Metal-Organic Framework Composites. Volume 2. ZIF-8 Based Materials for Water Decontamination [2] 9783110792553

This second volume of Metal-Organic Framework Composites focusses on water pollution as a major concern and endangerment

153 77 1MB

English Pages 168 [169] Year 2023

Report DMCA / Copyright

DOWNLOAD FILE

Metal-Organic Framework Composites. Volume 2. ZIF-8 Based Materials for Water Decontamination [2]
 9783110792553

Table of contents :
Cover
Half Title
Also of interest
Metal-Organic Framework Composites. Volume 2: ZIF-8 Based Materials for Water Decontamination
Copyright
Acknowledgments
Contents
List of contributors
1. ZIF-8: An overview
1.1 Introduction
1.1.1 Metal-organic frameworks (MOFs)
1.1.2 Zeolite imidazolate framework
1.2 Synthesis methods for ZIF-8
1.2.1 In situ synthesis method
1.2.2 Solvothermal synthesis of ZIF-8
1.2.3 Sonochemical synthesis
1.2.4 Ionothermal synthesis
1.3 ZIF-8 composites
1.3.1 ZIF-8 composites with graphene oxide
1.3.2 ZIF-8 composites with reduced graphene oxide
1.3.3 ZIF-8 composites with enzymes
1.3.4 ZIF-8 composites with quantum dots
1.3.5 ZIF-8 composites with noble metals
1.3.6 ZIF-8 composites with carbon nanotubes
1.3.7 ZIF-8 composites with aerogels
1.4 Applications of ZIF-8
1.4.1 Removal of heavy metals from aqueous solutions and treatment of wastewater
1.4.2 Gas separation
1.4.3 Drug delivery and medicinal applications
1.4.4 Heterogeneous catalysis
1.4.5 Electrochemical sensor
1.4.6 ZIF-8 in electrodes of batteries
1.5 Conclusion
References
2. ZIF-8 spectacular properties
2.1 Introduction
2.1.1 ZIF-8
2.2 Spectacular properties of ZIF-8
2.2.1 Simple synthetic strategy of ZIF-8
2.2.2 Thermal stability
2.2.3 Chemical stability
2.2.4 Hydrothermal stability
2.2.5 Pore size
2.2.6 Mechanical stability
2.3 Applications of ZIF-8
2.4 Conclusion
References
3. Heterogeneous catalysis and ZIF-8
3.1 Introduction
3.2 General heterogeneous catalysis vs ZIF-8 heterogeneous catalysis: a comparison
3.3 Preparation of different ZIF-8 heterogeneous catalysts
3.3.1 Preparation of ZIF-8: heterogeneous catalyst
3.3.2 PI/ZIF-8 film: a heterogeneous catalyst
3.3.3 Yolk-shell Pd@Cu2O/ZIF-8 polycrystalline crystals: as heterogeneous catalyst
3.3.4 Monodispersed particles of heterogeneous ZIF-8 catalyst
3.3.5 Crystals of heterogeneous ZIF-8
3.4 Heterogeneous catalysis by ZIF-8: applications
3.4.1 Bifunctional heterogeneous catalyst for biodiesel production
3.4.2 Benzyl alcohol oxidation by BiOF/ZIF-8
3.4.3 Photocatalytic degradation of methylene blue by ZIF-8
3.4.4 Metal/ZIF-8-carbide heterogeneous catalyst for CO2 hydrogenation
3.4.5 Transesterification of bio-glycerol by ionic-liquid-modified ZIF-8
3.4.6 Pd nanoparticles@NHC@ZIF-8 as a heterogeneous catalyst for Mizoroki heck cross-coupling
3.4.7 Polyimide/ZIF-8 as an heterogeneous catalyst for Knoevenagel condensation reaction
3.5 Conclusion
References
4. Homogenous catalysis using ZIF-8
4.1 Introduction
4.2 Structure of ZIF-8
4.3 Synthesis methods
4.4 ZIF-8 as catalyst in CO2 adsorption and Knoevenagel process
4.4.1 Future prospects
4.5 Conclusion
References
5. Wastewater treatment: An overview
5.1 Introduction
5.2 Conventional strategies for wastewater treatment
5.2.1 Initial handling
5.2.2 Basic strategy
5.2.3 Subordinate treatment
5.3 Progress in wastewater treatment technologies
5.3.1 Categories of advanced wastewater handling technologies
5.3.1.1 Third-level handling
5.3.1.2 Physiochemical handling
5.3.1.3 Combined biological and physical handling
5.3.2 Introduction of membrane treatment approach
5.3.3 Salt removal strategies
5.3.3.1 Reverse osmosis
5.3.3.2 Electro-dialysis
5.3.3.3 Ion exchange
5.3.3.4 Freeze desalination
5.4 Synthesis of ZIF-8 composites for wastewater treatment
5.4.1 ZIF-8 synthesis
5.4.2 Fabrication of ZIF-8 nanocrystals
5.4.3 ZIF-8 polysulfone composite synthesis: Phase inversion method
5.4.4 Fabrication of ZIF-8/silica composites
5.4.5 Production of ZIF-8 and ZIF-8/TiO2 composites
5.4.6 Fabrication of ZIF-8/TiO2 composites
5.4.7 ZIF-8/graphene oxide composites
5.5 Modern ZIF-8-based methods of wastewater treatment: ZIF-8 applications
5.5.1 Adsorption of ofloxacin on ZIF-8 from wastewater
5.5.2 Rhodamine B and methyl orange degradation by ZIF-8/silver photocatalyst
5.5.3 Hydrocarbon separation by ZIF-8/CF from wastewater
5.5.4 AgBr/ZIF-8 for purification of wastewater
5.5.5 ZIF-8/polyvinilidine fluoride for water purification
5.5.6 Pollutants removal by ZIF-8
5.5.7 ZIF-8 application for methyl orange removal
5.5.8 ZIF-8 derived C-N-ZnO composites for wastewater purification
5.6 Conclusion
References
6. Removal of heavy metals using ZIF 8
6.1 Introduction
6.1.1 Metal-organic framework
6.1.2 Synthesis of ZIF-8
6.1.2.1 Solvothermal analysis
6.2 Heavy metals in wastewater
6.2.1 Lead
6.2.2 Chromium
6.2.3 Zinc
6.2.4 Mercury
6.3 Methods to remove heavy metals
6.3.1 Precipitation method
6.3.2 Coagulation process
6.3.3 Ion exchange method
6.3.4 Reverse osmosis method
6.4 The mechanism for removal of heavy metals by ZIF-8
6.5 Factors affecting the removal efficiency of ZIF-8
6.5.1 PH of solution
6.5.2 Effect of temperature
6.5.3 Ionic strength
6.5.4 Initial concentration and photocatalytic dose
6.6 Applications
6.6.1 Catalyst
6.6.2 Sensing and electronic device
6.6.3 Drug delivery
6.7 Conclusion
References
7. Light-driven photocatalysis for dyes using ZIF-8 base composite materials
7.1 Introduction
7.1.1 Shortcomings
7.2 ZIF-8 composites strategies
7.3 Applications of light-driven photocatalysis for dyes using ZIF-8 base composite materials
7.3.1 ZIF-8 composites used to treat wastewater
7.3.2 ZIF-8 composites for the adsorptive sewage treatment
7.3.3 Removal of inorganic materials and dyes from wastewater
7.3.3.1 Photolytic removal of pollutants using ZIF-8 composites
7.4 Methods for the synthesis of ZIF-8-based composites
7.5 Conclusion and future prospects
References
8. Recent trends in ZIF-8-based composite materials for the removal of ciprofloxacin
8.1 Introduction
8.1.1 Possible routes of CIP to enter the environment
8.1.2 Ecotoxicity of CIP
8.2 Strategies for the removal of CIP from an aquatic environment
8.2.1 Physicochemical properties of ZIF-8
8.3 Applications of ZIF-8-based composites for the removal of CIP
8.3.1 Carbon-based ZIF-8 composites
8.3.2 Iron-based ZIF-8 composites
8.3.3 Polymer-based ZIF-8 composites
8.4 Mechanism of adsorption
8.4.1 Electrostatic interaction
8.4.2 π–π Interaction
8.4.3 Hydrogen bonding
8.5 Factors affecting the adsorption capacity of ZIF-8-based composites to remove CIP
8.5.1 pH
8.5.2 Dosage of adsorbent
8.5.3 Initial concentration of CIP
8.6 Regeneration and reusability of ZIF-8-based composites
8.7 Conclusion
References
9. Future prospects for ZIF-8-based composite material for decontamination of water
9.1 Introduction
9.1.1 What is MOF in terms of ZIF-8?
9.1.2 Use of ZIF-8 in different fields due to its novel properties
9.1.3 Use of ZIF-8-based composites in decontamination of wastewater or removal of pollutants from water
9.2 Synthesis designs for ZIF-8-based composites
9.2.1 Synthesis of ZIF-8-based composite by in situ method
9.2.2 Synthesis of ZIF-8-based composite by surface modification method
9.2.3 Synthesis of ZIF-8-based composite by template synthesis method
9.2.4 Other methods for synthesis of ZIF-8-based composite
9.3 Future prospective applications of ZIF-based composites for decontamination or removal of pollutants from wastewater
9.3.1 The use of ZIF-8 composites for the adsorptive removing of pollutants in wastewater
9.3.1.1 Absorptive decontamination of inorganic pollutants in waste waster by use of ZIF-8 composites
9.3.1.2 Absorptive removing of organic pollutants from wastewater by use of ZIF-8 composites
9.3.2 Photochemical exclusion of pollutants by ZIF-8-based composites
9.3.2.1 ZIF-8 coalesce with noble metal
9.3.2.2 ZIF-8 coalesce with semiconductor
9.3.2.3 ZIF-8 coalesce with other nanoparticles
9.4 Conclusion
References
Index

Polecaj historie