NMR and Macromolecules. Sequence, Dynamic, and Domain Structure 9780841208292, 9780841210752, 0-8412-0829-8

Content: An introduction to NMR spectroscopy of solid samples / Daniel J. O'Donnell -- Molecular motion in glassy p

413 98 4MB

English Pages 274 Year 1984

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

NMR and Macromolecules. Sequence, Dynamic, and Domain Structure
 9780841208292, 9780841210752, 0-8412-0829-8

Table of contents :
Title Page......Page 1
Half Title Page......Page 3
Copyright......Page 4
ACS Symposium Series......Page 5
FOREWORD......Page 6
Dedication......Page 7
PdftkEmptyString......Page 0
PREFACE......Page 11
1 NMR and Macromolecules......Page 13
Stereochemical Configuration......Page 14
19F NMR Observations of Regioregularity......Page 17
Carbon—13 Study of Crystal Morphology......Page 20
Biopolymers......Page 22
Literature Cited......Page 26
2 An Introduction to NMR Spectroscopy of Solid Samples......Page 28
Chemical Shift Anisotropy......Page 29
Nuclear Quadrupole Effects......Page 30
The Magic Angle......Page 31
Line Narrowing in Spin Space - WAHUHA......Page 35
Cross Polarization......Page 38
Line-Shape Analysis......Page 41
Relaxation and Motion in Solids Spin-Lattice Relaxation - T1......Page 42
Relaxation in the Rotating Frame-T1ρ......Page 44
Conclusions......Page 46
Literature Cited......Page 48
Rotating-Frame Carbon Spin-Lattice Relaxation......Page 49
Typical Spectra in the Chemical Shift and Dipolar Dimensions......Page 50
Comparison Between Experimental and Calculated Dipolar Sideband Patterns......Page 53
Small-Amplitude Low-Frequency Ring Motion......Page 56
Conclusions for Ring Rotations in Polystyrenes......Page 58
Literature Cited......Page 60
4 Solid State 2H NMR Studies of Molecular Motion Poly(butylene terephthalate) and Poly(butylene terephthalate)-Containing Segmented Copolymers......Page 61
EXPERIMENTAL......Page 63
RESULTS AND DISCUSSION......Page 65
SUMMARY......Page 69
LITERATURE CITED......Page 71
5 Spin Relaxation and Local Motion in a Dissolved Aromatic Polyformal......Page 72
Results......Page 73
Interpretation......Page 75
Discussion......Page 84
Literature Cited......Page 86
6 Characterization of Molecular Motion in Solid Polymers by Variable Temperature Magic Angle Spinning 13C NMR......Page 88
Results and Discussion......Page 89
Literature Cited......Page 99
7 New NMR Experiments in Liquids......Page 100
Spectral Editing Using J-Modulated Spin-Echos......Page 101
Polarization Transfer Methods......Page 104
Two-Dimensional NMR......Page 109
Literature Cited......Page 120
8 Application of the INEPT Method to 13C NMR Spectral Assignments in Low-Density Polyethylene and Ethylene-Propylene Copolymer......Page 122
Results and Discussion......Page 123
Literature Cited......Page 129
9 13C NMR in Polymer Quantitative Analyses......Page 131
Experimental Variables in Quantitative NMR Studies of Polymers......Page 132
Literature Cited......Page 150
10 The Synthesis of Novel Regioregular Polyvinyl Fluorides and Their Characterization by High-Resolution NMR......Page 152
Experimental......Page 153
Results and Discussion......Page 154
Literature Cited......Page 164
11 The Composition and Sequence Distribution of Dichlorocarbene-Modified Polybutadiene by 13C NMR......Page 165
Results......Page 166
Discussion......Page 169
Experimental......Page 174
Literature Cited......Page 177
12 NMR Spectra of Styrene Oligomers and Polymers......Page 178
Preparation and Separation of Styrene Oligomers......Page 179
NMR Spectra of the Dimer and Trimer......Page 180
Identification of the Tetramer and Pentamer......Page 184
13C NMR Spectra of the Tetramer and Pentamer......Page 185
13C NMR Signal Assignment of Polystyrene......Page 187
Literature Cited......Page 193
13 75-MHz 13C NMR Studies on Polystyrene and Epimerized Isotactic Polystyrenes......Page 194
Experimental......Page 197
Results and Discussion......Page 199
Conclusions......Page 215
Literature Cited......Page 218
14 Stereospecific Polymerization of α-Olefins: End Groups and Reaction Mechanism......Page 220
Regiospecificity......Page 221
Mechanism of the Steric Control......Page 222
Stereoselective Polymerization of Ghiral α-Qlefins......Page 225
Literature Cited......Page 227
15 Structural Characterization of Naturally Occurring cis-Polyisoprenes......Page 229
13C NMR Analysis of Model Compounds......Page 230
Structural Characterization of Ρolyprenols......Page 232
Structure of Naturally Occurring Cis-Polyisoprenes......Page 234
Literature Cited......Page 240
16 A 13C NMR Study of Radiation-Induced Structural Changes in Polyethylene......Page 241
Experimental......Page 243
Results......Page 249
Discussion......Page 260
Conclusions......Page 262
Literature Cited......Page 263
Author Index......Page 264
B......Page 265
C......Page 266
E......Page 267
H......Page 268
M......Page 269
P......Page 270
R......Page 272
S......Page 273
Z......Page 274

Citation preview

NMR and Macromolecules

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

ACS SYMPOSIUM SERIES

247

NMR and Macromolecules Sequence, Dynamic, and Domain Structure James C. Randall, E D I T O R Phillips Petroleum Company

Based on a symposium sponsored by the Division of Organic Coatings and Plastics Chemistry at the 185th Meeting of the American Chemical Society, Seattle, Washington, March 20-25, 1983

American Chemical Society, Washington, D.C. 1984

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Library of Congress Cataloging in Publication Data N M R and macromolecules. ( A C S symposium series, I S S N 0097-6156; 247) "Based on a symposium sponsored by the Division of Organic Coatings and Plastics Chemistry at the 185th Meeting of the American Chemical Society Seattle Washington, March 20-25, 1983. Includes bibliographies and index 1. Macromolecules—Analysis—Congresses. 2. Nuclear magnetic resonance spectroscopy— Congresses. I. Randall, James C . II. American Chemical Society. Division of Organic Coatings and Plastics Chemistry. III. Title: N.M.R. and macromolecules. IV. Series. QD380.N57 1984 I S B N 0-8412-0829-8

547.7'046

84-366

Copyright © 1984 American Chemical Society A l l Rights Reserved. The appearance of the code at the bottom of the first page of each chapter in this volume indicates the copyright owner's consent that reprographic copies of the chapter may be made for personal or internal use or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc., 21 Congress Street, Salem, M A 01970, for copying beyond that permitted by Sections 107 or 108 of the U . S . Copyright Law. This consent does not extend to copying or transmission by any means—graphic or electronic—for any other purpose, such as for general distribution, for advertising or promotional purposes, for creating a new collective work, for resale, or for information storage and retrieval systems. The copying fee for each chapter is indicated in the code at the bottom of the first page of the chapter. The citation of trade names and/or names of manufacturers in this publication is not to be construed as an endorsement or as approval by A C S of the commercial products or services referenced herein; nor should the mere reference herein to any drawing, specification, chemical process, or other data be regarded as a license or as a conveyance of any right or permission, to the holder, reader, or any other person or corporation, to manufacture, reproduce, use, or sell any patented invention or copyrighted work that may in any way be related thereto. Registered names, trademarks, etc., used in this publication, even without specific indication thereof, are not to be considered unprotected by law. PRINTED IN T H E UNITED STATES OF A M E R I C A

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

ACS Symposium Series M . Joan Comstock, Series Editor

Advisory Board Robert Baker

Geoffrey D. Parfitt

U.S. Geological Survey

Carnegie Mellon University

Martin L. Gorbaty

Theodore Provder

Exxon Research and Engineering Co.

Glidden Coatings and Resins

Herbert D. Kaesz

James C. Randall

University of California- Los Angeles

Phillips Petroleum Company

Rudolph J. Marcus

Charles N . Satterfield

Office of Naval Research

Massachusetts Institute of Technology

Marvin Margoshes

Dennis Schuetzle

Technicon Instruments Corporation

Ford Motor Company Research Laboratory

Donald E. Moreland U S D A , Agricultural Research Service

Davis L . Temple, Jr. Mead Johnson

W. H . Norton J. T. Baker Chemical Company

Charles S. Tuesday General Motors Research Laboratory

Robert Ory U S D A , Southern Regional Research Center

C. Grant Willson I B M Research Department

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

FOREWORD The A C S SYMPOSIU a medium for publishing symposi

quickly

format of the Series parallels that of the continuing ADVANCES I N CHEMISTRY SERIES except that in order to save time the papers are not typeset but are reproduced as they are submitted by the authors in camera-ready form. Papers are reviewed under the supervision of the Editors with the assistance of the Series Advisory Board and are selected to maintain the integrity of the symposia; however, verbatim reproductions of previously published papers are not accepted. Both reviews and

reports of research are acceptable since symposia may

embrace both types of presentation.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

This boo a pioneer researche polymers, on the occasion of his receipt of the American Chemical Society award in Applied Polymer Science, sponsored by the Phillips Petroleum Company, March 22, 1983.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

FRANK A . BOVEY's research interests center a r o u n d the application o f N M R spectroscopy to the study o f structure, dynamics, and m o r p h o l o g y o f synthetic polymers and bio poly mers. H e has made major contributions to these fields, p r i m a r i l y through the development of techniques to determine microstructure in h o m o p o l y m e r and c o p o l y m e r chains and in the discovery and characterization of defect structures in v i n y l and related polymers. H e is the head of the P o l y m e r C h e m i s t r y Research Department at Bell L a b o r a t o ries, M u r r a y H i l l , N . J . D r . Bovey was b o r n in M i n n e a p o l i s in 1918. H e received a B . S . degree in chemistry from H a r v a r d in 1940, w o r k e d d u r i n g W o r l d W a r II for the N a t i o n a l Synthetic R u b b e r C o r p o r a t i o n , a 3 M subsidiary, and entered graduate school at the University of M i n n e s o t a as a R u b b e r Reserve F e l l o w in 1945. H i s thesis w o r k , carrie dealt with the mechanism o f free radical polymerization. D u r i n g this time he w o r k e d out the mechanism of oxygen i n h i b i t i o n and discovered oxygen sty re ne copolymers. After receiving his P h . D . in 1948, D r . Bovey returned to 3 M , now in the C e n t r a l Research Department, where he was made a research associate in 1955. It was at 3 M , d u r i n g the period from 1956 to 1962, that he conducted his pioneering investigations into the characterization o f polymers using N M R techniques. He reported some o f the first high-resolution p r o t o n N M R spectra of polymers in the late 1950s, at a time when it was still generally assumed that the spectra of macromolecules were too c o m p l e x to interpret. E x p l o i t i n g the rich detail in these spectra, he developed N M R techniques that are now used routinely in measuring the microstructure of polymer chains. These N M R methods made possible for the first time the determination and quantification o f the stereochemical configurations of noncrystallizable polymers. In 1962 D r . Bovey joined Bell Laboratories as a member of the technical staff, and was appointed to his present position in 1967. H e continued his detailed studies of polymer structure and c o n f o r m a t i o n at Bell Laboratories, and extended the scope of his w o r k to include investigations o f nuclei other than protons, branch analyses in polyethylene, and determination o f defect structures in v i n y l and related polymers. He continues to have a vigorous research p r o g r a m in the areas of polymer conformations in the solid state, polymer m o r p h o l o g y , and the mechanisms of polymer stabilization and degradation. D r . Bovey has published more than 125 papers o n his e x p l o r a t o r y research o n polymers and has contributed about 20 chapters to b o o k s in the field. He has written or has been coauthor of 10 books, including " M a c r o molecules, an Introduction to P o l y m e r Science" w i t h F. H . W i n s l o w in 1979 and " C h a i n Structure and C o n f o r m a t i o n of M a c r o m o l e c u l e s " in 1982. IX

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

He has served on an ad hoc panel of the National Academy of Sciences for the study of guayule rubber, and is currently serving on the nominating committee for a National Research Council panel on Polymer Science and Engineering. He has recently served on the Chemistry Panel of the National Research Council Fellowship Office; on the National Research Council Evaluation Panel for the Center for Materials Science of the National Bureau of Standards; on the Study Section for the National Institute of General Medicine (NIH) Shared Instrumentation Program; and both on the organizing committee and as a member of the U.S. delegation to the 1979 China U.S. Bilateral Polymer Symposium (Beijing, October 1979), spon­ sored by the National Academy of Sciences. He is a member of the award committee for the Baker Award of the National Academy of Sciences. In addition, he serves on the editorial boards of the Journal of Polymer Science—Polymer Chemistry associate editor of Macromolecules. Many awards and honors attest to Dr. Bovey's contributions to poly­ mer science. He received the Union Carbide Award of the Minnesota Section of the A C S in 1962. In 1969 he received the Witco Award in Polymer Chemistry of the A C S and the Outstanding Achievement Award of the University of Minnesota. In 1974 he was awarded the Ford High Polymer Physics Prize of the American Physical Society. In 1978 he received the Nichols Medal Award of the New York Section of the A C S and delivered the Whitby Memorial Lectures at the University of Akron. His receipt in 1983 of the American Chemical Society Award in Applied Polymer Science, sponsored by Phillips Petroleum Company, was the occasion for the sympo­ sium in his honor on which this book is based. Dr. Bovey is a member of the American Chemical Society, the Ameri­ can Physical Society, the American Society of Biological Chemists, the New York Academy of Sciences, Sigma X i , and Phi Lambda Upsilon. He was elected to the National Academy of Sciences in 1975.

L. W. JELINSKY Bell Laboratories Murray Hill, N . J .

χ

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

PREFACE R . E C E N T E X P É R I M E N T A L I M P R O V E M E N T S in N M R spectroscopy have enabled the polymer chemist to determine macromolecular structure more definitively than was considered possible even a few short years ago. The sensitivity and range of N M R techniques are now such that investigations of polymer morphology and dynamic behavior are leading to information parallel to that from N M R solution studies of sequence distributions and configuration. For a numbe determination of physical propertie outpace development ing the microstructure of macromolecules. Advances in both liquid and solid N M R techniques have so changed this picture that it is now possible to obtain detailed information about the mobilities of specific chain units, domain structures, end groups, branches, run numbers, number average molecular weights, and minor structural aberrations in many synthetic and natural products at a level of 1 unit per 10,000 carbon atoms and below. This proliferation of macromolecular structural information is leading to new insights into the relationships between polymer molecular structure and the solid state structure and, ultimately, to an improved understanding of those molecular structural factors influencing polymer physical properties. The advent of a combination of quite different N M R techniques including cross polarization, magic angle spinning, improved probes, improved software in conjunction with more efficient computers, and sophisticated pulse sequencings not only has led to high-resolution N M R spectra of solids but also has stimulated the imaginations of those engaged in liquid polymer N M R analyses. A n appropriate sequence of pulses in solution studies of polymers leads to spectra where only specific carbon types are observed by selectively nulling those carbon nuclei that have different proton multiplicities. Subsequent spectral editings can lead to subspectra of single, specific carbon types. This technique of obtaining highly specific subspectra from the more complex overall N M R spectrum will have great utility in polymer characterization. This book presents to the polymer chemist illustrations of the most recent advances in N M R characterization of polymers while at the same time honoring Frank A . Bovey of Bell Laboratories. Dr. Bovey received the 1983 American Chemical Society Award in Applied Polymer Science, which was sponsored by the Phillips Petroleum Company and presented at the A C S National Meeting in Seattle in March 1983. Dr. Bovey is certainly the Xlll

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

pioneer of N M R studies of macromolecules influence

and has had a profound

on the progress and application of N M R in elucidating the

molecular structure of macromolecules. In honor of Dr. Bovey, a number of leading investigators in the fields of both liquid and solid state N M R have presented their work herein. Quite different experimental manifestations of the N M R phenomenon, which lead to either polymer sequence, dynamic, or domain structures, are reported. We hope that " N M R and Macromolecules" will serve as a reference book and guide to the polymer chemist who is interested

in polymer

characterization. We hope it will serve as well as a tribute to Frank A . Bovey by revealing the extensive and detailed molecular structural information available through a variety of Ν M R techniques in characterization studies of polymers. J A M E S C. R A N D A L L

Phillips Petroleum Company Bartlesville, Oklahoma

xiv

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

1 NMR and Macromolecules F. A. BOVEY Bell Laboratories, Murray Hill, NJ 07974

1

13

19

High resolution nmr spectroscopy ( H, C, and F) of polymers in solution has been employed during the last twenty-five years for the elucidation of the microstructure of their chains. Examples of such studies carried out at Bell Laboratories are reviewed, including the measurement of stereochemical configuration and regioregularity (head-to-tail vs. head-to-head: tail-to-tail isomerism). The use of C nmr of epoxidized trans-1,4-polybutadiene crystals to establish the morphology of single crystals is described. Nmr is also a powerful means for the observation of chain dynamics; the use of deuterium quadrupolar echo spectroscopy for this purpose is illustrated. Finally, a large and exciting field of polymer nmr studies is that of the structure and dynamics of biomolecules, exemplified by proton nmr investigations of nucleic acid structure and function. 13

The first studies of polymers ( 0 were published only about a year after the first reports of the nmr phenomenon in bulk matter by Bloch and Purcell in 1946. The early work dealt with nuclear relaxation and chain dynamics in the solid state (2). In the mid-1950's, when the study of small molecules had reached a fairly advanced state, it was still generally assumed that very large molecules could not give useful spectra even in solution because of their supposedly slow motions, as evidenced by the very high viscosities of their solutions. There was also a feeling that their spectra would be too complex to interpret. In the late 1950's, scattered reports of high resolution spectra of synthetic and biological polymers began to appear (3-6). This trickle became a flood as investigators were able to show that N M R is uniquely powerful in the determination of polymer microstructure, including stereochemical configuration (7,8), geometrical isomerism (9,10), regioregularity (11,12), and monomer sequences in copolymers (6,13,14).

0097-6156/84/0247-0003S06.00/0 © 1984 American Chemical Society In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

4

NMR AND MACROMOLECULES

Stereochemical Configuration In Figure 1 is shown the 40 M H z *H spectrum of two samples of poly (methyl methacrylate), as reported by George Tiers and myself in 1960 (7). Spectrum a is that of a polymer prepared with a free radical initiator; spectrum b is that of a polymer prepared with an anionic initiator, w-butyllithium in toluene. As is now well known, the marked differences in the spectra arise from differences in stereochemical configuration. It is clear from fundamental considerations and from the spectra of small model molecules (e.g. the 2,4-disubstituted pentanes) that the methylene protons of racemic (r) monomer dyads, i.e. those characterizing a syndiotactic chain (Figure 2, upper left), are equivalent by reason of a two-fold symmetry axis and therefore have the same chemical shift. In the absence of vicinal coupling of main chain protons, as in poly (methyl methacrylate), they appear as a singlet. On th monomer dyads composing a chemical shifts; they are expected to appear as an A B quartet. It is evident in Figure 1 that the methylene proton spectrum of the anionically initiated polymer exhibits such a quartet ( J — —14.9 Hz) centered at 8.14 on the now outmoded τ scale (1.86 ppm from T M S ) and that therefore this polymer is predominantly isotactic. In the spectrum of the free radical polymer (a), the methylene proton spectrum is a broad singlet, and so this polymer must be predominantly syndiotactic. (Actually neither polymer is entirely stereoregular and at higher resolution both spectra show additional features from this cause.) Thus, proton nmr is an absolute method and no recourse to x-ray is necessary even if this were possible. g e m

The α-methyl resonances centered at ca. 9 τ can be interpreted to give quantitative estimates of isotactic (mm) and syndiotactic (rr) triad sequences of monomer units and also of the mixed unit mr, termed heterotactic, which must occur in chains which are not perfectly stereoregular. In Figure 1, we see three amethyl proton resonances having the same chemical shifts but very different intensities in each spectrum. They furnish a measure of the triad probabilities. In the years following these relatively primitive observations, a very large number of vinyl and related polymer systems have been studied by nmr in many laboratories. If the resolving power of the spectrometer is sufficient—that is, if the magnetic field strength is high enough—configurational sequences longer than triad may be observed. With respect to ^-methylene groups one may expect to resolve tetrad (Figure 2) and hexad sequences, appearing as a fine structure on the m and r dyad resonances. One may expect α-groups to be resolved into ten different pentad sequences or possibly as many as 36 heptad sequences. We have the following numbers N(n) of sequences of length n: η Ν (η)

n

2

2 2

m

3 3

4 6

5 10

6 20

7 36

8... 72

or

1

in general Ν (η) - 2 ~ + 2 ~~ where m = n/2 if η is even and m - (n-l)/2 if η is odd. Although these longer sequences can be resolved in some proton spectra at

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

1.

BOVEY

NMR and

5

Macromolecules

a.

U

•J b.

ι

J

,

LmJ —J 640 T

Figure L

40

r

M H z proton spectra

• .,

X4 i1l Ô.I4/ I \ We m 9.05

of poly (methyl

10.00

methacrylate)

in

chloroform; (a) polymer prepared using free radical initiator; (b) polymer prepared using w-butyllithium initiator.

(Bovey,

F. Α.; Tiers, G . V. D. J. Polymer Sci., 1960, 44, 173).

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

6

NMR AND MACROMOLECULES

CONFIGURATIONAL SEQUENCES DYADS DESIGNATION

PENTADS

PROJECTION

DESIGNATION

J ? j

mmmm (ISOTACTIC)

MESO m

PROJECTION

RACEMIC Γ TRIADS ISOTACTIC, mm HETEROTACTIC, mr SYNDIOTACTIC, ΓΓ

44 +4 44 44 44 44

rmmr mmrm mmrr rmrm (HETEROTACTIC) rmrr mrrm rrrm

rrrr (SYNDIOTACTIC) I

•m

44 44 Figure 2.

Configurational sequences in vinyl polymer chains shown in planar zigzag projection.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

1.

BOVEY

NMR

and

1

Macromolecules

superconducting frequencies, the use of carbon-13 spectroscopy has proved much more effective, primarily because of the greater chemical shift range of C nuclei—over 250 ppm for structures of interest in polymers as compared to less than 10 ppm for protons. Thanks to the development of Fourier transform instruments with spectrum accumulation, carbon spectroscopy, despite the low natural abundance of C (1.1%), has become a method of fairly high sensitivity, able to establish the presence of structural features at a level of less than one carbon per 10000. In Figure 3 are shown the 90 M H z C spectra of the C H , 0 - C H and a - C H carbons of an atactic polypropylene (15). The * H — C J-coupling multiplicity has been removed by irradiation of the protons, as is customary in C nmr. One may clearly resolve 20 heptad configurational sequences out of a possible 36. Below each spectrum is a line spectrum in which is represented the predicted chemical shift based on the "7-effect" it is predicated that two carbo is, in a 7 position with respect to each other—will shift each others' resonances upfield by about 5 ppm when they are in a gauche conformation, as compared to their resonance positions when they are trans. Thus, stereochemical configuration influences C chemical shifts through its effect on the gauche content of the intervening bonds, which may be readily estimated by calculations based on the rotational isomeric state model of the polymer chain. 1 3

1 3

1 3

3

2

13

1 3

1 3

1 9

F N M R Observations of Regioregularity

1 9

F chemical shifts are also very sensitive to chain microstructure, sometimes even more so than those of C . In Figure 4 are shown 84.66 M H z F spectra of poly (vinyl fluoride) (17). Spectrum (a) is that of a commercial polymer; the four upfield groups of resonances at 190-200 ppm (from CC1 F), and some small resonances in the principal spectrum as well, correspond to inverted or head-tohead:tail-to-tail ("syndioregic" (18)) monomer units: 1 3

1 9

3

—CH —CHF—CH —CHF—CHF—CH —CH —CHF—CH —CHF— 2

2

2

2

2

Quantitative measurement shows about 11% of the monomer units to be inverted. The principal spectrum shows splitting into mm, mr, and rr triad resonances with some pentad fine structure. The polymer is nearly atactic. Assignment of inversion "defect" resonances is made easier by reference to spectrum (b), which is that of poly (vinyl fluoride) prepared by the following route (17):

free radical CH,=CFC1 ^

Bu SnH . ?

-

-4-CH -CFCl% 2

, , (-CH.-CHF-^

Initiator

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

8

NMR AND MACROMOLECULES

mmmm m m mmmmmr rmmmmr mmmmrr mmmm r m rmmmrr mrmmmr r r mm r r m r mm r r

Figure 3.

10, 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.

m r mmrm mmmrrm mmmrrr rmmr r m r r rmmr mmmr m r mmmrmm r m rmmr mmrmmr r rm r r m r r rm r r m rm r r m r rrm r m

23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36.

r r m r mr mm r m r r m r m rmr mm r m r m m r r r rm r r r r rm r r r r r r r m r r rm r r r rmr m m r r rm r r r r mm r m r rmr r m r r mm mm r r mm

90.5 M H z C spectra of atactic polypropylene observed on a 20% (w/v) solution in heptane at 6 7 ° ; (a) C H ; (b) 0 - C H ; (c) α - C H . Line spectra appearing below each experimental spectrum correspond to theoretically calculated resonance positions for (a) heptad, (b) hexad, and (c) pentad configurational sequences. (Schilling, F. C, private communication). 3

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

2

1.

BOVEY

NMR and

Macromolecules

low-fieid

9

F NMR at 84.66 MHz

S T E R E O S E Q U E N C E SPLITTING

A

COMMERCIAL

REDUCED P V C F

180

Figure 4.

84.66

MHz

fluoride) ;

(b)

Φ 1 9

1

F spectrum poly (vinyl

9

PPM

0

of

(a)

fluoride)

2

0

0

commercial

poly (vinyl

prepared by reductive

dechlorination of poly (vinyl chlorofluoride) ; both observed at 130° in 8% (w/v) solution in Ν ,N—dimethy If or mamide (Cais, R. E.; Kometani, J., private communication).

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

10

NMR AND MACROMOLECULES

The steric requirements of the chlorine atom permit only a negligible proportion of syndioregic units in poly (vinyl chlorofluoride) (PVCF), and it is now observed that when the chlorine is reduced with tri-A2-butyltin hydride the resulting poly (vinyl fluoride) exhibits no upfield resonances, being now entirely regioregular. The random configuration evident in spectrum (b), however, does not reflect the stereochemistry of the precursor P V C F but is rather the result of racemization at the α-carbon during the reduction, which is a free radical reaction.

Carbon— 13 Study of Crystal Morphology A quite different use of high resolution nmr in polymer science is the application of C spectroscopy to the study of the morphology of chain-folded polymer single crystals grown from dilute solutio measurement of the lengths crystal stems within the body of the crystal. The approach is a chemical one, the problem being to find a reagent which will react completely with the exposed folds but will not attack the crystal stems. No such reagent is known for polyethylene, the usual testbed for new morphological approaches, but for crystalline trans-\,4polybutadiene (m.p. 1 4 8 ° ) the formation of oxirane rings by reaction with mchloroperbenzoic acid appears to satisfy the requirements of selectivity and convenience: 1 3

The crystals, prepared from heptane solution, were suspended in toluene and reacted at 6° until the rate levelled off, which occurred at ca. 12-16% of completion. The reacted crystals were then dissolved in CDC1 and the C spectra observed at 50 MHz. The spectra were interpreted with the aid of the spectrum of trans-1,4-polybutadiene reacted in homogeneous solution. The statistics of the reaction proved strikingly different in the two cases. The chains of the reacted crystals were in effect block copolymers of quite regular structure with runs of oxirane units alternating with runs of unreacted monomer units, as shown in Figure 5, whereas the reaction in homogeneous solution was random. By comparison of the intensity of the "junction" methylene resonance, D in Figure 5, with that of the internal methylene Β (split because these runs are diastereoisomeric sequences of left- and right-handed oxirane rings), it is found that the fold length is only 2.5-3.0 butadiene units. This is the minimum number for a 180° turn of the chain, and appears to require adjacent re-entry. The deduced crystal structure is shown in Figure 6. The stem length can also be obtained by analagous nmr measurements and turns out to be 15 butadiene units for this particular preparation. (The inclination of the stems cannot be deduced from nmr but comes from x-ray). 1 3

3

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

1.

BOVEY

NMR and

Macromolecules

D

O /

B

11

B

O

\

D /

\

· · · - C H - C H = C H - C H - C H - C H - C H - C H - » « » » - C H - C H ~ C H - C H ~ C H ~CH = C H - C H - · · · 2

2

2

2

-CRYSTAL-

2

FOLD -

2

2

2

CRYSTAL

29.0

28.0

ppm vs TMS

Figure 5.

1 3

50.3 M H z C spectrum of methylene groups of trans-\,4polybutadiene epoxidized to 16.2% in the crystalline state; observed in CDC1 solution at 4 0 ° . Peak assignments are indicated in reference to the schematic block sequence above, with methylene D representing the junction between sequences. (Schilling, F. C ; Bovey, F. Α.; Tseng, S.; Woodward, A . E . Macromolecules, 1983, 16, 808). 3

'11 = 2.4 MONOMER UNITS

Figure 6.

Schematic diagram of a trans-1,4-polybutadiene crystal. The fold length is U and is approximately 3 butadiene units. The stem length L corresponds to 15 monomer units. The crystal s

thickness

L

c

is obtained

from this value and the x-ray

determined inclination angle of 114° (Schilling, F. C ; Bovey, F. Α.; Tseng, S.; Woodward, A . E . Macromolecules, 1983, 16, 808).

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

12

NMR AND MACROMOLECULES

Chain Dynamics; Deuterium Spectoscopy It is well known that nmr is a powerful means for the study of the dynamics of polymer chains both in solution and in the solid state. The relaxation of C nuclei has been extensively employed for this purpose in this and other laboratories. I illustrate here a different and particularly intriguing approach which as yet has seen only very limited application to synthetic polymers. This is deuterium quadrupolar echo spectroscopy, as employed in our laboratory by Dr. Lynn Jelinski and her collaborators (20). The presence of the nuclear electric quadrupole lifts the degeneracy of the two deuterium Zeeman transitions, and in the solid state produces a very broad (ca 200 kHz) powder pattern of transitions which can be interpreted to yield very specific motional information for those carbons labelled with deuterium. In Figure deuterated on the central carbon 1 3

X

By comparison of observed and theoretically calculated spectra it can be shown that these carbons are involved in gauche-trans conformational jumps of the C - D bond through a dihedral angle of 1 0 3 ° , and from the correlation times as a function of temperature an activation energy of 5.8 kcal/moi is found. Several seemingly plausible motional models are excluded by these results, but the data agree with models proposed by Helfand (21,22) for motion about three bonds.

Biopolymers Finally, a very large and exciting field of polymer nmr studies is that of the structure and dynamics of biomolecules. Here, proton spectroscopy (at superconducting frequencies) remains dominant. I illustrate this by an example of Dinshaw PateEs studies of nucleic acids and oligonucleotides, which shows the use of H—*H nuclear Overhauser enhancement (NOE) to explore the binding site of the antibiotic netropsin 1

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

1.

BOVEY

NMR

and

Macromolecules

13

to the dodecanucleotide d ( C G C G A A T T C G C G ) , which forms the double helical structures

C G C G A A T T C G C G 1 2 3 4 5 6 6 5 4 3 2 1 G C G C T T A A G C G C

(Here, A stands for adenosine, T for thymine, G for guanosine, and C for cytidine) Because of its sixth-power dependence on interproton distances, the N O E is a very sensitive means of exploring molecular contacts through interproton distances. For large molecules such as these, the enhancement is negative. In Figure 8 are shown difference spectra for the aromatic protons of the netropsin complex with this nucleotide,

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

14

NMR AND MACROMOLECULES

OBSERVED

CALCULATED

RATE CONSTANT 1

s"

J_J_LjLJ_X jJ.J_J_l_L_Ll 1 t i .)

-100

0

kHz Figure 7.

100

LXi^.^I.±„X^.^xJ_L.

-100

0

100

kHZ

Solid state deuterium N M R spectra of labelled poly (butylène terephthalate). Calculated spectra are for a two-site hopping model between two orientations of the C - D bond differing by 103° (Jelinski, L . W.; Dumais, J , J.; Engel, A . K . Macromolecules, 1983, J_6, 492).

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

1.

BOVEY

NMR

Figure 8.

and

15

Macromolecules

498 M H z proton N M R spectrum of the 1:1 netropsind ( C G C G A A T T C G C G ) complex in D 0 (pH 6.9, 3 0 ° ) . A negative N O E at the adenine H-2 proton of the dA-dT base pair 6 is observed on irradiation of either the 6.55 ppm or the 6.67 netropsin pyrrole H-3 proton. (Patel, D. J.; Pardi, Α.; Itakura, K . Science, 1982, 216, 581). 2

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

16

NMR AND MACROMOLECULES

exhibiting large negative peak 6 on each strand of the duple two pyrrole rings (they differ) in the bound netropsin (23). These and additional N O E measurements establish that the concave face of the bowshaped netropsin molecule binds in the minor groove of the A A T T tetranucleotide core of the complex.

Literature Cited 1.

Alpert, N. L. Phys. Rev., 1947, 72, 637.

2.

Slichter, W. P. Adv. Poly. Sci., 1958, 1, 35.

3.

Saunders, M.; Wishnia, Α.; Kirkwood, J. G. J. Am. Chem. Soc., 1957, 79, 3289.

4.

Saunders, M.; Wishnia, A. Ann, N.Y. Acad. Sci., 1958, 70 870.

5.

Odajima, A. J. Phys. Soc. Jap., 1959, 14, 777.

6.

Bovey, F. Α.; Tiers, G. V. D.; Filipovich, G. J. Polym. Sci., 1959, 38, 73.

7.

Bovey, F. Α.; Tiers, G. V. D. J. Polymer Sci., 1960, 44, 173.

8.

Nishioka, Α.; Watanabe, H.; Abe, K.; Sono, Y., 1960, 48, 241.

9.

Chen, Η. Y. Anal. Chem., 1962, 34, 1134, 1793.

10.

Golub, Μ. Α.; Fuqua, S. Α.; Bhacca, N. S. J. Am. Chem. Soc., 1962, 84, 4981.

11.

Wilson III, C. W. J. Polym. Sci., 1963, Part A1, 1305.

12.

Wilson III, C. W.; Santee, Jr., E. R. J. Polym. Sci., 1965, Part C8, 97.

13.

Bovey, F. A. J. Polymer Sci., 1962, 62, 197.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

1. B O V E Y

17

NMR and Macromolecules

14.

Harwood, H . J.; Ritchey, W. M. J. Polym. Sci., 1965, Part B3, 419.

15.

Schilling, F. C., private communication.

16.

Tonelli, A . E.; Schilling, F. C. Acc. Chem. Res., 1981, 14, 233.

17.

Cais, R. E.; Kometani, J., Preprints of 28th I U P A C Macromolecular Symposium, Amherst, Mass. July, 12-16, 1982.

18.

Cais, R. E.; Sloane, N. J. A . Polymer, 1983, 24, 179.

19.

Schilling, F. C.; Bovey, F. Α.; Tseng, S.; Woodward, A . E . Macromolecules, 1982, in press.

20.

Jelinski, L . W.; Dumais, J. J.; Engel, A . K. Macromolecules, 1983, 16, 492.

21.

Helfand, E.; Wasserman 526.

22.

Helfand, E.; Wasserman, Z . J. Chem. Phys., 1981, 75, 4441.

23.

Patel, D. J.; Pardi, Α.; Itakura, K . Science, 1982, 216, 581.

R.;

Weber,

T.

Α.;

Runnels,

R E C E I V E D November 10, 1983

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

J.

H.

2 An Introduction to NMR Spectroscopy of Solid Samples DANIEL J. O'DONNELL Phillips Petroleum Company, Bartlesville

Complex solid sample NMR techniques used in other chapters of this text are discussed. These techniques are presented using conceptual arguments, rather than mathematical equations, so that those unfamiliar with NMR spectroscopy might get a quick grasp of the nature of the experiment. Figures and charts are given which depict the interactions present in the solid state and which show how these interactions are manipulated in the NMR experiment to yield the desired information. The p a p e r s p r e s e n t e d i n t h i s volume r e p r e s e n t a f r a c t i o n o f t h e a p p l i c a t i o n s d e v e l o p e d f r o m new t e c h n i q u e s i n NMR s p e c t r o s c o p y over t h e past decade. T h i s f l o o d o f new methods h a s g e n e r a t e d new terms w h i c h , t h o u g h m a t h e m a t i c a l l y w e l l d e f i n e d , a r e d i f f i cult tovisualize physically. As a r e s u l t , t h e advantages o f the newer methods ( a n d t h e i n f o r m a t i o n t o be g l e a n e d f r o m them) are o f t e n l o s t t o the s c i e n t i s t n o t i n t i m a t e l y f a m i l i a r w i t h NMR s p e c t r o s c o p y . The o b j e c t i v e o f t h i s c h a p t e r i s t o p r o v i d e a g u i d e f o r t h e NMR layman t o t h e methods u s e d i n t h e f o l l o w i n g c h a p t e r s . Mathem a t i c a l d e r i v a t i o n s h a v e been a v o i d e d i n f a v o r o f d e s c r i p t i o n s and d i a g r a m s t o p r o v i d e c o n c e p t u a l d e f i n i t i o n s . The d i s c u s s i o n will concentrate on t h e t e c h n i q u e s used i n the following c h a p t e r s , a n d t h e r e f o r e w i l l n o t a t t e m p t t o be c o m p r e h e n s i v e . R e a d e r s a r e r e f e r r e d t o s e v e r a l t e x t s and a r t i c l e s f o r d e t a i l e d treatments o f the subjects ( 1 - 5 ) .

0097 6156/84/0247 0021 $06.25/0 © 1984 American Chemical Society In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

22

NMR

High Resolution

AND MACROMOLECULES

NMR S p e c t r o s c o p y o f S o l i d s

Haeberlin (5) expressed the p r e v a i l i n g attitude o f the spectroscopist i n 1976 with the statement, "Narrow i s beautiful." Although t h i s a t t i t u d e s t i l l p r e v a i l s , i t has long been r e c o g n i z e d that a wealth of information i s contained i n NMR l i n e shapes b r o a d e n e d by s p e c i f i c i n t e r a c t i o n s i n s o l i d s . E x t r a c t i n g t h a t i n f o r m a t i o n has been d i f f i c u l t , s i n c e a v a r i e t y o f mechanisms c o n t r i b u t e t o t h e l i n e s h a p e , and e a c h must be selectively removed from the others to decipher the information. The methods u s e d t o d e c o n v o l u t e t h e c o m p l e x l i n e s h a p e s i n v o l v e m a n i p u l a t i o n s t o remove some b r o a d e n i n g w h i l e r e t a i n i n g other information. Several o f these techniques a r e d i s c u s s e d below. Contributions

t o NMR L i n

Dipole-Dipole

Interactions

E a c h N M R - a c t i v e s p i n % n u c l e u s i n an e x t e r n a l m a g n e t i c f i e l d , H , a c t s as a m a g n e t i c d i p o l e w h i c h a l i g n s w i t h H i n specific states. F o r p r o t o n s , c a r b o n s and o t h e r s p i n h n u c l e i , two states e x i s t : p a r a l l e l or a n t i p a r a l l e l to H . Since each n u c l e u s , as a d i p o l e , h a s a l o c a l f i e l d a s s o c i a t e d w i t h i t , t h e a c t u a l f i e l d e a c h n u c l e u s e x p e r i e n c e s i s a sum o f t h e e x t e r n a l f i e l d , H , and c o n t r i b u t i o n s f r o m a l l t h e s u r r o u n d i n g d i p o l e s . T h i s d i p o l e - d i p o l e i n t e r a c t i o n i s h i g h l y d e p e n d e n t upon t h e a n g l e between t h e d i r e c t i o n o f H and t h e i n t e r n u c l e a r v e c t o r b e t w e e n a d i p o l e p a i r , and i s a l s o h i g h l y d e p e n d e n t upon t h e d i s t a n c e between t h e d i p o l e s . I n an abundant n u c l e a r species s u c h as p r o t o n s , e a c h p r o t o n h a s many n e i g h b o r s w h i c h i n t e r a c t w i t h i t a n d , b e c a u s e o f t h e dépendance o f a n g l e and d i s t a n c e , a wide v a r i e t y o f d i p o l e - d i p o l e i n t e r a c t i o n s are p o s s i b l e . In l i q u i d s , t h e s e s p e c i f i c i n t e r a c t i o n s a r e a v e r a g e d by m o t i o n s which c o n s t a n t l y change a n g l e s and d i s t a n c e s , resulting i n narrow l i n e s . I n s o l i d s , t h e a n g l e s and d i s t a n c e s a r e f i x e d , r e s u l t i n g i n an enormous number o f d i f f e r e n t l o c a l m a g n e t i c e n v i r o n m e n t s , e a c h o f w h i c h i s o b s e r v e d i n t h e NMR s p e c t r u m . The d i f f e r e n c e s i n l o c a l f i e l d s i n d u c e d by d i p o l e - d i p o l e i n t e r a c t i o n s r e s u l t i n a r a n g e o f s i g n a l s i n t h e NMR spectrum, c o v e r i n g 40 K H i n some c a s e s . As was m e n t i o n e d p r e v i o u s l y , i n f o r m a t i o n a b o u t i n t e r n u c l e a r d i s t a n c e s c a n be o b t a i n e d from the d i p o l e - d i p o l e i n t e r a c t i o n s between two i s o l a t e d d i p o l e s . The p r o b l e m i s i n d e c o u p l i n g a l l t h e o t h e r d i p o l e - d i p o l e i n t e r a c t i o n s , so t h a t one d i p o l e - d i p o l e c o u p l i n g c a n be o b s e r v e d . 0

Q

0

0

Q

Z

Chemical S h i f t

Anisotropy

The s e c o n d m a j o r c o n t r i b u t o r t o NMR l i n e w i d t h s i n s p e c t r a o f s o l i d m a t e r i a l s i s c h e m i c a l s h i f t a n i s o t r o p y , CSA. CSA r e s u l t s

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

2.

CTDONNELL

23

NMR Spectroscopy of Solid Samples

f r o m t h e i n t e r a c t i o n between m a g n e t i c f i e l d s f r o m e l e c t r o n s i n m o t i o n a r o u n d a n u c l e u s and t h e n u c l e a r s p i n . The d i s t r i b u t i o n of e l e c t r o n s around the nucleus w i l l depend upon c h e m i c a l b o n d i n g , and a s a r e s u l t w i l l n o t be u n i f o r m i n a l l d i r e c t i o n s . As an e x a m p l e , c o n s i d e r a c a r b o n y l bond. Electronically, this bond i s h i g h l y d i r e c t i o n a l , and how i t i n t e r a c t s w i t h t h e s t a t i c f i e l d , H , w i l l be s t r o n g l y d e p e n d e n t upon t h e a n g l e b e t w e e n t h e bond and t h e d i r e c t i o n o f H . R a p i d m o t i o n s i n t h e liquid state result i n t h e o b s e r v a t i o n o f a n e t average interaction (i.e., narrow l i n e s ) . I n the s o l i d s t a t e a l l possible orientations are "frozen" i n place, resulting i n a wide v a r i e t y o f l o c a l i n t e r a c t i o n s which a r e observed i n t h e spectrum ( i . e . , wide l i n e s ) . Although information concerning b o n d i n g and m o l e c u l a r symmetry a r e c o n t a i n e d i n t h e CSA l i n e s h a p e , t h e o v e r l a p o f CS interpretation difficult i n t e r a c t i o n s a r e d i r e c t l y p r o p o r t i o n a l t o H , so t h a t h i g h e r f i e l d s do n o t improve r e s o l u t i o n . 0

Q

Q

N u c l e a r Quadrupole E f f e c t s The discussion so f a r h a s c e n t e r e d on t h e n o n - s y m m e t r i c distribution of local fields surrounding a given nucleus r e s u l t i n g f r o m o t h e r n u c l e i ( d i p o l e - d i p o l e i n t e r a c t i o n s ) and from e l e c t r o n s ( c h e m i c a l s h i f t a n i s o t r o p y , C S A ) . I n a d d i t i o n , t h e n u c l e u s i t s e l f may n o t be s y m m e t r i c , r e s u l t i n g i n a n o n symmetric nuclear charge distribution, i . e . , an electric q u a d r u p o l e moment. F o r n u c l e i w i t h a s p i n quantum number, I , o f h ( e . g . , * H a n d ^ C ) t h e q u a d r u p o l e moment i s z e r o , and no consideration need be g i v e n t o quadrupolar interactions. However, i n t h e c a s e o f d e u t e r i u m , I e q u a l s 1, and t h e e f f e c t s o f t h e q u a d r u p o l e must be t a k e n i n t o a c c o u n t . S i n c e t h e quadrupole i s e l e c t r i c i n nature, i tinteracts d i r e c t l y only with electric field g r a d i e n t s and n o t w i t h t h e magnetic field. However, t h e m a g n e t i c e n e r g y l e v e l s o f t h e n u c l e u s a r e c o u p l e d to t h e q u a d r u p o l a r e n e r g y l e v e l s , r e s u l t i n g i n s p l i t t i n g s i n t h e NMR s p e c t r a . These s p l i t t i n g s c a n be v e r y l a r g e , r e s u l t i n g i n s p e c t r a ~200 K H w i d e f o r D , and 5 M H f o r ^ N . A t t h i s p o i n t one m i g h t a s k why q u a d r u p o l a r i n t e r a c t i o n s s h o u l d be c o n s i d e r e d , s i n c e they a r e d i f f i c u l t t o o b s e r v e , and i n t h e case o f deuterium, r e q u i r e i s o t o p i c l a b e l l i n g . The answer l i e s in the fact that i f the e l e c t r i c f i e l d g r a d i e n t about t h e q u a d r u p o l e i s f l u c t u a t i n g due t o m o l e c u l a r m o t i o n , l i n e n a r r o w i n g o c c u r s w h i c h i s e x t r e m e l y s e n s i t i v e t o t h e f r e q u e n c y and amplitude o f that motion. The r e a d e r i s r e f e r r e d t o t h e chapter by J e l i n s k i and c o - w o r k e r s i n this v o l u m e , and r e f e r e n c e s t h e r e i n f o r examples and f u r t h e r d i s c u s s i o n s . 2

Z

Z

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

24

NMR

AND MACROMOLECULES

L i n e N a r r o w i n g Methods I n t h e above d i s c u s s i o n s o f t h e s o u r c e o f l i n e - b r o a d e n i n g i n s o l i d s t a t e NMR s p e c t r o s c o p y , i t was p o i n t e d o u t t h a t a l l o f t h e i n t e r a c t i o n s were h i g h l y o r i e n t a t i o n a l l y d e p e n d e n t . In the case o f d i p o l e - d i p o l e i n t e r a c t i o n s , the o r i e n t a t i o n of the i n t e r n u c l e a r v e c t o r between two d i p o l e s w i t h r e s p e c t t o H gave r i s e t o wide l i n e s . F o r CSA i n t e r a c t i o n s , t h e o r i e n t a t i o n o f t h e c h e m i c a l bond w i t h r e s p e c t t o H was i m p o r t a n t . Finally, the o r i e n t a t i o n o f t h e n u c l e a r e l e c t r i c q u a d r a p o l e w i t h r e s p e c t to t h e s u r r o u n d i n g e l e c t r i c f i e l d g r a d i e n t gave r i s e t o s p l i t t i n g s i n t h e NMR s p e c t r a . I n e v e r y c a s e i t was n o t e d that m o l e c u l a r m o t i o n , e s p e c i a l l y random r o t a t i o n a l and t r a n s l a t i o n m o t i o n as e x p e r i e n c e d i n t h e l i q u i d s t a t e resulted i n line n a r r o w i n g by t i m e - a v e r a g i n g the s o l i d s t a t e , i t i the e f f e c t o f motion i n a l i q u i d t o time-average t h e d i f f e r e n t interactions. Q

Q

Dipolar

Decoupling

The s i m p l e s t means o f r e m o v i n g d i p o l a r i n t e r a c t i o n s between two n u c l e i i s t o d e c o u p l e t h e i n t e r a c t i o n by a means entirely a n a l o g o u s t o s c a l a r d e c o u p l i n g u s e d i n ^ C NMR s p e c t r o s c o p y t o remove J - c o u p l i n g f r o m bonded p r o t o n s ( 6 ) . A strong radio frequency ( r f ) pulse a t the resonance frequency o f the protons i s t u r n e d on d u r i n g a c q u i s i t i o n o f t h e c a r b o n s i g n a l . The d e c o u p l i n g r f p u l s e promotes r a p i d s p i n t r a n s i t i o n s o r f l i p s between s p i n s t a t e s by t h e p r o t o n s p i n s , t h e r e b y a v e r a g i n g t h e static dipolar i n t e r a c t i o n s to zero. This decoupling c o n s t i t u t e s a r a p i d random m o t i o n i n " s p i n s p a c e " , as opposed to t h e random m o t i o n c h a r a c t e r i s t i c o f m o l e c u l e s tumbling i n r e a l space. U n f o r t u n a t e l y , i t c a n o n l y be u s e d t o remove heteronuclear dipole-dipole interactions. I n c a s e s where t h e i s o t o p i c c o n c e n t r a t i o n o f NMR a c t i v e s p e c i e s i s l o w , s u c h a s ( 1 . 1 % o f a l l c a r b o n s ) , homonuclear d i p o l e - d i p o l e i n t e r actions are not s i g n i f i c a n t . The l i n e - s h a p e s l e f t i n t h e NMR s p e c t r a o f s o l i d when d i p o l a r d e c o u p l i n g o f t h e p r o t o n s i s used therefore normally only reflect the chemical shift a n i s o t r o p y (CSA). The

Magic Angle

Although d i p o l a r d e c o u p l i n g removes d i p o l a r i n t e r a c t i o n s , i t does n o t remove CSA, n o r does i t p e r m i t o b s e r v a t i o n o f abundant s p i n s p e c i e s s u c h as p r o t o n s , s i n c e o b s e r v a t i o n and d e c o u p l i n g c a n n o t be done a t t h e same t i m e . D i f f e r e n t , more s e l e c t i v e means a r e needed t o remove t h e s e i n t e r a c t i o n s .

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

2.

O'DONNELL

NMR Spectroscopy of Solid Samples

25

I t c a n be shown ( 1 - 5 ) t h a t t h e m a g n i t u d e o f a n y o f t h e above anisotropic interactions have a very specific angular dépendance w i t h r e s p e c t t o : 1. the s t a t i c f i e l d ( C S A ) , 2. o t h e r n u c l e a r s p i n s ( d i p o l e - d i p o l e i n t e r a c t i o n s ) o r 3. w i t h surrounding e l e c t r i c f i e l d gradients (quadrupole i n t e r a c t i o n s ) . Among o t h e r terms d e s c r i b i n g t h e o r i e n t a t i o n a l dependence o f these a n i s o t r o p i c i n t e r a c t i o n s i n each o f t h e r e s p e c t i v e H a m i l t o n i a n o p e r a t o r s i s t h e t e r m (3cos ® - 1 ) . The a n g l e θ h a s a d i f f e r e n t m e a n i n g d e p e n d i n g upon t h e t y p e o f i n t e r a c t i o n b e i n g considered. For dipole-dipole interactions, t h e angle i s b e t w e e n a v e c t o r j o i n i n g two d i p o l e s and t h e d i r e c t i o n o f H (Fig. 1 A ) . I n t h e c a s e o f CSA i n t e r a c t i o n s , t h e a n g l e m i g h t be b e t w e e n t h e b o n d i n g a x i s and H ( F i g . l b ) . F i n a l l y , t h e a n g l e i n quadrupolar i n t e r a c t i o n s i s b e t w e e n t h e q u a d r u p o l e moment and t h e d i r e c t i o n o f t h each case, i f t h e angl 2

0

0

2

3 cos e

-1=0

a l l a n i s o t r o p i c c o n t r i b u t i o n s t o t h e NMR s p e c t r u m w i l l r e d u c e to z e r o . T h i s a n g l e , 54.7°, i s j u s t l y c a l l e d t h e m a g i c a n g l e . Since a l l values of θ are possible i n the n o n - c r y s t a l l i n e or powdered s o l i d , v e r y few i n t e r a c t i o n s n a t u r a l l y r e d u c e t o z e r o . However, i f , o v e r t i m e , t h e a v e r a g e v a l u e o f θ = 54.7°, t h e anisotropic static contributions w i l l again reduce t o zero. T h i s c a n be done i n r e a l s p a c e by h i g h speed sample r o t a t i o n a t an a n g l e 54.7° f r o m t h e d i r e c t i o n o f t h e f i e l d ( _ 3 ) ; or i n s p i n s p a c e , by m a n i p u l a t i o n o f t h e s p i n s u s i n g r f p u l s e s ( J 7 ) . In F i g . 2, a r e p r e s e n t a t i o n o f t h e e f f e c t o f s p i n n i n g on t h e t i m e a v e r a g e d v a l u e o f an i n t e r n u c l e a r v e c t o r i s shown. Rotation a b o u t t h e a x i s R c a u s e s t h e n u c l e i and t h e i n t e r n u c l e a r v e c t o r to c i r c l e t h e a x i s . O v e r a p e r i o d o f one r o t a t i o n , t h e a v e r a g e p o s i t i o n o f e a c h n u c l e i l i e s a l o n g R, and t h e t i m e a v e r a g e i n t e r n u c l e a r v e c t o r w i l l t h e r e f o r e a l s o be a l i g n e d w i t h R. The anisotropic static i n t e r a c t i o n s mentioned above will be c o h e r e n t l y m o d u l a t e d a t s p i n n i n g r a t e s l e s s t h a n ~ one h a l f o f the l i n e w i d t h ( i n H z ) , r e s u l t i n g i n s p i n n i n g s i d e bands. At s p i n n i n g r a t e s g r e a t e r t h a n t h e l i n e w i d t h , t h e s i d e bands disappear. T h e o r e t i c a l l y , i t i s p o s s i b l e t o remove a l l o f t h e above a n i s o t r o p i c i n t e r a c t i o n s b y sample s p i n n i n g a t t h e m a g i c angle. Realistically, s p i n n i n g r a t e s have b e e n l i m i t e d b y m a t e r i a l p r o b l e m s , so t h a t r a t e s o f 3 t o 5 K H a r e n o r m a l . These rates are sufficient to attenuate o r remove lineb r o a d e n i n g due t o CSA, b u t a r e f a r s h o r t o f t h e ~ 2 0 K H necessary t o remove dipolar interactions, with a few exceptions(_1 ) . Z

Z

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

26

NMR AND MACROMOLECULES

A .

Β .

F i g u r e 1 . O r i e n t a t i o n a l dependence o f a n i s o t r o p i c i n t e r a c t i o n s on t h e a n g l e Θ : a. D i p o l e - d i p o l e interac­ t i o n ; b. c h e m i c a l s h i f t a n i s o t r o ­ p i c i n t e r a c t i o n ; c. e l e c t r i c q u a d ­ rupolar interaction.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

2.

O'DONNELL

27

NMR Spectroscopy of Solid Samples

Figure 2. The t i m e - a v e r a g e d r e s u l t randomly o r i e n t e d i n t e r n u c l e a r v e c t o r , t i o n a l a x i s , R.

of rotation ab, about a

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

of a rota-

NMR AND MACROMOLECULES

28 Line Narrowing i n Spin Space - WAHUHA

Sample spinning induces a time dependent e f f e c t on the r e l a ­ tionship between a nuclear spin f i x e d along H and its "surroundings" by moving the "surroundings" about the magic angle. I f the "surroundings" are now f i x e d , the same type o f time dependent behavior can be induced by s p e c i f i c r o t a t i o n o f the nuclear spins about the magic angle. In F i g . 3, a repre­ s e n t a t i o n o f magic angle sample spinning i s given from the viewpoint o f the sample. Since the magic angle vector i s a locus o f points e q u i d i s t a n t from a l l three coordinates, a view down the magic angle r e v e a l s the three coordinate axis to be e q u a l l y spaced about the "magic" v e c t o r . As the sample s p i n s , the a p p l i e d f i e l d , H , appears to be " r o t a t i n g " through each o f the c o o r d i n a t e s . The that the s p i n magnetization through the three c o o r d i n a t e s . Q

0

In 1968, Waugh and co-workers(7) devised a means of " r o t a t i n g " M through each of three coordinate a x i s . Because nuclear spins precess about H a t the Larmor or resonance frequency, the co­ ordinate system used when s p i n manipulations are i n v e s t i g a t e d must also r o t a t e a t the Larmor frequency. This a l s o permits us to view r f pulses at the Larmor frequency as a p p l i e d f i e l d s along the axes o f t h i s r o t a t i n g frame (when the r o t a t i n g frame i s used, the axes w i l l be designated x , y and ζ ) . Q

f

f

1

C l a s i c a l l y , when an r f pulse i s a p p l i e d , e.g. along the x' a x i s , t h i s r f f i e l d , H]_, w i l l cause the net s p i n magnetization, M, a l i g n e d along H to precess as shown i n F i g . 4 a . A pulse of s p e c i f i c d u r a t i o n f o r a given H| w i l l cause M to precess e x a c t l y h r e v o l u t i o n , so that M l i e s on the y axis ( F i g . 4 b ) . Changing the phase of the o f pulse 180° w i l l cause M to precess i n the opposite d i r e c t i o n , r e t u r n i n g i t to the ζ ' axis ( F i g . 4c). The same type o f pulse sequence can be a p p l i e d along the y' a x i s , r o t a t i n g M into the x a x i s . By proper use of pulses and delays, M can be made to spend equal amounts of time on each of the r o t a t i n g frame axes. As can be seen, t h i s mimics i n s p i n space the r e s u l t s obtained by sample r o t a t i o n i n r e a l space. The necessary pulses are diagramed i n F i g . 4 d . I f the pulses are short enough and the delays, τ, are kept to a min­ imum, the " r o t a t i o n r a t e " o f the process can be made f a s t enough to e f f e c t i v e l y decouple homonuclear d i p o l e - d i p o l e i n t e r ­ actions . This technique and other, more complicated pulse sequencesQ) have been used to narrow l i n e s i n proton s p e c t r a . The method i s also important i n that i t removes only homonuclear d i p o l e - d i p o l e broadening, but does not e f f e c t heteronuclear d i p o l e - d i p o l e i n t e r a c t i o n s . In the chapter by Schaefer and coworkers i n t h i s text, the WAHUHA pulse sequence 0

1

1

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

O'DONNELL

NMR Spectroscopy of Solid Samples

Figure 3. V i e w down m a g n e t i z a t i o n , M, and i s r o t a t i n g ccw w i t h The a n g l e o f R f r o m a l

t h e r o t a t i o n a l a x i s , R, o f t h e n e t t h e a p p l i e d f i e l d , Ho. The v i e w e r r e s p e c t t o the c o o r d i n a t e system. l three axis i s 5 4 . 7 ° .

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

NMR AND MACROMOLECULES

A .

fH

Ζ 0

M '

-X' W/2 P U L S E

t

1

+X

W/2

PULSE

Β .

j

X

c.

W/2 X' 4

W/2 -X' W/2 !

4 Π

2\ψ

Y'

4

ψ

7Γ/2 -Y' 4



ACQUIRE DATA Figure 4. The WAHUHA e x p e r i m e n t : a . The a c t i o n o f a TT/2 r f p u l s e a p p l i e d t o a s p i n s y s t e m a l o n g t h e +x' a x i s i n t h e r o t a t i n g frame; b. t h e a c t i o n o f a ïï/2 p u l s e a p p l i e d a l o n g - x a x i s . c . The WAHUHA p u l s e s e q u e n c e . 1

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

2.

was

O'DONNELL

NMR

Spectroscopy of Solid Samples

u s e d t o remove 1 H - * H d i p o l e couplings.

couplings,

31

while

retaining ^-H-

F i n a l l y , i t s h o u l d be p o i n t e d o u t t h a t t h e above d i s c u s s i o n s are vast over-simplifications which are (hopefully) conceptually easy t o grasp. unfortunately, they are not theoretically satisfying. A d d i t i o n a l reading i s urged t o pro­ v i d e a more i n d e p t h understanding(1-5). Cross P o l a r i z a t i o n C l a s s i c a l l y , t h e n e t magnetization, M , o f a s p i n system r e s u l t s f r o m t h e sum o f t h e i n d i v i d u a l s p i n s w h i c h p r e c e s s a b o u t t h e applied field, H (see F i g 5a) The f r e q u e n c y of the precession, called th d e p e n d e n t upon t h e m a g n e t i the a m p l i t u d e o f H . I n a d d i t i o n , the amplitude or p o l a r i z a ­ t i o n o f M w i l l depend upon t h e v a l u e o f t h e n u c l e a r m a g n e t i c moment a s w e l l . I n t h e case o f a p r o t o n s p i n system, t h e n e a r l y 100% n a t u r a l abundance and l a r g e m a g n e t i c moment r e s u l t i n a p o l a r i z a t i o n that gives a large net magnetization, MJJ (Fig. 5a). The m a g n e t i c moment o f a l ^ C p i on t h e o t h e r h a n d , i s a b o u t one f o u r t h as l a r g e a s t h e p r o t o n moment, r e s u l t i n g i n a n e t m a g n e t i z a t i o n , M , t h a t i s one f o u r t h t h a t o f p r o t o n s i n t h e same H f o r an e q u a l number o f n u c l e i . To make m a t t e r s w o r s e , t h e n a t u r a l abundance o f ^ C n u c l e i i s o n l y 1.1%. F i n a l l y , t h e l e n g t h o f time f o r t h e carbon s p i n system t o r e c o v e r f r o m t h e p e r t u r b a t i o n n e c e s s a r y t o make a m e a s u r e ­ ment c a n be 10 t o 100 t i m e s l o n g e r t h a n t h a t t i m e needed f o r a proton s p i n s y s t e m i n t h e same m o l e c u l e (see s p i n - l a t t i c e relaxation, below). This creates a time b o t t l e n e c k when repeated samplings a r e taken o f the ^ C magnetization. Q

Q

S

n

>

c

0

From t h e above d i s c u s s i o n , i t i s e v i d e n t t h a t i f t h e p r o t o n s p i n s y s t e m c o u l d be u s e d as a s o u r c e o f m a g n e t i z a t i o n and a s a means o f r e l a x a t i o n f o r t h e c a r b o n s p i n s y s t e m , a n enhancement o f t h e c a r b o n N M R s i g n a l and a s a v i n g s i n t i m e c o u l d be achieved. T h i s energy t r a n s f e r i n t h e s t a t i c f i e l d , H , i s n o t p o s s i b l e due t o t h e l a r g e m i s m a t c h i n t h e L a r m o r frequencies for t h e two d i f f e r e n t n u c l e i . I n order f o r a t r a n s f e r to o c c u r , t h e two s p i n s y s t e m s must have some p r e c e s s i o n a l compo­ nents that a r e equal i n frequency. As l o n g a s t h e s p i n s a r e precessing about t h e s t a t i c f i e l d , H , t h i s i s impossible. However, s p e c i f i c m a g n e t i c f i e l d s may be a p p l i e d by u s i n g r a d i o frequency ( r f ) pulses. I n F i g . 5a, the magnetization ofthe p r o t o n s was shown i n a c o o r d i n a t e s y s t e m s e t i n t h e l a b o r a t o r y ; the laboratory reference frame. An r f p u l s e a t a given f r e q u e n c y i n t h e l a b o r a t o r y frame w i l l a p p e a r a s a f i e l d o f magnitude H, r o t a t i n g a b o u t the Ζ axis a t the applied Q

Q

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

NMR A N D MACROMOLECULES

f

A .

"^3w'^ H

T

"

Ho

13

f

CROSS POLARIZATION

4/H = 4»C

F i g u r e 5. S p i n l o c k i n g o f t h e p r o t o n s p i n s y s t e m and subsequent c r o s s polarization between t h e p r o t o n and carbon s p i n s : a. The i n i t i a l p r o t o n m a g n e t i z a t i o n on t h e ζ' a x i s , a l i g n e d w i t h t h e f i e l d , Ho; b. Α π / 2 p u l s e i s a p p l i e d along the χ axis of the proton rotating f r a m e , f o l l o w e d by an r f f i e l d , H ç , a p p l i e d a l o n g t h e y a x i s o f t h e carbon r e f e r e n c e frame; c. Spin locking of t h e p r o t o n s p i n s b y H J J and c r o s s p o l a r i z a t i o n w i t h t h e carbon s p i n s . 1

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

2.

O'DONNELL

33

NMR Spectroscopy of Solid Samples

frequency. I f t h e c o o r d i n a t e s y s t e m were r o t a t i n g a t t h e a p p l i e d f r e q u e n c y ( a r o t a t i n g r e f e r e n c e f r a m e ) , t h e n Έ.\ w o u l d a p p e a r a s a f i e l d a l i g n e d a l o n g e i t h e r t h e x ' o r y' a x i s . In Fig. 5b, a n r f f i e l d a t t h e p r o t o n f r e q u e n c y , H J J , i s shown along the χ a x i s . T h i s f i e l d , a s shown i n f i g . 5b, a p p l i e s a torque t o MJJ, t h e n e t p r o t o n m a g n e t i z a t i o n , making i t r o t a t e into the y axis. A t t h a t p o i n t , t h e r f f i e l d c a n be s h i f t e d 90°, so t h a t i t a l s o l i e s a l o n g t h e y a x i s ( F i g . 5 c ) . Because HJJ i s a m a g n e t i c f i e l d t h a t i s c o - l i n e a r w i t h t h e n e t m a g n e t i ­ z a t i o n , Mj|, t h e i n d i v i d u a l s p i n s r e p r e s e n t e d b y M|j w i l l p r e c e s s about Hj| a t a new p r e c e s s i o n a l f r e q u e n c y , that i s determined by t h e amplitude o f H . I f another r f f i e l d i s a p p l i e d a t t h e carbon f r e q u e n c y , such t h a t t h e p r e c e s i o n a l f r e q u e n c y , U ) , o f t h e c a r b o n s p i n s a b o u t H e q u a l s (jOg t h e n an e f f i c i e n t transfer of magnetizatio 1

1

1

H

C

The p r o c e s s o f h o l d i n g a n e t m a g n e t i z a t i o n a l o n g a n a x i s o f t h e r o t a t i n g frame u s i n g a n r f f i e l d i s c a l l e d s p i n - l o c k i n g . The match o f r f f i e l d i n t e n s i t i e s H and H s u c h t h a t (% = 0 ) i s c a l l e d a Hartman-Hahn m a t c h ( 8 ) . The p r o c e s s o f t r a n s f e r r i n g m a g n e t i z a t i o n from t h e p r o t o n s p i n s t o t h e carbon s p i n s i s called cross polarization(9). The r a t e of transfer i s characterized by a contact time, T , which S c h a e f e r and coworkers used t o s t u d y s p i n - s p i n c o n t r i b u t i o n t o T^p ( s e e b e l o w and c h a p t e r b y S c h a e f e r , e t a l , t h i s v o l u m e ) . C

H

c

c p

The c r o s s p o l a r i z a t i o n , o r CP, p r o c e s s may be u s e d w i t h a n y o r a l l o f t h e l i n e n a r r o w i n g t e c h n i q u e s t o o b t a i n NMR s p e c t r a o f s o l i d s w i t h r e s o l u t i o n approaching that of liquidsC3). A combination o f c r o s s p o l a r i z a t i o n ( C P ) , magic angle s p i n n i n g (MAS) and d i p o l a r d e c o u p l i n g were u s e d t o o b t a i n t h e s p e c t r u m o f a v e r y i n s o l u b l e p o l y p h e n y l e n e s u l f i d e ( R y t o n ) a s shown i n F i g . 6.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

34

NMR

NMR M e a s u r e m e n t s o f M o t i o n

AND

MACROMOLECULES

i n Polymers

All o f the i n t e r a c t i o n s discussed above have a strong dependency on m o t i o n , ( o r l a c k o f m o t i o n ) i n s o l i d s . I t i s not s u r p r i s i n g then that the motions that a r e present i n a s o l i d c a n be d e t e c t e d by m o t i o n - s e n s i t i v e NMR m e t h o d s . The methods u s e d i n t h i s volume c a n be d i v i d e d i n t o two c a t a g o r i e s ; l i n e shape a n a l y s i s and r e l a x a t i o n s t u d i e s . Line-Shape A n a l y s i s B e c a u s e o f t h e s t r o n g o r i e n t a t i o n a l dependancy o f t h e l i n e b r o a d e n i n g mechanisms d i s c u s s e d a b o v e , t h e NMR l i n e shape w i l l r e f l e c t changes i n t h e o r i e n t a t i o n w i t h t i m e I f the frequency of a motion i n a s o l i (i.e., line-width in e l e c t r i c quadrupolar i n t e r a c t i o n s ) , a small, but measurable narrowing might occur. As t h e f r e q u e n c y and a m p l i t u d e o f t h e motion i s i n c r e a s e d by h e a t i n g t h e s a m p l e , a d d i t i o n a l line narrowing w i l l occur. D r a m a t i c l i n e - s h a p e changes o c c u r a s t h e motional frequency nears the l i n e - w i d t h frequency. Above t h e l i n e - w i d t h frequency, s u b s t a n t i a l l y narrower l i n e shapes a r e observed. C o n v e r s e l y , t h e m o l e c u l a r m o t i o n may be r a p i d comp a r e d t o t h e l i n e w i d t h a t room t e m p e r a t u r e ( n a r r o w l i n e s ) and the t e m p e r a t u r e dependency o f t h e l i n e shape may be b e s t i n v e s tigated by l o w e r i n g t h e t e m p e r a t u r e . In this t e x t , Dr. J e l i n s k i and c o w o r k e r s u s e d l i n e - b r o a d e n i n g from n u c l e a r e l e c t r i c q u a d r u p o l a r i n t e r a c t i o n s t o i n v e s t i g a t e motions about a bond b e t w e e n c a r b o n s isotopically enriched with deuterium. T h i s s t u d y was p a r t i c u l a r l y i n t e r e s t i n g , b e c a u s e two r e g i o n s o f t h e p o l y m e r e x i s t e d ; one t h a t gave a r e l a t i v e l y n a r r o w NMR l i n e - w i d t h ( " f a s t " m o t i o n ) and one t h a t y i e l d e d a much b r o a d e r NMR l i n e w i d t h ( " s l o w " m o t i o n ) . T h i s i n d i c a t e d two r e g i o n s i n the polymer w i t h d i s t i n c t l y d i f f e r e n t m o t i o n a l c h a r a c t e r i s t i c s . S c h a e f e r and c o w o r k e r s , i n a n o t h e r c h a p t e r i n t h i s t e x t , u s e d *H - l ^ C d i p o l e - d i p o l e " l i n e s h a p e s " o b t a i n e d i n a v e r y c l e v e r way t o i n v e s t i g a t e r o t a t i o n a l m o t i o n o f t h e a r o m a t i c r i n g s i n polystyrene. The method u s e d a WAHUHA p u l s e s e q u e n c e t o decouple proton-proton d i p o l a r i n t e r a c t i o n s , cross p o l a r i z a t i o n t o enhance s i g n a l a c q u i s i t i o n and an o v e r a l l s a m p l i n g t e c h n i q u e s y n c h r o n o u s w i t h t h e sample r o t a t i o n . The ^ C - *H d i p o l e d i p o l e i n t e r a c t i o n was mapped i n r o t a t i o n a l s i d e b a n d s p e c t r a o b t a i n e d f r o m 16 " n o r m a l " CP/MAS s p e c t r a . The method, t h o u g h somewhat i n v o l v e d , p r o v i d e d a measure o f d i p o l e - d i p o l e lineshapes w h i c h c a n be i n t e r p r e t e d i n terms o f s i d e - c h a i n r o t a t i o n i n the polymer.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

2.

O'DONNELL

N M R Spectroscopy of Solid Samples

35

R e l a x a t i o n and M o t i o n i n S o l i d s S p i n - L a t t i c e R e l a x a t i o n - Ί·\ I n F i g . 5 a , a r e p r e s e n t a t i o n o f t h e n e t m a g n e t i z a t i o n , M, o f a n u c l e a r s p i n system i s g i v e n . The v a l u e o f M i s t h e sum o f t h e i n d i v i d u a l s p i n s p r e c e s s i n g a t t h e Larmor f r e q u e n c y , U)L, about the a p p l i e d field, H . The i n d i v i d u a l s p i n s r e p r e s e n t an e x c e s s o f s p i n s i n t h e l o w e n e r g y s t a t e o f a s y s t e m where t h e spins are distributed (Boltzman d i s t r i b u t i o n ) b e t w e e n two states (spin % nucleus). The s y s t e m , a s shown i n F i g . 5 a , i s at equilibrium. I f an r f p u l s e , Η χ , a t i s now a p p l i e d , t h e system w i l l a b s o r b some o f t h e e n e r g y f r o m t h e p u l s e ( t h e resonance c o n d i t i o n ) , t h a t i s , t h e system w i l l "heat up". I n F i g . 5b t h i s i s r e p r e s e n t e d by a t i p p i n g o f t h e m a g n e t i z a t i o n i n t h e r o t a t i n g frame. z e r o i n F i g . 7b. The s y s t e H , and i f t h e r f f i e l d , H|, i s removed a t t h i s p o i n t , t h e s y s t e m w i l l be l e f t i n a d i s o r d e r e d s t a t e . To r e - e s t a b l i s h t h e equilibrium condition, some o f the i n d i v i d u a l spins must exchange e n e r g y , o r " c o o l down." The p r o b a b i l i t y o f a s p i n g i v i n g up e n e r g y i n t h e f o r m o f d i s c r e t e r f r a d i a t i o n ( a phonon) i s v e r y l o w . T h u s , s i n c e e n e r g y must be c o n s e r v e d , t h e e n e r g y must be d i s s i p a t e d i n some o t h e r f o r m . I t may be dissipated as thermal energy t o the atomic framework, o r l a t t i c e , i f a s u i t a b l e mechanism e x i s t s f o r t h e t r a n s f e r . The mechanism must be m a g n e t i c i n n a t u r e , and must f l u c t u a t e a t t h e L a r m o r f r e q u e n c y ( i . e . , i t must f l u c t u a t e a t a r a d i o f r e q u e n c y i n t h e megahertz r a n g e ) . The m a g n e t i c f i e l d s o u r c e s a v a i l a b l e on t h e a t o m i c s c a l e a r e n u c l e a r d i p o l e s and u n p a i r e d e l e c t r o n s . I f there i s r o t a t i o n , v i b r a t i o n or t r a n s l a t i o n i n the l a t t i c e a t t h e L a r m o r f r e q u e n c y , U3L, t h e n r e l a x a t i o n o f t h e s p i n s y s t e m to t h e e q u i l i b r i u m s t a t e can occur by passage o f t h e excess energy t o t h e l a t t i c e system; i . e . , s p i n - l a t t i c e relaxation occurs. The r e l a x a t i o n process usually appears t o be exponential i n n a t u r e , and i s u s u a l l y c h a r a c t e r i z e d by a s p i n l a t t i c e r e l a x a t i o n t i m e , T|. The v a l u e f o r Ύγ r e p r e s e n t s t h e t i m e n e c e s s a r y f o r t h e m a g n e t i z a t i o n t o r e t u r n t o w i t h i n ( 1( 1/e)) o r 6 3 % o f i t s m a g n i t u d e a t e q u i l i b r i u m . Thus, f o r f u l l r e s t o r a t i o n o f M a l o n g t h e f i e l d , H , one must w a i t several t i m e s t h e v a l u e o f Τ j ( u s u a l l y 5 · T]_ i s s u f f i c i e n t ) . Q

0

Q

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

N M R A N D M A C R O M O L E C U I ES Τ

— J

L

180.0

160.0

1

!

1

—I

Γ

_ _ _ J

140.

CHEMICAL SHIFT -

PPM

Figure 6 . A CP/MAS NMR spectrum of Ryton (polyphenylene sulfide). The s i g n a l s occur at ~135 and ~133 ppm ( from an e x t e r n a l reference of TMS).

F i g u r e 7. A mapping of the carbon magnetization during a Τι measurement : a. The carbon magnetization, M Q , locked on the y axis by an r f f i e l d , H Q , a f t e r cross p o l a r i z a ­ t i o n ; b. Mfj a l i g n e d along the a p p l i e d f i e l d , Ho, a f t e r a π/2 r f pulse along -x'; c. Mç a f t e r T j r e l a x a t i o n f o r a time p e r i o d , τ; d. Mç, a f t e r a π/2 r f pulse, a l i g n e d along y . This permits the amplitude of M Q to be measured. 1

f

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

2.

O'DONNELl.

37

N M R Spectroscopy of Solid Samples

For the individual interested i n molecular motion, the important feature of spin-lattice relaxation (or other r e l a x a t i o n mechanisms) i s t h e dependency on m o l e c u l a r m o t i o n t o p r o v i d e an e f f i c i e n t e n e r g y pathway f o r r e l a x a t i o n . Thus, m o l e c u l a r motions a t t h e Larmor frequency f o r i n d i v i d u a l carbon atoms i n a m o l e c u l a r framework may be mapped b y T j m e a s u r e ­ ments. Since t h e frequency o f m o l e c u l a r motion i s temperature d e p e n d e n t , a d d i t i o n a l thermodynamic and k i n e t i c i n f o r m a t i o n may be o b t a i n e d by m e a s u r i n g T\ v a l u e s f o r d i f f e r e n t c a r b o n s o v e r a range o f t e m p e r a t u r e s . I n t h e p a p e r b y L y e r l a and c o w o r k e r s i n t h i s v o l u m e , Ύγ measurements made f o r t h e f i r s t t i m e o v e r a range o f low temperatures y i e l d e d s p e c i f i c i n f o r m a t i o n about m o t i o n i n t h e backbone and s i d e c h a i n s o f a s e m i - c r y s t a l l i n e and a g l a s s y p o l y m e r . The d a t a was t a k e n a t a L a r m o r f r e q u e n c y o f 15.1 MHz f o r nuclei t h a t t h e T\ v a l u e s measure e x p o n e n t i a l b e h a v i o r . As s t a t e d i n t h e paper, t h i s r e p r e s e n t e d a d i s t r i b u t i o n o f T| v a l u e s due t o t h e many d i f f e r e n t e n v i r o n ­ m e n t s , and t h e r e f o r e t h e many d i f f e r e n t T\ m e c h a n i s m s , p r e s e n t i n the polymer. R e l a x a t i o n i n t h e R o t a t i n g Frame-T]ρ As v a l u a b l e a s T| measurements c a n be i n a n a l y z i n g m o l e c u l a r motions, they suffer from a significant d r a w b a c k ; t o map motions a t other frequencies, different magnetic field s t r e n g t h s , H , must be u s e d . T h i s r e q u i r e s t h e use o f a d i f f e r e n t magnet ( i . e . , a d i f f e r e n t s p e c t r o m e t e r o p e r a t i n g a t a d i f f e r e n t Larmor f r e q u e n c y ) . I n addition, the l i m i t a t i o n of t h e Tji measurements t o m o l e c u l a r m o t i o n s i n t h e 10^ h e r t z f r e ­ quency r a n g e ( f o r ^ C ) r e s t r i c t s t h e u s e o f T\ s t u d i e s t o o n l y a few t y p e s o f m o t i o n s . Motions i n the k i l o h e r t z r e g i o n a r e therefore inaccessible. Q

The f r e q u e n c y r a n g e o f m o t i o n a v a i l a b l e f o r s t u d y b y Ί\ mech­ anisms i s governed by t h e p r e c e s s i o n a l (Larmor) frequency o f the i n d i v i d u a l s p i n s about t h e a p p l i e d f i e l d , H . I f a means c o u l d be f o u n d t o make t h e s e s p i n s p r e c e s s a b o u t a much l o w e r field i n t h e presence o f H , then t h e f r e q u e n c y dependent n a t u r e o f t h e r e l a x a t i o n mechanism c o u l d be a l t e r e d t o a l l o w motions i n t h e KHz r a n g e t o be s t u d i e d . S u c h a means h a s a l r e a d y b e e n d i s c u s s e d — s p i n l o c k i n g ( s e e F i g . 5 ) . I n t h e CP e x p e r i m e n t , t h e p r o t o n s p i n s a r e f i r s t " l o c k e d " a l o n g an r f f i e l d , H||, r o t a t i n g a t t h e L a r m o r f r e q u e n c y . As shown i n F i g . 5b, H|| a p p e a r s a s a m a g n e t i c f i e l d a l i g n e d a l o n g an a x i s o f a Q

Q

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

NMR AND MACROMOLECULES

38

coordinate system r o t a t i n g at the proton Larmor frequency about H (the *H r o t a t i n g frame). As shown i n 5c, the i n d i v i d u a l porton spins w i l l precess about H J J at a frequency, directly p r o p o r t i o n a l to the amplitude of H . In a d d i t i o n , the carbon spins at the end of the cross p o l a r i z a t i o n trans fer are a l s o " l o c k e d " along an r f f i e l d , Hç, such that the i n d i v i d u a l carbon spins are precessing about Hç at a frequency, U)fj, p r o p o r t i o n a l to H p There are two important features about the s p i n - l o c k c o n d i t i o n that make i t a t t r a c t i v e f o r r e l a x a t i o n s t u d i e s ; 0

W

1.

The l o c k i n g r f f i e l d s can have a range of amplitudes. Thus a range of motional frequencies can be i n v e s t i g a t e d by simply changing the amplitude of Hj| or H Q .

2.

The magnetization at a magnitude generate means that the magnetization, M , i s much too large i n prop o r t i o n to the r f f i e l d s , H J J and H Q , and M must d i m i n i s h v i a a r e l a x a t i o n mechanism to a l e v e l that matches the amplitude of H J J or H Q .

The process of r e l a x a t i o n of M to a value p r o p o r t i o n a l to the a p p l i e d r f f i e l d s i n the r o t a t i n g frame i s c a l l e d s p i n - l a t t i c e r e l a x a t i o n i n the r o t a t i n g frame. The mechanisms a v a i l a b l e f o r t h i s form of r e l a x a t i o n are e n t i r e l y analogous to those a v a i l able f o r simple s p i n - l a t t i c e r e l a x a t i o n as described above. S i m i l a r l y , r o t a t i n g frame r e l a x a t i o n i s c h a r a c t e r i z e d by a time constant analogous to T j , and i s c a l l e d T j p , or the spinl a t t i c e r e l a x a t i o n time i n the r o t a t i n g frame. Typically, Tjp values obtained from protons i n s o l i d samples are not of much use, since communication between the abundant protons tends to average the r e l a x a t i o n process, so that individual proton r e l a x a t i o n mechanisms cannot be observed. For ^ C , however, the n a t u r a l low abundance of l^C l i m i t s the degree of communic a t i o n , and separate T^p values can be obtained for each observed carbon s p e c i e s . As noted i n the papers by Schaefer and coworkers and by L y e r l a and coworkers, T j p data may be complicated by the f a c t that mechanisms other than s p i n - l a t t i c e i n t e r a c t i o n s (namely s p i n spin r e l a x a t i o n ) are p o s s i b l e which don't map motional charact e r i s t i c s . In the case of p o l y s t y r e n e , Schaefer and coworkers conclude that the spin-spin contributions are negligible, whereas L y e r l a and coworkers f i n d that the l e v e l s of s p i n - s p i n and s p i n - l a t t i c e c o n t r i b u t i o n s for i s o t a t i c polypropylene and a t a t i c polymethyl methacrylate were temperature dependent.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

2.

O'DONNELL

39

NMR Spectroscopy of Solid Samples

Measurement o f R e l a x a t i o n The methods t o measure T j and T^p i n t h e s o l i d s t a t e a r e somewhat u n i q u e . The i n i t i a l step f o r both experiments c o n s i s t s o f enhancement o f t h e magnetization v i a - *H c r o s s p o l a r i z a t i o n ( F i g . 5 ) . A t t h e end o f t h e c r o s s p o l a r i z a t i o n p e r i o d , t h e carbon m a g n e t i z a t i o n i s e i t h e r allowed t o c o n t i n u e t o i n t e r a c t w i t h t h e r f f i e l d , Hç w h i l e t h e p r o t o n r f f i e l d i s removed ( F i g . 7 a ) , o r an r f p u l s e i s a p p l i e d t o r o t a t e it to align with H ( F i g . 7b). I n t h e f i r s t c a s e , t h e magnet i z a t i o n a l i g n e d a l o n g Hç d e c a y s v i a a T j p mechanism, and t h e r a t e o f d e c a y i s m o n i t o r e d by c h a n g i n g t h e l e n g t h o f t i m e H Q i s applied. The p u l s e s e q u e n c e u s e d i s o u t l i n e d i n t h e p a p e r by S c h a e f e r and c o - w o r k e r s and i s r e p e a t e d h e r e ( F i g 8 c ) The reader i s r e f e r r e d t a c c o u n t (_3). Q

I f t h e m a g n e t i z a t i o n M Q i s moved t o t h e ζ a x i s t o a l i g n w i t h H , t h e i n d i v i d u a l s p i n s w i l l now p r e c e s s a t ωχ^ a r o u n d H ( M H frequencies). Remembering t h a t t h e m a g n e t i z a t i o n represented by M Q i s t h e r e s u l t o f a f o u r - f o l d enhancement f r o m t h e c r o s s p o l a r i z a t i o n w i t h t h e p r o t o n s p i n s , then i t i s e v i d e n t t h a t M Q does n o t r e p r e s e n t t h e n o r m a l e q u i l i b r i u m m a g n e t i z a t i o n f o r t h e carbon s p i n system. R e l a x a t i o n o c c u r s ( F i g . 7 c ) , and s a m p l i n g o f t h e p r o c e s s i s done by r o t a t i n g t h e r e m a i n i n g m a g n e t i z a t i o n v i a a ïï/2 r f p u l s e i n t o t h e x , y p l a n e ( F i g . 7 d ) . 1

0

0

f

Z

1

The p u l s e s e q u e n c e s f o r m e a s u r i n g T\ and T j p , enhancement p u l s e s , a r e g i v e n i n F i g . 8.

including

t h e CP

Conclusions T h i s s h o r t o v e r v i e w o f s o l i d sample NMR t e c h n i q u e s h a s been an attempt t o e x p l a i n t h e experiments used i n t h i s t e x t i n terms t h e layman c a n u n d e r s t a n d . A s c a n be s e e n b y t h e t i t l e s o f t h e p a p e r s on s o l i d sample NMR s p e c t r o s c o p y , t h e m a i n t h r u s t o f r e s e a r c h i n t h i s a r e a as a p p l i e d t o polymers i s t h e i n v e s t i g a t i o n o f motions i n polymers. The e x p e r i m e n t s o u t l i n e d i n t h i s and f o l l o w i n g c h a p t e r s h a v e been shown t o be u s e f u l f o r i n v e s t i g a t i n g m o t i o n s c o v e r i n g a f r e q u e n c y r a n g e o f 1 0 ^ t o 10^ H z . Most o f these experiments a r e pre-programmed into the commercial instruments a v a i l a b l e today. New a n d even more e x c i t i n g experiments are p o s s i b l e w i t h the f l e x i b i l i t y a f f o r d e d by t h e s t a t e o f t h e a r t c o m p u t e r c o n t r o l l e d s y s t e m s . Hopefully, as these instruments become more commonplace, these

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

NMR A N D MACROMOLECULES

W/2

X'

X

X'

W/2

H

.

H

Y

_ i _

W/2

I

i

ACQUIRE X

W/2

l

: r

2

DATA H

I

l r

2

Y

H

L

13r

ACQUIRE *T/2

X'

H

I

H

Y'

H

i

I

r j

py Η

DATA

H

Γ

Υ '

W/ 2 - X '

ίΓ.' 2

X'

X

A _ Τ ι

DECAY

_L.

ACQUIRE

DATA

F i g u r e 8. P u l s e d i a g r a m s f o r s o l i d sample NMR e x p e r i ­ ments: a. ^H-l^c cross polarization with dipolar d e c o u p l i n g ; b. WAHUHA % - *H d i p o l a r d e c o u p l i n g ; c . Τ r e l a x a t i o n sequence ( t i m e p e r i o d , τ, i s v a r i e d ) ; d. Τχ r e l a x a t i o n s e q u e n c e ( t i m e p e r i o d , t , i s v a r i e d ) .

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

2.

OTDONNELL

41

NMR Spectroscopy of Solid Samples

types o f experiments they deserve.

will

gain

the wider

acceptance

and

use

Literature Cited 1.

Mehring, M. "High Resolution NMR Spectroscopy in Solids"; Diehl, P.; Fluck, Ε . ; Kosfeld, R . , Eds.; NMR, Vol. XI, Springer-Verlag, New York, 1976.

2.

Abragam, A. "The Principles of Nuclear Magnetism"; Clarendon Press: Oxford University, London, 1961.

3.

Schaefer, J ; Stejskal Spectroscopy"; Levy York, 1978; Chap. 4

4.

Goldman, M. "Spin Temperature and Resonance in Solids"; Clarendon Press: London, 1970.

5. J.

Ε

O. in "topics in Carbon 13 NMR

Nuclear Magnetic Oxford University,

Haeberlin, U. in "Advances in Magnetic Resonance"; Waugh, S., Ed.; Acedemic: New York, 1976; V o l . I, pg. v.

6.

Block, F . Phys. Rev. 1958, III,

841.

7.

Waugh, J. S.; Huber, L . M.; Haeberlen, Letters 1968, 20, 180.

8.

Hartmann, S. R.; Hahn, E . L .

9.

Pines, Α . ; Gibby, 1973, 59, 569.

U.

Phys. Rev. 1962,

M. G . ; Waugh,

J.

S.

J.

Phys.

Rev.

128, 2042. Chem. Phys.

RECEIVED November 18, 1983

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

3 Molecular Motion in Glassy Polystyrenes JACOB SCHAEFER, M. D. SEFCIK, E. O. STEJSKAL, and R. A. MCKAY—Monsanto Company, Physical Sciences Center, St. Louis, MO 63167 1

W. T. DIXON —Department of Chemistry, Washington University, St. Louis, MO 63130 R. E. CAIS—Bell Telephone Laboratories Murray Hill NJ 07974

The amplitudes of ring- and main-chain motions of a variety of polystyrenes have been established from the C NMR magic-angle spinning sideband patterns of dipolar and chemical shift tensors. The fre­ quencies of the same motions have been determined by T (C) and Τ ρ(C) experiments. The most prevalent motion i n these polymers is restricted phenyl rotation with an average t o t a l displacement of about 40°. Both the amplitude and frequency of this motion vary from one substituted polystyrene to another, and from site to site within the same polystyrene. A simple theory correlates the observed ring dipolar patterns with 's. 13

1

1

1

Rotating-Frame Carbon S p i n - L a t t i c e

Relaxation

B o t h s p i n - l a t t i c e ( m o t i o n a l ) and s p i n - s p i n p r o c e s s e s c o n t r i b u t e to Τ ρ(0). E x p e r i m e n t a l c r o s s - p o l a r i z a t i o n t r a n s f e r r a t e s from p r o t o n s i n the l o c a l d i p o l a r f i e l d t o carbons i n an a p p l i e d r f f i e l d c a n be u s e d t o d e t e r m i n e t h e r e l a t i v e c o n t r i b u t i o n s q u a n t i ­ tatively. T h i s measurement a l s o r e q u i r e s a d e t e r m i n a t i o n o f t h e proton l o c a l f i e l d . Methods f o r m a k i n g b o t h measurements have b e e n d e v e l o p e d i n t h e l a s t few y e a r s [ 1 , 2 ] . For polystyrenes, the s p i n - l a t t i c e c o n t r i b u t i o n t o T p ( C ) ' s i s by f a r t h e l a r g e r . T h i s means t h a t t h e T j p C C ) ' s c a n be i n t e r p r e t e d i n terms o f r o t a ­ t i o n a l motions i n the low-to-mid-kHz frequency range. χ

1

1

Current address: Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, M O 63110.

0097 6156/84/0247 0043506.00/0 © 1984 American Chemical Society In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

44

NMR

AND MACROMOLECULES

D i p o l a r R o t a t i o n a l Spin-Echo Experiment The T j p C C ) ' s o f s u b s t i t u t e d p o l y s t y r e n e s show a l t e r a t i o n s i n m o t i o n due t o t h e s u b s t i t u e n t ( c f , b e l o w ) b u t do n o t show w h e t h e r t h e a l t e r a t i o n s i n v o l v e changes i n t h e a m p l i t u d e o r t h e f r e q u e n c y o f t h e m o t i o n . T h i s d i s t i n c t i o n c a n be made b y a s e p a r a t e e x p e r i ment w h i c h m e a s u r e s CH d i p o l a r c o u p l i n g . The s t r e n g t h o f a s t a t i c d i p o l a r i n t e r a c t i o n between an i s o l a t e d C and H s p i n p a i r i s known i f t h e i n t e r n u c l e a r d i s t a n c e i s known. T h i s i s t h e u s u a l s i t u a t i o n f o r a d i r e c t l y bonded CH f r a g m e n t i n a s o l i d p o l y m e r . The r e d u c t i o n i n t h e s t r e n g t h o f t h e CH d i p o l a r i n t e r a c t i o n by m o l e c u l a r motion ( o f frequency comparable t o o r g r e a t e r t h a n t h e d i p o l a r i n t e r a c t i o n i t s e l f ) t h e r e f o r e becomes a measure o f t h e a m p l i t u d e o f t h e m o t i o n I n performing such a measurement o n a r e a l s y s t e m p a i r be i s o l a t e d f r o m many-bod a c h i e v e d b y p h a s e - s h i f t e d m u l t i p l e - p u l s e (WAHUHA) H - H d e c o u p l i n g [3]. The t i m e e v o l u t i o n o f t h e c a r b o n m a g n e t i z a t i o n i s t h e n d e t e c t e d under t h e i n f l u e n c e o f H - C c o u p l i n g alone [4,5]. The r e s u l t i n g c a r b o n s i g n a l c a n be o b s e r v e d w i t h m a g i c - a n g l e spinning f o r high r e s o l u t i o n [6,7]. The p u l s e s e q u e n c e f o r t h i s e x p e r i m e n t i s shown i n F i g u r e 1 [ 8 ] . The e v o l u t i o n o f t h e c a r b o n m a g n e t i z a t i o n due t o c h e m i c a l s h i f t e f f e c t s i s r e f o c u s e d a f t e r two r o t o r p e r i o d s b y a c a r b o n 180° p u l s e a p p l i e d a f t e r t h e f i r s t r o t o r p e r i o d . Under h i g h - s p e e d s p i n n i n g c o n d i t i o n s , t h i s removes t h e e f f e c t o f t h e chemical s h i f t tensor. T h e H - C d i p o l a r e v o l u t i o n time i s v a r i e d w i t h t h e number o f WAHUHA p u l s e s e q u e n c e s . The s p i n n i n g s p e e d i s c h o s e n so t h a t a n i n t e g r a l number o f WAHUHA c y c l e s e x a c t l y f i t s i n t o one r o t o r p e r i o d . I n our experiments, t h i s number was s i x t e e n . ( E a c h WAHUHA c y c l e t o o k 33 p s e c , w i t h 3-psec 100° p u l s e s , so t h a t sample s p i n n i n g was a t 1894 Hz. M a t c h e d s p i n - l o c k t r a n s f e r s were p e r f o r m e d a t 60 k H z . ) 1 3

1

1

1

1

T y p i c a l Spectra

1

1 3

1 3

i n t h e C h e m i c a l S h i f t and D i p o l a r

Dimensions

Some c h e m i c a l - s h i f t s p e c t r a as a f u n c t i o n o f WAHUHA i r r a d i a t i o n f o r p o l y ( o - c h l o r o s t y r e n e ) a r e shown i n F i g u r e 2. P r o t o n a t e d c a r b o n m a g n e t i z a t i o n s r a p i d l y dephase u n d e r a s l i t t l e as two c y c l e s o f WAHUHA i r r a d i a t i o n , b u t a r e r e f o c u s e d a f t e r s i x t e e n c y c l e s (one r o t o r p e r i o d ) . Magic-angle spinning should r e f o c u s d i p o l a r c o u p l i n g j u s t a s i t does c h e m i c a l s h i f t a n i s o -

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

carbon

C ττ- pulse

one rotor period

chemical shifts

rcfocusis

,3

decoupling:

,3

1

spin-

,3

/

data acquisition begins

Η - C decoupling

one rotor period

'H- C dipolar modulation

Ή-Ή decoupling

F i g u r e 1. P u l s e sequence f o r a d i p o l a r echo e x p e r i m e n t .

preparation

CP contact

,5

'H- C

NMR A N D MACROMOLECULES

46

~fCH CH-)Cl 2

CI

—CH

0 WAHUHA cycles

200

2 cycles

100

, t h e s m a l l e r t h e value of [ n / n ] . (The s t a r i n d i c a t e s t h e e x p e r i m e n t a l n / n r a t i o has b e e n c o r r e c t e d t o remove c o n t r i b u t i o n s f r o m r i n g s u n d e r g o i n g M H z - r a t e f l i p s as d e s c r i b e d i n t h e p r e v i o u s s e c t i o n . The f r e q u e n c y o f f l i p p i n g i s so h i g h t h e r e i s no s i g n i f i c a n t c o n t r i b u t i o n t o T p ( C ) . ) The f a c t t h a t b o t h T p ( C ) and [ n ^ n j o show a c o m p a r a b l e i n f l u e n c e o f l o w - f r e q u e n c y m o t i o n more t h a n h i n t s a t a s i m p l e c o n n e c t i o n b e t w e e n them. T h a t i s , we c a n be x

2

1

u

2

x

x

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

x

3

SCHAEFER ET AL.

TabLe I I I

51

Molecular Motion in Glassy Polystyrenes

,

P r o t o n a t e d A r o m a t i c < T p ( C ) > s o f some P o l y ­ s t y r e n e s S c a l e d b y t h e A m p l i t u d e o f Root-MeanS q u a r e A n g u l a r F l u c t u a t i o n s Deduced f r o m Experimental D i p o l a r R o t a t i o n a l Sideband Intensities 1

37-kHz , msec

2

sin 0 χ

a

l P

polymer poly(p-tbutylstyrene)

6.

poly(p-isopropylstyrene)

8.8

polystyrene^ poly(|)-methylstyrene)

11.2

1.08

1.15

21

1.20

1.25

18 1.00

11.7

1.20

1.25

18

19.0

1.30

1.30

16

poly(styreneco-sulfone)

22.0

1.32

e

1.32

15

poly(o-chlorostyrene)

37.0

1.34

1.34

14

poly(a-methylstyrene)

1.06

1.04

1.35

1.38

2.02

s t r a i g h t - l i n e f i t t o o b s e r v e d d e c a y b e t w e e n 0.05 a n d 1.00 msec a f t e r t h e t u r n o f f o f H ^ H ) . r a t i o o f i n t e n s i t i e s o f second t o f i r s t d i p o l a r r o t a t i o n a l sidebands w i t h zero T i p ( C ) decay ( F i g u r e 1 ) . r a t i o o f i n t e n s i t i e s o f second t o f i r s t d i p o l a r r o t a t i o n a l sidebands w i t h c o n t r i b u t i o n s from r i n g s undergoing MHz-rate ^ f l i p s removed. a t a c t i c , quenched h i g h - m o l e c u l a r w e i g h t m a t e r i a l . c o n t r i b u t i o n t o n from t h e non-protonated a r o m a t i c carbon removed a s s u m i n g η / η = .13 f o r t h a t c a r b o n , t h e same r a t i o as i s o b s e r v e d f o r p o l y s t y r e n e . 1

Ί

0

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

52

N M R A N D MACROMOLECULES

r e a s o n a b l y s u r e t h a t t h e same c o o p e r a t i v e k H z - r e g i m e m o t i o n s r e s p o n s i b l e f o r T i P ( C ) , must a l s o be r e s p o n s i b l e f o r t h e p a r t i a l a v e r a g i n g o f t h e a r o m a t i c CH d i p o l a r t e n s o r . C o r r e l a t i o n Between and n / n i 2

For the p r o t o n a t e d a r o m a t i c carbons o f p o l y s t y r e n e s under r o t a ­ t i o n a l r e o r i e n t a t i o n , we p r o p o s e T x p ( C ) = K s i n ^ ( Θ ) J ( u ) ) , where K i s a c o n s t a n t ( w h i c h i n c l u d e s powder a v e r a g i n g i n t h e s o l i d ) , s i n ( 0 ) i s the average d i p o l a r f l u c t u a t i o n o r t h o g o n a l to the a p p l i e d r f f i e l d ( F i g u r e 5 ) , and J(u)) d e s c r i b e s t h e s p e c t r a l d e n s i t y a s s o c i a t e d w i t h the r i n g motion at the carbon r o t a t i n g frame L a r m o r f r e q u e n c y [12] , i n t h i s i n s t a n c e , 37 k H z . I f we assume r i n g r o t a t i o n o n l y o c c u r s a b o u t t h e r i n g C a x i s and i f we a l s o assume r i n g J(u) then the r e l a t i v e T i p ( C ) ' amplitude of the r i n g motion. These a m p l i t u d e s c a n be e s t i m a t e d from t h e r e d u c t i o n i n t h e d i p o l a r CH p a t t e r n s as c h a r a c t e r i z e d b y t h e [ η / η χ ] ο r a t i o s , i f we assume t h a t t h e m o t i o n w h i c h r e d u c e s [n /n ] i s a l s o r e s p o n s i b l e f o r t h e T^p r e l a x a t i o n . The r e s u l t s o f such a comparison f o r seven s u b s t i t u t e d p o l y s t y r e n e s a r e shown i n T a b l e I I I . The p r o d u c t o f s i n ( 6 ) and < T p ( C ) > i s indeed roughly constant f o r a l l seven polymers. The p r o d u c t f o r the f i r s t s i x polymers i n T a b l e I I I i s constant t o w i t h i n about 50% e v e n t h o u g h t h e < T i p ( C ) > ' s t h e m s e l v e s v a r y b y a f a c t o r o f 4 . 2

2

2

2

2

1

0

2

x

Conclusions for Ring Rotations i n Polystyrenes The r i n g r o t a t i o n s g e n e r a t e t o t a l a n g u l a r d i s p l a c e m e n t s o f about 4 0 ° ( f o r s u b s t i t u e n t s i n the o r t h o p o s i t i o n ) t o 70° ( f o r b u l k y n o n - p o l a r s u b s t i t u e n t s i n the para p o s i t i o n ) . C o n s t r a i n t s on t h i s m o t i o n p r o b a b l y i n v o l v e b o t h i n t r a - c h a i n s t e r i c i n t e r a c t i o n s ( f o r an o - c h l o r o s u b s t i t u e n t ) and i n t e r ­ chain packing (for polystyrene i t s e l f ) . We s u s p e c t t h e f r e q u e n c i e s o f many o f t h e s m a l l - a m p l i t u d e r i n g r o t a t i o n s a r e d e t e r m i n e d b y f l u c t u a t i o n s a r i s i n g from a l t e r a t i o n s i n l o c a l i n t e r c h a i n p a c k i n g . S i n c e t h e p a c k i n g changes when t h e m a i n c h a i n s move, t h e f r e q u e n c i e s o f s m a l l - a m p l i t u d e r i n g r o t a t i o n s and m a i n - c h a i n r e o r i e n t a t i o n s a r e c o m p a r a b l e . Thus, r i n g s u b s t i t u e n t s are important i n determining the amplitudes but not the frequencies o f these types o f c o o p e r a t i v e r i n g r o t a t i o n s . T h i s i s c o n s i s t e n t w i t h our assumption t h a t the J(u)) s f o r a l l p o l y s t y r e n e s a r e t h e same. We have c h o s e n m o t i o n a b o u t t h e C a x i s t o m o d e l r i n g motion i n polystyrenes. We a c k n o w l e d g e t h a t t h e s e m o t i o n s a r e l i k e l y t o be more c o m p l i c a t e d t h a n j u s t C rotations. However, the motions are s m a l l a m p l i t u d e . Small-amplitude w i g g l i n g c a n e q u a l l y w e l l be m o d e l e d b y a r o m a t i c CH m o t i o n on a c i r c l e or sphere, or by C r o t a t i o n s . T h u s , any o f t h e s e f

2

2

2

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

SCHAEFER ET AL.

Molecular Motion in Glassy

Polystyrenes

for relative comparisons of polystyrene aromatic (7^(C))s =

K

θ measures f lucmaobn amplitude due to molecular motion Κ mehides powder averaging no rcLxxxliorLfor this orientation. j-l^

effective relaxation, for this orientation

M A S reduces o r k n u t i o n a i d i s p e r s i o n of rates

F i g u r e 5. G e o m e t r i c a l c o n s i d e r a t i o n s f o r a C H v e c t o r g i v i n g r i s e t o T^p(C) r e l a x a t i o n i n a s o l i d by r e s t r i c t e d r o t a t i o n a l r e o r i e n t a t i o n .

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

54

N M R A N D MACROMOLECULES

m o d e l s c a n be c o n s i d e r e d t o r e p r e s e n t a p p r o x i m a t e l y r o t a t i o n a l e x c u r s i o n s b y a r i n g as i t t r a c k s i t s a t t a c h e d m a i n c h a i n t h r o u g h complicated motions. We a l s o r e c o g n i z e t h a t p o l y s t y r e n e s a r e d y n a m i c a l l y h e t e r o ­ geneous ( e v e n i g n o r i n g r i n g f l i p p e r s ) . T h u s , b o t h T p ( C ) s and a n g u l a r d i s p l a c e m e n t f l u c t u a t i o n p a r a m e t e r s must r e f l e c t a v e r a g e s over the e n t i r e sample. O f c o u r s e , t h e o b s e r v e d i s t h e weighted average o f a l l the T p ( C ) ' s p r e s e n t [ 1 ] . S i n c e the [ n 2 / n ] ο r a t i o has an a p p r o x i m a t e l y l i n e a r dependence on t o t a l a n g u l a r d i s p l a c e m e n t (and i s n o t c r i t i c a l l y m o d e l d e p e n d e n t ) , t h e o b s e r v e d rms f l u c t u a t i o n s p a r a m e t e r , Θ i s a l s o a s i m p l e weighted average. I n p a r t , the c o r r e l a t i o n of Table I I I ( b e t w e e n < T p ( C ) > and s i n 0 ) s u c c e e d s b e c a u s e we i g n o r e d e t a i l s of the d i s t r i b u t i o n s of motions. T h u s , w h e t h e r p o l y s t y r e n e has a f r a c t i o n of mobile ring w h e t h e r a l l r i n g s have a immaterial. B o t h s i t u a t i o n s r e s u l t i n comparable average v a l u e s f o r < T p ( C ) > and Θ. The c o r r e l a t i o n o f T a b l e I I I f a i l s t o t h e extent there remain l a r g e - a m p l i t u d e high-frequency motions which r e d u c e [ ^ / n ^ o b u t do n o t c o n t r i b u t e t o T p ( C ) , o r 5 - 1 0 d e g r e e s m a l l - a m p l i t u d e l o w - f r e q u e n c y m o t i o n s w h i c h c a n s t i l l make s i g n i f i c a n t c o n t r i b u t i o n s t o b u t have o n l y a m i n o r e f f e c t on [ n / n ] . 1

x

x

1

1

2

x

x

x

x

2

1

0

Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

J . Schaefer, E. O. Stejskal, T. R. Steger, M. D. Sefcik and R. A. McKay, Macromolecules, 13, 1121 (1980). J . Schaefer, M. D. Sefcik, E. O. Stejskal and R. A. McKay, Macromolecules, 14, 280 (1981). U. Haeberlen, "High Resolution NMR in Solids: Selective Averaging," (Adv. Magn. Reson., Suppl. 1), Academic Press, New York, 1976. R. K. Hester, J. L. Ackerman, B. L. Neff, and J. S. Waugh, Phys. Rev. Letters, 36, 1081 (1976). M. E. Stoll, A. J. Vega, and R. W. Vaughan, J. Chem. Phys. 65, 1093 (1976). M. G. Munowitz, R. G. G r i f f i n , G. Bodenhausen, and T. H. Haung, J. Am. Chem. Soc., 103, 2529 (1981). M. G. Munowitz and R. G. G r i f f i n , J . Chem. Phys., 76, 2848 (1982). J . Schaefer, R. A. McKay, E. O. Stejskal, and W. T. Dixon, J. Mag. Reson., 52, 123 (1983). M. Maricq and J. S. Waugh, J. Chem. Phys., 70, 3300 (1979). J. Herzfeld and A. E. Berger, J. Chem. Phys., 73, 6021 (1980). J . Schaefer, M. D. Sefcik, E. O. Stejskal, R. A. McKay, W. T. Dixon, and R. E. Cais, Macromolecules, March, 1984. A. Abragam, "The Principles of Nuclear Magnetism," Oxford University Press, London, 1961, p. 565.

RECEIVED November 18, 1983 In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

4 2

Solid State H NMR Studies of Molecular Motion Poly(butylene terephthalate) and Poly(butylene terephthalate)Containing Segmented Copolymers L. W. JELINSKI and J. J. DUMAIS Bell Laboratories, Murray Hill, NJ 07974 A. K. ENGEL Ε. I. du Pont de Nemours and Company, Wilmington, DE 19898

Solid state deuterium NMR spectroscopy is used to provide information concerning the motional heterogeneity and homogeneity of segmented co-polyesters containing poly(butylene terephthalate) as the hard segment. The results presented here provide the first clear evidence that there are two distinct motional environments for the hard segments in the co-polyester. One of the environments is identical to that observed in the poly(butylene terephthalate) homopolymer, in which Helfand-type motions about three bonds (Helfand, E. J. Chem. Phys. 1971, 54, 4651) occur with a correlation time of 7 x 10 s at 20°C. The other motional environment is more-nearly isotropic. The residues in the mobile environment are attributed to short blocks of hard segments residing in the soft segment matrix, or to hard segments forming the loop regions in the poly(butylene terephthalate) lamellae. Approximately 10% of the hard segments reside in the mobile environment in the segmented copolymer with 0.87 mole fraction of poly(butylene terephthalate) hard segments. -6

Poly (butylène terephthalate) has been used as a model for observing motions about three bonds as an isolated motional mode in polymers. Early carbon N M R studies involving carbon N M R relaxation data (1,2) and carbon chemical shift anisotropy considerations (3) showed that the terephthalate residues can be considered static in comparison to the motions exhibited by the alkyl residues. Furthermore, the alkyl portion of poly (butylène terephthalate) contains the shortest sequence that is able to undergo motions about three bonds (4), with the terephthalate groups acting as "molecular anchors" to prevent the longer range motional modes. Poly (butylène terephthalate) is thus ideally set up to undergo three-bond types of motions. Solid state deuterium N M R spectroscopy was used to study these motions in detail (5), using the selectively labeled polymer: 0097 6156/ 84/ 0247 0055506.00/0 © 1984 American Chemical Society In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

56

N M R

A N D

MACROMOLECULES

C ~0-CH CD CD CH -Of2

2

2

2

X

The temperature-dependent spectra were interpreted in terms of a two-site hop model, in which the deuterons undergo jumps through a dihedral angle of 1 0 3 ° . This type of motion is consistent with gauche-trans conformational transitions. At -88 °C these motions appear static on the time scale of the deuterium N M R experiment, and at +85 ° C the motions are in the fast exchange limit. The rate constants for these motions were obtained from the calculated spectra. A n Arrhenius plot of these data show that the apparent activation energy is 5.8 kcal/mol. (Dynamic mechanica transitions have an intermediat with the correlation time for the motion being 7 x 1 0 s at this temperature. The solid state deuterium N M R results for the selectively labeled poly (butylène terephthalate) homopolymer have been interpreted in terms of various models for polymer motion (5). The data are consistent with the models proposed by Helfand (6), in which counter rotation occurs about second neighbor parallel bonds. Termed gauche migration and pair gauche production, these motions are illustrated in Figure la and b, respectively. Gauche migration consists of a transition from g tt to ttg , and is part of the pathway for pair gauche production. In this latter motional mode, a ttt sequence goes to g tg . These motional models allow gauche-trans conformational transitions to occur without concomitant large-scale reorientation of the ends of the polymer chain. In addition, they require slightly more than one C - C bond rotational barrier height, and are thus consistent with the apparent activation energy of 5.8 kcal/mol. ±

±

±

T

Having established the rates and types of motion that occur in the poly (butylène terephthalate) homopolymer (5), it is of interest to extend these studies to the investigation of the types of motions that occur in segmented copolymers that contain poly (butylène terephthalate) as the hard segment. The structure of such a polymer is shown below, where m and η refer to the "hard" and "soft" segments, respectively. (This structure also illustrates the sites of the deuterium labels.)

4c

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

4.

JELINSKI ET AL.

2

Solid State H NMR Studies of Molecular Motion

57

The poly (butylène terephthalate) "hard" segments and the poly (tetramethyleneoxy) terephthalate "soft" segments are not completely miscible and thus lead to phase separation. However, in contrast to the discrete domain structures found in polystyrene — polybutadiene or polystyrene — polyisoprene, for example, the hard and soft segments of this copolyester are more intimately dispersed. This leads to a hard segment morphology that has been described as "continuous and interpenetrating lamellae." Such a morphology is shown in schematic form in Figure 2. This copolymer thus presents a unique opportunity to study a system in which there is a large interfacial area. The specific questions to be addressed by solid state deuterium N M R studies of this polymer are the following: (1) Are the motions of the C D groups in the segmented copolymer identical to the motions observed in the poly (butylène terephthalate) homopolymer content ratio have on the motion for hard segments which reside in the soft segment matrix? If so, what per cent of them are in non-poly (butylène terephthalate) -like environments? 2

EXPERIMENTAL The selectively labeled poly (butylène terephthalate) -containing segmented copolymers were prepared according to literature methods (7), using 2,2,3,3-d butylene glycol (Merck) as the starting diol. The polymers used in this study correspond to m:n ratios (see the structure, above, for the meaning of m and n) of 24:1 and 7:1. The mole fractions of hard segments are 0.96 and 0.87, respectively, corresponding to 81 and 57 weight per cent of hard segments. The polymers were characterized by thermal measurements and by solution state deuterium and carbon N M R spectroscopy (8). No end groups were observed by carbon spectroscopy, and the deuterium N M R spectra in solution attested to the integrity of the labeling pattern. 4

The samples for N M R spectroscopy were melted into glass tubes and allowed to cool from the melt. The observed deuterium N M R spectra are reproducible with temperature cycling, thus providing evidence that the thermal history induced by acquiring temperature-dependent spectra of the samples does not greatly affect the properties that we are measuring. The solid state deuterium N M R spectra were recorded on a home-built spectrometer operating at 55.26 M H z for deuterium (360 M H z for protons). The spectrometer has been described previously (5). Routine spectra were obtained in quadrature using the quadrupolar echo pulse sequence (Figure 3) ( 9 0 - t - 9 0 - t ) (9-11), 4K data points, a digitization rate of 200 ns/point (5 M H z ) , and a 4.3 #s 90 degree pulse width. Unless otherwise noted, the length of t was generally set at 30 μ&. The value of t was set several microseconds shorter than the time needed to start digitization at the top of the quadrupolar echo maximum. After data accumulation, the FID was left-shifted by the correct number of points, so that for each spectrum, the part of the FID which was transformed began at the exact top of the echo. The quadrupolar echo pulse sequence is used to circumvent problems with receiver recovery times. The solid ± x

1

y

2

x

2

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

58

N M R A N D

MACROMOLECULES

Figure 1. Helfand-type motions about three bonds (6). The segments represented here correspond to the —OCH2CD2CD2CH2O— portion of the poly (butylène terephthalate) hard segments. These motions are consistent with the solid state deuterium N M R data for poly (butylène terephthalate) (5).

Figure 2. Schematic representation of continuous and interpenetrating hard segment lamellae. The hard segment blocks that are too short to crystallize are shown in the soft segment matrix.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

4.

JELINSKI ET AL.

2

Solid State H NMR Studies of Molecular Motion

59

state deuterium N M R spectra are very broad (ca. 250 kHz), and thus the free induction decay signal dies away very rapidly. The quadrupolar echo pulse sequence causes the magnetization to refocus while the radio frequency circuits have time to recover from the transmitter pulses. Inversion-recovery deuterium N M R spectra were obtained by performing a 180°-r-90° pulse sequence, followed by the quadrupolar echo sequence (12). Spin lattice relaxation times were estimated from the null points in the inversionrecovery spectra. RESULTS AND DISCUSSION In Figure 4, the solid state deuterium N M R spectrum for poly(butylene terephthalate) at 20 °C is compared to the spectra for the segmented copolymers, also obtained at 20 °C. Th can be simulated by assumin a dihedral angle of 1 0 3 ° , with a rate constant of 1.4 x 10 s" . A quadrupolar splitting (A*>) of 124 kHz is used for this calculation (5). (The calculated deuterium spectrum is obtained by also taking into account pulse power fall-off as a function of frequency (13) and the distortions that arise when motions occur during the quadrupolar echo delay time (14,15).) Figure 4b shows the deuterium N M R spectrum of the segmented copolymer with 0.96 mole fraction hard segments, and below it in Figure 4c is the spectrum of the segmented copolymer with 0.87 mole fraction hard segments. The spectra of the segmented copolymers are clearly different from the spectrum of poly (butylène terephthalate), and suggest, particularly in the case of the softest segmented copolymer (Figure 4c), that there are at least two motional environments for the hard segments in the copolymers. q

Inversion-recovery solid state deuterium N M R spectra can be used to show that the spectrum of the copolymer with 0.87 mole fraction of hard segments is composed of at least two components. Figure 5 shows such spectra. At an inversion-recovery delay time of 50 ms, the broad poly (butylène terephthalate)-like part of the line is almost nulled, yet the sharp component is positive (Figure 5b). At shorter inversion-recovery delay times, the sharp component goes through its null, and the broad component is negative. Inversion-recovery spectra such as these indicate that the solid state deuterium N M R spectra for the segmented copolymers shown in Figures 4b and 4c are composed of two components with different T values. The Ί of the sharp component in the copolymer with 0.87 mole fraction hard segments is estimated to be 10 ms, and that of the broad component is approximately 60 ms. The difference in these deuterium T values is a factor of six, and indicates that the deuterons that give rise to the broad component are in markedly different motional environments from those that give the sharp line. x

γ

{

It is noteworthy that the sharp component gives a signal with the quadrupolar echo pulse sequence. The observation of a quadrupolar echo can be interpreted to indicate that the constraints on the motion of the deuterons persist for a long time (16). Although the deuterium line for the T = 10 ms component is sharp, the observation of a quadrupolar echo proves that the line is not isotropically mobile on the deuterium N M R timescale. The sharp component also gives a spectrum with a r

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

60

N M R

A N D

MACROMOLECULES

Figure 3. The quadrupole echo pulse sequence. The time t is usually set at 30 /us, and t is approximately 25 MS. {

2

(a)

(b)

(c)

-100

0

100

kHz Figure 4. Solid state deuterium N M R spectra of (a) poly (butylène terephthalate) ; (b) segmented co-polyester containing 0.96 mole fraction of poly (butylène terephthalate) hard segments; and (c) segmented copolymer containing 0.87 mole fraction hard segments. (See text for specific deuterium labeling patterns.) A l l spectra were obtained with the quadrupole echo pulse sequence at 2 0 ° C and 55.26 M H z , using 30 MS at the t quadrupole echo delay time. {

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

4.

JELINSKI

ETAL.

2

Solid State H NMR Studies of Molecular

Motion

61

standard 90° — τ pulse sequence using a 30 MS receiver dead time (spectrum not shown). The width of this line at half-height is approximately 5 kHz. The spectra shown in Figure 5 clearly indicate that there are two distinct motional environments in the segmented copolymers. The broad component of the spectrum arises from the majority of the hard segments which show motional characteristics similar to that of poly (butylène terephthalate). The sharp component is attributed to hard segments which reside in the soft segment matrix, either by virtue of being very short blocks, or because they form loops on the surfaces of the hard segment lamellae. It is of interest to estimate the amount of hard segment which gives the sharp line, and further, to determine if the poly (butylène terephthalate) -like broad line represents deuterons which undergo motions which are identical to those observed in the poly (butylène terephthalate the copolymer containing 0.8 deuterium N M R spectra shown in Figure 6. In Figure 6a is shown the quadrupole echo deuterium N M R spectrum of the segmented copolymer with 0.87 mole fraction of hard segments. Adjacent to it in Figure 6b, is the corresponding calculated spectrum. The dashed line represents the sum of the sharp and broad components. The sharp line is Lorentzian, and the broad line is Gaussian. The broad line is calculated assuming a quadrupolar splitting (Δί/ ) of 124 kHz, a two-site dihedral hop angle of 1 0 3 ° , and a rate constant for the hop of 1.4 x 10 s . Corrections have been made for pulse power fall-off (13) and for distortions that arise when motions occur during the quadrupolar echo pulse sequence (14,15). This calculation indicates that the sharp and broad components are present in an approximately 1:10 ratio. ς

5

_1

The spectrum shown in Figure 6c illustrates that the motions of the C D groups of poly (butylène terephthalate) in the segmented copolymer are identical to the motions in the homopolymer. This spectrum is a difference spectrum, obtained by subtracting the spectrum of the poly (butylène terephthalate) homopolymer (Figure 4a) from the spectrum of the segmented copolymer (Figure 4c). The difference spectrum (Figure 6c) shows an excellent null for the broad part of the deuterium N M R pattern. This result indicates that the motions of approximately 90% of the hard segment C D deuterons in the segmented copolymer are wellrepresented by the motions observed for the poly (butylène terephthalate) homopolymer. 2

2

It is emphasized that the semi-quantitative treatment above provides only an estimate of the amounts of hard segments in the two motional environments. A more-quantitative answer is probably unlikely, due to the quadrupolar echo pulse sequence necessary to obtain the data. The quadrupolar echo pulse sequence preserves the inhomogeneously broadened part of the solid state deuterium N M R pattern. Homogeneous T effects will cause some signal loss during the quadrupolar echo delay times. In comparing sharp and broad components such as those shown in Figure 6b, it is also necessary to know that both components have approximately the same homogeneous T . 2

2

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

N M R A N D

62

^

(a) (b)

A ,

1 1

1 1 1

I

-200

'~T~

MACROMOLECULES

^

'

1 1

τ-, . I I . ι I !"

-10 kHz

Figure 5. Inversion-recovery solid state deuterium N M R spectra of the segmented copolymer containing 0.87 mole fraction hard segments. The spectra were obtained with a 1 8 0 ° — 1 - 9 0 ° — t j — 9 0 ° — 1 pulse sequence. The spectrum in (b) was obtained with a t of 50 ms. 3

±x

y

2

3

kHz Figure 6. Experimental (a), calculated (b), and difference (c) solid state deuterium N M R spectra for the segmented copolymer with 0.87 mole fraction of hard segments. The spectrum in (a) was obtained at 55.26 M H z and 20 °C, using the quadrupole echo pulse sequence. The dashed line in (b) represents the sum calculated for the broad and narrow components in a respective 10:1 ratio. (See text for details of the calculation.) The spectrum in (c) is the difference spectrum obtained by subtracting the spectrum of poly (butylène terephthalate) (Figure 4a) from the segmented copolymer spectrum (Figure 6a).

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

2

4. J E L I N S K I E T A L .

Solid State H NMR Studies of Molecular Motion

63

Homogeneous T effects can be studied by obtaining quadrupolar echo N M R spectra as a function of the quadrupolar echo delay times, t and t . Such experiments have been performed for all samples. The results indicate that the observed lineshapes are not markedly dependent upon the quadrupolar echo delay times, although signal intensity clearly is lost as the delay times are increased. Figure 7 shows a plot of the relative signal intensity versus quadrupolar echo delay time for the solid state deuterium N M R spectra of the segmented copolymer containing 0.87 mole fraction hard segments. This figure shows that the relative intensity is a linear function of the quadrupolar echo delay times. When extrapolated back to zero time, Figure 7 illustrates that approximately 2 5 % of the signal intensity is lost at the usual quadrupolar echo delay time of 30 MS. However, the lack of distortion in these spectra indicates that representative patterns are obtained at a quadrupolar echo delay time of 30 MS. 2

x

2

SUMMARY The results presented here show that there are two distinct motional environments for the "central" deuterons of poly (butylène terephthalate) in the segmented copolyesters containing poly (butylène terephthalate) as the hard segment. One of the motional environments is identical to that observed in the poly (butylène terephthalate) homopolymer, in which Helfand-type motions (6) about three bonds occur with a correlation time of 7 x 10~ s at 20 °C. The Ί for these deuterons is ca. 60 ms at 20 °C. Approximately 90% of the hard segments reside in these organized lamellar environments in the segmented copolymer with 0.87 mole fraction hard segments. 6

ι

The other 10% of the hard segments in this copolymer undergo motions that are more-nearly isotropic. The T for the "central" deuterons in the mobile regions is approximately 10 ms at 2 0 ° C . The mobile residues are attributed to short blocks of hard segments residing in the soft segment matrix, or to hard segments forming the loop regions of the poly (butylène terephthalate) lamellae. As the mole fraction of hard segments is increased from 0.87 to 0.96, a lower per cent of the hard segments are found to reside in mobile environments. t

Taken together, these solid state deuterium N M R experiments provide otherwise unobtainable answers to questions concerning motional homogeneity and heterogeneity in these segmented copolymer systems.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

64

N M R A N D

20

60

MACROMOLECULES

100

QUADRUPOLAR ECHO DELAY TIME (ps) Figure 7. A plot of the relative intensity of the quadrupole echo deuterium N M R signal versus the echo delay time, tj, for the segmented copolymer containing 0.87 mole fraction hard segments. The line is extrapolated back to zero time.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

4.

JELINSKI ET AL.

2

Solid State H NMR

Studies of Molecular Motion

65

ACKNOWLEDGEMENT We are grateful to Dr. F. A . Bovey for his interest and encouragement in this project.

LITERATURE CITED 1. Jelinski, L. W.; Dumais, J. J. Polym. Prepr., Am. Chem. Soc. Div. Polym. Chem. 1981, 22 (2), 273. 2.

Jelinski, L. W.; Dumais, J. J.; Watnick, P. I.; Engel, A. K.; Sefcik. M. D. Macromolecules 1983, 16, 409.

3.

Jelinski, L. W. Macromolecules 1981 14, 1341

4.

Schatzki, T. F. Polym. 1965, 6, 646.

5.

Jelinski, L. W.; Dumais, J. J.; Engel, A. K. Macromolecules 1983, 16, 492.

6.

Helfand, E. J. Chem. Phys. 1971, 54, 4651.

7.

Wolfe, J. R., Jr. Polym. Prepr., Am. Chem. Soc. Div. Polym. Chem. 1978, 19 (1), 5.

8.

Jelinski, L. W.; Schilling F. C.; Bovey, F. A. Macromolecules 1981, 14, 581.

9.

Davis, J. H.; Jeffrey, K. R.; Bloom, M.; Valic, M. I.; Higgs, T. P. Chem. Phys. Lett. 1976, 42, 390.

10.

Blinc, R.; Rutar, V.; Seliger, J.; Slak, J.; Smolej, V. Chem. Phys. Lett. 1977, 48, 576.

11.

Hentschel, R.; Spiess, H. W. J. Magn. Resonance 1979, 35, 157.

12.

Batchelder, L. S.; Niu, C. H., Torchia, D. A. J. Am. Chem. Soc. 1983, 0000.

13.

Bloom, M.; Davis, J. H.; Valic, M. I. Can. J. Phys. 1980, 58, 1510.

14. 15.

Spiess, H. W.; Sillescu, H. J. Magn. Resonance 1981, 42, 381. Mehring, M. In "NMR-Basic Principles and Progress", Diehl, P.; Fluck, E.; Kosfeld, R.; Eds.; Springer-Verlag: New York, 11, 1976.

16.

Hentschel, D.; Sillescu, H.; Spiess, H. W. Macromolecules 1981, 14, 1605.

RECEIVED

December 10, 1983

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

5 Spin Relaxation and Local Motion in a Dissolved Aromatic Polyformal M. F. TARPEY, Y.-Y. LIN, and ALAN ANTHONY JONES Jeppson Laboratory, Departmen P. T. INGLEFIELD Department of Chemistry, College of the Holy Cross, Worcester, MA 01610

Carbon-13 and proton spin-lattice relaxation times are reported for 10 wt% solutions of a dissolved aromatic polyformal. The relaxation times for both nuclei were determined at two Larmor frequencies and as a function of temperature from 0 to 120°C. These relaxation times are interpreted i n terms of segmental motion and anisotropic internal rotation. Segmental correlation functions by both Jones and Stockmayer, and Weber and Helfand were used to interpret the data. Internal rotation i s described by the usual Woessner approach, and restricted rotational diffusion, by the Gronski approach. Both segmental correlation functions lead to similar results; but, relative to the analogous polycarbonate, single bond conformational transitions are more frequent i n the polyformal. The phenyl groups i n the backbone undergo segmental rearrangements and internal anisotropic rotation at comparable rates. Motion in the formal linkage i s described by the same segmental correlation times plus restricted rotational diffusion about an axis between the oxygens of the formal group. The interpretation at the formal l i n k based on restricted rotational diffusion is d i s cussed i n terms of the conformations l i k e l y i n the l i n k which are commonly referred to as the anomeric effect. The choice of the axis of restricted rotation i n the formal unit i s only an approximation of the result of anisotropic single bond conformational t r a n s i tions occurring within that unit. 0097 6156/84/0247-0067S06.00/0 © 1984 American Chemical Society In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

68

NMR

A N D MACROMOLECULES

S p i n r e l a x a t i o n i n d i l u t e s o l u t i o n has been employed t o c h a r a c ­ t e r i z e l o c a l c h a i n motion i n s e v e r a l polymers w i t h aromatic back­ bone u n i t s . The two g e n e r a l t y p e s examined so f a r a r e p o l y p h e n y l e n e o x i d e s (1-2) and a r o m a t i c p o l y c a r b o n a t e s ( 3 - 5 ) ; and t h e s e two t y p e s a r e t h e most common h i g h i m p a c t r e s i s t a n t e n g i n e e r i n g plastics. The p o l y m e r c o n s i d e r e d i n t h i s r e p o r t i s an a r o m a t i c p o l y f o r m a l ( s e e F i g u r e 1) where t h e a r o m a t i c u n i t i s i d e n t i c a l t o t h a t o f one o f t h e p o l y c a r b o n a t e s . T h i s p o l y m e r has a s i m i l a r d y ­ namic m e c h a n i c a l s p e c t r u m t o t h e i m p a c t r e s i s t a n t p o l y c a r b o ­ n a t e s ( 6 ) and i s t h e r e f o r e an i n t e r e s t i n g s y s t e m f o r c o m p a r i s o n o f c h a i n dynamics. I n a d d i t i o n , t h e f o r m a l u n i t i t s e l f o f f e r s a new o p p o r t u n i t y for monitoring chain motion r e l a t i v e to the polycarbonates s i n c e t h e c a r b o n a t e u n i t c o n t a i n s no p r o t o n s The s p i n - l a t t i c e r e l a x a ­ t i o n times, T j s of a l bonded p r o t o n s a r e r e p o r t e and p r o t o n T j ' s a r e measured a t two d i f f e r e n t Larmor f r e q u e n c i e s t o expand t h e f r e q u e n c y r a n g e c o v e r e d by t h e s t u d y . In a d d i t i o n t o d e t e r m i n i n g the time s c a l e s f o r s e v e r a l l o c a l m o t i o n s i n p o l y f o r m a l , two d i f f e r e n t i n t e r p r e t a t i o n a l models f o r s e g m e n t a l m o t i o n w i l l be e m p l o y e d . An o l d e r model by J o n e s and S t o c k m a y e r (7 ) , based on t h e a c t i o n o f a t h r e e bond jump on a t e t r a h e d r a l l a t t i c e i s compared w i t h a new model by Weber and H e l ­ f a n d ( 8 ) , based on computer s i m u l a t i o n s o f p o l y e t h y l e n e t y p e chains. These two models f o r s e g m e n t a l m o t i o n have been compared b e f o r e ( 5 ) f o r two p o l y c a r b o n a t e s b u t somewhat d i f f e r e n t r e s u l t s are seen i n the p o l y f o r m a l i n t e r p r e t a t i o n . 1

Experimental H i g h m o l e c u l a r w e i g h t samples o f t h e p o l y f o r m a l were k i n d l y s u p ­ p l i e d by G e n e r a l E l e c t r i c . The s t r u c t u r e o f t h e r e p e a t u n i t i s shown i n F i g u r e 1 a s w e l l as t h e s t r u c t u r e o f a p a r t i a l l y d e u t e r a t e d f o r m w h i c h was s y n t h e s i z e d (9) t o r e d u c e p r o t o n c r o s s relaxation. A 10 w e i g h t p e r c e n t s o l u t i o n o f t h e p o l y m e r i n d e u t e r a t e d t e t r a c h l o r o e t h a n e was p r e p a r e d i n an NMR t u b e , s u b j e c t e d t o f i v e f r e e z e , pump, thaw c y c l e s and s e a l e d . S p i n l a t t i c e r e l a x a t i o n measurements were c o n d u c t e d on two s p e c t r o m e t e r s w i t h a s t a n d a r d π-τ-π/2 p u l s e s e q u e n c e . The 30 and 90 MHz p r o t o n measurements as w e l l as t h e 22.6 MHz c a r b o n - 1 3 meas­ u r e m e n t s were made on a B r u k e r SXP 20-100. The 250 MHz p r o t o n and 62.9 c a r b o n - 1 3 measurements were made on a B r u k e r WM-250. Results S p i n l a t t i c e r e l a x a t i o n times a r e c a l c u l a t e d from the r e t u r n o f t h e m a g n e t i z a t i o n t o e q u i l i b r i u m u s i n g a l i n e a r and n o n - l i n e a r l e a s t s q u a r e s a n a l y s i s o f t h e d a t a . The two a n a l y s e s y i e l d T| v a l u e s w i t h i n 10% o f e a c h o t h e r and a v e r a g e v a l u e s a r e r e p o r t e d . No e v i d e n c e o f c r o s s - r e l a x a t i o n o r c r o s s - c o r r e l a t i o n were o b s e r v e d

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

5.

T A R P E Y ETA L ,

Spin Relaxation

Cl

ν

Motion

69

Cl

c —c—

Cl

and Local

\ / 0— c — 0 —

Cl

S

D D

O-i--- )] 2

H

(lb)

j The i n t e r n u c l e a r d i s t a n c e s employed a r e 1.095 Â f o r t h e p h e n y l C-H d i s t a n c e , 1.125 Â f o r t h e f o r m a l C-H d i s t a n c e , 2.4 Â f o r t h e 2-3 p h e n y l p r o t o n d i s t a n c e , and 1.75 Â f o r t h e f o r m a l p r o t o n - p r o t o n distance. The 2-3 p h e n y l p r o t o n d i s t a n c e used h e r e i s c o m p a r a b l e t o t h e d i s t a n c e o f 2.41 Â u s e d i n t h e p o l y c a r b o n a t e i n t e r p r e t a tions. The c h o i c e o f 2.4 Â i s based on t h e p h e n y l p r o t o n T| m i n i mum and t h e s l i g h t l y s m a l l e r v a l u e i s c o n f i r m e d by a l a r g e r Pake doublet s p l i t t i n g observed i n the s o l i d s t a t e spectrum o f the phenyl protons i n the p a r t i a l l y deuterated analogue ( 1 0 ) . E x p r e s s i o n s f o r t h e s p e c t r a l d e n s i t y c a n be d e v e l o p e d f r o m m o d e l s f o r l o c a l m o t i o n i n r a n d o m l y c o i l e d c h a i n s . Two g e n e r a l t y p e s o f l o c a l m o t i o n w i l l be c o n s i d e r e d , and t h e y a r e s e g m e n t a l m o t i o n and a n i s o t r o p i c r o t a t i o n . S e g m e n t a l m o t i o n i t s e l f w i l l be

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

0 20 40 60 80 100 120

T a b l e I:

548 499 522 628 794 1168 1411

90 MHz

Phenyl

30

153 189 274 432 553 763 939

MHz

Protons

(ms)

137 174 243 377 543 798 1113

62.9 MHz 72 106 156 349 448 679 936

MHz

Carbons

22.6

Protonated Phenyl

S p i n - L a t t i c e R e l a x a t i o n times

MHz

335 282 268 295 350 467 628

250

Formal 90 129 114 133 198 258 320 433

MHz

Protons

81 91 115 158 229 339 403

62.9

MHz

Formal

36 52 82 123 193 275 377

22.6

Carbons MHz

72

NMR

A N D

MACROMOLECULES

d e s c r i b e d i n two ways. The f i r s t d e s c r i p t i o n i s d e r i v e d f r o m t h e a c t i o n o f a t h r e e bond jump on a t e t r a h e d r a l l a t t i c e (7_) and t h e s e c o n d i s d e v e l o p e d f r o m c o n s i d e r a t i o n o f computer s i m u l a t i o n s o f backbone t r a n s i t i o n s i n p o l y e t h y l e n e c h a i n s 0 8 ) . A n i s o t r o p i c r o ­ t a t i o n c a n a l s o be c h a r a c t e r i z e d i n s e v e r a l ways. I t can be d e ­ s c r i b e d as jumps between two minima ( 1 1 ) , jumps between t h r e e m i n ­ ima ( 1 2 ) o r s t o c h a s t i c d i f f u s i o n ( 1 2 ) . I n t h e t h r e e bond jump model f o r s e g m e n t a l m o t i o n t h e r e a r e two p a r a m e t e r s . The t i m e s c a l e i s s e t by t h e h a r m o n i c a v e r a g e c o r r e l a t i o n time, and t h e e f f e c t i v e d i s t r i b u t i o n o f c o r r e l a t i o n t i m e s i s s e t by t h e number o f c o u p l e d bonds m. The s h a r p c u t o f f o f c o u p l i n g s o l u t i o n o f t h e t h r e e bond jump model i s employed here. The c o m p o s i t e s p e c t r a l d e n s i t y f o r i n t e r n a l r o t a t i o n by jumps o r s t o c h a s t i c d i f f u s i o n p l u s s e g m e n t a l m o t i o n by t h r e e bond jump i s J.(ω.) = 2ZG

Α τ k

k-1

1

+

^0

T

A

= WÀ

k

1

2

^ k O

x

B T

+

k0

+

_ 1

w

bkO i

2 T

= tk"

C T

+

bko

2

1

+

W

i

ckQ 2 T

ck0

2

1

s = (m + l ) / 2

k

2

k

= 4 s i n [ ( 2 k - 1)π/2(πι + 1 ) ] x -l

=

h

2W

s-1 G

k

= 1/s + ( 2 / s ) E e x p ( - y q ) cos [ ( 2 k - 1)πς/2β] q-i γ = In 9 A = (3 c o s

2

Δ -l ) / 4 2

Β = 3(sin

2

2Δ)/4

C = 3(sin

4

Δ)/4

for stochastic diffusion T

T

for a threefold

bk(f

τ

= \Γ

1

τ

1

c k O = \Γ

1

+

^ir""

1

+ (Tir/4)-

1

jump

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

(2)

5.

Spin Relaxation and Local

TARPEY ET AL.

73

Motion

The a n g l e Δ i s between t h e i n t e r n u c l e a r v e c t o r and t h e a x i s o f internal rotation. The t h r e e bond jump s e g m e n t a l m o t i o n d e s c r i p t i o n c a n a l s o be combined w i t h a d e s c r i p t i o n o f r e s t r i c t e d a n i s o t r o p i c r o t a t i o n a l diffusion (13-14). I n t h i s case, the composite s p e c t r a l d e n s i t y equation i s s J.(u).) = 2ZG, ι ι k τ~ k=l 2

{ [ ( 1 - c o s I) l

1 2

Q

5

ι 2

τ

r

1}

n=l

(1 - Ξ Ι )

2

s i n ( £ + rm)} ,}2

T

Ί

kO

z

(1+21)

2

1

+ sin

2

+

nkO ω .

+

2

^

k

k

o

2

τ, ku

Q

1 + ω. ι

+ 2

[ ( [ 1 - c o s ( 2 i - η π ) ] + [1 - c o s ( 2 £ + η π ) ] > (2 - Ξ 1 ) (2 + Β ! )

2 +

I 2

(sin(2Jt - η π ) + s i n ( 2 £ + η π ) } ] (2 - TL> I

(3)

J 2

T

21]

2

ι

r

T

(1 + Ξ 1 )

2

+

{ I [(1 - cos 2 J 0

JL 2l

2

[ f [ l ~ cos(J

(1 -f)

T

k0

1 + ω.

| s i n ( £ - ηπ)

where

+

kO

l

Σ

00 Σ n=l

+ sin

A T k

(2 +

ÏÏDL) I

T

nkO

1 + ω. ι

| 2

τ

, nkO

+

2

Λ

1 = _J_ kO k T

1 = JL + λ nkO

λ n

- (Bl) I

2

and

% r

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

74

N M R

A N D

MACROMOLECULES

The new parameters f o r r e s t r i c t e d a n i s o t r o p i c r o t a t i o n a l d i f f u s i o n are the angular amplitude over which r o t a t i o n d i f f u s i o n occurs, i, and the r o t a t i o n a l d i f f u s i o n constant f o r r e s t r i c t e d a n i s o t r o p i c r o t a t i o n a l d i f f u s i o n , D-^. A second d e s c r i p t i o n of segmental motion can be combined with the various types of i n t e r n a l a n i s o t r o p i c i n t e r n a l r o t a t i o n , Weber and Helfand (8^) c h a r a c t e r i z e segmental motion i n terms of a c o r r e l a t i o n time f o r s i n g l e conformational t r a n s i t i o n s , T Q , and a c o r r e l a t i o n time f o r cooperative conformational t r a n s i t i o n s , τ^. This model has been a p p l i e d to nuclear spin r e l a x a t i o n before ( 5 ) and the form of the s p e c t r a l density f o r a composite segmental motion and a n i s o t r o p i c i n t e r n a l r o t a t i o n i s w r i t t e n r

J

w

i( i)

= A^ia^O»

τ

ω

B J

1» ί> +

T

τ

ib( bO>

Β = 3 (sin

2

ω

CJ

T

τ

1> ί ) + ie( eO»

ω

1> ί>

2Δ)/4

(4)

4

C = 3 ( s i n Δ)/4 for

stochastic diffusion T

b0"

TcO" for

1

1

1+

= το""

= το"

1 +

Tir""

1

4

(τ^/ )"

1

a three bond jump T

b0~

1

= TcO"

1

= TO"

1

+ Tir""

1

The form of J± , J-j^ and J-^ i s the same as J ^ j given below with T Q replaced by T Q , T ^ Q and T Q r e s p e c t i v e l y . a

c

C

+ 21^)

J i j ( ^ i ) = 2{[(τ -1)(τ -1 0

0

χ cos [1/2 a r c t a n ( 2 ( x " 0

1

-

2 ω

ι

2 2 - I / ] +[2(τ ""1 + τ Γ ^ ) ] } 0

+ τj" )ω /το"" (TQ" 1

1

1

1

2

+ 2 τ ~ ) - ω± ] 1

1

This d e s c r i p t i o n of segmental motion can also be combined restricted anisotropic rotational diffusion

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

with

4

5.

Spin Relaxation and Local Motion

T A R P E Y E TA L .

Ji(o)i) JL 2

= AJ

2

{ [ ( 1 - c o s I)

0 1

(

i

+ sin

W l

) +

1} J .

2

0

1

(ω.) +

t

Α

Σ

- cos(£ - ηπ)] + [1 - cos(Z + η π ) ] >

2

n=l

(1 - EL)

2

+

(1 + EL)

ι

I

λ n ( . ) |+ sin(£ + η π ) } 2, ] j / 2

{ s i n U - ηπ)

τ

φ

τ

ω

( 1 + IHL)ι

(1 - IE.)

1

1

{ I [(1 -

JL 2i 2

Σ

[ { [ 1 - c o s ( 2 £ - ηπ)] + [1 - c o s ( 2 £ + η π ) ] > (2 - EL)

n=l

+

(2 + EL)

I f s i n ( 2 £ - ηπ)

ζ

I s i n ( 2 £ + ηπ)> ] j ^ n ( . ) } ] 2

+

ω

(2 - EL> ι

1

(2 + EL) I

1

where Ji

(2

0

1

(on) = { [ τ - 1 ( τ 0

2 ~ UK)}

1

/

0 1

-1 +

-

W i

2]2 +

_

2x 9J_

4

χ cosfi. arctan V ^ o f

1

+

i

τ

••Γ

1

}

2

χ cos[I arctan 2

(τ,, 0 τοΓ

1

0 1

+

+ λ Κ τ " η 01 /

= 0 τ

λ

AH

1

2(τ - 1

1

χ

τ

+ 1

λ ) ω η

1

±

+ λ ) - ω. η' ι

ω

ι

2

-1/4

} 2

1

= ( £ 1 ) D. 2

o f t h e terms have been d e f i n e d i n e q s . 2-4.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

76

NMR A N D

MACROMOLECULES

To a p p l y t h e models t o t h e i n t e r p r e t a t i o n o f t h e d a t a , t h e a p p r o a c h d e v e l o p e d f o r t h e p o l y c a r b o n a t e s w i l l be f o l l o w e d . The p h e n y l p r o t o n T j s a r e i n t e r p r e t e d f i r s t i n terms o f s e g m e n t a l motion. For these protons, the d i p o l e - d i p o l e i n t e r a c t i o n i s p a r a l l e l t o t h e c h a i n backbone and t h e r e f o r e r e l a x e d o n l y by s e g ­ mental motion. I n t h e t h r e e bond jump model t h e p a r a m e t e r s τ and m a r e a d j u s t e d t o a c c o u n t f o r p h e n y l p r o t o n d a t a , and i n t h e W e b e r - H e l f a n d model t h e p a r a m e t e r s T Q and T J a r e a d j u s t e d . T a b l e I I c o n t a i n s t h e t h r e e bond jump p a r a m e t e r s , and T a b l e I I I , t h e W e b e r - H e l f a n d model p a r a m e t e r s . Both models can s i m u l a t e t h e d a t a w i t h i n 10% w h i c h i s e q u i v a l e n t t o t h e e x p e r i m e n t a l e r r o r . P h e n y l g r o u p r o t a t i o n c a n be c h a r a c t e r i z e d f r o m t h e p h e n y l c a r b o n T j s by a s s u m i n g t h e s e g m e n t a l d e s c r i p t i o n d e v e l o p e d f r o m the p r o t o n d a t a ( 5 ) . E i t h e r s e g m e n t a l model c a n be u s e d and t h e corresponding c o r r e l a t i o n y l g r o u p by s t o c h a s t i I I and T a b l e I I I . A g a i n b o t h a p p r o a c h e s match t h e o b s e r v e d c a r b o n - 1 3 d a t a w i t h i n t h e 10% u n c e r t a i n t y . T

η

1

Table I I :

P h e n y l Group M o t i o n S i m u l a t i o n P a r a m e t e r s U s i n g t h e T h r e e Bond Jump M o d e l

°C

m

0 20 40 60 80 100 120

1 1 1 1 3 5 7

E (

kj/mole) x 10 (s) Correlation Coefficient a

Too

1 4

τ

η

(ns)

T

2.69 1.30 0.79 0.49 0.180 0.080 0.049 30 0.59 0.99

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

i

r

p

(ns)

1.85 1.19 0.73 0.299 0.247 0.192 0.145 20 30 0.99

5.

TARPEY ET AL.

Table I I I :

Spin Relaxation

τι ( n s )

0 20 40 60 80 100 120

3.80 1.89 1.09 0.49 0.259 0.142 0.070

kj/mole) x 10 (s) Correlation Coefficient a

Too

1 4

11

Motion

P h e n y l Group M o t i o n S i m u l a t i o n P a r a m e t e r s U s i n g t h e W e b e r - H e l f a n d Model

°c

E (

and Local

TQ

(ns)

T

i r p (ns)

6.01 3.7 2.34 2.00 1.99 1.86 1.70

2.15 1.15 0.72 0.280 0.240 0.170 0.150

0.94

0.99

30 1.04 0.99

Now t h e i n t e r p r e t a t i o n d i v e r g e s f r o m t h e p o l y c a r b o n a t e p a t ­ t e r n as t h e f o r m a l g r o u p i s considered· As m e n t i o n e d , t h e s t r u c ­ t u r a l analogue t o t h e f o r m a l group i n t h e p o l y c a r b o n a t e i s the c a r b o n a t e g r o u p , and t h e l a t t e r c a n n o t be d i r e c t l y s t u d i e d by s o ­ l u t i o n s p i n r e l a x a t i o n s t u d i e s s i n c e i t has no d i r e c t l y bonded protons. I f t h e f o r m a l i s f i r s t viewed i n d e p e n d e n t l y from the p h e n y l g r o u p d a t a , one m i g h t a t t e m p t t o employ s e g m e n t a l m o t i o n d e s c r i p t i o n s a l o n e s i n c e t h e f o r m a l g r o u p l i e s i n t h e backbone. P u r s u i n g t h i s a p p r o a c h , b o t h t h e t h r e e bond jump and t h e WeberH e l f and models were a p p l i e d t o s i m u l a t e t h e p r o t o n and c a r b o n - 1 3 d a t a i n T a b l e I . N e i t h e r model i s a b l e t o a c c o u n t f o r t h e d a t a , w i t h s y s t e m a t i c d i s c r e p a n c i e s up t o 70% i n b o t h attempts· The l a r g e s t d i s c r e p a n c i e s o c c u r a t l o w t e m p e r a t u r e s w i t h o n l y somewhat b e t t e r simulations p o s s i b l e at higher temperatures. I n one s e n s e i t i s r e a s s u r i n g t o d e t e r m i n e t h a t models f o r segmental motion cannot account f o r a l l d a t a s e t s . On t h e o t h e r h a n d , i t i s s t i l l d e s i r a b l e t o d e v e l o p some d e s c r i p t i o n o f m o t i o n w h i c h w i l l a c c o u n t f o r t h e d a t a a t hand, s i n c e t h e f a i l u r e t o s i m ­ u l a t e i m p l i e s some p o t e n t i a l l y i n t e r e s t i n g i n f o r m a t i o n a l content· The s u c c e s s f u l p h e n y l g r o u p i n t e r p r e t a t i o n c a n a s s i s t t h e e f f o r t to a c c o u n t f o r t h e f o r m a l d a t a . The s e g m e n t a l m o t i o n d e s c r i p t i o n s a p p l i e d t o t h e p h e n y l p r o t o n d a t a a r e based on i s o t r o p i c a v e r a g i n g of t h e d i p o l e - d i p o l e i n t e r a c t i o n s by t h e s e g m e n t a l m o t i o n . One c o u l d assume t h a t t h e same s e g m e n t a l m o t i o n d e s c r i p t i o n o c c u r r i n g at t h e p h e n y l groups a l s o o c c u r s a t t h e f o r m a l group s i n c e b o t h g r o u p s a r e a d j a c e n t i n t h e backbone. I f t h i s a s s u m p t i o n i s made, some a d d i t i o n a l m o t i o n must be c o n s i d e r e d t o match t h e o b s e r v e d f o r m a l r e l a x a t i o n t i m e s . I n t h e c o n t e x t o f t h e models b e i n g a p p l i e d , t h e added m o t i o n c o u l d be a a n i s o t r o p i c r o t a t i o n o r r e ­ stricted rotation. F o r t h e f o r m a l group, t h e f i r s t guess i s r o t a -

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

78

NMR

A N D MACROMOLECULES

t i o n or r e s t r i c t e d r o t a t i o n about the C-0 a x i s . This would be a s i n g l e backbone conformational t r a n s i t i o n o c c u r r i n g as an anisot r o p i c motion on top of the segmental motion of say the WeberHelf and model determined from the phenyl proton data. Complete a n i s o t r o p i c r o t a t i o n about the C-0 bond adequately accounts f o r the higher temperature data, but f a i l s to simulate the lower temperature data by about 40%. A r e s t r i c t e d r o t a t i o n model at lower temperatures i s also not able to simulate the observed T| s though i t comes c l o s e r . Adding a r o t a t i o n or r e s t r i c t e d r o t a t i o n about the C-0 axis to the three bond jump model i s e q u a l l y unsuccessful as might be expected since so f a r the three bond jump and WeberHelf and model have p a r a l l e d each other. The next motion considered i s r o t a t i o n or r e s t r i c t e d r o t a t i o n of the 0CH 0 u n i t about the 0-0 axis of the u n i t The i n i t i a l l o g i c here was that th anchors and the formal to the two oxygens which were the connections to the more s l u g g i s h phenyl groups. At higher temperatures, complete a n i s o t r o p i c r o t a t i o n about the 0-0 axis i n a d d i t i o n to a segmental motion d e s c r i p t i o n using the Weber-Helfand model developed from the phenyl proton data accounted f o r the formal data but d i s c r e p a n c i e s of 30% s t i l l remained at lower temperatures. The lower temperature data could be accounted f o r by allowing f o r incomplete a n i s o t r o p i c r o t a t i o n a l d i f f u s i o n about the 0-0 axis i n a d d i t i o n to segmental mot i o n . With complete r o t a t i o n at higher temperatures and r e s t r i c t ed r o t a t i o n at lower temperatures, a l l formal proton and carbon-13 data can be simulated w i t h i n the experimental u n c e r t a i n t y of the T | s . The a n i s o t r o p i c r o t a t i o n simulation parameters are reported i n Table IV f o r the case where segmental motion i s c h a r a c t e r i z e d with the Weber-Helfand model on the basis of the phenyl proton data. A s u b s t i t u t i o n of the three bond jump model f o r the WeberHelf and model leads to nearly the same results· f

2

f

Table IV:

°c 0 20 40 60 80 100 120 (a)

Formal Group Simulation Parameters Using the WeberHelfand M o d e l a )

JL 86 119 164 360 360 360 360

D

i r

x

10~

1 0

0.100 0.110 0.130 0.100 0.160 0.210 0.230

The values of T j and T Q reported i n Table I I I are used here as w e l l as the parameters l i s t e d .

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

1

(s""" )

5.

T A R P E Y ET A L .

Spin Relaxation and Local

Motion

79

Discussion As the f i r s t p o i n t , the dynamics of the phenyl group i n the poly­ formal can be considered. Motional d e s c r i p t i o n s from the two seg­ mental models can be compared as they have been before f o r the polycarbonates ( 5 ) . In the three bond jump model the primary parameter i s the harmonic mean c o r r e l a t i o n time, τ^; and i n the Weber-Helfand model the primary parameter i s the c o r r e l a t i o n time f o r cooperative backbone t r a n s i t i o n s , τ ι. At the lower tempera­ tures s t u d i e d , T Q plays an i n c r e a s i n g r o l e i n the Weber-Helfand model but T J i s s t i l l the major f a c t o r . This i s an i n t e r e s t i n g point i n i t s e l f since cooperative t r a n s i t i o n s were also found to predominate when the Weber-Helfand model was a p p l i e d to the p o l y ­ carbonates . Here i n the polyformal s i n g l e bond conformational t r a n s i t i o n s do play a l a r g e three bond jump model a peratures. Since T J and τ are both measures of the time s c a l e f o r cooperative motions, i t i s i n t e r e s t i n g to note that the Arrhenius summaries of the two c o r r e l a t i o n times i n Tables II and I I I are very s i m i l a r . This s i m i l a r i t y , taken together with the domination of cooperative t r a n s i t i o n s i n the i n t e r p r e t a t i o n s , sup­ ports the u t i l i t y of both models though the Weber-Helfand model i s developed from a more d e t a i l e d a n a l y s i s of chain motion. One i n t e r e s t i n g d i f f e r e n c e between the Weber-Helfand i n t e r ­ p r e t a t i o n of the polyformal and the polycarbonates i s the r e l a t i v e apparent a c t i v a t i o n energies f o r τ ι and T Q . For the polycarbo­ nates , the a c t i v a t i o n energies f o r T Q and τ ι were about the same ( 5 ) as would be expected i f the cooperative t r a n s i t i o n s occurred s e q u e n t i a l l y as opposed to simultaneously (15-17)· For the polyformal, the a c t i v a t i o n energy f o r the cooperative process i s much higher than f o r the s i n g l e t r a n s i t i o n s which i s more i n ­ d i c a t i v e of simultaneous cooperative t r a n s i t i o n s such as a crank­ shaft · Since the s i n g l e t r a n s i t i o n s are minor processes i n both the polycarbonates and to a l e s s e r extent i n the polyformal, dwelling on the a c t i v a t i o n energy d i f f e r e n c e s may be r i s k y . It i s worth noting that the d e s c r i p t i o n of phenyl group r o t a ­ t i o n i s not s i g n i f i c a n t l y i n f l u e n c e d by changing d e s c r i p t i o n s of segmental motion. This too supports the u t i l i t y of both models and the v a l i d i t y of the general a n a l y s i s of l o c a l motion f o r phe­ n y l groups as being d i v i d e d between segmental motion and i n t e r n a l rotation. Segmental motion and phenyl group r o t a t i o n i n the polyformal can be compared to that of the polycarbonates. R e l a t i v e to the analogous C h l o r a l polycarbonate Ç5), the cooperative segmental mot i o n i n the polyformal i s s i m i l a r i n general time s c a l e but has a s i g n i f i c a n t l y higher a c t i v a t i o n energy. Phenyl group r o t a t i o n i n the polyformal and the polycarbonate are n e a r l y i d e n t i c a l . This suggests phenyl group r o t a t i o n i s a very l o c a l i z e d process not g r e a t l y i n f l u e n c e d by r e p l a c i n g the carbonate l i n k with a formal link. On the other hand, i t i s hard to imagine phenyl group r o t a η

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

80

NMR

AND

MACROMOLECULES

t i o n as a s i m p l e p r o c e s s w i t h i n the b i s p h e n o l u n i t s i n c e MNDO c a l ­ c u l a t i o n s (18) i n d i c a t e a h i g h b a r r i e r w i t h i n t h i s u n i t . A n o t h e r i n t e r e s t i n g p o i n t about p h e n y l g r o u p r o t a t i o n i n t h e p o l y f o r m a l and p o l y c a r b o n a t e s i s t h a t i t i s b e s t modeled i n s o l u ­ t i o n as s t o c h a s t i c d i f f u s i o n r a t h e r t h a n two f o l d jump (π f l i p s ) . I n s o l i d BPA p o l y c a r b o n a t e , b o t h d e u t e r i u m ( 1 9 ) and c a r b o n - 1 3 ( 2 0 ) l i n e s h a p e a n a l y s i s p o i n t t o two f o l d jumps o r π f l i p s as t h e p r i ­ mary p r o c e s s . C a l c u l a t i o n s by T o n e l l i ( 2 1 - 2 2 ) a l s o p o i n t t o l o w b a r r i e r s t o p h e n y l g r o u p r o t a t i o n f o r i s o l a t e d BPA c h a i n s . I f t h e i n t r a m o l e c u l a r b a r r i e r f o r p h e n y l g r o u p r o t a t i o n i s i n d e e d l o w as i n d i c a t e d by t h e s o l u t i o n s t u d i e s and t h e c a l c u l a t i o n s , t h e change t o a h i g h e r b a r r i e r ( 6 , 1 8 ) and π f l i p s i n t h e s o l i d must r e f l e c t intermolecular interactions. T h i s i s indeed p l a u s i b l e s i n c e the new c o n f o r m a t i o n f o l l o w i n change i n t h e s u r r o u n d i n g r o u n d i n g s c o u l d p r o v i d e an a p p r e c i a b l e b a r r i e r t o t h e t r a n s i t i o n . As m e n t i o n e d , t h e f o r m a l l i n k p r o v i d e s new d y n a m i c i n f o r m a ­ t i o n r e l a t i v e t o the p o l y c a r b o n a t e s where no d e t a i l e d a n a l y s i s o f the carbonate u n i t i s p o s s i b l e . In the i n t e r p r e t a t i o n , a r a t h e r complex d e s c r i p t i o n i s r e q u i r e d to account f o r the f o r m a l r e l a x a ­ t i o n d a t a . A c c o r d i n g t o t h e i n t e r p r e t a t i o n , t h e f o r m a l g r o u p un­ d e r g o e s s e g m e n t a l m o t i o n as d e t e r m i n e d a t t h e p h e n y l g r o u p p l u s a n i s o t r o p i c r o t a t i o n about t h e o x y g e n - o x y g e n a x i s o f t h e f o r m a l group. At low temperatures t h i s a n i s o t r o p i c r o t a t i o n i s d e s c r i b e d as r e s t r i c t e d r o t a t i o n a l d i f f u s i o n . The m a i n q u e s t i o n i s w h e t h e r t h e r e i s any p h y s i c a l s e n s e t o s u c h a p i c t u r e . S i n c e t h e segment­ a l m o t i o n i s somewhat c o o p e r a t i v e and t h e p h e n y l g r o u p i s a d j a ­ c e n t , i t seems r e a s o n a b l e t o assume t h a t t h i s m o t i o n e x t e n d s o v e r b o t h t h e p h e n y l and f o r m a l g r o u p s . The r e a l q u e s t i o n i s t h e a n ­ isotropic restricted rotation. To p u r s u e t h i s a s p e c t , c o n f o r m a ­ t i o n a l e n e r g y maps o f d i m e t h o x y m e t h a n e were r e v i e w e d ( 2 3 - 2 4 ) . The lowest conformations are gg and g g and t h i s u n u s u a l s i t u a t i o n r e l a t i v e t o p o l y e t h y l e n e c h a i n s i s commonly c a l l e d t h e a n o m e r i c effect. E a c h o f t h e s e c o n f o r m a t i o n s has two c o n f o r m a t i o n s w h i c h a r e o n l y 4 k J h i g h e r i n e n e r g y . The t g and g t c o n f o r m a t i o n s a r e e n e r g e t i c a l l y near the g g c o n f o r m a t i o n and t h e t g and g ' t c o n f o r ­ m a t i o n s a r e e n e r g e t i c a l l y n e a r t h e g'g c o n f o r m a t i o n . The g ' g , gg and t t s t a t e s a r e c o n s i d e r a b l y h i g h e r i n e n e r g y . The most f a c i l e c o n f o r m a t i o n a l changes f r o m t h e l o w e s t s t a t e s c o u l d be r e p r e s e n t e d by T

f

f

f

1

t g

t

β

g

t

=

g

g

t

s

g t

g =

t g

(6) g

t

t

A t l o w e r t e m p e r a t u r e s where a g i v e n f o r m a l u n i t i s l i k e l y t o be e i t h e r gg or g'g, t h e t r a n s i t i o n s r e p r e s e n t e d by eq. 6 w o u l d r e ­ s u l t i n r e s t r i c t e d r o t a t i o n a l averaging. T h i s would g e n e r a l l y agree w i t h the r e s u l t s o b t a i n e d from the s i m u l a t i o n of the f o r m a l r e l a x a t i o n d a t a f r o m 0 t o 40 d e g r e e s where t h e a n g u l a r a m p l i t u d e f

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

5.

TARPEY ET AL.

Spin Relaxation

and Local

81

Motion

o f r e s t r i c t e d r o t a t i o n , I, r a n g e s f r o m 86 t o 164 d e g r e e s . A t h i g h e r t e m p e r a t u r e s p o p u l a t i o n s i n s t a t e s o t h e r t h a n g g o r g'g w o u l d become l a r g e r a l l o w i n g f o r t h e more common o c c u r r e n c e o f c o n f o r m a t i o n a l changes o t h e r t h a n t h o s e l i s t e d i n e q . 6. T h i s w o u l d r e s u l t i n e f f e c t i v e l y c o m p l e t e r o t a t i o n i n agreement w i t h t h e s i m u l a t i o n f r o m 60 t o 120 d e g r e e s . These arguments w o u l d a c c o u n t f o r t h e s h i f t f r o m r e s t r i c t e d r o t a t i o n t o c o m p l e t e a n i s o t r o p i c r o t a t i o n , b u t why i s t h e c h o i c e o f t h e o x y g e n - o x y g e n a x i s made? I n f a c t , i t c a n o n l y be a r o u g h a p p r o x i m a t i o n , s i n c e t h e ends o f t h e f o r m a l g r o u p must move d u r i n g these c o n f o r m a t i o n a l changes. The t i m e s c a l e f o r t h e f o r m a l g r o u p c o n f o r m a t i o n a l changes a r e o n l y somewhat more r a p i d r e l a t i v e t o t h e t i m e s c a l e o f s e g m e n t a l m o t i o n and p h e n y l g r o u p r o t a t i o n , s o p h e n y l g r o u p s a r e o n l y somewhat s l u g g i s h w i t h r e s p e c t t o t h e f o r m a l g r o u p . A more d e t a i l e g r o u p m o t i o n c o u l d be u n d e r t a k e rant i t . The p r e s e n t p i c t u r e p o i n t s t o s i n g l e c o n f o r m a t i o n a l t r a n s i t i o n s a t t h e f o r m a l group which r e s u l t i n o n l y p a r t i a l s p a t i a l averaging of d i p o l a r i n t e r a c t i o n s a t lower temperatures. f

Acknowledgments The r e s e a r c h was c a r r i e d o u t w i t h f i n a n c i a l s u p p o r t o f N a t i o n a l S c i e n c e F o u n d a t i o n G r a n t DMR-790677, o f N a t i o n a l S c i e n c e F o u n d a t i o n Equipment G r a n t No. CHE 77-09059, o f N a t i o n a l S c i e n c e F o u n d a t i o n G r a n t No. DMR-8108679, and o f t h e U.S. Army R e s e a r c h O f f i c e G r a n t DAAG 29-82-G-0001.

Literature Cited (1)

A.A. Jones and R.P. Lubianez, Macromolecules (1978) 11, 126.

(2)

R.P. Lubianez, A.A. Jones and M. B i s c e g l i a , Macromolecules (1980) 12, 1141.

(3)

A.A. Jones and M. B i s c e g l i a , Macromolecules (1979) 12, 1136.

(4)

J . F . O'Gara, S.G. Desjardin and A.A. Jones, Macromolecules (1980) 14, 64.

(5)

J . J . Connolly, E. Gordon and A.A. Jones, submitted to Marcomolecules.

(6)

A . F . Yee and S.A. Smith, Macromolecules (1981) 14, 54.

(7)

A.A. Jones and W.H. Stockmayer, J . Polym. Sci., Polym. Phys. Ed. (1977) 15, 847.

(8)

T.A. Weber and E. Helfand, submitted to J . Chem. Phys.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

82

(9)

NMR A N D MACROMOLECULES

A.S. Hay, F.J. Williams, G.M. Loucks, H.M. Relies, B.M. Boulette, P.Ε. Donahue and D.S. Johnson, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. ( 1 9 8 2 ) 2 3 ( 2 ) , 117.

(10)

A.A. Jones and M.F. Tarpey, unpublished

(11)

A.A. Jones, J . Polym. Sci., Polym. Phys. Ed.

(12)

D.E. Woessner, J . Chem. Phys.

(13)

W. Gronski and N. Murayama, Makrmol. Chem.

(14)

W. Gronski, Makromol. Chem.

(15)

E. Helfand, J . Chem

(16)

E. Helfand, Z.R. Wasserman, and T.A. Weber, Macromolecules (1980)

13,

(1962)

(1979)

results.

36,

180,

(1977)

15,

863.

1. (1978)

179,

1521.

1119.

526.

(17)

J . Skolnik and E. Helfand, J . Chem. Phys.

(18)

A.A. Jones, J . F . O'Gara, P.T. Inglefield, J.T. Bendler, A . F . Yee, and K . L . Ngai, Macromolecules ( 1 9 8 3 ) 16, 6 5 8 .

(19)

H.W. Spiess, C o l l o i d . Polym. S c i . (1983) 2 6 1 , 1 9 3 .

(20)

P.T. Inglefield, R.M. Amici, J . F . O'Gara, C.-C. Hung and A.A. Jones, submitted to Macromolecules.

(21)

A . E . T o n e l l i , Macromolecules (1972) 5, 5 5 8 .

(22)

A . E . T o n e l l i , Macromolecules (1973) 6, 5 0 3 .

(23)

I . Tvaroska and T. Bleha, J . Mol. Struct. (1975) 2 4 , 2 4 9 .

(24)

G.A. Jeffrey and R. Taylor, J. Comp. Chem.

(1980)

72,

1 (1980)

RECEIVED September 22, 1983

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

5489.

99.

6 Characterization of Molecular Motion in Solid Polymers by Variable Temperature Magic Angle Spinning CNMR 13

W. W. FLEMING, J. R. LYERLA, and C. S. YANNONI IBM Research Laboratory, San Jose, CA 95193 The inclusion of a capability for solid state C NMR spectroscopy makes feasible the investigation by C relaxation parameters of structural and motional features of polymers above and below Tg and in temperature regions of secondary relaxations. Herein, we report variable temperature (50K to 323K) spectral data on semicrystalline poly(propylene) and glassy PMMA. Illustrative of the data are the T and T results for isotactic poly(propylene) over the temperature range 50K to 300K. All carbons in the repeat unit show minima in T and T which reflect methyl group reorientation motion at the appropriate measuring frequencies (15 MHz and 57 kHz). The T data for CH and CH carbons indicate the importance of spin-spin as well as spin-lattice pathways in their rotating frame relaxation over much of the temperature interval studied. An interesting spectral observation is the strong motional broadening of the methyl group in the temperature region of the T minimum. These and other facets of the poly(propylene) data as well as similar data for PMMA are discussed with respect to their implications for insight into polymer chain dynamics in the solid state. 13

1



1





2



One of the principal advantages of C P M A S experiments is that resolution in the solid state allows individual-carbon relaxation experiments to be performed. If a sufficient number of unique resonances exist, the results can be interpreted in terms of rigid-body and local motions (e.g., methyl rotation, segmental modes in polymers, etc.) (1,2). This presents a distinct advantage over the more common proton relaxation measurements, in which efficient spin diffusion usually results in averaging of relaxation behavior over the ensemble of protons to yield a single relaxation time for all protons. This makes interpretation of the data in terms of unique motions difficult.

0097-6156/ 84/ 0247^0083506.00/ 0 © 1984 American Chemical Society In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

84

N M R A N D

MACROMOLECULES

Relaxation parameters of interest for the study of polymers include 1) C and * H spin-lattice relaxation times ( T and T ) , 2) the spin-spin relaxation time T , 3) the nuclear Overhauser enhancement ( N O E ) , 4) the proton and carbon rotating-frame relaxation times ( T ^ and T ^ ) , 5) the C - H cross-relaxation time T , and 6) the proton relaxation time in the dipolar state, T (2). Not all of these parameters provide information in a direct manner; nonetheless, the inferred information is important in characterizing motional frequencies and amplitudes in solids. The measurement of data over a range of temperatures is fundamental to this characterization. The initial studies of carbon relaxation in polymers have emphasized T j and T measurements, which provide information on molecular motions in the M H z and kHz frequency ranges, respectively. Schaefer and Stejskal have carried out the pioneering work i thei investigation f glass polymer (1) In particular, they stress th dynamic heterogeneity of the glassy state and as a potential source of insight into the mechanical and other physical properties of polymers at the molecular level. Garroway and co-workers (3) reported the first variable-temperature ( V T - M A S ) T j results in their study of epoxy resins, and together with VanderHart, (4) have detailed the complications in extracting information on molecular motion from T experiments. In this paper, we report the first extensive sub-ambient V T - M A S C Tj and T data on macromolecules. The emphasis of the study was placed on isotactic poly (propylene) (PP) and atactic poly (methylmethacrylate) ( P M M A ) as they represent semi-crystalline and glassy polymers, respectively. Specifics of the investigation were directed to the issue of elucidating sidechain and backbone motions from the high frequency relaxation experiments. 1

3

1 C

1 H

2

p

C

1

l

p

H

D

p

l

p

1

l

3

p

Experimental 1

3

The C data at 15.1 M H z were acquired on a modified Nicolet TT-14 N M R system. The features of this spectrometer and of the spinning assembly have been reported previously (5). Samples were machined into the shape of Andrew-type rotors and used directly for the various studies. Temperature variation was achieved by cooling or heating the helium gas used for driving the rotor. The temperature was controlled to ± 2 ° C with a home built temperature sensing and heater/feedback network. Spin-lattice relaxation times, Τ j were collected using a pulse sequence developed by Torchia (6) which allows cross-polarization enhancement of the signals. The T data were determined at 57 kHz using T methodology of Schaefer et al. (1). The PP examined was a 90% isotactic, 70% crystalline sample. The P M M A was an atactic commercial polymer. l

l

p

p

Results and Discussion 1

3

Figure 1 shows the C P M A S C spectra of PP as a function of temperature. The interesting feature is the progressive broadening of the methyl resonance

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

6.

FLEMING ETAL.

Molecular Motion in Solid

Figure 1. C P M A S

1

3

Polymers

C spectra of poly (propylene) as a function o f

temperature.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

85

86

N M R A N D

MACROMOLECULES

as the temperature is lowered. At « 1 1 0 K , the resonance is broadened to the point of disappearing from the spectrum. However, at temperatures below 77K, the methyl resonance narrows and reappears in the spectrum. This broadening phenomenon arises as the reorientation rate of the methyl group about the C3 axis becomes insufficient to average (stochastically) dipolar interaction with the methyl protons. A t the onset of broadening, the methyl motion has a correlation time comparable to the inverse of the strength (in frequency units) of the proton decoupling field. This reduces the efficiency of the rf decoupling and leads to a maximum linewidth of the carbon when the motions occur at the frequency corresponding to the amplitude of the proton decoupling field. Rothwell and Waugh (7) have developed the theory for T (the inverse of the C linewidth) for an interpla betwee stochasti d coherent motions For such a system, the profil when the correlation time for molecular motion, T , is equal to the modulation period of the decoupling, (Ι/ω^). In the "short correlation time" limit ( ω τ < < 1 ) (high temperature), the linewidth is reduced by the rapid motional averaging, while in the "long correlation time" limit ( ω τ , > > 1 ) (low temperature), the linewidth is reduced by efficient decoupling of C - H dipolar interactions. The spectra of PP in Figure 1 are consistent with the progression of the methyl resonance through the linewidth regions as the temperature is lowered. The reappearance (narrowing) of the methyl resonance at 77K indicates that the "long correlation time" regime has been reached (7). Further proof of the progressive changes in correlation time for methyl rotation as the temperature is lowered is provided by the decoupling-field dependence of the linewidth. A t about 160K, the methyl linewidth is independent of decoupling field, while at 77K the linewidth varies as the inverse square of the decoupling field. This is the expected dependence for the transition between the extreme narrowing and long correlation time regimes (7). Finally, from the expression for the C linewidth derived by Rothwell and Waugh [Eq. (1)] and the correlation time and temperature of the T minimum observed by McBrierty et al. (8), 2

1

3

c

1

0

1

1

(

3

l

2

_ l . yhl*

(

T

c

\

p

( 1 )

we calculate, for ω^=5Ί kHz (the value of the decoupling field used to obtain the spectra in Figure 1), that the maximum broadening for the methyl resonance would occur at 109K, in excellent agreement with our observations. This broadening of the methyl resonance observed in PP is also found in polycarbonate, P M M A , and epoxy polymers. It should be a general phenomenon for rapidly reorienting side groups or main-chain carbons in polymers. For semicrystalline systems, where the local molecular structure is relatively homogeneous, severe broadening should result in the "disappearance" of resonance lines from the spectra. For glassy systems, where there is more heterogeneity in the local molecular environment, the

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

6.

F L E M I N G ET A L .

87

Molecular Motion in Solid Polymers

effect may result in significant changes in resonance lineshape as a function of temperature as the carbons in differing environments undergo severe broadening. Of course, the phenomenon may be used to determine T for the group undergoing the motion (7); however, the severe broadening does limit the ability to measure high-frequency relaxation times in such temperature intervals. The C spin-lattice relaxation times for isotactic PP are shown in Figure 2. Primarily, the data represent that of the crystalline component. The semilog plots of intensity vs. time were nearly exponential for each of the carbons at all temperatures. Over the temperature range, each carbon in the repeat unit displays an individual relaxation time. The methyl relaxation appears to be dominated by methyl C reorientation. If it is assumed that a C - H heteronuclear relaxation mechanism is operative a calculation of the methyl carbon relaxation tim formalism and the correlatio proto j (8) C gives a value of 10 ms at - 1 1 0 ° C , in good agreement with the observed value of 17 ms. In addition, the methyl motion also seems to dominate the backbone relaxation. This is evidenced by the shorter T j observed for the methine carbon relative to methylene (despite there being two direct C - H interactions for the methylene carbon). Apparently, backbone motions are characterized by such small amplitudes and low frequencies that contributions from the direct C - H interactions to spectral density in the M H z region of the frequency spectrum are minor relative to those from side groups. The 1 / r distance dependence of dipolar relaxation thus accounts for both the long T j values of C H and C H carbons (one to two orders of magnitude) relative to the methyl carbon and the shorter T j values for methine carbons relative to methylene carbon. The fact that the observed T j minimum for C H and C H carbons is close to that reported for a proton T j minimum (at 30 M H z ) (8) in PP that was assigned to methyl reorientation provides unequivocal support for the dominance of the T j relaxation by methyl protons. c

1

3

3

6

2

2

The T data (Figure 3) for the C H and C H carbons also give an indication of methyl group rotational frequencies. As the temperature is lowered below 163K, the T j for these carbons increases and the T j decreases by roughly an order of magnitude between 163K and 95K, suggesting that the contribution of methyl proton motion to M H z spectral density is decreasing, while increasing in the kHz regime. The C H and C H T do not change greatly over the temperature interval from 163K to ambient, and, in contrast to the T j behavior, the C H carbon has the shorter T . The interpretation of the carbon T data is complicated by the fact that spin-spin (cross-relaxation) processes, as well as rotating-frame spin-lattice processes, contribute to the relaxation (4). Only the latter provide direct information on molecular motion. Although both processes show a dependence on the number of nearest-neighbor protons, the relative insensitivity of T to temperature and the approximate 2:1 ratio of C H / C H T values also suggest that spin-spin processes dominate the relaxation above 163K. (If spin-spin effects dominate the rotating-frame relaxation and the carbon cross-relaxation to the proton l

p

2

2

2

l

l

p

l p

p

l

2

C

p

H

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

N M R A N D

1

MACROMOLECULES

3

Figure 2. The C spin-lattice relaxation times at 15 M H z for isotactic poly(propylene) methylene ( · ) , methine (O), and methyl (A) carbons.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Molecular Motion in Solid

FLEMING ETAL.

Polymers

11 I I I 1—J I 1 1—ι—ι—ι—ϊ 2 4 6 8 10 12 14 1000/Τ(°Κ) Figure 3. The T data at 57 kHz for C H (O), C H ( · ) , and C H carbons in poly (propylene). l

p

2

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

3

(•)

90

N M R A N D

MACROMOLECULES

dipolar reservoir is less efficient than the corresponding proton spin-lattice relaxation T , the observed T for the C H carbon will be about 1 . 7 - 2 . 0 χ that of the C H carbon, based on the approximate twofold difference in the second moments (due to protons) for the two types of carbons. This is roughly the result observed in the data displayed in Figure 3.) Below 163K, the T of both carbons shorten and tend toward equality, indicating that spin-lattice processes derived from methyl reorientation are becoming competitive with the spin-spin process in relaxing the backbone carbon magnetization. McBrierty et al (8) report a proton T minimum at 97K, which reflects methyl reorientation at kHz frequencies. No clear minimum is observed in the C data, perhaps due to the interplay of the spin-spin and spin-lattice processes. Nonetheless, it is apparent that the methyl protons are responsible for the spin-lattice contributions to the C H and C H T values 1

D

l

p

2

l

p

l

1

p

3

Further evidence for th given in Figure 4, which shows T plotted against the reciprocal of the temperature as a function of the rotating frame field. As indicated in Table 1, in the case of motion dominating T , there is a square dependence of T on field. For spin-spin domination, there is an exponential dependence. The results at room temperature clearly display a dependence greater than the 4 χ suggested for motion and the field variation. Only at temperatures less than 150K with large rotating-frame fields are strong motional effects observed. As previously discussed, these arise from methyl rotation. The domination of both spin-lattice relaxation times for C H and C H carbons in PP by methyl reorientation is clearly disappointing, since the potential for information on backbone motion due to the high resolution of the C P M A S experiments is not realized. The implication is that it may not be possible to observe backbone motion in crystalline materials having rapidly reorienting side groups without resorting to deuterium substitution of these side groups. The T j data for various carbons in P M M A are given in Figure 5. Cleai deviations from nonexponential behavior of the magnetization were often observed. Behavior different from that observed for PP presumably arises because the high degree of stereoregularity and high crystallinity of the PP provide a more homogeneous local environment than in glassy P M M A , where distributions of relaxation times are commonly observed, owing to site heterogeneity. For P M M A , the reported relaxation times represent the long-time portion of the magnetization decay curves. The results for P M M A tend to cluster over the temperature range studied, except for the α-methyl carbon. The rapid relaxation for this carbon in the temperature range from 2 0 ° C to - 7 0 ° C is consistent with the proton T j minimum at about -23 ° C assigned to α-methyl rotation at M H z frequencies (9). The T data for P M M A are summarized in Table 2. As in the case of PP, the a - C H undergoes motional broadening and disappears from the spectrum near the minimum in T . In P M M A , severe broadening occurs in the temperature range between 140K and 200K. At lower temperatures, the l

p

l p

l

p

2

l

p

3

l p

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

6.

FLEMING ETAL.

Molecular Motion in Solid Polymers

Ο CH Δ CH ©A 33 KHz 2

1001



ΟΔ45

KHz

50 r •

A 6

J 8

L 10

(1000/T)

Figure 4. T h e T j for methine (circles) and methylene (triangles) carbons poly(propylene) as a function of the rotating-frame field and temperature; (a) 33 k H z , (b) 45 k H z , and (c) 63 k H z .

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

92

N M R A N D MACROMOLECULES

T A B L E 1.

Motion:

1

3

CT

l

p

formalism.

BPP dipolar

_ l . = ΞίφΙ f(r ) = { c

2

«

ω

ι

)

J

(

Amrm. F i g u r e 9 may h e l p t o i l l u s t r a t e t h i s a p p r o a c h . Once a l l s e v e n A x y z p a r a m e t e r s h a v e b e e n e v a l u a t e d , c h e m i c a l s h i f t s f o r t h e r e m a i n i n g 21 h e p t a d s c a n b e c a l c u l a t e d and u s e d f o r s i m u l a t i n g the s p e c t r a o f polymers epimerized t o h i g h e r e x t e n t s , as w e l l a s t h e s p e c t r u m o f p o l y s t y r e n e . M i n o r a d j u s t m e n t s c a n t h e n b e made i n c a l c u l a t e d c h e m i c a l s h i f t s t o f i l l i n o r deepen v a l l e y s o r t o e l i m i n a t e d i s t o r t i o n s caused by c o i n c i d e n c e s o f c a l ­ culated chemical s h i f t s . T h i s approach worked r e a s o n a b l y success­ f u l l y when a p p l i e d t o q u a t e r n a r y a r o m a t i c c a r b o n r e s o n a n c e s o b s e r ­ ved f o r e p i m e r i z e d i s o t a c t i c p o l y s t y r e n e s a s measured a t 20 MHz and room t e m p e r a t u r e ( 1 9 ) . I t proved n e c e s s a r y , however, t o s h i f t heptads c o n t a i n i n g a c e n t r a l rmrr (or rrmr) pentad u p f i e l d by 0.256 ppm t o o b t a i n good a g r e e m e n t b e t w e e n o b s e r v e d and s i m u l a t e d s p e c t r a . T h i s s u g g e s t s t h a t t h e s h i e l d i n g e x p e r i e n c e d by a n u c l e u s f r o m one d i r e c t i o n o f t h e p o l y m e r c h a i n may n o t b e e n t i r e l y i n d e ­ pendent o f t h e s t r u c t u r e o f t h e c h a i n t h a t proceeds i n the opposite d i r e c t i o n . T h i s same g e n e r a l a p p r o a c h was u s e d i n t h e p r e s e n t s t u d y t o d e v e l o p A x y z v a l u e s f o r p o l y s t y r e n e s p e c t r a r e c o r d e d a t 150°. The values o b t a i n e d , together w i t h those developed p r e v i o u s l y f o r s p e c t r a r e c o r d e d a t room temper a ture(]L9) a r e g i v e n i n T a b l e V. The most s i g n i f i c a n t d i f f e r e n c e b e t w e e n t h e two s e t s o f v a l u e s i s the dramatic i n c r e a s e i n A r r r w i t h an i n c r e a s e i n temperature. S i n c e Armm, A r r m , Armr and A r r r a l l h a v e s i m i l a r and l a r g e n e g a t i v e v a l u e s compared t o t h e o t h e r A x y z v a l u e s a t 150°, i t i s u n d e r s t a n d ­ able t h a t p o l y s t y r e n e s p e c t r a recorded a t h i g h temperature can p r o v i d e r e l i a b l e measures o f r r - t r i a d c o n c e n t r a t i o n s . M i n o r a d j u s t m e n t s were made i n c h e m i c a l sh i f t s c a l c u l a t e d u s i n g Axyz v a l u e s t o improve the q u a l i t y o f f i t between s i m u l a t e d and o b s e r v e d s p e c t r a . The h e p t a d c h e m i c a l s h i f t s u s e d t o s i m u l a t e

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

H A R W O O D ET A L .

Polystyrene and Epimerized Isotactic Polystyrenes

-p| mmmmmm - mmmmmr

=-Ammr

I mmmmmm - mmmmrr = - A m r r

mmmmmm - mmmrrm = - A r r m

mmmmmm - mmrrmm = - 2 A r m m



I—*\ I

>j

h Group F i g u r e 9.

I—*| (

A

xxxmmm - xxxmrm =-Δmrm *|

^ I

^calculated line

^|

xxxmmm - xxxrrr = - Δ π τ xxxmmm - xxxrmr =-Δ rmr

B

E s t i m a t i o n o f Aabc P a r a m e t e r s f r o m t h e S p e c t r a o f E p i m e r i z e d P o l y m e r s H a v i n g H i g h mm-Contents.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

216

NMR A N D MACROMOLECULES

T a b l e V.

E m p i r i c a l Chemical S h i f t Parameters f o r P o l y s t y r e n e a t 20° and 150°

Parameter Δ mmr Δπιπιι Armm Amrr Arrm Armr Arrr rmrr

(Axyz) E v a l u a t e d

V a l u e (ppm) 20°

150°

-0.080 -0.288 -0.752 -0.192 -0.695 -0.621 -0.496

-0.077 -0.266 -0.728 -0.196 -0.637 -0.665 -0.616

correctio

the s p e c t r a a r e g i v e n i n Table V I , along w i t h those c a l c u l a t e d u s i n g t h e p a r a m e t e r s l i s t e d i n T a b l e V. T a b l e V I a l s o compares the r e l a t i v e order o f these heptad resonance assignments w i t h t h e r e l a t i v e order o f methyl carbon heptad resonances c a l c u l a t e d f o r p o l y p r o p y l e n e by S c h i l l i n g a n d T o n e l l i ( 3 7 ) , u s i n g t h e r o t a t i o n a l i s o m e r i c s t a t e m o d e l . The c o r r e s p o n d e n c e b e t w e e n t h e two s e t s o f a s s i g n m e n t s i s s u r p r i s i n g l y good. A l t h o u g h some a r o m a t i c C - l c a r ­ bon p e n t a d r e s o n a n c e p a t t e r n s o v e r l a p i n t h e p o l y s t y r e n e s p e c t r a , the r e l a t i v e o r d e r i n g o f the pentad resonance p a t t e r n s e x a c t l y matches t h a t o f t h e methyl carbon pentad resonances o f p o l y p r o p y ­ l e n e , a s c a l c u l a t e d b y S c h i l l i n g a n d T o n e l l i ( 3 7 ) [mmmm, (mmmr + rmmm), rmmr, (mmrr + rrmm), (mmrm + mrmm), ( r m r r + r r m r ) , (rmrm + mrmr), r r r r , ( m r r r + r r r m ) , mrrm, i n o r d e r o f i n c r e a s i n g f i e l d ] . T h i s o r d e r i n g i s a l s o i n agreement w i t h t h e a s s i g n m e n t s d e v e l o p e d f o r t h e a r o m a t i c C - l r e s o n a n c e s o f p o l y s t y r e n e by S a t o a n d Tanaka (11). I t i s i n o n l y f a i r agreement w i t h o r d e r i n g b a s e d on T o n e l l i s recent c a l c u l a t i o n s f o r p o l y s t y r e n e ( 3 8 ) , which, i n con­ t r a s t t o t h e p o l y p r o p y l e n e c a l c u l a t i o n s ( 3 7 ) , t e n d t o group t h e l i n e s i n t o f o u r g e n e r a l a r e a s . R e s o n a n c e s o f mm-centered p e n t a d s a r e c a l c u l a t e d t o o c c u r i n t h r e e o f t h e s e a r e a s a n d t h e r e i s more e x t e n s i v e o v e r l a p p i n g o f mm- and ( m r + r m ) - c e n t e r e d p e n t a d r e s o n a n c e r e g i o n s t h a n seems r e a s o n a b l e b a s e d on o u r s i m u l a t i o n s t u d i e s . F i g u r e s 1 - 6 compare o b s e r v e d a r o m a t i c C - l c a r b o n r e s o n a n c e s p e c t r a w i t h s i m u l a t e d s p e c t r a based on t h e heptad c h e m i c a l s h i f t s g i v e n i n T a b l e V I and on heptad stereosequence c o n c e n t r a t i o n s c a l ­ c u l a t e d by Monte C a r l o s i m u l a t i o n o f t h e e p i m e r i z a t i o n p r o c e s s , u s i n g V=0.65. The s i m u l a t i o n s p e c t r a r e p r o d u c e t h e g e n e r a l f e a ­ t u r e s o f t h e o b s e r v e d s p e c t r a v e r y w e l l a n d c a n be c o n s i d e r e d t o be i n a t l e a s t s e m i - q u a n t i t a t i v e agreement w i t h t h e o b s e r v e d s p e c ­ tra. The agreement b e t w e e n o b s e r v e d and s i m u l a t e d s p e c t r a m i g h t be i m p r o v e d i f s p e c t r a w i t h h i g h e r S/N r a t i o s were employed a n d i f a d d i t i o n a l p a r a m e t e r a d j u s t m e n t s w e r e made. I t seems, h o w e v e r , t h a t t h e h e p t a d a s s i g n m e n t s d e v e l o p e d i n t h i s work a r e r e a s o n a b l y correct. f

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

13.

H A R W O O D ET A L .

Polystyrene and Epimerized Isotactic Polystyrenes

111

Table V I . Heptad Assignments f o r A r o m a t i c C - l Carbon Resonances of P o l y s t y r e n e Heptad

6 (Calc) c

Polypropylene C

3

b

mmmmmm rmmmmm + mmmmmr rmmmmr

146.40 146.32 146.25

146.40 146.32 146.25

l 2 3

l 2 3

1 2 3

+ + + +

146.13 146.06 146.20 146.13

146.13 146.06 146.20 146.18

6 7 4 5

9 11-13 7,8 10

5 7 4 6

mrmmrm rrmmrm + mrmmrr rrmmrr

145.8 145.9 146.0

145.91

10

18

10,11

mmmrrm rmmrrm mmmrrr rmmrrr

+ + + +

mrrmmm mrrmmr rrrmmm rrrmmr

145.76 145.69 145.78 145.71

145.77 145.70 145.85 145.76

12 14 11 13

11-13 14,15 11-13 14,15

mmmrmm rmmrmm mmmrmr rmmrmr

+ + + +

mmrmmm mmrmmr rmrmmm rmr mmr

145.67 145.59 145.74 145.66

145.67 145.60 145.74 145.63

16 18 15 17

5 7,8 4 6

16 18 15 17

mrmrmm rrmrmm mrmrmr rrmrmr

+ + + +

mmrmrm mmrmrr rmr mrm rmrmrr

145.41 145.48 145.47 145.54

145.36 145.41 145.50 145.53

25 24 20 19

22 20,21 20,21 19

26 24 25 23

mrmrrm rrmrrm mrmrrr rrmrrr

+ + + +

mrrmrm mrrmrr rrrmrm rrrmrr

145.39 145.46 145.41 145.48

145.35 145.45 145.43 145.48

26 22 23 21

26 23,24 25 23,24

21 19 22 20

mrrrrm rrrrrm + mrrrrr rrrrrr

145.13 145.15 145.17

145.27 145.15 145.20

27 29 28

27 28 29

27 28 29

+ + + +

mmrrrm mmrrrr rmrrrm rmr r r r

145.04 145.06 145.10 145.12

145.07 145.06 145.11 145.12

32 34 31 30

32 33 31 30

32 33 30 31

mmrrmm rmrrmm + mmr rmr rmr rmr

144.94 145.01 145.07

144.94 145.00 145.08

36 35 33

36 35 34

36 35 34

mrmmmm mrmmmr rrmmmm rrmmmr

mrrrmm rrrrmm mrrrmr rrrrmr

mmmmrm rmmmrm mmmmrr rmmmrr

a

b

10,11 13 12 14

(a) B a s e d o n l i n e s u s e d f o r s i m u l a t i o n s shown i n F i g u r e s 1-6. (b) B a s e d o n c a l c u l a t i o n s o f T o n e l l i ( 3 8 ) . (c) Based on c a l c u l a t i o n s o f T o n e l l i and S c h i l l i n g ( 3 7 ) .

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

1

218

NMR A N D MACROMOLECULES

S p e c t r a s i m u l a t i o n s b a s e d on s t e r e o s e q u e n c e distributions c a l c u l a t e d f o r t h e p o l y m e r s u s i n g V=0.50 a l s o matched t h e e x p e r i ­ mental s p e c t r a very w e l l , except f o r p o l y s t y r e n e ( o r the completely epimerized polymer). I t was n o t p o s s i b l e t o d e v e l o p h e p t a d r e s o n ­ ance a s s i g n m e n t s t h a t a f f o r d e d u n i f o r m agreement b e t w e e n o b s e r v e d and s i m u l a t e d s p e c t r a f o r a l l t h e s a m p l e s s t u d i e d when s t e r e o s e ­ quence d i s t r i b u t i o n s b a s e d on V=0.50 w e r e u s e d . Since resonance a s s i g n m e n t s c a n be made u s i n g e p i m e r i z e d p o l y m e r s w i t h h i g h mm c o n t e n t s u s i n g s t e r e o s e q u e n c e c o n c e n t r a t i o n s b a s e d on e i t h e r V=0.50 o r V=0.65, t h e s e a s s i g n m e n t s c o u l d be u s e d t o d e t e r m i n e what V v a l u e was a p p r o p r i a t e f o r p o l y s t y r e n e ( o r t h e c o m p l e t e l y e p i m e r i z e d polymer). V v a l u e s r a n g i n g f r o m 0.62 t o 0.65 a f f o r d e d good a g r e e ­ ment b e t w e e n s i m u l a t e d and o b s e r v e d s p e c t r a o f p o l y s t y r e n e . Assuming B e r n o u l l i a n s t a t i s t i c s , ν=(1-σ) /σ , where σ i s t h e p r o b a ­ b i l i t y o f a meso p l a c e m e n (or i n p o l y s t y r e n e ) . V s t y r e n e c a n be c h a r a c t e r i z e d b y a σ v a l u e o f 0.44. One d i s t u r b i n g a s p e c t o f t h i s p o r t i o n o f t h e s t u d y i s t h e f a c t t h a t t h e mmrrmm s i g n a l ( 6 = v L 4 5 . 3 ppm) i s n o t a s i n t e n s e i n some o b s e r v e d s p e c t r a ( F i g u r e s 1-4) a s i t s h o u l d be b a s e d on s i m u ­ l a t i o n and on a r g u m e n t s p r e s e n t e d e a r l i e r i n t h i s p a p e r . T h i s may i n d i c a t e an i n f l u e n c e o f n o n a d s , o r a d i m i n i s h e d s e n s i t i v i t y o f c a r b o n s i n t h i s e n v i r o n m e n t due t o r e l a x a t i o n t i m e o r NOE d i f f e r ­ ences. A d d i t i o n a l study of t h i s p o i n t i s merited. M e t h y l e n e and M e t h i n e C a r b o n R e s o n a n c e s . F i g u r e 10 compares t h e m e t h y l e n e and m e t h i n e c a r b o n r e s o n a n c e p a t t e r n s o b s e r v e d f o r p o l y ­ s t y r e n e and t h e e p i m e r i z e d p o l y m e r s . The m e t h y l e n e c a r b o n s p e c t r a are too noisy t o j u s t i f y q u a n t i t a t i v e study. An a n a l y s i s o f s p e c ­ t r a r e c o r d e d u s i n g a l a r g e r number o f FID a c c u m u l a t i o n s w i l l be reported subsequently. However, t h e p a t t e r n s o b s e r v e d a r e q u a l i ­ t a t i v e l y s i m i l a r t o those d i s c u s s e d e a r l i e r t h a t were r e c o r d e d w i t h a 20 MHz s p e c t r o m e t e r ( 1 8 ) . The m e t h i n e c a r b o n r e s o n a n c e p a t ­ t e r n s o c c u r r e d o v e r a s m a l l c h e m i c a l s h i f t r a n g e a n d were t h e r e ­ f o r e adequately d e f i n e d f o r q u a n t i t a t i v e study. We r e p o r t e d p r e ­ v i o u s l y that the methine carbon resonance of these polymers occurs i n two g e n e r a l a r e a s a n d a s s i g n e d t h e l o w e r f i e l d a r e a t o m m - t r i a d s . F i g u r e 11 compares t h e p r o p o r t i o n o f m e t h i n e c a r b o n r e s o n a n c e o b ­ s e r v e d i n t h i s l o w e r a r e a w i t h mm-contents m e a s u r e d f o r t h e p o l y ­ mers f r o m t h e i r m e t h i n e p r o t o n r e s o n a n c e p a t t e r n s . I t c a n be s e e n t h a t t h e r e i s a 1:1 c o r r e s p o n d e n c e b e t w e e n t h e s e two q u a n t i t i e s , t h u s p r o v i n g t h a t t h e l o w e r f i e l d m e t h i n e c a r b o n r e s o n a n c e i s due to mm-triads. 2

2

c

Conclusions Although the aromatic C - l carbon resonance of p o l y s t y r e n e i s very complex, r e l a t i v e l y simple aromatic C - l carbon resonance s p e c t r a are observed f o r p a r t i a l l y epimerized i s o t a c t i c p o l y s t y r e n e s . S t u d i e s on s u c h "model p o l y s t y r e n e s " p r o v i d e t h e i n f o r m a t i o n needed to i n t e r p r e t t h e spectrum o f p o l y s t y r e n e i t s e l f . B a s e d on a s s i g n -

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

H A R W O O D ET A L .

F i g u r e 10.

Polystyrene and Epimerized Isotactic Polystyrenes

75 MHz M e t h y l e n e and M e t h i n e C a r b o n R e s o n a n c e o f P o l y s t y r e n e and o f E p i m e r i z e d I s o t a c t i c P o l y s t y r e n e Samples.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

219

220

NMR AND MACROMOLECULES

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

13.

H A R W O O D ET A L .

Polystyrene and Epimerized Isotactic Polystyrenes

221

1

merits made i n t h i s p a p e r a n d i n o t h e r s i n t h i s s e r i e s , t h e H and C-NMR s p e c t r a o f p o l y s t y r e n e i n d i c a t e t h a t i t c a n be c h a r a c t e r i z e d by a σ v a l u e o f ^ 0 . 4 5 . 13

A c k n o w l e dgment s T h i s s t u d y was s u p p o r t e d i n p a r t b y a g r a n t f r o m t h e N a t i o n a l S c i e n c e F o u n d a t i o n (DMA-80-10709).

Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16 17. 18. 19. 20. 21.

Bovey, F . A . ; Tiers, G.V.D.; F i l i p o v i c h , G . , J. Polymer S c i . 1959 38, 73. Kawamura, T.; Uryu T.; Matsuzaki Κ. Makromol Chem. Rapid Comm. 1982, 3, 651 an Suparno, S.; Lacoste Polymer J. 1981, 13, 313. Jasse, B . ; Laupretre, F . ; Monnerie, L., Makromol. Chem. 1977, 178, 1987. Nguyen-Tran, T . M . ; Laupretre, F . ; Jasse, Β . , Makromol. Chem. 1980, 181, 125. Elgert, K.F.; Henschel, R . ; Schorn, H . ; Kosfeld, R., Polymer B u l l e t i n 1981, 4, 105. Tanaka, Y.; Sato, H . ; Saito, K . ; Miyashita, Κ., Makromol. Chem., Rapid Comm. 1980, 1, 551. Sato, H . ; Tanaka, Y.; Hatada, Κ., Makromol. Chem., Rapid Comm. 1982, 3, 175. Sato, H . ; Tanaka, Y.; Hatada, Κ., Makromol. Chem., Rapid Comm. 1982, 3, 181. Tanaka, Y.; Sato, H . ; Saito, K . ; Miyashita, Μ., Rubber Chem. and Technol. 1981, 54, 686. Sato, H . ; Tanaka, Y., paper published in the present volume. T o n e l l i , A.E., Macromolecules 1979, 12, 252. Yoon, D . Y . ; Flory, P.J., Macromolecules, 1977, 13, 562. Fujiwara, Y . ; Flory, P.J., Macromolecules 1970, 3, 43. Trumbo, D . L . ; Chen, T . K . ; Harwood, H.J., Macromolecules 1981, 14, 1138. Trumbo, D . L . ; Suzuki, T.; Harwood, H.J., Polymer B u l l e t i n 1981, 4, 677. Shepherd, L.; Chen, T . K . ; Harwood, H.J., Polymer B u l l e t i n 1979, 1, 445. Chen, T . K . ; Gerkin, T . A . ; Harwood, H.J., Polymer B u l l e t i n 1980, 2, 37. Chen, T . K . ; Harwood, H.J., Makromol. Chem., Rapid Comm. 1983, 4, 463. Randall, J . C . "Polymer Sequence Determination - Carbon-13 NMR Method," Academic Press: New York, 1977, pp 87-92, 116-119, and references cited therein. Suparno, S.; Lacoste, J.; Raynal, S.; Regnier, J.F.; Schue, F.; Sempere, R.; Sledz, J., Polymer J. 1980, 12, 861.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

NMR AND MACROMOLECULES

222 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38.

Inone, Y.; Nishioka, Α.; Chujo, R . , Makromol. Chem. 1972, 156, 207. Ueno, Α.; Schuerch, C . , J . Polym. Sci., Part Β 1965, 3, 53. Clark, E.G., J . Polym. Sci., Part C 1968, 16, 3455. Flory, P.J.; Williams, A . D . , J. Am. Chem. Soc. 1968, 91, 3118. Mercier, J.; Smets, G . , J. Polym. Sci., Part A 1963, 1, 1491. Hogen-Esch, T . E . ; Tien, C . F . , J. Polym. Sci., Part Β 1979, 17, 431. Hogen-Esch, T . E . ; Tien, C . F . , Macromolecules 1980, 13, 207. Suter, U.W.; Pucci, S.; Pino, P . , J . Am. Chem. Soc. 1975, 97, 1018. Stehling, F . ; Knox J . R . Macromolecules 1975 8 595 Suter, U.W.; Neuenschwander 528. Dworak, Α.; Harwood, H.J., to be published. Williams, A . D . ; Brauman, J.I.; Nelson, N.J.; Flory, P.J., J . Am. Chem. Soc. 1967, 89, 4807. Shepherd, L., Ph.D. Thesis, University of Akron, Akron, Ohio, 1979. Gray, G . , private communication of spectra. Williams, A . D . ; Flory, P.J., J . Am. Chem. Soc. 1969, 91, 3111. S c h i l l i n g , F . C . ; T o n e l l i , A.E., Macromolecules 1980, 13 270. T o n e l l i , A.E., Macromolecules 1983, 16 604.

RECEIVED

November 3, 1983

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

14 Stereospecific Polymerization of α-Olefins: End Groups and Reaction Mechanism 1

A. ZAMBELLI and P. AMMENDOLA Universita di Napoli, Naples, Italy 2

1

2

M. C. SACCHI and P. LOCATELLI Istituto di Chimica delle Macromolecole, Consiglio Nazionale delle Ricerche, Rome, Italy

The achievements concerning reaction mech­ anisms of α - o l e f i n polymerizations are summarized. The contributions of CNMR in this f i e l d , p a r t i c u l a r l y concerning the stereochemical structure of C enriched end groups, are discussed. 13

13

S i n c e t h e l a t e I 9 6 0 * s h i g h r e s o l u t i o n NMR became a n i n c r e a s i n g l y i m p o r t a n t method f o r i n v e s t i g a t i n g t h e structure o f macromolecules(1). The d e t a i l e d know­ ledge o f t h e molecular s t r u c t u r e so achieved had a l a r g e impact i n t h e f i e l d o f c o r r e l a t i o n s between s t r u c t u r e and p r o p e r t i e s o f s y n t h e t i c polymers and g r e a t l y h e l p e d t h e u n d e r s t a n d i n g o f t h e mechanism of polymerization reactions. P r o t o n and^3c NMR a n a ­ l y s e s have been e x t e n s i v e l y used f o r s t u d y i n g t h e mechanism o f s t e r e o s p e c i f i c p o l y m e r i z a t i o n o f (X-ole­ f i n s (1). I s o t o p i c s u b s t i t u t i o n has a l s o been v e r y h e l p f u l i n order to s i m p l i f y the spectra, t o increase t h e s e n s i t i v i t y a n d , even more i m p o r t a n t , i n remov­ i n g s t r u c t u r e degeneracy. I n t h i s c h a p t e r , we w i l l b r i e f l y s u m m a r i z e some of the r e s u l t s reported i n the l i t e r a t u r e concerning the mechanisms o f s t e r e o s p e c i f i c p o l y m e r i z a t i o n s o f o t - o l e f i n s a n d d i s c u s s some o f t h e l a t e s t r e s u l t s o b t a i n e d b y o u r r e s e a r c h g r o u p s v i a 13c NMR a n a l y s e s . 1

2

Current address: V i a Mezzocannone 4-80134, Naples, Italy. Current address: V i a Bassini 15A-20133, M i l a n , Italy.

0097-6156/ 84/ 0247-0223506.00/ 0 © 1984 American Chemical Society In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

NMR AND

224

Mechanism o f A d d i t i o n

MACROMOLECULES

t o t h e Double Bond

The s t r u c t u r e s o f t h e monomer u n i t s which c o u l d be ob­ t a i n e d by e i t h e r c i s o r t r a n s a d d i t i o n of t h e r e a c t i v e m e t a l - c a r b o n bond o f t h e a c t i v e s i t e o r t h e double bonds o f t h e C C - o l e f i n s a r e d e g e n e r a t e . Degeneracy can be removed by a p r o p e r i s o t o p i c s u b s t i t u t i o n on the monomer which i s t o be p o l y m e r i z e d . For instance, cis-l-d^-propene c o u l d g i v e polymer c h a i n u n i t s h a v i n g d i f f e r e n t s t r u c t u r e s ( 2 ) depending on t h e s t e r e o c h e m i ­ c a l mechanism o f a d d i t i o n , as shown i n t h e f o l l o w i n g scheme ( F i s h e r p r o j e c t i o n s ) !

p

CH~

Q 2.

Q

ι '

ι

H

H

D ci I

1 H

trans

H

addition

The s t r u c t u r e s o f t h e monomer u n i t s a c t u a l l y r e s u l t i n g from b o t h i s o t a c t i c and s y n d i o t a c t i c Z i e g l e r - N a t t a p o l y m e r i z a t i o n s o f c i s - l - d i -propene have been d e t e r ­ mined by IR and 3-H NMR. The a d d i t i o n s have been found

to be c i s ( 3 , M . Regiospecificity The i n s e r t i o n o f OC - o l e f i n s on t h e m e t a l - c a r b o n bond (Mt-R) o f t h e a c t i v e s i t e s c o u l d be e i t h e r p r i m a r y (or m e t a l t o C I ) o r s e c o n d a r y ( o r m e t a l t o C 2 ) .

Mt-R

+

cyi

primary i n s e r t i o n

Mt-CH CH(CH-)-R

secondary i n s e r t i o n

Mt-CK(CH~)CH -R

?

6

p

As r e p o r t e d i n t h e l i t e r a t u r e , t h e problem o f d e t e r ­ m i n i n g t h e a c t u a l type o f i n s e r t i o n f o r s y n d i o t a c t i c p o l y p r o p y l e n e has been f a c e d by o b s e r v i n g t h e amount o f i r r e g u l a r l y a r r a n g e d monomer u n i t s i n p o l y p r o p y l ­ ene and i n e t h y l e n e - p r o p y l e n e c o p o l y m e r s ( 5 - ? ) · The problem o f t h e r e g i o s p e c i f i c i t y o f t h e i n s e r t i o n has been r e c e n t l y i n v e s t i g a t e d by a n a l y z i n g t h e s t r u c t u r e o f t h e end groups o f b o t h s y n d i o t a c t i c and i s o t a c t i c polypropylene. S e l e c t i v e l y 13c e n r i c h e d polymers

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

14.

Z A M B E L L I ET AI

Stereospecific Polymerization of a-Olefins

225

have been p r e p a r e d i n t h e presence o f d i f f e r e n t c a t a ­ l y t i c s y s t e m s a n d a n a l y z e d b y 3 c NMR(8)· The 1 3 c NMR s p e c t r u m o f a s a m p l e o f s y n d i o t a c t i c poly-3-13Cp r o p y l e n e ( s a m p l e 1) p r e p a r e d i n t h e p r e s e n c e o f t h e c a t a l y t i c s y s t e m , VC14-A1(CH3)2^1 i s r e p o r t e d i n F i g ­ ure 1 . 1 . T h e r e s o n a n c e s a t 20.69, 2 0 . 8 7 , 21.54» a n d 2 1 . 7 4 PPm f r o m HMDS(9) h a v e b e e n a t t r i b u t e d t o t h e presence o f e n r i c h e d m e t h y l s o f i s o b u t y l end groups w h i l e t h e r e s o n a n c e a t 1 2 . 3 7 ppm h a s b e e n a t t r i b u t e d t o 3Q e n r i c h e d m e t h y l s o f η-propyl e n d g r o u p s . The l a s t resonance i s also observed i n t h e spectrum o f s y n d i o ­ t a c t i c p o l y - 3 ~ 3c-prοpy1ene p r e p a r e d i n t h e p r e s e n c e o f t h e c a t a l y s t , Y C I 4 - A I (C2H 4

a C o n c e n t r a t i o n s d e t e r m i n e d by i n t e g r a t e d a r e a m e a s u r e m e n t s . R e m a i n i n g c o n c e n t r a t i o n s d e t e r m i n e d by peak height m e a s u r e m e n t s . b

M e a s u r e d by G P C

c

M e a s u r e d by L A L L S

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

16.

R A N D A L L ET AL.

Radiation-Induced Changes in Polyethylene

251

Table V Structural Concentrations Following Thermal Degradation and Subsequent Irradiation of Marlex 6003 Polyethylene

Structural Unit

Saturated End Groups^ Vinyl End Groups^ Long-Chain Branches (Y) Butyl Branches Trans Double Bonds Cis Double Bonds Hydroperoxide Groups Carbonyl Groups M

w

M

n

χ 10-3 x 10-3

M /M w

n

pe 10,00 Heated 550 Κ Heated 550 Κ 24 h in Vacuum 24 h in Vacuum 1.0 Mrad a 550 Κ 18.6 14.8 1.9 2.3 1.6 2.0 1.9 N.D. 166b

18.6 9.4 3.6 3.1 1.9 1.8 1.9 N.D. 192b

13.1

14.8

12.4

12.9

a Concentrations determined by integrated area measurements. Remaining concentrations determined by peak height measurements, b Measured by G P C

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

252

NMR AND MACROMOLECULES

T a b l e VI S t r u c t u r a l C o n c e n t r a t i o n s F o l l o w i n g I r r a d i a t i o n o f N B S 1475

Structural Unit

N u m b e r o f U n i t s per 10,000 C a r b o n A t o m s 3.Mradb 8. M r a d Before 2. M r a d 4. M r a d Irradiatio

Saturated End Groups c Vinyl End Groups^ L o n g C h a i n Branches (Y) C i s D o u b l e Bonds T r a n s D o u b l e Bonds E t h y l Branches Butyl Branches Hydroperoxide Groups Carbonyl Groups M χ 10-3 M χ 10-3 M /M w

n

w

n

10.4 5.3 0.7 1.4 1.4 2.5 N.D. 1.8 N.D. 52.8d 18.1 2.9

13.0 2.0 0.9 3.6 2.7 3.2 N.D. 2.7 2.2 116d 21.8 5.3

12.9 2.8 1.0 1.6 1.5 4.0 N.D. 1.2 1.3 128d 22.3 5.7

15.1 —

1.3 2.9 5.1 4.3 N.D. 4.6 N.D. — — —

94.3 16.1 43.5C 1.9 2.6 4.1 4.4 2.5 1.3 35.8d 5.5 6.5

a S a m p l e p a r t i a l l y g e l l e d ; o b s e r v e d soluble c o m p o n e n t o n l y , b S a m p l e h e a t e d i n v a c u u m {§. 500 Κ f o r a p p r o x i m a t e l y 24 hours p r i o r to i r r a d i a t i o n , c C o n c e n t r a t i o n s d e t e r m i n e d by i n t e g r a t e d a r e a m e a s u r e m e n t s ; o t h e r c o n c e n t r a t i o n s d e t e r m i n e d by peak height m e a s u r e m e n t s , d M e a s u r e d by G P C .

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

16.

R A N D A L L ET A L .

Radiai ion-Induced

Changes in

Polyethylene

253

T h e n o m e n c l a t u r e e m p l o y e d t o d e s i g n a t e the v a r i o u s c a r b o n a t o m s in the s t r u c t u r a l m o i e t i e s m o n i t o r e d i n t h i s study is shown i n F i g u r e 1. T h e q u a n t i t a t i v e r e s u l t s g i v e n i n T a b l e s III t h r o u g h VI w e r e o b t a i n e d by d i v i d i n g the i n t e n s i t y o f one c a r b o n f r o m a s t r u c t u r a l m o i e t y by the t o t a l c a r b o n i n t e n s i t y f o r the e n t i r e s p e c t r u m and m u l t i p l y i n g by 10,000. T h i s g i v e s the r e s u l t i n t e r m s o f s t r u c t u r a l u n i t s per 10,000 c a r b o n a t o m s . F o r e x a m p l e , the t o t a l c a r b o n i n t e n s i t y (TCI) f o r a 1 3 c N M R s p e c t r u m o f h i g h d e n s i t y p o l y e t h y l e n e g i v e n by T C I = δ+δ+ + 3(s+a)

(1)

w h e r e " s " is the a v e r a g e i n t e n s i t y o b s e r v e d f o r the Is, 2s and 3s c a r b o n s and " a " is the a l l y l i c c a r b o n i n t e n s i t y f o r a t e r m i n a l v i n y l group. T h e δ+δ+ t e r m d o m i n a t e s because the r e p e a t i n g m e t h y l e n e units are by f a r the l a r g e s t c o n t r i b u t o r s to th Proportional intensities fo 5 t o 15 m m . F o r t u n a t e l y , f o r m e a s u r e m e n t s of l o n g c h a i n b r a n c h i n g , t h e r e are t h r e e α and t h r e e β carbons per Y b r a n c h ; Thus the α and β c a r b o n resonance i n t e n s i t i e s need o n l y t o be 9 m m i n o r d e r t o h a v e a s e n s i t i v i t y of one b r a n c h per 10,000 c a r b o n a t o m s . Molecular Weight Measurements A Waters M 150C gel permeation c h r o m a t o g r a p h ( G P C ) equipped w i t h four porous s i l i c a c o l u m n s : t w o S E 4000 s, one S E 500 and one P S M 60s ( a v a i l a b l e f r o m D u P o n t ) was used f o r molecular weight measurements. A Wilkes variable wavelength high t e m p e r a t u r e i n f r a r e d d e t e c t o r , also f r o m D u P o n t , was used i n s t e a d o f a r e f r a c t i v e index d e t e c t o r . L o w angle l a s e r l i g h t s c a t t e r i n g ( L A L L S ) m e a s u r e m e n t s w e r e made w i t h a C h r o m a t i x K M X - 6 unit c o u p l e d t o a D u P o n t M o d e l 830 s i z e e x c l u s i o n c h r o m a t o g r a p h . T h e c o l u m n set was the s a m e as t h a t e m p l o y e d i n the W a t e r s M 1 5 0 C G P C u n i t . T h e m o b i l e phase used i n these m e a s u r e m e n t s was 1,2,4-trichlorobenzene and the t e m p e r a t u r e was m a i n t a i n e d at 403 K . B o t h the c h r o m a t o g r a p h y and l i g h t s c a t t e r i n g m e a s u r e m e n t s w e r e made at the P h i l l i p s R e s e a r c h C e n t e r . f

Results T h e s t r u c t u r a l e n t i t i e s m o n i t o r e d as a f u n c t i o n o f absorbed dose and i r r a d i a t i o n c o n d i t i o n s are p r e s e n t e d i n F i g u r e 1. T h e n o m e n c l a t u r e f o r d e s c r i b i n g the v a r i o u s types o f c a r b o n a t o m s , as w e l l as the o b s e r v e d c h e m i c a l shifts ( f r o m an i n t e r n a l T M S standard), are also i n c l u d e d . T h e c h e m i c a l shifts o b s e r v e d f o r the Η - l i n k s t r u c t u r e are shown i n T a b l e II.

I r r a d i a t i o n of n - H e x a t r i a c o n t a n e ( E T C ) . Results from 1 3 c N M R m e a s u r e m e n t s on H T C i r r a d i a t e d t o 100 M r a d i n v a c u u m and at r o o m t e m p e r a t u r e (298 K ) in the s o l i d s t a t e and at 353 Κ i n the m o l t e n s t a t e are shown i n T a b l e III. T h e s p e c t r a f r o m w h i c h these d a t a w e r e o b t a i n e d

are shown i n F i g u r e s 2 and 3. T h e i r r a d i a t e d H T C was d i s s o l v e d i n p e r d e u t e r o b e n z e n e to f o r m a s a t u r a t e d s o l u t i o n ; it was s t i l l p o s s i b l e to

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

254

NMR A N D MACROMOLECULES

Vinyl End Groups

Saturated End Groups

— C H , — C H = CH

— CH.—ÇH —CH, ?

k

4%

a 33.89

3s 2s 1s 32.17 22.85 14.05

Trans Double Bonds

Cis Double Bonds

— CH.

CH = C H —CH,

/

\ CH -

a 27.45

\

a.

2

CH = CH

a

β -CH —CH —CH—CH —CH 2

2

2

4

0

33.14 26.83

*

ψ

8

α

2

2

/ * 30.47 27.30

2

2

2

?

II

k k

0

42.83 24.31

Isolated Butyl Branches 38.15 „

7

r

β

ρ

v

—CH —CH —CH —CH—CH —CH —CH 2

— CH —CH —

2

I

«

β

β

«

-CH —CH-—C

Isolated Ethyl Branches

~~~r

\

Carbonyl Groups

Hydroperoxide Groups

2

;

*

?

- C H - C H - C H - C H - C H ; , -

/

+ i 34.06 C H 26.74

30.47

2

I «

«

α

/

27.30

4

34.55

β

r

-CH;, — C H , -

ι

CH., 34.17

C H 29.51 i C H 23.36

CH3H.I8

;

!

*

C H , 14.09

Recurring Methylenes

Isolated LongChain Branches

r -CH.-

β

«

β

γ^α

-CH —CH —CH —CH —CH.?

:

r -CH 2

?

-(CH,) 29.98 n

« C H . 34.55 β C H , 27.30 7 C H 30.47 2

F i g u r e 1. Carbon-13 N M R C h e m i c a l Structural Entities Found in Polyethylene.

Shifts

and

Nomenclature

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

of

16.

R A N D A L L ET A L .

Radiât ion-Induced Changes in Polyethylene

n-HTC 100 Mrad @ 300 K

C6D6

255

I V||

4S

3S

1S

2S

TRANS -CH =

128

PPM, TMS

10

30

40

Figure 2. Carbon-13 N M R S p e c t r u m Irradiated in the Solid State.

of

n-Hexatriacontaine (HTC)

n-HTC 100 Mrad @ 355 K (MELT)

3S

C6D6

4S

2S

1S

-CHr

TRANS^

, S

128 4 i



1

28.62 V ac

E-

57

4

1

JL

OUI. 20

PPM, TMS

Figure 3. Carbon-13 N M R Spectrum Irradiated in the Molten State.

of

10

n-Hexatriacontane

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

(HTC)

256

NMR A N D MACROMOLECULES

o b t a i n t h e N M R d a t a a t 398 K, t h e t e m p e r a t u r e o f t h e p o l y e t h y l e n e measurements. B e n n e t t e t al.(2) i d e n t i f i e d t h e Η-link i n n-alkanes i r r a d i a t e d i n v a c u u m i n the m o l t e n s t a t e i n an i n i t i a l 1 3 c N M R s t u d y and r e p o r t e d t h e f i r s t N M R assignments. A c o r r e s p o n d i n g Η-link s p e c t r a l p a t t e r n was i d e n t i f i e d i n t h e p r e s e n t study a f t e r i r r a d i a t i o n o f H T C i n v a c u u m and i n t h e m o l t e n s t a t e . A m e t h i n e resonance, c o n f i r m e d by t h e p r e s e n c e o f a d o u b l e t upon o f f - r e s o n a n c e d e c o u p l i n g , was o b s e r v e d a t 41.01 p p m a t 398 K. A m e t h y l e n e r e s o n a n c e f r o m c a r b o n s β t o t h e m e t h i n e c a r b o n s o f t h e Η-link, was o b s e r v e d at 28.62 ppm. T h e r e l a t e d α and Y m e t h y l e n e c a r b o n resonances w e r e n o t e d a t 30.47 and 30.60 ppm, r e s p e c t i v e l y , as i n d i c a t e d by B e n n e t t et al f o r n-alkanes. A s o m e w h a t d i f f e r e n t s i t u a t i o n is e n c o u n t e r e d i n p o l y e t h y l e n e because t h e s t r o n g b a c k b o n e m e t h y l e n e r e s o n a n c e at 29.98 ppm and lines a s s o c i a t e d w i t h Y b r a n c h e s and end groups t e n d t o obscure a r e s o n a n c e s f r o m t h e Η-link t h e H T C Η-link is s i m i l a r t o t h a t r e p o r t e d by B e n n e t t f o r l o w e r m o l e c u l a r w e i g h t n-alkanes a l t h o u g h t h e m e t h i n e c h e m i c a l s h i f t was a p p r o x i m a t e l y 2 ppm t o l o w e r f i e l d . B y l o w e r i n g the t e m p e r a t u r e t o 323 Κ and p r e p a r i n g t h e s a m p l e i n a m i x e d s o l v e n t o f p e r d e u t e r o c h l o r o f o r m and 1,2,4t r i c h l o r o b e n z e n e , we w e r e able t o observe t h e Η-link m e t h i n e r e s o n a n c e s h i f t f r o m 41.01 t o 39.95 ppm, w h i c h is c l o s e r t o t h e 39.5 p p m v a l u e r e p o r t e d by B e n n e t t et al f o r r o o m t e m p e r a t u r e m e a s u r e m e n t s i n p e r d e u t e r o c h l o r o f o r m . Thus under t h e c o n d i t i o n s s e l e c t e d f o r a s t u d y o f p o l y e t h y l e n e s , t h e Η-link m e t h i n e resonance should be e x p e c t e d t o r e s i d e near 41 ppm. T h e β m e t h y l e n e resonance should be v i s i b l e near 28.6 ppm a l t h o u g h t h e α and Y r e s o n a n c e s would l i k e l y be t o t a l l y o b s c u r e d by t h e v e r y s t r o n g δ δ r e s o n a n c e a t 29.98 ppm. N o t e also t h a t t h e m i n i m u m d e t e c t a b l e c o n c e n t r a t i o n f o r H - l i n k s should be h i g h e r t h a n t h a t f o r Y branches because t h e f o r m e r has f o u r α, β, γ carbons p e r s t r u c t u r a l u n i t , w h e r e a s t h e l a t t e r has t h r e e α, β, γ carbons per s t r u c t u r a l u n i t . B o v e y et αΖ.(3) also o b s e r v e d b o t h H - l i n k s and Y branches i n a n N M R study o f a n o r m a l a l k a n e i r r a d i a t e d i n v a c u u m i n t h e m o l t e n s t a t e . T h e l o n g c h a i n Y b r a n c h was easy t o r e c o g n i z e i n t h e present s t u d y b e c a u s e o f the p r e s e n c e o f a m e t h i n e r e s o n a n c e at 38.19 ppm, an α m e t h y l e n e r e s o n a n c e a t 34.55 ppm and a β m e t h y l e n e resonance a t 27.30 ppm. T h e s e a s s i g n m e n t s are i n e x c e l l e n t a g r e e m e n t w i t h those o f B o v e y et al. (3) and c o r r e s p o n d c l o s e l y t o the m e t h i n e and α, β m e t h y l e n e r e s o n a n c e s o b s e r v e d f o r an e t h y l e n e - l - o c t e n e c o p o l y m e r as shown below: +

+

C h e m i c a l Shifts Y B r a n c h (3)

Carbon Methine α Methylene β Methylene

38.19 ppm (TMS) 34.55 27.30

Backbone C h e m i c a l Shifts Ethylene-l-Octene Copolymer 38.16 ppm ( T M S ) 34.53 27.27

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

16.

R A N D A L L ET A L .

Radiation-Induced Changes in Polyethylene

257

The results shown in Table III demonstrate that when H T C is irradiated in the molten state both H-links and Y branches as well as cis and trans double bonds are formed. In contrast, irradiation at room temperature produces principally trans double bonds. The linked structures formed during melt irradiation are present in reasonably comparable amounts. The number of saturated end groups, as determined by spectral integration, was not significantly affected by irradiations to 100 Mrad in either the molten or solid state. Finally, it should be pointed out that the radiation yields for structures produced by a 100 Mrad irradiation of H T C are quite low. The G values for the most abundant radiation products are less than one. Irradiation of Marlex 6003 Polyethylene. Results of 13c N M R measurements on Phillips Marlex 6003 polyethylene both prior to and just following a 2.0 Mrad irradiatio Table IV. The spectra fro in Figures 4 and 5. These results indicate that irradiation of high density polyethylene in vacuum in the solid state reduces the concentration of terminal vinyl unsaturations and increases the concentrations of long chain Y branches, saturated end groups and trans double bonds. The H link could not be detected following an irradiation of Marlex 6003 in the solid state. The 13c N M R spectrum of thermally degraded Marlex 6003 is shown in Figure 6. The sample was heated in vacuum at 550 Κ for 24 hours. It is clear that this treatment produced additional terminal vinyl unsaturations, saturated end groups and both short and long chain branches. A subsequent irradiation to only 1.0 Mrad in vacuum at 550 Κ resulted in a reduction in terminal vinyl unsaturation and an increase in the number of Y branches. No resonances from an Η-link could be detected. Judging from the yield of H-links in the model H T C irradiations, we should not expect to detect the presence of H-links because the level should be below 0.5 per 10,000 carbons. The copious yield of Y branches formed after irradiation may be related to the substantial quantity of terminal vinyl unsaturation produced by thermal degradation. Complete quantitative data is given in Table V. It is interesting that irradiations more extensive than 1.0 Mrad at 550K produced partially gelled polyethylene samples. A spectrum of non-gelled polyethylene produced by the combination of thermal degradation and 1.0 Mrad irradiation is shown in Figure 7. Results of measurements on Marlex 6003 irradiated to 4.0 Mrad in air are also included in Table IV. The spectrum from which these data were obtained is shown in Figure 8. These results indicate that the radiolytic oxidation of solid high density polyethylene produces an increase in the concentration of hydroperoxide and carbonyl groups with an accompanying drastic reduction in both the number average and weight average molecular weights of the polymer. Irradiation of NBS 1475 Polyethylene. Results of 13c NMR measurements on NBS 1475 both prior to and following 2.0 and 4.0 Mrad irradiations in vacuum at room temperature are shown in Table VI. The spectra which were used to determine the concentrations listed in Table VI are shown in

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

258

NMR AND MACROMOLECULES

6003 ΡΕ

UNIRRADIATED

PPMJMS

40

'

,-δΥ

30

20

10

F i g u r e 4. C a r b o n - 1 3 N M R S p e c t r u m o f P h i l l i p s M a r l e x 6003 P r i o r Irradiation.

to

6003 P E 2 Mrad @ 300 Κ

3S

at I

PPM, TMS

40

'

30

2S

20

10

F i g u r e 5. C a r b o n - 1 3 N M R S p e c t r u m o f P h i l l i p s M a r l e x 6003 I r r a d i a t e d i n the S o l i d S t a t e .

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

16.

R A N D A L L ET A L .

Radiât ion-Induced Changes in Polyethylene

6003 P E

+

24h @ 550 K N O IRRADIATION

l

/

d

259

+ à

3S

CH

PPM, TMS

10

40

F i g u r e 6. C a r b o n - 1 3 N M R S p e c t r u m of P h i l l i p s M a r l e x 6003 H e l d at K i n V a c u u m for 24 H o u r s .

6003 PE 24h @ 550 Κ 1 Mrad @ 550 Κ

j I

550

A

t

at

3S

2S

1S

CH

PPM, TMS 40

10

F i g u r e 7. C a r b o n - 1 3 N M R S p e c t r u m of P h i l l i p s M a r l e x 6003 H e l d at Κ i n V a c u u m for 24 H o u r s and I r r a d i a t e d at 550 K .

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

550

260

NMR AND MACROMOLECULES

F i g u r e s 9 and 10. T h e r e s u l t s f o r N B S 1475 are s i m i l a r t o those o b t a i n e d f r o m the study o f M a r l e x 6003 a f t e r i r r a d i a t i o n i n the s o l i d s t a t e . O n c e a g a i n , the c o n c e n t r a t i o n s o f l o n g c h a i n Y branches, s a t u r a t e d end groups and t r a n s double bonds a p p a r e n t l y i n c r e a s e w i t h i r r a d i a t i o n w h i l e the c o n c e n t r a t i o n s o f t e r m i n a l v i n y l groups d e c r e a s e w i t h i r r a d i a t i o n . T h e r e is some s c a t t e r i n the d a t a as might be e x p e c t e d f o r c o n c e n t r a t i o n s measured i n the range o f 1-3 per 10,000 c a r b o n a t o m s . A s was t h e ease for M a r l e x 6003, the p r e s e n c e o f any a p p r e c i a b l e q u a n t i t y o f H - l i n k s was not d e t e c t e d . Thus the Η - l i n k c o n c e n t r a t i o n must be w e l l b e l o w one per 10,000 c a r b o n a t o m s . A p r e f e r e n c e f o r Y b r a n c h f o r m a t i o n has been c o n s i s t e n t l y o b s e r v e d i n the studies of i r r a d i a t e d M a r l e x 6003 and N B S 1475 p o l y e t h y l e n e s . N B S 1475 p o l y e t h y l e n e was also s u b j e c t e d to t h e r m a l d e g r a d a t i o n for 24 hours at 500 Κ and t h e n i r r a d i a t e d i n v a c u u m also at 500 Κ t o 3.0 M r a d . The quantitative result s p e c t r u m w h i c h y i e l d e d thes i n d i c a t e d i n F i g u r e 11, the f o r m e r l y l i n e a r N B S 1475 is now e x t e n s i v e l y long chain branched. F r o m a c o m p a r i s o n of r e l a t i v e peak a r e a s , the c o n c e n t r a t i o n o f l o n g c h a i n branches is now a p p r o x i m a t e l y 44 per 10,000 carbon atoms. T h e r e are t w o more p r o d u c t s f o r m e d under t h e s e conditions: the c o n c e n t r a t i o n of s a t u r a t e d end groups is now 94 per 10,000 c a r b o n a t o m s and the c o n c e n t r a t i o n o f t e r m i n a l v i n y l groups is 16 per 10,000 c a r b o n a t o m s . T h e c o m b i n e d t h e r m a l and i r r a d i a t i o n t r e a t m e n t s c o n v e r t e d a high d e n s i t y p o l y e t h y l e n e (0.978) t o a m e d i u m d e n s i t y (0.947) p o l y e t h y l e n e w i t h o u t i n t r o d u c i n g short c h a i n b r a n c h e s or d r a m a t i c a l l y i n c r e a s i n g the m o l e c u l a r w e i g h t . T h e m o l e c u l a r weight m e a s u r e m e n t s made on t h i s s a m p l e show t h a t both the number a v e r a g e and w e i g h t average m o l e c u l a r w e i g h t s d e c r e a s e d f o l l o w i n g the c o m b i n e d t h e r m a l t r e a t m e n t and i r r a d i a t i o n . E x t r e m e l y weak resonances w e r e p e r c e p t i b l e near 41.1 ppm and 28.6 p p m , w h i c h suggests t h a t H - l i n k s w e r e also f o r m e d d u r i n g the h i g h t e m p e r a t u r e m e l t i r r a d i a t i o n . T h e Η - l i n k c o n c e n t r a t i o n is e s t i m a t e d at a p p r o x i m a t e l y 1 per 10,000 c a r b o n a t o m s . R e s u l t s o f m e a s u r e m e n t s on a s a m p l e o f N B S 1475 i r r a d i a t e d t o 8.0 M r a d i n v a c u u m at 300 Κ are also shown in T a b l e V I . T h e s p e c t r u m f r o m w h i c h these d a t a w e r e o b t a i n e d is shown i n F i g u r e 12. T h i s e x p e r i m e n t was the o n l y one p e r f o r m e d i n this study w h e r e the g e l dose was e x c e e d e d . A n a t t e m p t was made t o d i s s o l v e the e n t i r e s a m p l e i n 1,2,4t r i c h l o r o b e n z e n e but o n l y a c l e a r s w o l l e n g e l was the r e s u l t . The subsequent 1 3 c N M R s p e c t r u m i n d i c a t e d t h a t o n l y the m o b i l e , s o l u b l e component p r o d u c e d o b s e r v a b l e resonances. The only significant s t r u c t u r a l unit i d e n t i f i e d in the s o l u b l e c o m p o n e n t was t r a n s double bonds; a t r a c e amount o f l o n g c h a i n Y branches was also o b s e r v e d , but H - l i n k s c o u l d not be d e t e c t e d i n the soluble f r a c t i o n .

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

16.

R A N D A L L ET A L .

Radiation-Induced Changes in Polyethylene

6003 P E 4 M r a d IN A I R 300 K

261

M /

PPM, TMS 40

3

20

0

10

F i g u r e 8. C a r b o n - 1 3 N M R S p e c t r u m of P h i l l i p s M a r l e x 6003 I r r a d i a t e d i n A i r i n the S o l i d S t a t e .

N B S 1475 UNIRRADIATED

++

δ

β

3$ at ΉΡ

PPM,TMS

40

ac ο

,

β

2S

,

30

20

10

F i g u r e 9. C a r b o n - 1 3 N M R S p e c t r u m o f N B S 1475 P r i o r to I r r a d i a t i o n .

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

262

NMR AND MACROMOLECULES

N B S 1475 4 Mrad @ 300 Κ

f$

3S

«c=o

PPM, TMS

Figure 10. State.

-ÇH

rt'\

a

40

20

30

10

Carbon-13 NMR Spectrum of NBS 1475 Irradiated in the Solid

NBS1475 24h @500K 3 Mrad @ 500 Κ

3S

1S

-CH

37.51 ,at

PPMJMS

20

Figure 11. Carbon-13 NMR Spectrum of NBS 1475 Held at 500K for 24 Hours and Irradiated at 500K.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

16.

R A N D A L L ET A L .

Radiation-Induced Changes in Polyethylene

N B S 1475 8 Mrad @ 300 K

PPM, T M S

40

>

30

263

μψ

20

10

F i g u r e 12. C a r b o n - 1 3 N M R S p e c t r u m of N B S 1475 I r r a d i a t e d t o 8 M r a d in the S o l i d S t a t e (Soluble P o r t i o n O n l y ) .

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

NMR A N D MACROMOLF.CULES

264 Discussion

Radiation induced structural changes i n p o l y e t h y l e n e have been i n v e s t i g a t e d f o r o v e r 30 y e a r s . These studies have shown t h a t the p r i n c i p a l c h e m i c a l changes w h i c h o c c u r d u r i n g i r r a d i a t i o n are: (1) p r o d u c t i o n o f m o l e c u l a r h y d r o g e n , (2) p r o d u c t i o n o f t r a n s double bonds, (3) d i s a p p e a r a n c e o f t e r m i n a l v i n y l u n s a t u r a t i o n s and (4) p r o d u c t i o n o f i n t e r m o l e c u l a r l i n k s . A l t h o u g h the p r o d u c t i o n of m o l e c u l a r h y d r o g e n was not m o n i t o r e d i n t h i s study, 13c N M R was an e x c e l l e n t t e c h n i q u e to f o l l o w the p r o d u c t i o n o f i n t e r n a l double bonds, i n t e r m o l e c u l a r l i n k s and the d i s a p p e a r a n c e o f t e r m i n a l v i n y l groups. A d d i t i o n a l l y , it was o b s e r v e d t h a t s a t u r a t e d end groups are a p p a r e n t l y p r o d u c e d d u r i n g i r r a d i a t i o n o f p o l y e t h y l e n e The production o p o l y e t h y l e n e has been s t u d i e infrared spectroscopy. A l t h o u g h c i s double bonds w e r e probably c o n s i d e r e d as a p r o d u c t o f i r r a d i a t i o n , c o n v e n t i o n a l i n f r a r e d methods c o u l d not be used to m o n i t o r the f o r m a t i o n of c i s double bonds. T h e 1 3 c N M R r e s u l t s r e p o r t e d i n t h i s study show t h a t b o t h c i s and t r a n s double bonds are p r o d u c e d d u r i n g i r r a d i a t i o n of m o l t e n p o l y e t h y l e n e w h i l e trans double bond formation predominates during irradiation of solid p o l y e t h y l e n e . In the i r r a d i a t e d c r y s t a l l i n e H T C and i n the soluble p o r t i o n of a p a r t i a l l y g e l l e d N B S 1475 p o l y e t h y l e n e , w h i c h had been i r r a d i a t e d to 8.0 M r a d , t r a n s double bonds were the major p r o d u c t f o r m e d . These r e s u l t s suggest t h a t t r a n s double bonds are a major p r o d u c t p r o d u c e d upon i r r a d i a t i o n i n the c r y s t a l l i n e regions of p o l y e t h y l e n e w h i l e b o t h c i s and t r a n s double bonds are f o r m e d i n amorphous r e g i o n s . T h e d i s a p p e a r a n c e o f t e r m i n a l v i n y l groups d u r i n g i r r a d i a t i o n o f p o l y e t h y l e n e has also been s t u d i e d by many i n v e s t i g a t o r s who u t i l i z e d i n f r a r e d methods. T h e 1 3 c N M R r e s u l t s r e p o r t e d i n this study are s i m i l a r to the i n f r a r e d r e s u l t s r e p o r t e d by O k a d a and M a n d e l k e r n (6). L y o n s (7,8) and M a n d e l k e r n (6) have proposed t h a t v i n y l d i s a p p e a r a n c e is r e l a t e d t o the f o r m a t i o n o f r a d i a t i o n i n d u c e d l i n k s i n p o l y e t h y l e n e . M a n d e l k e r n has also proposed t h a t v i n y l d i s a p p e a r a n c e is r e l a t e d to a d e c r e a s e i n the p r o d u c t i o n o f m o l e c u l a r h y d r o g e n d u r i n g i r r a d i a t i o n (6). O n e o f the major new s t r u c t u r a l units i d e n t i f i e d i n the p r e s e n t study of i r r a d i a t e d p o l y e t h y l e n e s is the l o n g c h a i n Y b r a n c h , w h i c h f o r m s d u r i n g i r r a d i a t i o n o f p o l y e t h y l e n e s i n v a c u u m b o t h in the s o l i d s t a t e and i n the high t e m p e r a t u r e m o l t e n s t a t e . L o n g c h a i n Y b r a n c h e s are also f o r m e d i n H T C i r r a d i a t e d i n v a c u u m i n the m o l t e n s t a t e , as p r e v i o u s l y n o t e d by B o v e y et ah (3) a f t e r i r r a d i a t i o n of n-alkanes i n the m o l t e n s t a t e . T h e N M R r e s u l t s shown i n T a b l e s IV, V and VI d e m o n s t r a t e t h a t the t e r m i n a l v i n y l group c o n c e n t r a t i o n d e c r e a s e s as the l o n g c h a i n Y b r a n c h c o n c e n t r a t i o n i n c r e a s e s . U p o n c o m p a r i n g the r e s u l t s f r o m the i r r a d i a t e d N B S 1475 to those o b t a i n e d f r o m i r r a d i a t e d M a r l e x 6003, it was noted t h a t the y i e l d o f l o n g c h a i n Y branches was g r e a t e r for M a r l e x 6003, w h i c h had a g r e a t e r i n i t i a l t e r m i n a l v i n y l c o n c e n t r a t i o n . A l t h o u g h some c a u t i o n should be e x e r c i s e d because N B S 1475 c o n t a i n e d an a n t i o x i d a n t w h e r e a s M a r l e x 6003 d i d not, these o b s e r v a t i o n s do suggest t h a t some o f

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

16.

R A N D A L L ET A L .

Radiation-Induced Changes in Polyethylene

265

the t e r m i n a l v i n y l groups m a y be r e a c t i n g w i t h s e c o n d a r y a l k y l r a d i c a l s t o f o r m l o n g c h a i n Y b r a n c h r a d i c a l s . S u c h a hypothesis was f i r s t a d v a n c e d by B . J . Lyons(7) as shown b e l o w : ~CH2 ^CH- + ~CH2

CH2=CH-CH2~-

~ CH2. > ^CH-CH2-CH-CH2^

(2)

~CK2

T h e subsequent r e a c t i o n s o f the Y b r a n c h r a d i c a l are u n k n o w n at t h i s t i m e ; a l t h o u g h c h a i n t r a n s f e r t o f o r m a l o n g c h a i n Y b r a n c h appears t o be a likely possibility. Thus Y b r a n c h f o r m a t i o n w o u l d r e s u l t f r o m a p r o p a g a t i n g s t e p i n the f r e e r a d i c a l c h e m i s t r y , as opposed t o a t e r m i n a t i n g s t e p w h i c h is r e q u i r e d t o p r o d u c e H - l i n k s . T h e r e is also no e x p l a n a t i o n f o r the o b s e r v a t i o n t h a t the d i s a p p e a r a n c e o f t e r m i n a l v i n y l groups e x c e e d s t h e f o r m a t i o v i n y l d i s a p p e a r a n c e and establishment of a satisfactory mechanism accounting for a l l the observed p r o d u c t s must a w a i t f u r t h e r e x p e r i m e n t a l e v i d e n c e . S t r o n g support f o r L y o n s ' h y p o t h e s i s is p r o v i d e d by the e x p e r i m e n t a l r e s u l t s o f M a n d e l k e r n et αϊ.(6), w h i c h show t h a t the g e l dose f o r h y d r o g e n a t e d p o l y e t h y l e n e is a p p r o x i m a t e l y t h r e e t i m e s t h a t of the s a m e p o l y e t h y l e n e c o n t a i n i n g one t e r m i n a l v i n y l group per m o l e c u l e . T h e r e s u l t s o f the present study, w h i c h p r o d u c e d the f i r s t d i r e c t d e t e c t i o n o f r a d i a t i o n i n d u c e d l o n g c h a i n b r a n c h i n g i n p o l y e t h y l e n e , also supports L y o n s ' h y p o t h e s i s . T h e most i m p o r t a n t f i n d i n g i n t h i s study is t h a t the y i e l d o f l o n g c h a i n Y branches appears t o be m u c h g r e a t e r t h a n the y i e l d o f H - l i n k s w h e n p o l y e t h y l e n e is i r r a d i a t e d i n v a c u u m i n the s o l i d s t a t e w i t h absorbed doses less t h a n the g e l dose. T h e Η - l i n k c o u l d p o s s i b l y be d e t e c t e d i n o n l y one p o l y e t h y l e n e s a m p l e and t h a t was a f t e r N B S 1475 was h e a t e d t o 500 Κ for 24 hours i n v a c u u m and subsequently i r r a d i a t e d i n v a c u u m t o 3.0 M r a d at 500 K . T h e r e are t w o possible e x p l a n a t i o n s as to w h y the Η - l i n k went u n o b s e r v e d i n the 13c N M R s p e c t r a of the o t h e r i r r a d i a t e d p o l y e t h y l e n e s : (1) the Η - l i n k c o u l d have r e m a i n e d b e l o w the d e t e c t i o n l i m i t o f a p p r o x i m a t e l y 0.5 units p e r 10,000 c a r b o n a t o m s or (2) the H - l i n k s possessed so l i t t l e m o l e c u l a r m o b i l i t y as to go u n o b s e r v e d b e c a u s e o f e i t h e r d i p o l a r b r o a d e n i n g or r e l a x a t i o n e f f e c t s . T h e l a t t e r e x p l a n a t i o n is not e n t i r e l y p l a u s i b l e because the p o l y e t h y l e n e m a t r i x s u r r o u n d i n g t h e fl­ u n k is s u f f i c i e n t l y m o b i l e t o p e r m i t an o b s e r v a t i o n o f o t h e r s t r u c t u r a l s p e c i e s . A l s o the e x i s t e n c e o f p e r s i s t e n t d i p o l a r i n t e r a c t i o n s w i t h i n a n H l i n k w o u l d r e q u i r e it t o be s u b s t a n t i a l l y less m o b i l e t h a n a l o n g c h a i n Y b r a n c h . It is reasonable to c o n c l u d e t h a t the f o r m a t i o n o f l o n g c h a i n Y branches i n p o l y e t h y l e n e i r r a d i a t e d w i t h absorbed doses less t h a n the g e l dose is s i g n i f i c a n t l y more i m p o r t a n t t h a n t h e f o r m a t i o n o f H - l i n k s . P e r h a p s the most s u r p r i s i n g r e s u l t o b t a i n e d in t h i s study was the c o n s i s t e n t o b s e r v a t i o n o f an apparent s m a l l i n c r e a s e i n s a t u r a t e d end group c o n c e n t r a t i o n f o l l o w i n g i r r a d i a t i o n o f s o l i d p o l y e t h y l e n e s i n v a c u u m , w i t h no a c c o m p a n y i n g d e c r e a s e i n the number a v e r a g e m o l e c u l a r w e i g h t o f the p o l y e t h y l e n e s (Tables IV and VI). T h i s a p p a r e n t i n c r e a s e i n s a t u r a t e d end group c o n c e n t r a t i o n is not w e l l u n d e r s t o o d at t h i s t i m e but c o u l d a r i s e f r o m s a t u r a t i o n o f t e r m i n a l v i n y l groups d u r i n g i r r a d i a t i o n or f r o m m i g r a t i o n o f the t e r m i n a l v i n y l group to an i n n e r p o s i t i o n i n the

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

NMR AND MACROMOLECULES

266

chain. Radiation induced scission through β cleavage could also lead to saturated end groups but appears unlikely because of the observed reduced content of terminal vinyl groups and the absence of sufficient linking products to account for the difference:

— CH2CH2CHCH2CH2

^ ~CH2CH2CH=CH2

+

-CH2~

(3)

This reaction is known to occur during thermal degradation of polyethylene but proof of its contribution to the products formed during irradiation of polyethylenes in the solid state will have to await further evidence. As can be seen in Tables IV and V, high temperature thermal degradation of polyethylene in vacuum leads to the formation of terminal vinyl unsaturation, saturated end groups butyl branches and long chain Y branches. Following therma concentrations of termina close to the change in the observed concentration of saturated end groups. This result strongly supports the occurrence of β cleavage during thermal degradation in vacuum at temperatures of 500-550 K . A subsequent irradiation in vacuum at 500-550 Κ leads to an increase in molecular weight, a substantial increase in long chain Y branches and a loss of terminal vinyl groups. These results demonstrate that long chain Y branches can be a product of thermal degradation and that this reaction can be enhanced by irradiation although there is no longer a material balance between the formation of Y branches and the loss of terminal vinyl groups. There must be a relationship between the initial terminal vinyl content and radiation induced formation of Y branches because the yield of radiation induced Y brances is directly proportional to the initial concentration of terminal vinyl groups in the polyethylene. Finally, irradiation of polyethylene in the solid state in the presence of air precludes many of the products observed following irradiation in vacuum. There is a drastic reduction in molecular weight and a substantially reduced yield of long chain Y branches. There is still a loss of terminal vinyl groups and an apparent increase in the number of saturated end groups as shown in Table IV. The hydroperoxide and carbonyl content increase as expected. Overall, these observations demonstrate that radiolytic oxidation reactions are effective competing reactions to the linking reactions observed following vacuum irradiations. v

Conclusions 1.

2. 3.

4.

Long chain Y branches are one of the principal products formed during irradiation of high density polyethylenes in vacuum both in the solid and molten states at absorbed doses below the gel dose. The concentration of H-links remained below 0.5 per 10,000 carbon atoms for absorbed doses less than the gel dose. Cis double bonds are formed during both ambient and high temperature irradiations of polyethylenes but appear restricted to amorphous regions of solid polyethylenes. Saturated end groups are apparently produced during irradiation of polyethylene.

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

16. 5. 6.

7.

8.

R A N D A L L

E T A L .

Radiation-Induced Changes in Polyethylene

267

T r a n s double bonds appear to be a major p r o d u c t f o r m e d i n the c r y s t a l l i n e regions o f i r r a d i a t e d p o l y e t h y l e n e s . I r r a d i a t i o n o f s o l i d p o l y e t h y l e n e i n the p r e s e n c e o f a i r leads t o a r e d u c t i o n i n the c o n c e n t r a t i o n s o f branches, an i n c r e a s e i n the c o n c e n t r a t i o n s o f h y d r o p e r o x i d e and c a r b o n y l groups and a d e c r e a s e in m o l e c u l a r w e i g h t . T h e r m a l d e g r a d a t i o n o f p o l y e t h y l e n e i n v a c u u m leads t o c h a i n s c i s s i o n w i t h the p r o d u c t i o n o f a d d i t i o n a l s a t u r a t e d and v i n y l end groups and b o t h short and l o n g c h a i n b r a n c h e s . T h e f o r m a t i o n o f l o n g c h a i n Y b r a n c h e s appears t o be r e l a t e d t o the d i s a p p e a r a n c e of t e r m i n a l v i n y l groups i n i r r a d i a t e d p o l y e t h y l e n e .

T h i s study p r o v i d e s a m e t h o d o f c h a r a c t e r i z a t i o n t h a t c a n be u s e f u l l y a p p l i e d by o t h e r s i n studies o f i r r a d i a t e d p o l y e t h y l e n e s and o t h e r polymers. U s e o f the p o w e r f u further significant informatio

A c k n o w l e dgments T h e a u t h o r s thank M r . J . R . D o n a l d s o n of the P h i l l i p s P e t r o l e u m C o m p a n y for p e r f o r m i n g the l i q u i d 13c N M R m e a s u r e m e n t s . T h e authors also w i s h to thank M r . C . H . L e i g h of the P h i l l i p s P e t r o l e u m C o m p a n y f o r p e r f o r m i n g b o t h the G P C and L A L L S analyses. S e v e r a l s t i m u l a t i n g discussions w i t h D r . D . L . V a n der H a r t of the U . S . N a t i o n a l B u r e a u of Standards and w i t h D r . J . D . H o f f m a n o f the U n i v e r s i t y o f M a r y l a n d also c o n t r i b u t e d to t h i s w o r k .

Literature Cited 1. 2. 3. 4. 5. 6. 7. 8.

Fischer, H.; Langbein, W. Kolloid Ζ 1967, 216-217, 329. Bennett, R. L.; Keller, Α.; Stejny, J.; Murray, M. J. Polym. Sci., Polym. Chem. Ed. 1976, 14, 3027. Bovey, F. Α.; Schilling, F. C.; Cheng, Η. N. in "Advances in Chemistry Series No. 169"; Allara, D. L.; Hawkins, W. L., Eds.; American Chemical Society: Washington, D.C., 1978; pp. 133-141. Randall, J. C.; Zoepfl, F. J.; Silverman, J. Makromol, Chemie, Rapid Commun. 1983, 4, 149. Hoeve, C. A . J.; Wagner, H. L.; Verdier, P. H. J. Res. Nat. Bur. Stand., Part A 1972, 76, 137. Mandelkern, L. in "The Radiation Chemistry of Macromolecules," Vol. 1, Dole, M. Ed.; Academic Press: N.Y., 1972; Chapter 13. Lyons, B. J . Polym. Prepr., Am. Chem. Sec., Div. Polym. Chem. 1967, 8, 672. Lyons, B. J . in "International Conference on Radiation Processing for Plastics and Rubber"; The Plastics Institute: London (UK), 1981; Chapter 5.

RECEIVED October 24, 1983 In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Author Index L i n , Y.-Y., 67 L o c a t e l l i , P., 223 L y e r l a , J . R., 83 McKay, R. Α., 43 N i s h i o k a , A t s u o , 119 O ' D o n n e l l , D. J . , 21 Ohuchi, Muneki, 119 R a n d a l l , J . C., 131,245 S a c c h i , M. C., 223 S a t o , H i s a y o , 181 S c h a e f e r , J a c o b , 43 S e f c i k , M. D., 43 S i l v e r m a n , J o s e p h , 245 S t e j s k a l , Ε. 0., 43 Yasuyuki

Ammendola, P., 223 Bovey, F. A., 3 C a i s , R u d o l f Ε., 43,153 Carman, C. J . , 167 Chen, Teng-Ko, 197 D i x o n , W. T., 43 Dumais, J . J . , 55 E n g e l , Α. Κ., 55 F l e m i n g , W. W., 83 Gray, George A., 97 Harwood, H. James, 197 H i k i c h i , K u n i o , 119 H i r a o k i , T o s h i f u m i , 119 Home, S. E. , J r . , 167 H s i e h , Ε. Τ., I n g l e f i e l d , P.T. J e l i n s k i , L. W. J o n e s , A l a n Anthony, 67 Kometani, J a n e t Μ., 153 K o m o r o s k i , R. A., 167 L i n , Fu-Tyan, 197

Y a n n o n i , C. S., 83 Z a m b e l l i , A., 223 Z o e p f l , F. J . , 245

Subject Index A r e g i c PVF, r e g i o s e q u e n c e d i s t r i b u t i o n s , 160-63 A r o m a t i c C-1 r e s o n a n c e , e p i m e r i z e d i s o t a c t i c PS, 202-11 A t a c t i c p o l y p r o p y l e n e , ^C s p e c t r a , 7 A t t a c h e d p r o t o n t e s t (APT), o p t i m i z i n g s e n s i t i v i t y , 99

A A c q u i s i t i o n t i m e , i r r a d i a t e d ΡΕ, 247 A c y c l i c terpenes C NMR o f n a t u r a l p o l y i s o p r e n e s , 234 c h e m i c a l s h i f t s , 238 Adsorption e f f e c t s , separation o f s t y r e n e o l i g o m e r s , 182 A i r , e f f e c t , PE i r r a d i a t i o n , 266 A l i p h a t i c carbon s i g n a l s i n c i s p o l y i s o p r e n e , 241f,243f A l k y l r a d i c a l s , secondary, i r r a d i a t e d PE, 265 Aluminum c o m p l e x e s , 2D NMR, 116 Amplitude modulation, h e t e r o n u c l e a r s p i n c o u p l i n g , 99 Angular displacements, r i n g r o t a t i o n s i n PS, 52 A n i o n i c i n i t i a t o r , PMMA Η s p e c t r a , 4 A n i o n i c o l i g o m e r i z a t i o n , s t y r e n e , 182 Anisotropic interactions, orientat i o n a l dependence, 2 6 f Anisotropic rotation, polyformal spin r e l a x a t i o n , l o c a l m o t i o n , 70,78t A n i s o t r o p y , c h e m i c a l s h i f t (CSA), s o l i d sample NMR, 22 A n t i p h a s e components, u n d e s i r a b l e INEPT p r o p e r t i e s , 106 A r e a s , i n t e g r a t e d , q u a n t i t a t i v e NMR s t u d i e s , 137t 1 3

Β Backbone methylene c a r b o n s , p o l y ( 1 - h e x e n e ) , 141 Benzoyl peroxide c a t a l y s t , C NMR o f PS, 190 B i n d i n g s i t e s , n e o t r o p s i n , 12-16 Biopolymers, Η s p e c t r o s c o p y , 12 Biosynthesis, cis-polyisop r e n e s , 233-44 B r a n c h e s , n a t u r a l r u b b e r , 244 Broadband d e c o u p l i n g s p i n echo p u l s e sequences, 98 INEPT, 105 B u l l v a l e n e , 2D NMR, 116 D

1« J

B u t y l branches, C chemical s h i f t s , PE, 2 5 4 f _n-Butyllithium C NMR s p e c t r a o f PS, 190 t o l u e n e i n i t i a t o r , PMMA H spectra, 4 1 3

1

271

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Author Index L i n , Y.-Y., 67 L o c a t e l l i , P., 223 L y e r l a , J . R., 83 McKay, R. Α., 43 N i s h i o k a , A t s u o , 119 O ' D o n n e l l , D. J . , 21 Ohuchi, Muneki, 119 R a n d a l l , J . C., 131,245 S a c c h i , M. C., 223 S a t o , H i s a y o , 181 S c h a e f e r , J a c o b , 43 S e f c i k , M. D., 43 S i l v e r m a n , J o s e p h , 245 S t e j s k a l , Ε. 0., 43 Yasuyuki

Ammendola, P., 223 Bovey, F. A., 3 C a i s , R u d o l f Ε., 43,153 Carman, C. J . , 167 Chen, Teng-Ko, 197 D i x o n , W. T., 43 Dumais, J . J . , 55 E n g e l , Α. Κ., 55 F l e m i n g , W. W., 83 Gray, George A., 97 Harwood, H. James, 197 H i k i c h i , K u n i o , 119 H i r a o k i , T o s h i f u m i , 119 Home, S. E. , J r . , 167 H s i e h , Ε. Τ., I n g l e f i e l d , P.T. J e l i n s k i , L. W. J o n e s , A l a n Anthony, 67 Kometani, J a n e t Μ., 153 K o m o r o s k i , R. A., 167 L i n , Fu-Tyan, 197

Y a n n o n i , C. S., 83 Z a m b e l l i , A., 223 Z o e p f l , F. J . , 245

Subject Index A r e g i c PVF, r e g i o s e q u e n c e d i s t r i b u t i o n s , 160-63 A r o m a t i c C-1 r e s o n a n c e , e p i m e r i z e d i s o t a c t i c PS, 202-11 A t a c t i c p o l y p r o p y l e n e , ^C s p e c t r a , 7 A t t a c h e d p r o t o n t e s t (APT), o p t i m i z i n g s e n s i t i v i t y , 99

A A c q u i s i t i o n t i m e , i r r a d i a t e d ΡΕ, 247 A c y c l i c terpenes C NMR o f n a t u r a l p o l y i s o p r e n e s , 234 c h e m i c a l s h i f t s , 238 Adsorption e f f e c t s , separation o f s t y r e n e o l i g o m e r s , 182 A i r , e f f e c t , PE i r r a d i a t i o n , 266 A l i p h a t i c carbon s i g n a l s i n c i s p o l y i s o p r e n e , 241f,243f A l k y l r a d i c a l s , secondary, i r r a d i a t e d PE, 265 Aluminum c o m p l e x e s , 2D NMR, 116 Amplitude modulation, h e t e r o n u c l e a r s p i n c o u p l i n g , 99 Angular displacements, r i n g r o t a t i o n s i n PS, 52 A n i o n i c i n i t i a t o r , PMMA Η s p e c t r a , 4 A n i o n i c o l i g o m e r i z a t i o n , s t y r e n e , 182 Anisotropic interactions, orientat i o n a l dependence, 2 6 f Anisotropic rotation, polyformal spin r e l a x a t i o n , l o c a l m o t i o n , 70,78t A n i s o t r o p y , c h e m i c a l s h i f t (CSA), s o l i d sample NMR, 22 A n t i p h a s e components, u n d e s i r a b l e INEPT p r o p e r t i e s , 106 A r e a s , i n t e g r a t e d , q u a n t i t a t i v e NMR s t u d i e s , 137t 1 3

Β Backbone methylene c a r b o n s , p o l y ( 1 - h e x e n e ) , 141 Benzoyl peroxide c a t a l y s t , C NMR o f PS, 190 B i n d i n g s i t e s , n e o t r o p s i n , 12-16 Biopolymers, Η s p e c t r o s c o p y , 12 Biosynthesis, cis-polyisop r e n e s , 233-44 B r a n c h e s , n a t u r a l r u b b e r , 244 Broadband d e c o u p l i n g s p i n echo p u l s e sequences, 98 INEPT, 105 B u l l v a l e n e , 2D NMR, 116 D

1« J

B u t y l branches, C chemical s h i f t s , PE, 2 5 4 f _n-Butyllithium C NMR s p e c t r a o f PS, 190 t o l u e n e i n i t i a t o r , PMMA H spectra, 4 1 3

1

271

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

272

NMR AND

C C-1 m e t h y l c a r b o n r e s o n a n c e , c i s p o l y i s o p r e n e s t r u c t u r e , 240 C-1 methylene c a r b o n resonance model compounds f o r p o l y i s o p r e n e s , 235 p o l y p r e n o l - 1 1 , 239f p o l y p r e n o l - 1 8 , 239f C-1 resonance aromatic, epimerized i s o t a c t i c PS, 202-11 heptad, epimerized i s o t a c t i c PS, 211-18 C-2 a x i s r o t a t i o n , e f f e c t on d i p o l a r s p i n n i n g s i d e b a n d , 50 C-2 o i e f i n i e c a r b o n r e s o n a n c e polyisoprene structure, C-5 m e t h y l c a r b o n r e s o n a n c e p o l y i s o p r e n e s t r u c t u r e , 240 Carbon backbone m e t h y l e n e , p o l y ( 1 - h e x e n e ) , 141 methylene, s t y r e n e o l i g o m e r , 189f phenyl C ( 1 ) , c h e m i c a l s h i f t , 194f q u a t e r n a r y a r o m a t i c , s p i n echo sequence, 101 Carbon-13 NMR 180° s i m u l t a n e o u s w i t h p r o t o n p u l s e , 99 assignments INEPT method, 119-26 p o l y i s o p r e n o i d model compounds, 234 PS, 190-93 c h e m i c a l s h i f t s , 237t e f f e c t s o f i o n i z i n g r a d i a t i o n on PE, 245-67 l i n e w i d t h , e x p r e s s i o n , 86 spectra d ichlorocarbene-mod i f i e d PBD, 1 7 0 f , 1 7 7 f , 1 7 8 f epoxidized trans-1,4p o l y b u t a d i e n e , 11f ethylene-1-hexene copolymer, 1 0 0 f , l 4 0 f NOE c o m p a r i s o n , 1 0 3 f v a r i o u s p u l s e a n g l e s , 139Γ ethylene-propylene copolymer, 124f irradiated polymers, 255f,258f,261f i s o t a c t i c p o l y - ( R , S ) - 3 - m e t h y 1-1pentene, 228 l o w - d e n s i t y PE, 121f PE, I 4 8 f PP, α-olefin p o l y m e r i z a t i o n , 227f PP, a t a c t i c , 8 f PVF, 158f 2D, c h e m i c a l exchange n e t w o r k s , 116 VTMAS, s o l i d p o l y m e r s , 83-93

MACROMOLECULES

Carbon-13 NMR s p e c t r o s c o p y c i s - p o l y i s o p r e n e s t r u c t u r e , 233-44 c r y s t a l morphology, 10 overview, 7 PS, e p i m e r i z e d i s o t a c t i c , 197-220 Carbon-13 s p i n echo p u l s e sequences, broadband-decoupled s p e c t r a , 98 Carbon-13 s p i n s y s t e m , s o l i d sample NMR, 31 Carbon-13 s p i n - l a t t i c e r e l a x a t i o n time d i s s o l v e d a r o m a t i c p o l y f o r m a l , 67-81 i s o t a c t i c PP, 87 PMMA, 89 r o t a t i n g - f r a m e , g l a s s y PS, 43 Carbon heptad r e s o n a n c e s , m e t h y l , 216 Carbon l i n e w i d t h s , m o b i l e , q u a n t i t a ­ t i v e NMR s t u d i e s 149

s o l i d sample NMR, 3 6 f Carbon r e s o n a n c e s , v a r i o u s , q u a n t i t a ­ t i v e NMR s t u d i e s , 141-43 Carbon s i g n a l s , PS, v a r i o u s , 192t,195t C a r b o n y l groups C c h e m i c a l s h i f t s , PE, 254f i r r a d i a t e d PE, 250t C a t a l y s t s , v a r i o u s , ^C NMR o f PS, 190 Chain dynamics, ^H s p e c t r o s c o p y , 12 Chain-folded s i n g l e c r y s t a l , morphology, 10 Chain t r a n s f e r , Y branch r a d i c a l , i r r a d i a t e d PE, 265 C h e m i c a l changes, PE i r r a d i a t i o n , 264 Chemical s h i f t backbone, 256 C NMR g e r a n y l g e r a n i o l i s o m e r s , 237t m e t h i n e , i r r a d i a t e d PE, 249t PE, 254f c o r r e l a t i o n , 2D NMR, 111 e t h y l e n e - p r o p y l e n e c o p o l y m e r , 125t h e p t a d , 211-18 isoprene u n i t s , 241f l o w - d e n s i t y p o l y e t h y l e n e , 123t methylene c a r b o n , s t y r e n e o l i g o m e r , 189 f p a r a m e t e r s , PS, 2 l 6 t p h e n y l C(1) c a r b o n PS, 194f s t y r e n e o l i g o m e r , 191 f s p e c t r a , WAHUHA i r r a d i a t i o n , g l a s s y PS, 44 C h e m i c a l - s h i f t a n i s o t r o p y (CSA), s o l i d sample NMR, 22,26f C h i r a l α-olefins, s t e r e o s e l e c t i v e p o l y m e r i z a t i o n , 228-30 C h i r a l s i t e s , s t e r i c c o n t r o l , α-olefin p o l y m e r i z a t i o n , 226 C h l o r i n e weight p e r c e n t , d i c h l o r o c a r b e n e - m o d i f i e d PBD, 173 1 3

1

1 3

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

273

INDEX

C h l o r o f l u o r o e t h y l e n e (CFE), p o l y m e r i z a t i o n i n u r e a , 156 1 - C h l o r o - 2 - f l u o r o e t h e n e , 156 C h o l e s t e r y l a c e t a t e , DEPT s p e c t r a , 107f C i s d o u b l e bonds, i r r a d i a t e d PE, 250t Cis-trans isomerized polyisoprenes, c h e m i c a l s h i f t s , 238 C i s u n i t s , arrangement i n p o l y p r e n o l s , 236-38 β-Cleavage, i r r a d i a t e d PE, 266 C l u s t e r i n g , q u a n t i t a t i v e NMR s t u d i e s , 144 C o l l e c t i v e assignments, q u a n t i t a t i v e NMR s t u d i e s , 138-45 Composition, dichlorocarbene-modified PBD, I 6 9 t Conformational t r a n s i t i o n s gauche-trans, H spectroscopy s i n g l e - b o n d , p o l y f o r m a l m o t i o n , 79 Copolymers, c o n t a i n i n g poly(butylène t e r e p h t h a l a t e ) , s o l i d s t a t e H NMR s t u d i e s , 55-64 C o r r e l a t i o n s p e c t r o s c o p y (COSY), 2D NMR c h e m i c a l s h i f t , 111 CPMAS NMR s p e c t r a 13c, a s f u n c t i o n o f t e m p e r a t u r e , PP, 8 5 f Ryton, 3 6 f C r o s s - l i n k i n g , n a t u r a l r u b b e r , 244 C r o s s - p o l a r i z a t i o n , s o l i d sample NMR, 31-33 C r o s s - p o l a r i z a t i o n magic-angles p i n n i n g — S e e CPMAS Cross-relaxation i s o t a c t i c PP, 87 p o l y f o r m a l m o t i o n , 70 C r y s t a l morphology, 3 Q s p e c t r o s c o p y , 10 C r y s t a l l i n i t y , and r u n number, 146 1

D e u t e r i u m q u a d r u p o l a r echo s p e c t r o s c o p y , c h a i n d y n a m i c s , 12 D i a s t e r e o m e r , s t y r e n e o l i g o m e r s , NMR s p e c t r a , 183 D i a s t e r e o m e r i c end g r o u p s , PP,α-olefin p o l y m e r i z a t i o n , 229f Dichlorocarbene-mod i f i e d p o l y b u t a d i e n e , '^c NMR, 167-79 Dimer, s t y r e n e o l i g o m e r s , NMR s p e c t r a , 183 Dimethoxybenzene, d i p o l a r sideband patterns, 48f D i p o l a r d e c o u p l i n g , s o l i d sample NMR, 24 D i p o l a r i n t e r a c t i o n s , 265 D i p o l a r r o t a t i o n a l spin-echo experiment g l a s s y PS 44

Dipole-dipole interactions, solid sample NMR, 2 2 , 2 6 f D i p o l e - d i p o l e r e l a x a t i o n mechanism, q u a n t i t a t i v e NMR s t u d i e s , 136 D i s t o r t i o n l e s s enhancement by p o l a r i z a t i o n t r a n s f e r (DEPT), 106 Dodecanucleotide, double h e l i c a l s t r u c t u r e , 13 Dodecanucleotide-neotropsin complex, 'H NMR s p e c t r u m , 1 5 f Double bond c i s , i r r a d i a t e d PE, 250t α-olefin, mechanism o f a d d i t i o n , 224 PE 3c c h e m i c a l s h i f t s , 2 5 4 f PE i r r a d i a t i o n , 264 reacted, dichlorocarbene-modified PBD, 173 t r a n s , i r r a d i a t e d PE, 250t,264 Dyad c o n c e n t r a t i o n s , d i c h l o r o c a r b e n e m o d i f i e d PBD, 173 1

Ε

D Data r e d u c t i o n p r o c e s s , 2D NMR, 109 D e c a l i n , 2D NMR, 116 D e c h l o r i n a t i o n , r e d u c t i v e , PVCF, 156 Decoupling r f , t e m p e r a t u r e dependence o f m o l e c u l a r m o t i o n , 86 s t y r e n e o l i g o m e r s , 186,188 D e f e c t , p e r c e n t , a r e g i c PVF samples, I64t Degeneracy, α-olefins, 224 Delay p e r i o d s , v a r i a b l e , INEPT, 106 D e n s i t y v s . mole p e r c e n t , 1 - o l e f i n , v a r i o u s copolymers, I40f D e u t e r a t e d s i t e s , C NMR, INEPT, 105 Deuterium NMR s p e c t r o s c o p y (^H NMR), s o l i d s t a t e molecular m o t i o n , 55-64 1 3

Echo p u l s e sequence, q u a d r u p o l e , 5 8 f E l e c t r i c quadrupolar i n t e r a c t i o n , s o l i d sample NMR, 2 6 f Eluent, e f f e c t , separation o f styrene o l i g o m e r s , 182 E l u t i o n volume and m o l e c u l a r w e i g h t , s t y r e n e o l i g o m e r s , 184Γ End group α-olefin p o l y m e r i z a t i o n , 225 C c h e m i c a l s h i f t s , PE, 2 5 4 f d i a s t e r e o m e r i c , PP, α-olefin p o l y m e r i z a t i o n , 229f4 r e s o n a n c e s , i r r a d i a t e d PE, 248 s a t u r a t e d , i r r a d i a t e d PE, 264,265 v a r i o u s , i r r a d i a t e d PE, 250t Epimerization PS, e q u a t i o n s , 198 1 3

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

274

NMR AND

Epimerization—Continued PVF, t r i a d s t e r e o s e q u e n c e s , 160 Epimerized i s o t a c t i c p o l y s t y r e n e , C NMR s t u d i e s , 197-220 E t h y l branches, C chemical s h i f t s , PE, 254f Ethylene-1-butene copolymer, run number v s . f l e x u r a l modulus and t e n s i l e s t r e n g t h , 148f Ethylene-1-hexene copolymer APT, 99 C NMR s p e c t r a , 1 0 0 f , l 4 0 f v a r i o u s p u l s e a n g l e s , 139f mole p e r c e n t 1 - o l e f i n v s . density, l45f NOE, 102,136 q u a n t i t a t i v e NMR, 138 r e l a x a t i o n t i m e , 135 E t h y l e n e - 1 - o c t e n e copolymer backbone c h e m i c a l s h i f t s , mole p e r c e n t 1 - o l e f i n v s . d e n s i t y , I45f E t h y l e n e - p r o p y l e n e c o p o l y m e r , INEPT C NMR, 119-26 E v o l u t i o n p e r i o d , 2D NMR, 106 Excitation, polarization transfer, INEPT, 104f 1 3

1 3

13

13

F F a r n e s o l i s o m e r s , model compounds f o r p o l y i s o p r e n e s , 235 Ficus e l a s t i c a p o l y p r e n o l - 1 1 , C-1 methylene carbon, 239f r u b b e r f o r m a t i o n , 242 F i e l d s t r e n g t h , e f f e c t , NOE, 105 F l e x u r a l modulus v s . run number, v a r i o u s c o p o l y m e r s , 147f F l u o r i n e - 1 9 NMR s p e c t r a PCFE, 157f PVCF, 157f PVF, 9f,158f F l u o r i n e - 1 9 NMR . s p e c t r o s c o p y , overview, 7 Fluorine-19 resonances, expansion,

PVF, 159f J 6 l f , l 6 2 f Formal c a r b o n s , s p i n - l a t t i c e r e l a x a t i o n t i m e s , 71t Formal group s i m u l a t i o n p a r a m e t e r s , Weber-Helfand model, 78t Formal p r o t o n s , s p i n - l a t t i c e r e l a x a t i o n times, 71t Free i n d u c t i o n decay (FID) a c c u m u l a t i o n s , q u a n t i t a t i v e NMR, 136 i r r a d i a t e d PE, 247 Free r a d i c a l i n i t i a t o r , PMMA H spectra, 4 1

MACROMOLECULES G

Gated d e c o u p l i n g , q u a n t i t a t i v e NMR s t u d i e s , 136 Gauche m i g r a t i o n , s o l i d s t a t e NMR s t u d i e s , 56 Gauche-trans c o n f o r m a t i o n a l jumps s p e c t r o s c o p y , 12 poly(butylène t e r e p h t h a l a t e ) , 56 G e l dose, hydrogenated PE, 265 Gel f r a c t i o n determinations, i r r a d i a t e d PE samples, 247 G e l p e r m e a t i o n chromatography, s e p a r a t i o n o f s t y r e n e o l i g o m e r s , 182 G e l phase, C NMR, i r r a d i a t e d PE, 246 G e r a n i o l , model compounds f o r p o l y i s o p r e n e s , 235 13

compound p o l y i s o p r e n e s , 235 t r a n s - G e r a n y l g e r a n y l pyrophosphate, r u b b e r m o l e c u l e s y n t h e s i s , 244 Ginkgo v i l o b a , p o l y p r e n o l - 1 8 , C-1 methylene c a r b o n , 2 3 9 f Glass t r a n s i t i o n temperatures, d i c h l o r o c a r b e n e - m o d i f i e d PBD, I 6 9 t Glassy p o l y s t y r e n e , molecular m o t i o n , 43-54 Goldenrod r u b b e r , b i o s y n t h e s i s , 244 H H-links i r r a d i a t e d HTC, 256 i r r a d i a t e d NBS 1475, 260 i r r a d i a t e d P h i l i p s M a r l e x 6003, 257 H e l f a n d - t y p e m o t i o n s , poly(butylène t e r e p h t h a l a t e ) , 58f Heptad a s s i g n m e n t s , PS a r o m a t i c C-1 c a r b o n r e s o n a n c e s , 217t Heptad C-1 r e s o n a n c e s , e p i m e r i z e d i s o t a c t i c PS, 211-18 Heptad c o n f i g u r a t i o n a l sequences, PP C spectra, 7 Heteronuclear s p i n coupling, amplitude and phase m o d u l a t i o n , 99 H e t e r o n u c l e a r 2D NMR J - r e s o l v e d , 110 s h i f t c o r r e l a t i o n , 113 H e t e r o t a c t i c stereosequences PVCF, 155 PVF, 156 t r i a d p r o b a b i l i t i e s , PVF, l 6 l f Hevea b r a s i l i e n s i s , c i s - p o l y i s o p r e n e , a l i p h a t i c c a r b o n s i g n a l s , 243f Hexamethylphosphoramide, i s o t a c t i c PS e p i m e r i z a t i o n , 198,200 n - H e x a t r i a c o n t a n e (HTC) i r r a d i a t e d , C s p e c t r a , 255f 1 3

1 3

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

INDEX

275

n-Hexatriacontane (HTC)—Continued irradiation, 250t,253 m a t e r i a l s , i r r a d i a t e d ΡΕ, 247 Hydrogen, m o l e c u l a r , i r r a d i a t e d PE, 264

J-modulated s p i n echo p u l s e , s p e c t r a l e d i t i n g , 98-101 J - r e s o l v e d two d i m e n s i o n a l NMR, 110 Jump model, t h r e e - b o n d , p h e n y l group motion s i m u l a t i o n , 7 6 t

L

H y d r o p e r o x i d e , i r r a d i a t e d PE, 250t

I I n s e n s i t i v e n u c l e u s e x c i t a t i o n by p o l a r i z a t i o n t r a n s f e r (INEPT) C NMR s p e c t r a e t h y l e n e - p r o p y l e n e c o p o l y m e r , 124f l o w - d e n s i t y PE, 121f method, C NMR, 119-26 p o l a r i z a t i o n t r a n s f e r , 102 u n d e s i r a b l e p r o p e r t i e s , 10 Interactions anisotropic, orientational dependence, 2 6 f d i p o l e - d i p o l e , s o l i d sample NMR, 22 Intermolecular l i n k s , irradiated PE, 264 I n t e r n u c l e a r v e c t o r , time-averaged rotation, 27f I n t r a m o l e c u l a r i n t e r a c t i o n s , 2D NMR, 115 Inversion-recovery s o l i d s t a t e H NMR, 59 s p i n - l a t t i c e r e l a x a t i o n time d a t a , 135 I r r a d i a t i o n , PE s t r u c t u r a l changes, 247 Isomerization, dichlorocarbenem o d i f i e d PBD, 171 Isopentenyl pyrophosphate, p o l y p r e n o l s y n t h e s i s , 238 Isoprene u n i t s , chemical s h i f t s , 241f I s o r e g i c PVF, 156 I s o t a c t i c poly-(R,S)-3-methy1-1 p e n t e n e , ' C NMR s p e c t r u m , 228 Isotactic polystyrenes, e p i m e r i z e d , ' C NMR s t u d i e s , 197-220 I s o t a c t i c stereosequences PVCF, 155 PVF, 156 I s o t a c t i c s t e r i c c o n t r o l , α-olefin p o l y m e r i z a t i o n , 228 I s o t a c t i c t r i a d sequences, PMMA, 4 I s o t a c t i c t r i a d stereosequence p r o b a b i l i t i e s , PVF, 161f 1 3

1 3

2

3

3

J J-coupling m u l t i p l i c i t y , PP C NMR, 7 s o l i d sample NMR, 24 J-dependence, INEPT, 106 1 3

L a m e l l a e , poly(butylène t e r e p h t h a l a t e ) c o p o l y m e r , 57,58f Larmor f r e q u e n c y p o l y f o r m a l m o t i o n , 70 s o l i d sample NMR, 28,35,37 Line narrowing i n s p i n s p a c e , s o l i d sample NMR, 28 s o l i d sample NMR, 24 L i n e - s h a p e a n a l y s i s , s o l i d sample

q u a n t i t a t i v e NMR s t u d i e s , 149 vs. r a d i a t i o n dose, i r r a d i a t e d PE, 249t s o l i d s t a t e NMR, 22-33 t e m p e r a t u r e v s . m o l e c u l a r m o t i o n , 86 L i q u i d p o l y m e r s , v a r i o u s NMR e x p e r i m e n t s , 97-116 L o c a l motion, d i s s o l v e d aromatic p o l y f o r m a l , 67-81 Long c h a i n b r a n c h e s , PE C c h e m i c a l s h i f t s , 254f Long c o r r e l a t i o n t i m e , t e m p e r a t u r e dependence o f m o l e c u l a r m o t i o n , 86 1 3

M M a g i c - a n g l e , s o l i d sample NMR, 24-27 M a g i c - a n g l e s p i n n i n g (MAS) g l a s s y PS, 44 v a r i a b l e temperature, s o l i d p o l y m e r s , 83-93 M a g n e t i c moment, s o l i d sample NMR, 31 M a g n e t i z a t i o n , s o l i d sample NMR, 31 M a g n e t i z a t i o n t r a n s f e r 2D NMR, 115-16 M a r l e x 6003, P h i l l i p s C NMR s p e c t r a , 2 5 8 f irradiation, 250t,257 m a t e r i a l s , i r r a d i a t e d PE, 247 t h e r m a l d e g r a d a t i o n and i r r a d i a t i o n , 251t Meso dyad f o r m a t i o n , PVF, 160 M e t a l - p h e n y l bonds, PP i n s e r t i o n , 228 Methine c a r b o n C chemical s h i f t s , irradiated PE, 249t INEPT method, 119-26 resonance i r r a d i a t e d HTC, 256 PS, 218 s t y r e n e o l i g o m e r s , NMR s p e c t r a , 183 t e m p e r a t u r e v s . m o l e c u l a r m o t i o n , 87 1 3

1 3

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

276

NMR A N D MACROMOLECULES

Methyl carbon resonance c i s - p o l y i s o p r e n e s t r u c t u r e , 240 heptad , 216 model compounds f o r p o l y i s o p r e n e s , 235 temperature v s . m o l e c u l a r m o t i o n , 87 M e t h y l end g r o u p s , s t y r e n e o l i g o m e r s , 186 M e t h y l g r o u p s , INEPT method, 119-26 M e t h y l r e l a x a t i o n , t e m p e r a t u r e depen­ dence o f m o l e c u l a r m o t i o n , 87 M e t h y l resonance α -olefin p o l y m e r i z a t i o n , 225,226 a t a c t i c PP, 138,139f b r o a d e n i n g , v a r i o u s p o l y m e r s , 86 PMMA, 4 , 5 f t e m p e r a t u r e e f f e c t , CPMAS PP, 84 Methylene carbon C c h e m i c a l s h i f t s , PE, 2 5 4 f INEPT method, 119-26 p o l y ( 1 - h e x e n e ) , 141 p o l y p r e n o l , 239f PS, a s s i g n m e n t , 192t 1 3

resonance C-1, model compounds f o r p o l y i s o p r e n e s , 235 PS, 218 s t y r e n e o l i g o m e r , 183,189Γ temperature v s . m o l e c u l a r m o t i o n , 87 Methylene resonance i r r a d i a t e d HTC, 256 q u a n t i t a t i v e NMR s t u d i e s , 1 33 Microstructure r e g i o s e q u e n c e , PVF, 160-63 s t e r e o s e q u e n c e , PVF, 156-60 Mole p e r c e n t v s . d e n s i t y , 1 - o l e f i n , v a r i o u s copolymers, I40f M o l e c u l a r motion g l a s s y PS, 43-54 s o l i d p o l y m e r s , VTMAS C NMR, 83-93 s o l i d s t a t e H NMR s t u d i e s , 55-64 M o l e c u l a r s i z e , e f f e c t , NOE, 105 M o l e c u l a r weight and e l u t i o n volume, s t y r e n e o l i g o m e r s , 184f M o l e c u l a r w e i g h t measurements, i r r a d i a t e d PE, 253 Monomer, i n s e r t i o n e x - o l e f i n p o l y m e r i z a t i o n , 225 Monomer c o m p o s i t i o n , d i c h l o r o c a r b e n e m o d i f i e d PBD, 173 d i c h l o r o c a r b e n e - m o d i f i e d PBD, 174 c i s - p o l y i s o p r e n e s t r u c t u r e , 240 Nuclear quadrupole e f f e c t s , s o l i d sample NMR, 23 Nuclear s p i n system, p e r t u r b a t i o n , 97-116 Number-average m o l e c u l a r w e i g h t , q u a n t i t a t i v e NMR s t u d i e s , 146-50 1 J

2

Monte C a r l o s i m u l a t i o n s , PS e p i m e r i z a t i o n , 198,201 M o t i o n i n s o l i d s , 35-40 M o t i o n a l e n v i r o n m e n t s , segmented c o p o l y m e r s , 61

Ν N a t u r a l rubber a l i p h a t i c carbon s i g n a l s i n c i s p o l y i s o p r e n e , 243f b i o s y n t h e s i s , 234,244 NBS 1475 C NMR s p e c t r a , 261 f i r r a d i a t i o n , 252t,257 m a t e r i a l s , i r r a d i a t e d PE, 247 N e o t r o p s i n , b i n d i n g s i t e s , 12-16 1 3

compounds, 235 Nomenclature, PE, 2 5 4 f N u c l e a r Overhauser e f f e c t (NOE) consequences, 101 d i c h l o r o c a r b e n e - m o d i f i e d PBD, 173 q u a n t i t a t i v e NMR s t u d i e s , 135-38 2D NMR, 115 N u c l e a r Overhauser enhancement (NOE) a n t i b i o t i c n e o t r o p s i n , 12 comparison o f C s p e c t r a , 103Γ Number-average sequence l e n g t h , dichlorocarbene-modified PBD, 173,175t 3

0 Qf-Olefin, s t e r e o s p e c i f i c p o l y m e r i z a t i o n , 223-30 1 - O l e f i n , mole p e r c e n t v s . d e n s i t y , various copolymers, I40f O l e f i n i c c a r b o n atom r e s o n a n c e , C-2, 240 Oligomerization, styrene, preparation and s e p a r a t i o n , 182 O l i g o m e r s , s t y r e n e , NMR s p e c t r a , 181-93 O r g a n o m e t a l l i c c o c a t a l y s t s , α-olefin p o l y m e r i z a t i o n , 226 O r i e n t a t i o n a l dependence, a n i s o t r o p i c interactions,26f Oxirane u n i t s , trans-1,4p o l y b u t a d i e n e , 10 Oxygen-oxygen a x i s , p o l y f o r m a l s p i n r e l a x a t i o n and l o c a l m o t i o n , 80 Ρ 2

P a i r gauche m i g r a t i o n , s o l i d s t a t e H NMR s t u d i e s , 56 Peak a s s i g n m e n t s , C NMR, d i c h l o r o c a r b e n e - m o d i f i e d PBD, 172f 1 3

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

INDEX

277

Peak h e i g h t i n t e n s i t y ethylene-propylene copolymer, 125t l o w - d e n s i t y p o l y e t h y l e n e , 123t Pentad regiosequence n o n e q u i v a l e n t , 162t observed p r o b a b i l i t i e s , 164t resonance e p i m e r i z e d i s o t a c t i c PS, 210 PS, 216 sequence, PVF, F NMR, l 6 4 t Pentamer, s t y r e n e o l i g o m e r s , NMR s p e c t r a , 187-90 Perturbation, nuclear spin system, 97-116 P e t r o l e u m m i x t u r e s , s p i n echo sequence, 101 Phase m o d u l a t i o n , h e t e r o n u c l e a c o u p l i n g , 99 Phenyl C(1) carbon c e n t r a l , chemical s h i f t , 194f PS s i g n a l a s s i g n m e n t , 195t styrene oligomer, 191f P h e n y l group motion s i m u l a t i o n three-bond jump model, 7 6 t Weber-Helfand model, 7 7 t Phenyl proton p o l y f o r m a l m o t i o n , 70 s p i n - l a t t i c e r e l a x a t i o n times, 71t P h i l l i p s M a r l e x 6 0 0 3 — See M a r l e x 6003, Phillips P l a n a r z i g z a g p r o j e c t i o n , sequences i n v i n y l polymer c h a i n s , 6 f Polarization transfer h e t e r o n u c l e a r J - r e s o l v e d 2D NMR, 1 1 1 s p e c t r a l e d i t i n g , 101-106 t r a n s - 1 , 4 - P o l y b u t a d i e n e (PBD) ^ N M R , 10 c r y s t a l , 11f P o l y b u t a d i e n e (PBD), d i c h l o r o c a r b e n e m o d i f i e d , C NMR, 167-79 Poly(butylène t e r e p h t h a l a t e ) , s o l i d s t a t e H NMR s t u d i e s , 55-64 Poly(p-t-butylstyrene), rotating-frame s p i n - l a t t i c e r e l a x a t i o n , 52t P o l y c a r b o n a t e , s o l i d BPA, t w o f o l d jumps, 80 P o l y ( c h l o r o f l u o r o e t h y l e n e ) (PCFE) 1 9 NMR s p e c t r a , 157f m i c r o s t r u c t u r e s , 155 Poly(o-chlorostyrene) d i p o l a r r o t a t i o n a l spin-echo C NMR spectra, 46f rotating-frame s p i n - l a t t i c e r e l a x a t i o n , 52t P o l y e t h y l e n e (PE) C NMR s p e c t r a , 148f h i g h - d e n s i t y , 134f l o w - d e n s i t y , 121f INEPT, 119-26 1 9

1 3

2

F

1 3

1 3

Polyethylene (PE)--Continued radiation-induced structural changes, 245-67 t h e r m a l d e g r a d a t i o n , 266 P o l y f o r m a l , d i s s o l v e d a r o m a t i c , sp i n r e l a x a t i o n and l o c a l m o t i o n , 67-81 P o l y ( 1 - h e x e n e ) , methylene c a r b o n s , 141 Polyisoprene, c i s - t r a n s isomerized, c h e m i c a l s h i f t s , 238 P o l y i s o p r e n e , l i n e a r , ω - and Q f - t e r m i n a l u n i t s , 242 cis-Polyisoprene a l i p h a t i c carbon s i g n a l s , 241f,243f b i o s y n t h e s i s mechanism, 2 4 3 f s t r u c t u r a l c h a r a c t e r i z a t i o n , 233-44 Poly(g-isopropylstyrene) d i p o l a r r o t a t i o n a l sideband

Polymer c h a r a c t e r i z a t i o n , C NMR INEPT method, 119-26 concentrations, quantitative NMR, 133-35 l i q u i d , NMR, 97-116 m o t i o n , NMR, 34 preparation e p i m e r i z e d i s o t a c t i c PS, 200 n o v e l r e g i o r e g u l a r PVF, 154 s o l i d s t a t e H NMR s t u d i e s , 57 quantitative analyses, C NMR, 131-50 s o l i d m o l e c u l a r m o t i o n , VTMAS C 1 3

2

1 3

1 3

NMR, 83-93 Polymerization d e g r e e s , q u a n t i t a t i v e NMR, 146 stereospecific, α-olefins, 223-30 Ziegler-Natta, c i s - l - d ^ p r o p e n e , 224 P o l y ( m e t h y l m e t h a c r y l a t e ) (PMMA) atactic, spin-lattice i n t e r a c t i o n s , 38 H s p e c t r a , 4,5f t e m p e r a t u r e v s . m o l e c u l a r m o t i o n , 89 Poly-(R,S)-3-methy1-1-pentene, i s o t a c t i c , C NMR, 228 P o l y ( m e t h y l s t y r e n e ) (PMS), r o t a t i n g frame s p i n - l a t t i c e r e l a x a t i o n , 5 2 t P o l y p h e n y l e n e s u l f i d e ( P P S ) , CPMAS NMR s p e c t r u m , 36f Polyprenol b i o s y n t h e s i s , 238 c h e m i c a l s h i f t s , 238 s t r u c t u r a l c h a r a c t e r i z a t i o n , 236-38 P o l y p r o p y l e n e (PP) atactic, C spectra, 7 C NMR s p e c t r a , 227f CPMAS C s p e c t r a v s . temperature, 8 5 f 1

1 3

1 3

1 3

1 3

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

278

NMR

Polypropylene (PP)—Continued heptad assignments, 217t isotactic, spin-lattice i n t e r a c t i o n s , 38,87 α -olefin p o l y m e r i z a t i o n , 225,226 s y n d i o t a c t i c , α-olefin p o l y m e r i z a t i o n , 224 t e m p e r a t u r e v s . m o l e c u l a r m o t i o n , 84 P o l y s t y r e n e (PS) a t a c t i c , rotating-frame s p i n - l a t t i c e ^ r e l a x a t i o n , 52t C NMR s i g n a l a s s i g n m e n t , 190-93 c NMR s t u d i e s , 197-220 d i p o l a r sideband p a t t e r n s , 4 8 f g l a s s y , m o l e c u l a r m o t i o n , 43-54 NMR s p e c t r a , 181-93 r i n g m o t i o n , 50 spin-lattice interactions Poly-co-styrenesuIfone), rotating frame s p i n - l a t t i c e r e l a x a t i o n , 5 2 t P o l y v i n y l c h l o r o f l u o r i d e ) (PVCF), s y n d i o r e g i c u n i t s , 10 P o l y ( v i n y l f l u o r i d e ) (PVF) *C NMR s p e c t r a , 158f F NMR s p e c t r a , 7,158f e x p a n s i o n o f ^°F r e s o n a n c e s , 159f,161f,162f i s o r e g i c , ^F r e s o n a n c e s , 1 6 1 f n o v e l r e g i o r e g u l a r , 153-64 Poly(vinylidene chlorofluoride) (PVCF), r e d u c t i v e d e c h l o r i n a t i o n , 156 P o t a s s i u m t - b u t o x i d e , i s o t a c t i c PS e p i m e r i z a t i o n , 198,200 Potassium hydroxide, s o l i d , d i c h l o r o c a r b e n e - m o d i f i e d PBD, 176 Progressive saturation, spin l a t t i c e r e l a x a t i o n time d a t a , 135 Propene, c i s - l - d ^ - , Z i e g l e r - N a t t a p o l y m e r i z a t i o n , 224 Property-structure relationships, q u a n t i t a t i v e NMR s t u d i e s , 144-46 P r o p y l end g r o u p s s t y r e n e o l i g o m e r s , 182,186 Propylene a t a c t i c , methyl r e g i o n r e s o n a n c e s , 138,139Γ i n s e r t i o n , α-olefin p o l y m e r i z a t i o n , 225,226,228 Proton decoupling f i e l d , temperature dependence o f m o l e c u l a r m o t i o n , 86 P r o t o n f l i p a n g l e , v a r i a b l e , DEPT, 106 P r o t o n moment, s o l i d sample NMR, 31 P r o t o n NMR ( 'H NMR) s p e c t r o s c o p y , o v e r v i e w , 12 P r o t o n NMR ( H NMR) s p e c t r u m , neotropsin-dodecanucleotide complex, 15f Proton p u l s e , simultaneous with ^ C 180° p u l s e , 99 13

l

1 9

3

AND MACROMOLECULES

Proton s p i n - l a t t i c e r e l a x a t i o n times, dissolved aromatic p o l y f o r m a l , 67-81 Proton s p i n s t a t e s , i n v e r s i o n , p o l a r i z a t i o n t r a n s f e r , 102 Protonated phenyl carbons, s p i n l a t t i c e r e l a x a t i o n times, 71t Pulse angle and d e l a y , i r r a d i a t e d PE, 247 various q u a n t i t a t i v e NMR, 136 r e l a t i v e peak h e i g h t s and i n t e g r a t e d a r e a s , 1371 P u l s e d i a g r a m s , s o l i d sample NMR, 4 0 f Pulse r e p e t i t i o n r a t e , d i c h l o r o c a r b e n e - m o d i f i e d PBD, 173 P u l s e sequence

h e i g h t s and i n t e g r a t e d a r e a s , 1371 Q Q u a d r u p o l a r echo d e l a y , s o l i d s t a t e Η NMR s t u d i e s , 63 Quadrupole echo H NMR s p e c t r a , c a l c u ­ l a t e d v s . e x p e r i m e n t a l , 61 Quadrupole echo p u l s e sequence, s o l i d s t a t e H NMR s t u d i e s , 5 8 f 2

2

1λ J

Q u a n t i t a t i v e a n a l y s e s , polymer, C NMR, 131-50 Quaternary aromatic carbons, spin-echo sequence, 101 R Racemization, reductive d e c h l o r i n a t i o n , PVCF, 160 R a d i a t i o n dose v s . l i n e w i d t h s , 2 4 9 t Radiation-induced s c i s s i o n , i r r a d i a t e d PE, 266 R a d i a t i o n - i n d u c e d s t r u c t u r a l changes, PE, 245-67 R a d i a t i o n y i e l d s , i r r a d i a t e d HTC, 257 Radiolytic oxidation i r r a d i a t e d PE, 266 s o l i d h i g h - d e n s i t y , 257 Reacted d o u b l e bonds, d i c h l o r o c a r b e n e m o d i f i e d PBD, 173 Reaction c o n d i t i o n , dichlorocarbenem o d i f i e d PBD, I 6 9 t R e a c t i o n mechanism, α-olefin p o l y m e r i z a t i o n , 223-30 R e a c t i v i t y r a t i o s , a r e g i c PVF s a m p l e s , 164t R e d u c t i v e d e c h l o r i n a t i o n , PVCF, 156 R e f o c u s i n g p e r i o d , INEPT s p e c t r a l e d i t i n g , 105 R e f o c u s i n g p u l s e , 180°, 98-106

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

INDEX

279

Regioregular p o l y ( v i n y l f l u o r i d e s ) ( P V F ) , s y n t h e s i s and c h a r a c t e r i z a t i o n , 153-64 Regioregularity, F NMR, 7 Regiosequence m i c r o s t r u c t u r e , PVF, 160-63 Regiosequence p e n t a d s nonequivalent, l62t observed p r o b a b i l i t i e s , 164 f PVF, F NMR, I 6 4 t R e g i o s p e c i f i c i t y , α-olefin p o l y m e r i z a t i o n , 224 R e l a t i v e peak h e i g h t s , q u a n t i t a t i v e NMR s t u d i e s , 137t Relaxation rotating-frame carbon s p i n l a t t i c e , g l a s s y PS, 43 s o l i d s t a t e , 35-40 R e l a x a t i o n time q u a n t i t a t i v e NMR s t u d i e s , s p i n - l a t t i c e , heteronuclear chemical s h i f t c o r r e l a t i o n , 114 Resonance c a r b o n , q u a n t i t a t i v e NMR s t u d i e s , 141-43 gauche-trans s h i f t , 7 v a r i o u s , model compounds f o r p o l y i s o p r e n e s , 235 Resonance l i n e w i d t h , c o n c e n t r a t i o n e f f e c t , 133 Restricted rotation, polyformal spin r e l a x a t i o n and l o c a l m o t i o n , 77 Rf d e c o u p l i n g , t e m p e r a t u r e dependence o f m o l e c u l a r m o t i o n , 86 Ring motion g l a s s y PS, 47 s m a l l - a m p l i t u d e l o w - f r e q u e n c y , 50 Rotating-frame r e l a x a t i o n c a r b o n s p i n - l a t t i c e , g l a s s y PS, 43 e f f e c t s , i s o t a c t i c PP, 87 s o l i d sample NMR, 37-38 R o t a t i o n a l i s o m e r i c s t a t e model, me thy 1 c a r b o n heptad r e s o n a n c e s , 216 Rubber F i c u s e l a s t i c u s , 242 g o l d e n r o d , b i o s y n t h e s i s , 244 n a t u r a l , b i o s y n t h e s i s , 234,244 Run number vs. density, various c o p o l y m e r s , 145 f v s . f l e x u r a l modulus and t e n s i l e strength a t y i e l d , various copolymers, I48f q u a n t i t a t i v e NMR s t u d i e s , 144 R y t o n , CPMAS NMR s p e c t r u m , 3 6 f 1 9

1 9

S

Scission, radiation-induced, i r r a d i a t e d PE, 266 Segmental m o t i o n , p o l y f o r m a l s p i n r e l a x a t i o n and l o c a l m o t i o n , 70 v a r i o u s models, 72-81 Selective population inversion (SPI), p o l a r i z a t i o n t r a n s f e r method, 102 Sequence, h e p t a d c o n f i g u r a t i o n a l , PP C spectra, 7 Sequence l e n g t h s , number-average, dichlorocarbene-modified PBD, 173,175t S h i e l d i n g , l o n g - r a n g e , PS, 210 Short c o r r e l a t i o n time, temperature dependence o f m o l e c u l a r m o t i o n , 86 S i d e - c h a i n r o t a t i o n . p o l y m e r , 34 S i g n a l a s s i g n m e n t , C NMR, PS, 190-93 1 3

Signal-to-noise r a t i o , d i c h l o r o c a r b e n e - m o d i f i e d PBD, 173 Single-bond conformational t r a n s i t i o n s , p o l y f o r m a l m o t i o n , 79 Single c r y s t a l , chain-folded, morphology, 10 S i n g l e - f r e q u e n c y o f f - r e s o n a n c e decoup­ l i n g (SFORD), 98 S i z e e x c l u s i o n mechanism, s e p a r a t i o n o f s t y r e n e o l i g o m e r s , 182 Sodium h y d r o x i d e , d i c h l o r o c a r b e n e m o d i f i e d PBD, 176 S o l i d polymer NMR t e c h n i q u e s , 21-40 VTMAS C NMR, 83-93 S o l i d s t a t e H NMR m o l e c u l a r m o t i o n , 55-64 poly(butylène t e r e p h t h a l a t e ) , I 4 f Solidago a l t i s s i m a , cis-polyisoprene, a l i p h a t i c carbon s i g n a l s , 241f Solvent q u a n t i t a t i v e NMR s t u d i e s , 132 s e p a r a t i o n o f s t y r e n e o l i g o m e r s , 182 Spectral density c o m p o s i t e , p o l y f o r m a l , 72 p o l y f o r m a l m o t i o n , 70 Spectral editing J-modulated s p i n echo p u l s e , 98-101 p o l a r i z a t i o n t r a n s f e r , 101-106 Spectral resolution, dichlorocarbenem o d i f i e d PBD, 173 S p e c t r a l w i d t h , i r r a d i a t e d PE, 247 Spin-echo pulse ' C , broadband-decoupled s p e c t r a , 98 d e l a y e d d e t e c t i o n , 99 d i p o l a r r o t a t i o n a l , g l a s s y PS, 44 J-modulated, s p e c t r a l e d i t i n g , 98-101 Spin-lattice relaxation C , i s o t a c t i c PP, 87 heteronuclear chemical s h i f t c o r r e l a t i o n , 114 1 3

2

3

1 3

S a t u r a t e d end g r o u p s , i n c r e a s e , i r r a d i a t e d PE, 265

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

280

NMR

Spin-lattice relaxation—Continued q u a n t i t a t i v e NMR, 135 r o t a t i n g - f r a m e c a r b o n , g l a s s y PS, 43 s o l i d sample NMR, 35-40 S p i n - l o c k i n g , s o l i d sample NMR, 3 2 f , 3 3 Spin pattern realignment, h e t e r o n u c l e a r J - r e s o l v e d 2D NMR, 111 Spin r e l a x a t i o n DEPT, 106 d i s s o l v e d a r o m a t i c p o l y f o r m a l , 67-81 Spin system, n u c l e a r , p e r t u r b a t i o n , 97-116 S p i n n i n g r a t e s , s o l i d sample NMR, 25 Stereoregulation, polymerization of CFE i n u r e a , 156 S t e r e o s e q u e n c e d i s t r i b u t i o n , PS, free-radical polymerization Stereosequence m i c r o s t r u c t u r e PVF, 156-60 S t e r e o s e q u e n c e p e n t a d s , PVF, F NMR, I 6 4 t S t e r i c c o n t r o l , α-olefin p o l y m e r i z a t i o n , 225-28 Stochastic d i f f u s i o n , polyformal spin r e l a x a t i o n and l o c a l m o t i o n , 72 Structure-property r e l a t i o n s h i p s , q u a n t i t a t i v e NMR, 144-46 S t y r e n e o l i g o m e r s , NMR s p e c t r a , 181-93 Syndioregic units PVCF, 10 PVF monomer, 7 S y n d i o t a c t i c p o l y p r o p y l e n e , α-olefin p o l y m e r i z a t i o n , 224 S y n d i o t a c t i c stereosequences PMMA, t r i a d , 4 PVCF, 155 PVF, 156 1 9

triad probabilities,

I6lf

Τ Temperature, e f f e c t , PP CPMAS 13C, 84 Tensile strength a t y i e l d vs. run number, v a r i o u s c o p o l y m e r s , I 4 8 f Terpenes, a c y c l i c 13C NMR o f n a t u r a l p o l y i s o p r e n e s , 234 a c y c l i c , c h e m i c a l s h i f t s , 238 T e t r a m e r , s t y r e n e o l i g o m e r s , NMR s p e c t r a , 187-90 Tetranucleotide core, neotropsin b i n d i n g , 16 Thermal d e g r a d a t i o n , v a r i o u s p o l y e t h y l e n e s , 251t,257,260,266

AND MACROMOLECULES

Three-bond jump model, m o t i o n , 72,76t T r a n s d o u b l e bonds, i r r a d i a t e d PE, 250t,264 Trans-gauche c o n f o r m a t i o n a l t r a n s i t i o n s , H NMR, 12 Trans-geranylgeranyl pyrophosphate, r u b b e r m o l e c u l e s y n t h e s i s , 244 T r a n s u n i t s , p o l y p r e n o l s , 236-38 T r i a d , comonomer, d i c h l o r o c a r b e n e m o d i f i e d PBD, 175f Triad concentrations, dichlorocarbenem o d i f i e d PBD, 174 T r i a d sequences e p i m e r i z e d i s o t a c t i c PS, 202 PMMA, 4 Triad stereosequences d i s t r i b u t i o n s , a t a c t i c PS, 209 2

s p e c t r a , 190 T w o - d i m e n s i o n a l NMR (2D NMR) d i s c u s s i o n , 106-16 U U r e a , p o l y m e r i z a t i o n o f CFE, 156 V Vacuum, e f f e c t , PE i r r a d i a t i o n , 266 V a r i a b l e temperature magic-angle s p i n n i n g c a r b o n - 1 3 NMR (VTMAS 13c NMR), s o l i d p o l y m e r s , 83-93 Vector, i n t e r n u c l e a r , time-averaged rotation, 27f V i n y l u n s a t u r a t i o n s , d i s a p p e a r a n c e , PE i r r a d i a t i o n , 264 W WAHUHA i r r a d i a t i o n g l a s s y PS, 44 s o l i d sample NMR, 28,30f Weber-Helfand model, m o t i o n , 74-79 Y Y b r a n c h , i r r a d i a t e d PE, 256-260 Ζ

Z - m a g n e t i z a t i o n , r e s t o r a t i o n , APT, 99 Ziegler-Natta polymerization, cis-1d -propene , 224

In NMR and Macromolecules; Randall, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.