro lado, se a borda da frente sobe de menos, o ângulo da colisão é muito pequeno e, mais uma vez, a sustentação e insuficiente. Naturalmente, se a borda da frente desce, a prancha pára imediatamente. A resistência que o ar oferece sobre a pessoa pode ser considerável e é maior que a resistência da água sobre a prancha sonrisal. Entretanto, é possível prolongar a viagem agachando-se para reduzir a área do corpo exposta ao ar.

2.131 • Empuxo ao fazer uma curva Se um balão de hélio flutua em um carro com as janelas levantadas, por que o balão se desloca em relação ao teto quando o carro faz uma curva brusca? Ele se desloca para dentro ou para fora da curva? Se o aquecimento do carro está ligado, por que a distribuição de ar quente no interior do carro muda durante a curva? De que maneira ela muda?

Resposta Se o carro faz uma curva brusca para a esquerda, você tem a impressão de que está sendo empurrado para fora da curva, ou seja, para a direita. A explicação é que a parte superior do seu corpo tende a continuar se movendo na direção original, enquanto a parte inferior é puxada para a esquerda pela força de atrito com o banco do carro. Assim, você tende a se inclinar para fora da curva. O ar no interior do carro também tende a continuar se movendo na direção original, mas o lado direito do carro o obriga a fazer a curva. Essa ação aumenta a densidade do ar no lado direito do carro. O hélio, que é mais leve que o ar, tende a se afastar do ar mais denso e se aproximar do ar menos denso; assim, o balão se desloca para a esquerda, o sentido contrário ao da inclinação do seu corpo. O ar mais quente é menos denso que o ar mais frio e tende a se deslocar para a esquerda durante a curva. Se você é o motorista, pode senti-lo passando pelo seu rosto se o ventilador já não estiver jogando o ar diretamente no seu rosto.

2.132 • Reflexão de ondas em bancos de areia Por que um banco de areia (submerso) perto de uma praia reflete as ondas do mar que chegam? Por que certos arranjos de bancos de areia (ou barreiras artificiais submersas) refletem as ondas do mar com grande eficiência?

Resposta Podemos observar uma onda do mar se propagando na superfície da água, mas o movimento ocorre também abaixo da superfície: quando a onda passa, a água se move em órbitas verticais, de forma oval, sendo o plano da oval paralelo à direção de propagação da onda. Um banco de areia pode interromper o movimento da água se não estiver muito abaixo da superfície. A maior parte da onda ainda consegue passar, mas uma parte é refletida e volta para o oceano. Uma reflexão muito mais forte, chamada reflexão ressonante ou reflexão de Bragg, pode ser produzida por uma série de bancos de areia cujas reflexões se reforçam mutuamente. Se as ondas têm um certo comprimento de onda e sua direção de propagação é perpendicular à maior dimensão do banco de areia, a reflexão reforçada ocorre se a distância entre os bancos de areia for igual a metade do comprimento de onda das ondas. Imagine uma onda sendo refletida por dois bancos de areia sucessivos. A parte que consegue passar pelo primeiro banco de areia, que é refletida pelo segundo e que passa de novo pelo primeiro (desta vez se movendo no sentido oposto) obviamente percorre uma distância adicional. Essa distância é duas vezes maior que a distância entre os bancos de areia. Se essa distância adicional é igual ao comprimento de onda da onda, quando essa parte chega ao primeiro banco de areia, está em fase com a onda que acaba de ser refletida pelo primeiro banco de areia. Assim, essas duas reflexões se propagam em fase de volta para o oceano, o que produz uma onda resultante forte (de grande amplitude). Em suma, quando as ondas refletidas pelos bancos de areia se propagam de volta para o oceano em fase, a reflexão é forte, de modo que uma parte relativamente pequena da onda original continua a se propagar em direção à praia. Esse tipo de reflexão das ondas pode proteger a praia e as regiões próximas. Se apenas um ou dois bancos de areia existem inicialmente, as ondas podem ajudar a movimentar a areia por erosão e deposição, construindo bancos de areia adicionais mais próximos da praia do que os bancos de areia originais. Essa ação das ondas pode construir bancos de areia adicionais com o espaçamento adequado de meio comprimento de onda para produzir reflexões ressonantes. O problema deste raciocínio é que as ondas chegam à praia com uma grande variedade de comprimentos de onda e uma grande variedade de direções. Assim, a reflexão ressonante não ocorreria para muitas das ondas.

2.133 • A chuva e as ondas

Existe um fundo de verdade no antigo provérbio dos marinheiros, segundo o qual a chuva acalma as ondas do mar?

Resposta O provérbio é verdadeiro, contanto que o vento que acompanha a chuva não seja muito forte. Quando uma gota de chuva cai na água, pode produzir um vórtice que penetra na água, fazer a superfície oscilar ou mesmo criar outras gotas menores. Toda essa atividade deixa a camada superior turbulenta, o que quebra e reduz as ondas de pequeno comprimento de onda. Entretanto, se a chuva for empurrada com força e quase horizontalmente por um vento forte, a chuva e o vento podem produzir e reforçar ondas de pequeno comprimento de onda.

2.134 • Um oscilador de sal Encha parcialmente uma caneca com água. Faça um furo no fundo de um copo de papel e afunde o copo parcialmente na água, com o furo para baixo, mantendo-o no lugar com um pregador ou prendendo-o com fita adesiva a duas facas apoiadas na borda da caneca. Prepare uma mistura de água moderadamente salgada e anilina em um recipiente separado e despeje lentamente a mistura no copo de papel até que o nível esteja pouco abaixo do nível da água doce contida na caneca. A água salgada e colorida do copo vai sair pelo furo; momentos depois, a água doce da caneca vai entrar no copo pelo furo. Este ciclo vai se repetir, a intervalos de alguns minutos, durante várias horas. O que faz funcionar esse oscilador de sal, como é chamado?

Figura 2-38 / Item 2.134 (a) A água doce é empurrada para cima, subindo pelo tubo estreito. (b) Em seguida, a água salgada colorida é empurrada para baixo, descendo pelo tubo.

Resposta Para começar, imagine que o furo seja um tubo curto e estreito, inicialmente cheio de água salgada e colorida (Fig. 2-38a). Uma interface na extremidade inferior do tubo separa a água doce e a água salgada. Vamos supor que a interface esteja inicialmente em equilíbrio, ou seja, que a pressão imediatamente abaixo da interface, exercida pela água doce, seja igual à pressão imediatamente acima da interface, exercida pela água salgada. Como a água salgada é mais densa que a água doce, para que haja equilíbrio é preciso que a altura da água acima da interface seja menor para a água salgada do que para a água doce. Embora corresponda a uma situação de equilíbrio, esse arranjo está sujeito a perturbações fortuitas. Suponha que uma perturbação faça com que uma pequena quantidade de água doce entre no tubo. Como o tubo é muito estreito, a altura do líquido no copo de papel não muda muito. Entretanto, a pressão muda, já que parte do tubo contém agora água doce, que é mais leve. Assim, a pressão imediatamente acima da interface agora está menor que antes. O resultado é que mais água doce é empurrada para cima, entrando no tubo. A água doce continua a entrar no copo até que a altura da água no interior do copo aumente o suficiente para restabelecer o equilíbrio na interface. Neste momento, o tubo está cheio de água doce (Fig. 2-38b). Novamente, o equilíbrio no fundo do tubo é instável. Quando uma perturbação fortuita faz com que uma pequena quantidade de água salgada entre no tubo, o aumento de peso no tubo expulsa a água pelo fundo do tubo, o que faz uma quantidade ainda maior de água salgada entrar no tubo. Quando o equilíbrio é restabelecido, o sistema está de volta à situação inicial, com o tubo cheio de água salgada. O ciclo se repete várias vezes. Se o copo de papel tem um furo em vez de um tubo estreito, podemos tratar o furo como um tubo curto. Entretanto, a entrada e a saída dos líquidos deixam de ser graduais e passam a ser tão rápidas que são mais difíceis de serem interrompidas. (Existe um momento associado ao movimento dos líquidos.) Galileu descreveu uma experiência semelhante: um globo com uma abertura estreita, cheio de água, é introduzido em uma taça de vinho tinto. O vinho penetra no globo até que este fica cheio de vinho e a taça fica cheia de água. Embora Galileu não fale em oscilações, podemos supor que elas aconteceram.

2.135 • Dedos de sal e uma fonte de sal Para ver uma formação conhecida como dedos de sal, encha parcialmente um recipiente com água doce fria. Em seguida, despeje água quente, levemente salgada, à qual você acrescentou anilina para torná-la mais visível. Para evitar perturbações, despeje a água de uma pequena altura ou sobre um objeto flutuante. A água de cima é mais leve que a água do fundo: embora a água de cima seja salgada, a temperatura mais alta reduz a densidade, tornando-a menor que a da água doce. Assim, com água mais leve por cima, o arranjo deveria ser estável. Por que, então, depois de alguns minutos, dedos de água colorida descem para a região de água doce, enquanto dedos da água doce sobem para a região de água colorida (Fig. 2-39a)? Para fazer uma fonte de sal, encha parcialmente um recipiente com água doce e fria. Faça um furo no fundo de um copo de papel e afunde o copo parcialmente na água, com o furo para cima (Fig. 2-39b). Despeje água morna no recipiente até que a água comece a sair pelo furo do copo. Despeje um pouco de água salgada quente no recipiente. Finalmente, pingue algumas gotas de anilina perto do furo para tornar visível qualquer movimento da água. Por que a água sai continuamente pelo furo? Teoricamente, uma fonte de sal “perpétua” pode ser construída no mar. Em uma fonte desse tipo, a água escoa continuamente por um cano comprido que vai da água do fundo do mar, mais fria e menos salgada, até a água da superfície, mais quente e mais salgada. Como funciona uma fonte de sal?

Figura 2-39 / Item 2.135 (a) Dedos finos penetram verticalmente na interface entre água salgada quente e água doce fria. (b) Movimento da água em uma fonte de sal.

Resposta O arranjo de água salgada e quente sobre água doce e fria é instável, por duas razões: (1) a energia térmica é transferida rapidamente da água quente para a água fria através da interface que separa as duas camadas. (2) Perturbações fortuitas fazem pequenas ondas atravessarem essa interface e uma dessas ondas aumenta rapidamente de tamanho, produzindo os dedos. Para entender o que causa a instabilidade, considere uma dessas ondas pequenas. Uma saliência (crista) é uma projeção para cima de água doce, mais fria, que invade a água salgada, mais quente, e uma depressão (vale) é uma projeção para baixo de água salgada, mais quente, que invade a água doce, mais fria. Essas projeções diminuiriam até desaparecerem se não fosse pelo fato de que as projeções para cima esquentam e as projeções para baixo esfriam. Quando as projeções para cima esquentam, tornam-se mais leves e sobem ainda mais. Quando as projeções para baixo esfriam, tornam-se mais pesadas e descem ainda mais. Assim, as projeções crescem por causa da transferência de calor e da onda fortuita inicial que cria os dedos. Um desenho parecido aparece se uma solução de açúcar colorido (menos densa) for posta sobre uma solução salina (mais densa). Tanto o sal como o açúcar tendem a atravessar a interface que separa as duas camadas, mas o sal se espalha mais depressa. As projeções de uma perturbação fortuita deveriam desaparecer com o tempo, mas a saída de sal das projeções para cima e a entrada de sal nas projeções para baixo fazem com que elas cresçam e se transformem em dedos.

No arranjo da fonte de sal, quando a água fria entra no copo, ela esquenta por causa da água mais quente do lado de fora da parede do copo. Assim, a água em ascensão fica mais leve e continua a subir. Quando chega ao furo, a água está muito mais leve que a água salgada quente das vizinhanças e, portanto, sobe. Processo semelhante aconteceria em uma hipotética fonte de sal marinha: uma vez que o movimento da água começasse, a água que estivesse subindo pelo tubo seria aquecida continuamente pela água mais quente do lado de fora do tubo. Assim, a água do lado de dentro ficaria mais leve; como não poderia ganhar sal através da parede do tubo, também ficaria mais leve que a água do lado de fora. Assim, continuaria a subir pelo tubo.

2.136 • A subida da água em árvores altas De que maneira uma árvore, especialmente uma árvore alta como uma sequóia-gigante, faz a água subir até as folhas da copa?

Resposta A resposta a esta pergunta enganosamente simples ainda é muito controversa. A explicação mais aceita, conhecida como teoria da coesão-tensão, é que a evaporação da água da superfície de uma folha reduz a pressão em uma coluna contínua de água que vai das raízes até a folha. Diz-se que a coluna está sob pressão negativa porque a água é puxada para cima por uma tensão. A água pode, naturalmente, ser colocada sob pressão, mas a idéia de que ela pode ser posta sob tensão foi posta em dúvida durante muito tempo, porque se acreditava que a coesão da água (a atração mútua das moléculas da água) era incapaz de suportar uma tensão. Entretanto, tensão e pressão negativa parecem existir nos capilares das árvores. Em termos simples, quando uma molécula de água evapora de uma folha, uma molécula de água entra em uma raiz. Entretanto, a teoria da coesão-tensão não é aceita por todos. Em algumas plantas, a água pode chegar às folhas por etapas, mais ou menos como os navios são levantados em eclusas para atravessar um canal. Além disso, fatores climáticos, tais como secas, podem afetar o modo como a água chega à copa da árvore.

2.137 • Leiras na água Quando ventos moderados sopram na superfície de corpos d’água, por que bolhas, algas, folhas e outros objetos flutuantes pequenos formam filas paralelas chamadas leiras?

Resposta Quando a velocidade do vento está em uma certa faixa, cria longas células de circulação horizontais perto da superfície. Este fenômeno é chamado circulação de Langmuir, em homenagem a Irving Langmuir, que o descobriu depois de ver linhas de alga do gênero Sargassum durante uma travessia do oceano Atlântico. A circulação produz um movimento helicoidal da água na direção aproximada do vento. Os sentidos de circulação de duas células vizinhas são opostos. Suponha que você olhasse ao longo de uma célula na qual a água circula no sentido horário. Nesse caso, a água circula no sentido anti-horário na célula à esquerda e na célula à direita (Fig. 2-40). Isto quer dizer que, na superfície, as circulações da sua célula (no sentido horário) e da célula à direita (no sentido anti-horário) convergem, mas as circulações da sua célula e da célula que está à esquerda não convergem. Os objetos flutuantes acumulados pela convergência formam uma linha ao longo do lado direito de sua célula. Outras linhas se formam ao lado de outras células e o espaçamento entre as linhas é duas vezes maior que a largura de uma célula. Mesmo que não existam objetos flutuando na água, você pode observar as leiras se as circulações acumularem películas finas flutuantes (monocamadas) em linhas ou fileiras. Como as películas inibem a formação de ondas, a água reflete a luz de modo diferente nas regiões que contêm películas.

Figura 2-40 / Item 2.137 Células de circulação na água acumulam objetos flutuantes.

2.138 • Ruas de nuvens e incêndios seletivos

Por que as nuvens às vezes se dispõem em linhas compridas e finas chamadas ruas de nuvens? O arranjo é muitas vezes difícil de ver do solo, mas quando são fotografadas por um satélite, as linhas podem ser tão regulares que parecem artificiais.

Resposta A circulação do ar em grande escala na parte inferior da atmosfera terrestre muitas vezes tende a formar tubos de vórtices longos e paralelos que se estendem na direção aproximada do vento. Olhando no sentido do vento, você veria que o ar circula em uma trajetória helicoidal ao longo de um tubo: tubos vizinhos têm sentidos de circulação opostos (assim como as células na Fig. 2-40). As nuvens tendem a se formar em lugares em que o sentido de vórtices vizinhos é para cima. Assim, longas filas de nuvens podem se formar ao longo das fronteiras entre tubos de vórtices vizinhos, com um espaçamento duas vezes maior que a largura de um tubo. O vento que sopra em incêndios florestais também pode criar tubos de vórtices horizontais e a circulação em tubos vizinhos afeta o curso do incêndio. Nos lugares em que o sentido de tubos vizinhos é para baixo, é menos provável que as árvores queimem, porque o vento sopra o fogo para as regiões em que o sentido dos tubos é para cima. Assim, por causa do vento, o incêndio pode avançar por uma floresta em faixas paralelas, deixando faixas intermediárias de árvores intactas.

2.139 • Empacotamento de pastilhas M&M Se você enche uma jarra de balas esféricas ou de pastilhas M&M (chocolates de forma elipsoidal fabricados pela Mars, Incorporated), qual conjunto pesa mais, supondo-se que cada unidade dos dois tipos de guloseima tenham a mesma densidade?

Resposta A resposta pode parecer óbvia, mas ainda assim ela (ou melhor, a própria pergunta) é surpreendente. Embora as esferas fiquem bem compactadas na jarra, existe um significativo espaço livre entre elas. Como as pastilhas M&M são achatadas, acomodam-se melhor, deixando menos espaço livre. Assim, o conjunto de pastilhas M&M pesa mais.

2.140 • Uma pilha de maçãs Se você faz uma pirâmide de maçãs e um monte de areia, em que ponto da base dessas estruturas a força exercida sobre o solo é maior?

Resposta Se você constrói uma pirâmide na qual cada objeto (suponha que sejam cubos) seja disposto em colunas verticais, de modo que nenhum objeto se apóie em duas colunas, a resposta é fácil: a maior força sobre o solo é exercida pela coluna mais alta, a que está no centro da pirâmide, e a força se torna progressivamente mais fraca à medida que você se afasta do centro e vai encontrando colunas cada vez mais curtas. Entretanto, quando você empilha objetos como maçãs, grãos de areia ou outros objetos irregulares, não existem colunas verticais isoladas. Em vez disso, cada objeto da pilha repousa em objetos vizinhos que estão ligeiramente deslocados para o lado. Esse arranjo pode deslocar a força de sustentação na direção do perímetro da pilha. De acordo com os experimentos, a força máxima sobre o solo em geral está em um anel intermediário, entre o centro e o perímetro.

2.141 • Figuras de pó As chamadas figuras de Chladni são formadas pela areia em uma placa metálica horizontal quando ela é posta para oscilar de modo mais ou menos contínuo. Podem-se produzir as oscilações fazendo-se passar um arco de violino por uma borda da placa, ou a placa pode repousar no cone de um alto-falante voltado para cima e alimentado por um gerador de áudio. O que gera esses desenhos? Se a areia for substituída por um pó fino (pó de giz, por exemplo), por que aparecem outras figuras? Se for usada uma mistura de areia e giz em pó, por que os dois componentes se separam? Espalhe um pó fino em uma lâmina de vidro horizontal, de modo a formar uma camada razoavelmente uniforme, e bata levemente no lado da lâmina com um bastão de plástico, a uma freqüência da ordem de uma vez por segundo. Por que o pó forma pequenos montes cônicos depois de 20 batidas?

Resposta Em alguns pontos (os chamados antinós), a placa de metal oscila com máxima amplitude, enquanto em outros (os chamados nós) a placa não oscila. Os antinós podem ser muito próximos em certas direções, formando linhas ao longo da placa; os nós também podem formar suas próprias linhas. Os grãos de areia situados inicialmente em um antinó são jogados para o alto, para longe das linhas, e tendem a se acumular nas linhas dos nós. Ao se acumularem, os

grãos de areia revelam as linhas dos nós e formam uma das figuras de Chladni. A figura que aparece depende da forma do disco e do modo como ele é sustentado (nos pontos de fixação, por exemplo, existe necessariamente um nó). O pó, por ser mais leve que a areia, é afetado pelas correntes de ar que se formam acima da placa quando ela começa a oscilar. Perto da placa, o ar tende a se mover de um nó para um antinó vizinho e depois para cima, afastando-se da placa. Assim, essa corrente de ar tende a levar o pó de um nó para um antinó vizinho, depositando-o no lugar em que a corrente de ar se dirige para cima. Figuras de Chladni foram usadas para periciar detectores de fumaça. Em certos tipos de incêndio que produzem muita fumaça, as partículas de fuligem tendem a se acumular nas linhas de nós das superfícies que oscilam quando soa o alarme. Mais tarde, é possível saber se o alarme tocou durante o incêndio verificando se uma figura de Chladni feita de fuligem se formou nessas superfícies. Se isso não aconteceu, o detector pode ter falhado. Quando alguém bate de leve em uma lâmina de vidro sobre a qual existe uma camada de pó, a lâmina começa a oscilar verticalmente, o que joga o pó para o alto e também faz o ar circular. Suponha que o pó se acumule um pouco mais no ponto A do que na região vizinha. O excesso de pó em A pode modificar as oscilações da placa e a corrente de ar de tal modo que o pó na região vizinha tenda a se mover em direção a A quando for lançado para o alto. Quando um grão de poeira cai em um local empoeirado, tende a ficar preso; quando cai em um local limpo, isso não acontece. Assim, a quantidade de pó no ponto A aumenta até que A acumule todo o pó das vizinhanças. Esse começo fortuito e o acúmulo subseqüente acontecem em toda a superfície da placa, com um espaçamento aproximadamente constante entre os montes.

2.142 • Um oscilador hidráulico A Figura 2-41 mostra um tubo em forma de U com duas bocas largas, cheio de água. O sistema é aquecido no centro de ligação entre os braços e resfriado na parte superior dos braços, e tudo é simétrico. Por que a água oscila para a esquerda e para a direita quando o aquecimento e o resfriamento começam?

Resposta Como o aquecimento reduz a densidade da água, a água aquecida tende a subir; como o resfriamento aumenta a densidade da água, a água resfriada tende a afundar. Embora a situação seja inicialmente simétrica, ligeiras perturbações fazem com que a água suba mais em um braço do que no outro. Suponha que a perturbação faça a água subir mais do lado direito. O movimento permite que a água fria desça do lado esquerdo. A coluna da direita fica nesse momento menos densa que a coluna da esquerda, e a diferença de densidade faz a água subir ainda mais na coluna da direita e descer ainda mais na coluna da esquerda. Finalmente, a coluna da direita fica tão mais alta que a coluna da esquerda que o movimento da água fica mais lento, pára e muda de sentido. Enquanto isso, a água que está no tubo horizontal foi aquecida uniformemente. Assim, quando o movimento se inverte, a água quente tende a subir cada vez mais na coluna da esquerda. O ciclo se repete indefinidamente.

Figura 2-41 / Item 2.142 A água oscila de um lado para o outro.

2.143 • Bolas de óleo em glicerina Encha um recipiente quase até a boca com glicerina e complete com óleo de silicone, que é mais leve e menos viscoso que a glicerina. Deixe o recipiente em repouso por uma noite (para que as bolhas de ar escapem) e depois feche o recipiente e vire-o de cabeça para baixo. Por que bolas de óleo se formam, em um padrão quase uniforme, ao longo do (novo) fundo do recipiente e sobem até a (nova) superfície? Esse fenômeno serviu de inspiração para vários tipos de brinquedos novos em que um fluido forma bolas que passam por um segundo fluido sem se misturar.

Resposta O arranjo original é estável, já que o óleo flutua na glicerina. O arranjo invertido é instável (um exemplo do que chamamos de instabilidade de Rayleigh–Taylor) e perturbações fortuitas, como as causadas pelo próprio processo de inverter o recipiente, geram ondas na interface óleo–glicerina, da mesma forma como uma pessoa pode gerar ondas na interface ar–água em uma banheira. Uma das ondas cresce mais depressa que as outras e torna-se dominante. Nos locais em que existem pontos de máximo (cristas), o óleo migra para cima, penetrando na glicerina, e nos locais em que há pontos de mínimo (vales), a glicerina migra para baixo, penetrando no óleo. As projeções para cima se transformam em bolas ascendentes que são alimentadas pelo óleo que flui por baixo das projeções de glicerina; o espaçamento quase regular das bolas no fundo do recipiente corresponde aproximadamente ao comprimento de onda da onda dominante. Eis uma experiência semelhante: deixe um recipiente de xarope de milho em repouso durante uma noite. Use um canudo para introduzir uma mistura de xarope de milho e água perto do fundo do recipiente. A mistura forma uma bola quando sai do canudo. Como a bola de xarope misturado com água é mais leve que o xarope, a bola sobe, deixando um rastro. Esse rastro pode funcionar como um caminho para novas bolas liberadas pelo tubo.

2.144 • Bola em uma corrente de ar Para atrair a atenção dos fregueses, algumas lojas de departamentos instalam um aparelho que mantém uma bola suspensa em uma corrente de ar. Se a corrente de ar fosse direcionada verticalmente para cima, a suspensão não impressionaria tanto, pois a força exercida pelo ar equilibraria a força da gravidade. O que chama a atenção é que a corrente de ar faz um ângulo de aproximadamente 45° com a vertical. Por que a bola não cai? Se você dá um tapa na bola, tirando-a do lugar, por que ela volta para a posição original?

Resposta O segredo da suspensão e da estabilidade da bola está no fato de que ela desvia a corrente de ar. Se a bola oscila para baixo, ameaçando sair da corrente de ar, o ar passa por cima da bola, acompanha a curvatura da bola até certo ponto e depois se desprende e se dirige para baixo com uma certa inclinação. Como a corrente de ar é desviada para baixo, a bola é empurrada para cima e volta para o centro da corrente de ar. Sempre que a bola tenta deixar o centro da corrente de ar, acaba desviando o ar na direção para a qual ela se desloca, e com isso é empurrada de volta para o centro da corrente de ar. Uma bola também pode ser suspensa por uma corrente de água vertical. Nesse caso, a corrente é de água e não de ar, mas o desvio da corrente explica a estabilidade da bola da mesma forma. Quando eu era criança, tive um brinquedo que consistia em um tubo de plástico em U, com um tubo curto e estreito em uma das extremidades. Eu soprava no tubo estreito para levantar uma bola leve em uma corrente de ar e ao mesmo tempo fazer o ar entrar no outro tubo do U. Quando a bola subia, passava pelo outro tubo e era sugada pela circulação de ar. O objetivo era fazer a bola dar o máximo de voltas em torno do U com um único sopro forte no tubo estreito.

2.145 • O navio de Flettner Em 1925, um navio projetado pelo engenheiro Anton Flettner atravessou o Atlântico usando como propulsão não uma hélice comum, que funciona debaixo d’água, mas dois cilindros giratórios que funcionavam no ar. Como é possível que cilindros giratórios impulsionem uma embarcação?

Resposta Os cilindros eram movidos pelo vento, mas não da mesma maneira que as velas de um veleiro. Se o cilindro estiver parado, o ar passa simetricamente pelos dois lados do cilindro e em algum ponto perto da extremidade traseira se desprende do cilindro e se decompõe em vórtices. Esse arranjo faz com que o cilindro seja submetido a uma força porque a pressão no lado do cilindro voltado para o vento é maior que a pressão no lado oposto (os vórtices têm baixa pressão).

Entretanto, a força experimentada pelo cilindro é bem maior se ele estiver girando. No lado que está se movendo no sentido do vento, o ar permanece em contato com o cilindro por mais tempo do que se o cilindro estivesse parado; no lado que está se movendo no sentido oposto, o ar se desprende do cilindro mais cedo do que antes. O resultado é que a corrente de ar é desviada pelo cilindro giratório, no sentido da rotação. Como o ar é desviado em um sentido, o cilindro (e, portanto, o navio) experimenta uma força no sentido oposto. Assim, em princípio, o navio pode se movimentar na água usando o desvio que os cilindros produzem no vento. Na prática, a viagem através do Atlântico deve ter sido terrível, exigindo uma paciência infinita para ajustar a orientação do navio em relação ao vento e tornando necessário que a embarcação seguisse um curso em ziguezague. (Bem, talvez a hélice do navio tenha sido mais usada do que consta nos registros.)

2.146 • Estreito de Gibraltar; estreito de Messina; estreito da Sicília Por que alguns navios, quando atravessam o estreito de Gibraltar, começam de repente a rodopiar ou a adernar? O estreito de Messina, que separa a Itália e a Sicília, era famoso na Antiguidade pelas águas traiçoeiras, e ganhou o apelido de mar louco. Homero, por exemplo, atribuía os perigos do estreito aos monstros Cila e Caríbdis. Do outro lado da Sicília, no estreito da Sicília, que separa a ilha da Tunísia, a maré alta às vezes invade o grande porto pesqueiro siciliano de Mazara del Vallo, fazendo uma parede de água subir o antigo estuário. O que faz com que os três estreitos se comportem de modo incomum?

Resposta O comportamento estranho do estreito de Gibraltar é causado por ondas internas, que são geradas pelas marés que atravessam o estreito. As ondas se formam porque a água do mar Mediterrâneo é mais salgada que a água do oceano Atlântico. (A água do Mediterrâneo é mais salgada por causa da evaporação.) Sendo mais salgada, a água do Mediterrâneo é também mais densa que a água do Atlântico. Quando essa água mais densa atravessa o estreito e entra no Atlântico, tem que passar por cima de uma lomba (uma elevação no fundo do mar) que faz a água subir e passar por cima da água do Atlântico (mais leve), que chega no sentido contrário. Esta é uma situação instável, com a água mais densa passando por cima da água mais leve, o que leva à formação de ondas. As ondas são visíveis na superfície da água apenas como regiões de água agitada, mas têm força suficiente para virar até navios. As ondas internas também são responsáveis pelo mar louco do estreito de Messina. Ali, uma lomba separa a água mais densa e salgada do mar Jônico, ao sul, da água mais leve e menos salgada do mar Tirreno, ao norte. As oscilações das marés no mar Mediterrâneo costumam ser bem pequenas (apenas alguns centímetros), mas as oscilações nesses dois mares separados pela lomba estão defasadas. Quando um está na maré alta e o outro está na maré baixa, a água passa por cima da lomba. Como as densidades são diferentes, esse movimento da água produz ondas internas. Na superfície, as ondas aparecem como regiões em que a água é muito agitada, como se estivesse sendo açoitada por intensas rajadas de vento. Assim, são as ondas internas, e não os monstros de Homero, que ameaçam os navios que se aventuram nessa região. O estranho comportamento das águas do estreito da Sicília deve-se ao balanço da água no estreito, efeito conhecido como seiche (espécie de onda estacionária). Oscilações ressonantes acontecem no estreito; esse balanço natural acontece da mesma maneira como você pode fazer a água balançar em uma panela de água ao transportá-la de um lado para outro da cozinha. O balanço da água no estreito pode às vezes ser suficiente para lançar uma parede de água, chamada salto hidráulico ou pororoca, estuário acima.

2.147 • Jorro granular Se alguém deixa cair uma bola rígida e pesada em um cercado cheio de bolas rígidas muito menores, por que o impacto pode produzir um jato estreito de bolas pequenas?

Resposta Quando uma bola pesada afunda em um cercado de bolas pequenas, ela abre uma cavidade cilíndrica. As bolas que são empurradas para fora do caminho ficam em volta da cavidade. Depois que a bola grande passa, as bolas pequenas convergem para o local da cavidade, colidem e são lançadas para cima, formando um jato.

2.148 • Pequena crista em água corrente Por que você pode ver, com iluminação adequada, uma linha da espessura de um fio de cabelo se estender pela água que corre lentamente em um rio ou riacho? (Em geral, é preciso que o Sol esteja baixo no céu para que a luz incida obliquamente, mas mesmo assim você precisa experimentar vários ângulos de observação.)

Resposta A superfície da água na maioria dos rios e riachos possui uma camada flutuante, que pode ser formada por

poluentes ou por substâncias que existem naturalmente, tais como óleos vegetais. As camadas costumam ser finas demais para serem visíveis e podem ter apenas uma molécula de espessura, caso em que recebem o nome de monocamadas. Quando uma água que corre lentamente encontra uma monocamada, a água que chega se acumula, formando uma crista muito pequena antes de conseguir passar por baixo da camada. Se a iluminação for adequada, você consegue ver a crista por causa do contraste com a água corrente de um lado e da camada estagnada do outro lado. A crista é chamada de crista de Reynolds porque Osborne Reynolds (1900) foi uma das primeiras pessoas a estudá-la, embora Benjamin Franklin (1774) e Henry David Thoreau (a partir de 1854) já tivessem percebido o efeito. Você também pode ver uma crista de Reynolds em uma poça d’água ou em um lago se um vento moderado empurrar a água não-contaminada de encontro a uma camada de contaminação.

2.149 • Filetes de água tortuosos Se um filete de água desce por uma placa lisa de vidro com uma inclinação de menos de 30°, o filete é reto. Se a inclinação for maior que 30°, o filete pode continuar reto, mas também pode serpentear para a esquerda e para a direita, mantendo sempre a mesma forma ou mudando continuamente de forma (Fig. 2-42a). O que causa a sinuosidade?

Resposta Quando a vazão (volume de fluido que passa por uma certa seção transversal por segundo) é pequena, a força gravitacional tende a fazer a água descer o plano inclinado em linha reta. A tensão superficial (produzida pela atração mútua das moléculas de água) tende a reduzir a seção transversal e se comporta como uma membrana elástica, mantendo o filete retilíneo. No início da descida, a água é acelerada pela força gravitacional. Quando a velocidade da água aumenta, a seção transversal diminui porque, com a água se movendo mais depressa, diminui a área necessária para transportar o mesmo volume de água por segundo. Entretanto, quando a velocidade aumenta, a resistência do plano inclinado sobre a água aumenta até que a resistência se torna igual à força gravitacional. Depois disso, a velocidade e a seção transversal deixam de variar.

Figura 2-42 / Item 2.149 (a) Meandros na água que desce em um plano inclinado, vistos de cima. (b) Vista de perfil de uma curva. A curva fechada para a esquerda produz uma força para a direita.

Quando a vazão é um pouco maior, o movimento da água pode tornar o filete instável fazendo com que a velocidade não seja a mesma em todo o percurso. Essa diferença de velocidade faz com que a forma do filete deixe de ser simétrica: a tensão superficial em um lado que apresente uma curvatura maior exerce uma força maior que a tensão superficial em um lado cuja curvatura seja menor. Suponha que, por acaso, uma curva comece a se formar no filete. A curva só se acentua se a tensão superficial no filete produzir uma força suficiente para fazer o filete atravessar diagonalmente o plano inclinado. A Figura 2-42b mostra um exemplo: vemos uma seção transversal de parte de uma curva do filete. O lado esquerdo do filete tem uma curvatura maior que o lado direito, de modo que a tensão superficial produz uma força maior no lado esquerdo. Essa força é parcialmente voltada

para a direita e o filete deixa a curva movendo-se em diagonal para a direita, o que torna a curva mais pronunciada. Quando a vazão aumenta ainda mais, a força da água pode superar as tendências da tensão superficial. Nesse caso, o filete pode ir além de uma curva, fazendo-a mudar de lugar. Outra possibilidade é a de o filete se partir, abandonando uma curva quando a água passa a correr por um novo caminho; os trechos abandonados escorrem pelo plano inclinado.

2.150 • Pêlos de barba e barcos de cânfora na água Quando os pêlos de barba de um barbeador elétrico são jogados na água, como costuma acontecer quando o barbeador é limpo em cima do vaso sanitário, por que os pêlos se afastam uns dos outros assim que caem na água?

Um brinquedo antigo, praticamente esquecido nos dias de hoje, é o barco movido a cânfora. Constrói-se um “barco” de folha de alumínio, com uma reentrância na parte de trás. O barco é cuidadosamente colocado na água e um pedacinho de cânfora (substância vendida nas farmácias sem receita médica) é introduzido na reentrância, parcialmente submerso. O barco imediatamente começa a se mover. O que está acontecendo? Se um pedaço pequeno de certos tipos de cimento (como o cimento Devcon Duco) for colocado em uma poça d’água, por que o cimento começa a girar?

Resposta Quando pêlos de barba são jogados na água, o óleo dos pêlos forma uma camada fina sobre a água, que logo reduz a tensão superficial. Essa camada de óleo e os pêlos são em seguida puxados para fora pela tensão superficial maior da água pura que os cerca. Em um barco movido a cânfora, a cânfora reduz a tensão superficial da água da parte de trás do barco porque as moléculas de cânfora substituem algumas moléculas de água, diminuindo a tensão entre as moléculas de água na superfície. A tensão superficial da água na frente do barco permanece inalterada. A frente e a traseira do barco são puxadas pela água, mas a tensão na frente é mais forte, de modo que o barco se move para a frente. Quando o barco se move, a cânfora que sobrou na água sublima gradualmente ou se difunde na água, de modo que a superfície da água fica coberta de cânfora, o que faria o barco parar. Se uma lasca de cânfora em forma de crescente for jogada na água, logo começa a girar. A concentração de moléculas de cânfora na água mais próxima da parte côncava é maior que a concentração na água mais próxima da parte convexa, já que as moléculas de cânfora podem se mover com mais facilidade para longe da porção convexa. As concentrações desiguais produzem tensões superficiais desiguais. A força exercida pela água sobre a parte convexa é maior; assim, a lasca gira com a porção convexa na frente da porção côncava. Se a lasca for colocada no centro de um anel flutuante (com um raio, digamos, 10 vezes maior que a lasca), a rotação da lasca faz o anel girar no sentido oposto. Se um barco de cânfora for colocado em uma trajetória que tenha a forma do número oito (duas trajetórias circulares que se tocam em um ponto), o barco pode navegar de várias maneiras: permanecer em um dos círculos, passar pelo meio e mudar o sentido de rotação de horário para anti-horário ou passar pelo meio sem mudar o sentido de rotação. A trajetória seguida no ponto de interseção depende em parte de eventos aleatórios, mas depende também da quantidade de cânfora que existe na frente do barco nas rotas possíveis. Se uma rota ainda possui muita cânfora e outra não, a tensão superficial mais forte na segunda rota vai provavelmente puxar o barco nessa direção. Se dois barcos de cânfora forem colocados em uma trajetória circular ou alguma outra rota geométrica, a cânfora deixada por um barco vai afetar a velocidade do outro, e os dois barcos logo vão entrar em movimento sincronizado, com o barco de trás mantendo uma distância mais ou menos constante do barco da frente. Quando pequenos pedaços de certos tipos de cimento são jogados na água, eles se movem alterando a tensão superficial na água ao seu redor, como acontece com a cânfora.

2.151 • Manchas de óleo na pista Por que as manchas de óleo no asfalto costumam ser ovais, com o eixo maior paralelo ao sentido do trânsito, ou então anulares?

Resposta Quando uma gota de óleo vaza de um veículo em movimento, sua velocidade é inicialmente igual à

velocidade do veículo. Se essa velocidade excede um certo valor crítico, a gota infla, tornando-se uma bolha que lembra uma bolha de sabão em um anel circular antes de se desprender. A parte inflada da bolha logo estoura, enquanto a borda se decompõe em gotículas, que formam um anel oval quando caem na pista. Se o padrão for examinado logo depois de se formar, é possível observar as manchas das gotículas individuais. O tamanho das gotas de chuva é limitado por um processo semelhante. Se uma gota de chuva fica muito grande, transformase em uma bolha e logo estoura.

2.152 • Desenhos formados por gotas d’água caindo em glicerina Por que uma figura parecida com uma flor se forma gradualmente quando uma gota d’água cai em uma camada fina de glicerina?

Resposta O padrão é mais bonito quando a água é colorida com anilina. O choque com a glicerina divide a gota em partes: primeiro, um glóbulo central emerge do centro da região do impacto e depois uma crista circular (que lembra uma xícara) emerge em torno. Pouco depois que a água espirra do ponto de impacto, a água e a glicerina começam a se misturar e o fluido ao longo da superfície de contato com o ar começa a se mover. O movimento se deve às diferenças na tensão superficial ao longo da superfície. Como a água tem uma tensão superficial maior que a glicerina, a mistura de água e glicerina é puxada ao longo da superfície superior radialmente para dentro, em direção à água. Como o fluido que está mais abaixo é freado pela glicerina, esse movimento radial cria células de circulação dentro da camada água– glicerina. Em volta da região de impacto, variações fortuitas na forma da fronteira entre a água e a glicerina são reforçadas pelas variações da tensão superficial. Em menos de 15 segundos, surge uma figura parecida com uma flor.

2.153 • Dedos de azeite de oliva em uma água coberta de talco Em um recipiente raso e limpo, despeje uma camada rasa de água e adicione à água uma pequena quantidade de talco. Assopre suavemente para espalhar o talco de modo uniforme (a superfície deve parecer empoeirada, com os grãos pequenos demais para serem vistos). Molhe em azeite de oliva a ponta de um clipe de papel endireitado e encoste-a por um breve instante no centro da água coberta de talco. Se a quantidade de talco for pequena, com grãos bem separados, o óleo meramente expulsa o talco, abrindo um espaço aproximadamente circular. Se a quantidade de talco for excessiva, o óleo não consegue mover o talco e limita-se a formar uma gota, que flutua na água. Entretanto, se a quantidade de talco for moderada, a superfície logo forma um desenho radial, com centro no ponto que foi tocado pelo clipe de papel. O que produz essa figura?

Resposta O óleo tenta se espalhar para formar uma camada fina, talvez uma monocamada com a espessura de uma molécula. Se houver pouco talco no caminho, o óleo empurra o talco com facilidade para longe. Com talco demais no caminho, os grãos ficam encalhados e não conseguem se mover, de modo que o óleo assume a forma de uma gota. Entretanto, em uma situação intermediária, o talco não fica encalhado, mas existe suficiente contato entre grãos para fazer a viscosidade efetiva da água assumir valores elevados. Assim, o óleo, menos viscoso, tenta abrir caminho na mistura talco–água, mais viscosa. Uma interface entre um líquido viscoso e um líquido menos viscoso está sujeita a perturbações fortuitas, que tendem a produzir ondas na interface. Cada uma dessas ondas tende a alternar entre projeções muito pequenas de óleo na mistura talco– água e projeções muito pequenas da mistura talco–água no óleo. Uma das ondas torna-se dominante e as projeções crescem rapidamente, formando dedos estreitos. Quando os dedos de óleo crescem, tiram o talco do caminho, deixando rastros bem visíveis nas regiões de talco. Essas instabilidades dos dedos em uma interface entre dois fluidos são muitas vezes estudadas em uma célula de Hele– Shaw, formada por duas placas de plástico transparente separadas por uma gaxeta estreita de borracha. A célula é enchida com um fluido antes de ser fechada. Em seguida, um segundo fluido é injetado no centro por meio de uma seringa inserida em um pequeno furo em uma das placas. O segundo fluido penetra no primeiro através de dedos. Alguns padrões lembram samambaias, outros lembram pétalas de flores e outros têm formas mais complexas.

2.154 • Oscilador de gordura de galinha No meio de um prato raso que contém amônia e sabão líquido, pingue uma gota de gordura líquida de galinha cozida. Por que a gota pulsa?

Resposta Esse efeito foi descoberto em meados dos anos 1970 por Jeffrey May, professor de química na Cambridge School, em Weston, Massachusetts, que estava tentando pôr de molho uma panela que tinha sido usada para assar uma galinha. Ele encheu a panela de água quente e adicionou sabão líquido e amônia. Assim que lentes (ilhas) de óleo se formaram na superfície da água, elas começaram a pulsar. Quando Jeffrey cobriu a panela para eliminar a evaporação da amônia, as pulsações pararam. Ele observou sinais de que um “revestimento membranoso” envolvia cada lente, o que sugere alguma interação entre as moléculas de sabão e o óleo. Esse fenômeno é parecido com outros sistemas que exibem oscilações da tensão superficial. A amônia remove lentamente o óleo da gordura de galinha, possibilitando que ele se difunda (se espalhe aos poucos) na água. A presença do óleo reduz a tensão superficial em torno da gota. Como a tensão superficial mais longe da gota é maior, o líquido em torno da gota é puxado radialmente para fora, o que faz a gota se expandir. Entretanto, quando o óleo se espalha, encontra moléculas de sabão na superfície da água. Pedaços de óleo ficam cercados por moléculas de sabão, em uma disposição chamada afrônito: a ponta hidrofóbica (que não atrai água) de cada molécula de sabão penetra no óleo e a ponta hidrofílica (que atrai água) penetra na água. Quando o óleo fica cercado, a tensão superficial da água aumenta, fazendo com que a gota relaxe e encolha. O ciclo de expansão e contração se repete indefinidamente porque o movimento para fora do óleo causa um movimento para dentro da água e da amônia que estão mais distantes na água. Assim, uma nova quantidade de amônia se aproxima da gota de gordura para começar um novo ciclo.

3.1 • O uivo do vento O que causa o ruído de uma ventania, que pode invocar imagens de lobisomens uivando fora de casa em uma noite escura e tempestuosa?

Resposta Quando o ar passa por um obstáculo, especialmente uma saliência como o beiral de um telhado ou mesmo a quina de um edifício, formam-se vórtices (redemoinhos) que são levados pelo vento. Os vórtices provocam variações da pressão do ar, que se propagam como ondas sonoras, dando a impressão de que o vento está uivando. O som pode chegar diretamente, se você estiver ao ar livre, mas também pode atravessar vidraças, portas, paredes e até seus cobertores para perseguir você.

3.2 • O canto dos cabos telefônicos e das agulhas de pinheiro Por que o vento faz as linhas de telefone, as linhas de transmissão e as agulhas dos pinheiros cantarem? Esse som, que aumenta e diminui de intensidade de acordo com a variação aleatória do vento, contribui para a sensação de relaxamento que experimentamos quando vamos passear em um bosque de pinheiros em um dia de outono.

Resposta Quando o vento passa por um cilindro fino, tal como um fio ou uma agulha de pinheiro, o ar tende a formar vórtices do outro lado do cilindro. Esses vórtices surgem de um lado do cilindro, depois do outro, depois novamente do primeiro lado, e assim sucessivamente. A formação de um vórtice muda a pressão do ar, de modo que uma sucessão de variações da pressão do ar se propaga a partir do cilindro, no sentido do vento, criando uma onda sonora conhecida como som eólico. Você ouve as mudanças de pressão do ar associadas à emissão de vórtices quando intercepta parte da onda sonora. Quanto mais depressa o ar passa pelo cilindro, mais freqüentemente acontecem as variações, de modo que a freqüência do som é mais elevada. O cilindro pode oscilar como uma corda de violão a certas freqüências, as chamadas freqüências de ressonância. Se a freqüência das variações de pressão corresponde a uma dessas freqüências de ressonância, o cilindro oscila nessa freqüência. Acontece que o movimento do cilindro também emite ondas sonoras, o que significa que o cilindro pode manter a freqüência da emissão de vórtices mesmo que a velocidade da corrente de ar mude um pouco. Quando linhas telefônicas ou linhas de transmissão oscilam, dizemos que elas galopam. Isso pode ser motivo de preocupação, já que o galope pode arrancar as amarras que sustentam uma linha em um poste ou uma torre, especialmente se as amarras também estiverem sustentando gelo que se formou sobre a linha.

Figura 3-1 / Item 3.1

O uivo dos fios telefônicos pode ser mais alto e estridente nos dias muito frios porque as baixas temperaturas fazem os fios se contraírem, deixando-os mais esticados entre seus apoios. Se os fios galopam, podem transferir seu movimento para os apoios, fazendo-os oscilar e aumentando assim o nível de ruído.

3.3 • Apitos e assobios Como uma pessoa assobia, ou seja, o que é preciso fazer para produzir o som de um assobio? Como um bule de chá produz um assobio quando a água começa a ferver? Foram inventados inúmeros objetos que assobiam, mas provavelmente os mais conhecidos são o apito dos policiais ingleses (de tubo único), o apito dos policiais americanos e os instrumentos musicais que produzem sons através de um mecanismo de assobio.

Resposta Todo apito depende de três fatores: (1) Uma corrente de ar encontra um obstáculo e cria vórtices. (2) Os vórtices fazem a pressão atmosférica variar de modo periódico, produzindo uma onda sonora. Os próprios vórtices ou as variações de pressão da onda sonora se propagam para trás, de encontro à corrente de ar. (3) Se a corrente de ar é instável (fácil de desviar ou modificar), essa realimentação aumenta a instabilidade, o que aumenta a produção de vórtices pelo obstáculo. Depois que esse mecanismo de produção de vórtices e realimentação se estabelece, passamos a ouvir um som contínuo: o assobio. Se você assobia soprando através de lábios franzidos, produzindo o que é conhecido como som de orifício, vórtices são produzidos quando o ar é forçado a passar pela abertura estreita dos lábios. (Os vórtices se formam porque a corrente que passa pelo centro da abertura é mais rápida que a corrente que passa perto dos lábios.) Parte das ondas sonoras geradas pelos vórtices se propaga para trás, passa pelos lábios e entra na boca (no trato vocal). A freqüência do som que volta depende da velocidade com a qual os vórtices saem dos lábios e da velocidade à qual o som entra na boca. O som pode entrar em ressonância no trato vocal a certas freqüências chamadas formantes. Se a freqüência do som que volta é próxima da segunda formante (que possui a segunda menor freqüência), o som que volta cria uma ressonância no trato vocal. Em outras palavras, o som cria ondas que se reforçam mutuamente em vez de se cancelarem. Se a ressonância acontece na segunda formante, a freqüência correspondente é a que você ouve. Você pode alterar a formante — e, portanto, a freqüência de assobio —, mudando a forma do trato vocal, principalmente estendendo a língua ou retraindo-a. Você também pode alterar a freqüência de assobio soprando com mais força para que a freqüência do som que volta seja mais alta e, portanto, esteja mais próxima de uma formante de ordem superior (uma freqüência de ressonância mais elevada). O assobio de um bule em ebulição é conhecido como som de abertura. A parte do bule que assobia é um cilindro curto aberto nas extremidades. Quando a água ferve (transformase em vapor) dentro do bule, o ar e o vapor d’água que penetram na

abertura de baixo formam uma corrente que chega à abertura de cima e cria vórtices no interior do cilindro. As variações de pressão produzidas pelo ar ao passar pela segunda abertura produzem ondas sonoras. Do lado de fora do cilindro, as ondas sonoras são o assobio do bule. Do lado de dentro, as ondas sonoras se propagam de volta para a primeira abertura, uma realimentação que controla a entrada de ar no cilindro. Com essa realimentação perturbando a corrente de ar, a perturbação se propaga no sentido da corrente e continua a produzir vórtices na segunda abertura. Os apitos dos policiais produzem um som de borda: uma corrente de ar é soprada na borda de uma abertura. A corrente de ar cria vórtices, que emitem ondas sonoras. A freqüência do som depende da freqüência de ressonância da cavidade do apito, que se comporta como a ressonância da sua boca quando você assobia. Nos apitos dos policiais americanos, uma pequena esfera saltita no interior da cavidade, alterando sua forma (e, portanto, a freqüência de ressonância) e também afetando a corrente de ar, especialmente quando bloqueia temporariamente o furo através do qual o apito é soprado. O resultado é um vibrato, uma variação caótica do volume e da freqüência do assobio.

Uma flauta funciona da mesma maneira: o ar que você sopra passa por uma borda e os vórtices resultantes produzem sons no interior da câmara da flauta, basicamente à freqüência de ressonância da câmara. Como parte da energia associada a essa ressonância é realimentada para a entrada da câmara e contribui para a formação de novos vórtices, os vórtices, a ressonância e o som que você ouve são contínuos. Um dos apitos de som de borda mais curiosos é a garrafa assobiadora peruana, uma garrafa de cerâmica que era fabricada pelos nativos peruanos antes de 1532, ano em que chegaram os conquistadores espanhóis. Algumas das garrafas remanescentes hoje estão em museus. Elas consistem em uma ou duas câmaras e um tubo que liga uma das câmaras a um apito. Quando alguém sopra o tubo, o ar escapa da câmara por um furo situado nas proximidades do apito. O apito é formado por uma abertura estreita que leva a uma pequena câmara de ar. Quando a corrente de ar encontra um dos lados da abertura, os vórtices resultantes criam uma ressonância no interior da câmara de ar. Os tipos mais ruidosos de apito são as sirenes, que ainda são usadas em alguns veículos de emergência. (Os carros de polícia modernos contam com dispositivos eletrônicos para produzir seu ruído característico, mas muitos carros dos bombeiros recorrem a sirenes mecânicas porque emitem um som muito alto e que chama a atenção.) Durante a Segunda Guerra Mundial e na época da Guerra Fria, foram instaladas grandes sirenes para alertar a população civil em caso de um ataque inimigo. (Perto de uma dessas sirenes, as vibrações eram tão fortes que a pessoa tinha a impressão de estar no meio de um terremoto.) Embora tenham existido vários tipos de sirenes de emergência, a maioria produzia sons de abertura fazendo ar comprimido passar por duas placas cheias de furos, uma girando em relação à outra. Quando os furos das duas placas ficavam alinhados, eram produzidos sons de abertura. A freqüência dos sons era controlada pela velocidade relativa de rotação das placas.

3.4 • A fala e o canto Como fazemos para falar ou cantar? Como fazemos para sussurrar? Por que as palavras cantadas por uma soprano são tão difíceis de entender?

Resposta O som é produzido pelos músculos conhecidos como pregas vocais (cordas vocais), que ficam na laringe. As pregas em lados opostos da garganta se mantêm fechadas enquanto a pressão do ar nos pulmões aumenta. As pregas se afastam bruscamente e o ar passa entre elas, criando uma turbulência que as faz oscilar. As oscilações alteram a pressão do ar, enviando ondas sonoras para cima, onde fica o trato vocal, composto pela faringe, a boca e a cavidade nasal. Essas ondas sonoras têm freqüências que correspondem às freqüências de oscilação das pregas vocais. A freqüência mais baixa é a oscilação fundamental das pregas vocais. As outras freqüências são múltiplos inteiros dessa freqüência mais baixa. Assim, por exemplo, se a freqüência mais baixa é 70 hertz, as outras freqüências são 2(70) = 140 hertz, 3(70) = 210 hertz e assim por diante. O trato vocal é um tubo com uma extremidade fechada (a laringe) e a outra extremidade aberta (a boca e as narinas). O som pode criar ressonâncias nesse tubo se as ondas sonoras tiverem a freqüência apropriada, as chamadas freqüências formantes, ou simplesmente formantes. As formantes não têm valores exatos, mas cobrem certas faixas de freqüências. A freqüência central de cada faixa é um múltiplo ímpar da menor formante. Assim, por exemplo, se a freqüência central da formante mais baixa for

500 hertz, as freqüências centrais das outras formantes serão 3(500) = 1500 hertz, 5(500) = 2500 hertz e assim por diante. Quando o som passa das pregas vocais para o trato vocal, as freqüências das pregas vocais podem excitar algumas formantes. Em outras palavras, as ondas sonoras com as freqüências dessas formantes são amplificadas no trato vocal de tal modo que a parte que deixa o trato vocal tem intensidade suficiente para ser ouvida. Na verdade, o trato vocal funciona como um filtro das freqüências produzidas pelas pregas vocais. Podemos alterar esse filtro mudando a posição da língua, abrindo ou fechando a boca (ou tapando o nariz) e mudando a altura da laringe. (Os cantores de formação clássica geralmente não querem que a laringe se mova, porque isto impede que controlem adequadamente a tensão das pregas vocais. Assim, acostumam-se a usar os músculos para manter a laringe no lugar.) Você pode alterar as freqüências das ondas sonoras que entram no trato vocal alterando a tensão nas pregas vocais: uma tensão maior produz freqüências mais altas. Embora pareça complicado, a maioria das pessoas aprende a fazer isso inconscientemente por volta dos 2 anos de idade. Muitos animais produzem sons com a laringe. Alguns ajustam a freqüência e a amplitude do som que sai da boca controlando os músculos da laringe ou o tamanho do trato vocal. Alguns, como o mainá, têm controle suficiente para imitar a voz humana, mas apenas o homem consegue produzir uma gama rica de sons (bem, uma gama rica se deixarmos de lado o rock pauleira). Quando sussurramos, as pregas vocais estão relaxadas, de modo que a corrente de ar que passa por elas não as faz oscilar. A turbulência (suave) da corrente de ar produz um som que excita algumas formantes do trato vocal. A fala sussurrada é feita controlando-se e alterando-se o tamanho e a forma do trato vocal, principalmente com a língua e os lábios. Para ser ouvida em uma grande sala de concertos, acompanhada por uma orquestra, uma soprano precisa concentrar a voz a freqüências muito acima da formante normal mais baixa de seu trato vocal. (Ela precisa cantar em uma faixa de freqüências que o som da orquestra normalmente não atinge e à qual a audição humana tem alta sensibilidade.) Embora possa forçar as pregas vocais a produzir uma alta freqüência e casar essa freqüência a uma formante de freqüência mais alta do trato vocal, a ressonância nesse caso não produz um som muito forte. Tanto a audibilidade quanto a qualidade do canto são melhores se, em vez disso, a soprano desloca a formante mais baixa para freqüências mais altas e excita essa formante. Para deslocar a formante, a cantora abre bem a boca e coloca os lábios na posição de um sorriso. Esses movimentos reduzem o comprimento do trato vocal e deslocam as formantes para cima. Assim, freqüências mais altas produzidas pela laringe podem excitar a primeira formante do trato vocal, permitindo que a soprano cante mais forte a essas freqüências mais altas. Entretanto, este método tem um custo: a cantora não consegue articular certos sons e palavras e, por isso, nem sempre é perfeitamente compreendida pela platéia.

3.5 • O efeito do hélio na voz Vou descrever esta experiência, mas não tente reproduzi-la, pois é perigosa e pode até ser fatal. Se uma pessoa fala depois de inalar gás hélio, por que sua voz soa estridente como a do Pato Donald?

Resposta Como foi explicado no item anterior, o som produzido por uma pessoa depende da excitação de várias formantes do trato vocal pelas ondas sonoras produzidas pela oscilação das pregas vocais (cordas vocais). Quando uma freqüência das pregas vocais cai dentro da faixa de freqüências de uma certa formante, o som a essa freqüência é incluído na voz da pessoa. A freqüência (a freqüência central ou a faixa de freqüências) de cada formante depende de dois fatores. O primeiro é o comprimento do trato vocal, algo que a pessoa pode controlar mudando a posição da língua ou a abertura da boca; o outro é a velocidade do som no trato vocal. Naturalmente, o trato vocal costuma estar cheio de ar e a velocidade do som tem um certo valor (cerca de 340 metros por segundo). Entretanto, se o ar for substituído por uma mistura de ar e hélio, a velocidade do som ficará muito maior (da ordem de 900 metros por segundo). Esse aumento de velocidade desloca para cima as freqüências de todas as formantes. As oscilações das pregas vocais são aproximadamente as mesmas que na presença de ar, mas agora são as freqüências mais altas dessas oscilações que excitam as formantes do trato vocal deslocadas para cima. As intensidades relativas das formantes também podem mudar. O resultado é que a voz passa a conter freqüências mais altas e deixa de ser familiar. O risco que esta experiência envolve é óbvio: para permanecermos vivos, precisamos respirar ar (ou melhor, o oxigênio do ar), mas se você, tolamente, encher os pulmões de hélio, não estará mais respirando ar. Você estará nesse momento em uma corrida contra a asfixia. Quando o nível de oxigênio no seu sangue cair, será que você vai conseguir expulsar o hélio e trazer de volta o ar com rapidez suficiente para não sufocar ou permitir que seus neurônios morram por falta oxigênio no cérebro? Todos vamos morrer um dia, mas essa é uma maneira muito estúpida de chegar lá.

3.6 • O canto gutural

Em Tuva, que fica no sul da Sibéria, alguns vocalistas conseguem cantar duas notas simultaneamente, prática conhecida como canto gutural ou canto difônico. Uma nota é um zumbido de baixa freqüência; a outra é um som de alta freqüência que lembra uma flauta. Como alguém consegue cantar duas notas ao mesmo tempo?

Resposta Na voz normal, falada ou cantada, as freqüências harmônicas produzidas pelas pregas vocais excitam principalmente a primeira formante do trato vocal (veja os dois últimos itens). Alguns formantes mais altos do trato vocal também são excitados, mas não são percebidos separadamente pelo ouvinte; em vez disso, são percebidos quase subconscientemente como uma característica da voz (diz-se que contribuem para o timbre, que é um termo definido de forma vaga). No canto gutural, o zumbido de baixa freqüência produzido pela oscilação das pregas vocais e da faringe não é especialmente difícil de imitar. A parte difícil é produzir um som de freqüência mais alta que parece não ter relação com o zumbido de baixa freqüência; parece “flutuar acima dele”. A idéia é fazer com que um dos harmônicos de alta freqüência das pregas vocais corresponda (quase exatamente) a uma das formantes de alta freqüência do trato vocal. Quando essa coincidência acontece, a ressonância para esta formante é forte, o que também acontece com o som emitido pelo cantor. Entretanto, conseguir essa coincidência exige que o cantor ajuste tanto a atividade das pregas vocais (regulando o tempo que as pregas vocais permanecem abertas) quanto a forma do trato vocal (alterando a posição da língua). Quase qualquer um pode aprender a fazer tudo isso, mas é preciso muita prática para que os sons fiquem musicalmente agradáveis.

3.7 • O ronco Um grande número de pessoas ronca enquanto dorme, muitas vezes para desespero dos membros da família e às vezes prejudicando o próprio sono e a saúde. O que causa o ronco?

Resposta O ronco acontece principalmente quando o ar entra nos pulmões, seja através do nariz (com a boca fechada), seja através do nariz e da boca. O ar passa pelo palato mole, que constitui a parte posterior do céu da boca. (Você pode vêlo quando olha para dentro da boca de uma pessoa.) Se o ar passa apenas pelo nariz, entra na garganta pelo alto do palato mole. Se a velocidade do ar excede um valor crítico, arrasta o palato mole para a parte de trás da garganta, obstruindo parcialmente a passagem. Depois de cair sobre a língua, o palato volta à posição original. Se, em vez disso, o ar passa pelo nariz e pela boca, atravessa a parte superior e inferior do palato mole. Nesse caso, o palato mole vibra entre a parte posterior da garganta e a língua, obstruindo alternadamente a passagem de ar pelo nariz e a passagem de ar pela boca. Eu consigo roncar (um ronco teatral, como se eu estivesse atuando em uma peça) inspirando com força pelo nariz e pela boca. A obstrução causada pela vibração do palato mole produz um fluxo de ar intermitente que faz minhas narinas pulsarem. O movimento do palato mole e a turbulência resultante produzem ondas sonoras na garganta. Se as ondas excitam uma ressonância na garganta (ou na cavidade garganta-boca-nariz), o som pode ter volume suficiente para acordar os familiares. Uma terceira causa do ronco é o fechamento periódico da faringe (a parte superior da garganta, que bloqueia a entrada da laringe quando comemos ou bebemos alguma coisa). O fechamento e a reabertura da faringe perturbam o fluxo de ar, criando turbulências que produzem ondas sonoras.

3.8 • O ronronar e o rugido O que faz um gato ronronar e um leão rugir?

Resposta O ronronar de um gato é semelhante à fala humana, já discutida em itens anteriores, exceto pelo fato de que, quando o ar passa pelas pregas vocais do gato, as pregas oscilam para produzir um zumbido no trato vocal (cavidade garganta-boca-nariz). Esse zumbido tem uma freqüência de cerca de 25 hertz, baixa demais para ser ouvida. Entretanto, ele excita harmônicos de ordem superior no trato vocal, que se irradiam da boca e do nariz do gato e podem ser detectados por ouvidos humanos. O som, que lembra um “r” longo, geralmente é sinal de que o gato está satisfeito. Alguns pesquisadores acreditam que a diferença entre ronronar e rugir depende do hióide, uma estrutura que fica na raiz da língua e está ligada à laringe. Se o hióide é totalmente ossificado (é um osso relativamente rígido), o animal tende a ronronar. Se, por outro lado, o hióide não é totalmente ossificado (não é tão rígido quanto um osso), o animal tende a rugir. Um animal com um hióide mais flexível, como o leão, pode fazer a laringe descer, aumentando significativamente o comprimento do trato vocal, o que reduz a freqüência das formantes. A laringe do leão também é diferente da laringe da maioria dos outros animais,

porque as pregas vocais são grossas e consistem em um tecido elástico, capaz de oscilar a baixas freqüências com amplitudes relativamente grandes. É por isso que o leão ruge!

CURIOSIDADE 3.9 • O som de um Parassaurolofo A crista do crânio de um dinossauro Parassaurolofo continha uma passagem nasal em forma de um tubo longo e arqueado aberto nas duas extremidades. O dinossauro pode ter usado a passagem para emitir sons por vocalização, fazendo a passagem entrar em ressonância em sua freqüência mais baixa (a freqüência fundamental), da mesma forma como se emitíssemos sons fazendo entrar em ressonância a cavidade garganta-boca-nariz. Acredita-se que crânios fósseis com passagens nasais mais curtas sejam do Parassaurolofo fêmea, que emitiria sons de freqüência mais alta.

3.10 • Os sons dos tigres e dos elefantes Parte do rugido de um tigre está na faixa do infra-som, composta por freqüências tão baixas que não podem ser ouvidas pelos seres humanos. O tigre ganha alguma coisa emitindo sons de freqüência tão baixa? Embora os elefantes ouçam melhor a uma freqüência de cerca de 1000 hertz, quando chamam um ao outro, especialmente de grandes distâncias, colocam grande parte da energia na faixa de 14 a 35 hertz, que se estende até o infra-som. Se você está perto de um elefante quando ele chama, pode sentir a onda mais do que ouvi-la. Será que um chamado de baixa freqüência tem alguma vantagem em relação a um chamado de alta freqüência? Em uma savana, os elefantes fazem quase duas vezes mais chamados à noite do que de dia, seja para buscar uma parceira, seja para manter os rivais a distância. Existe alguma vantagem em fazer esses chamados à noite?

Resposta A distância que o som percorre em uma floresta, o hábitat dos tigres, depende do comprimento de onda: sons com comprimentos de onda maiores são menos absorvidos e espalhados pelas árvores, arbustos, folhas e capim do que sons com comprimentos de onda menores. Assim, para atrair uma parceira ou manter afastados os rivais, o tigre pode enviar o sinal mais longe com um rugido de baixa freqüência (grande comprimento de onda) do que com um rugido de alta freqüência. (Além do mais, um rugido de baixa freqüência é mais assustador.) Outros animais da floresta também dependem de comunicações a baixas freqüências. Os casuares, por exemplo, que são as maiores aves florestais do mundo, emitem sons retumbantes a freqüências de 20 ou 30 hertz, no limite inferior da audição humana. Alguns sons produzidos pelo rinoceronte-de-sumatra (“sopros de apito”) estão na faixa do infra-som. Em uma savana, muitas vezes acontece à noite uma inversão térmica em que o ar mais quente fica acima do ar mais frio. Durante uma inversão térmica, um chamado de baixa freqüência pode ficar preso debaixo do ar mais quente. Assim, em vez de o chamado se espalhar para cima e se perder, a maior parte do som fica presa, percorrendo uma distância muito maior na savana (às vezes até 10 quilômetros) do que durante o dia, quando a inversão não acontece (às vezes apenas 2 quilômetros). Sons de freqüências mais altas têm menor probabilidade de ficar presos debaixo de uma camada quente e também são mais absorvidos pelo ar, de modo que um chamado de um elefante a uma freqüência mais alta não chegaria tão longe. O melhor momento para um elefante dar o seu recado, de modo que o som se espalhe pela maior área possível, é uma ou duas horas depois do pôr-do-sol, quando quase não há vento e a inversão teve tempo para se formar. Mais tarde, a intensidade do vento pode aumentar; embora nesse caso um chamado possa chegar mais longe na direção do vento, ele se propaga pior nas outras direções e, portanto, a área total coberta pelo som é menor.

3.11 • O coaxar da rã-touro O macho da rã-touro coaxa para atrair uma parceira ou afugentar outros machos. Como um animal pequeno, com uma boca pequena, pode produzir um ruído tão grave e retumbante?

Resposta A rã-touro emite a maior parte do seu coaxar pelos tímpanos, não pela boca. Diz-se que um pesquisador descobriu este fato comprimindo (levemente) com os dedos os ouvidos de uma rã-touro e notando que o volume dos sons produzidos pelo animal ficou bem menor. Mais tarde, o experimento foi repetido com “protetores auriculares”, pedaços de espuma de borracha mantidos sobre os tímpanos por uma mola! Tal como nos mamíferos, o som é produzido nas pregas vocais da rã. Em seguida, porém, o som vai para os tímpanos, que entram em ressonância a certas freqüências, como a membrana de um tambor. A ressonância aumenta muito a intensidade do

som a essas freqüências e espalha o som pelas vizinhanças da rã. Antes de ser descoberto esse papel dos tímpanos, muitos acreditavam que a ressonância acontecia no saco vocal, a região da garganta que a rã infla quando coaxa. Embora os gibões e alguns tipos de rã e sapos possam criar ressonâncias no saco vocal para aumentar o volume do som produzido, isso não acontece no caso da rã-touro.

3.12 • Grilos e lagostas O que os grilos fazem para cricrilar e o que as lagostas fazem para raspar?

Resposta Um grilo macho cricrila para atrair uma parceira fechando a asa dianteira direita por cima da asa dianteira esquerda, depois de abri-las. Quando as asas se fecham uma por cima da outra, um pêlo duro (o plectro) na superfície superior da asa esquerda raspa em uma série de pequenos dentes (que formam uma lima) na superfície inferior da asa direita. O pêlo se choca com os dentes em rápida sucessão, fazendo oscilar o plectro e a lima, os quais, por sua vez, fazem oscilar boa parte das duas asas. As oscilações das asas, especialmente em uma região relativamente grande conhecida como harpa, produzem variações de pressão no ar, que se afastam das asas em forma de ondas sonoras: o cricrilar do grilo. A freqüência do som depende da velocidade na qual o plectro passa pelos dentes da lima. Essa velocidade parece ser controlada pela freqüência de oscilação da harpa em cada asa: quando a harpa se movimenta, torce o plectro ou um dente, fazendo com que se desprendam. O chamado de acasalamento representa um certo risco para o grilo macho, pois atrai moscas que estão interessadas em pôr ovos no grilo. Os ovos geram larvas parasitas que se alimentam do grilo, matando-o. (Tanto para o homem quanto para o grilo, chamados de acasalamento às vezes podem criar problemas.) A lagosta também esfrega um pêlo (parte da antena) em uma lima (uma placa com rugosidades microscópicas, situada abaixo dos olhos), mas a situação é diferente porque o pêlo é macio e não produz nenhum som ao se chocar com os dentes da lima. Em vez disso, quando o pêlo raspa na lima, fica preso em um dos dentes e se estica antes de finalmente se soltar e ser projetado em direção ao dente seguinte. No instante em que o pêlo se solta, ele e a lima oscilam, produzindo um som: o raspar da lagosta. O raspar serve para assustar predadores e pode ser usado mesmo quando o exoesqueleto da lagosta ainda está mole por causa da troca de carapaça.

3.13 • Rãs e grilos que emitem sons ressonantes Por que o macho da rã arbórea de Bornéu (Metaphrynella sundana) coaxa em busca de fêmeas quando está no oco de uma árvore? Por que o cricri de um grilo-toupeira aumenta de intensidade e limpidez quando o grilo cava e constrói uma toca?

Resposta A rã-arbórea macho costuma se instalar confortavelmente em uma poça formada pela água da chuva no oco de uma árvore. Quando se dispõe a chamar uma parceira, aumenta e diminui a freqüência do seu coaxar até encontrar a menor freqüência de ressonância da cavidade. Esta é a menor freqüência na qual as ondas sonoras se reforçam mutuamente na cavidade, produzindo uma onda sonora de grande intensidade. Uma vez obtida a ressonância, o som que escapa da cavidade tem um volume elevado e anuncia a grandes distâncias a solidão da rã. O grilo-toupeira produz uma cavidade na qual o seu cricri causa ressonância, ou seja, a freqüência do cricri é igual à freqüência de ressonância do buraco. O grilo costuma construir a toca em etapas, criando uma cavidade aproximadamente esférica e um túnel que se alarga gradualmente, como o tubo de instrumento de sopro, para permitir que o som escape com facilidade. O grilo faz uma pausa no fim de cada etapa para cricrilar e verificar se a toca está produzindo uma ressonância. Finalmente, a ressonância é obtida e o túnel projeta com eficiência as ondas sonoras para fora da toca.

3.14 • O ataque das cigarras australianas Se um macho de cigarra australiana Cyclochila australasiae começar a cantar perto de você, você vai levar um susto, porque o canto é muito alto (100 decibéis a uma distância de 1 metro). Como esse animal, o inseto de canto mais potente que se conhece, mas que tem apenas 60 milímetros de comprimento, consegue fazer tanto barulho?

Resposta Cada lado da cigarra contém uma estrutura em forma de tambor com quatro costelas verticais encurvadas para fora. Um músculo, ligado a essa estrutura, pode fazer com que as costelas se encurvem para dentro, uma por uma, em rápida sucessão. Ao se flexionar, cada costela emite um pulso sonoro: um estalido. A série de estalidos cria uma ressonância em um saco aéreo localizado no abdome da cigarra, ou seja, as ondas sonoras se reforçam mutuamente,

produzindo uma onda de grande amplitude. Esse som reforçado tem uma freqüência de 4300 hertz e uma intensidade de mais de 150 decibéis (maior que a produzida por uma banda de metaleiros). O som é emitido através de tímpanos situados nos dois lados da cigarra. Os cientistas ainda não foram capazes de explicar por que a cigarra não fica surda.

3.15 • As vozes dos pingüins Depois de mergulhar e comer, o pingüim-imperador tem que nadar de volta para o banco de gelo onde mora e encontrar a companheira. No inverno, porém, ela pode estar em qualquer lugar entre os milhares de pingüins que se aglomeram para não morrer de frio no clima rigoroso da Antártica, onde as temperaturas podem chegar a –40°C e a velocidade do vento chega a 300 quilômetros por hora. Além disso, todos os pingüins são muito parecidos, mesmo para outros pingüins, de modo que o pingüim não é capaz de reconhecer visualmente a companheira. Como, então, um pingüim consegue encontrar a companheira entre milhares de outros pingüins?

Resposta A maioria das aves emite sons usando apenas um lado do seu órgão vocal, a siringe. Os pingüinsimperadores, porém, emitem sons usando os dois lados ao mesmo tempo. Cada lado cria uma ressonância na garganta e na boca da ave, como em um tubo com as duas extremidades abertas: ondas sonoras que se reforçam mutuamente produzem uma onda sonora mais forte. A freqüência da onda sonora criada por um lado da siringe é diferente da freqüência criada pelo outro lado. Um ouvinte percebe a média das duas freqüências, mas também percebe que o som médio tremula, ou seja, sua intensidade varia com uma certa freqüência de batimento que é igual à diferença entre as freqüências criadas pelos dois lados da siringe. Os pingüins são muito sensíveis a essas freqüências de batimento. O chamado de um pingüim pode conter diferentes freqüências de ressonância e diferentes freqüências de batimento, o que possibilita que sua voz seja reconhecida entre milhares de outras vozes de pingüins.

3.16 • Estalidos emitidos por uma baleia Uma baleia jubarte emite sons produzindo uma série de estalidos. Na verdade, a baleia emite um único som na parte da frente da cabeça para iniciar a série. O que produz o resto da série? Como os pesquisadores conseguem determinar o comprimento da baleia com base nessa série de estalidos?

Resposta Parte do som produzido pela baleia na frente da cabeça emerge na água, tornando-se o primeiro estalido detectado de uma série. O resto do som se propaga para trás, passando pelo órgão do espermacete (um depósito de gordura), reflete-se no saco frontal (uma camada de ar), situado na parte de trás da cabeça, e se propaga para a frente, passando de novo pelo órgão do espermacete. Quando chega ao saco distal (outra camada de ar), na frente da cabeça, parte do som escapa para a água para formar um segundo estalido e o resto é refletido na direção do órgão do espermacete. Esse ciclo se repete várias vezes, produzindo outros estalidos. O intervalo de tempo entre estalidos consecutivos está relacionado com a distância entre os sacos frontal e distal, que é proporcional ao tamanho da baleia. Assim, medindo esse intervalo de tempo, os pesquisadores conseguem estimar o comprimento da baleia.

3.17 • Interferência construtiva causada por sons refletidos Quando um avião está passando acima de você, perto o suficiente para ser ouvido, baixe a cabeça, agachando-se até o chão. Por que a freqüência do ruído do avião aumenta enquanto você está baixando a cabeça?

Resposta O som que você ouve é uma combinação do som que chega do avião diretamente até você com o som que chega a você depois de ser refletido no solo. Os dois conjuntos de ondas sonoras sofrem interferência nos seus ouvidos e você ouve principalmente as ondas que interferem de maneira construtiva (elas se reforçam mutuamente em vez de cancelar-se). A altura acima do solo na qual acontece a interferência construtiva depende do comprimento de onda: um comprimento de onda maior (mais longo) requer uma altura maior. Quando você baixa a cabeça, seus ouvidos se movem para alturas em que comprimentos de onda menores (freqüências mais altas) sofrem interferência construtiva. Assim, quando você se agacha, o som que você ouve aumenta de freqüência. Você pode ouvir um efeito parecido ao se afastar de uma cachoeira em direção a uma parede vertical que reflete o som da cachoeira em sua direção, de tal modo que o som refletido interfere no som da cachoeira que chega diretamente a você. Quando você se aproxima da parede, o som que você ouve aumenta de freqüência.

3.18 • Sons de longo alcance Minha casa fica em Cleveland Heights, em Ohio, acima de uma planície às margens do lago Erie. Uma ferrovia corre pela planície, no sopé de Cleveland Heights. Da minha casa, não consigo ver a ferrovia, não só porque está muito longe, mas também porque minha linha de visão é bloqueada pela encosta e por milhares de árvores e casas. Por que, então, em certas noites, posso ouvir da minha casa o barulho do trem? Quando acontecem explosões repetidas em um certo local, como uma salva de tiros de canhão, às vezes elas são ouvidas apenas em certas zonas em volta do local da explosão. Se você se afasta do local das explosões, o som diminui de intensidade na primeira zona (zona central), desaparece em uma segunda zona e volta a aparecer em uma terceira zona. Por que existem essas zonas? Quando o vulcão do monte St. Helens, no estado americano de Washington, explodiu em 1980, a energia liberada foi equivalente a vários megatons de TNT. Por que a explosão só foi ouvida a distâncias maiores que 100 quilômetros? Na Primeira Guerra Mundial, perto de Messines, ao sul de Ypres, na Bélgica, militares ingleses passaram um ano cavando 21 túneis que passavam por baixo das linhas alemãs, a uma profundidade de cerca de 30 metros. Quando os túneis ficaram prontos, cerca de meio milhão de quilos de explosivos foi introduzido; na noite de 7 de junho de 1917, os ingleses detonaram 19 desses 21 túneis (dois deles falharam), criando a maior explosão artificial da história. A explosão foi ouvida em Londres e até em Dublin, a centenas de quilômetros de distância. Como o som da explosão chegou tão longe? (Um dos túneis restantes explodiu inesperadamente durante uma tempestade de raios em 1955, felizmente matando apenas uma vaca. O último túnel, do qual se conhece apenas a localização aproximada, ainda não explodiu, o que preocupa quem vive nas imediações.)

Resposta Quando uma onda sonora é emitida fazendo um ângulo com a vertical, a direção de propagação muda se a onda encontra uma mudança na temperatura do ar. Nesse caso, dizemos que o som é refratado. Se a temperatura diminui, o ângulo entre a direção de propagação e a vertical diminui. Se a temperatura aumenta, o ângulo aumenta e a onda pode até “virar ao contrário”, voltando para o solo. Consigo ouvir o ruído do trem na ferrovia distante quando o ar acima da região está mais quente que o ar próximo do solo, situação conhecida como inversão térmica. Nesse caso, as ondas sonoras emitidas pelo trem são desviadas para a região de Cleveland Heights, onde podem ser ouvidas por todos (Fig. 3-2).

Figura 3-2 / Item 3.18 Durante uma inversão térmica, as trajetórias do som se encurvam de volta para o solo por causa do aumento na temperatura do ar com a altura.

Antigamente, essa distância adicional percorrida pelo som durante as inversões térmicas era bem conhecida. Os zulus, por exemplo, sabiam que podiam se comunicar com companheiros situados do outro lado de um vale com até 2 quilômetros de extensão se esperassem até a noite, quando o ar no vale ficava mais frio que o ar acima do vale. Quando as ondas sonoras de uma explosão sobem muito, podem ser desviadas de volta ao solo pelo aumento de temperatura na parte inferior da estratosfera (abaixo da estratopausa, que fica a uma altitude de 42 quilômetros) e na parte inferior da termosfera (acima da mesopausa, a uma altitude de 85 quilômetros). Nesse caso, as ondas sonoras podem voltar à superfície a uma distância surpreendente do ponto de origem, uma distância muito maior que as ondas sonoras que se propagam perto do solo, que são bloqueadas por árvores, casas e outros obstáculos. Assim, o som pode ser ouvido em uma zona mais distante que a

primeira zona (zona central). Se esse som que volta é refletido pelo solo, pode dar outro “salto” e voltar em outra zona, mais distante. Quando o monte St. Helens explodiu, as ondas de compressão (o ar é comprimido pela material ejetado pela explosão) se formaram muito devagar para que o ouvido humano respondesse. Assim, a onda de compressão não foi ouvida (nem causou danos a janelas e outros objetos frágeis) em Toledo, Washington, a 54 quilômetros de distância. Entretanto, quando as ondas de compressão chegaram à estratosfera, acumularam-se e foram redirecionadas de volta para o solo. Quando chegaram ao solo, a distâncias maiores que 100 quilômetros, as variações de pressão eram suficientemente rápidas para serem ouvidas. Os sons das explosões perto de Messines se propagaram da mesma maneira, subindo até a estratosfera e descendo de volta até o solo. Entretanto, diferentemente da explosão do monte St. Helens, as ondas de compressão no local da explosão se formaram rapidamente e produziram um som extremamente forte perto dos soldados. A direção de propagação de uma onda sonora também é afetada pelo vento. Se a onda se propaga para cima a favor do vento, a trajetória da onda se encurva de tal modo que a onda volta ao solo em algum lugar vento abaixo. Às vezes esse retorno do som acontece a uma distância surpreendente.

3.19 • Sombras acústicas Na Guerra Civil Americana, de 1862 a 1865, comandantes de campo tanto do lado da União como dos Confederados dependiam muito do som para saber quando as batalhas começavam e onde estavam sendo travadas. Em várias ocasiões, um comandante dividia suas tropas para atacar o inimigo de duas direções, mas a única maneira de coordenar as investidas era esperar o ruído do ataque de um grupo para mandar o outro grupo entrar em ação. Como os dois grupos costumavam estar a poucos quilômetros de distância um do outro, o plano parecia razoável. Mesmo assim, falhou em batalhas decisivas. Um efeito igualmente estranho foi observado em junho de 1862 pelo Secretário de Guerra dos Confederados e um de seus comandados enquanto observavam a batalha de Gaines’s Mill do alto de uma colina, a uma distância que não passava de dois quilômetros. A batalha no vale embaixo envolvia pelo menos 50.000 homens e 100 peças de artilharia de campanha, produzindo um ruído que devia ser ensurdecedor para os soldados em combate. Mesmo assim, os dois observadores não ouviram nada durante duas horas de observação. Como uma batalha dessas pode ser inaudível a poucos quilômetros de distância?

Resposta Existem duas explicações possíveis para o fato de essas batalhas extremamente ruidosas não terem sido ouvidas a poucos quilômetros de distância. (1) Uma floresta densa, no meio do caminho, pode ter abafado os sons absorvendo as ondas sonoras. (2) A direção de propagação das ondas sonoras pode ter sido afetada porque a temperatura do ar ou a velocidade do vento variavam com a altura. No caso da segunda hipótese, se a temperatura do ar diminui com a altura, as ondas sonoras cuja direção de propagação faz um pequeno ângulo para cima com a horizontal são desviadas ainda mais para cima e, por isso, não chegam a observadores situados no solo ou pouco acima do solo, a alguns quilômetros de distância (Fig. 3-3a). A velocidade do vento costuma aumentar com a altura. Nesse caso, se o som se propaga a favor do vento, é desviado para baixo e, portanto, pode ser ouvido (Fig. 3-3b). Entretanto, se o som está se propagando no sentido contrário ao do vento, é desviado para cima e não pode ser ouvido.

Figura 3-3 / Item 3.19 (a) O som da batalha se afasta de um observador porque a temperatura do ar diminui com a altura. (b) O vento muda a trajetória do som.

Em algumas batalhas da Guerra Civil Americana, o comandante estava vento acima em relação à batalha e a velocidade do vento aumentava consideravelmente com a altura. Isso significa que o comandante se encontrava na chamada sombra acústica. Houve situações ainda mais estranhas nas quais ondas sonoras foram desviadas para cima pelo efeito da temperatura e depois foram desviadas para baixo pelo efeito do vento, voltando ao solo longe do campo de batalha. Assim, soldados distantes puderam ouvir a batalha, enquanto soldados razoavelmente próximos não ouviram nada.

3.20 • Ouvindo os submarinos soviéticos Durante a Guerra Fria, os Estados Unidos monitoraram os submarinos da União Soviética através de uma rede submarina de antenas acústicas capazes de detectar ruídos emitidos pelos submarinos, tais como os produzidos pelas hélices. O interessante é que as antenas foram instaladas em latitudes intermediárias e os submarinos estavam a 1.000 quilômetros de distância, nas latitudes polares. Como era possível captar o som de uma hélice a uma distância tão grande? Os Estados Unidos se beneficiaram dessa capacidade de ouvir sorrateiramente até que um espião avisou aos soviéticos.

Resposta Parte do som emitido, por exemplo, por uma hélice ruidosa fica retida em uma região chamada canal DSC (deep sound channel, ou seja, canal de som profundo), que liga as latitudes polares às latitudes intermediárias e se comporta essencialmente como um tubo fechado. O canal fica à profundidade na qual a velocidade do som na água é mínima. A velocidade do som depende da profundidade e da temperatura da água. Se medirmos a velocidade da água em função da profundidade a partir da superfície, o efeito da temperatura domina inicialmente e a velocidade diminui com a queda de temperatura. Em um certo ponto, porém, o efeito da profundidade começa a dominar, e a partir desse ponto a velocidade aumenta novamente. Assim, existe uma profundidade na qual a velocidade é mínima. Se o som se propaga a essa profundidade, sofre um efeito semelhante ao que acontece com a luz em uma fibra óptica. Se o som é desviado, por exemplo, para cima, entrando em uma região acima do canal na qual a velocidade é maior, a mudança de velocidade desvia o som (o som é refratado) de volta para baixo. Da mesma maneira, se o som é desviado para baixo, entrando em uma região abaixo do canal na qual a velocidade é maior, a mudança de velocidade desvia o som de volta para cima. O ruído dos submarinos soviéticos que freqüentavam as latitudes polares era guiado por esse canal acústico e percorria todo o caminho até as antenas que os americanos haviam instalado nas latitudes intermediárias.

3.21 • Megafone de um chefe de torcida, buzina de nevoeiro Se um chefe de torcida se dirige a um público ruidoso, ninguém ouve o que ele está dizendo. Quando, porém, o chefe de torcida usa um megafone, todos podem ouvi-lo com facilidade. Por que um megafone amplifica a voz?

Por que a abertura das buzinas de nevoeiro convencionais é mais larga no sentido vertical do que no sentido horizontal? Não é um desperdício lançar o som para cima?

Resposta Quando o som sai de uma abertura de tamanho comparável ao comprimento de onda do som, as ondas sonoras sofrem difração, ou espalhamento, em várias direções. Quanto menor a abertura, maior o espalhamento. Quando um chefe de torcida fala para a multidão, os sons que saem de sua boca se espalham bastante, indo não só para a frente, mas também para a direita, para a esquerda, para cima e para baixo. Esse espalhamento reduz a intensidade do som (o volume) em todas as direções. Quando o chefe de torcida usa um megafone, com sua superfície afunilada, o som sai de uma abertura maior (a extremidade mais larga do megafone) e o espalhamento é menor. Nesse caso, o som se propaga principalmente para a frente e a intensidade é muito maior nessa direção. O que o megafone faz, portanto, é reduzir a difração sofrida pelos gritos do chefe de torcida. O objetivo de uma buzina de nevoeiro é espalhar um som de advertência o mais longe possível, horizontalmente, para que seja ouvido por todos os navios das vizinhanças. Como se deseja que o som se espalhe horizontalmente e não verticalmente, a abertura da buzina de nevoeiro é mais alta do que larga.

3.22 • A direção de um sussurro Em uma área aberta (onde existem poucos obstáculos para refletir o som em sua direção), peça a um amigo para falar com um volume baixo e razoavelmente constante, primeiro de frente para você e, em seguida, girando o corpo até ficar de costas. Você provavelmente vai conseguir ouvir tudo que o seu amigo diz. Peça a ele para fazer a mesma coisa enquanto sussurra as palavras com o mesmo volume de antes (seu amigo pode usar um sussurro teatral, como se falasse para que o público o ouvisse). Por que o sussurro fica inaudível quando seu amigo vira de costas?

Resposta Eis duas explicações, a mais fácil primeiro: como foi explicado no item anterior, o som é difratado (espalha-se) quando passa por uma abertura da mesma ordem que seu comprimento de onda. A difração é menor para comprimentos de onda menores. Um sussurro contém comprimentos de onda menores (freqüências mais altas) do que as de uma voz normal. Assim, o som de um sussurro é menos espalhado e a pessoa que sussurra precisa estar virada para você para que você a ouça. Eis uma resposta mais vaga: o cálculo do espalhamento do som a partir da boca, realizado pela primeira vez por Lord Rayleigh em 1896, é difícil. Rayleigh, supondo que uma pequena fonte de som estava posicionada na superfície de uma esfera, descobriu que as ondas sonoras contornavam parte da esfera, sendo que as ondas com comprimentos de onda menores contornavam uma parte menor da esfera do que as ondas com comprimentos de onda maiores. Assim, um sussurro, com comprimentos de onda menores, não contorna a cabeça tanto quanto os sons de uma voz normal. É possível ouvir um efeito parecido quando você está na platéia de uma peça ao ar livre que não dispõe de superfícies adequadas para refletir as vozes dos atores até você. Um ator pode ser ouvido com facilidade, mesmo quando está de costas para você, mas uma atriz, falando tão alto quanto ele mas a freqüências mais altas, pode ter que virar de frente para você para ser ouvida.

3.23 • O efeito Doppler Se você está parado em uma passagem de nível quando um trem passa apitando, por que a freqüência do apito muda? A mudança é de alta freqüência para baixa freqüência ou vice-versa?

Resposta O movimento de uma fonte sonora em relação a um ouvinte (você ou qualquer outro detector de som) altera a freqüência do som, fenômeno conhecido como efeito Doppler. Isto acontece porque o som é uma onda. Se a fonte está parada em relação a você, os picos de alta pressão da onda passam por seus ouvidos à mesma taxa de repetição (freqüência) com a qual são produzidas pela fonte. Assim, você ouve a mesma freqüência que a fonte está produzindo. Se, em vez disso, a fonte se aproxima de você, ela está correndo atrás das ondas que emite em sua direção. Isto faz com que a taxa de repetição dos picos de alta pressão que chegam aos seus ouvidos seja mais alta que a taxa de repetição dos picos que a fonte está produzindo e, portanto, você ouve uma freqüência mais alta. Se a fonte se afasta de você, acontece o efeito oposto: você ouve uma freqüência mais baixa do que a que está sendo produzida pela fonte. Assim, a aproximação de uma fonte faz a freqüência aumentar, o afastamento faz a freqüência diminuir e a variação depende da velocidade da fonte. Se a fonte não está se movendo na sua direção, o efeito (variação da freqüência) é menor; se o

movimento é perpendicular à sua direção, não há desvio. Se você coloca um detector de som entre os trilhos de uma ferrovia para captar o apito do trem, pode medir o efeito Doppler. O som detectado tem a mesma freqüência (maior que a freqüência real do apito) enquanto o trem está se aproximando e muda bruscamente para uma outra freqüência (menor que a freqüência real do apito) quando o trem começa a se afastar. Se, em vez disso, você instala o detector a uma distância segura dos trilhos (digamos 20 metros), as medidas são diferentes por uma questão geométrica. Quando o trem se aproxima do detector, sua velocidade em direção ao detector é cada vez menor, de modo que a freqüência se aproxima da freqüência real do apito. Assim, enquanto o trem ainda está distante, o som detectado tem a mesma freqüência, mais alta que a freqüência real do apito, mas quando o trem se aproxima o desalinhamento ganha importância e a freqüência cai rapidamente até que, quando o movimento do trem é perpendicular à direção do detector, a freqüência permanece constante. Depois disso, a freqüência cai rapidamente de novo até chegar a uma certa freqüência, mais baixa que a freqüência real do apito, que se mantém enquanto o apito puder ser ouvido. Suponha que você seja o detector e está tão próximo dos trilhos que o efeito geométrico pode ser desprezado. Você deveria ouvir uma freqüência constante, maior que a freqüência normal do apito, quando o trem está se aproximando e uma outra freqüência constante, menor que a freqüência real do apito, quando o trem está se afastando. Entretanto, não é isso o que acontece. Na verdade, você tem a impressão de que a freqüência está aumentando quando o trem se aproxima e diminuindo quando o trem se afasta. Essa freqüência percebida é chamada de tom. Nessa situação, o tom depende do volume do som. Como o apito aumenta de volume à medida que o trem se aproxima, você tem a impressão de que a freqüência está aumentando continuamente. Como o apito diminui progressivamente de volume à medida que o trem se afasta, você tem a impressão de que a freqüência está diminuindo continuamente. Esse efeito de mudança de tom é chamado ilusão do efeito Doppler.

3.24 • Como os morcegos encontram insetos Quando um morcego procura insetos (sua presa) no solo, é guiado principalmente pela audição, já que enxerga mal e costuma caçar à noite. Entretanto, algumas espécies de morcego são capazes de localizar e capturar insetos (mariposas, por exemplo) em pleno vôo. Como o morcego consegue não só detectar a presença do inseto, mas também estimar a direção do seu vôo e a sua velocidade? Por que os morcegos conseguem caçar com mais facilidade as mariposas que estão voando perto de uma lâmpada de vapor de mercúrio (como as usadas na iluminação pública) do que as que estão voando no escuro? Por que a vantagem desaparece se a lâmpada for de vapor de sódio? Quando explorei cavernas no Texas, às vezes passava uma semana inteira debaixo da terra. Duas vezes por noite, milhares de morcegos passavam por mim, primeiro quando saíam da caverna em busca de alimento e, depois, quando voltavam para dormir no fundo da caverna. Nenhuma vez, mesmo na escuridão absoluta de uma passagem tortuosa, um morcego esbarrou em mim ou em uma parede. Como os morcegos conseguem evitar colisões desse tipo?

Resposta Os morcegos produzem ondas sonoras com freqüências tão altas que não podem ser ouvidas pelos seres humanos, uma faixa conhecida como ultra-som. O som, que é provavelmente emitido pelas narinas do morcego, é refletido pelos objetos que se encontram no caminho do morcego, tais como paredes, espeleólogos e insetos voadores. Os ecos alertam o morcego para o fato de que existem obstáculos à frente. Este método, porém, apresenta um problema no caso em que um bando de morcegos está voando ao mesmo tempo no interior estreito de uma caverna: como um dos morcegos vai distinguir o eco produzido pelos sons que ele emite dos ecos produzidos pelos sons dos outros morcegos? A explicação é que cada morcego consegue distinguir seu próprio som por suas freqüências peculiares, variações de freqüência e variações de amplitude. Mesmo assim, a identificação de um som entre dezenas ou até centenas de outros sons, durante um vôo rápido em direção a uma parede, pode ser considerada um feito extraordinário. O morcego recebe mais informações que um simples eco, já que é capaz de perceber a mudança da freqüência do eco provocada pelo seu próprio movimento. Suponha que o morcego emita o som a uma certa freqüência quando está voando em direção a uma parede. O eco que volta ao morcego tem uma freqüência maior por causa do efeito Doppler. Quanto mais depressa o morcego se aproxima da parede, maior a freqüência do eco. Os morcegos usam o efeito Doppler para determinar sua velocidade. Alguns morcegos emitem sons de freqüência constante e usam o efeito Doppler para detectar não apenas obstáculos, mas também insetos. Outros morcegos emitem um som que varre uma faixa de freqüências. Analisando o efeito Doppler a diferentes freqüências, um morcego é capaz de determinar a forma de um objeto, distinguindo assim o eco de um inseto do eco de uma folha, por exemplo. A tarefa pode ser mais fácil se o inseto estiver batendo as asas, pois a variação da inclinação das asas produz uma variação na intensidade do eco para o morcego (para algumas inclinações, o eco é mais forte). Essa variação é um

sinal seguro de que o eco foi produzido por um inseto voador. Alguns morcegos preferem caçar voando baixo sobre a água (fazendo arrastão) porque a superfície lisa da água produz muito menos ecos espúrios. Boa parte do reflexo do sinal do morcego na água não volta para o morcego, mas um inseto reflete o som diretamente para o morcego e é fácil de identificar. Algumas espécies de insetos são capazes de ouvir o ultra-som usado pelos morcegos. Quando um desses insetos detecta essas freqüências, em especial se o sinal for intenso, passa a voar de maneira errática, em geral em uma direção que reduz a intensidade do som. Alguns desses insetos têm uma defesa ainda melhor: emitem um estalido que interfere no eco de que um morcego necessita para localizar um inseto. O estalido é produzido por uma cutícula que é deformada repetidamente. Cada deformação produz uma variação brusca da pressão do ar, e essas variações repetidas de pressão se afastam do inseto em forma de onda sonora na faixa do ultra-som. Para confundir um morcego, esses estalidos têm que chegar ao mesmo tempo que o eco produzido pelo inseto ou um pouco antes. À noite, uma lâmpada de rua de vapor de mercúrio atrai mariposas e outros insetos voadores; portanto, um morcego pode encontrar uma refeição deliciosa se voar perto da lâmpada. Curiosamente, alguns desses insetos fugiriam ao detectar ultra-sons ou produziriam sinais de interferência, mas, quando estão perto da lâmpada, não fazem nem uma coisa nem outra. Uma hipótese é que, como não temem morcegos durante o dia (hora em que os morcegos estão dormindo), a luz branca da lâmpada os induz a pensar que é dia e, portanto, eles estão seguros. Uma lâmpada de vapor de sódio emite uma luz nitidamente amarela, que, supostamente, as mariposas não confundem com a luz do dia.

3.25 • Como os morcegos encontram flores Como os morcegos que se alimentam do néctar das flores encontram as flores? A polinização de muitas flores, em especial nos trópicos, depende dessas visitas de morcegos. Quando um morcego pousa em uma flor e enfia o focinho em uma abertura entre pétalas para alcançar o néctar, faz duas outras pétalas lançarem pólen no seu dorso, e o pólen é transportado pelo morcego para a flor seguinte. O morcego precisa encontrar não só a flor, mas também a abertura para o seu focinho. Como consegue fazer tudo isso enxergando mal e no escuro? Como uma flor evita que um segundo morcego pouse até que seu suprimento de pólen tenha sido renovado?

Resposta O morcego, ao que tudo indica, consegue reconhecer uma flor pelo tipo de eco que recebe quando envia pulsos de ultra-som em todas as direções (veja o item anterior). As pétalas de algumas flores têm forma de sino, que produzem um eco fácil de identificar. As pétalas da flor da planta Mucuna holtonii, por exemplo, têm uma forma que produz um eco intenso mesmo quando o morcego se aproxima obliquamente (a flor é uma versão acústica do retrorrefletor óptico que os corredores usam para serem vistos pelos motoristas à noite). A pétala superior do sino se levanta quando há pólen disponível. Depois que um morcego deixa a flor com pólen no dorso, a pétala superior desce, fazendo com que a flor perca a forma de sino. Assim, um segundo morcego não recebe um eco forte da flor. Mais tarde, quando o suprimento de pólen é renovado, a pétala superior torna a levantar-se, a forma de sino é restabelecida e a flor volta a enviar um eco forte para atrair outro morcego.

3.26 • Ouvindo debaixo d’água Quando sua cabeça está debaixo d’água, por que o som emitido por alguém que esteja à sua direita parece vir da sua frente?

Resposta Uma informação usada pelo cérebro para determinar a direção de uma fonte sonora é o intervalo de tempo entre a chegada do som ao ouvido mais próximo e a chegada do som ao outro ouvido. Assim, por exemplo, se a fonte está exatamente à sua direita, o intervalo de tempo de 0,00058 segundo e sua experiência passada informam, corretamente, que a fonte está à direita, fazendo um ângulo de 90° com a direção frontal. Entretanto, se você e a fonte estiverem submersos, o intervalo de tempo é quatro vezes menor (0,00014 segundo), porque a velocidade do som na água é quatro vezes a velocidade do som no ar. (O som se move muito mais depressa de um ouvido para o outro.) Esse intervalo de tempo menor e sua experiência informam, incorretamente, que a posição da fonte faz um ângulo de apenas 13° com a direção frontal. Entretanto, é provável que você não saiba muito bem de onde vem o som porque o intervalo de tempo de um ouvido ao outro sofre interferência de outro efeito. O som pode ser transferido com mais facilidade da água para a sua cabeça do que do ar para a sua cabeça. Quando sua cabeça está debaixo d’água, o som chega ao ouvido mais distante não só através da água, mas também através da sua cabeça. A diferença entre os retardos para esses dois caminhos não é a mesma na água e no ar, o que

fornece informações conflitantes quanto à direção da fonte.

3.27 • O efeito coquetel Em uma festa com um número pequeno de convidados, em que as pessoas conversam aos pares, os membros de cada par se mantêm à menor distância “socialmente aceitável” um do outro e podem se ouvir sem dificuldades. Por que fica mais difícil conversar com alguém quando a concentração de pessoas em uma sala aumenta? O que as pessoas fazem para tentar resolver o problema? Por que, mesmo nessas circunstâncias, é possível reconhecer as vozes das pessoas? Esses mesmos efeitos podem ser observados em muitos outros ambientes ruidosos, tais como restaurantes e vagões de metrô.

Resposta Quando a concentração de pessoas aumenta, o ruído de fundo das conversas (tanto os sons que vão diretamente das pessoas até você como os sons refletidos nas paredes, no teto e nas outras pessoas) também aumenta. Quando o ruído de fundo alcança um volume comparável ao da sua conversa, você e seu interlocutor automaticamente elevam a voz, fenômeno conhecido como efeito Lombard, em homenagem a Etienne Lombard, que o estudou em 1911. Como todos os outros pares de pessoas têm o mesmo problema para ouvir, também elevam a voz, de modo que você continua tendo dificuldade para ouvir seu interlocutor. Em algum momento, para não ter que gritar, você e seu interlocutor se aproximam mais que o normal (invadindo o “espaço pessoal” um do outro). Se alguém pede silêncio, para um discurso, por exemplo, e depois as conversas prosseguem, os níveis de voz voltam rapidamente (exponencialmente com o tempo) aos valores antigos. O efeito Lombard foi estudado em alguns animais, tais como aves que aumentam automaticamente o volume dos seus gritos quando se deparam com um ambiente muito ruidoso por causa de outras aves. Se alguém grava sua conversa usando um único microfone e ouve mais tarde a gravação (em uma sala silenciosa), é provável que não consiga compreender as palavras do interlocutor tão bem como quando as ouviu “ao vivo”. O que muda é que, em pessoa, você ouve o interlocutor com os dois ouvidos: a pequena diferença de tempo que o som leva de um ouvido ao outro e a pequena diferença de intensidade entre o som percebido por um ouvido e pelo outro ajudam a distinguir a voz do seu interlocutor em um mar de outras vozes. Este fenômeno recebe o nome de efeito coquetel. Ver os movimentos labiais e a “linguagem corporal” do interlocutor também ajuda a compreender as palavras ou mesmo frases inteiras que você não ouviu com clareza. Nenhuma dessas informações está disponível quando você ouve uma conversa gravada por um único microfone. Nesse caso, você precisa recorrer a outras informações, tais como buscar idéias coerentes ou tons identificáveis no meio do ruído de fundo. Extrair uma conversa do ruído de fundo às vezes é muito fácil, como acontece quando você ouve com facilidade a voz de uma pessoa da platéia que estava sentada perto do microfone quando foi feita uma gravação-pirata de um concerto. Alguns animais conseguem reconhecer sons familiares em um ambiente ruidoso; um filhote de pingüimrei é capaz de ouvir os pais no meio do ruído produzido por milhares de outros pingüins-reis da mesma colônia.

3.28 • Sons emitidos pelos ouvidos Cerca de 60% das pessoas emitem sons pelos ouvidos, fenômeno conhecido como emissão otoacústica (EOA). A maioria das emissões requer um microfone e um amplificador para ser ouvida, mas algumas são audíveis se você ficar perto da pessoa em uma sala razoavelmente silenciosa. Por que os ouvidos emitem som?

Resposta Quando o som chega ao tímpano, as oscilações que ele produz são transmitidas para a orelha interna (a cóclea), que é formada por dois compartimentos de fluido relativamente longos separados pela membrana basilar. O órgão que capta o som é o órgão de Corti, situado nessa membrana. Quando um sinal sonoro é transmitido para o órgão de Corti por oscilações da membrana basilar, bastões em forma de pêlos do órgão começam a balançar, enviando para o cérebro impulsos elétricos que são interpretados como sons. Essa detecção é muito sensível à freqüência dos sons (cada freqüência estimula os bastões em uma certa região do órgão de Corti). Esta seletividade se deve, em parte, a um sistema de controle que realimenta parte do sinal para a região de detecção. Essa realimentação pode fazer oscilar a membrana basilar sem nenhum estímulo externo, o que envia oscilações de volta para o tímpano e produz ondas sonoras que saem pelo canal auditivo. Tais ondas sonoras são muito fracas na maioria das pessoas, mas se alguém diz que seu ouvido está zumbindo é possível que outra pessoa possa de fato ouvir o zumbido.

3.29 • Música na cabeça Clássicos do rock pesado, tais como músicas da banda Iron Butterfly e da Led Zeppelin, costumam ser acompanhados por um

baixo muito característico. Entretanto, os alto-falantes pequenos, como os de automóvel, não conseguem produzir notas muito graves: as ondas sonoras exigem grandes comprimentos de onda, que não podem ser produzidos por um cone de alto-falante de pequeno diâmetro. Apesar disso, a música soa razoável nesses alto-falantes pequenos. Por quê?

Resposta Os sons de baixa freqüência são produzidos na nossa cabeça, por dois efeitos. Um foi chamado de efeito da fundamental ausente e está relacionado à nossa percepção de uma série harmônica. Uma série harmônica é formada pela freqüência mais baixa (a fundamental) e pelas freqüências mais altas (harmônicos superiores), que são múltiplos inteiros da freqüência mais baixa. Assim, por exemplo, se a freqüência fundamental é de 500 hertz, a série é formada pelas freqüências de 2(500) = 1000 hertz, 3(500) = 1500 hertz, 4(500) = 2000 hertz e assim por diante. Suponha que os alto-falantes do carro só consigam reproduzir freqüências acima de 800 hertz. Se essa série harmônica é enviada para o alto-falante, a fundamental de 500 hertz não pode ser reproduzida, mas o alto-falante pode reproduzir todos os harmônicos superiores. Nesse caso, o sistema neurológico responsável pela percepção desses harmônicos superiores, ao reconhecer que eles fazem parte de uma série harmônica, cria a percepção da freqüência fundamental, mesmo que a freqüência fundamental não chegue aos nossos ouvidos. Assim, quando você ouve rock pesado no alto-falante do carro, as freqüências harmônicas mais altas de uma nota são suficientes para que seu sistema neurológico reconheça qual é a freqüência fundamental. A razão exata pela qual o sistema neurológico executa esta operação não é conhecida. O segundo efeito responsável pela percepção de sons graves é que nosso sistema de audição é não-linear, ou seja, distorce as ondas sonoras que chegam ao ouvido. Acredita-se que o sistema seja não-linear para ser sensível a uma faixa maior de valores de intensidade sonora (volume) e também para separar melhor os sons de acordo com suas freqüências. Um subproduto dessa resposta distorcida acontece quando o ouvido tem que lidar com duas freqüências — digamos, f1 = 1000 hertz e f2 = 1500 hertz. Se as ondas sonoras forem razoavelmente intensas, a não-linearidade faz com que uma onda com uma freqüência igual à diferença entre as duas freqüências (f2 2 f1 = 500 hertz) seja produzida na orelha interna. Como essas duas freqüências são freqüências consecutivas na série harmônica mencionada anteriormente, a diferença é igual à freqüência fundamental. Assim, mesmo que não entre na orelha, a fundamental é produzida na orelha interna por causa da resposta não-linear do sistema auditivo. Podemos ouvir a nota diferencial f2 2 f1 em outras situações nas quais duas fontes sonoras emitem, em alto volume, freqüências razoavelmente próximas. Para que a orelha interna tenha uma reposta não-linear e produza uma distorção, é preciso que o som tenha uma intensidade relativamente elevada. Nesse caso, se uma flauta produzir uma freqüência f1 e outra flauta produzir uma freqüência f2, você ouvirá uma “flauta-fantasma” com uma freqüência f2 2 f1. A nota diferencial também pode ser ouvida se você soprar com força em um apito de dois tons de dois buracos da polícia inglesa. Tapando o furo mais próximo com um dedo, você ouve a freqüência produzida com o outro furo aberto. Tapando o outro furo, você ouve a freqüência produzida com o furo mais próximo aberto. Deixando os dois buracos abertos, você ouve as duas freqüências e mais uma terceira, que é a da nota diferencial. As notas diferenciais são usadas em órgãos mecânicos: para produzir um dó baixo de 16 hertz, seria preciso um tubo de cerca de 10 metros, comprido, pesado e caro. Entretanto, um tubo que produz um dó de 32 hertz e um tubo que produz um sol de 48 hertz, quando tocados ao mesmo tempo em alto volume, produzem o dó baixo de 16 hertz como resultado da distorção na orelha interna. Assim, os dois tubos mais curtos e baratos produzem um som adicional na sua cabeça.

3.30 • Perda auditiva causada por ruídos Quando o rock and roll surgiu, muitos pais diziam aos filhos que a música iria deixá-los surdos. Estudos iniciais mostraram que a previsão simplesmente não era verdadeira. Entretanto, com a evolução do rock, e sobretudo com a amplificação do som em concertos e casas noturnas (e também em fones de ouvido), começaram a ocorrer danos à audição. Com efeito, após anos de exposição a altos volumes sonoros em apresentações ao vivo e gravações em estúdios com fones de ouvido, alguns músicos de rock tiveram problemas sérios. Ted Nugent, por exemplo, ficou totalmente surdo de um ouvido e Peter Townshend (do The Who) e Lars Ulrich (do Metallica) adquiriram um zumbido crônico (tinido) intenso o suficiente para prejudicar a concentração e o sono. Muitos disc-jóqueis que trabalham em concertos e casas noturnas sofrem perda temporária ou perda permanente de audição, ou tinido. Os danos causados por fones de ouvido também estão começando a aparecer em pessoas que usam aparelhos de som portáteis com o volume muito alto. Naturalmente, muitas outras fontes sonoras de alta intensidade podem causar perda de audição — como, por exemplo, sopradores de folhas, cortadores de grama, fogos de artifício, disparos de armas de fogo, britadeiras, turbinas de avião, motocicletas e carros de corrida. Muitas pessoas já estão tomando precauções. Algumas usam protetores auriculares passivos (cilindros de espuma), que bloqueiam o canal auditivo. Outras usam protetores auriculares ativos

(redutores de ruído), capazes de detectar um ruído de fundo contínuo (como o de uma turbina de avião) e cancelá-lo para que não seja ouvido. Por que sons muito altos causam problemas de audição? Como os protetores auriculares ativos cancelam os ruídos?

Resposta Os detalhes da perda de audição temporária ou permanente produzida por sons de alta intensidade não são bem conhecidos. A perda temporária pode ser resultado de uma redução do suprimento de sangue à orelha interna causada pela constrição dos vasos sangüíneos. A perda permanente pode se dever a paralisia dos pêlos da cóclea que são responsáveis pela transformação do som em impulsos nervosos. Se os pêlos ficam permanentemente deformados, o cérebro pode interpretar essas deformações como sons, o que leva ao zumbido característico do tinido. Nos protetores auriculares ativos, um microcircuito é usado para monitorar o som do ambiente e produzir um som próprio. Quando o som do ambiente é razoavelmente constante, o circuito produz uma onda sonora de iguais amplitude e freqüência. Pode parecer que isso só pioraria as coisas. Entretanto, a onda é produzida com a fase oposta à da onda recebida pelo aparelho, de modo que as duas ondas se cancelam mutuamente dentro da orelha por interferência destrutiva. O efeito pode ser impressionante: com os fones redutores de ruído desligados, o ruído das turbinas de um avião, por exemplo, podem ser quase ensurdecedor; quando os fones são ligados, o ruído torna-se um leve sussurro.

3.31 • Sons amplificados por ruídos Em geral, o ruído tende a mascarar (esconder) um sinal, como acontece quando você não consegue ouvir a voz de um amigo em uma festa muito barulhenta. (Quando a relação sinal/ruído é menor que 1,0, o sinal se perde no meio do ruído.) Em algumas situações, porém, o ruído pode tornar um sinal mais audível. Assim, por exemplo, se você diminui gradualmente o volume de um aparelho de som, chega um momento em que a música se torna baixa demais para ser ouvida. Se nesse instante você liga uma fonte de ruído que produz um som razoavelmente uniforme (como um zumbido) e ajusta o volume dessa fonte, pode descobrir que é capaz de ouvir novamente a música. Por que o ruído produz esse efeito?

Resposta A música é formada por sons de diferentes amplitudes, mas, se você reduz o volume até que o som desapareça, não consegue ouvir nem mesmo os sons mais altos. Quando um ruído de fundo razoavelmente constante é introduzido, o nível do ruído soma-se ao nível da música. Quando chegam as partes mais altas da música, o ruído adicional leva essas partes para um nível que está acima do limiar de audição, tornando possível identificar o ritmo da música e mesmo alguns detalhes.* É claro que não se trata de uma música de alta qualidade, já que você perde todas as partes de baixo volume. Entretanto, ouve o suficiente para reconhecer a música.

3.32 • Estetoscópios e sons respiratórios Os sons produzidos no interior de um paciente e emitidos através do peito, das costas ou da garganta podem revelar ao médico que algo está errado. É óbvio que o médico não consegue ouvir esses sons apenas por estar ao lado do paciente; ele precisa de um estetoscópio. Será que o médico conseguiria ouvir melhor os sons encostando o ouvido no paciente (embora isso pudesse gerar um certo mal-estar)? O que causa esses sons?

Resposta Os sons são produzidos principalmente pelo sangue que passa pelo coração e pelo ar que passa pelos pulmões e pela garganta. Os sons produzidos pelo ar ainda não são bem compreendidos, mas costumam ser atribuídos à turbulência que causa alterações de pressão no ar e gera ondas sonoras que atravessam o peito, as costas e a garganta. Uma turbulência muito mais alta ou muito mais baixa (tórax silencioso) pode indicar problemas respiratórios e doenças pulmonares. Crepitações e chiados (que duram mais que as crepitações) podem indicar obstruções nas vias respiratórias, que podem ser sintomas de asma. Os vários sons produzidos no interior de um paciente são transmitidos à parede torácica, e os sons de menor freqüência são transmitidos com mais eficiência. Entretanto, os sons não são bem transmitidos pela interface peito–ar. O médico pode conseguir ouvir alguns sons (os batimentos cardíacos com certeza podem ser ouvidos) encostando o ouvido no peito do paciente, já que os sons criam ressonâncias em seu canal auditivo. Na verdade, esse era o método que os médicos usavam antigamente para ouvir os sons do corpo. Entretanto, um estetoscópio deixa os pacientes mais à vontade. Além disso, como os sons de baixa freqüência podem criar ressonâncias nos tubos do estetoscópio, a intensidade desses sons pode ser amplificada pelo estetoscópio. Existem dois tipos principais de estetoscópios: os de diafragma de metal e os de pêra de borracha. Os sons do peito podem

fazer oscilar o diafragma ou o ar no interior da pêra, o que faz oscilar o ar nos tubos do estetoscópio, de modo que o médico consegue ouvir as oscilações. Tanto o diafragma quanto a pêra são mais largos que os tubos, de modo que coletam o som em uma área razoavelmente extensa do tórax, mas não tão extensa que o médico não consiga identificar a posição de uma fonte sonora no interior do tórax. Os experimentos revelam que os estetoscópios de diafragma funcionam melhor, mas muitos médicos ainda preferem o estetoscópio de pêra.

3.33 • Esticando cordas de violão e elásticos Por que uma corda de violão produz uma freqüência maior quando é apertada? Se você estica um elástico entre o polegar e o indicador e o faz oscilar, por que a freqüência permanece constante ou diminui ligeiramente? Por que um violão deve ser tocado um pouco nos bastidores antes de ser tocado no palco?

Resposta Você ouve o som de uma corda de violão ao dedilhá-la porque algumas das ondas que você produziu na corda se reforçam mutuamente, fenômeno conhecido como ressonância. Por causa do reforço, o movimento da corda é razoavelmente grande e causa variações audíveis na pressão do ar. A maioria das ondas em uma corda não produz movimentos significativos, mas ondas com certos comprimentos de onda podem causar ressonâncias, que se traduzem em sons. Uma dessas ondas cria a ressonância chamada fundamental, que gera um som com a menor de todas as freqüências que a corda é capaz de produzir. O valor dessa freqüência depende do comprimento da corda e também da velocidade na qual as ondas se propagam na corda. Essa velocidade depende da tensão e da densidade da corda. Assim, três fatores (comprimento, tensão e densidade) determinam a freqüência do som emitido pela corda. Quando você aperta uma corda de violão, a tensão aumenta sem alterar de modo significativo a densidade e o comprimento da corda. O resultado são ondas mais rápidas na corda e uma freqüência mais alta do som emitido. Se você estica um elástico, não só a tensão aumenta, mas a densidade diminui e o comprimento aumenta. O resultado é que a velocidade da onda quase não muda. Assim, a freqüência de oscilação e a freqüência do som também não mudam muito. Quando um violão é tocado, o movimento aumenta a temperatura da corda, o que a faz dilatar-se. Com isso, a tensão diminui e as freqüências que a corda pode produzir também diminuem. Um músico não quer que isso aconteça no palco, porque a corda teria que ser afinada de novo. Assim, os violonistas costumam tocar um pouco nos bastidores, para que as cordas se aqueçam, e afinam o instrumento de novo antes de se iniciar o espetáculo.

3.34 • Tocando violino De que maneira o arco produz sons ao passar pelas cordas de um violino? Por que o som é muito mais fraco ou inexistente se o arco passar pelo ponto médio da corda? (Se a corda emite um som, é provável que seja bem desagradável.) Por que se costuma passar breu no arco? Uma certa corda, com um certo comprimento, tensão e massa, pode produzir sons com uma série de freqüências que fazem parte de uma série harmônica. Por exemplo, a freqüência mais baixa, chamada freqüência fundamental, pode ser de 500 hertz. A freqüência seguinte, chamada de segundo harmônico, é de 2(500) = 1000 hertz. Você pode calcular o resto da série multiplicando 500 hertz por outros números inteiros (3, 4, 5 etc.). A localização do arco e a posição do dedo (que definem o comprimento efetivo da corda) determinam qual será a série harmônica produzida por uma corda. Para surpresa de alguns violinistas, uma corda também pode gerar subarmônicos, ou seja, freqüências mais baixas que a freqüência fundamental, talvez com metade do seu valor. Como esses subarmônicos podem ser tocados por um violinista?

Resposta Quando você dedilha uma corda de violão, a corda oscila em vários de seus modos ressonantes, nos quais as ondas que se propagam passando uma pela outra em sentidos opostos se reforçam e criam um padrão de interferência. Para cada padrão de interferência, a corda possui regiões de grande oscilação nas quais produz variações de pressão no ar, que emanam da corda em forma de ondas sonoras. O caso de uma corda tocada com um arco é bem diferente, pois as ondas não são criadas com um único toque. Em vez disso, quando o arco se movimenta, digamos, para cima, o arco e a corda se prendem e se soltam repetidas vezes, processo conhecido como parada-deslizamento (stick-slip, em inglês). A corda pode ficar presa no arco quando este começa a subir, mas logo depois se solta. Nesse momento, duas ondas triangulares deixam o ponto de desprendimento e se propagam em sentidos opostos ao longo da corda. Uma vai para a extremidade próxima da corda (a extremidade mais próxima do violinista) e a outra vai para a extremidade distante. Cada onda reflete (e é invertida pela reflexão) na extremidade da corda e se propaga ao longo da corda até a extremidade oposta. Enquanto isso, o arco continua a se mover para cima ao longo da corda, mas deslizando sobre ela. Em

alguns momentos, quando as ondas triangulares voltam para a posição do arco, a corda se prende ao arco e é arrastada para cima até se soltar novamente. Com isso, novas ondas triangulares são criadas. O violinista precisa desenvolver um sentimento e um ouvido intuitivos para sincronizar o movimento do arco com a propagação dessas ondas triangulares que, naturalmente, não podem ser vistas. Se as ondas triangulares são criadas de maneira apropriada, sua oscilação produz variações da pressão do ar que se propagam para longe do violino em forma de ondas sonoras. Essas ondas podem criar ressonâncias na madeira e na cavidade de ar do violino e esses dois conjuntos de oscilações produzem outras ondas sonoras de várias freqüências, que contribuem para o timbre do instrumento. Os arcos de violino são feitos de fios de crina de cavalo, que têm uma superfície dura e um núcleo de material mais macio. Quando o arco é usado muitas vezes, surge uma ranhura no lado dos fios que faz contato com a corda, expondo o núcleo mais macio. Quando se aplica breu aos fios, as partículas de breu penetram parcialmente no material macio; as partes expostas das partículas prendem as cordas quando o instrumento está sendo tocado. Com o tempo, o atrito com as cordas remove as partículas, tornando necessário aplicar novamente o breu aos fios do arco para que o arco e a corda tenham o comportamento adequado de parada–deslizamento. Não entendo as explicações de por que tocar com o arco no ponto médio da corda não produz som nenhum ou produz um som horroroso. Entretanto, acho que isto se deve à simetria das duas ondas triangulares que são produzidas quando o arco está no ponto médio. Em geral, as ondas percorrem distâncias diferentes para alcançar a extremidade de uma corda, mas, com o arco no ponto médio da corda, as ondas percorrem distâncias iguais e chegam ao mesmo tempo ao lugar onde está o ar. Isto significa que elas se somam, fazendo com que o ponto médio da corda oscile com uma amplitude maior que o normal, o que perturba o comportamento de parada–deslizamento do arco. Assim, a corda não emite som nenhum ou emite apenas um som desagradável. Para produzir uma freqüência subarmônica, o violinista pressiona com força o cavalete ou mesmo o torce enquanto toca em uma corda de tripa de gato (uma corda sintética não serve). Por que esse procedimento reduz a freqüência abaixo da freqüência fundamental não foi explicado por completo, mas parece envolver ondas de torção, que produzem não apenas um deslocamento lateral da corda, mas também um movimento de torção. Essas ondas se propagam mais devagar ao longo da corda que as ondas triangulares mencionadas anteriormente, e essa velocidade menor resulta em freqüências menores de oscilação e, portanto, em freqüências menores do som.

3.35 • Brilho difuso de um violino Para freqüências abaixo de cerca de 1000 hertz, o som de um violino vem da direção do instrumento. A freqüências mais altas, porém, pode parecer que sons de freqüências diferentes vêm de direções diferentes. Assim, quando o som muda de freqüência a freqüências mais altas, a direção da fonte parece mudar, efeito às vezes chamado de “brilho difuso” (flashing brilliance, em inglês). Quando o fenômeno acontece, o som parece não ter relação com a localização do violino. O que causa essa impressão?

Resposta Quando uma fonte sonora é pequena em comparação com o comprimento de onda do som, o som parece vir, como era de se esperar, da posição da fonte, qualquer que seja a freqüência. Entretanto, quando a fonte sonora é grande em comparação com o comprimento de onda, partes diferentes da fonte podem se comportar como fontes separadas, cada qual emitindo um som próprio. A qualquer freqüência específica, esses sons se combinam, produzindo um certo padrão de interferência. O padrão varia de acordo com a freqüência. Se você ouve uma faixa de freqüências altas, essa diferença no padrão de interferência para diferentes freqüências pode dar a ilusão de que as diferentes freqüências são produzidas em locais diferentes. Quando um violino emite qualquer freqüência acima do limiar da audição humana, o som vem principalmente da madeira. Para freqüências acima de 1000 hertz, os comprimentos de onda são suficientemente pequenos para que partes da madeira se comportem como se fossem fontes separadas, causando a ilusão do brilho difuso.

3.36 • Conchas No passado, era costume soprar conchas para alertar os navios do perigo de pedras em meio a um nevoeiro. Hoje em dia, conchas são sopradas sobretudo em rituais. Para soprar uma concha, quebre ou raspe a ponta da concha para criar uma abertura

estreita e pressione os lábios contra ela. Por que as conchas produzem um som tão alto? Se você pega uma concha marinha relativamente grande na praia e a segura perto do ouvido, por que ouve um som que lembra o ruído de ondas quebrando na praia?

Resposta Soprar uma concha envolve dois conjuntos de oscilações: seus lábios devem oscilar (zumbir) mais ou menos como uma corda de violão e, se houver uma coincidência de freqüências, as oscilações dos seus lábios podem criar ondas sonoras no interior da concha. Você faz os lábios oscilarem soprando através deles enquanto eles estão encostados no buraco da concha. Se fizer isto com cuidado, os lábios oscilarão a várias freqüências ao mesmo tempo, em uma série de valores conhecidos como série harmônica. Em um conjunto de medidas, a menor freqüência, chamada freqüência fundamental, foi 47,5 hertz e as freqüências maiores foram múltiplos inteiros desse valor: 2(47,5) = 95,0 hertz, 3(47,5) = 142,5 hertz e assim por diante. As oscilações dos lábios criam ondas sonoras dentro da concha, com as mesmas freqüências de oscilação. A maior parte das ondas sonoras se cancela, mas algumas delas, que coincidem com uma das freqüências de ressonância da concha, podem se reforçar, dando origem a uma onda sonora de grande intensidade. No experimento, a menor freqüência ressonante da concha foi 332,5 hertz. O soprador da concha conseguiu tornar audível o som da concha porque a sétima freqüência na série harmônica das oscilações do lábio era 332,5 hertz. Assim, as oscilações dos lábios a essa freqüência produziram uma ressonância no interior da concha à mesma freqüência e o som produzido pôde facilmente ser ouvido por outra pessoa. Ruídos comuns do ambiente também podem criar ressonâncias dentro de uma concha. Se você segurar uma concha perto do ouvido, poderá ouvir algumas das freqüências ressonantes. O som que você ouve costuma flutuar, porque o ruído ambiental que o produz flutua. Se você tenta interpretar o som flutuante, em especial porque está segurando uma concha marinha, pode facilmente imaginar que está ouvindo o ruído de ondas se quebrando na praia. O vulcão Stromboli, na Itália, se comporta de modo semelhante: o vento que passa por seus canais produz ressonâncias que fazem o vulcão emitir sons de intensidade variável.

3.37 • Didjeridu O didjeridu, um instrumento musical tradicional dos aborígines australianos, produz um zumbido razoavelmente contínuo quando é tocado. É apenas um galho de árvore comprido que possui, de uma extremidade à outra, um túnel feito por cupins. Você toca o instrumento levando os lábios a uma das extremidades do túnel e soprando de uma certa maneira. Entretanto, produzir um som alto e razoavelmente contínuo é muito difícil, mesmo para alguém acostumado a tocar instrumentos de sopro convencionais. Como é produzido o som do didjeridu?

Resposta Uma diferença importante entre tocar um didjeridu e um instrumento de sopro convencional é que, no primeiro caso, você tem que estabelecer uma forte ressonância no trato vocal (as cavidades combinadas da boca, do nariz e da garganta superior), ou seja, você estabelece ondas sonoras no trato vocal que se reforçam para produzir uma onda sonora de alta intensidade. Você permite que parte desse som escoe para dentro do didjeridu de duas maneiras: uma é permitir continuamente que a ressonância do trato vocal faça seus lábios oscilarem (zumbirem) e que a parte dos lábios que está no interior do túnel crie oscilações do ar nessa região. A segunda é abrir periodicamente os lábios para permitir que um pulso de som passe do trato vocal para o túnel. É possível alterar o som emitido pelo didjeridu mudando a ressonância do trato vocal (mudando as oscilações das pregas vocais da laringe ou mudando a língua de posição para alterar a forma do trato vocal). De certa forma, você canta, trauteia ou produz zumbidos no didjeridu, o que não seria necessário se estivese tocando um instrumento de sopro convencional.

3.38 • Oscilações nos silos Quando os grãos estão escoando de um silo (uma construção para armazenar grãos), por que o silo pode oscilar (o que é chamado de tremor de silo) e emitir um som (o chamado canto de silo) que lembra o da buzina de um caminhão? (Alguns silos tremem mas não buzinam, alguns buzinam mas não tremem, alguns não fazem nem uma coisa nem outra e alguns fazem as duas coisas.) Um silo que buzina é apenas irritante, mas um silo que treme pode desabar.

Resposta Embora o escoamento de grãos no fundo de um silo possa ser contínuo, a descida dos grãos no interior do silo é irregular. Esse movimento intermitente pode ter várias causas, como a formação e o colapso de arcos de grãos.

Entretanto, a principal causa parece ser a parada-deslizamento intermitente de grãos na parede interna do silo. Essa variação na descida dos grãos causa oscilações dos grãos, que, por sua vez, fazem as paredes oscilarem. As paredes funcionam como caixas de ressonância gigantes, irradiando ondas sonoras para o ar. Às vezes, as oscilações são tão fortes que o silo desaba. Em alguns silos, as oscilações também podem causar ressonâncias acústicas na coluna de ar acima dos grãos, ou seja, ondas sonoras que têm o comprimento de onda correto para se reforçarem mutuamente produzem uma onda sonora de grande amplitude nessa coluna de ar, mais ou menos como a que é produzida em um tubo de órgão.

3.39 • A emissão de sons por tubos corrugados Um tubo de plástico corrugado é vendido como brinquedo musical. O tubo, que pode ter cerca de um metro de comprimento, costuma ser seguro por uma ponta e movido em um pequeno círculo, fazendo com que a outra extremidade se mova em um círculo maior. Girando devagar, não se ouve nada, mas, para velocidades um pouco maiores, o tubo emite um som a uma certa freqüência. Se a velocidade é ainda maior, o tubo emite um som com uma freqüência mais alta. Mudando a velocidade, é possível produzir quatro ou cinco freqüências diferentes. O que faz o tubo “cantar”?

Resposta Quando a extremidade mais distante do tubo se movimenta em um círculo grande, o ar do interior é literalmente arremessado para fora. (A parede do tubo faz o ar girar, mas não existe para manter o ar girando em círculos, de modo que o ar se desloca para fora ao longo do tubo.) Enquanto o ar deixa a extremidade mais distante do tubo, uma quantidade igual de ar entra pela extremidade mais próxima, de modo que uma corrente contínua de ar passa pelo tubo. Se o escoamento é suficientemente rápido, as protuberâncias internas do tubo corrugado impedem um escoamento suave. Em vez disso, a corrente de ar cria turbulências, ou seja, variações da pressão do ar. Essas variações de pressão ocorrem a freqüências dentro de uma certa faixa, que é definida pela velocidade do ar e pelo espaçamento das protuberâncias. Se uma freqüência dentro dessa faixa é igual à freqüência de ressonância do tubo, é estabelecida uma ressonância no tubo, ou seja, ondas sonoras com essa freqüência se reforçam mutuamente, produzindo uma onda sonora de grande intensidade. Parte dessa onda sonora escapa pela extremidade mais distante e pode ser ouvida. Uma rotação mais rápida desloca a faixa de freqüências da turbulência para valores mais altos. Uma freqüência nessa nova faixa corresponde a uma freqüência de ressonância mais alta do tubo e você ouve um som de freqüência mais alta. O brinquedo pode não produzir a menor freqüência possível (a freqüência fundamental), porque a corrente de ar que passa pelo tubo quando ele gira devagar é lenta demais para criar turbulência. A menor freqüência de ressonância ouvida é o segundo harmônico. Você pode conseguir fazer um tubo corrugado “cantar” se o segurar do lado de fora de um carro em movimento. (Não faça isso quando você estiver no volante!) Segure o tubo de tal modo que o ar seja forçado a passar por ele.

3.40 • A acústica de uma caneca de café Despeje água quente em uma caneca de café e dê batidinhas no fundo da caneca com os nós dos dedos ou dê batidinhas na superfície interna com uma colher enquanto mexe a água. Preste atenção à freqüência. Acrescente café solúvel e volte a dar batidinhas. A freqüência diminui muito, mas volta ao valor original em poucos minutos. Por que a freqüência cai e por que volta a subir?

Resposta Quando você dá batidinhas na caneca com uma colher, faz as paredes da caneca oscilarem a uma certa freqüência e cria ondas sonoras momentâneas na coluna de água. Aqui, estamos interessados no segundo efeito, e você minimiza o primeiro dando batidinhas no fundo da caneca com os nós dos dedos ou com algum instrumento macio. De todas as ondas sonoras que você produz, algumas têm um comprimento de onda tal que a altura da coluna de água é um múltiplo inteiro de metade do comprimento de onda. Nesse caso, acontece um fenômeno conhecido como ressonância, no qual as ondas sonoras se reforçam mutuamente, produzindo uma onda de grande amplitude. Parte do som escapa da água e é ouvido; a freqüência é chamada freqüência de ressonância da caneca cheia d’água. Essa freqüência de ressonância depende da altura da coluna de água e da velocidade do som na água. A velocidade do som em qualquer material depende da densidade do material e da sua compressibilidade. Uma densidade maior costuma dar origem a uma velocidade maior, mas uma compressibilidade maior costuma dar origem a uma velocidade menor. Na água, a velocidade é cerca de 1.470 metros por segundo.

Quando um pó é adicionado à água, bolhas de ar se formam nos grãos. (O ar já está dissolvido na água ou adere aos grãos quando o pó entra em contato com a água.) As bolhas não ocupam muito volume (você não vê a superfície da água subir em relação à borda da caneca), de modo que não alteram muito a densidade da água. Entretanto, alteram significativamente a compressibilidade, reduzindo a velocidade do som na água, o que reduz a freqüência de ressonância. Assim, a freqüência que você ouve diminui quando o pó é adicionado. Como a maioria das bolhas sobe, elas chegam aos poucos à superfície da água e estouram. À medida que o número de bolhas diminui, a freqüência aumenta até voltar ao valor original, antes da adição do pó. Como o melhor artigo a respeito deste assunto fala de chocolate quente em vez de café, essa mudança de freqüência costuma ser chamada de efeito chocolate quente. Despejar sal em um copo de cerveja também pode produzir o efeito chocolate quente, mas, a menos que você se livre do colarinho de espuma, pode não conseguir ouvi-lo. (Além do mais, colocar sal em cerveja é um absurdo.)

3.41 • A ressonância de uma garrafa Se você sopra na boca de uma garrafa (de refrigerante ou de uma bebida alcoólica), pode fazer a garrafa emitir um som. Na verdade, usando várias garrafas com diferentes níveis de líquido no interior, é possível tocar uma música. O que produz o som?

Resposta Quando você sopra na boca da garrafa, a corrente de ar cria turbulências, que produzem variações de pressão com uma larga faixa de freqüências. Você quer que uma dessas freqüências seja igual à freqüência de ressonância da garrafa, ou seja, que as variações de pressão criem oscilações do ar dentro da garrafa que se reforcem mutuamente, produzindo uma onda sonora de grande intensidade. Se você consegue essa igualdade de freqüências e uma onda interna forte, parte do som escapa da garrafa e pode ser ouvida. Entretanto, as oscilações da garrafa não são como as que podemos criar em um tubo simples. A diferença é que a garrafa possui um gargalo. O ar do gargalo e o ar dentro do resto da garrafa formam o que é chamado de ressonador de Helmholtz. A oscilação desse ressonador é, em termos matemáticos, como a oscilação de um bloco na extremidade de uma mola. Neste caso, o ar do gargalo se comporta como a massa do bloco e o resto do ar na garrafa se comporta como a mola. Em um sistema convencional bloco–mola, o bloco comprime e distende repetidamente a mola, indo sempre além do ponto médio e continuando, portanto, a oscilar. Na garrafa, a massa de ar no gargalo dá origem a compressões e expansões repetidas do ar no resto da garrafa, indo sempre além do equilíbrio e, portanto, continuando a oscilar. Uma dada garrafa (com uma dada massa de ar no gargalo e uma dada massa de ar no restante da garrafa) tende a oscilar com grande amplitude a uma certa freqüência; se essa freqüência estiver disponível na turbulência criada na borda da garrafa, formase uma onda sonora de grande intensidade no interior da garrafa. Se você enche parte da garrafa com líquido, o que reduz o volume de ar dentro da garrafa, a freqüência da onda sonora aumenta. Algumas cavernas são conhecidas por apresentarem fortes correntes de ar, principalmente perto da entrada. Como o vento muda de sentido durante o dia, diz-se que a caverna respira. Uma caverna dessas é outro exemplo de ressonador de Helmholtz. Variações externas do vento e da pressão do ar produzem turbulências. O ar na abertura estreita da caverna funciona como o ar do gargalo da garrafa (ou seja, como uma massa) e o ar do resto da caverna funciona como uma mola. A freqüência da oscilação é baixa demais para ser ouvida (0,001 a 1 hertz), mas é possível sentir o vento produzido pelas oscilações.

3.42 • Unhas no quadro-negro Por que algumas portas rangem? Por que uma unha arranhando um quadro-negro produz um som estridente? Por que os pneus cantam quando um carro, estando em repouso, é muito acelerado?

Resposta Estes são três exemplos entre muitos do que chamamos de efeito de parada–deslizamento. Duas superfícies se movimentam uma em relação à outra enquanto existe atrito entre elas. Em alguns casos, podem se mover de modo suave, em especial se forem lubrificadas. Em outros casos, porém, ficam presas por algum tempo, são tensionadas e depois se soltam. Logo após o desprendimento, quando a tensão é aliviada, partes das superfícies podem oscilar, produzindo uma onda sonora audível. O movimento também pode criar oscilações em uma região maior, que funciona como uma caixa de ressonância, amplificando o som. Assim, por exemplo, quando uma unha arranha um quadro-negro, ela fica presa, entorta e depois se solta e desliza sobre o quadro, oscilando e se chocando com o quadro. Você ouve o som das batidas da unha e das oscilações que as batidas criam no quadro, que funciona como uma caixa de ressonância. O movimento da unha é maior na extremidade externa e menor (zero) na extremidade oposta, mais ou menos como o movimento de uma árvore que um vento forte faz oscilar. Também como no caso da árvore, a freqüência de oscilação varia inversamente com o comprimento da unha. Como a unha é curta, a freqüência é alta, o

que explica em parte por que o som é tão desagradável. Dobradiças enferrujadas podem ranger se as partes que estão em contato sofrerem um efeito de parada–deslizamento. Se você abre a porta depressa, pode impedir que a dobradiça fique temporariamente presa e, assim, eliminar o rangido. Pneus que deslizam em um pavimento seco sofrem um efeito de parada–deslizamento que se traduz em um ruído característico. Muitas pessoas adoram o cantar dos pneus nas corridas de dragsters. Os pneus também cantam quando as rodas são travadas por uma freada brusca (se o carro não dispõe de um sistema ABS), mas neste caso o som não é tão apreciado. Se você prestar atenção, encontrará centenas de outros exemplos de sons produzidos pelo efeito de parada–deslizamento.

3.43 • Passando o dedo em taças de vinho Se você esfrega o dedo molhado na borda de taças de vinhos ou de vários outros tipos de recipientes, o recipiente produz um som. Por quê?

Resposta Quando o dedo é esfregado na borda, o dedo e a borda sofrem o efeito de parada–deslizamento. Na fase de parada, a borda é arrastada na direção do movimento do dedo, o que a deforma ligeiramente. Na fase de escorregamento, a borda se desprende do dedo e tenta recuperar a forma original, mas acaba oscilando. A oscilação mais forte é a chamada ressonância, em que a borda oscila da maneira mostrada na vista de cima da Fig. 3-4. Esse padrão de oscilação acompanha o dedo ao longo da borda, produzindo um som pulsado (aumenta e diminui de volume com uma freqüência de alguns hertz, que depende da velocidade do dedo na borda). A freqüência na qual a borda exerce pressão sobre o ar e a freqüência do som produzido são aproximadamente proporcionais à espessura da borda e inversamente proporcionais ao quadrado do raio da boca do copo. Assim, a freqüência é maior em taças de borda mais espessa e de raio menor. Se você enche a taça, a freqüência de ressonância diminui porque a massa do líquido diminui a velocidade de oscilação da parede da taça. Alguns músicos usam copos com diferentes níveis de líquido em suas apresentações (para se conseguir a afinação do copo, ajusta-se o nível de líquido). Benjamin Franklin, o famoso inventor e estadista americano, aproveitou a idéia das taças de vidro cantantes para construir a harmônica de vidro. Esse instrumento musical, que chegou a ser bem popular, continha várias peças de vidro em forma de cuia montadas em um eixo horizontal. As peças tinham diâmetros progressivamente maiores da direita para a esquerda, de modo que diferentes notas podiam ser tocadas enquanto o artista fazia girar o eixo com o auxílio de um pedal. Para extrair os sons, o músico pressionava os dedos molhados nas cuias enquanto estas giravam.

Figura 3-4 / Itens 3.43 e 3.44 Vista superior da deformação sofrida pela borda de uma taça de vinho durante uma oscilação. A deformação foi exagerada no desenho.

Outros instrumentos exóticos podem emitir sons quando são esfregados e postos para oscilar. Uma bacia chinesa de latão é um dos mais interessantes. Quando está parcialmente cheia de água e sua alças são esfregadas com mãos secas, a bacia oscila com tanta força que pode lançar grandes gotas de água a meio metro de altura.

3.44 • Quebrando taças de vinho com a voz Será que um cantor é capaz de quebrar uma taça de vinho usando apenas a voz, como mostram muitas comédias, anúncios e desenhos animados?

Resposta Uma taça de vinho pode quebrar se for submetida a um som de alta intensidade a uma freqüência igual à sua freqüência de ressonância — ou seja, a menor freqüência pela qual a taça oscila ao ser golpeada de leve. A essa freqüência, a borda oscila no padrão da Fig. 3-4. Quando as oscilações aumentam, pode se formar uma trinca em um defeito microscópico do vidro ou perto de um dos locais em que a amplitude das oscilações é máxima. O movimento

repetido no local de um defeito aumenta a trinca já existente e faz com que se ramifique, o que pode despedaçar a taça. Para fazer tudo isso, o som intenso deve ser aplicado durante alguns segundos. Entretanto, fazer isso com uma voz humana não-amplificada parece impossível, já que um bom cantor não é capaz de sustentar uma nota por mais de um segundo. Na verdade, foram realizados experimentos com vários cantores e nenhum conseguiu quebrar uma taça de vidro.

3.45 • Regatos murmurantes e o barulho da chuva O que produz o murmúrio dos regatos e o ruído das gotas de chuva em um lago?

Resposta O som da colisão de água com água, seja a água de um regato, a água de uma cachoeira ou a água da chuva, deve-se principalmente a dois mecanismos. O choque em si causa variações da pressão do ar, que produzem ondas sonoras; ouvimos esse som como um pulso de ruído de curta duração. O choque em geral também aprisiona ar na água em forma de bolhas, que produzem som quando seu volume aumenta e diminui periodicamente, causando variações de pressão que se propagam primeiro na água e depois no ar. Depois de alguns instantes, as bolhas de ar murcham ou rompem-se na superfície da água, produzindo pequenos estalos. Se a água da chuva ou de uma cachoeira se choca com uma superfície sólida, tal como uma calçada ou uma pedra, você ouve apenas o ruído do choque porque não se formam bolhas de ar. Da próxima vez em que estiver na rua quando começar a chover, preste atenção na diferença de som entre os primeiros impactos das gotas de chuva (na calçada ainda seca) e os impactos seguintes (nas poças que se formaram na calçada).

3.46 • A ressonância de copos e jarras Quando você despeja água em um recipiente de forma cilíndrica, tal como um copo, uma jarra ou um béquer, por que a freqüência do som aumenta progressivamente?

Resposta A coluna de ar no interior do recipiente (da boca até a superfície do líquido) comporta-se como um tubo com uma extremidade aberta. O ruído da água batendo na água (veja o item anterior) produz um som com uma larga faixa de freqüências. Uma dessas freqüências é igual à menor freqüência de ressonância da coluna de ar que existe no interior do recipiente. As variações de pressão com essa freqüência produzem ondas na coluna de ar que se reforçam mutuamente, dando origem a uma onda sonora de grande intensidade. O som que você ouve do lado de fora do recipiente corresponde a essa freqüência de ressonância. (Você também ouve um ruído mais fraco que vem diretamente do local do impacto.) A freqüência de ressonância da coluna de ar é inversamente proporcional ao comprimento da coluna de ar. Assim, à medida que o recipiente se enche e o comprimento da coluna de ar diminui, a freqüência de ressonância aumenta. É possível dizer apenas pelo som quando o recipiente está quase cheio.

3.47 • O barulho dos encanamentos O que causa o barulho que às vezes vem dos canos quando você abre a torneira?

Resposta O som dos encanamentos em geral se deve a um escoamento de água turbulento nos canos, especialmente nas curvas e conexões em que a água precisa mudar de direção ou contornar obstáculos. A turbulência da água está associada a vórtices que produzem variações de pressão. Durante essas variações, a pressão da água pode diminuir o suficiente para que bolhas de ar se formem a partir do ar dissolvido na água, processo conhecido como cavitação. A formação de bolhas, suas oscilações e seu colapso produzem ondas na água. Essas ondas sacodem os canos e você ouve um chocalhar. Muitas vezes é possível eliminar o ruído diminuindo o fluxo da água, o que reduz a turbulência.

3.48 • Estalando as juntas O que produz o som que você ouve quando puxa um dedo para fazer uma junta “estalar”? Por que você precisa esperar um pouco para conseguir fazer a junta estalar de novo?

Resposta Quando você puxa um dedo para fazer uma junta estalar, você aumenta a distância entre os ossos que

formam a articulação e também aumenta a largura da cavidade da articulação. Essa cavidade contém uma camada inicialmente fina de líquido sinovial, que mantém os ossos separados. Se o puxão for dado com força suficiente, os lados da cavidade se projetam para fora, o que aumenta a largura da cavidade e reduz a pressão do líquido sinovial. Essa redução brusca de pressão favorece a formação de uma ou mais bolhas de gás, principalmente dióxido de carbono, que estava dissolvido no líquido. O surgimento repentino de bolhas, chamado cavitação, produz um pulso de pressão que atravessa o líquido sinovial, a cavidade da articulação e escapa para o ar. Quando o pulso chega ao seu ouvido, você ouve um estalo. Para repetir a façanha, você precisa esperar 15 a 30 minutos para que a cavidade recupere a forma inicial, o líquido sinovial volte a ser uma camada fina entre os ossos e o gás se dissolva novamente no líquido. Enquanto isso não acontecer, você vai precisar de algum outro hábito desagradável para incomodar as pessoas à sua volta.

3.49 • Sons de Korotkoff O modo tradicional de medir a pressão arterial é inflar um manguito colocado em volta do braço e ouvir, através de um estetoscópio, o que se passa em um vaso do braço enquanto a pressão do manguito diminui aos poucos e a corrente sangüínea volta ao normal. A pessoa que está medindo a pressão anota o valor indicado pelo aparelho no momento em que ouve certos sons, conhecidos como sons de Korotkoff. Quando ouve o primeiro som, registra a pressão arterial como o valor mais alto (pressão sistólica); quando ouve o segundo, registra a pressão arterial como o valor mais baixo (pressão diastólica). Como são produzidos esses sons?

Resposta Embora os sons de Korotkoff sejam estudados há cerca de 100 anos, sua origem é discutida até hoje. Vou apresentar duas explicações possíveis. Estalo da artéria: quando a pressão do manguito inflado diminui para o valor da pressão sistólica, o sangue começa a passar aos esguichos pelo ponto de estrangulamento da artéria e penetra no antebraço, abrindo com força a artéria que havia murchado quando o manguito inflado interrompeu a circulação. Essa abertura súbita produz uma onda sonora que se propaga na direção do manguito e pode ser ouvida com o auxílio do estetoscópio. Quando a pressão no manguito continua a cair, o som produzido pelos esguichos diminui e depois desaparece, no instante em que a pressão do manguito atinge o valor da pressão diastólica. Assim, a pressão do manguito no instante em que o primeiro som é produzido corresponde à pressão sistólica e a pressão no instante em que o último som é produzido corresponde à pressão diastólica. Cavitação: quando o sangue começa a passar pelo manguito e entrar no antebraço, abrindo com força a artéria murcha, a redução brusca de pressão faz os gases do sangue (principalmente oxigênio, nitrogênio e dióxido de carbono) saírem de solução e formarem bolhas. Quando uma bolha murcha, logo depois, com o sangue se movendo rapidamente para preencher o volume que ela ocupava, o movimento repentino do sangue produz uma onda sonora que se propaga na direção do manguito. Esse som, ou, o que é mais provável, o som coletivo de bolhas se rompendo, que acontece logo após cada esguicho de sangue para o antebraço, é um som de Korotkoff. Essa produção de sons continua até que a pressão do manguito atinja o nível diastólico, momento em que o sangue pára de esguichar para o antebraço e passa a fluir continuamente.

3.50 • O ataque do camarão assassino Os oceanos estão repletos de sons; em alguns lugares, o volume do som produzido por uma colônia de camarões é tão alto que um submarino pode se esconder perto de uma colônia para não ser detectado pelo sonar. O camarão-de-estalo Alpheus heterochaelis produz um som ao atacar suas presas com a garra maior (ela é muito maior que a outra). Curiosamente, ele fecha a garra perto da vítima, sem tocá-la. Mesmo assim, esta ação paralisa ou mata a presa e o camarão pode pegá-la com a garra menor para comê-la. O camarão-louva-a-deus, Odontodactylus scyllarus, também não golpeia diretamente a presa, limitando-se a dar uma chicotada na água com um órgão especial. O que paralisa ou mata a presa nos dois tipos de ataque?

Resposta Quando os dois lados de uma garra se aproximam, expelem um jato de água tão violento que a água sofre cavitação, ou seja, o ar sai de solução e forma bolhas. Essas bolhas murcham quase imediatamente, produzindo pulsos sonoros suficientemente intensos para que as variações de pressão paralisem ou matem as presas. O som produzido por um camarão-de-estalo é o som coletivo das bolhas que murcham e não o som do choque dos dois lados da garra. As variações de pressão provocadas pela implosão das bolhas são tão grandes que o colapso pode produzir um clarão, fenômeno que, em sua forma geral, é conhecido como sonoluminescência (luz produzida pelo som). No caso dos camarões, porém, a produção de luz foi chamada em inglês de shrimpoluminescence (luz produzida pelo camarão), termo que em português talvez possa ser traduzido como camaroluminescência. A luz aparece porque o colapso de uma bolha aquece muito

depressa o ar no interior da bolha, fazendo com que as moléculas percam elétrons e se tornem íons positivos. Pouco tempo depois, os elétrons voltam para as moléculas, emitindo a energia em excesso (eles precisam se livrar dessa energia para serem novamente incorporados às moléculas) em forma de luz. A luz produzida pela implosão de uma bolha (ou mesmo de muitas bolhas) é muito fraca para ser vista a olho nu e é apenas um subproduto do processo de cavitação. O camarão-louva-a-deus também produz pulsos sonoros através da cavitação, mas as bolhas são produzidas pelo movimento de um órgão especial.

3.51 • Sons da água fervente Coloque uma panela de água no fogo, puxe uma cadeira e ouça o som da água sendo aquecida enquanto observa o que acontece dentro da panela. Esse som é tão comum que você provavelmente não o percebe, mas talvez o use de modo subconsciente para saber se a água já está fervendo. O que produz esse som?

Resposta O som que você ouve emanar da água começa com um silvo intermitente e transforma-se em um silvo contínuo. Esse som é produzido por bolhas de ar que se formam nas fendas (arranhões) do fundo da panela. Em uma fenda, o aumento de temperatura faz o ar sair de solução e produzir bolhas na água. Quando as bolhas crescem, começam a oscilar e produzem ondas sonoras na água e nas paredes da panela. O silvo é o som conjunto dessas bolhas. Quando as bolhas ficam suficientemente grandes para que o empuxo as faça subir, chegam rapidamente à superfície da água, onde estouram, emitindo estalidos. À medida que a temperatura continua a subir, a maior parte do ar sai de solução e a formação de bolhas de ar e o silvo associado cessam. Em seguida, começa um som mais forte. A água começa a evaporar no fundo da panela, formando bolhas de vapor nas fendas. Entretanto, a principal causa do som que você ouve não é a formação de bolhas nem mesmo suas oscilações, e sim a implosão das bolhas, na qual de repente o vapor volta a se dissolver e a água se move para ocupar o espaço deixado pela bolha. Esse movimento brusco produz estalidos que se propagam na água e chegam ao ar do lado de fora da panela, onde podem ser ouvidos. Quando a água esquenta um pouco mais, as bolhas de vapor ficam suficientemente grandes para se desprenderem do fundo. Entretanto, não alcançam a superfície porque, quando passam do fundo muito quente para uma água um pouco mais fria, sofrem um colapso, emitindo fortes estalidos. Essas ondas sonoras podem criar ressonâncias no ar acima da água (entre a superfície da água e a borda da panela), na água e nas paredes da panela, ou seja, ondas sonoras que se reforçam mutuamente nessas três regiões, produzindo ondas sonoras que podem ser ouvidas do lado de fora da panela. A combinação desses estalidos e sons ressonantes é o som que você associa com a água perto do ponto de ebulição. À proporção que a água continua a esquentar e a temperatura das camadas superiores da panela aumenta, as bolhas de vapor começam a chegar à superfície da água, onde estouram, emitindo fracos estalidos. A indicação sonora de que a água ferveu (atingiu o ponto de ebulição em todo o volume da panela) é que o som se torna mais suave e regular. É hora de despejar a água para o chá.

3.52 • Sons de uma pessoa que está comendo Você pode não gostar de ouvir as pessoas morderem e mastigarem a comida, mas é possível dizer algo a respeito do alimento a partir do som? Por exemplo: é possível saber, exclusivamente pelo som, se uma maçã está madura ou se um biscoito é fresco? Os fabricantes de alimentos muitas vezes fazem de tudo para garantir que seus produtos produzam os sons “adequados” quando são mastigados.

Resposta É possível saber, exclusivamente pelo som, se uma maçã está madura ou se um biscoito está fresco. Na verdade, acho que boa parte da indústria de biscoitos é movida pelos sons crocantes dos seus produtos. (Adicione sal e gordura e, pronto! O que mais você quer?) Quando uma substância frágil como um biscoito é submetida a uma força concentrada, rompe-se em várias partes quando muitas trincas atravessam suas células cheias de ar. Essas células se deformam e se quebram e os pedaços oscilam por algum tempo, produzindo variações de pressão do ar e, assim, gerando ondas sonoras: é possível ouvir quando alguém come um biscoito. As oscilações se propagam até os dentes e o maxilar, enviando ondas sonoras para o ouvido. Assim, quando você morde um biscoito, pode ouvir as ondas não só através do ar, mas também através desse segundo caminho até o ouvido. Um biscoito fresco é muito frágil e produz sons de alta freqüência (cerca de 5000 hertz) ao se quebrar. Um biscoito velho absorveu água do ar e pode não ser mais tão frágil. Quando você o morde, pode apenas esmagá-lo sem criar trincas ou oscilações rápidas dos pedaços.

Maçãs crocantes podem ser distinguidas de maçãs passadas (velhas) pelos sons da mastigação, em especial a primeira mordida, que costuma produzir sons com freqüências menores que 2000 hertz. A diferença tem a ver com as células da maçã. Uma maçã crocante contém células com água sob pressão. Quando são mordidas, as células estouram, produzindo sons na faixa de freqüências de 100 a 1500 hertz. Por outro lado, nas células das maçãs passadas a pressão é menor (elas têm menos turgidez) porque os carboidratos (as pectinas) nas paredes se juntaram à solução (foram solubilizados). Quando são mordidas, as células se rompem sem que haja uma explosão e o som produzido é muito mais fraco.

3.53 • Estala, crepita e estoura Um cereal para café da manhã muito popular nos Estados Unidos é feito de grãos de arroz torrados e inflados. Quando esses grãos são colocados no leite, emitem um som crepitante, que deu origem à expressão “snap, crackle, and pop” (estala, crepita e estoura), usada há muito tempo pelo fabricante para anunciar o cereal. Por que o cereal produz esse som?

Resposta Os grãos do cereal são frágeis e estão submetidos a tensão, ou seja, as várias partes do grão se atraem com força. Quando uma parte fica úmida, sua rigidez diminui e as outras partes a esticam até rompê-la. Esse movimento brusco produz oscilações, que geram um pulso sonoro relativamente fraco, mais próximo de uma crepitação do que de um estalo ou um estouro. Se você consumir esse tipo de cereal, lembre-se de que os sons que você ouve são os gritos de agonia dos grãos de arroz inflados.

3.54 • Estrondo sônico de aviões e projéteis Os aviões voavam mais devagar que o som (eram subsônicos) até 1947, quando Chuck Yeager rompeu a chamada barreira do som ao voar mais depressa que o som (seu avião era supersônico). Quando os vôos supersônicos se tornaram comuns, um som irritante e às vezes destrutivo também se tornou comum: o estrondo sônico. Por que um avião supersônico produz um estrondo sônico que pode assustar pessoas e animais ou até quebrar janelas? Duas pessoas em um avião supersônico conseguem conversar? Para que a explosão de uma bomba danifique um edifício (fazendo as paredes racharem, por exemplo), é preciso que a pressão da explosão sobre o edifício exceda um certo limiar. Entretanto, um estrondo sônico pode danificar o edifício com uma pressão 100 vezes menor que esse limiar. Como isso é possível? Algumas balas são supersônicas. Elas também produzem estrondos sônicos? Quando foguetes V-1 foram lançados em direção à Inglaterra durante a Segunda Guerra Mundial, um observador ouvia primeiro o ruído do motor (um zumbido característico que servia de alerta não-intencional) e depois a explosão do foguete quando atingia o alvo. Mais tarde, quando os alemães passaram a usar foguetes V-2, um observador ouvia às vezes dois sons na ordem inversa: primeiro a explosão (sem nenhum som de alerta) e, pouco depois, o ruído do motor. Por que a ordem se inverteu? Em 13 de agosto de 1989, o ônibus espacial Columbia estava se dirigindo para a Edwards Air Force Base, na Califórnia, quando sobrevoou Los Angeles e Pasadena. O ônibus espacial estava a uma velocidade supersônica (deslocava-se a cerca de 4.600 quilômetros por hora) e gerou um estrondo sônico que foi ouvido nas duas cidades. Curiosamente, uma estação sismográfica de Pasadena registrou uma forte onda sísmica proveniente de Los Angeles 12,5 segundos antes de receber a onda de choque do ônibus espacial. Como uma onda de choque pôde gerar uma onda sísmica em Los Angeles?

Resposta Quando um avião se desloca, empurra para o lado as moléculas de ar, o que causa uma variação da pressão do ar. Essa variação de pressão se afasta do avião em forma de onda sonora. O som produzido pelos motores também se afasta do avião. Se o avião for subsônico, você ouve o som dos motores e não percebe a onda de pressão causada pelo movimento do avião. Quando o avião é supersônico, a situação se inverte. As variações de pressão produzidas pelo movimento do avião ainda se afastam do avião em forma de ondas sonoras, mas agora essas ondas são mais lentas que o avião e se acumulam para formar um cone com a ponta (o vértice) na posição do avião. Esse cone se desloca junto com o avião enquanto ele estiver voando a uma velocidade supersônica. Em um estrondo sônico, você ouve principalmente essas ondas sonoras acumuladas (chamadas de ondas de choque) e não o ruído dos motores. Quando o avião se movimenta, digamos, na horizontal, a parte inferior do cone pode varrer o chão. Se ela passa por você, a pressão do ar nos seus tímpanos primeiro aumenta em relação ao valor normal, depois cai abaixo do valor normal e, no fim, sobe de volta para o valor normal. (Como a representação gráfica dessas variações lembra a letra N, a onda de choque produzida por um avião supersônico é chamada de onda N.) Essas mudanças bruscas da pressão atmosférica fazem os tímpanos oscilarem

e, assim, você ouve um som: o estrondo sônico. A onda de choque associada a um avião supersônico é, na verdade, a soma das ondas de choque produzidas pelo nariz, pelos motores, pela junção asa–fuselagem e pela cauda da aeronave. Entretanto, quando essas ondas sonoras chegam ao solo, podem se combinar em uma única onda de choque, produzindo um único estrondo sônico. Às vezes, porém, é possível distinguir os estrondos individualmente. As ondas sonoras que formam o cone da onda de choque podem não chegar ao solo porque, enquanto se propagam para baixo, sua trajetória é desviada por variações na temperatura do ar: dizemos que o som é refratado pelo ar. Se as ondas encontram ar cada vez mais quente durante a descida, podem ser tão desviadas que não chegam a atingir o solo. As ondas também podem ser canalizadas por longas distâncias (da ordem de cem quilômetros) se ficarem presas entre camadas com temperaturas mais elevadas. Assim, podem às vezes ser ouvidas quando não há nenhum avião à vista (um estrondo misterioso no céu pode ser assustador). Quando aviões supersônicos, em especial aviões militares, aceleram em linha reta ou fazem curvas fechadas, as ondas de choque podem ser emitidas em várias direções e algumas podem interceptar o solo no mesmo ponto. A combinação de duas ou mais ondas de choque produz variações de pressão mais intensas, dando origem a um superestrondo sônico que pode deixar as pessoas em pânico. São estrondos sônicos desse tipo que podem danificar edifícios, principalmente se a taxa pela qual a pressão varia coincidir com a freqüência natural de oscilação de um componente estrutural do edifício, como uma parede, por exemplo. Nesse caso, as oscilações causadas pelas ondas de choque podem ter intensidade suficiente para derrubar a parede. Duas pessoas em um avião supersônico com certeza conseguem conversar. Elas estão cercadas por um ar que é forçado a se deslocar com a mesma velocidade que o avião e nada de especial acontece com as ondas sonoras das vozes dessas pessoas ao se propagarem nesse ar. Parte do ruído que você ouve quando um rifle é disparado deve-se ao estrondo sônico produzido pela bala caso ela se mova com velocidade supersônica. Os foguetes V-1 lançados contra a Inglaterra eram subsônicos e, portanto, o ruído dos motores chegava a um observador antes do foguete. Os foguetes V-2, porém, eram supersônicos e chegavam ao solo antes do ruído dos seus motores. Quando a onda de choque do Columbia chegou a Los Angeles, fez vários edifícios altos do centro da cidade oscilarem, como se tivessem sido atingidos por um terremoto. Os períodos dessas oscilações (período é o tempo necessário para uma oscilação completa) variaram de 1 a 6 segundos. Quando os edifícios balançaram, produziram ondas sísmicas: um edifício que oscile com um período de, digamos, 2 segundos produz uma onda sísmica com um período de 2 segundos. As ondas sísmicas se propagaram pelo solo mais depressa do que a onda de choque se propagou pelo ar, de modo que chegaram a Pasadena antes da onda de choque. As primeiras ondas produzidas pelos edifícios de Los Angeles chegaram quase ao mesmo tempo, produzindo um sinal muito forte na estação sismográfica. Como as ondas tinham períodos diferentes, sua superposição era caótica e muitas tendiam a se cancelar mutuamente, de modo que o sinal recebido pela estação logo diminuiu de amplitude.

3.55 • Estrondos sônicos em túneis ferroviários Quando a velocidade dos trens-bala japoneses aumentou de 220 quilômetros por hora para 270 quilômetros por hora, os túneis ferroviários começaram a emitir estrondos toda vez que um trem passava por eles. Esses estrondos eram tão altos e assustadores quanto o estrondo produzido por um avião supersônico. Por que o aumento de velocidade produziu o estrondo?

Resposta Um trem, especialmente um trem de alta velocidade, precisa abrir caminho no ar, e por isso cria ondas de compressão no sentido do movimento. Em um local aberto, essas ondas se extinguem (se dissipam) rapidamente; em um túnel, porém, duram mais tempo. Na verdade, podem durar um tempo suficiente para se unirem e produzirem uma onda de choque. Quando a onda de choque chega ao fim do túnel e escapa, tem energia suficiente para produzir um estrondo sônico. Embora a tecnologia atual permita aumentar a velocidade dos trens, a possibilidade de causar estrondos sônicos obriga os projetistas a limitar essa velocidade, especialmente durante a travessia de túneis.

3.56 • Trovão O que causa o trovão e por que os sons de trovão podem variar desde um ruído seco e irritante até um som grave e prolongado?

Resposta O som de um trovão deve-se principalmente à onda de choque produzida pelo raio, que é uma descarga elétrica. A corrente elevada do raio passa da nuvem para o solo (ou de uma nuvem para outra) em um canal estreito com um raio de apenas alguns centímetros. Dentro do canal, elétrons são removidos das moléculas de ar pelo enorme campo elétrico criado pelas cargas existentes no solo e na nuvem. Esses elétrons são acelerados pelo campo elétrico e

colidem com moléculas de ar, transferindo sua energia para as moléculas. Como o gás dessas moléculas se aquece bastante (a temperatura pode chegar a 30.000 K), o gás se expande. O processo acontece tão depressa que o canal de gás quente no início se expande muito mais depressa que a velocidade do som, produzindo a onda de choque de variações bruscas de pressão do ar que constitui o ruído do trovão. Se você está perto do lugar em que o raio caiu, ouve um estrondo muito alto e assustador quando a onda de choque passa por seus ouvidos. Se está mais longe, ouve primeiro o som proveniente da parte mais próxima do raio e, em seguida, o som proveniente de partes mais distantes. Entretanto, como as ondas sonoras se espalham, esse som retardado pode não ser suficientemente forte para assustá-lo. É provável que você também ouça reflexões do som nas colinas, nos edifícios, no solo e até mesmo nas nuvens. Esses efeitos transformam o trovão em um som prolongado. Você pode ouvir uma nota musical se estiver perto de um raio formado por várias descargas rápidas. Se os pulsos sonoros produzidos pelas descargas tiverem um espaçamento aproximadamente regular, você não os percebe individualmente, mas sim como parte de única oscilação periódica, ou seja, como uma nota musical. Assim, por exemplo, se o intervalo de tempo entre pulsos consecutivos é de 0,001 segundo, você percebe um som com uma freqüência de 1/0,001 = 1000 hertz. Se o raio está a mais de 20 quilômetros de distância, você pode não ouvir o trovão. Quando o som se propaga no ar, ele é refratado (sua trajetória sofre um desvio) por mudanças na temperatura do ar (o ar quente é menos denso que o ar frio e essas mudanças de densidade podem desviar o som). Como o ar é em geral mais frio no nível das nuvens do que no nível do solo, o som que se propaga até você a partir de um raio distante é desviado para cima e para longe de você. Entretanto, em algumas tempestades elétricas, o ar perto do solo está mais frio que o ar mais acima, situação conhecida como inversão térmica. Durante uma inversão térmica, o som da queda de um raio que se dirige para cima pode ser desviado para baixo. Pior ainda: às vezes, os sons emitidos por várias partes de um impacto de raio podem convergir (concentrar-se) na sua direção. Quando isso acontece à noite, nem pense em dormir, porque você vai ficar acordado (debaixo das cobertas, escondido dos monstros) até passar a tempestade. Parte do som produzido por um raio pode estar na faixa do infra-som — ou seja, pode ter uma freqüência baixa demais para ser ouvida. A fonte do infra-som parece ser o colapso do campo elétrico e da distribuição de carga em uma nuvem quando a nuvem perde de repente boa parte de sua carga no momento da queda de um raio. As gotas d’água na nuvem estavam carregadas e se repeliam eletricamente umas às outras. Entretanto, quando o raio descarrega essas gotas, removendo a repulsão mútua, as gotas se aglomeram. Esse movimento brusco produz variações de pressão no ar que se propaga da nuvem para o solo que se manifestam como ondas sonoras na faixa do infra-som. A freqüência (cerca de 1 hertz) é baixa demais para ser ouvida, mas pode ser sentida, em especial se você estiver bem embaixo da nuvem. Entretanto, se você estiver nesse lugar, vai prestar muito mais atenção ao raio que caiu do que a qualquer sensação fraca produzida pelo infra-som.

3.57 • Aeromotos: estrondos misteriosos vindos do céu Estrondos misteriosos vindos do céu, mesmo quando o tempo está bom, vêm sendo ouvidos há muito tempo e suas causas ainda não foram bem esclarecidas. Quando os famosos exploradores Lewis e Clark viajaram pelo Oeste americano, no início não levaram a sério as histórias dos índios americanos a respeito do fenômeno, mas mudaram de idéia quando ouviram estrondos perto das montanhas Rochosas de Montana. Aeromotos, mistpoeffers (vomitadores de neblina), canhões de Barisal e brontidi são apenas alguns dos nomes que esses estrondos receberam em vários países do mundo. Modernamente, relatos de aeromotos às vezes chegam aos jornais, especialmente quando um grande número de pessoas os ouve ou quando os aeromotos ocorrem a intervalos regulares. Você é capaz de imaginar o que causa os aeromotos?

Resposta Atualmente, é provável que a maioria dos aeromotos seja causada por estrondos sônicos produzidos por aviões voando a velocidade supersônica. O avião pode estar bem longe do local em que os aeromotos são ouvidos, o que faz a origem dos aeromotos parecer misteriosa. Embora as leis proíbam os aviões de produzir estrondos sônicos sobre as cidades dos Estados Unidos e do Canadá, tais estrondos podem ser produzidos em regiões pouco povoadas ou sobre o oceano. Assim, por exemplo, alguns aeromotos ouvidos por muitas pessoas sobre a costa leste dos Estados Unidos (e muito comentados na mídia) foram mais tarde atribuídos aos estrondos sônicos produzidos pelo avião Concorde. Embora, em viagens transatlânticas, o Concorde fosse obrigado a voar abaixo da velocidade do som muito antes de chegar, digamos, ao aeroporto Kennedy em Nova York, ele voava acima da velocidade do som quando estava sobre o oceano. A trajetória assumida pela ondas sonoras de um estrondo sônico dependia do modo como a temperatura do ar e a velocidade do vento variavam com a altitude. Em algumas situações, as ondas sonoras podiam ser canalizadas pelas variações da temperatura e da velocidade do vento de tal modo que eram ouvidas ao longo da costa leste, nas proximidades do aeroporto Kennedy.

Entretanto, os estrondos sônicos não podem explicar todos os aeromotos ou qualquer dos aeromotos ouvidos antes de 1947, ano em que foi realizado o primeiro vôo supersônico. Esses outros aeromotos podem ter tido várias causas. Alguns podem ter sido causados por abalos sísmicos distantes, se o tremor do solo foi fraco demais para ser percebido mas a onda sonora gerada do ar teve intensidade suficiente para se tornar audível. Um trovão também pode ser a causa, se a tempestade acontece longe demais para ser vista; o som do trovão pode ser ouvido a grandes distâncias se a distribuição de temperatura do ar da atmosfera obedece a certos requisitos. Nesse caso, o som é refratado repetidamente, como acontece com a luz no interior de uma fibra óptica. Essas explicações são difíceis de provar.

3.58 • Quedas de pedras e de árvores Em 10 de julho de 1996, duas quedas de pedras sucessivas, de grandes proporções, aconteceram perto do Happy Isles Nature Center, no Parque Nacional de Yosemite, na Califórnia. Em cada queda, uma enorme pedra de granito rolou por um declive íngreme e foi lançada como um projétil, chocando-se com o solo a cerca de 550 metros de distância. Os impactos produziram ondas sísmicas que foram registradas em sismógrafos situados a mais de 200 quilômetros. O mais surpreendente, porém, foram os estragos que as pedras produziram vale abaixo, a mais de 300 metros do lugar onde caíram: mais de 1000 árvores foram derrubadas, uma ponte e uma lanchonete desabaram, uma pessoa morreu e várias ficaram feridas. Como as pedras de granito causaram tanta destruição em lugares que não foram atingidos diretamente?

Resposta O impacto das pedras de granito no solo produziu variações da pressão do ar, que se afastaram do local do choque em forma de onda sonora. A onda, chamada de jato de ar, envolveu uma compressão seguida de uma expansão do ar. Se você estivesse no caminho do jato de ar, seria empurrado com violência, primeiro em um sentido e depois no sentido oposto, pelas variações de pressão, que produziram o equivalente a ventos fortes. O jato de ar da segunda pedra, cuja massa era três vezes maior, foi o mais destrutivo, submetendo as árvores a ventos de até 430 quilômetros por hora (valor comparável aos ventos nas proximidades de um tornado). Na verdade, o jato de ar da segunda pedra foi supersônico (foi uma onda de choque), porque a poeira levantada pelo primeiro impacto reduziu a velocidade do som no ar do valor normal de 340 metros por segundo para cerca de 220 metros por segundo, e perto do ponto de impacto a velocidade do jato de ar foi ainda maior.

3.59 • Os estalos de chicotes e toalhas molhadas Como se faz para estalar um chicote? Por que, com um pequeno movimento do cabo, a ponta do chicote adquire uma grande velocidade? Como se faz para estalar uma toalha e por que ela estala melhor quando está molhada?

Resposta Para estalar um chicote (ou qualquer coisa que lembre um chicote), é preciso mover rapidamente o cabo para criar uma onda ao longo do chicote. Um novato pode usar uma onda simples, mas uma pessoa experiente usa uma onda em forma de laço (Fig. 3-5). Quando a onda chega à extremidade do chicote, a ponta adquire uma grande aceleração (que pode chegar a 50.000 vezes a aceleração da gravidade) e sua velocidade ultrapassa a velocidade do som. Como acontece com outros corpos a velocidades supersônicas, tais como projéteis e os aviões a jato, a ponta gera um estrondo sônico, que é o estalo do chicote.

Figura 3-5 / Item 3.59 Três vistas sucessivas da onda em forma de laço que se forma no chicote quando o cabo é puxado bruscamente.

Uma toalha molhada funciona melhor que uma toalha seca porque possui uma massa maior. Você precisa fazer mais força para iniciar o movimento, mas a ponta recebe mais energia, o suficiente para produzir um doloroso golpe na pele do seu colega de vestiário. Alguns paleontólogos especulam que o saurópode Apatosaurus louisae, um dinossauro com um cauda longa e flexível, talvez fosse capaz de usar a cauda mais ou menos como um chicote, de modo que a ponta talvez excedesse a velocidade do som e produzisse um estrondo sônico.

3.60 • A tosse e o espirro O que produz o som de uma tosse e de um espirro e por que a tosse ou o espirro de algumas pessoas é tão alto (e desagradável)?

Resposta Ao tossir, expelimos ar em alta velocidade pela traquéia e pelos brônquios superiores para que o ar remova o excesso de muco. Para produzir a alta velocidade, inspiramos uma grande quantidade de ar, retemos esse ar, fechando a glote (abertura estreita da laringe), aumentamos a pressão do ar contraindo os pulmões, fechamos parcialmente a traquéia e os brônquios superiores para estreitar a passagem e expelimos o ar abrindo bruscamente a glote. A corrente de ar logo fica turbulenta, produzindo ondas sonoras tanto no ar como nos tecidos do pulmão. As pregas vocais da laringe não produzem nenhum som nesse estágio, porque são mantidas afastadas para não obstruir a passagem do ar. Entretanto, depois que tossimos, quando as pregas vocais voltam a se unir, a corrente de ar pode fazê-las oscilar e produzir sons. Durante a expulsão explosiva do ar, sua velocidade aumenta ao passar pela traquéia e pelos brônquios superiores contraídos. Em algumas pessoas, calculo que a velocidade do ar atinge, ou mesmo excede, a velocidade do som, de modo que um estrondo sônico moderado sai da garganta, fazendo muito barulho. Um espirro forte também pode criar um estrondo sônico. (As pessoas que preduzem estrondos supersônicos ao tossir ou espirrar supersônico não costumam ser bem-vindas em elevadores.)

3.61 • A acústica de auditórios e salas de concerto Alguns auditórios e salas de concerto são terríveis em termos acústicos, pois a platéia não consegue ouvir direito o que está sendo falado, cantado ou tocado. Assim, por exemplo, um concerto executado em um ginásio de basquete com certeza terá uma salada de sons. (Nos concertos de rock, o volume muitas vezes é tão alto que ninguém na platéia se preocupa com a qualidade do som.) O que determina se a acústica é adequada?

Resposta O som que chega a um espectador pode ser dividido em três categorias: o som direto, que se propaga

diretamente da fonte para o ouvinte, os reflexos imediatos, que chegam pouco depois (em menos de 0,050 segundo) e são produzidos quando o som se reflete nas paredes e no teto, e os reflexos retardados, que chegam mais tarde e são uma conseqüência de vários reflexos. Os reflexos imediatos devem ter um volume elevado. Como chegam logo depois do som direto, o ouvinte os combina mentalmente com o som direto. Esses reflexos imediatos devem vir principalmente da esquerda ou da direita do ouvinte para reforçar a impressão de que ele está em uma sala de concertos, ao mesmo tempo que ampliam o tamanho aparente da fonte. Sem esses reflexos laterais, a sala parece “chocha” e a fonte sonora parece pequena. Os reflexos retardados não devem ter um volume muito alto para não mascarar o som direto que está chegando nesse instante, tornando difícil para o ouvinte separar os dois sons. (Você pode perceber esse efeito se gritar uma frase comprida em um lugar em que existam ecos.) Entretanto, os reflexos retardados não devem ser totalmente eliminados, já que dão ao ouvinte a sensação de que estão “imersos” no som. O estudo dos efeitos psicológicos dos reflexos imediatos e retardados continua até hoje e tem influenciado o projeto das salas de concerto. Esse projeto depende em parte se a sala vai ser usada por alguém que vai fazer um discurso, cantar uma música ou tocar um instrumento. Em geral, as paredes de uma sala de concerto contêm muitas saliências ou irregularidades que refletem o som na direção da platéia. Para reduzir o volume dos reflexos retardados, pode-se cobrir a parte traseira com uma cortina ou pode-se cobrir parte do palco com um carpete. A acústica do fosso de orquestra é muito importante para os músicos. Um músico ouve não só os sons diretos dos outros instrumentos, mas também os reflexos desses sons. Entretanto, o que mais incomoda um músico que está no fosso da orquestra é a ressonância causada pelas ondas sonoras que se refletem entre o piso e o teto do fosso. (Na ressonância, as ondas sonoras se reforçam mutuamente, produzindo uma onda sonora de grande intensidade.) Se a ressonância produz uma grande variação de pressão perto da altura do ouvido de um músico, a fonte do som parece estar mais ou menos na altura da cabeça e não em algum outro lugar do fosso, como de fato está. Essa distração irritante pode ser eliminada, ou reduzida, se a altura do fosso for escolhida corretamente e se forem instalados absorvedores de som em posições apropriadas. Igrejas antigas, com paredes, pisos e tetos duros, costumam produzir ecos fortes que duram alguns segundos. Músicas de órgão executadas nessas igrejas produzem uma enxurrada de sons que ricocheteiam entre as superfícies duras. Na catedral de St. Paul, em Londres, por exemplo, os ecos podem durar 13,5 segundos. As igrejas modernas têm ecos de menor duração, para que as palavras proferidas do púlpito possam ser ouvidas com clareza. Os ecos têm uma vida mais curta porque as paredes absorvem o som melhor que as velhas paredes de pedra. Entretanto, em pelo menos uma igreja as paredes foram revestidas para aumentar a reflexão do som, o que tornou o som do órgão da igreja mais gótico e, portanto, mais parecido com o de um órgão em uma catedral.

3.62 • Galerias de sussurros em recintos fechados Em alguns recintos fechados, um sussurro pode ser ouvido a distâncias surpreendentemente grandes. Segundo a lenda, o “ouvido de Dionísio”, em Siracusa, tinha essa propriedade: as palavras dos prisioneiros nos calabouços eram de alguma forma canalizadas para o ouvido do tirano. Do mesmo modo, a cúpula que cobria a antiga Sala dos Representantes no edifício do Capitólio, em Washington, D.C., refletia até mesmo um sussurro confidencial dito em uma das extremidades do aposento, de forma que podia ser ouvido do outro lado, talvez por um membro do partido adversário. Mais constrangedor, porém, deve ter sido o que supostamente aconteceu na catedral de Girgenti, na Sicília. Um dos fiéis descobriu que, quando estava em um certo ponto da catedral, podia ouvir as confissões sussurradas a um padre no confessionário que ficava na outra extremidade da igreja. O homem e seus amigos se divertiram ouvindo as confissões... até o dia em que sua mulher apareceu para se confessar.

Resposta É pouco provável que as galerias de sussurros encontradas em vários recintos fechados tenham sido projetadas para apresentar essa propriedade. Em geral, trata-se de recintos de forma elipsoidal, cujas paredes focalizam as ondas sonoras. Toda elipse possui dois focos. Se alguém diz alguma coisa em um dos focos, as ondas sonoras se refletem no teto e convergem para o outro foco, contanto que o acesso ao teto não esteja bloqueado por adornos ou luminárias.

3.63 • A galeria de sussurros da catedral de St. Paul A cúpula da catedral de St. Paul, em Londres, contém uma passarela de onde os turistas podem ver o interior da cúpula e parte do átrio da igreja, muitos metros abaixo. A passarela é circular, com um raio de aproximadamente 32 metros. Se você e um

amigo ficarem em extremos opostos da passarela e seu amigo falar voltado para você, ele terá que gritar para que você escute. Entretanto, se seu amigo virar para a parede e sussurrar, você ouvirá com facilidade o que ele está dizendo. Na verdade, você poderá ouvi-lo da mesma forma em qualquer outro ponto da passarela. Como você não precisa estar na extremidade oposta da passarela, não se trata de um efeito de focalização como o que foi discutido no item anterior. De que maneira o som chega até você, por que seu amigo tem que estar voltado para a parede e estar próximo dela para ser ouvido, e por que a mensagem é ouvida com mais clareza se for sussurrada?

Resposta Parte das ondas sonoras que deixam a boca do seu amigo se mantém nas proximidades da parede, refletindo-se várias vezes enquanto se afastam. (As outras ondas sonoras podem refletir uma ou duas vezes e depois se “perdem” no interior da cúpula.) As ondas que permanecem nas proximidades da parede são chamadas ondas de superfície ou ondas de Rayleigh. Em 1904, Lord Rayleigh demonstrou esse efeito: entortou uma longa tira metálica para formar uma parede semicircular horizontal e colocou um apito para aves em uma extremidade e uma chama na outra. A chama servia como detector de sons, já que tremulava visivelmente quando um som a perturbava. Quando o apito para aves era soprado, a chama situada na extremidade oposta do semicírculo tremulava. Entretanto, quando Rayleigh introduziu uma barreira estreita no perímetro interno da fita, o apito para aves deixou de fazer a chama tremular. O som que perturbava a chama não ia diretamente do apito até a chama; em vez disso, propagava-se pela parede semicircular com várias reflexões, formando uma faixa relativamente estreita de ondas sonoras ao longo da parede. Quando a barreira era colocada perto da parede, bloqueava as ondas que se propagavam ao longo dela. Uma explicação simples é dizer que as ondas se mantêm nas proximidades da parede porque sofrem reflexões repetidas que as levam de um ponto da parede para o ponto seguinte. Na verdade, a propagação da onda é bem mais complicada. Com efeito, em certas circunstâncias, essas ondas de superfície podem se propagar ao longo de uma superfície plana, caso em que a explicação das reflexões repetidas não faz sentido. A capacidade das ondas sonoras de se manterem nas proximidades de uma superfície curva enquanto se propagam depende do comprimento de onda: comprimentos de onda menores funcionam melhor porque os pontos em que uma onda sofre reflexões sucessivas estão mais próximos. Assim, as ondas sonoras podem se propagar em volta da passarela da catedral de St. Paul com mais sucesso se tiverem comprimentos de onda menores. Esses comprimentos de onda correspondem a freqüências mais altas, que estão presentes em um sussurro.

3.64 • Ecos de paredes, esquinas e bosques O eco é simplesmente uma reflexão de ondas sonoras na direção da origem do som. É provável que você tenha ouvido ecos em corredores ou outros recintos fechados com paredes que refletem bem o som. Algumas construções apresentam vários ecos, no quais um som é refletido por várias superfícies antes de voltar à origem ou é refletido repetidamente entre duas superfícies antes de voltar à origem. O vértice formado por três superfícies perpendiculares, tais como duas paredes e um teto, pode se comportar como um retrorrefletor, um dispositivo capaz de fazer o som voltar ao ponto de origem depois de ser refletido em duas ou três das superfícies, independentemente do ângulo de incidência. Algumas estruturas podem produzir ecos muito difíceis de explicar. Assim, por exemplo, se você bater palmas embaixo de uma ponte de alvenaria em forma de arco sobre um rio, ouvirá uma série de ecos que provavelmente não se devem apenas à simples reflexão de ondas sonoras. Na verdade, os ecos podem estar tão próximos que soam como uma nota musical. Se você alguma vez ouvir ecos em um bosque, preste atenção ao seguinte: um som de alta freqüência, tal como um grito de mulher, produz um eco forte, mas um som de baixa freqüência, como o latido de um cachorro, pode não produzir nenhum eco. Se você entoa uma nota musical (ou mesmo bate palmas), o eco é uma oitava mais alto (ou seja, possui uma freqüência duas vezes maior que o som original). Por que um bosque produz ecos tão peculiares?

Resposta A capacidade do som de ser refletido por objetos como árvores depende do comprimento de onda. Quando os comprimentos de onda são todos maiores que o objeto, um comprimento de onda menor é refletido com mais eficiência que um comprimento de onda maior. Assim, quando você emite um som com vários comprimentos de onda, os comprimentos de onda menores são refletidos com mais eficiência pelas árvores de um bosque, por exemplo. Como um comprimento de onda menor corresponde a uma freqüência maior, as freqüências altas aparecem muito acentuadas no eco que você ouve. Isto significa que os sons de baixa freqüência produzem ecos fracos ou nenhum eco, enquanto os sons de alta freqüência podem produzir ecos perceptíveis. Se você emite uma nota musical, o som tem pelo menos dois componentes: uma freqüência mais baixa (chamada fundamental) e uma freqüência duas vezes maior (chamada segundo harmônico). Como possui uma freqüência mais alta, o

segundo harmônico é refletido pelas árvores do bosque com mais eficiência do que a fundamental. Assim, embora o som que você emitiu seja dominado pela fundamental, o eco é dominado pelo segundo harmônico e, portanto, tem (basicamente) o dobro da freqüência original.

3.65 • Ecos musicais produzidos por escadas e cercas Se você bate palmas perto de uma escada ou de uma cerca, por que o eco se repete várias vezes? Por que a freqüência do eco diminui com o tempo? Um dos exemplos mais notáveis desse eco musical (ou eco modulado), como é chamado, pode ser ouvido diante da escada que existe em uma das faces do templo de Kukulkan, situado nas ruínas maias de Chichén Itzá, no México. Essa escada possui 92 degraus de pedra, que alguns turistas escalam.

Resposta A mudança gradual na freqüência do eco produzido por uma escada deve-se ao ângulo pelo qual as ondas sonoras chegam aos diferentes degraus e não às freqüências do pulso sonoro (que pode ser, por exemplo, produzido por um bater de palmas). Imagine que você esteja observando os degraus de lado e suponha que, para os degraus mais baixos, as trajetórias do som incidente e do som refletido sejam horizontais (Fig. 3-6). Você ouve um pulso refletido pelo degrau mais baixo (o que está mais próximo de você), um segundo pulso refletido pelo degrau seguinte (o segundo mais próximo de você), um terceiro pulso logo em seguida e assim por diante. Cada pulso refletido chega atrasado em relação ao pulso anterior porque seu percurso de ida e volta é maior. Você não ouve esses pulsos separadamente, mas sim como um som contínuo cuja freqüência é igual à freqüência na qual os pulsos chegam aos seus ouvidos. Assim, por exemplo, se o intervalo de tempo entre os pulsos é de 0,002 segundo, você ouve uma freqüência de aproximadamente 500 hertz.

Figura 3-6 / Item 3.65 Reflexões de som nos degraus de uma escada.

Considere agora os degraus mais altos: nesse caso, para chegar até você, o som precisa seguir uma trajetória oblíqua, tanto no caminho de ida como no de volta. Assim, a diferença entre os percursos de ida e volta de um degrau para o degrau seguinte é maior para os degraus mais altos do que para os degraus mais baixos. Isto significa que o intervalo de tempo entre os pulsos é maior. Assim, por exemplo, o intervalo de tempo entre dois pulsos consecutivos pode passar a ser 0,003 segundo, que você perceberia como uma freqüência de aproximadamente 333 hertz, menor que a do eco produzido pelos degraus inferiores. O argumento para o eco musical produzido por uma cerca é parecido, com a diferença de que os objetos refletores (os mourões da cerca) estão separados horizontalmente e não verticalmente. Se ondas sonoras incidem em um arranjo de cilindros regularmente espaçados, as ondas podem sofrer interferência construtiva (na qual as ondas se reforçam mutuamente) e interferência destrutiva (na qual as ondas se cancelam). Para algumas freqüências, o arranjo deixa passar o som quase sem atenuação; para outras freqüências, o som é fortemente atenuado. Esse experimento foi realizado fazendo-se passar ondas sonoras através de uma escultura minimalista exposta como obra de arte. A escultura era formada por cilindros verticais finos dispostos em um arranjo quadrado.

CURIOSIDADE 3.66 • A acústica de construções antigas É provável que os ecos tenham feito parte das superstições dos povos antigos. Assim, por exemplo, alguns petróglifos australianos foram pintados em lugares em que até hoje existem ecos. Em alguns desses lugares os melhores ecos são ouvidos a cerca de 30 metros de distância das gravuras, de modo que o eco parece ser emitido pelas próprias gravuras. Algumas gravuras rupestres encontradas nas cavernas européias estão em pontos das cavernas nos quais os ecos são intensos. Talvez esses pontos tenham sido usados nos rituais religiosos dos povos que fizeram as gravuras e podem ter cantado

ou tocado nesses locais. As tumbas megalíticas da Inglaterra e da Irlanda têm freqüências de ressonância na extremidade inferior da faixa audível. Assim, certas ondas sonoras de baixa freqüência se reforçavam mutuamente, produzindo ondas sonoras de grande amplitude. Essas tumbas com certeza não foram projetadas para ter propriedades acústicas especiais. Entretanto, uma vez construídas, as pessoas podem ter descoberto que, ao produzirem sons a uma certa freqüência, podiam criar ressonâncias. Já nos tempos modernos, foi criada uma ressonância no longo corredor de entrada que leva à câmara central do monumento megalítico irlandês de Newgrange. Uma fonte sonora colocada na câmara central foi ajustada para que sua freqüência fosse igual à freqüência de ressonância do corredor.

3.67 • Cantando no chuveiro Por que uma música cantada no chuveiro soa melhor (ou, pelo menos, parece soar melhor)? O cantor de chuveiro muitas vezes ouve uma voz de melhor qualidade e, por isso, sente-se mais à vontade para cantar.

Resposta A resposta a esta pergunta é bem mais complexa do que eu pensava quando escrevi a respeito, há alguns anos. Na época, afirmei que a principal razão pela qual um cantor amador canta melhor no chuveiro é que o cantor pode criar ressonâncias em um boxe típico e, portanto, aumenta o volume do som às freqüências de ressonância. Ao criar ressonâncias, você encaixa um número inteiro de meios comprimentos de onda entre duas paredes paralelas ou entre o chão e o teto. Quando isso acontece, as ondas interferem de maneira construtiva (ou seja, se reforçam mutuamente), o que aumenta o volume do som. Assim, o som fica alto, forte e talvez até robusto. As pessoas que leram meu artigo apresentaram outras razões. Uma delas é que as paredes e o chão (e talvez o teto) de um boxe são revestidos de ladrilhos e, portanto, refletem bem o som. Se você tentar cantar em um armário vazio com as mesmas dimensões que um boxe de banheiro, as reflexões não vão ser tão boas e será mais difícil criar ressonâncias. (Além do mais, se você começar a cantar dentro de um armário, sua família vai ficar preocupada.) Outra razão é a seguinte: como o eco da sua voz chega rapidamente aos seus ouvidos, já que as paredes estão muito próximas, você fica imerso no som que está produzindo. Isto significa que você é capaz de ouvir o eco de uma nota enquanto ainda está sendo cantada e ajustar o tom se estiver desafinando. É claro que, se a água do chuveiro estiver fazendo muito barulho, o ruído pode mascarar todas as suas notas desafinadas.

3.68 • O barulho do vizinho de cima Ter um vizinho de cima barulhento pode ser desagradável, mas quais são os ruídos mais comuns? O som de sapatos de salto alto em um piso de madeira é um deles? É possível reduzir ou eliminar os ruídos instalando um carpete? (Isto acabaria, por exemplo, com o ruído dos sapatos de salto alto.)

Resposta A maioria dos ruídos irritantes é descrita como “baques” e, talvez de modo surpreendente, não se deve a coisas como sapatos de salto alto batendo no chão. Em vez disso, a causa é um ruído de baixa freqüência gerado por alguém que caminha de um lado a outro de um aposento. Os passos repetidos fazem o chão oscilar como a membrana de um tambor, em geral a uma freqüência entre 15 e 35 hertz, que está na extremidade inferior da faixa audível para a maioria das pessoas. O vizinho de baixo consegue ouvir, e até mesmo sentir, esse tipo de ruído. É possível ouvir o som de alta freqüência de saltos batendo no chão, mas uma quantidade muito maior de energia é transferida para as oscilações de baixa freqüência do piso, semelhantes às de uma membrana de tambor. Instalar um carpete pode piorar a situação porque, com a superfície mais macia, os passos podem transferir ainda mais energia para as oscilações do piso. A única solução é se mudar para um apartamento construído com pisos e vigas de concreto armado.

3.69 • Ruídos emitidos pela areia Em algumas praias, a areia range ou assobia enquanto você caminha sobre ela ou quando enterra nela a mão ou uma placa a um ângulo de cerca de 45°. Em alguns desertos, dunas de areia emitem um som de baixa freqüência (100 hertz), às vezes com uma intensidade tão grande que fica difícil conversar. Alguns observadores acham esse som parecido com o de um didjeridu australiano. Como a areia pode emitir sons e por que nem toda areia (das praias e das dunas de areia) emite sons?

Resposta Uma duna de areia se desloca aos poucos pelo deserto porque o vento que sopra de um dos lados da duna arrasta os grãos de areia e os deposita no alto ou do outro lado da duna. Esse transporte gradual acaba tornando a

inclinação do lado de trás grande demais para ser estável, de modo que uma camada de areia desliza, reduzindo a inclinação. Assim, o transporte de areia para cima na face voltada para o vento e o deslizamento para baixo na outra face fazem a duna se mover pelo deserto. Em algumas dunas, o deslizamento da areia pode produzir um som grave, contanto que a areia seja razoavelmente uniforme em tamanho e estrutura superficial. A areia pode deslizar em mais de uma camada, cada qual com cerca de 0,5 centímetro de espessura. Quando as camadas descem, oscilam no sentido perpendicular à superfície subjacente, como uma membrana de tambor. Quando o deslizamento acaba, o ruído cessa. Enquanto deslizam em uma camada, os grãos em movimento sobem uns por cima dos outros e colidem a uma taxa de cerca de 100 vezes por segundo. A freqüência das colisões e a freqüência de oscilações da camada tornam-se sincronizadas (entram em um laço de realimentação). Isto faz com que a freqüência do som produzido pelas oscilação de camada seja de cerca de 100 ciclos por segundo, que corresponde a 100 hertz. Caminhar sobre a areia da praia faz barulho porque os passos forçam as camadas de areia a deslizar umas sobre as outras, produzindo ondas sonoras. Ninguém sabe ao certo por que nem toda areia faz barulho. Ao que parece, os grãos da areia ruidosa têm algumas características que conferem à areia a capacidade de se deslocar em camadas razoavelmente finas, e o movimento faz essas camadas oscilarem. A possibilidade mais interessante é a de que os grãos tenham uma crosta especial. Na verdade, experimentos com areia de praia que range revelaram que, se a areia for lavada em água doce, a capacidade de ranger desaparece aos poucos e não é restaurada mesmo que a areia seja novamente imersa em água salgada.

3.70 • O barulho de gelo rachando e o bergy seltzer Quando você coloca um cubo de gelo em uma bebida à temperatura ambiente, o que faz o gelo estalar? Quando um iceberg começa a derreter, emite um som “crepitante” que as pessoas que o ouvem de submarinos e navios apelidaram de bergy seltzer. O que causa o bergy seltzer?

Resposta Os estalidos emitidos por um cubo de gelo ao ser colocado em um líquido à temperatura ambiente devemse às tensões internas causadas pelo aumento súbito da temperatura na superfície do cubo. O aumento de temperatura tende a fazer o gelo dilatar-se; isto põe a superfície sob tensão, o que leva à formação de trincas na superfície. Quando as superfícies do gelo dos dois lados da trinca se aproximam ou se afastam, produzem variações da pressão do líquido ou do ar, que se propagam para longe da trinca em forma de ondas sonoras. O bergy seltzer é um tipo diferente de emissão e acontece apenas no gelo translúcido, ou seja, no gelo que contém bolsões de ar. Quando a superfície do gelo derrete, o ar pode escapar bruscamente de um bolsão de ar, exercendo pressão sobre a água, se a superfície estiver submersa, ou sobre o ar, se a superfície não estiver submersa. Seja como for, a variação brusca de pressão se afasta do local em forma de onda sonora, talvez fazendo oscilar outras partes do bloco de gelo. A emissão coletiva, com suas variações aleatórias de intensidade, constitui o bergy seltzer.

3.71 • Ouvindo através da neve Por que uma vítima de avalanche enterrada na neve ouve uma equipe de salvamento, mas os membros da equipe não ouvem a vítima? A vítima pode gritar ou (como já aconteceu) disparar um revólver para chamar a atenção e ainda assim não ser ouvida.

Resposta Ao se propagar na neve fofa, o som é fortemente atenuado. Entretanto, a propagação do local em que está a vítima para cima deveria ser mais ou menos a mesma que a propagação em sentido contrário. A principal razão pela qual os sons que se propagam para baixo são ouvidos pela vítima mas os sons que se propagam em sentido contrário não são ouvidos pela equipe de salvamento é que, ao contrário dos membros da equipe de salvamento, a vítima está em um local extremamente silencioso. Na verdade, os membros da equipe de salvamento podem estar fazendo muito barulho enquanto realizam o trabalho de busca.

3.72 • Sons produzidos por quem anda na neve Por que a neve range quando caminhamos sobre ela e por que é mais provável que a neve emita esses sons quando faz muito frio?

Resposta Se a temperatura da neve estiver abaixo de aproximadamente –10°C, a pressão dos passos de uma pessoa pode fazer com que algumas das ligações entre os grãos de neve se rompam ou que algumas das camadas de neve

cedam de maneira brusca e escorreguem por cima das outras camadas. Qualquer desses fenômenos provoca breves oscilações na neve, as quais produzem sons. Se a neve não estiver tão fria, os grãos de neve se soltam com tanta facilidade que não chegam a produzir ruído, pois as ligações são mais raras ou mais fracas do que quando a neve está muito fria. A fraqueza das ligações pode se dever ao derretimento parcial, que reduz o atrito. O derretimento também pode se dever à absorção de raios solares, especialmente na camada superficial. Outra hipótese é que em alguns pontos a pressão dos passos é suficiente para derreter a neve.

3.73 • “É possível ouvir a forma de um tambor?” Esta pergunta foi formulada em 1966 pelo matemático Mark Kac. O que ele queria dizer era o seguinte: é possível determinar a forma de uma membrana de tambor a partir das freqüências que ela é capaz de produzir? Em outras palavras: depois de ouvir muitas dessas freqüências, podemos prever, para qualquer uma delas, qual é o comportamento da membrana, ou seja, que partes oscilam e que partes permanecem imóveis?

Resposta No caso de uma corda presa nas duas extremidades, é possível ouvir a forma da corda, pois cada freqüência corresponde a certo padrão de oscilação da corda. Assim, por exemplo, a freqüência mais baixa na qual a corda pode oscilar corresponde a um padrão bem definido: as extremidades ficam imóveis (pois estão presas), o centro é o lugar em que a amplitude das oscilações é máxima e nos pontos intermediários a amplitude das oscilações tem valores intermediários (Fig. 3-7a). A segunda freqüência mais baixa corresponde ao segundo padrão mais simples (Fig. 3-7b) e assim por diante. Essas freqüências são chamadas de freqüências harmônicas da corda e as formas correspondentes da corda são chamadas modos de ressonância. Quando ouvimos uma dessas freqüências, podemos dizer imediatamente qual é o modo de ressonância. Além disso, se conhecemos a densidade e a tensão da corda, podemos calcular o comprimento da corda a partir do valor da freqüência mais baixa de oscilação.

Figura 3-7 / Item 3.73 Vibrações de uma corda presa nas duas extremidades. (a) O padrão mais simples. (b) O segundo padrão mais simples.

Uma membrana plana também tem freqüências harmônicas e modos de ressonância, mas os modos são complicados pelo fato de que as membranas são bidimensionais. No caso de membranas circulares, é fácil determinar os modos, por causa da simetria. Para outras formas, porém, é difícil relacionar o modo de oscilação (as partes que oscilam e as partes que permanecem imóveis) à forma da membrana. Para a maior parte das membranas simples, a tarefa é possível. Entretanto, para membranas mais complicadas, nem sempre é possível conhecer a forma com certeza, já que pelo menos duas formas diferentes podem gerar o mesmo conjunto de freqüências harmônicas. Mesmo nessas situações difíceis, porém, é possível calcular a área da membrana e, portanto, é possível ouvir a área do tambor, mesmo que não seja possível ouvir a forma do tambor.

3.74 • Infra-som Se você ficar perto dos alto-falantes durante uma apresentação de rock pesado, é óbvio que não vai se sentir bem. Existe alguma situação em que um efeito acústico provoca desconforto ou enjôo, mesmo que o som não esteja alto?

Resposta Existem muitas situações em que você é submetido a um infra-som (som com freqüências inferiores ao limiar da audição, ou seja, menores que aproximadamente 30 hertz) razoavelmente intenso. O infra-som pode não fazer o seu corpo tremer, mas pode afetar o seu senso de equilíbrio a ponto de deixá-lo enjoado. Um exemplo comum é o

infra-som que existe no banco de trás de muitos tipos de modelos de automóvel. Uma exposição rápida pode não ter nenhum efeito, mas uma viagem de carro pode deixar a pessoa “mareada”. A sensação de desconforto piora se o infrasom cria uma ressonância (fenômeno pelo qual as ondas se reforçam mutuamente, produzindo uma onda de grande amplitude). A ressonância pode acontecer se uma janela estiver aberta e o infra-som faz parte da turbulência criada quando a borda de trás da janela do carro corta o ar. O infra-som também é criado pelo motor e pelo movimento das rodas e fica mais forte quando a velocidade do carro aumenta. Entretanto, a melhor aerodinâmica e o melhor isolamento acústico dos carros modernos reduziram bastante o problema do infra-som. O infra-som também pode ser gerado quando um vento forte sopra nos cantos ou nas bordas dos edifícios e cria vórtices. A variação na pressão do ar pode produzir uma onda infra-sônica capaz de incomodar os ocupantes do prédio. (O vento também pode produzir sons audíveis, como, por exemplo, o uivo dos ventos de inverno.) Também nesse caso os efeitos podem ser mais pronunciados se o infra-som criar uma ressonância em um aposento, o que pode acontecer quando uma janela está aberta. O infra-som pode afetar uma área muito maior quando um vento forte cria turbulências ao passar por uma cadeia de montanhas. Na verdade, alguns pesquisadores acreditam que existe uma ligação entre a produção de infra-som e o número de casos de depressão e de tentativas de suicídio, embora essa ligação ainda não tenha sido demonstrada. Também estamos sujeitos ao infra-som produzido por máquinas (elevadores, por exemplo), ondas do mar, explosões e tempestades. Até mesmo as emissões infra-sônicas dos trovões produzidos por tempestades distantes podem afetar as pessoas. Em 1883, a gigantesca explosão vulcânica do Krakatoa (perto da ilha de Java, no sudeste do Pacífico) lançou intensas ondas infra-sônicas na atmosfera. As ondas ficaram presas entre a superfície da Terra e o ar de temperatura mais elevada da estratosfera. Quando as ondas sonoras penetraram na estratosfera inferior, foram desviadas (refratadas) de volta para a superfície da Terra. Ao chegar à superfície, foram refletidas de volta para a estratosfera e assim por diante. Ninguém ouviu a explosão a uma grande distância da ilha, mas a passagem do infra-som foi registrada nos barômetros do mundo inteiro. Embora você esteja exposto a várias fontes de infra-som durante boa parte do dia, é provável que não sinta nenhum efeito, já que a intensidade costuma ser pequena. Entretanto, se precisa de uma desculpa conveniente para explicar por que não fez o dever de casa, por que seu namoro não deu certo ou por que seu time de futebol perdeu o jogo, ponha a culpa no infra-som.

3.75 • O som do milho crescendo O que produz o ruído emitido por um milharal em noites sem vento? (Os agricultores chamam esse som de “barulho do milho crescendo”.)

Resposta Os sons de um milharal são produzidos pelo contato das folhas umas com as outras quando uma brisa leve sopra no campo. O ruído fica mais forte se a brisa aumentar de intensidade. Também fica mais forte se a planta estiver madura, porque nesse caso as folhas são maiores, mais soltas e mais frágeis (mais secas) e as hastes balançam mais.

3.76 • O ruído da roupa esticada Segure uma peça de roupa de cerca de 30 centímetros de comprimento com as duas mãos, uma em cada ponta, deixe-a pender por um instante e depois afaste as mãos com um movimento brusco, esticando a roupa. Por que a roupa emite um som? Por que a freqüência é mais alta se a roupa for mais curta?

Resposta Quando a peça de roupa é esticada, ela oscila por algum tempo como uma corda de violão, causando variações de pressão no ar circundante. Essas variações se afastam da peça em forma de onda sonora: o “estalo” que você ouve. Tal como acontece com a corda de violão, a freqüência do som depende do comprimento do material que oscila. Um comprimento menor produz uma freqüência mais alta.

3.77 • Canos que fazem glissandos Se você bate palmas na ponta de um cano, ouve um eco diferente, que começa mais agudo e termina mais grave. Sons desse tipo são chamados glissandos pelos músicos e de sibilos pelos cientistas. Você também ouve um sibilo quando um amigo bate palmas na outra ponta de um cano. Às vezes, um som parecido aparece em uma quadra de raquetebol, mas nesse caso a freqüência aumenta em vez de diminuir com o tempo. O que provoca um sibilo? Em outras palavras, por que a freqüência do eco varia com o tempo?

Resposta O sibilo pode ser ouvido em muitos tipos de canos, alguns suficientemente curtos para serem levados para a sala de aula. É causado pela ressonância, fenômeno associado à interferência construtiva de ondas sonoras. Entretanto, vamos optar por uma explicação simples. Suponha que as palmas do seu amigo, que produzem um pulso sonoro, estejam perto do centro de uma das pontas do cano e que o cano tenha um comprimento L. O som pode ser refletido pelos lados do cano de várias maneiras. Assim, por exemplo, pode ser refletido a uma distância L/2 da origem (na metade do cano) e, portanto, sofrer apenas uma reflexão. Um número maior de reflexões exige que a trajetória do som seja em ziguezague, de modo que som leva mais tempo para chegar à outra ponta do cano. Assim, você ouve primeiro o eco da reflexão simples, depois o eco da reflexão dupla e assim por diante. A freqüência que você percebe é a freqüência na qual os ecos chegam ao seu ouvido. A primeira seqüência de ecos (composta por aqueles que exigem apenas umas poucas reflexões) é rápida, de modo que você ouve uma freqüência alta. As seqüências seguintes (compostas por ecos que exigem mais reflexões) são menos rápidas, de modo que você ouve uma freqüência mais baixa. O limite é estabelecido pelos ecos associados a reflexões que acontecem no ponto diametralmente oposto do cano e, portanto, não se deslocam ao longo do cano. Acontece mais ou menos a mesma coisa quando você ouve os ecos das suas próprias palmas. Desta vez, porém, o som precisa inverter seu sentido de propagação na outra ponta do cano. Isso acontece tanto se a outra ponta estiver fechada (o cano pode estar tapado ou encostado em uma parede) como se estiver aberta. O segundo caso pode ser inesperado: quando o som atinge a extremidade aberta de um cano, a transição abrupta para o ar faz com que parte do som entre no cano de novo. Dizemos que a extremidade aberta reflete parte do som. (Alguns instrumentos musicais têm uma extremidade que se alarga para reduzir essa reflexão e possibilitar que uma parcela maior do som chegue à platéia ou ao microfone.) Quando uma bola de raquetebol desliza pela parede ou pelo piso da quadra, o movimento da bola pode acontecer aos saltos, o que a faz oscilar. As oscilações causam variações de pressão no ar e essas variações se propagam para longe da bola em forma de ondas sonoras. Como as superfícies duras da quadra refletem bem o som, você ouve não apenas o som direto da bola, mas também os reflexos do som nas superfícies. Na verdade, o som é refletido muitas vezes no interior da quadra (contanto que a parede de trás não tenha um espaço aberto para os espectadores), de modo que você pode ouvir ecos durante 1 ou 2 segundos. A freqüência na qual você intercepta os ecos aumenta e, portanto, a freqüência que você ouve também aumenta.

3.78 • Molamanias sibilantes Prenda uma ponta de uma molamania (brinquedo em forma de mola) a uma parede e estique a mola, puxando a ponta livre para longe da parede. Uma vez esticada, dê batidinhas na mola com um lápis e aproxime o ouvido da ponta que está na sua mão. Você vai ouvir um sibilo, um eco no qual a freqüência varia continuamente (neste caso, de altas freqüências para baixas freqüências). O que produz o sibilo?

Resposta As batidinhas na mola produzem ondas transversais. Ondas desse tipo fazem a mola oscilar perpendicularmente ao seu eixo e não ao longo do eixo, como acontece com as ondas longitudinais. A velocidade de uma onda transversal depende da freqüência: ondas de freqüência mais alta propagam-se mais depressa que ondas de freqüência mais baixa. Quando você dá uma batidinha na mola, cria ondas em uma larga faixa de freqüências. Quando as ondas atingem a outra ponta da mola, são refletidas e voltam para você, mas as ondas de freqüência mais alta chegam antes das ondas de freqüência mais baixa. O fato de o fio estar enrolado em forma de hélice não parece fazer diferença.

3.79 • Sons de tiros em regiões de pergelissolo A história da exploração das regiões de pergelissolo — ou seja, solo permanentemente gelado —, na América do Norte e na Rússia fala de misteriosos sons de tiros. Um dos exploradores conta que as renas não se assustavam com tiros de verdade, o que parecia mostrar que estavam acostumadas com sons semelhantes. O que causa os sons de tiros?

Resposta As regiões de pergelissolo estão repletas de cunhas de gelo encravadas no solo; essas cunhas estão submetidas a tensão mecânica e apresentam muitos defeitos, tais como bolhas de ar. Quando a temperatura cai muito, pode aparecer uma trinca vertical em uma cunha de gelo e propagar-se horizontalmente ao longo da cunha. Se a velocidade da trinca for elevada, uma ruptura brusca na ponta da trinca pode criar variações de pressão no gelo e no ar circundante. Essas variações de pressão se propagam para longe da trinca em forma de ondas sonoras que parecem tiros.

3.80 • Ouvindo auroras e bolas de fogo É possível ouvir auroras, esses maravilhosos espetáculos de luz que acontecem no céu a altas latitudes? Alguns observadores relatam ter ouvido crepitações, zumbidos ou silvos que parecem estar relacionados às auroras. Você consegue ouvir um meteoro passar no céu? Alguns observadores afirmam que ouviram um meteoro antes que se tornasse visível ou logo depois. Isso parece estranho, já que os meteoros queimam a altitudes elevadas. (Às vezes é ouvido um estrondo sônico, mas isso não é estranho, porque o estrondo chega aos observadores depois da passagem do meteoro.) Além disso, se o meteoro resiste à entrada na atmosfera e chega à superfície, qualquer ruído produzido por ele tem uma causa óbvia.

Resposta Embora a produção de infra-sons por auroras tenha sido comprovada há muito tempo, não existem registros confiáveis de sons audíveis. É muito difícil imaginar que uma onda sonora na faixa audível possa atravessar pelo menos 100 quilômetros de atmosfera e ser ouvida. Mesmo assim, várias pessoas afirmaram ter ouvido sons relacionados a auroras. Alguns desses eventos podem ser ilusões (uma interpretação equivocada do ruído ambiente durante uma aurora, estabelecendo-se uma correlação inexistente). Alguns podem se dever ao fato de que o observador estava respirando a temperaturas muito baixas (–240°C ou menos), porque o vapor d’água da respiração pode congelar e cair no chão, fazendo um som fraco mas audível. Alguns, porém, podem ser reais se existir alguma correlação entre as auroras e um campo elétrico no nível do solo. Nesse caso, o campo elétrico poderia produzir descargas elétricas em locais nos quais o campo elétrico tende a ser mais intenso, tais como a ponta de um galho de árvore ou de uma barra de metal. Se você ouve o estrondo sônico de um meteoro, o som chega até você com a velocidade do som, o que significa que, no momento em que você ouve o som, o meteoro já passou. De que maneira você poderia ouvir um som no mesmo instante em que vê o meteoro ou mesmo antes de vê-lo? Isso só pode acontecer se o meteoro produzir, de alguma forma, uma onda eletromagnética, que chegaria até você com a velocidade da luz. Essa onda poderia fazer oscilar os objetos em torno. Se essas oscilações estivessem a uma freqüência da faixa audível, você poderia ouvi-las e esse seria o som associado ao meteoro. Existem indícios de que ondas eletromagnéticas de baixa freqüência podem ser produzidas quando um meteoro atravessa a atmosfera superior.

3.81 • O zunidor australiano O zunidor é um pedaço de madeira em forma de lâmina com uma corda amarrada em uma extremidade. Com a mão na outra ponta da corda, você faz a lâmina de madeira girar rapidamente em volta da cabeça para produzir um som de zumbido ou rugido. (É usado no filme Crocodilo Dundee II.) O que causa o som?

Resposta A lâmina de madeira gira enquanto se movimenta no ar, torcendo a corda em um sentido e depois no outro. Esse movimento caótico cria vórtices no ar, como os fios telefônicos em um item anterior. As variações de pressão produzidas por esses vórtices fazem a lâmina oscilar e o som que você ouve deve-se tanto aos vórtices como às oscilações da lâmina.

_____________ *

Este fenômeno é conhecido como ressonância estocástica. (N. do T.)

Figura 4-1 / Item 4.1

4.1 • Cascavéis mortas A cobra cascavel é muito temida por causa do seu veneno. Quando é encontrada em áreas residenciais, costuma-se matá-la. Entretanto, o perigo não cessa com a morte da cascavel. Muitas pessoas já cometeram o erro de se aproximar de uma cascavel morta para removê-la. Mesmo meia hora depois de morta, a cobra ainda pode cravar as presas na mão que se aproxima e injetar seu veneno. Como isso pode acontecer?

Resposta Fossas entre os olhos e as narinas da cascavel funcionam como sensores de radiação térmica. Quando, digamos, um camundongo se aproxima da cabeça de uma cascavel, a radiação térmica do camundongo aciona esses sensores, causando um ato reflexo no qual a cobra ataca o camundongo com as presas e injeta o veneno. Uma cascavel consegue detectar e matar o camundongo mesmo em uma noite sem lua, já que o processo não necessita de luz visível. A radiação térmica da mão que se aproxima pode causar o mesmo ato reflexo ainda que a cobra esteja morta há algum tempo, pois o sistema nervoso da cobra continua a funcionar. Como advertiu um especialista em cobras, se você precisa remover uma cascavel recém-morta, use uma vara comprida em vez da mão.

4.2 • Besouros sensíveis ao fogo Os pequenos besouros Melanophila são conhecidos por um comportamento exótico: voam na direção dos incêndios florestais, copulam nas imediações e depois as fêmeas voam para os restos ainda incandescentes para botar os ovos sob a casca de uma árvore queimada. Esse é o ambiente ideal para as larvas que saem dos ovos, porque a árvore não pode mais se proteger liberando substâncias químicas ou resina. Quando um besouro está nas proximidades de um incêndio, é claro que não é difícil detectá-lo. Entretanto, esses besouros conseguem detectar um incêndio de dimensões razoáveis a uma distância de 12 quilômetros. Como fazem isso? Uma coisa é certa: os besouros não conseguem ver nem sentir o cheiro do incêndio a uma distância tão grande.

Resposta O besouro possui dois órgãos detectores de infravermelho de cada lado do corpo, cada órgão com cerca de 70 pequenos sensores em forma de botão. O sensor sofre uma ligeira expansão quando absorve radiação infravermelha proveniente do incêndio e, com isso, pressiona uma célula sensorial. Este é, portanto, um mecanismo que converte a energia da radiação infravermelha em energia mecânica. Para localizar o incêndio, o besouro se orienta de tal modo que

os quatro órgãos de detecção do infravermelho sejam igualmente afetados e depois voa na direção para a qual a resposta dos órgãos aumenta, que é a direção do incêndio.

4.3 • Abelhas matam uma vespa A vespa gigante Vespa mandarinia japonica alimenta-se de abelhas japonesas. Entretanto, se uma vespa tenta invadir uma colmeia, centenas de abelhas formam uma bola compacta em torno da vespa. A vespa morre em menos de 20 minutos, embora as abelhas não a piquem, mordam, esmaguem ou sufoquem. Sendo assim, por que a vespa morre?

Resposta Depois que centenas de abelhas japonesas formam uma bola compacta em torno de uma vespa gigante que tenta invadir sua colmeia, elas aumentam a temperatura do corpo do valor normal de 35°C para 47°C ou 48°C. Se apenas algumas abelhas fizessem isso, a transferência de energia para a vespa seria desprezível, já que boa parte da energia térmica das abelhas seria irradiada para o espaço. Entretanto, com a vespa no centro de uma bola formada por centenas de abelhas, a própria bola se aquece e uma quantidade considerável de energia térmica é transferida para a vespa. O aumento de temperatura é letal para a vespa, mas não para as abelhas.

4.4 • Animais que se aglomeram Por que os tatus (por volta de uma dúzia) se aglomeram à noite? Por que os pingüins-imperadores (alguns milhares) se aglomeram durante o inverno antártico?

Resposta Os tatus, os pingüins-imperadores e muitos outros animais de sangue quente se aglomeram quando está fazendo frio para conservar o calor do corpo. Se um pingüim-imperador permanecer sozinho, pode perder uma quantidade significativa de energia térmica por condução (para o solo), convecção (para o ar, em especial se o ar estiver em movimento) e irradiação térmica (para os corpos frios que o cercam, incluindo o céu). No clima rigoroso da Antártica, onde a temperatura pode chegar a –40°C e as velocidades do vento a 300 quilômetros por hora, pingüins isolados podem morrer de hipotermia. A aglomeração é mais importante quando os pingüins procriam no inverno. O pai, que choca o ovo quase sozinho, equilibra o ovo sobre os pés durante meses para que não congele. Durante esse período de incubação, o pai não pode ir buscar comida na água. Assim, privado da energia dos alimentos, precisa ficar aglomerado com outros pingüins ou a perda de calor o levará a abandonar o ovo e partir em busca de comida. Ao se aglomerarem (com até 10 pingüins por metro quadrado), os pingüins reduzem de maneira significativa as perdas de energia térmica causadas por convecção e por irradiação: apenas os pingüins da periferia sofrem grandes perdas, mas mesmo esses pingüins se beneficiam com a presença dos vizinhos. O resumo da história é que se você coloca muitos “cilindros quentes” em um ambiente frio, a perda total de energia térmica pode ser muito grande porque a área superficial total através da qual há perda de energia é grande. Entretanto, se você reúne esses cilindros para formar um único cilindro mais largo, a área superficial total diminui e, portanto, a energia perdida através da superfície também diminui.

4.5 • Andando no espaço sem traje espacial Alguns pesquisadores especulam que uma pessoa poderia se aventurar no espaço por um breve tempo sem um traje espacial (como fez um astronauta no filme 2001: Uma Odisséia no Espaço) e sobreviver. Se a aventura acontecesse longe do Sol, o astronauta sentiria frio? Existem outros riscos para o astronauta além da falta de oxigênio?

Resposta Uma razão pela qual a temperatura de uma sala é agradável é que a quantidade de radiação infravermelha produzida pelas paredes é praticamente igual à quantidade de radiação produzida pelo seu corpo. Isto significa que você está em equilíbrio com o ambiente. Se a quantidade de radiação que chega a você diminui, você começa a sentir frio. Se você se aventurasse no espaço, afastando-se da espaçonave, não haveria paredes e, portanto, em pouco tempo você sentiria muito frio. A taxa pela qual você perderia energia térmica é de cerca de 800 watts. Entretanto, a falta de oxigênio seria um perigo muito maior. A exposição ao vácuo também seria um problema. Quando a água é exposta ao vácuo, primeiro ferve (parte dela evapora) e depois congela. Você tem uma porção de água no corpo e... bem, talvez seja melhor pensar em algo mais agradável.

4.6 • Gotas d’água em uma frigideira quente, dedos em chumbo derretido

Se uma frigideira de metal for aquecida até uma temperatura um pouco acima do ponto de ebulição da água e algumas gotas de água forem borrifadas na sua superfície, as gotas se espalham e levam apenas alguns segundos para evaporar, emitindo um chiado. Por estranho que pareça, se a demonstração for repetida com a frigideira muito mais quente (a uma temperatura de mais de 200°C), as gotas não se espalham e podem durar até alguns minutos. Como as gotas podem durar mais se a frigideira está muito mais quente? Este fenômeno é conhecido como efeito Leidenfrost, em homenagem a Johann Gottlieb Leidenfrost, que o estudou em 1756. (O trabalho anterior de Hermann Boerhaave não é tão conhecido.) Quando as gotas dançam na superfície da frigideira quente, às vezes é possível ver que elas vibram, assumindo formas quase geométricas. É mais fácil observar essas formas em uma fotografia tirada com flash. Se as vibrações forem regulares, é possível “congelá-las” usando uma luz estroboscópica. Gotas maiores se deslocam lentamente, como se fossem amebas. De repente, os dois tipos de gota se desfazem com um chiado e um bafo de vapor. O que explica esses comportamentos? O efeito Leidenfrost tem algo a ver com a antiga prática de encostar o dedo molhado de saliva para verificar se o ferro está quente na hora de passar roupa? Por que o dedo não queima ao encostar no metal quente? Desde 1974, divirto os alunos com uma demonstração em que mergulho os dedos, por um breve tempo, primeiro na água e depois em chumbo derretido a uma temperatura de cerca de 400°C. Por que a água protege meus dedos? (Uma vez me esqueci de molhar os dedos, mas percebi o erro no momento em que eles tocaram o metal líquido. A dor foi lancinante.) Antes de continuar, devo chamar a atenção para o sério risco que esta demonstração envolve. É óbvio que, se meus dedos entram em contato com chumbo derretido, posso sofrer queimaduras, e, se o recipiente entorna, pode respingar chumbo em mim e queimar meu corpo. Entretanto, existem dois outros riscos mais sutis. Se o chumbo estiver perto do ponto de solidificação, a presença súbita da água muito mais fria e de um dedo pode solidificá-lo em torno do meu dedo. O chumbo estaria mais ou menos a 328°C e, logo depois, meu dedo também atingiria essa temperatura. O outro risco é que, se houver água demais no dedo, parte da água vai evaporar com tanta violência que a expansão pode jogar chumbo derretido em minha direção. Essas explosões já me causaram queimaduras dolorosas no rosto e nos braços. Um exemplo parecido do efeito Leidenfrost aparece no best-seller Something of Value, de Robert Ruark. Para descobrir qual de dois homens estava dizendo a verdade, uma tribo os obrigou a lamber uma faca muito quente. A idéia era que o homem que estava mentindo teria a língua seca de medo e, portanto, se queimaria, enquanto o homem que estava dizendo a verdade teria a língua molhada e não sofreria mal algum. A tribo não sabia o nome do efeito Leidenfrost, mas o conhecia na prática. Se for despejado nitrogênio líquido em uma superfície plana, gotas do líquido flutuam acima da superfície como gotas de água em uma frigideira muito quente. Embora o nitrogênio líquido esteja a uma temperatura de cerca de –200°C e devesse evaporar imediatamente, é necessário um certo tempo para que isso aconteça. De que maneira o efeito Leidenfrost contribui para essa demora? Talvez você tenha uma demonstração em que uma flor é mergulhada em nitrogênio líquido. Depois de atingir a temperatura do líquido, a flor é retirada e golpeada contra uma mesa. A flor congelada está tão frágil que se desfaz em mil pedaços. Durante anos, depois de fazer a demonstração da flor em sala de aula e após uma pausa teatral, eu levava aos lábios o recipiente de nitrogênio líquido e despejava na boca uma boa quantidade do líquido. Tomando cuidado para não engolir, soprava o líquido e uma nuvem de vapor saía da minha boca, como se eu fosse um dragão. O vapor se formava quando o ar úmido dos meus pulmões passava pelo nitrogênio líquido. Parte da umidade se condensava em gotículas de água, tornando visível a nuvem de vapor. Por que minha língua não se quebrava como a flor? Esta demonstração também envolve vários riscos. Quando eu levava o recipiente aos lábios, estes às vezes ficavam grudados na borda de metal do recipiente. Mais tarde, eu ficava com bolhas nesse lugares. Um risco mais grave envolve o reflexo natural de engolir quando temos algo na boca. Se eu engolisse o nitrogênio líquido, minha garganta e meu estômago poderiam sofrer graves queimaduras por causa da exposição prolongada, primeiro ao líquido frio e depois ao nitrogênio frio que evapora do líquido. Outro risco me pegou de surpresa. Em minha última atuação, parece que a contração causada pelo frio do líquido ou do gás foi suficiente para produzir trincas no esmalte de dois dentes. Na ocasião, não percebi nada, mas na primeira consulta de rotina depois disso, minha dentista comentou que, vistos de perto, meus dentes lembravam um mapa rodoviário. Ela me convenceu a não repetir a demonstração.

Resposta Quando uma gota d’água se aproxima de uma superfície metálica que, embora quente, esteja a menos de 200°C, a água se espalha pelo metal e logo evapora com um chiado. Quando a superfície está a mais de 200°C, porém, a gota não se espalha. Quando a gota se aproxima do metal, a parte de baixo da gota evapora e cria um colchão de vapor de água que sustenta o que restou da gota. O colchão é renovado constantemente enquanto o líquido do fundo da gota continua a evaporar. Como não chega a encostar no metal, a gota é aquecida lentamente por convecção através do

vapor e pela irradiação que recebe do metal, e não rapidamente, por contato direto. Assim, essa gota d’água flutuante leva um bom tempo para evaporar. Quando mergulho dedos molhados em chumbo derretido, parte ou toda a água evapora e meus dedos ficam protegidos durante um certo tempo por uma luva de vapor. Mais uma vez, o vapor reduz a velocidade da transferência de calor. Se o chumbo encostasse na minha pele, a transferência de calor seria tão rápida que mesmo um toque breve causaria uma queimadura. Quando você encosta o dedo molhado em um pedaço de metal muito quente, essa camada de vapor reduz consideravelmente o atrito. Um ferreiro me contou que é essa falta de atrito que o faz soltar quase instantaneamente uma peça de metal muito quente quando a pega por descuido com as mãos descobertas e suadas. Se reagisse apenas à sensação de dor, o sinal chegaria tarde demais e ele sofreria uma queimadura grave. Quando nitrogênio líquido é despejado em uma superfície como a minha boca, a parte de baixo do líquido evapora e sustenta o resto, impedindo um contato direto com a superfície. A energia térmica passa lentamente da superfície para o líquido por convecção e radiação, e não rapidamente, como aconteceria por condução se houvesse um contato direto. Um efeito Leidenfrost inverso acontece quando uma peça de metal muito quente é jogada na água. A água que entra em contato com o metal evapora, envolvendo o metal e retardando seu resfriamento. Quando a temperatura da superfície do metal cai abaixo de 200°C, a água fica em contato com o metal e entra em ebulição.

CURIOSIDADE 4.7 • Uma bebida mortal Em 1755, uma tempestade de verão sacudiu o farol de Eddystone, perto de Plymouth, na Inglaterra. Henry Hall era o vigia noturno encarregado de cuidar das tochas do farol, que iluminava o mar. Quando subiu a escadaria estreita às 2 horas da madrugada para examinar as tochas, descobriu que uma fagulha havia colocado fogo na fuligem e no sebo acumulados no teto do farol. O telhado era feito de placas de chumbo sustentadas por vigas de madeira. Embora Hall tenha se esforçado para tentar apagar o fogo com água, o incêndio logo saiu de controle, consumiu as vigas e derreteu o chumbo. No momento em que Hall jogava mais água no incêndio, o telhado desabou, derramando chumbo derretido sobre o faroleiro. Hall sofreu queimaduras no rosto e nos braços e também sentiu uma dor violenta na garganta e no estômago. Aparentemente, estava com a boca aberta ao jogar água no incêndio pela última vez. O incêndio se espalhou pelo resto do farol, forçando Hall e dois outros empregados a enfrentarem a tempestade do lado de fora. Quando foram afinal resgatados e levados para a costa, Hall conseguiu explicar que havia engolido chumbo derretido, mas não foi levado a sério; acharam que ele estava em estado de choque por causa da experiência traumática, já que tinha 94 anos de idade. O médico local tranqüilizou Hall, mas não acreditou na sua história. Como alguém poderia engolir chumbo derretido e sobreviver?

Na verdade, Hall não sobreviveu por muito tempo: passados 12 dias, começou a sofrer de convulsões e morreu horas depois. Quando o médico fez a autópsia, encontrou no estômago de Hall uma peça oval de chumbo que pesava três quilos.

4.8 • Caminhando sobre brasas Caminhei sobre brasas pela primeira vez como parte de minhas aulas de física bem antes de a prática se tornar comum nos Estados Unidos. Preparei uma fogueira com lenha comum, deixei a madeira queimar até se transformar em brasas incandescentes, transportei as brasas para uma calha de madeira revestida com folhas de metal e coberta de areia e carreguei orgulhosamente a calha para a sala de aula, com a ajuda de um assistente. Estava ensinando o efeito Leidenfrost (veja o item 4.6) e, enquanto tirava os sapatos e as meias, expliquei rapidamente que o efeito ajudaria a proteger meus pés durante uma caminhada sobre as brasas. A caminhada durou três passos e, embora tenha sentido um certo calor e meus pés tenham ficado sujos de cinza, escapei ileso.

Repeti a demonstração durante dois anos, cada vez mais confiante. Minha confiança era infundada, porque, na caminhada seguinte sobre as brasas, sofri sérias queimaduras. A dor foi tão forte que meu cérebro desligou a informação para que eu pudesse concluir minha aula de 50 minutos. Após a aula, quando fui mancando até a enfermaria, a dor voltou com força total. Em alguns dos “cursos” em que se aprende a andar sobre brasas (muitas vezes a preço de ouro), a ênfase é colocada em ter os “pensamentos certos”. Algum pensamento pode reduzir a transferência de energia térmica para os pés? Se não é esse o caso, o que torna possível caminhar sobre brasas sem se queimar? Por que o método às vezes falha, forçando a vítima a lidar não apenas com queimaduras graves, mas também com o risco de infecção?

Resposta Embora eu já tenha acreditado que é principalmente o efeito Leidenfrost que protege os pés durante uma caminhada sobre brasas, o médico Bernie Leikind me convenceu de que existe algo ainda mais importante. Quando coloco um pé nas brasas, a temperatura da superfície das brasas é alta, mas a quantidade de energia térmica, não. Se o tempo de contato do meu pé com as brasas for curto, apenas uma pequena quantidade de energia térmica será conduzida para minha pele e, portanto, pode ser que eu não me queime. É claro que, se eu demorar, a energia térmica será conduzida do interior para a superfície das brasas e posso sofrer graves queimaduras. Correr não é uma boa idéia, por uma razão prática: posso jogar brasas para o peito do pé, onde ficariam em contato com a pele por tempo suficiente para me queimar. Assim, ando a passos moderados, mas firmes. O efeito Leidenfrost é uma segurança adicional. Quando eu caminhava sobre brasas ardentes, ficava com os pés suados. O suor ajudava de três modos: resfriava a superfície das brasas; ajudava a consumir a energia térmica; e, em alguns lugares, pode ter evaporado para criar uma camada de Leidenfrost. Qualquer fator ajuda se eu demorar demais para levantar o pé ou se as brasas estiverem mais quentes que o normal. Eu costumava ficar tão nervoso com a demonstração que meus pés ficavam naturalmente suados... exceto no dia em que fiquei tão confiante que não tive dúvidas de que a demonstração daria certo. Nesse dia, ao que parece, precisei da proteção adicional que meu pé seco não teve como oferecer. Em alguns cursos que ensinam a caminhar sobre o fogo, os participantes têm o lado emocional trabalhado, o que pode ajudar a deixar seus pés mais suados, e muitas vezes são conduzidos sobre a grama molhada com uma mangueira ou pelo orvalho antes de caminhar sobre as brasas. (Há muito tempo defendo a idéia de que a concessão de diplomas de física não deveria basear-se em um exame escrito, mas na exigência de que os candidatos caminhassem sobre brasas incandescentes. Se os candidatos tivessem as “atitudes corretas”, ou seja, se acreditassem de fato na física, passariam ilesos e poderiam receber o diploma. Para facilitar o processo, o exame poderia ser “com consulta”: os candidatos poderiam carregar um livro clássico de física para se inspirar. Sempre levei o meu favorito, a primeira edição de Física, de autoria de David Halliday e Robert Resnick, a não ser naquele dia fatídico em que o esqueci e por causa disso tive que aprender a andar com o lado do pé por duas semanas, preocupado com a possibilidade de que as partes queimadas infeccionassem.)

CURIOSIDADE 4.9 • Relatos de caminhadas sobre o fogo Em 1984, uma repórter de uma estação de rádio de San Francisco assistiu, a convite de um “médium”, a um curso de fim de semana para caminhar sobre brasas. O médium afirmou que ninguém jamais havia se queimado no curso, mas, quando a repórter caminhou sobre o leito de brasas de quase três metros de extensão, sofreu queimaduras de primeiro e de segundo graus. Uma gravação em fita da matéria, que incluía seus gritos de dor, foi ao ar no noticiário da estação, na segunda-feira seguinte. Ainda em 1984, um repórter da revista Rolling Stone publicou uma reportagem sobre os cursos oferecidos por um “guru” da Califórnia que ensinava que o “controle da mente” podia evitar queimaduras ao caminhar sobre brasas ardentes se os participantes acreditassem realmente que isso era possível. De fato, os participantes não se queimaram quando foram levados a um estado altamente emocional antes de enfrentarem o desafio. Mais tarde, um deles afirmou que, se tivesse pleno controle da mente, poderia até “sobreviver a uma explosão nuclear”. Por sorte, ele não estava por perto duas noites depois, quando uma jovem que sofrera lesões cerebral e na coluna se arrastou por cima das brasas com a ajuda de duas bengalas. Ao que parece, ela acreditava na lengalenga do guru a respeito do “poder da mente sobre a matéria” para evitar queimaduras. O repórter da revista Rolling Stone notou que o tempo médio que os participantes levaram sobre as brasas foi de 1,5 segundo, mas a jovem caminhou durante 7 segundos até que a dor a fez perder o equilíbrio. Antes que caísse nas brasas, foi agarrada e tirada de cena. Passou 12 dias em um hospital, com sérias queimaduras nos pés.

4.10 • Água congelada e super-resfriada

De que forma a água congela? Por que a temperatura pode cair vários graus abaixo do ponto de congelamento sem que a água congele? Quando a água se encontra nesse estado, dizemos que está super-resfriada.

Resposta A água precisa de um agente de nucleação para congelar, ou seja, necessita de um grão de poeira, ar dissolvido ou algum outro material para que algumas moléculas de água assumam o arranjo geométrico de um cristal de gelo. A explicação tem a ver com a energia necessária para que uma partícula de gelo aumente de tamanho. Se o raio inicial da partícula for menor que um certo raio crítico, o crescimento é improvável, pois requer muita energia. Se o gelo se forma em um agente de nucleação, o crescimento é facilitado porque o raio pode ser maior que o raio crítico. Entretanto, se o gelo não possui um agente de nucleação, sua formação depende do encontro fortuito entre moléculas de água em certas orientações. Para aumentar a probabilidade desse encontro fortuito, é preciso que as moléculas de água sejam resfriadas abaixo do ponto de congelamento, pois assim perdem mobilidade e, portanto, aumentam as chances de que se condensem em um sólido. Assim, água com poucos agentes de nucleação pode ser super-resfriada. Água pura em um recipiente limpo foi resfriada a –20°C antes de congelar e gotas d’água em nuvens podem chegar a –40°C antes de congelar. Entretanto, mesmo a água da torneira, que tem muitos agentes de nucleação, pode não congelar até que esteja alguns graus abaixo do ponto de congelamento. Para que a água congele em uma interface água-gelo, como a de um cubo de gelo em formação, precisa ceder energia térmica à água ou ao gelo. Se a energia for cedida por condução à água super-resfriada, a superfície tende a formar gelo dendrítico, que é formado por belas extensões em forma de samambaia na água super-resfriada. Se a perda for por condução através do gelo já formado, a interface água-gelo tende a ser plana. Se um ponto da superfície congelasse mais depressa que o resto da superfície, formaria uma saliência que aumentaria a distância do gelo. Assim, o congelamento da saliência seria mais lento até que o resto da superfície a alcançasse e, portanto, a superfície ficaria plana.

4.11 • Comendo gelo marinho Pessoas que moram perto do mar em altas latitudes sabem que gelo marinho recém-formado é salgado demais para comer ou para derreter e beber, mas gelo marinho com alguns anos de idade é praticamente doce. Sabem também que podem acelerar a transição de gelo salobro para gelo doce extraindo da água o gelo recém-formado, em especial nos meses quentes da primavera e do verão. Por que o gelo fica menos salgado quando está fazendo calor, já que a evaporação reduz a quantidade de água em um bloco de gelo, o que deveria tornar o resto do gelo ainda mais salgado?

Resposta Quando a água do mar congela, o sal e outras impurezas são segregados em pequenas cavidades em vez de serem incorporados à estrutura cristalina do gelo. Como essas células de salmoura podem ser interligadas, a salmoura escoa lentamente para fora do gelo. Se a temperatura do gelo aumenta, o que pode acontecer quando o gelo é levado para a costa e deixado exposto ao sol, as células de salmoura crescem e a taxa de escoamento aumenta. Além do escoamento através de células interligadas, as células migram em direção a temperaturas mais altas. Se o gelo estiver em uma camada sobre a água, as células de salmoura descem, já que a superfície inferior da camada (a interface água– gelo) está no ponto de congelamento e a superfície superior (a interface água–ar) pode estar bem abaixo do ponto de congelamento. Na célula de salmoura ilustrada na Fig. 4-2, a superfície superior da camada de gelo está à temperatura do ar, –5°C, a superfície inferior da camada está no ponto de congelamento da água, 0°C, e a água salgada no interior da célula está a –2°C. A água no interior das células não está congelada porque o sal reduz o ponto de congelamento da água. (As moléculas de sal interferem na capacidade das moléculas de água de formar a estrutura cristalina do gelo.) O gelo da parte de baixo da célula derrete aos poucos por causa da energia térmica que está chegando da superfície inferior da camada de gelo. A água da parte de cima da célula congela aos poucos por causa da energia térmica que está saindo para a superfície superior da camada de gelo. Assim, a célula migra para baixo; quando chega à base da camada, libera o sal na água que existe abaixo da camada. É assim que a camada de gelo se livra aos poucos do sal.

Figura 4-2 / Item 4.11 Uma célula de salmoura se movimenta para baixo através de uma camada de gelo e atinge a água subjacente.

A fusão do gelo na base de uma célula está relacionada com o seguinte resultado inesperado: se um cubo de gelo (água pura) a –1°C for colocado em uma água muito salgada a –1°C, o cubo de gelo derrete, embora as temperaturas sejam iguais. Para explicar este fenômeno, vamos supor que o sal reduza o ponto de congelamento da água para –2°C. Considere agora as moléculas de água na superfície do cubo de gelo. Aquelas que fazem parte do cubo estão um pouco mais quentes que o ponto de congelamento reduzido da água salgada em contato com elas, e, portanto, tendem a deixar o cubo. As moléculas que estão na água salgada perto do cubo estão um pouco mais frias que o ponto de congelamento do gelo puro do cubo e, portanto, tendem a se unir ao cubo. Entretanto, as moléculas de sal cercam as moléculas de água, impedindo a união. (Quando as moléculas de sal se dissolvem na água, os íons positivos e negativos se separam e as moléculas de água se aglomeram em torno deles como crianças em torno de uma carrocinha de sorvete.) Como muitas moléculas de água deixam o cubo e nenhuma se une a ele, o cubo derrete.

4.12 • Velocidade de resfriamento de água quente e morna O artigo mais polêmico que escrevi para a revista Scientific American dizia respeito a uma antiga questão: se iguais quantidades de água em recipientes iguais estiverem inicialmente a temperaturas diferentes, uma bem mais alta que a outra, qual congela primeiro quando os dois recipientes forem resfriados? Por estranho que pareça, em certas circunstâncias a água que estava mais quente congela primeiro. Esse fenômeno foi relatado por Aristóteles e era conhecido pelos povos de climas frios. Entretanto, os cientistas se recusaram a aceitá-lo até a década de 1960, quando um estudante da Tanzânia, E. B. Mpemba, perguntou a um professor da escola de segundo grau em que estudava por que uma mistura para sorvete congela mais depressa se for colocada no congelador enquanto ainda está quente. O professor só acreditou depois que Mpemba demonstrou o efeito com água; o fenômeno é hoje conhecido como efeito Mpemba. Por que a água quente esfria e congela mais depressa que uma quantidade igual de água morna (ou mesmo fria, em alguns casos)?

Resposta Uma objeção à existência do efeito baseia-se na lógica. Se uma amostra A de água está inicialmente mais quente que uma amostra B e ainda assim vence a corrida para a formação de gelo, em algum momento as temperaturas de A e B têm que ser iguais. Se as amostras são idênticas, não vão esfriar com a mesma rapidez a partir dessa temperatura? Uma falha desse argumento é que não podemos atribuir uma temperatura única às amostras, já que diferentes partes das amostras se encontram em diferentes temperaturas. Assim, para confirmar ou rejeitar o efeito Mpemba, é preciso uma investigação mais aprofundada. Na verdade, o efeito ainda não foi confirmado nem rejeitado de modo cabal, por causa, principalmente, das muitas variáveis envolvidas. Assim, por exemplo, variações das correntes de ar e da temperatura em um congelador comum podem mudar a taxa

de resfriamento de um experimento para outro, o que resulta em dados pouco confiáveis que podem levar a uma suposta confirmação do efeito Mpemba. Assim, é preciso realizar muitos experimentos em condições controladas. Vários pesquisadores que tentaram executar esse trabalho aparentemente demonstraram o efeito Mpemba em situações controladas, mas não chegaram a um acordo quanto à causa. Eis algumas das hipóteses apresentadas: (1) As perdas de massa e energia são maiores na evaporação da água que começou mais quente. Se os recipientes forem tampados, eliminando-se com isso a evaporação, o efeito Mpemba parece desaparecer. (Entretanto, em circunstâncias especiais o efeito pode se manifestar mesmo sem evaporação.) (2) A densidade da água sofre uma curiosa mudança de comportamento quando a água é resfriada abaixo de 4°C: ao contrário do que acontece normalmente com a maioria das substâncias, a água passa a se expandir quando a temperatura diminui. Assim, quando a temperatura de uma amostra de água cai abaixo de 4°C, as partes mais frias tornam-se mais leves e sobem, enquanto as porções um pouco mais quentes, que são mais densas, afundam. Ao subir, a água um pouco mais fria arrasta a água um pouco mais quente para a superfície descoberta, onde perde energia térmica. Os experimentos revelam que esse movimento é mais pronunciado quando a temperatura inicial da água é mais alta. Assim, a água quente pode alcançar o ponto de congelamento em primeiro lugar por causa do resfriamento forçado abaixo de 4°C. (3) A água torna-se super-resfriada (resfriada abaixo do ponto de congelamento) antes de começar a formar gelo. A água inicialmente mais fria continua super-resfriada até uma temperatura mais baixa que a água inicialmente mais quente e por isso leva mais tempo para congelar.

4.13 • Água congelada pelo céu Em algumas regiões em que não existem geladeiras, deixa-se uma bacia rasa de água ao ar livre durante a noite para se obter gelo. A bacia é mantida suspensa ou é isolada do chão de alguma maneira. É evidente que, se a temperatura cai abaixo do ponto de congelamento, a água congela. Em noites claras, porém, a água pode congelar mesmo que a temperatura do ar permaneça um pouco acima do ponto de congelamento. Em uma noite assim, o que causa o congelamento?

Resposta Em uma noite clara, você pode considerar o céu uma superfície única com uma temperatura mais baixa que o ponto de congelamento da água. Durante a noite, existe uma troca de radiação infravermelha entre essa superfície e a água. A água, que começa a uma temperatura mais alta que o ponto de congelamento, emite no início mais radiação do que absorve do céu e, portanto, esfria. Se a temperatura do ar em volta da água não estiver muito acima do ponto de congelamento, a água pode perder tamanha energia térmica por esse processo de radiação, que congela. A bacia tem que estar isolada do chão para não receber energia térmica por condução, o que impediria o congelamento.

4.14 • Preservando legumes em conserva com uma banheira cheia de água Quando fazia uma noite muito fria na casa da minha avó, no Texas, ela se preocupava com as frutas e legumes em conserva que estavam guardados no abrigo contra tempestades do quintal. Para proteger os vidros, arrastava uma banheira grande para o abrigo e a enchia de água. De que maneira isto evitava que o conteúdo dos vidros congelasse, quebrando os vidros?

Resposta A grande quantidade de água impede que a temperatura do abrigo caia abaixo de 0°C, o ponto de congelamento da água pura. Quando a água começa a congelar, libera uma grande quantidade de energia, que mantém a temperatura do abrigo em torno de 0°C. As soluções aquosas nos vidros têm pontos de congelamento um pouco mais baixos, porque são misturas de vários fluidos e, portanto, não congelam. A temperatura do abrigo só poderia cair abaixo de 0°C e ameaçar os vidros se toda a água da banheira congelasse, o que dificilmente aconteceria em apenas uma noite. Uma medida parecida tem sido adotada por motoristas para proteger o radiador do carro, caso não tenham anticongelante em casa e sejam surpreendidos por uma súbita onda de frio: deixam uma banheira cheia de água perto do radiador na garagem durante a noite, o que evita que a água do radiador congele.

4.15 • Pulverizando o pomar para proteger as árvores da geada Quando os pomares da Flórida são ameaçados por uma geada rigorosa (com temperaturas abaixo de –2°C), as plantas são pulverizadas com água, que forma uma camada fina de gelo. Por que isto protege as plantas?

Resposta A proteção não se deve à camada de gelo que se forma nas plantas: a camada não isola as plantas do ar frio. A proteção decorre do que acontece com a água depois que cai nas plantas. A água esfria até o ponto de congelamento

e congela; os dois processos exigem que a água libere energia térmica para as plantas, para que as moléculas de água primeiro se movam mais devagar e depois se imobilizem na estrutura cristalina do gelo. A energia transferida para as plantas e depois para o ar mantém a temperatura do pomar entre –2°C e 0°C, o que possibilita que as plantas sobrevivam. Pulverizar um pomar é complicado porque, quando existe uma brisa apreciável ou a umidade do ar está baixa, a pulverização pode matar as plantas em pouco tempo. A explicação é que a água tende a evaporar das gotas enquanto elas estão no ar. Como a evaporação requer muita energia, a temperatura das gotas cai até o ponto de congelamento (ou até abaixo do ponto de congelamento, se a gota fica super-resfriada) antes que atinjam as plantas. As gotas podem congelar parcialmente ainda no ar ou no momento em que tocam a planta. Seja como for, a quantidade de energia transferida para as plantas é bem menor, e a temperatura do pomar pode cair abaixo de –2°C, matando as plantas. Um produtor consegue saber, pelo gelo que se forma nas plantas, se a pulverização está ajudando ou prejudicando as plantas. Quando o processo funciona bem, as gotas de água se espalham nas plantas antes de congelar, formando uma camada de gelo transparente. Quando o processo não funciona, as gotas parcialmente congeladas se depositam isoladamente nas plantas, formando um gelo que é branco e opaco porque a luz é espalhada nas interfaces das gotas congeladas. Como era de se esperar, quando uma geada rigorosa ameaça um pomar, o produtor passa a noite em claro, de olho no termômetro e na transparência do gelo.

4.16 • Jogando água quente em um ar muito frio Uma curiosa diversão das pessoas que trabalham em bases da Antártica é lançar água fervendo para o alto quando a temperatura do ar está abaixo de –40°C. Por que a água emite um som rascante, como se protestasse contra o frio? Por que respirar o ar frio produz um som tilintante?

Resposta Quando água é lançada para cima, transforma-se em gotas. Se o ar estiver muito frio, as gotas congelam e trincam. O ruído produzido quando as trincas se formam é o som rascante. Respirar pode produzir um som tilintante porque o vapor de água presente no ar exalado pode congelar. Entretanto, não sei se o som é causado pela formação de trincas ou pelo impacto do gelo com o solo.

4.17 • Pingentes de gelo Por que os pingentes de gelo têm forma de cone, com uma ponta de apenas alguns milímetros de largura? Por que existe uma coluna estreita de líquido no centro de um pingente de gelo que está ativo, ou seja, que ainda está crescendo (Fig. 4-3)? Em que circunstâncias a água dessa coluna congela e como consegue fazer isso, isolada no centro do pingente? Por que existe uma linha branca no eixo central do pingente? Por que se formam costelas horizontais na superfície lateral do pingente? Por que algumas partes do pingente são duras, enquanto outras são tão porosas que podem ser furadas com facilidade com um canivete? Por que alguns pingentes são curvos ou retorcidos?

Figura 4-3 / Item 4.17 Estrutura de um pingente de gelo.

Resposta Existem muitos “por quê” a respeito de pingentes de gelo. Curiosamente, nem todos foram respondidos a contento, mas vou contar o que sei. Um pingente de gelo surge quando a água começa a pingar de uma superfície elevada, tal como uma calha, e forma uma gota pendente. A gota pode congelar por completo, ou apenas a superfície congela, formando uma casca fina em volta do líquido remanescente. A água escorre pela gota e congela, fazendo-a crescer para baixo e para os lados. Uma casca de gelo pode sustentar a água em forma líquida por causa da tensão superficial, que se deve às forças de atração entre as moléculas de água. Esse líquido só congela se a energia térmica for conduzida para cima, ao longo do pingente de gelo, até a raiz (parte superior do pingente). A energia térmica não pode ser perdida através da casca na direção horizontal, porque os dois lados da casca (na interface com a água e na interface com o ar) estão à mesma temperatura: o ponto de congelamento da água. Como não existe uma diferença de temperatura entre as duas superfícies da casca, não pode haver condução de energia térmica. Quando a água que está no interior da casca congela, o ar dissolvido sai da solução e forma bolhas que ficam presas no gelo ao longo do eixo central, onde o líquido congela por último. Essas bolhas órfãs espalham a luz, produzindo uma linha branca ao longo do eixo central do pingente de gelo. As costelas laterais de um pingente de gelo surgem em geral a partir de irregularidades fortuitas na vazão da água que escorre. Uma vez criadas, crescem radialmente mais depressa que as depressões intermediárias, por duas razões. São cobertas por uma camada mais fina de água que as depressões e se projetam mais em direção ao ar frio e, portanto, ficam mais expostas. Pelas duas razões, a água em uma costela congela com mais facilidade que a água em uma depressão. Uma depressão muitas vezes se torna uma rede porosa de água e gelo na qual é possível enfiar um canivete. Se o revestimento líquido de um pingente de gelo começa a congelar (o ar está frio e o suprimento de água diminui), a superfície externa da camada congela primeiro e retém durante algum tempo o líquido restante embaixo de uma crosta de gelo. Quando a água congela, precisa se expandir. Em um pingente de gelo, a expansão empurra o líquido através da crosta de gelo em vários pontos. Quando o líquido emerge nesses pontos e congela, forma pequenas saliências no pingente de gelo. Quando o vento sopra em um pingente de gelo durante o seu crescimento, o pingente fica encurvado e retorcido. Se um pingente se forma em um galho de árvore que arqueia sob o seu peso, pode acabar curvado e bem longe da vertical. A neve conduzida pelo vento e o derretimento irregular produzido pela luz solar também podem distorcer os pingentes de gelo. Quando os pingentes de gelo se formam em um varal, em uma linha telefônica ou em uma linha de transmissão durante uma chuva que congela, podem ter um espaçamento regular de alguns centímetros. A tendência da camada de água inicial sobre a linha de formar gotas para reduzir a área superficial é a causa mais provável desse padrão periódico. Uma onda fortuita inicia o processo e a tensão superficial faz a água se separar em gotas, com um espaçamento aproximadamente igual ao comprimento de onda dessa onda fortuita. Em seguida, as gotas formam pingentes de gelo.

4.18 • Represas de gelo em beirais Nos climas frios, uma represa de gelo pode se formar em um beiral, obstruindo o escoamento da água. Por que represas de gelo se formam e por que o acúmulo pode causar grandes estragos dentro da construção? Por que grandes pingentes de gelo tendem a se formar nessas construções?

Resposta Represas de gelo se formam em casas que têm telhado inclinado que fica sobre um sótão aquecido pelas perdas térmicas dos cômodos subjacentes. O sótão pode derreter neve e gelo do telhado. Se a água do degelo goteja em um beiral frio, pode congelar no beiral em vez de escorrer para a calha. Nesse caso, o gelo se acumula no telhado. Um telhado é impermeável enquanto a água escorre pelas telhas. Quando a água fica represada pelo gelo, porém, pode entrar pelas frestas das telhas e descer pelos caibros que sustentam o telhado, que não são impermeáveis. Nesse caso, a água pode se infiltrar no teto ou escorrer pelas paredes, estragando o reboco e a pintura. Um telhado com tendência a formar represas de gelo pode formar também grandes pingentes de gelo. Em vez de ficar represada, a água goteja do beiral em pingentes inicialmente pequenos, que aumentam de comprimento e de peso com o congelamento de quantidades cada vez maiores de água. A luz solar não parece interferir muito na formação de represas e pingentes de gelo. Para eliminá-los, são instaladas aberturas de ventilação nos sótãos que tornam possível a entrada de ar frio. Com o sótão frio, a neve e o gelo do telhado não derretem e não se forma um excesso de gelo no beiral.

4.19 • Gelo poroso e gelo liso em cabos

Quando a neve e o gelo se acumulam em linhas de transmissão, o peso adicional pode derrubar os fios e as torres de sustentação. Um evento como esse aconteceu em janeiro de 1998 no sul de Quebec, no Canadá, quando a formação de gelo derrubou 1300 torres principais e 35.000 torres secundárias e deixou sem energia elétrica mais de dois milhões de consumidores, alguns por várias semanas. O que é necessário para que a neve e o gelo se acumulem em linhas de transmissão? Em especial, o problema piora quando a temperatura do ar está muito abaixo de zero?

Resposta A água e a neve transportadas pelo ar podem formar dois tipos de gelo em uma linha de transmissão. O gelo poroso é uma formação seca, que acontece quando gotas de chuva super-resfriadas entram em contato com os fios e congelam instantaneamente. O gelo liso é formado por uma camada interna de gelo e água e uma camada externa de água. A linha de congelamento se propaga para fora em forma de protuberâncias de gelo dentrítico (em forma de samambaia) que penetram no líquido. A energia térmica liberada pela água ao congelar é conduzida pela camada externa até o ar frio do exterior. Quando o gelo liso se forma, parte da água líquida pode gotejar do fio, o que reduz o peso e o risco, mas também pode formar pingentes de gelo. Os pingentes, que têm um espaçamento de cerca de 2 centímetros, crescem para baixo e para o lado quando a água escorre por eles e congela. Podem acabar por se fundir e formar uma cortina de gelo. Não apenas o seu peso põe em risco os fios e as torres de sustentação, mas os pingentes de gelo também aumentam a coleta de neve e de gotas de chuva. Se um vento forte está soprando, a resistência aerodinâmica dos pingentes de gelo pode aumentar em muito o esforço a que a linha é submetida. A formação de gelo nas linhas de transmissão provavelmente constitui um risco mais grave quando a temperatura do ar está apenas uns poucos graus abaixo do ponto de congelamento, porque nesse caso a formação de gelo liso é favorecida. Ao se chocar com os fios, os cristais de neve e as gotas de chuva aderem com facilidade em vez de ricochetear, como pode acontecer quando encontram gelo poroso. Além disso, o gotejamento de água pode formar pingentes de gelo e piorar a situação por causa da maior área superficial e da resistência aerodinâmica. Assim, se a temperatura do ar aumenta, como costuma acontecer da noite para o dia, uma formação inicial de gelo poroso pode se tornar mais perigosa caso se transforme em gelo liso enquanto a neve e as gotas de chuva ainda estão se acumulando.

4.20 • Agulhas de gelo e outras formações glaciares Por que a superfície da maioria dos cubos de gelo que se formam em uma bandeja é arredondada para cima? Por que alguns cubos de gelo formam uma agulha que aponta para cima? (Agulhas de gelo mais pronunciadas podem ser encontradas em banheiras de pássaros e outros pequenos depósitos de água ao ar livre nos dias frios.)

Figura 4-4 / Item 4.20 Estágio inicial da formação de uma agulha de gelo.

Por que o gelo que cobre uma poça d’água às vezes tem uma série de estrias em forma de anel, e por que essas estrias ficam na superfície inferior do gelo? Por que o gelo que cobre alguns rios forma um grande disco rotativo, separado do resto do gelo por uma fenda estreita? (Esses discos têm um diâmetro de cerca de 50 metros, levam cerca de 1,5 hora para dar uma volta completa e podem durar vários meses.) Por que surge uma fenda comprida em forma de senóide no gelo que cobre alguns rios? Por que a superfície superior do gelo em lagos, poças e até cubos de gelo às vezes é irregular, mesmo quando a água estava calma durante todo o processo de congelamento?

Resposta Quando as moléculas de água formam um bloco de gelo, a água precisa se expandir. Se a água está em uma bandeja de cubos de gelo, só pode se expandir para cima. Como o centro das divisões da bandeja leva mais tempo para congelar, a periferia, já congelada, exerce pressão para dentro e para cima. Esse processo pode formar uma agulha: se a parte de cima da água congela e forma uma camada fina de gelo, a expansão da água abre uma trinca no gelo e parte da água sai do cubo por essa trinca. Em geral, a água congela logo depois de atingir a

superfície, mas às vezes forma um tubo oco (Fig. 4-4). Se a velocidade de congelamento não é muito alta, a água pode continuar a subir pelo interior do tubo antes de congelar, fazendo-o aumentar de tamanho. Quando, finalmente, toda a água congela, uma agulha se formou. Essas agulhas são relativamente raras porque sua formação depende de um equilíbrio entre a velocidade pela qual o líquido é empurrado para cima através da trinca e a velocidade pela qual a água que ficou no cubo congela. As estrias em forma de anel que se formam na superfície inferior da camada de gelo que cobre uma poça d’água devem-se ao congelamento periódico que acontece quando a água sai de debaixo do gelo. No início, com a poça cheia de água, forma-se sobre a água uma fina camada de gelo, que vai de um lado ao outro da poça. Quando a água sai de debaixo dessa camada, o ar se infiltra por baixo da borda do gelo. Em um certo instante, o escoamento diminui de velocidade ou pára. Debaixo do gelo, onde o ar encontra a água, parte da água congela para formar uma estria. Mais tarde, o escoamento volta a aumentar, isolando a estria. Se o escoamento diminui de velocidade ou pára de novo, outra estria se forma, mais perto do centro da poça. Assim, várias estrias podem se formar antes que toda a água saia da poça. Muitos dos padrões curiosos que podem ser observados no gelo em poças e lagos surgem porque acontece uma nevasca enquanto a camada de gelo ainda está flutuando. O peso da neve força a camada para baixo, o que empurra a água para cima através de qualquer abertura existente na camada de gelo ou de um buraco aberto em um ponto fraco da camada por causa da pressão da água. A água que sai por esse buraco se espalha por cima da camada de gelo e de neve, deixando um rastro ao derreter parte da neve. Quando a abertura é relativamente grande, a água que sai pode congelar e formar um pequeno disco que flutua na abertura. Se esse processo acontece em um rio, o atrito da água com a superfície irregular da base do disco pode fazer o disco girar. Os maiores discos de gelo que se formam em alguns rios devem-se a redemoinhos. Quando placas de gelo flutuante levadas pela correnteza se acumulam no redemoinho, fundemse aos poucos e formam uma placa única, que começa a girar, acompanhando a água. Quando o resto do rio se cobre de gelo, a rotação impede que a água entre a placa e o resto do gelo congele e o atrito entre a placa e o resto do gelo aos poucos apara as arestas e transforma a placa em um disco circular. Se uma placa de gelo estiver sendo puxada em sentidos opostos, como pode acontecer se a placa estiver ancorada em pedras enquanto a água corre por baixo dela, uma trinca que começou reta pode se tornar senoidal enquanto avança pela capa. Trincas sinuosas desse tipo foram observadas em lâminas de vidro que saem de um banho de água fria e passam por elementos de aquecimento, que colocam o vidro sob tensão. Dependendo da velocidade da lâmina, a trinca pode ser retilínea (baixa velocidade), sinuosa (velocidade moderada) ou dividir-se em duas ou quatro trincas (alta velocidade). Quando a água congela, forma cristais de gelo hexagonais. O eixo que passa pelo centro do cristal, perpendicularmente às duas faces hexagonais, é chamado de eixo c. O gelo tende a crescer mais depressa na direção paralela às faces hexagonais, no chamado plano basal. Suponha que um cristal comece a crescer com o eixo c vertical e, portanto, o plano basal horizontal. Nesse caso, o cristal tende a crescer no sentido horizontal e forma uma placa sobre o gelo. Se, em vez disso, o cristal começa com o eixo c na horizontal e o plano basal na vertical, não pode girar porque é impedido pelos cristais vizinhos e o empuxo o faz subir ligeiramente, de modo que seu plano basal fica um pouco acima do nível geral do gelo. Assim, forma uma estria. Se vários cristais vizinhos tiverem essa orientação, formam uma série de estrias na superfície do gelo.

4.21 • Cubos de gelo translúcidos Por que os cubos de gelo são translúcidos? Existe algum modo de obter cubos de gelo transparentes?

Resposta O gelo é translúcido porque a luz é espalhada por imperfeições no interior do material, como, por exemplo, impurezas que tenham sido concentradas pelo processo de congelamento. Assim, por exemplo, enquanto avança para dentro da água, o processo de congelamento leva impurezas para dentro do líquido perto da interface do líquido com o gelo e força o ar dissolvido a formar bolhas. Quando o congelamento avança e leva mais ar para essas bolhas, as bolhas ficam mais compridas e cercadas de gelo. Assim, longos buracos-de-minhoca (vazios) se formam em direção ao centro do cubo. A interface líquido–gelo só pode avançar se a energia térmica for conduzida da interface para a superfície do cubo, onde pode ser removida pelo ar frio. A distância necessária para que essa condução ocorra aumenta à medida que a interface avança e, portanto, o movimento da interface torna-se cada vez mais lento. Assim, os buracos-de-minhoca costumam ser mais largos perto do centro do cubo (onde o avanço é lento) do que perto da superfície (onde o avanço é mais rápido). Alguns buracos-deminhoca têm um raio variável, porque a geladeira é ligada e desligada periodicamente pelo termostato. O gelo feito de salmoura (solução salina) pode conter bolhas de ar mais complexas que o gelo feito de água da torneira: em condições ideais, elas podem formar ziguezagues ou pequenas espirais. Para fabricar gelo transparente, utiliza-se água destilada para evitar impurezas e ferve-se a água por cerca de 15 minutos

para eliminar a maior parte do ar dissolvido.

4.22 • Desenhos dentro de gelo parcialmente derretido Por que aparecem pequenos desenhos dentro do gelo (natural ou artificial) quando é exposto a uma luz solar intensa ou à luz de uma lâmpada infravermelha? Esses desenhos foram chamados de flores líquidas por John Tyndall, o primeiro a descrevê-los em 1858, mas hoje são conhecidos como figuras de Tyndall. Você talvez consiga vê-los a olho nu, mas uma lupa de relojoeiro ou outra lente de aumento simples pode revelar os detalhes. Algumas figuras de Tyndall são hexagonais, outras lembram folhas de samambaia e outras são simples ovais.

Resposta Os desenhos aparecem porque a luz infravermelha dos raios solares ou de uma lâmpada penetra no gelo e é absorvida principalmente por defeitos da estrutura cristalina. Alguns defeitos estão associados a imperfeições no arranjo dos átomos; outros, a interfaces entre cristais com diferentes orientações; outros, ainda, à presença de impurezas. Quando a luz infravermelha é absorvida, parte do gelo derrete ou evapora, formando uma cavidade, que é vista como uma figura de Tyndall por causa do contraste com o resto do gelo. Algumas dessas cavidades contêm apenas vapor d’água; outras contêm uma mistura de água e vapor d’água. Se a luz é intensa e os processos de derretimento e evaporação são rápidos, formam-se cavidades que lembram samambaias. Se a luz não é tão intensa, aparecem cavidades hexagonais. As cavidades ovais contêm água e aparecem nos locais em que uma trinca é comprimida dos dois lados pelo gelo. No instante em que a luz infravermelha incide no gelo, muitas figuras de Tyndall podem aparecer ao mesmo tempo, provavelmente porque a tensão no interior do gelo é aliviada pela formação das primeiras figuras.

4.23 • Congelamento de lagos Por que os lagos e outros corpos d’água em regiões com invernos frios congelam de cima para baixo? Se, em vez disso, congelassem de baixo para cima, a vida aquática não seria possível. O que produz os belos desenhos radiais de gelo que aparecem em alguns lagos congelados? Eles lembram os raios sinuosos de uma roda ou as pétalas de uma flor.

Resposta Quando a água de um lago é resfriada a partir de, digamos, 10°C, fica mais densa que a água mais abaixo e afunda. Abaixo de 4°C, porém, o resfriamento torna menos densa a água da superfície; portanto, ela permanece na superfície até congelar. Em seguida, o congelamento se propaga para baixo. Nesse caso, porém, o resfriamento se dá apenas pela transferência de energia térmica da água por condução através da camada de gelo. Quando a camada fica mais espessa, o processo perde força e pode até parar. (O congelamento de um lago é um exemplo de processo autolimitado, pois interrompe a si próprio.) Assim, a grande maioria dos lagos não congela totalmente no inverno e a vida aquática pode sobreviver. Se os lagos congelassem de baixo para cima, o gelo ficaria isolado pela água e tenderia a não derreter por completo durante o verão. Passados alguns anos, muitos lagos das zonas temperadas ficariram congelados o ano inteiro. A água em forma líquida, a qualquer temperatura, contém aglomerados de moléculas que estão sempre se formando e se desfazendo. Quando a água é resfriada abaixo de 4°C, porém, esses aglomerados são maiores, duram mais tempo e ocupam, em média, mais volume do que quando a temperatura da água está mais alta. Esse efeito não se aplica à água do mar: sua densidade aumenta continuamente quando é resfriada até o ponto de congelamento, e apenas quando o gelo se forma é que a densidade diminui. Quando a luz solar incide em um lago em que se formou uma fina camada de gelo, pode aquecer a água que está logo abaixo do gelo até 4°C, o que faz essa água afundar, sendo substituída por água mais fria (e, portanto, mais leve) que sobe para tomar seu lugar. Essa circulação, que acontece durante o inverno, é importante para a sobrevivência de alguns animais aquáticos. Quando a neve cai em um lago que possui uma camada de gelo flutuante, o peso da neve pode fazer o gelo afundar e a água aflorar através de buracos no gelo. Como a temperatura da água está acima do ponto de congelamento, a água abre canais na neve, afastando-se radialmente do buraco, em geral seguindo um percurso sinuoso. Se a temperatura do ar cai e a luz solar desaparece, essas trilhas abertas pela água podem congelar, produzindo belos desenhos que lembram rodas de carroça e pétalas de flores.

4.24 • Congelamento de bebidas gasosas Por que uma garrafa de refrigerante ou cerveja que fica tempo demais no congelador explode? Quando a garrafa permaneceu menos tempo no congelador, por que às vezes congela instantaneamente quando é aberta? Quando o líquido está gelado (mas longe do ponto de congelamento), por que, quando a garrafa é aberta, aparece uma nuvem branca no gargalo, além de alguns respingos?

Resposta Uma bebida gasosa como refrigerante ou cerveja é composta principalmente de água, e quando essa água congela, tem que se expandir, já que a estrutura rígida do gelo ocupa mais volume que a água. Assim, quando uma bebida gasosa fica tão fria que a água começa a congelar, existe uma grande pressão para fora que tende a quebrar a garrafa. O ponto de congelamento de uma bebida é mais baixo que o ponto de congelamento normal da água, tanto porque o líquido está sob pressão como porque os aditivos (especialmente o álcool) dificultam a formação de gelo. Entretanto, a temperatura da maioria dos congeladores é suficientemente baixa para fazer estourar uma garrafa de refrigerante ou de cerveja. Quando uma garrafa é aberta, a pressão no interior cai bruscamente para a pressão atmosférica e boa parte do dióxido de carbono sai da solução, formando bolhas que sobem até a superfície. Suponha que a temperatura do líquido seja ligeiramente mais alta que o ponto de congelamento do líquido. Assim que a pressão cai, o ponto de congelamento sobe e o líquido fica abaixo do (novo) ponto de congelamento, de modo que o líquido tende a congelar. Para isso, porém, necessita de sítios de nucleação para que os cristais de gelo iniciais se formem. As bolhas podem iniciar esse processo. Se a garrafa for transparente, você pode observar que o congelamento começa na superfície ou perto dela, onde as bolhas se concentram, e depois se propaga para baixo, talvez rapidamente. Quando uma bebida gasosa gelada é aberta, a queda de pressão faz com que o gás saia pelo gargalo, mas para isso ele precisa de energia. A expansão é tão rápida que a única fonte de energia disponível é a energia térmica do gás. Assim, o gás perde energia térmica e fica mais frio, o que faz com que o vapor d’água contido no gás em expansão se condense em gotas. Essas gotas dispersas no ar formam a nuvem branca que envolve o gargalo da garrafa quando ela é aberta.

4.25 • Rompimento de canos Nas casas em que os canos de água são expostos a invernos muito rigorosos, por que os canos podem arrebentar e por que o cano de água quente tem maior probabilidade de estourar do que o cano de água fria?

Resposta O congelamento da água pode fazer um cano estourar se o gelo formar um tampão em um certo ponto de um encanamento e a torneira na extremidade do encanamento estiver fechada. À medida que a água congela na região do tampão, ocupando um volume cada vez maior, a pressão nesse trecho do cano cresce cada vez mais, até que o cano estoura. Essa possibilidade é maior em um cano que transporta água quente por causa da maneira como a água pode congelar nesse cano. Em condições ideais, a água congela a 0°C, mas, na prática, a água precisa estar alguns graus abaixo de zero para congelar. Quando a água permanece líquida abaixo do ponto de congelamento, dizemos que está super-resfriada. A água de torneira que não foi aquecida em uma caldeira possui muitas impurezas que podem servir como sítios de nucleação. Depois que a água se encontra alguns graus abaixo do ponto de congelamento, qualquer resfriamento adicional inicia a formação de cristais de gelo. A água forma primeiro gelo dendrítico (com cristais em forma de samambaia), que penetra na água ainda líquida. Esse gelo forma um anel na parede do cano, que cresce aos poucos para dentro, até entupir o cano por completo. A água que está entre esse tampão de gelo e uma torneira fechada tem tempo de sobra para se ajustar ao aumento de volume da água durante o crescimento do anel. A água que foi aquecida em uma caldeira congela de maneira semelhante, mas a formação do gelo dendrítico pode levar muito mais tempo, já que, quando a água é aquecida, perde boa parte das impurezas que podem servir como sítios de nucleação dos cristais de gelo. Por esse motivo, a água do cano de água quente pode ser super-resfriada a uma temperatura mais baixa que a água do cano de água fria. Quando afinal o gelo começa a se formar, cresce para dentro no sentido radial, como gelo dendrítico, e pode entupir o cano em pouco tempo. Se o gelo começa a crescer também ao longo do cano, a expansão da água, devido ao congelamento, pode exercer uma pressão enorme sobre a água presa entre o local do entupimento e uma torneira fechada. Essa pressão pode fazer o cano ou uma conexão estourar, mesmo em um trecho do encanamento no qual a temperatura esteja muito acima de zero grau. O rompimento possibilita que a água retida escape, o que pode não ser muito sério. Entretanto, se o furo não for consertado

antes que o tampão de gelo derreta, a inundação resultante pode causar grandes prejuízos. Para evitar que os canos estourem, as pessoas que moram em climas muito frios muitas vezes deixam as torneiras do lado de fora da casa ligeiramente abertas no inverno, para que a formação de um tampão de gelo apenas expulse a água para fora através de uma torneira aberta em vez de aumentar a pressão no interior do encanamento. Tampões de gelo podem ser vantajosos em algumas situações. Assim, por exemplo, um tampão de gelo pode ser usado como um registro improvisado para consertar um pedaço de cano quando seria inconveniente desligar todo o encanamento, como no caso de um hospital ou um de um edifício de apartamentos. Em algumas situações, pode ser necessário restaurar o fluxo de água em um cano frio que foi esvaziado, talvez para realizar um conserto. Enquanto a água passa pelo cano, a parte da frente pode ceder energia térmica à parede do cano e chegar ao ponto de congelamento. É mais provável que isto aconteça em um cano enterrado do que em um cano acima do solo (à mesma temperatura), porque a energia térmica é retirada mais depressa das paredes de um cano pelo solo do que pelo ar. Se o cano estiver apenas alguns graus abaixo do ponto de congelamento, a água pode ficar super-resfriada e formar de repente gelo dendrítico que entope o cano. Entretanto, se o cano estiver um pouco mais frio (abaixo da temperatura de super-resfriamento da água), um anel de gelo se forma na parede do cano sem formações dendríticas e não impede a passagem da água.

4.26 • Tocando ou lambendo um cano gelado Se você encosta o dedo em um pedaço de madeira e em um cano de metal à mesma temperatura, por que o cano parece mais frio? Por que o dedo pode ficar grudado em um cano se ele estiver muito frio? No filme Uma História de Natal, uma das crianças aceita um desafio e lambe um cano gelado, apenas para descobrir que sua língua ficou presa. Eis uma das muitas regras da vida: jamais lamba um cano gelado.

Resposta A intensidade do frio que sentimos quando tocamos um objeto com o dedo depende muito da velocidade pela qual a energia térmica é conduzida do dedo para o objeto. Um metal conduz energia térmica muito melhor do que a madeira e, portanto, parece mais frio, embora esteja à mesma temperatura da madeira. O dedo gruda em uma superfície de metal quando a água normalmente presente na pele congela em pequenas irregularidades da superfície. (O efeito é mais acentuado no caso da língua porque ela possui mais água na superfície do que o dedo.) Para soltar o dedo, basta despejar água morna na superfície de contato entre o dedo e o cano, o que faz o gelo derreter.

4.27 • Montículos no inverno; pingos em pergelissolo Por que, nos invernos rigorosos, formam-se ondulações nas estradas, efeito conhecido como empolamento pelo frio? Não apenas essas ondulações danificam o pavimento, mas também podem fazer um motorista perder a direção, se estiver em alta velocidade. Você pode se sentir tentado a atribuir o empolamento pelo frio à simples expansão da água quando congela, mas essa expansão aumenta o volume em apenas 10%, muito menos que o necessário para formar as grandes ondulações. Como o frio pode quebrar uma pedra? A pedra precisa passar por ciclos de congelamento e degelo para quebrar-se? O que causa os pingos, montes de forma cônica que são encontrados em regiões de pergelissolo? Alguns pingos são enormes, com 40 metros de altura e 200 metros de diâmetro.

Resposta Quando a temperatura da camada superficial do solo (ou a camada logo abaixo da pavimentação, no caso de uma estrada) cai abaixo do ponto de congelamento, parte da água que existe nos espaços entre as partículas de solo congela e se expande, o que causa um empolamento primário. Quando a quantidade de água diminui, o mesmo acontece com a pressão a que a água restante está submetida. A água um pouco mais abaixo está submetida a uma pressão maior e, portanto, parte dessa água se desloca para cima, em direção à camada congelada. Quando o líquido chega, também congela e se expande, o que produz um empolamento secundário que pode aumentar em muito a altura das ondulações e os danos causados à estrada. Boa parte dos danos sofridos por uma estrada ocorre quando o gelo derrete. Quando isso acontece, a brita que sustenta o asfalto fica saturada de água. Quando um carro (ou, pior, um caminhão pesado) passa pela estrada, a pressão da água aumenta muito. Essa pressão pode ser suficiente para fazer o asfalto rachar. A passagem de novos veículos alarga a rachadura, transformando-a em buraco, que o tráfego se encarrega de aprofundar. Em estradas com uma camada muito fina de asfalto ou uma base malfeita, o piso pode ceder sob o peso dos carros até que uma depressão se forma na estrada. Ao passar pela depressão, os carros tendem a quicar na estrada, criando outras depressões. Depois de algum tempo, a estrada fica parecida com uma antiga tábua de bater roupa.

O desgaste das estradas costuma ser maior nos invernos amenos do que nos invernos rigorosos, porque as temperaturas amenas proporcionam à água mais tempo para se infiltrar até a base do asfalto, enquanto um frio mais intenso mantém a água congelada, longe da superfície. O desgaste também é mais acentuado se a estrada sofre vários ciclos de congelamento e degelo em vez de um congelamento mais rigoroso. Quando a água congela em uma trinca de uma pedra, sua expansão força a ponta da trinca a se abrir, o que aumenta o comprimento e a largura da trinca. O comprimento e a largura aumentam ainda mais se uma quantidade adicional de água penetra na trinca, como acontece no empolamento pelo frio. Entretanto, esse efeito diminui se a temperatura for muito baixa, de modo que a pedra quebra mais depressa se a temperatura for apenas um pouco mais baixa que o ponto de congelamento. Uma série de ciclos de congelamento e degelo não é necessária. As rochas sedimentares são mais propensas à formação de trincas do que outros tipos de rochas. Romper rochas cristalinas é bem mais difícil e exige longos períodos de temperaturas abaixo de zero e um suprimento de água freqüente ou contínuo. Existem pelo menos dois tipos de pingo, com ao menos duas causas. O chamado pingo hidrostático costuma ser um monte isolado que emerge de um lago que foi drenado ou aterrado. Embaixo do lago existe uma camada de material semifluido que está cercado por pergelissolo exceto na superfície superior. Enquanto o lago perde água, o pergelissolo começa a se formar na superfície de cima. Quando o solo congela dos lados para o centro ou do fundo para cima, a água é expulsa e empurrada para o centro do antigo lago. É essa força para cima que cria o pingo; quando a água congela, forma o núcleo de gelo do pingo. Pingos hidráulicos muitas vezes se aglomeram em grupos e parecem ser alimentados pela água subterrânea proveniente de colinas ou montanhas situadas nas imediações. Essa água chega à superfície no local do pingo e se expande ao congelar, tornando o pingo ainda maior. A razão pela qual a água se comporta dessa maneira ainda não é bem compreendida. Se o material abaixo do pingo contiver pequenos poros, forças capilares (forças moleculares que fazem a água aderir às outras substâncias e a si própria e produzem uma força para cima quando a água está confinada a espaços estreitos) podem ajudar a água a subir. Entretanto, alguns pingos hidráulicos surgem em materiais que não contêm pequenos poros.

4.28 • Polígonos de gelo do Ártico Por que o solo em algumas das planícies do Ártico e da tundra subártica é coberto por grandes cunhas poligonais de gelo? Essas cunhas podem ter vários metros de profundidade e centenas de metros de extensão.

Resposta Quando a temperatura do solo cai abaixo do ponto de congelamento, o solo tende a se contrair, o que coloca a superfície sob tensão. Em certos pontos, a tensão pode ser suficiente para fazer o solo rachar, assim como uma poça de lama pode rachar quando seca. Com o tempo, uma fenda do solo pode crescer no sentido vertical e (ainda mais) no sentido horizontal. Nos pontos em que uma fenda que está crescendo encontra uma fenda já existente, as tensões locais fazem com que a fenda que está crescendo intercepte perpendicularmente a outra fenda. Quando várias fendas se interceptam a 90°, o resultado é a formação de polígonos. Depois que uma fenda se forma, pode ser preenchida por neve, geada ou pela água da neve derretida que volta a congelar. Esta é a cunha de gelo que forma os lados dos polígonos. Polígonos semelhantes são observados em Marte, onde as fendas são preenchidas com areia em vez de neve ou gelo. (Marte também tem polígonos gigantes que são, ao que tudo indica, produzidos por outros fenômenos.)

4.29 • Pedras que brotam em jardins e formam desenhos no solo Nos climas frios, por que pedras são expulsas do solo no inverno? Em alguns lugares, como a Nova Inglaterra, a safra de pedras é tão abundante que elas são coletadas para construir cercas de pedra. Por que em alguns lugares as pedras que emergem formam círculos, polígonos e faixas? Às vezes o padrão é tão regular e tão extenso que parece artificial. Assim, por exemplo, na ilha Spitsbergen, que fica ao norte da Noruega, existem belos círculos de pedra dentro dos quais o solo não contém muitas pedras. O que produz esses arranjos de pedras?

Resposta As pedras são levadas à superfície pelo empolamento pelo frio, já discutido em um item anterior. A linha de congelamento, na qual a temperatura é 0°C, chega à base das pedras enterradas mais depressa do que no solo ao lado. A linha se propaga mais devagar no solo por causa da energia térmica que é liberada quando a água presente no solo congela. Quando a linha de congelamento atinge a base de uma pedra, atrai mais água do solo abaixo e também do solo vizinho (que ainda não congelou); e a expansão que essa água adicional sofre ao congelar empurra a pedra para cima. Quando a pedra se move, o solo preenche parcialmente o espaço vazio que a pedra deixou, impedindo que ela torne a descer quando o gelo derrete. Depois de vários ciclos de congelamento e degelo, a pedra chega à superfície e

talvez seja coletada para fazer parte de uma cerca de pedra. Pedras que migraram para cima são encontradas em cortes verticais realizados em antigos bancos de areia. As pedras estão presentes em várias alturas na parede lateral de um desses cortes. Acima de uma pedra, a areia parece estar comprimida; abaixo da pedra, um rastro assinala a região em que a areia preencheu o espaço deixado por uma pedra quando ela migrou para cima. As várias figuras geométricas formadas por pedras devem-se a décadas ou mesmo séculos de empolamento pelo frio. Quando as pedras emergem do solo, afetam a velocidade pela qual a linha de congelamento desce abaixo delas durante os períodos de congelamento subseqüentes, o que, por sua vez, afeta o modo como outras pedras são içadas. Durante o empolamento pelo frio, algumas pedras que já estão na superfície rolam pelas encostas formadas pelo empolamento e assim se acumulam. Outras pedras podem ser empurradas ao longo de cristas de pedra que já se formaram, ampliando-as. Quando há muitas pedras, elas formam círculos, polígonos ou labirintos. Quando as pedras são menos numerosas, formam ilhas. Quando estão em solo inclinado, formam faixas. Padrões desse tipo são observados em Marte, o que sugere que o solo marciano passou por ciclos de congelamento e degelo.

4.30 • Pedra-arado Por que uma grande pedra situada no alto de uma encosta em um clima frio desce gradualmente a encosta? Uma pedra que se comporta dessa maneira é chamada pedra-arado, porque em geral existe um monte de terra à frente da pedra e uma depressão atrás dela, como se o solo tivesse sido arado.

Resposta O congelamento e o degelo do solo em volta da pedra reduzem a resistência que o solo oferece ao movimento da pedra. Quando o solo congela, a pedra é levantada ligeiramente pela expansão da água no solo (a água que já se encontra no local e a água que é sugada do solo vizinho). Quando o tempo esquenta, a água resultante do degelo do solo e da neve que porventura tenha se acumulado em torno da pedra amolece o solo. O peso da pedra faz com que ela deslize um pouco encosta abaixo, acumulando terra à frente e deixando uma depressão atrás. Porém, o movimento não dura muito, porque o solo mais abaixo não está tão saturado de água e, portanto, oferece mais resistência.

CURIOSIDADE 4.31 • Bomba de gato morto e um corpo desaparecido Quando cheguei ao MIT como calouro, uma das primeiras histórias contadas pelos alunos mais velhos dizia respeito a um estudante, que vou chamar de Fred, que estava muito zangado com outro estudante, que vou chamar de Harry. Certa noite, quando Harry não estava, Fred entrou no quarto de Harry com um gato morto e um grande recipiente de nitrogênio líquido, ambos retirados de um dos laboratórios do instituto. Segurando o gato pela cauda, Fred mergulhou-o no líquido e esperou o corpo ficar tão frio quanto o líquido. Em seguida, levantou o gato e arremessou-o contra uma parede, quebrando-o em muitos pedaços, que se espalharam pela cama e outras partes do quarto. Em questão de minutos, os pedaços degelaram, produzindo uma grande sujeira. (Os estudantes do MIT são conhecidos pelas brincadeiras inteligentes, mas nem sempre por sua compaixão. Neste caso, espero que a história seja fictícia: um mito urbano inventado pelos alunos mais velhos.) Uma situação parecida é o tema principal de um mistério de quarto fechado escrito por L. T. Meade e Robert Eustace. Em um conto publicado em 1901 na revista The Strand, “The Man Who Disappeared” (“O Homem que Desapareceu”), os autores encontram uma forma engenhosa de alertar o leitor para o perigo que está correndo o personagem central, Oscar Digby: ele foi convidado para jantar com pessoas que obviamente estão atrás de um grande tesouro cuja localização só ele conhece. A polícia sabe do risco e cerca a casa após a chegada de Digby; nem mesmo um camundongo teria conseguido passar pelo cinturão de policiais. À meia-noite, a polícia invade a casa e faz uma busca completa, chegando a derrubar paredes, mas não encontra sinal de Digby. Enquanto esperavam do lado de fora, ouviram um golpe abafado e nada mais. Que fim teria levado Digby? A resposta é revelada quando um dos homens descobre vestígios de sangue em uma betoneira, que estava perto de um grande tanque de ar líquido. Ao que parece, o corpo de Digby, depois de mergulhado no líquido e congelado, foi pulverizado pela máquina e os restos espalhados antes da chegada da polícia. Sem um corpo, a polícia não podia fazer nada, a não ser se admirar com a esperteza do assassino.

4.32 • A formação de flocos de neve Qual é a causa da forma característica dos cristais de neve?

Resposta Embora a pergunta seja simples, ainda não foi totalmente respondida. A nucleação (formação) de um cristal começa em uma partícula de poeira. As moléculas de água aos poucos se aglomeram e se ligam quimicamente para formar um arranjo hexagonal que possui a chamada simetria sêxtupla, já que o cristal é formado por seis partes quase idênticas reunidas em volta do centro (assim como as fatias de uma pizza). O cristal cresce com a difusão (migração) de moléculas para a superfície. A maior parte do crescimento acontece nas bordas e nos cantos, porque nesses lugares o cristal está mais exposto ao vapor d’água presente no ar. O número de modos pelos quais essas moléculas adicionais podem se ligar ao cristal é enorme e depende da temperatura e da densidade do vapor d’água nas vizinhanças do cristal. Para certas condições, os cristais formam placas; para outras, assumem a forma de espaguetes, prismas, colunas e estrelas. É surpreendente que a simetria seja preservada; foram propostos vários mecanismos para explicar por que os lados opostos de um cristal crescem sempre da mesma maneira. Na verdade, o cristal é tão pequeno que as condições ambientais são provavelmente as mesmas em todos os lados e, ao que tudo indica, são elas que determinam a geometria do cristal. Embora a maioria dos flocos de neve tenha simetria sêxtupla, existem fotografias de flocos de neve com uma simetria de ordens maiores (de 12.ª, 18.ª e 24.ª ordem), mas é provável que sejam combinações de dois ou mais flocos de neve, todos de simetria sêxtupla.

4.33 • Esquiação Por que um esqui pode deslizar sobre a neve?

Resposta Um esqui pode se deslocar com suavidade pela neve porque o atrito entre o esqui e a neve derrete parte da neve, produzindo uma fina camada lubrificante. É mais fácil esquiar a alta velocidade do que a baixa velocidade, porque a energia térmica produzida é maior, o que faz com que a camada de neve derretida e a lubrificação sejam maiores. Um esqui feito de um material que é mau condutor de calor funciona melhor porque mantém uma parcela maior da energia térmica na interface entre o esqui e a neve, em vez de meramente conduzi-la para a parte de cima do esqui. Esquis de cor escura podem funcionar melhor que os esquis de cor clara, porque absorvem uma quantidade maior de radiação infravermelha, o que os ajuda a manter a lubrificação, mesmo em dias nublados. Se a neve estiver muito fria, o atrito entre o esqui e a neve não é suficiente para derreter a neve e fica difícil esquiar. Quando puxam trenós em uma neve muito fria, alguns exploradores do Ártico comparam o esforço ao de puxar um trenó na areia. Um esqui também pode se mover suavemente na neve, especialmente em alta velocidade, porque o ar aprisionado entre a neve e o esqui ajuda a sustentá-lo, reduzindo o atrito. O esqui se comporta mais ou menos como um hovercraft.

4.34 • Patinação no gelo e bolas de neve Por que os patins deslizam no gelo? O gelo pode estar frio demais para a patinação? A patinação fica mais difícil se a temperatura do gelo estiver próxima do ponto de fusão? Por que é possível fazer uma bola de neve, e por que é impossível fazer uma bola de neve quando a neve está muito fria?

Resposta Um patim só pode deslizar no gelo por causa da lubrificação proporcionada pela camada de água que já está presente na superfície do gelo ou é formada pelo atrito entre o gelo e o patim em movimento. Esse atrito também aquece a lâmina do patim, a trilha no gelo e a mistura de gelo e água que é lançada para os lados pela lâmina do patim. Se a quantidade de água na superfície do gelo for grande demais, produz uma força de arrasto na lâmina que dificulta o deslizamento; isto pode ser um problema quando a superfície do gelo está próxima do ponto de fusão, especialmente em dias de sol forte. Antigamente, a camada lubrificante de água era atribuída à fusão por pressão, na qual a pressão das lâminas relativamente finas dos patins reduziria o ponto de congelamento do gelo para um valor abaixo do valor normal de 0°C. Assim, se o gelo não estivesse muito frio, o gelo, ao ser comprimido pela lâmina do patim, ficaria acima do ponto de congelamento e derreteria. Experimentos e cálculos, porém, demonstraram que a fusão por pressão tem pouco ou nenhum efeito sobre a patinação no gelo. Embora as moléculas de água do gelo estejam presas firmemente no lugar por suas ligações com outras moléculas, as moléculas de água na superfície do gelo podem estar presas mais frouxamente, em um estado quase líquido chamado pré-fusão ou fusão superficial. Essas moléculas, que existem em regiões em vez de formar uma camada uniforme, oferecem menos atrito

a um patim do que o gelo rígido. Para fazer uma bola de neve, basta comprimir e moldar um punhado de neve solta para formar uma bola compacta. No processo, parte dos flocos de neve derrete por causa do atrito mútuo e em seguida se transforma em gelo, que ajuda a manter unidos os flocos de neve remanescentes. A água que às vezes está misturada com a neve também pode congelar. Se a neve estiver muito “molhada” (prestes a derreter), a bola pode acabar ficando com tanto gelo que se torna mais uma bola de gelo do que uma bola de neve. Naturalmente, as regras convencionais das guerras de bolas de neve proíbem o uso de bolas de gelo, já que elas podem ser duras como pedras. Não é possível fazer uma bola de neve se a neve estiver fria demais. Nesse caso, o atrito entre os flocos não é suficiente para derreter a neve e a neve não se transforma em gelo. Sem o gelo, a neve não forma uma bola.

4.35 • Andando no gelo Por que é muito mais fácil andar no gelo quando o gelo está muito frio? Em que estágio do processo de andar é mais fácil de escorregar e cair? Por que alguns tipos de calçado são melhores para andar no gelo (as chances de escorregar são menores) do que outros?

Resposta Ao contrário do que se pensava, a pressão dos pés praticamente não derrete o gelo. Assim, o fator que pode impedir um escorregão é um forte atrito entre os sapatos e o gelo. No gelo molhado (gelo com uma camada de lama ou água), materiais duros podem funcionar melhor; no gelo seco, é melhor usar materiais macios. Seja qual for o caso, é bom que a sola tenha saliências, pela simples razão de que os passos podem cravá-las no gelo como pregos, se o gelo não estiver frio demais. O estágio mais perigoso do processo de andar é o contato do calcanhar, o momento em que você movimenta um dos pés para a frente e apóia o peso do corpo no calcanhar. Você depende do atrito para parar esse pé, mas no gelo existe a possibilidade de que o atrito entre o calcanhar e o gelo seja insuficiente. Quando esse é o caso, o pé desliza para a frente sem controle e você cai. Se você já levou um tombo desse tipo, sabe que a maneira certa de andar sobre o gelo é dar passos pequenos para reduzir a quantidade de atrito necessária para interromper o movimento do pé que está na frente. Sabe também que, a menos que você goste de cair, não deve correr nem saltar no gelo!

4.36 • Iglus Um iglu (uma estrutura cônica feita de blocos de neve ou de gelo) pode manter um ocupante aquecido quando a temperatura do lado de fora está abaixo de zero?

Resposta Um iglu oferece mais proteção contra o frio do que meramente bloquear o vento e, assim, reduzir a sensação térmica. A principal vantagem é que as paredes proporcionam um isolamento térmico, possibilitando que a energia térmica irradiada pelo corpo de uma pessoa ou por uma chama (que pode ser até a de uma vela) passe mais devagar pelas paredes. Um iglu bem feito é achatado e possui uma “cama” elevada que ocupa cerca de dois terços do piso. A entrada é através de um túnel que leva ao outro terço do piso, mais baixo. Depois de entrar, a pessoa sobe na cama. Como o ar mais quente (mais leve) sobe e o mais frio (mais denso) desce, o ar acima da cama é bem mais quente do que o ar na parte baixa do iglu, o que torna possível que o ocupante durma a uma temperatura relativamente amena. (Construir um iglu com um teto muito alto anularia esse efeito, já que o ar mais quente ficaria muito acima da cama.) Paredes espessas ou paredes feitas de neve porosa (com muitos bolsões de ar) reduzem a condução de calor através das paredes e, portanto, mantêm o interior mais quente. Para isolar ainda mais o interior e reduzir as correntes de ar, os espaços entre os blocos de gelo podem ser vedados com neve por dentro e por fora. A neve de vedação e a superfície interna dos blocos tendem a derreter e congelar novamente, formando uma camada protetora de gelo.

4.37 • Rolos de neve Em raras ocasiões, uma tempestade de neve pode formar grandes bolas e cilindros de neve em campos abertos. Alguns desses rolos de neve têm quase 1 metro de diâmetro e uma massa de mais de 6 quilos. Os cilindros lembram um saco de dormir enrolado ou um rolo de grama do tipo usado para plantar, com a diferença de que os cilindros às vezes são ocos. O que produz esses rolos de neve?

Resposta Acredita-se que os rolos de neve sejam criados quando neve fresca cai sobre uma camada existente de neve

velha e dura. Se a temperatura estiver perto do ponto de congelamento, a neve fresca adere à neve dura. Se o vento estiver forte, pode colher uma dessas camadas mistas e fazê-la rolar no solo. Enquanto a camada rola, absorve mais neve e aumenta de diâmetro. Quando o vento é variável, o cilindro de neve pode rolar em várias direções e acabar assumindo a forma de uma esfera ou de uma bola de futebol americano, mas, quando o vento sopra principalmente em uma direção, o rolo de neve mantém a forma cilíndrica. Se a camada inicial que se desprendeu era muito grande, o cilindro é oco. Rolos de neve também podem ser iniciados por flocos de neve isolados que o vento arrasta sobre a neve fresca ou por pedras soltas pelo vento que rolam por uma encosta coberta de neve. Para verificar se foi isso o que aconteceu, basta abrir o rolo e procurar a pedra.

4.38 • Avalanches de neve O que causa uma avalanche de neve?

Resposta Não existe ainda uma explicação completa para as causas de uma avalanche de neve, em grande parte por causa das muitas variáveis envolvidas. Assim sendo, ainda não existem previsões confiáveis para a hora e o local de uma avalanche. Apesar disso, muito se sabe a respeito de avalanches. Uma avalanche de neve solta começa em um ponto de uma neve seca ou úmida que não é muito coesiva; o deslizamento se parece muito com a areia que desliza de um monte de areia. Uma avalanche de placa de gelo é o movimento de uma placa que é razoavelmente coesiva. Vários fatores podem desencadear o deslizamento, tais como a presença de um esquiador, a chuva ou o aquecimento da placa. Muitos esquiadores morrem todos os anos por causa de avalanches iniciadas por eles, mas não se sabe exatamente como funciona o processo que provoca avalanches. O processo envolve a presença de uma camada fofa sob uma camada de neve compacta. Eis um possível mecanismo para a formação da camada fofa: a neve do início do inverno cai em um solo que ainda está acima do ponto de congelamento e, mais tarde, a temperatura da superfície da neve cai abaixo do ponto de congelamento. A distribuição de temperaturas (maior no fundo, menor na superfície) conduz o vapor d’água para cima, onde condensa para formar flocos de neve. Os flocos de neve se transformam na chamada geada profunda, um conjunto de partículas de gelo fracamente ligadas. Esta, portanto, é a camada fofa. Quando neve fresca cai sobre ela, o cenário está pronto para uma avalanche, pois essa camada fofa pode sofrer cisalhamento, ou seja, oferece pouca resistência ao movimento no sentido paralelo à camada, mais ou menos como a manteiga ao ser espalhada em uma torrada com uma faca. Um esquiador pode dar início ao movimento se a força que ele exerce sobre a superfície da neve atingir a camada fofa. Quando a neve da superfície é razoavelmente compacta, o esquiador não tem efeito algum sobre a camada fofa e não faz a camada superior se mover. Se a neve da superfície se torna macia, como pode acontecer quando é aquecida pelo sol, a pressão exercida pela esquiador pode romper a camada fofa, iniciando o movimento. Assim, uma encosta que é segura de manhã cedo, quando ainda está frio, pode se tornar perigosa mais tarde, quando o tempo começa a esquentar.

4.39 • Desenhos formados pelo derretimento da neve Quando a neve derrete no solo ou em uma superfície pavimentada, por que os montes de neve que levam mais tempo para desaparecer às vezes ficam dispostos em padrões geométricos, como hexágonos ou linhas retas?

Resposta A neve e a água do degelo formam uma fina camada sobre uma fina camada de solo na qual a temperatura pode variar no sentido horizontal. Abaixo dessas duas camadas, a temperatura não varia no sentido horizontal. Alguns pontos na neve, por acaso, estão mais perto do ponto de fusão do que o resto da neve. Vamos considerar um desses pontos. Para que a neve derreta, necessita de uma energia térmica suficiente para liberar as moléculas de água da estrutura rígida de um cristal de gelo. Essa energia térmica pode ser obtida da neve vizinha até uma distância-limite. Como a neve vizinha perde energia, seu derretimento fica mais lento e, portanto, forma montes de neve de maior duração. O espaçamento entre esses montes é definido pela distância-limite ao longo da qual a energia foi transferida. Assim, acabamos com montes de neve separados por uma distância quase uniforme.

4.40 • O efeito do sal em calçadas escorregadias Quando as calçadas e estradas acumulam gelo durante o inverno, por que uma maneira de limpá-las é espalhar sal sobre elas? Por que às vezes é usado cloreto de cálcio em vez de cloreto de sódio (sal de cozinha), embora seja mais caro?

Resposta Suponha, primeiro, que exista uma camada de água sobre a superfície do gelo e que tanto o líquido quanto o gelo estejam a 0°C, o ponto de congelamento normal da água. A interface entre os dois estados da água é um local de intensa atividade em nível molecular, já que as moléculas estão continuamente deixando o gelo para se unir ao líquido e vice-versa. Entretanto, se o número de moléculas que deixam o gelo for igual ao número de moléculas que se unem a ele, a quantidade de gelo não muda. Quando espalhamos sal sobre o líquido, as moléculas de sal se dissociam (decompõem-se) em íons positivos e negativos. As moléculas de água são atraídas pelos dois tipos de íons e dizemos que os íons ficam hidratados. As moléculas de água que se ligam aos íons não podem se unir ao gelo. Como o número de moléculas de água que se unem ao gelo diminui e o número de moléculas de água que se desprendem do gelo continua o mesmo, a quantidade total de gelo diminui, ou seja, o gelo derrete. Se a água de degelo dilui a mistura salina, a situação volta ao equilíbrio e o gelo pára de derreter. Nesse caso, para que o gelo continue a derreter, é preciso adicionar mais sal. As moléculas no estado líquido possuem mais energia do que as que estão presas na estrutura cristalina do gelo. Quando uma molécula se une ao gelo, precisa ceder parte de sua energia; quando a molécula deixa o gelo, precisa receber a mesma quantidade de energia. Quando o número de moléculas que deixam o gelo é igual ao número de moléculas que se unem a ele, a energia cedida por um processo fornece a energia necessária para o outro processo. Quando o sal reduz o número de moléculas que se unem ao gelo, porém, o que fornece a energia para as moléculas que continuam a deixar o gelo? Se a mistura de gelo e água estiver ao ar livre, o calor vem da calçada, da estrada e do ar. Embora o gelo derreta, a temperatura da mistura de gelo e água não muda e continua à temperatura ambiente. Entretanto, se a mistura de gelo e água receber uma energia insuficiente, as moléculas do líquido têm que fornecer a energia para o derretimento. Essa perda reduz primeiro a temperatura do líquido e depois a do gelo. Em uma situação como esta, dizemos que o ponto de congelamento da água foi reduzido pela presença do sal. A temperatura cai até que seja restabelecido o equilíbrio entre as moléculas que deixam o gelo e as moléculas que se unem a ele. A redução do ponto de congelamento também pode ser observada quando a água salgada é resfriada lentamente. Existe, porém, um limite para a redução do ponto de congelamento. O limite do cloreto de sódio é cerca de –21°C, enquanto o limite do cloreto de cálcio é cerca de –55°C. O fato de o limite ser mais baixo para o cloreto de cálcio é uma razão importante para o seu uso nas estradas, já que ele é mais capaz de manter as estradas limpas a temperaturas muito mais baixas do que o cloreto de sódio.

4.41 • Sorvete feito em casa Uma máquina de sorvete caseira é composta por uma lata de metal cercada por camadas de sal e gelo picado, tudo isso dentro de um balde de madeira. Depois de esfriada em uma geladeira, a mistura de sorvete é despejada na lata e batida. Quando eu era criança, batia a mistura usando uma batedeira manual. Hoje em dia, ligo a máquina de sorvete na tomada e deixo o motor fazer o trabalho. Por que a parte externa da máquina de sorvete é de madeira? Por que a lata é de metal? Por que se usa uma mistura de sal e gelo picado? Por que é preciso bater a mistura de sorvete? A mistura não pode ser simplesmente colocada no congelador? O que acontece se a mistura for resfriada a uma temperatura apenas um pouco abaixo de 0o C? O que acontece se a mistura for resfriada a uma temperatura muito inferior a 0o C?

Resposta O ponto de congelamento da mistura de sorvete (a temperatura na qual o gelo começa a se formar) é inferior a 0°C porque os ingredientes dificultam a formação do gelo. Para obter uma temperatura mais baixa, é preciso salgar o gelo colocado em torno da lata de metal (veja o item anterior). Nesse caso, o gelo e a água do degelo ficam mais frios que 0°C e, portanto, retiram energia térmica da mistura de sorvete. Você não deve, porém, usar sal em excesso, pois nesse caso a mistura de gelo e água vai ficar tão fria que vai retirar energia térmica depressa demais. Nesse caso, a mistura de sorvete perto da parede do recipiente congela e a mistura não pode ser mexida com facilidade. É necessário que a energia térmica seja perdida de modo gradual para que toda a mistura de sorvete permaneça no mesmo estado. O balde que contém o gelo deve ser de madeira ou outro mau condutor de calor para que o calor ambiente não derreta o gelo. É preferível usar gelo picado porque cubos de gelo maiores possuem poucos pontos de contato com o recipiente e, portanto, resfriam muito devagar a mistura de sorvete. Se você bater a mistura antes que esteja suficientemente fria, vai acabar com manteiga em vez de sorvete. Existem duas razões para se bater a mistura. (1) Evitar o crescimento de cristais de gelo, dispersando-os e cobrindo-os de

creme. Se os cristais crescerem demais, como acontece se a mistura for simplesmente colocada no congelador, o produto final tem uma consistência granular desagradável. Quando a mistura é batida, os cristais de gelo permanecem pequenos e o produto final tem consistência homogênea. (2) Introduzir bolhas de ar na mistura para que o sorvete se pareça mais com uma espuma congelada do que com um bloco de gelo. As bolhas são estabilizadas pelos glóbulos de gordura presentes na mistura. O aumento de volume produzido pelas bolhas de ar é chamado de overrun. Em um sorvete leve e aerado, metade do volume pode ser de ar, o que corresponde a um overrun de 100%. Depois de batida, a mistura é posta para descansar no ambiente frio fornecido pela mistura de gelo e sal. Durante esse período dizemos que ela endurece porque a água restante finalmente congela. Se tudo correr bem, o produto final terá apenas pequenos cristais e, portanto, uma consistência e um sabor agradáveis. Entretanto, se o sorvete derreter e for congelado novamente, poderá ficar com uma consistência granular.

O gelo moído empedra quando é guardado por muito tempo no congelador (mesmo que a temperatura permaneça o tempo todo abaixo do ponto de congelamento) porque os cristais de gelo tendem a se fundir para formar cristais maiores. (O processo acontece espontaneamente porque a fusão de dois cristais reduz a superfície total e, portanto, a energia total.) O sorvete guardado por muito tempo no congelador pode sofrer o mesmo efeito, mas o processo é mais lento porque os cristais de gelo estão cobertos de creme. Dizem que os pilotos americanos que serviram na Inglaterra durante a Segunda Guerra Mundial faziam sorvete colocando uma lata de mistura no compartimento do artilheiro de popa de uma fortaleza voadora, para que ficasse exposta ao mesmo frio e à mesma trepidação que o artilheiro de popa. Quando o avião voltava da missão, o sorvete estava pronto.

4.42 • Bebendo café quente; comendo pizza quente Por que um café tão quente a ponto de causar queimaduras pode ser bebido (talvez aos pequenos goles) sem nenhum problema? Por que é mais fácil queimar a boca comendo pizza do que tomando sopa à mesma temperatura?

Resposta É óbvio que o risco de sofrer uma queimadura depende da temperatura do alimento, mas depende também da quantidade de alimento, da velocidade pela qual a energia térmica é transferida do alimento para a boca e de quanto tempo o alimento permanece em contato com a boca. O café pode ser bebido sem problemas mesmo que esteja quente a ponto de queimar a pele se for derramado, como pode acontecer quando alguém tenta beber café enquanto dirige. Quando o café derrama, uma quantidade relativamente grande de líquido é absorvida pela roupa, que mantém o contato entre o líquido e a pele durante tempo suficiente para que uma quantidade apreciável de energia térmica seja transferida para a pele. Por outro lado, um gole põe na boca apenas uma pequena quantidade de líquido, que fica em contato com uma determinada parte da boca por muito pouco tempo. Beber em pequenos goles também ajuda de duas maneiras: (1) mistura o líquido com o ar, o que resfria o líquido; (2) transforma o líquido em gotas, que podem transferir individualmente apenas uma pequena quantidade de energia térmica para os pontos que tocarem dentro da boca. Qualquer alimento que contenha queijo quente, especialmente se o queijo foi aquecido em um forno de microondas, deve ser consumido com cautela por duas razões: (1) a superfície do queijo pode não parecer muito quente, enquanto a parte interna contém muita energia térmica; (2) pior do que isso, o queijo pode grudar no céu da boca, o que permite uma grande transferência de energia térmica do queijo para a boca. Em suma: se você não tomar cuidado, pode queimar o céu da boca em questão de segundos e sofrer durante vários dias.

4.43 • Fervendo a água Quando você esquenta água em uma panela, por que se formam bolhas muito antes de a água atingir o ponto de ebulição e por que o ruído produzido pela água passa por um máximo antes de a água começar a ferver? Em outras palavras: como a água

ferve quando é aquecida em um fogão?

Resposta As primeiras bolhas que se formam são causadas pelo ar que sai de solução por causa do aumento de temperatura. Essas bolhas de ar surgem no fundo da panela, onde a água recebe a energia térmica fornecida pelo queimador do fogão. Quando uma bolha de ar se forma, a pressão do ar tende a fazê-la crescer, mas a tensão superficial (causada pela atração mútua das moléculas de água) tende a fazê-la diminuir. Uma bolha pequena, com uma superfície muito curva, possui uma grande tensão superficial e, portanto, tende a murchar (Fig. 4-5a). Assim, as bolhas de ar não se formam no meio da água, nem mesmo logo acima do fundo da panela. As bolhas, porém, podem se formar em fendas (ou arranhões) no fundo da panela, onde começam com uma superfície menos curva (Fig. 4-5b) e, portanto, sujeita a uma tensão superficial menor. A pressão para fora aumenta continuamente quando uma quantidade cada vez maior de ar sai de solução e penetra na bolha. Assim, a bolha se expande até ficar suficientemente grande para se desprender da fenda. Como é mais leve que a água, a bolha sobe. O processo é interrompido quando a maior parte do ar sai de solução. Pouco depois, o fundo da panela fica suficientemente quente para fazer a água evaporar e bolhas de vapor se formam nas fendas. De início, essas bolhas murcham quase imediatamente, produzindo um crepitar que se propaga pela água e pela panela até chegar ao ar. Quando aumenta a quantidade de água que evapora e forma bolhas, as bolhas acabam ficando suficientemente grandes para se desprenderem das fendas e subir. Essas bolhas, porém, implodem ao entrar em contato com a água um pouco mais fria e o vapor d’água se condensa de volta para o estado líquido. Mais uma vez, cada implosão produz um pequeno estalo.

Figura 4-5 / Item 4.43 (a) Uma pequena bolha de ar na água tem uma superfície muito encurvada e uma grande força para dentro. (b) Uma bolha de ar em um arranhão no fundo da panela tem uma superfície menos encurvada e uma força para dentro menor.

À medida que a temperatura da água aumenta, as bolhas conseguem chegar cada vez mais alto antes de murcharem, até que alcançam a superfície. Nesse momento, passam a estourar com um som bem mais suave, o que mostra que a água está fervendo.

4.44 • Cozinhando um ovo O que determina o tempo necessário para se cozinhar um ovo em banho-maria? Por que o tempo aumenta quando o ovo é cozido muito acima do nível do mar? Por que a casca do ovo pode rachar quando ele é cozido e como isso pode ser evitado?

Resposta Para que o ovo fique cozido, a gema precisa atingir uma temperatura de aproximadamente 70°C. Quando um ovo é cozido em banho-maria, a temperatura da gema aumenta por causa da transferência de calor da água para a gema. A velocidade dessa transferência de calor depende da diferença de temperatura entre a água e o interior do ovo. Se o ovo for colocado em água à temperatura ambiente e essa água for aquecida até o ponto de ebulição, o tempo necessário para que o ovo fique cozido é de cerca de 10 a 15 minutos. Esse tempo será menor se o ovo for colocado em água fervente, mas nesse caso a casca do ovo provavelmente vai rachar, permitindo que o conteúdo do ovo vaze para a água. O efeito da altitude está relacionado à capacidade das moléculas de escapar da superfície da água, que é responsável pela evaporação. À temperatura ambiente, as moléculas da superfície da água estão fracamente ligadas por forças de atração. Quando a temperatura da água aumenta, a energia dessas moléculas aumenta (elas passam a se mover mais depressa) e algumas conseguem se libertar das forças de atração, deixando a superfície da água. Algumas dessas moléculas colidem com as moléculas de ar e são arremessadas de volta para a superfície. No ponto de ebulição da água, porém, o número de moléculas que escapam é muito maior que o número de moléculas que são arremessadas de volta para o líquido pelas moléculas do ar. Quando transportamos a água para uma altitude elevada, reduzimos a concentração de moléculas de ar acima da água e, portanto, a probabilidade de que as moléculas de água que escapam colidam com as moléculas de ar. Assim, o número de

moléculas que escapam definitivamente é maior do que se a água estivesse ao nível do mar. Em outras palavras, o ponto de ebulição da água diminui com a altitude. Assim, a velocidade de condução da energia térmica para o interior do ovo é menor e o ovo leva mais tempo para cozinhar. A casca do ovo provavelmente vai rachar se ele estiver frio e for colocado em água fervente. Esse efeito deve-se à pressão do gás produzido no interior do ovo. Quando a pressão aumenta rapidamente, surge uma fenda na casca, e você vê uma fila de bolhas de gás sair pela fenda. Uma solução possível é aquecer a água mais devagar. Adicionar sal à água pode fazer com que a clara do ovo coagule ao sair pela fenda, selando-a. Furando o ovo com uma agulha, você cria uma saída para o gás, o que evita que a pressão aumente muito no interior do ovo.

4.45 • Assados, cozidos e grelhados Por que a carne fica dourada quando é grelhada, frita ou assada mas não quando é ensopada ou preparada em um forno de microondas? Por que a carne não fica dourada por igual, mas apenas na superfície? Se a embalagem informa qual é o tempo necessário para assar um certo peso de carne e você deseja assar um peso duas vezes maior, a carne deve ficar no forno duas vezes mais tempo?

Resposta A carne fica dourada quando as moléculas de carboidrato reagem com moléculas de aminoácidos, processo conhecido como reação de Maillard. Como a reação ocorre apenas a temperaturas elevadas (acima do ponto de ebulição da água), a carne precisa ser aquecida pelo fogo, pelas paredes quentes de um forno ou por óleo quente. Os dois primeiros métodos transferem energia térmica para a superfície da carne principalmente por radiação infravermelha; o último método transfere energia por condução e convecção (da frigideira para o óleo e do óleo para a carne). O interior da carne é aquecido gradualmente, quando a energia térmica é conduzida da superfície para o interior, mas o interior não fica mais quente que o ponto de ebulição da água e, portanto, não chega a ficar dourado. Quando a carne é cozida em água fervente ou em um forno de microondas, nem mesmo a superfície excede o ponto de ebulição da água e, portanto, não pode ficar dourada. Algumas carnes, tais como o filé, podem ser tostadas em fogo muito quente e depois cozidas em fogo médio de acordo com o gosto do freguês. Tostar a carne não a torna impermeável, como pensam alguns cozinheiros. Tudo indica que a carne continua a perder fluidos; tostar serve principalmente para realçar o sabor. A carne pode ser descrita como uma matriz de proteína que contém uma quantidade razoável de água. No início, a água fica no lugar porque nem a gravidade nem um golpe forte de um utensílio de cozinha podem expulsá-la da carne. Quando, porém, a temperatura da carne aumenta durante o preparo, a água se desprende, o que permite que a gravidade e um utensílio de cozinha possam expulsá-la. A maior parte da água da carne se perde no momento em que a temperatura chega a 60°C. Com a saída da água, a carne murcha. É por isso que um filé bem passado pode ficar surpreendentemente pequeno. Algumas pessoas preferem assar uma carne durante várias horas colocando-a em um forno regulado para a temperatura final desejada do interior, que é mais baixa que o ponto de ebulição da água. Desta forma, a carne perde pouca água enquanto está sendo assada, pois a água da superfície não chega a evaporar totalmente. Assar a carne em um forno mais quente, ou preparar um bife na brasa, pode ser difícil porque a temperatura desejada no interior pode ser ultrapassada, caso em que a carne perde água demais e fica ressecada. Quando o interior da carne se aproxima da temperatura desejada, é preciso verificar a carne com freqüência, usando um medidor de temperatura comercial (termopar) ou um pequeno corte para examinar a cor do interior. A cor é um indicador da temperatura, porque, quando a mioglobina da carne é desnaturada pelo aumento de temperatura, muda de vermelha para marrom. (Nos organismos vivos, a mioglobina é responsável pelo armazenamento de oxigênio nos músculos.) Não é fácil calcular o tempo necessário para se preparar um peru ou um prato de carne assada, já que diferentes fornos trabalham a temperaturas diferentes (os controles de temperatura são muito confiáveis) e diferentes peças de carne conduzem o calor de modo diferente. Aqui está, porém, uma regra geral: se você conhece o tempo T necessário para assar um certo peso de carne a uma certa temperatura, o tempo necessário para assar um peso de carne duas vezes maior é 22/3 T e o tempo necessário para assar um peso três vezes maior é 32/3 T. Você consegue ver o padrão? O fator multiplicativo do peso é elevado a 23.

4.46 • Cozinhando no acampamento Cozinhar em um acampamento pode envolver utensílios de cozinha (como uma frigideira) e técnicas (a frigideira mantida sobre o fogo) convencionais, mas também pode envolver técnicas incomuns, especialmente “situações de emergência”. Como é possível usar uma folha de alumínio, uma lata grande, um saco de papel, pedras ou uma laranja para cozinhar, digamos, ovos ou carne?

Resposta A folha de alumínio pode ser ajustada para refletir parte da radiação infravermelha de uma fogueira para o alimento e cozinhá-lo. Uma das melhores opções é estender a folha como se estivesse em um telhado inclinado de um alpendre, para que reflita a radiação para baixo, em direção ao alimento que está no “chão” do alpendre. É possível improvisar um fogão a partir de uma lata grande fazendo alguns furos perto do fundo da lata, abrindo um buraco lateral na parte de cima e virando a lata de cabeça para baixo. Brasas introduzidas através do buraco aquecem o interior da lata, fazendo ar quente sair pelos furos da parte de cima e ar mais frio entrar pelo buraco. Você pode cozinhar diretamente sobre a superfície plana da lata invertida ou colocar uma segunda lata, menor, sobre a outra para cozinhar o alimento. O alimento pode ser embrulhado em uma folha de alumínio e colocado sobre brasas (que podem ou não estar cobertas de terra). Entretanto, o alimento tende a queimar em alguns pontos quando é preparado dessa forma. Uma técnica melhor é embrulhar o alimento em duas folhas de alumínio, com uma folha de papel entre as folhas de alumínio. O ar retido nos espaços entre as folhas reduz a velocidade de transferência de energia térmica das brasas para o alimento, o que reduz a probabilidade de que surjam pontos quentes no alimento. Um princípio semelhante está por trás de cozinhar com uma laranja: corte o terço superior da laranja, escave o resto da laranja, coloque alimento dentro da cavidade resultante, reponha a parte de cima como uma tampa e coloque a laranja diretamente nas brasas, com a “tampa” para cima. A umidade da casca da laranja reduz a probabilidade de que surjam pontos quentes. A temperatura da água normalmente não pode subir acima do ponto de ebulição, que é consideravelmente mais baixo que o ponto de ignição do papel. Assim, é possível cozinhar alimentos em um saco de papel, contanto que exista água ou uma substância embebida em água em contato com a parte interna do fundo do saco. Assim, por exemplo, você pode quebrar um ou mais ovos dentro de um saco de papel, dobrar a parte de cima várias vezes para evitar que a umidade escape durante o cozimento, espetar uma vara na parte de cima e, segurando a vara pela outra ponta, manter o saco sobre brasas. A água presente nos ovos impede que a temperatura do fundo do saco exceda o ponto de ebulição da água, mas se aquece o suficiente para cozinhar os ovos. É possível assar uma galinha (ou outra ave) sobre pedras quentes. Primeiro, embrulhe pedras secas em uma folha de alumínio e depois aqueça-as na brasa. (Não use pedras úmidas, porque, quando esquentarem, a água pode evaporar de repente e fazer as pedras explodirem.) Quando as pedras estiverem bem quentes, coloque-as no interior da galinha, embrulhe a galinha em folha de alumínio e cubra-a com muitas camadas de papel de jornal ou folhas. As pedras vão transferir energia para a galinha para cozinhá-la. Os jornais ou folhas isolam a galinha, para que a energia térmica não seja simplesmente conduzida para a superfície da galinha e se perca no ar antes que a temperatura da galinha atinja o valor desejado. (A galinha deve ficar bem cozida para eliminar a possibilidade de intoxicação por salmonela.)

4.47 • Assando uma pizza Por que uma pizza forma uma superfície de queijo bem derretido, com pontos levemente dourados, se for coberta com queijo comum, mas não com queijo sem gordura?

Resposta Uma pizza é assada por condução a partir do tabuleiro quente em que repousa, pela radiação infravermelha proveniente das paredes do forno que a cercam e por convecção do ar quente que existe em sua superfície (especialmente se o ar estiver sendo forçado a se mover por um ventilador). Enquanto a energia térmica é transferida gradualmente para o interior, principalmente para cozinhar a massa, espera-se que o queijo derreta de modo uniforme na parte de cima e fique levemente dourado. O dourado acontece nos pontos em que se formam bolhas no queijo, ou seja, nos pontos em que a água evapora para formar bolhas de vapor dentro do queijo. Quando o crescimento das bolhas faz a parte superior ficar mais fina, essa parte pode absorver energia térmica suficiente para dourar. Quando a pizza é coberta com queijo sem gordura, a água evapora do queijo depressa demais e as fatias de queijo não derretem, apenas queimam. Para resolver esse problema, é preciso borrifar óleo no queijo sem gordura ou com baixo teor de gordura antes de assar a pizza. A película de óleo retarda a evaporação da água do queijo, o que possibilita que ele derreta, borbulhe e fique dourado.

4.48 • Aquecimento em um forno de microondas Como as microondas de um forno de microondas aquecem os alimentos? Por que existe uma plataforma giratória na maioria dos fornos de microondas? As microondas cozinham os alimentos de dentro para fora? Por que um forno de microondas não doura os alimentos (o que lhes confere um sabor característico) como faria um forno a gás ou elétrico?

Por que não se deve aquecer uma xícara de água em um forno de microondas e depois acrescentar uma colher de pó de café ou chocolate solúvel? Por que não se deve usar um forno de microondas para cozinhar um ovo na casca ou um ovo sem casca com a gema ainda intacta? Por que comer uma torta aquecida em um forno de microondas pode ser perigoso?

Resposta As microondas são uma forma de radiação eletromagnética como a luz visível, com a diferença de que as microondas têm um comprimento de onda muito maior. (“Radiação” neste contexto não significa radiação nuclear: a palavra se refere ao fato de que algo está sendo irradiado ou emitido.) As microondas podem penetrar na maioria dos alimentos e são absorvidas pela água dos alimentos. Uma molécula de água possui um dipolo elétrico, que é o análogo elétrico de um ímã, com uma extremidade positivamente carregada e a outra negativamente carregada (o nome dipolo vem justamente do fato de que existem dois pólos). Um dipolo elétrico situado em um campo elétrico tende a se alinhar com o campo. O campo elétrico das microondas varia de sentido e de intensidade. Assim, as moléculas de água estão sempre mudando de orientação, tentando se manter alinhadas com o campo. Ao mudarem de orientação, as moléculas de água se atritam com as moléculas vizinhas, aumentando a temperatura do alimento. Em um forno de microondas, os alimentos não ficam muito mais quentes que a temperatura de ebulição da água, ao contrário do que acontece com os alimentos cozidos em um fogão elétrico ou a gás, que tornam possível dourar a superfície da carne usando temperaturas muito mais altas para desnaturar a mioglobina. Assim, uma carne preparada em um forno de microondas é muitas vezes descrita como “borrachuda e sem gosto” porque não tem os sabores e a textura superficial que um forno elétrico ou a gás pode proporcionar. Como as microondas penetram no alimento, podem aquecê-lo por igual se o pedaço for pequeno ou aquecer inicialmente apenas a camada externa se o pedaço for relativamente grande. No segundo caso, é preciso esperar um certo tempo para que o calor chegue ao centro da peça. Aquecer fatias de pizza e tortas de geléia em um forno de microondas pode ser perigoso se forem consumidas logo depois. O molho da pizza e o recheio de geléia esquentam muito mais depressa do que a crosta porque contêm muito mais água. Assim, quando o alimento é retirado do forno de microondas, a crosta pode não estar quente, mas o molho ou a geléia podem estar suficientemente quentes para queimar a boca. As microondas são produzidas por um componente chamado magnétron. Para que as microondas se distribuam uniformemente por toda a superfície do alimento, o alimento é normalmente colocado em um prato giratório. Os primeiros modelos de forno de microondas usavam um ventilador metálico com pás inclinadas para refletir o feixe de ondas. Quando as pás interceptavam o feixe, refletiam-no em vários ângulos, atingindo toda a superfície do alimento. Sem essas reflexões ou sem a rotação do alimento, existiriam pontos ativos (em que o alimento se aqueceria rapidamente) e pontos inativos (nos quais o alimento se aqueceria lentamente). Para observar a presença de pontos ativos e inativos em um forno de microondas, é só colocar uma camada uniforme de queijo no fundo do forno (sem o prato giratório). Os pontos ativos são aqueles em que o queijo começa a derreter e borbulhar primeiro. Quando a água é aquecida em um fogão convencional por fogo que incide na superfície exterior do fundo da panela, a energia do fogo faz a água evaporar e forma bolhas de vapor d’água em fendas situadas na superfície interna do fundo da panela. Essas fendas são necessárias. Para que uma bolha se forme e cresça, precisa vencer a tensão superficial das moléculas da água (elas têm uma tendência a permanecer unidas por causa das forças atrativas). Uma pequena bolha que se forme na água não consegue vencer a tensão superficial porque sua interface com a água tem uma curvatura muito grande. Essa curvatura aumenta a tensão superficial e faz a bolha murchar. Entretanto, se uma pequena bolha se forma em uma fenda, sua curvatura da interface com a água não é tão grande, a tensão superficial é menor e a bolha consegue não só sobreviver mas até crescer quando recebe uma quantidade maior de vapor d’água. Assim, no aquecimento convencional, as fendas na superfície do fundo da panela iniciam o processo de fervura. Quando a água é aquecida até o ponto de ebulição sobre o fogo, a energia térmica é transferida para a água em uma superfície na qual podem se formar bolhas de vapor. A água não pode exceder o ponto de ebulição porque, depois que esse ponto é alcançado, a energia térmica começa a transformar a água em vapor para formar as bolhas. Quando a água é aquecida em um forno de microondas, o processo é muito diferente, porque a energia térmica é absorvida pela água do interior do recipiente e não pela água da superfície. Na água do interior do recipiente, a tensão superficial faz murchar qualquer bolha de vapor que tente se formar. Assim, a água não passa de líquido para vapor. Quando uma quantidade maior de energia térmica é absorvida pela água, a temperatura ultrapassa o ponto normal de ebulição e dizemos que a água está superaquecida. Finalmente, bolhas de vapor começam a se formar, apesar da tensão superficial a que estão submetidas. Suponha, porém, que você retire uma caneca de água superaquecida de um forno de microondas antes que comece a produção de bolhas. Sem as bolhas, você não tem idéia da temperatura da água. Se você despejar partículas de café solúvel,

açúcar ou qualquer outra substância em pó na água superaquecida, bolhas de vapor d’água se formarão quase instantaneamente na superfície dessas partículas. A fervura pode agitar a água de tal maneira que água muito quente pode ser lançada para fora da caneca. Algumas pessoas já sofreram queimaduras graves por causa desse fenômeno. Um ovo com a gema intacta, como qualquer recipiente fechado contendo água, tem grande probabilidade de explodir se for colocado em um forno de microondas. A água é aquecida até se transformar em vapor com um aumento súbito de pressão que faz o recipiente se romper. Às vezes o ovo não explode até o momento em que está sendo retirado do forno de microondas. Nesse caso, não apenas pode fazer muita sujeira, mas também pode queimar alguém, talvez nos olhos. Explosões menores, chamadas sacudidelas de microondas (microwave bumps), podem acontecer em alimentos como vagem e feijão-manteiga, que contêm pequenas quantidades de água no que é efetivamente um recipiente fechado. É claro que o que acontece com a pipoca em um forno de microondas é uma explosão: a água no interior de cada grão de milho evapora de repente e faz o grão estourar, assumindo a forma e a consistência ideais para um lanche noturno. Entretanto, simplesmente bombardear o milho para pipoca com microondas não vai produzir um saco cheio de pipocas estouradas de maneira uniforme porque cada grão de milho contém muito pouca água. Para estourar a pipoca mais depressa, o fundo de um saco de pipoca para microondas tem um cartão feito de um material que absorve microondas. O cartão, que esquenta muito depressa, transfere energia para o milho que está em contato com ele, fazendo-o explodir, o que faz com que caia mais milho no cartão. O processo continua até que todo o milho tenha estourado. Um forno de microondas com um vazamento é obviamente um perigo. (O vazamento mais comum acontece pela porta do forno, que pode empenar com o uso.) As microondas não só podem esquentar partes do corpo que não deviam ser aquecidas (como os olhos), mas também podem causar danos de longo prazo à saúde.

4.49 • Estourando pipoca Por que a pipoca estoura? Em outras palavras, o que produz a expansão e o som?

Resposta O milho para pipoca é um tipo especial de milho, cultivado por sua propriedade de estourar quando é aquecido por ar ou gordura quente ou quando é colocado em um forno de microondas. (No forno de microondas, o milho é aquecido pela absorção direta de microondas e pelo contato com um cartão especial que esquenta rapidamente ao absorver microondas.) O pericarpo de um grão de milho para pipoca é um pequeno recipiente fechado que contém amido e água. Quando o milho é aquecido, parte da água evapora, mas a maior parte continua em estado líquido. Como o vapor não pode escapar, a pressão aumenta e, em conseqüência, o mesmo acontece com o ponto de ebulição da água restante. Quando a água chega a 180°C e a pressão atinge um valor equivalente a cerca de 8 vezes a pressão atmosférica, o pericarpo se rompe, a pressão cai para a pressão atmosférica e o ponto de ebulição volta ao valor normal. Assim, a água que resta no pericarpo fica de repente bem acima do ponto de ebulição e evapora tão depressa que estoura o amido quente e fundido, fazendo-o aumentar consideravelmente de volume. A expansão súbita produz uma variação de pressão do ar que constitui uma onda sonora: o ruído característico da pipoca estourando. Como é o aumento de volume do grão de milho que faz a pipoca ficar macia e saborosa, os fabricantes procuram maximizar esse aumento. Um milho para pipoca com uma quantidade maior de água no pericarpo tende a produzir uma explosão mais forte e, portanto, um aumento maior de volume. Entretanto, milho para pipoca com uma quantidade excessiva de água no pericarpo não estoura bem (quando estoura!), porque a água diminui a rigidez das paredes do pericarpo.

4.50 • Preparando ovos mexidos Por que é preciso mexer bem os ovos quando se preparam ovos mexidos? Por que eles devem ser preparados em fogo baixo?

Resposta Para preparar ovos mexidos, coloque ovos (e leite, se quiser) em uma frigideira não muito quente e mexa sem parar. Mexer tem duas funções: desnaturar parte das proteínas do ovo para criar uma rede e romper os coalhos que se formam quando o calor coagula o ovo. Se você pára, o ovo que está em contato com a superfície da frigideira recebe energia térmica em excesso e começa a fritar. Se a frigideira estiver quente demais, as proteínas, ao serem desnaturadas, perdem moléculas de água. A água forma gotas e depois poças. Algumas pessoas gostam de ovos com essas poças de água. Outras preferem que os ovos sejam tão cozidos que as poças sequem (o que pode deixar os ovos mexidos tão saborosos quanto cartolina amarela quente.) Se a transferência de energia térmica for suficientemente lenta para evitar que a água se separe das proteínas, e se a agitação

contínua evitar que o ovo fique frito e com grandes coalhos, os ovos mexidos devem ser tirados rapidamente do fogo para que a energia térmica que permanece na frigideira complete o cozimento. Assim, os ovos ficam úmidos (e não molhados), com uma textura uniforme e saborosos. O sal só deve ser adicionado quando os ovos estiverem prontos, porque adicioná-lo antes ajudaria a separar a água das proteínas. Se você for adicionar legumes, verduras ou outros produtos aos ovos mexidos, é preciso escoálos ou cozinhá-los para retirar a água, e esperar até quase o último instante para colocá-los na frigideira junto com os ovos. Uma omelete difere de ovos mexidos em pelos menos dois aspectos. Em primeiro lugar, para criar uma mistura aerada, as claras dos ovos são separadas das gemas, batidas para aprisionar bolhas de ar na rede de proteínas desnaturadas e novamente misturadas com as gemas. Em segundo lugar, é preciso dispor de uma camada crocante que sirva de apoio para cozinhar o resto da mistura. Para isso, deixa-se a mistura um pouco mais de tempo na frigideira, para que uma crosta se forme no fundo. Em seguida, a omelete pode ser dobrada. A mistura de ovo entre as duas superfícies crocantes cozinha enquanto as bolhas de ar e de vapor se expandem.

4.51 • Gêiseres e cafeteiras Por que a água, o vapor e outras substâncias jorram de um gêiser em vez de simplesmente escorrerem para fora? Por que alguns gêiseres, tais como o Old Faithful, no Parque Nacional de Yellowstone, têm erupções quase periódicas? Um tipo comum de cafeteira possui um funil invertido que descansa livremente no fundo e sustenta um recipiente com o pó de café (Fig. 4-6a). Como funciona esse tipo de cafeteira?

Figura 4-6 / Item 4.51 (a) Cafeteira de funil invertido. (b) Cafeteira de dois recipientes.

Resposta O Old Faithful, provavelmente o gêiser mais estudado do mundo, foi monitorado com uma câmara de vídeo enquanto se enchia de água e entrava em erupção. Trata-se, na verdade, de uma fenda que atinge uma profundidade de cerca de 200 metros. Água fria, água quente e vapor d’água penetram na fenda através de fissuras nas rochas vizinhas. A fonte de calor responsável pela água quente é o magma, que se encontra alguns quilômetros abaixo. A atividade começa quando a água que está 6 ou 7 metros abaixo da superfície torna-se mais quente que o ponto de ebulição da água a essa profundidade. (O ponto de ebulição aumenta com a profundidade porque a pressão da água aumenta com a profundidade.) Bolhas de vapor se formam nessa profundidade e transferem energia térmica para a água mais acima, cuja temperatura é mais baixa que o ponto de ebulição a essa profundidade. Isto faz com que a água que está mais acima seja aquecida até o ponto de ebulição e a expansão súbita da água ao se transformar em vapor faz a coluna de água e vapor jorrar para fora do gêiser. O processo se repete, mas o tempo necessário depende da quantidade de água que restou no gêiser após a última erupção. As erupções do Old Faithful costumam ter dois períodos, um mais curto e um mais longo, um após o outro. Quando uma cafeteira de funil invertido é colocada no fogo, a água no interior do funil é aquecida até o ponto em que parte dela evapora na superfície de baixo. A expansão súbita do vapor faz o líquido subir pela parte estreita do funil; a água derrama no recipiente de cima e pinga no pó de café. O processo se repete até que o café fique suficientemente forte. Outro modelo bastante conhecido de cafeteira é formado por dois recipientes esféricos ligados por uma gaxeta de borracha, um acima do outro (Fig. 4-6b). O pó é colocado no recipiente de cima, que é aberto na parte superior; a água é colocada no recipiente de baixo. Um pequeno tubo liga o recipiente de baixo (onde sua extremidade está abaixo do nível da água) ao recipiente de cima. Quando a água do recipiente de baixo ferve, a expansão do ar e do vapor d’água empurra boa parte da água, através do tubo, para o recipiente de cima, passando pelo pó. A cafeteira é então retirada do fogo. Quando o recipiente de baixo esfria e o vapor d’água se condensa, a pressão cai e torna-se menor que a pressão atmosférica. Como o recipiente superior está aberto, a pressão sobre a água nele contida é a pressão atmosférica. Por causa da diferença de pressão entre os dois recipientes,

o café é empurrado, através do tubo, para o recipiente de baixo. Esse movimento força o café a passar novamente pelo pó, tornando-o mais forte. Quando todo o líquido volta ao recipiente de baixo, o café está pronto.

4.52 • Barco pop-pop de brinquedo O barco de brinquedo ilustrado na Fig. 4-7 é movido pela água que sai por dois canos de uma “caldeira” situada na parte traseira do barco. (A caldeira pode ser simplesmente um encanamento helicoidal.) Para preparar o barco, enchemos de água a caldeira e os canos, colocamos o barco para flutuar em um recipiente com água e posicionamos uma vela acesa embaixo da caldeira. Quando a água da caldeira esquenta e evapora, o aumento de pressão força a água a entrar nos canos e sair pela outra extremidade. O curioso é que, depois que a água começa a sair, a propulsão não pára mais, mas o barco é impulsionado para a frente aos trancos. Por que o barco continua a se mover?

Resposta Quando a água é expelida pelos canos, parte do vapor produzido entra nos canos, onde se condensa por causa da temperatura mais baixa. Tanto o movimento quanto a condensação contribuem para reduzir a pressão do gás. Quando a pressão cai, a água que está atrás do barco é sugada para dentro dos canos e reabastece a caldeira. Em seguida, o ciclo completo de descarga e reabastecimento se repete e o barco é empurrado para a frente de novo. A rápida expulsão da água ocorre em forma de um jato direcionado para trás, que faz o barco se mover para a frente. O barco não se move para trás durante o reabastecimento porque a água não entra nos canos como um jato, mas de maneira bem mais lenta e vindo de várias direções. Assim, a força que tende a puxar o barco para trás é fraca e não pode superar a resistência da água. Isto significa que o barco se move para a frente enquanto a água está sendo expulsa, mas fica parado durante a fase de reabastecimento.

Figura 4-7 / Item 4.52 A descarga de água impulsiona o barco de brinquedo.

4.53 • Dilatação térmica Por que a maioria das pontes é construída em seções separadas por pequenos espaços vazios? Por que as antigas ferrovias eram construídas com trilhos relativamente curtos, separados por espaços relativamente grandes? As viagens nessas ferrovias eram feitas aos solavancos e acompanhadas por um ruído característico, porque as rodas do trem caíam nesses espaços e oscilavam, sacudindo os passageiros e fazendo barulho. Por que as ferrovias modernas não têm mais esses espaços?

Resposta A maioria dos materiais usados nas pontes dilata-se quando esquenta e se contrai quando esfria. Se o material de uma ponte for submetido a variações significativas de temperatura durante o ano, a ponte precisa acomodar essa mudança de comprimento; caso contrário, poderá envergar. As ferrovias antigamente eram construídas com trilhos relativamente curtos separados por espaços intermediários para acomodar essa dilatação. As ferrovias modernas quase não têm espaços para expansão: são feitas de trilhos contínuos soldados. Como os trilhos ficam firmemente presos aos dormentes e estes são mantidos no lugar, é raro haver deformações. Os trilhos costumam ser instalados quando a temperatura está aproximadamente no ponto médio entre os extremos anuais. Quando o petróleo aquecido começa a correr em um oleoduto que passa pelo fundo do mar, o oleoduto pode se deformar por causa da expansão térmica, já que não está preso no lugar. A menos que a deformação seja muito grande, isto não constitui um problema. Quando o avião Concorde foi construído, o projeto teve que levar em conta a dilatação térmica da fuselagem durante o vôo supersônico por causa do aquecimento gerado pelo atrito com o ar. A temperatura aumentava para cerca de 130°C no nariz do avião e cerca de 90°C na cauda, os vidros das janelas dos passageiros esquentavam apreciavelmente e o comprimento da fuselagem aumentava em mais de 10 centímetros. Os materiais odontológicos usados em obturações e coroas são projetados para apresentar uma dilatação e contração térmica semelhantes às dos dentes naturais. Se não fosse assim, tomar sorvete e depois beber chocolate quente seria uma experiência

inesquecível. Muitos fatores levaram a um apagão que deixou 50 milhões de americanos e canadenses sem energia elétrica em agosto de 2003, mas um caso curioso aconteceu com uma linha de transmissão em Ohio. A corrente na linha estava alta naquele dia, o que fez a linha se aquecer mais que o normal. Com o aumento de temperatura, o comprimento da linha entre os pontos de apoio também aumentou — logo, os segmentos da linha começaram a ceder. Um desses segmentos cedeu tanto que se aproximou de uma árvore o suficiente para que a corrente saltasse da linha para a árvore, de onde chegou à terra. Isso eliminou a capacidade da linha de transportar corrente e a perda aparentemente contribuiu para a instabilidade da rede elétrica, que culminou no apagão.

4.54 • Destruição de um vagão-tanque Os vagões-tanque são muito resistentes e normalmente só ficam danificados em choques a alta velocidade. Entretanto, também podem ser destruídos quando certos princípios da física são ignorados. Eis um caso verídico: certo dia, um grupo de operários estava limpando o interior de um vagão-tanque com vapor. Como o serviço não foi concluído até o final do expediente, fecharam o vagão e foram para casa. Quando voltaram na manhã seguinte, descobriram que o vagão estava esmagado, apesar das paredes de aço extremamente resistentes, como se uma criatura gigante de um filme de ficção científica de segunda classe tivesse pisado nele durante a noite. O que esmagou o vagão-tanque?

Resposta Quando o vagão-tanque estava sendo limpo, o interior estava cheio de vapor muito quente, que é um gás de moléculas de água. A equipe de limpeza deixou o vapor dentro do vagão quando fechou todas as válvulas do vagão no final do expediente. Nessa hora, a pressão do gás dentro do vagão era igual à pressão atmosférica, já que as válvulas tinham permanecido abertas durante a limpeza. Quando o vagão esfriou durante a noite, o vapor também esfriou e boa parte dele condensou, de modo que tanto o número de moléculas de gás quanto a temperatura do gás diminuíram, enquanto o volume permaneceu constante. Em conseqüência, a pressão do gás caiu. Em algum momento da noite, a pressão do gás dentro do vagão atingiu um valor tão baixo que a pressão atmosférica externa conseguiu empurrar as paredes de aço do vagão para dentro, esmagando o vagão. A equipe de limpeza poderia ter evitado o acidente se deixasse as válvulas abertas, para que o ar pudesse entrar e manter a pressão interna igual à pressão atmosférica.

4.55 • Secagem de roupa em varal Antes que as máquinas de secar roupa se tornassem populares, as roupas eram “penduradas para secar” em varais: as roupas eram presas nos varais com pregadores e ficavam penduradas, ao sol ou à sombra, até que estivessem secas. Por que uma camisa pendurada na corda seca? Em especial, por que a secagem começa em cima e avança para baixo?

Resposta Você poderia pensar que uma camisa pendurada na corda seca de cima para baixo porque a água escorre para baixo e pinga no chão. De fato, você está certo, pelo menos nos primeiros 30 minutos do processo de secagem. Quando a água escorre até a parte de baixo, forma gotas que acabam ficando tão grandes que se desprendem e caem. Entretanto, quando a camisa pára de pingar, ainda está molhada. Se fosse simplesmente aquecida pela luz solar, a camisa inteira iria secar mais ou menos com a mesma rapidez e não de cima para baixo. O processo de secagem de cima para baixo deve-se à convecção do ar que passa pela camisa em decorrência de variações de temperatura. Depois que a água escorre da camisa, a camisa ainda está molhada porque a água fica retida nos poros (espaços abertos entre as fibras) pela tensão superficial. Vamos considerar uma gota d’água em um poro vertical. A interface da gota com o ar é uma superfície curva, tanto do lado de cima como do lado de baixo. Por causa da tensão superficial (causada pela atração mútua das moléculas de água), a curvatura nas duas superfícies produz uma força resultante sobre a gota. Se a parte de cima do poro for mais larga que a parte de baixo, a força resultante aponta para baixo, na mesma direção que a força gravitacional que atua sobre a gota. Assim, a água se move para baixo. Se, porém, a parte de cima do poro for mais estreita que a parte de baixo, a força causada pela tensão superficial aponta para cima e pode manter a gota no lugar apesar da força gravitacional. Gotas d’água retidas nesses poros continuam na camisa depois que a água pára de escorrer. A água evapora aos poucos dessas gotas retidas. A evaporação necessita de energia para libertar as moléculas de água da superfície. Assim, a água que evapora leva com ela parte da energia das gotas restantes, o que resfria as gotas e também o tecido da camisa e o ar. Como o ar fica mais denso quando é resfriado, esse ar mais frio desce pela camisa e recolhe a umidade das gotas que estão mais abaixo. A linha de secagem que divide as partes seca e úmida da camisa começa, portanto, na parte de cima da camisa e é levada para baixo pelo ar frio que desce.

Se você quer uma desculpa para tomar banho de sol durante várias horas, pendure uma camisa molhada e diga que está estudando o movimento da linha de secagem causado pela convecção.

4.56 • Casacos quentes Se você entra em uma sala fria em trajes de banho, por que sente frio? Por que um casaco conserva o calor do corpo?

Resposta Você sente frio quando perde para o ambiente mais energia térmica do que recebe. Existem quatro tipos de perda. (1) Na condução, você perde energia por contato direto com outro objeto que está mais frio que você, o que acontece, por exemplo, quando você se senta em um banco frio. (2) Na radiação, você perde energia irradiando luz infravermelha para o ambiente. Você também ganha energia absorvendo radiação infravermelha emitida pelo ambiente; mas, se o ambiente estiver mais frio que você, os ganhos superam as perdas. (3) Na convecção, você perde energia quando o ar passa por você. Se o ar estiver mais frio que você, você perde energia térmica através da colisão das moléculas de ar com você. (4) Você também pode perder energia através da evaporação do suor da sua pele, que é uma razão pela qual você sua quando faz exercício. A transformação de líquido em vapor requer energia, que vem da sua pele. Se você sua enquanto está exposto a uma brisa ou um vento, a taxa de evaporação aumenta e, portanto, a taxa pela qual você perde energia também aumenta. A função de um casaco (e das roupas em geral) é reduzir todas essas perdas de energia. Assim, por exemplo, as peles de animais bloqueiam o vento e, portanto, reduzem as perdas por convecção e evaporação. Um casaco também pode reter parte do ar em uma camada em volta do seu corpo. Como o ar é mau condutor de energia térmica, a camada ajuda a conservar o calor. Usar várias camadas de roupa debaixo de um casaco ajuda ainda mais, porque retêm várias camadas de ar. Os pêlos de um casaco ajudam a manter você aquecido por causa do ar retido entre os pêlos. Se, porém, você está exposto ao vento, esse ar é facilmente soprado para longe. Nesse caso, você ficaria mais aquecido se usasse o casaco do avesso, para manter os pêlos longe do vento. Se você expõe a pele desprotegida, tal como o rosto ou os dedos, a um vento frio, o frio que você sente é medido de maneira aproximada pela sensação térmica, que é a temperatura na qual, na ausência de vento, você teria a mesma sensação. Não é fácil determinar a sensação térmica com precisão, já que para isso é preciso avaliar a capacidade das pessoas de se adaptar ao ar frio; algumas pessoas se adaptam com muita facilidade, enquanto outras têm muita dificuldade para se adaptar. Naturalmente, o risco de um vento frio é a possibilidade de queimaduras causadas pelo frio, que acontecem quando a pele começa a congelar. Em geral, a pele não congela a temperaturas acima de –10°C, qualquer que seja a velocidade do vento, mas o risco aumenta rapidamente para temperaturas mais baixas e velocidades do vento maiores.

4.57 • Plantas quentes Quando uma neve de fim de inverno cai sobre uma planta chamada Symplocarpus foetidus, que é encontrada na América do Norte e na Ásia, por que a neve em volta da planta logo derrete? Durante uma nevasca, uma cavidade pode se formar em volta da planta.

Resposta O Symplocarpus foetidus é uma das plantas que conseguem manter uma temperatura bem mais alta que a temperatura ambiente. Assim, essa planta pode derreter a neve à sua volta porque perde mais energia por emissão infravermelha, devido à sua temperatura elevada, do que recebe da neve. Da mesma forma que as aves e os mamíferos, essas plantas são chamadas de termorreguladas, porque conseguem manter sua temperatura mesmo que a temperatura do ambiente varie. Algumas partes dessas plantas, tais como a inflorescência (grupo de pequenas flores) do Philodendron selloum, podem ser quentes ao toque (ou seja, mais quentes que uma pessoa) e gerar energia térmica à mesma taxa que um gato pequeno. (Roger S. Seymour, um dos principais pesquisadores da área, diz que às vezes imagina a planta como um gato que possui um caule.)

4.58 • Pêlos de urso polar Por que os pêlos dos ursos polares são ocos?

Resposta Os pêlos brancos de um urso polar retêm as partes visível e infravermelha da luz solar porque a radiação é refletida e transmitida para dentro do couro até chegar à pele, onde é absorvida, aumentando a energia térmica da pele. (A parte ultravioleta da luz solar também é absorvida pelos pêlos, mas a luz ultravioleta pouco contribui para manter

um urso aquecido.) A energia térmica da pele é mantida em parte porque os pêlos são ocos e maus condutores de calor (a idéia de que os pêlos ocos se comportam como fibras ópticas não passa de um mito).

4.59 • Roupas pretas e ovelhas negras no deserto Existe uma crença de que roupas brancas são mais frescas que roupas pretas quando estamos em um clima quente e seco. Apesar disso, os beduínos, que vivem nas temperaturas escaldantes do deserto do Sinai, às vezes preferem usar uma túnica preta em vez de branca. O que explica essa escolha? Se você se perdesse no deserto, sua chance de sobreviver aumentaria se você tirasse a roupa para que ela não absorvesse luz? As ovelhas dos beduínos costumam ser pretas, não por causa de uma reprodução seletiva, mas aparentemente por causa da adaptação natural ao ambiente. Por que a lã negra das ovelhas as ajuda a sobreviver?

Resposta Uma túnica preta pode absorver mais luz e calor do sol e atingir uma temperatura mais elevada do que uma túnica branca, mas a temperatura do ar no interior da túnica e na pele dos beduínos não depende exclusivamente da cor da túnica. A temperatura mais elevada da túnica preta provavelmente é compensada pela maior convecção de ar no interior da túnica: o ar entra por baixo e, por causa do calor, sobe e escapa pelo pescoço. A túnica funciona mais ou menos como uma chaminé. Quando o beduíno está exposto a rajadas de vento, a circulação do ar fica ainda melhor porque a túnica passa a se comportar como um fole. Se você está em um deserto e precisa usar roupas apertadas, que não permitem a circulação de ar, roupas brancas vão aquecer sua pele menos que roupas pretas. Em geral, não é uma boa idéia ficar sem roupa por causa do risco de queimaduras de sol. Quando a água é abundante, as roupas devem ser porosas para que a evaporação do suor refresque a pele. Quando, porém, a água é escassa, é preciso usar roupas que reduzam as perdas pela pele por evaporação, ou você corre o risco de ficar desidratado em pouco tempo. No clássico de ficção científica Duna, de Frank Herbert, o povo do deserto vive em um ambiente tão adverso que usa roupas hermeticamente fechadas para reter a preciosa umidade do corpo. É graças à lã negra que a ovelha de um beduíno consegue sobreviver nos invernos rigorosos do Sinai. A cor da lã não importa até que a ovelha esteja exposta à luz solar direta. Nesse caso, a maior absorção de luz solar por uma lã negra aquece a ovelha e reduz o metabolismo. Como o alimento das ovelhas é escasso no inverno, um metabolismo mais lento é vantajoso.

4.60 • Velocidade de resfriamento de uma xícara de café Você acabou de fazer café, mas não pretende bebê-lo imediatamente. Suponha que você tome café com leite. Para que o café esteja mais quente quando for bebê-lo, você deve acrescentar o leite imediatamente ou na hora de beber? Deve mexer o café enquanto espera? Deve colocar uma colher no café? Uma colher de metal tem um efeito diferente de uma colher de plástico? A taxa de resfriamento do café muda se o recipiente (ou mesmo o líquido) for preto ou branco?

Resposta Existem três fatores que precisam ser levados em conta: (1) Quanto mais quente estiver o café, mais rápido vai perder calor. (Se esse fosse o único fator importante, o leite deveria ser adicionado de imediato para reduzir a temperatura e a perda de calor.) (2) Adicionar leite mais frio ao café quente produz uma mistura com uma temperatura intermediária; quanto mais quente o café estiver quando o leite for adicionado, maior será a queda de temperatura do café. (Se esse fosse o único fator importante, esperar para adicionar o leite seria melhor.) (3) A presença de leite provavelmente vai reduzir a evaporação da água e também a perda de calor associada. Um grupo de pesquisadores observou que o café preto esfria cerca de 20% mais depressa que café com leite em circunstâncias normais, provavelmente devido ao terceiro fator e não por causa de qualquer diferença na emissão de radiação infravermelha. Eles descobriram também que, se o leite estiver abaixo da temperatura ambiente (talvez porque tenha sido tirado da geladeira), o café ficará mais quente se o leite for adicionado de imediato. Entretanto, se o leite estiver acima da temperatura ambiente (o que não é comum), o momento exato para adicionar o leite depende de uma série de fatores, tais como o tempo que você vai levar para beber o café. Assim, na maioria dos casos é melhor adicionar o leite imediatamente. Mexer faz o café esfriar mais depressa porque leva o líquido quente para a superfície, onde ele pode evaporar. Uma colher de metal conduz o calor para cima ao longo dela se for deixada no café (funciona como um dissipador de calor), mas uma colher de plástico provavelmente não faz muita diferença. A questão da cor envolve a taxa pela qual a superfície irradia energia. Na luz visível, uma superfície branca irradia mais energia do que uma superfície preta, mas a principal perda de calor por irradiação da superfície de uma xícara (ou do próprio

líquido) ocorre na faixa do infravermelho. Para essa faixa, as superfícies pretas e brancas irradiam mais ou menos a mesma quantidade de energia e, portanto, a cor da xícara é irrelevante. Uma tampa em uma xícara de café, ou uma camada de creme sobre o café, mantém o café quente por mais tempo porque reduz a evaporação e a perda de calor associada.

4.61 • Água fresca da moringa Por que a água de uma moringa permanece fresca mesmo quando está fazendo muito calor? Quando meus pais me levaram em um passeio de carro pelo sudoeste dos Estados Unidos, amarraram um saco com água feito de material poroso no pára-choque dianteiro. Quando parávamos para beber água, o ar e o carro estavam muito quentes, mas a água estava sempre fresca. Por que isso acontecia?

Resposta Na evaporação, moléculas que estão em um recipiente com água passam para o ar. Uma certa quantidade de energia é gasta para liberar essas moléculas das forças de atração entre as moléculas na superfície da água. Se o movimento aleatório leva essas moléculas de volta à superfície (se as colisões com as moléculas de ar as levam de volta), a energia é devolvida ao recipiente. Se o ar, porém, estiver em movimento (ou seja, se estiver ventando), as moléculas se afastam do recipiente e não podem devolver a energia. Nesse caso, a superfície da água perde energia. Se essa perda de energia for suficientemente rápida, a temperatura da água cai antes que haja uma transferência de energia significativa do ambiente para a água. Assim, se uma moringa porosa for mantida à sombra, o vento pode resfriar a água ao remover as moléculas evaporadas que atravessaram as paredes da moringa. Analogamente, quando o saco com água no carro dos meus pais ficava na sombra do carro, o ar em movimento esfriava a água ao remover as moléculas que atravessam as paredes do saco. Esse processo de resfriamento também é usado de outras maneiras. Em um piquenique em um dia quente, por exemplo, a comida e a bebida podem permanecer relativamente frescas durante várias horas se forem mantidas em uma tigela de barro molhada. Você mesmo pode se refrescar no verão molhando a roupa e ficando à sombra em um local onde haja uma corrente de ar. A rã sul-americana Phyllomedusa sauvagei usa o resfriamento por evaporação de um modo peculiar. Normalmente, passa o dia com os olhos fechados, mas quando a temperatura do corpo ultrapassa 40°C em um dia quente, a rã começa a piscar. Quando estão abertos, os olhos se projetam para fora e esfriam por evaporação. Quando estão fechados, os olhos se retraem e se aproximam do cérebro. A rã aparentemente é capaz de resfriar o cérebro usando os olhos como evaporadores.

4.62 • Pássaro bebedor O pássaro bebedor (Fig. 4-8) é um brinquedo conhecido dentro e fora das salas de aula. Para colocar o pássaro em movimento, basta molhar sua cabeça com água. Isso faz com que o pássaro se incline para a frente, de início devagar e depois muito depressa, até atingir uma posição quase horizontal. Em seguida, o pássaro volta a ficar com o corpo ereto. Se você deixa um copo com água em uma posição tal que o pássaro possa molhar o bico, o movimento se repete indefinidamente. O que faz o pássaro se mover? Há alguma maneira de fazer o pássaro se mover sem molhar a cabeça com água? Se houver, será possível fazer o brinquedo funcionar mesmo que a umidade do ar esteja muito elevada, caso em que molhar a cabeça do pássaro com água não daria resultado.

Figura 4-8 / Item 4.62 Pássaro bebedor prestes a voltar bruscamente para a posição vertical.

Resposta O corpo (a parte inferior) do pássaro está parcialmente cheio de um líquido que evapora com facilidade, em geral cloreto de metileno. Os espaços abertos do corpo e da cabeça contêm o vapor da substância. A cabeça e o bico são cobertos de feltro. O pescoço é um tubo que vai da cabeça até o corpo. Em algum ponto do pescoço, o pássaro é sustentado por um eixo livre para girar em torno das pernas e da base do brinquedo. Quando a cabeça é molhada com água, a água começa a evaporar. Como a transição de líquido para vapor requer energia térmica, a evaporação refrigera o feltro, a cabeça e o vapor que existe no interior da cabeça. (Soprar no feltro ajuda a evaporação.) Quando a temperatura do vapor no interior da cabeça diminui, o mesmo acontece com a pressão. Como o bolsão de vapor no corpo não está diretamente ligado ao vapor da cabeça, permanece a uma pressão mais elevada e a diferença de pressão entre os dois bolsões faz o líquido subir gradualmente pelo tubo. O deslocamento do líquido faz a parte de cima do pássaro ficar mais pesada e a faz girar em torno do eixo que sustenta as pernas. A rotação é lenta de início, mas de repente se acelera, fazendo o pássaro assumir uma orientação quase horizontal. Em seguida, dá um pequeno salto para trás ao esbarrar na borda do copo com água ou nas peças da perna que limitam sua rotação. Quando o pássaro está quase horizontal, a extremidade inferior do tubo fica acima do líquido no corpo, os dois bolsões de vapor ficam temporariamente em contato e suas pressões se igualam. Durante o salto para trás, a inclinação do tubo possibilita que o líquido corra da cabeça de volta para o corpo, o que restaura a distribuição de peso original, e o pássaro volta a ficar ereto. Se o pássaro enfia o bico na água no final do movimento para a frente, a água molha o feltro da cabeça, começa a evaporar e todo o ciclo se repete. Existem várias maneiras de iniciar o processo sem molhar a cabeça do pássaro com água. Assim, por exemplo, você pode molhar o feltro com álcool, que irá evaporar mesmo que a umidade do ar seja elevada. (Uma dose de uísque também funciona, mas pode estragar o feltro.) Você pode colocar o corpo do pássaro ao sol e deixar a cabeça e a parte de cima do pescoço à sombra. Se, além disso, você pintar o corpo de preto, o pássaro irá se mover freneticamente.

CURIOSIDADE 4.63 • Pássaros bebedores grandes Na década de 1960, um pássaro bebedor tamanho família foi apresentado como a solução ideal para os problemas de irrigação do árido Oriente Médio. (Existem patentes de máquinas semelhantes a partir de 1888.) Um pássaro seria posicionado ao lado de um canal com água. Uma vez iniciado com um borrifo de água no feltro da cabeça do pássaro, o movimento do pássaro faria uma concha ligada a um tubo recolher água no canal e transferi-la para um nível mais elevado (a plantação). Cada vez que o pássaro se inclinasse para a frente, molharia o bico na água do canal. Para tornar o processo mais eficiente, uma segunda concha poderia ser instalada do outro lado do pássaro e o pássaro poderia ser colocado entre dois canais paralelos. Nesse caso, tanto durante o movimento para a frente como durante o movimento para trás, a água poderia ser levada de um canal mais baixo para um canal mais alto, que estaria à mesma altura que a plantação. Eis um plano mais ousado. Suponha que construíssemos um pássaro bebedor gigante nas águas rasas da costa da Califórnia. Cordas amarradas ao pássaro seriam ligadas a rodas dentadas de uma máquina em terra firme. O movimento contínuo do pássaro, molhando o bico na água do mar, faria as rodas girarem e o movimento poderia ser convertido em energia elétrica. Um bando de pássaros bebedores gigantes instalados na costa da Califórnia poderia satisfazer todas as necessidades de energia do estado. Desisti da idéia quando um colaborador apontou para um possível risco: ao longo da história, as pessoas sempre prestaram culto a fontes de energia, como o fogo e o Sol. O problema da minha proposta é que muitas pessoas talvez passassem a adorar o pássaro bebedor e os membros dessa nova seita iriam prestar homenagem aos pássaros reunindo-se nas praias e curvando-se em uníssono diante deles. Como já temos cultos demais, abandonei o projeto.

4.64 • Tubos de calor e pregos na batata Um pernil de porco ou um peru podem ser assados em menos tempo se um tubo de calor for introduzido na carne, de baixo para cima. Trata-se de um tubo oco com um pavio e uma pequena quantidade de líquido (água, talvez) no interior. A extremidade inferior é um cilindro de metal maciço ou uma peça estreita com várias aletas. O fato de o cano ser oco não parece fazer sentido. A idéia é transmitir a energia térmica da câmara do forno ao interior da carne. Uma barra maciça de metal não seria mais adequada para transportar energia térmica? Quando uma batata é assada, muitos cozinheiros introduzem um prego (ou um espeto de metal) na batata para conduzir energia térmica para o interior da batata. Como o metal conduz energia térmica melhor que a batata, o prego deveria reduzir o

tempo necessário para assar a batata. Por que, então, a maioria desses “espetos de batata” não reduz o tempo necessário para assar uma batata, que é mais ou menos de 1 hora, em mais do que um ou dois minutos?

Resposta Uma barra maciça de metal transporta energia térmica para um assado por condução, mas o processo é lento. O transporte é muito mais rápido quando usamos um tubo de calor. Na verdade, quando o interior da carne ainda está frio, um tubo de calor pode transportar energia térmica milhares de vezes mais depressa que uma barra maciça de iguais dimensões. O transporte rápido de calor deve-se ao líquido existente no interior do cano e à forma da extremidade exposta. A extremidade tem uma grande área superficial para absorver com facilidade a energia térmica, tanto do ar como da radiação presente no interior do forno. Essa energia faz evaporar o líquido no interior do tubo, o que consome uma grande quantidade de energia térmica. O vapor quente sobe pelo cano e penetra no interior frio da carne. A queda de temperatura faz o vapor se transformar em líquido e liberar toda a energia térmica consumida durante a evaporação. Essa energia térmica liberada aquece a ponta do cano e é transmitida para a carne por condução. Enquanto isso, o líquido condensado escorre para baixo ou é conduzido para baixo pelo pavio. Ao chegar à parte inferior do cano, evapora de novo e o ciclo se repete. Como a energia térmica envolvida nos processos de evaporação e condensação é muito grande, o transporte da energia térmica para dentro da carne é muito mais rápido do que se a energia fosse conduzida ao longo de uma vara de metal maciço. Um espeto de batata não reduz de maneira significativa o tempo necessário para assar a batata porque a extremidade exposta é tão pequena que absorve a energia térmica do forno muito devagar. Se a extremidade exposta fosse mais volumosa ou tivesse muitas aletas, a idéia daria mais certo.

4.65 • Espelhos embaçados Por que o espelho do banheiro fica embaçado quando você toma um banho quente e o ar está frio? Por que o espelho começa a ficar embaçado na parte de cima? Por que o espelho não fica embaçado se você espalhar uma camada fina de sabão (ou detergente) no espelho antes de tomar banho? (Você pode, em vez disso, usar a ponta de um sabonete ou o dedo sujo de detergente para escrever uma mensagem no espelho. Antes que a pessoa seguinte entre no banho, a mensagem estará quase invisível, mas, assim que as partes descobertas do espelho começarem a embaçar, a mensagem vai aparecer, porque as partes cobertas não ficarão embaçadas.) Por que às vezes aparece água nas estradas mesmo que não tenha chovido e tudo mais esteja seco? Por que, em um dia frio de inverno, os vidros das janelas começam a embaçar do lado de dentro e não do lado de fora? É por que a umidade é mais alta do lado de dentro? Não, a umidade do lado de dentro em geral é mais baixa. (É por isso que uma pessoa em um clima frio fica com a pele ressecada durante o inverno e também por isso que os choques eletrostáticos são mais comuns no inverno do que no verão.)

Resposta A quantidade de vapor d’água contida no ar muitas vezes é expressa como uma umidade relativa, ou seja, em comparação com um limite de saturação. Assim, por exemplo, uma umidade relativa de 50% significa que a quantidade de vapor é metade do limite de saturação. Durante um banho quente em um banheiro fechado, a umidade relativa do ar pode chegar a 100%; nesse caso, se uma quantidade adicional de vapor d’água for produzida durante o banho, parte do vapor se condensa em gotas em várias superfícies, entre elas o espelho. A outra razão para que se formem gotas no espelho é que o limite de saturação é menor quando o ar está mais frio. Se o espelho está frio quando você toma banho, ele resfria o ar muito úmido que chega, reduz o limite de saturação do ar e faz parte do vapor condensar. Normalmente, o ar quente e úmido do banho se acumula na parte de cima do banheiro. É por isso que o processo de condensação no espelho começa na parte de cima do espelho. Embora pareça estar limpo, o espelho está coberto de poeira e películas de sujeira (como, por exemplo, a gordura de impressões digitais). A atração entre as moléculas de água condensadas é maior que a atração entre as moléculas de água e a sujeira do espelho e, portanto, a água tende a formar pequenas gotas que se distribuem pelo espelho e reduzem sua capacidade de refletir com nitidez. É possível eliminar a formação de gotas espalhando no vidro uma camada fina de sabão. O sabão reduz a tensão superficial da água (produzida pela atração mútua das moléculas de água) e com isso a água se espalha em uma camada uniforme nas regiões ensaboadas. A regularidade da camada faz com que os reflexos sejam nítidos. É possível conseguir um efeito semelhante usando a gordura dos dedos em vez de sabão. Uma estrada pode ficar molhada enquanto tudo mais continua seco se irradiar muita energia térmica e esfriar. Nesse caso, o ar em contato com a estrada também esfria, o que reduz o limite de saturação. Quando isso acontece, parte do vapor d’água

presente no ar se condensa na estrada. Os vidros embaçam do lado de dentro nos dias frios de inverno porque o ar do lado de dentro da casa, que está mais quente que o ar do lado de fora, esfria ao entrar em contato com o vidro da janela, que foi esfriado pelo ar do lado de fora, e isso reduz o limite de condensação e faz parte do vapor d’água presente no ar condensar-se. Pelo mesmo motivo, em um dia quente e úmido de verão, quando você liga o ar-condicionado do carro, o vidro pode ficar embaçado do lado de fora.

4.66 • Óculos embaçados Por que as lentes dos óculos ficam embaçadas quando uma pessoa entra em casa e está fazendo frio do lado de fora? Se a pessoa não limpa as lentes, por que os óculos ficam desembaçados espontaneamente? Por onde os óculos começam a desembaçar? Por que as lentes ficam embaçadas quando a pessoa entra em uma sauna? Por que os óculos ficam desembaçados espontaneamente, e por onde começam a desembaçar nesse caso? O ponto em que os óculos começam a desembaçar depende da armação? Depende da curvatura das lentes?

Resposta Nos dois casos, uma lente esfria o ar próximo a ela, reduz o limite de saturação do ar e faz com que parte do vapor d’água se condense na lente. (Veja o item anterior.) O líquido condensado forma gotas e embaça a lente, ou seja, as gotas distorcem a transmissão da luz de tal modo que as imagens não podem ser vistas com clareza. Quando uma pessoa entra em uma sala aquecida depois de ter estado fora da casa, exposta ao frio, os óculos começam a desembaçar na borda mais próxima do nariz. O nariz aquece essa parte da borda por radiação, por condução através do suporte ou do próprio ar e por convecção, quando o ar aquecido pelo nariz começa a subir. A energia térmica é conduzida para as lentes, aquecendo-as e fazendo evaporar as gotas de água, o que desembaça as lentes. Quando uma pessoa entra em uma sauna, o processo de desembaçamento é diferente porque a diferença de temperatura entre o ar e as lentes é maior. Nesse caso, o papel do nariz é irrelevante; o que importa são as gotas de água que se formam nas lentes. Quando o vapor de água se condensa, as moléculas precisam ceder parte de sua energia. Na sauna, a energia liberada aquece tanto as lentes quanto a armação; entretanto, a temperatura aumenta mais depressa perto do centro das lentes, porque a armação quase sempre possui uma capacidade térmica maior (necessita de uma quantidade maior de energia térmica para aumentar a temperatura). A outra fonte de energia térmica é a convecção do ar quente da sauna que passa pelas lentes. Se a parte externa da lente fosse plana, o desembaçamento aconteceria primeiro no centro da lente e se espalharia gradualmente até a borda. Se a lente for convexa, a saliência da superfície exposta ao ar aumenta o desembaçamento no centro. Se a lente for côncava, o centro fica menos exposto ao ar e não esquenta tão depressa. Em um caso extremo, o desembaçamento pode começar na borda, apesar da maior capacidade térmica da armação.

4.67 • O abastecimento de água em regiões áridas Como o besouro tenebrionídeo Stenocara, que vive no árido deserto da Namíbia, no sul da África, coleta água potável da névoa matinal que sopra no deserto? Como as pessoas que vivem no deserto de Atacama, no norte do Chile, coletam água do ar que vem do oceano Pacífico?

Resposta O besouro fica em uma posição chamada banho de neblina (fog-basking) apoiado de cabeça para baixo em uma duna de areia, com a traseira levantada em direção ao vento para formar uma rampa. A traseira está coberta de protuberâncias distribuídas de forma aleatória. As protuberâncias são hidrófilas, ou seja, as moléculas de água se ligam a elas. As depressões que separam as protuberâncias são cerosas e, portanto, hidrofóbicas, ou seja, as moléculas de água não se ligam a elas. A neblina se acumula em uma das protuberâncias para formar uma gota. Quando a gota é pequena, a força hidrófila que a mantém presa à protuberância é maior que o peso da gota, que tende a fazê-la descer a rampa. Com o passar do tempo, a gota acaba por atingir um tamanho suficiente para se desprender da protuberância. Quando isso acontece, ela escorrega pela rampa, guiada em parte pelas protuberâncias que encontra no caminho, até chegar à boca do besouro, onde é consumida. Para coletar água da neblina que vem do oceano, as pessoas que moram no deserto de Atacama estendem grandes redes nas quais a água se condensa para formar gotas. Com o passar do tempo, as gotas ficam tão grandes que escorrem pela rede até uma região de coleta. Cerca de 11.000 litros de água podem ser coletados por dia, o suficiente para abastecer uma aldeia. Algumas construções de pedra encontradas na península da Criméia parecem ter sido armadilhas de condensação nas quais o orvalho de noites muito úmidas era coletado. Depois do pôr-do-sol, as pedras irradiavam luz infravermelha para o céu noturno. Em uma noite clara, provavelmente irradiavam mais energia para o céu do que o céu irradiava para elas e, portanto,

esfriavam mais do que o ar. O vapor d’água que entrava em contato com as pedras relativamente frias se condensava para formar gotas. Quando as gotas cresciam, ficavam suficientemente grandes para se desprenderem das pedras e escorrerem para uma depressão de coleta escavada no meio das pedras ou para o interior de canos que levavam a um recipiente central. A eficiência desse método de coletar água era provavelmente muito baixa. Alguns livros de sobrevivência no deserto ensinam que o orvalho pode ser coletado em uma armadilha. Primeiro, um buraco com cerca de 1 metro de largura e 1 metro de profundidade é escavado no solo ou na areia, em um lugar ensolarado. Uma lata sem tampa é colocada no centro do buraco e um tubo (para beber) vai do fundo da lata até o alto do buraco. Em seguida, uma folha de plástico é estendida sobre o buraco com uma inclinação de cerca de 45° em todas as direções e o ponto mais baixo da folha diretamente acima da lata. A folha de plástico é mantida no lugar com terra ou pedras colocadas em torno do buraco. Quando a luz solar aquece o ar no interior do buraco (que se comporta mais ou menos como uma estufa), a água evapora do solo no fundo do buraco. Quando o Sol se põe e o buraco esfria, o vapor d’água se condensa para formar gotas na superfície inferior da folha de plástico. Quando atingem um certo tamanho, as gotas d’água escorregam até o ponto mais baixo da folha de plástico e pingam na lata. Depois que a lata acumula uma quantidade suficiente de água, a água pode ser sugada pelo tubo e bebida. Um cacto pode ser cortado em pedaços e introduzido no buraco para fornecer mais umidade. A água do mar também pode ser usada; quando a água evapora, o sal fica para trás. As histórias que falam de poças de orvalho que se formam naturalmente e servem como fonte de água potável para pessoas e animais não passam de mitos, já que a quantidade de água formada pelo orvalho não é suficiente para produzir um corpo de água de tamanho significativo.

4.68 • Lama rachada Por que a lama forma rachaduras que inicialmente tendem a ser mutuamente perpendiculares nos pontos de interseção? Por que as rachaduras podem formar polígonos (a lama lembra um piso de azulejo) e por que as bordas dos polígonos se encurvam para cima, talvez a ponto de alguns deles formarem um tubo e saírem rolando? Por que polígonos gigantes se formam às vezes em bacias áridas depois da chuva? Esses polígonos podem ter 300 metros de comprimento e serem formados por fissuras de 1 metro de largura e 5 metros de profundidade.

Resposta Quando uma camada de lama seca lentamente, começando pela superfície, a parte de cima da camada se contrai e sofre tensão trativa (cada parte é puxada pelas partes vizinhas) enquanto a base da camada é mantida no lugar pelo solo mais abaixo. Em pontos aleatórios da superfície, a tensão atinge um valor suficiente para rachar a superfície, aliviando a tensão. Essas rachaduras crescem no sentido horizontal e no sentido vertical (para baixo, em direção ao solo). No lugar em que uma rachadura que está crescendo se aproxima de uma rachadura antiga, a rachadura que está crescendo tende a ser desviada pela tensão na superfície para formar uma interseção perpendicular (Fig. 4-9a). (A tensão trativa é maior na direção paralela à rachadura antiga.) Depois de um estágio inicial de formação de rachaduras, um sistema secundário de rachaduras se forma na lama. Essas rachaduras podem começar em linha reta, mas tendem a se bifurcar (dividir), como na Fig. 4-9b. A interseção das rachaduras secundárias com as rachaduras iniciais tende a dividir a lama em polígonos.

Figura 4-9 / Item 4.68 (a) Uma rachadura na lama incide perpendicularmente em uma rachadura já formada. (b) Uma rachadura se bifurca para completar um polígono.

Quando uma camada fina de polígonos seca rapidamente, ela se contrai. A contração pode fazer a camada se enrolar para cima, assumindo uma forma côncava. Quando as bordas sobem, a superfície inferior da camada pode secar e a camada pode se encurvar para cima o suficiente para formar um tubo. Mais raramente, um polígono de lama seca mais devagar na superfície

superior do que na superfície inferior, talvez devido à drenagem mais rápida, como acontece em um declive. Nesse caso, as bordas podem se encurvar para baixo. Os polígonos gigantes parecem se formar pelas mesmas razões que os pequenos polígonos de lama. Rachaduras e polígonos de lama são exemplos de rachaduras induzidas por secagem. É possível encontrar muitos outros exemplos, tais como na secagem de tinta, de uma mistura de água e amido de milho e de uma mistura de água e pó de café. Se você fizer experimentos com os últimos dois sistemas, descobrirá que o tamanho típico dos polígonos depende da profundidade da camada que está rachando: quanto mais fina a camada, menores são os polígonos, até que a camada fica tão fina que forma um padrão irregular em vez de polígonos. Também é possível alterar o padrão untando o fundo do recipiente para reduzir o atrito entre o material e o recipiente: quanto menor o atrito (quanto menor a tensão), menor o número de rachaduras.

4.69 • A dilatação de caixinhas de suco em aviões Mesmo que um avião não sofra nenhum problema de despressurização, alguns recipientes podem se abrir espontaneamente. Assim, por exemplo, a tampa do recipiente de creme para café pode descolar. Se isso não acontecer, é provável que a tampa se projete para fora. Mais tarde, quando o avião se prepara para pousar, a tampa volta a ficar plana. O que faz a tampa descolar ou se projetar para fora durante o vôo? Um efeito parecido pode proporcionar alguns momentos de agitação em um vôo monótono se alguém sacode um recipiente fechado de suco e depois abre a tampa do lado mais próximo. É provável que parte do suco espirre na pessoa. Um viajante experiente sabe que deve abrir a tampa devagar e do lado mais afastado. Por que os ouvidos às vezes doem quando o avião está subindo? Por que às vezes parecem “entupidos” após o pouso?

Resposta A pressão do ar em um avião é mantida mecanicamente, mas é menor que a pressão atmosférica no solo. Assim, quando o avião sobe e a pressão do ar diminui, o ar que existe no interior dos recipientes de creme, suco e molho de salada tende a se expandir. Às vezes, as tampas dos recipientes se abrem sozinhas. Se um recipiente de suco ou molho de salada ainda está fechado e você sacode o conteúdo, o lado de baixo da tampa fica coberto de líquido. Se você abre a tampa de repente, a expansão do gás através da abertura faz o conteúdo jorrar para fora. O desconforto que muitas pessoas sentem nos ouvidos durante o vôo deve-se à pressão do ar na orelha média, que fica atrás do tímpano. Normalmente, a pressão do ar na orelha média é ajustada para ser igual à pressão do ar do lado de fora pela tuba uterina, que liga a orelha média ao nariz e à garganta. Entretanto, se a tuba uterina não funciona bem enquanto o avião está subindo, a pressão do ar externo sobre o tímpano passa a ser a pressão reduzida da cabine enquanto a pressão do ar interno continua a ser a pressão normal. A diferença de pressão tende a empurrar o tímpano para fora. O problema pode ser evitado se você bocejar ou engolir, o que abre a tuba uterina para que a pressão mais alta na orelha interna possa ser reduzida. Quando o avião desce, a pressão da cabine aumenta até o valor normal e a diferença de pressão tende a empurrar o tímpano para dentro. O problema pode não ser fácil de resolver, porque a pressão mais baixa na orelha interna tende a manter fechada a tuba uterina. Mesmo assim, bocejar e engolir pode abrir a tuba e possibilitar que a pressão do ar no ouvido interno aumente até o valor normal. A pressão reduzida em um avião às vezes pode causar alguns transtornos. Garrafas e latas podem vazar nas malas, já que o compartimento de bagagem dos aviões não costuma ser pressurizado. Problema semelhante pode ocorrer se houver um cadáver no compartimento de bagagem e o caixão não estiver bem fechado.

4.70 • Inflando bolhas e bolas Se você está enchendo uma bola de aniversário esférica, por que é preciso fazer muito mais força no início do que mais tarde, quando a bola está parcialmente cheia? Se a bola é cilíndrica, por que a dilatação começa em um lugar em vez de se distribuir uniformemente por toda a bola? Quando você continua a soprar a bola, por que a protuberância se propaga ao longo do comprimento da bola? Suponha que duas bolhas de sabão de raios diferentes estejam ligadas por um tubo com uma torneira que está fechada (Fig. 4-10a). O que acontece com as bolhas quando a torneira é aberta, deixando que o ar passe livremente de uma bolha para outra? Se as bolhas são substituídas por bolas de aniversário, o que acontece quando a torneira é aberta?

Resposta Para encher uma bolha de sabão esférica, é preciso introduzir o ar com uma pressão maior que a pressão do ar no interior da bolha. A pressão do ar no interior da bolha depende da curvatura da superfície da bolha. Para compreender por quê, considere um trecho da superfície (Fig. 4-l0b). Ele é puxado lateralmente pelos trechos vizinhos.

A força exercida do lado esquerdo e a força exercida do lado direito são parcialmente para dentro, em direção ao centro da bolha; é essa força para dentro que determina a pressão do ar. Quando a bolha é pequena e possui uma grande curvatura, a força para dentro é grande e, portanto, a pressão interna também é grande. Nesse caso, a bolha é mais difícil de encher. Quando a bolha é maior e a curvatura é menor, a força para dentro é pequena e, portanto, a pressão interna também é pequena; assim, a bolha é mais fácil de encher. O caso da bola de aniversário é diferente porque a dilatação da borracha aumenta a pressão. Quando você começa a encher a bola, a resistência ao estiramento faz a pressão subir e torna necessário aplicar uma grande pressão para continuar a encher a bola. Entretanto, quando a bola atinge um certo tamanho, a redução subseqüente de curvatura reduz a pressão interna e, a partir desse ponto, torna-se cada vez mais fácil encher a bola. A facilidade é ainda maior por causa da diminuição da resistência da borracha ao estiramento que acontece mais ou menos para esse mesmo tamanho. (A resistência volta com força total quando o balão está muito maior.) Outro fator também é importante. Quando você sopra o balão, introduz um certo volume de ar que estava nos seus pulmões, o “volume do sopro”. Quando o balão é pequeno, o volume adicionado produz um aumento significativo da área da superfície da bola, o que aumenta apreciavelmente a resistência a um estiramento ainda maior da borracha. Quando a bola é grande, o volume adicional é pequeno em comparação com o volume existente e não produz um aumento tão grande na área da superfície nem um aumento tão grande no estiramento da borracha.

Figura 4-10 / Item 4.70 (a) Duas bolhas (ou balões) em um tubo fechado por uma torneira. (b) Forças nas bordas esquerda e direita de um trecho da superfície de uma bolha.

Uma peculiaridade de algumas bolas de aniversário é que, embora teoricamente devessem ser esféricas, assumem uma forma visivelmente assimétrica em um certo estágio do enchimento. Logo depois que se torna mais fácil encher a bola e antes que se torne mais difícil novamente, aparece uma protuberância em um dos lados. M. J. Sewell, da Universidade de Reading, observou a respeito dessa peculiaridade: “Quando enchemos uma bola, a natureza não prefere uma esfera mesmo quando esta lhe é oferecida.” Quando enchemos uma bola cilíndrica, ela se dilata primeiro no ponto mais fraco, que em geral é a região mais próxima da abertura. A região que une a protuberância à parte nãoinflada é côncava ao longo do comprimento da bola. Quando introduzimos mais ar na bola, a tensão na parte côncava ajuda a expandir a bola nesse trecho e a frente da protuberância se desloca ao longo do comprimento da bola. Quando duas bolhas estão ligadas por um tubo aberto, a pressão maior nas bolhas menores empurra o ar através do tubo até a bolha maior, que tem uma pressão menor. Com isso, a bolha menor murcha e a bolha maior cresce. O mesmo fenômeno acontece com a espuma de uma cerveja que contém bolhas de dióxido de carbono, embora seja difícil de observar. As bolhas não estão ligadas por tubos, é claro, mas o dióxido de carbono pode se difundir (passar) de uma bolha para outra através das paredes das bolhas. As bolhas menores perdem gás para as bolhas maiores e acabam murchando, processo conhecido como amadurecimento de Ostwald. Entretanto, a taxa de difusão do nitrogênio é muito menor que a do dióxido de carbono e, portanto, as cervejas (como a cerveja do tipo stout da Guinness) que contêm nitrogênio no lugar de dióxido de carbono tendem a ter bolhas que duram muito mais. Se as bolhas forem substituídas por balões, os resultados podem ser diferentes. Dependendo da quantidade total de ar, podem acabar com o mesmo raio ou com um raio maior que o outro.

4.71 • Assando bolo em altitudes elevadas Por que a receita de pão-de-ló exige mais farinha de trigo e água quando o bolo é feito em altitudes elevadas?

Resposta O crescimento do bolo depende da expansão das bolhas de ar retidas na massa batida e da produção de

vapor quando a água (parte da qual vem dos ovos) evapora. Como a pressão atmosférica é menor em altitudes mais elevadas, as bolhas podem se expandir tanto que a resistência mecânica do bolo torna-se insuficiente e o bolo sola. Uma solução é reduzir o açúcar, que diminui a resistência mecânica, mas o bolo fica mais duro e menos doce. Outra solução é aumentar a quantidade de farinha para dar consistência ao bolo. A quantidade de fermento também pode ser reduzida para diminuir a produção de bolhas. A água ferve a uma temperatura mais baixa em altitudes elevadas do que ao nível do mar. Por isso, o bolo perde mais água por evaporação quando é preparado em altitudes elevadas. Para compensar a perda, a receita exige mais água.

4.72 • Champanhe em um túnel Em novembro de 1827, quando o túnel sob o rio Tâmisa, em Londres, foi concluído, as autoridades entraram no túnel para comemorar. Como o túnel tinha sido mantido sob pressão durante a construção (para evitar infiltrações da água do rio), as autoridades entraram primeiro em uma câmara de ar, onde a pressão foi aumentada até se tornar igual à pressão do túnel. Enquanto estavam no túnel, as autoridades brindaram ao projeto com champanhe, mas, para decepção geral, o champanhe estava choco (quase não borbulhou quando as garrafas foram abertas). Mesmo assim, as comemorações continuaram até que as autoridades voltaram à superfície através da câmara de ar. Quando a pressão da câmara de ar foi reduzida à pressão normal (externa), as autoridades se sentiram mal e um homem teve que ser levado de volta às pressas para a câmara de ar, para ser repressurizado (submetido novamente a uma pressão mais elevada que o normal). Qual foi o problema?

Resposta O dióxido de carbono dissolvido na champanhe sai da solução para formar bolhas (a espuma) quando a garrafa é aberta. Antes disso, o conteúdo está submetido a uma pressão considerável e o dióxido de carbono gasoso na parte de cima da garrafa está em equilíbrio com o dióxido de carbono em solução. Isto significa que, em média, cada molécula de dióxido de carbono que deixa a solução para se incorporar ao gás é compensada por uma molécula de dióxido de carbono que deixa o gás para entrar em solução. Entretanto, assim que a garrafa é aberta, a pressão do gás de dióxido de carbono é reduzida e, durante um certo tempo, o dióxido de carbono não fica em equilíbrio. Em outras palavras, a quantidade de dióxido de carbono que deixa a solução é muito maior que a quantidade que se dissolve. É claro que isso produz uma série de bolhas: dióxido de carbono em forma de gás, cercado por uma película de líquido. É isto que acontece normalmente; no túnel pressurizado, porém, a pressão do ar era tão grande que as bolhas tinham dificuldade para se formar. Assim, boa parte do dióxido de carbono permaneceu em solução. Quando as autoridades beberam champanhe, ingeriram uma grande quantidade de dióxido de carbono em solução. Quando deixaram a câmara de ar e foram expostos a uma pressão do ar menor, o dióxido de carbono saiu de solução de repente, causando uma dilatação de vários órgãos internos, o que provocou, na melhor das hipóteses, vômitos, e, na pior, problemas no estômago e na bexiga. Até pouco tempo atrás, os operários tinham que trabalhar em ambiente pressurizado enquanto construíam túneis sob rios e baías. Quando os operários terminavam o turno e voltavam à superfície, tinham que passar por um período de descompressão da mesma forma que os mergulhadores em águas profundas. O problema é que, quando o ar é inspirado sob pressão, as moléculas de nitrogênio do ar entram na corrente sangüínea. Quando o operário sai da parte pressurizada do túnel, a redução da pressão sobre o corpo e dentro dos pulmões possibilita que o nitrogênio dissolvido forme bolhas. As bolhas tendem a se mover com a corrente sangüínea e formam bolhas maiores (“slugs”) quando entram em veias maiores (perto do coração) ou obstruem a corrente sangüínea quando entram em veias menores (longe do coração). Nas duas situações, a vítima pode sentir dores intensas, ficar com seqüelas ou até morrer. Hoje em dia, os túneis são construídos por máquinas de perfuração guiadas por controle remoto e os operários entram na parte pressurizada do túnel com muito menos freqüência. (Em alguns casos, os túneis não são mais perfurados, mas construídos a partir de módulos pré-fabricados que são baixados até o leito do rio e ligados uns aos outros.)

CURIOSIDADE 4.73 • Presa na garrafa Uma jovem, decidida a aproveitar ao máximo a bebida achocolatada que estava tomando, enfiou a língua na garrafa e inalou com força para sugar o líquido. Sua língua ficou entalada porque ela reduziu a pressão do ar dentro da garrafa ao remover parte do ar. Não se sabe se ela inalou o ar ou o expulsou da garrafa ao introduzir a língua. Seja como for, não conseguiu retirar a língua da garrafa por causa da diferença de pressão entre o ar interno e o ar externo. Uma equipe de paramédicos também não

teve sucesso até que alguém se lembrou de chamar um vidreiro, que resolveu o problema cortando a garrafa com um instrumento apropriado.

4.74 • Trovoadas no inverno Por que as tempestades elétricas (e, portanto, os raios e relâmpagos) são mais raras no inverno do que no verão?

Resposta As tempestades elétricas se formam quando a parte inferior da atmosfera fica instável, ou seja, quando massas de ar quente sobem rapidamente devido ao empuxo (o ar quente é menos denso que o ar frio). É esse o caso quando a temperatura do ar cai bruscamente com a altura: o ar quente perto do solo é empurrado para cima, em direção ao ar frio. Entretanto, se o ar contém vapor d’água, a variação da temperatura com a altura não precisa ser muito grande para que o fenômeno aconteça. Nesse caso, quando a massa de ar quente sobe, parte do vapor d’água se condensa para formar gotas. Essa transformação de vapor em líquido libera uma grande quantidade de energia térmica, o que aquece o ar. Assim, o empuxo sobre a massa de ar quente aumenta e o ar quente é acelerado para cima, o que estabelece as condições para que haja instabilidade e tempestades elétricas. No inverno, a queda de temperatura com a altura costuma ser mais gradual e o ar perto do solo fica frio demais para conter muito vapor d’água. Com menor aceleração para cima, o ar fica estável demais para que se forme uma tempestade de raios. Mesmo assim, às vezes escuto trovões durante uma tempestade de neve.

4.75 • Fumaça de chaminé Quando o vento sopra em rajadas, a pluma de fumaça ou vapor d’água que sai de uma chaminé pode se mover de forma caótica. O que acontece, porém, quando o vento é constante, tanto no tempo quanto no espaço? A pluma não deveria subir com uma certa inclinação em relação à vertical e aumentar gradualmente de largura? Estranhamente, nem sempre é isso que acontece; todos os padrões que aparecem na Fig. 4-11a já foram observados. Por que algumas plumas encurvadas pelo vento se dividem em duas (Fig. 4-11b)? Nos dias sem vento, a maioria das plumas sobe e se espalha horizontalmente, formando um V estreito e vertical. Por que algumas chaminés emitem uma pluma que primeiro fica mais estreita para depois ficar mais larga?

Resposta Em algumas chaminés de fábricas, os gases são lançados para cima para que eles e a fumaça que eles transportam tenham menor probabilidade de voltar para o solo e criar um problema de poluição. O gás só vai subir ainda mais se estiver mais quente que o ar das vizinhanças. Nesse caso, a diferença de temperatura cria um empuxo que acelera o gás para cima. Em outras chaminés, como a chaminé de uma lareira doméstica, o gás não é acelerado mecanicamente e sua subida depende unicamente do empuxo. Mesmo que o gás esteja inicialmente mais quente que o ar, pode não ser capaz de subir porque a ascensão iria esfriá-lo. O resfriamento se deve à redução da pressão do ar com a altitude. Quando o gás sobe, a pressão diminui e ele se expande. A energia da expansão vem do movimento aleatório das moléculas de gás; quando elas perdem energia e passam a se mover mais devagar, a temperatura do gás diminui. Se a temperatura do gás cai abaixo da temperatura do ar, o gás sofre um empuxo negativo e começa a descer. A ascensão também é influenciada pela quantidade de vapor d’água contida no gás. Se o gás esfria a tal ponto de que o vapor d’água condensa para formar gotas, a transição de vapor para líquido libera uma energia que ajuda a aquecer o gás mesmo que ele esteja se expandindo. Raciocínio semelhante pode ser aplicado à descida do gás. Nesse caso, o aumento da pressão do ar faz o gás diminuir de volume e se aquecer. Para que a descida continue, o gás precisa permanecer mais frio que o ar. O sentido do movimento do gás depende do sinal da diferença de temperatura entre o gás e o ar, mas a forma que a pluma assume na presença do vento depende da turbulência do ar (ou seja, da formação de vórtices). Se a turbulência se deve a pequenos vórtices, a pluma se expande gradualmente enquanto se afasta da chaminé. Se os vórtices são maiores, a pluma pode formar um laço. (Os laços na verdade são uma ilusão, pois o gás não se move em curva, e sim em uma linha praticamente reta. O aspecto dos laços de fumaça deve-se a uma série de plumas que são forçadas pela turbulência a se mover em linha reta em diferentes direções.) Considere, por exemplo, o caso da formação de um cone, que acontece quando a subida do gás faz com que ele atinja rapidamente uma temperatura mais baixa que a do ar, enquanto a descida faz com que ele atinja rapidamente uma temperatura mais alta que a do ar. O gás fica nesse caso parcialmente retido mais ou menos na altura da chaminé, mas pequenas turbulências

podem aos poucos misturá-lo verticalmente. O espalhamento acontece quando a temperatura do ar aumenta com a altura em vez de diminuir, fenômeno conhecido como inversão térmica. Nesse caso, o gás fica retido em uma região mais estreita e a turbulência pode misturá-lo apenas horizontalmente. Nos dois casos, se o gás possui regiões especialmente quentes, essas regiões podem se projetar para cima, formando plumas secundárias.

Figura 4-11 / Item 4.75 (a) Plumas de fumaça submetidas a um vento horizontal constante. (b) Pluma que se bifurca, vista de cima.

Quando uma pluma se divide em duas, isso se deve ao fato de que o gás sobe mais depressa no centro da chaminé do que perto das paredes. Quando a pluma emerge, o gás começa a circular para cima no centro e para baixo nos lados. Esse movimento de vórtice divide a pluma em duas partes, que se movem separadamente na direção do vento. Quando uma chaminé emite gás lentamente (como pode acontecer com uma lareira quando o fogo está baixo e a chaminé é larga), a pluma precisa se contrair e ganhar velocidade antes de se alargar e ganhar a forma de V. A contração é uma versão invertida do que acontece quando um filete de água sai de uma torneira com baixa velocidade.

4.76 • Sinais de fumaça e nuvens em forma de cogumelo Os índios americanos enviavam sinais a grandes distâncias controlando a fumaça de uma fogueira. Jogavam mato no fogo para aumentar a fumaça e o cobriam com um cobertor molhado durante um curto espaço de tempo. Quando retiravam o cobertor, a fumaça subia e podia ser vista por um observador distante. Por que a fumaça se espalhava horizontalmente ao atingir certa altura quando as mensagens eram enviadas de manhã cedo ou ao entardecer? A fumaça lembrava um cogumelo ou uma explosão atômica. Os aborígines australianos também usavam fogueiras para se comunicar, mas preferiam levantar a madeira em chamas com varas compridas em vez de cobrir a fumaça com um cobertor. Enquanto várias pessoas levantavam a madeira, outras jogavam capim verde. O movimento produzia correntes de ar, atiçando o fogo; o capim verde aumentava a quantidade de fumaça. Quando os sinais se transformavam em “cogumelos” e os índios coordenavam seus esforços, conseguiam produzir uma pilha de até seis cogumelos de fumaça. De que maneira os índios controlavam a altura em que cada chapéu aparecia? Por que as grandes explosões, tais como as explosões nucleares no solo e na atmosfera, produzem nuvens em forma de cogumelo?

Resposta A fumaça se espalha horizontalmente na altura em que o gás que a transporta atinge a temperatura do ar em volta. (Veja o item anterior.) A forma de cogumelo é mais nítida quando existe uma inversão térmica (a temperatura do ar aumenta com a altura), como pode acontecer quando o solo está frio no início ou no fim do dia. Os australianos controlavam a altura dos cogumelos de fumaça ajustando a intensidade do fogo. Quando a temperatura da fogueira aumentava, a fumaça e o gás quente atingiam uma altura maior. Na Segunda Guerra Mundial, cortinas de fumaça foram usadas para ocultar possíveis alvos, tais como fábricas, de ataques aéreos noturnos, especialmente em noites de lua. Uma fumaça negra, espessa e gordurosa era produzida pela queima de óleo diesel nas mesmas máquinas usadas para proteger os pomares nas noites em que as frutas estavam ameaçadas por um frio intenso. A fumaça não subia muito porque não estava muito quente quando saía da chaminé. Assim, a não ser que estivesse ventando, formava uma camada baixa, capaz de ocultar ou disfarçar um alvo. Uma explosão nuclear produz uma bola de fogo incandescente, que aquece o ar. O ar sobe rapidamente, arrastando poeira, detritos e vapor d’água para formar o talo do cogumelo. Como acontece nos incêndios, o ar acaba esfriando até a temperatura do ar em torno e a partir desse ponto se espalha horizontalmente para formar o chapéu do cogumelo.

4.77 • Fogo em uma lareira Por que você não consegue obter um bom fogo se empilhar gravetos em torno de uma única tora? Por que, para isso, é necessário que haja uma pilha de pelo menos três toras? Por que as toras devem ser atiçadas de tempos em tempos enquanto queimam? De que maneira o fogo de uma lareira aquece uma sala? Por que uma lareira mal construída enche a sala de fumaça? Qual é a função das placas de vidro que são usadas para cobrir a abertura de uma lareira? Existe um modo mais eficiente de empilhar toras para que o fogo aqueça melhor a sala?

Resposta A superfície de uma tora pega fogo quando a temperatura ultrapassa um certo valor, a temperatura de combustão ou temperatura de ignição. Os gravetos podem produzir fogo ao lado da tora, mas, depois que são consumidos, a radiação infravermelha emitida pela superfície da tora e a convecção, que leva os gases quentes para longe da tora, reduzem a temperatura da superfície para um valor menor que a temperatura de combustão. Para manter a tora queimando, você precisa de mais algumas toras nas proximidades. Nesse caso, as superfícies em combustão se aquecem mutuamente por radiação, convecção ou condução através do ar e a temperatura das toras permanece acima da temperatura de combustão.

Essa descrição é adequada para uma fogueira, mas o fogo em uma lareira é diferente porque acontece em um local parcialmente fechado. O gás e os tijolos aquecidos na parte de cima da lareira formam uma camada quente que emite radiação infravermelha para as superfícies das toras, o que ajuda a mantê-las quentes. A cobertura parcial também pode limitar o suprimento de oxigênio, prejudicando a combustão. Em uma situação ideal, é alcançado um equilíbrio entre a energia térmica produzida pelo fogo e a energia térmica perdida por convecção para os gases quentes que saem pela chaminé (se tudo correr bem, os gases quentes não irão sair na sala), por condução pela parede traseira da lareira e por radiação para a sala. O fogo pode sair do estado de equilíbrio se forem colocadas mais algumas toras na lareira ou se a corrente de ar que entra na lareira e sobe pela chaminé aumentar. O calor da sala deve-se, em grande parte, à radiação térmica que passa pelos espaços entre as toras. Uma tora deve ser atiçada de tempos em tempos para mover as partes que ainda não queimaram para a região entre as toras. Ao mesmo tempo, isto faz com que algumas partes que já estão queimando fiquem voltadas para a sala e forneçam radiação térmica por algum tempo, enquanto a superfície que foi virada para a parte de dentro entra em combustão. O ar quente e os gases da combustão sobem pela chaminé, passando por uma parte estreita cuja largura é controlada por um abafador. A subida do ar é provocada pelo empuxo, já que a temperatura elevada o faz ficar mais leve que o ar da sala e fora de

casa. Uma chaminé mais alta proporciona uma tiragem (fluxo de ar que sobe pela chaminé) maior porque permite que o empuxo acelere o ar e os gases a uma velocidade maior antes de chegar à saída da chaminé. Se existir vento na saída da chaminé, ele arrasta os gases e o ar e aumenta a tiragem. Uma chaminé com baixa tiragem pode alternar a descarga de gases quentes com a descida pela chaminé de gases frios vindos do exterior, efeito que é chamado de puff. Uma chaminé pode lançar fumaça na sala por várias razões. Quando o ar é sugado pela chaminé, pode bater na parede traseira, fazer a volta e chegar à sala depois de passar por cima do fogo, levando com ele um pouco de fumaça. Em uma lareira bem projetada, o espaço interno é maior que a abertura da frente, para impedir esse tipo de circulação. Se o abafador da chaminé estiver aberto demais, correntes descendentes de ar proveniente do exterior podem lançar fumaça na sala. Quando o fogo está baixo ou a lareira é maior que o normal, essas correntes descendentes podem ser um problema. Como uma lareira aquece uma sala principalmente por radiação térmica, a parede traseira e as paredes laterais são muitas vezes inclinadas de modo a refletir a radiação na direção da sala. A radiação é mais dirigida se as toras forem empilhadas de modo a formar uma fresta, com uma tora grande atrás e toras menores em cima e embaixo da fresta. O fogo fica contido no interior da fresta e as brasas ficam voltadas para a sala, não para as paredes da lareira. Ao sugar o ar da sala, o fogo também remove parte do calor. Para diminuir essa perda, pode-se instalar uma janela de vidro resistente ao calor na frente da ladeira. O vidro possibilita que o fogo seja visto e irradia para a sala a energia térmica que ele recebe, ao mesmo tempo que impede que o ar quente saia da sala. O fogo continua a ser alimentado pelo ar que entra por orifícios na altura do chão, onde o ar da sala é mais frio. Em algumas lareiras, a corrente de ar pode mudar de sentido quando a lareira está apagada. Essas lareiras costumam estar protegidas da luz solar, de modo que podem conter um ar relativamente frio enquanto a luz solar aquece o ar do exterior. Como o ar frio da chaminé é mais denso e pesado que o ar do exterior, desce até a base da chaminé e entra na sala, expulsando o ar pelas portas e janelas abertas ou por fendas em torno das portas e janelas, se estiverem fechadas. Correntes de ar semelhantes surgem em algumas cavernas com duas aberturas, uma muito mais alta que a outra. Nesse caso, as passagens da abertura de baixo para a abertura de cima funcionam como uma chaminé. Quando o ar da chaminé está mais quente que o ar do exterior, como acontece no inverno, o ar entra pela abertura de baixo e sai pela de cima. Quando acontece o contrário, o ar sopra no sentido oposto. Dizemos que uma caverna como essa respira.

4.78 • A chama de uma vela Como uma vela queima, ou seja, como consome o combustível? Por que a chama de uma vela é quase toda amarela e por que as regiões azuis em geral estão na periferia da chama (Fig. 4-12)? Por que existe um cone escuro entre o pavio e a parte amarela da chama? Por que algumas velam soltam fumaça; por que algumas produzem uma luz trêmula? Por que a vela produz uma fuligem preta quando está acesa e um vapor branco logo depois que é apagada?

Resposta O combustível de uma vela pode ser parafina, estearina (ácido esteárico) ou uma mistura das duas substâncias. A radiação térmica da chama faz a cera derreter. O líquido sobe pelo pavio por ação capilar (ou seja, as moléculas do pavio atraem as moléculas do líquido, que são mantidas juntas por atração mútua). Quando a cera sobe no pavio, evapora por causa do calor da chama e é levada para cima e também para longe pela corrente de gases quentes (convecção).

Figura 4-12 / Item 4.78 Estrutura da chama de uma vela.

Alguns dos hidrocarbonetos liberados pela evaporação sobem até o cone escuro logo acima do pavio, mas provavelmente sua temperatura não passa de 600°C a 800°C. É preciso oxigênio para queimar os hidrocarbonetos, mas o oxigênio tem que chegar à chama por difusão e a quantidade de oxigênio que chega à região do cone escuro é pequena. (Dizemos que a chama de uma vela é um tipo de chama de difusão.) Com uma temperatura baixa e pouco oxigênio, os hidrocarbonetos do cone escuro

não emitem muita luz. Alguns hidrocarbonetos são levados para as regiões azuis, que recebem o nome de zonas de reação. Nessas regiões existe muito oxigênio para reagir com os hidrocarbonetos, decompondo-os em moléculas menores e produzindo a parte mais quente da chama. Entre as moléculas menores estão o carbono molecular C2 e o hidrocarboneto CH. Quando essas moléculas são produzidas no estado excitado, decaem rapidamente, emitindo luz em uma série de comprimentos de onda. Como a maior parte das emissões luminosas está na extremidade azul do espectro visível, a periferia da chama é azul. (Em uma sala escura, a chama de uma vela parece estar cercada por uma luz tênue. Essa luz, porém, não é real, pois se deve ao espalhamento da luz da chama no interior do olho. Os artistas muitas vezes a representam com linhas curtas e onduladas que se irradiam a partir da chama da vela.) Os hidrocarbonetos que sobem da região do cone escuro ou da zona de reação para a parte amarela da chama formam pequenas partículas sólidas de carbono que queimam ao encontrar o oxigênio. As partículas alcançam uma temperatura tão elevada que ficam incandescentes, emitindo a luz amarela que é a principal fonte de luz de uma vela. Se a velocidade pela qual os hidrocarbonetos entram na região amarela for igual à velocidade pela qual as partículas sólidas são consumidas, a chama não produz fumaça. Quando, porém, os hidrocarbonetos chegam à região amarela em quantidade excessiva (o que pode acontecer, por exemplo, se o pavio for grosso demais), a chama pode produzir uma fumaça negra, constituída por partículas de carbono que não chegaram a queimar. Se você introduzir um clipe de papel na chama de uma vela, interrompe a queima e provoca a formação de fuligem, que se deposita no clipe. Quando há um desequilíbrio entre a taxa de fornecimento e a taxa de queima do combustível, a chama pode apagar ou tremular. A chama apaga quando não consegue liquefazer combustível suficiente ou a ação capilar não consegue enviar combustível suficiente ao pavio para manter a chama acesa. A chama tremula quando existe um mecanismo de realimentação entre a chama e o fornecimento de líquido. Suponha, por exemplo, que a chama aumente e, portanto, aumentem também a radiação térmica e a quantidade de cera liquefeita. Se o pavio demora para levar esse líquido adicional para a chama, o aumento da chama consome o combustível disponível na ponta do pavio e a chama enfraquece. Quando o líquido adicional finalmente chega à ponta do pavio, a chama aumenta de novo e o ciclo se repete. Para apagar uma vela, é preciso soprar por um tempo suficiente para remover não só as partículas de carbono incandescentes da região amarela e os hidrocarbonetos que estão sendo consumidos na região azul, mas também os hidrocarbonetos que evaporam do pavio quente quando você sopra. Na verdade, logo depois que a vela apaga, esses hidrocarbonetos ainda estão evaporando do pavio, mas não formam mais partículas de carbono nem queimam. Se permanecerem como moléculas isoladas, provavelmente não serão visíveis; mas, se formarem aglomerados, espalharão a luz o suficiente para que você possa ver uma nuvem esbranquiçada sair do pavio.

4.79 • Borrifando água para apagar um incêndio Por que a água apaga o fogo em um pedaço de madeira? Por que os bombeiros normalmente ajustam o bico das mangueiras para que a água saia como um borrifo e não como um jato? Quando os bombeiros entram em um quarto em chamas que estava fechado, por que normalmente jogam água no teto do quarto e não no piso, mesmo que o fogo esteja perto do piso?

Resposta A água pode apagar ou reduzir o fogo por vários processos. (1) Absorve energia térmica das superfícies em chamas e dos gases produzidos pela combustão (que também podem estar queimando) e, assim, os resfria o suficiente para interromper a combustão. (2) Absorve parte da radiação térmica gerada pela combustão e, portanto, reduz a probabilidade de que os materiais vizinhos esquentem o suficiente para pegar fogo. (3) Toma o lugar do ar e, portanto, reduz a quantidade de oxigênio que chega aos materiais em combustão, que precisam de oxigênio para continuar queimando. No primeiro processo, a taxa pela qual a energia térmica é absorvida depende da área superficial da água. Como a área superficial total aumenta se o jato for convertido em um borrifo, o bico é ajustado para lançar um borrifo. Quando um incêndio acontece em um quarto fechado, o oxigênio necessário para manter a combustão logo fica escasso, o que deixa combustível não-queimado no ar; na verdade, mesmo depois que o fogo apaga, os materiais quentes podem continuar a liberar gases combustíveis. Como esses gases estão quentes, tendem a se acumular perto do teto. Quando um bombeiro abre o quarto, o ar rico em oxigênio penetra pela parte inferior da abertura e logo entra em contato com o combustível não-queimado perto do teto, que explode em chamas. Como o ar está entrando pela parte de baixo da abertura, o combustível em chamas tende a sair pela parte de cima. O combustível não-queimado transportado para fora do quarto por essa corrente encontra o ar rico em oxigênio e produz uma bola de fogo que é lançada para fora do quarto, fenômeno chamado língua de fogo ou inflamação generalizada. O fenômeno é tão rápido que a bola de fogo pode envolver o bombeiro que abriu o quarto. Assim, ao abrir uma

porta, o bombeiro imediatamente lança água perto do teto para resfriar o combustível quente e reduzir a probabilidade de uma língua de fogo. A ocorrência de línguas de fogo e a necessidade dessa medida preventiva parecem ter aumentado depois que a vedação de aposentos e edifícios foi reforçada para reduzir os custos de refrigeração e aquecimento.

4.80 • Fogo em óleo de cozinha O óleo de cozinha pode sofrer combustão espontânea (pegar fogo) se a temperatura exceder o chamado ponto de ignição. O óleo de canola, por exemplo, sofre combustão espontânea a uma temperatura de cerca de 330°C. A água serve para apagar incêndios, mas será que jogar água é a melhor solução quando o óleo de cozinha começa a pegar fogo em uma frigideira?

Resposta Se o óleo de cozinha começa a pegar fogo, o que se deve fazer é abafar o fogo com uma tampa ou outro objeto de metal, para cortar o oxigênio e evitar que o óleo quente se espalhe. Quando jogamos água no óleo quente, as gotas entram no líquido como fariam em uma poça d’água, mas logo se dividem em muitas gotículas. As gotículas esquentam tão depressa no óleo que evaporam. Quando a água se expande para formar vapor d’água, o aumento súbito de volume lança óleo quente em todas as direções. O óleo não esfria muito em contato com o ar e pode queimar a pele ou a mesa da cozinha. Se o óleo cair no fogo, diretamente ou ao espirrar, pode entrar em combustão e o fogo se espalhar para fora da frigideira. Assim, jogar água em uma frigideira que contém óleo em chamas pode ser perigoso por causa da maneira explosiva como a água passa do estado líquido para o gasoso.

4.81 • Queimadas e incêndios florestais Como se propagam as queimadas, tais como as que acontecem nas áreas rurais do Texas? Como se propagam os incêndios florestais e como fazem as casas pegar fogo quando chegam a regiões habitadas?

Resposta Uma queimada se propaga principalmente pelas chamas que existem na borda da região incendiada e atingem plantas ainda intactas. A propagação será mais rápida se o vento estiver soprando na direção das plantas que ainda não pegaram fogo. Também será mais rápida se as plantas que ainda não pegaram fogo estiverem em um nível mais alto, como acontece quando o fogo sobe por uma encosta. Nesse caso, as brasas levantadas pelas correntes de convecção associadas ao incêndio ajudam a propagar o fogo. Um incêndio florestal no qual o fogo se limita às proximidades do solo se propaga mais ou menos da mesma maneira, mas um incêndio de copa, no qual até mesmo a copa das árvores pega fogo, em geral se propaga de modo diferente. A transferência de energia do incêndio para as árvores que ainda não pegaram fogo ocorre principalmente por radiação térmica. A situação é semelhante se você ficar de pé em frente a uma fogueira crepitante: você sente calor, talvez um calor desconfortável, por causa da radiação térmica. Nos incêndios de copa, as árvores ficam tão quentes que entram em combustão e, assim, o fogo se alastra. A radiação térmica provém de duas regiões principais: as substâncias sólidas em combustão (troncos das árvores) e os gases quentes (as chamas da copa). A radiação das substâncias sólidas é bloqueada pela fumaça e pelas próprias árvores e não chega com muita intensidade às árvores que ainda não entraram em combustão. A radiação das chamas pode chegar com maior intensidade, especialmente se o vento desviar as chamas para a direção das árvores que ainda não se incendiaram, fazendo com que se inclinem um pouco para baixo. Nesse caso, boa parte da radiação lateral emitida pelas chamas atinge as árvores que ainda não entraram em combustão. Quando um incêndio de copa se aproxima de uma casa, as paredes externas voltadas para o incêndio tendem a esquentar até o ponto de ignição. Cornijas salientes, porém, podem ajudar a proteger as paredes da radiação térmica. As árvores situadas entre o incêndio e a casa também podem proteger as paredes. A melhor situação é aquela em que algumas dessas árvores queimam apenas parcialmente e não contribuem para o incêndio de copa. (Naturalmente, uma casa também pode pegar fogo se caírem brasas no telhado.)

4.82 • Tempestades de fogo Certa noite, durante a Segunda Guerra Mundial, a cidade alemã de Dresden foi atacada por aviões inimigos, que usaram bombas incendiárias. Quando começou o bombardeio, o vento na região estava fraco, com uma velocidade de apenas 4 metros por segundo. Por que os ventos aumentaram para 20 metros por segundo (mais de 70 quilômetros por hora)? (Para alguns bombeiros, a velocidade do vento foi maior, chegando talvez a 50 metros por segundo.)

Resposta Menos de 30 minutos depois do início do bombardeio, os incêndios que o bombardeio havia provocado se encontraram e se fundiram em um único incêndio gigantesco, criando nas ruas da cidade a mesma situação que existe

em um alto-forno. Os gases quentes sofreram uma forte aceleração para cima, pois estavam mais leves que o ar em volta. Ao subir, os gases esfriavam, pois emitiam radiação infravermelha e se misturavam com o ar frio, mas o resfriamento era tão lento que a coluna de gases quentes chegou a 7 quilômetros de altura. No alto da coluna, os gases se espalhavam horizontalmente porque tinham a mesma temperatura que o ar em torno. Essa enorme corrente ascendente de gás sugava o ar próximo ao solo e o lançava no centro do incêndio, criando assim ventos fortes que atiçavam o fogo. Normalmente, o vento espalha um incêndio, mas o fluxo radial de ar manteve o incêndio parado, criando uma situação que ficou conhecida como tempestade de fogo. O incêndio causou uma grande perda de vidas humanas e uma destruição quase completa dos edifícios da região. Em algumas tempestades de fogo, a corrente ascendente de ar começa a girar em espiral, formando um vórtice. Incêndios menores também formam vórtices que lembram redemoinhos de poeira. Esses vórtices são perigosos porque ajudam a espalhar o material que está em chamas.

4.83 • A regulação de temperatura em cupinzeiros e edifícios Os cupinzeiros do norte da Austrália são chamados de magnéticos, não porque apresentem algum tipo de magnetismo, mas porque esses montes altos, em forma de cunha, estão sempre orientados no sentido norte-sul, como a agulha de uma bússola. O nome científico dessa espécie de cupim é Amitermes meridionalis, porque os cupinzeiros estão orientados paralelamente aos meridianos. Por que os cupins dão preferência a essa orientação ao construir os cupinzeiros? Nos climas moderados, em que os verões não são excessivamente quentes, o calor pode ser desagradável em certos edifícios, mesmo com as janelas abertas. Existe algum meio de ventilar melhor um edifício para evitar as despesas de um aparelho de ar condicionado?

Resposta Os cupinzeiros magnéticos são projetados de maneira inteligente para manter a temperatura interna. As duas faces largas estão voltadas para leste e oeste. A face leste absorve luz solar quando o Sol está nascendo; a face oposta absorve luz solar quando o Sol está se pondo. Quando o Sol está a pino, a luz solar incide em uma área relativamente pequena. Assim, a quantidade de luz absorvida na parte do dia em que o sol está mais forte é menor que a quantidade absorvida de manhã e ao entardecer, quando o sol está mais fraco. O resultado é que a temperatura no interior do cupinzeiro quase não muda durante o dia. Hoje em dia, existem edifícios (na Inglaterra, por exemplo) que possuem uma torre solar, feita de vidro transparente, no lado (ou canto) que fica voltado para o Sol durante o dia. No alto da torre existe um respiradouro que pode ser aberto ou fechado de acordo com as necessidades. A base da torre está ligada a todos os andares do edifício. O sol aquece o ar da torre. Por ser mais leve que o ar frio, o ar quente sobe pela torre e sai pelo respiradouro, sugando ar pelas janelas abertas do edifício. Se o edifício e a torre foram bem projetados, existe uma corrente de ar contínua que passa por todos os aposentos do edifício. As construções tradicionais do Irã são muito bem adaptadas a um clima que é quente durante o dia e frio à noite. As construções são agrupadas para fazer sombra umas às outras. Algumas dispõem de uma torre de vento que recolhe o vento e o introduz no porão das construções depois de passar por um túnel subterrâneo, onde o ar é resfriado pelo solo. Quando existe água disponível, nas paredes úmidas do túnel ou em uma fonte no porão, o ar é resfriado ainda mais pela evaporação da água, ou seja, a energia térmica é extraída do ar, do túnel ou da fonte para transformar a água de líquido em vapor. Algumas construções dispõem de uma cúpula no teto aberta dos lados. Quando o vento passa pela cúpula, arrasta o ar quente que se acumulou na superfície interna da cúpula. Isso possibilita que o ar mais frio entre na construção no nível do solo ou, melhor ainda, através de túneis subterrâneos.

4.84 • O calor nas estufas e nos carros fechados Por que uma estufa é relativamente quente? As estufas possuem algum tipo especial de vidro que retém a radiação térmica (radiação infravermelha)? Por que o interior de um carro fechado esquenta se o carro for deixado ao sol em um dia quente?

Resposta A principal razão pela qual uma estufa é quente é que as paredes e o teto impedem ou limitam consideravelmente a circulação do ar. Assim, o ar quente não pode subir para fora da estufa e ser substituído por um ar mais frio que vem das proximidades do solo; também não existe vento para dispersar o ar quente que se acumula no interior. (Um mito comum é que o teto de vidro ou de plástico de uma estufa retém de algum modo a radiação térmica. Infelizmente, como a expressão efeito estufa é muitas vezes aplicada à retenção de radiação térmica pela atmosfera terrestre, esse tipo de retenção é associado erroneamente às estufas.)

Um carro fechado estacionado ao sol em um dia quente se comporta como uma estufa. O interior pode ficar muito quente, porque a circulação do ar é eliminada. Quando a luz solar entra pelo pára-brisas dianteiro, o painel e o volante podem ficar quentes a ponto de queimar a pele. Baixar as janelas ou abrir as portas para que o ar circule pode reduzir (lentamente) a temperatura. Como a tinta preta absorve a luz visível com mais facilidade que a tinta branca, poder-se-ia imaginar que um carro preto esquenta mais ao sol do que um carro branco. O aquecimento de um carro, porém, acontece principalmente por causa da absorção de radiação infravermelha, não de luz visível, e as duas tintas provavelmente absorvem mais ou menos a mesma quantidade de luz na faixa do infravermelho.

4.85 • Ilhas de calor Por que a temperatura nas áreas urbanas, especialmente no centro das cidades, costuma ser mais alta que no interior? Assim, por exemplo, durante o verão, as cidades podem estar quentes e abafadas, enquanto a temperatura no interior permanece amena. Essas ilhas de calor urbanas são causadas principalmente pela maior concentração de máquinas geradoras de calor nas cidades? Por causa das ilhas de calor, a floração de primavera pode começar nitidamente mais cedo na cidade do que no campo e a queda de folhas no outono pode acontecer mais tarde. Outra conseqüência é que o orvalho é mais raro na cidade do que no campo.

Resposta Vários fatores contribuem para a existência de ilhas de calor em áreas urbanas: os edifícios obstruem e canalizam ventos que refrescariam a área. Existe menos perda de energia térmica em decorrência da evaporação, já que a chuva e a neve derretida escoam rapidamente para o sistema de esgoto. O sal jogado nas ruas ajuda a remover a neve. A pavimentação e os materiais de construção absorvem e retêm melhor a luz solar do que as áreas gramadas e arborizadas. Quando os edifícios têm mais ou menos a mesma altura e esfriam irradiando calor dos telhados à noite, pode se formar uma camada de ar frio na altura dos telhados. Essa camada pode inibir a subida do ar quente da rua e, portanto, reter a energia térmica na cidade. Quando a cidade está coberta por uma camada espessa de partículas no ar (poluição), a situação pode ser pior: a parte de cima da camada pode irradiar para o espaço e esfriar o ar ainda mais na altura dos telhados. Embora a cidade esfrie um pouco durante a noite, não esfria tanto quanto o interior. Nas regiões quentes, a absorção de luz solar pelas superfícies pode representar um risco sério. O asfalto, por exemplo, pode chegar com facilidade a 70°C, que excede em muito a temperatura de 44°C necessária para queimar a pele. Nesse caso, qualquer um que entre em contato com o asfalto, tais como as vítimas de um acidente de trânsito, podem sofrer queimaduras graves. Mesmo ficar de pé em um estacionamento vazio coberto de asfalto pode ser difícil por causa da intensa radiação infravermelha emitida pelo asfalto.

4.86 • Termodinâmica dos elásticos Estique rapidamente um elástico enquanto o mantém encostado no lábio superior. Por que você sente o elástico esquentar? Mantendo o elástico esticado, afaste-o do lábio por alguns minutos, encoste-o de novo no lábio e deixe-o contrair-se rapidamente. Por que você sente o elástico esfriar?

Resposta A borracha de um elástico é formada por moléculas de cadeias longas que estão enroladas como um espaguete, com uma porção de ligações cruzadas. Ao esticar o elástico, você distende essas moléculas e parte do seu trabalho se transforma em movimento térmico das moléculas. O calor que você sente no lábio deve-se a esse movimento térmico aumentado. Se você deixa que o elástico se contraia, as moléculas realizam trabalho para se enrolar; a energia necessária para esse trabalho vem da energia térmica das moléculas e, portanto, o elástico esfria. Se um elástico for aquecido, a energia térmica adicional das moléculas possibilita que elas se enrolem ainda mais, o que encurta o elástico. Se um elástico for resfriado, a perda de energia térmica impede que as moléculas se enrolem tanto, o que estica o elástico. O fato de que um elástico se contrai quando é aquecido e se dilata quando é resfriado pode ser aproveitado em uma máquina, embora esse tipo de máquina seja apenas uma curiosidade. Instala-se uma roda que gira em torno de um eixo central. Instala-se um segundo eixo a uma pequena distância do primeiro, paralelo a ele, e vários elásticos entre o segundo eixo e pontos da periferia da roda. Como o segundo eixo está deslocado em relação ao primeiro, os elásticos são esticados de maneira uniforme; para cada posição da roda, alguns elásticos estão mais esticados do que outros. A roda é submersa até a metade em um reservatório de água quente. A energia térmica da água faz os elásticos submersos se contraírem e a assimetria faz a roda girar lentamente. Quando os elásticos emergem da água, esfriam e ficam menos esticados. Ao entrar novamente na água, voltam

a se contrair.

4.87 • O föhn e o chinook Föhn é o nome genérico dado ao vento quente e seco que desce as encostas das montanhas. Esse tipo de vento foi observado pela primeira vez nos Alpes, onde um föhn súbito podia derreter e evaporar os bancos de neve. Nos Estados Unidos, um vento desse tipo, que desce pelas vertentes orientais das Montanhas Rochosas, é chamado de chinook (por causa dos índios chinooks). Em um caso extremo, um chinook, em Harve, Montana, elevou a temperatura de –12°C para 6°C em cerca de três minutos. O que causa um föhn ou um chinook?

Resposta Embora muitos fatores responsáveis por esses ventos ainda não sejam conhecidos, alguns já foram identificados. Vamos tratar do chinook. Quando o ar proveniente do oceano Pacífico encontra as Montanhas Rochosas, boa parte do vapor d’água se condensa, ressecando o ar. Essa mudança do estado gasoso para o estado líquido libera energia e, portanto, o ar fica mais quente. Quando o ar passa por cima das Montanhas Rochosas e desce do outro lado, esquenta ainda mais, porque encontra pressões cada vez maiores. (Você pode sentir o mesmo efeito quando enche um pneu de bicicleta.) Assim, quando o ar chega ao sopé das Montanhas Rochosas, está quente e seco e, portanto, pode derreter e evaporar rapidamente a neve. Um pesquisador conta o que aconteceu quando estava dirigindo em um vale frio e encontrou um chinook que havia acumulado a umidade da evaporação da neve. Segundos depois de começar o vento, o pára-brisas estava coberto de gelo, que se formara a partir da condensação do vapor d’água transportado pelo vento. Se estivesse dirigindo em uma rodovia em alta velocidade, a súbita perda de visibilidade poderia ter causado um acidente.

4.88 • O teste da água fervente Um exemplo de “mágica” é o teste da água fervente, ao qual eram submetidos os xintoístas no Japão. No teste, uma pessoa mergulha dois feixes de varas de bambu em água fervente e joga a água para cima, molhando-se e deixando a água cair no fogo que aquece o caldeirão que contém a água fervente. Quando a água cai no fogo, surgem grandes nuvens de vapor, mas a pessoa nada sofre. Por que a água fervente não queima a pessoa?

Resposta A água lançada para cima é formada por um grande número de gotículas. Essas gotículas esfriam rapidamente, porque possuem pequena quantidade de energia térmica, que pode ser transferida rapidamente para o ar. Quando as gotas caem na pessoa, podem estar quentes, mas não o suficiente para queimar a pele. Se a mesma quantidade de água fosse lançada para o ar em forma de um único volume, perderia menos energia para o ar, porque a superfície dessa “gota” gigantesca seria muito menor que a soma das superfícies das gotículas. Assim, ao cair, a “gota” estaria muito mais quente que as gotículas e poderia queimar a pele. (Naturalmente, se a pessoa despejasse a água em ebulição diretamente na pele, a água não esfriaria nem um pouco antes de cair e com certeza queimaria a pele.)

4.89 • Energia em uma sala aquecida Suponha que você tenha voltado para casa depois de caminhar na rua em um dia frio de inverno. A primeira coisa que você faz ao chegar em casa, provavelmente, é ligar o aquecimento. Por que você faz isso? Será que o sistema de aquecimento aumenta a quantidade de energia interna (térmica) do ar no interior da casa até que o ar possua uma energia interna suficiente para manter uma temperatura agradável? Embora pareça fazer sentido, esse raciocínio está errado; o sistema de aquecimento não muda a quantidade de energia interna do ar. Como isso é possível? Sendo assim, que diferença faz ligar o sistema de aquecimento?

Resposta Nenhuma casa é hermeticamente fechada (na verdade, uma casa hermeticamente fechada não seria segura). Quando o sistema de aquecimento faz a temperatura do ar aumentar, as moléculas de ar saem por várias aberturas para que a pressão no interior da casa continue igual à pressão atmosférica do lado de fora. Embora a energia cinética média das moléculas no interior da casa aumente depois que você liga o aquecimento, a energia cinética total permanece a mesma, já que passa a existir um número menor de moléculas de ar no interior da casa. Sendo assim, por que você se sente mais confortável depois de ligar o aquecimento? As pessoas sentem frio porque (1) perdem a energia térmica que é emitida em forma de radiação infravermelha e (2) perdem a energia térmica que é transferida do corpo para as moléculas do ar através de colisões se o ar estiver mais frio que o corpo. Quando você liga o aquecimento para aumentar a temperatura da sala, (1) aumenta a quantidade de radiação infravermelha que você recebe das superfícies próximas

(paredes, teto, chão, móveis etc.) e que substitui parte da energia emitida pelo corpo; (2) aumenta a energia cinética das moléculas de ar que colidem com seu corpo, reduzindo as perdas de calor por colisões.

4.90 • Orientação de depósitos de gelo Antes da invenção da geladeira, as pessoas que viviam em regiões de clima frio armazenavam o gelo do inverno em depósitos para usá-lo no verão. Uma das características importantes de um depósito de gelo era a orientação: de acordo com os especialistas, a entrada devia estar voltada para o leste, para que a luz solar entrasse no depósito logo após o amanhecer. Não parece uma escolha infeliz, uma vez que a tendência seria no sentido de a luz solar direta aquecer o interior e, portanto, derreter o gelo?

Resposta A função da orientação dos depósitos de gelo era eliminar (ou ao menos reduzir) a entrada de ar carregado de umidade. Se esse tipo de ar entrasse no frigorífico, condensaria na superfície fria dos blocos de gelo. Para que o vapor d’água condense, precisa perder uma grande quantidade de energia térmica. Essa liberação de energia térmica faria o gelo derreter mais depressa. Assim, a idéia era permitir a entrada de luz solar no depósito de gelo ao amanhecer para aquecer o ar no interior e reduzir a umidade e a chance de condensação. O problema de condensação era provavelmente pior durante a noite, mas o Sol não brilha à noite. Aproveitar o sol da manhã era, portanto, a melhor solução possível.

4.91 • Um radiômetro de brinquedo e sua rotação O radiômetro é um aparelho que foi inventado em 1872 por William Crooke para medir a energia emitida por uma fonte luminosa, mas que atualmente é apenas uma curiosidade ou um brinquedo vendido em feiras de ciência. Dentro de um bulbo de vidro lacrado e parcialmente evacuado, quatro lâminas metálicas verticais estão presas a um cilindro que pode girar em torno de um eixo vertical. As lâminas são pintadas de branco de um lado e de preto do outro. Quando o aparelho é colocado nas proximidades de uma fonte luminosa, as lâminas e o cilindro começam a girar em torno do eixo, a uma velocidade que depende da intensidade da luz. O que causa a rotação, em que sentido acontece (qual dos lados está na frente, o preto ou o branco) e como é possível mudar o sentido de rotação?

Resposta O movimento já foi atribuído por muitas pessoas à pressão exercida pela luz, mas esse efeito é pequeno demais para ser observado e, além disso, causaria uma rotação no sentido oposto ao observado. O raciocínio é o seguinte: a luz exerce pressão sobre os objetos e a pressão é maior quando a luz é refletida pelo objeto. Assim, a luz que incide em uma das lâminas exerce uma pressão maior sobre o lado pintado de branco do que sobre o lado pintado de preto, o que significa que as lâminas deveriam girar com o lado preto na frente. Se o vácuo no interior do bulbo fosse muito bom e a pressão da luz fosse suficiente para vencer o atrito do cilindro com o eixo, as lâminas girariam dessa maneira. Entretanto, a pressão que o ar residual exerce sobre as lâminas é muito maior. Como a luz (radiação infravermelha e a luz visível) é mais absorvida no lado preto das lâminas do que no lado branco, o lado preto fica ligeiramente mais quente que o lado branco. Ao se chocarem com uma lâmina, as moléculas de ar residual exercem pressão sobre ela. Quanto maior a velocidade das moléculas, maior a pressão. Por causa da diferença de temperatura, as moléculas de ar do lado preto da lâmina se movem mais depressa que as do lado branco. Assim, a pressão que o ar exerce sobre o lado preto é maior que a pressão sobre o lado branco, e as lâminas giram em torno do eixo com o lado branco na frente. Passado algum tempo, os dois lados de cada lâmina atingem a mesma temperatura (entram em equilíbrio térmico), o efeito desaparece e as lâminas deixam de girar. Para inverter o movimento, ponha o brinquedo na geladeira. O lado preto de cada lâmina perde energia térmica um pouco mais depressa que o lado branco, porque emite uma quantidade maior de radiação infravermelha e, portanto, o lado branco fica mais quente e é submetido a uma pressão maior do ar. Também nesse caso, a rotação continua até que seja alcançado o equilíbrio térmico.

4.92 • Poços e tempestades Quando minha avó era moça, a água que ela bebia era bombeada manualmente de um poço. Segundo ela, quando o tempo estava muito nublado, era mais fácil bombear a água, mas a água saía tão suja que ninguém tinha coragem de beber. O fenômeno não parecia depender da chuva. Os poços artesianos também parecem ser sensíveis às condições do tempo, já que a água sai com mais força quando o tempo está nublado, mas outra vez o resultado não depende da chuva. O que faz o comportamento dos poços depender do tempo?

Resposta Embora o nível médio da água de um poço seja ditado pela quantidade de água da chuva ou do degelo na região, mudanças na pressão barométrica podem alterar o nível da água em vários centímetros. Quando a pressão barométrica diminui durante uma tempestade, o nível da água no poço aumenta. Com isso, a água pode recolher uma quantidade maior de impurezas, a ponto de ficar imprópria para o consumo. O ar em um sistema de cavernas também pode responder a mudanças da pressão atmosférica: quando a pressão cai, o ar sai da caverna; quando a pressão sobe, o ar entra na caverna. Esse efeito é mais fácil de observar nas passagens estreitas, nas quais a velocidade do ar é maior.

4.93 • Nuvens de insetos e de camarões Por que certos insetos, tais como os mosquitos e as formigas voadoras, às vezes formam nuvens na copa das árvores? Essas nuvens de insetos chegam a ser tão densas que parecem nuvens de fumaça, como se houvesse um pequeno incêndio na árvore. Os insetos também podem formar nuvens sobre bosques e campanários. Certa vez, os bombeiros foram chamados para apagar um incêndio em uma igreja e descobriram que a “fumaça” no alto da igreja era apenas uma nuvem de insetos. Por que os camarões de água salgada às vezes formam uma nuvem sobre uma rocha submarina exposta ao sol? Por que a nuvem, que pode ser bem espessa, começa na pedra mas se inclina na direção oposta à do sol?

Resposta No início da noite, as árvores podem não esfriar tão depressa quanto o solo em volta e, portanto, podem manter o ar mais quente nas vizinhanças. Os insetos aparentemente são atraídos pelo ar quente e também, possivelmente, pela umidade que se condensa quando esse ar ascendente esfria. Os camarões de água salgada se instalam em uma coluna de convecção semelhante, na qual a água é aquecida pela luz solar. Embora apreciem o calor e talvez os nutrientes que podem ser transportados pela água quente, os camarões não gostam da luz solar e, portanto, nadam na direção oposta à do sol enquanto sobem. Quando chegam à superfície da água, nadam de volta para o fundo e tornam a entrar na coluna de convecção para subir de novo.

5.1 • Raios O que causa os raios e por que eles produzem sons e luzes? Como podem ser vistos a grandes distâncias? Os relâmpagos são largos?

Resposta O raio é uma descarga elétrica (centelha) muito grande entre as nuvens e a terra. Embora os detalhes da descarga tenham sido calculados e medidos, ainda não se sabe muito bem por que as nuvens ficam carregadas e o que produz a descarga. A explicação mais comum para as cargas é que colisões entre o granizo e cristais de gelo menores transferem elétrons para o granizo, que desce para a parte inferior de uma nuvem. Como os elétrons têm carga negativa, a base da nuvem fica com uma carga negativa; como a parte superior da nuvem perdeu elétrons, fica com uma carga positiva. Uma pequena quantidade de cargas positivas também existe em algum lugar perto da base. A terra normalmente é rica em elétrons que podem se mover de um lugar para outro; quando existe uma nuvem carregada nas proximidades, os elétrons são repelidos pela carga negativa da base da nuvem. Ao perder elétrons, a terra abaixo da nuvem fica com uma carga positiva. Essa carga e as cargas da nuvem produzem um grande campo elétrico entre a terra e a nuvem. Se o campo excede um valor crítico, ocorre uma descarga, que começa na base da nuvem, quando alguns elétrons saltam de repente em direção à pequena quantidade de cargas positivas que existe nas proximidades. Em seguida, um líder escalonado começa a serpentear em direção à terra, ionizando átomos (removendo os elétrons da última camada) e levando parte das cargas negativas da nuvem para a terra. Esse trajeto, que é fraco demais para ser visto, acontece em saltos de 50 metros (por isso é “escalonado”), com muitas ramificações. Embora o relâmpago em geral pareça vertical para um observador na terra, o movimento das cargas é quase horizontal. Somente quando se aproxima da terra é que o relâmpago parece “notar” a presença de objetos como árvores ou pára-raios. Formam-se canais de átomos ionizados que partem desses objetos para cima. Quando uma dessas descargas conectantes encontra o líder escalonado, cria-se um caminho condutor entre a terra e a nuvem e os elétrons perto da terra são acelerados para baixo em direção à terra por um campo elétrico. Essa descarga de elétrons para a terra, chamada descarga de retorno, sobe rapidamente pelo caminho condutor até chegar à base da nuvem. Como os elétrons estão acelerados, colidem violentamente com as moléculas de ar que encontram no caminho, arrancando elétrons e aumentando em muito a temperatura das moléculas. Por causa do aquecimento, o ar se expande tão depressa que produz uma onda de choque, que é o estrondo do trovão. A recombinação dos elétrons livres com as moléculas de ar produz a luz intensa do relâmpago. Embora o relâmpago seja muito luminoso, o caminho condutor no qual acontece toda a atividade provavelmente tem menos de um centímetro de diâmetro.

Figura 5-1 / Item 5.1

Uma vez criado o caminho condutor, uma nuvem pode enviar vários pulsos de elétrons para baixo, quando novos elétrons se movem do resto da nuvem para o ponto mais elevado do caminho condutor. Esses pulsos múltiplos podem ser observados como um relâmpago intermitente. Se um vento forte desloca o caminho para o lado durante os pulsos múltiplos, o relâmpago assume a aparência de uma “faixa” luminosa no céu. A maioria dos relâmpagos envolve um líder escalonado que se propaga para baixo e uma transferência de elétrons da nuvem para a terra. Entretanto, um líder escalonado que se propaga para baixo também pode surgir na região mais alta da nuvem, que tem carga positiva; nesse caso, os elétrons são transferidos da terra para a nuvem. Os líderes escalonados também podem surgir na terra ou, o que é mais provável, em estruturas altas como um arranha-céu, e se propagar para cima. Um líder escalonado que se dirige para a parte inferior da nuvem transfere elétrons para a terra, enquanto outro que se dirige para a parte superior da nuvem transfere elétrons para a nuvem. É fácil reconhecer os líderes escalonados que se propagam para cima porque eles se ramificam para cima. O relâmpago-aranha, um lindo espetáculo luminoso que se espalha lentamente pelo céu e enfeita a parte inferior das nuvens de tempestade, é formado em geral por descargas de uma nuvem para outra durante os últimos estágios de uma tempestade.

5.2 • Raios: pessoas, vacas e ovelhas Por que o impacto direto de um raio costuma ser fatal? Por que os sapatos e as roupas às vezes são arrancados da vítima de um raio? Se a pessoa estiver ao ar livre durante uma tempestade de raios, o que deve fazer para correr menos risco? É melhor se abrigar debaixo de uma árvore ou ficar de pé em campo aberto? A pessoa deve ficar parada, agachar-se ou correr? Por que o cabelo da pessoa pode ficar em pé? Isso é sinal de perigo? Por que grupos de pessoas, tais como os jogadores durante uma partida de futebol, correm o risco de ser atingidos por um raio? Se o raio é tão estreito que só pode atingir um dos jogadores, por que, às vezes, todos os jogadores que estão em campo são derrubados? Por que, em uma tempestade de raios, os bois, cavalos e carneiros correm mais perigo que as pessoas? De acordo com muitos relatos, Benjamin Franklin, o famoso cientista e estadista americano, empinou uma pipa enquanto uma tempestade de raios se aproximava para demonstrar as propriedades elétricas dessas tempestades. Por que não foi morto por um raio?

Resposta Uma pessoa pode ser ferida ou morta por um raio de cinco maneiras. (1) O modo mais óbvio é o impacto direto de um raio, que pode fazer passar uma grande quantidade de corrente (elétrons) pelo peito, parando o coração, paralisando os músculos da respiração e causando queimaduras internas. Se a vítima estiver muito molhada, boa parte da corrente pode passar por fora do corpo e o raio pode não ser fatal. (2) A pessoa pode se ferir se estiver encostada em um objeto, tal como um carro, que seja atingido por um raio. Nesse caso, parte da corrente pode passar pela pessoa. (3) A pessoa também pode se ferir por estar perto de um objeto, como, por exemplo, uma árvore, que seja atingido por um raio. Nesse caso, parte da corrente pode saltar pelo ar até a vítima, fenômeno conhecido como descarga lateral. Se a vítima tiver sorte, a corrente pode ser pequena demais para ser mortal. (4) Um modo mais sutil pelo qual um raio pode causar ferimentos ou mortes é a corrente de terra, que é a corrente

produzida na terra pelo raio. Se a vítima estiver de pé com um pé mais próximo do ponto de impacto do que o outro, a corrente de terra pode subir por uma perna, atravessar o tronco da pessoa e descer pela outra perna (Fig. 5-2a). Se a intensidade da corrente for pequena, a vítima pode sofrer apenas uma paralisia temporária. Correntes de terra podem derrubar várias pessoas ao mesmo tempo, tais como os participantes de uma partida de futebol. (5) O quinto modo é ainda mais sutil. Como foi explicado anteriormente, em um raio comum um líder escalonado desce da nuvem em ziguezague e encontra uma descarga conectante curta na qual o ar sofre ionização. Depois de estabelecido o contato, acontece a descarga propriamente dita, com correntes enormes. Outras descargas conectantes também podem acontecer sem fazer contato com o líder escalonado. Embora a corrente total do raio não escoe por essas descargas conectantes sem saída, ainda assim são canais nos quais os elétrons são arrancados das moléculas de ar. Se uma dessas descargas passar por uma pessoa, a passagem de elétrons pela pessoa pode ser mortal.

Figura 5-2 / Item 5.2 (a) A corrente de terra produzida por um relâmpago pode subir pelo corpo por causa dos pés separados. (b) Uma ovelha se protege contra a corrente de terra.

As queimaduras produzidas por um raio na pele de uma pessoa às vezes são dendríticas (com ramificações em forma de samambaia, padrão conhecido como figura de Lichtenberg), porque a corrente se irradia a partir de um ponto inicial. (Uma pessoa de imaginação fértil pode interpretar o padrão como a imagem de uma flor, de uma paisagem, ou do seu líder religioso favorito, mas os relâmpagos não tiram fotografias nem desenham figuras religiosas.) Se a pessoa estiver em contato com uma peça de metal, mesmo que seja apenas a armação de arame de um sutiã, a temperatura do metal pode aumentar o suficiente para queimar a vítima. Se as roupas e os sapatos da pessoa estiverem muito molhados, podem ser arrancados quando a corrente esquenta a água, fazendo-a evaporar com um aumento explosivo de volume. O melhor conselho para uma pessoa que está ao ar livre durante uma tempestade é afastar-se de árvores altas e outras estruturas altas e condutoras que os raios podem procurar, procurar um local baixo, baixar a cabeça, agachar-se e manter os pés juntos para reduzir a possibilidade de uma corrente de terra através do tronco. Correr pode ser uma boa opção, mesmo que a cabeça tenha que ficar um pouco alta, porque apenas um pé fica na terra de cada vez. Os bois, cavalos e carneiros correm mais perigo que as pessoas por causa das correntes de terra, já que as patas dianteiras e traseiras ficam bem separadas, o que pode permitir que uma corrente de terra maior passe pelo corpo. As pessoas podem manter os pés juntos, mas isso é difícil para um carneiro (Fig. 5-2b). Quando uma pessoa é atingida por um raio, o coração muitas vezes volta a funcionar automaticamente, mas o mesmo não acontece com os pulmões. Assim, restabelecer a respiração da vítima usando a respiração boca-a-boca é extremamente importante. Se o coração não volta a bater ou começa a fibrilar, torna-se necessário usar um desfibrilador. O raio pode, em alguns casos, atingir a vítima dentro de casa, entrando por uma antena de televisão externa não-aterrada (mas não por uma antena interna), pela linha telefônica (mas não por um telefone celular ou um telefone conectado por fibra óptica), pelo encanamento ou pela fiação da casa. Quando começa uma tempestade de raios, é melhor jogar cartas ou conversar com alguém no celular e deixar o banho para mais tarde. Eis outra norma de segurança: os raios podem ser mais freqüentes no início de uma tempestade, mas também podem acontecer quando a tempestade está no fim; às vezes, pessoas imprudentes saem do abrigo antes da hora e são mortas por um raio. Se o cabelo de uma pessoa fica em pé, o campo elétrico entre a terra e a nuvem está muito forte e pode cair um raio a qualquer momento. Assim, a pessoa deve procurar abrigo imediatamente. (Definitivamente, essa não é a hora de posar para uma

fotografia engraçada. Fuja! Procure abrigo!) No arranjo normal das cargas, com a base da nuvem com uma carga negativa e a terra com uma carga positiva, os fios de cabelo ficam com uma carga positiva. Assim, repelem-se mutuamente e tentam se afastar o máximo possível, mesmo que tenham que se mover para cima, contra a força gravitacional. Segundo histórias não comprovadas de pescadores, as nuvens de tempestade podem fazer uma linha de pesca pairar no ar pouco acima da água depois de ser lançada. Se as histórias forem verdadeiras, a superfície da linha e da água devem ter cargas de igual sinal. A água pode estar carregada por causa das nuvens no céu; a linha pode estar carregada pela mesma razão ou por ter ganho carga ao passar pelo carretel durante o arremesso. Benjamin Franklin não morreu enquanto empinava uma pipa durante uma tempestade porque jamais realizou esse tipo de experimento. Só alguém sem juízo iria empinar pipa com uma tempestade se aproximando; Franklin era um homem muito inteligente. Na verdade, porém, deu a impressão de que havia realizado o experimento.

5.3 • Raios: veículos Por que uma pessoa que está no interior de um carro geralmente não corre perigo de ser atingida por um raio? Por que um avião não está livre de ser atingido por um raio?

Resposta Um carro é um lugar muito bom para se esconder de um raio porque a carroceria conduz eletricidade. Assim, se o carro for atingido por um raio, a corrente provavelmente não vai penetrar no interior do veículo. Entretanto, um conversível (com um teto feito de material não-condutor) oferece pouca proteção e um carro com uma carroceria de plástico pode não oferecer proteção alguma. Uma pessoa que esteja dentro de um carro durante uma tempestade de raios deve evitar tocar em um objeto do lado de fora do carro ou em qualquer coisa que esteja ligada a uma antena externa. Uma boa idéia é manter levantadas as janelas para que sejam molhadas pela chuva (que conduz eletricidade). Um carro tem quatro pneus que são maus condutores de eletricidade, mas os pneus não impedem que o carro seja atingido por um raio que atravessou vários quilômetros de ar, que também é um mau condutor. Por ser feito de metal, um avião também oferece proteção aos ocupantes. Os aviões feitos de materiais não-condutores, porém, assim como os carros conversíveis, oferecem menos proteção. O avião é mais vulnerável que o carro porque seus instrumentos eletrônicos podem ser avariados ou destruídos diretamente pela corrente ou pelo campo eletromagnético criado pelo raio. Se a corrente chegar aos tanques de combustível, por via direta ou através de um filete de combustível não queimado ejetado por uma turbina, os tanques podem explodir. Quando um avião faz parte do caminho condutor de um raio, o percurso da corrente através do avião depende do ponto em que caiu o raio. Se o impacto foi na frente do avião, é provável que o raio atravesse o avião e saia pela traseira. Se o impacto foi na parte traseira, é provável que a saída ocorra em um ponto próximo. Um avião também pode provocar uma descarga elétrica, mesmo em nuvens em que não existam outros raios. Por todas essas razões, e por causa das turbulências que acompanham a maioria das tempestades, os pilotos evitam tempestades elétricas ou qualquer aglomeração de nuvens na qual o avião possa causar raios. Mesmo assim, a maioria dos aviões comerciais é atingida uma vez ou outra por raios.

5.4 • Raios: árvores, torres e a terra Por que um raio pode incendiar uma árvore ou despedaçála? Por que um edifício alto pode não ser danificado por um raio? Por que um raio pode abrir um buraco no solo ou produzir formações (quase esculturas) conhecidas como fulguritos?

Resposta Quando um raio atinge uma árvore, pode chamuscá-la, arrancar pedaços da casca, fazê-la em pedaços, incendiá-la ou não causar nenhum dano. Os danos são maiores quando a árvore está molhada e quando o raio chega até

a seiva. Se a seiva for percorrida por uma alta corrente, pode evaporar tão depressa que sua expansão faz a árvore em pedaços. A expansão rápida da água da chuva debaixo da casca pode fazer a casca explodir ou rachar. A maioria dos raios que caem em árvores não as faz pegar fogo, provavelmente porque a corrente dura tão pouco tempo que a madeira não se aquece até o ponto de ignição. Os raios que incendeiam árvores (às vezes provocando incêndios florestais) são os que duram tempo suficiente (cerca de um segundo) para esquentar a árvore até que ela entre em combustão. Um raio pode começar em um edifício alto se o edifício enviar um líder escalonado para uma nuvem que paira acima dele. A corrente da descarga pode passar pelo pára-raios do edifício ou pela superestrutura de metal do edifício. Quando uma construção como uma igreja com um campanário é atingida por um raio sem a proteção de um pára-raios, a corrente pode fazer em pedaços as regiões molhadas, como acontece no caso de uma árvore, e a madeira pode pegar fogo se a corrente durar tempo suficiente. Quando um raio cai em terra molhada, evapora a água tão depressa que a terra é lançada para o lado, deixando uma vala. A onda de choque produzida pelo aquecimento súbito do ar também pode abrir um buraco na terra. Quando um raio atinge areia de quartzo, a corrente pode elevar a temperatura da areia acima do ponto de fusão. A areia logo esfria, formando um cilindro fino ao longo da trajetória tortuosa da corrente na areia. A formação resultante de areia fundida é um fulgurito, que é muito valorizado quando escavado intacto em uma praia.

5.5 • Relâmpagos de contas e relâmpagos globulares O que produz as esferas luminosas que às vezes são observadas (e fotografadas) nas tempestades elétricas? Um relâmpago de contas é um cordão de esferas luminosas ou manchas alongadas deixadas no céu pelo clarão de um relâmpago. Um relâmpago globular é uma esfera luminosa mais misteriosa, com um diâmetro de cerca de 20 centímetros, que flutua sobre o solo por vários segundos. Alguns desaparecem silenciosamente e outros com um estampido. Já houve casos em que um relâmpago globular atravessou um vidro sem danificá-lo. Relâmpagos globulares foram vistos deslizando ao longo de linhas de transmissão e de pisos de aposentos (de uma tomada para outra). Também foram vistos percorrendo corredores de aviões de uma extremidade a outra (o que deve tornar os assentos do lado do corredor um pouco menos desejáveis). Quando um relâmpago globular encosta em alguém, pode paralisar, derrubar ou queimar a pessoa, além de causar uma lesão cerebral. Se você vir um relâmpago globular, afaste-se dele.

Resposta Não existe uma explicação simples para o relâmpago de contas. Acredita-se que as contas sejam regiões que permanecem quentes e, portanto, luminosas, depois que o resto da trajetória do relâmpago esfriou demais para ser visto. Talvez os pontos quentes residuais sejam pontos em que havia uma mudança brusca na trajetória. Também não existe uma explicação simples para o relâmpago globular. Na verdade, foram propostas muitas teorias, mas nenhuma é capaz de prever as propriedades observadas do relâmpago globular, em especial a duração. Um tipo semelhante de esfera luminosa, conhecido como bola de plasma, pode ser produzido em laboratório ou em uma usina de energia elétrica quando acontece uma forte descarga elétrica. Com a descarga, as moléculas de ar são ionizadas, ou seja, elétrons são arrancados das moléculas, de modo que a região passa a conter cargas negativas e positivas. Esse estado (plasma) dura menos de um segundo até que os elétrons e as moléculas ionizadas se recombinam. Embora essa duração seja bem menor que a dos relâmpagos globulares, alguns dos quais podem durar alguns segundos, a explicação mais provável do relâmpago globular é que se trata de uma bola de plasma produzida por um relâmpago ou uma descarga conectante. Presumivelmente, a descarga ioniza o ar ou o material (terra, pára-raios etc.) da parte inferior do relâmpago ou descarga conectante. Entretanto, se uma bola de plasma é produzida por um relâmpago, precisa ter uma parte interna peculiar para durar alguns segundos em vez de se desfazer rapidamente. Além disso, sua temperatura não pode ser muito elevada, já que a bola não costuma subir, como acontece com o ar quente. Também não pode ser um tipo de fogo-de-santelmo, a descarga visível que acontece nas pontas de objetos condutores, porque o relâmpago globular se move e o fogo-de-santelmo permanece no mesmo lugar. Até hoje não existe um modelo convincente para a estrutura do relâmpago globular.

5.6 • Sprites Durante décadas, pilotos que voavam à noite nas proximidades de uma tempestade elétrica acreditaram haver avistado grandes clarões muito acima das nuvens de tempestade, logo depois de avistarem um relâmpago abaixo das nuvens. Entretanto, os clarões eram tão tênues e fugazes que a maioria dos pilotos pensava que não passavam de ilusões de ótica. Nos anos 1990, porém, os clarões foram filmados e receberam o nome de sprites. Se os sprites estão associados a relâmpagos que ocorrem entre a terra e as nuvens, por que só aparecem muito acima das nuvens e não logo acima delas?

Resposta A formação dos sprites ainda não é bem compreendida, mas acredita-se que eles sejam produzidos quando acontece um relâmpago excepcionalmente intenso entre nuvens de tempestade e a terra, particularmente se o relâmpago transfere uma grande quantidade de carga negativa da terra para as nuvens. Logo após uma transferência desse tipo, a terra abaixo de uma nuvem possui uma distribuição complicada de cargas positivas. A carga negativa das nuvens e a carga positiva da terra produzem um campo elétrico acima das nuvens e entre as nuvens e a terra. Esse campo tende a ionizar átomos e moléculas no ar, ou seja, arranca elétrons. Entretanto, a ionização só pode acontecer se o campo elétrico excede um certo valor crítico e esse valor depende da densidade do ar. Imediatamente acima da nuvem, o campo elétrico é forte, mas a densidade do ar é grande demais para que o ar fique ionizado. Muito acima da nuvem, o campo é um pouco mais fraco, mas a densidade do ar é muito menor, e a ionização acontece. Nessas altitudes maiores, o campo elétrico não só arranca elétrons das moléculas, mas os acelera, fazendo-os colidir com outras moléculas, principalmente nitrogênio, o que faz com que os átomos emitam luz. Segundo alguns pesquisadores, um sprite é a emissão coletiva das moléculas nessas colisões. O mecanismo completo de formação dos sprites, porém, é provavelmente mais complicado do que esse modelo de colisões. Além disso, os pesquisadores têm que explicar os vários formatos dos sprites, e também dos elves, que são estruturas em forma de anel que se expandem a partir dos sprites.

5.7 • Pára-raios Um pára-raios protege de fato um edifício da queda de um raio e, se o faz, como oferece essa proteção? O pára-raios aumenta a probabilidade de que um raio caia no edifício? A extremidade superior do pára-raios deve ser aguçada ou rombuda?

Resposta A principal função de um pára-raios é proporcionar ao relâmpago um caminho de baixa resistência para a terra se o líder escalonado do raio se aproximar do edifício. Assim, para que o pára-raios funcione, deve estar conectado à região úmida e condutora que existe abaixo da superfície da terra. O pára-raios não funciona nos casos em que o líder escalonado começa ao longo da base de uma nuvem. Na verdade, não funciona até que o líder escalonado se aproxime do solo, e só então uma descarga conectante (ao longo da qual ocorre ionização) sobe pelo pára-raios para encontrar o líder. O encontro completa um caminho ionizado e carregado entre a terra e a base da nuvem. Caso tudo funcione a contento, a corrente de descarga não entra no edifício ou nas paredes, onde poderia eletrocutar os ocupantes ou iniciar um incêndio. Para funcionar, um pára-raios deve estar acima do ponto mais elevado do edifício. Como regra geral, o pára-raios oferece proteção para uma região que lembra um cone invertido, com o vértice na ponta do pára-raios. Supõe-se que qualquer líder escalonado que entre nesse cone imaginário será conectado ao pára-raios e não ao edifício. No passado, as pessoas acreditavam que a extremidade superior de um pára-raios deveria ser aguçada para atrair os raios. O raciocínio baseava-se no fato de que uma ponta aguçada cria um campo elétrico mais forte do que uma ponta rombuda. Como um campo elétrico forte aumenta a probabilidade de uma descarga conectante subir para encontrar um líder escalonado, poderíamos concluir que uma ponta aguçada é desejável. Um contra-argumento, porém, é que uma ponta aguçada aumenta a ionização das moléculas de ar nas vizinhanças do pára-raios, o que reduz a probabilidade de uma descarga conectante. Experimentos com pára-raios são difíceis de executar porque as condições do laboratório nunca são exatamente iguais às condições naturais, que dependem da existência fortuita de raios. Os experimentos, porém, sugerem que pontas levemente rombudas são atingidas com maior freqüência do que pontas aguçadas. Como um pára-raios não pode influenciar a ocorrência de raios, não pode promover a descarga de uma nuvem eletrificada. Assim, não descarrega as nuvens e torna os raios menos prováveis, como Benjamin Franklin, o inventor do pára-raios, havia previsto inicialmente.

5.8 • Suéteres, escorregas e centros cirúrgicos Se uma pessoa tira o paletó ou o suéter enquanto trabalha no computador, o computador pode ficar inutilizado. Se uma criança desce em um escorrega de plástico e depois encosta uma parte do corpo em outra pessoa, pode ter uma surpresa dolorosa. Se um cirurgião não usa o tipo certo de sapato durante uma cirurgia, o paciente pode morrer. Que perigo existe nessas situações? Por que o perigo diminui se a umidade do ar for elevada?

Resposta Quando diferentes materiais entram em contato, elétrons podem passar de uma superfície para a outra, deixando a primeira superfície com carga positiva e a segunda com carga negativa. Quando as superfícies são esfregadas uma na outra, mais pontos entram em contato e a quantidade de carga transferida é maior. O atrito também

pode aumentar a transferência. Essas transferências são chamadas triboeletricidade ou eletrificação por contato. Se o ar estiver úmido, as superfícies são neutralizadas quase instantaneamente pelo vapor d’água presente no ar. Quando o ar está seco, porém, as superfícies podem estar tão carregadas que centelhas saltam pelo ar de uma superfície carregada para outra. Muitas vezes o centelhamento ocorre entre uma superfície carregada e um bom condutor de eletricidade, tal como outra pessoa ou um objeto metálico. Quando uma pessoa anda em certos tipos de carpete em um dia seco e fica, digamos, com carga negativa, uma centelha pode saltar entre um dedo esticado e uma maçaneta metálica ou um objeto ligado eletricamente à terra, tal como uma torneira ou um teclado de computador. O carregamento acontece quando um sapato faz contato com o carpete e depois se afasta quando a pessoa dá o passo seguinte. O contato deixa o sapato com excesso de elétrons. Quando o sapato se afasta do carpete, a repulsão mútua faz com que o excesso de elétrons se distribua pelo resto do corpo da pessoa. Assim, cada passo tende a aumentar o número de elétrons em excesso, o que pode fazer com que o corpo adquira um potencial elétrico de milhares de volts. Quando a pessoa entra em contato com outro objeto condutor, pelo menos parte do excesso de elétrons passa para o objeto. Se o ponto de contato é uma parte larga do corpo, como as costas da mão ou o lado do braço, a transferência de elétrons acontece em uma área tão grande que pode passar despercebida. Ao aproximar um dedo de um objeto condutor, porém, a pessoa pode perceber perfeitamente o fluxo de elétrons. Como um dedo é um objeto pontiagudo, o excesso de elétrons pode produzir um forte campo elétrico entre o dedo e o objeto. O campo pode ser suficientemente intenso para arrancar elétrons das moléculas do ar, produzindo um caminho condutor entre o dedo e o objeto. O excesso de elétrons da pessoa nesse caso pode passar com facilidade do dedo para o caminho condutor, gerando uma centelha que você pode ver, ouvir e sentir. Para evitar o centelhamento, use uma parte larga do corpo para fazer contato, em vez de um dedo, ou encoste uma chave na maçaneta para que receba a centelha. (Provocar um centelhamento no lóbulo da orelha de um amigo em um “ataque-surpresa” é uma forma garantida de acabar com uma amizade.) Alguns tipos de tecido causam uma transferência de carga quando encostam na pele ou em outra peça de vestuário. Os suéteres costumam produzir centelhas quando são tirados e o tempo está seco. Uma criança que desce por um escorrega de plástico pode ficar tão carregada eletricamente que pode terminar a descida com um potencial elétrico de 10.000 volts. Quando a criança encosta alguma parte do corpo em outro objeto, especialmente se for um condutor aterrado, uma centelha muito dolorosa pode saltar entre a criança e o objeto. O centelhamento pode ser um risco sério nas cirurgias. Quando existe um vapor inflamável no ambiente, qualquer centelha pode provocar um incêndio. Como o uso de anestésicos inflamáveis foi interrompido nos anos 1950, esse risco diminuiu. O centelhamento entre duas superfícies também pode matar uma pessoa se uma das superfícies estiver dentro do corpo. Normalmente, a pele oferece grande resistência à passagem de elétrons e, portanto, protege o coração. Quando, porém, o movimento de elétrons ocorre nos fluidos condutores que existem no interior do corpo, a corrente que passa pelo coração pode ser suficiente para perturbar a regulação elétrica normal do batimento cardíaco. A possibilidade de um microchoque preocupa tanto as equipes cirúrgicas que os trajes cirúrgicos são planejados para reduzir a probabilidade de centelhamento e os sapatos têm solas parcialmente condutoras para que a carga seja descarregada para o piso no instante em que é produzida pela roupa. O piso também é parcialmente condutor para que a carga possa chegar a uma ligação com a terra. Funcionários de escritórios e de indústrias que usam computadores ou outros equipamentos eletrônicos sensíveis muitas vezes usam punhos aterrados que ligam seu corpo à terra. A ligação à terra em geral é feita com um material que apresenta uma certa resistência à passagem de corrente para que a carga da pessoa diminua de modo gradual e não rapidamente, como acontece no caso de uma centelha.

5.9 • Automóveis, bombas de gasolina e paradas nos boxes Por que você leva um choque quando sai de certos carros e volta para fechar a porta? (Por que não leva choque em todos os carros?) Quando você chega a uma cabine de pedágio, por que o funcionário do pedágio espera um tempo antes de pegar o seu dinheiro? Embora o vapor de gasolina seja inflamável, encher o tanque do carro em um posto é razoavelmente seguro, a menos que você seja imprudente a ponto de fumar ou despejar a gasolina em uma parte muito quente do carro. Mesmo assim, algumas pessoas causaram incêndios enquanto abasteciam o carro com gasolina. Em alguns exemplos filmados, a pessoa introduz o bico da mangueira no tanque do carro, coloca a bomba no modo automático e entra de volta no carro para se aquecer ou pegar alguma coisa. Passados alguns minutos, a pessoa sai do carro para terminar o abastecimento, mas quando encosta a mão no bico da bomba, o vapor se incendeia. Por quê?

Resposta Um carro em movimento é carregado eletricamente pelo contato dos pneus com o piso, que transporta

elétrons de uma superfície para a outra porque as forças de atração de uma superfície superam as forças de atração da outra. Vamos supor que os pneus arranquem elétrons do piso. Esses elétrons são transferidos através do eixo das rodas para a carroceria do carro, que pode acumular um potencial de 10.000 volts ou até mais. Quando você pára o carro, interrompendo a transferência de carga do piso para os pneus, a carga do carro começa a escoar para o piso através dos pneus. A velocidade dessa descarga, porém, depende do material usado nos pneus. Se os pneus forem reforçados com negro de fumo, que é um bom condutor de eletricidade, a descarga é rápida. Caso, porém, os pneus sejam reforçados com sílica, que é um material isolante, a descarga pode levar um bom tempo. Suponha que os pneus do seu carro tenham uma condutividade média e o carro leve mais de um minuto para descarregar. Suponha também que você saia do carro logo depois de parar e toque apenas em uma maçaneta de plástico (não-condutora) para abrir a porta. Quando você estende a mão para fechar a porta de metal, os elétrons do carro atravessam o ar em direção aos seus dedos, e daí se espalham pelo seu corpo ou passam para a terra. Assim, uma centelha salta entre o carro e você. Este é um método alternativo ao uso de café para acabar de acordar depois de dirigir de manhã para o trabalho ou para o colégio. Se você preferir o café, espere alguns minutos para que a carga se escoe ou feche a porta usando o pé ou o traseiro. Um objeto rombudo, tal como o seu traseiro, reduz a probabilidade de que as moléculas de ar se ionizem o suficiente para produzir uma centelha. Ao dirigir um carro, você pode permanecer eletricamente neutro se estiver em contato apenas com as peças de plástico (nãocondutoras) do interior do veículo. Mesmo assim, porém, você é carregado por indução. Em outras palavras, os elétrons móveis do seu corpo tendem a se afastar dos elétrons que se acumulam nas partes condutoras do carro à sua volta. Suponha que você passe por um pedágio enquanto está carregado dessa forma. Se você entregar o dinheiro ou o cartão de pedágio imediatamente para o atendente do pedágio (que está aterrado), pode saltar uma centelha entre você e o atendente, uma vez que elétrons móveis do seu corpo tentam se afastar uns dos outros. O centelhamento é improvável em dias úmidos, porque a umidade do ar neutraliza rapidamente a sua carga e a do carro. Entretanto, se o dia for seco, o atendente provavelmente vai esperar algumas dezenas de segundos antes de estender a mão para você, para permitir que a carga do carro se escoe e a carga induzida no seu corpo diminua. Por outro lado, se você ficou esperando em uma fila, é provável que as cargas já tenham desaparecido quando você chegar à cabine. Alguns incêndios em postos de gasolina foram causados pela entrada de gasolina no tanque do carro por causa de um erro de projeto da boca do tanque, mas esse erro já foi corrigido. O problema era que a gasolina ficava carregada ao passar por um cano ou tubo. A gasolina mais próxima das paredes do cano, em uma região chamada camada-limite, não se move. Quando o resto da gasolina passa pela camada-limite, elétrons são transferidos da camada-limite para a gasolina em movimento. Assim, a camada-limite fica com uma carga positiva e a gasolina entra no tanque de gasolina com uma carga negativa. Se o tanque for de plástico e, portanto, não condutor de eletricidade, essa carga negativa se acumula na superfície interna e repele os elétrons em qualquer parte próxima do carro que seja feita de material condutor. Esses elétrons repelidos se afastam do tanque e parte deles pode acabar nas proximidades da mangueira de gasolina. Se saltar uma centelha entre o carro e a mangueira, ela poderá inflamar o vapor de gasolina liberado durante o abastecimento. Para resolver o problema, as mangueiras modernas dispõem de um condutor que liga o carro à terra para que uma carga não possa se acumular no carro perto da mangueira. Uma pessoa pode ficar carregada em um carro, mesmo que o carro esteja parado, porque o contato entre a roupa da pessoa e o material do assento pode resultar em uma grande transferência de carga. Suponha que uma pessoa comece a abastecer o carro com a bomba no modo automático e, por algum motivo, entre de novo no carro. Depois de deslizar pelo assento do carro, a pessoa pode voltar para a bomba com muita carga. Se saltar uma centelha entre a pessoa e o bico da mangueira, ela pode inflamar o vapor de gasolina e dar início a um incêndio. Para não correr esse risco, a pessoa deve evitar entrar no carro de novo ou encostar a mão em um poste de metal, para neutralizar a carga, antes de segurar o bico da mangueira. Um carro de corrida pára nos boxes depois de correr a alta velocidade — portanto, depois de acumular muita carga por causa do atrito do pneu com o piso. A equipe precisa começar a abastecer o carro imediatamente, usando uma mangueira ou um recipiente de combustível. O processo produz vapores de combustível na entrada do tanque do carro. Para evitar um centelhamento, que poderia causar um incêndio, o carro é aterrado assim que pára (uma longa vara condutora é posta em contato com a estrutura metálica do carro) ou é equipado com pneus bons condutores de eletricidade, para que as cargas se escoem rapidamente. A segunda, porém, nem sempre é desejável, já que os pneus reforçados com negro de fumo, que conduzem bem a eletricidade, tendem a se desgastar mais depressa que os pneus reforçados com sílica, que não conduzem bem a eletricidade.

CURIOSIDADE

5.10 • Troca de chicletes chocante Eis uma história clássica, extraída de uma revista de física de 1953. A experiência descrita é perigosa: nem pense em repeti-la. Um professor estava dirigindo devagar quando um carro com dois amigos emparelhou com o dele. O amigo do lado do carona estendeu a mão (com o carro em movimento) para entregar uma caixa de chicletes ao professor. Quando a distância entre as mãos dos dois homens chegou a alguns centímetros, uma “terrível descarga” aconteceu, deixando-os desacordados por alguns instantes. Por sorte, o professor não colidiu com o segundo carro antes de recuperar os sentidos e o controle do carro. A centelha aconteceu porque o movimento dos dois carros carregou o professor e o amigo com quantidades diferentes de carga, talvez até de sinais opostos. Quando as mãos se aproximaram, elétrons de uma das mãos saltaram pelo ar para chegar à outra e assim reduzir a diferença entre as cargas.

5.11 • O perigo das partículas em suspensão no ar Por que uma centelha eletrostática é perigosa quando existe uma grande quantidade de partículas em suspensão no ar, como nas minas de carvão e nos moinhos de trigo?

Resposta Quando estão reunidas em um recipiente, partículas de pó em geral não pegam fogo; mas, quando flutuam no ar, cada partícula fica cercada de ar e, portanto, dispõe de um suprimento abundante de ar que a faz queimar rapidamente. Na verdade, depois que o processo de combustão se inicia em algum ponto da nuvem de pó, a energia térmica é transferida para o resto do pó (de uma partícula para outra) tão depressa que o pó explode — ou seja, uma quantidade enorme de energia é liberada de forma descontrolada, com um aumento brusco de temperatura e pressão. Em um silo de grãos, a explosão pode simplesmente destruir a estrutura; em uma mina de carvão, pode matar os mineiros. Apesar das precauções atuais, essas explosões ainda acontecem com freqüência. Em algumas situações, uma centelha de uma descarga elétrica pode desencadear a explosão se fornecer energia suficiente. A centelha pode ser produzida por um aparelho elétrico em mau estado de conservação, mas é mais provável que seja causada por uma centelha entre dois objetos carregados ou entre um objeto carregado e a terra. Assim, por exemplo, nos anos 1970, aconteceu uma explosão no pó de chocolate que era soprado em um cano de plástico para o interior de um silo. Quando as partículas de pó foram transferidas de sacos para o cano e quando entraram em contato umas com as outras e com a superfície interna do cano, adquiriram uma carga elétrica. Quando estavam sendo sopradas da saída do cano para o interior do silo, uma centelha saltou dos grãos para algum ponto do silo. A centelha pode ter começado nos grãos que ainda estavam no ar, enquanto caíam no monte que estava se formando no silo. Outra hipótese é de que tenha começado no vértice do cone formado pelo monte, enquanto os grãos escorregavam pelas encostas do monte. (Como o campo elétrico era mais forte no vértice ou nas proximidades do vértice, o centelhamento, no qual um campo elétrico intenso ioniza moléculas do ar, pode muito bem ter começado nessa região.) Na verdade, é provável que tivesse ocorrido centelhamento no silo em outras ocasiões, mas sem energia suficiente para inflamar as partículas de pó. A explosão aconteceu quando, por acaso, a energia de uma centelha (ou talvez a combinação de várias centelhas simultâneas) ultrapassou o valor mínimo necessário para que houvesse uma explosão. Os engenheiros não sabem como eliminar a eletricidade estática e o centelhamento nas indústrias que trabalham com pós. Em vez disso, tentam manter a energia das centelhas abaixo do valor mínimo necessário para causar uma explosão.

5.12 • O perigo das latas de aerossol Por que uma lata de aerossol pode ser transformar em um “lança-chamas” se o jato de pó ou de líquido entrar em contato com uma chama, como pode acontecer na cozinha? (Jamais use um spray perto do fogo, porque você pode acabar ateando fogo a si próprio e à sua casa.) Por que algumas latas de aerossol podem emitir chamas mesmo se o jato não entrar em contato com o fogo?

Resposta As partículas do aerossol podem ser inflamáveis e a alta velocidade com que são lançadas no ar pode transformar a lata em um lança-chamas. Se a lata contiver um pó seco, as partículas de pó e a própria lata podem ficar carregadas. Se a lata não estiver em contato com um bom condutor de eletricidade, tal como uma pessoa, a carga pode se acumular até que exista carga suficiente para que a lata e as partículas de pó emitam centelhas uma para a outra. Se essas centelhas fornecerem energia suficiente, o pó se incendeia. Entretanto, se a pessoa estiver segurando a lata com as mãos nuas, como é provável, boa parte da carga da lata passa para a pessoa e não resta carga suficiente na lata para produzir uma centelha.

5.13 • O perigo da água em suspensão Por que um forte campo elétrico pode se estabelecer no ar do banheiro quando tomamos um banho de chuveiro com a porta fechada? O que produz os fortes campos elétricos encontrados na vizinhança das quedas d’água? Antigamente, os tanques dos navios petroleiros eram limpos com água sob pressão. Por que essa prática às vezes fazia o navio explodir? Para tentar evitar essas explosões, bombeava-se um gás inerte para o interior do tanque antes de iniciar a limpeza. Por que os tanques continuaram a explodir?

Resposta Quando a água atinge uma superfície sólida e se dispersa no ar, como acontece no chão do boxe, as gotas ficam eletricamente carregadas: as gotas maiores em geral adquirem uma carga positiva (perdem elétrons) e as gotas menores adquirem uma carga negativa (ganham elétrons). Como as gotas maiores caem mais depressa, restam apenas as gotas menores, com carga negativa, flutuando no ar. Se o banheiro não for bem ventilado, o número de gotas de água carregadas presentes no ar pode aumentar continuamente e o campo elétrico resultante pode atingir valores elevados, mas essa situação não apresenta perigo algum em um banheiro ou perto de uma queda d’água. Durante a limpeza de um petroleiro, as gotas d’água ficam carregadas eletricamente ao deixarem a mangueira ou ao se chocarem com o piso ou as paredes do tanque, enchendo-o de uma névoa eletricamente carregada. Centelhas podem saltar entre essas partículas carregadas levadas pelo ar e as paredes do tanque, o bico da mangueira ou um ponto aterrado. Se o tanque ainda contiver vapores de petróleo, as centelhas podem inflamar o gás, fazendo-o explodir. Uma tentativa de resolver o problema foi bombear um gás inerte para o tanque antes da limpeza, reduzindo assim o suprimento de oxigênio. Entretanto, o método não funcionou de início porque o gerador que fornecia o gás provocava uma separação de cargas (o gás ficava eletricamente carregado). Até a falha ser descoberta e corrigida, os tanques continuaram a explodir durante a limpeza.

5.14 • Esqui luminoso O que causa a luminosidade dos esquis que é observada às vezes por esquiadores noturnos?

Resposta Quando um esqui repousa sobre a neve, ocorre uma transferência de cargas entre o esqui e a neve. O mecanismo de transferência é chamado eletrificação por contato ou triboeletrificação. Embora o mecanismo seja complicado, podemos simplesmente dizer que os elétrons (as partículas que estão livres para se mover) são arrancados (transferidos) de uma superfície para outra. Vamos supor que o esqui não seja feito de metal e não contenha grampos de metal. Nesse caso, quando a carga se acumula na parte inferior do esqui por causa da transferência de elétrons, o material do esqui fica eletricamente polarizado, ou seja, as cargas positivas e negativas das moléculas ficam ligeiramente separadas. O resultado é a formação de um campo elétrico entre as duas superfícies, que adquirem cargas opostas. Assim, por exemplo, se o esqui arranca elétrons da neve, a superfície inferior do esqui adquire uma carga negativa e a superfície superior adquire uma carga positiva. (O esqui torna-se um capacitor.) Quando um esqui desliza sobre a neve, esse efeito de carregamento é muito mais forte e muitas pequenas centelhas podem saltar entre a neve e a superfície superior ou inferior do esqui. À noite, com olhos adaptados à escuridão, um esquiador pode ver algumas dessas centelhas.

5.15 • O desastre do Hindenburg Orgulho da Alemanha e admirado por todos, o dirigível Hindenburg, com 245 metros de comprimento, era a maior máquina voadora jamais construída. Embora fosse sustentado por 16 células de hidrogênio, um gás altamente inflamável, realizou muitas viagens transatlânticas sem qualquer problema. Na verdade, embora todos os dirigíveis alemães usassem hidrogênio, nunca tinha havido um acidente envolvendo o gás. Entretanto, em 6 de maio de 1937, quando o Hindenburg se preparava para pousar na estação aeronaval americana de Lakehurst, em Nova Jersey, a aeronave se incendiou. A tripulação havia esperado até que uma tempestade elétrica deixasse parcialmente a área e cabos de amarração acabavam de ser lançados do dirigível para uma equipe de terra da Marinha quando foram observadas ondulações no terço posterior do revestimento externo da aeronave. Segundos depois, uma chama irrompeu nessa região e uma luz vermelha iluminou o interior da aeronave. Em cerca de 30 segundos, o dirigível em chamas caiu no solo, matando 36 pessoas e queimando muitas outras. Por que, depois de tantos vôos seguros de dirigíveis carregados de hidrogênio, esse dirigível pegou fogo?

Resposta Quando os cabos de amarração foram lançados pela tripulação do Hindenburg para a equipe de terra,

ficaram molhados de chuva e se tornaram bons condutores de corrente elétrica. Eles aterraram a armação metálica do dirigível, à qual estavam amarrados, ou seja, formaram um caminho condutor, entre a armação e a terra, que tornou o potencial elétrico da armação igual ao da terra. Com isso, o revestimento externo do dirigível, feito de tecido, também deveria ter sido aterrado, se não fosse pelo fato de que o Hindenburg era o primeiro dirigível a ter um revestimento selado com várias camadas diferentes de grande resistência elétrica (ou seja, que praticamente não conduziam corrente elétrica). Assim, o revestimento permaneceu com o potencial elétrico da atmosfera na altura em que se encontrava o dirigível, cerca de 43 metros. Por causa da tempestade elétrica, esse potencial era elevado em relação à terra. Esta situação era perigosa: o revestimento estava a um potencial muito diferente da armação do dirigível. Ao que parece, a carga saltou do revestimento molhado para a armação metálica do dirigível, produzindo centelhas. Existem duas razões pelas quais o centelhamento pode ter causado um incêndio. Uma delas é que a centelha pode ter ateado fogo às camadas de vedação. A outra é que um cabo de amarração pode ter rompido uma das células de hidrogênio, liberando hidrogênio entre essa célula e o revestimento externo do dirigível. (A ondulação do revestimento, observada por algumas testemunhas do acidente, parece confirmar esta hipótese.) Em seguida, o centelhamento inflamou o hidrogênio. Seja como for, o fogo consumiu rapidamente o hidrogênio das células e derrubou a aeronave. Se o material de vedação do revestimento externo do Hindenburg fosse feito de material condutor (tal como em modelos mais antigos e mais recentes), é provável que o desastre do Hindenburg não tivesse acontecido.

5.16 • Incêndios em macas de hospital Freqüentemente, uma vítima de queimaduras é tratada enquanto está deitada numa maca, numa câmara com ar enriquecido em oxigênio. Concluída a sessão de tratamento, um enfermeiro puxa a maca com o paciente para fora da câmara e o coloca em um carrinho. Em pelo menos duas ocasiões, a maca pegou fogo na extremidade que deixou a câmara por último. Ter um paciente que já sofreu queimaduras numa maca em chamas é uma situação muito desagradável; além disso, é claro, os materiais queimam com mais facilidade em um ar rico em oxigênio. A grande dúvida é a seguinte: o que fez as macas pegarem fogo?

Resposta Os investigadores logo perceberam que havia uma separação de cargas entre o paciente e a maca. Vamos supor que o paciente tenha perdido elétrons para a maca, que ficou com uma carga negativa. Parte dos elétrons da armação de metal da câmara, que sustentava a maca, foi repelida, deixando a parte de cima da armação com uma carga positiva. Esse arranjo de uma maca com uma carga negativa e uma armação com uma carga positiva ficou semelhante ao de um capacitor, o dispositivo usado para armazenar cargas elétricas nos circuitos. Uma centelha entre a maca e a armação poderia incendiar a maca? Aparentemente, a resposta é negativa, por duas razões: (1) o campo elétrico era insuficiente para ionizar o ar (remover elétrons dos átomos para que houvesse um caminho condutor ao longo do qual os elétrons da maca pudessem passar para a armação); (2) a energia associada às cargas era insuficiente para causar um incêndio. A situação, porém, mudou quando a maca começou a ser retirada da câmara, já que a carga da maca foi concentrada em uma área cada vez menor para permanecer nas proximidades da carga da armação. Essa concentração de carga aumentou o campo elétrico e a energia associada até que surgiu uma centelha entre a maca e a armação, com energia suficiente para inflamar a maca.

5.17 • Fagulhas produzidas ao se descolar uma fita adesiva Depois de acostumar os olhos à escuridão por cerca de 15 minutos, descole uma fita adesiva do rolo com um movimento contínuo. O que produz uma luz fraca no lugar em que a fita está se descolando do rolo? Se você puxa a fita perto da antena de um receptor de rádio sintonizado para uma freqüência não utilizada, por que o descolamento produz um ruído no rádio? Por que uma umidade elevada pode eliminar tanto a luz como o ruído no rádio?

Resposta Quando o adesivo da fita se desprende da fita que ainda está no rolo, partículas carregadas (íons positivos e elétrons) se acumulam em pequenas regiões das duas superfícies. Essas regiões tendem a se neutralizar mutuamente, através de centelhas, antes que as superfícies se afastem demais. Como existe ar no espaço entre as duas superfícies, as centelhas saltam através do ar. As centelhas são compostas principalmente de elétrons e o ar é composto principalmente de moléculas de nitrogênio. Ao saltar de uma região negativa para uma região positiva, os elétrons colidem com moléculas de nitrogênio, excitando-as. As moléculas voltam quase imediatamente ao estado não-excitado emitindo luz na extremidade azul do espectro visível (além de emitirem luz ultravioleta). A luz fraca que é observada na linha de

descolamento é a combinação da luz emitida pelas moléculas de nitrogênio ao perderem a excitação com a luz das centelhas. As centelhas também emitem ondas da faixa de radiofreqüências. Assim, quando a fita é descolada perto de uma antena de rádio, a antena capta essas emissões. A intensidade do ruído no rádio é aproximadamente proporcional à intensidade da luz visível. Quando o ar está muito úmido, o vapor d’água neutraliza as regiões carregadas da fita, eliminando as centelhas. Na época em que todas as fotografias eram tiradas com filmes, o centelhamento era um problema sério na hora de revelar os filmes. Quando um filme era desenrolado ou passava sobre rolos, produzia centelhas quando as superfícies se separavam. As centelhas ficavam gravadas no filme e podiam ser vistas quando o filme era revelado (o que não é exatamente o que as pessoas desejam em uma fotografia de família).

5.18 • Salsa, sálvia, alecrim e tomilho Se uma fita adesiva for descolada de uma superfície de plástico e uma mistura de dois pós for soprada de leve por cima da superfície em que se encontrava a fita, por que os dois tipos de pó se separam, com um deles se acumulando em algumas regiões e o outro se acumulando em outras? Uma mistura de pós soprada de leve também pode revelar alguma coisa a respeito de uma centelha como a que é produzida quando uma pessoa caminha em certos carpetes e aproxima o dedo de um objeto de metal ou de um encanamento. Para isso, prende-se uma folha de poliéster em um armário de metal com fita adesiva. Em seguida, uma pessoa caminha em um carpete para ficar carregada (nem todos os carpetes têm essa propriedade e o excesso de umidade no ar pode comprometer o experimento). Se a pessoa eletricamente carregada aproximar do plástico a ponta do dedo (ou uma chave de metal que leva na mão), uma centelha salta de repente no ar. Por que o sentido do movimento dos elétrons na centelha é revelado quando sopramos de leve uma mistura de dois pós sobre o plástico? Os pós podem ser, por exemplo, ervas finas e tôner de copiadora. (Cuidado: os pós podem sujar a casa e estragar roupas e computadores.) O uso de pós de cores diferentes torna a separação mais evidente. Os pós são colocados em um recipiente flexível junto com parafusos de metal e o recipiente é sacudido com força para que os parafusos misturem os pós. Se o recipiente tem um bico, basta apertar o recipiente para que a mistura de pós seja soprada sobre a superfície do plástico. Se não houver um recipiente flexível à mão, você pode deixar cair a mistura de pós a uma certa distância da superfície, para que a mistura tenha tempo de se acomodar; em seguida, incline a superfície e bata de leve para remover o excesso de pó.

Resposta Quando certos pós são sacudidos juntos, o contato entre partículas diferentes causa uma separação de cargas, ou seja, as partículas de um tipo ganham elétrons à custa das partículas do outro tipo. Quando a fita adesiva é descolada de uma superfície não-condutora, deixa regiões de carga negativa e regiões de carga positiva. A carga logo diminui por causa da umidade do ar. (A carga também diminui se a “superfície não-condutora” na verdade conduz um pouco de eletricidade.) Entretanto, se a mistura de pós for soprada de leve sobre a superfície para que as partículas sejam atraídas pelas regiões carregadas, as partículas negativas se acumulam nas regiões positivas e as partículas positivas se acumulam nas regiões negativas. Se os pós forem de cores diferentes (tais como tôner preto e canela marrom), as regiões podem ser vistas com facilidade. Algumas misturas de pós funcionam melhor que outras. Assim, por exemplo, pimentão em pó e tôner de copiadora funcionam bem juntos, mas pimentão e farinha se atraem com tanta força que praticamente ignoram os trechos carregados da superfície e se depositam uniformemente. Quando salta uma centelha entre a ponta do dedo e uma folha de plástico que está presa a uma superfície condutora (como uma estante de metal, por exemplo), o movimento das cargas deixa regiões carregadas no plástico, pelo menos até que a umidade do ar neutralize essas regiões. Se uma mistura de cominho e pó de tôner for soprada de leve sobre o plástico, revela um de dois tipos gerais de padrões, chamados figuras de Lichtenberg em homenagem a George Christoph Lichtenberg, que os descobriu em 1777. Se a pessoa ficou com uma carga negativa ao caminhar no carpete e, portanto, tem um excesso de elétrons, os elétrons saltam da ponta do dedo para o plástico e produzem uma mancha circular de carga negativa no plástico, com o centro no local em que aconteceu a centelha (linhas radiais finas podem ser visíveis). Se, em vez disso, a pessoa estiver com uma carga positiva e, portanto, com falta de elétrons, elétrons são arrancados dos átomos do plástico, convergem para o local em que aconteceu a centelha e saltam desse local para a ponta do dedo. As trajetórias dos elétrons no plástico ficam com carga positiva. Assim, se a figura revelada pelo pó no plástico tem forma circular, isto indica que a pessoa estava com uma carga negativa; se a figura mostra muitas linhas convergindo para um ponto, isto indica que a pessoa estava com uma carga positiva. Algumas vítimas de

raios apresentam queimaduras na pele que lembram as figuras de Lichtenberg. Algumas lojas especializadas em materiais científicos vendem belas figuras de Lichtenberg em pequenos cilindros ou placas de plexiglás. Para se produzir o desenho, submete-se uma peça de plexiglás ao feixe de um acelerador de elétrons (aparelho que acelera eletricamente os elétrons até que atinjam uma alta velocidade); os elétrons penetram no plástico e ficam retidos em seu interior. O plástico é imediatamente colocado sobre uma placa aterrada enquanto um condutor pontiagudo é pressionado no lado oposto da peça. A alta concentração de elétrons no interior do plexiglás produz um campo elétrico intenso, especialmente na região do condutor pontiagudo, onde ocorre uma centelha. A temperatura elevada produzida pela centelha carboniza o plexiglás ao longo do caminho da centelha, criando um caminho condutor. O campo elétrico parte desse caminho e se estende ao resto do material. Novas centelhas ocorrem ao longo dessas novas linhas de campo elétrico, o que produz mais caminhos carbonizados, até que todos os elétrons deixados pelo acelerador são atraídos para o condutor pontiagudo. O conjunto de caminhos carbonizados forma uma estrutura ramificada, que lembra os galhos de uma árvore, no interior da peça de plástico.

5.19 • Luz emitida por uma pastilha em um quarto escuro Chame um amigo e, juntos, adaptem os olhos ao escuro por uns 15 minutos em uma sala com a luz apagada ou fora de casa em uma noite sem lua. Peça a ele que mastigue uma pastilha de gaultéria (wintergreen*, em inglês) com a boca bem aberta, para que você possa ver o interior. Por que as primeiras mordidas produzem clarões azuis e por que, depois de certo tempo, as mordidas não produzem mais luz? (Se o seu amigo não gostar de balas, quebre a pastilha com um alicate.) Por que a água tônica tem uma leve coloração azulada?

Resposta Toda vez que uma mordida quebra em pedaços um dos cristais de açúcar da pastilha, os pedaços provavelmente acabam com cargas diferentes. Suponha que um cristal tenha se partido em dois pedaços, A e B, sendo que A possui uma carga negativa e B uma carga positiva (Fig. 5-3). Alguns elétrons de A são atraídos para o pedaço B. Como o espaço entre os dois pedaços foi ocupado pelo ar depois que o cristal quebrou, os elétrons saltam através do ar. Os elétrons que colidem com moléculas de nitrogênio no ar transferem energia para as moléculas, excitandoas. Quando as moléculas voltam ao estado não-excitado, emitem radiação ultravioleta, que é invisível. Entretanto, as moléculas de gaultéria na superfície dos pedaços da pastilha absorvem a luz ultravioleta e emitem uma luz visível: é a luz azul que sai da boca do seu amigo. Esse processo, em que uma substância absorve uma radiação com um certo comprimento de onda (correspondente ao ultravioleta, no caso) e emite radiação com um comprimento de onda maior (correspondente à cor azul, no caso), é chamado fluorescência.

Figura 5-3 / Item 5.19 Dois pedaços de LifeSaver no momento da separação. Os elétrons que saltam da superfície negativa do pedaço A para a superfície positiva do pedaço B colidem com moléculas de nitrogênio (N2) existentes no ar.

O quinino da água tônica é como o óleo de gaultéria, pois absorve luz ultravioleta e emite luz azul, o que confere à água tônica uma leve coloração azulada. Você consegue observar melhor essa coloração quando a água tônica está perto de uma lâmpada fluorescente em um ambiente pouco iluminado. Nesse caso, o quinino converte parte da luz ultravioleta da lâmpada em luz azul. O efeito é menor se a luz passar através de plástico ou de vidro, como acontece com uma garrafa de água tônica, porque o plástico e o vidro absorvem luz ultravioleta. O efeito aumenta se você iluminar a água tônica com uma lâmpada de luz negra (ultravioleta).

5.20 • Luzes de terremoto

De acordo com os relatos, alguns terremotos deixaram vermelho o céu noturno ou foram acompanhados pelo aparecimento de manchas luminosas na terra ou por objetos luminosos se movendo no ar. O que poderia causar essas luzes, chamadas em conjunto de luzes de terremoto?

Resposta As luzes de terremoto ainda são altamente polêmicas, apesar de centenas de relatos e algumas fotografias confiáveis. Existe mais de um tipo de luz e pode haver mais de uma causa. Das muitas explicações que já foram propostas, vou citar apenas duas: (1) pode haver emissão de luz quando a pedra é submetida a uma tensão suficiente para fraturar; a ruptura produz poeira, gás e elétrons livres. É possível que os elétrons excitem as moléculas do ar, fazendo-as emitir luz. (2) O movimento do terremoto pode liberar gases inflamáveis acumulados no subsolo e as luzes são as produzidas quando esses gases são inflamados, possivelmente por centelhas entre superfícies ou partículas carregadas.

5.21 • O fogo-de-santelmo e a luz nos Andes O que causa as centelhas elétricas que são às vezes observadas no alto do mastro dos navios e nas extremidades de outros objetos pontiagudos? Esse fenômeno é chamado fogo-de-santelmo, ou efeito coroa. O que causa a luz que é vista à noite, muito raramente, nos picos distantes dos Andes?

Resposta O fogo-de-santelmo deve-se à ruptura elétrica do ar nas proximidades de objetos pontiagudos e condutores, tais como o mastro de um navio, uma antena ou a asa de um avião. Quando o campo elétrico no ar é mais intenso que o normal, pode atingir valores muito elevados na ponta de um objeto condutor, onde se acumulam as cargas do objeto. Se a intensidade do campo elétrico no ar próximo à ponta excede um valor crítico, o campo começa a arrancar elétrons das moléculas do ar e acelerá-las. Quando esses elétrons colidem com as moléculas de ar, excitam as moléculas e também aumentam a sua velocidade. A volta das moléculas ao estado não-excitado é responsável para produção da luz. O fato de as moléculas se moverem mais depressa significa que a temperatura do ar aumentou, o que pode levar ao chiado ou assobio que às vezes acompanha a descarga. O fogo-de-santelmo não é considerado perigoso. Não se sabe o que causa a luz dos Andes e as observações são muito raras. Não vejo como poderia ser um caso de fogo-desantelmo, porque o observador precisa estar relativamente próximo para ver a luz produzida por descargas tão pequenas. É mais provável que se trate de descargas em maior escala produzidas pela neve ao ser arrastada pelo vento no alto das montanhas.

5.22 • Linhas de alta tensão Por que a energia elétrica é transmitida em alta tensão e baixa corrente em vez de alta corrente e baixa tensão? (Como a energia é o produto da tensão pela corrente, a energia pode ser a mesma nas duas situações.) Por que a transmissão é feita por corrente alternada (cuja intensidade e cujo sentido variam) em vez de corrente contínua (cuja intensidade e cujo sentido não variam)? Quando uma linha de transmissão de alta tensão precisa de reparos, a empresa de energia elétrica não pode simplesmente desligá-la, deixando talvez uma cidade inteira às escuras. Os reparos precisam ser executados com a linha eletricamente “quente”, ou seja, ainda funcionando. Para consertar a linha, é usado um helicóptero, que se aproxima da linha de alta tensão com um técnico sentado em uma plataforma presa no trem de pouso do helicóptero. Por que o técnico não é eletrocutado no momento em que toca na linha para consertá-la? Em algumas regiões, linhas de alta tensão constituem uma séria ameaça para as aves. Obviamente, as aves podem ser feridas ou mortas se voarem diretamente de encontro a uma linha. Qual é o perigo que correm, porém, ao pousarem em uma linha ou na torre que sustenta a linha?

Resposta Quando eletricidade passa por uma linha de transmissão, parte da energia elétrica é transformada em energia térmica quando os elétrons (responsáveis pela corrente) colidem com átomos e moléculas da linha. A quantidade de energia elétrica perdida dessa maneira é igual ao produto da resistência da linha pelo quadrado da corrente. Assim, para reduzir as perdas, a energia elétrica é transmitida com baixa corrente. Para atender a uma certa demanda de energia, a tensão precisa ser alta, 765.000 volts, por exemplo. No ponto em que a energia é distribuída para as residências, um transformador converte a eletricidade em uma tensão mais baixa (que é mais segura) e uma corrente mais alta (que pode ser limitada por disjuntores e fusíveis). As primeiras linhas de transmissão dos Estados Unidos eram de corrente contínua e foram instaladas pela empresa de Thomas Edison. Mais tarde, um sistema de corrente alternada foi implantado por George Westinghouse. A competição entre os

dois foi bem acirrada, cada qual tentando demonstrar que seu método de transmissão era mais seguro. Representantes da empresa de Edison realizaram várias demonstrações públicas em que eletrocutaram cães sem a menor cerimônia para ilustrar os perigos da corrente alternada. Apesar disso, Westinghouse acabou vencendo a competição, em grande parte por uma razão de ordem prática. Ele era capaz de transmitir a eletricidade em alta tensão e usar transformadores para alimentar as casas com eletricidade de baixa tensão. Edison, por outro lado, não podia transmitir em alta tensão e, portanto, precisaria construir uma usina elétrica a cada quatro ou cinco quilômetros, o que obviamente não era viável. Quando um técnico se aproxima de uma linha de alta tensão “quente” para consertá-la, o campo elétrico que envolve a linha leva o corpo do técnico aproximadamente para o potencial elétrico da linha. Para igualar os dois potenciais, o técnico encosta na linha um bastão condutor; entre a linha e a extremidade do bastão, salta uma centelha que pode deixar o braço do técnico dormente por alguns momentos. Para não ser eletrocutado, o técnico precisa ficar isolado de tudo o que esteja ligado eletricamente à terra. Para garantir que o corpo permaneça a um único potencial (o da linha que está sendo consertada), o técnico usa uma roupa, um capuz e luvas condutoras, todos eletricamente ligados à linha por meio do bastão. Uma ave pode pousar em uma linha de alta tensão sem ser eletrocutada porque sua resistência à corrente é maior que a resistência do trecho da linha entre seus pés. Entretanto, se uma ave grande pousa na linha nas proximidades da parte aterrada de uma torre, pode fazê-la entrar em curto-circuito através de uma descarga de alta tensão: a corrente deixa a linha e vai para a terra através da ave, matando-a. Embora esse tipo de descarga de alta tensão seja uma possibilidade, um tipo mais provável de curto-circuito envolve dejetos de aves (a mistura de urina e fezes expelida pelas aves). Se uma ave pousa em uma parte da torre ligada à terra, tal como a viga transversal na qual a linha está pendurada, qualquer dejeto líquido pode conectar eletricamente a ave à linha, provocando uma descarga de alta tensão. Os dejetos podem causar problemas, mesmo que não sejam particularmente fluidos pelo fato de poderem se acumular com o tempo. Nesse caso, por causa da chuva ou do derretimento de neve ou gelo, um filete de água pode conectar eletricamente os dejetos à linha. Essas ligações elétricas já são um problema se houver neve e gelo abundantes, mas os dejetos das aves agravam o problema porque a capacidade da água de conduzir eletricidade aumenta quando ela contém os íons dos dejetos em solução.

5.23 • Corrente, tensão e pessoas Qual dos dois pode ferir ou matar as pessoas: corrente ou potencial elétrico (tensão)? De que maneira a pessoa se fere? Por que é perigoso trabalhar com aparelhos elétricos em pisos molhados, algo que somos aconselhados a evitar?

Resposta O que afeta o corpo humano é a passagem de corrente (elétrons) através do corpo. O potencial elétrico determina a corrente que pode atravessar o corpo e pode estar relacionado à energia disponível ou à força que faz os elétrons se moverem. Nos Estados Unidos, por exemplo, se uma mão encosta em um fio doméstico vivo (eletrificado) enquanto a outra encosta em um fio aterrado (eletricamente ligado à terra), a diferença de potencial entre as duas mãos é 110 volts, o que pode produzir uma corrente entre as duas mãos. Entretanto, a intensidade da corrente depende também da resistência elétrica que o corpo oferece à corrente. Em geral, a resistência deve-se principalmente à pele, e a pele seca tem uma alta resistência. Assim, quando um eletricista “agarra” sem querer 110 volts entre as mãos, a alta resistência da pele pode manter a corrente abaixo de uma intensidade letal. Por outro lado, quando a pele está molhada, possui feridas abertas ou está coberta com um gel condutor, a corrente encontra pouca resistência e uma intensidade de corrente perigosa pode passar pelo corpo. Do mesmo modo, se uma pessoa está de pé em um piso molhado e encosta em um fio vivo (ou em um aparelho elétrico não ligado à terra), uma intensidade perigosa de corrente pode passar da mão para os pés. Embora a reação a uma corrente que passa pelo corpo seja diferente de acordo com a pessoa, o sexo e o fato de se tratar de corrente contínua ou corrente alternada, eis algumas reações genéricas: Correntes de menos de 0,001 ampère: nenhuma percepção 0,001 ampère: formigamento ou sensação de calor 0,001 a 0,010 ampère: espasmo muscular e dor 0,10 a 0,50 ampère: fibrilação ventricular 0,50 a alguns ampères: o coração pára mas pode voltar a bater se a corrente cessar Mais do que alguns ampères: o coração pára, a respiração cessa e ocorrem queimaduras

Quando a corrente causa apenas espasmos musculares, a contração inicial pode ser apenas dolorosa. Se a vítima, porém, não consegue se soltar da fonte de corrente, a resistência do corpo pode diminuir aos poucos, o que permite que uma corrente cada vez maior passe pelo corpo e aumenta tanto a dor como o risco. Se alguém tenta salvar a vítima puxando-a para longe da fonte, essa pessoa pode acabar também com espasmos musculares e ficar “colada” na primeira vítima, enfrentando o mesmo aumento gradual de corrente. Se o coração entra em fibrilação ventricular, suas contrações e dilatações desordenadas e aleatórias impedem que o sangue seja bombeado, com conseqüências nefastas para o cérebro. É urgente a presença de uma equipe de resgate com um desfibrilador. Se a corrente faz o coração parar, o que na verdade é o que o desfibrilador faz, o coração pode voltar a bater sozinho. Entretanto, a respiração, que é interrompida pela contração dos músculos torácicos, pode não voltar por conta própria. Nesse caso, a vítima precisa de respiração boca-a-boca para voltar a respirar antes que a falta de oxigênio cause lesões cerebrais. As queimaduras são causadas por colisões de elétrons (que constituem a corrente) com os átomos e moléculas do corpo. Quando são externas, as queimaduras podem ser curadas, mas queimaduras internas são difíceis de tratar.

CURIOSIDADE 5.24 • Um protesto infeliz Um dia, tarde da noite, o Dr. Milton Helpern, médico-legista da cidade de Nova York, recebeu um telefonema a respeito de uma família que estava muito chocada: um de seus membros havia morrido naquela noite na estação de metrô de Nova York, aparentemente saltando da plataforma para os trilhos. Nesse sistema, o terceiro trilho é “quente” e fornece energia aos trens do metrô. Ao que tudo indicava, a vítima tinha sido eletrocutada ao se colocar entre o terceiro trilho e pelo menos um dos outros dois, o que aterrou o terceiro trilho e permitiu a passagem de uma grande corrente elétrica pelo seu corpo. A pedido da família, o Dr. Helpern realizou a autópsia da vítima, mas não encontrou sinais de derrame ou ataque cardíaco que indicassem que a vítima teria caído nos trilhos por acidente. Encontrou, porém, curiosas queimaduras no polegar e no indicador, bem como nas partes íntimas da vítima. O Dr. Helpern começou a investigar o histórico do homem e descobriu que a vítima ficava agressiva quando bebia. Para extravasar a agressividade, muitas vezes urinava em público. O Dr. Helpern concluiu que o último ato de agressividade da vítima tinha sido urinar nos trilhos, sem se dar conta de que a urina é um bom condutor de eletricidade. A corrente elétrica que atravessou a vítima deixou queimaduras no polegar, no indicador e nas partes íntimas do seu corpo.

5.25 • Uso de correntes elétricas em cirurgias A eletrocirurgia é um procedimento médico no qual uma sonda condutora fina aplica uma corrente alternada de alta freqüência em um paciente. Isso possibilita ao cirurgião fazer uma incisão enquanto ao mesmo tempo coagula os vasos sangüíneos expostos (aquecendo-os) para que não ocorram sangramentos desnecessários. O eletrodo (bem como a região da incisão) precisa fazer parte de um circuito fechado para que haja corrente. Em um dos tipos de procedimento, o circuito é formado pela sonda, pelo paciente e por um eletrodo colocado sob o paciente. Quando o procedimento começou a ser usado, alguns pacientes sofreram queimaduras graves. Você é capaz de explicar a razão, que pode ser óbvia? Qual é o perigo quando o eletrodo é aplicado a um órgão por um pedúnculo estreito, como acontece quando a eletrocirurgia é usada para se executar uma circuncisão?

Resposta A corrente é concentrada intencionalmente no ponto de uma incisão, mas deve ter a liberdade de se espalhar por uma região muito maior quando o eletrodo está colocando debaixo do paciente. Se não for assim, a corrente irá queimar o corpo no ponto de contato com o eletrodo. Assim, o eletrodo colocado debaixo do paciente deve ser largo (para espalhar a corrente) e ajustado de modo a fazer um bom contato com o corpo inteiro e não apenas com alguns lugares, ou contato apenas perto de regiões ósseas em que a corrente pode ficar concentrada. Quando o procedimento começou a ser adotado, essas precauções de segurança não eram tomadas e os pacientes podiam sofrer graves queimaduras. Quando o eletrodo é aplicado a um órgão que possui um pedúnculo, a corrente tende a se acumular na base do pedúnculo, situação conhecida como concentração de corrente. Com isso, a base do pedúnculo pode esquentar rapidamente e ser destruída, o que aconteceu em várias operações desastrosas antes que o perigo de concentração de corrente fosse reconhecido.

5.26 • Incêndios e explosões durante cirurgias As equipes cirúrgicas tomam o máximo de cuidado para evitar que aconteçam incêndios e explosões nas proximidades ou no interior de um paciente que está sendo submetido a uma operação. Antes dos anos 1950, os anestésicos inflamáveis que eram usados rotineiramente representavam um sério risco. Desde então, a freqüência de incêndios e explosões diminuiu, mas o problema não foi erradicado. Eis dois exemplos bem recentes: Traqueostomia: quando um homem muito gordo foi submetido a uma cirurgia para corrigir uma apnéia obstrutiva do sono (obstrução da entrada de ar associada a roncos), foi realizada uma traqueostomia para fornecer oxigênio ao paciente através de uma incisão no pescoço. Nesse procedimento, é feita uma incisão na traquéia e um tubo (o tubo endotraqueal) é inserido para transportar oxigênio a 100% para o paciente. Entretanto, a espessa camada de gordura do pescoço do homem dificultou a traqueostomia e o homem começou a perder muito sangue. Os médicos decidiram estancar a hemorragia em um dos vasos por eletrocoagulação, processo no qual se aplica uma corrente alternada de alta freqüência para aquecer o vaso. A região próxima à incisão pegou fogo imediatamente, produzindo no pescoço uma chama de meio metro de altura. A chama foi abafada com panos cirúrgicos e apagada com soro fisiológico. O que causou a chama? Retirada de pólipos: na colonoscopia, um colonoscópio é introduzido através do reto para procurar pólipos no cólon e retirálos. Quando um pólipo é encontrado, é laçado e aquecido por uma corrente que passa pelo laço até que se desprenda. O ponto de ligação com a parede do cólon é cauterizado com uma corrente elétrica para estancar a hemorragia. Durante a fase de cauterização de uma dessas operações de rotina, houve uma explosão ruidosa e surgiu uma chama azul de quase um metro na extremidade livre do colonoscópio. O paciente deu um grito e tentou se levantar. Qual foi a causa da explosão?

Resposta Traqueostomia: a corrente elétrica usada na eletrocoagulação esquentou a gordura que existia em abundância perto do local da incisão, que estava imersa em oxigênio a 100%, fazendo-a incendiar-se. Em outros casos em que aconteceram incêndios em traqueostomias ou outros procedimentos cirúrgicos envolvendo a boca, o nariz ou a garganta, um dispositivo de aquecimento elétrico ou um laser inflamou seções de plástico usadas na operação. (O plástico queima com facilidade quando está em uma atmosfera de 100% de oxigênio.) Retirada de pólipos: o sistema gastrintestinal humano produz hidrogênio e gás metano, que são inflamáveis e explosivos. Assim, por exemplo, 40% do gás no intestino grosso podem ser hidrogênio e metano. Como sabem muitos jovens, o gás expelido pelos intestinos é inflamável, o que dá margem a uma brincadeira divertida. Se a cauterização elétrica for realizada em uma atmosfera de hidrogênio, metano e oxigênio, o aquecimento (ou centelhamento) pode provocar a explosão dos gases e causar queimaduras e rupturas nos intestinos. Assim, todo procedimento cirúrgico desse tipo é realizado com os intestinos vazios; para isso, o paciente deve jejuar por um período que pode chegar a um dia. Em caso de dúvida, o cirurgião pode limpar o intestino com um gás não-inflamável antes da operação. Gases inflamáveis também podem ser produzidos no estômago quando ele não se esvazia de modo adequado (a válvula pilórica é estreita demais, uma doença grave chamada estenose pilórica). Para aliviar parte da pressão produzida pelo gás no estômago, a pessoa pode arrotar. Em um caso documentado, um homem acendeu um cigarro logo depois de um arroto: o cigarro saiu voando de sua boca como um foguete e os lábios e dedos do homem ficaram queimados. Em outro caso, um homem estava inclinado sobre uma mesa para acender o cigarro no isqueiro de outra pessoa. O arroto saiu pelo nariz, o que o fez soltar fogo pelas narinas, como um dragão medieval cuspidor. Em outro caso, o cirurgião abriu o estômago do paciente usando um bisturi elétrico em vez de um bisturi comum. O centelhamento do bisturi alcançou o gás interno, que se inflamou e queimou com uma chama azul intensa por cerca de 10 segundos.

5.27 • Bateria de limão; formigamento em obturações Uma bateria primitiva mas interessante pode ser criada introduzindo-se um terminal de zinco (prego galvanizado) em um limão e enfiando uma moeda de cobre em um corte feito na casca do limão. A diferença de potencial entre o terminal e a moeda é cerca de 1 volt. Quando várias baterias de limão são ligadas em série (uma após a outra) a uma lâmpada pequena, a lâmpada acende, embora emita uma luz fraca. Se também forem ligadas a um capacitor, a carga que elas geram pode ser armazenada no capacitor e depois aplicada a um flash para dispará-lo. Como uma bateria de limão pode produzir uma corrente elétrica e uma diferença de potencial? O limão pode ser substituído por outros alimentos? Você talvez tenha observado semelhantes produção de corrente e diferença de potencial se possui obturações de metal e se, por alguma razão, mastigou uma folha de alumínio. O que causa o formigamento que você sentiu no dente e na gengiva? Cobrir sobras de comida com uma folha de alumínio é uma prática comum na cozinha. Entretanto, se o alimento estiver em um recipiente de aço inoxidável e a folha de alumínio encostar no alimento, a folha pode se dissolver nos pontos de contato e misturar-se ao alimento. Por que isso acontece?

Resposta Os átomos de um material têm tendência a receber ou ceder elétrons aos átomos vizinhos de um material diferente. Quando um prego galvanizado é espetado em um limão, o zinco do prego tende a perder elétrons para formar íons positivos de zinco, e existe um potencial elétrico associado a essa tendência. Perto da moeda de cobre, no interior do limão, os íons de hidrogênio do sumo do limão tendem a ganhar elétrons para se tornarem átomos de hidrogênio neutros e também existe um potencial elétrico associado a essa tendência. Se o prego for ligado eletricamente à moeda por um fio, os elétrons perdidos pelo zinco para o prego podem se mover através do fio até a moeda, para serem recebidos pelos íons de hidrogênio. Assim, essa bateria de limão pode produzir uma corrente elétrica (fluxo de elétrons) através do fio e essa corrente elétrica é causada pela diferença de potencial elétrico entre o prego e a moeda (na verdade, o suco de limão nas proximidades da moeda). Uma perda e um ganho semelhante de elétrons acontecem quando uma folha de alumínio encosta em uma obturação de metal, com saliva entre as duas superfícies em vários lugares. O conjunto folha–saliva–obturação funciona como uma bateria, fazendo passar uma corrente elétrica pelos pontos de contato direto entre a folha e a obturação ou pela gengiva em torno. Processo semelhante acontece no caso do recipiente de aço coberto com uma folha de alumínio. O conjunto aço–alimento– folha de alumínio funciona como uma bateria, fazendo passar uma corrente elétrica pelos pontos de contato direto entre a folha de alumínio e o recipiente de aço (provavelmente perto da borda do recipiente, onde a folha de alumínio costuma ser apertada). Quando a folha se oxida, com a conversão de átomos de alumínio em íons de alumínio, os íons se dissolvem no alimento, especialmente se o alimento for do tipo molho de tomate. Eis uma dica para guardar alimentos: use uma embalagem de plástico em vez de uma folha de alumínio ou um recipiente de plástico em vez de um recipiente de aço inoxidável.

5.28 • Enguias e peixes-elétricos Alguns peixes, como a raia-torpedo, uma raia elétrica gigante do Atlântico Norte, e o poraquê, um peixe-elétrico da Amazônia, podem produzir uma corrente elétrica suficiente para matar ou paralisar a presa ou mesmo paralisar uma pessoa. (A raiatorpedo, por exemplo, pode produzir um pulso de 50 ampères e 60 volts.) No passado remoto, os peixes elétricos eram usados para fins medicinais, como quando uma raia elétrica era colocada diretamente no local da dor de uma enxaqueca (uma forma primitiva de terapia de choque). As propriedades elétricas dos peixes eram conhecidas pelos antigos caçadores, que aprenderam rapidamente quais peixes não deviam ser segurados com mãos desprotegidas ou manipulados com um arpão de metal. Muitos outros peixes geram um campo elétrico para navegar em águas turvas ou escuras ou para localizar objetos, entre eles outros peixes da mesma espécie. Alguns desses peixes são capazes até mesmo de alterar seu campo elétrico para serem reconhecidos. Como um animal pode produzir corrente, potencial elétrico e campo elétrico?

Resposta As propriedades elétricas dos peixes provêm de células conhecidas como eletrócitos, que são semelhantes às células nervosas e musculares. Normalmente, a membrana de um eletrócito deixa passar íons de potássio mas não íons de sódio, de modo que as concentrações de íons de sódio e potássio diferem dos dois lados da membrana celular. Como os íons possuem carga elétrica, essa diferença de concentração produz uma diferença de potencial elétrico entre os dois lados da membrana. Quando um peixe quer produzir uma descarga elétrica, um impulso nervoso altera as propriedades da membrana para que ela deixe passar íons de sódio; com isso, a diferença de potencial elétrico entre os dois lados da membrana muda e partículas carregadas eletricamente atravessam a membrana (ou seja, uma corrente elétrica atravessa a membrana). A mudança da diferença de potencial e a intensidade de corrente elétrica são pequenas. Entretanto, o peixe pode ter milhares de eletrócitos ligados em série (um após o outro, Fig. 5-4a) para produzir o potencial total e a corrente elétrica total. A corrente elétrica total deve sair do peixe por uma extremidade (cabeça ou cauda), atravessar a água (passando às vezes por presas ou pessoas) e voltar ao peixe pela extremidade oposta. Entretanto, se o peixe tivesse uma única série de eletrócitos, a corrente total que passa por ele iria paralisar ou matar o próprio peixe. Para evitar esse desfecho trágico, o peixe possui centenas de arranjos em série ligados em paralelo (Fig. 5-4b), para que a corrente total se distribua uniformemente pelos caminhos paralelos. Assim, a corrente em cada caminho pode ser perfeitamente tolerada pelo peixe.

Figura 5-4 / Item 5.28 (a) Uma série de cinco eletrócitos no interior de um peixe-elétrico. (b) Um arranjo em paralelo de três séries de eletrócitos.

Peixes elétricos que vivem em águas salgadas são diferentes dos que vivem em água doce, porque a água salgada oferece muito menos resistência à corrente elétrica. Assim, os peixes de água salgada necessitam de um número menor de eletrócitos em cada arranjo em série para produzir uma corrente elétrica suficiente para paralisar ou matar suas presas. Peixes fracamente elétricos não tentam produzir um pulso de corrente elétrica na água; em vez disso, seus eletrócitos simplesmente geram um campo elétrico fraco na água, que funciona como uma sonda. Como são extremamente sensíveis à intensidade desse campo, podem saber quando outros objetos entram no campo, alterando-o. Além disso, podem alterar o campo de um modo característico, para se comunicar com outros peixes da mesma espécie.

5.29 • Eletrificação causada por poeira, areia e neve levadas pelo vento Como uma cerca de arame pode ser eletrificada pela neve? Às vezes, uma cerca de arame comprida acumula tanta carga que uma pessoa que entra em contato com ela pode levar um choque violento e pode até ser derrubada no chão. Quando a terra ou a areia é levada pelo vento, como acontece nas tempestades de poeira, nos redemoinhos e nos tornados, por que as partículas ficam eletricamente carregadas? Nos poucos casos em que pessoas puderam observar o interior do funil de um tornado e sobreviveram para contar a história, descreveram um interior iluminado com uma luz difusa, entrecortada por longas descargas. O que causa esses vários exemplos de eletrificação?

Resposta O processo pelo qual a neve levada pelo vento torna-se carregada não é bem compreendido, mas aqui estão algumas hipóteses: se dois cristais de gelo neutros a diferentes temperaturas colidem, o cristal mais quente fica com carga negativa e o cristal mais frio fica com carga positiva. Se duas extremidades de um cristal de gelo neutro estiverem a temperaturas diferentes, a extremidade mais quente fica com uma carga positiva e a extremidade mais fria fica com uma carga negativa. Assim, se o cristal de gelo se parte na colisão, os dois pedaços ficam com cargas de sinais diferentes. Uma vez carregados, os cristais podem carregar uma cerca entrando em contato com ela. A terra que é levada pelo vento em uma tempestade, um redemoinho ou um tornado em geral é carregada pelo contato com o solo e com outras partículas. (O contato entre dois objetos é suficiente para que os elétrons sejam transferidos de um objeto para o outro.) A polaridade da carga que as partículas recebem depende da natureza da partícula e do solo. Em algumas situações, a partícula perde elétrons quando entra em contato com o solo e, portanto, fica com uma carga positiva; em outras, a partícula ganha elétrons e, portanto, fica com uma carga negativa. Uma vez no ar, as partículas podem trocar cargas através de colisões. Os redemoinhos de poeira de Marte podem ser muito maiores do que na Terra e, portanto, a carga total das partículas pode ser muito maior. Existe, porém, um limite para a carga de um redemoinho. Eis o raciocínio: quando a carga aumenta, o campo elétrico na superfície do redemoinho também aumenta. Chega um momento em que o campo elétrico é tão forte que a superfície do redemoinho começa a criar centelhas (ou seja, a se descarregar), o que remove elétrons da superfície. Quando chega o estágio de centelhamento, toda a carga adquirida pelo movimento do redemoinho é imediatamente perdida por emissão de centelhas. Um tornado acumula cargas não só por causa das partículas em suspensão, mas também pelas cargas elétricas da grande

tempestade elétrica responsável pela sua existência. Assim, as luzes observadas nos funis dos tornados são provavelmente provocadas por descargas entre bolsões carregados de poeira e detritos. Além disso, algumas das luzes associadas aos tornados podem ser relâmpagos comuns. Entretanto, a velha idéia de que um tornado é causado por uma corrente elétrica quase contínua entre as nuvens e a terra já foi descartada.

5.30 • Descargas semelhantes a relâmpagos acima de vulcões A fumaça que sai de alguns vulcões em erupção, tais como o vulcão Sakurajima, no Japão, forma descargas elétricas sobre a cratera, iluminando o céu e produzindo estrondos como os do trovão. O que causa esses espetáculos de luzes e sons?

Resposta As descargas elétricas devem-se a partículas carregadas levadas para o ar pela fumaça que emana de um vulcão. A fumaça pode conter muitas regiões de carga positiva, mas em geral também contém regiões de carga negativa. Essas regiões podem se descarregar mutuamente ou se descarregar para a terra. A corrente elétrica associada a uma descarga pode esquentar o ar de tal forma que o ar se expande mais depressa que a velocidade do som; essa expansão produz uma onda de choque que é percebida pelo observador (que deve estar, de preferência, a uma distância segura) como um grande estrondo. Vários fatores são responsáveis pela presença de partículas carregadas na fumaça: (1) quando a água encontra lava fundida, pode subir, em um fenômeno conhecido como efeito Leidenfrost, flutuando em uma camada de vapor. Qualquer dessas gotas grandes logo se divide em gotas menores carregadas, que são levadas para a atmosfera por uma nuvem de ar quente e vapor d’água. (2) O magma torna-se carregado ao sofrer fraturas, seja quando entra em contato com a água, seja quando é ejetado da cratera do vulcão. Depois que as partículas carregadas estão no ar, colisões podem transferir as cargas de uma partícula para outra ou mesmo produzir novas cargas, como acontece com a poeira soprada pelo vento.

5.31 • Contaminação bacteriana em cirurgias As equipes cirúrgicas tomam um cuidado extremo para evitar infecções bacterianas em um paciente. Usam máscaras e luvas, lavam as mãos meticulosamente e esterilizam os instrumentos a altas temperaturas e com banhos de álcool. Recentemente, uma fonte inesperada de bactérias, ignorada durante anos, foi descoberta nas salas de cirurgia. Eis um exemplo da situação: na cirurgia endoscópica, usando um sistema de fibra óptica, o cirurgião manipula um sistema de fibra óptica através de uma incisão, da garganta ou do cólon. O sistema de fibra óptica transmite uma imagem do interior do corpo para a tela de um monitor de vídeo. O cirurgião pode aproveitar o sistema de fibra óptica ou empregar instrumentos cirúrgicos ligados a ele. Assim, por exemplo, um pólipo pode ser laçado e retirado. Uma vantagem de se usar um sistema de fibra óptica é que o cirurgião-chefe pode coordenar o trabalho dos membros da equipe mostrando os objetivos no monitor, onde todos podem observar o progresso com facilidade.

Figura 5-5 / Item 5.31 (a) Corte transversal da tela de um monitor de vídeo. A tela positivamente carregada produz uma carga induzida em uma partícula de poeira neutra das imediações. (b) Um dedo enluvado (fora de escala) que se aproxima da tela adquire uma carga induzida e pode atrair partículas de poeira do ar e da tela.

Esse procedimento, porém, esconde um risco de contaminação bacteriana. Que risco é esse?

Resposta Nos monitores convencionais, as imagens são criadas na tela por um feixe de elétrons provenientes da parte traseira do aparelho. Para atrair esses elétrons, a tela é mantida com uma carga positiva. A tela carregada também atrai partículas que estão presentes no ar da sala de operação, tais como fiapos, poeira e células da pele. Se uma partícula tem carga negativa, é atraída para a superfície externa da tela. Se é eletricamente neutra, seus elétrons são atraídos para o lado da partícula mais próximo da tela, o que deixa a partícula com uma carga induzida, ou seja, com um lado negativo e outro positivo (Fig. 5-5a). O lado negativo é atraído para a tela positivamente carregada, enquanto o lado positivo é repelido pela tela. Como o lado negativo está mais próximo da tela, a atração da tela vence esse cabo-deguerra. Como muitas das partículas acumuladas na superfície externa da tela contêm bactérias, a tela fica contaminada com bactérias. Suponha que os dedos enluvados do cirurgião cheguem a poucos centímetros da tela quando ele aponta para uma certa parte da imagem para explicar, por exemplo, algum detalhe da operação ao resto da equipe. A carga positiva da tela atrai elétrons para a ponta dos dedos (Fig. 5-5b). A carga negativa das pontas dos dedos atrai partículas (do ar ou da tela) para a ponta das luvas. Quando o cirurgião toca no paciente com as luvas contaminadas, as bactérias vão parar no corpo do paciente ou, pior ainda, no interior do paciente. Para evitar esse risco, os cirurgiões são alertados a não aproximarem os dedos dos monitores.

5.32 • Abelhas e polinização As abelhas ajudam a polinizar as flores ao coletarem pólen em uma flor e o transportarem para outra. Esse processo não é aleatório, ou seja, a abelha não recolhe o pólen por acaso. Na verdade, os grãos de pólen saltam para a abelha quando ela pousa na primeira flor e se desprendem da abelha quando ela pousa na segunda. O que faz o pólen saltar?

Resposta Depois que uma abelha deixa a colmeia, em geral fica com uma carga positiva durante o vôo. Quando a abelha passa perto da antera de uma flor (Fig. 5-6a), que é eletricamente neutra, o campo elétrico da abelha produz uma carga induzida em alguns grãos de pólen da flor. Os grãos são eletricamente neutros, mas o campo elétrico da abelha redistribui a carga: os elétrons são atraídos para o lado voltado para a abelha, para ficar o mais perto possível da carga positiva da abelha. Esse movimento deixa o outro lado dos grãos com carga positiva. Os grãos continuam neutros, mas passam a ter uma carga negativa de um lado e uma carga positiva do outro.

O lado negativo é atraído para a abelha; o lado positivo é repelido para longe da abelha. Como o lado negativo está mais próximo da abelha, a atração vence e o grão salta pelo ar e fica preso na abelha. (Na verdade, fica preso nos pêlos da abelha. Se tocasse no corpo carregado da abelha, perderia elétrons. Nesse caso, o grão ficaria apenas com cargas positivas e, portanto, seria expelido da abelha e perderia a carona para a flor seguinte.)

Figura 5-6 / Item 5.32 (a) A superfície positivamente carregada de uma abelha separa as cargas de um grão de pólen. O grão salta para a abelha. (b) O grão salta da abelha para os elétrons que se acumulam no estigma da flor.

A entrega do pólen à flor seguinte acontece quando a abelha se aproxima do estigma da flor, que está ligado eletricamente à terra. O campo elétrico da abelha atrai elétrons do estigma, deixando a parte superior do estigma com carga negativa (Fig. 5-6b). O grão de pólen que está na abelha continua a ser atraído pela carga positiva distribuída pelo corpo da abelha, mas passa a ser atraído com uma força ainda maior para a carga concentrada na parte superior do estigma. Assim, o grão salta da abelha para o estigma, polinizando a flor.

CURIOSIDADE 5.33 • Formigas-de-fogo e equipamentos elétricos Quando a formiga-de-fogo Solenopsis invicta Buren migrou da América Central para os Estados Unidos, colônias dessas formigas atacavam e destruíam equipamentos elétricos instalados na rua (tais como caixas de controle de sinais de trânsito) e na fachada de edifícios. Uma explicação inicial foi que a formiga-de-fogo era atraída pelos campos elétricos ou magnéticos dos circuitos elétricos. Seria uma proeza e tanto: como poderia uma formiga detectar campos eletromagnéticos? Ao investigar o comportamento da formiga, porém, os pesquisadores descobriram uma explicação bem mais simples: quando as formigas entravam por acaso em um aparelho elétrico, uma delas produzia um curto-circuito, encostando em dois fios desencapados ou em um fio desencapado e um ponto aterrado. A formiga morria ou ficava muito, muito zangada (as formigasde-fogo já são mal-humoradas por natureza). Viva ou morta, a formiga emitia substâncias que excitavam as formigas próximas, que corriam em direção à primeira formiga e também eram eletrocutadas. Depois de algum tempo, existiam tantas formigas mortas no equipamento que um disjuntor interrompia a corrente elétrica ou o equipamento era destruído pelo excesso de corrente.

5.34 • Folhas de plástico para embrulhar alimentos Quando você embrulha uma vasilha de vidro ou de plástico em uma folha de plástico e aperta a borda da embalagem, por que a folha fica firme no lugar? Você pode até virar a vasilha de cabeça para baixo sem derramar o conteúdo, como se vê às vezes nos comerciais da televisão.

Resposta A folha de plástico provavelmente contém regiões carregadas eletricamente, que foram criadas no processo de fabricação: regiões com excesso de elétrons têm carga negativa e regiões com falta de elétrons têm carga positiva. Regiões com cargas de sinais opostos se atraem mutuamente, o que explica por que as folhas de plástico tendem a dobrar (o que às vezes as inutiliza) e a aderir ao rolo. Quando a folha de plástico é apertada contra a borda da vasilha, ocorre uma transferência de carga entre as duas superfícies,

fenômeno conhecido como eletrificação por contato. Assim, por exemplo, a folha de plástico pode atrair elétrons da borda do recipiente, deixando essa parte da borda com uma carga positiva. Com isso, a folha de plástico, com uma carga negativa, e a borda do recipiente, com uma carga positiva, passam a se atrair mutuamente. Além disso, uma força de atração entre moléculas, chamada interação de van der Waals, pode atuar entre a borda do recipiente e a folha de plástico. Essa força deve-se a uma interação elétrica na qual uma carga positiva e uma carga negativa separadas por uma distância muito pequena em uma molécula de uma superfície provocam uma separação semelhante de cargas na molécula mais próxima da outra superfície. Essa separação de cargas produz uma entidade conhecida como dipolo elétrico, constituída por uma carga positiva e uma carga negativa; os dipolos elétricos das duas superfícies se atraem mutuamente. Apesar de fraca, essa atração pode ajudar a manter a folha presa na borda do recipiente ou a faz aderir a si própria.

5.35 • Moscas no teto e lagartixas na parede Uma mosca adere a uma superfície lisa porque secreta um óleo que adere tanto à superfície quanto a suas patas. Alguns besouros aderem a uma superfície lisa por meio de um mecanismo de sucção. O que dizer da lagartixa, cujas patas são secas e não dispõem de um sistema de sucção? Mesmo assim, a lagartixa consegue subir por uma parede lisa e correr pelo teto com toda a facilidade. Como as lagartixas conseguem grudar as patas em uma superfície e desgrudá-las rapidamente para continuar correndo?

Resposta A pata de uma lagartixa tem cerca de meio milhão de pêlos conhecidos como setas. Cada seta tem centenas de projeções com extremidades triangulares ou em forma de folha conhecidas como espátulas (porque têm a forma de uma espátula). Quando a lagartixa pressiona uma seta contra a parede, todas essas espátulas aderem à parede por uma força conhecida como força de van der Waals. Essa força deve-se a uma interação elétrica na qual uma carga positiva e uma carga negativa, separadas por uma distância muito pequena em uma molécula de uma superfície, provocam uma separação semelhante de cargas na molécula mais próxima da outra superfície. Essa separação de cargas produz uma entidade conhecida como dipolo elétrico, constituída por uma carga positiva e uma carga negativa; os dipolos elétricos das duas superfícies se atraem mutuamente. Esse fenômeno acontece em mais de um milhão de pontos quando uma lagartixa encosta a pata em uma parede. Embora as interações de van der Waals sejam fracas individualmente, a combinação de todas essas interações é capaz de sustentar a lagartixa. Mesmo que a parede possua irregularidades microscópicas, uma pata põe um número suficiente de espátulas em contato com a parede para sustentar a lagartixa. As setas fazem um certo ângulo com a parede e a adesão é mantida enquanto esse ângulo for relativamente pequeno. Para desgrudar o pé enquanto corre, a lagartixa arranca a seta da parede afastando-se dela para aumentar o ângulo. As espátulas se desprendem uma à uma, soltando a seta.

5.36 • Torta de merengue Para se fazer uma torta de merengue, o primeiro passo é bater claras de ovos até que fiquem razoavelmente firmes. Em seguida, deve-se bater uma pequena quantidade de açúcar junto com as claras, colocar a mistura no interior da torta e levar ao forno. Por que até mesmo uma quantidade pequena de gema pode estragar o merengue? Por que é preciso bater as claras? Por que elas ficam mais espessas quando são batidas? Por que bater demais estraga o merengue?

Resposta A clara do ovo contém vários tipos de proteínas, que são moléculas enormes, com complexas estruturas tridimensionais. Um dos objetivos de bater as claras é esticar parcialmente essas moléculas, quebrando algumas das ligações internas mais fracas. Entre as ligações mais fracas estão a ligação iônica (na qual cargas de sinais opostos se atraem mutuamente), a interação de van der Waals (na qual dipolos elétricos se atraem mutuamente) e a ligação por ponte de hidrogênio (na qual um átomo de hidrogênio é atraído simultaneamente por dois outros átomos). Depois que as proteínas são esticadas, elas se ligam a outras proteínas, formando uma rede. O outro motivo para se baterem as claras é que isso faz com que o ar fique retido nessa rede. É por isso que a presença da gema pode estragar a receita, pois ela é pesada e viscosa demais para permitir que uma quantidade suficiente de ar seja retida. O cozinheiro está interessado em colocar no forno um merengue com muitas bolhas de ar para que o aquecimento expanda as bolhas, deixando o doce ainda mais leve. Se as claras foram batidas corretamente, as bolhas de ar ficam presas em películas de água ligadas à rede de clara de ovo. Essas películas se dilatam com a expansão das bolhas de ar, mantendo o ar no interior do merengue. Entretanto, se as claras forem excessivamente batidas, a água se separa das proteínas e a rede fica firme demais (com ligações demais) para se expandir no forno. Nesse caso, as bolhas de ar estouram, o que resulta em um merengue solado, o

pesadelo dos cozinheiros. Para evitar que isso aconteça, o cozinheiro experiente pára de bater as claras quando perdem o brilho e começam a formar gotas d’água. Se as claras forem batidas em uma tigela de cobre, alguns átomos de cobre se desprendem da superfície do recipiente e se combinam com átomos de enxofre das proteínas da clara, dificultando a formação de ligações entre as moléculas de proteína e evitando, assim, que a rede fique excessivamente firme.

5.37 • Molho bearnês O molho bearnês é um molho sabidamente difícil de preparar e pode “desandar” mesmo que o cozinheiro faça tudo certo. É servido quente e seus ingredientes principais são vinagre diluído, vinho, gema de ovo e manteiga. É usado para acompanhar carnes vermelhas grelhadas, carne de frango, de peixe e ovos pochê. O molho deve ser uma mistura uniforme dos ingredientes e fica inutilizado se a manteiga se separar do resto dos ingredientes, formando manchas de aspecto repugnante. As dúvidas são as seguintes: por que a manteiga se separa dos outros ingredientes quando o molho desanda? O que impede que isso aconteça na maioria dos casos?

Resposta O molho pode ser visto de duas maneiras genéricas: é uma suspensão coloidal de partículas semi-sólidas (manteiga) em um líquido composto principalmente de água e ácido acético (vinagre). É também uma emulsão, ou seja, uma dispersão de dois líquidos imiscíveis (líquidos que não se misturam, no caso manteiga e água), com a manteiga formando gotículas na água. No modelo do colóide, as partículas de manteiga tendem a se atrair mutuamente através de uma interação fraca chamada interação de van der Waals, que se deve aos dipolos elétricos (pares de cargas positivas e negativas) presentes nas moléculas. Entretanto, as partículas também possuem cargas negativas na superfície; assim, quando se aproximam umas das outras, ameaçando se tocar e se fundir, a repulsão elétrica tende a mantê-las afastadas. O perigo surge quando o molho é aquecido, porque nesse caso as partículas passam a se mover mais depressa e podem colidir apesar da repulsão elétrica. Se elas começam de fato a se fundir (dizemos que elas floculam), o problema pode estar na falta de carga elétrica na superfície das gotas. Muitos cozinheiros recomendam misturar vigorosamente suco de limão com o molho. A ação de misturar fragmenta a manteiga floculada e o suco de limão supostamente fornece cargas adicionais para que as partículas resultantes se mantenham separadas. No modelo da emulsão, as partículas de manteiga são estabilizadas (mantidas como partículas e impedidas de flocular) por moléculas de lecitina distribuídas na superfície. Cada molécula de lecitina, que vem da gema do ovo, possui uma extremidade hidrófila (chamada extremidade polar) que se projeta para fora da superfície e penetra na água. Essa extremidade atrai as moléculas de água, de modo que cada partícula de manteiga fica cercada por uma camada de moléculas de água ligadas às extremidades polares das moléculas de lecitina. Essa camada de água impede a floculação das gotas. Se o molho começa a flocular, o problema pode ter sido causado por falta de lecitina. Muitos cozinheiros recomendam misturar vigorosamente mais gema no molho, para separar a manteiga floculada e acrescentar lecitina. Na prática, a solução de mexer o molho vigorosamente parece funcionar igualmente bem quando se acrescenta suco de limão ou gema de ovo, de modo que o remédio não ajuda muito a descobrir qual é o modelo correto do molho. Um cozinheiro experiente sabe que qualquer das duas soluções de emergência deve ser usada com parcimônia para que o gosto e o aspecto do molho não sejam prejudicados, mesmo que não haja floculação. Um cozinheiro experiente também sabe que esquentar demais estraga o processo, porque a temperaturas elevadas a velocidade das partículas de manteiga é maior (o que aumenta a possibilidade de que colidam umas com as outras) e a gema coagula (adquirindo um aspecto desagradável e deixando de contribuir para a estabilização do molho).

5.38 • Ímãs naturais Pedras magnéticas que existem na natureza, chamadas ímãs naturais, foram descobertas há muito tempo, em especial pelos

chineses, que as trataram no início como curiosidades e depois perceberam que podiam ser usadas para fazer bússolas. Por que algumas pedras ficam magnetizadas e outras não?

Resposta Um ímã natural é um pedaço de minério de ferro capaz de reter a magnetização depois de ser imantado; por isso, dizemos que se trata de um tipo de ímã permanente. Essa retenção deve-se a um efeito quântico cooperativo ligado à interação dos elétrons dos átomos de ferro. Na natureza, o minério de ferro pode ser imantado por meio de dois processos: ser aquecido e resfriado na presença do campo magnético da Terra e estar próximo da corrente elétrica extremamente intensa associada à queda de um raio. No primeiro desses processos, o minério de ferro é aquecido em uma erupção de lava e resfriado em seguida. Quando o minério de ferro está muito quente, perde suas propriedades magnéticas porque a energia térmica dos átomos é tão grande que supera a interação cooperativa dos elétrons. Quando o minério esfria e a interação cooperativa se restabelece, a direção magnética dos elétrons tende a acompanhar a direção do campo magnético da Terra no local em que se encontra o minério. Quanto melhor é o alinhamento dentro do minério, mais forte é o ímã natural. Ímãs naturais produzidos dessa forma podem ser encontrados em jazidas subterrâneas, nas minas de ferro, ou em depósitos que foram expostos ao ar livre em decorrência do intemperismo. No segundo processo, uma corrente elétrica intensa produzida por um raio passa através da rocha ou muito perto dela. O campo magnético produzido por essa corrente alinha a direção magnética de parte dos compostos de ferro da pedra e esse alinhamento é mantido pela pedra depois da queda do raio. Esse tipo de ímã natural existe principalmente perto da superfície (porque um raio em geral não penetra mais que alguns metros na terra) e costuma ser encontrado em forma de pedras isoladas.

5.39 • O campo magnético da Terra e a arqueologia Como o campo magnético da Terra varia lentamente, a direção do norte indicada por uma bússola também varia. Por muitas razões, os pesquisadores estão interessados em conhecer a direção do norte magnético em momentos específicos do passado, mas encontrar registros históricos de leituras da bússola é muito raro. Entretanto, os pesquisadores encontram ajuda nos antigos fornos de barro que eram usados para cozer peças de cerâmica e em pinturas muito antigas, como os murais da Biblioteca Apostólica Vaticana, um famoso pátio de entrada do Vaticano. De que maneira um forno ou um mural podem indicar a direção do norte magnético?

Resposta O barro nas paredes e no chão de um forno antigo contém magnetita e hematita, que são óxidos de ferro com propriedades magnéticas. Nas partículas desses óxidos existem domínios, regiões em que o campo magnético é uniforme. Um grão de magnetita é composto por domínios de dimensões microscópicas; um grão de hematita é composto por um único domínio que pode ter até um milímetro de largura. Quando o barro é aquecido a centenas de graus Celsius (ou seja, quando o forno é usado), os domínios dos dois tipos de grãos mudam. Na magnetita, as paredes dos domínios se deslocam, fazendo os domínios com alinhamento mais próximo do campo magnético da Terra aumentar de tamanho, enquanto os outros domínios diminuem. Na hematita, os domínios giram para uma direção mais próxima da direção do campo magnético da Terra. Em conseqüência dos dois processos, o campo magnético do barro como um todo fica alinhado com o campo magnético da Terra. Quando o forno esfria após o uso, o arranjo dos domínios e, portanto, o campo magnético do barro, é mantido — efeito conhecido como magnetização termorremanescente (TRM*). Para determinar a orientação do campo da Terra quando o forno foi aquecido e resfriado pela última vez, o arqueólogo demarca uma pequena área no chão do forno, determina sua orientação em relação à horizontal e ao norte geográfico (o Pólo Norte) e retira uma pequena amostra de barro. Determinando a direção do campo magnético no interior da amostra em relação à sua geometria externa, e, portanto, em relação à posição que ela ocupava no forno, o arqueólogo pode determinar a direção do campo da Terra na ocasião em que o forno foi usado pela última vez. Se a idade do forno for determinada por datação por radiocarbono ou alguma outra técnica, o arqueólogo fica sabendo também em que época o campo da Terra teve essa direção. Muitas pinturas murais antigas contêm hematita. Os pigmentos usados pelos pintores são uma suspensão de vários sólidos em um veículo líquido. Quando um pigmento é aplicado a uma parede durante a pintura de um mural, cada partícula de hematita gira no interior do líquido até ficar alinhada com o campo magnético da Terra. Quando a tinta seca, as partículas permanecem no lugar, registrando assim a direção do campo magnético da Terra na época em que a obra foi pintada. Para determinar a direção do campo magnético da Terra na época em que um mural foi pintado, o pesquisador precisa determinar a orientação das partículas de hematita na tinta. Para isso, cola-se um pedaço de fita adesiva no mural e determina-se a orientação da fita em relação à horizontal e à direção atual do norte magnético. Quando a fita é removida do mural, está

coberta por uma fina camada da tinta. Em um laboratório, o pedaço de fita é colocado em um instrumento que determina a orientação dos grãos de hematita na camada de tinta.

5.40 • Complicações em exames de ressonância magnética A ressonância magnética é uma técnica usada para visualizar o interior de objetos (pessoas, animais, fósseis e muitos outros). A técnica denominava-se ressonância magnética nuclear, mas o nome foi simplificado para ressonância magnética depois que a Cleveland Clinic, em Cleveland, Ohio, começou a sofrer pressões da opinião pública ao anunciar que pretendia construir uma instalação nuclear. (O público, aparentemente, não sabe que a palavra “nuclear” refere-se à parte central de todos os átomos, incluindo os do nosso próprio corpo.) A ressonância magnética usa ondas eletromagnéticas de freqüência relativamente baixa (as chamadas ondas de rádio) para mudar a orientação magnética de alguns núcleos no interior do corpo. Esses núcleos são alinhados inicialmente por um forte campo magnético; depois de desalinhados pelas ondas eletromagnéticas, recuperam rapidamente o alinhamento. Sensores especiais registram o progresso do realinhamento e programas de computador muito sofisticados transformam esses registros em imagens do corpo onde se encontram esses núcleos. O método é totalmente seguro porque os campos magnéticos e as ondas de rádio não fazem mal à saúde. Na verdade, nosso corpo está sendo atravessado a todo instante por ondas de rádio produzidas por estações de rádio, antenas de telecomunicações e até satélites. Se o método é seguro, por que, em raríssimas ocasiões, pacientes sofreram queimaduras durante um exame? Por que alguns pacientes tatuados experimentaram uma sensação de “formigamento” ou “coceira” na região das tatuagens e por que alguns sofreram graves queimaduras? Por que o método é proibido ou desaconselhado no caso de pacientes que receberam implantes metálicos (tais como próteses do olho, das pálpebras, dos dentes, de certos implantes de mama e de válvulas cardíacas)? Por que esse tipo de exame não é recomendado para alguém que trabalhou no ramo de fundição ou polimento de metais?

Resposta Antes que o risco fosse percebido, alguns pacientes sofriam queimaduras graves quando fios usados para monitorar seus sinais vitais encostavam na pele em mais de um ponto durante um exame de ressonância magnética. Em um caso, um oxímetro de pulso foi colocado no dedo de um paciente sedado. Essa ligação única entre o dedo e o equipamento de monitoramento (que estava fora do aparelho de ressonância magnética) não oferecia perigo algum. O fio que saía do dedo, porém, encostou por acaso no braço do paciente. O trecho do fio entre o dedo e o braço e a parte do braço entre esses dois pontos passou a se comportar como uma bobina de indução. Quando as ondas de rádio foram ligadas, o campo magnético variável induziu uma corrente elétrica nesse circuito fechado. A alta resistência elétrica dos pontos de contato da pele com o fio fez com que esses pontos se aquecessem rapidamente, provocando queimaduras. Entretanto, como o paciente estava sedado, as lesões só foram descobertas quando o paciente foi retirado do aparelho de ressonância magnética. O paciente também sofria queimaduras quando um fio comprido ligado ao paciente se comportava como uma antena receptora de ondas de rádio. Um campo elétrico apreciável era produzido pelo fio e o campo na ponta do fio era suficientemente intenso para causar centelhamento, queimando a pele do paciente. Alguns pigmentos pretos ou azul-escuros usados em tatuagens e delineadores permanentes contêm uma substância ferromagnética (o óxido de ferro conhecido como magnetita). Quando um paciente com um pigmento desses entra ou sai do campo magnético de um aparelho de ressonância magnética, ou quando a intensidade do campo magnético varia, a orientação da substância ferromagnética tende a mudar, da mesma forma como a agulha de uma bússola muda de direção quando a bússola é colocada nas proximidades de um campo magnético. Alguns pacientes têm uma sensação de formigamento ou coceira na pele. Nos poucos casos em que a pele foi queimada, o desenho da tatuagem formava um circuito fechado (ou quase fechado) de pigmento ferromagnético. Ao que parece, as ondas de rádio podem criar uma corrente elétrica nesse tipo de circuito e a corrente é suficientemente alta para esquentar e queimar a pele. Os implantes metálicos podem complicar a análise de um exame de ressonância magnética porque tendem a distorcer a imagem. Quando são feitos de material ferromagnético, também podem girar como a agulha de uma bússola quando o paciente entra ou sai do campo magnético. Muitas vezes o movimento não é percebido, mas a rotação de uma válvula cardíaca metálica ou de uma bala de aço alojada no corpo pode ser perigosa para a saúde. O movimento de implantes oculares ou de resíduos de operações de soldagem ou polimentos de metais que se alojaram nos olhos também pode causar problemas. No passado, as peças ferromagnéticas usadas em alguns implantes de mama tendiam a esquentar por causa das correntes induzidas. Entretanto, os especialistas em ressonância magnética já estão familiarizados com todas essas possibilidades e sabem como proteger os pacientes.

CURIOSIDADE 5.41 • Busca magnética da bala que matou Garfield Em 1881, James Garfield, presidente dos Estados Unidos na época, levou dois tiros de um advogado descontente em uma estação ferroviária, em Washington, D.C. Embora uma das balas tenha apenas arranhado o seu braço, a outra se alojou abaixo do pâncreas. Os médicos não conseguiram localizar a segunda bala porque não dispunham de nenhum meio para visualizar o interior do corpo sem fazer uma incisão. Como a bala tinha sido desviada por uma costela depois de entrar no corpo do presidente, nem mesmo o orifício de entrada podia ser usado para tentar encontrar a bala. Alexander Graham Bell, cujo nome está até hoje ligado à invenção do telefone, ofereceu ajuda, propondo-se a usar um instrumento que ele chamava de balança de indução. O instrumento era composto por (a) um eletroímã alimentado com baterias e (b) uma pequena bobina ligada a um receptor telefônico (a parte do telefone usada na época para ouvir). Como a bateria fazia passar uma corrente constante através do eletroímã, produzia um campo magnético constante. Bell mantinha o plano da bobina perpendicular ao campo magnético constante. Se alguma coisa alterava o campo que passava pelo interior da bobina, era induzida uma corrente na bobina que fazia o receptor produzir um estalido. A idéia de Bell era fazer a bobina passar sobre o corpo do paciente enquanto este estava sendo submetido ao campo magnético. Quando a bobina passasse sobre o lugar em que estava a bala, a intensidade e a direção do campo magnético seriam diferentes por causa da presença da bala, o que produziria um estalido no receptor. Infelizmente, a bala era de chumbo e, portanto, não tinha muita influência sobre o campo (se fosse de aço, a influência teria sido muito maior). Além disso, a bala estava muito longe da superfície do corpo de Garfield para causar uma grande alteração no campo. Depois de várias tentativas, Bell desistiu da busca; Garfield morreu cerca de um mês depois.

5.42 • Ímãs, tatuagens e jóias corporais Por que um ímã pode ficar pendurado em uma pele que contém uma tatuagem com linhas pretas ou azul-escuras? As jóias corporais são usadas há muito tempo, mas hoje em dia algumas pessoas preferem manter as jóias no lugar com ímãs em vez de furar a pele. Qual é o risco de usar argolas no nariz presas magneticamente?

Resposta As linhas pretas e azul-escuras das tatuagens costumam ser produzidas pela injeção na pele de um pigmento de óxido de ferro (magnetita), que é ferromagnético e, portanto, é atraído por um ímã. Assim, um ímã pode ficar pendurado no local de uma tatuagem. O interessante é que o ímã pode fazer com que parte da magnetita migre através da derme e se acumule embaixo do ímã, na interface entre a derme e a epiderme. Esse efeito dos ímãs pode ser usado para remover tatuagens. Um laser que emite pulsos de luz no infravermelho próximo (logo abaixo do espectro visível) é aplicado previamente à tatuagem para fragmentar e dispersar os pigmentos de tinta na derme e abrir a epiderme. Em seguida, um ímã pequeno mas muito forte é colado com fita adesiva no local da tatuagem para atrair os pigmentos ferromagnéticos até a superfície, de onde podem ser removidos. Assim, a tatuagem fica menos nítida. Um dos riscos de usar jóias corporais magnéticas foi ilustrado por uma jovem que queria usar brincos magnéticos como argolas de nariz. Cada argola deveria ser sustentada por um ímã colocado dentro da narina. Quando, porém, ela tentou colocar a segunda argola, os dois ímãs se atraíram e subiram para o septo nasal (a cartilagem que separa as duas narinas). Os ímãs se mantiveram tenazmente unidos através do estreito septo nasal, obrigando a jovem a procurar o setor de emergência de um hospital para removê-los.

5.43 • Magnetismo no desjejum e nas vacas Se você passa um ímã sobre uma mistura de leite e alguns tipos de cereais, por que esses cereais são atraídos pelo ímã? Por que alguns fazendeiros colocam ímãs no estômago das vacas?

Resposta Esses cereais são anunciados como “enriquecidos com ferro” porque contêm limalha de ferro para atender às necessidades de ferro em nossa alimentação. A tinta usada para imprimir algumas notas bancárias contém compostos de ferro, o que faz com que essas notas também sejam atraídas por um ímã. Os ímãs de vaca são usados para recolher pedaços de ferro que a vaca engole inadvertidamente ao comer capim ou feno, para que não causem danos ao resto do sistema digestivo do animal. Os ímãs são baratos e podem ser encontrados em lojas de produtos de pecuária.

5.44 • Guitarras elétricas

Logo após o surgimento do rock, em meados dos anos 1950, os músicos populares substituíram as guitarras acústicas por guitarras elétricas; entretanto, Jimi Hendrix foi o primeiro a encarar a guitarra elétrica como um instrumento eletrônico. Ele fez um enorme sucesso nos anos 1960 usando sons distorcidos, posicionando a guitarra na frente de um alto-falante para provocar realimentação e acompanhando a realimentação com novos acordes. Jimi Hendrix fez o rock avançar do som melódico de Buddy Holly para a música psicodélica do fim dos anos 1960, o heavy metal do Led Zeppelin e a energia pura do Joy Division nos anos 1970; suas idéias continuam até hoje a influenciar o rock. O que há de especial em uma guitarra elétrica que a diferencia de uma guitarra acústica e possibilitou a Hendrix fazer um uso muito mais amplo desse instrumento eletrônico?

Resposta Enquanto o som de uma guitarra acústica depende da ressonância acústica produzida na caixa do instrumento pelas oscilações das cordas, uma guitarra elétrica é um instrumento maciço, de modo que não existe uma caixa de ressonância. Em vez disso, as oscilações das cordas de metal são detectadas por captadores magnéticos que enviam sinais para um amplificador e um conjunto de alto-falantes. O fio que liga o captador ao amplificador está enrolado em torno de um pequeno ímã, logo abaixo de uma das cordas. O campo magnético do ímã produz um pólo norte e sul no trecho da corda logo acima dele. Esse trecho passa a ter um campo magnético próprio. Quando a corda é dedilhada e, portanto, começa a oscilar, seu movimento em relação à bobina muda a intensidade do campo magnético que atravessa a bobina, o que induz uma corrente elétrica na bobina. Quando a corda oscila para perto e para longe da bobina, essa corrente elétrica muda de direção com a mesma freqüência que as oscilações da corda, o que transmite a freqüência de oscilação para o amplificador e o alto-falante. Em uma guitarra elétrica Stratocaster, existem três grupos de captadores, posicionados na extremidade das cordas que fica na parte mais larga do corpo do instrumento. O grupo mais próximo da extremidade detecta melhor as oscilações de alta freqüência; o grupo mais distante da extremidade detecta melhor as oscilações de baixa freqüência. Usando uma chave que existe no corpo da guitarra, o músico pode selecionar qual grupo ou qual par de grupos vai enviar sinais para o amplificador e os alto-falantes. Para conseguir um controle maior sobre o instrumento, Hendrix às vezes enrolava pessoalmente o fio das bobinas de captação para alterar o número de voltas. Com isso, alterava a intensidade de corrente elétrica induzida na bobina, o que mudava a sensibilidade da bobina às oscilações da corda.

5.45 • Amplificadores das guitarras elétricas A física do estado sólido e a eletrônica do estado sólido mudaram radicalmente a vida moderna. Assim, por exemplo, os primeiros computadores funcionavam com válvulas eletrônicas e ocupavam o espaço de uma sala grande. Hoje em dia, computadores muito mais potentes utilizam transistores minúsculos em circuitos integrados e ocupam apenas o espaço do colo de uma pessoa (ou menos). As válvulas eletrônicas parecem coisa do passado; na verdade, não fazem mais parte do currículo de engenharia elétrica. Entretanto, muitos guitarristas de rock pesado insistem em usar amplificadores a válvula em vez de amplificadores transistorizados. Por que os guitarristas de rock preferem os amplificadores a válvula?

Resposta As oscilações mecânicas que um músico estabelece na corda de uma guitarra elétrica induzem oscilações elétricas em uma bobina de captação posicionada logo abaixo da corda. Essas oscilações elétricas precisam ser amplificadas para que possam alimentar um sistema de alto-falantes e produzir sons para a platéia. Quando a guitarra elétrica ficou popular no rock no início dos anos 1960, os amplificadores usavam válvulas eletrônicas porque os amplificadores transistorizados ainda não eram confiáveis. Quando o rock evoluiu para a música psicodélica e depois para o heavy metal, os guitarristas aumentaram o volume dos amplificadores para sacudir o público. Nos amplificadores a válvula, essa amplificação exagerada resulta em uma distorção significativa do som produzido, e essa distorção rapidamente passou a ser considerada o som do rock. Os amplificadores transistorizados não produzem o mesmo tipo de distorção quando são utilizados no limite: dizemos que produzem um som “limpo”. Assim, os guitarristas de rock tendem a rejeitá-los, alegando que não produzem o som “correto” do rock. Jimi Hendrix, que foi o primeiro a considerar a guitarra elétrica e seu amplificador um novo instrumento musical, disse certa vez: “Gosto muito dos meus velhos amplificadores Marshall a válvula, porque quando [...] o volume está no máximo, não há nada [que] possa superá-los...”

5.46 • Auroras polares Se você estiver ao ar livre em uma noite escura em uma latitude média ou elevada, pode ter a oportunidade de ver uma aurora

polar, uma “cortina” fantasmagórica de luz que se estende no céu. Essa cortina não é local; pode ter centenas de quilômetros de altura e milhares de quilômetros de comprimento, estendendo-se em volta da Terra em um arco. Entretanto, tem apenas 100 metros de espessura. O que produz esse espetáculo imenso e o que faz com que as auroras sejam tão estreitas?

Resposta As auroras podem estar associadas a erupções solares, se as partículas emitidas pela erupção afetarem os campos magnéticos e elétricos da atmosfera terrestre. As auroras acontecem quando elétrons são acelerados na faixa de altitude de 3000 a 12.000 quilômetros e guiados ao longo de linhas do campo magnético terrestre até latitudes elevadas, em direção aos pólos magnéticos norte e sul. Como as linhas de campo descem em direção à superfície ao se aproximarem dos pólos, os elétrons chegam a altitudes mais baixas, onde o ar é mais denso, e colidem com átomos e moléculas, excitando-os. Os átomos e moléculas voltam ao estado não-excitado emitindo luz; uma aurora é a luz (tanto visível quanto invisível) que é emitida por esses átomos e moléculas. Assim, por exemplo, os átomos de oxigênio emitem luz verde e as moléculas de nitrogênio emitem uma luz rosada. Entretanto, a luz pode ser tão fraca que é percebida como luz branca. Às vezes pode parecer que as luzes se movem pelo céu como se fossem agitadas pelo vento, mas o movimento é uma ilusão. Como os elétrons são guiados ao longo de linhas de campo convergentes, concentram-se em uma região bem estreita. Apenas os átomos e as moléculas nessa região estreita contribuem para a luz de uma aurora. Essa explicação simples, porém, prevê auroras muito mais espessas do que as que são observadas na prática, de modo que os cientistas estão buscando explicações mais complicadas.

5.47 • Erupções solares e quedas de energia Às 2h45min da manhã de 13 de março de 1989, toda a rede elétrica da província canadense de Quebec entrou em pane, deixando milhões de pessoas sem energia elétrica naquela noite fria. Na verdade, muitas redes elétricas do hemisfério norte tiveram problemas naquela noite, criando um pesadelo para os engenheiros encarregados da manutenção dos sistemas. A causa não foi um pico na demanda de energia, nem uma falha de um equipamento em mau estado de conservação, e sim uma explosão (uma erupção solar) que acontecera na superfície do Sol três dias antes. Como uma explosão ocorrida no Sol pode afetar os sistemas de distribuição de energia elétrica na Terra?

Resposta Em uma erupção solar, um enorme anel de prótons e elétrons se projeta para fora da superfície do Sol. Algumas erupções solares explodem, lançando essas partículas carregadas no espaço. Em 10 de março de 1989, uma erupção solar gigantesca explodiu em direção à Terra. Quando as partículas chegaram, três dias depois, transferiram sua energia para a magnetosfera terrestre, uma região a grandes altitudes em que o movimento de partículas é controlado por campos elétricos e magnéticos. Em particular, as partículas aumentaram o eletrojato da região. Pelo fato de ser uma corrente, o eletrojato cria nas vizinhanças um campo magnético que chega a atingir o solo e as longas linhas de transmissão de energia elétrica. Foi o efeito desse campo magnético nas linhas de transmissão (ou melhor, o modo como esse campo variou) que causou o problema em Quebec.

Figura 5-7 / Item 5.47 Um eletrojato (corrente elétrica) produz um campo magnético que atravessa uma espira vertical formada por uma linha de transmissão, a terra e os fios de aterramento dos transformadores (localizados no interior de cilindros, nas extremidades da linha de transmissão). Variações do campo geram uma corrente (corrente geomagneticamente induzida, CGI) na espira.

Em uma das extremidades de uma linha de transmissão, um transformador elevador de tensão aumenta o potencial elétrico para que a energia elétrica possa ser transferida ao longo da linha a um potencial muito elevado. Na outra extremidade, um transformador baixador de tensão diminui o potencial elétrico para o valor usado nas residências. Um transformador possui dois enrolamentos (o primário e o secundário) com um número diferente de espiras enroladas em um núcleo de ferro. Quando uma corrente alternada atravessa o primário, é induzida no enrolamento secundário uma tensão maior ou menor que a do primário, dependendo da razão entre o número de espiras do primário e o número de espiras do secundário. Os dois transformadores de uma linha de transmissão estão aterrados, ou seja, estão eletricamente ligados à terra. Quando um campo magnético é criado por um eletrojato, pode atravessar uma espira efetiva (Fig. 5-7) formada pela linha de transmissão (a parte superior da espira), as linhas de terra dos transformadores (os dois lados da espira) e a terra (a parte inferior da espira). Entretanto, um campo magnético constante que atravesse essa espira não causa problemas. O problema surge quando o campo varia. Na noite do apagão, o campo estava mudando de maneira errática e abrupta porque a energia da erupção solar estava fazendo o mesmo com o eletrojato. Toda vez que o campo magnético que atravessa uma espira varia, é induzida uma corrente elétrica na espira. Quando uma corrente elétrica é induzida pelo eletrojato, a corrente é chamada de corrente geomagneticamente induzida (GIC*). Assim, na noite do apagão, a linha de transmissão tinha que transportar, além da corrente elétrica normal, uma GIC de grande intensidade e sujeita a variações bruscas. A transmissão de energia em uma rede elétrica depende do funcionamento regular de todo o sistema. A presença da GIC no sistema do Quebec saturou os transformadores, impedindo-os temporariamente de transferir energia do primário para o secundário. O resultado foi que a corrente elétrica e a tensão no secundário ficaram altamente distorcidas e deixaram de variar da maneira adequada; essa distorção prejudicou a transmissão de energia e queimou alguns transformadores, provocando o desligamento automático do sistema. Atualmente, sempre que ocorre uma erupção solar na direção da Terra, os engenheiros encarregados da manutenção da rede elétrica ficam de sobreaviso. A corrente geomagneticamente induzida pode acontecer em qualquer condutor longo, tal como os cabos de telecomunicações e o oleoduto Transalasca. Na verdade, foi observada pela primeira vez (mas não compreendida) quando longas linhas telegráficas foram instaladas, há mais de 150 anos. Em certos dias, as linhas já estavam sendo percorridas por correntes antes de serem ligadas a baterias, como era normalmente necessário. A GIC também pode acontecer no solo, onde pode acelerar a corrosão de oleodutos. Um efeito semelhante ao responsável pela GIC, produzido pela água em movimento, pode induzir correntes em cabos submarinos. Como a água é um bom condutor e está se movendo na presença do campo magnético terrestre, uma corrente elétrica é induzida na água (e, conseqüentemente, em um cabo estendido na água). O circuito é completado pela corrente que volta pelo leito do mar.

5.48 • Levitação de rãs Uma rã (ou outro animal pequeno) pode ser levitada por um campo magnético produzido por um solenóide (uma bobina de fio percorrida por corrente elétrica). A rã, porém, certamente não é magnética; se o fosse, toda vez que saísse pulando por uma cozinha acabaria ficando presa na porta de metal da geladeira. Com um campo magnético suficientemente intenso, até o leitor pode ser levitado, e você com certeza não sofre do efeito porta-de-geladeira. De que maneira essas substâncias biológicas podem ser levitadas?

Resposta Várias rãs ficaram famosas depois de flutuar no campo magnético de um solenóide. (As rãs não sentem nenhum incômodo; a sensação é como flutuar na água, que as rãs adoram.) O solenóide foi instalado verticalmente e a rã foi colocada perto da extremidade superior, onde o campo magnético se espalha no ar a partir do solenóide. Embora normalmente não seja magnética, uma rã adquire propriedades magnéticas ao ser submetida a um campo magnético. A rã (assim como as pessoas e muitos outros materiais) é diamagnética. Nesse tipo de material, um campo magnético altera o movimento dos elétrons nos átomos, tornando o material magnético. Assim, quando é colocada no campo magnético que se espalha no ar a partir do lado de cima de um solenóide, a rã é repelida pelo campo. A rã sobe até o ponto em que a força para cima exercida pelo campo é igual à força para baixo exercida pela força gravitacional e fica suspensa nesse ponto. Se a rã for substituída por um pequeno ímã, o ímã fica instável e não flutua. A rã se comporta de modo diferente porque suas propriedades magnéticas dependem da intensidade do campo magnético no local em que se encontra. Assim, por exemplo, se a rã for afastada do solenóide até um lugar em que o campo seja mais fraco, suas propriedades magnéticas também diminuem, enquanto as propriedades do ímã permanecem as mesmas.

Um ímã pequeno pode ser posto para flutuar se estiver girando como um pião. Um brinquedo muito interessante, vendido com o nome comercial de Levitron, baseia-se nessa idéia: um pião magnético que gira rapidamente e flutua alguns centímetros acima de uma placa de cerâmica magnetizada. Entretanto, como a resistência do ar freia o pião, sua velocidade de rotação acaba ficando pequena demais para que se mantenha em equilíbrio estável, e ele acaba tombando.

5.49 • O chiado de um ímã Ligue um toca-fitas (as músicas antigamente eram gravadas em fitas magnéticas) no modo de reprodução sem uma fita no lugar (ou com uma fita virgem) e ponha o volume no máximo. Em seguida, aproxime um ímã da cabeça de leitura. Por que o movimento produz um chiado no toca-fitas?

Resposta A cabeça de leitura do toca-fitas é ferromagnética e é composta de muitos domínios magnéticos, ou seja, regiões em que as propriedades magnéticas são uniformes e que produzem um campo magnético em uma certa direção. A direção do campo varia de um domínio para outro. Quando você aproxima o ímã da cabeça de gravação, os domínios mudam abruptamente de direção para se alinharem com o campo magnético produzido pelo ímã. Quando os campos dos domínios mudam, uma corrente variável é produzida em uma bobina enrolada na cabeça de leitura. As variações da corrente elétrica são amplificadas e enviadas para um alto-falante, onde se ouve um chiado: as idas e vindas da corrente elétrica em conseqüência da variação do campo magnético dos domínios.

5.50 • Correntes elétricas no corpo humano em uma estação de trem Estamos todos imersos no campo elétrico terrestre, que faz com que o potencial elétrico seja diferente na altura do nariz e na altura do pé. Por que não sentimos uma corrente elétrica passar pelo nosso corpo? As pessoas que esperam a chegada de um trem elétrico na plataforma às vezes sentem um formigamento quando tocam um objeto condutor, tal como um cano, que esteja ligado à terra. O que causa o formigamento?

Resposta Não temos uma corrente passando pelo corpo devido ao campo elétrico terrestre porque a concentração de partículas carregadas no ar à nossa volta é pequena demais para produzir uma corrente elétrica perceptível. Se o trem for alimentado por uma linha suspensa, a corrente provavelmente é alternada. Como esse tipo de corrente muda continuamente de direção e intensidade, o campo magnético que ela produz nas vizinhanças também muda de direção e intensidade. Nos condutores, essa variação do campo magnético produz correntes elétricas, mas as correntes são em geral muito pequenas para serem percebidas por uma pessoa. Entretanto, se a pessoa toca em um objeto condutor relativamente grande, tal como uma placa de metal, as correntes são maiores e podem ser sentidas.

_____________ *

Essas pastilhas, muito populares nos Estados Unidos, são conhecidas como LifeSavers. (N. do T.) * Do inglês thermoremanent magnetism. (N. do T.) * Do inglês geomagnetically induced current. (N. do T.)

6.1 • Arco-íris Por que os arco-íris aparecem quando chove, mas nem sempre? Por que são arcos de círculo? Um arco-íris forma um círculo completo? A que distância fica um arco-íris? É possível caminhar até uma de suas extremidades? Por que os arco-íris costumam ser visíveis apenas de manhã cedo ou no final da tarde? Normalmente, vemos apenas um arco-íris, mas às vezes é possível avistar dois, sendo cada um deles um arco de círculo em torno do mesmo ponto. Que ponto é esse? Por que a seqüência de cores nos dois arco-íris é invertida? Por que a região entre os arco-íris é relativamente escura? Por que o arco-íris de cima é mais largo e mais fraco que o de baixo? Por que a parte inferior do arco-íris costuma ser mais brilhante e mais avermelhada que a parte superior? O que produz as faixas fracas e estreitas que às vezes podem ser vistas logo abaixo do arco-íris inferior? Por que só vemos cores em duas faixas e não em todo o céu? É possível aparecer um terceiro arco-íris? Se for possível, ele será visto nas proximidades dos outros dois? Um trovão pode afetar um arco-íris?

Resposta Os arco-íris se formam quando as gotas de chuva espalham a luz solar branca em várias cores, concentrando as cores em uma faixa, a faixa do arco-íris. Como as gotas precisam ser iluminadas pela luz solar, os arco-íris não aparecem quando o céu está muito nublado. A luz sofre refração (sua trajetória é desviada) quando entra e sai de uma gota. O grau de refração depende da cor. Assim, por exemplo, como a trajetória da luz azul sofre um desvio maior que a trajetória da luz vermelha, a luz azul e a luz vermelha saem de uma gota a ângulos um pouco diferentes. Os arco-íris observados com maior freqüência são formados por raios luminosos que entram em uma gota, são refletidos uma vez na superfície interna e saem na direção do observador. Esse arco-íris, chamado arco-íris primário ou arco-íris de primeira ordem, porque existe apenas uma reflexão, tem o vermelho mais alto que o azul. O arco-íris de segunda ordem, que requer duas reflexões internas, tem a seqüência oposta de cores, por causa da geometria diferente das trajetórias envolvidas. A reflexão adicional possibilita um espalhamento maior das cores dentro de cada gota, o que produz um arco mais largo e mais fraco. O arco também é fraco porque parte da luz se perde em cada ponto de reflexão, o que deixa menos luz para o arco-íris.

Figura 6-1 / Item 6.1

Todas as gotas de chuva iluminadas refratam a luz e separam as cores, mas apenas as gotas situadas em certas posições enviam os raios coloridos em direção ao observador. As gotas que criam o arco-íris de primeira ordem precisam estar a cerca de 42° do ponto anti-solar, que fica diretamente oposto à posição do Sol em relação ao observador. Para localizar as gotas de chuva, aponte o braço esticado na direção do ponto anti-solar (ou seja, na direção da sombra de sua cabeça) e depois o levante 42° em qualquer direção. Seu braço apontará na direção em que as gotas produziriam o arco-íris de primeira ordem. As gotas que produzem o arco-íris de segunda ordem ficam a um ângulo de cerca de 51° do ponto anti-solar. Como as gotas precisam estar a ângulos específicos em relação ao ponto anti-solar, os arco-íris formam arcos de círculo em torno desse ponto. Se você estiver em uma posição elevada, tal como um avião em vôo, poderá ver círculos completos. Os arcoíris não têm uma distância real até você: todas as gotas ao longo de ângulos adequados (seja qual for a distância delas até você) contribuem para a cor. Assim, você não pode chegar ao fim de um arco-íris (para encontrar um pote de ouro). Além disso, o arco-íris que você vê é pessoal; alguém que esteja ao seu lado vê as cores a partir de um conjunto diferente de gotas. Um arco-íris costuma ser visível apenas de manhã cedo ou no final da tarde porque no meio do dia o ponto anti-solar está muito abaixo do horizonte. Mesmo assim, você pode ver um arco-íris se estiver em um ponto elevado e olhar para baixo na direção das gotas. Os arco-íris de terceira e quarta ordens (que exigem três e quatro reflexões internas, respectivamente) formam arcos de círculo em torno do Sol (e não em torno do ponto anti-solar), mas são fracos demais para serem vistos na claridade dessa parte do céu. Existem relatos raros de que arco-íris de terceira ordem foram observados, mas provavelmente as cores foram produzidas por cristais de gelo. O arco-íris de quinta ordem (cinco reflexões internas) fica entre os arco-íris de primeira e segunda ordens, mas é fraco demais para ser visto, como acontece com todos os outros arco-íris possíveis. A região intermediária entre os arco-íris de primeira e segunda ordens é escura em comparação com as regiões imediatamente abaixo e acima dos arco-íris, porque as gotas nessa região intermediária não redirecionam os raios luminosos na direção do observador, enquanto as gotas abaixo e acima dos arco-íris o fazem. A parte inferior de um arco-íris muitas vezes é mais luminosa e avermelhada que a parte superior, por causa de vários fatores, sendo que um deles envolve o tamanho e a forma das gotas. As cores de um arco-íris tendem a ser mais distintas no caso de gotas maiores, já que a luz percorre uma distância maior no interior das gotas maiores, o que possibilita que as cores se separem mais. Entretanto, a resistência do ar achata as gotas maiores enquanto elas caem. Na parte inferior do arco-íris, a luz atravessa uma seção reta circular horizontal de cada gota; esse corte transversal é ideal para produzir cores fortes e distintas. Na parte superior do arco-íris, a luz atravessa uma seção reta não-circular, que produz cores mais esmaecidas e menos distintas. A parte inferior também pode ser mais brilhante porque as gotas são mais bem iluminadas pela luz solar que passa por baixo de uma camada de nuvens no céu. Ela pode ser mais avermelhada se essa luz perder as cores situadas na extremidade violeta do espectro ao percorrer uma distância maior no ar para chegar às gotas. As faixas tênues que podem ser vistas imediatamente abaixo do arco-íris de primeira ordem e (mais raramente) imediatamente acima do arco-íris de segunda ordem são chamadas supranumerárias. Elas revelam que as cores de um arco-íris não são produzidas por gotas que funcionam como prismas simples. O arco-íris é, na verdade, um padrão de interferência criado por ondas luminosas que passam através da mesma gota e depois se combinam. As cores que você normalmente vê são as partes mais claras do padrão de interferência. Assim, por exemplo, o vermelho aparece nos locais em que ondas superpostas de luz vermelha estão em fase e, portanto, se reforçam mutuamente. Se as gotas são mais ou menos do mesmo tamanho, é possível enxergar as tênues supranumerárias. Quando as gotas não têm um tamanho uniforme, as supranumerárias ficam superpostas demais para serem distinguidas e você vê apenas uma fraca iluminação global.

Embora os modelos simples de arco-íris funcionem bem para gotas maiores que 0,1 milímetro, modelos muito mais complexos, que ainda estão sendo pesquisados, são necessários para gotas menores. O trovão faz com que as gotas d’água oscilem, o que torna as cores indistintas ou as elimina totalmente por causa da distorção na forma das gotas. Oscilações produzidas pela resistência do ar enquanto as gotas caem também podem tornar as cores indistintas, especialmente no caso de gotas grandes.

6.2 • Arco-íris incomuns Por que alguns arco-íris são brancos e outros são vermelhos? Por que os arco-íris produzidos pela luz do luar são incolores e raramente são vistos? Quais são as formas e cores dos arcos produzidos por nevoeiros, nuvens e gramados cobertos de orvalho? É possível ver um arco-íris em um corpo d’água enquanto existe um arco-íris sobre a água, ou o primeiro é apenas um reflexo do segundo? Em raras ocasiões, uma faixa de cores aparentemente vertical pode ser vista nas proximidades da parte inferior de um arcoíris normal. O que produz essa faixa adicional? O arco-íris normal é produzido com luz visível. Existem outros arco-íris que são produzidos com luz infravermelha e ultravioleta?

Resposta A separação de cores em um arco-íris é menor com gotas menores. Uma explicação é que, no caso de um diâmetro menor, as cores têm menos espaço para se espalhar dentro de uma gota. Quando as gotas são muito pequenas, as cores se sobrepõem e dão origem a um arco-íris branco. Um arco-íris vermelho pode aparecer quando o Sol está baixo. Como a luz solar precisa percorrer nesse caso uma grande distância na atmosfera, o espalhamento da luz causado pelas moléculas do ar ao longo da trajetória remove a maior parte do azul do espectro visível e as gotas são iluminadas principalmente com luz vermelha. À noite, a luz do luar pode formar um arco-íris, mas, nesse caso, o arco-íris é incolor porque o olho humano detecta mal as cores em condições de baixa iluminação. Os arco-íris produzidos pelo luar raramente são notados, porque são fracos e porque as pessoas não esperam ver um arco-íris à noite. Arco-íris podem ser produzidos por nevoeiros, nuvens e gramados cobertos de orvalho, mas são difíceis de observar porque as gotas são, muitas vezes, pequenas demais para produzir cores distintas e os arcos podem se perder na claridade global. Eles são faixas brancas em forma de hipérboles ou elipses por causa da perspectiva do observador ao vê-los sobre uma superfície horizontal. Você também pode observar um arco-íris em um corpo d’água se a superfície da água estiver parcialmente coberta por gotas flutuantes. Se um arco-íris normal se forma sobre um corpo d’água, você pode ver um arco-íris de reflexão na água. Entretanto, esse arco-íris de reflexão não é simplesmente um reflexo do arco-íris que você vê acima da água, pois envolve um conjunto diferente de gotas de chuva. Para se formar um arco-íris de reflexão, os raios luminosos precisam entrar nas gotas de chuva, ser refletidos uma vez (ou duas) no interior das gotas, deixá-las e ser refletidos na superfície da água antes de chegar ao observador. As gotas que fazem tudo isso são observadas em um ângulo diferente das gotas que dão origem ao arco-íris normal. Por isso, o arco-íris refletido não se sobrepõe ao arco-íris normal. A linha aparentemente vertical que é observada às vezes nas proximidades da parte inferior de um arco-íris normal também resulta de uma reflexão da luz na superfície da água. Entretanto, nessa situação, primeiro a luz é refletida na superfície da água e depois ilumina as gotas de chuva. As gotas que têm o ângulo certo para enviar raios coloridos ao observador produzem a faixa vertical (Fig. 6-2). Em alguns casos raros, é possível ver um arco-íris adicional completo que se estende sobre o arco-íris normal. (Esse arco-íris adicional às vezes é confundido com o arco-íris de terceira ordem.) O centro do arco-íris normal fica no ponto anti-solar, mas o centro do arco-íris adicional fica em um ponto deslocado para cima em relação ao ponto anti-solar por causa da mudança de geometria causada pela reflexão. Quando apenas as pernas do arco-íris adicional são visíveis, elas podem parecer verticais, mas são, na verdade, curvas.

Figura 6-2 / Item 6.2 A luz refletida pela água pode formar um arco-íris com o centro em um ponto mais alto que o arco-íris de primeira ordem. Aqui são mostradas apenas as pernas do arco-íris adicional.

A fração ultravioleta e a fração infravermelha dos raios solares também podem estar presentes em um arco-íris. Embora sejam invisíveis aos nossos olhos e não possuam uma cor no sentido estrito da palavra, essas radiações podem ser detectadas com o auxílio de equipamentos apropriados.

6.3 • Arco-íris artificiais Por que é possível observar dois arco-íris parcialmente superpostos em uma queda d’água iluminada diretamente pelo Sol? Por que é possível observar duas faixas coloridas quando um holofote é apontado para cima à noite, no meio de uma chuva fina (Fig. 6-3)? Em alguns lugares, uma figura parecida com um arco-íris pode ser vista no asfalto, mesmo quando ele está seco. Em raras ocasiões, o mesmo tipo de figura foi visto na lama e em outros lugares inesperados. O que produz essas figuras?

Resposta Quando as gotas de água estão próximas, cada olho vê as gotas de um ângulo diferente, de modo que você vê dois arco-íris que se sobrepõem apenas em parte. Quando as gotas estão distantes, os olhos vêem as gotas praticamente do mesmo ângulo e os arco-íris se sobrepõem totalmente.

Figura 6-3 / Item 6.3 Faixas coloridas vistas no facho de um holofote em uma noite chuvosa.

A luz de um holofote é refratada e separada em cores pelas gotas d’água iluminadas pelo facho do holofote. Algumas dessas gotas têm o ângulo correto para fazer com que os raios luminosos sejam desviados na direção do observador. A faixa mais distante do holofote corresponde ao arco-íris natural de primeira ordem (o arco-íris natural mais baixo no céu), enquanto a outra faixa corresponde ao arco-íris natural de segunda ordem. Quando o facho gira, as posições das gotas que enviam raios luminosos em direção ao observador se aproximam e se afastam do holofote e, portanto, as faixas também se movem. As cores das faixas são fracas principalmente porque o olho humano é pouco sensível às cores em condições de baixa intensidade luminosa. Os arco-íris observados no asfalto seco são produzidos por pequenas esferas de vidro que às vezes são implantadas no asfalto para que a sinalização fique mais visível à noite. Quando muitas dessas esferas se desprendem e se espalham pela pista,

decompõem a luz solar da mesma forma que as gotas d’água. Os outros arco-íris incomuns são mais difíceis de explicar, mas são provavelmente causados por gotas d’água, pedaços de vidro ou outros objetos que decompõem a luz branca.

6.4 • O céu não é escuro de dia Por que o céu é claro durante o dia? Isso parece indicar que a atmosfera desvia a luz em direção ao observador. Entretanto, se o ar é transparente, por que a luz solar não atravessa o ar sem sofrer nenhum desvio?

Para responder a esta pergunta, alguns estudiosos alegaram que a luz sofria o espalhamento de Rayleigh, um tipo de interação no qual a luz é desviada por partículas muito menores que o seu comprimento de onda, como é o caso das moléculas do ar. Albert Einstein comentou que, mesmo levando-se em conta o espalhamento de Rayleigh, se não houvesse algum fator adicional, o céu seria escuro durante o dia. Para acompanhar o raciocínio de Einstein, considere uma molécula de ar que espalha a luz na direção do observador. Para simplificar, suponha que a luz solar tenha apenas um comprimento de onda. O observador também recebe a luz espalhada por outras moléculas que ficam ao longo da trajetória que vai da primeira molécula até ele. Uma dessas moléculas deve estar posicionada de tal forma que a onda luminosa que ela envia na direção do observador chega com a fase oposta à da onda luminosa da primeira molécula. Assim, as duas ondas se cancelam (Fig. 6-4). Como, em média, para cada molécula existe outra que cancela a luz enviada pela primeira na direção do observador, o observador não deve receber luz alguma e o céu deve ser escuro, a não ser na direção do Sol. Certo?

Figura 6-4 / Item 6.4 Ondas luminosas se cancelam quando são espalhadas por duas moléculas afastadas meio comprimento de onda entre si.

Resposta A luz sofre o espalhamento de Rayleigh, e o raciocínio de Einstein está correto. Entretanto, como ressaltou Einstein, a densidade da atmosfera não é uniforme e as moléculas estão continuamente se reagrupando, o que reduz praticamente a zero a probabilidade de que em um dado instante todas as ondas espalhadas em uma certa direção se cancelem mutuamente. Assim, o céu é claro porque a densidade das moléculas de ar não é uniforme e varia com o tempo.

6.5 • As cores do céu Por que o céu é azul durante o dia? A cor azul é produzida por gotas d’água ou partículas sólidas em suspensão no ar ou pelas próprias moléculas do ar? Por que o céu não é violeta? Por que o azul do céu é mais claro perto do horizonte? O céu é azul em uma noite de luar? (Embora nesse caso o céu esteja escuro demais para que nossos olhos detectem alguma cor, isso não exclui a possibilidade de que o céu seja colorido.) Por que o céu fica vermelho no crepúsculo? As últimas cores não deveriam ser vermelho e amarelo, uma mistura que produz

a cor laranja? Por que às vezes existe uma divisão nítida entre a região vermelha e o resto do céu?

Resposta O céu é azul durante o dia porque as moléculas do ar espalham mais as ondas que estão no lado azul do espectro do que as ondas que estão no lado vermelho. Assim, quando você olha para o céu em uma direção que não seja a do Sol, recebe raios luminosos cuja intensidade é dominada pelo azul. O azul não é puro porque outras cores são espalhadas pelas moléculas do ar, embora com menor intensidade. Embora a luz violeta seja espalhada com mais intensidade que a azul, o céu não é violeta porque a luz do Sol é mais fraca no violeta do que no azul e também porque nosso olho é muito menos sensível ao violeta do que ao azul. Esse tipo de espalhamento, no qual a luz é desviada por partículas muito menores que o seu comprimento de onda, é chamado espalhamento de Rayleigh porque foi estudado pela primeira vez por Lord Rayleigh no final do século XIX. Antes de descobrir esse fenômeno, ele estava convencido de que um gás puro era transparente e, portanto, o azul do céu só podia ser produzido por partículas em suspensão. Embora as moléculas de água em suspensão na atmosfera absorvam preferencialmente as ondas que estão do lado vermelho do espectro e deixem passar a luz azul, não contribuem significativamente para a cor azul do céu porque a quantidade de água na atmosfera é relativamente pequena. O azul do céu é mais claro perto do horizonte porque a luz que atravessa uma camada mais espessa de atmosfera sofre vários espalhamentos antes de chegar ao observador. No primeiro espalhamento, a cor componente azul é desviada em direção ao observador, mas a cada espalhamento subseqüente a componente azul vai ficando mais fraca, já que a probabilidade de que seja desviada em outra direção é maior do que para a componente vermelha. Assim, a luz que foi desviada pela primeira vez por moléculas mais distantes acaba ficando dominada pela luz vermelha; ao se combinar com a componente dominada pelo azul da luz desviada pelas moléculas mais próximas, torna o azul mais claro. O céu à noite é azul, mas a luz é fraca demais para ser percebida pelos nossos olhos. Entretanto, pode aparecer em fotografias de longa exposição. Quando você observa um crepúsculo, a luz que chega aos seus olhos percorreu um longo caminho na atmosfera. Nesse caminho, a luz foi espalhada pelas moléculas do ar, que desviam mais as ondas que estão no lado azul do espectro do que as ondas correspondentes ao amarelo e ao vermelho. Se esse fosse o único efeito, a intensidade da luz do crepúsculo seria máxima para um comprimento de onda de 595 nanômetros, que corresponde à cor laranja. Entretanto, o céu fica vermelho na maioria dos crepúsculos por causa de partículas em suspensão no ar, que espalham ondas de todas as cores, menos o vermelho. No crepúsculo existe uma divisão nítida entre a região vermelha e o resto do céu se o crepúsculo for observado através de uma inversão térmica, ou seja, através de um trecho da atmosfera no qual a temperatura do ar aumenta com a altitude. Quando a luz do Sol encontra uma camada desse tipo, é refratada e não chega aos olhos do observador. Entretanto, a luz que passa pouco acima ou pouco abaixo da camada não é afetada, o que estabelece uma divisão entre a luz que chega diretamente do Sol (de cor avermelhada) e a luz proveniente do resto do céu (de cor azul).

6.6 • Montanhas azuis, montanhas brancas e nuvens vermelhas Quando você observa montanhas na sombra a diferentes distâncias, por que as montanhas situadas a distâncias intermediárias parecem azuladas, as montanhas muito distantes parecem ainda mais azuis e as montanhas no horizonte parecem brancas? Por que uma montanha distante coberta de neve e iluminada pelo Sol às vezes parece amarela? Por que nuvens muito distantes às vezes parecem vermelhas? Esta cor, que supostamente deveria aparecer apenas no crepúsculo, às vezes também aparece quando o Sol está alto no céu.

Resposta Uma montanha na sombra a uma distância intermediária parece azul porque, como foi explicado no item anterior, o ar que existe entre a montanha e o observador espalha mais as ondas do lado azul do espectro em direção ao observador do que as ondas do lado vermelho, fazendo com que a imagem escura da montanha assuma uma tonalidade azulada. Se a montanha estiver mais distante, existe uma quantidade maior de ar entre a montanha e o observador para espalhar a luz dominada pelo azul e a tonalidade azulada torna-se mais intensa. Quando a montanha está no horizonte, parece branca pela mesma razão pela qual o próprio céu parece branco perto do horizonte (veja o item anterior). A cor de uma montanha distante coberta de neve e iluminada pelo Sol é diferente da cor de uma montanha sem neve à mesma distância porque a neve reflete a luz do Sol na direção do observador. No trajeto dessa luz até o observador, a extremidade azul do espectro é enfraquecida pelo espalhamento das moléculas de ar, de modo que o espectro passa a ser dominado pela extremidade vermelha. Entretanto, as moléculas de ar situadas no percurso também são iluminadas diretamente pela luz do Sol e espalham preferencialmente a luz azul na direção do observador. A combinação da luz azul proveniente das

moléculas de ar com a luz vermelha proveniente da neve confere à luz branca da neve um tom amarelado. Assim como a neve, uma nuvem distante também reflete a luz solar em direção ao observador, de modo que, à primeira vista, também deveria assumir um tom amarelado. Entretanto, uma nuvem branca muito distante muitas vezes assume um tom avermelhado. A diferença está no fato de que podemos ver as nuvens a uma distância muito maior do que as montanhas. Quanto maior a distância, maior o espalhamento da luz pelas moléculas do ar e mais avermelhada fica a luz.

6.7 • O provérbio dos marinheiros Existe um fundo de verdade no provérbio que diz: “Céu vermelho à noite, alegria do marinheiro; céu vermelho de manhã, marinheiros, tomem cuidado”?

Resposta O provérbio pode ter um fundo de verdade nas regiões em que as tempestades chegam habitualmente do oeste e o fazem nos chamados sistemas de tempestade. Se o céu estiver avermelhado ao pôr-do-sol, ou seja, a oeste, isto significa que a região a oeste está livre de nuvens de tempestade, pois estas bloqueariam a luz rasante responsável pela cor avermelhada. Por outro lado, se o céu estiver avermelhado ao amanhecer, ou seja, a leste, isto significa que está fazendo bom tempo a leste e que a próxima tempestade pode chegar do oeste.

6.8 • Crepúsculos e vulcões Por que as erupções vulcânicas produzem crepúsculos vermelhos no mundo inteiro? Esses crepúsculos incomuns aparentemente inspiraram várias pinturas de Edvard Munch, entre elas a famosa O Grito, que mostra uma pessoa gritando de desespero com um céu cor de sangue ao fundo. Munch pode ter visto crepúsculos vermelhos na sua terra natal, a Noruega, depois da explosão do vulcão Cracatoa, perto de Java, em 1883. A explosão lançou cinzas na atmosfera superior e essas cinzas se espalharam pelo mundo inteiro. Quando chegaram às altas latitudes dos países nórdicos, Munch deve ter achado os crepúsculos particularmente perturbadores.

Resposta As cinzas e outras partículas lançadas na atmosfera por uma erupção vulcânica formam uma camada a uma altitude de aproximadamente 20 quilômetros. Entre as substâncias lançadas pelos vulcões está o dióxido de enxofre, que reage com o ozônio presente no ar nessa altitude para formar sulfatos, que se precipitam em seguida para formar um aerossol. Essa camada de cinzas e aerossóis pode se espalhar por toda a Terra. As cores observadas ao crepúsculo são uma combinação da luz espalhada por essa camada com a luz espalhada pelas camadas que estão acima e abaixo. A luz que chega ao observador por baixo da camada tende a ser vermelha porque passa pela parte mais espessa da atmosfera e, portanto, tende a perder a parte azul do espectro por causa do espalhamento das moléculas do ar. A luz que chega por dentro da camada também passa por uma região densa da atmosfera, mas perde uma parte da luz vermelha, que é absorvida pelo ozônio. A luz que chega por cima da camada passa por uma camada mais fina da atmosfera e praticamente não perde a luz azul. Quando o observador olha para o céu do crepúsculo, pode ver muitas cores, que variam de um local para outro do céu e também de um dia para o outro. Como os aerossóis e as cinzas vulcânicas podem permanecer na atmosfera durante vários meses, o mesmo acontece com os crepúsculos coloridos. Quando nuvens distantes, abaixo do horizonte, bloqueiam parte da luz proveniente da parte inferior da camada, é possível observar variações horizontais de coloração que produzem crepúsculos com distribuições diferentes de cores à direita e à esquerda do Sol.

6.9 • O anel do bispo Em agosto de 1883, a ilha de Cracatoa, perto de Java, explodiu em uma grande erupção vulcânica. Em setembro, o reverendo Sereno, bispo de Honolulu, descreveu um “halo ou corona peculiar, a 20 ou 30 graus do Sol, que tem sido visível todos os dias, e durante o dia inteiro, de cor branca levemente rosada, que se torna lilás ou púrpura na periferia”. O que causa esse halo, hoje conhecido como anel do bispo, que é observado com freqüência após as grandes erupções vulcânicas? O que determina o tamanho e a coloração do halo?

Resposta O anel do bispo é produzido pela difração da luz pelas pequenas partículas que um vulcão lança na atmosfera superior. (Difração é um tipo de espalhamento; no caso, significa que as pequenas partículas separam a luz branca em suas cores componentes.) As partículas maiores logo se depositam e deixam a atmosfera, mas as partículas menores permanecem no ar e são espalhadas pelo mundo inteiro pela circulação atmosférica a grandes altitudes.

Quando um observador olha para as proximidades do Sol, além de ver a luz normal do céu, vê também a luz que foi difratada por essas pequenas partículas em sua direção. Essa luz adicional faz com que uma região circular em torno do Sol adquira um brilho excepcional, como se fosse um anel. O tamanho do anel depende da intensidade da difração, que é inversamente proporcional ao tamanho das partículas. A periferia do anel pode ser avermelhada porque a luz vermelha, que é a que possui maior comprimento de onda no espectro visível, é a mais difratada (espalhada). Assim, uma partícula na periferia do anel, à direita do observador, por exemplo, pode difratar a luz vermelha na direção do observador, mas não pode difratar a luz azul. Entretanto, a periferia pode parecer violeta se o observador estiver vendo ao mesmo tempo a luz vermelha difratada e a luz que o céu normalmente teria nessa posição. O anel tem uma borda mais nítida e mais colorida se as partículas forem todas mais ou menos do mesmo tamanho e, portanto, difratam a luz da mesma maneira. Se o tamanho das partículas varia muito, o anel é difuso e esbranquiçado.

6.10 • Contraste das nuvens Na próxima vez em que você viajar de avião, observe a textura das nuvens nas proximidades do ponto anti-solar (ponto diametralmente oposto à posição do Sol). É provável que você veja uma textura maior nas nuvens que se encontram em uma região circular que se estende até 42o do ponto anti-solar do que no resto do céu. Qual é a causa desse fenômeno?

Resposta Você pode observar melhor a textura das nuvens quando existe um bom contraste entre as regiões que espalham a luz solar e regiões vizinhas que estão encobertas por sombras. O espalhamento da luz pelas gotículas de água presentes nas nuvens é maior a menos de 40o do ponto anti-solar, de modo que o contraste é maior nessa região.

6.11 • Cores do céu durante um eclipse solar Por que, durante um eclipse solar total, o horizonte fica avermelhado e o resto do céu fica mais azulado do que antes e depois do eclipse?

Resposta Normalmente, a luz que vem da direção do horizonte é branca. As moléculas do ar que não estão muito longe do observador espalham mais luz azul na sua direção do que luz vermelha. As moléculas mais distantes fazem o mesmo, mas, como a luz tem que percorrer uma distância maior, perde boa parte do azul ao ser espalhada no caminho por outras moléculas do ar. Assim, as moléculas mais próximas contribuem com luz azul e as moléculas mais distantes contribuem com luz vermelha; a combinação das duas cores faz com que a luz proveniente do horizonte seja branca. Entretanto, quando você está na sombra projetada por um eclipse solar total, as moléculas mais próximas não são iluminadas e você recebe apenas a luz vermelha das moléculas distantes, o que faz com que o horizonte pareça vermelho. O céu longe do horizonte é mais azul durante um eclipse total porque a sombra elimina a luz espalhada em direção ao observador pela região da atmosfera que está mais próxima do horizonte. Essa luz normalmente é avermelhada porque, para chegar à parte do céu que está longe do horizonte, essa luz tem que passar pela parte mais densa da atmosfera. No caminho, perde boa parte do azul por causa do espalhamento causado pelas moléculas do ar, de modo que, ao ser finalmente espalhada em direção ao observador, é dominada pela luz vermelha. A luz do Sol que incide na parte do céu mais afastada do horizonte passa pela parte menos densa da atmosfera, encontra menos moléculas do ar e, portanto, perde menos azul. Assim, quando é espalhada na direção do observador, ainda conserva quase todo o azul. A cor do céu longe do horizonte é normalmente uma combinação da luz avermelhada proveniente da parte do céu mais próxima do horizonte com a luz azulada proveniente da parte mais afastada do horizonte. O eclipse, porém, elimina a luz avermelhada, fazendo com que o céu longe do horizonte fique mais azul que o normal.

6.12 • Quando o céu ficar esverdeado, corra para o porão Quando eu era criança e morava no Texas, minha avó sempre nos obrigava a ir para o porão quando uma tempestade deixava o céu esverdeado, porque acreditava (como muita gente) que o verde era sinal de que um tornado podia estar se aproximando. Por que o céu ficaria esverdeado em vez de simplesmente ficar escuro?

Resposta A cor verde do céu deve-se a dois fenômenos que ocorrem simultaneamente. (1) A luz incidente perde boa parte do azul, devido ao espalhamento das moléculas do ar. Isso significa que o Sol deve estar baixo no céu. (2) Quando essa luz passa pelas gotas de água de uma nuvem, a água absorve preferencialmente a parte vermelha do

espectro. Se a nuvem tem a espessura apropriada (que corresponde mais ou menos à de uma nuvem de tempestade), a luz que emerge da nuvem é deficiente tanto na extremidade azul como na extremidade vermelha do espectro, o que a deixa com a tonalidade verde ou verde-amarelada correspondente às cores restantes do espectro visível (Fig. 6-5).

Figura 6-5 / Item 6.12 A luz proveniente de um Sol que está baixo no céu, e que, portanto, tem pouco azul, perde vermelho ao passar pela nuvem, restando apenas o verde.

6.13 • O realce do azul do céu Por que o céu longe do horizonte fica mais azul ao crepúsculo? Não devia ficar mais vermelho, como acontece perto do horizonte?

Resposta Ao crepúsculo, a luz espalhada em direção ao observador por moléculas de ar situadas em uma região acima da sua cabeça chegaram a essa região seguindo uma trajetória que inclui um bom trecho no interior da camada de ozônio (Fig. 6-6). Como o ozônio absorve preferencialmente a parte vermelha do espectro visível, a luz é dominada pelo azul antes mesmo de ser espalhada em direção ao observador. Isto faz com que o céu longe do horizonte adquira um azul mais intenso ao crepúsculo, especialmente cerca de 20 minutos depois do pôr-do-sol.

Figura 6-6 / Item 6.13 A luz solar que passa pela atmosfera inferior fica vermelha; a luz que passa pela camada de ozônio fica azul.

6.14 • Mancha escura e borda rosada ao crepúsculo Por que aparece uma mancha escura no lado leste do horizonte durante o crepúsculo (Fig. 6-7a)? Por que a borda superior da mancha, conhecida como cinto de Vênus, é vermelha ou laranja? Por que o interior da mancha às vezes é levemente azulado?

Resposta A mancha escura é a sombra da Terra na atmosfera; ela nasce no leste quando o Sol se põe no oeste. A parte superior da sombra é iluminada com uma luz que ficou avermelhada depois de passar por uma grande extensão da atmosfera por causa das moléculas do ar, que espalham mais a luz azul (Fig. 6-7b). Parte dessa luz chega ao observador, que vê, portanto, uma borda vermelha. Existem várias razões pelas quais a região no interior da sombra pode assumir uma tonalidade azulada. Em primeiro lugar, a luz proveniente do interior da sombra não pode ter chegado lá diretamente do Sol, mas deve ter sido desviada para lá pelo ar das grandes altitudes, que ainda está sendo iluminado pelo Sol. Como o ar das grandes altitudes é rarefeito, essa luz não perde tanto azul quanto a luz que passa pelo ar mais próximo do solo. Se essa luz passa por uma grande extensão da camada de ozônio, fica ainda mais azul, já que o ozônio absorve preferencialmente a parte vermelha do espectro. Parte dessa luz dominada pelo azul é

espalhada em direção ao observador na região da sombra.

Figura 6-7 / Item 6.14 (a) Uma mancha escura aparece no lado leste do horizonte ao crepúsculo. (b) A borda superior da mancha é vermelha; o interior da mancha é levemente azulado.

6.15 • Colunas claras e escuras no céu Às vezes, quando o Sol está próximo do horizonte, fachos claros ou escuros aparecem no céu, divergindo de nuvens próximas do Sol ou convergindo para nuvens próximas do ponto anti-solar. Se você tiver sorte, pode ver fachos que cobrem boa parte do céu. Por que esses fachos aparecem e por que não são paralelos? Afinal, o Sol está tão distante que os raios solares são aproximadamente paralelos.

Resposta Os fachos têm vários nomes, como raios de sol, raios de Buda e dedos de Buda. São quase paralelos, mas parecem divergir ou convergir por causa da perspectiva do observador. (Uma ilusão de convergência semelhante acontece quando observamos longitudinalmente dois trilhos de estrada de ferro.) Os fachos geralmente se formam quando nuvens projetam sombras no céu. Quando se trata de apenas uma nuvem pequena, a sombra é vista como um facho escuro. No caso de várias nuvens, a luz que passa entre elas pode produzir fachos claros. (Em alguns lugares, os fachos claros podem se formar quando a luz passa por espaços entre montanhas.) Parte dessa luz é então espalhada em direção ao observador pela poeira, chuva, neve, aerossóis ou moléculas de ar; os fachos claros podem ser vistos por causa do contraste com as regiões de sombra. Os fachos são difíceis de ver longe do horizonte, porque nesse caso estão sendo vistos de lado e, portanto, a luz espalhada é muito menor. Eles são muito mais fáceis de ver quando o Sol está próximo do horizonte e você olha na direção do Sol ou na direção diametralmente oposta, pois nesse caso você está olhando quase paralelamente ao facho e a quantidade de luz espalhada em sua direção é maior, o que aumenta o contraste com as regiões de sombra. Fachos de luz semelhantes são vistos quando a luz do Sol entra por uma fresta em um quarto mal iluminado. Você pode ver o facho de luz porque a poeira espalha a luz em sua direção e porque essa luz não é mascarada pela luz, muito mais forte, que é espalhada pela parede e pela mobília quando o quarto está bem iluminado.

6.16 • Neblina azulada; neblina avermelhada e neblina amarronzada

Algumas cadeias de montanhas cobertas de vegetação, como as montanhas Blue Ridge, no Tennessee, e as montanhas Azuis, na Austrália, são famosas pela sua neblina azulada. Essa neblina não se deve à poluição, pois essas regiões são quase desabitadas. Também não se deve à poeira levantada pelo vento, já que a neblina desaparece quando está ventando forte. Não se deve à umidade, porque é mais intensa quando o ar está seco. O que produz a neblina azul? Às vezes, quando o solo ou o oceano está coberto de neblina, a superfície pode não ser visível de um avião que esteja voando a uma altitude de cruzeiro. Por que essa neblina muitas vezes tem um tom avermelhado? Por que a neblina nas cidades muitas vezes é amarronzada? Isto se deve ao fato de que a neblina absorve preferencialmente certas cores? Ou será que é o espalhamento da luz por partículas presentes no ar que deixa a luz marrom? A cor depende das cores do fundo no local em que você está observando a neblina? Se você olha para o Sol através da neblina, por que o Sol parece envolvido por um halo branco? Por que o halo às vezes é avermelhado?

Resposta A neblina azulada é causada por aerossóis produzidos quando moléculas grandes, tais como terpenos, são liberadas pelas plantas. Além disso, partículas de cera podem ser arrancadas das agulhas dos pinheiros e outras superfícies das plantas pelos fortes campos elétricos criados pelas nuvens eletrificadas que passam pelas montanhas. Nos dois casos, as partículas são suficientemente pequenas para espalhar preferencialmente a luz azul em direção ao observador, deixando a região com uma neblina azulada. A neblina avermelhada em geral é causada por poeira e aerossóis de dimensões um pouco maiores (da ordem de 0,1 micrômetro). Essas partículas espalham preferencialmente a luz vermelha. A neblina das cidades é causada por gotículas de água que contêm muitas substâncias em solução. Uma dessas substâncias é o dióxido de nitrogênio, que absorve algumas cores do espectro da luz visível, tornando a neblina amarronzada. A cor do fundo, como, por exemplo, a de um edifício de tijolos aparentes, pode desempenhar também papel importante. Quando você olha para o Sol através da neblina, as partículas em suspensão espalham uma luz adicional na sua direção. Como o espalhamento é mais forte para pequenos ângulos de incidência, a região mais brilhante é aquela em volta do Sol. Quando o Sol está alto no céu, a neblina recebe luz branca e, portanto, o halo em volta do Sol também é branco. Quando o Sol está próximo do horizonte, a neblina recebe uma luz que ficou avermelhada depois de passar por uma grande extensão da atmosfera e, portanto, o halo em volta do Sol é avermelhado.

6.17 • Luzes de uma cidade distante Quando você olha de longe para uma cidade à noite, por que observa uma luminosidade alaranjada no ar acima da cidade? Por que as luzes de uma árvore de Natal vista a distância parecem todas vermelhas, mesmo que as lâmpadas produzam luzes de muitas cores diferentes?

Resposta Vários fatores são responsáveis pela cor do céu acima de uma cidade distante, um dos quais é a cor das lâmpadas usadas na iluminação pública. Mesmo que as lâmpadas sejam brancas, porém, o céu ficará alaranjado ou avermelhado se houver neblina sobre a cidade. Quando a luz espalhada pela neblina se propaga em direção ao observador, a parte azul do espectro é espalhada pelas moléculas do ar e apenas a parte vermelha chega ao observador. Além disso, o espalhamento inicial da luz pela neblina pode enviar preferencialmente luz vermelha na direção do observador se o tamanho das partículas for da ordem de 0,1 micrômetro ou um pouco mais. Quando você olha para uma árvore de Natal a distância, a luz azul que vem em sua direção é mais espalhada pelas moléculas do ar do que a luz vermelha. Se a distância for muito grande, restará apenas a luz vermelha.

6.18 • A que distância fica o horizonte? O horizonte é o lugar em que a curvatura da Terra impede que você veja pontos mais distantes sobre a superfície da Terra? Como varia a distância do horizonte com a altitude a que você se encontra? O horizonte pode ser visto com nitidez quando você está muito acima da superfície da Terra?

Resposta Como a densidade do ar diminui com a altitude, o horizonte visível pode estar mais distante que o horizonte geométrico. Imagine um raio luminoso que parta, na sua direção genérica, de um ponto situado além do horizonte geométrico, quase tangenciando a curvatura da Terra. Se o raio se propagasse em linha reta, passaria muito acima da sua cabeça e não poderia ser visto, mas a redução da densidade do ar que ele encontra na trajetória ascendente faz com que seja refratado (desviado) na sua direção. Assim, é possível ver objetos que estão situados um pouco além do

horizonte geométrico. Naturalmente, quanto maior a altitude do observador, maior a distância a que está o horizonte. Entretanto, em altitudes maiores que alguns quilômetros, o horizonte deixa de ser nítido por causa da distorção causada pelo espalhamento da luz pelas partículas da atmosfera.

6.19 • A cor do céu em um dia nublado Por que, no interior, o céu parece mais verde no verão do que no inverno?

Resposta A cor mais verde no verão deve-se à luz que primeiro é espalhada pela vegetação em direção às nuvens e depois é espalhada pelas nuvens em direção ao observador.

6.20 • Mapas no céu Nas regiões geladas do extremo norte, grandes mapas topográficos às vezes aparecem na superfície inferior das nuvens. Esses mapas, conhecidos como reflexos glaciais (ice-blinks, em inglês), que podem ter até 30 quilômetros de extensão, permitem que um explorador se oriente na água, se estiver viajando de barco, ou em terra, se estiver viajando de trenó. O que produz os reflexos glaciais? Eles podem ser vistos em outras circunstâncias?

Resposta As terras cobertas de gelo refletem para a superfície inferior das nuvens uma quantidade maior de luz que os cursos d’água. Assim, as variações de iluminação na base das nuvens reproduzem o terreno abaixo, com as regiões escuras correspondendo aos cursos d’água e as regiões claras correspondendo às terras cobertas de gelo. Mapas semelhantes podem aparecer em uma neblina.

6.21 • Mais claro quando neva Alguns observadores notaram que, durante um nevoeiro de inverno, a visibilidade aumenta sensivelmente quando começa a nevar. Quando não há nevoeiro mas o tempo está encoberto, o céu fica muito mais claro quando começa a nevar. Por que a neve altera a visibilidade e a claridade? Por que a neve é mais clara no horizonte do que no resto do céu quando o tempo está encoberto?

Resposta Quando a neve atravessa uma neblina, os cristais de neve arrastam algumas das gotas d’água em suspensão. Eles também roubam moléculas de água de algumas gotas que permanecem em suspensão, reduzindo assim o tamanho das gotas. Os dois efeitos podem diminuir a neblina e melhorar a visibilidade. Nos dias em que não há neblina, uma nevasca torna o dia mais claro porque a luz é refletida com muita intensidade pela neve fresca. A neve no horizonte é mais clara nos dias nublados por três razões. (1) As gotas d’agua de uma nuvem espalham a luz principalmente na direção longitudinal e, portanto, o observador recebe mais luz da parte do céu que está longe do horizonte do que da parte que está perto do horizonte. Assim, a parte que está perto do horizonte é relativamente escura. (2) A neve espalha a luz igualmente em todas as direções e, portanto, o observador recebe uma quantidade significativa de luz da parte do céu que está perto do horizonte. Assim, a neve torna essa região mais clara. (3) Quando você vê a interface de duas regiões, uma mais clara e outra mais escura, o sistema visual acentua a diferença para tornar a interface mais nítida.

6.22 • A extremidade do facho da luz de um holofote Os holofotes eram usados na Segunda Guerra Mundial para localizar aeronaves inimigas em noites escuras; hoje em dia, são usados para atrair o público para grandes espetáculos. Por que o facho de luz termina abruptamente em vez de diminuir aos poucos de intensidade ou simplesmente continuar “para sempre”?

Resposta O facho diminui de intensidade porque se espalha e porque as moléculas do ar e as partículas em suspensão no ar espalham a luz. (Se não houvesse nada para espalhar a luz na sua direção, você não veria o facho.) A atenuação produzida pelo espalhamento é muito forte, dando a impressão de que o facho termina bruscamente.

CURIOSIDADE 6.23 • Os raios de Sol do solstício de inverno em Newgrange Newgrange é um grande túmulo megalítico construído na Irlanda por volta de 3150 a.C. Possui uma estrutura de pedra em

forma de cúpula, coberta de terra, com uma única entrada voltada para o sul e um corredor de 20 metros que vai até o centro da cúpula. Existe uma pequena abertura, chamada teto solar, acima da entrada. A função do teto solar só foi descoberta em 1969; ao alvorecer, no solstício de inverno, os raios solares atravessam o teto solar e o corredor para atingir a câmara mortuária, situada no centro da cúpula. Não se trata de mero acaso, mas de um alinhamento planejado pelos construtores de Newgrange. Fenômeno semelhante acontece no MIT: perto do crepúsculo, em certos dias, os raios do Sol atravessam a entrada principal (77 Massachusetts Avenue) e um longo corredor, percorrendo uma distância de 251 metros. Embora não exista uma câmara mortuária oficial no final do corredor, muitos estudantes foram academicamente sepultados nesse corredor ou nas proximidades.

6.24 • O raio verde Quando o Sol se põe e o dia está claro, às vezes é possível avistar um raio verde na extremidade superior do Sol no instante em que o astro desaparece. A cor não é uma ilusão de óptica, pois foi fotografada e também pode ser vista ao alvorecer. Nas altas latitudes, o raio pode ser visto por um tempo maior, que pode chegar a 30 minutos, quando o Sol se move ao longo do horizonte no final de uma longa noite de inverno. Um horizonte desimpedido, como o do oceano, é essencial. Embora seja muito mais raro, um raio vermelho pode ser avistado quando o Sol aparece por trás de uma nuvem quando está perto do horizonte. (Se você decidir observar o raio verde ou o raio vermelho, tome cuidado para não olhar diretamente para o Sol, já que a luz pode facilmente danificar sua retina, mesmo que você não sinta dor alguma. Jamais olhe diretamente para o Sol por mais de um segundo quando ele está a pino e nunca aponte um binóculo ou um telescópio para o Sol. Quando o Sol está se pondo, a luz é mais fraca porque uma quantidade maior de luz é absorvida pela atmosfera e olhar para o Sol não é tão perigoso.) O que produz o raio verde e o raio vermelho?

Resposta Vários fatores estão envolvidos na produção do raio verde. O principal fator é a separação das cores da luz solar quando a trajetória da luz é desviada pela atmosfera da Terra. Aqui está o raciocínio convencional: quando o Sol está baixo no céu, sua imagem se separa ligeiramente segundo as cores. Na parte de baixo fica a imagem formada pela luz vermelha, seguida pelas imagens formadas pelas luzes amarela, verde e azul. Até o Sol se pôr, vemos uma imagem única, formada pela sobreposição de todas essas imagens. No momento em que o Sol desaparece abaixo do horizonte, porém, as imagens produzidas pela luz vermelha e pela luz amarela são eliminadas e restam apenas as imagens produzidas pela luz verde e pela luz azul. Entretanto, a imagem azul é fraca demais para ser vista, por causa do espalhamento da luz em seu longo percurso pela atmosfera. Assim, a última imagem do Sol antes de se pôr é dominada pela luz verde e constitui o raio verde. Entretanto, existe uma sutileza adicional neste raciocínio. Se você observar longamente o Sol enquanto está se pondo, os pigmentos do olho responsáveis pela visão da extremidade vermelha do espectro param de funcionar; dizemos que ficam saturados. Se a última luz que você vir do Sol for amarela, você a verá como verde por causa dessa saturação. Se você olhar bruscamente para o Sol no momento em que o último raio aparece, você verá esse raio com sua cor verdadeira, o amarelo, que é a cor que as fotografias mostram. Essa mudança de cor não acontece quando você vê o Sol nascer, porque nesse caso os pigmentos do olho não estão saturados. Se esse raciocínio está correto, por que você não vê um raio verde toda vez que o Sol se põe, e como é possível fotografar um raio verde? Um fator adicional explica a raridade do raio verde. O raio pode ser acentuado por camadas atmosféricas a diferentes temperaturas. Às vezes, essas camadas podem separar a parte superior do resto do Sol e aumentar o seu tamanho. Quando essa parte aumentada fica verde, você tem uma probabilidade muito maior de avistar o raio verde. Nessas condições, o raio verde realmente ocorre e pode ser fotografado. O raio vermelho, que é extremamente raro, acontece quando o Sol está baixo no horizonte e aparece abaixo de uma nuvem de tal modo que o observador pode ver apenas a imagem vermelha, já que as outras imagens são bloqueadas pela nuvem. A raridade deve-se ao fato de que o Sol precisa estar quase se pondo, mas ainda ser visível por baixo de uma nuvem distante.

6.25 • Distorções do Sol perto do horizonte Se você observar o Sol quando está perto do horizonte, pode constatar que ele tem forma oval e não circular. Pode também estar dividido em faixas horizontais, assumir outras formas (como a da letra ômega maiúscula, Ω) ou ser formado por várias imagens separadas. Por que essas coisas acontecem com a imagem do Sol?

Resposta Quando o Sol está perto do horizonte, sua imagem pode ser deslocada para cima por causa da refração sofrida pela luz ao passar pela atmosfera da Terra. Além disso, como a densidade da atmosfera diminui com a altitude,

a parte de baixo da imagem do Sol é deslocada para cima mais que a parte de cima da imagem. Essa diferença diminui a altura da imagem. Como a largura não varia, a imagem adquire uma forma oval. O deslocamento da imagem é tão grande que no momento em que a imagem chega ao horizonte o Sol pode já estar abaixo do horizonte geométrico. As distorções mais complexas da imagem são causadas pela reflexão do Sol na água ou pela refração em camadas da atmosfera a temperaturas diferentes. Em um modelo simples da atmosfera inferior, a temperatura do ar diminui com a altitude; mas, se existem camadas em que a temperatura aumenta, a mudança da refração produz uma imagem do Sol com várias faixas ou com pedaços separados. As camadas podem também produzir uma miragem do Sol que parece fundir-se com a parte inferior da imagem normal, produzindo uma imagem muito distorcida.

6.26 • Lua vermelha durante um eclipse lunar Por que a Lua fica vermelha quanto está totalmente na sombra da Terra durante um eclipse lunar? Por que não fica vermelha durante um eclipse parcial, quando a sombra da Terra cobre, digamos, 50% da Lua?

Figura 6-8 / Item 6.26 Os raios de luz solar perdem o componente azul ao passarem pela atmosfera terrestre.

Resposta Quando o eclipse é total, a Lua deveria ficar totalmente escura. Entretanto, a luz do Sol que atravessa a atmosfera da Terra é refratada para a região da sombra e ilumina fracamente a Lua. Quando a luz atravessa a atmosfera, a parte azul do espectro é mais espalhada pelas moléculas do ar, de modo que a luz que chega à Lua é dominada pela parte vermelha do espectro (Fig. 6-8). Parte dessa luz então é refletida de volta para a Terra, fazendo a Lua adquirir uma coloração avermelhada. Durante um eclipse lunar parcial, você vê não só a luz vermelha que é refletida pela parte da Lua que está na sombra, mas também a luz branca, muito mais forte, que é refletida pelo resto da Lua. A menos que pelo menos 70% da Lua estejam na sombra, não é possível ver a fraca luz vermelha ao lado da forte luz branca, de modo que a parte da Lua que está na sombra parece negra. Assim também, é impossível ver a luz vermelha nos estágios inicial e final de um eclipse lunar total, por causa da luz proveniente da parte da Lua que não está na sombra.

6.27 • Raio em coroa Quando acontece um raio dentro de uma nuvem, às vezes se observa uma luz que sobe e se expande até a parte superior da nuvem. Essa luz, conhecida como raio em coroa ou flachenblitz, é resultado de uma descarga elétrica incomum ou de um reflexo do raio no interior da nuvem?

Resposta O raio em coroa é produzido quando a luz de um raio é refletida por cristais de gelo em forma de placas hexagonais. Normalmente, essas placas estão na posição horizontal. Quando acontece uma descarga elétrica, porém, as placas oscilam e algumas delas refletem a luz do raio na direção do observador. Não se sabe o que faz as placas oscilarem. Pode ser a onda sonora produzida pelo raio (que chega aos nossos ouvidos como trovão) ou a variação do campo elétrico das partículas carregadas existentes no interior da nuvem.

6.28 • Miragem de oásis

Nos dias quentes, às vezes vemos uma poça d’água a uma certa distância; quando nos aproximamos, porém, constatamos que o lugar está seco. A água parece real, pois é azul e apresenta pequenas ondulações. Esta clássica miragem de oásis não só pode ser vista como também pode ser fotografada.

Figura 6-9 / Item 6.28 A trajetória da luz do céu é encurvada pela variação da temperatura do ar com a altura. O observador tem a impressão de que a luz partiu do solo.

Você também pode ver a miragem à noite, na estrada, ao olhar para a luz do farol de um carro que se aproxima no sentido contrário. Logo abaixo do farol, pode haver uma faixa luminosa na estrada. Se a faixa é fosca, você está vendo simplesmente o reflexo da luz no asfalto. Se a luz é brilhante, porém, você provavelmente está vendo uma miragem da luz do farol. O que produz esse tipo de miragem? Um pássaro que esteja sobrevoando a estrada pode ver a miragem do oásis, ou seja, um pássaro pode confundir a estrada com um rio?

Resposta A miragem da poça d’água é, na verdade, uma imagem da parte do céu logo acima do horizonte naquela mesma direção. O asfalto (ou qualquer outra superfície) absorve a luz solar e aquece o ar das vizinhanças. Se a temperatura do ar diminui rapidamente com a altura, a miragem do oásis pode aparecer. Quando a luz do céu se propaga em direção ao solo, passando por camadas de ar cada vez mais quentes, é continuamente refratada (desviada) para cima até que finalmente pára de descer e começa a subir (Fig. 6-9). Quando essa luz chega até você, seu cérebro automaticamente interpreta a imagem como se estivesse chegando do chão, de um ponto que é o prolongamento do raio que atingiu os seus olhos. Esse ponto luminoso é, naturalmente, uma ilusão, mas parece real. Além disso, se a luz vem do céu, em geral é azul e pode ser confundida com água. Se existem turbulências no ar, a refração da luz varia e o ponto apresenta flutuações de brilho e posição que parecem ondulações da água. A miragem da água pode ser vista em países de clima frio, já que não é necessário que o ar esteja muito quente, e sim que sua temperatura diminua com a altura. Ela é vista freqüentemente nas rodovias porque o asfalto absorve a luz do Sol e aquece o ar das vizinhanças. Pode ser mais fácil de observar se você se abaixar ou olhar de binóculo para um ponto distante da estrada. Objetos distantes também podem produzir miragens se a luz refletida por eles for refratada pelo ar nas proximidades do solo. Esse tipo de miragem, assim como a miragem do oásis, é chamado de miragem inferior porque a imagem aparece abaixo da origem da luz. A versão noturna da miragem deve-se a uma camada de ar aquecido que cobre a rodovia. O asfalto pode estar ainda quente por ter sido aquecido pelo Sol durante o dia, mas também pode ser aquecido pelos pneus de carros e caminhões que passam. Como a mudança de direção da luz causada pela refração é pequena, um pássaro em vôo não pode ver uma miragem de água em uma estrada. Pode ver uma miragem a distância, mas a miragem muda continuamente de posição enquanto o pássaro voa, assim como uma miragem de água muda continuamente de posição quando é vista por alguém que esteja em um carro em movimento.

6.29 • Miragem de parede Um outro tipo de miragem pode ser visto quando você olha ao longo de uma parede voltada para o Sol. Fique de pé em uma das extremidades da parede, com os olhos próximos da superfície, enquanto um amigo fica na outra extremidade. Se as condições forem propícias, você verá uma imagem do seu amigo no interior da parede, como se ele estivesse sendo refletido em um espelho, com alguns pontos da imagem ligados ao corpo do seu amigo. Talvez você consiga ver até duas miragens do seu amigo. Fotografei essas miragens com uma lente telescópica montada em uma câmara apontada ao longo da parede. A técnica funcionou melhor quando fiquei em uma esquina, com a câmara bem próxima da parede.

Resposta A miragem da parede é semelhante às miragens anteriores, exceto pelo fato de que a camada de ar quente é vertical. Alguns raios de luz que partem do seu amigo em direção à parede são refratados e se afastam ligeiramente da parede (Fig. 6-10). Se os seus olhos ou a câmara estiverem suficientemente próximos da parede, podem interceptar alguns desses raios, que parecem se originar no interior da parede.

Figura 6-10 / Item 6.29 Uma parede aquecida pelo Sol, vista de cima. A trajetória da luz é encurvada pela variação da temperatura do ar com a distância da parede. A miragem aparece no interior da parede.

6.30 • Monstros aquáticos, tritões e grandes miragens Em alguns lugares, no fim da tarde ou de manhã cedo, um certo tipo de miragem possibilita que se aviste uma montanha que está além do horizonte geométrico e, portanto, não seria normalmente visível. A miragem pode começar com um vulto acima do horizonte e ficar progressivamente mais nítida até que a montanha pode ser reconhecida. Esse tipo de miragem pode explicar como Erik, o Vermelho descobriu a Groenlândia. Segundo a lenda, ele foi exilado da Islândia pelos outros viquingues e rumou diretamente para a parte mais próxima da Groenlândia, embora, em condições normais, nem mesmo a parte mais alta da Groenlândia devesse ser visível da parte alta da Islândia. Talvez, em alguma ocasião, ele tivesse avistado uma miragem da parte mais próxima da Groenlândia e, assim, soubesse que havia terra naquela direção. As visões de monstros aquáticos, tais como o monstro de Loch Ness, podem ser exemplos de miragens semelhantes em escala menor. Em certas condições e visto da perspectiva correta, um tronco flutuando na água pode dar a impressão de que se projeta para cima, como o pescoço de um monstro, e não ser mais reconhecido como um tronco. Pode ser até que o “pescoço” pareça oscilar, como se o monstro estivesse nadando. Os tritões, segundo relatos dos marinheiros medievais, eram monstros gigantescos que surgiam do mar. O tórax era parecido com o dos humanos, mas não tinham mãos e a cintura era muito estreita. Como nunca foram vistos de perto, não se sabe se tinham pele, como os humanos, ou escamas, como os peixes. As sereias eram semelhantes, mas tinham seios, uma cabeleira farta, mãos com os dedos ligados por membranas e uma cauda. Qual a origem dessas aparições? Por que esses seres deixaram de ser vistos quando navios com o convés muito acima do nível do mar entraram em uso? Às vezes, objetos distantes podem ser vistos como várias imagens, como se fossem recortes de papel. Alguns exemplos clássicos, usando a imagem de um barco a vela, são mostrados na Fig. 6-11a, mas sem a distorção que está normalmente presente. A miragem mais bela de todas é a Fata Morgana, na qual objetos distantes parecem ser as torres de um castelo de conto de fadas. Segundo a lenda, o castelo é a morada de cristal da fada Morgana. Em alguns casos, uma miragem semelhante pode criar a ilusão de que pessoas distantes estão caminhando sobre a água. Em 1597, depois de passarem o inverno no Ártico, nas ilhas de Novaya Zemlya, quando procuravam a Passagem Nordeste, alguns tripulantes da expedição do Capitão Willem Barents viram o Sol aparecer pela primeira vez depois da longa escuridão do inverno. Entretanto, o Sol ainda estava 4,9o abaixo do horizonte. Como puderam vê-lo? Essas miragens do Sol são freqüentemente muito distorcidas, dando ao astro a aparência de uma pilha de panquecas. As imagens geralmente estão em uma “janela” escura, com um céu mais claro acima e abaixo da miragem.

Figura 6-11 / Item 6.30 (a) Miragem de um barco a vela. (b) Trajetória da luz de um tronco flutuante.

O efeito hillingar é uma miragem que parece levantar o horizonte (em geral no mar), deixando-o plano ou em forma de disco. No efeito hafgerdingar (a palavra significa “cercas do mar” em islandês), o horizonte torna-se irregular, como se estivesse cercado por estruturas verticais dispostas ao acaso. Na Rodovia 90, perto de Marfa, no Texas, muitas pessoas já viram, à noite, estranhas luzes que se movem no céu. Essas visões, conhecidas como luzes de Marfa, costumam aparecer acima da planície de Mitchell, ao sul da rodovia. Como são formados os vários tipos de miragens?

Resposta Todas as miragens são causadas pela refração da luz, que faz com que os raios luminosos se encurvem quando a temperatura do ar varia ao longo da trajetória da luz. (Veja o item sobre a miragem do oásis.) Nos exemplos mais complexos, vários fatores podem estar envolvidos, cada qual formando uma miragem diferente, às vezes invertida, o que resulta na criação de imagens múltiplas ou estranhamente distorcidas. As visões do monstro de Loch Ness e do monstro de Manipogo, no lago Manitoba, no Canadá, provavelmente envolvem imagens distorcidas de troncos e outros objetos flutuantes. As condições são ideais para uma miragem desse tipo quando a água esfria o ar nas proximidades da superfície, enquanto a luz do Sol aquece o ar mais acima. Nesse caso, a luz proveniente de objetos como um tronco flutuante é refletida para baixo, em direção aos olhos de um observador (Fig. 6-11b). Como o desvio é pequeno, o observador tem que estar perto da superfície da água para ver a miragem. Dependendo da maneira como a temperatura varia com a altura, o observador pode ver várias imagens ou uma única imagem alongada, nenhuma das quais se parece com um tronco. Se a refração varia com o tempo por causa de variações na distribuição de temperatura, o objeto parecido com uma serpente que está na água parece nadar. Quando uma miragem, como a que estamos discutindo, aparece acima da fonte luminosa, dizemos que se trata de uma miragem superior. As estatísticas apóiam a tese de que o monstro de Loch Ness é uma miragem. Cerca de 77% das observações aconteceram entre os meses de maio e agosto, quando a água se aquece mais lentamente que o ar, o que resulta em um aumento da temperatura do ar com a altura. Cerca de 84% aconteceram quando a água estava relativamente calma, situação que aumenta a visibilidade de uma miragem superior. Além disso, muitas das observações foram feitas por pessoas que se encontravam

próximas da superfície da água, onde estavam ao alcance dos raios refratados. Os tritões e sereias eram provavelmente imagens alongadas e distorcidas de morsas e baleias vistas por marinheiros posicionados quase na superfície da água. A miragem desaparece se o observador se aproximar demais do animal ou estiver longe demais da superfície para ver os raios refratados. Assim, depois que a altura dos navios aumentou, os monstros mitológicos passaram a ser vistos com menos freqüência. A Fata Morgana é produzida por refrações que alongam verticalmente as imagens de objetos distantes, emprestando-lhes a aparência de torres ou muralhas. Quando você observa uma pessoa a distância e entre você e a pessoa existe água, você pode ver uma imagem superior: o corpo da pessoa aparece deslocado para cima, enquanto os pés, que você não vê, parecem estar submersos, como se a pessoa estivesse andando na água. Montanhas que estão longe demais para serem vistas diretamente às vezes podem ser avistadas através de uma miragem se parte da luz que elas refletem for refratada de modo a acompanhar a curvatura da Terra. Imagens do Sol também podem ser vistas dessa maneira. Um exemplo marcante é a miragem de Novaya Zemlya, na qual raios de luz foram refratados para baixo em uma grande altitude, passaram pela superfície da Terra, voltaram para uma grande altitude e foram refratados novamente para baixo, como se estivessem se movendo no interior de um cano curvo. Embora a imagem canalizada do Sol permanecesse forte apesar do longo percurso na atmosfera, a luz das partes vizinhas do céu foi muito atenuada pelo espalhamento das moléculas do ar e formou uma janela escura em volta da imagem do Sol. As regiões mais claras acima e abaixo da janela faziam parte do céu normal. Os efeitos hillingar e hafgerdingar também envolvem a refração da luz para baixo pelo ar cuja temperatura aumenta com a altitude. O efeito hafgerdingar envolve distribuições irregulares de temperatura do ar, enquanto as miragens de Novaya Zemlya e do efeito hillingar exigem que a distribuição de temperatura do ar se mantenha uniforme em uma extensa região. A refração atmosférica da luz à noite é responsável por muitas visões estranhas, como as luzes de Marfa. As fontes luminosas podem ser estrelas ou planetas próximos do horizonte (que produzem uma miragem inferior) ou os faróis de um carro distante (que produzem uma miragem superior). As luzes de Marfa são um exemplo de miragem de faróis; são produzidas por carros distantes que se dirigem para Marfa ou que estão passando por uma rodovia que atravessa a planície de Mitchell. Os adolescentes de Marfa devem gostar desse interessante exemplo de óptica, já que lhes proporciona a oportunidade de parar o carro no escuro no acostamento da rodovia 90.

6.31 • Um fantasma entre as flores O leitor seria capaz de explicar o seguinte relato de uma imagem fantasmagórica? Em uma tarde de verão, uma mulher estava colhendo flores quando notou um movimento à sua frente e percebeu aos poucos que estava vendo uma imagem de si própria, colorida, com todos os detalhes. É desnecessário dizer que a aparição deixou a mulher assustada e ela saiu correndo.

Resposta A aparição pode ter sido produzida da seguinte maneira: os raios luminosos provenientes do corpo da mulher foram refletidos por gotículas de água que subiam do chão quente e úmido e se comportaram como um espelho. Desconfio que a mulher estava sendo iluminada diretamente pelo Sol, enquanto as gotículas estavam na sombra, o que facilitou a observação do reflexo. Se eu estiver certo, esse arranjo lembra o que é usado no Disney World, onde imagens são projetadas em uma cortina tão fina e porosa que é quase invisível na sombra.

6.32 • Shimmy e estrelas que cintilam Quando você observa um objeto distante por sobre uma fogueira ou uma superfície aquecida, tal como uma estrada iluminada pelo Sol, por que a imagem do objeto fica trêmula, efeito conhecido como shimmy óptico? Por que essa distorção é mais difícil de observar quando você está olhando para um objeto próximo do que quando você está olhando para um objeto distante? Por que as estrelas cintilam? Elas cintilam mais no verão ou no inverno? Por que às vezes as estrelas mudam de cor? Por que a Lua e os planetas não cintilam? Se você estivesse no espaço, veria as estrelas cintilarem?

Resposta O shimmy óptico é causado pela turbulência do ar que normalmente existe perto de uma superfície aquecida. Quando os raios de luz provenientes de um objeto passam pela turbulência, as variações aleatórias da densidade do ar refratam o ar em direções aleatórias e a imagem sofre distorções e parece ondular. Para que o shimmy seja perceptível, os raios luminosos devem passar um tempo razoavelmente grande na região em que o ar é turbulento. Se você olha quase perpendicularmente para uma superfície quente, tal como o asfalto de uma rodovia, os raios que você recebe passam tão pouco tempo na região em que existe turbulência que a distorção é insignificante. Se, por outro

lado, você olha paralelamente à superfície, os raios passam mais tempo na turbulência e você pode ver o shimmy. Em geral, isso significa que a superfície aquecida deve estar a uma certa distância, tal como um trecho distante de uma rodovia. Mesmo assim, o shimmy não pode ser muito pronunciado se a textura da superfície for uniforme. O shimmy é mais fácil de ver se houver faixas pintadas na estrada, já que ele faz com que as faixas pareçam onduladas. Às vezes é possível ver um efeito relacionado ao shimmy: regiões mais claras ou mais escuras aparecem por alguns instantes em uma superfície branca porque o ar turbulento refrata a luz solar. Quando a refração focaliza a luz solar, a mancha é clara; quando a refração espalha a luz, a mancha é escura. Um arranjo instável de ar quente passando por baixo de ar frio também pode produzir um shimmy. Como o ar quente é menos denso que o ar frio, a interface entre as duas temperaturas é instável e tende a formar ondulações que focalizam a luz em algumas regiões e a espalham em outras. Variações semelhantes na refração da luz das estrelas pela atmosfera fazem a posição aparente da estrela no céu mudar de maneira rápida e aleatória. Esse movimento aparente é visível porque, do nosso ponto de vista, uma estrela é um ponto luminoso em um fundo escuro. Além disso, as mudanças alteram a fase das ondas que chegam aos nossos olhos. Quando as ondas luminosas chegam em fase, a interferência é construtiva e a estrela parece mais brilhante; quando chegam fora de fase, a interferência é destrutiva e a estrela parece menos brilhante. Nosso sistema visual soma as imagens da estrela durante um pequeno intervalo de tempo, mas mesmo assim as variações e a posição e a intensidade são visíveis. Se você estivesse no espaço, não veria as estrelas cintilarem, mas elas ainda pareceriam ter pequenos raios por causa do espalhamento da luz no interior do olho. A Lua e os planetas ocupam uma área muito grande do nosso campo visual para cintilarem. Embora cada ponto da Lua oscile tanto quanto uma estrela, não é um ponto de luz isolado em um fundo escuro e a oscilação é imperceptível. As estrelas cintilam mais no verão porque o aquecimento do Sol durante o dia torna a atmosfera mais instável. As estrelas próximas do horizonte também podem mudar de cor. A longa passagem da luz pela atmosfera possibilita que as moléculas do ar, a poeira e os aerossóis espalhem preferencialmente algumas cores da luz da estrela, que passa a ter uma cor diferente da original. Variações do espalhamento podem mudar a cor de um momento para outro.

6.33 • Faixas de sombra Durante alguns minutos antes e depois de um eclipse total do Sol, o solo pode ficar coberto de faixas de sombra com alguns centímetros de largura. Alguns observadores viram as faixas se moverem. O que produz as faixas? Em 1945, outro tipo de figura formada por faixas escuras foi observado por Ronald Ives, que presenciou o fenômeno em seis ocasiões quando estava em um lugar elevado olhando para uma planície na hora do crepúsculo. As faixas tinham alguns quilômetros de largura e moviam-se a uma velocidade de aproximadamente 60 quilômetros por hora. O que produziu essas faixas?

Resposta As faixas de sombra que aparecem antes e depois de um eclipse provavelmente são causadas pela focalização (que produz faixas claras) e o espalhamento (que produz faixas escuras) da luz solar ao passar por regiões turbulentas da atmosfera da Terra. A visibilidade dessas faixas é maior quando o eclipse está quase completo e a parte visível do Sol forma apenas um estreito crescente. Nesse caso, a luz ocupa um pequeno ângulo da nossa visão e o redirecionamento da luz por regiões turbulentas em grandes altitudes pode produzir faixas visíveis que são paralelas ao crescente. Quando o eclipse está ainda no início e uma parte maior do Sol é visível, as regiões turbulentas responsáveis pelas faixas estão em altitudes menores e as faixas são menos visíveis (mais “desmaiadas”). Mesmo na situação mais favorável, as faixas são difíceis de ver porque o contraste entre as faixas claras e escuras não é muito grande. Como a turbulência varia rapidamente, as faixas e seu contraste também variam. Essa variação pode dar a impressão de que as faixas estão se movendo. As bandas raramente vistas e raramente estudadas que aparecem ao pôr-do-sol provavelmente também são causadas pela focalização e pelo espalhamento da luz solar por turbulências na atmosfera. As bandas tornaram-se visíveis para Ives porque o crepúsculo tornou mais estreita a parte visível do Sol, como em um eclipse. Ele não teria visto as faixas se estivesse no nível do solo.

6.34 • O halo de 22o e parélios Às vezes o Sol é envolvido por um halo luminoso que pode ser vermelho na borda interna e azul na borda externa. Como o ângulo entre o halo e seu centro é de 22o, ele é chamado de halo de 22o. (Você pode medir esse ângulo com facilidade. Abra a mão e estenda o braço na direção do Sol, com a palma para fora. A parte do céu que você vê entre a ponta do polegar e a ponta

do dedo mínimo ocupa cerca de 22o.) Às vezes, aparecem pontos luminosos de um lado ou dos dois lados do Sol, conhecidos como parélios. O que produz o halo de 22o e os parélios?

Resposta O halo de 22o é produzido por raios solares refratados (desviados) por cristais de gelo em grandes altitudes. Os cristais são colunas hexagonais chamadas cristais prismáticos, que assumem uma orientação aproximadamente horizontal. Quando a luz passa por um cristal prismático, é refratada e passa a mover-se em uma nova direção que faz um ângulo de 22o ou mais com a direção inicial. O ângulo de desvio mais freqüente é 22o. Quando você olha em qualquer direção que faz 22o com a direção do centro do Sol, intercepta alguns desses raios e vê uma parte do halo. O halo pode ser colorido porque a refração dos cristais separa as cores da luz solar. Como o ângulo de refração da luz vermelha é menor que o da luz azul, a parte interna do halo aparece vermelha e a parte externa aparece azul. Os parélios também são causados pela refração de cristais de gelo, mas nesse caso os cristais são planos em vez de colunares. Esses cristais planares assumem uma orientação aproximadamente vertical e só desviam a luz na direção do observador se estiverem aproximadamente sobre uma linha horizontal que passa pelo Sol, de modo que os parélios estão à esquerda e à direita do Sol. Quando o Sol está baixo no céu, os parélios aparecem a 22o. Quando o Sol está mais alto, os parélios aparecem a uma distância ligeiramente maior. Eles são quase sempre coloridos, porque a refração dos cristais de gelo separa as cores, e o lado vermelho está sempre mais próximo do Sol. O halo e os parélios podem aparecer mesmo no verão, já que o calor na superfície não impede a formação de cristais de gelo nas grandes altitudes.

6.35 • Um céu cheio de halos, arcos e pontos Além do halo de 22o e dos parélios do item anterior, muitos outros halos, arcos, colunas e pontos brilhantes podem aparecer no céu. A Fig. 6-12 mostra algumas possibilidades, mas nem todas podem estar presentes simultaneamente, já que algumas acontecem para diferentes elevações do Sol. As formas também podem mudar com a elevação do Sol. Algumas são tão raras que foram vistas e fotografadas apenas umas poucas vezes.

Figura 6-12 / Item 6.35 Algumas figuras que podem aparecer no céu. (a) Halo de 22°. (b) Parélios do halo de 22°. (c) Halo de 46°. (d) Arco circunzenital. (e) Círculo parélico. (f) Parélios do halo de 46°. (g) Arco de Parry. (h) Arcos tangentes supralaterais do halo de 46°. (i) Arcos tangentes do halo de 22°. (j) Arcos de Lowitz. (k) Arcos tangentes infralaterais do arco de 46°. (l) Parantélios. (m) Arcos parantélicos. (n) Arcos de baixo ângulo oblíquos ao antélio. (o) Antélio. (p) Arcos de alto ângulo oblíquos ao antélio.

Uma figura relativamente comum é a coluna de luz que aparece acima ou abaixo do Sol ou da Lua. Essa coluna também pode ser vista nas lâmpadas de rua. Na próxima vez em que você viajar de avião, veja se consegue avistar o subsol, um ponto luminoso que fica abaixo do Sol e parece acompanhar o avião. O que causa essas diferentes figuras?

Resposta As figuras são produzidas por cristais de gelo que interceptam os raios solares e os desviam na direção do observador. Algumas devem-se a cristais prismáticos e outras a cristais planares (veja o item anterior). Algumas, tais como o arco circum-horizontal, envolvem a luz refratada pelos cristais; outras envolvem a luz refletida pelos cristais. Umas poucas, como o arco de Lowitz, são produzidas por cristais planares que giram rapidamente em torno de si mesmos.

A coluna de luz que é vista acima ou abaixo do Sol ou da Lua pode ser produzida por cristais prismáticos ou planares, mas os últimos são responsáveis apenas quando o Sol ou a Lua está baixo no céu. Nessa posição, a luz pode ser refletida na direção do observador por placas aproximadamente verticais. Pequenas variações na orientação dos cristais podem alargar a região da qual a luz é enviada, formando assim a coluna. Quando o Sol ou a Lua está mais alto no céu, a coluna é produzida pela luz refletida nos lados de cristais prismáticos na posição horizontal. Em cada ponto da coluna, alguns cristais estão com a inclinação apropriada para refletir a luz na direção do observador. A combinação de todas essas reflexões forma a coluna. O subsol é, na verdade, uma versão da coluna de luz em que o observador está acima de cristais planares. Quando todos os cristais estão praticamente na horizontal, produzem uma imagem especular do Sol.

6.36 • Sombras das montanhas Quando você observa a sombra de uma montanha do alto da própria montanha, com o Sol próximo do horizonte, descobre que a sombra é triangular, com um dos vértices à sua frente (Fig. 6-13). Por que todas as montanhas produzem uma sombra com a mesma forma aproximadamente triangular, independentemente da forma da montanha e da topografia das encostas? Por que a extremidade da sombra forma uma ponta voltada para a direita ou para a esquerda quando você está muito abaixo do cume?

Figura 6-13 / Item 6.36 Sombra de uma montanha, vista das proximidades do cume.

Resposta Quando você está no cume de uma montanha, a sombra que você vê se forma no solo ou nos aerossóis abaixo de você. A maior parte da sombra está tão distante que os detalhes da encosta são pequenos demais para serem percebidos. A forma triangular da montanha é um efeito de perspectiva: os lados da sombra começam à sua esquerda e à sua direita, mas parecem convergir para um ponto distante do solo ou dos aerossóis. A inclinação aparente dos lados é semelhante à dos trilhos de uma estrada de ferro, que parecem convergir ao longe quando são observados longitudinalmente. A sombra em si é como a sua sombra quando o Sol está baixo no céu: a sombra dos seus pés é normal, mas a sombra da sua cabeça é distorcida. Quando você se posiciona muito abaixo do cume e na sombra da montanha, está olhando através dos aerossóis (e não para eles). Se você se posiciona no centro exato da sombra da montanha, os lados da sombra continuam a convergir, mas o vértice parece projetar-se para cima. Se você se deslocar do centro para a esquerda, o pico e sua sombra se deslocam para a direita. Além disso, como você está vendo a sombra através dos aerossóis, o deslocamento de qualquer parte da sombra aumenta com a distância dessa parte. Assim, a sombra do pico, que é o ponto mais distante, é a mais deslocada. Quando você acompanha a sombra com o olhar, ela parece se encurvar para cima, mas também para a direita, formando uma ponta no final.

6.37 • Sombras de nuvens que desaparecem Suponha que você esteja voando sobre o mar e o céu está cheio de nuvens isoladas. Por que você pode ver a sombra das nuvens se olhar por uma das janelas do lado do avião voltado para o Sol, mas não pode ver a sombra das nuvens se olhar por uma das janelas do lado oposto?

Resposta Quando você olha para o mar por uma das janelas do lado do avião voltado para o Sol, a maior parte da luz que você vê é luz do Sol que foi refletida ou espalhada pela superfície da água. Essa luz é chamada de brilho. Quando uma nuvem bloqueia a luz do Sol antes que chegue à água, você vê uma sombra na água. A região que está na sombra fica sem brilho e por isso é mais escura que o resto da água. Do outro lado do avião, os raios refletidos e espalhados pela água não chegam aos seus olhos. Embora parte da luz seja um reflexo do céu, quase toda essa luz é emergente, ou seja, luz do Sol e do céu que penetra na água e é espalhada de volta para a superfície por partículas em suspensão (ou pelo fundo). Quando uma nuvem projeta uma sombra desse lado do avião, ela não

reduz apreciavelmente a luz emergente na região da sombra porque o céu ainda ilumina essa região. Assim, você não pode ver a sombra. Entretanto, se a sombra passa do mar para a terra, torna-se imediatamente visível. Na terra não existe luz emergente e a única luz que você pode ver é a luz do Sol (e não a luz do céu) que é espalhada pelo solo. Uma nuvem bloqueia a luz solar na região da sombra, evitando que seja espalhada pelo solo, e, portanto, você pode vê-la.

6.38 • As cores do mar O mar não é sempre da mesma cor. Sua cor pode variar do azul de um dia de céu limpo ao cinzento de um dia nublado. Às vezes pode ser branco, avermelhado, verde ou amarelo. Em certas ocasiões, chega a ser marrom. O que explica essa variedade de cores? Por que a cor às vezes depende do ângulo de observação? Mergulhe até uma profundidade razoável e observe um objeto chato de cor branca, mantido na horizontal. Por que a cor da superfície de cima e a cor da superfície de baixo são diferentes?

Resposta A cor do mar varia porque existem muitos fatores envolvidos. Suponha que a água seja pura, que a influência da atmosfera possa ser desprezada e que o fundo esteja longe demais para interferir. Nesse caso, a água vai ficar praticamente preta, com, talvez, um leve tom azulado produzido pelas moléculas da água, que absorvem a extremidade vermelha do espectro e espalham a extremidade azul. Em circunstâncias menos ideais, partículas em suspensão podem mudar a cor da água, absorvendo ou espalhando seletivamente certas cores. O fundo do mar também pode alterar a cor por absorção seletiva, se a água for suficientemente rasa para que a luz proveniente do fundo tenha uma intensidade razoável. O céu é responsável por uma pequena parte da cor da água. Se o céu estiver azul, a água pode parecer um pouco mais azul por causa do reflexo da luz do céu. Analogamente, se o céu estiver cinzento, a água pode ficar um pouco mais cinzenta. Entretanto, se você olhar para a água iluminada pelo Sol em um dia de céu azul, provavelmente terá a impressão de que a água é branca, já que a maior parte da luz que chega aos seus olhos é luz do Sol refletida pela água. A luz que ilumina a superfície de cima de um objeto branco submerso possui uma certa cor porque a luz do Sol é modificada por absorção e espalhamento enquanto se propaga na água. A luz que ilumina a superfície de baixo é modificada ainda mais, já que o percurso da luz na água é maior (para baixo e depois para cima). Assim, as duas superfícies têm cores diferentes.

6.39 • Reflexo do Sol e da Lua na água Por que o reflexo do Sol ou o reflexo da Lua na água têm uma forma alongada quando estão próximos do horizonte? Por que a forma do reflexo depende da elevação do Sol ou da Lua? Quando a Lua está um pouco acima do horizonte, às vezes se pode ver um triângulo escuro logo acima da região brilhante na água. O que produz esse triângulo?

Resposta Se a água fosse perfeitamente plana, você veria uma imagem especular do Sol ou da Lua abaixo da superfície, a uma distância angular igual à distância angular da fonte luminosa. Quando, porém, a superfície da água está cheia de ondas, a luz é refletida por um grande número de superfícies inclinadas e você vê muitas imagens efêmeras do Sol ou da Lua, produzidas pelas superfícies que refletem a luz na sua direção. Em média, essas superfícies estão em uma oval ou em uma trilha que se afasta de você, com os lados esquerdo e direito da região convergindo para o ponto do horizonte imediatamente abaixo do Sol ou da Lua. A região das imagens é oval quando o Sol ou a Lua estão altos no céu e é uma trilha quando o Sol ou a Lua estão próximos do horizonte.

O triângulo escuro é provavelmente uma ilusão produzida pelo contraste entre a região brilhante abaixo do horizonte e o céu

escuro acima do horizonte.

6.40 • Anéis de luz Normalmente, as imagens refletidas por ondas na superfície da água são distorcidas tão rapidamente que se tornam irreconhecíveis, mas é possível “congelá-las” fotografando-as com um tempo curto de exposição. Suponha que você fotografe o mastro de um navio. Na fotografia, você pode descobrir que parte do mastro é uma linha sinuosa, enquanto outras partes formam anéis isolados e fechados. Uma linha sinuosa não é difícil de explicar, mas como se formam os anéis? É possível observar anéis incompletos? Outros objetos também produzem reflexos curiosos. Trechos do solo produzem landpools (imagens isoladas do solo) e trechos do céu produzem skypools (imagens isoladas do céu).

Resposta A distorção observada em uma linha sinuosa ou em um anel fechado é causada pela curvatura das ondas. Quando a imagem de um mastro é um anel fechado, o céu de um lado do mastro vai parar no interior do anel e o céu do outro lado fica do lado de fora. Os anéis produzidos por objetos com dimensões finitas, tais como um mastro de navio, são sempre completos. Um ponto luminoso, porém, pode produzir um reflexo complicado, com “pontas soltas” que correspondem aos instantes em que o obturador da máquina fotográfica foi aberto e fechado.

6.41 • Sombras e cores na água Por que você pode ver sua sombra em um lago lamacento e em uma poça de água limpa, mas não em um lago de água limpa? Por que a água tem que estar muito lamacenta para que você possa ver as sombras de outras pessoas? Quando sua sombra estiver sendo projetada na superfície de um corpo d’água coberto de pequenas ondas, observe a superfície em volta da sombra da sua cabeça. Raios brilhantes parecem sair da sombra, como foi descrito lindamente por Walt Whitman no poema “Crossing Brooklyn Ferry” do livro Leaves of Grass. O que produz os raios? Em um lago de águas limpas, com cerca de um metro de profundidade, observe as bordas das manchas luminosas formadas no fundo do lago pelos raios solares que passam pelas folhas de uma árvore. Se o Sol estiver às suas costas, as manchas serão brancas. Se você estiver de frente para o Sol, as manchas terão bordas coloridas, vermelhas no lado mais próximo e azuis no lado mais distante. O que produz essas cores e por que o aspecto das manchas depende da sua posição em relação ao Sol?

Resposta Para que você possa ver uma sombra, é preciso que a região da sombra seja bem mais escura que as vizinhanças, como acontece quando sua sombra é projetada em uma calçada. Se você despeja água limpa na calçada, a sombra fica menos visível, já que a água passa a refletir o céu e os objetos próximos em sua direção. Como algumas das imagens refletidas se sobrepõem à sua sombra, essa região não é tão escura como antes. O contraste da sua sombra com as regiões vizinhas será ainda menor se a água limpa for profunda, pois nesse caso a luz refletida pelo fundo diminui de intensidade e a região em volta da sombra também fica escura. Entretanto, se a água for lamacenta, a sombra será mais visível, já que as partículas em suspensão na região em volta da sombra refletem a luz na sua direção. Nesse caso, a sua sombra é tridimensional e não bidimensional, como no caso da calçada. Por esse motivo, talvez você não consiga ver a sombra de outras pessoas; quando você olha na direção da sombra de uma outra pessoa, sua visada é ao longo de uma linha inclinada que inclui regiões de sombra e regiões iluminadas. Se você aumenta gradualmente a turbidez da água, a sombra da outra pessoa sobe gradualmente até a superfície e, no caso de uma água extremamente turva, torna-se bidimensional e pode ser vista com facilidade.

Figura 6-14 / Item 6.41 Um observador voltado para o Sol vê manchas com bordas coloridas no fundo de um lago.

Quando a água é moderadamente turva, as ondas focalizam a luz no interior da água, onde partículas em suspensão espalham a luz de volta para fora da água. Se você observa essa luz espalhada, vê linhas retas claras nas regiões em que a luz foi focalizada. Essas retas são paralelas à reta que liga o Sol aos seus olhos. Em conseqüência, parecem convergir para (ou divergir de) um ponto diametralmente oposto ao Sol, ou seja, para a sombra da sua cabeça. (Esse fenômeno é semelhante ao que acontece quando observamos longitudinalmente dois trilhos de estrada de ferro.) A rotação aparente dos raios é uma ilusão na qual o seu cérebro procura encontrar uma regularidade em um padrão que está variando aleatoriamente. Manchas luminosas em uma água rasa e límpida são brancas quando o Sol está às suas costas, mesmo que as cores sejam separadas por difração quando os raios solares entram na água. Os raios azuis e vermelhos chegam ao fundo do lago em pontos diferentes e são espalhados em muitas direções. Entretanto, para chegar aos seus olhos, os raios precisam refazer o percurso original. Assim, os raios se recombinam ao sair da água e você vê uma mancha branca no fundo do lago. Quando você está de frente para o Sol, intercepta raios coloridos espalhados em diferentes pontos do fundo (Fig. 6-14). No caso de um feixe estreito de luz, o ponto que você vê no fundo é essencialmente branco, porque você intercepta raios de todas as cores espalhados por pontos no interior da mancha. Nas bordas da mancha, porém, você pode ver cores. A borda mais distante é formada por luz azul porque, quando os raios solares penetram na água e são refratados, os raios azuis sofrem um desvio maior e acabam mais longe de você do que os raios de outras cores. A borda mais próxima é formada por luz vermelha porque os raios vermelhos sofrem um desvio menor e acabam mais próximos de você. Assim, a borda mais distante espalha luz azul na sua direção e a borda mais próxima espalha luz vermelha.

6.42 • A cor de nossa sombra Quando observamos nossa sombra na neve fresca, às vezes constatamos que ela é colorida. Por quê? A cor pode variar?

Resposta A nossa sombra deveria ser preta, mas, se o céu estiver azul, a luz do céu pode iluminar a neve, fazendo a sombra ficar azulada. Se você observa sua sombra em uma superfície colorida, a sombra pode assumir a cor da superfície. Se a região em torno da sombra tem uma cor muito forte, você pode, em vez disso, ver na sombra a cor complementar, uma ilusão produzida pelo sistema visual. Você pode observar claramente esse fenômeno nas sombras produzidas pelos artistas de uma peça de teatro quando são iluminados por um refletor colorido.

6.43 • Vendo a parte escura da Lua Quando 75% da parte da Lua voltada para você estão iluminados pelo Sol, por que você pode ver os outros 25%, embora estejam na sombra?

Resposta A parte escura da Lua é fracamente iluminada pelo earthshine, ou seja, pela luz solar espalhada pela Terra. O que você vê é parte dessa luz que é espalhada pela Lua de volta para a Terra. Examinando essa luz, os cientistas podem saber como seria a luz da Terra para um observador situado a uma grande distância do nosso planeta. O céu é azul para nós e também seria azul para um observador do espaço. O earthshine também contém os raios infravermelhos espalhados pela vegetação. O estudo do earthshine vem sendo feito com a esperança de que a análise da luz de um planeta em órbita em torno de outra estrela possa revelar se o planeta possui atmosfera e vegetação.

6.44 • Heiligenschein e efeito de oposição Em uma manhã em que a grama estiver molhada de orvalho, observe a sombra da sua cabeça na grama; é possível que esteja cercada por uma aura branca conhecida como heiligenschein (Fig. 6-15a). Regiões claras como essa podem ser vistas em muitos outros ambientes: grama seca e outros tipos de vegetação, superfícies cobertas de água com ondulações e vários tipos de superfícies ásperas e secas. Você pode até ver um risco branco que sai da sombra de um carro em movimento quando a sombra atinge um campo gramado.

Figura 6-15 / Item 6.44 (a) Sombra na grama molhada com o Sol baixo. (b) Trajetórias de dois raios de luz no solo lunar.

Na próxima vez em que viajar de avião, procure um heiligenschein na sombra do avião (olhe para o ponto diametralmente oposto ao Sol). Quando a sombra passa por gramados, árvores, terra nua, asfalto e nuvens, o heiligenschein aparece e desaparece. Quando o avião está perto do solo, às vezes aparecem clarões no interior do heiligenschein. Quando o avião está voando mais alto, pode aparecer uma linha escura projetando-se do heiligenschein. O que produz o heiligenschein, os clarões e a linha escura? Quando plantas cobertas de orvalho são iluminadas à noite com uma lanterna, certas plantas parecem mais claras do ponto de vista da pessoa que está segurando a lanterna, mas não do ponto de vista de outras pessoas. O que produz esse efeito e por que ele acontece apenas em certas plantas? Quando a Lua fica cheia, todas as regiões iluminadas na sua superfície ficam mais claras, no chamado efeito de oposição. Na verdade, essas regiões podem refletir 25% mais luz na lua cheia do que um dia antes ou depois. O que produz esse aumento súbito da refletividade da superfície lunar? (Antes do primeiro pouso na Lua, a NASA receava que a luminosidade do solo cegasse os astronautas se eles não usassem filtro no capacete.) Quando um gramado ou uma quadra de esportes é aparada de uma certa maneira, a grama fica parecida com um tabuleiro de

xadrez, com quadrados claros e escuros. O que produz a variação de cor? Será que o velho ditado “A grama é sempre mais verde do outro lado da cerca” tem base científica?

Resposta Considere em primeiro lugar a grama seca. Quando você olha para a região em torno da sombra da sua cabeça, vê apenas as folhas de grama e não as sombras que elas projetam, já que as sombras estão atrás das folhas. Assim, a região é clara, pois você vê muita luz solar refletida. Quando afasta a vista da região clara, você começa a ver a sombra projetada pelas folhas e a intensidade média da luz diminui. Por comparação, a região em volta da sombra da sua cabeça parece mais clara. Em terrenos irregulares, o heiligenschein pode ser causado por pequenas depressões em forma de ângulo reto. Essas regiões refletem a luz de volta ao ponto de partida e você observa parte dessa luz. Outras formas e substâncias podem contribuir para o retorno da luz, especialmente se a superfície for porosa e possuir “túneis”. Quando você olha para perto da sombra da cabeça, vê a luz espalhada de volta na sua direção pelo interior dos túneis, mas não vê essa luz quando olha em outras direções. Quando a grama está coberta de orvalho, a luz pode penetrar em uma gota de orvalho, ser refletida pela superfície posterior da gota e pela folha de grama e sair da gota na direção aproximada do Sol. Se você olha para a grama na região próxima da sombra da sua cabeça, observa parte dessa luz e a grama parece mais clara. Quando você olha em outras direções, não observa essa luz e a grama não parece tão clara. Uma gota esférica focaliza a luz em um ponto situado pouco atrás da sua superfície posterior. A luz refletida é mais forte quando a folha de grama está nesse ponto focal, mas em geral a gota repousa diretamente sobre a folha. Certos tipos de folhas, porém, são cobertos de pêlos, que podem manter a gota ligeiramente acima da superfície da folha. Essas folhas produzem um heiligenschein especialmente forte. Quando uma lanterna é usada para iluminar gotas de orvalho, parte da luz é refletida na direção genérica da lanterna como um heiligenschein. A luz refletida será muito mais forte se as gotas forem aproximadamente esféricas. Nas folhas cerosas de algumas plantas, as gotas tendem a formar esferas. Assim, quando um facho luminoso incide em plantas desse tipo, elas parecem mais claras que as outras. Os clarões que você vê no interior de um heiligenschein observado de um avião são produzidos por retrorrefletores, que são peças de plástico ou de vidro que refletem a luz na mesma direção de onde vieram, independentemente do ângulo de incidência. A tinta dos sinais de trânsito, por exemplo, pode ter pequenos retrorrefletores em suspensão para tornar os sinais mais visíveis à noite. Quando a sombra do avião passa por um sinal desse tipo, você observa parte da luz que a tinta reflete na direção genérica do Sol. A linha escura que às vezes acompanha um heiligenschein é a sombra de um contrail (rastro de condensação) produzido pelo avião. Quando o avião está voando suficientemente baixo para que a sombra do avião no solo possa ser vista, às vezes aparece uma região mais clara em volta da sombra. Essa região pode se dever à luz refletida na direção genérica do Sol por gotas de orvalho nas plantas (um caso de heiligenschein). Entretanto, você pode ver uma região mais clara mesmo na ausência de água (se o avião estiver sobrevoando um deserto, por exemplo). Além disso, você pode ver uma região mais clara em volta da sombra de outro avião, que certamente não pode ser causada por gotas de orvalho. Nesses casos, a região mais clara pode ser uma ilusão de óptica. Quando uma região escura (tal como uma sombra de avião) está próxima de uma região mais clara em nosso campo visual, nosso sistema visual produz uma faixa clara (conhecida como banda de Mach) na interface das duas regiões. Quando a luz solar atinge a superfície da Lua, pode ser espalhada em praticamente qualquer direção. Entretanto, o espalhamento é mais forte da direção genérica do Sol por causa do modo como as ondas luminosas podem se reforçar mutuamente nessa direção. Dois raios luminosos ligeiramente separados podem percorrer a mesma trajetória no solo lunar, mas em sentidos opostos, e emergir na direção do Sol (Fig. 6-15b). Esses dois raios estão aproximadamente em fase (sincronizados) e, portanto, se reforçam mutuamente, ou seja, combinam-se para tornar a luz mais forte. Na lua cheia, entramos na região em que essa luz é refletida em direção ao Sol e, portanto, a Lua é excepcionalmente brilhante. Quando observamos a Lua em outras fases, os raios foram espalhados pelo solo lunar de várias maneiras que em geral não se reforçam mutuamente, de modo que a Lua é menos brilhante. Alguns tipos de musgo também podem refletir a luz na direção do Sol de tal modo que os raios se reforçam mutuamente. Você pode observar o fenômeno se a sua sombra for projetada em um campo distante coberto de musgo, mas o efeito é visto com mais freqüência em fotografias aéreas de regiões cobertas de musgo. O padrão de quadrados claros e escuros que aparece quando um gramado é aparado deve-se à orientação das folhas deixadas pela máquina de cortar grama. Em algumas regiões, as folhas refletem a luz na sua direção e, portanto, parecem mais claras, enquanto em outras não refletem a luz na sua direção e, portanto, parecem mais escuras. A grama do outro lado da cerca pode parecer mais verde porque é mais fácil ver o solo marrom que está por baixo das folhas

quando você olha diretamente para baixo (como quando olha para o seu próprio gramado) do que quando o seu ângulo de visada é mais agudo. (É claro que também existem razões psicológicas para esse ditado, mas vou deixar esse tipo de interpretação por conta do leitor.)

6.45 • Ondas em plantações Às vezes um campo de trigo ou um capinzal parece estar sendo atravessado por uma onda, com regiões claras e escuras movendo-se aparentemente da mesma maneira que as ondas do mar. A impressão de movimento desaparece quando você se aproxima do campo. O que produz essas ondas?

Resposta As ondas são causadas por rajadas de vento que fazem as plantas oscilarem. Quando as plantas estão de lado para você, refletem mais luz na sua direção e parecem mais claras. Quando não estão de lado para você (ou seja, quando as hastes estão inclinadas na sua direção ou na direção oposta), refletem menos luz na sua direção e parecem mais escuras. A cada rajada de vento, as regiões claras e escuras se formam e se propagam pela plantação. Para que a impressão de ondas seja completa, é preciso que você esteja afastado das plantas a ponto de não conseguir ver os detalhes.

6.46 • Glória Quando você fica de pé no alto de uma montanha, com o Sol às costas, e olha para uma neblina espessa iluminada pelo Sol, pode ver anéis coloridos em torno da sombra da sua cabeça. Esse fenômeno é chamado glória, anticoroa ou espectro de Brocken e pode fazer você se sentir um santo, pois jamais verá uma figura parecida em volta da cabeça de outra pessoa. A glória também pode ser vista de um avião que esteja sobrevoando um banco de nuvens, em um ponto diametralmente oposto à posição do Sol. Se as nuvens estiverem suficientemente próximas para que você possa ver a sombra do avião, a glória estará no ponto da sombra que corresponde à sua localização no avião. A glória é geralmente circular, mas às vezes pode assumir a forma de um oval alongado. Se o ponto oposto ao Sol passa intermitentemente por nuvens e pelo solo, a glória pode aparecer e desaparecer e às vezes ser substituída pelo heiligenschein, um efeito de iluminação causado pela tendência do solo de espalhar a luz em direção ao Sol. O que produz a glória? Qual é a ordem das cores em uma glória? Qual é a relação entre o tamanho angular da glória e o tamanho das gotas d’água na neblina ou na nuvem abaixo de você?

Resposta A glória é causada pela interferência da luz espalhada por gotículas d’água na direção do Sol. Esse espalhamento é um tipo de difração no qual a luz é desviada por um obstáculo e sofre interferência, ou seja, algumas ondas se reforçam mutuamente (interferência construtiva) e outras se cancelam mutuamente (interferência destrutiva). O resultado é uma figura em que tanto a cor como a intensidade da luz variam de uma região para outra. O modelo da difração responsável pela glória é muito complexo. Eis uma descrição simplificada: a luz espalhada possui duas cores componentes. Uma cor componente é formada pelas ondas luminosas que entram na gota, são refletidas no interior e voltam na direção do Sol. A outra cor componente é formada pelas ondas que acompanham a superfície posterior da gota e voltam na direção do Sol. Essas duas cores componentes podem interferir de forma construtiva ou de forma destrutiva; o resultado dessa interferência, para muitas gotas, é uma figura formada por faixas circulares, com a faixa vermelha do lado de dentro e a faixa azul do lado de fora. O tamanho angular da glória depende do tamanho das gotas: quanto maiores as gotas, menor a glória. Se as gotas forem de muitos tamanhos diferentes, as cores se misturam e ficam difíceis de distinguir. Quando, porém, o tamanho das gotas é razoavelmente uniforme, as cores podem ser vistas com facilidade e vários espectros completos (de azul a vermelho) podem ser observados. A glória assume forma oval quando o sol está baixo no céu e você observa a glória em um banco de nuvens distantes, nas quais o tamanho das gotas varia de modo mais ou menos contínuo.

6.47 • Coroa A coroa é uma região luminosa em torno do Sol ou da Lua. Às vezes, a região é formada por anéis coloridos. Certa vez eu vi uma coroa lunar com dois conjuntos completos de anéis coloridos e partes de um terceiro anel mais largo; foi uma visão magnífica. O que produz a coroa e qual é a ordem das cores em uma coroa? Por que nem sempre as cores são visíveis? O que determina o tamanho de uma coroa?

Resposta As coroas solar e lunar são causadas pela difração sofrida pela luz ao passar por gotas d’água nas nuvens.

Difração é uma forma de espalhamento na qual a luz forma uma figura de interferência. Algumas ondas se reforçam mutuamente para formar uma região mais clara e outras ondas se cancelam mutuamente para formar uma região mais escura. A difração também separa as cores de uma luz inicialmente branca, desviando mais a luz vermelha do que a luz azul. Em conseqüência, a periferia de uma coroa muitas vezes é vermelha. A dispersão sofrida pelas cores depende do tamanho das gotas. Os anéis coloridos aparecem quando as gotas têm um tamanho aproximadamente uniforme de alguns micrômetros de diâmetro. Quando o tamanho varia muito, as cores se misturam e o resultado é uma coroa branca (com, talvez, uma borda ligeiramente avermelhada). Os anéis em torno do Sol no quadro O Vinhedo Vermelho, de Vincent van Gogh, provavelmente nada têm a ver com a coroa; devem ter sido pintados para representar os raios solares. O pintor costumava ver círculos em torno de fontes luminosas porque sua visão tinha sido afetada pelo uso clínico de digitális, que ele chegou a ingerir em doses excessivas.

6.48 • Coroa em uma vidraça embaçada Quando você passar por uma janela cuja vidraça esteja embaçada em uma noite fria, pode ser que as luzes no interior da casa estejam cercadas por anéis coloridos. O que produz esses anéis?

Resposta A coroa produzida por uma vidraça coberta de gelo tem a mesma origem que a coroa do item anterior: ambas se devem à difração da luz por gotas d’água. Neste caso, trata-se de gotas d’água que se condensaram no vidro da janela. O anel escuro mais largo é a região da figura de difração na qual as ondas luminosas chegam aos seus olhos fora de fase (fora de sincronismo) e se cancelam mutuamente. Se a vidraça embaçada estiver em movimento, como no caso de um trem, você poderá ver coroas em todas as fontes luminosas que passarem por você. Se a luz estiver piscando, como as lâmpadas de vapor de mercúrio usadas na iluminação pública, você verá, além da coroa, barras verticais claras e escuras.

6.49 • Nuvens iridescentes Por que algumas nuvens são levemente coloridas? As cores mais freqüentes são o rosa e o verde-claro.

Resposta Quando gotas d’água ou cristais de gelo têm alguns micrômetros de diâmetro, difratam (espalham) a luz solar para formar uma figura de interferência na qual as ondas luminosas se reforçam ou se cancelam mutuamente. Para certos ângulos de espalhamento, as ondas estão em fase (em sincronismo), reforçam-se mutuamente e produzem uma luz mais intensa. Para outros ângulos, estão fora de fase, cancelam-se mutuamente e o resultado é uma luz menos intensa. Esses ângulos são diferentes para cada cor, mas o resultado final depende da distribuição de tamanhos das gotas ou cristais de gelo. Se as gotas são quase todas do mesmo tamanho, as cores são fortes; se existem gotas de vários tamanhos, as cores se misturam e ficam mais fracas ou mesmo desaparecem. Como a luz é difratada principalmente na direção de incidência, uma nuvem tem que estar quase alinhada com o Sol para que as cores sejam visíveis. Além disso, a nuvem deve ser relativamente fina, caso contrário a difração acontecerá muitas vezes no interior da nuvem e as cores se misturarão a ponto de não poderem mais ser distinguidas. No caso de nuvens espessas, as bordas, por serem mais finas, podem ser coloridas.

6.50 • Lua azul Minha avó morava no Texas, em uma cidadezinha tão pequena que, segundo ela, as novidades aconteciam apenas “uma vez a cada lua azul”. O que faz a lua ficar, literalmente, azul?

Resposta A luz azul é produzida por aerossóis na atmosfera constituídos por partículas com raios entre 0,4 e 0,9 micrômetro. As partículas podem ter sido lançadas na atmosfera superior por um vulcão ou por um grande incêndio florestal. Podem ter sido criadas do tamanho apropriado para produzir uma lua azul ou ter crescido com o tempo, por causa da condensação de água na superfície. Quando a luz do luar passa pelas partículas, as partes vermelha e amarela do espectro são espalhadas e você vê principalmente as partes azul e verde do espectro. Isso faz com que a Lua pareça azul. Entretanto, se a Lua estiver perto do horizonte, a luz precisa percorrer uma distância tão grande na atmosfera que as moléculas do ar espalham a maior parte da luz azul e a Lua assume uma tonalidade esverdeada. O mesmo fenômeno também ocorre com o Sol, que pode assumir uma tonalidade azulada ou esverdeada ao ser observado através de uma

camada de aerossol.

6.51 • Faróis de neblina amarelos Os faróis de neblina amarelos penetram mais na neblina do que os faróis comuns?

Resposta Se as gotas d’água da neblina têm um raio menor que 0,2 micrômetro, espalham mais as luzes azul e verde do espectro do que as luzes vermelha e amarela; assim, a luz amarela penetra mais que a luz branca e possibilita uma melhor visão da estrada. Entretanto, se as gotas são um pouco maiores, da ordem de 0,6 micrômetro, o resultado pode ser o oposto, já que, nesse caso, as luzes vermelha e amarela são mais espalhadas que as luzes azul e verde. Se as gotas são ainda maiores, todas as cores são espalhadas igualmente. Para complicar ainda mais as coisas, as gotas podem conter impurezas que absorvem seletivamente certas cores. A resposta, portanto, depende das circunstâncias.

6.52 • Escuro quando molhado Por que a areia molhada é muito mais escura que a areia seca? Por que o cabelo molhado é mais escuro que o cabelo seco? Quando você dirige à noite em uma estrada sem iluminação, por que as faixas pintadas no asfalto quase desaparecem se começa a chover?

Figura 6-16 / Item 6.52 Uma camada de água diminui a quantidade de luz que chega à superfície da estrada.

Resposta Quando a areia está seca, boa parte da luz é espalhada apenas uma ou duas vezes antes de voltar para o ar e pouca luz é absorvida. Nesse caso, a luz refletida pela areia é tão forte que pode até ofuscar. Quando a areia está molhada, a luz é espalhada várias vezes, a absorção é maior e a quantidade de luz que volta para o ar é menor; por isso, a areia fica mais escura. Dois modelos explicam por que a quantidade de luz refletida é menor quando a areia está molhada: (1) a luz fica retida em uma camada de água e é gradualmente absorvida enquanto sofre reflexões repetidas dentro da camada. Isto explica também por que o cabelo fica mais escuro quando está molhado. (2) Quando os grãos de areia estão molhados, a luz é espalhada preferencialmente na direção de incidência, ou seja, para dentro do banco de areia, e, portanto, tem uma probabilidade menor de voltar para o ar. Quando a estrada está seca, a luz dos faróis é espalhada pelo asfalto em todas as direções. Essa luz volta ao motorista com intensidade suficiente para que ele possa ver as faixas de sinalização e parte da textura da pavimentação. Quando a estrada está coberta por uma camada de água, parte da luz dos faróis sofre reflexão especular na interface do ar com a água (Fig. 6-16). Depois que a luz é espalhada pela superfície da estrada, precisa passar novamente pela interface do ar com a água para chegar aos olhos do motorista. Nessa interface, parte da luz (ou mesmo toda a luz, dependendo do ângulo) é refletida de volta para a superfície da estrada. O resultado dessas reflexões é que a luz que chega ao motorista pode ser fraca demais para que ele possa vez as faixas de sinalização e a textura da superfície.

6.53 • Cores da neve e do gelo Por que a neve fresca é geralmente branca e por que um buraco cavado na neve às vezes é azul? Qual é a cor do gelo? Por que os icebergs da Antártica às vezes são verdes e isso nunca acontece com os icebergs do Ártico?

Resposta Quando você observa a neve fresca iluminada pelo Sol, recebe luz refletida pela superfície dos cristais e também luz que atravessa alguns cristais. A luz que é refletida conserva o branco da luz solar incidente. A luz que atravessa alguns cristais sofre uma ligeira absorção da parte vermelha do espectro e fica ligeiramente azulada, mas essa coloração é fraca demais para ser percebida e a neve parece branca. Se a luz chega a um buraco depois de passar pela neve que está em volta, passou por um grande número de cristais e, portanto, a coloração azul pode ser perceptível.

Grandes massas de gelo, como as que existem nos icebergs e nas geleiras, tornam-se azuis quando a luz percorre mais de um metro no interior do gelo, seja para atravessá-lo de um lado a outro, seja para voltar ao ponto inicial depois de ser refletida por imperfeições internas. Entretanto, alguns icebergs provenientes das plataformas de gelo da Antártica têm um tom esverdeado. Essa coloração deve-se à absorção de luz azul pelo fitoplâncton que foi acrescentado gradualmente à base da plataforma de gelo quando a água do mar congelou. A absorção de luz azul muda a cor da luz transmitida pelo gelo de azul para verde. Se o bloco de gelo vira de cabeça para baixo depois que se desprende da plataforma, o gelo verde fica na parte emersa do iceberg. Os icebergs verdes não são vistos no Ártico possivelmente porque nessa região os icebergs se formam mais depressa e não há tempo para que o fitoplâncton se acumule.

6.54 • Firnspiegel e o brilho da neve De vez em quando, o reflexo do Sol na neve produz luzes coloridas. O que produz esse espetáculo, que é chamado firnspiegel (“espelho de neve” em alemão)? O que produz os clarões, mais comuns, que podem ser vistos na neve fresca? Por que os clarões às vezes parecem ser produzidos acima ou abaixo da superfície da neve?

Resposta O firnspiegel é visto em dias ensolarados em que a superfície da neve derrete e torna a congelar, formando uma fina camada de cristais de gelo. A energia térmica para a fusão vem da luz solar que penetra na neve e é refletida muitas vezes antes de ser absorvida. A energia térmica é então transferida para a superfície, onde pequenas regiões da neve derretem e em seguida são congeladas de novo pelo ar frio. O resultado é uma camada de cristais de gelo que se comportam como prismas, separando a luz do Sol em suas cores componentes e enviando-a de volta para o observador. Os clarões na neve, mais comuns, são vistos quando os próprios cristais de neve funcionam como prismas, produzindo pontos coloridos. Como nossos olhos são separados, cada um vê um conjunto diferente de pontos na neve. Quando um ponto visto por um olho está próximo de um segundo ponto visto pelo outro olho, o cérebro combina automaticamente os dois pontos e leva à consciência a impressão de que existe um único ponto acima ou abaixo da superfície da neve. O ponto é visto abaixo da superfície quando o olho esquerdo vê um ponto à esquerda do ponto visto pelo olho direito (Fig. 6-17a). O ponto é visto acima da superfície quando o olho esquerdo vê um ponto à direita do ponto visto pelo olho direito (Fig. 6-17b).

Figura 6-17 / Item 6.54 Dois clarões próximos na neve podem dar a impressão de um só clarão (a) abaixo ou (b) acima da superfície da neve.

6.55 • O branco total e a cegueira da neve Que condições levam à perda de visibilidade e de orientação em um campo de neve, fenômeno conhecido como branco total? Se a luz é intensa, por que as sombras desaparecem? Às vezes, um branco total pode afetar os olhos, chegando a deixar seqüelas (cegueira da neve). É mais fácil acontecer um branco total em um dia de sol ou em um dia nublado?

Resposta Existem duas formas de branco total. Quando o vento levanta a neve fofa, limitando a visibilidade a uns poucos metros, uma pessoa pode ficar perdida depois de caminhar apenas alguns passos. Um outro tipo de branco total acontece quando o solo está coberto de neve e o céu está coberto de nuvens brancas. Uma vez que tanto a neve como as nuvens refletem fortemente a luz, a iluminação torna-se suficientemente difusa para eliminar as sombras. Com o solo tão iluminado quanto o céu e as nuvens, o horizonte desaparece e o céu e a neve se fundem em uma única superfície branca. Você fica com a impressão de que está em uma vastidão branca que se estende indefinidamente para todos os

lados. Em seu diário e histórias de cinco anos de expedições polares, Vilhjalmur Stefansson comenta que o branco total não costumava acontecer em dias de céu azul nem em dias de céu muito encoberto, e sim quando as nuvens eram suficientes para esconder o Sol mas deixavam passar uma quantidade razoável de luz. Nesse caso, tornava-se impossível ver um monte de neve com metade da altura de um homem e muito menos um monte pequeno no qual a pessoa pudesse tropeçar. Se a quantidade de luz visível e de luz ultravioleta no ar excede um certo limite, o branco total pode causar dor nos olhos e mesmo levar à cegueira. Até hoje, alguns povos nativos do Canadá e do Alasca diminuem a exposição à luz usando óculos de proteção feitos de madeira ou de osso com uma fenda estreita diante de cada olho.

6.56 • Óculos de esquiação amarelos Alguns esquiadores afirmam que nos dias de neblina é mais fácil ver os acidentes do percurso usando óculos de lentes amarelas. O famoso explorador polar Vilhjalmur Stefansson recomendou o uso de óculos de cor âmbar para viajar na neve e em campos de gelo. A visão realmente melhora quando alguém usa óculos de lentes amarelas nessas situações?

Resposta Eis uma razão pela qual óculos de lentes amarelas podem ajudar: a neblina diminui a visibilidade de saliências na neve porque espalha a luz do Sol para a sombra das saliências, tornando as sombras menos visíveis ao reduzir o seu contraste com a neve vizinha. Se a neblina é causada por partículas muito pequenas (com raios menores que 0,2 micrômetro), espalham mais as partes azul e verde do espectro do que as partes vermelha e amarela, de modo que uma fração relativamente pequena da luz amarela é espalhada para as regiões de sombra. Se você usa lentes amarelas e, portanto, pode ver apenas a luz amarela espalhada pela neve, pode distinguir melhor as sombras e reconhecer a presença de saliências na neve. Aqui está outra razão: as lentes amarelas podem aumentar a luminosidade aparente (e não real) de uma cena, independentemente da presença de neve. Esse fenômeno deve-se ao funcionamento dos fotorreceptores da retina chamados bastonetes. Se eles forem estimulados por uma luz que possui componentes na extremidade do vermelho e do amarelo do espectro, mas não possui componentes na extremidade do azul e do verde, enviam um sinal para o cérebro que interage com o sinal dos fotorreceptores conhecidos como cones no sentido de aumentar a luminosidade aparente da imagem.

6.57 • Quando o gelo fica escuro Por que, quando um lago gelado degela na primavera, parte do gelo fica escura?

Resposta Eis uma razão: quando o gelo derrete, parte da superfície superior transforma-se em uma estrutura frágil de cristais verticais, colunares, intercalados com água. O gelo antes era claro porque refletia uniformemente a luz, mas agora a luz é refletida muitas vezes entre os cristais, ficando mais fraca a cada reflexão. Como uma quantidade menor de luz chega ao observador, o gelo parece mais escuro. Aqui está outra razão: quando a água congela rapidamente, o ar dissolvido concentra-se em bolhas, que ficam aprisionadas no gelo. Como a velocidade de congelamento quase sempre é maior perto da superfície da água, a camada superior do gelo pode ter muitas bolhas de ar. Elas espalham a luz solar e tornam assim o gelo mais branco. Na primavera, a superfície do gelo derrete, expondo as camadas inferiores, que contêm menos bolhas e por isso são mais escuras.

6.58 • Nuvens brancas e nuvens escuras Por que existem mais nuvens brancas do que nuvens escuras? Por que algumas nuvens são escuras? Por que algumas nuvens escuras têm bordas brancas (são “folheadas a prata”)?

Resposta As nuvens são brancas por três razões: (1) as gotas d’água espalham as diferentes cores da luz solar (que é branca) com a mesma eficiência. (2) As gotas absorvem pouca luz, de modo que não existe uma mudança de cor causada por uma absorção seletiva. (3) As gotas d’água espalham muitas vezes a luz solar antes que ela saia na nuvem e na direção do observador. Qualquer conjunto de partículas que possua essas propriedades assume a cor branca ao ser exposto à luz solar. Uma nuvem pode parecer escura por causa do contraste com as vizinhanças ou porque é suficientemente espessa para se tornar quase opaca. Uma nuvem que é escura, quase preta, quando vista do solo pode ser branca quando vista de cima, de um avião. Vistas de cima, as únicas nuvens que não são brancas são aquelas que estão na sombra.

As gotas d’água de uma nuvem espalham a luz preferencialmente na direção de incidência; o espalhamento em outras direções é muito menor. Assim, se uma nuvem escura está perto do Sol do seu ponto de vista, as gotas na borda da nuvem espalham fortemente a luz na sua direção. Embora o interior da nuvem seja escuro, esse forte espalhamento na borda da nuvem, que é menos espessa, torna a borda relativamente clara. Se a nuvem não está perto do Sol, a borda da nuvem não espalha a luz fortemente na sua direção e você não vê uma borda clara.

6.59 • Nuvens noctilucentes Nas latitudes em torno de 50o, nuvens prateadas, de aspecto fantasmagórico, às vezes aparecem muito depois que o Sol se põe, especialmente durante o verão nas ilhas Britânicas e nos países escandinavos. O que causa essas nuvens, que recebem o nome de nuvens noctilucentes, ou seja, “nuvens que brilham à noite”? Por que são vistas apenas depois que o Sol se põe e por que às vezes têm uma aparência ondulada? Por que apareceram pela primeira vez em 1885, e por que a luminosidade dessas nuvens e o número de observações têm aumentado (mas nem sempre) desde aquela época?

Resposta Essas nuvens se formam em grandes altitudes (cerca de 80 quilômetros) na parte da atmosfera conhecida como mesosfera. Por essa razão, também são chamadas de nuvens mesosféricas. Por estarem em grandes altitudes, ainda são iluminadas pela luz solar durante a primeira hora após o pôr-do-sol. Provavelmente são formadas por pequenos cristais de gelo que se formam em torno de grãos de poeira, que podem vir de cometas, meteoritos ou (ocasionalmente) de vulcões. As nuvens são muito tênues para serem vistas durante o dia ou mesmo logo após o crepúsculo. A aparência ondulada pode se dever a ondas de densidade (variações periódicas de pressão e temperatura, também chamadas ondas de gravidade) que se propagam ao longo das nuvens. As nuvens noctilucentes foram observadas pela primeira vez após a explosão do vulcão Cracatoa, perto de Java, em 1885. Essa gigantesca explosão lançou poeira e água a grandes altitudes. A cerca de 80 quilômetros de altura, a água se combinou com a poeira vulcânica (e talvez também com a poeira de cometas e meteoritos) para formar as pequenas partículas, de menos de um micrômetro de diâmetro, que compuseram as primeiras nuvens noctilucentes de que se tem notícia. O aumento da luminosidade e do número de nuvens noctilucentes a partir de 1885 deve-se ao aumento da produção de metano na indústria, nos campos de arroz, nos aterros e na criação de gado. O metano chega à região superior da atmosfera, sofre transformações e provoca um aumento da quantidade de moléculas de água e cristais de gelo disponíveis para a formação das nuvens noctilucentes.

6.60 • Olhando no espelho Eis uma pergunta comum a respeito das imagens produzidas por um espelho plano: por que o espelho troca a parte direita pela parte esquerda, mas não troca a parte de cima pela parte de baixo? Suponha que a extremidade superior de um espelho plano esteja na altura dos seus olhos. Qual deve ser o comprimento mínimo do espelho para que você possa ver seus pés? A resposta depende da distância a que você está do espelho? Se você se afasta do espelho, passa a ver uma parte maior ou menor do corpo?

Resposta A inversão sofrida pela imagem em um espelho plano é do tipo frente–costas e não do tipo direita– esquerda. Observe, por exemplo, que tudo que está à sua esquerda permanece à sua esquerda na imagem refletida. A confusão surge quando você gira mentalmente em torno de um eixo vertical até se alinhar com a imagem do espelho. Nesse caso, o que você chama de mão direita é, na verdade, a imagem da sua mão esquerda. Entretanto, o espelho não executa uma rotação desse tipo. Para verificar que isso é verdade, gire o corpo para a direita até que seu braço esquerdo fique próximo do espelho e observe que a rotação mental deixa de fazer sentido. Se a extremidade superior do espelho está na altura dos seus olhos, o comprimento mínimo do espelho para que você possa ver os seus pés é metade da distância entre os seus olhos e o chão. Esse valor não depende, portanto, da distância a que você se encontra do espelho. Isso significa também que a parte do corpo que você vê no espelho não muda quando você se afasta.

6.61 • Reflexos na água e o espelho de um cenário Se você observa uma cena enquanto olha para o reflexo da cena na água, o reflexo é uma imagem especular da cena? Se você olha para o reflexo do teto ou do seu rosto em uma xícara de chá, por que a imagem aparece distorcida perto da parede da xícara? Se você expõe a xícara à luz solar quando o Sol está alto no céu, por que pode ver duas pequenas imagens do Sol para certas posições da xícara? Por que as distorções perto da parede são diferentes se a xícara estiver tão cheia que o

líquido se projeta ligeiramente para fora da borda? Se você inclina uma xícara de leite parcialmente cheia de modo a expor parte do fundo, por que a parte coberta de leite termina com uma região que reflete a luz como um espelho? Se um ator (de teatro, televisão ou cinema) se olha no espelho e você pode ver o rosto dele no centro do espelho, o que o ator vê no espelho?

Resposta Uma observação direta e a observação de uma imagem refletida na água em geral são diferentes porque os objetos em primeiro plano ocultam os objetos do fundo de modo diferente nos dois casos. Isso acontece porque, para chegar ao observador, os raios diretos são quase horizontais, enquanto os raios refletidos têm que ser inicialmente dirigidos para baixo, em direção à água (Fig. 6-18).

Figura 6-18 / Item 6.61 Um raio direto e um raio refletido chegam ao observador por caminhos diferentes.

Em uma xícara de chá, a superfície do líquido se encurva ligeiramente porque a coesão da água e a adesão entre a água e a parede fazem o líquido subir na parede. (Costuma-se dizer que essa subida se deve à tensão superficial da água.) A superfície do líquido se comporta como um espelho, produzindo imagens do que está acima. Enquanto a parte plana produz imagens nãodistorcidas, a parte curvada para dentro (côncava) comprime as imagens. Se você expõe a xícara à luz solar quando o Sol vai alto no céu e o Sol está às suas costas, você pode ver duas imagens comprimidas do Sol: uma é refletida na direção dos seus olhos pela superfície curva que existe nas proximidades da parede e a outra é refletida pela superfície curva para a superfície plana e pela superfície plana para os seus olhos. Se a xícara estiver muito cheia, a superfície do líquido perto da borda se encurvará para fora (torna-se convexa). Com isso, as imagens são comprimidas, desta vez como as imagens dos espelhos instalados nas lojas para evitar roubo. O leite é branco porque, depois de penetrar no leite, a luz é espalhada por partículas existentes no líquido, tais como glóbulos de gordura. A luz espalhada é tão forte que mascara qualquer reflexo especular na superfície do leite. Por outro lado, a região da fronteira entre a parte coberta e a parte descoberta do fundo do copo contém um número relativamente pequeno de partículas e, portanto, a luz espalhada pelas partículas é fraca. Além disso, a superfície curva concentra a luz refletida pela superfície. O resultado é uma região que reflete a luz como um espelho. Se um ator recebe instruções para segurar um espelho de tal modo que seu rosto seja refletido para a câmara ou para a platéia, o que ele vê no espelho não é seu próprio rosto e sim a câmara ou a platéia. O mesmo truque pode ser observado em muitas pinturas.

6.62 • O fantasma de Pepper e a cabeça sem corpo Em 1863, John Henry Pepper, do London Polytechnic Institution, inventou um truque no qual uma aparição móvel e falante flutuava no palco. Truque semelhante é apresentado há muito tempo em parques de diversões. Ao entrar em uma tenda mal iluminada, você encontra a cabeça de uma pessoa sobre uma mesa. Embora a pessoa fale com você, o espaço sob a mesa está vazio. Como são realizados esses truques?

Figura 6-19 / Item 6.62 Arranjos (a) do fantasma de Pepper e (b) da cabeça sobre a mesa.

Resposta O fantasma de Pepper é o reflexo de um ator em um grande espelho (ou placa de vidro) colocado no palco (Fig. 6-19a). O ator, que se encontra em um canto do fundo do palco, invisível para a platéia, está bem iluminado, enquanto o resto do palco está na penumbra. Quando a platéia vê o ator, não percebe que se trata de uma imagem refletida em um espelho. O corpo a que a cabeça pertence está sob a mesa, escondido por um espelho. Quando você olha debaixo da mesa, o que vê é uma imagem refletida da perna da frente, mas pensa que se trata da perna de trás (Fig. 6-19b), o que dá a impressão de que o espaço debaixo da mesa está vazio.

6.63 • A inclinação das janelas das torres de controle do tráfego aéreo Por que as janelas da torre de controle de um aeroporto são inclinadas com a borda de cima para a frente? O pára-brisa de um automóvel tem a inclinação oposta para tornar aerodinâmica a forma do carro. De que maneira essa inclinação afeta a visão do motorista?

Resposta Se as janelas da torre de controle de um aeroporto fossem verticais, os funcionários veriam reflexos de si mesmos e de seus instrumentos nas janelas. Para que isso não aconteça, as janelas são inclinadas de tal modo que os reflexos indesejáveis são desviados para o teto, que é pintado de preto para absorver a luz. Por causa da inclinação para dentro do pára-brisa dianteiro dos carros, o motorista vê um reflexo do painel superposto à sua visão do lado de fora. Se o painel ou alguma coisa sobre o painel for de cor clara, o motorista pode ter dificuldade para perceber a aproximação de um veículo de cor escura.

6.64 • Imagens em dois ou três espelhos

Quantas imagens de si própria uma pessoa consegue ver quando está de pé em frente a dois espelhos que formam um ângulo, como os que existem nas lojas de roupas (Fig. 6-20a)? De que maneira o número de imagens depende do ângulo dos espelhos e da posição da pessoa em frente aos espelhos? Quantas imagens a pessoa verá se um terceiro espelho for acrescentado, de modo a formar um triângulo de espelhos? O que a pessoa vê se ficar entre dois espelhos paralelos (ou quase paralelos) e olhar para um deles?

Resposta Para determinar o número de imagens no arranjo de dois espelhos, primeiro desenhe uma vista de cima dos espelhos e, em seguida, deslocando-se no sentido horário e no sentido anti-horário para a parte de trás dos espelhos, acrescente espelhos imaginários que formem o mesmo ângulo que os espelhos reais, como na Fig. 6-20b. Cada “fatia” que você acrescenta contém mais uma imagem. O desenho fica mais difícil na hora de acrescentar as partes situadas atrás da cena original, porque elas podem se sobrepor. Essas partes podem contribuir com uma a quatro imagens, dependendo do grau de superposição e da posição da pessoa entre os espelhos. O passo seguinte é contar o número de imagens que existem no desenho. Esse é o número de imagens que você vê quando olha para os espelhos (cinco imagens na Fig. 6-20c). Além disso, você vê as “fatias” limitadas pelas imagens dos espelhos. Quando um terceiro espelho (real) é acrescentado ao conjunto, formando um triângulo, o número de imagens torna-se, teoricamente, infinito, já que a luz proveniente de um objeto situado no meio dos espelhos fica aprisionada no interior do triângulo, sendo refletida um número indefinido de vezes. Na prática, o número de imagens é finito porque a absorção e reflexões imperfeitas enfraquecem a imagem e a tornam pouco nítida, especialmente no caso de espelhos baratos em que a superfície refletora fica no lado de trás do vidro. Fenômeno semelhante acontece quando a pessoa se posiciona entre dois espelhos paralelos. Em tese, seria possível ver um número infinito de imagens, digamos, de um braço estendido paralelamente aos espelhos. Entretanto, a pessoa só consegue ver imagens múltiplas da sua própria cabeça se os espelhos não estiverem perfeitamente paralelos. Você sabe por quê? Um brinquedo conhecido utiliza um espelho colocado atrás de um outro espelho que é parcialmente transparente. Entre os dois espelhos existem pequenas lâmpadas. Quando você olha para o brinquedo através do espelho parcialmente transparente, vê inúmeros reflexos das lâmpadas, que dão a impressão de que existe um número muito grande de lâmpadas atrás do espelho, algumas extremamente distantes. Às vezes, o espelho de trás tem uma parte convexa, o que faz com que o centro do conjunto também fique cheio de imagens das lâmpadas.

Figura 6-20 / Item 6.64 (a) Um homem de pé entre dois espelhos. (b) Formação das imagens. (c) Imagens que o homem vê.

6.65 • Caleidoscópios Em um caleidoscópio simples, você vê um único conjunto de imagens dispostas simetricamente em torno de um ponto central. De que maneira os caleidoscópios mais sofisticados produzem muitos conjuntos de imagens? De que modo muitos tipos

diferentes de arranjos simétricos dos conjuntos podem coexistir no mesmo caleidoscópio? Que arranjo de espelho produz imagens que não mudam quando você olha para o instrumento de outro ponto de vista? O que você vê se os espelhos de um caleidoscópio forem inclinados de tal modo que a abertura de um lado é mais larga que a abertura do outro lado? De que forma alguns caleidoscópios criam a ilusão de cores mesmo quando não existem objetos coloridos (tais como pedacinhos de vidro ou plástico colorido) no interior do instrumento? Que tipo de imagens você vê em um tubo redondo com a superfície interna espelhada?

Resposta Os caleidoscópios mais simples possuem dois espelhos longitudinais que fazem entre si um ângulo de 60o. Esse arranjo produz cinco imagens refletidas, que se distribuem em torno da reta de interseção entre os espelhos (Fig. 6-21a), nas quais estão incluídos todos os objetos que existem no interior do instrumento. Como a imagem vista pelo observador é composta por seis imagens iguais dispostas simetricamente, dizemos que a imagem possui simetria hexagonal. Para outros ângulos, o número de imagens e o tipo de simetria são diferentes (veja o item anterior). Os caleidoscópios mais sofisticados contêm três ou quatro espelhos. (O revestimento refletor costuma ficar na superfície anterior dos espelhos, porque se estivesse na superfície posterior, a luz seria refletida tanto pelo revestimento como pela superfície anterior do vidro. As reflexões ligeiramente deslocadas produzidas pelas duas superfícies resultariam em imagens pouco nítidas.) Usando-se três ou quatro espelhos, é possível criar uma grande variedade de imagens. Com três espelhos formando um triângulo eqüilátero, as imagens se distribuem em conjuntos com simetria hexagonal. Quando os espelhos formam outros tipos de triângulos, os conjuntos têm dois ou três tipos diferentes de simetria. Um exemplo aparece na Fig. 6-21b. As imagens mudam quando você olha para um caleidoscópio de outro ponto de vista, a não ser nos quatro casos seguintes. (1) O caleidoscópio tem quatro espelhos e eles formam um retângulo ou um quadrado. O caleidoscópio tem três espelhos e eles formam (2) um triângulo eqüilátero; (3) um triângulo retângulo com ângulos de 60o e 30o; ou (4) um triângulo retângulo com ângulos de 45o. Se os espelhos de um caleidoscópio são inclinados de tal modo que a abertura de um lado é mais larga que a abertura do outro lado, as imagens refletidas produzem uma esfera geodésica que parece flutuar no espaço. Se você olha pelo lado em que a abertura é mais estreita, tem a impressão de que se encontra no interior da esfera. As cores que você vê no interior do caleidoscópio podem ser produzidas por pedaços de plástico incolor colocados entre dois filtros polarizadores.

Figura 6-21 / Item 6.65 (a) Imagens vistas em um caleidoscópio de dois espelhos. (b) Parte das imagens vistas em um caleidoscópio de três espelhos com ângulos de 90°, 60° e 30°.

Se você observa uma fonte luminosa pontual através de um tubo circular com a superfície interna espelhada, vê uma série de anéis.

6.66 • Labirintos de espelhos A Sala dos Espelhos que existia em Lucerna, na Suíça, era um complexo labirinto de espelhos no qual eu logo me perdi. O chão estava dividido em triângulos eqüiláteros e espelhos de corpo inteiro tinham sido colocados nas fronteiras entre alguns desses

triângulos. Quando eu estava no centro de um dos triângulos, via seis corredores aparentes se afastando de mim, com muitas imagens refletidas nas paredes dos corredores. O que produz a ilusão dos corredores? O que existe no final de cada corredor? Uma outra pessoa poderia se esconder de mim no labirinto de corredores, ou todo o interior é visível de qualquer posição no labirinto?

Resposta Os corredores da Sala dos Espelhos eram produzidos por raios luminosos refletidos pelos espelhos a um ângulo de 60°. A Fig. 6-22a mostra uma versão simples de um labirinto desse tipo. Você está no ponto O; um raio luminoso parte de você, é refletido quatro vezes no interior do labirinto e volta até você. Quando você olha na direção desse raio, tem a impressão de que está vendo um corredor (Fig. 6-22b), com a sua imagem no ponto mais distante, já que o raio partiu de você. Nessa versão simples, ninguém poderia se esconder de você, já que todas as regiões triangulares aparecem pelo menos uma vez no corredor. Em labirintos mais complicados, porém, a pessoa poderia se esconder. Por exemplo: os pontos A, B e C da Figura 6-22c podem todos ser vistos por um observador situado no ponto O?

Figura 6-22 / Item 6.66 (a) Um labirinto de espelhos simples, visto de cima. Um raio luminoso parte do ponto O e volta ao ponto O após sofrer várias reflexões. (b) O corredor, do ponto de vista de um observador situado no ponto O. (c) Um labirinto de espelhos maior, baseado em divisões triangulares. As linhas cheias representam paredes com espelhos.

6.67 • Atirando com laser em um parque de diversões Você está dando uma olhada nos brinquedos de um parque de diversões e depois de passar por vários brinquedos conhecidos depara com uma novidade, o “Tiro ao Alvo com Laser”. Curioso, você entra e descobre que está no canto de uma sala retangular cujas paredes são espelhos (Fig. 6-23a). No seu canto existe um potente laser apontado para uma das paredes com um ângulo de incidência de 45°. Nos outros três cantos estão os alvos, tatus de cerâmica.

Figura 6-23 / Item 6.67 (a) Sala com paredes espelhadas, vista de cima. (b) Como verificar qual dos tatus será a vítima.

O encarregado do brinquedo explica que você deve disparar o laser depois de prever se um dos tatus será atingido e, se a resposta for afirmativa, qual dos tatus será a vítima. Ele observa também que a sala foi construída com dimensões precisas: um comprimento de 7 unidades e uma largura de 4 unidades. Em seguida, retira-se bruscamente, como se o seu canto pudesse ser o alvo real. Se você disparar o laser, vai vaporizar um dos tatus, suicidar-se, ou o raio luminoso vai vagar pela sala até que a ligeira absorção sofrida em cada reflexão se encarregue de eliminá-lo? O que aconteceria se as dimensões da sala fossem 7 unidades e 3 unidades? E se fossem 8 unidades e 3 unidades? Depois de pensar um pouco, você aperta corajosamente o gatilho enquanto examina mentalmente as reflexões para se certificar de que o seu raciocínio está correto.

Resposta Contanto que o comprimento e a largura da sala sejam números inteiros, é garantido que você não vai se matar e vai atingir um dos tatus. Para descobrir qual será a vítima, você pode acompanhar a trajetória do raio luminoso ou usar a receita a seguir. Se a razão entre o comprimento e a largura puder ser reduzida (como, por exemplo, a razão 8/4 pode ser reduzida para 2/1), faça isso e depois verifique qual das três possibilidades da Fig. 6-23b se aplica ao seu caso. As indicações “Ímpar” e “Par” se referem aos números que expressam as dimensões da sala.

6.68 • Triângulos escuros entre bolas de Natal Arrume esferas iguais com superfícies espelhadas (tais como bolas de Natal) em uma única camada sobre um pedaço de tecido ou papel preto, colocando-as o mais próximo possível umas das outras. Quando você olha de cima para o conjunto, com uma luz forte atrás de você, pode ver reflexos distorcidos de si. Estranhamente, as bolas parecem ter forma hexagonal, com triângulos escuros entre cada grupo de três bolas (Fig. 6-24a). Se você aponta para uma das bolas, sua imagem em todas as outras bolas também aponta para a bola que você escolheu. Como explicar o fenômeno? Você pode observar melhor os reflexos usando esferas maiores, como as que são vendidas em lojas de enfeites de jardim.

Resposta Suponha que você coloque uma bola espelhada em um espaço amplo, como o chão de um aposento. Quando você olha de cima para a bola, pode ver uma imagem distorcida de si e de quase tudo que está em volta. O horizonte é definido pelo objeto que envia um raio luminoso horizontal em direção à bola (Fig. 6-24b). A imagem do horizonte está acima do equador da bola. Você vê o chão entre o horizonte e o equador. Se você coloca duas bolas próximas uma da outra, ambas refletem raios como na Fig. 6-24b, mas agora os raios provenientes de objetos que estão abaixo do horizonte podem ser refletidos várias vezes até assumirem a direção de um observador que esteja acima do nível das bolas. Como uma parte da luz é perdida em cada ponto de reflexão, esses raios formam imagens mais fracas. Se você junta três bolas, o conjunto de imagens é ainda mais complexo, com muitas imagens fracas produzidas por reflexões múltiplas de objetos situados abaixo do horizonte. Para qualquer bola, o horizonte está aproximadamente ao longo de uma reta horizontal e as retas horizontais das três bolas formam um triângulo. Como as bolas provavelmente evitam que a luz ambiente chegue à parte do chão que está entre as bolas, mesmo a visão direta do chão não impede que a região no interior do triângulo pareça escura. Para entender por que as imagens refletidas do seu dedo apontam todas para a mesma bola, imagine que você aponte para a direita em frente a um espelho plano. O seu dedo e a imagem do seu dedo apontam para o mesmo ponto, à direita do lugar em que você se encontra. Você obteria o mesmo resultado se substituísse o espelho por uma bola refletora. Qualquer outra bola refletora, como as do arranjo de bolas, também produz uma imagem em que o seu dedo aponta na mesma direção.

Figura 6-24 / Item 6.68 (a) Triângulo escuro formado no centro de um conjunto de três bolas de Natal. (b) Reflexo dos raios de luz em uma bola de Natal.

6.69 • Prateado vira preto; mais preto que o preto Uma lâmina de barbear do tipo antigo, com apenas uma lâmina, é prateada. Entretanto, se você empilhar várias lâminas e comprimir a pilha, o lado da pilha fica preto. Como é possível que uma pilha de lâminas prateadas fique preta? Um pedaço de cartolina preta é obviamente mais preto que um pedaço de cartolina branca. Você conhece algum meio de tornar um pedaço de cartolina branca mais preto que um pedaço de cartolina preta quando os dois são iluminados pela mesma lâmpada?

Resposta Quando um raio luminoso entra no espaço entre as bordas chanfradas de lâminas vizinhas, é refletido várias vezes antes de sair (Fig. 6-25). Cerca de 45% da luz incidente são absorvidos em cada reflexão. Assim, a luz que finalmente deixa as lâminas é reduzida em intensidade a apenas uma pequena fração da intensidade inicial, o que faz a borda das lâminas parecer escura. Para tornar a cartolina branca mais preta que a cartolina preta, construa uma caixa feita de cartolina branca, pinte a parte de fora de preto e faça um furo em um dos lados da caixa. O diâmetro do furo não deve ser maior que 10% da largura da caixa. Ilumine com uma lâmpada o lado que contém o furo. A luz que entra pelo furo é espalhada várias vezes no interior da caixa. Cada vez que a luz é espalhada, apenas uma pequena parte da luz é absorvida pela cartolina branca, mas como a luz é espalhada muitas vezes, a luz que finalmente sai pelo furo é muito fraca.

Figura 6-25 / Item 6.69 Um raio de luz é refletido várias vezes entre as bordas chanfradas de lâminas vizinhas.

Por outro lado, a luz que ilumina a superfície externa da caixa, pintada de preto, é quase toda absorvida pela tinta; entretanto, como a luz é espalhada apenas uma vez, a luz refletida tem uma intensidade um pouco maior que a luz que sai pelo furo. Assim, o buraco (por onde sai a luz do interior todo branco) é, na verdade, mais preto que a cartolina preta da superfície externa.

6.70 • Retrorrefletores O retrorrefletor é um dispositivo que reflete um raio luminoso na direção em que veio, independentemente do ângulo de incidência. Muitas pessoas que gostam de correr à noite usam retrorrefletores na roupa para que os motoristas possam vê-las com mais facilidade. Por que você não vê uma imagem do seu rosto (mesmo que distorcida) quando olha para uma superfície com retrorrefletores? Retrorrefletores são às vezes instalados no asfalto das estradas para tornar a sinalização visível mesmo quando a estrada está escura (seja porque está chovendo, seja porque não existe iluminação). Os retrorrefletores também são usados nas placas de sinalização para torná-las mais visíveis à noite. Você pode observar esses refletores quanto estiver voando de dia: quando o avião começar a subir, observe as vizinhanças da sombra do avião. Você provavelmente vai ver breves clarões quando a luz solar incidente nos retrorrefletores das placas de sinalização for refletida na direção genérica do Sol. (Você também vai ver outros clarões em pontos afastados da sombra do avião; eles se devem a reflexos da luz solar em superfícies de metal ou de vidro e em corpos d’água.) As placas de retrorrefletores têm a propriedade de remover distorções de um feixe luminoso. Assim, por exemplo, um slide pode ser projetado em uma placa de retrorrefletores através de uma folha de plástico amassada, que distorce a imagem. Quando

a luz passa novamente pelo plástico e é observada em uma tela, as distorções criadas pela primeira passagem praticamente não existem e a imagem é perfeita. Como funciona um retrorrefletor e como remove distorções?

Resposta Existem dois tipos principais de retrorrefletores: esferas e cantos. Quando um raio luminoso penetra em uma esfera, é desviado para a parte posterior da esfera, onde sofre uma reflexão; em seguida, atravessa novamente a esfera e sai da esfera na direção da fonte. Quando um raio luminoso encontra um canto (que pode ser, por exemplo, o espaço entre dois dentes cortados em uma placa de plástico), é refletido duas ou três vezes e retorna em direção à fonte. Se os retrorrefletores fossem perfeitos, toda a luz voltaria exatamente para o local da fonte. Na prática, porém, os retrorrefletores são imperfeitos, o que significa, por exemplo, que parte da luz refletida pelos retrorrefletores usados por um corredor, em vez de se dirigir para os faróis de um carro que se aproxima, sofre um pequeno desvio e chega aos olhos do motorista. Se você segura uma tira desses retrorrefletores à frente do rosto, não vê uma imagem do seu rosto. Isso acontece porque os únicos raios interceptados pelos seus olhos são os que partiram dos seus olhos. Os raios que partiram do nariz são enviados de volta ao nariz, mas você não enxerga com o nariz. Um painel de retrorrefletores pode remover distorções porque envia a luz de volta exatamente para a mesma região responsável pela distorção. Assim, por exemplo, se um raio luminoso é desviado para a esquerda na primeira passagem, o desvio é para a direita na segunda passagem e, portanto, o raio volta à orientação original. Esse cancelamento das distorções funciona mesmo que a distorção seja causada por uma chama turbulenta, já que a luz passa novamente pela chama antes que a turbulência tenha tempo de mudar.

CURIOSIDADE 6.71 • Pousando no escuro atrás das linhas inimigas Durante a Segunda Guerra Mundial, o Escritório de Serviços Estratégicos da Inglaterra estava diante da difícil tarefa de orientar o pouso de pequenos aviões atrás das linhas inimigas durante a noite. Para fazer isso sem que o inimigo percebesse, abriam uma clareira no solo para servir de pista e marcavam a clareira com pequenos retrorrefletores formados por três espelhos perpendiculares entre si. “O piloto usava uma lâmpada de lanterna no meio da testa, e embora a luz da lâmpada fosse quase imperceptível para um observador no solo, os reflexos dos espelhos eram suficientes para que o piloto visse claramente onde devia pousar. Depois que o avião partia, a equipe de terra localizava os espelhos com lanternas e removia as provas de que ali havia existido uma pista temporária” (carta, H. B. Clay, 1986).

6.72 • Espelho unidirecional Como um espelho pode transmitir a luz apenas em um sentido?

Resposta O espelho direcional é igual a um espelho comum, exceto pelo fato de que não possui um revestimento traseiro opaco e, portanto, deixa passar parte da luz. A ilusão de que a luz é transmitida apenas em um sentido resulta do fato de que o espelho é colocado entre duas salas, uma fortemente iluminada e outra na penumbra. Na sala iluminada, a luz refletida pelo espelho é tão forte que mascara a luz proveniente da outra sala. Na sala escura, a luz refletida pelo espelho é tão fraca que é mascarada pela luz proveniente da outra sala.

6.73 • Espelho retrovisor Como é possível obter reflexos fortes do espelho retrovisor de um carro durante o dia e reflexos fracos (e que, portanto, não ofuscam) à noite?

Resposta O espelho retrovisor é uma cunha de vidro, com um revestimento refletor no lado oposto ao do motorista. Quando o espelho está na posição diurna, os raios luminosos provenientes da traseira do carro são refletidos por esse revestimento na direção do motorista, produzindo uma imagem do que se passa atrás do carro (Fig. 6-26a). Para colocar o espelho na posição noturna, o motorista faz girar a parte de baixo da cunha na direção da traseira do carro, desviando os raios refletidos pelo revestimento para o teto e fazendo com que os raios refletidos pela superfície do vidro mais próxima do motorista cheguem aos seus olhos (Fig. 6-26b). Embora as imagens produzidas por reflexão no vidro sejam relativamente fracas, podem ser vistas com facilidade pelo motorista, cujos olhos estão adaptados ao

escuro, e evitam que ele seja ofuscado pelos faróis dos carros que vêm atrás.

Figura 6-26 / Item 6.73 Espelho retrovisor (a) na posição diurna, em que é usado o reflexo forte da parte traseira; (b) na posição noturna, em que é usado o reflexo fraco da parte dianteira.

6.74 • Espelho lateral O objetivo do espelho lateral é possibilitar que o motorista veja se está sendo seguido de perto por um carro na pista ao lado. Entretanto, muitos espelhos planos deixam um ponto cego, ou seja, uma região na qual o outro carro está próximo demais para ser visto no espelho (Fig. 6-27). O perigo é que o motorista mude de pista sem perceber que está sendo ultrapassado. Para diminuir o ponto cego, o espelho deve estar perto do motorista ou perto da frente do carro?

Figura 6-27 / Item 6.74 Posições aproximadas dos pontos cegos dos espelhos laterais. Em geral, os pontos cegos não são os mesmos dos dois lados do carro.

Resposta O espelho deve estar perto da frente do carro. Assim, a imagem de um carro na pista ao lado apareceria no

espelho até você, o motorista, poder ver a frente do carro com a visão periférica. Com o espelho em sua posição habitual, perto do motorista, um carro pequeno que se aproxime lentamente pode passar alguns segundos sem ser visto.

6.75 • Um Bar no Folies-Bergère O quadro Um Bar no Folies-Bergère, de Edouard Manet, encanta a todos desde que foi pintado, em 1882. Um esboço desse quadro aparece na Fig. 6-28. Em primeiro plano, vê-se uma garçonete cujos olhos revelam cansaço. Atrás, um grande espelho mostra os reflexos da garçonete, de um freguês, de algumas garrafas de bebida sobre o balcão e das pessoas que lotam o salão. Parte do fascínio da pintura está em uma sutil distorção da realidade introduzida por Manet, uma distorção que faz a cena parecer estranha antes mesmo que o observador perceba o que está “errado”. O leitor é capaz de descobrir o que é?

Resposta As imagens refletidas pelo espelho têm a forma correta, mas as posições estão erradas. Quando você olha para o quadro pela primeira vez, pode ter essa impressão, mesmo que de modo inconsciente. As garrafas do lado esquerdo da pintura estão na parte de trás do balcão, mas na imagem refletida estão na parte da frente. A imagem da mulher deveria estar atrás dela, e não à direita. O mais desconcertante é que a mulher está olhando diretamente para você, mas, no reflexo, existe um homem bem à frente dela, o que significa que o homem teria que ser você. Nesse caso, porém, a sua imagem não poderia estar à direita, como foi pintada; na verdade, o corpo da garçonete deveria estar bloqueando a sua visão, de modo que você não poderia se ver no espelho.

Figura 6-28 / Item 6.75 Esboço do quadro de Edouard Manet Um Bar no Folies-Bergère.

6.76 • A arte renascentista e os projetores ópticos Alguns pintores e historiadores modernos acreditam que os pintores europeus dos séculos XV e XVI usavam espelhos curvos para projetar imagens das cenas que queriam pintar. Caso isso seja verdade, os pintores teriam apenas que desenhar os contornos dos objetos e preencher os espaços com cores, mais ou menos como naqueles cadernos de desenhar em que os contornos estão prontos e as cores são indicadas por números. Como podemos saber se essa técnica realmente foi usada?

Resposta O realismo fotográfico de alguns quadros do Renascimento, tais como Marido e Mulher, de Lorenzo Lotto, levanta suspeitas de que um espelho côncavo tenha sido usado para projetar a cena em uma tela. Um artista poderia montar o espelho em frente à cena a ser pintada e posicionar seu cavalete um pouco para o lado, voltado para o espelho.

Em seguida, orientaria o espelho para que a imagem (invertida) da cena incidisse na tela. Normalmente, um pintor tem muito trabalho para colocar as imagens pintadas na perspectiva correta, para conferir à pintura um realismo tridimensional como se o observador estivesse vendo os objetos originais e não uma representação plana desses objetos. Entretanto, se o pintor projeta a cena na tela e usa essa projeção para traçar os contornos dos objetos, a perspectiva fica automaticamente correta. A análise das pinturas renascentistas revela que elas contêm, na verdade, muitos erros de perspectiva, o que é considerado um forte indício de que não foram usados espelhos (ou outros instrumentos ópticos) na sua execução. Assim, por exemplo, as retas paralelas que se afastam do pintor deveriam convergir para um único ponto, conhecido como ponto de fuga. Nos quadros analisados, as linhas paralelas situadas em partes diferentes da cena convergem para pontos diferentes, o que parece mostrar que as pinturas foram feitas sem o auxílio de instrumentos ópticos.

6.77 • A anamorfose na arte Alguns quadros e desenhos produzidos nos séculos XV a XVIII eram propositalmente distorcidos para que alguns objetos não pudessem ser reconhecidos com facilidade, com o objetivo, por exemplo, de disfarçar uma sátira política. Alguns desses trabalhos têm que ser vistos de lado para que os objetos possam ser reconhecidos. Em outros, é preciso olhar para o reflexo do quadro em uma superfície com uma certa forma geométrica. Assim, por exemplo, é preciso observar o reflexo da obra em um cone ou cilindro colocado no centro para poder reconhecer os objetos retratados. Por que os objetos podem ser reconhecidos quando a obra é observada dessas formas estranhas e não quando é observada da forma normal?

Resposta Se você observa uma pintura anamórfica do modo normal, seus elementos criam imagens na retina que estão distorcidas demais para serem reconhecidas. Quando, porém, você observa a pintura da forma especial imaginada pelo artista, as imagens dos elementos na retina se aproximam da forma normal o suficiente para que eles sejam reconhecidos. Suponha, por exemplo, que um gato tenha sido pintado por um artista com base no reflexo do animal na superfície de um cone colocado no centro da tela. Quando o cone é removido, o gato torna-se irreconhecível por causa da distorção. (Os olhos ficam separados demais; o queixo fica largo e extremamente alongado; o conjunto não se parece nem um pouco com um gato.) Quando você coloca um cone no meio do quadro e observa o reflexo do quadro no cone, a distorção é corrigida e fica fácil reconhecer a imagem na sua retina como a imagem de um gato.

6.78 • Os pontos claros e escuros da iluminação pública Quando duas lâmpadas de rua iguais (do tipo antigo, que emite luz em todas as direções) estão acesas, onde ficam os pontos de máxima e mínima iluminação na calçada entre as lâmpadas? No caso de uma fila de lâmpadas igualmente espaçadas, onde ficam os pontos de máxima e mínima iluminação ao longo da fila? Existe algum outro arranjo das lâmpadas (em fila) que aumente a iluminação nos pontos em que a iluminação é mínima?

Resposta No caso de duas lâmpadas, o ponto de menor iluminação é o ponto médio da distância entre as duas lâmpadas e os pontos de maior iluminação ficam a uma distância da base das lâmpadas que depende da altura e da separação das lâmpadas. Em uma longa fila de lâmpadas igualmente espaçadas, os pontos de menor iluminação continuam a ser os pontos médios da distância entre as lâmpadas, mas os pontos de maior iluminação passam a ser os pontos na base das lâmpadas. Seja D a distância entre as lâmpadas nessa situação. A intensidade da luz nos pontos menos iluminados será maior se as lâmpadas forem dispostas aos pares, com uma distância D/2 entre as lâmpadas de um par e uma distância 2D entre os centros de pares vizinhos. Na verdade, é possível encontrar um arranjo semelhante tal que a iluminação seja praticamente uniforme ao longo de toda a fila.

6.79 • Imagens múltiplas em janelas de vidro duplo Se você olhar para uma fonte luminosa à noite através de uma janela de vidro duplo, poderá ver várias imagens da fonte. Se uma janela desse tipo for usada na torre de controle de um aeroporto, pode causar problemas, já que as imagens múltiplas podem ser interpretadas como mais de um avião. O que produz as imagens múltiplas e de que maneira a distância entre elas depende do ângulo de incidência da luz na janela? A distância depende das condições do tempo? Você pode ver imagens semelhantes à noite quando olha para as luzes da pista pela janela de um avião comercial. Depois que o avião decola, se você liga a lâmpada do seu assento e segura um objeto brilhante diante da luz, pode ver vários reflexos do

objeto na janela. O que produz essas imagens múltiplas?

Resposta Quando você olha para uma fonte luminosa através de uma janela de vidro duplo, a imagem principal está associada à luz que passa diretamente pelas duas placas de vidro (Fig. 6-29). As outras imagens, mais fracas, são produzidas pela luz refletida pelas duas placas ou mesmo pelas duas superfícies da mesma placa. A mais intensa é a produzida pela luz refletida pela placa interna e depois pela placa externa antes de chegar ao observador. As outras imagens envolvem um número maior de reflexões. As imagens são mais fáceis de ver quando estão bem separadas, o que acontece quando o ângulo de incidência da luz é pequeno. Às vezes, a pressão do ar entre as placas de vidro é diferente da pressão do lado de fora, o que faz as placas se encurvarem para dentro ou para fora. Essa curvatura aumenta a distância entre as imagens. Para resolver esse problema nas torres de controle dos aeroportos, existe um mecanismo para igualar a pressão do ar entre as placas à pressão do ar do lado de fora. Assim, por exemplo, a janela pode ter um pequeno furo nas duas placas. As imagens múltiplas que você vê ao olhar pela janela de um avião comercial acontecem porque a janela tem três placas de vidro (ou, mais comumente, de plástico). Quando você olha pela janela, as reflexões múltiplas da luz nas placas fazem com que você veja várias imagens. Quando o avião está voando a grandes altitudes, a placa externa se encurva para fora por causa da baixa pressão do ar do lado de fora do avião e essa curvatura pode distorcer o reflexo de objetos de modos surpreendentes.

Figura 6-29 / Item 6.79 Trajetórias da luz que atravessa uma janela de vidro duplo.

6.80 • O holofote mais forte do mundo Em um artigo de 1965 a respeito do excesso de otimismo que às vezes atropela a ciência, R. V. Jones conta a história de dois portuários ingleses que pensaram haver encontrado um meio de aumentar consideravelmente a intensidade da luz produzida pelos holofotes. Um espelho elipsoidal seria usado para focalizar a luz produzida por um arco de carbono. Um segundo espelho usaria essa imagem para focalizar outra imagem. Um terceiro espelho usaria essa imagem para focalizar outra imagem. O processo continuaria até que um último espelho focalizasse a imagem de volta no arco de carbono, tornando assim a luz do arco muito mais intensa do que era originalmente. Esse processo de amplificação seria repetido várias vezes até que o feixe atingisse a intensidade desejada. Para usar o holofote, bastaria retirar um dos espelhos, possibilitando assim que o facho de luz escapasse. Qual era a falha desse plano?

Resposta Segundo Jones, quando os operários apresentaram seu plano de amplificação às autoridades, foram informados de que o plano não podia dar certo porque violava a Segunda Lei de termodinâmica (que envolve uma grandeza chamada entropia). Os portuários pediram desculpas, assegurando que não lhes passara pela cabeça que pudessem estar transgredindo algum regulamento do governo. Obviamente, não podemos começar com uma certa quantidade de energia e aumentá-la sem introduzir energia no sistema. Assim, focalizar a luz muitas vezes pode concentrá-la, mas certamente não vai aumentar sua energia.

6.81 • O raio da morte de Arquimedes Os historiadores vêm discutindo há muito tempo se Arquimedes derrotou a esquadra romana durante o cerco de Siracusa, em 212 a.C., usando um espelho incendiário. Segundo a lenda, Arquimedes usou um espelho para focalizar a luz solar no casco de

madeira dos navios romanos, que pegaram fogo. Depois que alguns navios afundaram, os outros se puseram em retirada. Será que esta façanha é possível?

Resposta Queimar madeira a distância com um conjunto de espelhos planos ou com um único espelho curto é possível, mas é altamente improvável que Arquimedes tenha usado essa técnica. As armas mais convencionais de sua época teriam sido mais eficientes, já que o uso de espelhos envolve vários problemas. Um desses problemas é a focalização. Para conseguir queimar a madeira, o espelho precisa focalizar a luz em uma região muito pequena. Um único espelho plano não é capaz de concentrar a luz com tal intensidade (felizmente, porque, se não fosse assim, o uso descuidado de um espelho cosmético em um dia ensolarado poderia provocar um incêndio). Para conseguir a intensidade necessária, seria preciso usar um conjunto de espelhos planos dispostos em forma de parábola. Entretanto, para incendiar um navio, a distância focal teria que ser ajustada para ser igual à distância do navio, algo difícil de fazer durante uma batalha. Um segundo problema é o tempo necessário para que a luz focalizada incendeie a madeira. Como os navios estariam provavelmente em movimento (e balançando) durante o ataque, seria problemático manter um feixe luminoso apontado para um ponto do casco de um navio por um tempo suficiente para a madeira atingir o ponto de ignição. Além disso, a madeira provavelmente estaria molhada, o que tornaria a tarefa ainda mais difícil. Em suma: a história do “raio de morte” de Arquimedes não passa de um mito interessante. Em 1993, a Rússia colocou em órbita um espelho de plástico de 22 metros de diâmetro para testar a possibilidade de que a luz solar pudesse ser dirigida para as regiões geladas das altas latitudes da Rússia durante as longas noites de inverno. O espelho produziu um fraco facho luminoso, com alguns quilômetros de largura, que varreu a Europa durante o teste. Vários observadores viram a luz apesar de o céu estar encoberto na noite do teste.

CURIOSIDADE 6.82 • Dando luzes a um árbitro No conto “Um ligeiro caso de insolação”, de Arthur C. Clarke, uma partida de futebol é disputada entre dois países rivais diante de um público de mais de 100.000 pessoas. Metade dos espectadores são militares, que não precisaram pagar ingresso e ainda receberam grandes programas de capa prateada para comemorar o evento. O jogo era aguardado com ansiedade. No ano anterior, o time da casa havia perdido o jogo porque o juiz tinha sido subornado pelo time visitante. Na verdade, o time da casa também oferecera dinheiro ao juiz, mas, aparentemente, menos que o necessário. Como, de acordo com as regras, o time visitante tinha o direito de escolher o juiz e os bandeirinhas, o juiz seria o mesmo. A torcida estava curiosa para ver como ele se comportaria. No início do jogo, ele parecia estar apitando com imparcialidade, mas depois que o time visitante marcou o primeiro gol, anulou o gol que seria de empate do time da casa e logo depois marcou um pênalti duvidoso para os visitantes, que foi convertido. Com o time perdendo de dois a zero, a torcida começou a temer pelo pior. Entretanto, as esperanças voltaram quando o time da casa, jogando com muita raça, conseguiu marcar um gol tão limpo que nem o juiz mais corrupto do mundo teria coragem de anular. Pouco depois, a torcida comemorou de pé quando um dos atacantes do time da casa passou por vários adversários e colocou a bola no fundo da rede, empatando o jogo. No meio da gritaria, ouviu-se o apito do juiz. Ele anulou o gol com a alegação absurda de que o atacante havia colocado a mão na bola. Parte da torcida ameaçou invadir o campo, revoltada, mas os militares permaneceram onde estavam. Depois que os jogadores dos dois times se retiraram, deixando o árbitro sozinho no centro do campo, alguém gritou um comando e, em uníssono, todos levantaram seus programas ao Sol e apontaram as capas para o juiz. Houve um clarão e no lugar em que estava o juiz só restou um monte de cinzas fumegantes. Em alguns países, o futebol é levado muito a sério.

6.83 • Luzes fantasmagóricas no cemitério Em um velho cemitério, a pouco mais de um quilômetro da pequena cidade de Silver City, no estado americano do Colorado, os turistas às vezes se reúnem à noite para apreciar as luzes que dançam entre os túmulos de mármore negro. O lugar é escuro porque fica longe da cidade e a área na direção oposta é praticamente deserta. As luzes em geral são pontos brancos, mas às vezes parecem maiores e assumem uma coloração azulada. Trata-se de fantasmas ou existe uma explicação mais racional para as luzes?

Resposta O mármore negro de um túmulo se comporta como um espelho quando o ângulo de incidência da luz é pequeno, mas absorve quase toda a luz quando o ângulo se aproxima de noventa graus. Quando você caminha por um cemitério às escuras, passa por algumas superfícies cuja orientação é adequada para refletir a luz da cidade ou das estrelas na sua direção. O reflexo pode vir da face mais larga de uma placa de mármore ou dos lados planos ou curvos. Quando você se move, as imagens refletidas o acompanham ou aparecem e desaparecem, como se estivessem vivas. Também são animadas por flutuações de temperatura que mudam constantemente a trajetória dos raios luminosos; você provavelmente já viu um fenômeno semelhante, chamado shimmy, na luz que passa por cima de fogueiras ou estradas em dias de calor.

6.84 • Como um pescador vê o peixe Para acertar um peixe submerso com um arpão, você deve apontar diretamente para o peixe? Os pescadores experientes sabem que você deve apontar para um local um pouco abaixo do peixe. Por quê? A posição aparente do peixe muda se você inclinar a cabeça de tal modo que os seus olhos fiquem em uma linha vertical? (Se bem que tentar acertar um peixe com a cabeça virada de lado é um convite para dar um tiro no pé.)

Resposta Quando os raios luminosos provenientes do peixe saem da água, são refratados e se afastam da vertical (Fig. 6-30). Quando os raios chegam ao seu olho, você os prolonga mentalmente até o interior da água, sem levar em conta a refração. Em conseqüência, tem a impressão de que o peixe está mais próximo da superfície do que realmente está. É por isso que você tem que apontar para um lugar um pouco abaixo da posição aparente do peixe. A posição aparente do peixe é complicada ainda mais pelo modo como atribuímos distância a um objeto com base na convergência dos nossos olhos. Como o raio que chega ao olho esquerdo é desviado para a esquerda e o raio que chega ao olho direito é desviado para a direita, os olhos têm que convergir mais do que se não houvesse o desvio. Assim, com base na convergência, temos a impressão de que o peixe está mais próximo do que realmente está. Se você inclinar a cabeça de tal modo que os seus olhos fiquem na vertical, o peixe parecerá ainda mais próximo da superfície e de você.

Figura 6-30 / Item 6.84 Posição aparente e posição real de um peixe.

6.85 • Como um peixe vê o pescador O que um peixe pode ver do mundo exterior quando olha para cima? A imagem do mundo é distorcida pela passagem dos raios luminosos pela superfície da água? A imagem depende da profundidade em que o peixe se encontra? Na pesca com anzol, quando você joga a isca em direção ao peixe, precisa acertar no alvo ou o peixe pode ver a isca a uma certa distância?

Suponha que você esteja deitado de costas no fundo de uma piscina. Sua visão do mundo é parecida com a de um peixe? A sua visão muda se você usa uma máscara com um visor plano de plástico e com ar no interior? Se você tem visão normal, por que enxerga mal quando está debaixo d’água sem máscara? Se você for míope ou hipermétrope, sua visão melhora debaixo d’água? Quando um peixe-arqueiro vê um inseto pousado em uma planta perto da superfície da água, coloca o focinho para fora e lança um jato d’água na direção do inseto para derrubá-lo na água, onde pode ser capturado e comido. Quando o peixe faz pontaria, seus olhos estão submersos. Ele aponta exatamente para o local em que está o inseto?

Resposta A visão que um peixe tem do mundo é distorcida pela refração dos raios luminosos que passam do ar para a água para chegar aos olhos do peixe. A refração desvia os raios, aproximando-os da vertical. O desvio é nulo para um raio perpendicular à superfície da água e aumenta progressivamente à medida que o raio se desvia da vertical. Por causa da refração, o mundo exterior é visto como o interior de um círculo na superfície da água, diretamente acima do peixe (Fig. 6-31). A circunferência do círculo corresponde ao horizonte do mundo exterior e todas as imagens do mundo exterior estão no interior do círculo. Do lado de fora do círculo, o peixe vê um reflexo do fundo se a água for rasa ou uma superfície turva se a água for profunda ou suja. Se você quer que o peixe veja a isca por inteiro, ela deve ser jogada nas proximidades do centro do círculo. Se a isca estiver perto da periferia, a parte emersa da isca ficará muito distorcida e provavelmente será confundida com as imagens das árvores e outros objetos próximos do horizonte. Se estiver fora do círculo, o peixe poderá ver apenas a parte submersa. Quanto mais fundo está o peixe, menor é o círculo.

Figura 6-31 / Item 6.85 A luz exterior chega ao peixe através de um círculo na superfície da água.

Se a sua visão é normal, você não vai conseguir ver o mundo externo com nitidez, mesmo no interior do círculo. A maior parte da focalização da luz pelo olho acontece quando a luz é refratada ao passar do ar para o interior da córnea. Quando o ar é substituído pela água, essa refração deixa de existir e você não consegue mais focalizar a luz na retina. A visão volta ao normal quando você usa uma máscara, pois a presença de ar do lado de fora da córnea faz com que a refração volte a existir e, portanto, a luz volta a ser focalizada normalmente. Nesse caso, porém, a luz é refratada ao entrar na água e refratada novamente, no sentido oposto, ao entrar na máscara, o que elimina o círculo na superfície da água; o mundo exterior passa a ter o mesmo aspecto que teria se você estivesse fora d’água. Se você é míope, seus olhos focalizam a imagem de um objeto distante à frente da retina. Se você diminui a refração da córnea submergindo os olhos, a imagem se aproxima da retina e você passa a ver melhor. Por outro lado, se você é hipermétrope, seus olhos focalizam a imagem de um objeto distante atrás da retina e a imersão na água agrava o problema, piorando ainda mais a sua visão. Se o inseto que o peixe-arqueiro pretende atingir estiver exatamente acima dele, a refração da luz não faz diferença. Para outras direções, a refração é importante e o peixe deve levá-la em consideração, seja por tentativa e erro (até finalmente atingir o inseto), seja por experiência, seja por programação genética.

6.86 • Lendo através de um envelope fechado Suponha que eu demonstre minhas habilidades telepáticas fazendo o seguinte: peço para você escrever uma palavra em uma folha de papel e coloco o papel em um envelope comum, sem dobrá-lo. Você fecha o envelope com cola e examina antes de passá-lo às minhas mãos. A palavra não é visível através do envelope e a sala não dispõe de nenhuma luz suficientemente forte para atravessar o envelope e revelar a palavra como uma sombra. Enquanto seguro o envelope, peço a você para pensar na palavra para que eu possa “lê-la” em sua mente. Embora eu olhe de vez em quando para o envelope, em nenhum momento tento segurá-lo contra a luz. Depois de alguns momentos de

concentração, adivinho qual é a palavra. A verdade, naturalmente, é que não tenho poderes telepáticos. Como consigo descobrir a palavra? Aqui está uma pista: o mesmo princípio físico faz as roupas, principalmente as de algodão branco, tais como camisetas, ficarem semitransparentes quando estão molhadas.

Resposta Depois de receber o envelope, passo disfarçadamente um pouco de gordura nele. Normalmente, a luz não atravessa um envelope porque é espalhada pelas fibras e pela matriz do papel. Podemos expressar o grau de espalhamento através do índice de refração do material, que é uma medida da velocidade da luz no material. O papel contém bolsas de ar, com baixo índice de refração, e as fibras e a matriz, que possuem alto índice de refração; a grande diferença entre esses índices resulta em um forte espalhamento em todas as interfaces com as bolsas de ar. Posso reduzir o espalhamento deixando o papel absorver gordura, que possui um índice de refração intermediário. O índice não muda muito na interface entre o ar e a gordura nem na interface entre a gordura e as fibras e a matriz. Como a luz não é tão espalhada, penetra no envelope e pode iluminar as marcas de tinta ou de lápis que formam a palavra e o papel que as contém. As marcas escuras absorvem a maior parte da luz, mas o papel em torno espalha parte da luz de volta para o envelope engordurado e daí para os meus olhos. Posso distinguir as marcas (e, portanto, a palavra) pelo contraste com o papel em torno.

CURIOSIDADE 6.87 • Engolidores de espadas e esofagoscopia Hoje em dia, a esofagoscopia é um procedimento de rotina no qual uma sonda de fibra óptica é introduzida pela boca até o estômago do paciente para que o médico possa observar o esôfago e o estômago. A sonda é flexível para poder acompanhar a curvatura do canal digestivo. Uma fibra óptica é usada para iluminar a região a ser examinada e outra para conduzir a imagem de volta para o equipamento, que a exibe em um monitor. O médico pode manipular o aparelho para escolher a parte a ser iluminada e, assim, procurar sinais de câncer, de úlcera ou mesmo cápsulas de drogas ilícitas que algumas pessoas engolem para passar na alfândega. A esofagoscopia moderna é uma técnica sofisticada, mas nem sempre foi assim. Um endoscópio primitivo, constituído por um tubo reto iluminado por uma vela, já tinha sido usado para examinar a extremidade inferior do cólon. Um tubo reto também foi usado na primeira esofagoscopia, mas o tubo era curto demais para atingir o estômago. Entretanto, aquele médico pioneiro encontrou uma forma de usar um tubo mais comprido: usou como cobaia um engolidor de espadas, uma pessoa que é capaz de inclinar a cabeça para trás, relaxar certos músculos do esôfago e estabelecer uma passagem quase reta entre a faringe e o estômago. Quando o médico introduziu o tubo e iluminou a extremidade livre, conseguiu observar o interior do estômago, inaugurando assim a esofagoscopia moderna.

6.88 • Óptica da porta do boxe Segure um pedaço de fita adesiva transparente a uma pequena distância de um jornal e em seguida afaste gradualmente a fita. Por que você só consegue ler o que está escrito quando a fita se encontra a menos de meio centímetro do jornal? Por que o corpo de uma pessoa que está tomando banho só pode ser visto com clareza através de uma porta translúcida (texturizada) se a pessoa estiver muito perto da porta (Fig. 6-32a)? Alguns museus de belas-artes usam um sistema semelhante para exibir quadros valiosos. Os quadros são protegidos por uma placa de vidro ou de plástico, mas, se o material fosse liso, os reflexos prejudicariam a observação da pintura. Para evitar que isso aconteça, o material é levemente texturizado. Por que a textura elimina reflexos indesejáveis sem distorcer a visão da pintura?

Resposta Quando observamos um ponto através de um vidro normal, nossos olhos interceptam alguns dos raios luminosos emitidos pelo ponto e nosso cérebro interpreta esses raios prolongando-os automaticamente para trás para formar a imagem percebida do ponto. Essa imagem é nítida porque os raios interceptados pelo observador se originaram na pequena região do vidro que fica exatamente entre o observador e o ponto. Quando, em vez de vidro, usamos um pedaço de fita adesiva, cada raio que entra na fita é transformado pelas irregularidades da fita em um cone de raios (Fig. 6-32b). Assim, passamos a interceptar raios provenientes de pontos da fita que não estão exatamente entre nós e o ponto. Mesmo assim, nosso cérebro prolonga para trás os raios interceptados, na tentativa de localizar a fonte. Se a fita estiver próxima do ponto, o espalhamento dos raios será pequeno e ainda é possível observar uma imagem razoavelmente nítida do ponto. Quando, porém, aumentamos a distância entre a fita e o ponto, o espalhamento dos raios

aumenta, o que faz aumentar também a região da fita da qual recebemos os raios. O que percebemos nesse caso é um ponto aumentado e pouco nítido.

Figura 6-32 / Item 6.88 (a) A pessoa só é visível quando está perto da porta translúcida. (b) Espalhamento da luz por irregularidades.

Quando você olha para uma folha de jornal através de uma fita, sua capacidade de ler o que está escrito depende da possibilidade de distinguir as letras. Quando a fita está a mais de meio centímetro do jornal, o espalhamento das imagens das letras é tão grande que elas se misturam e torna-se impossível distingui-las. A situação é semelhante nos casos da pessoa no chuveiro e da proteção do quadro. No caso da proteção, a pintura está suficientemente próxima para que a visão dos detalhes não seja prejudicada e os objetos da sala estão suficientemente afastados para que os detalhes refletidos se misturem e não possam ser reconhecidos. No caso da porta do boxe, você talvez esteja se perguntando por que a superfície texturizada é geralmente a que fica do lado de fora. Se a superfície texturizada ficasse molhada, a água ocuparia as depressões, tornando a superfície mais lisa e reduzindo o espalhamento dos raios luminosos. Assim, a pessoa poderia ser vista nitidamente, mesmo que estivesse longe da porta. (Saber um pouco de óptica ajuda a resguardar a intimidade das pessoas.)

6.89 • A mágica da refração Um mágico enrola um jornal em um tubo de ensaio, quebra o tubo em pedaços com um martelo e despeja os pedaços em um copo com água. Depois de dizer algumas palavras mágicas, enfia a mão no copo e retira o tubo intacto. Como é feito esse truque? Coloque uma bola de vidro dentro de um copo vazio e ponha o copo sobre um jornal. Quando você olha através da bola, não consegue ler o que está escrito no jornal. Como é possível ler o que está escrito sem mudar a posição do copo nem a posição da bola?

Resposta Para realizar o truque do tubo de ensaio, primeiro coloque um tubo de ensaio na água. Ele pode ser visto com facilidade porque a luz que atravessa a água é refletida ou refratada pelo tubo. Entretanto, você pode torná-lo invisível dissolvendo açúcar na água. Como a solução de açúcar em água e o vidro do tubo de ensaio têm as mesmas

propriedades ópticas (ou seja, como têm o mesmo índice de refração), a luz que atravessa a água também atravessa o vidro sem ser refletida ou refratada. Assim, o tubo de ensaio não pode ser visto na água. O mesmo acontece com os pedaços do segundo tubo de ensaio quando você os despeja no copo. Depois de dizer as palavras mágicas, você enfia a mão no copo e tateia até encontrar o primeiro tubo. A esfera de vidro se comporta como uma lente biconvexa e provoca uma refração tão grande que as palavras ficam ilegíveis. Para reduzir a distorção, ponha água no copo. Como os índices de refração da água e do vidro são próximos, os raios luminosos não sofrem muita refração ao passarem de um meio para o outro e o efeito de focalização diminui o suficiente para que você possa ler o que está escrito.

6.90 • O homem invisível e animais transparentes H. G. Wells escreveu um romance no qual um homem se torna invisível (Fig. 6-33). Isso é fisicamente possível? Um homem se tornaria invisível se ficasse transparente como um vidro de janela? Um homem invisível poderia enxergar? Por que nossos olhos são transparentes e nossa pele é opaca? Existem animais quase transparentes?

Resposta A existência de um homem invisível não é fisicamente possível. Se um homem se tornasse transparente como um vidro de janela, as partes curvas do corpo se comportariam como lentes, distorcendo os raios luminosos provenientes de outros objetos. Além disso, as superfícies do seu corpo refletiriam parcialmente os raios luminosos, como acontece com uma escultura de gelo. Para eliminar totalmente a refração e a reflexão, o homem teria que ter as mesmas propriedades ópticas que o ar, o que não parece uma coisa muito fácil de conseguir. Para poder enxergar, o homem teria que focalizar a luz e absorvê-la. Para que o cristalino focalize a luz, suas propriedades ópticas devem ser diferentes das do ar. Para que a retina absorva luz, deve ser pelo menos parcialmente opaca. Nos dois casos, os olhos ficariam claramente visíveis para um observador externo. Podemos supor, porém, que ele focalizasse os olhos através de pequenos obstáculos (veja o item 6.102) e absorvesse apenas uma pequena fração da luz. Nesse caso, talvez seus olhos não fossem notados. Quando a luz visível incide no corpo humano, é espalhada pelo colágeno, por membranas e por várias outras estruturas, em todos os pontos nos quais as propriedades ópticas variam. O espalhamento é significativo porque as variações das propriedades ópticas acontecem para distâncias muito maiores que o comprimento de onda da luz. Qualquer imagem que incida na pele é totalmente distorcida por esse espalhamento, o que significa que os seres humanos não são transparentes à luz visível. (Por outro lado, existem meios de “desfazer” essas distorções através de uma análise em computador, de modo que é possível transmitir uma imagem através do corpo humano.)

Figura 6-33 / Item 6.90 Homem invisível descansando em sua cadeira favorita.

A córnea e o cristalino do olho humano são transparentes à luz visível, apesar da presença de fibras de colágeno na córnea e de proteínas no cristalino. Isso acontece porque as fibras e proteínas estão densamente agrupadas e possuem a chamada ordem de curto alcance, o que significa que, em uma pequena região (da ordem de algumas vezes o diâmetro de uma fibra), todas as fibras ou proteínas têm a mesma orientação. O fato de as fibras ou proteínas estarem densamente agrupadas significa que as variações das propriedades ópticas acontecem para distâncias menores que o comprimento de onda da luz. Em conseqüência, a luz é espalhada preferencialmente na direção de incidência, ou seja, na direção da retina. Assim, a luz pode transportar informações a respeito de uma imagem até a retina, onde a luz é detectada e a imagem começa a ser interpretada. Alguns animais aquáticos minimizam sua visibilidade refletindo a luz, para que um predador veja um reflexo do oceano em

vez de ver o animal. Reflexos desse tipo podem esconder os olhos do animal, para que o predador não os reconheça, ou o estômago, que é opaco por causa dos alimentos que contém. A transparência de alguns animais aquáticos ainda não é bem compreendida, mas certamente está associada à minimização das variações das propriedades ópticas dos componentes biológicos, para reduzir ao máximo o espalhamento da luz. As variações que existem ocorrem em distâncias menores que o comprimento de onda da luz, o que faz com que a luz seja espalhada preferencialmente na direção de propagação, comportandose como se as variações não existissem. Uns poucos animais são transparentes por uma razão simples: podem se tornar tão finos que praticamente não espalham a luz. A lula havaiana Euprymna scolopes se esconde usando proteínas especiais que formam placas empilhadas. Essas placas se comportam como películas finas que refletem a luz, da mesma forma como uma série de películas de sabão paralelas reflete a luz. O curioso é que essa lula dispõe, na parte inferior do corpo, de um órgão que contém bactérias. Quando a lula é iluminada, digamos, pela luz do luar, não quer projetar uma sombra no fundo do mar, que revelaria sua presença. Assim, modifica a quantidade de oxigênio que chega às bactérias, fazendo-a emitir luz. As placas refletem a luz para a região da sombra, eliminando-a.

6.91 • Uma estrada que parece torta por causa da refração Se você estiver sentado no assento da janela de um avião comercial, sobre a asa ou perto da borda traseira da asa, observe com atenção quando a borda dianteira da asa passar sobre uma estrada reta. Muitas vezes, a parte da estrada mais próxima da asa parece fazer um ângulo com o resto da estrada (Fig. 6-34a). Com o movimento do avião, o ponto de quebra parece deslocar-se ao longo da estrada. O que produz essa ilusão?

Figura 6-34 / Item 6.91 (a) Uma estrada, vista do avião. (b) Vista lateral de um raio de luz passando pela frente da asa.

Resposta Na maior parte da sua visão da estrada, os raios luminosos se propagam em linha reta e você vê a forma real da estrada. Entretanto, a luz que vem da parte muito próxima da borda dianteira da asa passa por um ar cuja densidade varia muito porque a asa comprime o ar. A variação de densidade refrata (desvia) os raios luminosos para cima (Fig. 6-34b). Quando chegam a você, parecem ter surgido mais baixo na sua visão do que ocorreu de fato. O ponto de quebra ocorre na separação entre os raios que foram afetados e os que não foram.

6.92 • Regando plantas ao sol Alguns jardineiros dizem que não se deve regar plantas quando o Sol está forte porque as gotas d’água nas folhas podem focalizar a luz e queimá-las. Essa afirmação tem algum fundamento?

Resposta As pesquisas parecem mostrar que a afirmação não tem fundamento. Na verdade, um cientista chegou à conclusão de que a presença de água reduz a temperatura das folhas. Os cálculos revelam que a focalização e o conseqüente aquecimento são significativos apenas se as gotas mantêm uma forma aproximadamente esférica. Na maioria das plantas, a água tende a se espalhar (dizemos que a água molha as folhas). Entretanto, em algumas plantas, tais como o lótus, as folhas possuem estruturas microscópicas que fazem com que a água forme esferas quase perfeitas. Essas plantas correriam o risco de serem aquecidas pela luz solar, a não ser pelo fato de que essas esferas quase perfeitas tendem a rolar e cair das folhas. A idéia de regar as plantas de preferência à noite faz sentido nas regiões áridas. Depois que o Sol de põe, a água tem uma chance maior de ser absorvida pelo solo em vez de simplesmente evaporar.

6.93 • Acendendo fogo com gelo No livro O Deserto de Gelo, de Júlio Verne o capitão Hatteras e uns poucos homens leais foram abandonados perto do Ártico por uma tripulação amotinada durante uma tentativa de chegar ao pólo Norte. Tinham madeira suficiente para fazer uma fogueira, mas não dispunham de fósforos para acendê-la. Tendo como única esperança de salvação fazer uma longa caminhada a pé em um campo de gelo para chegar a outro navio, os homens sabiam que morreriam de frio em pouco tempo. Foi nesse momento que o médico do navio descobriu uma forma de usar o gelo para acender a fogueira. Qual foi a idéia do médico? Será que daria certo na prática?

Resposta No livro, o médico escolheu um pedaço de gelo mais transparente que o normal (sem as bolhas de ar que normalmente ficam retidas no gelo durante o processo de congelamento) para fabricar uma lente convexa. Usando uma machadinha, esculpiu o pedaço de gelo até que ficasse com a forma aproximada de uma lente. Depois de completar o trabalho com uma faca e com o calor das mãos, expôs a lente de gelo à luz solar, ajustando a altura para que o ponto de máxima concentração da luz (o ponto focal) ficasse em uma pilha de gravetos. Em questão de segundos, o fogo começou. A idéia do livro pode ter sido inspirada nos relatos de William Scoresby, conhecido cientista inglês que foi um dos pioneiros do estudo científico do Ártico. Certa vez ele escreveu que suas lentes feitas de gelo podiam acender fogueiras, derreter chumbo e acender um cachimbo de marinheiro. Mais recentemente, Matthew Wheeler, de McBride, na Colúmbia Britânica, Canadá, me contou que conseguiu tirar várias fotografias com uma câmara na qual a lente normal tinha sido substituída por uma lente de gelo. Também é possível acender uma fogueira usando uma lente comum de óculos. Se a lente é para hipermetropia, tem um ponto focal que pode ser posicionado no material inflamável. Caso, porém, a lente seja para miopia, o método não funciona. Assim, a história contada em O Senhor das Moscas tem uma falha: Piggy é míope e Ralph não poderia acender uma fogueira com seus óculos, como é descrito no livro.

6.94 • Diamantes Por que os diamantes cintilam? O que produz as cores dos diamantes e por que as cores são mais vivas nos diamantes maiores? Por que um diamante é escuro quando observado através de sua superfície inferior e iluminado por uma fonte pontual? Por que a sujeira na superfície inferior diminui o brilho da superfície superior?

Resposta Para um diamante cintilar, é preciso que a luz que entra pela superfície superior seja decomposta em várias cores e volte à superfície superior. Assim, quando a luz chega à superfície inferior, deve ser refletida e não escapar da pedra. Para evitar que a luz escape, a superfície inferior é lapidada de tal forma que a luz incide quase paralelamente à superfície e é totalmente refletida de volta para o interior da pedra. Nesse caso, dizemos que a luz sofre reflexão interna total. Assim, se você olha para dentro da pedra através da superfície inferior, ela parece escura. Entretanto, se a superfície inferior possui uma camada de gordura ou outra sujeira qualquer, parte da luz pode escapar e o brilho diminui. Assim, para que o diamante conserve o brilho, é preciso que tanto a superfície de cima como a superfície de

baixo estejam bem limpas. Uma medida do efeito de separação de cores que um material exerce sobre a luz branca é o índice de refração do material. O diamante, que possui um índice de refração elevado, separa muito mais as cores que o vidro, que possui um índice de refração relativamente pequeno. Por isso, os diamantes falsos, feitos de vidro, podem cintilar, se forem lapidados com muitas faces, mas não apresentam o mesmo jogo de cores que um diamante de verdade. Em princípio, um diamante grande é mais colorido que um diamante pequeno porque a luz percorre distâncias maiores no interior do diamante grande e isso leva a uma maior separação das cores.

6.95 • Opalas Qual é o mecanismo responsável pelas cores de uma opala? As cores não devem ser produzidas da mesma forma que em um diamante, já que a separação de cores nas opalas não depende do tamanho. Além disso, as cores são diferentes. Quando você faz girar um diamante sob uma luz branca, as cores variam ao longo de todo o espectro visível. Quando faz girar uma opala, as cores variam apenas dentro de uma faixa estreita. O que determina a diferença entre a opala potch, incolor, e a valiosa opala negra?

Resposta A opala não é um cristal, mas um aglomerado de sílica amorfa com uma pequena quantidade de água. A sílica existe em forma de pequenas esferas (com cerca de 100 nanômetros de diâmetro) dispostas como laranjas em um engradado. Os espaços entre as esferas contêm ar, vapor d’água ou água em estado líquido. Esse arranjo de esferas e espaços forma uma rede periódica com propriedades ópticas bem definidas. Quando a luz branca atravessa a opala, sofre difração (um tipo de espalhamento) e os raios luminosos de cores diferentes saem do material a ângulos diferentes. O ângulo de difração de uma determinada cor depende do espaçamento da rede (diâmetro das esferas) e do ângulo de incidência da luz. Se uma opala muda de posição enquanto está sendo examinada, pontos de cores diferentes aparecem e desaparecem; é o chamado fogo da opala. Para que as cores sejam vivas e bem visíveis, como na opala negra, é preciso que cubram uma faixa relativamente estreita de freqüências. Para produzir essas faixas estreitas de freqüências, as esferas devem ser todas do mesmo tamanho, caso em que a difração é a mesma em todos os pontos do material. Entretanto, as opalas mais bonitas, que apresentam cores vivas quando vistas de qualquer ângulo, são aquelas em que o arranjo de esferas de sílica varia de região para região; nesse caso, dizemos que a rede de esferas apresenta defeitos. A beleza de uma opala negra com defeitos é aumentada pela presença de pequenas partículas (de carbono, óxido de ferro ou óxido de titânio) que absorvem a luz não-difratada, formando um fundo escuro que realça as cores do material. Na opala potch, as esferas variam muito de tamanho e as cores são mais desmaiadas. A variação de tamanhos é menor nas opalas brancas, mas suficiente para produzir uma opalescência leitosa.

6.96 • Efeito alexandrita A cor da maioria das pedras preciosas não muda muito quando a luz solar é substituída pela luz de uma lâmpada incandescente, mas algumas pedras sofrem uma notável mudança de cor, de verde para vermelho. A primeira pedra que apresentava esse efeito foi descoberta nos montes Urais, em 1831, em território russo, e chamada de alexandrita em homenagem ao czar Alexandre II da Rússia. Por essa razão, o efeito ficou conhecido como efeito alexandrita. O que produz essa mudança de cor?

Resposta Uma pedra que apresenta o efeito alexandrita transmite bem a luz na parte verde e na parte vermelha do espectro, mas não na parte intermediária. Além disso, a transmissão na parte verde é maior do que na parte vermelha. Quando a pedra é iluminada pela luz solar, que contém todo o espectro visível, a transmissão na parte verde domina e a pedra é vista como verde. A luz incandescente é produzida por um filamento aquecido e contém muito menos verde do que vermelho. Assim, quando a pedra é iluminada com luz incandescente, deveria ser vista em um tom avermelhado. Entretanto, é ainda mais vermelha do que esta explicação prevê. Aparentemente, o vermelho a mais é um produto do nosso sistema visual, ou seja, parte da cor da pedra é gerada no nosso cérebro.

6.97 • Safira-estrela Por que, ao olhar de cima para uma safira-estrela iluminada por uma pequena fonte luminosa, você vê uma estrela de seis pontas flutuando acima da pedra?

Resposta A estrela é produzida pelo espalhamento da luz por agulhas de óxido de titânio agrupadas em três o

orientações que diferem 120 . A luz espalhada por um desses grupos forma uma linha reta do ponto de vista do observador. Assim, o observador vê três retas que se cruzam em seus pontos médios, formando uma estrela de seis pontas. Se a superfície superior da pedra tem forma esférica ou oval (em vez de ser facetada), a estrela parece pairar acima da pedra. A imagem é virtual, o que significa que é criada pelo cérebro para fazer sentido das informações que recebe. É impossível, por exemplo, observar uma imagem da estrela em um anteparo colocado acima da pedra, na sua posição aparente.

6.98 • Figuras em uma taça de vinho, uma janela e uma gota d’água Observe a imagem formada pelos raios solares na toalha de uma mesa depois de atravessarem uma taça de vinho branco. A imagem não tem um brilho uniforme, mas apresenta uma ou mais linhas claras conhecidas como curvas cáusticas. Essas linhas são produzidas pela curvatura da taça. O reflexo da luz no vidro de uma janela pode produzir um efeito semelhante. Entretanto, as curvas cáusticas mais comuns são provavelmente as produzidas em xícaras de cerâmica e de plástico (mas não de isopor). A curva cáustica é formada por duas linhas claras que se interceptam (Fig. 6-35a). Pode-se produzir uma grande variedade de curvas cáusticas fazendo-se passar a luz de um laser por uma placa de plástico corrugado, tais como as que são usadas nas luminárias dos escritórios. Se você faz o plástico vibrar com o som de um altofalante, pode criar um espetáculo de laser. Também é possível usar uma placa de plástico liso, incolor, coberta com uma camada irregular de cola transparente. Curvas cáusticas em movimento podem ser vistas no fundo de piscinas iluminadas pelo Sol, produzidas por ondulações na superfície. A mais curiosa de todas as curvas cáusticas é a que aparece quando você olha para uma lâmpada de rua à noite através de uma gota d’água. A gota pode estar nos seus óculos ou no vidro de uma janela (nesse caso, aproxime os olhos da janela). Se a gota for pequena e irregular, o padrão que você vê é formado por linhas claras, côncavas do lado de fora, que se interceptam duas a duas (Fig. 6-35b). Se a gota for maior e estiver pendurada no vidro, a parte inferior da figura é semelhante à da gota menor, mas a parte superior é limitada por uma curva convexa (Fig. 6-35c). Perto da borda da figura existem estrelas que você pode fazer dançar balançando o vidro de leve. Se você faz a gota girar em um plano vertical, uma saliência que estava inicialmente na parte de baixo da figura diminui de tamanho e depois penetra na figura para se tornar uma estrela. O que explica as figuras que são vistas em circunstâncias tão variadas? Essas figuras podem ser decompostas em unidades básicas?

Resposta As curvas cáusticas são compostas de duas formas básicas: dobras (as linhas curvas) e cúspides (a interseção de duas dobras). Essas unidades básicas são exemplos ópticos de entidades matemáticas estudadas pela chamada teoria das catástrofes. Elas aparecem porque uma superfície (copo de vinho, ondulações na água etc.) concentra os raios luminosos por refração ou reflexão, produzindo linhas claras. Mais precisamente, a luz é concentrada para formar um sólido tridimensional. Quando o olho do observador ou uma superfície de observação intercepta a luz, o resultado é um corte bidimensional desse sólido.

Figura 6-35 / Item 6.98 Curvas cáusticas produzidas (a) por uma xícara de café; (b) por uma gota d’água pequena; (c) por uma gota d’água grande.

Existem três tipos de sólidos tridimensionais e cada um deles apresenta uma singularidade na qual a curva cáustica em um corte é a mais compacta. Quando o corte é feito em outro local, dizemos que o sólido foi desdobrado. A luz solar refletida pelo vidro de uma janela em uma parede pode formar uma imagem com a forma geral da janela, mas com bordas curvas, que são dobras. As dobras podem ser côncavas ou convexas, dependendo de se a janela se projeta para fora ou para dentro. Quando a janela se projeta para fora, a reflexão cria uma figura oval; quando se projeta para dentro, cria a figura em forma de cruz. Uma janela dupla, com os dois tipos de curvatura, pode criar as duas figuras.

6.99 • Sombras com bordas e faixas claras Quando estiver tomando banho de banheira, observe a sombra projetada por um lápis iluminado por uma lâmpada de mesa. (Cuidado para não deixar a lâmpada cair na banheira e eletrocutá-lo!) Se você mantém o lápis fora d’água ou totalmente submerso, a sombra no fundo da banheira se parece com o lápis. Entretanto, se você afunda o lápis obliquamente deixando uma parte fora da água, o lápis projeta duas sombras em forma de salsicha, separadas por uma faixa clara (Fig. 6-36a). O que produz esse fenômeno, conhecido como efeito sombra de salsicha? Em seguida, introduza o lápis verticalmente na água. Mude a distância entre a ponta do lápis e o fundo da banheira. Quando a ponta do lápis está próxima do fundo da banheira, o lápis projeta uma sombra pequena. Por que a sombra é substituída por um ponto claro quando você afasta o lápis do fundo da banheira? Faça boiar uma lâmina de barbear do tipo antigo, com apenas uma lâmina, depositando-a suavemente na superfície da água. Se a água tem apenas alguns centímetros de profundidade, as bordas da sombra da lâmina são normais. Por que as bordas adquirem uma faixa clara quando a profundidade aumenta (Fig. 6-36b? As faixas continuam a aparecer se você mantém a lâmina ligeiramente acima da superfície da água? Por que um fio de cabelo flutuando na água muitas vezes produz uma série de sombras, algumas com bordas normais e outras com bordas claras? Faça passar um dedo ou um lápis pela superfície da água de uma banheira em que a água tenha pelo menos seis centímetros de profundidade. Por que aparecem círculos escuros com bordas claras no fundo da banheira? É possível ver sombras semelhantes no fundo de uma piscina iluminada pelo Sol quando alguém está nadando ou saindo da água.

Resposta No efeito sombra de salsicha, a água tende a subir no lápis por causa da tensão superficial (produzida pela atração entre as moléculas da água e outras moléculas da água e do lápis). Isso faz com que a superfície da água adquira uma forma côncava perto do lápis. Quando a luz passa pelo lápis e pela superfície côncava, é desviada para a região da sombra, produzindo uma faixa clara entre as sombras criadas pelas partes do lápis que estão dentro e fora da

água.

Figura 6-36 / Item 6.99 Sombras (a) de um lápis e (b) de uma lâmina de barbear. (c) A curvatura da água perto da borda de um objeto focaliza os raios luminosos para formar uma faixa clara na borda da sombra.

O peso da lâmina de barbear faz a superfície da água afundar ligeiramente, tornando-a convexa. A luz que atravessa a superfície convexa tende a ser focalizada, mas, se água for muito rasa, os raios são interceptados pelo fundo antes de convergir e a sombra tem uma borda normal. Se a água for mais funda, os raios são focalizados na borda da sombra, que adquire uma faixa clara (Fig. 6-36c). Quando você levanta a lâmina ligeiramente acima da superfície, a água assume uma forma côncava que tende a espalhar a luz na região da sombra em vez de focalizá-la e as bordas da sombra têm aspecto normal. Um fio de cabelo flutuando pode criar sombras do tipo efeito salsicha, sombras normais e sombras com bordas claras, dependendo de como a superfície da água se encurva ao longo do cabelo. Quando você desloca um objeto na superfície da água, produz vórtices na superfície. A parte interna de um vórtice é côncava e espalha a luz, criando um círculo escuro no fundo. A parte externa do vórtice é convexa; a luz que passa nessa parte é focalizada na borda da sombra, fazendo com que adquira uma borda clara. Se a água tem profundidade suficiente, a borda se transforma em uma faixa clara, com as bordas interna e externa da faixa especialmente claras.

6.100 • Faixas claras e escuras sobre a asa de um avião Em 1983, A. Hewish descreveu um par de faixas, uma clara e outra escura, que ele observou na asa de um avião comercial (Fig. 6-37a). A faixa escura tinha 1 a 2 centímetros de largura e pouco contraste com o resto da asa, iluminado pelo Sol. O Sol estava a uma elevação de aproximadamente 25o acima da asa e as faixas permaneceram visíveis por mais de uma hora. Quando o avião começou a descer, as faixas se deslocaram para a borda traseira da asa até desaparecerem. Já tive oportunidade de ver faixas semelhantes e também vi um efeito correlato quando o Sol estava do lado oposto do avião: uma faixa escura se levantou mais ou menos no meio da asa, distorcendo a imagem da ponta da asa (Fig. 6-37b). Quando eu movia a cabeça para a frente ou para trás em relação à fuselagem, a faixa também se movia. Às vezes eu via duas faixas. O que produz essas faixas?

Resposta Vamos assumir o ponto de vista do avião, com o ar passando por uma asa estacionária. O movimento do ar cria uma frente de choque na qual a velocidade do ar diminui bruscamente e a densidade do ar aumenta. A frente de choque é perpendicular à asa e se estende ao longo de toda a asa. (Se a frente de choque fosse visível, lembraria uma barreira porosa ao longo da asa.) Quando os raios de luz atravessam a frente de choque, podem ser refratados por causa da variação da densidade do ar. Na observação de Hewish, os raios de luz que se dirigiam para um certo ponto da asa foram refratados para um ponto mais próximo da parte traseira da asa. Assim, uma faixa clara se formou nesse segundo ponto e uma faixa escura se formou no ponto que o raio teria atingido se não tivesse sido refratado. A faixa escura que eu observei também se deve a raios luminosos que atravessam uma frente de choque, mas nesse caso a luz provinha de partes da asa. Quando os raios luminosos provenientes de partes vizinhas da asa passaram pela frente de choque, sofreram desvios diferentes. O espalhamento resultante dos raios deixou relativamente escura a região entre as partes, e o conjunto desses pontos escuros formou a faixa escura observada por mim.

Figura 6-37 / Item 6.100 (a) Faixas clara e escura na asa de um avião. (b) Faixa escura perpendicular a uma asa.

CURIOSIDADE 6.101 • Ondas de choque produzidas pelo Thrust SSC Em 1997, no deserto de Black Rock, em Nevada, o carro a jato Thrust SSC atingiu uma velocidade supersônica ao estabelecer o recorde mundial de velocidade em terra. Não só os observadores ouviram um forte estrondo, produzido pela combinação das ondas de choque oriundas de várias partes do carro, mas a presença das ondas de choque foi confirmada por fotografias tiradas

na ocasião. Nessas fotografias aparecem, ao fundo, as montanhas. Quando os raios de luz provenientes das montanhas passaram pela onda de choque a caminho da câmara, suas trajetórias foram alteradas ligeiramente pela variação da densidade do ar produzida pelas ondas de choque. Esse desvio distorceu a imagem das montanhas, revelando assim as ondas de choque. Em uma das fotografias, consigo distinguir quatro ondas de choque acima do carro.

6.102 • Câmara obscura e câmara pinspeck A câmara fotográfica conhecida como câmara obscura ou câmara pinhole é simplesmente uma caixa com um orifício através do qual a luz penetra para chegar ao filme. Por que um arranjo desse tipo produz uma imagem no filme? De que tamanho deve ser o furo? Uma pequena superfície refletora, como um caco de vidro, também pode ser usada para produzir uma imagem. Podemos construir uma versão maior de uma câmara obscura deixando que a luz penetre em um quarto escuro por uma pequena abertura de uma cortina de janela. Na parede oposta ao furo pode aparecer uma imagem invertida da vista do lado de fora da janela. Esse tipo de demonstração era muito popular no século XIX. Uma interessante versão desse efeito, usando uma bola de pingue-pongue, foi sugerida por Patrick A. Cabe, da Universidade da Carolina do Norte em Pembroke. Faça o seguinte: (a) pinte de preto um dos hemisférios de uma bola de pingue-pongue. (b) Faça um furo com 2 milímetros de diâmetro no centro do lado preto. (c) Faça um cilindro de cartolina preta com um diâmetro ligeiramente menor que o da bola. (d) Introduza a bola em uma das extremidades do cilindro, com o hemisfério preto voltado para fora. (e) Use fita adesiva para manter o cilindro fechado e a bola no lugar, tomando cuidado para não tapar o furo. (f) Olhe pela extremidade vazia do cilindro e aponte a outra extremidade para uma cena bem iluminada. Você vai ver uma imagem invertida na superfície da bola de pingue-pongue. A câmara pinspeck é simplesmente um pequeno círculo opaco posicionado diante de um filme fotográfico (o círculo pode ser pintado em uma placa de plástico transparente). Um furo muito maior que o círculo pode ser usado como diafragma da câmara, limitando a quantidade de luz que chega ao filme. Que tipo de imagem é formado no filme com um arranjo desse tipo? Você também pode montar um sistema no qual um círculo opaco bloqueia parte da luz, produzida por uma lâmpada fluorescente, que incide em uma tela. Que tipo de imagem aparece na tela?

Resposta Imagine uma pequena fonte luminosa diante de uma câmara obscura. As ondas luminosas da fonte são difratadas pelo furo, ou seja, espalham-se a partir do furo e sofrem interferência, com algumas ondas se cancelando e outras ondas se reforçando. O resultado é simples: a luz forma um pequeno círculo no filme. O ponto é uma imagem da fonte; outras pequenas fontes luminosas podem formar outras imagens do mesmo tipo. Se o furo for muito largo, as imagens se sobrepõem e podem ficar irreconhecíveis; se o furo for muito estreito, as imagens permanecem separadas, mas a intensidade da luz pode ser muito pequena. Qual é, então, o tamanho ideal do furo? A resposta depende do modo como a onda luminosa proveniente de um objeto se espalha ao se propagar em direção ao filme. Quando a onda chega ao plano do furo, podemos considerá-la como sendo formada por uma zona central e várias zonas anulares de diâmetro crescente, todas concêntricas com o furo. Os raios de luz que pertencem à zona central chegam ao filme em fase (sincronizados) e se reforçam (dizemos que sofrem interferência construtiva), produzindo uma imagem clara. Se o furo tiver o mesmo diâmetro que a zona central, a imagem tem brilho máximo. Se o furo tiver um diâmetro menor que o da zona central, bloqueia parte da luz pertencente à zona central e a imagem fica mais fraca. Se o furo tiver um diâmetro maior que o da zona central, permite que parte da luz da zona seguinte atinja o filme. Como os raios provenientes dessa zona percorrem um caminho mais longo para chegar ao filme, estão fora de fase (fora de sincronismo) com os raios da zona central. Em conseqüência, algumas das ondas se cancelam (sofrem interferência destrutiva), o que faz a imagem ficar mais fraca. A situação ideal é aquela em que o furo é suficientemente pequeno para deixar passar apenas a luz da zona central. Nesse caso, a imagem é nítida e forte. O círculo opaco de uma câmara pinspeck projeta uma sombra no filme para cada pequena fonte luminosa associada a um objeto que esteja diante da câmara. O resultado é uma imagem de sombra (ou imagem negativa) do objeto. Se o círculo opaco for colocado entre uma lâmpada fluorescente e uma tela, uma imagem de sombra da lâmpada aparecerá na tela: o círculo projeta uma sombra de cada parte da lâmpada na tela e o resultado é uma imagem negativa da lâmpada. A imagem não é totalmente escura porque qualquer ponto da imagem continua a ser iluminado pela maior parte da lâmpada.

6.103 • Imagens do Sol atrás de uma árvore O que produz muitas pequenas imagens do Sol na sombra projetada por uma árvore durante um eclipse solar? As imagens do Sol aparecem na sombra da árvore em outras ocasiões? Por que sombras de folhas, às vezes com bordas duplas, aparecem

debaixo de árvores altas e frondosas? Por que não aparecem debaixo de árvores baixas?

Resposta As imagens que aparecem durante um eclipse são produzidas por pequenos furos nas folhas ou pequenos espaços entre as folhas. Cada um desses furos se comporta como uma câmara obscura (veja o item anterior), projetando uma imagem do Sol na sombra da árvore. As imagens são produzidas mesmo que não esteja acontecendo um eclipse, mas nesse caso são mais difíceis de observar porque a luz difusa proveniente do céu e das vizinhanças ilumina parcialmente a sombra. Durante um eclipse, essa iluminação diminui, porque a quantidade total de luz é muito menor, e as imagens se tornam mais perceptíveis. Em ambos os casos, as imagens são mais fáceis de ver em uma superfície plana do que em um terreno irregular ou coberto de vegetação. As sombras de folhas observadas debaixo de árvores altas e frondosas são projetadas por folhas baixas iluminadas pela luz solar que passa por um furo ou um espaço entre as folhas no alto da árvore. Se a folha é iluminada por raios que passam por dois furos diferentes, podem se formar duas sombras, uma no interior da outra.

6.104 • Luzes vistas através de uma tela; linhas entre os dedos Se você observa à noite a luz de uma lâmpada distante através de uma tela de arame situada a alguns metros de distância, a luz da lâmpada forma uma série de linhas claras e escuras (Fig. 6-38a). Qual é a origem dessa figura? Uma figura semelhante pode ser vista se você olha para uma fonte luminosa através de um guarda-chuva. Em alguns casos, você pode ver linhas coloridas. Por que, se você olhar para uma fonte luminosa através do espaço entre o polegar e o indicador quando os dois dedos estão quase se tocando, você poderá ver algumas linhas escuras (Fig. 6-38b)?

Resposta Essas linhas claras e escuras são geralmente atribuídas à difração da luz, que é um efeito que faz a luz se espalhar quando passa por uma abertura estreita ou por um objeto pequeno. Além disso, para certos ângulos as ondas da luz espalhada estão em fase (em sincronismo) e se reforçam mutuamente (interferência construtiva), produzindo uma linha clara. Para outros ângulos, as ondas estão fora de fase (fora de sincronismo) e se cancelam mutuamente (interferência destrutiva), produzindo uma linha escura. Se essa luz espalhada incide em uma superfície de observação, como uma tela, por exemplo, as linhas claras e escuras formam uma figura. Entretanto, a figura só aparece se a luz que passa pela abertura estreita for coerente, ou seja, as ondas devem estar em fase (ou quase em fase) antes de serem difratadas. A luz produzida por fontes comuns, tais como lâmpadas, é incoerente; ou seja, as ondas são geradas com fases arbitrárias. Uma luz incoerente se transforma em coerente ao passar por um furo (Fig. 6-38c). Isso acontece porque, como o furo é estreito, em um certo instante todas as ondas que passam por ele têm praticamente a mesma fase. Quando a luz atinge uma abertura estreita, tal como o espaço entre os arames de uma tela ou entre os fios de tecido de um guarda-chuva, as ondas são difratadas pela abertura e formam uma figura de difração.

Figura 6-38 / Item 6.104 Figuras formadas (a) por uma tela e (b) pelo espaço entre o polegar e o indicador. (c) Depois de passar por um furo, a luz atravessa uma abertura estreita, produzindo uma figura de difração em uma tela. (d) Depois de passar por uma abertura estreita, a luz atravessa a pupila e produz uma figura de difração na retina.

Quando removemos o furo e deixamos a luz produzida por uma fonte incoerente (uma lâmpada, por exemplo) incidir diretamente na abertura estreita, a figura de difração desaparece. A luz continua a ser espalhada ao passar pela abertura, mas o grau de espalhamento varia de instante a instante, dependendo da fase da luz incidente. Nesse caso, o que se vê na tela de observação é uma iluminação uniforme. Suponha, porém, que a tela de observação seja substituída pelo seu olho, ou seja, que você observe diretamente a luz que passa pela abertura. Nesse caso, a abertura passa a fazer o papel do furo da montagem anterior (Fig. 6-38d). Como a abertura é estreita, as ondas luminosas que passam por ela são quase coerentes. Assim, sofrem difração ao atravessarem a pupila e produzem uma figura de difração na retina. É essa figura que você vê ao olhar para uma lâmpada distante através de uma tela de arame, do tecido de um guarda-chuva ou do espaço entre o polegar e o indicador.

6.105 • Riscos luminosos e teias coloridas Quando você olha para o Sol pela janela de um avião ou de um edifício, por que a janela sempre tem riscos concêntricos (Fig. 639a)? Por que os riscos às vezes parecem produzir rastros que apontam para longe do Sol? Por que os riscos são praticamente invisíveis quando você não olha na direção do Sol? Se existe uma teia de aranha entre você e o Sol, por que a teia é colorida e por que as cores variam de acordo com o ângulo

de observação? (As cores podem ser fracas; você pode vê-las melhor contra um fundo escuro, mas a teia deve ser iluminada diretamente pelo Sol.)

Resposta O arranjo de riscos em círculos concêntricos é uma ilusão. A janela provavelmente contém uma grande quantidade de pequenos riscos orientados aleatoriamente, mas apenas alguns deles são visíveis, e é isso que cria a ilusão. Quando a luz é espalhada por um risco, o espalhamento se limita a uma faixa de ângulos em um plano perpendicular à maior dimensão do risco (Fig. 6-39b). Para que você veja o risco, é preciso que seus olhos estejam em uma das direções de espalhamento. Se o risco estiver diretamente à esquerda ou à direita do Sol, espalhará a luz na sua direção apenas se for vertical. Se o risco estiver acima ou abaixo do Sol, espalhará a luz na sua direção apenas se for horizontal. Este raciocínio pode ser generalizado. Para que um risco seja visível, deve ser tangente a uma circunferência com centro na imagem do Sol. Assim, quando você vê muitos riscos curtos, tem a impressão de que os riscos são concêntricos. Por outro lado, se os riscos estiverem agrupados, parecem formar rastros que apontam para longe do Sol.

Figura 6-39 / Item 6.105 (a) Arranhões concêntricos em uma janela iluminada pelo Sol. (b) Espalhamento da luz por um arranhão. A luz vem do lado de fora da janela e é espalhada para dentro do recinto.

A luz do Sol só pode ser espalhada por um risco na sua direção se o ângulo entre a sua visada do Sol e a sua visada do risco for pequeno. Quando esse ângulo ultrapassa um certo valor, os riscos tornam-se imperceptíveis. Janelas de avião já ficaram muito mais riscadas que o normal quando o avião sobrevoou acidentalmente um vulcão em plena erupção. Assim, por exemplo, em 1982, um Boeing 747 da British Airways foi atingido pelas cinzas lançadas pelo monte Galunggung, na Indonésia, que fizeram os quatro motores pararem de funcionar e riscaram seriamente as janelas da cabine. O piloto conseguiu religar três motores e preparou-se para realizar um pouso noturno de emergência em Jacarta. Entretanto, não

conseguia enxergar através do pára-brisa e teve que deixar a aterrissagem por conta do co-piloto, que conseguiu alinhar o avião com as luzes da pista olhando através de alguns milímetros de vidro que estavam miraculosamente intactos. Quando uma teia de aranha está entre você e o Sol, a luz é espalhada (difratada) pelo fio de seda e também pelas esferas pegajosas que a aranha espalha ao longo do fio para capturar a presa. O espalhamento produzido pela seda é muito parecido com o que é produzido por arranhões em uma janela: o espalhamento se limita a uma faixa de ângulos em um plano perpendicular ao fio. O espalhamento produzido por uma esfera é um cone de luz. Nos dois casos, a faixa de ângulos de espalhamento é diferente para diferentes comprimentos de onda, o que significa que o espalhamento pode separar a luz branca incidente em uma série de cores. Quando você olha a teia de outro ângulo, seus olhos interceptam cores diferentes. O mesmo mecanismo pode tornar coloridos os arranhões de uma janela.

6.106 • Listras luminosas no pára-brisa de um carro Quando você dirige à noite sob chuva, as lâmpadas de rua e outras fontes de luz produzem listras luminosas no pára-brisa dianteiro (Fig. 6-40a). As listras podem ser retas ou curvas, convergem para um certo ponto e giram em torno desse ponto quando o carro se move. Você também pode ver uma listra de dia se olhar para o Sol através do pára-brisa. Muitas vezes, a listra produzida por uma lâmpada ou pelo Sol parece ter profundidade — ou seja, parece ser uma faixa luminosa que liga o pára-brisa à fonte luminosa. Quando a listra é curva, lembra uma estrada que corre por um vale e depois sobe uma montanha. O que produz essas listras e por que elas parecem sair do pára-brisa? Muitos outros tipos de listras e manchas podem ser vistos à noite em um pára-brisa. As manchas podem estar dispostas ao acaso, mas às vezes formam linhas retas ou curvas. Um tipo de listra parece passar pela fonte luminosa como o que acabamos de descrever, mas não se dirige para nenhum ponto do pára-brisa em particular e pode às vezes ser visto em outros tipos de janela, ou mesmo em óculos.

Figura 6-40 / Item 6.106 (a) Figuras que podem ser vistas no pára-brisa de um carro. (b) Reflexão interna da luz em um pára-brisa.

Resposta O limpador de pára-brisa produz sulcos circulares na sujeira que adere ao pára-brisa. O espalhamento se limita a uma faixa de ângulos em um plano perpendicular ao sulco. (Veja o item anterior.) A luz espalhada por muitos sulcos paralelos forma uma listra visível. Dependendo da curvatura do pára-brisa, a listra pode ser reta ou curva. Em qualquer dos dois casos, a extremidade inferior da listra aponta para o centro comum dos riscos, ou seja, para o eixo do limpador de pára-brisa. Uma listra parece ter profundidade porque cada olho vê uma listra diferente. A distância entre duas listras é menor nas extremidades mais próximas do ponto em que você vê diretamente a fonte e maior perto do eixo do limpador de pára-brisa. O cérebro funde as duas imagens em uma só e interpreta as partes mais separadas como estando mais próximas que as partes com menor separação. A aparência de profundidade pode parecer estranha para uma fonte luminosa mais extensa, porque a listra é mais larga no lado mais próximo do ponto em que você vê diretamente a fonte, mas é essa parte da listra que parece estar mais distante. Se a listra realmente tivesse profundidade, a variação da largura com a distância seria exatamente o contrário. O segundo tipo de listra que pode ser visto em um pára-brisa e em muitos outros tipos de vidro ou de plástico deve-se à reflexão da luz no interior do material (Fig. 6-40b). A luz vem do raio que liga diretamente a fonte ao observador. Quando esse

raio passa pelo material, parte da luz é refletida internamente. Essa luz pode ser refletida várias vezes no interior do material. Em cada ponto de reflexão, parte da luz escapa. Se o material tem forma curva, com o lado côncavo voltado para o observador, ele pode interceptar parte dessa luz que vazou de pontos situados nas proximidades do ponto de visão direta para a fonte. O que ele vê nesse caso é uma listra partindo do ponto de visão direta. Se você impedir que o raio direto chegue ao pára-brisa, colocando, por exemplo, um dedo do lado de fora do carro, na frente do pára-brisa, a listra desaparece. (Naturalmente, você deve fazer isso com o carro parado, já que não vale a pena perder o braço em um acidente de trânsito só para fazer um experimento de física.) As manchas são produzidas por reflexão ou espalhamento pela sujeira do pára-brisa. Se a superfície for curva, você pode interceptar parte da luz e ver a mancha.

6.107 • Reflexos de um disco de vinil Coloque um disco de vinil sobre uma mesa e posicione-o de tal modo que o centro fique a meio caminho entre você e uma pequena lâmpada de mesa voltada para o disco. Apague todas as outras luzes da sala, feche um dos olhos e observe o reflexo da luz no disco. A superfície não fica uniformemente iluminada nem existe um único ponto brilhante, como aconteceria no caso de um espelho. Em vez disso, o que se vê é uma figura formada por linhas finas de luz. Ajustando-se a posição do disco, é possível obter uma cruz ou uma figura formada por uma ou duas hipérboles. Nos dois casos, pelo menos uma das linhas passa pelo centro do disco. Às vezes aparece um ponto especialmente brilhante no disco, que está sempre sobre a linha que passa pelo centro. Figuras semelhantes podem ser vistas às vezes em persianas quando você olha através delas para uma lâmpada de rua à noite. Como explicar essas observações?

Resposta Você recebe luz apenas dos pontos do disco em que os sulcos têm a orientação correta para refletir a luz na sua direção. Todos os sulcos refletem luz até a altura dos seus olhos, mas apenas alguns têm a orientação apropriada para refletir a luz tanto para cima como para o lado, fazendo-a chegar aos seus olhos. Esses sulcos estão ao longo das linhas luminosas das figuras que você observa. O ponto especialmente brilhante é uma reflexão especular da lâmpada. As figuras de reflexão de um disco são semelhantes aos riscos observados na superfície de um pára-brisa (veja o item anterior) e, se a fonte luminosa tiver intensidade suficiente, você poderá ter uma impressão de profundidade, como no caso dos riscos do pára-brisa.

6.108 • Cores em objetos com ranhuras finas Quando iluminamos um CD, um DVD ou certos tipos de papel com luz branca, obtemos reflexos coloridos. Também é possível ver reflexos coloridos em um disco de vinil para certas orientações da fonte luminosa. A luz de uma lâmpada de rua é branca ou amarelada, mas você pode ver as cores de que é feita essa luz se colocar uma rede de difração (um pedaço de plástico com muitas ranhuras) na frente da lente de uma câmara. A imagem direta da lâmpada, vista através da câmara, é normal, mas um espectro de cores componentes aparece dos dois lados da imagem. Por que, nos dois casos, a luz inicial se separa em várias cores?

Resposta A luz espalhada (difratada) por estruturas formadas por ranhuras sofre interferência construtiva e interferência destrutiva. Imagine um ponto que é visto como vermelho. Quando a luz branca é espalhada nesse ponto, as cores componentes vermelhas que são espalhadas na direção do observador sofrem interferência construtiva, ou seja, as ondas vermelhas estão em fase e se reforçam mutuamente. As ondas das outras cores que são espalhadas nesse ponto sofrem interferência destrutiva, ou seja, estão fora de fase e tendem a se cancelar mutuamente. Assim, o que você vê nesse ponto é uma luz dominada pelo vermelho. Em outros pontos, que você observa de ângulos diferentes, a cor dominante é outra. Para que exista uma separação das cores, é preciso que a distância entre as ranhuras do seu ponto de vista (e do “ponto de vista” da lâmpada) seja pequena, mais ou menos do tamanho do comprimento de onda da luz visível. Se a luz incide perpendicularmente em um disco de vinil e você também olha perpendicularmente ao disco, a distância entre os sulcos é grande demais para produzir cores e você vê apenas o preto do plástico. Para separar as cores que compõem a luz branca, é preciso fazer com que a luz da lâmpada incida quase paralelamente ao disco e observar o disco quase na horizontal. Nesse caso, do seu ponto de vista (e do ponto de vista da lâmpada), a distância entre os sulcos é suficientemente pequena para que as cores sejam separadas.

6.109 • Combate à falsificação: dispositivos opticamente variáveis

Um dos itens de segurança dos cartões de crédito e outros tipos de cartões de identificação é um dispositivo opticamente variável, cujo aspecto muda quando o cartão é inclinado. Esse tipo de dispositivo é freqüentemente chamado de holograma, um tipo de fotografia que possibilita que observemos imagens em três dimensões. Na verdade, as primeiras versões desses dispositivos que foram usadas em cartões de crédito eram hologramas. Entretanto, o uso de hologramas como medida de segurança não foi bem-sucedido, por duas razões. Em primeiro lugar, as imagens eram escuras, pouco nítidas, difíceis de observar nas condições típicas de iluminação de uma loja. Em segundo lugar, e muito pior, eram fáceis de reproduzir. Hoje em dia, os dispositivos opticamente variáveis são claros, nítidos e fáceis de ver nas condições típicas de iluminação de uma loja. Melhor ainda: são extremamente difíceis de reproduzir. Como são feitos esses dispositivos?

Resposta Hoje em dia, a maioria dos cartões de crédito possui figuras opticamente variáveis, que produzem uma imagem através da difração da luz difusa (tal como a luz de uma loja) por regiões com ranhuras muito finas conhecidas como redes de difração. As redes de difração produzem centenas ou mesmo milhares de ondas luminosas. Uma pessoa que esteja observando o cartão intercepta algumas dessas ondas e a combinação das ondas produz uma imagem virtual (imaginária) que pode ser, por exemplo, o logotipo da empresa que emitiu o cartão de crédito. Assim, por exemplo, na Fig. 6-41a, uma rede no ponto a produz uma certa imagem quando o observador está na orientação A, e na Fig. 6-41b, outra rede no ponto b produz uma imagem diferente quando o observador está na orientação B. Essas imagens são claras e nítidas porque as redes foram projetadas para serem vistas com luz difusa.

Figura 6-41 / Item 6.109 (a) A rede no ponto a envia luz para um observador na orientação A, criando uma certa imagem virtual. (b) A rede no ponto b envia luz para um observador na orientação B, criando uma imagem virtual diferente.

As figuras opticamente variáveis são extremamente difíceis de projetar porque os engenheiros trabalham a partir do resultado final, tal como o logotipo de uma empresa. Os engenheiros precisam calcular as propriedades das redes em todo o dispositivo para que uma certa imagem seja vista quando o cartão é observado de certos ângulos e uma imagem diferente seja vista quando o cartão é observado de outros ângulos. Esse trabalho só pode ser feito com o auxílio de sofisticados programas de computador. Depois de projetada, a estrutura de uma figura opticamente variável é tão complexa que é quase impossível de copiar.

6.110 • Anéis coloridos em um espelho embaçado ou empoeirado Depois de tomar um banho quente de chuveiro e deixar o espelho embaçado, apague a luz, fique diante do espelho e acenda um fósforo à sua direita. A chama do fósforo no espelho será imediatamente cercada de anéis coloridos. Você também verá os anéis se o espelho estiver empoeirado ou coberto de talco em vez de gotas de água. Em seguida, coloque-se diante de um espelho embaçado em um quarto iluminado apenas por uma janela às suas costas. Ajuste a distância do espelho até ver anéis superpostos ao seu reflexo. Observei que a uma certa distância as imagens dos meus olhos são substituídas por anéis coloridos, como em uma figura psicodélica. Mais uma vez, o espelho pode estar empoeirado em

vez de embaçado.

Figura 6-42 / Item 6.110 Duas formas pelas quais a luz é espalhada em direção a um observador por uma partícula de poeira na superfície de um espelho.

O que produz esses anéis?

Resposta Os dois experimentos envolvem diferentes formas pelas quais a luz é espalhada (difratada) pelas partículas (gotas de água ou poeira) presentes no espelho. No primeiro arranjo, os anéis aparecem em torno de uma fonte luminosa pontual situada fora do centro do espelho. Nesse arranjo, cada partícula espalha a luz em um padrão circular formado por um centro claro e anéis alternadamente claros e escuros. Como o ângulo de espalhamento depende do comprimento de onda da luz, as cores aparecem separadas do ponto de vista do observador. Mais especificamente, a borda externa dos anéis é vermelha e a borda interna é azul, já que o ângulo de espalhamento da luz vermelha é ligeiramente maior que o da luz azul. Na verdade, você vê apenas uma parte da figura de difração produzida por uma partícula, mas a combinação das figuras produzidas por muitas partículas também é uma figura circular, cujo centro é a imagem refletida da fonte luminosa. No segundo arranjo, seus olhos estão no centro dos anéis e a fonte luminosa tem uma grande extensão e está atrás de você. Nesse arranjo, os anéis são produzidos por dois conjuntos de raios que são espalhados em sua direção pelas partículas (Fig. 642). Imagine uma partícula. (1) A partícula pode espalhar a luz (raio A na figura) para a superfície traseira do espelho, onde é refletida na sua direção. (2) A partícula pode espalhar na sua direção um raio que já tenha sido refletido pela superfície traseira do espelho (raio B na figura). Esses dois conjuntos interferem mutuamente quando chegam aos seus olhos. Para algumas partículas, os dois conjuntos chegam aos seus olhos fora de fase e interferem destrutivamente — ou seja, se cancelam. Para outras partículas, os dois conjuntos chegam em fase e interferem construtivamente — ou seja, se reforçam. A figura formada pela combinação da luz espalhada por todas as partículas é uma série de anéis concêntricos, alternadamente claros e escuros; os anéis claros são coloridos por causa da separação de cores causada pelo espalhamento. O tipo de figura de interferência que você vê depende da sua orientação e da orientação da fonte luminosa em relação ao espelho. Você pode superpor os dois tipos colocando uma pequena fonte luminosa diretamente entre seus olhos e o espelho.

6.111 • A cor do leite na água Faça passar um facho estreito de luz branca por um pequeno aquário (ou outro recipiente de lados planos e transparentes) cheio de água pura. Apague a luz e comece a acrescentar gotas de leite integral (ou seja, não use leite desnatado). Inicialmente, quase não se pode ver o facho de luz, mas aos poucos ele vai se tornando visível. Enquanto você continua a acrescentar o leite, observe a cor do facho luminoso visto de lado e de frente. Chega um momento em que ele se torna azul visto de lado e vermelho visto de frente. Por que essas cores aparecem? Por que o leite que você bebe é branco, e não vermelho ou azul?

Resposta O leite contém pequenos glóbulos de gordura que espalham a luz. A extremidade azul do espectro é mais espalhada lateralmente que a extremidade vermelha. Assim, quando a concentração de glóbulos é suficientemente grande para que as cores sejam percebidas, a luz espalhada lateralmente é dominada pelo azul, enquanto a luz espalhada na direção inicial é dominada pelo vermelho. Só é possível ver as cores quando a concentração de glóbulos é relativamente pequena. Quando a concentração é muito grande, como no leite comum, a luz é espalhada muitas vezes antes de deixar o recipiente. Nesse caso, qualquer que seja a

direção de observação, a quantidade de vermelho é igual à quantidade de azul e a luz é percebida como sendo branca. Se você inclina um copo que contém uma pequena quantidade de leite, fazendo com que a borda do leite fique no fundo do copo, aparece uma faixa transparente na borda do leite. A faixa está na região em que o leite forma uma superfície curva ao encontrar o fundo do copo. A luz refletida por essa superfície curva é concentrada e, portanto, é mais forte que a luz refletida pelo resto da superfície do leite. Essa luz concentrada mascara o espalhamento pelos glóbulos de gordura e por isso você não vê o branco do leite nessa faixa.

6.112 • A cor da fumaça de uma fogueira Quando a fumaça que sai de uma fogueira é observada contra um fundo escuro, tal como uma floresta, tem uma tonalidade azul, mas quando é observada contra um fundo claro, como o céu, tem uma tonalidade amarela, vermelha ou laranja. Por que as cores são diferentes nas duas situações?

Resposta As partículas presentes na fumaça são tão pequenas que espalham mais a extremidade azul do espectro do que a extremidade vermelha. Assim, a luz que continua na direção original contém menos azul e se torna amarela, vermelha ou laranja. Se você observa a fumaça contra um fundo escuro, a fonte luminosa deve estar atrás de você (pode ser o Sol ou uma parte clara do céu). A luz azul é espalhada na sua direção. Se você observa a fumaça contra o céu, essa parte do céu é a fonte luminosa. Você intercepta, portanto, uma luz que perdeu parte do azul ao passar pela fumaça; assim, a luz é dominada pela parte vermelha do espectro.

6.113 • O efeito uzo Certas bebidas alcoólicas à base de anis, como o uzo na Grécia, o le pastis na França, o raki na Turquia e o sambuca na Itália, apresentam um comportamento curioso: o líquido puro é transparente, mas, quando misturado com água, torna-se leitoso. O que produz essa mudança? Se for acrescentado um pouco de álcool, o líquido torna-se de novo transparente.

Resposta Todas essas bebidas são soluções com uma distribuição uniforme de óleo de anis e etanol. Quando um raio luminoso (tal como um raio de luz solar) entra na solução, não encontra obstáculos e sai do outro lado na mesma direção. Quando a água (um terceiro líquido) é acrescentada à solução, as coisas mudam porque o óleo de anis é insolúvel em água. Inicialmente, o líquido continua transparente (a luz continua a atravessá-lo sem ser espalhada). Entretanto, quando a concentração de água atinge um certo valor, conhecido como valor crítico, as moléculas de óleo se segregam espontaneamente em glóbulos que ficam em suspensão no líquido. Dizemos que o sistema sofre uma transformação de fase, passando de uma solução homogênea (uniforme) de líquidos para uma dispersão nãohomogênea de glóbulos em um líquido (emulsão). Os glóbulos de óleo de anis espalham a luz visível. Assim, a luz que penetra na bebida é espalhada em muitas direções, o que confere à bebida uma aparência leitosa. Se for acrescentado um pouco de álcool, a concentração de água cai abaixo do valor crítico, a transformação de fase ocorre no sentido inverso e a bebida volta a ficar transparente.

6.114 • As cores das manchas de óleo, películas de sabão e panelas de metal Por que as manchas de óleo nas ruas molhadas são coloridas? Por que as cores não aparecem quando a rua está seca? Por que as cores aparecem mesmo nos dias nublados? Por que as películas e bolhas de sabão são coloridas? Por que as cores desaparecem quando a película é muito grossa ou muito fina? Por que não vemos cores parecidas em um vidro de janela ou em uma lâmina de microscópio? Suponha que uma película de sabão seja suspensa verticalmente e iluminada com um feixe de luz branca. À medida que a força da gravidade faz a película escorrer, as faixas coloridas horizontais da película começam a se deslocar para baixo até que a parte superior da película fica escura (contanto que a superfície que sustenta a película seja escura). Como a película pode ser escura, se está sendo iluminada diretamente pela fonte luminosa? Observando a região escura, você pode encontrar alguns pontos que são ainda mais escuros. Por que esses pontos aparecem? Por que a faixa logo abaixo da região escura é branca, e não azul? (A luz azul é a que possui o menor comprimento de onda da luz visível e, portanto, deveria estar associada à parte muito fina da película que fica abaixo da região escura.) Às vezes, as panelas de cozinha apresentam regiões coloridas, embora estejam perfeitamente limpas. O que produz essas cores? Cores semelhantes aparecem quando existe uma fina camada de óleo sobre uma superfície de metal polido. Por que as cores não aparecem se o metal não for polido?

Resposta Uma película transparente com uma espessura aproximadamente igual ao comprimento de onda da luz visível pode produzir cores ao ser iluminada com luz branca. Suponha que um raio de uma única cor incida perpendicularmente em uma película como essa (Fig. 6-43). Parte da luz é refletida pela superfície dianteira da película; o resto da luz atravessa a película, é refletido pela superfície traseira, atravessa novamente a película e deixa a película. Quando o olho do observador intercepta essas duas ondas provenientes da película, elas sofrem interferência. Se as ondas estiverem em fase (em sincronismo), interferem construtivamente (reforçam-se mutuamente) e você vê uma faixa colorida. Se as ondas estiverem fora de fase (fora de sincronismo), interferem destrutivamente (cancelam-se mutuamente) e você vê uma faixa escura.

A espessura da película é um dos fatores que determinam se vai haver a interferência construtiva necessária para que uma certa cor seja reforçada. Assim, quando a gravidade atua sobre uma película vertical, tornando-a mais espessa na parte de baixo, cores diferentes aparecem em alturas diferentes. Se você olha para a película de outro ponto de vista, a distância que a luz percorre até chegar aos seus olhos muda e, portanto, a posição das faixas coloridas também muda. Quando as cores de um objeto dependem do ponto de vista do qual é observado, dizemos que é iridescente. (Uma camisa que é azul porque foi tingida com corante azul não é iridescente.) Você pode ver cores iridescentes em uma película de óleo se o óleo forma uma película horizontal em uma poça d’água. As cores podem ser visíveis mesmo em um dia nublado, contanto que parte do céu esteja mais clara que o restante do céu. Se o óleo estiver espalhado no asfalto seco, a espessura da película varia por causa das irregularidades da superfície do asfalto. Nesse caso, as cores associadas a diferentes espessuras se misturam e as cores ficam muito fracas ou mesmo desaparecem.

Figura 6-43 / Item 6.114 A luz é refletida pelas duas superfícies de uma película.

Quando a parte superior de uma película de sabão vertical que está escorrendo fica muito mais fina que o comprimento de onda da luz, todas as ondas luminosas que se refletem da película se cancelam quase totalmente e a parte superior fica escura. O afinamento pode ser interrompido temporariamente nesse ponto por duas razões. (1) As camadas de moléculas de sabão em lados opostos da película agora estão suficientemente próximas para se repelir eletricamente. (2) As moléculas de água das duas superfícies se ordenam (mais ou menos como em um cristal de gelo) e começam a se sobrepor. Como a superposição exige energia, o afinamento não pode prosseguir. Apesar dessas razões, a película é instável e tende a se romper bruscamente. Entretanto, se a película contiver impurezas eletricamente carregadas, pode afinar ainda mais antes de se romper. Esta é a origem dos pontos excepcionalmente escuros dentro da região escura. A faixa logo abaixo da região escura é levemente azulada porque a luz azul sofre interferência construtiva parcial (as ondas estão parcialmente em fase e, portanto, se reforçam). Entretanto, o azul é difícil de ver e talvez a primeira região que você consiga distinguir abaixo da região escura seja a branca. Nessa parte, o filme tem uma espessura tal que todas as cores do

espectro visível sofrem interferência construtiva parcial e sua combinação produz a cor branca. Abaixo da faixa branca aparecem uma faixa com uma mistura de amarelo e vermelho (laranja) e uma faixa com uma mistura de azul e vermelho (roxa). Só então aparece uma faixa azul. Na parte de baixo, onde a película é mais espessa, as faixas coloridas começam a se sobrepor. Finalmente, a superposição é tão grande que as cores desaparecem e essa parte da película é branca. Embora teoricamente as interferências construtivas e destrutivas ocorram qualquer que seja a espessura da película, na prática as cores são observadas apenas em películas muito finas. O problema está na forma como a luz é produzida em uma lâmpada comum (e também no Sol). De momento a momento, pequenas séries de ondas (conhecidas como trens de onda) são emitidas pela lâmpada. Se uma película é tão fina que as ondas refletidas pela superfície dianteira e pela superfície traseira pertencem sempre ao mesmo trem de ondas, a interferência acontece e faixas coloridas são produzidas. Quando, porém, a película é espessa, as duas ondas refletidas podem pertencer a trens de onda diferentes, caso em que a interferência varia aleatoriamente entre construtiva e destrutiva e as faixas coloridas não aparecem. Assim, as figuras de interferência e a iridescência não são observadas em películas espessas, lâminas de microscópio, vidros de janela, copos etc. Faixas coloridas costumam aparecer em panelas por causa de películas de óxido. Além disso, se o metal possui uma fina camada de óleo e é muito liso, a camada de óleo pode produzir cores de interferência. Se a superfície é rugosa, porém, a luz que se reflete na superfície traseira da camada de óleo é espalhada em várias direções e as cores não são observadas.

6.115 • As cores de insetos, peixes, aves e traseiros de macacos Um canário amarelo é amarelo porque um pigmento em suas penas absorve todas as cores que compõem a luz branca, menos o amarelo. A maioria das cores que encontramos no dia-a-dia, incluindo as cores de animais, são produzidas por pigmentos. Entretanto, muitos animais são coloridos, não por pigmentação, mas por alguma curiosa propriedade óptica de sua superfície externa (asa, concha, pena, pele etc.). O que produz a cor nos exemplos a seguir? Algumas borboletas e outros insetos possuem asas iridescentes, ou seja, cujas cores variam de acordo com o ponto de vista do observador. Um belo exemplo é a asa da borboleta Morpho. Embora a pigmentação da asa seja marrom (como se pode ver na superfície inferior da asa), a superfície superior é de um azul vivo, iridescente. Os arenques usam uma óptica semelhante (embora um pouco mais complexa) para ficar prateados. Uma vantagem dessa cor é que os predadores têm dificuldade de vê-los na água. Alguns besouros girinídeos tropicais refletem a luz solar (branca) quando são observados de certos ângulos, mas exibem belas cores iridescentes quando são vistos de outros ângulos. Isso acontece também em outros tipos de besouros. Talvez as cores iridescentes mais interessantes sejam as produzidas pelos besouros escarabeídeos, cuja superfície se comporta como uma espécie de cristal líquido para refletir luzes de várias cores. Por outro lado, o besouro-tigre usa a óptica para se camuflar, refletindo apenas a cor que combina com o local em que se encontra. Alguns mamíferos têm a pele muito colorida. Assim, por exemplo, a pele do mandril macho é azul no focinho, nas nádegas e na bolsa escrotal. Embora a cor seja muito viva, não é iridescente. Um tipo diferente de óptica é usado para produzir as áreas azuis e brancas das lagartas dos lasiocampídeos e o azul da gralha-azul. As asas dianteiras do besouro-hércules são amarelas ou pretas, dependendo da umidade. Quando a umidade varia bruscamente, o besouro só precisa de alguns minutos para mudar de cor.

Resposta Muitas partes coloridas das borboletas e mariposas são iridescentes por causa da presença de escamas transparentes que produzem interferência da luz. Na superfície superior da asa de uma borboleta Morpho, as escamas estão dispostas de forma escalonada. As escamas têm uma espessura e uma separação tais que, quando são atravessadas por luz branca, os reflexos da cor componente azul por escamas sucessivas (a mais alta, por exemplo, e a seguinte) resultam em interferência construtiva. Os reflexos das outras cores resultam em interferência destrutiva parcial ou total, de modo que a asa é vista como azul. Quando a asa é vista de outro ângulo, a distância que os raios luminosos percorrem para chegar ao observador muda ligeiramente; essa mudança altera o comprimento de onda, ou matiz, da luz que sofre interferência construtiva. Como o matiz da asa varia com o ângulo de observação, dizemos que a asa é iridescente. A coloração do arenque também se deve à interferência óptica produzida pelas escamas, mas existem três arranjos intercalados de escamas, cada qual produzindo interferência construtiva da luz refletida em uma parte diferente do espectro visível. Quando o observador intercepta esses três tipos de reflexões, percebe a cor como sendo branca. Entretanto, é um branco

diferente do branco normal, porque existe uma mudança sutil de coloração quando o peixe é observado de um ângulo diferente. O arenque é difícil de ver na água porque a luz refletida é quase igual à luz ambiente debaixo d’água. O besouro girinídeo tropical tem a superfície coberta por escamas estreitas que se comportam como uma rede de difração, um dispositivo óptico normalmente composto por muitas ranhuras paralelas que produzem uma figura de interferência. Quando o observador intercepta a parte central da figura de difração produzida pelo besouro, vê uma luz branca. Quando intercepta outras partes da figura de difração, vê cores que foram suficientemente espalhadas pela difração para serem percebidas separadamente. Quando um desses besouros circula na água, as mudanças rápidas de intensidade e cor podem confundir o predador. Os reflexos de um besouro escarabeídeo não são produzidos por escamas, e sim por um arranjo peculiar de microfibrilas. Elas são alinhadas em camadas, com o alinhamento de uma camada um pouco diferente do alinhamento da camada vizinha. Quando a luz solar incide nas camadas, os reflexos da luz nas camadas sofrem interferência construtiva e produzem uma coloração intensa. Os besouros-tigres podem parecer marrons ou pretos (para serem menos visíveis no solo em que costumam viver) mas são, na verdade, multicoloridos. Assim, por exemplo, os élitros do besouro-tigre Cicindela oregona têm manchas circulares azuis cercadas de vermelho. As duas cores são produzidas por interferência por escamas na superfície dos élitros. Quando você observa um desses besouros, o sistema visual combina as duas cores, produzindo a sensação de marrom. Combinações semelhantes das cores de regiões muito pequenas, separadamente imperceptíveis, acontecem nos monitores coloridos e nas pinturas pontilhistas. A pele azul dos mandris e de outros mamíferos deve-se ao arranjo aproximadamente periódico (quase-periódico) de fibras de colágeno na derme. Em uma dada região microscópica, essas fibras são paralelas e têm uma largura e um espaçamento tais que espalham preferencialmente a luz azul. Em alguns lugares, tal como no focinho, as fibras de colágeno são tão abundantes que o azul domina a cor que sai da pele. Em outros lugares, como nas nádegas, existem menos fibras de colágeno, mas por baixo do colágeno existe uma camada de melanina que absorve a luz que passa pelo colágeno. Com o fundo negro proporcionado pela melanina, a luz azul que sai da pele é muito viva. Entretanto, não é iridescente, o que exigiria um alinhamento mais preciso das camadas de colágeno. As áreas azuis das lagartas dos lasiocampídeos são produzidas pelo espalhamento da luz em filamentos transparentes que cobrem a superfície do animal. Abaixo dos filamentos existe uma superfície negra. Os filamentos são tão pequenos que espalham preferencialmente a luz azul na direção do observador; o resto da luz continua até a superfície negra, onde é absorvido. Assim, a região é percebida como sendo de cor azul. A diferença das áreas brancas é que a superfície que fica abaixo dos filamentos reflete ou espalha a luz em direção ao observador e, portanto, não é negra. Assim, a luz azul produzida pelos filamentos é ofuscada pela luz proveniente da superfície mais abaixo. O azul da gralha-azul deve-se ao espalhamento preferencial da extremidade azul do espectro por parte de pequenas células alveolares nas bárbulas das penas. As cores de outras aves podem dever-se a uma combinação de espalhamento e pigmentação ou a várias formas de interferência. A asa dianteira do besouro-hércules é formada por uma fina camada transparente, uma camada esponjosa amarela e uma camada preta. Quando a camada esponjosa está cheia de ar, a luz é muito espalhada e todas as cores se perdem, exceto o amarelo. Assim, a asa é vista como amarela. Quando a umidade do ar é elevada, a camada esponjosa absorve água e deixa passar uma quantidade maior de luz até a camada preta, onde é absorvida. Assim, a asa é vista como preta.

6.116 • Pérolas O que produz o brilho e as cores iridescentes da pérola e da madrepérola?

Resposta Como as cores são iridescentes (variam de acordo com o ponto de vista do observador), devem ser causadas por interferência e não por pigmentos. Uma pérola é formada por nácar, um sólido do tipo tijolos e argamassa formado por uma combinação de carbonato de cálcio (calcita ou aragonita) com uma matriz de moléculas biológicas de grande peso molecular. Placas de aragonita (os tijolos) são separadas por finas camadas do material da matriz (a argamassa). O brilho e as cores de uma pérola parecem ser causados pela interferência das ondas luminosas espalhadas pelo espaço entre as placas de carbonato, e não pelas placas em si. Quando o espaçamento entre as placas é maior, a interferência construtiva acontece para comprimentos de onda maiores (ou seja, na extremidade vermelha do espectro). Para que uma pérola tenha cores puras (ou seja, facilmente identificáveis), é preciso que as camadas de carbonato tenham aproximadamente a mesma largura e o mesmo espaçamento. Se as placas têm várias larguras e vários espaçamentos, as cores da pérola são veladas ou desmaiadas. Algumas pérolas negras têm esse efeito de coloração, mas também parece

haver um tipo de pigmento que é responsável pela absorção da luz.

6.117 • Protuberâncias dos olhos dos insetos e aviões invisíveis Os olhos dos insetos contêm muitas estruturas chamadas omatídios, que funcionam como pequenos olhos; o que o inseto vê é um mosaico de imagens produzidas pelos omatídios. Muitos insetos possuem omatídios com superfícies externas lisas. Por que alguns insetos têm omatídios com pequenas protuberâncias cônicas na superfície externa? A física envolvida nessas protuberâncias também está presente nos aviões invisíveis e nos revestimentos das janelas duplas e triplas.

Figura 6-44 / Item 6.117 As protuberâncias que existem nos olhos de alguns insetos diminuem a quantidade de luz refletida.

Resposta Uma medida das propriedades ópticas de um material é o índice de refração, que está relacionado à velocidade da luz no material. Quando a luz encontra a interface de dois meios com diferentes índices de refração, parte da luz é refletida e a outra parte penetra no segundo meio. Assim, por exemplo, se um feixe luminoso incide em uma placa de vidro, parte da luz é refletida na interface ar–vidro. Reflexão semelhante acontece na interface ar–omatídio do olho de um inseto, já que o índice de refração dos omatídios é maior que o do ar. Assim, normalmente parte da luz que incide nos omatídios de um inseto é refletida e não participa do processo de visão. Entretanto, os omatídios com protuberâncias refletem muito menos luz, permitindo que uma quantidade de luz maior penetre nos omatídios. A vantagem das protuberâncias está em sua forma cônica, ou seja, no fato de que sua largura aumenta de forma gradual (Fig. 6-44). Assim, ao entrar em um omatídio, a luz não encontra uma descontinuidade no índice de refração, mas um índice de refração que aumenta gradualmente à medida que a luz penetra na protuberância. Esse aumento gradual diminui a quantidade de luz refletida e, portanto, aumenta a quantidade de luz que penetra no olho. A reflexão em janelas com várias placas de vidro pode produzir imagens múltiplas dos objetos que estão do lado de fora. Se a janela faz parte da torre de controle de um aeroporto ou da cabine de um avião, essas imagens podem levar a sérios erros de interpretação. Nos climas frios, a reflexão da luz em uma janela significa menos luz disponível para aquecer o interior do aposento. Para diminuir a reflexão nesses dois casos, as placas de vidro podem ser revestidas por uma película de plástico com protuberâncias. Uma das razões pelas quais os aviões invisíveis são difíceis de detectar no radar é que as superfícies são cobertas de protuberâncias feitas de materiais que absorvem as ondas de radar. Se a superfície fosse plana, apenas parte das ondas de radar seriam absorvidas e o restante seria refletido. (A situação seria semelhante ao que acontece quando a luz incide em uma placa de vidro fumê: embora boa parte da luz seja absorvida, a quantidade de luz refletida é suficiente para revelar a presença do vidro.) A superfície de um avião invisível possui protuberâncias separadas por distâncias menores que o comprimento de onda das ondas de radar, que são uma forma de microondas. Quando a onda de radar avança ao longo de uma protuberância, é gradualmente absorvida e com isso uma quantidade menor das ondas é refletida para o detector do aparelho de radar.

6.118 • Plantas iridescentes As plantas de uma floresta tropical úmida passam o tempo todo à sombra. Isto pode explicar a iridescência azulada de algumas samambaias e plantas floríferas da região. As folhas de outras plantas possuem um brilho aveludado que é produzido por células epiteliais convexas. Qual é a vantagem dessas estruturas para a sobrevivência das plantas em condições de baixa iluminação?

Resposta O azul luminescente das samambaias deve-se à interferência da luz refletida por camadas com diferentes propriedades ópticas. Mais especificamente, camadas alternadas possuem altos e baixos valores do índice de refração, uma medida da velocidade da luz no material. A espessura das camadas também varia alternadamente. O resultado é que as camadas se comportam como um conjunto de películas finas. As ondas da extremidade azul do espectro emergem aproximadamente em fase (em sincronismo) e se reforçam mutuamente, de modo que vemos uma cor azulada. As ondas transmitidas na extremidade vermelha do espectro continuam a se propagar através das camadas aproximadamente em fase e se reforçam mutuamente, de modo que a luz vermelha é transmitida para o interior da folha

(para os cloroplastos onde ocorre a fotossíntese). Esse arranjo parece aumentar a quantidade de luz absorvida por uma folha em relação à quantidade que seria absorvida se não houvesse interferência. As frutas de algumas plantas também possuem um azul iridescente causado por reflexão da luz em finas camadas e conseqüente interferência. As células epiteliais convexas das folhas que possuem um brilho aveludado têm a forma de uma lente e focalizam a luz nos cloroplastos, que ficam mais abaixo. Essa focalização aumenta consideravelmente a quantidade de luz que chega aos cloroplastos, possibilitando que a planta sobreviva em condições de baixa iluminação. (O brilho, um efeito colateral, é o resultado da reflexão da luz na superfície lateral das células.) A folha pode também possuir uma película iridescente para reduzir a quantidade de luz refletida. Em outros tipos de folhas, a reflexão da luz é minimizada pela forma das células. Essas células não focalizam a luz, mas ainda assim aumentam a quantidade de luz que chega aos cloroplastos.

6.119 • Combate à falsificação: tintas que mudam de cor Os governos do mundo inteiro fazem o possível para se manter à frente dos falsários, que usam as tecnologias mais modernas para falsificar notas bancárias. Algumas medidas de segurança usadas para dificultar o trabalho dos falsários são os fios de segurança magnéticos e as marcas d’água especiais (ambos os quais podem ser vistos ao se olhar uma cédula contra a luz) e a microimpressão (que consiste em imprimir pontos pequenos demais para serem reproduzidos por um escâner). A característica das notas mais difícil de imitar é provavelmente a mudança de cor que resulta do uso de tintas de cor variável. Assim, por exemplo, o “20” que existe no canto inferior direito do verso de uma nota americana de 20 dólares é impresso com uma tinta de cor variável. Se você olha de frente para o número, ele é vermelho ou dourado. Se você inclina a nota e olha para ela obliquamente, a cor muda para verde. Uma máquina copiadora pode duplicar as cores apenas de um ponto de vista e, portanto, é incapaz de reproduzir essa mudança de cor. O que produz a mudança de cor das tintas de cor variável?

Resposta A mudança de cor das tintas de cor variável usadas em notas bancárias deve-se à interferência causada por pequenas lâminas de várias camadas dispersas na tinta comum. A luz que penetra na tinta chega à lâmina e atravessa finas películas de cromo (Cr), fluoreto de magnésio (MgF2) e alumínio (Al). As camadas de Cr funcionam como espelhos parciais, a camada de Al funciona como um espelho melhor e as camadas de MgF2 se comportam como películas de sabão. O resultado é que os raios luminosos refletidos nas diferentes interfaces atravessam novamente a tinta comum e sofrem interferência antes de chegarem ao olho do observador. Diferentes cores podem sofrer interferência construtiva, dependendo da espessura L das camadas de MgF2. Nas notas impressas nos Estados Unidos, o valor de L é escolhido para que a interferência produza a cor vermelha ou dourada quando a nota é observada perpendicularmente. Quando a nota é observada obliquamente, a interferência é construtiva para a cor verde. A mudança para outro comprimento de onda se deve ao fato de que a luz precorre um caminho maior ao passar pelas placas inclinadas. Assim, a cor varia de acordo com o ângulo de observação. Outros países usam lâminas com outras combinações de películas finas que produzem cores diferentes em suas notas. Hoje em dia, as tintas de cor variável já são vendidas em lojas especializadas.

6.120 • Saturação de cor em pétalas de flores As cores de muitas flores variam de uma pétala para outra quando as pétalas estão na flor, mas quando você arranca as pétalas e as coloca sobre uma mesa, lado a lado, verifica que são todas da mesma cor. O que produz a variedade de cores no ambiente natural?

Resposta Quando as pétalas são colocadas lado a lado em uma superfície plana, espalham a luz apenas uma vez. Esse espalhamento tende a remover algumas cores da luz, que são absorvidas por moléculas da pétala. Assim, por exemplo, uma pétala vermelha remove a extremidade azul do espectro e é por isso que é vista como vermelha. Entretanto, se a luz é espalhada apenas uma vez, como acontece com as pétalas arrancadas, apenas um pouco do azul do espectro é removido e a cor da pétala é um vermelho não-saturado (vermelho-claro). A situação é semelhante se as pétalas ficam no mesmo plano quando estão na flor. Nesse caso, elas também espalham a luz apenas uma vez. A situação é diferente se as pétalas estiverem muito próximas e possuírem inclinações diferentes. Nesse caso, a luz é espalhada várias vezes antes de chegar ao observador. Na verdade, podemos dizer que as pétalas formam uma “armadilha de luz”. Como cada espalhamento tende a remover certas cores e deixar outras, as cores restantes se tornam mais saturadas (mais puras). Além disso, a saturação é diferente de pétala para pétala ou mesmo em regiões diferentes da mesma pétala.

6.121 • O brilho amarelo da faia-preta No outono, quando as folhas ficam amarelas, por que as folhas da faia-preta têm um amarelo mais vivo quando são observadas na direção genérica do Sol do que quando são observadas na direção oposta?

Resposta Quando as folhas da faia-preta ficam amarelas, tendem a absorver a extremidade azul do espectro visível, deixando vermelha a extremidade, sejam observadas na direção do Sol, sejam observadas na direção oposta. Quando são observadas na direção do Sol, todas as folhas removem com a mesma eficiência a extremidade azul do espectro, de modo que a luz que atravessa as folhas é de um amarelo muito vivo. Quando as folhas são observadas na direção oposta, nem todas as folhas removem com a mesma eficiência a extremidade azul do espectro. Quando a luz é espalhada pela superfície superior das folhas, quase todo o azul é absorvido. Quando, porém, a luz é espalhada pela superfície inferior, o azul é pouco absorvido e, portanto, permanece na luz espalhada. Quando as folhas estão na direção oposta à do Sol, algumas folhas apresentam a superfície de cima ao observador e outras apresentam a superfície de baixo. Por causa do azul espalhado pelas folhas que apresentam a superfície de baixo, o amarelo não é tão vivo como no caso em que as folhas são observadas na direção do Sol.

6.122 • A cor dos olhos Qual é o mecanismo responsável pela cor dos olhos humanos: azul, verde e castanho? Por que algumas pessoas nascem com olhos azuis e depois a cor muda para castanho?

Resposta Os olhos azuis são causados pelo espalhamento preferencial do azul por proteínas, gorduras e outras partículas no material aquoso da íris. A cor é visível quando existe uma camada escura atrás do material. Se a camada traseira for mais clara ou se existirem pigmentos na superfície da íris, o azul não é percebido e os olhos parecem castanhos. Os olhos são verdes se existir um pigmento que reduz o branco ao amarelo, porque o espalhamento de uma combinação de azul e amarelo é visto como verde. O azul dos olhos pode mudar com a idade se as partículas no interior da íris aumentarem de tamanho o suficiente para espalhar igualmente todas as cores, em vez de espalhar preferencialmente a luz azul.

6.123 • Azul de frio Por que as pessoas de pele clara ficam azuis quando estão com frio? Por que, quando essas pessoas fazem a barba, ficam com a pele azulada? Por que as veias são azuis e não vermelhas? Afinal de contas, o sangue é vermelho, e não azul.

Resposta Algumas partículas na superfície das pessoas de pele clara espalham mais a luz azul do que as outras cores. Entretanto, o tom azulado é tão fraco que só pode ser visto contra um fundo escuro. Quando uma pessoa que tem muitos pêlos no rosto é observada logo depois de fazer a barba, o azul pode ser visto contra o fundo escuro dos cotos dos pêlos debaixo da pele. Quando uma pessoa de pele clara é exposta ao frio, o fluxo de sangue nos capilares diminui tanto que a pele perde a costumeira coloração rosada e o que se pode ver é a luz azul espalhada. O mesmo fenômeno faz com que a pele dos cadáveres fique azulada.

Figura 6-45 / Item 6.123 (a) A pele espalha tanto a luz azul como a luz vermelha, mas a luz vermelha penetra mais fundo. (b) Uma veia absorve grande parte da luz vermelha; apenas uma pequena fração da luz vermelha é espalhada de volta para o ar.

As veias parecem azuis porque a luz vermelha penetra na pele mais profundamente do que a luz azul. Para compreender por que isso faz diferença, considere a luz espalhada por duas regiões da pele. Como mostra a Fig. 6-45, na região a não existe uma veia nas proximidades da pele e na região b existe uma veia. Na região a, uma certa quantidade de luz azul é espalhada de volta para a superfície e uma certa quantidade de luz vermelha é espalhada de volta para a superfície. Na região b, a quantidade de luz azul espalhada de volta para a superfície é a mesma, já que a luz azul não penetra na pele o suficiente para chegar à veia. Entretanto, a luz vermelha chega até a veia e é parcialmente absorvida pelo sangue. Assim, a quantidade de luz vermelha espalhada de volta para a superfície é menor na região b do que na região a. Como as duas regiões são vizinhas, comparamos subconscientemente as cores. Objetivamente, temos quantidades iguais de luz azul nas duas regiões e menos luz vermelha na região b. Por causa da falta de vermelho, percebemos a região b como mais azul do que a região a. Assim, a veia abaixo da região b parece azul. Em outras palavras, é o cérebro que colore as veias de azul.

6.124 • Figuras de speckle Em muitas superfícies fortemente iluminadas, é possível ver figuras granuladas (figuras de speckle) formadas por pontos claros e escuros, muitas vezes de cores vivas. Experimente primeiro uma superfície lisa e preta. Depois de aprender a reconhecer o padrão, você poderá observá-la em outras superfícies, tais como metal polido ou mesmo uma unha. As figuras são bem mais visíveis se a fonte luminosa for um laser. Se você observa a figura de speckle produzida por um laser e move a cabeça de um lado para outro, a figura pode se mover no mesmo sentido, no sentido oposto ou permanecer no mesmo lugar. O que determina o tipo de movimento que você percebe? Em alguns casos, a figura pode mudar continuamente, mesmo que você permaneça parado. Encha parcialmente uma colher de leite (não use leite desnatado) e observe-a à luz do Sol. Na borda do leite, você verá pontos coloridos que não param de se mover. Se uma maçã vermelha ou um tomate maduro forem iluminados com luz de um laser de hélio–neônio, a figura de speckle na superfície da fruta também está sempre mudando. O que produz essas figuras?

Resposta As figuras de speckle são produzidas pela interferência das ondas luminosas refletidas por uma superfície. As ondas se aproximam da superfície mais ou menos em fase, mas a situação pode mudar após a reflexão por causa de irregularidades microscópicas na superfície. Assim, por exemplo, as ondas luminosas refletidas por um ponto ligeiramente mais baixo da superfície percorrem um caminho ligeiramente maior para chegar ao olho do observador do que as ondas refletidas por um ponto vizinho ligeiramente mais alto. Assim, dependendo das circunstâncias, as ondas que chegam ao observador podem estar em fase ou fora de fase e, portanto, podem se reforçar ou se cancelar. Isso significa que alguns pontos da superfície vão parecer mais claros do que outros. Você não vê esse tipo de figura quando ilumina uma superfície com uma lâmpada porque, nesse caso, a luz é emitida aleatoriamente em vários pontos do espaço pelos átomos de um filamento (no caso de uma lâmpada incandescente) ou pelos átomos de um gás e do revestimento interno da lâmpada (no caso de uma lâmpada fluorescente). Assim, as ondas que iluminam a superfície podem estar em fase em um certo instante e fora de fase no instante seguinte. Isso faz com que a figura de speckle varie tão depressa que não pode ser percebida e você veja apenas uma superfície iluminada uniformemente. Para observar uma figura de speckle, devemos utilizar uma fonte luminosa coerente (ondas cuja fase permanece aproximadamente constante ao longo de toda a sua extensão). Na prática, isto significa que é preciso usar luz solar (que é parcialmente coerente) ou a luz de um laser. Embora a emissão de luz por parte do Sol seja obviamente aleatória, o Sol está tão distante que se comporta como um ponto luminoso, o que torna sua luz coerente. Se você é míope, a figura de speckle produzida por um laser parece estar mais próxima do que a superfície de observação porque, na ausência de informações a respeito da distância real, a focalização natural do olho faz a figura parecer mais próxima. Se você move a cabeça em uma direção, a figura de speckle parece se mover no sentido oposto. Ilusão semelhante acontece quando você coloca um dedo entre um dos olhos e uma lâmpada. Gire a cabeça para um lado, mantendo o dedo parado. Como você sabe que é mais fácil um dedo se mover do que uma lâmpada, você tem uma forte impressão de que o dedo se moveu no sentido contrário ao do movimento da sua cabeça. Se você é hipermétrope, a figura de speckle parece estar mais distante do que a superfície de observação porque seu olho se ajusta automaticamente para ver objetos distantes. Nesse caso, se você gira a cabeça para um lado, a figura distante parece se mover no mesmo sentido. Se você tem visão normal, o movimento aparente da figura de speckle depende da cor da luz, já que cores diferentes sofrem desvios diferentes ao penetrarem no olho e, portanto, a distância atribuída a essas cores é diferente. Alguns pesquisadores propuseram o uso de figuras de speckle para realizar exames de vista em pacientes, como, por exemplo, crianças muito pequenas, que não sabem ler as letras usadas no exame tradicional.

No caso do leite, o movimento das figuras de speckle provavelmente se deve a duas causas: (1) a evaporação na borda do leite faz o líquido circular; (2) mesmo sem essa circulação, as moléculas estão sujeitas ao movimento browniano, uma agitação térmica que as faz colidir aleatoriamente umas com as outras. Os dois tipos de movimento alteram continuamente a maneira como o leite espalha a luz. Para que a figura de speckle seja observada, a camada de leite deve ser fina; se não for assim, a luz será espalhada várias vezes antes de deixar o leite e as fases das ondas perderão a coerência. Nesse caso, o leite será simplesmente branco. A figura de speckle cinética observada na superfície de maçãs e tomates provavelmente se deve ao ligeiro movimento de organelas pigmentadas (plastídios) na casca da fruta. Com o movimento, a distância entre os plastídios varia, alterando a interferência das ondas luminosas espalhadas em direção ao observador e, portanto, a figura de speckle.

6.125 • As cores de objetos iluminados por lâmpadas fluorescentes Quando você faz girar um objeto iluminado por uma lâmpada fluorescente (uma moeda, por exemplo), o objeto pode ficar momentaneamente vermelho ou amarelo. A experiência funciona melhor se o objeto for observado contra um fundo escuro e iluminado por uma única lâmpada fluorescente. As mesmas cores podem ser vistas em uma corda que balança enquanto é iluminada por uma lâmpada fluorescente: partes da mancha criada pelo movimento da corda ficam coloridas. Também é possível ver cores na fina camada de água corrente que cerca o lugar em que a água de uma torneira se choca com a cuba de uma pia. O que produz essas cores?

Resposta Uma lâmpada fluorescente é excitada por uma corrente de elétrons, que se chocam com átomos de vapor de mercúrio no interior da lâmpada. As colisões excitam os elétrons dos átomos de mercúrio, que logo retornam ao estado normal, emitindo luz verde, azul e ultravioleta. A luz ultravioleta é absorvida por um revestimento de fósforo na superfície interna da lâmpada, que emite quase imediatamente uma radiação na faixa da luz visível, processo conhecido como fluorescência. Para que a luz produzida pela lâmpada seja branca, é escolhido um fósforo que emite luz vermelha e amarela, complementando assim a luz verde e azul emitida pelos átomos de mercúrio. A impressão para o olho humano é de que uma lâmpada fluorescente emite luz branca de maneira contínua. Entretanto, a emissão de luz verde e azul pelos átomos de mercúrio varia muitas vezes por segundo porque a corrente que atravessa a lâmpada é alimentada pela rede elétrica residencial, cuja tensão varia de intensidade e de sentido muitas vezes por segundo. Entre esses surtos de emissão por parte dos átomos de mercúrio, a lâmpada emite apenas o vermelho e o amarelo do fósforo. Assim, se um objeto que está girando for iluminado por uma lâmpada fluorescente, suas reflexões para várias orientações flutuam entre o branco e o vermelho ou amarelo: o observador vê as cores aparecerem e desaparecerem periodicamente. A situação é semelhante no caso de uma corda que balança e das pequenas ondas que se propagam na superfície da água perto do ponto de impacto, abaixo de uma torneira.

6.126 • Óculos de sol polarizados Por que os óculos de sol polarizados combatem melhor a ofuscação do que os óculos escuros? Por que os óculos polarizados possibilitam ver melhor debaixo d’água para que você possa, por exemplo, lançar o anzol na direção de um peixe? Tire os óculos, mantenha uma das lentes na frente de um olho, feche o outro olho e olhe obliquamente para a superfície de uma poça d’água. Faça girar a lente. Por que a poça desaparece para algumas orientações da lente?

Resposta A luz é uma onda formada por campos elétricos e magnéticos variáveis. Esses campos são sempre perpendiculares à direção de propagação da luz; se fossem representados por pequenas setas, o desenho seria como o de um galho de roseira com espinhos se projetando para os lados. O termo polarização da luz se refere à orientação do campo elétrico, ou seja, das setas que representam o campo elétrico. Se a luz é não-polarizada, essas setas podem apontar em qualquer direção perpendicular à direção de propagação da luz. Se a luz é polarizada, essas setas apontam sempre na mesma direção, primeiro em um sentido e depois no outro. Essa luz polarizada é especial, já que a luz produzida pelas fontes comuns, como a luz das lâmpadas e a luz solar, é não-polarizada. Um modo pelo qual a luz não-polarizada pode se tornar polarizada é através da reflexão em certos tipos de superfície. Assim, por exemplo, se a luz do Sol (não-polarizada) é refletida no asfalto ou em um corpo d’água, ela se torna horizontalmente polarizada. Isto significa que o campo elétrico da luz passa a ser horizontal (as setas passam a apontar exclusivamente na horizontal). Quando nossos olhos interceptam essa luz, vemos um ponto brilhante no asfalto ou na superfície da água no ponto de reflexão e dizemos que ficamos ofuscados. Esse tipo de luz cansa a vista e diminui a visibilidade em muitas atividades, tais como a prática de esportes e a direção de automóveis.

É possível reduzir a ofuscação usando óculos escuros, cujas lentes são feitas de plástico colorido, mas esses óculos também reduzem a quantidade total de luz, o que pode ser indesejável se você está preocupado com os carros que vêm em sua direção. Os óculos de sol polarizados são diferentes: suas lentes são feitas de filtros polarizadores que bloqueiam (absorvem) a luz horizontalmente polarizada e, assim, evitam a ofuscação causada pelo reflexo da luz no asfalto e na água. Como são levemente coloridos, também diminuem a quantidade total de luz, mas não muito. Assim, permitem uma visão clara sem que você fique ofuscado. Com um desses óculos, você pode avistar um peixe debaixo d’água, o que não era possível por causa do reflexo da luz do Sol na água. Se você faz girar um dos filtros polarizadores enquanto olha para uma poça d’água, a poça desaparece quando o filtro bloqueia a luz horizontalmente polarizada refletida por ela. Alguns insetos aquáticos usam a luz horizontalmente polarizada como uma indicação da presença de água. Essa luz é mais intensa quando o Sol está aproximadamente 40o acima do horizonte; talvez seja por isso que os insetos aquáticos costumam voar em busca de água de manhã cedo e ao entardecer, e não no meio do dia.

6.127 • Polarização da luz do céu Por que a maior parte da luz do céu sem nuvens é polarizada? Por que a luz que vem de algumas regiões é não-polarizada? Por que a luz que vem das nuvens em geral é não-polarizada? (Isto torna mais fácil fotografar as nuvens: basta colocar um filtro polarizador na frente da lente e fazê-lo girar até obter o maior contraste possível entre as nuvens e o céu.) Por que a luz que vem das nuvens é polarizada se as nuvens estão a leste na hora do crepúsculo ou a oeste na hora da alvorada? Se você olhar para as nuvens de cima, a bordo de um avião, e estiver usando óculos de sol polarizados, poderá ver uma faixa clara na parte superior das nuvens, que se dirige para o ponto do horizonte diametralmente oposto ao Sol. Se você faz girarem as lentes dos óculos, a faixa desaparece. O que produz a faixa?

Resposta Embora a luz solar direta seja não-polarizada, a luz proveniente da maior parte do céu é polarizada, porque foi espalhada por moléculas do ar. Suponha, por exemplo, que o Sol esteja baixo no céu, a oeste, e a luz que chega até você foi espalhada por uma molécula acima da sua cabeça. O campo elétrico da luz que você intercepta está orientado na direção norte–sul e dizemos que a luz está horizontalmente polarizada na direção norte–sul. A maior parte da luz do resto do céu está polarizada na direção norte–sul quando o Sol está baixo. Entretanto, o espalhamento por parte das moléculas do ar deixa partes do céu perto dos horizontes setentrional e meridional com uma polarização vertical. A luz proveniente da região do céu diametralmente oposta ao Sol (o horizonte a leste, se o Sol estiver baixo no oeste) deveria estar polarizada na direção norte–sul (Fig. 6-46a). Entretanto, a luz proveniente dessa região é verticalmente polarizada porque é mais iluminada pela luz proveniente do resto do horizonte (que é verticalmente polarizada) do que pela luz direta do Sol. Existe um ponto, um pouco acima do ponto diametralmente oposto ao Sol, no qual não existe polarização. Esse ponto corresponde à transição da região próxima do horizonte em que a luz está verticalmente polarizada para a região mais afastada do horizonte em que a luz está horizontalmente polarizada na direção norte–sul.

Figura 6-46 / Item 6.127 (a) Polarização da luz do céu. Pode-se fabricar um dispositivo para observar a polarização da luz do céu (b) colando-se fita adesiva em uma folha de plástico polarizador e (c) dispondo-se os triângulos em círculo.

Aqui está um dispositivo simples para se observar a polarização do céu. Cole tiras paralelas de fita adesiva transparente em uma folha de plástico polarizador, com as tiras fazendo 45o com a direção de polarização. (Se a direção de polarização não estiver indicada na folha, olhe para uma poça d’água através da folha. Gire a folha até a poça desaparecer. Nesse instante, a direção de polarização é a direção vertical.) Acrescente uma segunda camada às tiras. Em seguida, corte a folha em 12 triângulos isósceles com o ângulo menor igual a 30o e a base paralela à direção de polarização da folha (Fig. 6-46b). Arrume os triângulos em forma de círculo, com os ângulos menores no centro, em cima de uma placa de vidro, com o lado que contém a fita adesiva voltado para você (Fig. 6-46c). Use a menor quantidade possível de fita adesiva para prender a base de cada triângulo à placa de vidro e cole um pedaço muito pequeno de fita no centro do círculo. Quando você observa o céu através

desse dispositivo, com os triângulos do lado oposto do vidro, a polarização da luz do céu faz com que alguns triângulos fiquem amarelos e outros fiquem azuis. Embora as cores não sejam fáceis de explicar, a razão pela qual elas aparecem é a seguinte: quando a luz polarizada entra no dispositivo, passa primeiro pela fita adesiva, que faz a direção do campo elétrico da luz girar em torno da direção de propagação. O ângulo de rotação varia de acordo com a cor. Quando a luz sai da fita, algumas cores têm a polarização correta para passar pelo filtro polarizador e você vê essas cores. As outras cores são absorvidas pelo filtro e não são vistas. A luz solar espalhada pelas nuvens em geral é não-polarizada porque a luz sofre múltiplos espalhamentos que eliminam qualquer vestígio da polarização inicial. Se você observa (ou fotografa) as nuvens através de um filtro polarizador e gira o filtro até que a luz do céu transmitida pelo filtro seja a menor possível, o contraste das nuvens com o céu fica muito maior. Quando, porém, o Sol está baixo, nuvens que estão 30o a 40o acima do ponto diametralmente oposto ao Sol podem apresentar polarização horizontal. Parte da luz solar que ilumina diretamente essas nuvens penetra nas gotas d’água das nuvens, é refletida na superfície traseira das gotas e sai das gotas. Essa luz forma um arco-íris branco, que é semelhante a um arco-íris exceto pelo fato de que as gotas d’água são pequenas demais para separar as cores. Mesmo assim, o processo polariza a luz, como acontece em um arco-íris. Quando o Sol está pouco acima ou pouco abaixo do horizonte, as nuvens que estão no horizonte oposto são iluminadas principalmente pela luz espalhada do horizonte, e não por luz solar direta. Essa luz espalhada é quase toda verticalmente polarizada e, portanto, a luz proveniente dessas nuvens também é verticalmente polarizada. Se você observar essas nuvens de um avião usando óculos polarizados, verá que os óculos deixam passar a luz verticalmente polarizada e essas nuvens são relativamente claras. Por outro lado, os óculos filtram parcialmente a luz proveniente das nuvens de cada lado, que é nãopolarizada; assim, essas nuvens parecem relativamente escuras. O resultado é que as nuvens claras parecem formar uma faixa clara que se dirige para o ponto do horizonte diametralmente oposto ao Sol. Segundo a lenda, os viquingues localizavam o Sol, quando não estava visível, com o auxílio de uma pedra mágica. Hoje se acredita que eles usavam um pedaço de cordierita. Quando a luz atravessa esse mineral, a cor da pedra depende da direção da polarização da luz. O observador viquingue olhava através da pedra para uma parte do céu livre de nuvens e fazia a pedra girar. Durante a rotação, a cor da pedra variava entre amarelo-claro e azul-escuro. Com experiência e depois de examinar várias partes do céu, o observador podia determinar a localização do Sol, mesmo que estivesse abaixo do horizonte, como era freqüente nas altas latitudes exploradas pelos viquingues.

6.128 • O senso de direção das formigas A formiga do deserto, Cataglyphis fortis, vive nas planícies do deserto do Saara. Quando uma dessas formigas sai em busca de alimento, pode percorrer mais de 500 metros e mudar de direção centenas de vezes. Além disso, o terreno é uma vastidão de areia, sem pontos de referência. Mesmo assim, quando a formiga decide voltar, segue em linha reta para o formigueiro. Como a formiga consegue se orientar no deserto?

Resposta Quando a formiga do deserto deixa o formigueiro, mantém um registro da distância percorrida (funciona como um hodômetro) e das mudanças de rumo. A formiga é capaz de determinar a direção em que está se movendo porque seus olhos são sensíveis à luz polarizada. Assim, pode monitorar a polarização da luz do céu e determinar a orientação do seu corpo em relação à direção da luz polarizada. O fato realmente notável a respeito do cérebro da formiga é que ele é capaz de atualizar continuamente as informações de distância e direção, o que possibilita à formiga conhecer, a cada instante, a direção que a levará de volta para casa. Cada etapa da viagem é tratada como um vetor (com módulo, direção e sentido) e a formiga realiza o que é, na verdade, uma soma de vetores. A formiga também pode usar pontos de referência, quando existem, mas, em experimentos nos quais os pontos de referência foram mudados de lugar antes que a formiga iniciasse a viagem de volta, metade das formigas não se deixou enganar e recorreu ao método da soma de vetores para encontrar o caminho de casa. A soma de vetores é um desafio para muitos estudantes; uma formiga do deserto, com um cérebro de apenas 0,1 miligrama, é capaz de executá-la instintivamente.

6.129 • Polarização: cores e manchas Em uma manhã de inverno, procure camadas finas de gelo (chamadas flores de gelo) em uma janela voltada para o Sol. Espere parte do gelo derreter e formar uma poça no beiral ou despeje você mesmo um pouco de água (Fig. 6-47). Olhe para o reflexo do gelo na poça. Por que o gelo parece colorido? O plástico usado para embrulhar alimentos é incolor; mas, se você introduzir um pedaço de plástico esticado entre dois filtros polarizadores, ele exibe várias cores. Se você girar um dos filtros em torno do centro, as cores mudarão. O mesmo

acontece se, em vez de plástico, você usar várias camadas de fita adesiva. O que produz essas cores?

Figura 6-47 / Item 6.129 O reflexo de cristais de gelo em uma poça d’água pode ser colorido.

Algumas obras de arte interessantes foram produzidas com o uso das cores exibidas pelo plástico ao ser iluminado com luz polarizada. Em algumas dessas obras, um mosaico de cores é obtido com o uso de pedaços de fita adesiva de diferentes espessuras e orientações. O mosaico é iluminado pela luz de um projetor na frente do qual existe um filtro polarizador e o observador vê o mosaico através de outro filtro polarizador. Alguns artistas também produziram instalações tridimensionais usando plásticos e filtros polarizadores. A luz que atravessa o plástico é polarizada por um filtro colado no plástico ou pelo espalhamento das moléculas do ar, nos casos em que a instalação é iluminada com luz natural. É possível ver cores semelhantes quando se olha pela janela de um avião com óculos polarizados durante o vôo. Se você já usou óculos de sol polarizados para dirigir, pode ter notado manchas claras, em geral formando desenhos simétricos, no vidro traseiro dos carros à frente. O que produz essas manchas?

Resposta Um pedaço de gelo, uma folha de plástico esticada, uma fita adesiva transparente e o vidro traseiro de um carro são materiais birrefringentes. Quando a luz polarizada atravessa um material birrefringente, a direção de polarização sofre uma rotação no plano perpendicular à direção de propagação. O ângulo de rotação varia de acordo com a cor: o vermelho sai do material com uma certa polarização, o amarelo com uma outra polarização e assim por diante. Se, depois de atravessar um material birrefringente, a luz passa por um filtro polarizador, o filtro deixa passar as cores que possuem a polarização “correta” e bloqueia as cores que possuem a polarização “errada”. Assim, embora tenhamos começado com luz branca, acabamos com luz colorida. No caso das flores de gelo, a luz inicial polarizada é a luz do céu e o material birrefringente é o gelo. Entretanto, depois de atravessar o gelo, a luz não passa por um filtro polarizador. Em vez disso, é refletida em uma poça d’água. Essa reflexão acontece apenas para luz horizontalmente polarizada, e é a luz com essa polarização que chega aos olhos do observador. No caso da janela traseira do carro da frente, a luz solar torna-se horizontalmente polarizada quando é refletida pela superfície externa ou interna da janela inclinada. Como os óculos de sol polarizados do motorista do carro de trás bloqueiam a luz polarizada, a janela deveria parecer relativamente escura. Entretanto, parte da luz refletida pela superfície interna passa por regiões birrefringentes do vidro e a polarização muda. As regiões birrefringentes são regiões em que o vidro, por segurança, foi colocado sob tensão durante o processo de fabricação. O vidro é resfriado rapidamente por jatos de ar, a partir do estado líquido, para ficar sob tensão. Assim, se o vidro se quebra, a tensão faz com que ele se divida em pedaços pequenos, relativamente inofensivos, em vez de perigosos cacos. É nas regiões que foram atingidas pelos jatos de ar que a polarização da luz refletida pela superfície interna sofre uma mudança. Como os óculos de sol polarizados do motorista do carro de trás deixam passar parte dessa luz, essas regiões são mais claras que o resto do vidro.

As regiões sob tensão podem ser vistas, mesmo sem o uso de óculos de sol polarizados, se a luz que ilumina o vidro traseiro for a luz do céu (polarizada) e não a luz direta do Sol (não-polarizada). Quando a luz polarizada que atravessa a janela é refletida na superfície interna, parte dessa luz passa pelas regiões sob tensão e sua polarização é alterada. Como os reflexos dessa luz e da luz refletida pelo resto da superfície interna têm intensidades diferentes, o motorista do carro de trás pode ver manchas claras na janela de trás. Manchas semelhantes podem ser vistas em uma janela de avião.

6.130 • Espumas e pós incolores Por que a espuma da cerveja é branca e não da cor da cerveja? Por que a maioria dos materiais coloridos perde a cor quando é reduzido a pó? Por que o vidro deixa de ser transparente quando é moído? Por que um grão de sal é transparente, mas o mesmo não acontece com uma camada de sal com mais que alguns grãos de espessura?

Resposta A luz que atravessa uma cerveja amarela perde boa parte das outras cores porque estas são absorvidas pelas moléculas da cerveja. Na cerveja preta, a absorção é ainda maior. Nos dois casos, a espuma é branca porque a maior parte da luz é refletida várias vezes na superfície das bolhas em vez de atravessar o líquido. (Embora as películas de que são feitas as bolhas apresentem cores de interferência quando são observadas de perto, essas cores normalmente se sobrepõem para produzir luz branca quando a cerveja é vista a uma distância normal.) A cor da maioria dos materiais deve-se à absorção seletiva de outras cores no interior do material. Quando o material é transformado em pó, a luz incidente é espalhada por um grande número de superfícies e muito pouca luz penetra nos grãos de pó o suficiente para sofrer absorção seletiva. Assim, se os grãos de pó são iluminados com luz branca, a luz branca é espalhada de volta. Uma placa de vidro é transparente por causa do que acontece com a luz no interior do vidro. Parte da luz é refletida na superfície, mas a maior parte penetra no material. As moléculas do vidro espalham a luz em todas as direções, mas apenas a luz espalhada em uma certa direção sofre interferência construtiva (as ondas se reforçam mutuamente). A luz espalhada em outras direções sofre interferência destrutiva (as ondas se cancelam mutuamente). Se o vidro é reduzido a pó e o pó é reunido em uma pilha, a luz que incide na pilha é refletida muitas vezes, em direções aleatórias, antes de sair do outro lado. Assim, se o seu olho intercepta essa luz, não pode formar uma imagem da fonte. É por isso que o vidro em pó não é transparente. Por razões semelhantes, um grão de sal é transparente, mas em uma pilha de grãos de sal o número de reflexões é tão grande que o material deixa de ser transparente.

6.131 • Veludo preto lustroso; verniz lustroso Por que o veludo preto tem um lado lustroso e um lado fosco? Dado que um material preto absorve todas as cores, como o veludo preto pode ser lustroso? Por que o verniz é lustroso? Por que as costas de um espelho são de metal e não de outro material, como papel, por exemplo?

Resposta O lado lustroso do veludo preto tem um padrão regular de sulcos paralelos. Se você observar o tecido ao longo de uma linha perpendicular aos sulcos, a luz é refletida em direção aos seus olhos pelos lados dos sulcos. O lustro do tecido é maior quando ele é visto nessa orientação, com a fonte luminosa do outro lado da peça. Embora os pigmentos presentes nos fios absorvam parte da luz, a luz refletida pelo arranjo regular de sulcos é suficiente para tornar o tecido lustroso. Esse arranjo de sulcos não existe no lado fosco. A luz que incide no lado fosco é espalhada pelos fios em muitas direções, o que elimina a possibilidade de uma reflexão muito forte em uma determinada direção. O lustro do verniz e de certas tintas deve-se à reflexão especular da luz na superfície externa. Em uma tinta semifosca, parte da luz penetra na camada de tinta, onde é espalhada em muitas direções pelos pigmentos da tinta. A combinação dessa luz espalhada com a luz refletida pela superfície externa diminui o brilho da tinta. Tanto o papel como o revestimento metálico de um espelho possuem irregularidades, mas as irregularidades do revestimento metálico são pequenas em comparação com o comprimento de onda da luz. Em conseqüência, a luz espalhada pelo revestimento metálico pode formar uma imagem no olho do observador. As irregularidades do papel são maiores e espalham a luz em tantas direções que ela não pode mais formar uma imagem no olho do observador. É por isso que o revestimento dos espelhos é feito de metal e não de papel.

6.132 • As cores do vidro verde e do veludo verde

Se você olha para o filamento de uma lâmpada incandescente através de uma placa de vidro verde, a cor que você vê, naturalmente, é o verde. Que cor você vê se olha para o filamento através de três ou mais placas de vidro verde? Se você estender um pedaço de veludo verde no chão e observar o tecido à luz do Sol, a cor que você verá, naturalmente, será o verde. Que cor você vê se, em vez de esticado, o tecido estiver amarfanhado? Por que a borda das dobras praticamente não tem cor? Se o veludo faz parte do vestuário de uma pessoa, por que algumas partes parecem ser verdes (como era de se esperar) e outras parecem ser brancas?

Resposta Em muitos tipos de vidro verde (mas, talvez, nem todos), a cor que você vê depende da espessura do vidro. No caso de uma única placa, a luz que você vê é predominantemente verde, mas uma certa quantidade de luz vermelha também atravessa o vidro. Quando você aumenta a espessura do vidro acrescentando mais placas, a intensidade da luz transmitida diminui tanto para a luz verde como para a luz vermelha, mas a intensidade da luz verde diminui mais rapidamente com o aumento da espessura do que a intensidade da luz vermelha. Usando três placas, você provavelmente vai observar que a luz ficou esbranquiçada, já que nesse caso as proporções de verde e vermelho na luz transmitida são semelhantes e a combinação é percebida como a cor branca. No caso de um número ainda maior de placas, o vermelho começa a predominar e a luz assume um tom avermelhado. Fenômeno semelhante acontece com o veludo verde, que reflete principalmente a luz verde mas também reflete uma certa quantidade de luz vermelha. Quando o veludo está esticado, a luz que chega ao observador é refletida apenas uma vez pelo veludo e é percebida como verde. Quando o veludo apresenta muitas dobras, porém, a luz é refletida várias vezes no interior das dobras antes de chegar ao observador. A cada reflexão, a intensidade tanto da luz verde como da luz vermelha diminui, mas a da luz verde diminui mais rapidamente. Se a luz for refletida um número suficiente de vezes no interior das dobras, assumirá uma tonalidade avermelhada. Quando você olha para um vestido de veludo verde iluminado com luz branca, seus olhos recebem dois tipos de luz. A luz mais forte é a que foi espalhada pelas pontas das fibras do veludo. Como essa luz praticamente não penetrou no tecido, não é absorvida pelos pigmentos do material e, portanto, permanece branca. A luz que penetra no veludo e volta à superfície é mais fraca e mais verde. Ao pintar um vestido ou uma cortina de veludo, os artistas levam em conta esse efeito, pintando as bordas de branco e o resto do veludo de um verde mais escuro.

6.133 • Pele aveludada e maciez aparente É possível saber se a pele de uma pessoa é macia simplesmente olhando para ela, especialmente se os raios luminosos provenientes de uma fonte atrás da pessoa tangenciam a pele antes de chegar ao observador. A simulação de uma pessoa em computador pode não levar em conta esse fato; nesse caso, a pele parece dura, revelando claramente que se trata de uma simulação. Você recebe o mesmo tipo de informação visual de maciez quando observa um pêssego contra a luz. A informação é bem diferente daquela que você recebe quando observa, digamos, uma nêspera; em conseqüência, percebe que a superfície do pêssego é mais macia. Qual é essa informação visual?

Resposta A informação a respeito da pele é a luz espalhada pela parte mais externa do objeto, seja a camada superior da pele, sejam os pêlos que se projetam para fora da pele. Mesmo quando a pele parece desprovida de pêlos, provavelmente possui pêlos curtos e macios, que são quase imperceptíveis quando a pele é observada de frente. Quando, porém, a luz tangencia a pele, parte da luz é espalhada por esses pêlos, emprestando à borda da pele uma aura difusa. Nosso cérebro interpreta essa aura como significando “macia”. Uma borda sem essa aura tem contornos mais bem definidos e parece “dura”. Os pêlos da casca de um pêssego, quando iluminados do ângulo correto, também produzem uma aura em torno da fruta, fazendo-a parecer macia. A nêspera, cuja casca não tem pêlos, parece dura. O espalhamento da luz pela pele de certas mulheres jovens empresta à pele uma aparência tão macia que se costuma dizer que elas têm pele de pêssego. Em um efeito semelhante, se alguém se coloca à frente de uma fonte luminosa, como o Sol, o alto da cabeça é envolvido por uma aura.

6.134 • Festas com vaselina e Twinkies No MIT — Massachusetts Institute of Technology, algumas festas de estudantes são realizadas à luz de lâmpadas de luz negra (ultravioleta). Os estudantes besuntam o corpo com vaselina ou recheio de Twinkies. Além disso, podem beber água tônica, que

tem um estranho brilho azulado. Por que esses produtos brilham quando são iluminados com luz ultravioleta?

Resposta Algum componente da vaselina e do recheio de Twinkies é fluorescente, absorvendo a luz ultravioleta e emitindo luz visível na extremidade azul do espectro visível. Desconfio que o componente é um hidrocarboneto aromático. A vaselina é usada como fixador para fazer certos hidrocarbonetos aromáticos aderirem a objetos que a polícia deseja rastrear enquanto passam pelas mãos de criminosos. Ao manipular o objeto, a pessoa suja as mãos de vaselina e os hidrocarbonetos aromáticos podem ser detectados mais tarde se o suspeito for iluminado com luz ultravioleta. A água tônica adquire um brilho azul quando é iluminada com luz ultravioleta porque contém quinino, que absorve luz ultravioleta e emite luz azul.

6.135 • As cores da carne Por que um pedaço de carne crua é vermelho-vivo na superfície e arroxeado no interior? Por que o interior de um rosbife é vermelho-vivo quando a carne é malpassada e marrom quando a carne é bem passada? Por que as embalagens de bacon, presunto e carne em conserva são protegidas da luz nos supermercados? Por que a carne curada às vezes adquire uma camada fluorescente amarela ou verde? O que produz a iridescência que às vezes é observada na carne?

Resposta A maior parte da cor da carne deve-se ao pigmento mioglobina que, no animal vivo, recolhe nos músculos o oxigênio transportado pela hemoglobina a partir dos pulmões. Quando o animal é abatido, o suprimento de oxigênio é eliminado e a mioglobina assume uma cor arroxeada. Quando a carne é cortada e exposta ao ar, o oxigênio do ar se combina com a mioglobina da superfície exposta, formando oximioglobina, que é da cor vermelho-vivo. Pouco abaixo da superfície, onde o oxigênio está presente mas é menos abundante, a oximioglobina se dissocia e o ferro que ela contém se oxida, passando para o estado férrico. O complexo resultante, chamado metamioglobina, é marromavermelhado. No interior da carne, onde existe pouco oxigênio, a mioglobina permanece arroxeada. Os açougueiros em geral embrulham a carne em embalagens que deixam passar o ar, para que a superfície conserve a cor vermelho-vivo que os consumidores se acostumaram a associar à carne fresca. Quando a carne é aquecida, a mioglobina no interior da carne se combina com oxigênio para formar oximioglobina. (É por isso que quando você corta um rosbife malpassado o interior é vermelho-vivo.) Enquanto isso, a mioglobina da superfície começa a se desnaturar e o ferro se oxida, deixando a superfície marrom. Se o aquecimento continua, essa mudança de cor se estende ao interior da carne. Em carnes curadas, tais como presunto, bacon e carne em conserva, o óxido nítrico se combina com a mioglobina para formar nitrosomioglobina, um pigmento rosado. Se a carne for iluminada em presença de oxigênio, a luz dissocia o óxido nítrico da mioglobina e o ferro se oxida para formar metamioglobina, que empresta à carne uma cor marrom-avermelhada. Às vezes, outra parte do complexo se oxida, formando pigmentos fluorescentes amarelos ou verdes. Para evitar essa desagradável mudança de cor, as embalagens de carne curada são protegidas da luz nos supermercados. Outra solução é embalá-las a vácuo para eliminar o oxigênio. A iridescência da carne fresca ou cozida deve-se à interferência da luz espalhada pelas miofibrilas (fibras musculares) na superfície da carne ou pouco abaixo da superfície. Quando a luz incide perpendicularmente às miofibrilas, a luz espalhada em um ponto pode interferir na luz espalhada em outro ponto, com uma interferência construtiva ocorrendo em geral para a luz verde. A iridescência, principalmente na parte verde do espectro visível, acontece quando a superfície se desidrata. Não está necessariamente associada a contaminação bacteriana nem significa necessariamente que a carne esteja velha demais para ser consumida.

6.136 • Canecos de cerveja Por que os canecos de cerveja têm paredes e fundo muito grossos? Pode ser que isso proporcione uma “boa empunhadura”, mas será que também dá a ilusão de que o caneco contém mais cerveja?

Resposta As paredes grossas realmente criam a ilusão de que o caneco contém mais cerveja por causa da refração sofrida pela luz ao passar da cerveja para o vidro e do vidro para o ar. Assim, por exemplo, um raio proveniente do lado esquerdo da cerveja é desviado em direção ao centro do campo visual (Fig. 6-48). Quando o observador vê o raio, prolonga mentalmente o raio para trás e conclui que ele se originou mais à esquerda do que de fato ocorreu, o que o leva a imaginar que existe mais cerveja no caneco. A espessura e a curvatura do vidro também podem alterar a

profundidade aparente da cerveja. Em casos extremos, a capacidade real de um caneco pode ser apenas metade da capacidade aparente.

Figura 6-48 / Item 6.136 Caneco planejado para dar a impressão de que contém mais cerveja, visto de cima.

6.137 • “Lava mais branco” De acordo com os anúncios de um conhecido detergente, o produto “lava mais branco”. Existe algum fundo de verdade nessa alegação?

Resposta O detergente em questão deixa um branqueador fluorescente na roupa que converte parte da luz ultravioleta do Sol em luz azul, aumentando assim a quantidade de luz visível refletida pela roupa. O produto “lava mais branco” no sentido de que, após a lavagem, a roupa emite uma quantidade maior de luz visível. O branqueador é necessário porque o detergente deixa um corante amarelo na roupa. O corante absorve luz azul. Sem o uso do branqueador, a roupa ficaria amarelada depois da lavagem. Antes da invenção dos branqueadores, os detergentes continham, além do corante amarelo, um corante azul. O uso de um segundo corante praticamente eliminava o amarelo das roupas, mas deixava um desagradável tom cinzento.

6.138 • A moeda que desaparece Coloque uma moeda no fundo de uma jarra cheia de água e olhe para a moeda através da superfície da água, tal como mostra a Fig. 6-49. Se você colocar a mão no lado mais distante da jarra, a imagem da moeda não muda. Entretanto, se a sua mão estiver molhada, a moeda desaparece. Por que o fato de sua mão estar molhada faz diferença?

Resposta Você consegue ver inicialmente a moeda porque a luz que ela emite é refletida na direção dos seus olhos pela superfície externa do lado mais distante da jarra. Se você coloca a mão seca no lugar em que ocorre essa reflexão, nada muda, por duas razões: (1) sua mão faz contato com o vidro em poucos pontos; (2) apenas uma pequena quantidade de luz passa do vidro para a sua pele. Entretanto, se a sua mão estiver molhada, a área de contato da água com o vidro é muito grande. Além disso, quando o contato é estabelecido, boa parte da luz passa do vidro para a água, já que as propriedades ópticas dos dois materiais são semelhantes. Assim, a maior parte da luz que anteriormente era refletida pelo lado mais distante da jarra passa a ser absorvida pela sua mão molhada e a imagem da moeda desaparece.

Figura 6-49 / Item 6.138 Moeda vista através da superfície da água em uma jarra.

6.139 • Óculos de sol e smog Se você observar uma montanha coberta por smog em um dia ensolarado usando óculos de sol polarizados, pode fazer a imagem da montanha ficar mais forte ou mais fraca simplesmente inclinando a cabeça. Muitos acidentes topográficos da montanha também podem aparecer e desaparecer. O que causa essas mudanças?

Resposta Quando você observa uma montanha coberta por smog contra um fundo de céu claro, recebe três tipos de luz: (1) luz espalhada por moléculas de ar da atmosfera (essa luz é polarizada); (2) luz espalhada por partículas de smog entre você e a montanha (se os diâmetros das partículas estiverem na faixa de 0,5 a 5,0 mícrons, essa luz é parcialmente polarizada na mesma orientação que a luz do céu; (3) luz refletida pela montanha (essa luz é fracamente polarizada em uma grande variedade de orientações). A quantidade de luz que você recebe dessas fontes depende da orientação dos óculos. Suponha que as partículas de smog estejam dentro da faixa de tamanhos mencionada. Se você inclina a cabeça e os óculos para a esquerda ou para a direita até que a luz do céu seja a mais forte possível, os óculos deixam passar a luz proveniente das três fontes. Entretanto, a luz parcialmente polarizada espalhada pelas partículas de smog passa apenas parcialmente pelos óculos. O que você vê, portanto, é um vago contorno da montanha contra um céu muito luminoso. O contraste é suficiente para que você perceba a existência da montanha, mas a luz espalhada pelo smog esconde os acidentes topográficos. Se você inclinar a cabeça e os óculos 90o em relação à posição anterior, os óculos passarão a bloquear toda a luz proveniente do céu e a maior parte da luz proveniente das partículas de smog. Nesse caso, você poderá distinguir claramente os acidentes topográficos que estiverem orientados de modo a refletir a luz com uma polarização compatível com a orientação dos óculos de sol.

6.140 • O brilho do mar Suponha que o tempo esteja bom e você vai passear de barco em mar aberto. Suponha ainda que o mar está relativamente calmo. O reflexo da luz na água é mais forte abaixo de você ou perto do horizonte? Você vê principalmente o reflexo da luz do Sol ou da luz do céu? Para que ângulos você consegue ver objetos submersos?

Resposta Existem três fontes de luz a serem comparadas: a luz do Sol refletida pela superfície da água, a luz do céu refletida na superfície da água e a luz proveniente do interior da água. O reflexo da luz do céu é sempre mais forte perto do horizonte porque nesse caso o ângulo de incidência é tão pequeno que apenas um pequeno percentual da luz penetra na água. Em pontos mais próximos do barco, o ângulo de incidência da luz do céu é maior e, portanto, o percentual de luz refletida até os seus olhos diminui. No caso da luz do Sol, tudo depende da altura do Sol no céu. A região de reflexão se aproxima de você durante a manhã, passa por você quando o Sol está a pino e afasta-se de você durante a tarde. Fora da região de reflexão direta da luz solar e longe do horizonte, a luz dominante pode ser a que vem do interior da água. Olhando nessa direção, talvez você consiga ver objetos submersos.

6.141 • Fita azul no horizonte do mar A parte do mar perto do horizonte muitas vezes parece ser de um azul muito mais vivo ou de um cinza muito mais escuro do que o resto do mar e do que a parte do céu perto do horizonte. Em um dia claro, essa parte do mar lembra uma fita azul. A fita azul desaparece se você se deitar na praia ou olhar para o horizonte de um lugar elevado. O que produz a fita azul?

Resposta Quando você olha para a superfície da água nas proximidades do horizonte, em geral vê um reflexo do céu que está aproximadamente 30o acima do horizonte (veja a resposta anterior). Quando o céu está claro, essa parte do céu é mais azul que o céu perto do horizonte, que é esbranquiçado, e o contraste entre o horizonte esbranquiçado e o reflexo azul torna o azul mais vivo. Se a parte refletida do céu for cinzenta, a faixa é cinzenta, o que ainda contrasta com o céu esbranquiçado das proximidades do horizonte. A faixa azul ou cinzenta desaparece quando você deita na praia porque as ondas bloqueiam sua visão do mar nas proximidades do horizonte. A faixa também desaparece se você olhar para o horizonte de um lugar elevado, mas não sei explicar por quê.

6.142 • O cair da noite Por que o crepúsculo é mais rápido nos trópicos do que nas altas latitudes?

Resposta A duração do crepúsculo é o tempo entre o instante em que o Sol começa a se pôr e o instante em que o centro da imagem do Sol passa por um certo ângulo abaixo do horizonte. (No caso do crepúsculo civil, esse ângulo é 6o; no caso do crepúsculo náutico, é 12o; no caso do crepúsculo astronômico, é 18o.) A rapidez com que o Sol passa de uma dessas posições para a outra depende da forma como a trajetória aparente do Sol no céu intercepta o horizonte. A baixas latitudes, essa trajetória é vertical ou quase vertical e, portanto, o Sol passa rapidamente de uma posição para a outra, o que resulta em um crepúsculo rápido. A altas latitudes, a trajetória aparente do Sol faz um ângulo pequeno com o horizonte e, portanto, o Sol leva mais tempo para passar de uma posição para a outra, o que resulta em um crepúsculo mais demorado.

6.143 • Contrail colorido O contrail (rastro de condensação produzido por aviões) em geral é branco. Por que, às vezes, o contrail é colorido? Por que a parte colorida do contrail às vezes parece acompanhar o avião? Afinal, as gotas que formam o contrail não se movem tão depressa.

Resposta Ao se formarem e depois crescerem ao absorver umidade do ar, as gotas podem passar por uma faixa de tamanhos na qual separam as cores da luz solar por difração (um tipo de espalhamento). Quando as gotas ultrapassam um certo tamanho, as cores desaparecem. Assim, pode haver uma certa posição atrás do avião que corresponde ao tamanho certo para que as gotas produzam um contrail colorido. As gotas mais próximas do avião são pequenas demais; as gotas mais afastadas do avião são grandes demais.

6.144 • Nuvens nacaradas As nuvens nacaradas possuem cores belas, delicadas. Muito raras, são normalmente observadas apenas em altas latitudes e apenas antes do nascer do Sol ou depois do pôr-do-sol. Isso significa que devem estar muito alto, já que são iluminadas pelo Sol quando o solo abaixo está às escuras. As nuvens normais, mais baixas, são coloridas apenas nas bordas ou quando estão na frente do Sol ou da Lua, mas as nuvens nacaradas podem exibir um belo espetáculo de cores mesmo quando estão a mais de 40° de distância do Sol. O que produz as cores das nuvens nacaradas? Se as cores se devem a gotas d’água, como pode haver água líquida na baixíssima temperatura (cerca de –80°C) correspondente à altitude em que se encontram?

Resposta As cores das nuvens nacaradas devem-se ao espalhamento da luz solar e à separação das cores por pequenas gotas d’água e trióxido de enxofre no interior das nuvens. Pequenas gotas de água pura podem permanecer líquidas a temperaturas de até –40°C. Quando combinadas com trióxido de enxofre, as gotas podem permanecer líquidas a temperaturas ainda mais baixas, como as encontradas nas altitudes de 18 a 22 quilômetros em que as nuvens nacaradas se formam. Se uma gota em uma nuvem nacarada absorve mais água e aumenta de tamanho, transforma-se em gelo e deixa de contribuir para a separação de cores. Acredita-se que a cauda branca que muitas nuvens nacaradas possuem seja formada por essas gotas congeladas.

6.145 • Luz púrpura do crepúsculo O que produz a luz púrpura do crepúsculo, que aparece por alguns instantes a oeste, 15 a 40 minutos após o pôr-do-sol, depois

que as outras cores do crepúsculo desapareceram? O mesmo mecanismo é responsável pela segunda luz púrpura que pode aparecer até duas horas depois? Como o Sol pode iluminar o céu tanto tempo depois de se pôr?

Resposta A luz púrpura do crepúsculo é uma combinação da luz vermelha espalhada pelo ar em pequenas altitudes com a luz azul espalhada pelo ar em grandes altitudes. A parte vermelha é a luz solar que tangencia a curvatura da Terra, passando pelo ar denso das pequenas altitudes. Nesse percurso, a luz perde boa parte do azul por causa do espalhamento das moléculas do ar. Quando a luz finalmente chega ao observador, é dominada pelo vermelho. A parte azul é a luz solar que percorre uma trajetória mais longa, passando pela camada de ozônio que existe a grandes altitudes. No caminho, a luz perde boa parte do vermelho por causa da absorção das moléculas de ozônio. Quando essa luz finalmente chega ao observador, é dominada pelo azul. Assim, quando você olha para o céu acima do ponto em que o Sol se pôs, observa uma combinação de vermelho e azul que é interpretada como púrpura. Em alguns lugares, essa luz púrpura pode iluminar picos de montanha depois que o Sol se pôs, no que é conhecido como alpenglow ou brilho das montanhas. A causa da segunda luz púrpura, muito rara, ainda é desconhecida. Talvez se trate da luz espalhada por uma camada de partículas que existe em grandes altitudes e que, portanto, permanece iluminada pela luz solar durante muito tempo depois do pôr-do-sol. Essa tênue camada de partículas está a uma altitude de cerca de 85 quilômetros e é composta por resíduos de cometas e asteróides capturados pela Terra.

6.146 • Ondas no céu Existem vários relatos de ondas claras e escuras atravessando as nuvens. Em alguns casos, as ondas parecem ser aleatórias; em outros, parecem ser periódicas. Durante a Segunda Guerra Mundial, quando estavam combatendo perto da Linha Siegfried, soldados americanos viram sombras escuras atravessar nuvens brancas do tipo cirros. Essas sombras eram arcos cujos centros estavam no lado alemão. O que produz essas ondas?

Resposta A causa dessas ondas ainda não é conhecida, mas acredita-se que sejam produzidas por ondas sonoras que interagem com os cristais de gelo das nuvens. Como os soldados americanos não ouviram nenhum som, a fonte dessas ondas devia estar muito distante; talvez se tratasse de artilharia pesada ou grandes explosões atrás das linhas inimigas. Uma onda sonora provocaria uma reorientação temporária dos cristais, mudando a intensidade da luz refletida. (De acordo com uma teoria mais antiga, as ondas sonoras poderiam, em vez disso, alterar momentaneamente o grau de condensação do vapor d’água no interior de uma nuvem e, assim, mudar a refletividade da nuvem.)

6.147 • Linhas que cortam a chuva distante Quando você vê uma chuva distante iluminada pelo Sol, pode notar que existe uma linha horizontal separando a chuva mais alta, mais clara, da chuva mais baixa, mais escura. O que produz essa linha?

Resposta Em geral, a temperatura do ar diminui com a altitude. A linha corresponde à altitude à qual os cristais de gelo que estão caindo derretem e se transformam em gotas de chuva. Como os cristais refletem melhor a luz do Sol do que as gotas de chuva, a região acima da linha é mais clara.

6.148 • Noites claras Se você mora em uma região que não é poluída à noite por um excesso de luzes, pode observar que algumas noites são excepcionalmente claras, mesmo quando a Lua não está no céu. Essas noites parecem estar associadas a chuvas de meteoros, como se os meteoros pudessem fazer o céu brilhar. Entretanto, a duração da luz produzida pela queima de um meteoro da atmosfera terrestre é pequena demais para explicar o fenômeno. Existe algum outro fator envolvido?

Resposta Quando um meteoro atravessa a atmosfera a uma altitude de aproximadamente 90 quilômetros, aquece o ar ao longo de sua trajetória. Na região aquecida é produzido óxido de nitrogênio, que reage com o oxigênio para produzir dióxido de nitrogênio. O processo emite luz verde, amarela e vermelha. Um olho adaptado à escuridão é sensível a esse tipo de luz. Assim, uma chuva de meteoros pode tornar claro o céu noturno.

6.149 • Luz zodiacal, gegenschein e outras luzes noturnas Em uma noite escura, sem luar, longe das luzes da cidade, você pode ver duas formas curiosas de luzes no céu. A luz zodiacal é um triângulo leitoso que pode ser visto no oeste por algumas horas após o pôr-do-sol ou no leste antes do amanhecer. As observações vespertinas são melhores perto do equinócio de primavera e as observações matutinas são melhores perto do equinócio de outono. O triângulo é quase tão luminoso quanto a Via-Láctea e está no plano da órbita da Terra. O gegenschein é uma luz muito fraca que algumas pessoas conseguem ver no ponto anti-solar do céu (ponto diametralmente oposto à posição do Sol). A luz é tão fraca que sua observação exige uma escuridão quase total e olhos bem adaptados à falta de luz. Mesmo assim, em geral só é possível observar o fenômeno com a visão periférica, ou seja, varrendo o céu com os olhos em vez de fixá-los no gegenschein. No Hemisfério Norte, a observação provavelmente é melhor em outubro, porque nesse mês o número de estrelas no céu é menor. Esporadicamente, foram vistas grandes regiões luminosas no céu noturno, que, no entanto, não eram auroras. O que produz essas luzes noturnas?

Resposta A luz zodiacal e o gegenschein são produzidos pelo espalhamento da luz solar por poeira interplanetária, provavelmente deixada por cometas. O espalhamento é maior no sentido de propagação da luz, menor no sentido oposto e menor ainda para outros ângulos. A poeira responsável pela luz zodiacal está no interior da órbita da Terra. Você pode ver a luz espalhada por ela quando ainda está visível, pouco depois do pôr-do-sol ou pouco antes do amanhecer; nas duas situações, você vê a luz que foi espalhada aproximadamente no sentido de propagação. No meio da noite, talvez você consiga ver a luz solar espalhada para trás pela poeira situada do lado de fora da órbita da Terra. Essa luz é o gegenschein. As regiões luminosas provavelmente são produzidas a grandes altitudes por moléculas de hidroxila (OH) excitadas por ondas de densidade (variações periódicas de pressão e temperatura, também chamadas ondas de gravidade) que atravessam a região.

6.150 • Reflexos no mar perto do horizonte Quando for à praia e o mar estiver agitado, observe os reflexos da luz no mar perto do horizonte. Se o mar fosse perfeitamente plano, refletiria a luz do céu como um grande espelho horizontal. Entretanto, como as ondas possuem superfícies inclinadas, refletem várias partes do céu. A parte que é refletida por uma onda tem um ângulo acima da horizontal que é duas vezes maior que a inclinação da onda. Estranhamente, o reflexo que você vê perto do horizonte em geral é a parte do céu que está cerca de 30o acima do horizonte. Esse ângulo sugere que a inclinação média das ondas é 15o. Entretanto, as medidas revelam que as ondas raramente têm uma inclinação tão grande. Por que, então, o ângulo de reflexão é da ordem de 30o?

Resposta Considere as ondas perto do horizonte. Ondas pequenas, com pequenas inclinações, refletem a parte do céu próxima do horizonte. Embora essas ondas sejam numerosas, sua contribuição para o reflexo observado é pequena porque a área de cada uma é pequena (elas se comportam como pequenos espelhos). Ondas um pouco maiores, com inclinações intermediárias, refletem partes do céu que estão mais afastadas do horizonte. Embora essas ondas um pouco maiores sejam menos numerosas que as ondas pequenas, sua contribuição para o reflexo observado é maior porque a área de cada uma é maior. Ondas muito maiores são tão raras que sua contribuição pode ser desprezada, mesmo que a área de cada uma seja muito grande. O resultado total é que os reflexos observados equivalem a uma superfície coberta de ondas com uma inclinação de 15o, que produzem um reflexo da parte do céu que está 30o acima do horizonte.

6.151 • Usando uma esfera de metal maciça para focalizar a luz Em 1818, Augustin Jean Fresnel participou de uma competição da Academia Francesa com um artigo no qual propunha um modelo ondulatório para a luz. Simeon D. Poisson, um dos membros da comissão julgadora, criticou duramente o modelo, tentando demonstrar que era absurdo com o seguinte experimento imaginário: se um objeto opaco de seção reta circular (uma bola, por exemplo, ou uma moeda) fosse iluminado por um facho luminoso, o modelo ondulatório de Fresnel previa a existência de um ponto claro no centro da sombra projetada pelo objeto em uma tela de observação. Dominique F. Arago, outro membro da comissão, decidiu testar a previsão, apesar da conclusão aparentemente absurda. Surpreendentemente, o ponto claro central foi observado. Por ironia, o ponto hoje é conhecido como ponto de Poisson ou ponto de Arago, embora nenhum dos dois acreditasse inicialmente na sua existência.

Desde que o ponto foi descoberto, vários pesquisadores têm usado objetos opacos, tais como uma pequena esfera de metal usada em rolamentos, para focalizar a luz. Se um objeto focaliza a luz o suficiente para formar uma imagem, é possível fotografar essa imagem, como se tivesse sido produzida pela lente de uma câmara. Qual é a causa do ponto de Poisson? Como é possível um objeto opaco como uma esfera de metal focalizar a luz?

Resposta Suponha que a fonte da luz seja um ponto luminoso distante e que a focalização seja produzida por uma esfera opaca. Quando as ondas luminosas passam pela esfera, são difratadas na sua superfície, espalhando-se em todas as direções, incluindo a sombra da esfera. Se for colocada uma tela a uma distância considerável da esfera, a luz forma uma pequena figura de difração, constituída por anéis concêntricos claros e escuros. O centro da figura é um ponto claro porque as ondas que passam de um lado da esfera percorrem até o centro a mesma distância que as ondas que passam do lado oposto, de modo que as ondas chegam ao centro em fase e sofrem interferência construtiva. O primeiro anel escuro corresponde a uma região em que existe interferência destrutiva. Considere a parte superior do anel. As ondas que passam por baixo da esfera devem, para chegar a esse ponto, percorrer uma distância maior do que aquela que percorrem as ondas que passam por cima da esfera. A distância a mais corresponde a metade do comprimento de onda e, portanto, as duas ondas (a que passa por baixo da esfera e a que passa por cima) sofrem interferência destrutiva ao chegarem a esse ponto da tela. O resto da figura deve-se a outros casos de interferência construtiva e destrutiva. Em alguns lugares, as ondas provenientes de lados opostos da esfera percorrem distâncias cuja diferença é igual a um número inteiro de comprimentos de onda e interferem construtivamente, já que estão em fase. Em outros lugares, a diferença entre as distâncias é igual a um número ímpar de meios comprimentos de onda e as ondas interferem destrutivamente, já que chegam à tela com fases opostas. Quando uma esfera forma uma imagem de um objeto, cada parte clara do objeto se comporta como um ponto luminoso e cria um ponto luminoso ligeiramente deslocado perto do centro da figura de difração. O conjunto desses pontos claros reproduz a forma do objeto e constitui, portanto, uma imagem do objeto.

6.152 • Uma rotação rápida em um espelho curvo Encurve uma folha de plástico espelhado para formar parte de uma superfície cilíndrica. Coloque esse espelho curvo na horizontal, com o lado côncavo para cima, e observe sua imagem. Ajuste a curvatura do plástico e a distância para que a imagem fique invertida. (Isso significa que a distância entre você e o espelho é maior que a distância focal do espelho.) Se você fizer o espelho girar 90o, colocando-o na posição vertical, sua imagem fica direita, ou seja, sofre uma rotação de 180o. Por que a rotação da imagem é duas vezes maior que a rotação do cilindro?

Resposta Imagine que o cilindro seja composto por dois espelhos: um é reto e paralelo ao eixo do cilindro, enquanto o outro é curvo e perpendicular ao primeiro. A imagem produzida pelo espelho reto não é invertida (é semelhante à imagem produzida por um espelho plano), enquanto a imagem produzida pelo espelho curvo é invertida. Para qualquer orientação do cilindro, você vê na verdade os dois tipos de imagens: uma imagem real invertida na frente do espelho (formada pelo espelho curvo) e uma imagem virtual mais fraca, não-invertida, atrás do espelho (formada pelo espelho reto). Para uma orientação do espelho, um tipo de imagem domina; para a outra orientação, domina o outro tipo. Assim, quando você gira o espelho de uma orientação para a outra, a imagem que você percebe muda de um tipo para outro, dando a ilusão de que a imagem girou 180o.

6.153 • A cor da fumaça de cigarro Por que a fumaça que sai da extremidade acesa de um cigarro é azulada, enquanto a fumaça exalada pelo fumante é branca?

Resposta As partículas de fumaça que saem da ponta acesa do cigarro são suficientemente pequenas para espalhar mais azul que as outras cores em direção ao observador. Quando a fumaça é inalada, a condensação de água nas partículas as faz aumentar de tamanho, de modo que, ao serem exaladas, elas espalham igualmente todas as cores.

6.154 • Como seria a visão humana em ultravioleta O limite da nossa visão na extremidade azul do espectro deve-se, em parte, à absorção da luz pela córnea e pelo cristalino. Se você sofre uma cirurgia de catarata e o cristalino é substituído por uma lente artificial, passa a ver um pouco de luz ultravioleta. Suponha que você só conseguisse enxergar os raios ultravioleta. Como seria a sua visão do mundo?

Resposta As cidades seriam escuras à noite, já que o vidro das lâmpadas e das janelas absorve os raios ultravioleta. Pela mesma razão, os óculos corretores se comportariam como óculos escuros. As sombras seriam fracas e você não poderia ver muito longe, já que as moléculas do ar espalham mais a luz ultravioleta do que a luz visível. Assim, os objetos distantes pareceriam borrados e as sombras seriam parcialmente iluminadas pela luz espalhada pelo ar.

6.155 • Alfabeto difratado Se a luz de um laser passa por uma pequena abertura em forma de uma letra do alfabeto, é possível prever a figura de difração resultante? Dada uma fotografia da figura de difração, é possível dizer qual foi a letra usada para obter a figura? Se você dispõe de um laser, pode preparar um quebra-cabeça baseado em uma coleção de figuras de difração criadas por diferentes letras. Para resolver o quebra-cabeça, a pessoa terá que ler uma palavra escrita com as figuras de difração.

Resposta Em muitos casos, é possível descobrir qual é a letra considerando a direção na qual a luz foi difratada. Quando é difratada por uma borda, a luz se espalha perpendicularmente à borda. Assim, por exemplo, a letra O difrata a luz em todas as direções porque sua borda é aproximadamente circular, enquanto a letra Z difrata a luz para cima, para baixo e também na direção perpendicular ao segmento central da letra.

6.156 • Um jogo de reflexos Prenda dois pequenos espelhos retangulares com fita adesiva de modo que possam girar em torno de uma aresta comum e coloque o conjunto sobre um desenho. A combinação do desenho original com os reflexos pode criar padrões interessantes. Suponha que um desenho seja formado apenas por um ou dois segmentos de reta que se estendem de um espelho até o outro, formando assim uma linha contínua com suas imagens. Ajustando-se a posição e o ângulo dos espelhos, é possível gerar várias formas geométricas. Mantendo o ângulo menor que 180o, determine o número mínimo de segmentos de reta necessários para criar um quadrado, um octógono e uma estrela de seis pontas. Que tal uma estrela dentro de uma estrela, com as pontas das duas estrelas alinhadas ou intercaladas? Qual o número mínimo necessário para se criar um quadrado com um quadrado menor em cada vértice?

7.1 • O aumento da Lua A ilusão mais notável do nosso dia-a-dia é o aumento aparente do tamanho da Lua quando ela está próxima do horizonte. Esse aumento é produzido pela refração (desvio) dos raios luminosos pela atmosfera, por uma mudança na distância da Lua ou por uma ilusão de óptica?

Resposta A Lua parece 50% maior quando está próxima do horizonte do que quando está a pino por causa de uma ilusão de óptica. Na verdade, a Lua ocupa um ângulo de cerca de 0,5o do campo visual de um observador terrestre, seja qual for a sua posição no céu. Se a refração da luz pela atmosfera é apreciável, ela tende a reduzir a largura da Lua quando está próxima do horizonte, não a aumentá-la. Além disso, a distância entre a Terra e a Lua não muda de modo apreciável durante as poucas horas que a Lua leva para percorrer o céu. A ilusão de óptica que leva ao aumento aparente da Lua provavelmente tem várias causas simultâneas. A causa principal parece ser o fato de que comparamos uma Lua próxima do horizonte com a paisagem à nossa frente — e, com base nessa paisagem, a Lua parece maior. É fácil eliminar esse efeito: dê meia volta, incline o corpo e olhe para a Lua por baixo das pernas. Você vai ter a impressão de que a Lua diminuiu de tamanho, presumivelmente porque agora a paisagem, que passou a ocupar a parte superior do seu campo visual, não é mais usada como termo de comparação. Outras causas possíveis envolvem a inclinação dos olhos para ver a Lua e a simultânea falta de convergência exigida dos olhos ao se observar um objeto muito distante.

7.2 • A forma do céu O céu parece ter a forma de um hemisfério? A maioria das pessoas vê o céu como uma tigela invertida e achatada. Experimente fazer a seguinte observação: quando houver Lua em quarto crescente durante o dia, imagine uma reta que a divida em duas partes iguais. Como a parte visível da Lua é a parte iluminada pela luz solar, a reta deve apontar na direção do Sol. Entretanto, isso não acontece, porque sua percepção da forma do céu distorce a reta que você traça mentalmente ao longo do céu. O facho de luz produzido por um holofote é retilíneo, mas, quando é visto de lado, parece descrever uma curva por causa da forma aparente do céu. Por que o céu não parece um hemisfério perfeito?

Figura 7-1 / Item 7.1

Resposta A forma aparente do céu provavelmente tem muitas causas. Eis uma delas: como vemos um horizonte amplo, provavelmente atribuímos uma grande distância ao céu logo acima do horizonte. Como não vemos nada acima de nossa cabeça, provavelmente atribuímos uma distância menor ao céu porque nossos olhos relaxam naturalmente. A ilusão de que o céu tem a forma de uma tigela achatada é tão forte que o facho de um holofote parece se encurvar e uma reta extrapolada mentalmente a partir da Lua não passa pelo Sol. Nos dois casos, trata-se de uma ilusão de óptica.

7.3 • Decapitação com o ponto cego Nosso olho possui um ponto cego no qual não vemos nada. O ponto está em nosso campo de visão a cerca de 15o do centro, na direção do lado da cabeça. Para localizá-lo, tape um olho e faça passar um pequeno objeto (uma borracha de lápis, por exemplo) pelo seu campo de visão, à distância de um braço. Mantenha o olhar fixo em um ponto. Quando o objeto passar pelo ponto cego, ele desaparecerá. Quando o famoso psicólogo Karl S. Lashley era forçado a suportar um convidado irritante durante um jantar, divertia-se colocando o ponto cego na cabeça do indivíduo, decapitando-o. De acordo com uma velha história (provavelmente falsa), o rei Carlos II, da Inglaterra, também decapitava visualmente seus convidados, o que seria irônico, já que seu próprio pai tinha sido decapitado de verdade. Qual é o tamanho dessa região e por que ela existe? Por que normalmente não nos damos conta da existência do ponto cego?

Resposta A retina é coberta de cones e bastonetes sensíveis à luz, exceto na região em que o nervo óptico deixa a retina a caminho do cérebro. Como não dispõe de fotorreceptores, essa região da retina é cega. O ponto cego normalmente não é notado por várias razões. Em geral, os dois olhos estão abertos, o que permite que vejamos com um olho os objetos que estão no ponto cego do outro olho. Além disso, nossa atenção está voltada para o ponto de maior acuidade visual, a fóvea (região com a maior concentração de cones), e não para o ponto cego. Acontece também que o ponto cego muda constantemente de posição em relação aos objetos que estão sendo observados por causa de pequenos movimentos naturais do olho (sacadas) nos quais o olho gira cerca de um grau. O olho também se desloca lentamente e treme um pouco. Graças a esses movimentos, uma imagem que está no ponto cego em um dado instante logo estará em outro ponto da retina. Mesmo na ausência desses movimentos, o ponto cego não seria percebido porque o cérebro tem a capacidade de analisar as imagens dos dois lados do ponto cego e criar uma imagem no lugar do ponto cego para preencher a lacuna.

7.4 • Riscos cinzentos de manhã; pontos móveis à luz do dia Se você olhar para um quarto ensolarado logo depois de abrir os olhos de manhã, seu campo de visão provavelmente estará coberto por uma rede de riscos cinzentos. Esses riscos desaparecem rapidamente, mas podem ser produzidos à vontade com uma lanterna de bolso ou com um furo iluminado. (Cuidado para não ferir os olhos com uma luz forte demais!) Mova lentamente a lanterna de bolso em um quarto escuro ao longo do seu campo visual. Os riscos devem aparecer. Que riscos são esses, e por que desaparecem tão depressa? Uma observação parecida pode ser feita em um dia de sol. Quando olho para um céu sem nuvens, constato que meu campo visual está cheio de pontos flutuantes (que serão discutidos no próximo item) e manchas luminosas. As manchas são irregulares, com pequenas caudas desmaiadas. Posso correlacioná-las com meus batimentos cardíacos: elas se movem mais depressa

durante a sístole (contração) e mais devagar durante a diástole (dilatação). A luz azul as torna mais visíveis. As manchas aparecem em toda parte, menos na linha de visão direta (a linha que intercepta a retina na região da fóvea). O que são as manchas? Por que a luz azul as torna mais visíveis? Por que elas estão ausentes na fóvea?

Resposta Os riscos são as sombras dos vasos sanguíneos da retina, que impedem que a luz chegue aos fotorreceptores. As manchas são leucócitos que se movem no interior dos vasos. A luz azul torna as manchas mais visíveis porque as hemácias absorvem luz com um comprimento de onda de 415 nanômetros (azul), mas os leucócitos são transparentes a esse comprimento de onda. Assim, o movimento dos leucócitos se torna mais visível quando o fundo é azul. Nem os riscos nem as manchas podem aparecer na fóvea porque esta região não possui vasos sanguíneos. Como qualquer imagem que permaneça imóvel na retina deixa de ser percebida em poucos segundos, os riscos desaparecem rapidamente. Quando a luz de uma lanterna passa pelo campo visual, as sombras projetadas pelos vasos sanguíneos variam suficientemente para serem percebidas. O fato de que a luz observada através de um furo torna visíveis as sombras dos vasos sanguíneos pode explicar as estranhas observações feitas pelo astrônomo Percival Lowell quando examinou o planeta Vênus ao telescópio. Ele viu “linhas retas, como os raios de uma roda” na superfície de Vênus (isso aconteceu antes que se soubesse que a superfície de Vênus está permanentemente oculta por uma grossa camada de nuvens). Além disso, as linhas não mudavam de posição, o que parecia mostrar que Vênus voltava sempre a mesma face para a Terra. Muito estranho! As retas que Lowell viu eram provavelmente as sombras dos vasos sanguíneos no interior do seu olho. Ele observou Vênus usando apenas uma pequena parte da lente do seu grande telescópio refrator, com a máxima ampliação. A situação era equivalente a observar um objeto através de um furo: ele podia ver Vênus, mas com as sombras dos vasos sanguíneos superpostas.

7.5 • Moscas volantes e outras manchas nos olhos Quando olho para um fundo uniforme, tal como um céu sem nuvens, meu campo de visão parece cheio de pequenos pontos flutuantes e manchas informes. As manchas foram descritas no item anterior. Os pequenos pontos flutuantes em geral são círculos concêntricos, mas também vejo objetos maiores, de forma alongada. Um objeto relativamente grande no meu olho direito dificulta-me a leitura com esse olho. As moscas volantes, como são chamadas, podem ser vistas com mais nitidez se o olho for iluminado por uma pequena fonte luminosa. Costumo usar um furo em um pedaço de cartolina iluminado por uma lanterna, mas qualquer fonte luminosa de pequenas dimensões, tal como um clipe de metal iluminado pela luz do sol, produz bons resultados. (Tomo muito cuidado quando aproximo qualquer objeto do olho.) Quando uso o furo no pedaço de cartolina, vejo outros objetos interessantes, como pontos claros que não exibem os círculos concêntricos normalmente observados nas moscas volantes. Às vezes vejo pontos escuros e um padrão estacionário de linhas escuras que se irradiam a partir do centro do meu campo visual. Logo depois de piscar o olho, vejo pontos brilhantes e um padrão horizontal de linhas claras e escuras. Às vezes vejo também manchas claras estacionárias ou manchas onduladas flutuantes. Quando abro os olhos ao acordar, às vezes vejo um ou mais pontos que são muito mais escuros ou (mais raramente) muito mais claros que o resto do meu campo visual. Qual é a origem desses objetos?

Resposta As moscas volantes são causadas provavelmente por irregularidades do humor vítreo (a substância transparente que preenche a maior parte do globo ocular). Não podemos ver a irregularidade em si nem a sua sombra na retina; o que vemos é a figura de difração que a irregularidade projeta na retina. Difração é um tipo de interferência que as ondas luminosas sofrem quando passam por uma abertura estreita ou encontram um pequeno obstáculo. Nesse caso, quando a luz proveniente de um furo passa por uma irregularidade do humor vítreo, a luz é difratada e projeta uma

figura de interferência na retina. A figura é formada por faixas concêntricas claras (regiões em que as ondas luminosas estão em fase e se somam) e escuras (regiões em que as ondas luminosas estão fora de fase e se cancelam). Se a irregularidade é aproximadamente circular, a figura também é circular, com um ponto claro central. Uma irregularidade alongada produz uma figura alongada. A mosca volante que vemos normalmente é uma figura de difração pouco nítida. Se você olha através de um furo, vê uma figura de difração mais nítida e pode distinguir as faixas claras e escuras. As moscas volantes se movem no campo visual porque o humor vítreo não é rígido e pode se deslocar. Algumas moscas volantes podem ser pedaços de humor vítreo que se desprenderam e flutuam na camada de líquido que existe em frente à fóvea, a depressão que existe no centro do nosso campo de visão. Também podem ser células do sangue que vazaram para o interior do olho, mas nesse caso é provável que o campo visual fique avermelhado. Como todo mundo possui moscas volantes, a presença desses objetos não é razão para que uma pessoa consulte um oculista. O número de moscas volantes costuma aumentar com a idade. Os pontos claros e o padrão de linhas claras e escuras que aparecem depois de piscar o olho devem-se a uma camada de líquido (lágrimas) do lado de fora da córnea. Irregularidades nessa camada podem focalizar os raios luminosos para produzir as regiões claras. As linhas escuras que se irradiam a partir do centro do campo visual podem ter alguma relação com a estrutura radial do cristalino. Os pontos escuros podem ser causados por pequenas regiões opacas do cristalino. Os pontos claros e escuros que algumas pessoas vêem ao acordar ainda não foram explicados.

7.6 • Halos dos postes de iluminação; auras das velas; pontas das estrelas À noite, muitas pessoas vêem anéis (halos) em volta de luzes fortes, como as lâmpadas dos postes de rua. (Quando essas fontes luminosas são vistas através de uma janela embaçada, os anéis são diferentes.) Os diâmetros dos primeiros quatro anéis (medidos em termos do número de graus do arco que ocupam no campo visual) são, aproximadamente, 2,5; 4,5; 5,5; 6,0; 9,0. Os anéis são maiores se a luz for vermelha do que se for azul. Assim, se a fonte é de luz branca, os anéis são vermelhos na borda externa e azuis na borda interna. Qual é a causa dos anéis? Algumas pinturas de Vincent van Gogh mostram anéis em torno de fontes luminosas, como o Sol em O Vinhedo Vermelho e as estrelas em Noite Estrelada. Van Gogh pintou os anéis em parte como recurso artístico, já que ajudam a passar a idéia de brilho. Entretanto, conta-se que ele via anéis em torno de fontes luminosas porque sua visão era alterada pelo uso clínico de digitális, que chegou a ingerir em doses excessivas. Por que a chama de uma vela é cercada por uma aura difusa quando a chama é observada na ausência de outras fontes luminosas? As estrelas cintilam por causa da turbulência atmosférica, mas o que produz as pontas que adornam as estrelas na maioria das imagens?

Resposta Os anéis em torno das fontes luminosas, conhecidos como halos entópticos, devem-se à difração sofrida pela luz ao passar por pequenas imperfeições do olho a caminho da retina. A difração da luz por um obstáculo é uma forma de espalhamento em que as ondas luminosas, ao encontrarem um obstáculo de pequenas dimensões, produzem uma série de anéis concêntricos, claros e escuros, com um ponto claro no centro. Os anéis claros são regiões em que as ondas luminosas se reforçam mutuamente; os anéis escuros são regiões em que as ondas luminosas se cancelam. O ponto claro central em geral não é visto, porque coincide com a imagem direta (muito mais forte) da fonte luminosa, mas o primeiro anel claro pode ser observado. Seu tamanho angular depende do tamanho da imperfeição responsável pela difração e da distância entre ela e a retina: uma imperfeição menor produz um anel maior; uma distância maior também resulta em um anel maior. Quando são vistos vários anéis, isso significa que a difração está sendo produzida por várias imperfeições de diferentes tamanhos e situadas a diferentes distâncias da retina. Não se sabe ao certo quais são as imperfeições responsáveis pela difração. Eis algumas possibilidades: células epiteliais da córnea (com 10 a 40 micrômetros de diâmetro), células endoteliais da córnea, estrias da córnea e fibras do cristalino. A difração da luz no interior do olho também é responsável pela aura em torno da chama das velas e pelas pontas que adornam as estrelas e outros objetos luminosos vistos a grande distância. As pontas das estrelas são provavelmente causadas por irregularidades das linhas de sutura (junções das fibras) na superfície frontal do cristalino.

7.7 • Fosfenos: visões psicodélicas Prisioneiros confinados em celas escuras às vezes vêem imagens luminosas chamadas fosfenos, que podem ser coloridas ou formadas por pontos coloridos. Os motoristas de caminhão também vêem essas imagens depois de olhar por muito tempo para estradas cobertas de neve. Na verdade, essas figuras aparecem sempre que o sistema visual passa muito tempo sem ser

estimulado. As enxaquecas e algumas drogas alucinógenas, tais como o LSD, podem produzir belos fosfenos. A rápida aceleração da cabeça experimentada por pilotos e astronautas também produz fosfenos. Os fosfenos também podem ser criados se você fechar o olho e comprimir de leve a pálpebra. Mudando-se a posição do dedo sobre a pálpebra, é possível produzir figuras diferentes. Aumentando-se a pressão, as figuras tornam-se mais complexas. (Não comprima a pálpebra com força suficiente para machucar o olho e evite realizar esta experiência se você usa lentes de contato.) Quando as pálpebras dos dois olhos são comprimidas simultaneamente, podem surgir figuras geométricas. Os fosfenos também aparecem quando um observador olha para uma luz piscante, tais como as luzes estroboscópicas usadas nos concertos de rock e nas discotecas. Quando olho para uma luz estroboscópica que está piscando 10 a 30 vezes por segundo, vejo figuras geométricas vivamente coloridas. (Por segurança, fecho os olhos enquanto estou voltado para o estroboscópio; a luz é suficientemente forte para atravessar as pálpebras.) Às vezes, a figura é um arranjo de quadrados em forma de tabuleiro de xadrez; às vezes, é uma série de hexágonos ou triângulos. Quando a luz está piscando muito devagar, os fosfenos se reduzem a formas onduladas; quando está piscando muito depressa, os fosfenos desaparecem totalmente. Para que eu observe formas geométricas complexas, é preciso que os dois olhos sejam iluminados. Com apenas um olho iluminado, vejo figuras simples, como linhas e ondas. Fosfenos também podem ser produzidos quando a cabeça do observador é atravessada por uma corrente elétrica fraca. (Eu jamais me submeteria a um experimento tão perigoso, que também não recomendo aos meus leitores.) As festas de fosfenos estiveram em moda no século XVIII (Benjamin Franklin participou de uma). As pessoas formavam um círculo, de mãos dadas, e recebiam uma descarga produzida por um gerador de alta tensão e baixa corrente. Toda vez que o gerador era ligado, viam fosfenos. Ainda mais estranhos (e perigosos) foram os experimentos realizados em 1819 pelo fisiologista Johannes Purkinje. Ele colocou um eletrodo na testa e outro na boca e repetidamente abriu o contato com um dos eletrodos, fazendo passar pulsos de corrente pela cabeça, que produziram imagens estáveis. O que causa os fosfenos?

Resposta Quando fechamos o olho e comprimimos a pálpebra, o humor vítreo que existe no interior do olho faz pressão sobre a retina, ativando os fotorreceptores ou fazendo com que os nervos do sistema visual enviem mensagens ao cérebro como se a retina estivesse iluminada. Assim, temos a impressão de luz mesmo que nenhuma luz esteja entrando no olho. Também vejo fosfenos quando olho para uma luz piscante. Para que eu veja figuras geométricas mais complexas, preciso estimular os dois olhos, o que significa que essas figuras são interpretações do cérebro. As formas geométricas aparecem porque os sinais ativam detectores de linhas e de formas no cérebro. Cores são criadas quando os centros detectores de cores do cérebro são ativados. (Isso significa que essa percepção de cores não se deve à detecção de cores por parte dos cones da retina.) Talvez a freqüência com que as luzes piscam coincida com o código que o cérebro usa para representar as cores. É mais provável, porém, que as cores sejam causadas pela interferência mútua de circuitos nervosos na retina e no caminho para o cérebro. Também é possível produzir fosfenos estimulando eletricamente o cérebro. Os cientistas estão usando esse fenômeno para restaurar parcialmente a visão de pessoas cegas. Uma pequena câmara de vídeo, montada em uma armação semelhante à de óculos comuns, envia sinais a um microprocessador, que gera fosfenos enviando um sinal de baixa corrente diretamente ao cérebro. Assim, por exemplo, se a câmara de vídeo detecta um objeto na parte esquerda da imagem, o cérebro é estimulado de tal modo que a pessoa vê um fosfeno no lado esquerdo do campo visual. Assim, os objetos que estão em volta da pessoa são representados por fosfenos e a pessoa adquire uma espécie de “visão”. Fosfenos induzidos por drogas parecem estar representados em algumas figuras rupestres que datam do Paleolítico. Os fosfenos podem ter sido parte da experiência visual de um membro da tribo (talvez um xamã) em estado de transe, e podem ser símbolos da mágica que, segundo os antigos, controlava o mundo.

7.8 • Criando um estroboscópio com zumbidos Zumbindo na freqüência correta, é possível imobilizar estroboscopicamente a imagem das pás da hélice de um avião ou de um ventilador. Se você reduz ligeiramente a freqüência do zumbido, a imagem começa a girar lentamente no sentido em que as pás estão girando; se aumenta ligeiramente a freqüência, a imagem começa a girar lentamente no sentido oposto. É possível produzir um efeito semelhante zumbindo diante da televisão a uma distância suficientemente grande. O zumbido produz linhas na tela que permanecem estacionárias para uma certa freqüência do zumbido mas se deslocam para cima ou para baixo para outras freqüências.

Para investigar o modo como um zumbido afetava minha visão, preparei uma figura de papel para ser montada no prato de um toca-discos. A figura era uma série de setores circulares alternadamente pretos e brancos, com um grau de largura. Expus o prato à luz solar e coloquei-o para girar a uma velocidade angular de 33 1/3 rotações por minuto. (Não seria apropriado usar uma lâmpada, já que a luz de uma lâmpada alimentada com corrente alternada não é constante.) Como não sou capaz de sustentar uma nota, encostei o queixo em um pequeno alto-falante alimentado por um gerador de áudio, que oscilava 100 vezes por segundo. A figura imediatamente ficou imóvel; a impressão que tive foi de que o prato havia parado de girar. Neste e em outros exemplos, por que as oscilações (de um alto-falante ou de um zumbido) produzem um efeito estroboscópio?

Resposta Produzir um zumbido ou encostar o queixo em um alto-falante faz os olhos oscilarem para cima e para baixo. Para certos valores dessa freqüência, a imagem captada pelo olho conserva a mesma posição na retina durante a maior parte do ciclo de oscilação do olho. Suponha que você esteja olhando para um desenho no disco que está descendo no campo visual. Se o olho nesse momento está na fase de descida do ciclo de oscilação, o desenho continua a iluminar a mesma região da retina e parece parado. Quando o olho completa o ciclo e começa a subir, o desenho muda na retina, mas apenas por um breve período. Logo depois, a figura original em preto-e-branco volta a iluminar os mesmos lugares da retina. O sistema visual determina a intensidade média da luz em um ciclo de oscilação. Os lugares que recebem uma imagem branca durante a maior parte do ciclo são percebidos como brancos; os lugares que recebem uma imagem preta durante a maior parte do ciclo são percebidos como pretos. Assim, o desenho em preto-e-branco parece parado. Uma imagem de televisão é criada a partir de linhas horizontais traçadas na tela por um feixe de elétrons. Em um dado instante, nem todas as linhas estão “acesas”, ou seja, emitindo luz, mas o fato de que algumas linhas estão escuras é mascarado pela velocidade da varredura e pela persistência da visão. Quando produzo um zumbido com a freqüência apropriada, a oscilação dos meus olhos “congela” estroboscopicamente a varredura. Durante a maior parte de um ciclo de oscilação, existem linhas horizontais na minha retina que são imagens de linhas na tela nas quais a imagem antiga já se apagou e uma nova imagem ainda não foi traçada. Assim, vejo linhas escuras horizontais na tela.

7.9 • De olho na bola de beisebol O famoso jogador de beisebol Ted Williams afirmava ser capaz de ver uma bola bater no taco. Vários jogadores já garantiram que são capazes de ver as costuras de uma bola em movimento e assim determinar o sentido de rotação da bola. Será que um jogador realmente é capaz de fazer esse tipo de observação? Um jogador pode acompanhar visualmente a trajetória da bola, desde o momento em que ela é lançada até o momento em que passa pelo rebatedor ou é atingida pelo taco? Um atleta precisa enxergar com os dois olhos para poder jogar beisebol? Aparentemente, não. Nesse caso, de que forma os jogadores que enxergam apenas com um olho determinam a distância e a trajetória da bola? Analogamente, de que maneira uma pessoa que só enxerga de um olho é capaz de determinar a distância a que se encontram os objetos quando está dirigindo um carro ou pilotando um avião? Para aterrissar um avião, por exemplo, certamente é preciso avaliar muito bem as distâncias e, no entanto, o famoso piloto Wiley Post só enxergava de um olho.

Resposta Suponha que um jogador profissional de beisebol seja destro. Nesse caso, para poder acompanhar com os olhos a trajetória da bola, o jogador precisa fazer o campo de visão girar para a direita. Os bons jogadores conseguem fazer isso até que a bola se encontre a uma distância de aproximadamente 1,5 m da placa, mas para distâncias menores a velocidade de rotação necessária torna-se alta demais. Entretanto, o jogador consegue ver a bola bater no taco se avaliar corretamente o local da colisão entre a bola e o taco e olhar diretamente nessa direção. Ted Williams provavelmente usava esse movimento brusco dos olhos, conhecido como sacada, para ver a bola se chocar com o taco. Outro fator também pode estar envolvido no rastreamento visual de uma bola. Aparentemente, o sistema visual é capaz de perceber a profundidade do movimento de um objeto mesmo que não seja capaz de perceber a localização do objeto. Essa capacidade tem uma importância óbvia para a sobrevivência: você sabe se um objeto está vindo na sua direção mesmo que não saiba exatamente onde está o objeto. A avaliação da profundidade a partir do movimento de um objeto pode ser feita com um único olho. É por isso que as pessoas que enxergam apenas de um olho conseguem praticar esportes e pilotar aviões. Quando os dois olhos estão funcionando, o cérebro pode comparar os movimentos relativos observados pelos dois olhos e tirar suas conclusões. Assim, por exemplo, se o olho direito informa que um objeto está se movendo para a esquerda e o olho esquerdo informa que o mesmo objeto está se movendo para a direita, o cérebro conclui que o objeto está se movendo na sua direção.

7.10 • Impressionismo No estilo de pintura conhecido como impressionismo, os objetos são pintados apenas como contornos imprecisos. Claude Monet, por exemplo, é famoso por suas paisagens impressionistas. Quando ficou mais velho, conservou o estilo impressionista, mas passou a usar cores “mais quentes”, tais como vermelho e amarelo, abandonando a outra extremidade do espectro visível. Embora o impressionismo seja um estilo artístico de valor incontestável, será que começou por causa de algum problema físico ou fisiológico dos seus praticantes? Existe alguma explicação física para a mudança do uso de cores por Monet?

Resposta Muitos pintores da escola impressionista tinham deficiências visuais. Alguns eram míopes e por isso viam os objetos que pintavam como formas vagas e indistintas. Pelo menos um artista pintava com o braço esticado para colocar a tela também fora de foco. Outros, como Monet, tinham catarata, o que os impedia de enxergar a distâncias maiores que uns poucos metros. Monet provavelmente sofria de catarata nuclear, que absorve a extremidade azul do espectro e deixa passar a extremidade vermelha, o que explica a predominância do vermelho e do amarelo em muitos dos seus trabalhos da fase madura. Depois de ser operado de catarata, no final da vida, ele ficou furioso com o excesso de vermelho e amarelo em suas obras anteriores e ameaçou destruí-las ou retocá-las.

7.11 • Pontilhismo As pinturas pontilhistas, tais como Tarde de Domingo na Ilha de La Grande Jatte, de Georges Seurat, são feitas por pontos coloridos na tela, em vez de pinceladas. É possível distinguir os pontos examinando a tela de perto, mas a uma distância normal os pontos se fundem e não podem mais ser percebidos separadamente. Além disso, as cores que você vê na pintura podem não corresponder à cor de nenhum dos pontos. Por que isso acontece?

Resposta Quando a luz passa pela íris para entrar no olho, é difratada, ou seja, espalha-se para formar uma figura de interferência. Se você observa um ponto luminoso, a difração forma uma imagem circular desse ponto na retina. Se você observa dois pontos, eles tendem a formar duas imagens circulares; entretanto, se estão muito próximos, as imagens se sobrepõem e você vê apenas um ponto. Assim, a difração da luz faz com que, em certas condições, duas fontes luminosas sejam vistas como uma única fonte. Dois pontos vizinhos de uma pintura pontilhista se comportam como duas fontes luminosas. Suponha que os pontos sejam de cores diferentes. Se você olha para a pintura bem de perto, os pontos estão suficientemente afastados no seu campo visual para formar imagens separadas na retina e, portanto, você vê a cor verdadeira dos pontos. Quando você se afasta da pintura, os pontos começam a produzir imagens sobrepostas e você não consegue mais distingui-los. A cor que o seu cérebro percebe pode não ser a cor de um dos pontos e nem mesmo uma mistura simples das duas cores; pode ser uma nova cor, inventada pelo cérebro. Suponha, por exemplo, que um ponto magenta (uma cor entre o azul e o vermelho) esteja próximo de um ponto amarelo. A combinação das duas cores é percebida como cor-de-rosa. Assim, um pintor pontilhista usa o sistema visual para criar as cores que deseja colocar no quadro. Uma pintura a óleo convencional é em geral mais escura que uma pintura pontilhista, porque suas cores dependem de uma mistura de tintas que é aplicada ao quadro em forma de uma camada de óleo. A luz deve atravessar a camada, ser refletida pela tela e atravessar novamente a camada para chegar aos seus olhos. Quando uma quantidade maior de pigmentos é usada no óleo, como é o caso quando tintas de cores diferentes são misturadas, a luz que emerge da pintura é mais fraca. Como em uma pintura pontilhista a mistura de cores acontece no cérebro e não na tela, a luz não é tão atenuada. Muitas superfícies coloridas, tais como mosaicos, tecidos, fotografias e telas de monitores, são arranjos de pontos de várias cores. Na teoria convencional das cores, três cores primárias (vermelho, azul e verde) são suficientes para gerar todas as cores possíveis. Assim, um monitor de computador contém um arranjo de pontos dessas três cores. Pode-se gerar qualquer cor controlando-se a intensidade da luz emitida por esses pontos coloridos.

7.12 • Figuras de moiré Quando uma rede de linhas finas é sobreposta a uma rede semelhante, forma-se um desenho conhecido como figura de moiré. Já observei figuras de moiré em dois pedaços de seda sobrepostos e em duas cercas parcialmente alinhadas. Também vi figuras de moiré em arranjos de furos circulares. Quando um dos arranjos de furos está alguns centímetros à frente do outro, forma-se uma figura de moiré circular. O que produz as figuras de moiré?

Resposta As figuras de moiré são formadas por causa do arranjo periódico das redes que são sobrepostas. Considere,

por exemplo, duas cercas paralelas situadas a uma certa distância uma da outra, com o fundo iluminado. Em certos pontos, os espaços vazios entre os mourões da cerca estão alinhados e o observador vê regiões claras. Em outros pontos, os mourões estão alinhados e o observador vê regiões escuras. Nos pontos em que os mourões estão parcialmente alinhados, o observador vê regiões claras mais estreitas que o espaçamento entre os mourões e regiões escuras mais largas que os mourões. O conjunto dessas regiões claras e escuras é a figura de moiré produzida pelas duas cercas, um padrão repetitivo de regiões claras e escuras. Se uma das cercas for deslocada uma distância menor que o espaçamento dos mourões, a figura de moiré sofre uma mudança significativa, como se o movimento da cerca fosse amplificado. A melhor explicação para o fascínio que as figuras de moiré exercem sobre as pessoas é que nosso sistema visual é especialmente sensível às interseções de linhas e procura constantemente por elas. Graças a essa sensibilidade, qualquer deslocamento de uma das redes responsáveis por uma figura de moiré torna-se imediatamente óbvio.

7.13 • Op art Quando você observa uma obra de op art (termo criado em 1964 como abreviação de optical art, ou seja, arte óptica), um arranjo estático de linhas, formas geométricas e pontos cria ilusões de movimento, como se partes do desenho estivessem tremulando, girando ou piscando. O arranjo também pode criar a ilusão de cores que parecem vazar de uma parte para outra do desenho. O que produz essas ilusões?

Resposta Ninguém foi capaz de explicar perfeitamente as ilusões da op art; elas ainda estão sendo descobertas, catalogadas e comparadas. Do ponto de vista do artista, novas descobertas podem levar a novas obras de arte. Do ponto de vista do fisiologista, podem levar a uma compreensão melhor do funcionamento do cérebro e do sistema visual. O sistema visual pode conservar uma imagem por alguns momentos, em forma de uma pós-imagem. O olho sofre pequenos deslocamentos bruscos chamados sacadas, que fazem o ponto de vista mudar ligeiramente. Quando você observa os padrões geométricos de um trabalho de op art, as pós-imagens de sacadas sucessivas se sobrepõem. Entretanto, como as pós-imagens são ligeiramente diferentes, o desenho parece ter se movido de uma pós-imagem para a seguinte. A ilusão é sutil e você pode não ter consciência do que está acontecendo; simplesmente sabe que a op art é diferente de outras figuras estáticas formadas por linhas. Alguns padrões geométricos criam a ilusão de pontos claros e escuros inexistentes. Assim, por exemplo, a rede mostrada na Fig. 7-2 pode criar a ilusão de pontos pretos fugazes nas interseções das faixas brancas; dizemos que os pontos pretos são induzidos. A ilusão ainda não é bem compreendida, mas provavelmente se deve à interferência dos fotorreceptores de uma região do olho com os fotorreceptores das regiões vizinhas, como vamos explicar mais adiante, quando falarmos das bandas de Mach. Em algumas figuras coloridas, podem aparecer linhas ou pontos induzidos (chamados neon spreading), o que indica que a interferência envolve as mensagens a respeito das cores enviadas pelos olhos ao cérebro.

Figura 7-2 / Item 7.13 Pontos pretos aparecem e desaparecem nas interseções das faixas brancas.

7.14 • Profundidade nos quadros a óleo Os pintores da escola flamenga do século XV conseguiam uma ilusão de profundidade nas pinturas a óleo aplicando finas camadas de tinta translúcida (esmalte) sobre fundo branco. Por que partes da pintura pareciam estar na frente de outras? Por que as cores pareciam vir do interior da pintura e não da superfície?

Resposta Parte da luz que incide em uma dessas pinturas é refletida pela superfície dianteira do esmalte, enquanto o resto da luz atravessa a camada de esmalte (Fig. 7-3). Os pigmentos em suspensão no esmalte espalham a luz para a frente, mas também espalham a luz para trás, em direção à tela. Qualquer luz, direta ou espalhada, que incide na tela é refletida pela camada traseira branca (opaca). Quando a luz atravessa novamente a camada de esmalte pode ser espalhada de novo pelos pigmentos. Quando um observador vê a luz proveniente da pintura, percebe que parte da luz foi refletida na superfície dianteira do esmalte. Entretanto, pontos coloridos parecem estar atrás da superfície, especialmente quando a pintura é observada com os dois olhos, de modo que a convergência dos olhos em um ponto colorido permite atribuir uma profundidade ao ponto. O pintor pode controlar a saturação (ou brilho) de uma cor aplicando mais de uma camada de esmalte com os mesmos pigmentos. Cada camada adicional torna a cor mais visível, já que aumenta o espalhamento do comprimento de onda correspondente. Assim, por exemplo, se um pigmento espalha mais um comprimento de onda correspondente à cor azul do que os outros comprimentos de onda, camadas adicionais do pigmento tornam a pintura mais azulada. Costuma-se aplicar uma camada de verniz a uma pintura pronta para protegê-la. Esse tipo de camada não contribui em nada para a sensação de profundidade. Pelo contrário: a absorção parcial da luz muitas vezes prejudica a pintura, tornando as cores menos vivas e às vezes até mesmo ocultando certos matizes.

Figura 7-3 / Item 7.14 Pintura a óleo com esmalte; a luz é espalhada nas interfaces e por pigmentos em suspensão no esmalte.

7.15 • Lendo no escuro A pós-imagem mais surpreendente que conheço é a produzida por um flash de máquina fotográfica em um quarto escuro. Coloco uma revista aberta à minha frente e apago as luzes. Depois que meus olhos se adaptam à escuridão (o que pode levar 10 a 15 minutos), seguro a máquina fotográfica perto da minha cabeça e disparo o flash em direção à revista. O flash é forte demais para que eu consiga ver a revista com clareza. Se eu mantenho o olhar fixo na revista depois que o flash apaga, aparece uma imagem nítida da revista, como se a revista estivesse sendo iluminada por uma luz forte e contínua. A imagem que eu vejo é chamada de pós-imagem positiva, porque as partes claras da revista parecem brancas e as partes escuras parecem pretas. É fácil distinguir as fotografias, os desenhos e o texto, embora nada disso pudesse ser visto enquanto a revista estava sendo iluminada pelo flash. Posso até mesmo ler as palavras. Depois de cerca de 15 segundos, a pós-imagem positiva se transforma em uma pós-imagem negativa, na qual as regiões pretas e brancas estão invertidas. Quando disparo o flash duas vezes, vejo duas pós-imagens positivas superpostas. Se deixo cair uma moeda durante os disparos, vejo duas imagens da moeda em posições diferentes, como se fosse uma fotografia estroboscópica. Às vezes, a pósimagem positiva pode ser estranha. Se disparo o flash com a mão na minha frente e depois coloco a mão nas costas, vejo a imagem da minha mão na posição anterior, mas sinto que ela está em outra posição. Se disparo o flash de pé, olhando para o

chão, e depois me agacho, continuo a ver o chão à distância, embora sinta que ele está mais próximo. Também vi uma pós-imagem positiva em um balé. No intervalo, mantive os olhos fechados. Quando começou o segundo ato, abri os olhos por alguns instantes, para ver o palco fortemente iluminado. Quando tornei a fechá-los, pude ver uma imagem dos dançarinos no palco. Posso ver pós-imagens semelhantes quando acordo em um quarto bem iluminado. Enquanto estou com os olhos fechados, vejo apenas a luz vermelha que atravessa minhas pálpebras. Coloco a mão na frente do rosto e abro os olhos por alguns instantes. Quando fecho novamente os olhos, posso ver uma pós-imagem muito nítida da minha mão, que de início é negativa e depois se torna positiva. Depois que meus olhos permanecem abertos durante alguns minutos e se adaptam à luz do quarto, não posso mais repetir a experiência. Essas diferentes pós-imagens positivas continuam a existir por algum tempo se eu mantiver o olhar fixo, mas desaparecem imediatamente se movimento os olhos em relação à cabeça. Qual é a causa dessas imagens? O que produz as pós-imagens negativas?

Resposta A causa das pós-imagens positivas não é conhecida. A luz do flash satura temporariamente os bastonetes da retina, o que torna a imagem da revista pouco nítida. Entretanto, a imagem da revista produz uma substância ou um efeito no sistema visual que dura mais tempo que a saturação. Quando a saturação desaparece, pode-se perceber os detalhes da imagem. A pós-imagem negativa que se segue provavelmente é causada por uma fadiga do sistema visual. As partes fortemente estimuladas pelas regiões claras das imagens se esgotam e passam a produzir imagens mais escuras que as partes fracamente estimuladas pelas regiões escuras.

7.16 • Luz-fantasma Uma pós-imagem que pode estar relacionada à pós-imagem positiva do item anterior é a que resulta do movimento de um ponto luminoso em um quarto escuro. Depois de adaptar os olhos ao escuro por alguns minutos, movimente uma fonte luminosa pontual em frente dos olhos abertos. Um ponto-fantasma acompanha o ponto luminoso, ligeiramente atrasado. O pontofantasma é seguido por uma cauda luminosa mais fraca. Se a fonte luminosa é vermelha, a luz-fantasma e a cauda não aparecem. Se a fonte for amarela, o fantasma (e, talvez, a cauda) pode ser azul. Entretanto, depois que os olhos se adaptam ao escuro (o que leva 10 a 15 minutos para acontecer), a luzfantasma e a cauda são sempre cinzentas. Por que a luz-fantasma e a cauda aparecem, e o que explica a sua cor? Por que não aparecem quando a luz original é vermelha?

Resposta A luz-fantasma e sua cauda provavelmente são pós-imagens produzidas pelos bastonetes da retina depois que são iluminados pela passagem da fonte luminosa. É preciso um certo tempo para que os bastonetes, as conexões nervosas ou o cérebro gerem uma segunda percepção da luz. (Se a luz-fantasma estivesse associada à persistência da visão, não haveria esse retardo.) A cauda é formada por uma série de pós-imagens que vão ficando cada vez mais fracas. A luz vermelha não produz pós-imagens porque não excita os bastonetes. A cor da luz-fantasma raramente é mencionada e sua causa é desconhecida. Acredito que seja um resultado da interferência dos bastonetes com a informação de cor enviada pelos cones situados ao longo da trajetória do ponto de luz na retina. Embora não se acredite que os bastonetes enviem informações de cor para o cérebro, eles parecem ser capazes de inibir informações de cor enviadas pelos cones. Quando uma luz amarela estimula a retina, a inibição por parte dos bastonetes força uma percepção do azul, a cor complementar do amarelo. Essa inibição desaparece quando o olho se adapta ao escuro e a luz-fantasma se torna cinzenta.

7.17 • Reflexos dos olhos Você aponta a lanterna para a escuridão. De repente, um par de olhos brilhantes aparece à sua frente, mas você solta um suspiro de alívio quando ouve um suave miado. Por que os olhos de um gato parecem brilhar quando ele olha diretamente para o facho de uma lanterna, mas não quando ele olha em outra direção? Por que muitas pessoas aparecem com olhos vermelhos nas fotografias? Os olhos dos pectinídeos (um tipo de molusco) são formados por um cristalino, uma retina espessa e (atrás da retina) um espelho convexo. O cristalino quase não refrata (desvia) a luz e, portanto, não pode ser responsável pela formação de uma imagem. Além disso, ao contrário do que acontece no olho humano, o cristalino dos pectinídeos está praticamente encostado na retina, de modo que os raios refratados não têm espaço para convergir e formar uma imagem. De que maneira, então, o olho dos

pectinídeos consegue formar uma imagem? O espelho é um excelente refletor. Como é possível que um sistema biológico possua uma superfície refletora capaz de igualar (ou mesmo superar) um espelho moderno?

Resposta Atrás dos fotorreceptores da retina de um gato existe uma camada que reflete parte da luz de volta aos fotorreceptores, para que tenham uma segunda oportunidade de absorver a luz. Essa maior eficiência pode ser útil para animais de hábitos noturnos. Quando você aponta uma lanterna para um gato e o gato olha na sua direção, o que você vê é a luz que foi refletida por essa camada. No olho humano, a camada que fica atrás dos fotorreceptores reflete muito menos luz e não brilha quando é iluminada com uma lanterna. Mesmo assim, a luz refletida pode ser vista quando a pessoa olha diretamente para a câmara e a fotografia é tirada com flash. A formação de uma imagem no olho humano acontece através da refração da luz pela córnea e pelo cristalino. No olho dos pectinídeos, a formação da imagem acontece através da reflexão da luz no espelho convexo situado atrás da retina. Os raios entram no olho do molusco, atravessam o cristalino e a retina, são refletidos pelo espelho e focalizados (por causa da reflexão) para formar uma imagem na retina. O espelho do olho dos pectinídeos não possui apenas uma camada de material refletor, como os espelhos de banheiro; é formado por camadas alternadas de citoplasma (que tem baixo índice de refração) e cristais de guanina (que tem alto índice de refração). (O índice de refração é uma medida da velocidade da luz em um material. Quanto maior o índice de refração, menor a velocidade da luz no material.) A espessura das camadas é aproximadamente um quarto do comprimento de onda da luz. Por causa dessa espessura e dos valores alternadamente alto e baixo do índice de refração, as ondas luminosas refletidas pelas camadas estão todas em fase e produzem uma reflexão muito mais forte do que a que pode ser obtida quando se usa uma só camada refletora.

7.18 • A visão de pessoas, pingüins e crocodilos debaixo d’água Por que não conseguimos enxergar os objetos em foco quando estamos debaixo d’água? Por que as pessoas míopes vêem melhor debaixo d’água do que as pessoas que têm visão normal? Por que o uso de uma máscara faz a visão voltar ao normal? Por que os indivíduos de certas populações, como os Moken de Myanmar e da costa oeste da Tailândia, enxergam bem debaixo d’água mesmo quando não estão usando máscara? Os pingüins vivem ao ar livre, mas caçam debaixo d’água. Como podem enxergar bem tanto no ar como na água?

Resposta No ar, a maior parte da focalização dos raios luminosos pelo olho humano acontece na córnea; o ajuste fino é realizado pelo cristalino, cuja forma é controlada por músculos. Debaixo d’água, a córnea deixa de focalizar a luz, já que as propriedades ópticas da substância que existe dentro do olho passam a ser praticamente iguais às propriedades ópticas da substância que existe do lado de fora do olho. Assim, os raios luminosos entram no olho sem sofrer qualquer desvio. Nesse caso, a tarefa de focalizar os raios fica toda por conta do cristalino. Acontece que a maioria das pessoas não consegue mudar a forma do cristalino o suficiente para produzir uma imagem nítida na retina. Os Moken, porém, são ensinados pelos mais velhos a enxergar debaixo d’água: eles contraem a pupila para reduzir o espalhamento dos raios luminosos que entram no olho e encurvam o cristalino o máximo possível. Essas duas medidas produzem imagens na retina razoavelmente nítidas. (Ao que parece, qualquer pessoa pode aprender esta técnica.) Nas pessoas míopes, a córnea e o cristalino produzem um desvio excessivo dos raios luminosos, o que faz com que a imagem se forme à frente da retina. Quando os raios luminosos provenientes de objetos distantes chegam à retina, já estão começando a divergir, o que produz imagens fora de foco. Quando uma pessoa míope está debaixo d’água, a córnea deixa de desviar os raios luminosos e o plano no qual as imagens estão em foco se desloca para trás, em direção à retina. Assim, uma pessoa míope enxerga melhor debaixo d’água do que uma pessoa com visão normal. Quando um mergulhador usa máscara, existe ar do outro lado da córnea e, portanto, os olhos focalizam normalmente as imagens. A córnea dos pingüins é quase plana. Assim, quando um pingüim passa do ar para a água, a focalização pela córnea praticamente não é afetada. O pingüim é adaptado para enxergar melhor na água, pois é na água que ele encontra seus alimentos. Assim, o cristalino é muito encurvado para focalizar os raios luminosos na retina. Quando o pingüim sai da água, pode diminuir um pouco a curvatura do cristalino, mas mesmo assim provavelmente as imagens se formam à frente da retina. Isso significa que os pingüins provavelmente são míopes quando estão fora d’água. Entretanto, eles podem amenizar o problema contraindo a pupila ao máximo. Com isso, reduzem o espalhamento dos raios luminosos, tornando a imagem mais

nítida. Os crocodilos enxergam bem no ar, mas não debaixo d’água. Assim como nós, eles não podem mudar a forma do cristalino o suficiente para compensar a perda de focalização da córnea. Mesmo assim, são bons caçadores debaixo d’água porque usam outros meios para localizar a presa.

7.19 • A visão do “peixe de quatro olhos” debaixo d’água Um peixe curioso, o tralhoto (Anableps anableps), nada com os olhos parcialmente submersos para poder enxergar ao mesmo tempo acima e abaixo da superfície da água. Como os olhos desse peixe conseguem focalizar as imagens tanto no ar como na água?

Resposta O cristalino desse peixe tem forma oval para compensar a refração relativamente pequena sofrida pela luz que vem da água. A luz que vem do ar sofre um bom desvio ao entrar no olho e outro desvio ao passar pelo cristalino, de modo que está em foco ao atingir a retina, na parte inferior do olho. A luz que vem da água sofre um desvio muito menor ao entrar no olho. Entretanto, a grande curvatura do cristalino produz um desvio suficiente para focalizar a imagem submarina em uma retina separada, situada na parte superior do olho. A focalização também é facilitada pela distância relativamente grande que existe entre o cristalino e a retina superior.

7.20 • O efeito gato de Cheshire Observe uma cena com um olho através de um espelho enquanto observa diretamente outra cena com o outro olho. Você pode fundir as duas cenas, observá-las alternadamente (no que é chamado de rivalidade binocular) ou ver apenas uma das cenas a maior parte do tempo. Entretanto, se você passa a mão por uma das cenas sem acompanhar o movimento com os olhos, a outra cena desaparece total ou parcialmente. Quando o desaparecimento é parcial, a parte desaparecida da outra cena corresponde à região pela qual a mão passou. Se a outra cena é o rosto de uma pessoa, você pode fazer desaparecer parte do rosto, talvez deixando apenas uma boca solta no ar, como a do gato de Cheshire no livro Alice no País das Maravilhas, de Lewis Carroll. Qual é a explicação desse efeito?

Resposta Presumivelmente como um mecanismo de sobrevivência, o sistema visual se concentra em qualquer movimento detectado por um dos olhos e leva à consciência a cena correspondente. Em geral, o movimento é detectado por ambos os olhos e a visão parece normal. Quando, porém, um espelho apresenta uma cena muito diferente a um dos olhos (uma situação pouco natural), a concentração na cena com movimento impede que a outra cena chegue à consciência, no todo ou em parte. Se nossos olhos ficassem em lados opostos da cabeça (como acontece em alguns peixes), essa ilusão seria mais comum.

7.21 • Efeito rinóptico Feche o olho esquerdo, olhe para a frente com o olho direito, estenda o braço esquerdo para a esquerda com o dedo indicador levantado e gire o braço até começar a ver o dedo. Em seguida, faça girar o olho direito na direção do dedo. O dedo provavelmente vai desaparecer. Ele é visível quando você está olhando para a frente, mas desaparece quando você tenta olhar para ele. O que faz o dedo desaparecer?

Resposta Para que você veja um objeto, é preciso que a luz proveniente do objeto chegue a pelo menos um dos seus olhos. Quando você olha para a frente com o olho direito e gira o braço até começar a ver o dedo, a luz proveniente do dedo está tangenciando o seu nariz para chegar ao olho. Quando você faz girar o olho em direção ao dedo, a pupila do olho fica na “sombra” do nariz. Assim, a luz proveniente do dedo é bloqueada pelo nariz e não chega ao olho, fenômeno conhecido como efeito rinóptico (rino, em grego, significa nariz). Entretanto, esse efeito não acontecerá se você tiver nariz chato. O nariz, a testa e a bochecha sempre bloqueiam parte da visão de um dos olhos. O cérebro, porém, concentra-se nas informações disponíveis além do nosso entorno imediato e suprime as partes bloqueadas.

7.22 • Nuvens voadoras e os Blue Meanies Thomas Shipley, da Escola de Medicina da Universidade de Miami, certa vez descreveu uma ilusão visual interessante. Quando viajava de avião a grande altitude, avistou duas camadas de nuvens. Uma camada, que parecia ser a mais distante, movia-se

rapidamente no sentido contrário ao do avião. A outra parecia estar rigidamente ligada ao avião, seguindo-o exatamente à mesma velocidade. Mais tarde, abriu-se uma brecha nas nuvens e Shipley pôde ver a superfície do mar, muito abaixo. Imediatamente, as distâncias das duas camadas de nuvens se inverteram e a mais distante passou a parecer estacionária. Qual das interpretações da distância e do movimento em relação ao avião estava correta? No filme O Submarino Amarelo (baseado em uma música dos Beatles), um Blue Meanie sofre uma transformação espantosa. À distância, ele é grande e ameaçador; visto de perto, torna-se pequeno e de aspecto inofensivo. Por que essa transformação é estranha?

Resposta Uma das camadas de nuvens estava tão distante que parecia imóvel. A camada mais próxima parecia estar em movimento por causa do movimento do avião. Como não havia outras indicações a respeito da distância e do movimento das nuvens, a falta de movimento da primeira camada foi interpretada pelo cérebro de Shipley como uma indicação de que ela estava de alguma maneira ligada ao avião e, portanto, devia estar próxima. (Esse tipo de ilusão é chamado captura visual.) O movimento da segunda camada foi interpretado como uma indicação de que ela não estava ligada ao avião e, portanto, devia estar mais distante. Quando Shipley conseguiu avistar o oceano, recebeu informações suficientes a respeito da distância e do movimento para desfazer a ilusão. O Blue Meanie parece estranho porque deveria ocupar uma parte menor do campo visual quando está longe e uma parte maior quando se aproxima. Shipley também lembra que os objetos próximos costumam ser considerados mais perigosos do que os objetos distantes, ao contrário do que acontece com o Blue Meanie.

7.23 • Fenômeno de Pulfrich Faça um pêndulo balançar em frente dos seus olhos enquanto um dos olhos está coberto por um filtro escuro, mas não opaco, como uma lente de óculos escuros. Embora o pêndulo esteja balançando em um plano vertical, você tem a impressão de que ele está descrevendo uma trajetória elíptica. A profundidade aparente do movimento aumenta se você também vê uma referência vertical (como uma barra ou um fio de prumo) ou se você usa um filtro mais escuro. Quando o filtro está no olho esquerdo, o pêndulo parece descrever uma elipse no sentido horário (visto de cima). Quando o filtro está no olho direito, o movimento aparente é no sentido contrário. O movimento aparente fica ainda mais interessante quando você usa dois pêndulos. Nesse caso, cada um parece girar em torno do outro, o que, naturalmente, faria com que os dois fios se emaranhassem. Como isso não acontece, o movimento parece estranho. Se você anda de carro usando um filtro escuro em um dos olhos, a velocidade pela qual um objeto do lado de fora parece passar pelo carro é modificada. Os objetos de um lado do carro passam mais devagar do que deviam e os objetos do outro lado passam mais depressa. O filtro também altera a distância aparente dos objetos. Por que um filtro escuro altera a percepção de distância e velocidade?

Resposta A redução da quantidade de luz que chega ao olho coberto pelo filtro escuro produz um atraso no sinal enviado pelo olho ao cérebro. (Esse retardo é conhecido como latência visual.) Assim, o olho descoberto vê a verdadeira posição do pêndulo, enquanto o olho coberto vê uma posição anterior. O cérebro funde as duas visões e o pêndulo é percebido como estando mais próximo ou mais afastado do que a realidade. Embora o movimento do pêndulo seja em um plano, o cérebro acrescenta uma outra dimensão ao movimento, dando a impressão de que o pêndulo descreve uma elipse. Suponha, por exemplo, que o olho esquerdo esteja coberto pelo filtro e o pêndulo está se movendo para a direita (Fig. 7-4a). A imagem retardada do pêndulo está à esquerda da posição real. Quando o cérebro funde as duas imagens, você tem a impressão de que o pêndulo está mais distante do que a realidade. Mais tarde, quando o pêndulo balança para a esquerda, a imagem retardada está à direita da posição real (Fig. 7-4b). Nesse caso, você tem a impressão de que o pêndulo está mais próximo do que a realidade.

Figura 7-4 / Items 7.23 e 7.30 Ilusão de Pulfrich com o pêndulo (a) do lado direito e (b) do lado esquerdo.

As visões distorcidas que você tem quando se encontra em um carro em movimento também se devem à latência visual. Suponha que o filtro esteja sobre o olho esquerdo e você observe um objeto à direita do carro. A discrepância entre a verdadeira posição do objeto (vista pelo olho direito) e a posição em que o objeto se encontrava momentos antes (vista pelo olho esquerdo) leva o cérebro a concluir que o objeto está mais longe do carro do que a realidade. Como o tempo que o objeto leva para passar pelo seu campo visual não muda, você tem a impressão de que o objeto aparentemente distante está se movendo muito depressa. Do outro lado do carro, a latência visual faz com que você tenha a impressão de que o objeto está mais próximo do que a realidade e está se movendo muito devagar. Jerry Lerner me contou a respeito de uma interessante variação do fenômeno de Pulfrich. Substitua o pêndulo por um objeto que esteja girando em um plano horizontal. É possível ajustar o filtro e rotação de tal modo que a rotação aparente seja no sentido oposto ao verdadeiro e a velocidade seja duas vezes maior. O objeto parece aumentar e diminuir periodicamente de tamanho. O retardo do sinal visual causado por óculos escuros (ou por pára-brisas coloridos) pode aumentar a distância necessária para frear um carro. Suponha que os óculos escuros causem um retardo do sinal visual de 0,1 segundo (um caso extremo). A uma velocidade de 90 quilômetros por hora, esse retardo acrescenta cerca de 2,5 metros à distância percorrida pelo carro antes de parar.

7.24 • Seqüência de acendimento das lâmpadas de rua Quando as lâmpadas de rua acendem automaticamente ao anoitecer, as mais próximas parecem acender primeiro, dando a impressão de que as lâmpadas são acesas em seqüência. As lâmpadas concentradas nos cruzamentos parecem acender pouco antes das lâmpadas mais espaçadas ao longo da rua. O que produz esses efeitos? Eles não podem ser causados pelo tempo que a corrente elétrica leva para passar de uma lâmpada para outra, pois esse tempo é extremamente pequeno. Além disso, as lâmpadas mais próximas sempre parecem acender primeiro, esteja você onde estiver.

Resposta A impressão de que as lâmpadas de rua se acendem em seqüência pode dever-se à latência visual discutida no item anterior. As luzes mais próximas são mais fortes que as luzes mais distantes e, portanto, o sinal visual sofre um

retardo menor. A resposta progressivamente retardada das luzes mais fracas e mais distantes cria a ilusão de que as lâmpadas estão acendendo em seqüência. Esta explicação pode estar incompleta; o tempo de resposta pode depender também do ponto em que a imagem de uma lâmpada de rua é formada na retina.

7.25 • Bandas de Mach Suponha que uma única fonte luminosa de alta intensidade (como o Sol, por exemplo) ilumine um objeto, criando uma sombra. Seria de se esperar que a sombra tivesse uma borda na qual a luz desse lugar à escuridão de forma gradual. Entretanto, em muitos casos, são observadas duas bandas misteriosas na borda da sombra, uma escura, do lado de dentro da sombra, e outra clara, do lado de fora (Fig. 7-5). Essas bandas, que também podem ser vistas em fotografias, são chamadas bandas de Mach, em homenagem a Ernest Mach, físico e psicólogo austríaco que foi o primeiro a estudá-las.

Figura 7-5 / Item 7.25 Bandas de Mach na borda de uma sombra.

As bandas de Mach estão quase sempre presentes na borda das sombras, mas costumam ser ignoradas. Entretanto, Paul Signac, pintor neo-impressionista nascido no século XIX, reproduziu-as meticulosamente nas sombras do seu quadro Le Petit Déjeuner. O leitor pode vê-las com facilidade se observar a própria sombra em um dia ensolarado. Quando a sombra está muito próxima (em uma parede, por exemplo), as bandas de Mach podem não ser visíveis. As bandas são mais fáceis de ver em uma calçada, especialmente quando você anda. O que produz as bandas? Elas são produzidas por algum fenômeno físico na borda do objeto que produz a sombra, ou são criadas no sistema visual do observador?

Resposta As bandas de Mach são produzidas pelo sistema visual e não podem ser detectadas por instrumentos usados para medir a intensidade da luz nas proximidades da borda da sombra. O sistema visual cria as bandas com a mesma facilidade em uma fotografia da sombra. Ninguém ainda conseguiu explicar perfeitamente por que as bandas existem; vou me limitar a uma explicação parcial. As bandas são produzidas pela interferência mútua (denominada inibição lateral) de grupos de fotorreceptores da retina, seus circuitos neurais e certas partes do cérebro. Ao ser ativado pela luz, um grupo diminui a intensidade dos sinais enviados ao cérebro por grupos vizinhos. Considere os grupos de fotorreceptores da retina. Os grupos que estão longe da sombra se inibem mutuamente e produzem um sinal moderado, que chega à consciência como uma região iluminada. Os grupos que estão na sombra são fracamente ativados, quase não se inibem mutuamente e produzem um sinal fraco, que chega à consciência como uma região sombria. As bandas de Mach são produzidas por grupos situados nas proximidades da sombra. Considere um grupo do lado de fora da sombra, quase na borda. Os vizinhos de um lado estão fortemente iluminados e inibem o sinal do grupo, mas os vizinhos do outro lado estão fracamente iluminados e quase não inibem o sinal. Assim, o sinal do grupo é menos inibido do que o de um grupo mais afastado da sombra e, portanto, ele envia um sinal mais forte para o cérebro. São esses os grupos responsáveis pela

banda branca. Considere agora um grupo do lado de dentro da sombra, quase na borda. Os vizinhos de um lado estão fracamente iluminados e quase não inibem o sinal do grupo, mas os vizinhos do outro lado estão fortemente iluminados e inibem o sinal. Assim, o sinal do grupo é mais inibido do que o de um grupo mais afastado da zona iluminada e, portanto, ele envia um sinal mais fraco para o cérebro. São esses os grupos responsáveis pela banda escura. As bandas de Mach são mais visíveis quando a região de transição entre a parte iluminada e a parte escura da imagem ocupa um ângulo de pelo menos 0,2o do campo visual. Elas não aparecem quando a borda da sombra é muito nítida.

7.26 • Um mundo de cabeça para baixo Uma vez que o olho se comporta como uma lente convexa, produz uma imagem real e invertida na retina. (Assim, por exemplo, o chão aparece na parte de cima da retina e o céu na parte de baixo.) Por que, então, vemos o mundo com a orientação correta? Se usasse óculos especiais (prismas) que invertessem a imagem do mundo, você veria o mundo de cabeça para baixo?

Resposta Na visão normal, o cérebro interpreta a imagem invertida do mundo como tendo a orientação correta por causa da experiência. Assim, por exemplo, quando você levanta o braço diante dos olhos, a imagem do seu braço na verdade desce na retina. Mesmo assim, o cérebro interpreta o movimento como sendo um movimento para cima. Quando óculos especiais são usados para inverter a imagem do mundo, o cérebro leva algumas horas, ou mesmo alguns dias, para mudar sua interpretação. Até esse momento, o mundo parece invertido. Depois da mudança, porém, o cérebro volta a perceber o mundo na orientação correta. Quando os óculos são retirados, o cérebro necessita de outro período de ajuste para que a imagem do mundo volte ao normal.

7.27 • Sombras invertidas; o efeito bolha Faça um furo em uma folha de papel opaco, segure o papel a alguns centímetros de um dos olhos, feche o outro olho e segure um prego entre o furo e o olho aberto. Movimente o prego para um lado e para outro até a sombra do prego aparecer no círculo de luz produzido pelo furo. Por que a sombra do prego parece invertida? Por que parece estar atrás do papel? Olhe para um local distante através do espaço entre o polegar e o indicador, com o indicador ligeiramente mais afastado de você do que o polegar. Uma “bolha” parece se formar no indicador no espaço entre o indicador e o polegar. Quanto menor o espaço, mais pronunciada a bolha, até que ela preenche totalmente o espaço. O que produz esse efeito bolha? O efeito bolha foi observado pelo capitão James Cook em 1769 durante o trânsito de Vênus sobre o disco solar. Quando Vênus passou pela frente do Sol, formou um disco escuro. Entretanto, quando se aproximou da borda do Sol, apareceu uma faixa escura entre o disco e a borda, como se o disco tivesse criado uma bolha.

Resposta O olho se comporta como uma lente convexa, produzindo uma imagem invertida na retina. Suponha que a cabeça do prego esteja no centro do campo visual e o prego esteja voltado para baixo. Nesse caso, a imagem do prego ocupa a parte superior da retina. Graças à experiência, o cérebro inverte a imagem e você percebe o prego com a orientação correta. O prego também projeta uma sombra na retina, já que bloqueia a luz que passa pelo furo. Como o prego está na parte inferior do campo visual, a sombra é projetada na parte inferior da retina. Entretanto, como o cérebro inverte todas as imagens da retina, você percebe a sombra na parte superior do campo visual. Assim, você vê o prego na orientação correta, mas a sombra do prego parece estar de cabeça para baixo. No efeito bolha, quando você diminui o espaço entre o polegar e o indicador, o polegar começa a bloquear parte da luz que passa pelo dedo. Essa diminuição da iluminação produz uma região de penumbra na retina junto à imagem do indicador, que parece preencher parte do espaço vazio, como se fosse uma bolha. Quanto mais estreito é o espaço, maior a zona de penumbra e maior parece ser a “bolha”.

7.28 • Reflexos curiosos em uma bola de Natal Uma bola de Natal pode refletir praticamente a sala inteira na sua direção. Suponha que você coloque uma pequena fonte de luz (como um furo em uma folha de cartolina, por exemplo) em frente à bola e observe o reflexo da bola a uma distância de uns 10 centímetros. Se as luzes da sala estiverem acesas, o reflexo da fonte será um ponto luminoso. Se você apagar a luz, o reflexo se transformará gradualmente em uma linha. Se você acender a luz, o reflexo voltará a ser um ponto. Qual é a causa dessa distorção, que só acontece quando a sala está escura?

Resposta Os raios de luz provenientes da fonte pontual são refletidos em muitas direções pela superfície esférica da bola. Se os seus olhos estão suficientemente próximos, interceptam esses raios e os focalizam na retina. O que você percebe é uma imagem da fonte que parece estar atrás da superfície mais próxima da bola. Quando a sala está bem iluminada, a pupila do seu olho está contraída e apenas uma pequena parte dos raios refletidos chega à retina. Nesse caso, a imagem da fonte é um ponto. Quando a sala está escura, a pupila se dilata e permite que uma parte maior dos raios refletidos chegue à retina. O resultado é que a imagem da fonte aumenta de tamanho.

7.29 • Figuras geométricas obtidas a partir de pontos aleatórios Salpique tinta em uma folha de papel e prepare uma transparência do desenho assim criado, usando uma fotocopiadora. Coloque a transparência sobre o desenho original, fazendo os pontos coincidirem. Use um dedo para manter fixo um ponto qualquer da transparência e faça girar o resto da transparência em torno do dedo. Para grandes ângulos de rotação, o desenho continua a parecer aleatório; para pequenos ângulos, porém, muitos dos pontos parecem pertencer a círculos invisíveis. Com o aumento do ângulo de rotação, o raio desses círculos parece diminuir até que eles desapareçam totalmente. Podem-se produzir outras figuras geométricas distorcendo-se a transparência ou deslocando-a de outras formas. Se a fotocopiadora for programada para produzir uma cópia reduzida do original, os círculos podem se transformar em espirais. Qual é o mecanismo responsável por essas figuras geométricas, conhecidas como figuras de Glass, em homenagem a Leon Glass, da McGill University, que foi o primeiro a estudá-las, em 1969? A ordem desaparece se a segunda figura for um negativo da primeira em fundo cinza. Isso significa que a percepção das figuras geométricas depende do contraste entre os pontos e a cor de fundo dos desenhos?

Resposta A ilusão da existência de figuras geométricas em padrões aleatórios levemente deslocados não é compreendida em detalhes. Aparentemente, o sistema visual examina a figura, tentando correlacionar os pares de pontos que antes estavam alinhados. Quando você examina apenas uma pequena parte da figura, o cérebro não encontra correlação alguma e você não percebe nenhum padrão. A correlação encontrada na figura como um todo pode se dever ao fato de que o sistema visual é organizado em grupos de neurônios que se destinam a detectar curvas e bordas. Suponha que muitos desses grupos sejam excitados por um par de pontos que estavam alinhados anteriormente. Nesse caso, o cérebro compara os grupos, percebe que cada um possui um par correlacionado de pontos ligados por círculo invisível e leva à consciência uma percepção de rotação. Quando o ângulo de rotação é muito grande, os pontos que antes estavam alinhados excitam grupos diferentes de neurônios e a percepção de rotação é perdida. Além de ser sensível apenas a pequenas rotações, o cérebro também pode exigir que os pontos tenham o mesmo contraste com a cor de fundo. Assim, se a segunda figura for um negativo da primeira em fundo cinza, nenhuma figura geométrica é percebida, mesmo que o ângulo de rotação seja pequeno.

7.30 • Figuras geométricas no “chuvisco” da televisão Sintonize o aparelho de televisão em um canal que não esteja em uso, fazendo com que a tela mostre uma imagem de pontos aleatórios conhecida como chuvisco. Se você desenha um círculo na tela, o chuvisco parece escorrer pela borda do círculo. Se você traça uma série de linhas retas na tela a partir de um mesmo ponto, o chuvisco parece mover-se perpendicularmente às retas, descrevendo uma espiral. Uma série de círculos concêntricos faz o chuvisco se mover radialmente a partir do centro comum dos círculos. Qual é o mecanismo responsável por esses movimentos aparentes do chuvisco? Quando você observa uma tela com chuvisco cobrindo um dos olhos com um filtro escuro, mas não opaco, tal como uma lente de óculos escuros, o chuvisco adquire uma ordem surpreendente. Os pontos brancos na tela parecem estar em dois planos, um à frente e outro atrás da tela. Os pontos de um dos planos se movem para a esquerda, enquanto os do outro se movem para a direita. Qual é o mecanismo responsável pelos movimentos aparentes dos pontos e pela ilusão de profundidade?

Resposta O movimento aparente dos pontos induzido por uma figura geométrica presente na tela é certamente ilusório, já que os pontos estão aparecendo e desaparecendo ao acaso. Mesmo assim, o sistema visual insiste em perceber uma seqüência de pontos ao longo de uma direção como sendo o movimento de um único ponto. Ninguém sabe ao certo por que existe uma direção preferencial para o movimento percebido; entretanto, a direção preferencial é aparentemente induzida pela orientação de uma figura geométrica presente na tela. Quando um olho é coberto com um filtro escuro, o sinal visual produzido por esse olho sofre um retardo. Assim, enquanto o

olho descoberto vê a figura que está na tela, o olho coberto vê a figura que estava na tela no instante anterior. Assim como no fenômeno de Pulfrich (discutido no item 7.23), o cérebro tenta interpretar essas duas imagens como tendo sido produzidas pelos mesmos pontos. Para isso, os pontos são percebidos como se estivessem à frente ou atrás da tela (veja a Fig. 7-4). Assim, a ilusão de profundidade dos pontos é uma conseqüência do retardo sofrido pelo sinal visual do olho coberto. Suponha que no instante seguinte outro par de pontos seja visto um pouco à direita do primeiro par. Mais uma vez, o cérebro funde as imagens para perceber um único ponto. Ele também pode interpretar o novo ponto como sendo o ponto antigo que se deslocou para a direita. Novas fusões e interpretações resultam na ilusão de que o ponto está se movendo para a direita na tela. Outros pontos parecem se mover para a esquerda. Minha explicação pode estar errada. O cérebro pode estar interessado em encontrar um movimento aparente e depois atribuir uma certa profundidade aos objetos em movimento. O resultado, porém, é o mesmo: o cérebro leva à consciência a ilusão de pontos que estão se movendo em sentidos opostos em planos situados a distâncias diferentes do observador.

7.31 • O sorriso da Mona Lisa Um dos sorrisos mais encantadores de todos os tempos é o da Mona Lisa, retratado em um quadro de Leonardo da Vinci. O que há de tão cativante nesse sorriso?

Resposta Nossa visão pode parecer razoavelmente constante, mas é continuamente alterada por um sutil ruído aleatório, ou seja, flutuações no sinal e no processamento do sinal desde a retina até o nível de consciência do cérebro. Fotorreceptores e neurônios disparam espontaneamente ou deixam de disparar quando estimulados, a absorção de luz pelos fotorreceptores flutua e linhas e formas são interpretadas erroneamente ou alternam entre possíveis interpretações. Essas e outras variações modificam sutilmente os cantos da boca da Mona Lisa, fazendo-os subir e descer e mudando assim o humor aparente da Mona Lisa. Os observadores podem não se dar conta dessas mudanças, mas ficam fascinados com seu sorriso ambíguo.

7.32 • Imagens distorcidas em uma tela de televisão Quando estiver vendo televisão em uma sala pouco iluminada, mova o olhar rapidamente de um ponto um metro à esquerda da tela para um ponto um metro à direita. Durante o movimento, você vai ver com toda a nitidez, à direita da tela, uma ou mais reproduções da imagem que está na tela. As reproduções aparecem todas inclinadas para a direita. Por que elas aparecem? Para que lado estarão inclinadas se você mover o olhar no sentido oposto? Por que as imagens ficam mais separadas e mais inclinadas se você se afastar da tela? Também é possível ver as imagens movendo o olhar na vertical? As imagens aparecem se, em vez olhar para uma tela de televisão, você estiver olhando para uma tela de cinema?

Resposta A imagem é criada em uma tela de televisão a partir de uma série de linhas horizontais, começando pela parte de cima da tela. Suponha que você mova o olhar para a direita enquanto o feixe de elétrons está criando a linha de cima. A linha permanece visível por um certo tempo por causa da persistência da visão. Como seu olhar está se movendo para a direita, a imagem da linha de cima é deslocada para a direita enquanto a segunda linha está sendo criada na tela. Na verdade, no momento em que cada linha nova está sendo criada na tela, as linhas anteriores ainda podem ser percebidas, mas estão deslocadas para a direita por causa do movimento do seu olhar. O deslocamento é máximo para a linha de cima e mínimo para a linha de baixo. O conjunto das linhas produz uma reprodução distorcida da cena que aparece na tela. Se você move o olhar rapidamente para baixo, vê uma imagem achatada abaixo da tela; se move o olhar para cima, vê uma imagem esticada acima da tela. Como os filmes são projetados como uma série de quadros inteiros, não produzem imagens fantasmagóricas.

7.33 • Lendo através de pequenos furos Você pode ler com menos esforço através de furos colocados na frente dos olhos? Óculos de leitura com furos são vendidos com a promessa de reduzir o esforço muscular dos olhos porque a necessidade de acomodação (focalização) seria reduzida ou eliminada. O argumento é o seguinte: ao olhar através de um furo, você aumenta a profundidade de foco (faixa de distâncias para a qual um objeto permanece em foco), reduzindo assim a necessidade de acomodar os olhos. Esse argumento está correto? As lagartixas, que vivem em regiões desérticas, não lêem através de furos, mas usam furos para proteger os olhos da luz

solar. À noite, duas membranas que ficam à frente da pupila se abrem para formar uma fenda vertical através da qual o réptil enxerga. Durante o dia, as membranas fecham a fenda, mas deixam quatro pequenos furos nos lugares em que as membranas possuem concavidades. De que forma a lagartixa usa esses quatro furos para localizar a presa? Uma única abertura não seria melhor?

Resposta O argumento usado pelos vendedores de óculos com furos não faz sentido. A acomodação está ligada à convergência dos olhos, que é a ação de apontar os dois olhos para o mesmo objeto. Quando você lê esta página a uma distância de, digamos, 25 centímetros, as linhas de visão dos dois olhos devem formar um certo ângulo para que você possa fundir mentalmente as imagens dos dois olhos para formar uma única imagem percebida. A convergência força automaticamente os dois olhos a se acomodarem, mesmo que o objeto esteja sendo observado através de furos. Assim, os furos não reduzem o esforço muscular. As inúmeras aberturas do olho fechado de uma lagartixa reduzem a profundidade de foco. Em seguida, a lagartixa pode ajustar o olho para que as quatro aberturas produzam uma única imagem nítida de uma presa, enquanto produzem imagens um pouco fora de foco de outros objetos. A atenção da lagartixa vai para a imagem nítida e não para as outras imagens.

7.34 • As cores de um dedo Em um quarto pouco iluminado e olhando apenas com um olho, estique o braço e mantenha o dedo indicador na vertical em frente a uma janela por onde entre a luz solar. Focalize os olhos na janela (ou mesmo além da janela), não no dedo. Os lados do dedo ficarão levemente coloridos: um lado vermelho, o outro lado azul. De onde vêm essas cores?

Resposta Considere primeiro um raio de luz branca que tangencie o lado esquerdo do dedo. Dizemos que a luz solar é branca porque contém quantidades aproximadamente iguais de todas as cores do espectro visível. Quando a luz entra no olho e incide na retina, as cores se espalham por uma pequena região da retina, com o azul de um lado, o vermelho do outro e as cores intermediárias em posições intermediárias. Em geral, não podemos ver essas cores porque elas se sobrepõem na retina. Entretanto, no caso de um dedo colocado diante de uma janela, o dedo projeta uma sombra na retina, eliminando a superposição de cores perto da sombra. Assim, a borda da sombra parece colorida. Dependendo do ângulo pelo qual a luz entra no olho, o vermelho aparece de um lado da sombra e o azul aparece do outro.

7.35 • Estrelas vistas de dia através de um tubo Desde que Aristóteles lançou a idéia, muitas pessoas acreditam que é possível ver estrelas de dia usando um tubo comprido, como uma chaminé, por exemplo. O tubo elimina a maior parte da luz, deixando visível apenas um pequeno trecho do céu na sua extremidade. A redução da intensidade da luz também permite que a vista do observador se adapte, tornando-se mais sensível. Essas mudanças são suficientes para permitir a observação de estrelas durante o dia?

Resposta Não é possível observar estrelas da maneira descrita porque a intensidade luminosa no trecho do céu em torno da estrela seria a mesma que no resto do céu. Observar o céu através de um tubo reduz a quantidade de luz recebida pelo olho, mas não resolve o problema da falta de contraste entre uma estrela e sua vizinhança. O uso do tubo pode até reduzir a visibilidade da estrela: se você observa uma pequena região luminosa cercada pela escuridão, a região luminosa deve ter um certo brilho mínimo para ser percebida. Esse limiar diminui se a região em volta não for tão escura.

7.36 • O olhar de um observador de estrelas Por que é mais fácil ver uma estrela de baixa luminosidade nas vizinhanças de uma estrela brilhante se você desviar o olhar das duas estrelas? Quando você está na penumbra, por que é mais fácil ver uma luz fraca se você não olhar diretamente para ela? Aristóteles usou esta técnica para afirmar que os cometas não são planetas com um grande período orbital; evitando olhar diretamente para os cometas, ele pôde perceber que, ao contrário dos planetas, eles possuíam uma cauda.

Resposta Quando a quantidade de luz que chega à retina é pequena, como acontece com a luz das estrelas, os cones não respondem e os únicos fotorreceptores excitados são os bastonetes. Quando você olha diretamente para a estrela, a imagem incide na fóvea, que contém apenas cones, e você não consegue ver a estrela. Quando você desvia o olhar da estrela, a imagem incide em outras regiões da retina, onde existem bastonetes. Assim, você consegue ver a estrela.

7.37 • A resolução de objetos vistos na Terra por astronautas Quais são os menores objetos que astronautas em órbita são capazes de distinguir na superfície da Terra sem recorrer a instrumentos? Eles podem ver grandes cidades ou construções como as pirâmides? As fotografias tiradas pelas primeiras sondas de Marte foram decepcionantes para algumas pessoas, porque não revelaram sinais de vida inteligente. Que sinais de vida inteligente seriam vistos em fotografias semelhantes de nosso planeta se a resolução fosse limitada a um quilômetro?

Resposta Um astronauta em órbita não é capaz de distinguir praticamente nenhum sinal de vida inteligente quando observa a superfície da Terra durante o dia sem a ajuda de instrumentos. O limite de resolução da visão de uma pessoa depende da difração (espalhamento) da luz ao passar pela pupila. Quando a superfície é observada da distância de uma espaçonave em órbita (800 quilômetros, digamos), a difração é suficiente para ocultar os detalhes de praticamente todas as construções humanas. Construções com dimensões da ordem de um quilômetro estão no limite da resolução. Entretanto, quando um astronauta observa a Terra à noite, os indícios de vida inteligente são abundantes, já que as luzes das cidades podem ser vistas claramente.

7.38 • Abelhas, formigas do deserto e luz polarizada Dizemos que os raios solares que chegam a um observador diretamente do Sol são não-polarizados porque o campo elétrico oscila em todas as direções possíveis perpendiculares ao raio. Entretanto, um raio luminoso que chega ao observador depois de ser espalhado por uma molécula do ar é polarizado, já que, nesse caso, o campo elétrico oscila em uma única direção perpendicular ao raio. Nós, humanos, não podemos notar a diferença, mas certos animais, como as abelhas e as formigas do deserto, conseguem se orientar a partir da polarização da luz do céu. Assim, por exemplo, quando sai em busca de alimento, uma formiga do deserto observa os ângulos entre a orientação do seu corpo e a orientação da polarização da luz que chega do céu. Mais tarde, na hora de voltar para casa, ela determina a direção do formigueiro combinando todas as informações angulares de que dispõe. Trata-se de um feito notável, já que centenas de ângulos podem estar envolvidos. De que maneira esses insetos detectam a polarização da luz?

Resposta Os olhos da abelha e da formiga do deserto são olhos compostos, formados por centenas ou milhares de receptores de luz chamados omatídios. Em cada receptor, a luz passa por uma córnea e um cone de material cristalino transparente e penetra em uma estrutura alongada chamada rabdoma. Essa estrutura é dividida em nove partes dispostas em torno de um eixo central. Nas junções entre as partes existe um pigmento sensível à luz (rodopsina). Quando a luz penetra em um omatídio, é absorvida pelos pigmentos, produzindo um sinal que é enviado para o cérebro do inseto. Uma das partes do omatídio pode detectar a polarização da luz. Em alguns omatídios, essa parte é torcida no sentido horário; em outras, no sentido anti-horário. O inseto detecta a orientação e a intensidade da polarização da luz a partir de três sinais. Dois deles vêm das partes sensíveis à polarização, uma para a direção de rotação. O terceiro sinal vem dos detectores de ultravioleta presentes nos omatídios que indicam apenas a intensidade da luz. Com base nesses três sinais, provenientes de um grupo de omatídios situados em uma parte relativamente pequena do olho, o inseto é capaz de determinar a polarização da luz que vem do céu. Ninguém sabe exatamente de que maneira o cérebro do inseto utiliza essa informação. Entretanto, sabemos que as abelhas se comunicam entre si através de uma dança, uma série de movimentos sinuosos que são usados para transmitir uma série de informações entre elas, provavelmente algumas obtidas a partir de dados sobre a polarização da luz. A capacidade de detectar a polarização da luz pode ser usada para outras aplicações além da simples orientação. Assim, por exemplo, alguns insetos aquáticos localizam corpos d’água pela luz polarizada que refletem. A luz refletida pela água é fortemente polarizada no plano horizontal. É por isso que muitos óculos escuros possuem lentes polarizadoras: absorvendo a luz polarizada horizontalmente, elas eliminam a ofuscação causada por reflexos na água. Mais importante para os motoristas é o fato de que a luz refletida pelo asfalto também é polarizada e, portanto, pode ser eliminada por óculos escuros com lentes polarizadoras. As libélulas às vezes confundem a luz polarizada do asfalto com a luz produzida pela água. Elas pousam no asfalto e põem seus ovos, que não sobrevivem por muito tempo.

7.39 • O pincel de Haidinger A maioria das pessoas é capaz de detectar com os olhos a polarização da luz. Observe uma cena uniforme, bem iluminada, através de um filtro polarizador, como, por exemplo, uma lente de óculos escuros. Bem à sua frente, durante alguns segundos,

você deverá ver uma pequena figura amarela, em forma de ampulheta, cercada por regiões azuis (Fig. 7-6). A figura é chamada pincel de Haidinger, em homenagem a Wilhelm Karl von Haidinger, que a descobriu em 1844. Para manter visível o pincel de Haidinger, gire o filtro, mudando assim a direção de polarização da luz que penetra no olho. Isso fará a figura em forma de ampulheta girar também, pois o eixo menor da figura é paralelo à direção de polarização da luz. A figura fica mais nítida se a luz contiver uma alta proporção de azul; um céu azul é ideal. Nem todo mundo consegue ver o pincel de Haidinger e a capacidade parece diminuir com a idade. Quando eu era mais moço, podia vê-lo sem usar nenhum tipo de filtro, simplesmente olhando para a luz do céu, que é polarizada. Qual é o mecanismo responsável pela figura e pela sensibilidade do olho à polarização da luz?

Resposta Tradicionalmente, o pincel de Haidinger é associado à mácula lútea, que é a região central da retina (no centro da qual fica a fóvea). A sensibilidade à direção de polarização da luz foi inicialmente atribuída ao arranjo das moléculas de pigmentos que dão a essa região uma cor amarela. Essas moléculas absorvem luz azul com uma certa polarização. Acreditava-se que estivessem orientadas radialmente em torno de um centro comum. Segundo um modelo mais recente, as moléculas não precisam estar individualmente orientadas; basta que estejam agrupadas em regiões cujas orientações relativas proporcionem uma absorção seletiva de uma direção de polarização da luz azul. Para compreender qualquer dos dois modelos, imagine que os pigmentos da mácula lútea estejam ao longo de linhas mutuamente perpendiculares, uma horizontal e outra vertical. Se uma luz azul polarizada verticalmente penetra no olho, a linha vertical deixa a luz passar para os cones que estão mais abaixo, mas a linha horizontal absorve a luz, impedindo que chegue aos cones. Se, por outro lado, uma luz azul horizontalmente polarizada penetra no olho, a linha horizontal deixa a luz passar e a linha vertical bloqueia a luz. Suponha que uma luz verticalmente polarizada penetre no olho e que a luz seja quase branca, mas tenha uma predominância de azul. Nesse caso, os cones que estão abaixo da linha vertical são excitados e você percebe a cor azul na vertical. Entretanto, a linha horizontal absorve o azul e os cones que estão abaixo dessa linha recebem apenas o resto das cores que penetram no olho. A cor resultante da subtração do azul de uma luz branca ou quase branca é o amarelo. Assim, você percebe uma linha horizontal amarela que é a figura em forma de ampulheta do pincel de Haidinger. A linha vertical azul é vista como as regiões azuis dos dois lados da ampulheta.

Figura 7-6 / Item 7.39 Pincel de Haldinger.

Se esta explicação estivesse completa, você não veria as regiões azuis quando a fonte luminosa é o céu ou outra fonte extensa predominantemente azul, pois nesse caso as regiões azuis não poderiam ser distinguidas da cor do fundo. Para completar a explicação, aparentemente precisamos supor que o cérebro percebe o azul adicional que existe nessas regiões. Possivelmente, essa cor subjetiva é estimulada pelo amarelo da ampulheta que existe ao lado dessas regiões.

7.40 • As cores das sombras Em 1810, Johann Wolfgang von Goethe, um dos pioneiros no estudo da visão das cores, descreveu o seguinte experimento: “Acenda uma vela pequena e coloque-a sobre um pedaço de papel branco ao anoitecer. Entre a vela e a luz fraca do final do dia coloque um lápis na vertical de tal modo que a sombra projetada pela vela seja iluminada, mas não ofuscada, pela luz do dia. A sombra terá um tom azul muito bonito”. O leitor pode fazer uma experiência semelhante. Em um quarto escuro, ilumine uma tela com dois projetores. Filtre a luz de

um dos projetores com um pedaço de papel celofane vermelho e coloque a mão na frente do projetor, para que projete uma sombra na tela. Do lado de fora da sombra, a tela ficará cor-de-rosa, pois estará recebendo luz vermelha do primeiro projetor e luz branca do segundo projetor. A sombra na tela deveria ser branca, já que a luz vermelha do primeiro projetor é bloqueada pela sua mão e a tela, portanto, é iluminada apenas pelo segundo projetor. Entretanto, a sombra é azul-turquesa. Por que a sombra é colorida?

Resposta Vou explicar a experiência do projetor e deixar a explicação da experiência de Goethe por conta do leitor. As imagens da tela e da sombra da mão excitam os três tipos de cones presentes na retina. A imagem de tela cor-de-rosa excita fortemente os cones sensíveis ao vermelho e excita mais fracamente os cones sensíveis ao verde e ao azul. A imagem da sombra deveria ser branca, já que a região da sombra é iluminada apenas pelo segundo projetor, cuja luz não é filtrada. Isto significa que essa imagem deveria excitar igualmente os três tipos de cones. Entretanto, os cones sensíveis ao vermelho excitados pela tela cor-de-rosa inibem o sinal dos cones sensíveis ao vermelho que estão dentro da região da sombra. Com essa inibição, a cor no interior da sombra é vista como azul-turquesa, a cor complementar do vermelho. O modo como a inibição acontece e por que a cor complementar é percebida são questões que ainda precisam ser esclarecidas.

7.41 • A segurança dos óculos escuros Os óculos escuros absorvem luz visível e ultravioleta, reduzindo assim a quantidade de luz que chega ao olho, mas o escurecimento faz a pupila dilatar-se. É possível que, por causa dessa dilatação, uma quantidade maior de luz ultravioleta penetre no olho, caso em que o uso de óculos escuros seria prejudicial? Por que os nativos da região em que hoje ficam o Canadá e o Alasca cobriam os olhos com pedaços de osso ou madeira nos quais foram abertas fendas estreitas para que pudessem enxergar? Por que alguns atletas (especialmente jogadores de futebol americano) passam graxa ou tinta preta no rosto quando vão jogar em dias de sol forte?

Resposta Os óculos escuros reduzem a quantidade de luz ultravioleta que penetra no olho, apesar da dilatação da pupila. Esta afirmação baseia-se em um estudo de mais de 400 modelos de óculos escuros. Até os modelos mais baratos reduzem a exposição aos raios ultravioleta. Os nativos do Canadá e do Alasca faziam isso para reduzir a ofuscação causada pelo reflexo da luz solar na neve e no gelo. As fendas reduziam não só a luz visível e ultravioleta, mas também a luz infravermelha, que produz desconforto nos olhos. A graxa ou tinta preta que os jogadores de futebol americano passam no rosto diminui o reflexo da luz do rosto para os olhos, que pode ofuscar o jogador. Esse reflexo é especialmente desagradável quando o rosto está molhado de suor e o Sol está a pino ou a iluminação é muito forte, no caso de jogos noturnos.

7.42 • O olho dos peixes Podemos enxergar porque o olho desvia (refrata) os raios luminosos para que formem uma imagem nítida na retina. Cerca de dois terços da refração acontecem na superfície curva da córnea; o restante acontece quando os raios atravessam o cristalino, que fica pouco atrás da córnea. O olho de um peixe é diferente porque está imerso na água, cujas propriedades ópticas são semelhantes às do olho humano. Nesse caso, os raios luminosos são refratados apenas pelo cristalino. Além disso, como o cristalino precisa desviar consideravelmente os raios para focalizá-los na retina, o cristalino tende a ser esférico. Entretanto, uma lente esférica apresenta a chamada aberração esférica: os raios que passam pela periferia da lente não são focalizados no mesmo ponto que os raios que passam pela parte central da lente. O resultado é que os raios não produzem uma imagem nítida (Fig. 7-7a). Na verdade, uma imagem produzida dessa forma ficaria tão borrada que os peixes seriam praticamente cegos. De que maneira, então, os peixes conseguem enxergar?

Figura 7-7 / Item 7.42 Focalização dos raios luminosos por uma lente esférica (a) com um índice de refração uniforme; (b) com um gradiente do índice de refração.

Resposta O desvio sofrido por um raio luminoso ao entrar e sair de uma lente depende da variação do índice de refração dos materiais. Se um raio passa da mistura de água e proteína do interior do olho para um cristalino com um índice de refração muito maior, o raio tende a sofrer um grande desvio. Se o índice de refração é apenas um pouco maior, o desvio é menor. O cristalino de um peixe não é uniforme; o material da periferia tem um índice de refração menor que o material da parte central. O resultado é que os raios que passam pela periferia são focalizados no mesmo ponto que os raios que passam pela parte central (Fig. 7-7b). É por isso que os peixes conseguem enxergar. A variação do índice de refração, que é chamada gradiente do índice de refração, deve-se a uma variação da mistura de água e proteína no olho. Você pode observar essa variação examinando o olho de um peixe cru ou cozido: o olho é mais firme na parte central. O cristalino humano também apresenta um gradiente do índice de refração (o índice é maior no centro e menor na periferia). Entretanto, como nosso ambiente externo é o ar e não a água, o olho humano corrige a aberração esférica principalmente na córnea: a córnea não é esférica, mas tem uma forma apropriada para compensar a aberração esférica. O caranguejo-ferradura (Limulus polyphemus) também usa um gradiente do índice de refração, mas de modo mais sofisticado. O animal possui olhos compostos, formados por muitas facetas transparentes, cada qual com uma superfície lisa e plana. Em cada faceta, a luz atravessa um canal para chegar aos fotorreceptores. Embora não exista um cristalino na entrada da faceta, uma imagem se forma na região dos fotorreceptores. Isso acontece porque, ao longo do canal, o índice de refração é maior nas proximidades do eixo central do que na periferia. Isso faz com que os raios sejam focalizados para formar uma imagem na extremidade do canal.

7.43 • Profundidade em cartazes com vermelho e azul Em condições de forte iluminação, a parte vermelha de um cartaz vermelho e azul parece estar na frente da parte azul. Em condições de iluminação fraca, acontece o contrário. Qual é o mecanismo responsável por essa ilusão de profundidade e por que ela depende da intensidade da iluminação?

Resposta Para começar, imagine que você esteja observando três objetos situados a distâncias diferentes, bem à sua frente. Se você focaliza os olhos no objeto do meio, os olhos formam uma imagem nítida desse objeto na retina. O objeto mais distante forma uma imagem borrada na retina que está um pouco mais próxima do nariz do que a imagem em foco. O objeto mais próximo forma uma imagem borrada na retina que está mais próxima do lado da cabeça que a imagem em foco. O cérebro compara as posições dessas imagens e atribui as distâncias apropriadas aos objetos correspondentes. Uma comparação semelhante é responsável pela ilusão de profundidade em cartazes vermelhos e azuis. Suponha que, em condições de forte iluminação, você veja dois pontos vizinhos, um vermelho e um azul. Os raios luminosos provenientes desses pontos entram nos olhos e são refratados (desviados) para formar imagens na retina. Entretanto, como os raios azuis são mais desviados que os raios vermelhos, os dois pontos não podem ser focalizados perfeitamente ao mesmo tempo. Suponha que você olhe diretamente para o ponto vermelho e ele fique em foco na retina. Nesse caso, o ponto azul formará uma imagem borrada na retina (Fig. 7-8).

A profundidade que é atribuída a essas duas imagens depende de sua posição na retina em relação à linha de visada. Em geral, a linha de visada não passa pelo centro da pupila. Quando a iluminação é forte, a linha de visada fica mais perto do nariz do que o centro da pupila. Com essa geometria, o centro da imagem borrada do ponto azul fica ligeiramente mais próximo do centro do nariz do que o ponto de visada. Com base na experiência de percepção de profundidade, o cérebro interpreta essa imagem como sendo produzida por um objeto (o ponto azul) que está mais distante que o objeto responsável pela imagem nítida na linha de visada (o ponto vermelho). Assim, você tem a impressão de que o ponto azul está mais distante do que o ponto vermelho. Quando a iluminação é fraca, a pupila se dilata e a linha de visada muda de posição, ficando mais perto do lado da cabeça do que o centro da pupila. Esse arranjo faz com que a imagem borrada do ponto azul também se desloque, ficando ligeiramente mais próximo do lado da cabeça que a linha de visada. O cérebro interpreta essa nova posição como significando que o ponto azul está agora mais próximo que o ponto vermelho.

Figura 7-8 / Item 7.43 Quando o olho focaliza o vermelho na retina, o azul é focalizado em um ponto à frente da retina.

A profundidade pode ser vista em um mapa que usa o vermelho e o azul como um código de cores se os mapas forem observados através de uma grande lente convexa, como uma lupa, por exemplo. Nesse caso, a separação das cores é realizada pela lente, já que a luz azul é mais refratada que a luz vermelha.

7.44 • Arcos azuis de Purkinje Em uma noite escura, o fisiologista Johannes Purkinje, no século XIX, notou que uma pequena brasa havia criado dois arcos azuis no seu campo de visão. Os arcos logo desapareceram, mas ele conseguiu criá-los novamente sacudindo a brasa. Para ver os arcos, faça o seguinte: apague a luz do quarto e espere dois minutos. Feche um olho e acenda uma pequena lâmpada vermelha. A melhor fonte luminosa é um retângulo estreito que não ocupe mais de 0,25o de arco do seu campo visual. Com o olho aberto, você deve perceber um arco ou uma protuberância azul durante cerca de um segundo. A forma do arco depende da posição da luz vermelha no seu campo visual. Para criar novamente o arco, deixe a luz do quarto ligada durante dois minutos e repita o processo. Os mesmos arcos também podem ser vistos logo depois que a luz vermelha é desligada. Nos dois casos, se você deixar que os olhos se adaptem totalmente à escuridão, os arcos se tornam cinzentos (incolores). Por que os arcos aparecem e por que a forma da região azul depende da posição da luz vermelha? Como é possível que um pequeno estímulo crie um arco que ocupa uma parcela considerável do campo visual? Por que os arcos são azuis quando o olho está parcialmente adaptado à escuridão e se tornam cinzentos quando o olho está totalmente adaptado?

Resposta Quando a imagem da luz vermelha se forma na retina, a luz ativa os cones responsáveis pela detecção da luz vermelha. Os circuitos nervosos que partem desses cones são vizinhos dos circuitos nervosos ligados a bastonetes situados em outros locais da retina. Aparentemente, a excitação dos circuitos dos cones estimula os circuitos dos bastonetes e o cérebro chega à conclusão, erroneamente, de que os bastonetes também estão sendo estimulados. Como esses bastonetes formam um arco na retina, o cérebro percebe um arco iluminado. Os arcos são azuis se alguns cones ainda estiverem enviando um sinal de amarelo ao cérebro por causa da exposição prévia à luz ambiente. A percepção de azul acontece da seguinte maneira: o estímulo vermelho ativa os cones nas partes da retina atingidas pela luz. Os circuitos nervosos associados a esses cones ativam os circuitos nervosos dos bastonetes responsáveis pelo arco. Esses caminhos nervosos inibem o sinal de amarelo dos cones que estão ao longo do arco. O amarelo e o azul são chamados de cores oponentes porque, quando um sinal de amarelo é inibido, o cérebro percebe a cor azul. Assim, quando os circuitos nervosos dos bastonetes inibem a mensagem de amarelo dos cones do arco, o cérebro percebe o arco como sendo azul. Mais tarde, quando os cones se tornam inativos (adaptam-se à escuridão), a visão de cores do arco

desaparece e ele é percebido como cinzento.

7.45 • A mancha de Maxwell Observe uma folha de papel em branco através de um filtro amarelo. Em seguida, substitua rapidamente o filtro amarelo por um azul. Você pode ver por alguns instantes a mancha de Maxwell, uma pequena mancha escura ou amarela no centro do campo visual. Outros pares de filtros coloridos podem ser usados, contanto que o segundo filtro deixe passar mais luz azul que o primeiro. O que causa a mancha de Maxwell?

Resposta Uma explicação da mancha de Maxwell é que os bastonetes interferem na informação de cor que está sendo enviada ao cérebro pelos cones. Quando você observa a folha de papel através de um filtro amarelo, a luz amarela que entra no olho ativa os cones e o resto do sistema visual que é responsável pela detecção da luz amarela. Logo depois que você substitui o filtro amarelo por um filtro azul, os cones ainda estão ativados. Com a luz azul chegando ao olho, outros cones começam a enviar ao cérebro sinais de azul. Entretanto, os bastonetes também respondem à luz azul (mais do que responderam à luz amarela). Embora não possam enviar sinais ao cérebro a respeito da cor (enviam apenas sinais a respeito do brilho), sua atividade pode inibir o sinal de amarelo dos cones que ainda estão ativos por causa da exposição prévia à luz amarela. O amarelo e o azul são chamados de cores oponentes porque, quando um sinal de amarelo é inibido, o cérebro percebe a cor azul. Assim, quando os bastonetes inibem a mensagem de amarelo dos cones, o cérebro percebe a cor azul. Como também está recebendo um sinal de azul de outros cones que são ativados pela luz azul que está entrando no olho nesse instante, o azul parece mais forte do que realmente é. Como não existem bastonetes na fóvea (região de maior acuidade visual da retina), o azul adicional não é percebido nessa região. Por contraste com o resto da retina, a fóvea parece amarela por causa da oposição entre azul e amarelo na percepção de cores. Essa coloração aparente da fóvea é a mancha de Maxwell.

7.46 • Sensações visuais causadas pela radiação Quando estavam no espaço, astronautas com os olhos adaptados à escuridão viram clarões em forma de pontos, estrelas, estrelas duplas ou que preenchiam a maior parte do campo visual. Essas visões foram produzidas por raios cósmicos que atravessaram os olhos dos astronautas. (Raios cósmicos são partículas, em geral de alta velocidade, provenientes do espaço sideral.) Clarões semelhantes foram observados por voluntários em laboratórios de pesquisa quando seus olhos foram submetidos a um fluxo de partículas velozes. De que maneira as partículas criam os clarões? Elas colidem diretamente com os fotorreceptores da retina, fazendo-os enviar sinais ao cérebro, ou produzem luz no interior do olho, que é captada pelos fotorreceptores? Clarões semelhantes podem ser vistos a grandes altitudes por alpinistas e ocupantes de aviões?

Resposta Os clarões vistos por astronautas podem se dever à luz produzida por partículas extremamente rápidas ao passarem pelo humor vítreo (a substância transparente que existe no interior do globo ocular) e pela retina. A passagem dessas partículas produz uma onda de choque luminosa, conhecida como radiação de Cerenkov, que pode ser detectada pelos fotorreceptores da retina. Esses clarões foram observados em experimentos nos quais os olhos de voluntários foram submetidos a um fluxo de múons (partículas semelhantes a elétrons, mas com uma massa 207 vezes maior). As partículas subatômicas (mesmo com baixa velocidade) também podem produzir clarões de forma direta, ao colidirem com fotorreceptores da retina. Um tipo diferente de imagem é produzido por raios X: quando é submetido a um fluxo intenso de raios X, o observador vê uma luminosidade difusa e não as luzes isoladas descritas pelos astronautas. Não se tem notícia de observações semelhantes realizadas por ocupantes de aeronaves, mesmo em vôos de grande altitude pela rota polar, que envolvem uma exposição à radiação suficiente para exigir o uso de detectores de radiação.

7.47 • Luz vermelha em painéis de controle Por que os instrumentos da sala de controle dos navios em geral são iluminados à noite com luz vermelha?

Resposta Como os cones da retina não funcionam bem quando a luz é fraca, nossa visão em condições de baixa iluminação depende quase exclusivamente dos bastonetes. Entretanto, quando a quantidade de luz disponível é reduzida bruscamente, os bastonetes levam algum tempo, 10 minutos pelo menos, para se adaptar à nova situação. Somente após

esse tempo é que eles atingem a máxima sensibilidade para baixos níveis de iluminação. Como os bastonetes não são sensíveis à extremidade vermelha do espectro, os painéis de controle costumam ser iluminados com esta cor. Assim, quando o operador observa o painel, os cones são ativados, mas os bastonetes continuam adaptados às condições de baixa iluminação e, portanto, sensíveis a qualquer estímulo que venha de fora.

7.48 • A visão de raios X do Super-Homem De acordo com a história em quadrinhos, o Super-Homem é capaz de enxergar através de objetos opacos emitindo raios X pelos olhos. Vamos ignorar a questão obviamente complexa de como um órgão como o olho poderia emitir raios X e nos concentrar em uma questão mais fácil: alguma coisa do outro lado de uma parede poderia ser detectada por meio de raios X?

Resposta Para que o Super-Homem pudesse ver a imagem, digamos, de um criminoso escondido do outro lado da parede, o criminoso teria que refletir os raios X. Nesse caso, porém, a parede também refletiria os raios X. O leitor poderia argumentar que qualquer material poderia absorver uma parte dos raios e transmitir a outra parte. Nesse caso, uma parte dos raios atravessaria a parede; uma parte dos raios que atravessassem a parede seria refletida pelo criminoso; finalmente, uma parte dos raios refletidos pelo criminoso atravessaria novamente a parede e chegaria aos olhos do Super-Homem. O problema é que esses raios seriam tão poucos que seriam facilmente mascarados pelos raios refletidos pela parede e por todos os outros objetos das vizinhanças. Mesmo que o Super-Homem fosse capaz de processar mentalmente todos esses raios e reconstruir uma imagem do criminoso, ainda teríamos que explicar o seguinte: como os olhos do Super-Homem seriam capazes de absorver raios capazes de penetrar em uma parede? (Eu sei, as histórias em quadrinhos foram feitas para serem lidas e não para serem analisadas.)

7.49 • A ilusão dos fogos de artifício Quando um rojão é lançado verticalmente em uma noite escura, sem vento, os restos flamejantes da explosão deveriam se espalhar uniformemente no céu. Por que parecem se mover na direção do observador?

Resposta Essa ilusão ainda não foi perfeitamente explicada. Entretanto, podemos presumir que ela se baseia em experiências anteriores. Quando você observa qualquer objeto tridimensional, pode ver detalhes do lado mais próximo, nunca do lado mais distante. Assim, em uma noite escura, sem nenhuma referência de distância (como nuvens, por exemplo), todos os restos flamejantes da explosão são interpretados como pontos da superfície mais próxima de um objeto tridimensional invisível que está aumentando rapidamente de tamanho.

7.50 • Olhando para o teto

Fique deitado de costas no centro de um quarto que tenha um lustre no teto. Quando você olha para o teto na direção dos pés, tudo parece normal. Quando, porém, inclina a cabeça para trás e olha para o lado oposto do teto, você tem a estranha impressão de que está olhando para o teto de cima para baixo, como se pudesse caminhar sobre ele. O lustre parece projetar-se para cima em sua direção e a abertura da porta parece um obstáculo que você teria que saltar. O que produz essa ilusão? Você tem a mesma impressão quando fica de cabeça para baixo e olha para o teto?

Resposta As pesquisas publicadas a respeito dessa ilusão sugerem que, quando você se deita de costas, a noção do que está em cima e do que está embaixo muda porque você não dispõe da gravidade para informar qual é a direção “para cima” e qual é a direção “para baixo”. Normalmente, a região “para baixo” é aquela que você vê na parte inferior do campo visual e a região “para cima” é a que você vê na parte superior do campo visual. Se você inverte

mentalmente a imagem quando está deitado de costas, o teto na direção dos seus pés fica na parte inferior do campo visual e passa a ser considerado “para cima”, enquanto o teto atrás da sua cabeça passa a ser considerado “para baixo”. A ilusão não aparece quando você fica de cabeça para baixo, presumivelmente porque nesse caso a gravidade informa qual é a direção “para cima” e qual é a direção “para baixo”.