NeuroRadiosurgery: Case Review Atlas 303116198X, 9783031161988

This book is one-of-a-kind comprehensive Radiosurgery Case Review Atlas that includes not only cranial and spinal cases,

185 105 69MB

English Pages 731 [732] Year 2023

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

NeuroRadiosurgery: Case Review Atlas
 303116198X, 9783031161988

Table of contents :
Preface
Acknowledgments
About the Book
Contents
About the Authors
Abbreviations
Part I: Cranial Radiosurgery
1: Small Size Brain Arteriovenous Malformation (AVM)
Further Reading
2: Medium Size Brain Arteriovenous Malformation (AVM)
Further Reading
3: Large Size Brain Arteriovenous Malformation (AVM)
Further Reading
4: Rolandic Arteriovenous Malformation (AVM)
Further Reading
5: Intraventricular Arteriovenous Malformation (AVM)
Further Reading
6: Choroidal Fissure Arteriovenous Malformation (AVM)
Further Reading
7: Thalamic Arteriovenous Malformation (AVM)
Further Reading
8: Basal Ganglia Arteriovenous Malformation (AVM)
Further Reading
9: Internal Capsule Arteriovenous Malformation (AVM)
Further Reading
10: Cerebral Parenchymal Arteriovenous Malformation (AVM)
Further Reading
11: Cerebellar Arteriovenous Malformation (AVM)
Further Reading
12: Previously Embolized Arteriovenous Malformation (AVM)
Further Reading
13: Rare Subtype of Venous-Predominant Parenchymal Arteriovenous Malformation (AVM)
Further Reading
14: Complicated Brain Arteriovenous Malformation (AVM) with Radiation Necrosis
Further Reading
15: Brain Cavernous Malformation
Further Reading
16: Brain Mixed Vascular Malformations
Further Reading
17: Cavernous Sinus Meningioma
Further Reading
18: Petrous Apex Meningioma
Further Reading
19: Petroclival Meningioma
Further Reading
20: Cerebello-Pontine Angle Meningioma
Further Reading
21: Tentorial Leaflet Meningioma
Further Reading
22: Tentorial Hiatus Meningioma
Further Reading
23: Juxtasellar Meningioma
Further Reading
24: Parasagittal Meningioma
Further Reading
25: Falcine Meningioma
Further Reading
26: Convexity Meningioma
Further Reading
27: Anterior Cranial Fossa Meningioma
Further Reading
28: Middle Cranial Fossa Meningioma
Further Reading
29: Posterior Cranial Fossa Meningioma
Further Reading
30: Multiple Meningiomas
Further Reading
31: Atypical Meningioma
Further Reading
32: Very Small Size Vestibular Schwannoma
Further Reading
33: Small Size Vestibular Schwannoma
Further Reading
34: Medium Size Vestibular Schwannoma
Further Reading
35: Large Size Vestibular Schwannoma
Further Reading
36: Extra-Large Size Vestibular Schwannoma
Further Reading
37: Trigeminal Schwannoma
Further Reading
38: Non-functioning Pituitary Adenoma
Further Reading
39: Growth Hormone (GH)-Secreting Pituitary Adenoma (Acromegaly)
Further Reading
40: Growth Hormone (GH)-Secreting Pituitary Adenoma (Gigantism)
Further Reading
41: Prolactin-Secreting Pituitary Adenoma
Further Reading
42: Mixed Cystic-Solid Craniopharyngioma
Further Reading
43: Solid Craniopharyngioma
Further Reading
44: Pilocytic Astrocytoma (WHO Grade I)
Further Reading
45: Pilocytic Astrocytoma in Type 1 Neurofibromatosis (NF1) Syndrome
Further Reading
46: Astrocytoma (WHO Grade II)
Further Reading
47: Astrocytoma (WHO Grade III)
Further Reading
48: Anaplastic Ependymoma (WHO Grade III)
Further Reading
49: Hypothalamic Glioma
Further Reading
50: Thalamic Glioma
Further Reading
51: Tectal Glioma
Further Reading
52: Medullary Glioma
Further Reading
53: Central Neurocytoma
Further Reading
54: Solitary Brain Metastasis
Further Reading
55: Multiple Brain Metastases
Further Reading
56: Pineal Parenchymal Tumor
Further Reading
57: Brain Hemangioblastoma
Further Reading
58: Skull Base Invasion from Nasopharyngeal Carcinoma
Further Reading
59: Small Size Glomus Jugulare Tumor
Further Reading
60: Large Size Glomus Jugulare Tumor
Further Reading
Part II: Functional Radiosurgery
61: Trigeminal Neuralgia
Further Reading
62: Cluster Headache
Further Reading
63: Hypothalamic Hamartoma-Related Epilepsy
Further Reading
64: Cavernous Malformation-Related Epilepsy
Further Reading
65: Obsessive-Compulsive Disorders (OCDs)
Further Reading
66: Post-Stroke Central Pain
Further Reading
67: Dermatomal Pain
Further Reading
Part III: Spinal Radiosurgery
68: Spinal Cord Arteriovenous Malformation (AVM)
Further Reading
69: Spinal Schwannoma
Further Reading
70: Spinal Neurofibroma
Further Reading
71: Spinal Cord Hemangioblastoma
Further Reading
72: Intradural Intramedullary Spinal Metastasis
Further Reading
73: Intradural Extramedullary Spinal Metastasis
Further Reading

Citation preview

Osama S. Abdelaziz Antonio A. F. De Salles

NeuroRadiosurgery: Case Review Atlas

123

NeuroRadiosurgery: Case Review Atlas

Osama S. Abdelaziz • Antonio A. F. De Salles

NeuroRadiosurgery: Case Review Atlas

Osama S. Abdelaziz Professor of Neurosurgery Faculty of Medicine Alexandria University Alexandria, Egypt

Antonio A. F. De Salles Professor Emeritus in Neurosurgery and Radiotherapy Departments University of California Los Angeles (UCLA) CA, USA

ISBN 978-3-031-16198-8    ISBN 978-3-031-16199-5 (eBook) https://doi.org/10.1007/978-3-031-16199-5 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Osama S. Abdelaziz, M.B.Ch.B., M.Ch., M.D., Ph.D., dedicates this NeuroRadiosurgery: Case Review Atlas to his beloved wife Microbiologist Sahar M.H. Khalil, M.B.Ch.B., M.P.H., and his sons, Orthopedic Surgeon Zyad O. Abdelaziz, M.B.Ch.B., and Periodontist Gaser O. Abdelaziz, B.D.S., who made his career successful. Antonio A.F. De Salles, M.D., Ph.D., dedicates this work to his wife Neurosurgeon Dr. Alessandra Gorgulho, M.D., M.Sc., Ph.D., and his Son Lucas Gorgulho De Salles.

Preface

The vast experience and the rich material gained throughout the authors’ dedicated career in radiosurgery, for more than a quarter of the century, encouraged them to deliver this precious knowledge to young neurosurgeons, radiation oncologists, and radiation physicists, particularly those practicing or interested in radiosurgery. Instead of traditionally passing this tremendous knowledge to only a limited number of students, residents, and fellows through daily practices, workshops, and conferences, publishing the first and one of a kind NeuroRadiosurgery atlas in the medical library, with the worldwide recognized publisher “Springer,” would be ideal to expand the transfer of such radiosurgery experience to all eager and enthusiastic young neurosurgeons, radiation oncologists, and radiation physicists across the world. Radiosurgery has revolutionized the practice of neurosurgery and radiation oncology since its inception in the middle of the last century. Its concepts have spearheaded the development of remarkably precise apparatus delivering therapeutic radiation. Having the Gamma Knife® as the gold standard, all instruments proposing to perform radiosurgery had to match its precision and accuracy to occupy a space in the technic’s marketplace. Imaging of exquisite quality has guided the evolution and quality of radiosurgery. As detailed anatomy of the human body deepest organs is seen, it became possible to minimize the surgical approaches and complement the treatment with radiosurgery, when necessary. Frequently however, radiosurgery can obviate the need of traditional surgery altogether. Radiosurgery has decreased patient’s suffering, which was caused by traditional large surgical interventions to reach the complex areas of the brain and spine, doing it with impressive success in controlling difficult pathologies when surgery was not even possible. All this without the need for hospital admissions, absenteeism from work, and with a lower financial expense for the health system. This NeuroRadiosurgery: Case Review Atlas would provide, in a simple visualization, the pearls of treating both common and difficult neurosurgical pathologies and neurological disorders with radiosurgery, thus helping the novice trying to use the technique to understand the details of its applications in a glance. Alexandria, Egypt Los Angeles, CA, USA 

Osama S. Abdelaziz Antonio A. F. De Salles

vii

Acknowledgments

The authors acknowledge, with respect, the generosity of the patients who gave permission to include their clinical details, neuroimages, and personal photos in this NeuroRadiosurgery: Case Review Atlas and share with the authors in transferring such illustrated scientific knowledge to young practitioners. The authors highly acknowledge Ahmed Sherin, M.B.Ch.B., M.D., Department of Neurosurgery, Alexandria University, Egypt, and Alessandra Gorgulho, M.D., M.Sc., Ph.D., HCor Neuroscience, São Paulo, Brazil, for their dedicated efforts in preparing the database used to produce this NeuroRadiosurgery: Case Review Atlas. The authors would like to thank Zuraiha Waffa, M.B.Ch.B., British Graduate, International Medical Program, Alexandria University, Egypt, for her great assistance in English proofreading of the manuscript of this NeuroRadiosurgery: Case Review Atlas. The authors are sincerely thankful to Dr. Donatella Rizza, executive editor of clinical medical books at Springer, who made the production of this NeuroRadiosurgery: Case Review Atlas possible. The authors especially wish to thank Mr. Karthik Periyasamy, project coordinator at Springer, who maintained the flow of digital information between authors and publisher and monitored the production process of this Atlas.

ix

About the Book

NeuroRadiosurgery: Case Review Atlas is the first radiosurgery atlas in the medical library. This NeuroRadiosurgery atlas is one of a kind in the radiosurgery publications. The contents of this NeuroRadiosurgery: Case Review Atlas are categorized into three main parts, which cover the indications of radiosurgery in neurosurgery. Part I—Cranial Radiosurgery, Part II—Functional Radiosurgery, and Part III—Spinal Radiosurgery. Within each part, subcategories of the common daily treated pathological entities are presented with highly illustrative cases. Each case review included in this NeuroRadiosurgery: Case Review Atlas is presented with both text and images. The text describes the patient’s demographic data; clinical presentation(s); previous medical history; type and modality of radiosurgery treatment; radiosurgery dosimetry; duration of post-radiosurgery follow-up period; detailed chronological short-term and long-term clinical outcomes; complications (if any); detailed short-term and long-term radiological outcomes; and post-radiosurgery treatment(s). The images included in each illustrative case are presented in a stepwise self-explanatory manner to illustrate the case scenario, as described in the text, in three main periods: pre-radiosurgery; radiosurgery treatment day; and post-radiosurgery clinical and radiological follow-up. Such structure of each case presented in this atlas will simulate, for young practitioners, the real mindset journey of the expert authors of this atlas throughout their stepwise management of these cases. By the end of each case review, the readers will recognize the radiosurgery decision-making; learn the details of radiosurgery treatment; review the outcomes of radiosurgery treatment; understand the management of possible radiosurgery-related complications; and hence know how to construct an efficient treatment plan without future complications. This NeuroRadiosurgery: Case Review Atlas serves as a handy step-by-step radiosurgery reference guide to perform safe and effective radiosurgery treatment and provides state-of-the-­ art templates of a wide variety of well-categorized radiosurgery-treated cases. Keywords  Stereotactic radiosurgery; Stereotactic radiation therapy; Stereotactic neurosurgery; Stereotactic atlas; Linac radiosurgery; Gamma knife radiosurgery; Shaped-beam radiosurgery; Photon radiosurgery; Upfront radiosurgery; Adjunctive radiosurgery; Salvage radiosurgery; Cranial radiosurgery; Functional radiosurgery; Spinal radiosurgery

xi

Contents

Part I Cranial Radiosurgery 1 Small  Size Brain Arteriovenous Malformation (AVM)�������������������������������������������   3 Further Reading ���������������������������������������������������������������������������������������������������������   14 2 Medium  Size Brain Arteriovenous Malformation (AVM)���������������������������������������  15 Further Reading ���������������������������������������������������������������������������������������������������������   22 3 Large  Size Brain Arteriovenous Malformation (AVM)�������������������������������������������  23 Further Reading ���������������������������������������������������������������������������������������������������������   34 4 Rolandic Arteriovenous Malformation (AVM)��������������������������������������������������������  35 Further Reading ���������������������������������������������������������������������������������������������������������   44 5 Intraventricular Arteriovenous Malformation (AVM) �������������������������������������������  45 Further Reading ���������������������������������������������������������������������������������������������������������   55 6 Choroidal  Fissure Arteriovenous Malformation (AVM)�����������������������������������������  57 Further Reading ���������������������������������������������������������������������������������������������������������   68 7 Thalamic Arteriovenous Malformation (AVM)�������������������������������������������������������  69 Further Reading ���������������������������������������������������������������������������������������������������������   75 8 Basal  Ganglia Arteriovenous Malformation (AVM) �����������������������������������������������  77 Further Reading ���������������������������������������������������������������������������������������������������������   87 9 Internal  Capsule Arteriovenous Malformation (AVM)�������������������������������������������  89 Further Reading ���������������������������������������������������������������������������������������������������������  101 10 Cerebral  Parenchymal Arteriovenous Malformation (AVM)��������������������������������� 103 Further Reading ���������������������������������������������������������������������������������������������������������  114 11 Cerebellar Arteriovenous Malformation (AVM)����������������������������������������������������� 115 Further Reading ���������������������������������������������������������������������������������������������������������  128 12 Previously  Embolized Arteriovenous Malformation (AVM)����������������������������������� 127 Further Reading ���������������������������������������������������������������������������������������������������������  140 13 Rare  Subtype of Venous-Predominant Parenchymal Arteriovenous Malformation (AVM)������������������������������������������������������������������������� 143 Further Reading ���������������������������������������������������������������������������������������������������������  159 14 Complicated  Brain Arteriovenous Malformation (AVM) with Radiation Necrosis��������������������������������������������������������������������������������������������� 161 Further Reading ���������������������������������������������������������������������������������������������������������  173 15 Brain Cavernous Malformation��������������������������������������������������������������������������������� 175 Further Reading ���������������������������������������������������������������������������������������������������������  182

xiii

xiv

16 Brain Mixed Vascular Malformations����������������������������������������������������������������������� 183 Further Reading ���������������������������������������������������������������������������������������������������������  196 17 Cavernous Sinus Meningioma����������������������������������������������������������������������������������� 197 Further Reading ���������������������������������������������������������������������������������������������������������  215 18 Petrous Apex Meningioma����������������������������������������������������������������������������������������� 217 Further Reading ���������������������������������������������������������������������������������������������������������  226 19 Petroclival Meningioma��������������������������������������������������������������������������������������������� 227 Further Reading ���������������������������������������������������������������������������������������������������������  240 20 Cerebello-Pontine Angle Meningioma ��������������������������������������������������������������������� 241 Further Reading ���������������������������������������������������������������������������������������������������������  247 21 Tentorial Leaflet Meningioma����������������������������������������������������������������������������������� 249 Further Reading ���������������������������������������������������������������������������������������������������������  257 22 Tentorial Hiatus Meningioma ����������������������������������������������������������������������������������� 259 Further Reading ���������������������������������������������������������������������������������������������������������  265 23 Juxtasellar Meningioma��������������������������������������������������������������������������������������������� 267 Further Reading ���������������������������������������������������������������������������������������������������������  282 24 Parasagittal Meningioma������������������������������������������������������������������������������������������� 283 Further Reading ���������������������������������������������������������������������������������������������������������  296 25 Falcine Meningioma��������������������������������������������������������������������������������������������������� 297 Further Reading ���������������������������������������������������������������������������������������������������������  306 26 Convexity Meningioma����������������������������������������������������������������������������������������������� 307 Further Reading ���������������������������������������������������������������������������������������������������������  319 27 Anterior  Cranial Fossa Meningioma������������������������������������������������������������������������ 321 Further Reading ���������������������������������������������������������������������������������������������������������  332 28 Middle  Cranial Fossa Meningioma��������������������������������������������������������������������������� 333 Further Reading ���������������������������������������������������������������������������������������������������������  342 29 Posterior  Cranial Fossa Meningioma����������������������������������������������������������������������� 343 Further Reading ���������������������������������������������������������������������������������������������������������  357 30 Multiple Meningiomas����������������������������������������������������������������������������������������������� 359 Further Reading ���������������������������������������������������������������������������������������������������������  366 31 Atypical Meningioma������������������������������������������������������������������������������������������������� 367 Further Reading ���������������������������������������������������������������������������������������������������������  375 32 Very  Small Size Vestibular Schwannoma����������������������������������������������������������������� 377 Further Reading ���������������������������������������������������������������������������������������������������������  387 33 Small Size Vestibular Schwannoma��������������������������������������������������������������������������� 389 Further Reading ���������������������������������������������������������������������������������������������������������  397 34 Medium Size Vestibular Schwannoma ��������������������������������������������������������������������� 399 Further Reading ���������������������������������������������������������������������������������������������������������  408 35 Large Size Vestibular Schwannoma ������������������������������������������������������������������������� 409 Further Reading ���������������������������������������������������������������������������������������������������������  421 36 Extra-Large Size Vestibular Schwannoma��������������������������������������������������������������� 423 Further Reading ���������������������������������������������������������������������������������������������������������  433

Contents

Contents

xv

37 Trigeminal Schwannoma������������������������������������������������������������������������������������������� 435 Further Reading ���������������������������������������������������������������������������������������������������������  445 38 Non-functioning Pituitary Adenoma������������������������������������������������������������������������� 447 Further Reading ���������������������������������������������������������������������������������������������������������  455 39 Growth  Hormone (GH)-Secreting Pituitary Adenoma (Acromegaly)������������������� 457 Further Reading ���������������������������������������������������������������������������������������������������������  472 40 Growth  Hormone (GH)-Secreting Pituitary Adenoma (Gigantism) ��������������������� 473 Further Reading ���������������������������������������������������������������������������������������������������������  478 41 Prolactin-Secreting Pituitary Adenoma ������������������������������������������������������������������� 479 Further Reading ���������������������������������������������������������������������������������������������������������  485 42 Mixed Cystic-Solid Craniopharyngioma ����������������������������������������������������������������� 487 Further Reading ���������������������������������������������������������������������������������������������������������  496 43 Solid Craniopharyngioma ����������������������������������������������������������������������������������������� 497 Further Reading ���������������������������������������������������������������������������������������������������������  504 44 Pilocytic  Astrocytoma (WHO Grade I)��������������������������������������������������������������������� 505 Further Reading ���������������������������������������������������������������������������������������������������������  512 45 Pilocytic  Astrocytoma in Type 1 Neurofibromatosis (NF1) Syndrome ����������������� 513 Further Reading ���������������������������������������������������������������������������������������������������������  526 46 Astrocytoma  (WHO Grade II)����������������������������������������������������������������������������������� 527 Further Reading ���������������������������������������������������������������������������������������������������������  536 47 Astrocytoma  (WHO Grade III)��������������������������������������������������������������������������������� 537 Further Reading ���������������������������������������������������������������������������������������������������������  547 48 Anaplastic  Ependymoma (WHO Grade III) ����������������������������������������������������������� 549 Further Reading ���������������������������������������������������������������������������������������������������������  558 49 Hypothalamic Glioma������������������������������������������������������������������������������������������������� 559 Further Reading ���������������������������������������������������������������������������������������������������������  573 50 Thalamic Glioma��������������������������������������������������������������������������������������������������������� 575 Further Reading ���������������������������������������������������������������������������������������������������������  591 51 Tectal Glioma��������������������������������������������������������������������������������������������������������������� 593 Further Reading ���������������������������������������������������������������������������������������������������������  605 52 Medullary Glioma������������������������������������������������������������������������������������������������������� 607 Further Reading ���������������������������������������������������������������������������������������������������������  617 53 Central Neurocytoma������������������������������������������������������������������������������������������������� 619 Further Reading ���������������������������������������������������������������������������������������������������������  627 54 Solitary Brain Metastasis������������������������������������������������������������������������������������������� 629 Further Reading ���������������������������������������������������������������������������������������������������������  639 55 Multiple Brain Metastases����������������������������������������������������������������������������������������� 641 Further Reading ���������������������������������������������������������������������������������������������������������  647 56 Pineal Parenchymal Tumor��������������������������������������������������������������������������������������� 649 Further Reading ���������������������������������������������������������������������������������������������������������  660 57 Brain Hemangioblastoma������������������������������������������������������������������������������������������� 661 Further Reading ���������������������������������������������������������������������������������������������������������  667

xvi

58 Skull  Base Invasion from Nasopharyngeal Carcinoma������������������������������������������� 669 Further Reading ���������������������������������������������������������������������������������������������������������  674 59 Small  Size Glomus Jugulare Tumor ������������������������������������������������������������������������� 675 Further Reading ���������������������������������������������������������������������������������������������������������  681 60 Large  Size Glomus Jugulare Tumor������������������������������������������������������������������������� 683 Further Reading ���������������������������������������������������������������������������������������������������������  698 Part II Functional Radiosurgery 61 Trigeminal Neuralgia������������������������������������������������������������������������������������������������� 701 Further Reading ���������������������������������������������������������������������������������������������������������  704 62 Cluster Headache ������������������������������������������������������������������������������������������������������� 705 Further Reading ���������������������������������������������������������������������������������������������������������  707 63 Hypothalamic Hamartoma-Related Epilepsy ��������������������������������������������������������� 709 Further Reading ���������������������������������������������������������������������������������������������������������  713 64 Cavernous Malformation-Related Epilepsy������������������������������������������������������������� 715 Further Reading ���������������������������������������������������������������������������������������������������������  717 65 Obsessive-Compulsive Disorders (OCDs)����������������������������������������������������������������� 719 Further Reading ���������������������������������������������������������������������������������������������������������  724 66 Post-Stroke Central Pain������������������������������������������������������������������������������������������� 725 Further Reading ���������������������������������������������������������������������������������������������������������  727 67 Dermatomal Pain ������������������������������������������������������������������������������������������������������� 729 Further Reading ���������������������������������������������������������������������������������������������������������  732 Part III Spinal Radiosurgery 68 Spinal  Cord Arteriovenous Malformation (AVM)��������������������������������������������������� 735 Further Reading ���������������������������������������������������������������������������������������������������������  737 69 Spinal Schwannoma��������������������������������������������������������������������������������������������������� 739 Further Reading ���������������������������������������������������������������������������������������������������������  743 70 Spinal Neurofibroma ������������������������������������������������������������������������������������������������� 745 Further Reading ���������������������������������������������������������������������������������������������������������  747 71 Spinal Cord Hemangioblastoma������������������������������������������������������������������������������� 749 Further Reading ���������������������������������������������������������������������������������������������������������  751 72 Intradural  Intramedullary Spinal Metastasis ��������������������������������������������������������� 753 Further Reading ���������������������������������������������������������������������������������������������������������  755 73 Intradural  Extramedullary Spinal Metastasis��������������������������������������������������������� 757 Further Reading ���������������������������������������������������������������������������������������������������������  759

Contents

About the Authors

Osama S. Abdelaziz, M.B.Ch.B., M.Ch., M.D., Ph.D.  graduated with a bachelor’s degree in medicine and surgery, in 1988, from the Faculty of Medicine, Alexandria University in Egypt. He received his residency training in neurosurgery at the Alexandria University Hospitals. He earned, from Alexandria University, his master’s degree in surgery in 1993 and his doctorate degree in neurosurgery in 2000. Dr. Abdelaziz received his postgraduate training in the United States in 1996. He was trained at both Harvard University and University of California Los Angeles (UCLA).  His training focused on stereotactic and functional neurosurgery as well as stereotactic radiosurgery. He is experienced in all modalities of radiosurgery including Proton beam, Linac, Gamma knife, and Cyber knife. In 2016, he received an invitation fellowship award, from Japan Society for the Promotion of Science (JSPS), for conducting radiosurgery research at Shiga University of Medical Science, Japan. Dr. Abdelaziz was promoted in the academic career to his current position as a professor at the Department of Neurosurgery, Faculty of Medicine, Alexandria University, Egypt. During his professorship, he has supervised and discussed several academic theses. He is the director of Alexandria Stereotactic Radiosurgery Center and the consultant neurosurgeon for stereotactic radiosurgery at Alexandria University Hospitals. Dr. Abdelaziz is a member of the International Stereotactic Radiosurgery Society (ISRS), American Association of Neurological Surgeons (AANS), Congress of Neurological Surgeons (CNS), Egyptian Society of Neurological Surgeons (ESNS), Egyptian Society for Skull Base Surgery (ESSBS), and Japanese Society for Promotion of Science (JSPS) Alumni Association in Egypt (JSPSAAE). Dr. Abdelaziz wrote four neurosurgery book chapters, authored two academic neurosurgery books, and published 45 scientific articles, in addition to several presentations and workshops, in the field of neurosurgery, with focus on stereotactic radiosurgery, stereotactic and functional neurosurgery, and regenerative neurosurgery. He was awarded the Alexandria University Prize for scientific authorship in 2019 and the Alexandria University Prize for scientific excellence in 2022. Dr. Abdelaziz is the associate editor of Alexandria Journal of Medicine (AJM) and a peer reviewer for many scientific journals. He works as an expert external evaluator, rapporteur and committee panel at the European Innovation Council (EIC), under the power delegated by the European Commission. Antonio A. F. De Salles, M.D., Ph.D.  was born in Brazil in a family of medical doctors, professors, and writers. He decided to become a medical doctor at age six. Brain surgery became a passion during his medical school years, for him the brain was the most fascinating organ, at a time when heart and other organ transplants were in the news as the main surgical achievements of his generation. Since his training as a neurosurgeon in Brazil, where Dr. De Salles saw the amazing results of Psychosurgery, he came to the United States where he studied at Medical College of Virginia and at Harvard University specific techniques to manipulate the brain function electrically,

xvii

xviii

chemically, and through ionizing radiation. Again, into Psychosurgery, in Sweden Dr. De Salles recalled his early love for modification of brain function to improve psychiatric patients. Bringing his worldwide neurosurgery learning to UCLA, he became a professor of neurosurgery and a scientist. He has worked in Los Angeles for more than 20  years developing techniques to treat brain disorders with minimalistic surgery. He has surgically treated over 1000 patients with functional diseases of the brain such as epilepsy, Parkinson’s disease, Alzheimer’s disease, depression, dystonia, tremors, and central pain and more than 8000 patients with brain or spine tumors. Dr. De Salles is the past-president and founder of Ibero-Latin-American Radiosurgery Society and the past-president of the International Stereotactic Radiosurgery Society (ISRS). Currently, he is the director and founder of NeuroSapiens® a neurosurgical, neurological, and psychiatric network covering 14 major states of Brazil. He concentrates his practice of neurosurgery at the Rede D’Or São Luiz, Brazil, where he uses the most modern radiosurgery apparatus, including True Beam, Cyber Knife, and Gamma Knife. During his 35 years of academic neurosurgery, Dr. De Salles published hundreds of scientific articles and authored seven academic neurosurgery books. Dr. De Salles wrote a science fiction novel, which has been translated to four languages.

About the Authors

Abbreviations

AC ALIC AVM CPA CSF CT CTA DVA FLAIR GH IAC ICA Linac LMN MRA MRI NF1 OCD PC SNHL SRS WBRT WHO XRT Y-BOCS

Anterior commissure Anterior limb of internal capsule Arteriovenous malformation Cerebellopontine angle Cerebrospinal fluid Computerized tomography Computerized tomography angiography Developmental venous anomaly Fluid attenuated inversion recovery Growth hormone Internal auditory canal Internal carotid artery Linear accelerator Lower motor neuron Magnetic resonance angiography Magnetic resonance imaging Neurofibromatosis type 1 Obsessive compulsive disorder Posterior commissure Sensory neural hearing loss Stereotactic radiosurgery Whole brain radiation therapy World Health Organization Conventional radiation therapy Yale Brown obsessive compulsive scale

xix

Part I Cranial Radiosurgery

1

Small Size Brain Arteriovenous Malformation (AVM)

• Demographics: Male; 39 years • Initial Presentation: Epilepsy for 2 years before radiosurgery treatment • Diagnosis: Small size brain AVM • Pre-radiosurgery Treatment: None • Pre-radiosurgery Presentation: Epilepsy (left-sided Jacksonian seizures with secondary generalization) • Radiosurgery Treatment: Upfront (primary); Linac-based stereotactic radiosurgery (SRS) for right, rolandic (motor cortex), small size AVM • Radiosurgery Dosimetry: –– Target volume: 2.5 cc –– Marginal dose: 12.0 Gy –– Marginal isodose: 80% –– Maximum dose: 19.3 Gy –– Minimum dose: 9.7 Gy –– Average dose: 15.7 Gy –– Number of isocenters: 2 • Follow-Up Period: 48 months post-SRS • Clinical Outcome: –– 6  months post-SRS: Controlled seizures with medications –– 24  months post-SRS: Sustainable control of seizures with medications –– 36  months post-SRS: Sustainable control of seizures with gradual tapering of medications

–– 48  months post-SRS: Controlled seizures without medications • Complications: None • Radiological Outcome: –– 6 months post-SRS (MRI): Marked decrease in size of AVM nidus Appearance of perinidal high signal in T2 and FLAIR studies, denoting vasogenic edema –– 12 months post-SRS (MRI): More decrease in size of AVM nidus Increase of perinidal high signal in T2 and FLAIR studies –– 18  months post-SRS (CTA): Residual small AVM nidus –– 24 months post-SRS (MRI): Non-visualized AVM nidus Appearance of focal encephalomalacia at the site of prior AVM nidus Persistence of high signal in T2 and FLAIR studies at the site of prior AVM nidus –– 36  months post-SRS (conventional angiography): Complete obliteration of AVM nidus –– 48  months post-SRS (conventional angiography): Sustainable complete obliteration of AVM nidus • Post-radiosurgery Treatment: None

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_1

3

4

1  Small Size Brain Arteriovenous Malformation (AVM)

1  Small Size Brain Arteriovenous Malformation (AVM)

5

1  Small Size Brain Arteriovenous Malformation (AVM)

-SRP in progress–Avm VC 100 90 80 volume [%]

6

70 60 50 40 30 20 10

0 0 10 20 30 40 50 60 70 80 90 100 dose [%] from slice 43 to 49 dose: 100% = 15.0 Gy, volume: 100% = 2.6 ccm

1  Small Size Brain Arteriovenous Malformation (AVM)

7

8

1  Small Size Brain Arteriovenous Malformation (AVM)

1  Small Size Brain Arteriovenous Malformation (AVM)

9

10

1  Small Size Brain Arteriovenous Malformation (AVM)

1  Small Size Brain Arteriovenous Malformation (AVM)

11

12

1  Small Size Brain Arteriovenous Malformation (AVM)

1  Small Size Brain Arteriovenous Malformation (AVM)

13

14

Further Reading Abdelaziz O, Sherin A, Inoue T, et  al. Correlation of appearance of MRI perinidal T2 hyperintensity signal and eventual nidus obliteration following photon radiosurgery of brain AVMs: combined results of LINAC and Gamma Knife centers. J Neurol Surg A Cent Eur Neurosurg. 2019;80:187–97. Daou BJ, Palmateer G, Wilkinson DA, et al. Radiation-induced imaging changes and cerebral edema following stereotactic radiosurgery for brain AVMs. Am J Neuroradiol. 2021;42:82. https://doi. org/10.3174/ajnr.A6880.

1  Small Size Brain Arteriovenous Malformation (AVM)

Flores GL, Sallabanda K, dos Santos M, et al. Linac stereotactic radiosurgery for the treatment of small arteriovenous malformations: lower doses can be equally effective. Stereotact Funct Neurosurg. 2011;89:338–45. Hadjipanayis CG, Levy EI, Niranjan A, et al. Stereotactic radiosurgery for motor cortex region arteriovenous malformations. Neurosurgery. 2001;48(1):70–7. Schäuble B, Cascino GD, Pollock BE, et  al. Seizure outcomes after stereotactic radiosurgery for cerebral arteriovenous malformations. Neurology. 2004;63(4):683–7.

2

Medium Size Brain Arteriovenous Malformation (AVM)

• Demographics: Male; 22 years • Initial Presentation: Epilepsy for 1 year before radiosurgery treatment • Diagnosis: Medium size brain AVM • Pre-radiosurgery Treatment: None • Pre-radiosurgery Presentation: –– Epilepsy (partial seizures with secondary generalization) –– Dysphasia –– Headache • Radiosurgery Treatment: Upfront (primary); Gamma Knife-based SRS for left, temporal, medium size AVM • Radiosurgery Dosimetry: –– Target volume: 7.0 cc –– Prescribed dose: 20.0 Gy –– Isodose line: 50% • Follow-Up Period: 24 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Improving seizures with medications Stationary dysphasia Stationary headache –– 12 months post-SRS: Increased frequency of seizures despite medications Worsened dysphasia Worsened headache

–– 18 months post-SRS: Controlled seizures with medications Improving dysphasia Improving headache –– 24 months post-SRS: Sustainable control of seizures with medications Mild residual dysphasia Improved headache • Complications: None • Radiological Outcome: –– 12 months post-SRS (MRI): Marked decrease in size of AVM nidus Appearance of focal ring enhancing lesion at the site of AVM nidus, in T1 Gadolinium-enhanced study, denoting radiation necrosis Appearance of perinidal high signal in T2 and FLAIR studies, denoting vasogenic edema –– 18 months post-SRS (MRI): Non-visualized AVM nidus Appearance of small focal encephalomalacia at the site of prior AVM nidus Persistence of high signal in T2 and FLAIR studies at the site of prior AVM nidus –– 24  months post-SRS (conventional angiography): Complete obliteration of AVM nidus • Post-radiosurgery Treatment: Continued anticonvulsant medications

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_2

15

16

2  Medium Size Brain Arteriovenous Malformation (AVM)

2  Medium Size Brain Arteriovenous Malformation (AVM)

17

18

2  Medium Size Brain Arteriovenous Malformation (AVM)

2  Medium Size Brain Arteriovenous Malformation (AVM)

19

20

2  Medium Size Brain Arteriovenous Malformation (AVM)

2  Medium Size Brain Arteriovenous Malformation (AVM)

21

22

Further Reading Abdelaziz O, Sherin A, Inoue T, et al. Correlation of appearance of MRI perinidal T2 hyperintensity signal and eventual nidus obliteration following photon radiosurgery of brain AVMs: combined results of LINAC and Gamma Knife centers. J Neurol Surg A Cent Eur Neurosurg. 2019;80:187–97. Kano H, Flickinger JC, Tonetti D, et al. Estimating the risks of adverse radiation effects after Gamma knife radiosurgery for arteriovenous malformations. Stroke. 2017;48:84–90.

2  Medium Size Brain Arteriovenous Malformation (AVM)

Raboud M, Tuleasca C, Maeder P, et  al. Gamma knife radiosurgery for arteriovenous malformations: general principles and preliminary results in a Swiss cohort. Swiss Med Wkly. 2018;148:w1460. https://doi.org/10.4414/smw.2018.14602. Schäuble B, Cascino GD, Pollock BE, et  al. Seizure outcomes after stereotactic radiosurgery for cerebral arteriovenous malformations. Neurology. 2004;63(4):683–7. Yamamoto M, Ide M, Jimbo M, et  al. Gamma Knife radiosurgery in medium-sized arteriovenous malformations: preliminary report. Stroke Surg. 1996;24(6):465–73. https://doi.org/10.2335/ scs1987.24.6_465.

3

Large Size Brain Arteriovenous Malformation (AVM)

• Demographics: Male; 23 years • Initial Presentation: Epilepsy for 1 year before radiosurgery treatment • Diagnosis: Large size brain AVM • Pre-radiosurgery Treatment: None • Pre-radiosurgery Presentation: Epilepsy (focal seizures with secondary generalization) • Radiosurgery Treatment: Upfront (primary); Linac-based SRS for left, temporal, large size AVM • Radiosurgery Dosimetry: –– Target volume: 8.5 cc –– Marginal dose: 14.0 Gy –– Marginal isodose: 80% –– Maximum dose: 33.9 Gy –– Minimum dose: 9.4 Gy –– Average dose: 25.5 Gy –– Number of isocenters: 2 • Follow-Up Period: 48 months post-SRS • Clinical Outcome: –– 6  months post-SRS: Persistent seizures with medications –– 18  months post-SRS: Decreased seizures with medications –– 24  months post-SRS: Controlled seizures with medications –– 48  months post-SRS: Sustainable control of seizures with medications

• Complications: None • Radiological Outcome: –– 6 months post-SRS (MRI): Slight decrease in size of AVM nidus –– 12 months post-SRS (MRI): More decrease in size of AVM nidus Appearance of perinidal high signal in T2 and FLAIR studies, denoting vasogenic edema –– 18 months post-SRS (MRI): Much more decrease in size of AVM nidus Increased perinidal high signal in T2 and FLAIR studies –– 24 months post-SRS (MRI): Non-visualized AVM nidus Persistent perinidal high signal in T2 and FLAIR studies Appearance of focal leptomeningeal enhancement, in T1 Gadolinium-enhanced study, at the site of previous AVM nidus –– 36  months post-SRS (CTA): Residual small AVM nidus with an early draining vein –– 44 months post-SRS (CTA): Complete obliteration of AVM nidus –– 48  months post-SRS (conventional angiography): Complete obliteration of AVM nidus • Post-radiosurgery Treatment: Continued anti-­ convulsant medications

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_3

23

24

3  Large Size Brain Arteriovenous Malformation (AVM)

3  Large Size Brain Arteriovenous Malformation (AVM)

25

3  Large Size Brain Arteriovenous Malformation (AVM)

-SRP in progress–Avm VOI 2 100 90 80 70

volume [%]

26

60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 dose [%]

0

from slice 22 to 32 dose: 100% = 17.5 Gy, volume: 100% = 8.5 ccm

3  Large Size Brain Arteriovenous Malformation (AVM)

27

28

3  Large Size Brain Arteriovenous Malformation (AVM)

3  Large Size Brain Arteriovenous Malformation (AVM)

29

30

3  Large Size Brain Arteriovenous Malformation (AVM)

3  Large Size Brain Arteriovenous Malformation (AVM)

31

32

3  Large Size Brain Arteriovenous Malformation (AVM)

3  Large Size Brain Arteriovenous Malformation (AVM)

33

34

Further Reading Brada M, Kitchen N. How effective is radiosurgery for arteriovenous malformations? J Neurol Neurosurg Psychiatry. 2000;68:548–9. Daou BJ, Palmateer G, Wilkinson DA, et al. Radiation-induced imaging changes and cerebral edema following stereotactic radiosurgery for brain AVMs. Am J Neuroradiol. 2021;42:82. https://doi. org/10.3174/ajnr.A6880.

3  Large Size Brain Arteriovenous Malformation (AVM)

Mobin F, De Salles AAF, Abdelaziz O, et al. Stereotactic radiosurgery of cerebral arteriovenous malformations: appearance of perinidal T2 hyperintensity signal as a predictor of favorable treatment response. Stereotact Funct Neurosurg. 1999;73(1–4):50–9. Schäuble B, Cascino GD, Pollock BE, et  al. Seizure outcomes after stereotactic radiosurgery for cerebral arteriovenous malformations. Neurology. 2004;63(4):683–7. Yang SY, Kim DG, Chung HT, et al. Radiosurgery for large cerebral arteriovenous malformations. Acta Neurochir. 2009;151(2):113–24.

4

Rolandic Arteriovenous Malformation (AVM)

• • • • • •



• •

• •

Demographics: Male; 37 years Initial Presentation: Chronic headache Diagnosis: Rolandic AVM Pre-radiosurgery Treatment: None Pre-radiosurgery Presentation: Chronic headache Radiosurgery Treatment: Upfront (primary); Linac-based SRS for right, rolandic (motor cortex) AVM Radiosurgery Dosimetry: –– Target volume: 6.3 cc –– Marginal dose: 15.0 Gy –– Marginal isodose: 75% –– Maximum dose: 20.6 Gy –– Minimum dose: 13.5 Gy –– Average dose: 18.9 Gy –– Number of isocenters: 1 Follow-Up Period: 62 months post-SRS Clinical Outcome: –– 6 months post-SRS: Persistence of annoying attaches of headache –– 24  months post-SRS: Slightly improving headaches with medications –– 60  months post-SRS: Persistence of mild attaches of headache Complications: None Radiological Outcome: –– 6 months post-SRS (MRI): Stationary size of AVM nidus –– 12  months post-SRS (MRI): Stationary size of AVM nidus

–– 24 months post-SRS (MRI): Stationary size of AVM nidus Appearance of perinidal high signal in T2 and FLAIR studies, denoting vasogenic edema –– 36 months post-SRS (MRI): Stationary size of AVM nidus Increased perinidal high signal in T2 and FLAIR studies Appearance of perinidal focal encephalomalacia showing heterogeneous enhancement in T1 Gadolinium-­enhanced study –– 60 months post-SRS (MRI): Slight decrease in size of AVM nidus Persistent increased perinidal high signal in T2 and FLAIR studies Persistence of perinidal heterogeneously enhancing focal encephalomalacia in T1 Gadolinium-­ enhanced study –– 61 months post-SRS (CT): Persistence of perinidal heterogeneously enhancing focal encephalomalacia in contrast-enhanced study –– 62  months post-SRS (CTA): Residual smaller AVM nidus • Post-radiosurgery Treatment: Watchful waiting for delayed complete obliteration of the residual AVM nidus during an extended follow-up period before deciding repeat radiosurgery treatment

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_4

35

36

4  Rolandic Arteriovenous Malformation (AVM)

4  Rolandic Arteriovenous Malformation (AVM)

37

38

4  Rolandic Arteriovenous Malformation (AVM)

4  Rolandic Arteriovenous Malformation (AVM)

39

40

4  Rolandic Arteriovenous Malformation (AVM)

4  Rolandic Arteriovenous Malformation (AVM)

41

42

4  Rolandic Arteriovenous Malformation (AVM)

4  Rolandic Arteriovenous Malformation (AVM)

43

44

Further Reading Cohen-Inbar O, Starke RM, Paisan G, et al. Early versus late arteriovenous malformation responders after stereotactic radiosurgery: an international multicenter study. J Neurosurg. 2017;127(3):503–11. Ellis TL, Friedman WA, Bova FJ, et al. Analysis of treatment failure after radiosurgery for arteriovenous malformations. J Neurosurg. 1998;89(1):104–11. Gallina P, Merienne L, Meder JF, et  al. Failure in radiosurgery treatment of cerebral arteriovenous malformations. Neurosurgery. 1998;42(5):996–1002.

4  Rolandic Arteriovenous Malformation (AVM)

Hadjipanayis CG, Levy EI, Niranjan A, et al. Stereotactic radiosurgery for motor cortex region arteriovenous malformations. Neurosurgery. 2001;48(1):70–7. Levegrün S, Hof H, Essig M, et  al. Radiation-induced changes of brain tissue after radiosurgery in patients with arteriovenous malformations: dose/volume-response relations. Strahlenther Onkol. 2004;180(12):758–67. Zabel-du Bois A, Milker-Zabel S, Huber P, et  al. Stereotactic linac-­ based radiosurgery in the treatment of cerebral arteriovenous malformations located deep, involving corpus callosum, motor cortex, or brainstem. Int J Radiat Oncol Biol Phys. 2006;64(4):1044–8.

5

Intraventricular Arteriovenous Malformation (AVM)

• Demographics: Female; 21 years • Initial Presentation: Hemorrhage (intraventricular), which occurred twice; at 10  years and 2  months before radiosurgery treatment • Diagnosis: Intraventricular AVM • Pre-radiosurgery Treatment: None • Pre-radiosurgery Presentation: Chronic headache • Radiosurgery Treatment: Upfront (primary); Linac-based SRS for right, lateral ventricle (body) AVM • Radiosurgery Dosimetry: –– Target volume: 3.6 cc –– Marginal dose: 22.0 Gy –– Marginal isodose: 80% –– Maximum dose: 27.6 Gy –– Minimum dose: 18.7 Gy –– Average dose: 26.5 Gy –– Number of isocenters: 1 • Follow-Up Period: 120 months post-SRS • Clinical Outcome: –– 6  months post-SRS: Still having recurrent attacks of annoying headache –– 12  months post-SRS: Improving headache with medications –– 24 months post-SRS: Improved headache • Complications: None • Radiological Outcome: –– 6 months post-SRS (MRI): Decrease in size of AVM nidus –– 12  months post-SRS (MRI): Stationary decrease in size of AVM nidus

–– 24 months post-SRS (MRI): More decrease in size of AVM nidus Appearance of right periventricular perinidal high signal in T2 and FLAIR studies, denoting vasogenic edema Appearance of right periventricular perinidal focal enhancement in T1 Gadolinium-enhanced study –– 30 months post-SRS (MRI): More decrease in size of AVM nidus Moderate decrease of right periventricular perinidal high signal in T2 and FLAIR studies Moderate decrease of right periventricular perinidal focal enhancement in T1 Gadolinium-enhanced study –– 112 months post-SRS (MRI): Non-visualized AVM nidus Resolution of right periventricular perinidal high signal in T2 and FLAIR studies Resolution of right periventricular perinidal focal enhancement in T1 Gadolinium-enhanced study Appearance of right periventricular perinidal focal encephalomalacia –– 113 months post-SRS (CT): Presence of tiny right periventricular subependymal calcification expressing minimal mass effect with dilatation of ipsilateral right lateral ventricle –– 120 months post-SRS (CTA): Complete obliteration of AVM nidus • Post-radiosurgery Treatment: None

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_5

45

46

5  Intraventricular Arteriovenous Malformation (AVM)

5  Intraventricular Arteriovenous Malformation (AVM)

47

48

5  Intraventricular Arteriovenous Malformation (AVM)

-SRP in progress–Avm VOI 2 100 90 80 70

volume [%]

60 50 40 30 20 10 0

10

20

30

40

50 60 dose [%]

from slice 23 to 33 dose: 100% = 27.5 Gy, volume: 100% = 3.6 ccm

70

80

90

100

0

5  Intraventricular Arteriovenous Malformation (AVM)

49

50

5  Intraventricular Arteriovenous Malformation (AVM)

5  Intraventricular Arteriovenous Malformation (AVM)

51

52

5  Intraventricular Arteriovenous Malformation (AVM)

5  Intraventricular Arteriovenous Malformation (AVM)

53

54

5  Intraventricular Arteriovenous Malformation (AVM)

Further Reading

Further Reading Abdelaziz OS, Abdelaziz A, Rostom Y, et al. LINAC radiosurgery of intracranial arteriovenous malformations: a single-center initial experience. Neurosurg Q. 2011;21:85–96. Brada M, Kitchen N. How effective is radiosurgery for arteriovenous malformations? J Neurol Neurosurg Psychiatry. 2000;68:548–9. Daou BJ, Palmateer G, Wilkinson DA, et al. Radiation-induced imaging changes and cerebral edema following stereotactic radiosur-

55

gery for brain AVMs. Am J Neuroradiol. 2021;42:82. https://doi. org/10.3174/ajnr.A6880. Mobin F, De Salles AAF, Abdelaziz O, et al. Stereotactic radiosurgery of cerebral arteriovenous malformations: appearance of perinidal T2 hyperintensity signal as a predictor of favorable treatment response. Stereotact Funct Neurosurg. 1999;73(1–4):50–9. Santoreneos S, Blumbergs PC, Jones NR.  Choroid plexus arteriovenous malformations. A report of four pathologically proven cases and review of the literature. Br J Neurosurg. 1996;10(4):385–90.

6

Choroidal Fissure Arteriovenous Malformation (AVM)

• Demographics: Male; 18 years • Initial Presentation: Hemorrhage (intraventricular); 4 months before radiosurgery treatment • Diagnosis: Choroidal Fissure AVM • Pre-radiosurgery Treatment: Endovascular embolization; 4 months before radiosurgery treatment • Pre-radiosurgery Presentation: Headache • Radiosurgery Treatment: Adjunctive; Linac-based SRS for post-embolization residual, left, choroidal fissure AVM • Radiosurgery Dosimetry: –– Target volume: 2.4 cc –– Marginal dose: 20.0 Gy –– Marginal isodose: 80% –– Maximum dose: 26.5 Gy –– Minimum dose: 19.1 Gy –– Average dose: 24.6 Gy –– Number of isocenters: 1 –– Maximum dose to brain stem: 24.5 Gy • Follow-Up Period: 120 months post-SRS • Clinical Outcome: –– 4  months post-SRS: Experienced slight memory deficit –– 6 months post-SRS: Improved headache –– 12 months post-SRS: Improving memory deficit with medications –– 18 months post-SRS: Improved memory deficit Developed bilateral visual field defects (right homonymous hemianopia) –– 60 months post-SRS: Developed generalized seizures and started anti-convulsant medications

• Complications: –– At 18 months post-SRS: The patient developed permanent right homonymous hemianopia, probably due to radiation-induced injury of left optic tract, which lies adjacent to AVM nidus –– Persistent generalized seizures, despite continued medical treatment • Radiological Outcome: –– 6  months post-SRS (MRI): Stationary size of AVM nidus –– 12 months post-SRS (MRI): Slight decrease in size of AVM nidus –– 18 months post-SRS (MRI): More decrease in size of AVM nidus Appearance of perinidal high signal in T2 and FLAIR studies, denoting vasogenic edema –– 27 months post-SRS (MRI): More decrease in size of AVM nidus Much resolution of perinidal high signal in T2 and FLAIR studies –– 72 months post-SRS (MRI): Non-visualized AVM nidus Complete resolution of perinidal high signal in T2 and FLAIR studies Appearance of an area of encephalomalacia, at the site of previous AVM nidus, associated with dilatation of the ipsilateral left ventricular temporal horn and atrium –– 120  months post-SRS (Conventional angiography): Complete obliteration of AVM nidus • Post-radiosurgery Treatment: Continued anti-convulsant medications

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_6

57

58

6  Choroidal Fissure Arteriovenous Malformation (AVM)

6  Choroidal Fissure Arteriovenous Malformation (AVM)

59

60

6  Choroidal Fissure Arteriovenous Malformation (AVM)

6  Choroidal Fissure Arteriovenous Malformation (AVM)

61

62

6  Choroidal Fissure Arteriovenous Malformation (AVM)

6  Choroidal Fissure Arteriovenous Malformation (AVM)

63

64

6  Choroidal Fissure Arteriovenous Malformation (AVM)

6  Choroidal Fissure Arteriovenous Malformation (AVM)

65

66

6  Choroidal Fissure Arteriovenous Malformation (AVM)

6  Choroidal Fissure Arteriovenous Malformation (AVM)

67

68

Further Reading Abdelaziz OS, Abdelaziz A, Rostom Y, et al. LINAC radiosurgery of intracranial arteriovenous malformations: a single-center initial experience. Neurosurg Q. 2011;21:85–96. https://doi.org/10.1097/ WNQ.0b013e31820cd2ea. Ilyas A, Chen CJ, Ding D, et al. Radiation-induced changes after stereotactic radiosurgery for brain arteriovenous malformations: a systematic review and meta-analysis. Neurosurgery. 2018;83(3):365–76. Parkhutik V, Lago A, Aparici F, et  al. Late clinical and radiological complications of stereotactical radiosurgery of arteriovenous malformations of the brain. Neuroradiology. 2013;55(4):405–12.

6  Choroidal Fissure Arteriovenous Malformation (AVM)

Santoreneos S, Blumbergs PC, Jones NR.  Choroid plexus arteriovenous malformations. A report of four pathologically proven cases and review of the literature. Br J Neurosurg. 1996;10(4):385–90. Yamamoto M, Kawabe T, Barfod BE.  Long-term side effects of radiosurgery for arteriovenous malformations. Prog Neurol Surg. 2013;27:97–106. Yan D, Chen Y, Li Z, et al. Stereotactic radiosurgery with vs. without prior embolization for brain arteriovenous malformations: a propensity score matching analysis. Front Neurol. 2021;12:752164. https:// doi.org/10.3389/fneur.2021.752164.

7

Thalamic Arteriovenous Malformation (AVM)

• Demographics: Male; 13 years • Initial Presentation: Hemorrhage (thalamic); 2 months before radiosurgery treatment • Diagnosis: Thalamic AVM • Pre-radiosurgery Treatment: None • Pre-radiosurgery Presentation: Asymptomatic and neurologically intact, after complete resolution of previous temporary, hemorrhage-associated manifestations (headache, right hemiparesis, and hemi-hypoesthesia) • Radiosurgery Treatment: Upfront (primary); Linac-based SRS for left thalamic AVM • Radiosurgery Dosimetry: –– Target volume: 3.0 cc –– Marginal dose: 18.0 Gy –– Marginal isodose: 80% –– Maximum dose: 22.7 Gy –– Minimum dose: 15.1 Gy –– Average dose: 21.6 Gy –– Number of isocenters: 1 –– Maximum dose to brain stem: 21.3 Gy • Follow-Up Period: 24 months post-SRS • Clinical Outcome: –– 7  months post-SRS: Developed right dense hemiparesis –– 9 months post-SRS: Improving right hemiparesis with medications (steroids and diuretics) and physical therapy

–– 20  months post-SRS: Residual, mild, spastic, right hemiparesis • Complications: –– Permanent mild spastic right hemiparesis, probably due to radiation-induced injury of the pyramidal tract fibers within either the posterior limb of the left internal capsule or the left cerebral peduncle, which lies adjacent to the AVM nidus • Radiological Outcome: –– 6 months post-SRS (MRI): Marked decrease in size of AVM nidus Appearance of perinidal high signal, in T2 and FLAIR studies, denoting vasogenic edema Appearance of nidal focal homogeneous enhancement, in T1 Gadolinium-enhanced study, denoting radiation necrosis –– 12 months post-SRS (MRI): More decrease in size of AVM nidus Persistence of perinidal high signal, in T2 and FLAIR studies Persistence of nidal post-gadolinium focal homogeneous enhancement –– 24 months post-SRS (CTA): Complete obliteration of AVM nidus • Post-radiosurgery Treatment: None

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_7

69

70

7  Thalamic Arteriovenous Malformation (AVM)

7  Thalamic Arteriovenous Malformation (AVM)

71

-SRP in progress–Avm VOI 2

-SRP in progress–Brain Stem VOI 3 100

100

90

90

80

80

70

70

50 40

60

volume [%]

volume [%]

60

50 40

30

30

20

20

10 0

10

20

30

40

50

60

70

80

dose [%] from slice 15 to 23 dose: 100% = 22.5 Gy, volume: 100% = 3.0 ccm

90

100

10

0

0

10

20

30

40

50

60

70

80

dose [%] from slice 4 to 16 dose: 100% = 22.5 Gy, volume: 100% = 14.1 ccm

90

100

0

72

7  Thalamic Arteriovenous Malformation (AVM)

7  Thalamic Arteriovenous Malformation (AVM)

73

74

7  Thalamic Arteriovenous Malformation (AVM)

Further Reading

Further Reading Chen CJ, Ding D, Kano H, et al. Stereotactic radiosurgery for pediatric versus adult brain arteriovenous malformations: a multicenter study. Stroke. 2018;49(8):1939–45. Fleetwood IG, Marcellus ML, Levy RP, et  al. Deep arteriovenous malformations of the basal ganglia and thalamus. J Neurosurg. 2003;98:747–50. Levegrün S, Hof H, Essig M, et al. Radiation-induced changes of brain tissue after radiosurgery in patients with arteriovenous malforma-

75

tions: correlation with dose distribution parameters. Int J Radiat Oncol Biol Phys. 2004;59(3):796–808. Parkhutik V, Lago A, Aparici F, et  al. Late clinical and radiological complications of stereotactical radiosurgery of arteriovenous malformations of the brain. Neuroradiology. 2013;55(4):405–12. Pollock BE, Gorman DA, Brown PD. Radiosurgery for arteriovenous malformations of the basal ganglia, thalamus, and brainstem. J Neurosurg. 2004;100:210–4. Yamamoto M, Kawabe T, Barfod BE.  Long-term side effects of radiosurgery for arteriovenous malformations. Prog Neurol Surg. 2013;27:97–106.

8

Basal Ganglia Arteriovenous Malformation (AVM)

• Demographics: Male; 14 years • Initial Presentation: Hemorrhage (intraventricular), which occurred twice; at 2  years and 8  months before radiosurgery treatment • Diagnosis: Basal ganglia AVM • Pre-radiosurgery Treatment: None • Pre-radiosurgery Presentation: Asymptomatic and neurologically intact, after complete recovery from coma induced by last hemorrhage • Radiosurgery Treatment: Upfront (primary); Linac-based SRS for right basal ganglia (lentiform nucleus) AVM • Radiosurgery Dosimetry: –– Target volume: 3.2 cc –– Marginal dose: 18.0 Gy –– Marginal isodose: 80% –– Maximum dose: 39.8 Gy –– Minimum dose: 14.2 Gy –– Average dose: 26.7 Gy –– Number of isocenters: 2 –– Maximum dose to brain stem: 6.7 Gy • Follow-Up Period: 65 months post-SRS

• Clinical Outcome: Asymptomatic and neurologically intact throughout the entire follow-up period • Complications: None • Radiological Outcome: –– 7 months post-SRS (MRI and MRA): Stationary size of AVM nidus –– 14 months post-SRS (MRI): Marked decrease in size of AVM nidus Appearance of right periventricular perinidal high signal in T2 and FLAIR studies, denoting vasogenic edema –– 25 months post-SRS (MRI): Non-visualized AVM nidus Resolving right periventricular perinidal high signal in T2 and FLAIR studies Appearance of right periventricular focal encephalomalacia, showing minimal enhancement in T1 Gadolinium-enhanced study, at the site of prior AVM nidus –– 65 months post-SRS (CTA): Complete obliteration of AVM nidus • Post-radiosurgery Treatment: None

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_8

77

78

8  Basal Ganglia Arteriovenous Malformation (AVM)

8  Basal Ganglia Arteriovenous Malformation (AVM)

79

80

8  Basal Ganglia Arteriovenous Malformation (AVM)

8  Basal Ganglia Arteriovenous Malformation (AVM)

81

-SRP-1–Avm VOI 2 100 90 80 70 volume [%]

60 50 40 30 20 10 0

10

20

30

40

50

60

70

80

dose [%] from slice 30 to 41 dose: 100% = 22.5 Gy, volume: 100% = 3.2 ccm

90

100

0

82

8  Basal Ganglia Arteriovenous Malformation (AVM)

8  Basal Ganglia Arteriovenous Malformation (AVM)

83

84

8  Basal Ganglia Arteriovenous Malformation (AVM)

8  Basal Ganglia Arteriovenous Malformation (AVM)

85

86

8  Basal Ganglia Arteriovenous Malformation (AVM)

Further Reading

Further Reading Andrade-Souza YM, Zadeh G, Scora D, et al. Radiosurgery for basal ganglia, internal capsule, and thalamus arteriovenous malformation. Neurosurgery. 2005;56:56–64. Cohen-Gadol AA, Pollock BE. Radiosurgery for arteriovenous malformations in children. J Neurosurg. 2006;104(6):388–91. Fleetwood IG, Marcellus ML, Levy RP, et  al. Deep arteriovenous malformations of the basal ganglia and thalamus. J Neurosurg. 2003;98:747–50.

87

Ilyas A, Chen CJ, Ding D, et al. Radiation-induced changes after stereotactic radiosurgery for brain arteriovenous malformations: a systematic review and meta-analysis. Neurosurgery. 2018;83(3):365–76. Mobin F, De Salles AAF, Abdelaziz O, et al. Stereotactic radiosurgery of cerebral arteriovenous malformations: appearance of perinidal T2 hyperintensity signal as a predictor of favorable treatment response. Stereotact Funct Neurosurg. 1999;73(1–4):50–9. Pollock BE, Gorman DA, Brown PD. Radiosurgery for arteriovenous malformations of the basal ganglia, thalamus, and brainstem. J Neurosurg. 2004;100:210–4.

9

Internal Capsule Arteriovenous Malformation (AVM)

• Demographics: Male; 24 years • Initial Presentation: Hemorrhage (thalamic, capsular, and temporal); 5 months before radiosurgery treatment • Diagnosis: Internal capsule AVM • Pre-radiosurgery Treatment: None • Pre-radiosurgery Presentation: Right-sided dense hemiparesis, after recovery from hemorrhage-associated coma • Radiosurgery Treatment: Upfront (primary); Linac-based SRS for left internal capsule AVM • Radiosurgery Dosimetry: –– Target volume: 3.0 cc –– Marginal dose: 18.0 Gy –– Marginal isodose: 80% –– Maximum dose: 42.9 Gy –– Minimum dose: 13.3 Gy –– Average dose: 25.0 Gy –– Number of isocenters: 2 –– Maximum dose to brain stem: 26.9 Gy • Follow-Up Period: 144 months post-SRS • Clinical Outcome: –– 6  months post-SRS: Improving right-sided hemiparesis –– 18 months post-SRS: Experienced severe headache, nausea, and vomiting Developed bilateral visual field defects (right homonymous hemianopia) –– 20 months post-SRS: Improved headache, nausea, and vomiting with medications Persistent unchanged right homonymous hemianopia –– 24 months post-SRS: Improving right-sided hemiparesis Persistent unchanged right homonymous hemianopia

–– 40 months post-SRS: Improving right-sided hemiparesis Persistent unchanged right homonymous hemianopia –– 60 months post-SRS: Improving right-sided hemiparesis Persistent unchanged right homonymous hemianopia –– 144 months post-SRS: Residual mild right-sided hemiparesis Persistent unchanged right homonymous hemianopia • Complications: At 18  months post-SRS, the patient developed permanent right homonymous hemianopia, probably due to radiation-induced injury of left optic tract, which lies close to AVM nidus • Radiological Outcome: –– 6 months post-SRS (MRI): Decrease in size of AVM nidus –– 18  months post-SRS (CT): Left thalamic perinidal hypodensity, denoting vasogenic edema –– 19  months post-SRS (CT): Increased left thalamic perinidal hypodensity with mild mass effect –– 24 months post-SRS (MRI): Marked decrease in size of AVM nidus Appearance of large ring-enhancing lesion in the left thalamus and left cerebral peduncle, in T1 Gadolinium-­ enhanced study, denoting radiation necrosis Increased high signal, in T2 and FLAIR studies, denoting vasogenic edema, within the left thalamus and left cerebral peduncle and surrounding the ring enhancing lesion –– 30  months post-SRS (CTA): Residual small AVM nidus –– 36 months post-SRS (MRI): Non-visualized AVM nidus

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_9

89

90

9  Internal Capsule Arteriovenous Malformation (AVM)

Marked resolution of perinidal high signal in T2 and FLAIR studies Marked resolution of the previously large enhancing lesion to a small residual left thalamic focal enhancing lesion, in T1 Gadolinium-enhanced study

Appearance of an area of encephalomalacia, at the site of previous AVM nidus –– 40 months post-SRS (CTA): Complete obliteration of AVM nidus –– 54  months post-SRS (Conventional angiography): Complete obliteration of AVM nidus • Post-radiosurgery Treatment: None

9  Internal Capsule Arteriovenous Malformation (AVM)

91

92

9  Internal Capsule Arteriovenous Malformation (AVM)

-SRP in progress–Brain Stem 100

100

90

90

80

80

70

70

60 50 40

0

volume [%]

volume [%]

-SRP in progress–Avm VOI 2

60 50 40

30

30

20

20

10

10

0

10 20 30 40 50 60 70 80 90 100 dose [%] from slice 21 to 35 dose: 100% = 22.5 Gy, volume: 100% = 3.0 ccm

0 10 20 30 40 50 60 70 80 90 100 dose [%] from slice 14 to 24 dose: 100% = 22.5 Gy, volume: 100% = 12.9 ccm 0

9  Internal Capsule Arteriovenous Malformation (AVM)

93

94

9  Internal Capsule Arteriovenous Malformation (AVM)

9  Internal Capsule Arteriovenous Malformation (AVM)

95

96

9  Internal Capsule Arteriovenous Malformation (AVM)

9  Internal Capsule Arteriovenous Malformation (AVM)

97

98

9  Internal Capsule Arteriovenous Malformation (AVM)

9  Internal Capsule Arteriovenous Malformation (AVM)

99

100

9  Internal Capsule Arteriovenous Malformation (AVM)

Further Reading

Further Reading Andrade-Souza YM, Zadeh G, Scora D, et al. Radiosurgery for basal ganglia, internal capsule, and thalamus arteriovenous malformation. Neurosurgery. 2005;56:56–64. Parkhutik V, Lago A, Aparici F, et  al. Late clinical and radiological complications of stereotactical radiosurgery of arteriovenous malformations of the brain. Neuroradiology. 2013;55(4):405–12.

101

Pollock BE, Gorman DA, Brown PD. Radiosurgery for arteriovenous malformations of the basal ganglia, thalamus, and brainstem. J Neurosurg. 2004;100:210–4. Yamamoto M, Kawabe T, Barfod BE.  Long-term side effects of radiosurgery for arteriovenous malformations. Prog Neurol Surg. 2013;27:97–106. Yen CP, Matsumoto JA, Wintermark M, et al. Radiation-induced imaging changes following Gamma Knife surgery for cerebral arteriovenous malformations. J Neurosurg. 2013;118(1):63–73.

Cerebral Parenchymal Arteriovenous Malformation (AVM)

• Demographics: Male; 24 years • Initial Presentation: Epilepsy for 7 months before radiosurgery treatment • Diagnosis: Cerebral parenchymal AVM • Pre-radiosurgery Treatment: None • Pre-radiosurgery Presentation: Epilepsy (generalized tonic-clonic seizures) • Radiosurgery Treatment: Upfront (primary); Linac-based SRS for left, frontal, parenchymal AVM • Radiosurgery Dosimetry: –– Target volume: 3.1 cc –– Marginal dose: 25.6 Gy –– Marginal isodose: 80% –– Maximum dose: 33.0 Gy –– Minimum dose: 24.6 Gy –– Average dose: 31.7 Gy –– Number of isocenters: 1 • Follow-Up Period: 96 months post-SRS • Clinical Outcome: –– 6  months post-SRS: Persistent seizures with medications –– 24  months post-SRS: Infrequent seizures with medications –– 36  months post-SRS: Controlled seizures with medications –– 96  months post-SRS: Sustainable control of seizures with medications • Complications: None • Radiological Outcome: –– 6 months post-SRS (MRI): Slight decrease in size of AVM nidus

10

–– 12 months post-SRS (MRI): Marked decrease in size of AVM nidus Appearance of perinidal high signal in T2 and FLAIR studies, denoting vasogenic edema –– 24 months post-SRS (MRI): Non-visualized AVM nidus Appearance of small focal ring enhancing lesion at the site of prior AVM nidus, in T1 Gadolinium-­ enhanced study, denoting radiation necrosis Increased high signal, in T2 and FLAIR studies, surrounding the ring enhancing lesion at the site of prior AVM nidus –– 30  months post-SRS (conventional angiography): Complete obliteration of AVM nidus –– 57 months post-SRS (MRI): Appearance of large cystic lesion with slightly enhancing rim at the site of prior AVM nidus, in T1 Gadolinium-enhanced study, denoting radiation-­ induced parenchymal changes with cyst formation Markedly increased high signal in T2 and FLAIR studies around the radiation-induced large cyst –– 81 months post-SRS (MRI): Regression in size of the heterogeneously enhancing cystic lesion at the site of prior AVM nidus, in T1 Gadolinium-enhanced study Persistent increased high signal in T2 and FLAIR studies around the residual small enhancing radiation-­induced cyst • Post-radiosurgery Treatment: Continued anti-­ convulsant medications

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_10

103

104

10  Cerebral Parenchymal Arteriovenous Malformation (AVM)

10  Cerebral Parenchymal Arteriovenous Malformation (AVM)

105

106

10  Cerebral Parenchymal Arteriovenous Malformation (AVM)

10  Cerebral Parenchymal Arteriovenous Malformation (AVM)

107

108

10  Cerebral Parenchymal Arteriovenous Malformation (AVM)

10  Cerebral Parenchymal Arteriovenous Malformation (AVM)

109

110

10  Cerebral Parenchymal Arteriovenous Malformation (AVM)

10  Cerebral Parenchymal Arteriovenous Malformation (AVM)

111

112

10  Cerebral Parenchymal Arteriovenous Malformation (AVM)

10  Cerebral Parenchymal Arteriovenous Malformation (AVM)

113

114

Further Reading Abdelaziz OS.  Stereotactic radiosurgery for angiographically visible, intracranial, parenchymal arteriovenous malformations: a review. Neurosurg Q. 2000;10(1):42–52. https://www.researchgate.net/ publication/286618593. Al Hinai Q, Tampieri D, Souhami L, et  al. Cyst formation following radiosurgery for AVMs: report of 3 cases. Can J Neurol Sci. 2011;38:734–40. Daou BJ, Palmateer G, Wilkinson DA, et al. Radiation-induced imaging changes and cerebral edema following stereotactic radiosur-

10  Cerebral Parenchymal Arteriovenous Malformation (AVM)

gery for brain AVMs. Am J Neuroradiol. 2021;42:82. https://doi. org/10.3174/ajnr.A6880. Ding D, Stark RM, Kano H, et al. Radiosurgery for cerebral arteriovenous malformations in a randomized trial of unruptured brain arteriovenous malformations (ARUBA)-eligible patients: a Multicenter study. Stroke. 2016;47:342–9. Schäuble B, Cascino GD, Pollock BE, et  al. Seizure outcomes after stereotactic radiosurgery for cerebral arteriovenous malformations. Neurology. 2004;63(4):683–7.

Cerebellar Arteriovenous Malformation (AVM)

• Demographics: Female; 41 years • Initial Presentation: Headache for 11  months before radiosurgery treatment • Diagnosis: Cerebellar AVM • Pre-radiosurgery Treatment: Endovascular embolization twice; at 10 and 3  months before radiosurgery treatment • Pre-radiosurgery Presentation: Vertigo, left-sided deafness, and left-sided tinnitus (all are sequelae of previous embolization) • Radiosurgery Treatment: Adjunctive; linac-based SRS for post-embolization residual, left, cerebellar hemisphere AVM • Radiosurgery Dosimetry: –– Target volume: 3.4 cc –– Marginal dose: 19.0 Gy –– Marginal isodose: 75% –– Maximum dose: 26.8 Gy –– Minimum dose: 12.3 Gy –– Average dose: 24.6 Gy –– Number of isocenters: 1 –– Maximum dose to brain stem: 21.8 Gy • Follow-Up Period: 32 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Minimal improvement of vertigo and left-sided tinnitus Stationary left-sided deafness –– 12 months post-SRS:

11

More improvement of vertigo and left-sided tinnitus Stationary left-sided deafness –– 18 months post-SRS: Improved vertigo Stationary residual left sided tinnitus Stationary left-sided deafness –– 32 months post-SRS: Sustainable improvement of vertigo Stationary residual left-sided tinnitus Stationary left-sided deafness • Complications: None • Radiological Outcome: –– 6  months post-SRS (MRI): Stationary size of AVM nidus –– 12  months post-SRS (CTA): Residual small AVM nidus –– 18 months post-SRS (MRI): Decrease in size of AVM nidus Appearance of perinidal high signal in T2 and FLAIR studies, denoting vasogenic edema –– 19  months post-SRS (MRA): Residual small AVM nidus –– 24  months post-SRS (CTA): Residual smaller AVM nidus –– 32  months post-SRS (conventional angiography): Complete obliteration of AVM nidus • Post-radiosurgery Treatment: None

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_11

115

116

11  Cerebellar Arteriovenous Malformation (AVM)

11  Cerebellar Arteriovenous Malformation (AVM)

117

118

11  Cerebellar Arteriovenous Malformation (AVM)

11  Cerebellar Arteriovenous Malformation (AVM)

119

120

11  Cerebellar Arteriovenous Malformation (AVM)

-SRP in progress–BRAIN STR 100

100

90

90

80

80

70

70

60

60

50 40

0

10

20

30

40

50

60

70

80

dose [%] from slice 16 to 25 dose: 100% = 25.3 Gy, volume: 100% = 3.4 ccm

90

100

volume [%]

volume [%]

-SRP–1–Avm VOI 2

50 40

30

30

20

20

10

10

0

0

10

20

30

40

50

60

70

80

dose [%] from slice 6 to 28 dose: 100% = 25.3 Gy, volume: 100% = 19.4 ccm

90

100

0

11  Cerebellar Arteriovenous Malformation (AVM)

121

122

11  Cerebellar Arteriovenous Malformation (AVM)

11  Cerebellar Arteriovenous Malformation (AVM)

123

124

11  Cerebellar Arteriovenous Malformation (AVM)

11  Cerebellar Arteriovenous Malformation (AVM)

125

126

11  Cerebellar Arteriovenous Malformation (AVM)

11  Cerebellar Arteriovenous Malformation (AVM)

127

128

Further Reading Abdelaziz OS, Abdelaziz A, Rostom Y, et al. LINAC radiosurgery of intracranial arteriovenous malformations: a single-center initial experience. Neurosurg Q. 2011;21:85–96. https://doi.org/10.1097/ WNQ.0b013e31820cd2ea. Cohen-Inbar O, Stark RM, Kano H, et  al. Stereotactic radiosurgery for cerebellar arteriovenous malformations: an international multicenter study. J Neurosurg. 2017;127(3):512–21.

11  Cerebellar Arteriovenous Malformation (AVM)

Van den Berg R, Buis DR, Lagerwaard FJ, et al. Extensive white matter changes after stereotactic radiosurgery for brain arteriovenous malformations: a prognostic sign for obliteration? Neurosurgery. 2008;63(6):1064–9. Yan D, Chen Y, Li Z, et al. Stereotactic radiosurgery with vs. without prior embolization for brain arteriovenous malformations: a propensity score matching analysis. Front Neurol. 2021;12:752164. https:// doi.org/10.3389/fneur.2021.752164.

Previously Embolized Arteriovenous Malformation (AVM)

• Demographics: Male; 32 years • Initial Presentation: Seizures for 2 months before radiosurgery treatment • Diagnosis: Parieto-occipital AVM • Pre-radiosurgery Treatment: Endovascular embolization; 3 weeks before radiosurgery treatment • Pre-radiosurgery Presentation: Seizures (generalized tonic-clonic) • Radiosurgery Treatment: Adjunctive; Linac-based SRS for post-embolization residual, left, parieto-occipital AVM • Radiosurgery Dosimetry: –– Target volume: 2.8 cc –– Marginal dose: 20.0 Gy –– Marginal isodose: 80% –– Maximum dose: 25.0 Gy –– Minimum dose: 18.1 Gy –– Average dose: 23.9 Gy –– Number of isocenters: 1 • Follow-Up Period: 82 months post-SRS • Clinical Outcome: –– 6  months post-SRS: Persistent seizures with medication –– 18  months post-SRS: Decreased seizures frequency with medication –– 30  months post-SRS: Controlled seizures with medication –– 48  months post-SRS: Controlled seizures with lower dose of medication –– 82  months post-SRS: Sustainable control of seizures with lower dose of medication • Complications: None • Radiological Outcome: –– 6  months post-SRS (MRI): Stationary size of AVM nidus –– 12 months post-SRS (MRI):

12

Decrease in size of AVM nidus Appearance of perinidal high signal in T2 and FLAIR studies, denoting vasogenic edema Appearance of perinidal enhancing lesion, in T1 Gadolinium-enhanced study, denoting radiation-­ induced parenchymal changes –– 18 months post-SRS (MRI): More decrease in size of AVM nidus Increased perinidal high signal in T2 and FLAIR studies Increase in size of perinidal enhancing lesion, in T1 Gadolinium-enhanced study –– 24 months post-SRS (MRI): More decrease in size of AVM nidus Resolving perinidal high signal in T2 and FLAIR studies Decrease in size of perinidal enhancing lesion, in T1 Gadolinium-enhanced study –– 36 months post-SRS (MRI): Stationary decreased size of AVM nidus Mild residual perinidal high signal in T2 and FLAIR studies Resolution of perinidal enhancement, in T1 Gadolinium-­enhanced study –– 36  months post-SRS (CTA): Residual small AVM nidus –– 48  months post-SRS (CTA): Residual smaller AVM nidus –– 82  months post-SRS (CTA): Residual much smaller AVM nidus • Post-radiosurgery Treatment: Continued anti-­ convulsant medication. The patient is scheduled for conventional cerebral angiography and will be offered surgery, repeat radiosurgery, or endovascular embolization for the post-radiosurgery residual, non-obliterated, small AVM nidus

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_12

129

130

12  Previously Embolized Arteriovenous Malformation (AVM)

12  Previously Embolized Arteriovenous Malformation (AVM)

131

132

12  Previously Embolized Arteriovenous Malformation (AVM)

12  Previously Embolized Arteriovenous Malformation (AVM)

133

134

12  Previously Embolized Arteriovenous Malformation (AVM)

12  Previously Embolized Arteriovenous Malformation (AVM)

135

136

12  Previously Embolized Arteriovenous Malformation (AVM)

12  Previously Embolized Arteriovenous Malformation (AVM)

137

138

12  Previously Embolized Arteriovenous Malformation (AVM)

12  Previously Embolized Arteriovenous Malformation (AVM)

139

140

12  Previously Embolized Arteriovenous Malformation (AVM)

12  Previously Embolized Arteriovenous Malformation (AVM)

141

142

Further Reading Daou BJ, Palmateer G, Wilkinson DA, et al. Radiation-induced imaging changes and cerebral edema following stereotactic radiosurgery for brain AVMs. Am J Neuroradiol. 2021;42:82. https://doi. org/10.3174/ajnr.A6880. Lee CC, Chen CJ, Ball B, et al. Stereotactic radiosurgery for arteriovenous malformations after Onyx embolization: a case-control study. J Neurosurg. 2015;123(1):120–35.

12  Previously Embolized Arteriovenous Malformation (AVM)

Schäuble B, Cascino GD, Pollock BE, et  al. Seizure outcomes after stereotactic radiosurgery for cerebral arteriovenous malformations. Neurology. 2004;63(4):683–7. Yan D, Chen Y, Li Z, et al. Stereotactic radiosurgery with vs. without prior embolization for brain arteriovenous malformations: a propensity score matching analysis. Front Neurol. 2021;12:752164. https:// doi.org/10.3389/fneur.2021.752164.

Rare Subtype of Venous-Predominant Parenchymal Arteriovenous Malformation (AVM)

• Demographics: Male; 18 years • Initial Presentation: Hemorrhage (subarachnoid), which occurred twice; at 8 months and 1 month before radiosurgery treatment • Diagnosis: A rare subtype of venous-predominant parenchymal AVM, mimicking atypical arterialized developmental venous anomaly (DVA) • Pre-radiosurgery Treatment: None • Pre-radiosurgery Presentation: Asymptomatic and neurologically intact, after complete recovery from severe hemorrhage-associated headache • Radiosurgery Treatment: Upfront (primary); Linac-based SRS for right, frontal, large, diffuse, venous-predominant, parenchymal AVM • Radiosurgery Dosimetry: –– Target volume: 12.5 cc –– Marginal dose: 25.0 Gy –– Marginal isodose: 80% –– Maximum dose: 33.0 Gy –– Minimum dose: 14.5 Gy –– Average dose: 30.0 Gy –– Number of isocenters: 1 –– Maximum dose to optic chiasm: 15.8 Gy • Follow-Up Period: 64 months post-SRS • Clinical Outcome: –– 3  months post-SRS: Experienced moderate headache and vomiting; started medications (steroids, diuretics) –– 5 months post-SRS: Improving headache and vomiting with gradual tapering of medications –– 7  months post-SRS: Recurrence of severe headache and vomiting; restarted medications (steroids, diuretics) –– 8 months post-SRS: Complete resolution of headache and vomiting; stopped medications –– 12  months post-SRS: Asymptomatic and neurologically intact

13

–– 64  months post-SRS: Sustainable asymptomatic and intact neurological status • Complications: None • Radiological Outcome: –– 3 months post-SRS (CT): Slight decrease in size of AVM nidus Diffuse right frontal perinidal hypodensity, denoting severe vasogenic edema with focal mass effect and midline shift –– 7 months post-SRS (MRI): Marked decrease in size of AVM nidus Diffuse right frontal perinidal high signal in T2 study, denoting marked vasogenic edema Appearance of right frontal perinidal large heterogeneously enhancing lesion, in T1 Gadolinium-­ enhanced study, denoting radiation-induced parenchymal changes –– 8 months post-SRS (CT): Much more decrease in size of AVM nidus Decreased right frontal perinidal hypodense vasogenic edema –– 9 months post-SRS (CTA): Non-visualized AVM nidus Persistent slightly dilated draining deep venous system –– 11 months post-SRS (CT): Non-visualized AVM nidus Markedly decreased right frontal perinidal hypodense vasogenic edema –– 12 months post-SRS (CTA): Non-visualized AVM nidus Evident decrease in number and size of draining deep veins –– 55  months post-SRS (Conventional angiography): Complete nidus obliteration • Post-radiosurgery Treatment: None

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_13

143

144

13  Rare Subtype of Venous-Predominant Parenchymal Arteriovenous Malformation (AVM)

13  Rare Subtype of Venous-Predominant Parenchymal Arteriovenous Malformation (AVM)

145

146

13  Rare Subtype of Venous-Predominant Parenchymal Arteriovenous Malformation (AVM)

13  Rare Subtype of Venous-Predominant Parenchymal Arteriovenous Malformation (AVM)

147

13  Rare Subtype of Venous-Predominant Parenchymal Arteriovenous Malformation (AVM) -SRP in progress–Avm VOI 2 100 90 80 70 volume [%]

60 50 40 30 20 10 0

10

20

30

40

50 60 dose [%]

70

80

90

100

0

from slice 22 to 41 dose: 100% = 31.3 Gy, volume: 100% = 12.5 ccm -SRP in progress–OPTIC CHIAS 100 90 80 70 60

volume [%]

148

50 40 30 20 10 0

10

20

30

40

50 60 dose [%]

70

80

from slice 19 to 21 dose: 100% = 31.3 Gy, volume: 100% = 0.5 ccm

90

100

0

13  Rare Subtype of Venous-Predominant Parenchymal Arteriovenous Malformation (AVM)

149

150

13  Rare Subtype of Venous-Predominant Parenchymal Arteriovenous Malformation (AVM)

13  Rare Subtype of Venous-Predominant Parenchymal Arteriovenous Malformation (AVM)

151

152

13  Rare Subtype of Venous-Predominant Parenchymal Arteriovenous Malformation (AVM)

13  Rare Subtype of Venous-Predominant Parenchymal Arteriovenous Malformation (AVM)

153

154

13  Rare Subtype of Venous-Predominant Parenchymal Arteriovenous Malformation (AVM)

13  Rare Subtype of Venous-Predominant Parenchymal Arteriovenous Malformation (AVM)

155

156

13  Rare Subtype of Venous-Predominant Parenchymal Arteriovenous Malformation (AVM)

13  Rare Subtype of Venous-Predominant Parenchymal Arteriovenous Malformation (AVM)

157

158

13  Rare Subtype of Venous-Predominant Parenchymal Arteriovenous Malformation (AVM)

Further Reading

Further Reading Ilyas A, Chen CJ, Ding D, et al. Radiation-induced changes after stereotactic radiosurgery for brain arteriovenous malformations: a systematic review and meta-analysis. Neurosurgery. 2018;83(3):365–76. Im SH, Han MH, Kwon BJ, et  al. Venous-predominant parenchymal arteriovenous malformation: a rare subtype with a venous drainage pattern mimicking developmental venous anomaly. J Neurosurg. 2008;108(6):1142–7.

159

Nabavizadeh SA.  Intracranial arteriovenous shunting detection with arterial spin-labeling and susceptibility-weighted imaging: potential pitfall of a venous predominant parenchymal arteriovenous malformation. Am J Neuroradiol. 2017;38(5):E32. https://doi. org/10.3174/ajnr.A5108. Van den Berg R, Buis DR, Lagerwaard FJ, et al. Extensive white matter changes after stereotactic radiosurgery for brain arteriovenous malformations: a prognostic sign for obliteration? Neurosurgery. 2008;63(6):1064–9.

Complicated Brain Arteriovenous Malformation (AVM) with Radiation Necrosis

• Demographics: Male; 24 years • Pre-radiosurgery Presentation: Headache for 2  years before radiosurgery treatment • Diagnosis: Medium size brain AVM • Pre-radiosurgery Treatment: None • Radiosurgery Treatment: Upfront (primary); Linac-based stereotactic radiosurgery (SRS) for left temporal, medium size AVM • Radiosurgery Dosimetry: –– Target volume: 2.9 cc –– Marginal dose: 18.0 Gy –– Marginal isodose: 80% –– Maximum dose: 41.3 Gy –– Minimum dose: 8.1 Gy –– Average dose: 23.8 Gy –– Number of isocenters: 2 –– Maximum dose to brain stem: 13.7 Gy • Follow-Up Period: 36 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Stationary headache –– 12 months post-SRS: Increased headache Started medications (steroids, diuretics) –– 17 months post-SRS: Improving headache with medications Developed memory deficits Experienced partial seizures with secondary generalization Added more medications (steroids, diuretics, anticonvulsants) –– 18 months post-SRS: More improvement of headache Stationary memory deficits Improving generalized seizures with medications Continued medications (steroids, diuretics, anticonvulsants)

14

–– 18 months post-SRS: Improved headache Improving, with residual, memory deficits Improving, with residual, generalized seizures Continued medications (steroids, diuretics, anticonvulsants) –– 20 months post-SRS: Stationary improved headache Stationary residual memory deficits Stationary residual generalized seizures Continued medications (steroids, diuretics, anticonvulsants) Newly developed bilateral visual field defects (right homonymous hemianopia) –– 24 months post-SRS: Stationary improvement of headache Stationary residual memory deficits Improving seizures control with medications Continued medications (steroids, diuretics, anticonvulsants) Stationary bilateral visual field defects (right homonymous hemianopia) –– 30 months post-SRS: Stationary improvement of headache Stationary residual memory deficits Partial control of seizures with medications Continued anticonvulsant medications and gradual tapering of steroids and diuretics Stationary bilateral visual field defects (right homonymous hemianopia) –– 36 months post-SRS: Sustainable improvement of headache Stationary residual memory deficits Stationary partial control of seizures with medications

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_14

161

162

14  Complicated Brain Arteriovenous Malformation (AVM) with Radiation Necrosis

Continued anticonvulsant medications and stopped More increase of perinidal vasogenic edema, caussteroids and diuretics ing more focal pressure effect and midline brain Permanent bilateral visual field defects (right homshift onymous hemianopia) More increase of nidal and perinidal, focal, hetero• Complications: geneously enhancing radiation necrosis, in T1 –– At 20 months post-SRS. the patient developed permaGadolinium-­enhanced study nent right homonymous hemianopia, probably due to –– 22 months post-SRS (MRS): radiation-induced injury of left optic tract, which lies Slightly increased Choline (Cho) and normal adjacent to AVM nidus. N-acetyl aspartate (NAA) and Creatine (Cr) signal –– Persistent infrequent generalized seizures, despite conintensities, indicative of radiation-induced injury tinued medical treatment –– 24  months post-SRS (CTA): Non-visualized AVM • Radiological outcome: nidus –– 6 months post-SRS (MRI): –– 30 months post-SRS (MRI): Mild decrease in size of AVM nidus Non-visualized AVM nidus –– 12 months post-SRS (MRI): Appearance of focal encephalomalacia at the site of More decrease in size of AVM nidus prior AVM nidus Appearance of perinidal high signal in T2 and Resolution of vasogenic edema-associated high sigFLAIR studies, denoting vasogenic edema nal in T2 and FLAIR studies at the site of prior Appearance of nidal and perinidal, focal, heterogeAVM nidus neously enhancing lesion, in T1 Gadolinium-­ Resolution of previously described nidal and perinenhanced study, denoting radiation necrosis idal radiation necrosis –– 17 months post-SRS (MRI): Associated negative mass effect as mild ex-vacuo More marked decrease in size of AVM nidus dilatation of the left lateral ventricle Marked increase of perinidal vasogenic edema, –– 36 months post-SRS (CTA): causing focal pressure effect and midline brain Complete obliteration of AVM nidus shift Small calcific foci are seen within the area of Marked increase of nidal and perinidal, focal, hetencephalomalacia at the site of prior AVM nidus erogeneously enhancing radiation necrosis, in T1 • Post-radiosurgery Treatment: Gadolinium-enhanced study –– Continued clinical and radiological follow-up –– 20 months post-SRS (MRI): –– Planning for conventional cerebral angiography study Non-visualized AVM nidus –– Continued anticonvulsant medications

14  Complicated Brain Arteriovenous Malformation (AVM) with Radiation Necrosis

163

14  Complicated Brain Arteriovenous Malformation (AVM) with Radiation Necrosis

-SRP in progress–Avm VOI 2

volume [%]

164

100 90 80 70 60 50 40 30 20 10 0

0 10 20 30 40 50 60 70 80 90 100 dose [%] from slice 27 to 39 dose: 100% = 22.5 Gy, volume: 100% = 2.9 ccm

14  Complicated Brain Arteriovenous Malformation (AVM) with Radiation Necrosis

165

166

14  Complicated Brain Arteriovenous Malformation (AVM) with Radiation Necrosis

14  Complicated Brain Arteriovenous Malformation (AVM) with Radiation Necrosis

167

168

14  Complicated Brain Arteriovenous Malformation (AVM) with Radiation Necrosis

14  Complicated Brain Arteriovenous Malformation (AVM) with Radiation Necrosis

169

170

14  Complicated Brain Arteriovenous Malformation (AVM) with Radiation Necrosis

14  Complicated Brain Arteriovenous Malformation (AVM) with Radiation Necrosis

171

172

14  Complicated Brain Arteriovenous Malformation (AVM) with Radiation Necrosis

Further Reading

Further Reading Daou BJ, Palmateer G, Wilkinson DA, et al. Radiation-induced imaging changes and cerebral edema following stereotactic radiosurgery for brain AVMs. Am J Neuroradiol. 2020;42(1):82–7. https://doi. org/10.3174/ajnr.A6880. Ilyas A, Chen CJ, Ding D, et al. Radiation-induced changes after stereotactic radiosurgery for brain arteriovenous malformations: a systematic review and meta-analysis. Neurosurgery. 2018;83(3):365–76.

173

Parkhutik V, Lago A, Aparici F, et  al. Late clinical and radiological complications of stereotactical radiosurgery of arteriovenous malformations of the brain. Neuroradiology. 2013;55(4):405–12. Yamamoto M, Kawabe T, Barfod BE.  Long-term side effects of radiosurgery for arteriovenous malformations. Prog Neurol Surg. 2013;27:97–106. Yen CP, Matsumoto JA, Wintermark M, et al. Radiation-induced imaging changes following Gamma Knife surgery for cerebral arteriovenous malformations. J Neurosurg. 2013;118(1):63–73.

Brain Cavernous Malformation

• Demographics: Female; 51 years • Initial Presentation: Headache and seizures for 6 months before radiosurgery treatment • Diagnosis: Cerebral parenchymal cavernous malformation • Pre-radiosurgery Treatment: Anticonvulsant pharmacological therapies (drug combination) • Pre-radiosurgery Presentation: Headache and seizures (left-sided focal seizures with secondary generalization) • Radiosurgery Treatment: Upfront (primary); linac-based SRS for right, frontal, parenchymal cavernous malformation • Radiosurgery Dosimetry: –– Target volume: 2.4 cc –– Marginal dose: 14.0 Gy –– Marginal isodose: 80% –– Maximum dose: 17.6 Gy –– Minimum dose: 13.0 Gy –– Average dose: 16.7 Gy –– Number of isocenters: 1… • Follow-Up Period: 156 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Improved headache Decreased seizures frequency and severity with medications

15

–– 24  months post-SRS: Controlled seizures with medications –– 36  months post-SRS: Controlled seizures with lower doses of medications –– 48  months post-SRS: Sustainable control of seizures with lower doses of medications –– 75  months post-SRS: Sustainable control of seizures with lower doses of medications –– 106 months post-SRS: Sustainable control of seizures with lower doses of medications –– 156 months post-SRS: Sustainable control of seizures with lower doses of medications • Complications: None • Radiological Outcome: –– 36 months post-SRS (MRI): Stationary size of cavernous malformation –– 75 months post-SRS (MRI): Stationary size of cavernous malformation –– 106 months post-SRS (MRI): Decreased size of cavernous malformation –– 125  months post-SRS (MRI): Stationary decreased size of cavernous malformation • Post-radiosurgery Treatment: Continued anti-­ convulsant medications

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_15

175

176

15  Brain Cavernous Malformation

15  Brain Cavernous Malformation

177

178

15  Brain Cavernous Malformation

15  Brain Cavernous Malformation

179

180

15  Brain Cavernous Malformation

15  Brain Cavernous Malformation

181

182

Further Reading Flemming KD, Lanzino G.  Stereotactic radiosurgery for cavernous malformations: natural history or treatment effect? Neurology. 2019;93(21):921–2. Karaaslan B, Gülsuna B, Erol G, et  al. Stereotactic radiosurgery for cerebral cavernous malformation: comparison of hemorrhage rates before and after stereotactic radiosurgery. J Neurosurg. 2022;136(3):655–61.

15  Brain Cavernous Malformation

Lévêque M, Carron R, Bartolomei F, et  al. Radiosurgical treatment for epilepsy associated with cavernomas. Prog Neurol Surg. 2013;27:157–65. Nagy G, Kemeny AA.  Radiosurgery for cerebral cavernomas. J Neurosurg Sci. 2015;59(3):295–306. Sager O, Beyzadeoglu M, Dincoglan F, et  al. Evaluation of linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) for cerebral cavernous malformations: a 15-year single-­ center experience. Ann Saudi Med. 2014;34(1):54–8. https://doi. org/10.5144/0256-­4947.2014.54.

Brain Mixed Vascular Malformations

• Demographics: Male; 37 years • Initial Presentation: Hemorrhage (cerebellar vermis); 4 months before radiosurgery treatment • Initial Diagnosis: Cerebellar vermis AVM • Pre-radiosurgery Treatment: None • Pre-radiosurgery Presentation: Headache, dysarthria, ataxic gait, incoordination, and nystagmus • Radiosurgery Treatment: Upfront (primary); linac-based SRS for cerebellar vermis AVM • Radiosurgery Dosimetry: –– Target volume: 3.5 cc –– Marginal dose: 16.0 Gy –– Marginal isodose: 80% –– Maximum dose: 28.9 Gy –– Minimum dose: 11.1 Gy –– Average dose: 20.6 Gy –– Number of isocenters: 2 –– Maximum dose to brain stem: 13.6 Gy • Follow-Up Period: 72 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Improving headache Mild improvement of dysarthria, ataxic gait, incoordination, and nystagmus –– 18 months post-SRS: Improved headache More improvement of dysarthria, ataxic gait, incoordination, and nystagmus –– 36 months post-SRS: Improved ataxic gait, incoordination, and nystagmus Residual mild dysarthria –– 58 months post-SRS: Developed recurrent severe ataxic gait Experienced progressive severe dysarthria

16

–– 70 months post-SRS: Underwent surgery for excision of a posterior fossa lesion and insertion of a ventriculo-peritoneal (V-P) shunt –– 72  months post-SRS: Markedly worsened gait ataxia and dysarthria • Complications: Permanent incapacitating gait ataxia and dysarthria • Radiological Outcome: –– 18 months post-SRS (MRI): Decrease in size of AVM nidus Appearance of perinidal vermian heterogeneously enhancing area of encephalomalacia, in T1 Gadolinium-­ enhanced study, denoting radiation-­ induced changes Appearance of perinidal bilateral cerebellar high signal in T2 and FLAIR studies, denoting vasogenic edema –– 30 months post-SRS (MRI): Much more decrease in size of AVM nidus Decrease in size of perinidal vermian heterogeneously enhancing lesion, in T1 Gadolinium-­ enhanced study Decreased perinidal bilateral cerebellar high signal in T2 and FLAIR studies Appearance of perinidal vermian berry (popcorn) lesion of mixed signal intensity with surrounding hypointensity, in T2 and FLAIR studies, characteristic of cavernous malformation –– 59 months post-SRS (MRI): Non-visualized AVM nidus More marked decrease in size of perinidal vermian enhancement, in T1 Gadolinium-enhanced study Marked increase in the size of perinidal vermian cavernous malformation

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_16

183

184

Increased perinidal bilateral cerebellar high signal in T2 and FLAIR studies Appearance of perinidal right cerebellar cyst, at the site of previous heterogeneously enhancing lesion, within the surrounding right cerebellar edema, denoting radiation-induced cyst formation –– 60  months post-SRS (conventional angiography): Complete obliteration of AVM nidus –– 70 months post-SRS (CT): Large hyperdense and slightly enhancing cerebellar vermis lesion Obstructive hydrocephalus with supratentorial ventricular dilatation –– 71 months post-SRS (CT):

16  Brain Mixed Vascular Malformations

Completely excised cerebellar vermis lesion Well drained supratentorial ventricular system with inserted right frontal V-P shunt • Post-radiosurgery Treatment: Surgical excision of cerebellar vermis lobulated lesion (via a suboccipital approach) and insertion of a right frontal V-P shunt, at 70 months post-SRS. Histopathological examination confirmed the diagnosis of mixed cavernous malformation and thrombosed AVM • Final Diagnosis: The initial, SRS-treated, vascular malformation of the cerebellar vermis proved to be a mixed vascular malformation (mixed AVM and cavernous malformation), rather than just an AVM, as was originally thought

16  Brain Mixed Vascular Malformations

185

186

16  Brain Mixed Vascular Malformations

16  Brain Mixed Vascular Malformations

187

188

16  Brain Mixed Vascular Malformations

16  Brain Mixed Vascular Malformations

189

190

16  Brain Mixed Vascular Malformations

16  Brain Mixed Vascular Malformations

191

192

16  Brain Mixed Vascular Malformations

16  Brain Mixed Vascular Malformations

193

194

16  Brain Mixed Vascular Malformations

16  Brain Mixed Vascular Malformations

195

196

16  Brain Mixed Vascular Malformations

Further Reading Al Hinai Q, Tampieri D, Souhami L, et  al. Cyst formation following radiosurgery for AVMs: report of 3 cases. Can J Neurol Sci. 2011;38:734–40. Daou BJ, Palmateer G, Wilkinson DA, et al. Radiation-induced imaging changes and cerebral edema following stereotactic radiosurgery for brain AVMs. Am J Neuroradiol. 2020;42(1):82–7. https://doi. org/10.3174/ajnr.A6880. Kim SH, Kim TG, Kong MH. De novo cavernous malformation after radiosurgery for cerebellar arteriovenous malformation: a case report. Neurol Asia. 2017;22(3):261–6.

Cavernous Sinus Meningioma

• Demographics: Female; 41 years • Presentation: Diplopia on right lateral gaze (right abducens paresis) for 5 months before radiosurgery treatment • Diagnosis: Cavernous sinus meningioma • Pre-radiosurgery Treatment: None • Radiosurgery Treatment: Upfront (primary); linac-based SRS for right cavernous sinus meningioma • Radiosurgery Dosimetry: –– Target volume: 8.2 cc –– Marginal dose: 9.6 Gy –– Marginal isodose: 80% –– Maximum dose: 20.5 Gy –– Minimum dose: 6.8 Gy –– Average dose: 13.0 Gy –– Number of isocenters: 2 –– Maximum dose to optic chiasm: 6.9 Gy –– Maximum dose to right optic nerve: 7.9 Gy –– Maximum dose to brain stem: 2.6 Gy • Follow-Up Period: 210 months post-SRS • Clinical Outcome: –– 7  months post-SRS: Slight improvement of diplopia and right abducens paresis –– 14  months post-SRS: More improvement of diplopia and right abducens paresis –– 21 months post-SRS: Much more improvement of diplopia and right abducens paresis –– 28 months post-SRS: Much more improvement of diplopia and right abducens paresis –– 40  months post-SRS: Complete recovery of diplopia and resolution of right abducens paresis –– 57 months post-SRS: Stationary complete recovery of diplopia and resolution of right abducens paresis –– 72  months post-SRS: Asymptomatic and has intact ocular motility –– 83  months post-SRS: Asymptomatic and has intact ocular motility

17

–– 95  months post-SRS: Asymptomatic and has intact ocular motility –– 134  months post-SRS: Asymptomatic and has intact ocular motility –– 161  months post-SRS: Asymptomatic and has intact ocular motility –– 176  months post-SRS: Asymptomatic and has intact ocular motility –– 182 months post-SRS: Sustainable intact ocular motility in all directions • Complications: At 83  months post-SRS, the patient’s radiological follow-up showed an asymptomatic stenosis of the intracavernous segment of the right internal carotid artery (ICA) • Radiological Outcome: –– 7 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement –– 14 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement –– 21 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement –– 28 months post-SRS (MRI): Mild decreased in tumor size Stationary tumor contrast enhancement –– 40 months post-SRS (MRI): Stationary decreased tumor size Stationary decrease in central tumor contrast enhancement –– 57 months post-SRS (MRI): Stationary decreased tumor size Mild decrease in tumor contrast enhancement –– 72 months post-SRS (MRI): Stationary decreased tumor size Stationary decreased tumor contrast enhancement

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_17

197

198



• • •



De novo small anterior foramen magnum meningioma –– 83 months post-SRS (MRI): Stationary decreased tumor size Stationary decreased tumor contrast enhancement Stenosis of the intracavernous segment of the right ICA (Asymptomatic) Stationary size of de novo anterior foramen magnum meningioma –– 95 months post-SRS (MRI): Stationary decreased tumor size Stationary decreased tumor contrast enhancement Stenosis of the intracavernous segment of the right ICA (asymptomatic) Stationary size of de novo anterior foramen magnum meningioma –– 134 months post-SRS (MRI): Stationary decreased tumor size Stationary decreased tumor contrast enhancement Mild increase in size of de novo anterior foramen magnum meningioma –– 161 months post-SRS (MRI): Stationary decreased tumor size Stationary decreased tumor contrast enhancement Stenosis of the intracavernous segment of the right ICA (Asymptomatic) Stationary size of de novo anterior foramen magnum meningioma –– 176 months post-SRS (MRI): Stationary decreased tumor size Stationary decreased tumor contrast enhancement Stationary increased size of de novo anterior foramen magnum meningioma –– 182 months post-SRS (CT): Stationary increased size of de novo anterior foramen magnum meningioma Post-radiosurgery Treatment: –– None for the treated right cavernous sinus meningioma –– The patient is scheduled for a second SRS treatment of the growing, de novo, anterior foramen magnum meningioma Second Radiosurgery Treatment: Timing: 185 months after first SRS treatment Second Radiosurgery Treatment: Upfront (primary); Linac-based SRS for increasing in size, de novo, anterior foramen magnum meningioma Second Radiosurgery Dosimetry: –– Target volume: 1.7 cc –– Marginal dose: 11.0 Gy –– Marginal isodose: 80% –– Maximum dose: 13.8 Gy

17  Cavernous Sinus Meningioma









–– Minimum dose: 9.0 Gy –– Average dose: 13.0 Gy –– Number of isocenters: 1 –– Maximum dose to brain stem: 13.4 Gy Extended Clinical Outcome: –– One-month post-second SRS: Weak elevation of the left eyebrow A small alopecia areata at the right occipital scalp (started treatment with hair growth formulas) –– 200  months post-first SRS/15  months post-second SRS: Asymptomatic Sustainable intact ocular motility in all directions Intact eyebrow movements Improving hair growth, at the alopecic scalp area, with continued medications –– 210  months post-first SRS/25  months post-second SRS: Asymptomatic Sustainable intact ocular motility in all directions Intact eyebrow movements More improvement of hair growth, at the alopecic scalp area, with continued medications Complications: –– At 1-month post-second SRS, the patient noticed weak elevation of the left eyebrow, which improved gradually over the following few months. This was probably attributed to a pin site, focal injury of the frontalis muscle –– At 1-month post-second SRS, the patient developed small alopecia areata at the right occipital scalp, which improved much with extensive medications for several months Extended Radiological Outcome: –– 200  months post-first SRS/15  months post-second SRS: More decrease in size of the right cavernous sinus meningioma Stationary size of the anterior foramen magnum meningioma –– 210  months post-first SRS/25  months post-second SRS: Stationary size of the right cavernous sinus meningioma Stationary size of the anterior foramen magnum meningioma Post-second Radiosurgery Treatment: –– Continued treatment with hair growth enhancement formulas –– Continued clinical and radiological follow-up

17  Cavernous Sinus Meningioma

199

200

17  Cavernous Sinus Meningioma

17  Cavernous Sinus Meningioma

201

202

17  Cavernous Sinus Meningioma

17  Cavernous Sinus Meningioma

203

204

17  Cavernous Sinus Meningioma

17  Cavernous Sinus Meningioma

205

206

17  Cavernous Sinus Meningioma

17  Cavernous Sinus Meningioma

207

208

17  Cavernous Sinus Meningioma

17  Cavernous Sinus Meningioma

209

210

17  Cavernous Sinus Meningioma

17  Cavernous Sinus Meningioma

211 -SRP in progress–Tumor VOI 2 100 90 80 volume [%]

70 60 50 40 30 20 10 0 0

10 20 30 40 50 60 70 80 90 100 dose [%]

from slice 1 to 15 dose: 100% = 13.8 Gy, volume: 100% = 1.6 ccm -SRP in progress–BRAIN STEM 100 90 80 volume [%]

70 60 50 40 30 20 10 0 0

10 20 30 40 50 60 70 80 90 100 dose [%]

from slice 1 to 42 dose: 100% = 13.8 Gy, volume: 100% = 20.4 ccm

212

17  Cavernous Sinus Meningioma

17  Cavernous Sinus Meningioma

213

214

17  Cavernous Sinus Meningioma

Further Reading

Further Reading Abdelaziz OS, Kandil A, Al-Assaal S, et al. Linear accelerator-based stereotactic radiosurgery of intracranial meningiomas: results of the first five years of clinical practice. Neurosurg Rev. 2011;34:87–99. Corniola MV, Roche PH, Michaël Bruneau M, et al. Management of cavernous sinus meningiomas: consensus statement on behalf of the EANS skull base section. Brain Spine. 2022;2:100864. https://doi. org/10.1016/j.bas.2022.100864.

215

Deinsberger R, Tidstrand J, Sabitzer H, et al. LINAC radiosurgery in skull base meningiomas. Min Invasive Neurosurg. 2004;47(6):333–8. Graffeo CS, Link MJ, Stafford SL, et al. Risk of internal carotid artery stenosis or occlusion after single-fraction radiosurgery for benign parasellar tumors. J Neurosurg. 2020;133(5):1388–95. Kimball MM, Friedman WA, Foote KD, et  al. Linear accelerator radiosurgery for cavernous sinus meningiomas. Stereotact Funct Neurosurg. 2009;87(2):120–7.

Petrous Apex Meningioma

Demographics: Male; 52 years Presentation: Left trigeminal neuralgia Diagnosis: Petrous apex meningioma Pre-radiosurgery Treatment: None Radiosurgery Treatment: Upfront (primary); linac-based SRS for left petrous apex meningioma • Radiosurgery Dosimetry: –– Target volume: 1.7 cc –– Marginal dose: 12.0 Gy –– Marginal isodose: 80% –– Maximum dose: 15.0 Gy –– Minimum dose: 11.7 Gy –– Average dose: 14.3 Gy –– Number of isocenters: 1 –– Maximum dose to brain stem: 14.2 Gy • Follow-Up Period: 248 months post-SRS • Clinical Outcome: –– 6  months post-SRS: Improving trigeminal neuralgia with medications –– 12 months post-SRS: Controlled trigeminal neuralgia with medications –– 18 months post-SRS: Controlled trigeminal neuralgia with medications (smaller doses) –– 36 months post-SRS: Controlled trigeminal neuralgia without medications • • • • •

18

–– 248 months post-SRS: Sustainable control of trigeminal neuralgia without medications • Complications: None • Radiological Outcome: –– 6 months post-SRS (MRI): Mild increase in tumor size (pseudo-progression) Loss of central tumor contrast enhancement Appearance of perilesional brain stem high signal in T2 and FLAIR studies, denoting vasogenic edema (asymptomatic) –– 12 months post-SRS (MRI): Decreased tumor size Decreased tumor contrast enhancement Resolved perilesional brain stem high signal in T2 and FLAIR studies –– 18 months post-SRS (MRI): More decrease in tumor size More decrease in tumor contrast enhancement Persistent resolution of perilesional brain stem high signal in T2 and FLAIR studies –– 36 months post-SRS (MRI): More marked decrease in tumor size Stationary decreased tumor contrast enhancement Persistent resolution of perilesional brain stem high signal in T2 and FLAIR studies • Post-radiosurgery Treatment: None

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_18

217

218

18  Petrous Apex Meningioma

18  Petrous Apex Meningioma

219

220

18  Petrous Apex Meningioma

18  Petrous Apex Meningioma

221

222

18  Petrous Apex Meningioma

18  Petrous Apex Meningioma

223

224

18  Petrous Apex Meningioma

18  Petrous Apex Meningioma

225

226

Further Reading Flannery TJ, Kano H, Lunsford AD, et  al. Long-term control of petroclival meningiomas through radiosurgery. J Neurosurg. 2010;112(5):957–64. Kunert P, Matyja E, Janowski M, et  al. Rapid growth of asymptomatic meningioma following radiosurgery. Br J Neurosurg. 2009;23(2):206–8. Maksoud Z, Schmidt MA, Huang Y, et  al. Transient enlargement in meningiomas treated with stereotactic radiotherapy. Cancers. 2022;14:1547. https://doi.org/10.3390/cancers14061547.

18  Petrous Apex Meningioma

Novotný J Jr, Kollová A, Liscák R. Prediction of intracranial edema after radiosurgery of meningiomas. J Neurosurg. 2006;105 Suppl:120–6. Peciu-Florianu I, Régis J, Levivier M, et al. Trigeminal neuralgia secondary to meningiomas and vestibular schwannoma is improved after stereotactic radiosurgery: a systematic review and meta-­ analysis. Stereotact Funct Neurosurg. 2021;99:6–16. Shin SS, Kim DY, Ahn YC, et  al. LINAC-based stereotactic radiosurgery for meningiomas. J Korean Soc Ther Radiol Oncol. 2001;19(2):87–94.

Petroclival Meningioma

• Demographics: Female; 40 years • Presentation: –– Chronic headache for 12 months before radiosurgery treatment –– Diplopia on left lateral gaze (left abducens paresis) for 1 month before radiosurgery treatment • Diagnosis: Petroclival meningioma • Pre-radiosurgery Treatment: None • Radiosurgery Treatment: Upfront (primary); Gamma knife-based SRS for left petroclival meningioma • Radiosurgery Dosimetry: –– Target volume: 3.8 cc –– Prescribed dose: 15.0 Gy –– Isodose line: 35% • Follow-Up Period: 76 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Improving headache Improved diplopia and left abducens paresis –– 12 months post-SRS: Improved headache Improved diplopia and left abducens paresis –– 18 months post-SRS: Stationary improvement of headache Stationary improvement of diplopia and left abducens paresis –– 36 months post-SRS: Stationary improvement of headache Stationary improvement of diplopia and left abducens paresis –– 48 months post-SRS: Stationary improvement of headache Stationary improvement of diplopia and left abducens paresis –– 60 months post-SRS: Stationary improvement of headache

19

Stationary improvement of diplopia and left abducens paresis –– 66 months post-SRS: Stationary improvement of headache Stationary improvement of diplopia and left abducens paresis –– 76 months post-SRS: Sustainably improved headache Sustainable complete recovery of left abducens paresis and resolution of diplopia on left lateral gaze • Complications: None • Radiological Outcome: –– 6 months post-SRS (MRI): Mild decrease in tumor size Loss of central tumor contrast enhancement –– 18 months post-SRS (MRI): More decrease in tumor size Stationary loss of central tumor contrast enhancement –– 36 months post-SRS (MRI): Stationary decreased tumor size Stationary decreased tumor contrast enhancement –– 48 months post-SRS (MRI): Stationary decreased tumor size Stationary decreased tumor contrast enhancement –– 60 months post-SRS (MRI): More decrease in tumor size More decrease in tumor contrast enhancement –– 66 months post-SRS (MRI): Stationary decreased tumor size Stationary loss of central tumor contrast enhancement –– 76 months post-SRS (MRI): More decrease in tumor size More decrease in tumor contrast enhancement • Post-radiosurgery Treatment: None

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_19

227

228

19  Petroclival Meningioma

19  Petroclival Meningioma

229

230

19  Petroclival Meningioma

19  Petroclival Meningioma

231

232

19  Petroclival Meningioma

19  Petroclival Meningioma

233

234

19  Petroclival Meningioma

19  Petroclival Meningioma

235

236

19  Petroclival Meningioma

19  Petroclival Meningioma

237

238

19  Petroclival Meningioma

19  Petroclival Meningioma

239

240

Further Reading Flannery TJ, Kano H, Lunsford AD, et  al. Long-term control of petroclival meningiomas through radiosurgery. J Neurosurg. 2010;112(5):957–64. Ha MH, Jang WY, Jung TY, et  al. Treatment outcome of gamma knife radiosurgery for petroclival meningiomas: retrospective

19  Petroclival Meningioma

analysis of a single institution experience. Brain Tumor Res Treat. 2020;8(2):83–92. Kim JW, Kim DG, Se YB, et  al. Gamma knife radiosurgery for petroclival meningioma: long-term outcome and failure pattern. Stereotact Funct Neurosurg. 2017;95:209–15. Subach BR, Lunsford LD, Kondziolka D, et  al. Management of petroclival meningiomas by stereotactic radiosurgery. Neurosurgery. 1998;42:437–45.

Cerebello-Pontine Angle Meningioma

• Demographics: Male; 19 years • Presentation: Asymptomatic (complete recovery of previous, pre-operative headache and cerebellar ataxia) • Diagnosis: Cerebello-pontine angle meningioma • Pre-radiosurgery Treatment: Surgery; 3 months before radiosurgery treatment. Histopathological examination confirmed the diagnosis of meningothelial meningioma (WHO Grade I) • Radiosurgery Treatment: Adjunctive; linac-based SRS for post-surgical residual, left, cerebello-pontine angle (CPA) meningioma • Radiosurgery Dosimetry: –– Target volume: 2.3 cc –– Marginal dose: 10.0 Gy –– Marginal isodose: 75% –– Maximum dose: 13.6 Gy –– Minimum dose: 6.3 Gy –– Average dose: 12.5 Gy –– Number of isocenters: 1 –– Maximum dose to brain stem: 13.2 Gy • Follow-Up Period: 60 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Asymptomatic and neurologically intact –– 12  months post-SRS: Asymptomatic and neurologically intact –– 18  months post-SRS: Asymptomatic and neurologically intact –– 24  months post-SRS: Asymptomatic and neurologically intact –– 30  months post-SRS: Asymptomatic and neurologically intact

20

–– 36  months post-SRS: Asymptomatic and neurologically intact –– 48  months post-SRS: Asymptomatic and neurologically intact –– 60  months post-SRS: Asymptomatic and neurologically intact • Complications: None • Radiological Outcome: –– 6 months post-SRS (MRI): Mild decrease in tumor size Mild decrease in tumor contrast enhancement –– 12 months post-SRS (MRI): Stationary decreased tumor size Stationary decreased tumor contrast enhancement –– 18 months post-SRS (MRI): Stationary decreased tumor size Stationary decreased tumor contrast enhancement –– 24 months post-SRS (MRI): More decrease in tumor size Stationary decreased tumor contrast enhancement –– 30 months post-SRS (MRI): More decrease in tumor size More decrease in tumor contrast enhancement –– 36 months post-SRS (MRI): Stationary decreased tumor size Stationary decreased tumor contrast enhancement –– 48 months post-SRS (MRI): Stationary decreased tumor size Stationary decreased tumor contrast enhancement –– 60 months post-SRS (MRI): Stationary decreased tumor size Stationary decreased tumor contrast enhancement • Post-radiosurgery Treatment: None

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_20

241

242

20  Cerebello-Pontine Angle Meningioma

20  Cerebello-Pontine Angle Meningioma

243

244

20  Cerebello-Pontine Angle Meningioma

-SRP-1-Tumor VOI 2 100 90 80 70 volume [%]

60 50 40 30 20 10 0

10

20

30

40

50 60 dose [%]

70

80

from slice 24 to 46 dose: 100% = 13.3 Gy, volume: 100% = 2.3 ccm

90

100

0

20  Cerebello-Pontine Angle Meningioma

245

246

20  Cerebello-Pontine Angle Meningioma

Further Reading

Further Reading Abdelaziz OS, Kandil A, Al-Assaal S, et al. Linear accelerator-based stereotactic radiosurgery of intracranial meningiomas: results of the first five years of clinical practice. Neurosurg Rev. 2011;34:87–99. Alatriste-Martínez S, Moreno-Jiménez S, Gutiérrez-Aceves GA, et al. Linear accelerator-based radiosurgery of grade I intracranial

247

meningiomas. World Neurosurg X. 2019;3:100027. https://doi. org/10.1016/j.wnsx.2019.100027. Gendreau J, Sheaffer K, Macdonald NA, et al. Stereotactic radiosurgery for cerebellopontine meningiomas: a systematic review and meta-­ analysis. Br J Neurosurg. 2022; https://doi.org/10.1080/02688697. 2022.2064425. Park SH, Kano H, Niranjan A, et al. Stereotactic radiosurgery for cerebellopontine angle meningiomas. J Neurosurg. 2014;120(3):708–15.

Tentorial Leaflet Meningioma

Demographics: Female; 45 years Presentation: Chronic headache Diagnosis: Tentorial leaflet meningioma Pre-radiosurgery Treatment: None Radiosurgery Treatment: Upfront (primary); Linac-based SRS for left tentorial leaflet meningioma • Radiosurgery Dosimetry: –– Target volume: 7.1 cc –– Marginal dose: 12.0 Gy –– Marginal isodose: 80% –– Maximum dose: 14.4 Gy –– Minimum dose: 11.0 Gy –– Average dose: 13.6 Gy –– Number of isocenters: 1 –– Maximum dose to brain stem: 13.0 Gy • Follow-Up Period: 174 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Improved headache –– 12  months post-SRS: Complete resolution of headache • • • • •

21

–– 36  months post-SRS: Stationary resolution of headache –– 60  months post-SRS: Stationary resolution of headache –– 174  months post-SRS: Sustainable complete resolution of headache • Complications: None • Radiological Outcome: –– 12 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement –– 36 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement –– 60 months post-SRS (MRI): Stationary tumor size Mild decrease in tumor contrast enhancement –– 174 months post-SRS (MRI): Decreased tumor size More decrease in tumor contrast enhancement • Post-radiosurgery Treatment: None

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_21

249

250

21  Tentorial Leaflet Meningioma

21  Tentorial Leaflet Meningioma

251

-SRP-1-Brain stem VOI 3 100

100

90

90

80

80

70

70

60

60

50 40

0

10

20

30

40

50 60 dose [%]

70

80

from slice 11 to 21 dose: 100% = 14.0 Gy, volume: 100% = 7.1 ccm

90

100

volume [%]

volume [%]

-SRP-1-Tumor VOI 2

50 40

30

30

20

20

10

10

0

0

10

20

30

40

50 60 dose [%]

70

80

from slice 10 to 21 dose: 100% = 14.0 Gy, volume: 100% = 12.7 ccm

90

100

0

252

21  Tentorial Leaflet Meningioma

21  Tentorial Leaflet Meningioma

253

254

21  Tentorial Leaflet Meningioma

21  Tentorial Leaflet Meningioma

255

256

21  Tentorial Leaflet Meningioma

Further Reading

Further Reading Abdelaziz OS, Kandil A, Al-Assaal S, et al. Linear accelerator-based stereotactic radiosurgery of intracranial meningiomas: results of the

257

first five years of clinical practice. Neurosurg Rev. 2011;34:87–99. Muthukumar N, Kondziolka D, Lunsford LD, et  al. Stereotactic radiosurgery for tentorial meningiomas. Acta Neurochir (Wien). 1998;140(4):315–20. Starke RM, Olson C, Nguyen JH, et al. Gamma knife radiosurgery of tentorial meningiomas. J Radiosurg SBRT. 2011;1(2):123–31.

Tentorial Hiatus Meningioma

Demographics: Male; 49 years Presentation: Chronic headache Diagnosis: Tentorial hiatus meningioma Pre-radiosurgery Treatment: None Radiosurgery Treatment: Upfront (primary); linac-based SRS for left tentorial hiatus meningioma • Radiosurgery Dosimetry: –– Target volume: 5.9 cc –– Marginal dose: 12.0 Gy –– Marginal isodose: 80% –– Maximum dose: 15.1 Gy –– Minimum dose: 10.5 Gy –– Average dose: 14.2 Gy –– Number of isocenters: 1 –– Maximum dose to brain stem: 1.3 Gy • Follow-Up Period: 146 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Stationary headache –– 12 months post-SRS: Improving headache –– 24 months post-SRS: Improved headache –– 36 months post-SRS: Completely resolved headache –– 48  months post-SRS: Stationary resolution of headache –– 60  months post-SRS: Stationary resolution of headache –– 72  months post-SRS: Stationary resolution of headache –– 120 months post-SRS: Stationary resolution of headache • • • • •

22

–– 146  months post-SRS: Sustainable complete resolution of headache • Complications: None • Radiological Outcome: –– 12 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement –– 24 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement –– 36 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement –– 48 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement –– 60 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement –– 72 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement –– 120 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement –– 146 months post-SRS (MRI): Mild decrease in tumor size Mild decrease in tumor contrast enhancement • Post-radiosurgery Treatment: None

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_22

259

260

22  Tentorial Hiatus Meningioma

22  Tentorial Hiatus Meningioma

261

-SRP in progress–Tumor VOI 2 100 90 80 70 volume [%]

60 50 40 30 20 10 0

10

20

30

40

50 60 dose [%]

70

80

90 100

from slice 28 to 39 dose: 100% = 15.0 Gy, volume: 100% = 6.0 ccm

0

262

22  Tentorial Hiatus Meningioma

22  Tentorial Hiatus Meningioma

263

264

22  Tentorial Hiatus Meningioma

Further Reading

Further Reading Abdelaziz OS, Kandil A, Al-Assaal S, et al. Linear accelerator-based stereotactic radiosurgery of intracranial meningiomas: results of the first five years of clinical practice. Neurosurg Rev. 2011;34:87–99.

265

Muthukumar N, Kondziolka D, Lunsford LD, et  al. Stereotactic radiosurgery for tentorial meningiomas. Acta Neurochir (Wien). 1998;140(4):315–20. Starke RM, Olson C, Nguyen JH, et al. Gamma knife radiosurgery of tentorial meningiomas. J Radiosurg SBRT. 2011;1(2):123–31.

Juxtasellar Meningioma

• Demographics: Female, 47 years. • Presentation: –– Asymptomatic –– Old, post-prior surgery, residual, left proptosis, left-­ sided diminution of vision (6/36), left optic disc pallor, and bilateral visual field deficits (bitemporal hemianopia with left inferior nasal quadrantanopia) –– The patient refused to undergo another surgery and preferred to have a conservative radiosurgery treatment, instead. • Diagnosis: Juxtasellar meningioma • Pre-radiosurgery Treatment: Surgery; 6 months before radiosurgery treatment for left parasellar meningioma with intrasellar, suprasellar (optic chiasm compression), retrosellar (brain stem compression), and infratemporal extensions. Histopathology revealed a transitional meningioma. Ki67 proliferative index was 5% (intermediate grade 2) • Radiosurgery Treatment: Adjunctive; linac-based SRS for post-surgical residual, transitional, intermediate grade 2, left, juxtasellar meningioma • Radiosurgery Dosimetry: –– Target volume: 30.7 cc –– Marginal dose: 4.2 Gy –– Marginal isodose: 80% –– Maximum dose: 10.5 Gy –– Minimum dose: 1.6 Gy –– Average dose: 8.7 Gy –– Number of isocenters: 2 –– Maximum dose to optic chiasm: 8.0 Gy –– Maximum dose to right optic nerve: 4.4 Gy –– Maximum dose to left optic nerve: 2.6 Gy –– Maximum dose to brain stem: 9.6 Gy • Follow-Up Period: 65 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Visual acuity: Right (6/6), left (6/36) [aided]

––

––

––

––

––

23

Fundus examination: Right (normal), left (optic disc pallor) Visual field study: Bitemporal hemianopia with left inferior nasal quadrantanopia 12 months post-SRS: Visual acuity: Right (6/6), left (6/36) [aided] Fundus examination: Right (normal), left (optic disc pallor) Visual field study: Bitemporal hemianopia with left inferior nasal quadrantanopia 18 months post-SRS: Visual acuity: Right (6/12), left (6/36) [aided] Fundus examination: Right (normal), left (optic disc pallor) Visual field study: Right (temporal hemianopia), left (dense temporal hemianopia with inferior nasal quadrantanopia) 24 months post-SRS: Visual acuity: Right (6/12), left (6/36) [aided] Fundus examination: Right (normal), left (optic disc pallor) Visual field study: Right (temporal hemianopia), left (dense temporal hemianopia with inferior nasal quadrantanopia) 30 months post-SRS: Visual acuity: Right (6/12), left (6/36) [aided] Fundus examination: Right (normal), left (optic disc pallor) Visual field study: Right (temporal hemianopia), left (dense temporal hemianopia with inferior nasal quadrantanopia) 36 months post-SRS: Visual acuity: Right (6/9), left (6/36) [aided] Fundus examination: Right (normal), left (optic disc pallor) Visual field study: Right (temporal hemianopia and enlarged blind spot), left (total loss of visual field

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_23

267

268

23  Juxtasellar Meningioma

except for the seeing area only in the upper nasal SRS. However, the visual acuity, fundus examination, and quadrant) the visual field of the right eye remained relatively stable –– 48 months post-SRS: and the patient maintained a good functioning vision Visual acuity: Right (6/9), left (6/36) [aided] throughout the post-SRS follow-up period Fundus examination: Right (normal), left (optic • Radiological Outcome: disc pallor) –– 6 months post-SRS (MRI): Stationary tumor size and Visual field study: Right (temporal hemianopia and contrast enhancement enlarged blind spot), left (total loss of visual field –– 12 months post-SRS (MRI): Stationary tumor size and except for the seeing area only in the upper nasal contrast enhancement quadrant) –– 18 months post-SRS (MRI): Stationary tumor size and –– 61 months post-SRS: contrast enhancement Visual acuity: Right (6/9), left (1/60) [aided] –– 24 months post-SRS (MRI): Fundus examination: Right (normal), left (optic Mild increase in tumor size disc pallor) Stationary tumor contrast enhancement Visual field study: Right (temporal cluster of para–– 30 months post-SRS (MRI): central scotomata and enlarged blind spot), left More increase in tumor size (total loss of visual field) Mild increase in tumor contrast enhancement –– 65 months post-SRS: –– 36 months post-SRS (MRI): Visual acuity: Right (6/36), left (1/60) [aided] Stationary tumor size Fundus examination: Right (normal), left (optic Stationary tumor contrast enhancement disc pallor) –– 48 months post-SRS (MRI): Visual field study: Right (temporal hemianopia), Stationary tumor size left (total loss of visual field) Stationary tumor contrast enhancement • Complications: Starting from 24 months post-SRS, the –– 61 months post-SRS (MRI): patient experienced gradual progressive deterioration of Stationary tumor size the field of vision, more on the left eye till complete loss Stationary tumor contrast enhancement of the visual field of the left eye at 61  months post-­ • Post-radiosurgery Treatment: None

23  Juxtasellar Meningioma

269

270

23  Juxtasellar Meningioma

23  Juxtasellar Meningioma

271

-SRP in progress–Tumor VO

100

90

90

80

80

70

70

60

60

50 40

0

10

20

30

40

50 60 dose [%]

70

80

from slice 3 to 25 dose: 100% = 5.3 Gy, volume: 100% = 30.7 ccm

90

100

volume [%]

volume [%]

-SRP in progress–BRAIN ST

100

50 40

30

30

20

20

10

10

0

0

10

20

30

40

50 60 dose [%]

70

80

from slice 1 to 28 dose: 100% = 5.3 Gy, volume: 100% = 23.9 ccm

90

100

0

272

23  Juxtasellar Meningioma

23  Juxtasellar Meningioma

273

274

23  Juxtasellar Meningioma

23  Juxtasellar Meningioma

275

276

23  Juxtasellar Meningioma

23  Juxtasellar Meningioma

277

278

23  Juxtasellar Meningioma

23  Juxtasellar Meningioma

279

280

23  Juxtasellar Meningioma

23  Juxtasellar Meningioma

281

282

Further Reading Cohen-Inbar O, Tata A, Moosa S, et al. Stereotactic radiosurgery in the treatment of parasellar meningiomas: long-term volumetric evaluation. J Neurosurg. 2014;128(2):362–72. Frostell A, Hakim R, Dodoo E, et al. Adjuvant stereotactic radiosurgery reduces need for retreatments in patients with meningioma residuals. World Neurosurg. 2016;88:475–82. Graillon T, Regis J, Barlier A, et  al. Parasellar meningiomas. Neuroendocrinology. 2020;110:780–96. https://doi. org/10.1159/000509090.

23  Juxtasellar Meningioma Kowalchuk RO, Shepard MJ, Sheehan K, et  al. Treatment of WHO grade 2 meningiomas with stereotactic radiosurgery: identification of an optimal group for SRS using RPA.  Int J Radiat Oncol Biol Phys. 2021;110(3):804–14. Sheehan JP, Starke RM, Kano H, et al. Gamma Knife radiosurgery for sellar and parasellar meningiomas: a multicenter study. J Neurosurg. 2014;120(6):1268–77. Shin SS, Kim DY, Ahn YC, et  al. LINAC-based stereotactic radiosurgery for meningiomas. J Korean Soc Ther Radiol Oncol. 2001;19(2):87–94.

Parasagittal Meningioma

• Demographics: Male; 45 years • Presentation: –– Asymptomatic –– Old, post-prior surgery, residual right hemiparesis (mild) • Diagnosis: Parasagittal meningioma • Pre-radiosurgery Treatment: Surgery twice; 5  years and 1 year before radiosurgery treatment, for left parietal falcine meningioma and left parietal parasagittal meningioma, respectively. Histopathology revealed a transitional meningioma. Ki67 proliferative index was 5% (intermediate grade 2) • Radiosurgery Treatment: Adjunctive; linac-based SRS for post-surgical residual, transitional, intermediate grade 2, left, parietal, parasagittal meningioma • Radiosurgery Dosimetry: –– Target volume: 4.5 cc –– Marginal dose: 11.0 Gy –– Marginal isodose: 70% –– Maximum dose: 16.2 Gy –– Minimum dose: 7.2 Gy –– Average dose: 14.7 Gy –– Number of isocenters: 1 • Follow-Up Period: 48 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Stationary post-surgery residual, mild, right hemiparesis –– 12 months post-SRS: Improving post-surgery residual right hemiparesis –– 18 months post-SRS: Improved post-surgery residual right hemiparesis –– 24  months post-SRS: Asymptomatic and neurologically intact –– 30  months post-SRS: Asymptomatic and neurologically intact –– 36  months post-SRS: Asymptomatic and neurologically intact

24

–– 48  months post-SRS: Asymptomatic and neurologically intact • Complications: None • Radiological Outcome: –– 6 months post-SRS (MRI): Marked decrease in tumor size Marked decrease in tumor contrast enhancement Mild decrease in perilesional, parenchymal high signal, in T2 and FLAIR studies, denoting vasogenic edema –– 12 months post-SRS (MRI): More decrease in tumor size Stationary decreased tumor contrast enhancement More decrease in perilesional, parenchymal high signal, in T2 and FLAIR studies –– 18 months post-SRS (MRI): More decrease in tumor size Stationary decreased tumor contrast enhancement Stationary perilesional, parenchymal high signal, in T2 and FLAIR studies De novo, small, right, posterior frontal, parasagittal meningioma (asymptomatic) –– 24 months post-SRS (MRI): Complete disappearance of the treated left parietal parasagittal meningioma, which is replaced by an area of encephalomalacia and enhanced thickened falx More decrease in perilesional, parenchymal high signal, in T2 and FLAIR studies Stationary size of the de novo, small, right posterior frontal, parasagittal meningioma (asymptomatic) –– 30 months post-SRS (MRI): Sustainable complete disappearance of the treated left parietal parasagittal meningioma, with no evidence of residual or recurrence Residual, minimal, perilesional, parenchymal high signal, in T2 and FLAIR studies Mild increase in size of the de novo, right, posterior frontal, parasagittal meningioma (asymptomatic)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_24

283

284

–– 36 months post-SRS (MRI): Sustainable complete disappearance of the treated left parietal parasagittal meningioma, with no evidence of residual or recurrence Stationary residual, minimal, perilesional, parenchymal high signal, in T2 and FLAIR studies More increase in the size of the de novo, right, posterior frontal, parasagittal meningioma (asymptomatic) –– 48 months post-SRS (MRI): Sustainable complete disappearance of the treated left parietal parasagittal meningioma, with no evidence of residual or recurrence

24  Parasagittal Meningioma

Stationary residual, minimal, perilesional, parenchymal high signal, in T2 and FLAIR studies More increase in the size of the de novo, right, posterior frontal, parasagittal meningioma (asymptomatic) • Post-radiosurgery Treatment: –– None for the treated left parietal parasagittal meningioma –– The patient is scheduled for SRS treatment of the increasing in size, de novo, right, posterior frontal, parasagittal meningioma

24  Parasagittal Meningioma

285

286

24  Parasagittal Meningioma

24  Parasagittal Meningioma

287

288

24  Parasagittal Meningioma

24  Parasagittal Meningioma

289

290

24  Parasagittal Meningioma

24  Parasagittal Meningioma

291

292

24  Parasagittal Meningioma

24  Parasagittal Meningioma

293

294

24  Parasagittal Meningioma

24  Parasagittal Meningioma

295

296

Further Reading Frostell A, Hakim R, Dodoo E, et al. Adjuvant stereotactic radiosurgery reduces need for retreatments in patients with meningioma residuals. World Neurosurg. 2016;88:475–82. Hadelsberg U, Nissim U, Cohen ZR, et  al. LINAC radiosurgery in the management of parasagittal meningiomas. Stereotact Funct Neurosurg. 2015;93:10–6.

24  Parasagittal Meningioma

Pamir MN, Peker S, Kilic T, et  al. Efficacy of gamma-knife surgery for treating meningiomas that involve the superior sagittal sinus. Zentralbl Neurochir. 2007;68(2):73–8. Patil CG, Hoang S, Borchers DJ III, et  al. Predictors of peritumoral edema after stereotactic radiosurgery of supratentorial meningiomas. Neurosurgery. 2008;63(3):435–40. Pinzi V, Fariselli L, Marchetti M, et  al. Stereotactic radiotherapy for parasagittal and parafalcine meningiomas: patient selection and special considerations. Cancer Manag Res. 2019;29(11):10051–60.

Falcine Meningioma

• Demographics: Female; 42 years • Presentation: –– Headache –– Seizures (partial seizures with secondary generalization) –– Visual field study showed non-specific, scattered, minor field defects –– The patient is under anticoagulant medication for chronic thrombophilia • Diagnosis: Falcine meningioma • Pre-radiosurgery Treatment: None • Radiosurgery Treatment: Upfront (primary); Linac-based SRS for left, occipital, falcine meningioma • Radiosurgery Dosimetry: –– Target volume: 6.5 cc –– Marginal dose: 12.0 Gy –– Marginal isodose: 80% –– Maximum dose: 15.0 Gy –– Minimum dose: 10.0 Gy –– Average dose: 14.2 Gy –– Number of isocenters: 1 • Follow-Up Period: 36 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Improving headache Stationary seizures on medications –– 12 months post-SRS: Improved headache Improving seizures on medications –– 18 months post-SRS:

25

Stationary improvement of headache Stationary improvement of seizures on medications –– 24 months post-SRS: Controlled seizures with medications –– 30 months post-SRS: Controlled seizures with medications (lower doses) –– 36 months post-SRS: Sustainably improved headache Sustainable control of seizures with medications (lower doses) • Complications: None • Radiological Outcome: –– 6 months post-SRS (MRI): Stationary tumor size Loss of central tumor contrast enhancement –– 12 months post-SRS (MRI): Mild decrease in tumor size Marked decrease in tumor contrast enhancement –– 18 months post-SRS (MRI): Stationary tumor size Stationary decreased tumor contrast enhancement –– 24 months post-SRS (MRI): Stationary tumor size Stationary decreased tumor contrast enhancement –– 36 months post-SRS (MRI): Stationary decrease in tumor size Stationary decreased tumor contrast enhancement • Post-radiosurgery Treatment: –– Continued anti-convulsant medications –– Continued clinical and radiological follow-up

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_25

297

298

25  Falcine Meningioma

25  Falcine Meningioma

299

300

25  Falcine Meningioma

25  Falcine Meningioma

301

302

25  Falcine Meningioma

25  Falcine Meningioma

303

304

25  Falcine Meningioma

25  Falcine Meningioma

305

306

Further Reading Abdelaziz OS, Kandil A, Al-Assaal S, et al. Linear accelerator-based stereotactic radiosurgery of intracranial meningiomas: results of the first five years of clinical practice. Neurosurg Rev. 2011;34:87–99.

25  Falcine Meningioma

Marchetti M, Sahgal A, De Salles AAF, et al. Stereotactic radiosurgery for intracranial noncavernous sinus benign meningioma: International Stereotactic Radiosurgery Society systematic review, meta-analysis and practice guideline. Neurosurgery. 2020;87(5):879–90. Pinzi V, Fariselli L, Marchetti M, et  al. Stereotactic radiotherapy for parasagittal and parafalcine meningiomas: patient selection and special considerations. Cancer Manag Res. 2019;29(11):10051–60.

Convexity Meningioma

• Demographics: Female; 62 years • Presentation: Asymptomatic (complete recovery of previous, pre-operative headache and dysphasia) • Diagnosis: Convexity meningioma • Pre-radiosurgery Treatment: Surgery; 3 months before radiosurgery treatment. Histopathology revealed an atypical, meningothelial, meningioma (WHO Grade II) • Radiosurgery Treatment: Adjunctive; linac-based SRS for post-surgical residual, left, frontal, convexity meningioma • Radiosurgery Dosimetry: –– Target volume: 7.9 cc –– Marginal dose: 11.0 Gy –– Marginal isodose: 70% –– Maximum dose: 16.1 Gy –– Minimum dose: 5.9 Gy –– Average dose: 14.9 Gy –– Number of isocenters: 1 • Follow-Up Period: 126 months post-SRS • Clinical Outcome: –– 5 months post-SRS: Experienced severe headache Experienced expressive dysphasia Developed right-sided Jacksonian seizures Started treatment with anti-convulsants and a tapering course of corticosteroids –– 7 months post-SRS: Improved headache Improved dysphasia Controlled seizures with medications –– 12 months post-SRS: Improved headache Stationary improvement of dysphasia Controlled seizures with medications –– 24 months post-SRS: Stationary improvement of headache Normal speech Stationary control of seizures with medications

26

–– 36 months post-SRS: Neurologically intact Stationary control of seizures with medications –– 48 months post-SRS: Neurologically intact Stationary control of seizures with medications –– 100 months post-SRS: Neurologically intact Stationary control of seizures with medications –– 126 months post-SRS: Neurologically intact Sustainable control of seizures with medications • Complications: At 5 months post-SRS, the patient experienced temporary clinical manifestations (headache, expressive dysphasia, and contralateral Jacksonian seizures), probably attributed to slightly increased peritumoral, parenchymal vasogenic edema. Such manifestations resolved completely over the following couple months with medications (steroids, diuretics, and anti-convulsants) • Radiological Outcome: –– 12 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement Moderate increase of perilesional parenchymal high signal, in T2 and FLAIR studies, denoting vasogenic edema –– 24 months post-SRS (MRI): Stationary tumor size Minimally decreased tumor contrast enhancement Decreased perilesional parenchymal high signal, in T2 and FLAIR studies –– 36 months post-SRS (MRI): Stationary tumor size Minimally decreased tumor contrast enhancement Residual mild, perilesional, parenchymal high signal, in T2 and FLAIR studies –– 48 months post-SRS (MRI):

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_26

307

308

Stationary tumor size Stationary decreased tumor contrast enhancement Stationary mild, perilesional, parenchymal high signal, in T2 and FLAIR studies –– 100 months post-SRS (MRI): Stationary tumor size Stationary decreased tumor contrast enhancement Stationary mild, perilesional, parenchymal high signal, in T2 and FLAIR studies

26  Convexity Meningioma

–– 126 months post-SRS (MRI): Mild decrease in tumor size Stationary decreased tumor contrast enhancement Stationary mild, perilesional, parenchymal high signal, in T2 and FLAIR studies • Post-radiosurgery Treatment: Continued anti-­ convulsant medications

26  Convexity Meningioma

309

310

26  Convexity Meningioma

26  Convexity Meningioma

311

312

26  Convexity Meningioma

26  Convexity Meningioma

313

314

26  Convexity Meningioma

26  Convexity Meningioma

315

316

26  Convexity Meningioma

26  Convexity Meningioma

317

318

26  Convexity Meningioma

Further Reading

Further Reading Bulduk EB, Demirci H, Karaaslan B, et al. Efficacy of Gamma-Knife radiosurgery in grade 2 and grade 3 meningioma: a single-center, long-term follow-up study. EJMI. 2021;5(3):404–8. Frostell A, Hakim R, Dodoo E, et al. Adjuvant stereotactic radiosurgery reduces need for retreatments in patients with meningioma residuals. World Neurosurg. 2016;88:475–82.

319

Kaul D, Budach V, Wurm R, et al. Linac-based stereotactic radiotherapy and radiosurgery in patients with meningioma. Radiat Oncol. 2014;9:78. https://doi.org/10.1186/1748-­717X-­9-­78. Kondziolka D, Madhok R, Lunsford LD, et al. Stereotactic radiosurgery for convexity meningiomas. J Neurosurg. 2009;111(3):458–63. Kowalchuk RO, Shepard MJ, Sheehan K, et  al. Treatment of WHO grade 2 meningiomas with stereotactic radiosurgery: identification of an optimal group for SRS using RPA.  Int J Radiat Oncol Biol Phys. 2021;110(3):804–14.

Anterior Cranial Fossa Meningioma

• Demographics: Male; 71 years • Presentation: Asymptomatic • Diagnosis: Recurrent, atypical, anterior cranial fossa meningioma • Pre-radiosurgery Treatment: –– Surgery; 16  years before radiosurgery treatment for left, frontal, basal orbital, meningioma. Histopathology revealed an atypical meningioma (WHO Grade II). –– Post-surgery XRT (54.0 Gy); 16 years before radiosurgery treatment. –– Surgery; 6  years before radiosurgery treatment for right, frontal, parasagittal meningioma. Histopathology revealed an atypical meningioma (WHO Grade II). • Radiosurgery Treatment: Salvage; linac-based SRS for recurrent, atypical, left, frontal, basal orbital, anterior cranial fossa meningioma • Radiosurgery Dosimetry: –– Target volume: 12.1 cc –– Marginal dose: 15.0 Gy –– Marginal isodose: 70% –– Maximum dose: 19.8 Gy –– Minimum dose: 10.2 Gy –– Average dose: 18.1 Gy –– Number of isocenters: 1 –– Maximum dose to left optic nerve: 9.6 Gy –– Maximum dose to left eye: 11.3 Gy • Follow-Up Period: 30 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Asymptomatic –– 12 months post-SRS: Asymptomatic –– 18 months post-SRS: Asymptomatic –– 24 months post-SRS: Asymptomatic Neurologically intact –– 30 months post-SRS: The patient experienced diplopia on vertical gaze • Complications:

27

–– At 12  months post-SRS, the patient developed an asymptomatic, parenchymal, radiation necrosis, which showed mild regression at 18  months post-SRS and almost complete resolution at 24 months post-SRS –– At 30 months post-SRS, the patient experienced diplopia on vertical gaze. This complication was attributed to the development of marked downward deviation of the left eyeball by the progressively growing left, frontal, basal orbital tumor with extension into the periorbita • Radiological Outcome: –– 6 months post-SRS (MRI): Stationary tumor size Stationary perilesional frontal high signal in T2 and FLAIR studies, denoting vasogenic edema –– 12 months post-SRS (MRI): Stationary tumor size Increased perilesional frontal high signal in T2 and FLAIR studies Appearance of left, frontal, parenchymal, large, heterogeneously enhancing lesion, in T1 Gadolinium-­ enhanced study, denoting radiation necrosis (asymptomatic) –– 18 months post-SRS (MRI): Stationary size of left, frontal, basal orbital tumor Appearance of de novo, small, left, frontal convexity meningioma (asymptomatic) Stationary perilesional frontal high signal in T2 and FLAIR studies Mild regression of left frontal radiation necrosis, in T1 Gadolinium-enhanced study –– 24 months post-SRS (MRI): Mild increase in size of left, frontal, basal orbital tumor Mild increase in size of de novo, left, frontal convexity meningioma (asymptomatic) Stationary perilesional frontal high signal in T2 and FLAIR studies

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_27

321

322

27  Anterior Cranial Fossa Meningioma

Marked regression (near complete resolution) of Stationary perilesional frontal high signal in T2 and left frontal radiation necrosis, in T1 Gadolinium-­ FLAIR studies enhanced study Stationary resolution of left frontal radiation necro–– 30 months post-SRS (MRI): sis, in T1 Gadolinium-enhanced study More increase in size of left, frontal, basal orbital • Post-radiosurgery Treatment: tumor with extension into the periorbita and causing –– Based on clinical deterioration and tumor progression downward deviation of the left eyeball (symptomatic) due to failure of SRS treatment to achieve local tumor More increase in size of de novo, left, frontal congrowth control, the patient is scheduled for post-SRS vexity meningioma (asymptomatic) surgical excision Appearance of another de novo, left, basal, anterior temporal meningioma (asymptomatic)

27  Anterior Cranial Fossa Meningioma

323

324

27  Anterior Cranial Fossa Meningioma

27  Anterior Cranial Fossa Meningioma

325

326

27  Anterior Cranial Fossa Meningioma

27  Anterior Cranial Fossa Meningioma

327

-SRP in progress–Tumor VOl 2 100 90 80 70 volume [%]

60 50 40 30 20 10 0 0

10

20

30

40

50 60 dose [%]

70

80

90 100

from slice 23 to 48 dose: 100% = 18.8 Gy, volume: 100% = 12.1 ccm -SRP in progress–Lt Optic N VOI 6 100

100

90

90

80

80

70

70

60

60

50 40

0

10

20

30

40

50 60 dose [%]

70

80

90 100

from slice 1 to 14 dose: 100% = 18.8 Gy, volume: 100% = 8.7 ccm

volume [%]

volume [%]

-SRP–1–Lt Eye VOI 4

50 40

30

30

20

20

10

10

0

0

10

20

30

40

50 60 dose [%]

70

80

90 100

from slice 9 to 13 dose: 100% = 18.8 Gy, volume: 100% = 0.8 ccm

0

328

27  Anterior Cranial Fossa Meningioma

27  Anterior Cranial Fossa Meningioma

329

330

27  Anterior Cranial Fossa Meningioma

27  Anterior Cranial Fossa Meningioma

331

332

Further Reading Bulduk EB, Demirci H, Karaaslan B, et al. Efficacy of Gamma-Knife radiosurgery in grade 2 and grade 3 meningioma: a single-center, long-term follow-up study. EJMI. 2021;5(3):404–8. Chen CH, Shen CC, Sun MH, et al. Histopathology of radiation necrosis with sever peritumoral edema after gamma knife radiosurgery for parasagittal meningioma. A report of two cases. Stereotact Funct Neurosurg. 2007;85(6):292–5.

27  Anterior Cranial Fossa Meningioma

Conti A, Pontoriero A, Siddi F, et  al. Post-treatment edema after meningioma radiosurgery is a predictable complication. Cureus. 2016;8(5):e605. https://doi.org/10.7759/cureus.605. Couldwell WT, Cole CD, Al-Mefty O.  Patterns of skull base meningiomas progression after failed radiosurgery. J Neurosurg. 2007;106(1):30–5. Kano H, Takahashi JA, Katsuki T, et  al. Stereotactic radiosurgery for atypical and anaplastic meningiomas. J Neuro-Oncol. 2007;84(1):41–7.

Middle Cranial Fossa Meningioma

• Demographics: Female; 33 years • Presentation: Diplopia on right lateral gaze (right abducens paresis) • Diagnosis: Middle cranial fossa meningioma • Pre-radiosurgery Treatment: None • Radiosurgery Treatment: Upfront (primary); linac-based SRS for right middle cranial fossa meningioma • Radiosurgery Dosimetry: –– Target volume: 35 cc –– Marginal dose: 10.0 Gy –– Marginal isodose: 80% –– Maximum dose: 12.7 Gy –– Minimum dose: 7.8 Gy –– Average dose: 12.1 Gy –– Number of isocenters: 1 –– Maximum dose to optic chiasm: 6.0 Gy –– Maximum dose to right optic nerve: 4.8 Gy –– Maximum dose to left optic nerve: 1.6 Gy –– Maximum dose to brain stem: 10.1 Gy • Follow-Up Period: 80 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Stationary diplopia on right lateral gaze (right abducens paresis) –– 14 months post-SRS: Stationary diplopia on right lateral gaze –– 26  months post-SRS: Improved diplopia and right abducens paresis

28

–– 36 months post-SRS: Stationary improvement of diplopia and right abducens paresis –– 80  months post-SRS: Sustainable complete recovery of diplopia and resolution of right abducens paresis • Complications: None • Radiological Outcome: –– 6 months post-SRS (MRI): Mild increase in tumor size (pseudo-progression) Loss of central tumor contrast enhancement –– 14 months post-SRS (MRI): More increase in tumor size (pseudo-progression) More loss of central tumor contrast enhancement –– 26 months post-SRS (MRI): Mild decrease in tumor size Stationary decrease in central tumor contrast enhancement –– 36 months post-SRS (MRI) Stationary decreased tumor size Stationary decrease in central tumor contrast enhancement –– 36 months post-SRS (MRI): Stationary decreased tumor size Stationary decrease in central tumor contrast enhancement • Post-radiosurgery Treatment: None

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_28

333

334

28  Middle Cranial Fossa Meningioma

28  Middle Cranial Fossa Meningioma

335 -SRP in progress–chiasm VOI 7 100

100

90

90

80

80

70

70

60 50 40

volume [%]

volume [%]

-SRP in progress–Tumor VOI 2

60 50 40

30

30

20

20

10

10

0

0 10 20 30 40 50 60 70 80 90 100 dose [%]

0

from slice 22 to 23 dose: 100% = 12.5 Gy, volume: 100% = 0.2 ccm

-SRP in progress–Rt optic N VOI 5

-SRP in progress–brain stem VOI 8 100

100

90

90

80

80

70

70

60 50 40

volume [%]

volume [%]

0 10 20 30 40 50 60 70 80 90 100 dose [%] from slice 14 to 21 dose: 100% = 12.5 Gy, volume: 100% = 3.5 ccm

60 50 40

30

30

20

20

10

10

0

0 10 20 30 40 50 60 70 80 90 100 dose [%] from slice 13 to 18 dose: 100% = 12.5 Gy, volume: 100% = 1.1 ccm

0 0 10 20 30 40 50 60 70 80 90 100 dose [%] from slice 11 to 29 dose: 100% = 12.5 Gy, volume: 100% = 18.8 ccm

336

28  Middle Cranial Fossa Meningioma

28  Middle Cranial Fossa Meningioma

337

338

28  Middle Cranial Fossa Meningioma

28  Middle Cranial Fossa Meningioma

339

340

28  Middle Cranial Fossa Meningioma

28  Middle Cranial Fossa Meningioma

341

342

Further Reading Cohen-Inbar O, Tata A, Moosa S, et al. Stereotactic radiosurgery in the treatment of parasellar meningiomas: long-term volumetric evaluation. J Neurosurg. 2014;128(2):362–72. Graillon T, Regis J, Barlier A, et  al. Parasellar meningiomas. Neuroendocrinology. 2020;110:780–96. https://doi. org/10.1159/000509090.

28  Middle Cranial Fossa Meningioma

Maksoud Z, Schmidt MA, Huang Y, et  al. Transient enlargement in meningiomas treated with stereotactic radiotherapy. Cancers. 2022;14:1547. https://doi.org/10.3390/cancers14061547. Sheehan JP, Starke RM, Kano H, et al. Gamma knife radiosurgery for sellar and parasellar meningiomas: a multicenter study. J Neurosurg. 2014;120(6):1268–77. Valentino V, Schinaia G, Raimondi AJ.  The results radiosurgical management of 72 middle fossa meningiomas. Acta Neurochir. 1993;122:60–70.

Posterior Cranial Fossa Meningioma

• Demographics: Female; 43 years • Presentation: –– Right-sided complete SNHL (Gardner-Robertson Class V) –– Right-sided tinnitus –– Headache –– Dizziness • Diagnosis: Posterior cranial fossa meningioma • Pre-radiosurgery Treatment: None • Radiosurgery Treatment: Upfront (primary); Gamma knife-based SRS for right posterior cranial fossa meningioma extending into the jugular foramen, hypoglossal canal, and internal auditory canal (IAC) • Radiosurgery Dosimetry: –– Target volume: 7.2 cc –– Prescribed dose: 12.0 Gy –– Isodose line: 40% • Follow-Up Period: 49 months post-SRS • Clinical Outcome: –– 5 months post-SRS: Stationary right-sided tinnitus Stationary headache Stationary dizziness –– 8 months post-SRS: Developed severe, right-sided, LMN facial nerve palsy Experienced diplopia from right-sided abducens nerve palsy Increased headache Worsening of dizziness The patient started treatment with steroids and diuretics –– 14 months post-SRS: Improving right-sided facial nerve palsy Improving right-sided abducens nerve palsy and diplopia

––

––

––

––

––

29

Improving headache Improving dizziness Stationary right-sided tinnitus 24 months post-SRS: Residual, moderate, right-sided facial paresis Improved right-sided abducens nerve palsy and diplopia Residual mild headache Residual mild dizziness Stationary right-sided tinnitus 30 months post-SRS: Stationary, moderate, right-sided facial paresis Stationary improvement of right-sided abducens nerve palsy and diplopia Improved headache Improved dizziness Stationary right-sided tinnitus 36 months post-SRS: Residual, mild, right-sided facial paresis Stationary improvement of right-sided abducens nerve palsy and diplopia Stationary improvement of headache Stationary improvement of dizziness Stationary right sided tinnitus 42 months post-SRS: Residual, mild, right-sided facial paresis Stationary improvement of right-sided abducens nerve palsy and diplopia Stationary improvement of headache Stationary improvement of dizziness Stationary right-sided tinnitus 49 months post-SRS: Stationary residual, mild, right-sided facial paresis Sustainable improvement of right-sided abducens nerve palsy and diplopia Sustainably improved headache Sustainably improved dizziness

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_29

343

344

Stationary complete left-sided SNHL (Gardner-­ Robertson Class V) Stationary right-sided tinnitus • Complications: At 8  months post-SRS, the patient developed right-sided, severe LMN facial palsy and abducens palsy (with concomitant diplopia), worsening of headache, and dizziness. These untoward side effects and complications are related to the occurrence of radiation-­ induced adverse changes, in the adjacent right side of the brain stem and the right cerebellar hemisphere, which showed high signal in the follow-up T2 and FLAIR MRI studies. However, this symptomatic vasogenic edema showed marked resolution with conservative treatment for 6 months. Except for the residual, mild, right-sided facial paresis, all other side effects showed complete resolution in the following few months • Radiological Outcome: –– 5 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement –– 8 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement Appearance of perilesional, brain stem and cerebellar, high signal in T2 and FLAIR studies, denoting vasogenic edema (symptomatic) –– 14 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement •

29  Posterior Cranial Fossa Meningioma

Marked decrease of perilesional high signal, in T2 and FLAIR studies –– 24 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement Resolution of perilesional high signal, in T2 and FLAIR studies –– 30 months post-SRS (MRI): Stationary tumor size Minimal decrease in tumor contrast enhancement Stationary resolution of perilesional high signal, in T2 and FLAIR studies –– 36 months post-SRS (MRI): Stationary tumor size Mild decrease in tumor contrast enhancement Stationary resolution of perilesional high signal, in T2 and FLAIR studies –– 42 months post-SRS (MRI): Mild decrease in tumor size Stationary decrease in tumor contrast enhancement Stationary resolution of perilesional high signal, in T2 and FLAIR studies –– 49 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement Stationary resolution of perilesional high signal, in T2 and FLAIR studies Post-radiosurgery Treatment: None

29  Posterior Cranial Fossa Meningioma

345

346

29  Posterior Cranial Fossa Meningioma

29  Posterior Cranial Fossa Meningioma

347

348

29  Posterior Cranial Fossa Meningioma

29  Posterior Cranial Fossa Meningioma

349

350

29  Posterior Cranial Fossa Meningioma

29  Posterior Cranial Fossa Meningioma

351

352

29  Posterior Cranial Fossa Meningioma

29  Posterior Cranial Fossa Meningioma

353

354

29  Posterior Cranial Fossa Meningioma

29  Posterior Cranial Fossa Meningioma

355

356

29  Posterior Cranial Fossa Meningioma

Further Reading

Further Reading Dedeciusova M, Komarc M, Faouzi M, et al. Tumor control and radiobiological fingerprint after Gamma Knife radiosurgery for posterior fossa meningiomas: a series of 46 consecutive cases. J Clin Neurosci. 2022;100:196–203. Neeff M, Baysal E, Homer J, et  al. Intracranial/extracranial meningioma arising in the hypoglossal canal: case report. Skull Base. 2007;17(5):325–30.

357

Pollock BE, Link MJ, Foote RL, et al. Radiosurgery as primary management for meningiomas extending into the internal auditory canal. Stereotact Funct Neurosurg. 2004;82(2–3):98–103. Rutt AL, Chen X, Sataloff RT. Jugular fossa meningioma: presentation and treatment options. Ear Nose Throat J. 2009;88(10):1169–72. Sheehan JP, Starke RM, Kano H, et  al. Gamma Knife radiosurgery for posterior fossa meningiomas: a multicenter study. J Neurosurg. 2015;122(6):1479–89.

Multiple Meningiomas

30

• Demographics: Female; 63 years –– 24 months post-SRS: • Presentation: Headache and epilepsy (generalized tonic-­ Stationary improvement of headache clonic seizures) for 5 months before radiosurgery Stationary control of seizures with medications • Diagnosis: Multiple meningiomas –– 48 months post-SRS: • Pre-radiosurgery Treatment: None Stationary improvement of headache • Radiosurgery Treatment: Stationary control of seizures with medications Upfront (primary); Linac-based SRS for right parasel–– 72 months post-SRS: lar meningioma (Tumor-1) and right frontal parasagittal Sustainably improved headache meningioma (Tumor-2), in the same session Sustainable control of seizures with medications • Radiosurgery Dosimetry: • Complications: At 24 months post-SRS, the follow-up imag–– Right Parasellar Lesion (Tumor-1): ing showed temporary radiation-induced changes in the right Target volume: 3.6 cc side of pons. However, these radiologic changes were asympMarginal dose: 12.0 Gy tomatic and resolved completely at 36 months post-SRS Marginal isodose: 80% • Radiological Outcome: Maximum dose: 15.3 Gy –– 12 months post-SRS (MRI): Minimum dose: 9.7 Gy Stationary size and contrast enhancement of right Average dose: 14.4 Gy parasellar tumor Number of isocenters: 1 Stationary size and contrast enhancement of right Maximum dose to optic chiasm: 5.7 Gy frontal parasagittal tumor Maximum dose to right optic nerve: 6.3 Gy –– 24 months post-SRS (MRI): Maximum dose to left optic nerve: 1.7 Gy Stationary size and contrast enhancement of right Maximum dose to brain stem: 13.7 Gy parasellar tumor –– Right Frontal Parasagittal Lesion (Tumor-2): Stationary size and contrast enhancement of right Target volume: 1.5 cc frontal parasagittal tumor Marginal dose: 12.0 Gy Appearance of a small focal enhancing lesion in the Marginal isodose: 80% right side of pons, in T1 Gadolinium-enhanced Maximum dose: 15.3 Gy study, and expressing high signals in T2 and FLAIR Minimum dose: 11.6 Gy studies, denoting radiation-induced changes Average dose: 14.5 Gy (asymptomatic) Number of isocenters: 1 –– 36 months post-SRS (MRI): • Follow-Up Period: 72 months post-SRS Stationary size of right parasellar tumor • Clinical Outcome: Mild decreased contrast enhancement of right para–– 6 months post-SRS: sellar tumor Improving headache Stationary size of right frontal parasagittal tumor Improving seizures with medications Mild decreased contrast enhancement of right fron–– 12 months post-SRS: tal parasagittal tumor Improved headache Resolution of the radiation-induced changes in the Controlled seizures with medications brain stem © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_30

359

360

–– 48 months post-SRS (MRI): Mild decreased size of right parasellar tumor Stationary decreased contrast enhancement of right parasellar tumor Mild decrease in size of right frontal parasagittal tumor Stationary decreased contrast enhancement of right frontal parasagittal tumor Stationary resolution of the radiation-induced changes in the brain stem –– 72 months post-SRS (MRI):

30  Multiple Meningiomas

More decrease in size of right parasellar tumor More decrease in contrast enhancement of right parasellar tumor Stationary decrease in size of right frontal parasagittal tumor Stationary decreased contrast enhancement of right frontal parasagittal tumor Sustainable resolution of the radiation-induced changes in the brain stem • Post-radiosurgery Treatment: Continued anti-­ convulsant medications

30  Multiple Meningiomas

361 -SRP in progress–TUMOR-1

-SRP in progress–CHIASM VO

100

100

90

90

80

80

60 50 40

70

volume [%]

volume [%]

70

60 50 40

30

30

20

20

10

10

0

0 10 20 30 40 50 60 70 80 90 100 dose [%] from slice 10 to 20 dose: 100% = 15.0 Gy, volume: 100% = 3.6 ccm

0 0 10 20 30 40 50 60 70 80 90 100 dose [%] from slice 18 to 19 dose: 100% = 15.0 Gy, volume: 100% = 0.3 ccm -SRP in progress–BRAIN STE

100

100

90

90

80

80

70

70

60 50 40

0

10 20 30 40 50 60 70 80 90 100 dose [%]

volume [%]

volume [%]

-SRP in progress–TUMOR-2

60 50 40

30

30

20

20

10

10

0

from slice 41 to 49 dose: 100% = 15.0 Gy, volume: 100% = 1.5 ccm

0

10 20 30 40 50 60 70 80 90 100 dose [%]

0

from slice 7 to 26 dose: 100% = 15.0 Gy, volume: 100% = 19.6 ccm

362

30  Multiple Meningiomas

30  Multiple Meningiomas

363

364

30  Multiple Meningiomas

30  Multiple Meningiomas

365

366

Further Reading Abdelaziz OS, Kandil A, Al-Assaal S, et al. Linear accelerator-based stereotactic radiosurgery of intracranial meningiomas: results of the first five years of clinical practice. Neurosurg Rev. 2011;34:87–99. Cohen-Inbar O, Tata A, Moosa S, et al. Stereotactic radiosurgery in the treatment of parasellar meningiomas: long-term volumetric evaluation. J Neurosurg. 2014;128(2):362–72.

30  Multiple Meningiomas

Hadelsberg U, Nissim U, Cohen ZR, et  al. LINAC radiosurgery in the management of parasagittal meningiomas. Stereotact Funct Neurosurg. 2015;93:10–6. Samblas J, Guerra JLL, Bustos J, et  al. Stereotactic radiosurgery in patients with multiple intracranial meningiomas. J BUON. 2014;19(1):250–1.

Atypical Meningioma

• Demographics: Male; 43 years • Presentation: –– Headache –– Old, post-prior surgery, residual, mild, left LMN facial paresis and complete left SNHL • Diagnosis: Atypical petroclival meningioma (WHO Grade II) • Pre-radiosurgery Treatment: Surgery; 4 months before radiosurgery treatment. Histopathology revealed an atypical, meningothelial, meningioma (WHO Grade II). Ki67 proliferative index was 80% (high grade 3) • Radiosurgery Treatment: Adjunctive; linac-based SRS for post-surgical residual, atypical, meningothelial, left, petroclival meningioma (WHO Grade II) (High grade Ki67) • Radiosurgery Dosimetry: –– Target volume: 11.4 cc –– Marginal dose: 12.0 Gy –– Marginal isodose: 85% –– Maximum dose: 14.8 Gy –– Minimum dose: 10.9 Gy –– Average dose: 13.9 Gy –– Number of isocenters: 1 • Follow-Up Period: 36 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Improving headache Stationary post-surgery, residual, mild left LMN facial paresis and complete left SNHL –– 12 months post-SRS: Improved headache Stationary post-surgery, residual, mild left LMN facial paresis, and complete left SNHL –– 18 months post-SRS: Stationary improvement of headache Stationary post-surgery, residual, mild left LMN facial paresis, and complete left SNHL

31

–– 32 months post-SRS: Recurrence of headache Developed left ptosis Stationary post-surgery, residual, mild left LMN facial paresis, and complete left SNHL –– 36  months post-SRS: Asymptomatic and neurologically intact Worsening of headache Developed complete left oculomotor nerve palsy Stationary post-surgery, residual, mild left LMN facial paresis, and complete left SNHL • Complications: At 32  months post-SRS, the patient experienced clinical deterioration (recurrence of severe headache and development of left oculomotor nerve palsy), which showed more worsening at 36 months post-­ SRS.  This clinical deterioration is explained by the marked increase in tumor size and progressive parasellar, suprasellar, and retrosellar invasions, which is considered failure of SRS treatment to achieve control of local tumor growth • Radiological Outcome: –– 6 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement –– 12 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement –– 18 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement –– 32 months post-SRS (MRI): Increased tumor size, with parasellar, suprasellar, and retrosellar invasions (Tumor progression) Stationary tumor contrast enhancement Appearance of perilesional, cerebellar high signal, in T2 study, denoting vasogenic edema –– 36 months post-SRS (MRI):

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_31

367

368

31  Atypical Meningioma

Marked increase in tumor size, with more parasellar, suprasellar, and retrosellar invasions (Tumor progression) Stationary tumor contrast enhancement Increased perilesional, cerebellar high signal, in T2 study

• Post-radiosurgery Treatment: –– Based on the documented failure of SRS treatment to achieve local tumor growth control, the patient is scheduled for post-SRS surgical excision with post-­ surgery conventional radiation therapy (XRT)

31  Atypical Meningioma

369

370

31  Atypical Meningioma

-SRP in progress–BRAIN 100

100

90

90

80

80

70

70

60

60

50 40

0

10

20

30

40

50 60 dose [%]

70

80

from slice 1 to 18 dose: 100% = 14.1 Gy, volume: 100% = 11.4 ccm

90

100

volume [%]

volume [%]

-SRP in progress–TUMOR

50 40

30

30

20

20

10

10

0

0

10

20

30

40

50 60 dose [%]

70

80

from slice 2 to 21 dose: 100% = 14.1 Gy, volume: 100% = 24.2 ccm

90

100

0

31  Atypical Meningioma

371

372

31  Atypical Meningioma

31  Atypical Meningioma

373

374

31  Atypical Meningioma

Further Reading

Further Reading Bulduk EB, Demirci H, Karaaslan B, et al. Efficacy of Gamma-Knife radiosurgery in grade 2 and grade 3 meningioma: a single-center, long-term follow-up study. EJMI. 2021;5(3):404–8. Conti A, Pontoriero A, Siddi F, et  al. Post-treatment edema after meningioma radiosurgery is a predictable complication. Cureus. 2016;8(5):e605. https://doi.org/10.7759/cureus.605. Couldwell WT, Cole CD, Al-Mefty O.  Patterns of skull base meningiomas progression after failed radiosurgery. J Neurosurg. 2007;106(1):30–5.

375

Kano H, Takahashi JA, Katsuki T, et  al. Stereotactic radiosurgery for atypical and anaplastic meningiomas. J Neuro-Oncol. 2007;84(1):41–7. Kowalchuk RO, Shepard MJ, Sheehan K, et  al. Treatment of WHO grade 2 meningiomas with stereotactic radiosurgery: identification of an optimal group for SRS using RPA.  Int J Radiat Oncol Biol Phys. 2021;110(3):804–14. Williams BJ, Salvetti DJ, Starke RM, et  al. Stereotactic radiosurgery for WHO II and III meningiomas: analysis of long-term clinical and radiographic outcomes. J Radiosurg SBRT. 2013;2(3):183–91.

Very Small Size Vestibular Schwannoma

• Demographics: Female; 53 years • Presentation: –– Right-sided, severe SNHL (Gardner-Robertson Class III, Non-serviceable hearing) –– Right-sided tinnitus • Diagnosis: Very small size vestibular schwannoma • Pre-radiosurgery Treatment: None • Radiosurgery Treatment: Upfront (primary); linac-based SRS for right, very small size vestibular schwannoma • Radiosurgery Dosimetry: –– Target volume: 0.5 cc –– Marginal dose: 12.0 Gy –– Marginal isodose: 80% –– Maximum dose: 15.3 Gy –– Minimum dose: 11.4 Gy –– Average dose: 14.3 Gy –– Number of isocenters: 1 –– Maximum dose to brain stem: 11.5 Gy • Follow-up Period: 142 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Stationary right-sided SNHL (Gardner-Robertson Class III, Non-serviceable hearing) Stationary right-sided tinnitus –– 18 months post-SRS: Stationary right-sided SNHL (Gardner-Robertson Class III, Non-serviceable hearing) Stationary right-sided tinnitus Preserved normal right-sided facial nerve functions –– 36 months post-SRS: Stationary right-sided SNHL (Gardner-Robertson Class III, Non-serviceable hearing) Stationary right-sided tinnitus Preserved normal right-sided facial nerve functions –– 118 months post-SRS:

32

Stationary right-sided SNHL (Gardner-Robertson Class III, Non-serviceable hearing) Stationary right-sided tinnitus Developed mild, left-sided LMN facial nerve paresis –– 142 months post-SRS: Stationary right-sided SNHL (Gardner-Robertson Class III, non-serviceable hearing) Stationary right-sided tinnitus Stationary mild, left-sided, LMN facial nerve paresis • Complications: At 118  months post-SRS, the patient developed mild, left-sided, LMN facial nerve paresis, which persisted till last follow-up at 142  months post-­ SRS, despite conservative treatment. This could be attributed to either delayed radiation-induced facial neuropathy or compressive neuropathy from the concomitant pseudo-­ progression of the tumor within the IAC and the CPA • Radiological Outcome: –– 6 months post-SRS (MRI): Stationary tumor size Mild decrease of central tumor contrast enhancement –– 18 months post-SRS (MRI): Stationary tumor size Stationary tumor contrast enhancement –– 36 months post-SRS (MRI): Stationary tumor size Decreased tumor contrast enhancement –– 118 months post-SRS (MRI): Mild increase of tumor size (pseudo-progression) Loss of central tumor contrast enhancement –– 142 months post-SRS (MRI): Mild decrease in tumor size More decrease in central tumor contrast enhancement • Post-radiosurgery Treatment: None

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_32

377

378

32  Very Small Size Vestibular Schwannoma

32  Very Small Size Vestibular Schwannoma

379

-SRP–1–Tumor VOI 2 100 90 80 70

volume [%]

60 50 40 30 20 10 0

10

20

30

40

50

60

dose [%] from slice 10 to 13 dose: 100% = 15.0 Gy, volume: 100% = 0.5 ccm

70

80

90

100

0

380

32  Very Small Size Vestibular Schwannoma

32  Very Small Size Vestibular Schwannoma

381

382

32  Very Small Size Vestibular Schwannoma

32  Very Small Size Vestibular Schwannoma

383

384

32  Very Small Size Vestibular Schwannoma

32  Very Small Size Vestibular Schwannoma

385

386

32  Very Small Size Vestibular Schwannoma

Further Reading

Further Reading Benghiat H, Heyes G, Nightingale P, et al. Linear accelerator stereotactic radiosurgery for vestibular schwannomas: a UK series. Clin Oncol. 2014;26(6):309–15. Chow KK, Ajlan A, Ho AL, et  al. Facial nerve paralysis occurring 4 days following stereotactic radiosurgery for a vestibular schwannoma. Asian J Neurosurg. 2019;14(1):262–5. Dupic G, Urcissin M, Mom T, et al. Stereotactic radiosurgery for vestibular schwannomas: reducing toxicity with 11  Gy as the mar-

387

ginal prescribed dose. Front Oncol. 2020;10:598841. https://doi. org/10.3389/fonc.2020.598841. Friedman WA, Bradshaw P, Myers A, et al. Linear accelerator radiosurgery for vestibular schwannomas. J Neurosurg. 2006;105(5):657–61. Hayhurst C, Zadeh G. Tumor pseudoprogression following radiosurgery for vestibular schwannoma. Neuro-Oncology. 2012;14(1):87–92. Sebastian P, John S, Reddy J, et  al. Long-term outcomes of patients with primary or residual vestibular schwannoma treated with LINAC-based stereotactic radiosurgery: a single-centre experience. J Radiother Pract. 2021;20(4):426–32.

Small Size Vestibular Schwannoma

• Demographics: Female; 45 years • Presentation: –– Left sided, complete SNHL (Gardner-Robertson Class V) –– Left-sided tinnitus –– Vertigo –– Headache • Diagnosis: Small size vestibular schwannoma • Pre-radiosurgery Treatment: None • Radiosurgery Treatment: Upfront (primary); Linac-based SRS for left, small size vestibular schwannoma • Radiosurgery Dosimetry: –– Target volume: 1.0 cc –– Marginal dose: 11.0 Gy –– Marginal isodose: 80% –– Maximum dose: 16.3 Gy –– Minimum dose: 9.4 Gy –– Average dose: 14.2 Gy –– Number of isocenters: 2 –– Maximum dose to brain stem: 14.4 Gy • Follow-Up Period: 54 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Improving headache Improving vertigo –– 14 months post-SRS: Improved headache Improved vertigo Residual moderate left-sided tinnitus –– 21 months post-SRS: Residual mild left-sided tinnitus –– 37 months post-SRS: Improved left-sided tinnitus –– 54 months post-SRS:

33

Sustainably improved headache Sustainably improved vertigo Sustainably improved left-sided tinnitus Stationary complete left-sided SNHL (Gardner-­ Robertson Class V) Preserved normal left-sided facial nerve functions • Complications: None • Radiological Outcome: –– 6 months post-SRS (MRI): Decreased tumor size Loss of central tumor contrast enhancement Appearance of perilesional brain stem high signal in T2 study, denoting vasogenic edema (asymptomatic) –– 14 months post-SRS (MRI): Mild increase in tumor size (pseudo-progression) Stationary loss of central tumor contrast enhancement Persistent perilesional high signal in T2 study (asymptomatic) –– 21 months post-SRS (MRI): Stationary tumor size Stationary decreased central tumor contrast enhancement Persistent perilesional high signal in T2 study (asymptomatic) –– 37 months post-SRS (MRI): Decreased tumor size Stationary decreased tumor contrast enhancement Resolved perilesional high signal in T2 study –– 54 months post-SRS (MRI): Mild increase in tumor size (pseudo-progression) More decrease in central tumor contrast enhancement • Post-radiosurgery Treatment: None

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_33

389

390

33  Small Size Vestibular Schwannoma

33  Small Size Vestibular Schwannoma

391 -SRP in progress–Tumor VOI 2 100 90 80 volume [%]

70 60 50 40 30 20 10 0 0

10

20

30

40

50 60 dose [%]

70

80

90 100

from slice 7 to 10 dose: 100% = 13.8 Gy, volume: 100% = 1.0 ccm

-SRP in progress–Brain Stem VOI 3 100 90 80 volume [%]

70 60 50 40 30 20 10 0 0

10

20

30

40

50 60 dose [%]

70

80

90 100

from slice 7 to 20 dose: 100% = 13.8 Gy, volume: 100% = 17.4 ccm

392

33  Small Size Vestibular Schwannoma

33  Small Size Vestibular Schwannoma

393

394

33  Small Size Vestibular Schwannoma

33  Small Size Vestibular Schwannoma

395

396

33  Small Size Vestibular Schwannoma

Further Reading

Further Reading Benghiat H, Heyes G, Nightingale P, et al. Linear accelerator stereotactic radiosurgery for vestibular schwannomas: a UK series. Clin Oncol. 2014;26(6):309–15. Braunstein S, Ma L.  Stereotactic radiosurgery for vestibular schwannomas. Cancer Manag Res. 2018;10:3733–40. Dupic G, Urcissin M, Mom T, et al. Stereotactic radiosurgery for vestibular schwannomas: reducing toxicity with 11  Gy as the mar-

397

ginal prescribed dose. Front Oncol. 2020;10:598841. https://doi. org/10.3389/fonc.2020.598841. Ellenbogen JR, Waqar M, Kinshuck AJ, et al. Linear accelerator radiosurgery for vestibular schwannomas: results of medium-term follow-­up. Br J Neurosurg. 2015;29(5):678–84. Hayhurst C, Zadeh G. Tumor pseudoprogression following radiosurgery for vestibular schwannoma. Neuro-Oncology. 2012;14(1):87–92. Yang I, Sughrue ME, Han SJ, et al. Facial nerve preservation after vestibular schwannoma Gamma Knife radiosurgery. J Neuro-Oncol. 2009;93(1):41–8.

Medium Size Vestibular Schwannoma

• Demographics: Female; 42 years • Presentation: –– Right-sided SNHL (Gardner-Robertson Class II, serviceable hearing) –– Right-sided tinnitus –– Right trigeminal neuralgia • Diagnosis: Medium size vestibular schwannoma • Pre-radiosurgery Treatment: None • Radiosurgery Treatment: Upfront (primary); linac-based SRS for right, medium size vestibular schwannoma • Radiosurgery Dosimetry: –– Target volume: 3.6 cc –– Marginal dose: 12.0 Gy –– Marginal isodose: 75% –– Maximum dose: 16.1 Gy –– Minimum dose: 10.3 Gy –– Average dose: 15.4 Gy –– Number of isocenters: 1 –– Maximum dose to brain stem: 13.4 Gy • Follow-Up Period: 173 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Stationary right-sided SNHL (Gardner-Robertson Class II, serviceable hearing) Improving right-sided tinnitus Improving right trigeminal neuralgia –– 12 months post-SRS: Deteriorated right sided SNHL (Gardner-Robertson Class III, non-serviceable hearing) Residual mild right-sided tinnitus Worsened right trigeminal neuralgia (started medication) –– 18 months post-SRS: Stationary right-sided SNHL (Gardner-Robertson Class III, non-serviceable hearing) Improved right-sided tinnitus Improving right trigeminal neuralgia with medication

34

–– 24 months post-SRS: More improvement of right trigeminal neuralgia with medication –– 48 months post-SRS: Controlled right trigeminal neuralgia with medication (smaller dose) –– 173 months post-SRS: Stationary right-sided SNHL (Gardner-Robertson Class III, non-serviceable hearing) Sustainably improved right-sided tinnitus Controlled right trigeminal neuralgia with medication (smaller dose) Preserved normal right facial nerve functions • Complications: –– 12  months post-SRS: Worsened right hearing level from Gardner-Robertson Class II, serviceable hearing to permanent Class III, non-serviceable hearing –– 12 months post-SRS: Worsening of pre-existing right trigeminal neuralgia, which was controlled with medications at 44 months post-SRS • Radiological Outcome: –– 6 months post-SRS (MRI): Increased tumor size (pseudo-progression) Marked loss of central tumor contrast enhancement –– 12 months post-SRS (MRI): Stationary increased tumor size (pseudo-progression) Stationary loss of central tumor contrast enhancement –– 24 months post-SRS (MRI): Decreased tumor size Loss of central tumor contrast enhancement –– 48 months post-SRS (MRI): More decrease in tumor size Loss of central tumor contrast enhancement • Post-radiosurgery Treatment: Continued anticonvulsant medication (smaller dose)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_34

399

400

34  Medium Size Vestibular Schwannoma

34  Medium Size Vestibular Schwannoma

401

-SRP in progress–Tumor VOI 2 100 90 80 volume [%]

70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 dose [%]

0

from slice 7 to 16 dose: 100% = 16.0 Gy, volume: 100% = 3.6 ccm

402

34  Medium Size Vestibular Schwannoma

34  Medium Size Vestibular Schwannoma

403

404

34  Medium Size Vestibular Schwannoma

34  Medium Size Vestibular Schwannoma

405

406

34  Medium Size Vestibular Schwannoma

34  Medium Size Vestibular Schwannoma

407

408

Further Reading Abdelaziz OS.  Radiosurgery in neurosurgical practice I: stereotactic radiosurgery for intracranial schwannomas. Neurosurg Q. 2000;10(2):117–21. https://www.researchgate.net/ publication/359115561. De Jel DVC, Smid EJ, van Doormaal TPC.  Hearing outcome after linear accelerator-based radiotherapy for vestibular schwannomas: a retrospective analysis of a single center. J Int Adv Otol. 2021;17(5):426–32. Dupic G, Urcissin M, Mom T, et al. Stereotactic radiosurgery for vestibular schwannomas: reducing toxicity with 11  Gy as the marginal prescribed dose. Front Oncol. 2020;10:598841. https://doi. org/10.3389/fonc.2020.598841.

34  Medium Size Vestibular Schwannoma

Ellenbogen JR, Waqar M, Kinshuck AJ, et al. Linear accelerator radiosurgery for vestibular schwannomas: results of medium-term follow-­up. Br J Neurosurg. 2015;29(5):678–84. Fong BM, Pezeshkian P, Nagasawa DT, et  al. Hearing preservation after LINAC radiosurgery and LINAC radiotherapy for vestibular schwannoma. J Clin Neurosci. 2012;19(8):1065–70. Hayhurst C, Zadeh G. Tumor pseudoprogression following radiosurgery for vestibular schwannoma. Neuro-Oncology. 2012;14(1):87–92.

Large Size Vestibular Schwannoma

35

• Demographics: Male; 51 years Stationary left-sided SNHL (Gardner-Robertson • Presentation: Class III, non-serviceable hearing) –– Left sided SNHL (Gardner-Robertson Class III, non-­ –– 66 months post-SRS: serviceable hearing) Sustainably improved vertigo –– Left-sided tinnitus Sustainably improved left-sided tinnitus –– Vertigo Stationary left-sided SNHL (Gardner-Robertson • Diagnosis: Large size vestibular schwannoma Class III, non-serviceable hearing) • Pre-radiosurgery Treatment: None Preserved normal left-sided facial nerve functions • Radiosurgery Treatment: • Complications: None Upfront (primary); linac-based SRS for left, large size • Radiological Outcome: vestibular schwannoma –– 6 months post-SRS (MRI): • Radiosurgery Dosimetry: Increased tumor size (pseudo-progression) –– Target volume: 10.5 cc Marked loss of central tumor contrast –– Marginal dose: 11.0 Gy enhancement –– Marginal isodose: 75% –– 12 months post-SRS (MRI): –– Maximum dose: 15.3 Gy Stationary increased tumor size –– Minimum dose: 4.5 Gy (pseudo-progression) –– Average dose: 14.0 Gy Stationary marked loss of central tumor contrast –– Number of isocenters: 1 enhancement –– Maximum dose to brain stem: 14.0 Gy –– 18 months post-SRS (MRI): • Follow-Up Period: 66 months post-SRS Mild decrease in tumor size • Clinical Outcome: Loss of central tumor contrast enhancement –– 6 months post-SRS: –– 24 months post-SRS (MRI): Improved vertigo Stationary decrease in tumor size Improving left-sided tinnitus Loss of central tumor contrast enhancement Stationary left-sided SNHL (Gardner-Robertson –– 30 months post-SRS (MRI): Class III, non-serviceable hearing) More decrease in tumor size –– 24 months post-SRS: Loss of central tumor contrast enhancement Residual mild left-sided tinnitus –– 36 months post-SRS (MRI): Stationary left-sided SNHL (Gardner-Robertson Stationary decrease in tumor size Class III, non-serviceable hearing) Loss of central tumor contrast enhancement –– 36 months post-SRS: –– 54 months post-SRS (MRI): Improved left-sided tinnitus More decrease in tumor size Stationary left-sided SNHL (Gardner-Robertson Loss of central tumor contrast enhancement Class III, non-serviceable hearing) –– 66 months post-SRS (MRI): –– 55 months post-SRS: More decrease in tumor size Improved vertigo More loss of central tumor contrast enhancement Improved left-sided tinnitus • Post-radiosurgery Treatment: None © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_35

409

410

35  Large Size Vestibular Schwannoma

35  Large Size Vestibular Schwannoma

411

-SRP in progress–BRAIN STEM 100

100

90

90

80

80

70

70

60

60

50 40

0

10

20

30

40

50 60 dose [%]

70

80

from slice 8 to 26 dose: 100% = 14.7 Gy, volume: 100% = 10.5 ccm

90

100

volume [%]

volume [%]

-SRP in progress–Tumor VOI 2

50 40

30

30

20

20

10

10

0

0

10

20

30

40

50 60 dose [%]

70

80

from slice 10 to 34 dose: 100% = 14.7 Gy, volume: 100% = 25.6 ccm

90

100

0

412

35  Large Size Vestibular Schwannoma

35  Large Size Vestibular Schwannoma

413

414

35  Large Size Vestibular Schwannoma

35  Large Size Vestibular Schwannoma

415

416

35  Large Size Vestibular Schwannoma

35  Large Size Vestibular Schwannoma

417

418

35  Large Size Vestibular Schwannoma

35  Large Size Vestibular Schwannoma

419

420

35  Large Size Vestibular Schwannoma

Further Reading

Further Reading Dupic G, Urcissin M, Mom T, et al. Stereotactic radiosurgery for vestibular schwannomas: reducing toxicity with 11  Gy as the marginal prescribed dose. Front Oncol. 2020;10:598841. https://doi. org/10.3389/fonc.2020.598841. Ellenbogen JR, Waqar M, Kinshuck AJ, et al. Linear accelerator radiosurgery for vestibular schwannomas: results of medium-term follow-up. Br J Neurosurg. 2015;29(5):678–84.

421

Hayhurst C, Zadeh G. Tumor pseudoprogression following radiosurgery for vestibular schwannoma. Neuro-Oncology. 2012;14(1):87–92. Huang CW, Tu HT, Chuang CY, et  al. Gamma Knife radiosurgery for large vestibular schwannomas greater than 3 cm in diameter. J Neurosurg. 2018;128(5):1380–7. Tosi U, Lavieri MET, An A, et al. Outcomes of stereotactic radiosurgery for large vestibular schwannomas: a systematic review and metaanalysis. Neurooncol Pract. 2021;8(4):405–16.

Extra-Large Size Vestibular Schwannoma

36

• Demographics: Female; 33 years Stationary right-sided complete SNHL (Gardner-­ • Presentation: Robertson Class V) –– Right-sided, complete SNHL (Gardner-Robertson More improvement in right trigeminal neuropathy Class V) (V2) with smaller doses of medications –– Right-sided trigeminal neuropathy (V2 distribution) Improving ataxic gait –– Ataxic gait –– 44 months post-SRS: • Diagnosis: Extra-large size vestibular schwannoma Stationary right-sided complete SNHL (Gardner-­ • Pre-radiosurgery Treatment: None Robertson Class V) • Radiosurgery Treatment: Improved right trigeminal neuropathy (V2) without Upfront (primary); linac-based SRS for right, extramedications large size vestibular schwannoma More improvement in ataxic gait • Radiosurgery Dosimetry: –– 80 months post-SRS: –– Target volume: 19.1 cc Stationary left-sided complete SNHL (Gardner-­ –– Marginal dose: 10.5 Gy Robertson Class V) –– Marginal isodose: 80% Sustainable improvement in right trigeminal neu–– Maximum dose: 13.4 Gy ropathy (V2) without medications –– Minimum dose: 9.3 Gy Improved ataxic gait –– Average dose: 12.8 Gy • Complications: None –– Number of isocenters: 1 • Radiological Outcome: –– Maximum dose to brain stem: 12.9 Gy –– 6 months post-SRS (MRI): • Follow-Up Period: 80 months post-SRS Stationary tumor size • Clinical Outcome: Loss of central tumor contrast enhancement –– 6 months post-SRS: –– 12 months post-SRS (MRI): Stationary right-sided complete SNHL (Gardner-­ Mild increase in tumor size (pseudo-progression) Robertson Class V) Marked loss of central tumor contrast enhancement Stationary right trigeminal neuropathy (V2) with –– 24 months post-SRS (MRI): medications Mild decrease in tumor size Stationary ataxic gait Loss of central tumor contrast enhancement –– 12 months post-SRS: –– 44 months post-SRS (MRI): Stationary right-sided complete SNHL (Gardner-­ More decrease in tumor size Robertson Class V) Loss of central tumor contrast enhancement Improving right trigeminal neuropathy (V2) with –– 80 months post-SRS (MRI): medications More marked decrease in tumor size Stationary ataxic gait More marked loss of tumor contrast enhancement –– 24 months post-SRS: • Post-radiosurgery Treatment: None

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_36

423

424

36  Extra-Large Size Vestibular Schwannoma

36  Extra-Large Size Vestibular Schwannoma

425

36  Extra-Large Size Vestibular Schwannoma I-SRP-1-Tumor VOI 2 100 90 80 volume [%]

70 60 50 40 30 20 10 0 0

10 20 30 40 50 60 70 80 90 100 dose [%]

from slice 5 to 21 dose: 100% = 13.1 Gy, volime: 100% = 19.1 ccm

I-SRP-1-Brain stem VOL 3 100 90 80 70 volume [%]

426

60 50 40 30 20 10 0

10 20 30 40 50 60 70 80 90 100 dose [%]

0

from slice 2 to 25 dose: 100% = 13.1 Gy, volime: 100% = 23.4 ccm

36  Extra-Large Size Vestibular Schwannoma

427

428

36  Extra-Large Size Vestibular Schwannoma

36  Extra-Large Size Vestibular Schwannoma

429

430

36  Extra-Large Size Vestibular Schwannoma

36  Extra-Large Size Vestibular Schwannoma

431

432

36  Extra-Large Size Vestibular Schwannoma

Further Reading

Further Reading Dupic G, Urcissin M, Mom T, et al. Stereotactic radiosurgery for vestibular schwannomas: reducing toxicity with 11  Gy as the marginal prescribed dose. Front Oncol. 2020;10:598841. https://doi. org/10.3389/fonc.2020.598841. Ellenbogen JR, Waqar M, Kinshuck AJ, et al. Linear accelerator radiosurgery for vestibular schwannomas: results of medium-term follow-­up. Br J Neurosurg. 2015;29(5):678–84. Hayhurst C, Zadeh G. Tumor pseudoprogression following radiosurgery for vestibular schwannoma. Neuro-Oncology. 2012;14(1):87–92.

433

Huang CW, Tu HT, Chuang CY, et  al. Gamma Knife radiosurgery for large vestibular schwannomas greater than 3 cm in diameter. J Neurosurg. 2018;128(5):1380–7. Tosi U, Lavieri MET, An A, et al. Outcomes of stereotactic radiosurgery for large vestibular schwannomas: a systematic review and meta-­ analysis. Neurooncol Pract. 2021;8(4):405–16. Yang I, Sughrue ME, Han SJ, et al. Facial nerve preservation after vestibular schwannoma Gamma Knife radiosurgery. J Neuro-Oncol. 2009;93(1):41–8.

Trigeminal Schwannoma

• Demographics: Female; 50 years • Presentation: –– Left trigeminal neuralgia • Diagnosis: Trigeminal schwannoma • Pre-radiosurgery Treatment: None • Radiosurgery Treatment: Upfront (primary); Linac-based SRS for the solid component of left, mixed solid-cystic trigeminal schwannoma • Radiosurgery Dosimetry: –– Target volume: 5.7 cc (solid tumor component only) –– Marginal dose: 12.0 Gy –– Marginal isodose: 80% –– Maximum dose: 22.0 Gy –– Minimum dose: 9.3 Gy –– Average dose: 15.8 Gy –– Number of isocenters: 2 –– Maximum dose to brain stem: 14.5 Gy • Follow-Up Period: 177 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Improving left trigeminal neuralgia with medications –– 12 months post-SRS: Improved left trigeminal neuralgia with smaller doses of medications –– 18 months post-SRS: Improved left trigeminal neuralgia with gradual tapering of medications –– 24 months post-SRS: Improved left trigeminal neuralgia without medications –– 36 months post-SRS: Sustainable improvement of left trigeminal neuralgia without medications –– 48 months post-SRS: Sustainable improvement of left trigeminal neuralgia without medications –– 177  months post-SRS: Sustainable improvement of left trigeminal neuralgia without medications

37

• Complications: None • Radiological Outcome: –– 6 months post-SRS (MRI): Mild increase in tumor size (solid component) (pseudo-progression) Marked loss of central tumor contrast enhancement (solid component) Mild decrease in tumor size (cystic component) –– 12 months post-SRS (MRI): Decrease in tumor size (solid component) Decrease in tumor contrast enhancement (solid component) More decrease in tumor size (cystic component) –– 24 months post-SRS (MRI): More decrease in tumor size (solid component) Decrease in tumor contrast enhancement (solid component) Marked decrease in tumor size (cystic component) –– 48 months post-SRS (MRI): More decrease in tumor size (solid component) Stationary decreased tumor contrast enhancement (solid component) More decrease in tumor size (cystic component) –– 177 months post-SRS (MRI): Stationary decrease in tumor size (solid component) Stationary decreased tumor contrast enhancement (solid component) More marked decrease in tumor size (cystic component) • Post-radiosurgery Treatment: None

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_37

435

436

37  Trigeminal Schwannoma

37  Trigeminal Schwannoma

437 -SRP in progress–Tumor VOI 2 100 90 80 70 volume [%]

60 50 40 30 20 10 0 0

10

20

30

40

50 60 dose [%]

70

80

90 100

from slice 1 to 9 dose: 100% = 15.0 Gy, volume: 100% = 5.7 ccm -SRP in progress–BRAIN STEM VOI 100 90 80 70 volume [%]

60 50 40 30 20 10 0 0

10

20

30

40

50 60 dose [%]

70

80

90 100

from slice 1 to 13 dose: 100% = 15.0 Gy, volume: 100% = 15.6 ccm

438

37  Trigeminal Schwannoma

37  Trigeminal Schwannoma

439

440

37  Trigeminal Schwannoma

37  Trigeminal Schwannoma

441

442

37  Trigeminal Schwannoma

37  Trigeminal Schwannoma

443

444

37  Trigeminal Schwannoma

Further Reading

Further Reading Abdelaziz OS.  Stereotactic radiosurgery for benign brain tumors: treatment rationale and outcomes. J Radiosurg. 2000;3(1):29–42. https://doi.org/10.1023/A:1009573119807. Kimball MM, Foote KD, Bova FJ, et al. Linear accelerator radiosurgery for nonvestibular schwannomas. Neurosurgery. 2011;68(4):974–84.

445

Peciu-Florianu L, Régis J, Levivier M, et al. Tumor control and trigeminal dysfunction improvement after stereotactic radiosurgery for trigeminal schwannomas: a systematic review and meta-analysis. Neurosurg Rev. 2021;44(5):2391–403. Thust SC, van den Bent MJ, Smits M.  Pseudoprogression of brain tumors. J Magn Reson Imaging. 2018;48(3):571–89. https://doi. org/10.1002/jmri.26171.

Non-functioning Pituitary Adenoma

• Demographics: Male; 58 years • Presentation: –– Headache –– Hypopituitarism (on hormonal replacement therapy following previous pituitary surgeries) • Diagnosis: Non-functioning pituitary adenoma • Pre-radiosurgery Treatment: Trans-sphenoidal pituitary surgeries, three times; at 15  years, 13  years, and 6 months before radiosurgery treatment • Radiosurgery Treatment: Adjunctive; Linac-based SRS for post-surgical residual, non-functioning pituitary adenoma • Radiosurgery Dosimetry: –– Target volume: 3.9 cc –– Marginal dose: 15.0 Gy –– Marginal isodose: 80% –– Maximum dose: 18.8 Gy –– Minimum dose: 13.7 Gy –– Average dose: 18.0 Gy –– Number of isocenters: 1 –– Maximum dose to optic chiasm: 15.2 Gy –– Maximum dose to right optic nerve: 9.4 Gy –– Maximum dose to left optic nerve: 7.5 Gy –– Maximum dose to brain stem: 11.2 Gy

38

• Follow-Up Period: 60 months post-SRS • Clinical Outcome: –– 6 months post-SRS: Improving headache –– 12 months post-SRS: Improved headache –– 36  months post-SRS: Sustainable improvement of headache –– 60  months post-SRS: Sustainable improvement of headache • Complications: None • Radiological Outcome: –– 6 months post-SRS (MRI): Stationary tumor size –– 12 months post-SRS (MRI): Mild increase in tumor size Marked loss of central tumor contrast enhancement –– 36 months post-SRS (MRI): Decrease in tumor size Stationary loss of central tumor contrast enhancement –– 60 months post-SRS (MRI): Stationary decrease in tumor size Stationary loss of central tumor contrast enhancement • Post-radiosurgery Treatment: None

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 O. S. Abdelaziz, A. A. F. De Salles, NeuroRadiosurgery: Case Review Atlas, https://doi.org/10.1007/978-3-031-16199-5_38

447

448

38  Non-functioning Pituitary Adenoma

449

38  Non-functioning Pituitary Adenoma -SRP in progress–T

100 90 80 volume [%]

70 60 50 40 30 20 10 0 0

10 20 30 40 50 60 70 80 90 100 dose [%]

from slice 1 to 8 dose: 100% = 18.8 Gy, volume: 100% = 3.9 ccm

-SRP in progress–It

100

90

90

90

80

80

80

70

70

70

50 40

10 20 30 40 50 60 70 80 90 100 dose [%]

60 50 40

volume [%]

100

60

0

-SRP in progress–rt

100

volume [%]

volume [%]

-SRP in progress–C

60 50 40

30

30

30

20

20

20

10

10

10

0

0

from slice 10 to 12 dose: 100% = 18.8 Gy, volume: 100% = 0.5 ccm

0

10 20 30 40 50 60 70 80 90 100 dose [%]

from slice 6 to 8 dose: 100% = 18.8 Gy, volume: 100% = 0.9 ccm

0

10 20 30 40 50 60 70 80 90 100 dose [%]

0

from slice 6 to 9 dose: 100% = 18.8 Gy, volume: 100% = 1.2 ccm

450

38  Non-functioning Pituitary Adenoma

38  Non-functioning Pituitary Adenoma

451

452

38  Non-functioning Pituitary Adenoma

38  Non-functioning Pituitary Adenoma

453

454

38  Non-functioning Pituitary Adenoma

Further Reading

Further Reading Abdelaziz OS.  An overview of radiosurgery applications in neurosurgery. Part 2: brain tolerance to radiosurgery: correlation with predictable complications. Neurosurg Q. 1999;9(4):251–7. https:// www.researchgate.net/publication/286569174 Kotecha R, Sahgal A, Rubens M, et al. Stereotactic radiosurgery for non-­ functioning pituitary adenomas: meta-analysis and International Stereotactic Radiosurgery Society practice opinion. Neuro Oncol. 2022;22(3):318–32.

455

Minniti G, Clarke E, Scaringi C, Enrici RM. Stereotactic radiotherapy and radiosurgery for non-functioning and secreting pituitary adenomas. Rep Pract Oncol Radiother. 2016;21(4):370–8. Rung MJR, Maarouf M, Hunsche S, et  al. LINAC-radiosurgery for nonsecreting pituitary adenomas. Long-term results. Strahlenther Onkol. 2012;188(4):319–25. Sheehan J, Lee CC, Bodach ME, et  al. Congress of Neurological Surgeons systematic review and evidence-based guideline for the management of patients with residual or recurrent nonfunctioning pituitary adenomas. Neurosurgery. 2016;79(4):E539–40.

Growth Hormone (GH)-Secreting Pituitary Adenoma (Acromegaly)

• Demographics: Male; 30 years • Presentation: –– Acromegaly –– Serum basal level of GH: 38.7 ng/ml (normal;