Mesomorphic Order in Polymers. and Polymerization in Liquid Crystalline Media 9780841204195, 9780841205475, 0-8412-0419-5

Content: X-ray diffraction from polymers with mesomorphic order / S.B. Clough, A. Blumstein, and A. Devries -- X-ray dif

418 106 15MB

English Pages 269 Year 1978

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

Mesomorphic Order in Polymers. and Polymerization in Liquid Crystalline Media
 9780841204195, 9780841205475, 0-8412-0419-5

Citation preview

Mesomorphic Order i n Polymers and Polymerization i n Liquid Crystalline Media Alexandre Blumstein, E D I T O R

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.fw001

University

of

Lowell

A symposium sponsored by the Division of Polymer Chemistry, Inc. at the 174th Meeting of the American Chemical Society Chicago, I l l . , August 2 9 - 3 0 , 1977

74

ACS SYMPOSIUM SERIES

AMERICAN

CHEMICAL

WASHINGTON, D. C. 1978

SOCIETY

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.fw001

Library of CongressCIPData Mesomorphic order in polymers and polymerization in liquid crystalline media. (ACS symposium series; 74) Includes bibliographical references and index. 1. Polymers and polymerization—Congresses. 2. Liquid crystals—Congresses. I. Blumstein, Alexandre. I. American Chemical Society. Division of Polymer Chemistry. III. Series: American Chemical Society. ACS symposium series; 74. QD380.M47 ISBN 0-8412-0419-5

547'.84 ACSMC8

78-9470 74 1-264 1978

Copyright © 1978 American Chemical Society All Rights Reserved. The appearance of the code at the bottom of thefirstpage of each article in this volume indicates the copyright owner's consent that reprographic copies of the article may be made for personal or internal use or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to copying or transmission by any means—graphic or electronic—for any other purpose, such as for general distribution, for advertising or promotional purposes, for creating new collective works, for resale, or for information storage and retrieval systems. The citation of trade names and/or names of manufacturers in this publication is not to be construed as an endorsement or as approval by ACS of the commercial products or services referenced herein; nor should the mere reference herein to any drawing, specification, chemical process, or other data be regarded as a license or as a conveyance of any right or permission, to the holder, reader, or any other person or corporation, to manufacture, reproduce, use, or sell any patented invention or copyrighted work that may in any way be related thereto. PRINTED I N T H E UNITED STATES O F AMERICA

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.fw001

A C S Symposium Series Robert F. G o u l d , Editor

Advisory Board K e n n e t h B . Bischoff

N i n a I. M c C l e l l a n d

D o n a l d G. Crosby

J o h n B . Pfeiffer

Jeremiah P . Freeman

Joseph V. Rodricks

E. Desmond Goddard

F. Sherwood R o w l a n d

Jack H a l p e r n

Alan

Robert A. Hofstader

Raymond B . Seymour

James P . Lodge

Roy L . W h i s t l e r

J o h n L . Margrave

Aaron W o l d

C . Sartorelli

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.fw001

FOREWORD The A C S S Y M P O S I U M S E R I E S was founded i n 1 1 9 7 4 t o provide a medium for publishing symposia quickly i n book form. The format of the S E R I E S parallels that of the continuing A D V A N C E S I N C H E M I S T R Y S E R I E S except that i n order to save time the papers are not typeset but are reproduced as they are submitted by the authors i n camera-ready form. As a further means of saving time, the papers are not edited or reviewed except by the symposium chairman, who becomes editor of the book. Papers published in the A C S S Y M P O S I U M S E R I E S are original contributions not published elsewhere i n whole or major part and include reports of research as well as reviews since symposia may embrace both types of presentation.

PREFACE A4Tesomorphic order in polymers is important to the field of high strength materials such as the ultra-high modulus fibers recently developed by industry from stiff chain polymers and carbon pitches. However, other fundamental aspects of polymer chemistry and physics are involved also. Mesomorphic order in polymers is tied to the problem of local segmental

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.pr001

order within macromolecular coils. It has a direct bearing on the understanding of the complex morphology of crystalline polymers in the regions of intermediate order.

T h e relationship between crystallinity, mo-

lecular order, and stereoregularity

and problems relevant to biophysics

of macromolecules, such as intramolecular crystallization, formation of tertiary structures, and formation of liquid crystalline morphoses i n living tissues and cell organelles, are some of the topics which are discussed i n this volume. Whereas the subject of stiff chain polymers has received much attention in two recent A C S Meetings ( Witco Symposium honoring D r . Paul Morgan held in New York in A p r i l 1 9 6 6 and symposium on Rigid Chain Polymers held i n N e w Orleans in March 1 9 7 7 ) , the wider aspects of mesomorphic order i n polymers have been discussed only occasionally at meetings.

T h e chapters assembled in this volume constitute the pro-

ceedings of the first symposium devoted to broader aspects of this rapidly developing field and, as such, provide a valuable source of information to the student and scientist. University of Lowell

ALEXANDRE

Lowell, M A 0 1 8 5 4

April 1 1 , 1 9 7 8

vii

BLUMSTEIN

1 X-Ray Diffraction from Polymers with Mesomorphic Order S. B. CLOUGH and A. BLUMSTEIN Polymer Program, Department of Chemistry, University of Lowell, Lowell, MA 01854

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch001

A. deVRIES Liquid Crystal Institute, Kent State University, Kent, OH 44242

Polymers with side chain s t r u c t u r e s i m i l a r to that of low molecular weight liquid crystalline com­ pounds can achieve various l e v e l s of o r g a n i z a t i o n i n the b u l k . These polymers are sometimes formed by p o l y ­ merization of v i n y l monomers that themselves e x h i b i t mesomorphic behavior. I n other cases, they can be obtained from monomers that do not form liquid crys­ talline s t a t e s . At one extreme the s t r u c t u r e of the polymer i s h i g h l y organized, approaching that of crys­ talline polymers and g i v i n g r i s e to a number of x-ray diffraction peaks. At the other extreme the polymer chains are

diso r g a n i z e d ,

with

x-ray

diffraction

pat­

terns that resemble those from amorphous polymers. The relation between the molecular s t r u c t u r e and the mesomorphic order has been p r e v i o u s l y discussed (1). In t h i s paper, the x-ray diffraction results for a number of polymers with stiff and/or bulky side groups are discussed. X-ray diffraction photographs from unoriented liquid crystalline states of low molecular weight compounds are c h a r a c t e r i z e d by an i n n e r r i n g (at 2θ = 2-5 degrees) r e l a t e d to the length of the mole­ c u l e , and an outer r i n g ( 2 0 - 2 0 deg). The former i s sharp f o r smectic s t a t e s where the molecules are mutually parallel and arranged in planes. The spacing c a l c u l a t e d (Bragg equation) i s the distance between these planes. The i n n e r r i n g is diffuse in the case of nematic s t a t e s , where the molecules in a volume element lie approximately parallel to each other but are not organized into a l a m e l l a r s t r u c t u r e . The sharpness of the outer r i n g ( s ) depends principally on the extent of lateral packing between molecules. In many cases a diffuse halo near 2θ = 20 deg shows the absence of long range lateral order between the molecules. 0-8412-0419-5/78/47-074-001$05.00/0 © 1978 American Chemical Society

M E S O M O R P H I C ORDER I N

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch001

2

POLYMERS

A n u m b e r o f d i f f e r e n t s m e c t i c s t a t e s e x i s t among t h e low m o l e c u l a r w e i g h t m e s o m o r p h i c compounds. The m o l e c u l e s , f o r e x a m p l e , m i g h t be n o r m a l t o t h e p l a n e s or t i l t e d r e l a t i v e t o the normal. The different s t a t e s have been g i v e n v a r i o u s l e t t e r d e s i g n a t i o n s ( S m e c t i c A, B, C e t c . ) a n d d e V r i e s ( 2 ) h a s classified the x-ray p a t t e r n s obtained from the v a r i o u s types of s m e c t i c (and a l s o n e m a t i c ) s t a t e s . The p a t t e r n s o b t a i n e d f r o m t h e p o l y m e r s d i s c u s s e d h e r e show f e a t u r e s s i m i l a r t o t h o s e o f l o w m o l e c u l a r w e i g h t compounds. The i n n e r r i n g i s now r e l a t e d t o the o r g a n i z a t i o n and l e n g t h o f the p o l y m e r s i d e g r o u p s , w h i l e t h e o u t e r r i n g s d e p e n d on t h e l a t e r a l p a c k i n g between the s i d e groups. X-ray patterns and p o l y m e r o r g a n i z a t i o n are d i s c u s s e d h e r e i n t e r m s of the c l a s s i f i c a t i o n of deVries. T h i s does n o t nec e s s a r i l y i m p l y m i s c i b i l i t y w i t h a low molecular w e i g h t l i q u i d c r y s t a l o f t h e same l e t t e r d e s i g n a t i o n . Indeed, the polymers d i s cussed here are not f l u i d m a t e r i a l s b u t a r e h a r d a n d b r i t t l e , and a r e n o t l i q u i d c r y s t a l s i n the u s u a l sense of t h i s term. I n most c a s e s h e a t i n g does n o t change t h e l e v e l o f o r g a n i z a t i o n up t o t e m p e r a t u r e s w h e r e t h e p o l y m e r s t a r t s t o decompose. O t h e r c o m p a r i s o n s a n d d i s t i n c t i o n s w i l l be drawn b e t w e e n t h e s e p o l y m e r s and low m o l e c u l a r w e i g h t mesomorphic s t a t e s below. Some comments w i l l a l s o be made on t h e o r g a n i z a t i o n o f t h e p o l y m e r s as c o m p a r e d t o s e m i - c r y s t a l l i n e polymers with s m a l l extent of crystallinity. Experimental The m e t h o d s o f p r e p a r a t i o n o f t h e monomers a r e i n the references i n Tables I-III. X - r a y d i f f r a c t i o n d a t a w e r e o b t a i n e d w i t h a Warh u s v a c u u m c a m e r a , and R i g a k u w i d e a n g l e ( m o d e l SG-7B) and s m a l l a n g l e d i f f r a c t o m e t e r s , a l l w i t h Cu radiation. A L e i t z Ortholux p o l a r i z i n g microscope with a M e t t i e r FP5 2 h o t s t a g e was u s e d f o r e x a m i n a t i o n of biréfringent f i l m s o f t h e p o l y m e r s and f o r d e t e r m i n i n g monomer t r a n s i t i o n t e m p e r a t u r e s . A P e r k i n Elmer DSC1B d i f f e r e n t i a l s c a n n i n g c a l o r i m e t e r was a l s o u s e d t o o b t a i n t h e t r a n s i t i o n t e m p e r a t u r e o f monomers. given

Results

and

Discussion

The p o l y m e r s a r e p r e s e n t e d i n o r d e r o f d e c r e a s i n g l e v e l s of o r g a n i z a t i o n , s t a r t i n g with h i g h l y ordered s m e c t i c and p r o c e e d i n g t o p o o r l y o r g a n i z e d n e m a t i c states.

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch001

1.

CLOUGH E T A L .

X-Ray Diffraction from Polymers

3

Smectic. T a b l e I l i s t s t h e monomers o f some p o l y m e r s t h a t show a s h a r p i n n e r r i n g a n d t h u s h a v e smectic organization. P o l y ( a e r y l o y l o x y b e n z o i c a c i d ) , (ΡABA). When t h e c o r r e s p o n d i n g monomer i s p o l y m e r i z e d i n t h e m e l t t o h i g h degrees o f c o n v e r s i o n , * x-ray d i f f r a c t i o n from t h e p o l y m e r shows a s h a r p r i n g c o r r e s p o n d i n g t o 1 7 . 7 ^ , and t h r e e s h a r p o u t e r r i n g s i n a d d i t i o n t o t h e o u t e r h a l o (JO . The s p a c i n g o f t h e i n n e r r i n g i s l e s s t h a n twice the length o f t h e side groups, suggesting t h a t the l a t t e r a r e s t r o n g l y t i l t e d w i t h r e s p e c t t o t h e smectic planes. We w e r e u n a b l e t o o r i e n t t h e s a m p l e to confirm t h i s t i l t i n g . In the smectic state o f a low m o l e c u l a r w e i g h t a n a l o g , n o n y l o x y b e n z o i c acid, t h e m o l e c u l e s a r e t i l t e d a t a p p r o x i m a t e l y 45 d e g r e e s t o t h e p l a n e n o r m a l (J4). The x - r a y p a t t e r n m o s t c l o s e l y r e s e m b l e s t h a t o f t h e S m e c t i c E-f- ( 2 ) . The t h r e e o u t e r r i n g s show t h a t t h e r e e x i s t s some r e g u l a r p a c k i n g b e t w e e n t h e s i d e g r o u p s . I t m i g h t b e n o t e d t h a t f o r p o l y m e r s we w o u l d e x p e c t t o observe t h e h a l o , even i f t h e r e a r e sharp o u t e r r i n g s present. T h i s w o u l d b e due t o p o o r l y o r g a n i z e d r e ­ gions . The o r d e r e d d o m a i n s a r e n o t e x p e c t e d t o e x t e n d u n i f o r m l y throughout t h e specimen. The p r e s e n c e o f the h a l o i s s i m i l a r t o t h e case o f s e m i - c r y s t a l l i n e polymers. P o l y ( m e t h a c r y l o y l o x y b e n z o i c a c i d ) , (PMBA). Films of t h i s polymer cast from dimethyIformamide give x-ray p a t t e r n s w i t h a sharp i n n e r and a sharp outer r i n g , (_5 ) i n a d d i t i o n t o t h e h a l o . This p a t t e r n resembles the p a t t e r n o f Smectic B (JO. I t i s i n t e r e s t i n g t o remark t h a t i n both abovem e n t i o n e d c a s e s , t h e monomers a r e n o t m e s o m o r p h i c . Poly(Ν-ρ-methacryloyloxybenzylidene-p-aminobenz o i c a c i d ) , (PMBABA). P o l y m e r i z a t i o n a t 213°C f r o m the nematic s t a t e g i v e s a polymer w i t h a s m e c t i c structure. The s p a c i n g c a l c u l a t e d f r o m t h e s h a r p inner r i n g i s approximately twice the length o f the s i d e c h a i n s (6_) . This suggests Smectic A o r g a n i z a t i o n w i t h t h e s i d e groups normal t o t h e planes and t h e p o l y ­ mer m a i n c h a i n c o n t a i n e d w i t h i n t h e p l a n e s . Polyme­ r i z a t i o n o f t h e monomer f r o m t h e n e m a t i c s t a t e i n a l O k O e m a g n e t i c f i e l d g a v e an o r i e n t e d s p e c i m e n . X-ray t

^ P o l y m e r i z a t i o n t o low degrees o f c o n v e r s i o n and c a s t i n g o f f i l m s from a dimethyIformamide s o l u t i o n g i v e s a s e m i - c r y s t a l l i n e p o l y m e r w i t h up t o e i g h t x-ray d i f f r a c t i o n l i n e s .

3

/—ν

3



6

=c h

c: H = C H

/

2

•0CCH=CH 2

PdiABH •—ν C H = C H C O O ^ Q ) C H = N-N=CH

2

,—ν . -

C H =C r f O > N = C H / 0 ) c PPMAS MAS / — ν — CH 2 \ 0 ^ = C H / 0 \ : H =N

H

H

9

Κ

K

94

S

88. 3

Ν

120.6

97.5

Ν

2

I

I

Κ 113 . 8 Ν 1 4 0 . 5 I

Monomer T r a n s i t i o n s , degrees C

Κ 140 N P o l y ' n

Κ 1 8 0 N Poly'n

29=3. 3

29=3.l

U

5.00

4.95

v e r y weak

4.2° ^ 2°

5

~

5,1

4.9

Polymer X-ray Data Inner Ring D,g

u

Polymer X-ray Data Inner Ring D,g

Organization

Organization

116

Polymers w i t h Nematic

1 3

J 4

2.

III.

C

C

PC3AS r LdAb / β — νν

Table

0

//— ν ν

=C H / Q V N = C H / O /

0

1.

2

PHBAS r nBAS

CH

r^\

/

> =C H - ^ Q ^ - N ^ C i ^ O )

A b b r e v i a t i o n o f Polymer S t r u c t u r e o f Monomer

.

CH

PBBAS

Intermediate

Monomer T r a n s i t i o n s , degrees C

Polymers w i t h

A b b r e v i a t i o n o f Polymer S t r u c t u r e o f Monomer

II.

No.

2

No.

Table

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch001

10

Ref

11

*

5 , 11

Réf.

ο

ο

ο

ώ

>
.

g

ο

n r

t-

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch001

10

MESOMORPHIC

ORDER I N

POLYMERS

c h a i n s c o n t a i n i n g t h e S c h i f f base s t r u c t u r e and p h e n y l r i n g s when r e g u l a r p a c k i n g i s a c h i e v e d ( 9 ) . Further, t h i s sharp peak i s absent from t h e x-ray p h o t o g r a p h s from samples p r e c i p i t a t e d from s o l u t i o n . This l a t t e r method o f sample p r e p a r a t i o n l e a d s t o a l e s s o r d e r e d structure than bulk polymerization. Thus, t h e sharp l i n e m u s t b e due t o p a r a l l e l p a c k i n g b e t w e e n s i d e groups, not other i n t r a m o l e c u l a r e f f e c t s . The l o w i n t e n s i t y o f t h e x - r a y i n n e r r i n g c o u l d be due t o t w o f a c t o r s . 1) The n e m a t i c o r g a n i z a t i o n m i g h t n o t be e x t e n s i v e . As m e n t i o n e d a b o v e , t h e o r d e r e d d o m a i n s may n o t e x t e n d c o n t i n u o u s l y t h r o u g h o u t t h e s ample i n p o l y m e r s , b u t w o u l d be i n t e r r u p t e d by disordered regions. 2) The d i f f u s e i n n e r r i n g f o r n e m a t i c s t a t e s i n s m a l l m o l e c u l e s i s caused by t h e low e l e c t r o n d e n s i t y a t t h e ends o f t h e m o l e c u l e s . In the case o f polymers w i t h nematic packing o f the s i d e c h a i n s , one e n d o f t h e n e m a t o g e n i c s t r u c t u r e i s b o n d e d t o t h e p o l y m e r main c h a i n w i t h no a b r u p t d e c r e a s e i n density. Thus, there a r e fewer e l e c t r o n d e n s i t y f l u c t u a t i o n s p e r u n i t volume. To o u r k n o w l e d g e , t h e r e a r e no r e p o r t e d c a s e s w h e r e p o l y m e r s w i t h n e m a t i c o r g a n i z a t i o n o f s i d e g r o u p s g i v e an I n n e r r i n g o f m o d e r a t e intensity. The t u r b i d i t y o f t h e n e m a t i c s t a t e s o f l o w m o l e c u l a r w e i g h t compounds i s due p r i m a r i l y t o f l u c t u a tions i n the o r i e n t a t i o n of the d i r e c t o r over distances on t h e o r d e r o f t h e w a v e l e n g t h o f v i s i b l e l i g h t ( 1 2 ) . The o p t i c a l c l a r i t y o f PCBAS i n d i c a t e s t h a t t h e r e g i o n s o f n e m a t i c o r g a n i z a t i o n a r e much s m a l l e r i n s i z e . Light i s not appreciably scattered, nor are the t y p i c a l nematic textures resolvable i n the p o l a r i z i n g mic r o s cope. Poly(p-phenylene-bis(N-methylene-p-aminostyrene)), (PPMAS), P o l y ( d i ( N - p - a c r y l o y l o x y b e n z y l i d e n e ) h y d r a z i n e ) , (PdiABH). T h e s e d i f u n c t i o n a l monomers y i e l d p o l y m e r n e t w o r k s upon b u l k p o l y m e r i z a t i o n . No i n n e r r i n g s have been d e t e c t e d from t h e nematic o r g a n i z a t i o n . This h a s b e e n e x p l a i n e d (9) b y t h e f a c t t h a t b o t h c h a i n e n d s o f t h e monomer a r e i n c o r p o r a t e d i n t o t h e p o l y m e r m a i n chains. I n t h e case o f complete c o n v e r s i o n t o polymer t h e r e a r e no s i d e group ends g i v i n g l a r g e e l e c t r o n density fluctuations. Comparison w i t h C r y s t a l l i n e Polymers. The s t r u c t u r e o f t h e p o l y m e r s d i s c u s s e d above d i f f e r s f r o m t h a t i n c r y s t a l l i z a b l e polymers w i t h low degrees o f c r y s t a l l i n i t y ( p o o r l y d e v e l o p e d s t r u c t u r e ) . Here t h e t e n d e n c y t o o r g a n i z e comes f r o m t h e p a r a l l e l p a c k i n g of the side groups. There i s no e v i d e n c e t h a t p o l y m e r

I.

C L O U G H

E T

A L .

X-Rciij Diffraction from Polymers

11

main c h a i n s a r e p a r a l l e l t o each o t h e r o v e r l o n g d i s ­ tances. I n t h e s m e c t i c A a n d C s t a t e s , we e n v i s i o n the p o l y m e r c h a i n as c o i l e d t h o u g h c o n f i n e d t o a p l a n e . In t h e u s u a l case o f polymer c r y s t a l s t h e main c h a i n s l i e p a r a l l e l i n the c r y s t a l l i n e regions. Acknowledgement T h a n k s a r e e x p r e s s e d t o t h e NSF f o r p a r t i a l p o r t u n d e r t h e G r a n t DMR-75-17397.

sup­

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch001

Literature Cited 1. 2. "Liquid 3. 4. quid 5. 6. fillment 7. 8. 9. 10. 11.

12.

Blumstein, A., M a c r o m o l , ( 1 9 7 7 ) 1 0 , 872. deVries, Α., Ρramana, ( 1 9 7 5 ) 9, 93 Suppl. 1, a n d Crystals," C h a n d r a s e k a r , S. e d . , Indian Acad. Sci., Bangalore, 1975. Blumstein, A., Clough, S.B., Patel, L . , Blumstein, R.B., a n d H s u , E.C., M a c r o m o l . , ( 1 9 7 6 ) 9, 2 4 3 . Chystiakov, I., "Ordering a n d Structure of Li­ Crystals" in Adv. in Liquid Crystals, Vol. 1, B r o w n , G. ed., A c a d e m i c Press, (1975). Blumstein, A., Blumstein, R.B., Clough, S.B., a n d H s u , E.G., M a c r o m o l , ( 1 9 7 5 ) 8, 7 3 . L i m , L., Thesis in preparation for partial ful­ of requirements for Ph.D. d e g r e e . Poly­ mer Preprints, ( 1 9 7 5 ) 1 6 , No. 2, 2 4 1 . deVries, A., Mol. Cryst. Liq. Cryst., ( 1 9 7 0 ) 10, 219. H s u , E.C., Clough, S.B., a n d Blumstein, A., Polym. Lett., (1977) 15, 545. C l o u g h , S.B., Blumstein, A., a n d Hsu, E.C., M a c r o m o l . , ( 1 9 7 6 ) 9, 1 2 3 . H s u , E.C., a n d Blumstein, A., P o l y m . Lett., (1977) 15, 129. H s u , E.C., L i m , L . K . , Blumstein, R.B., a n d Blumstein, A., Mol. Cryst. Liq. Cryst. (1976) 33, 35. d e G e n n e s , P., The Physics of Liquid Crystals, Oxford University Press, London (1974).

Received December 8, 1977.

2 X-Ray Diffraction Studies on Mesomorphic Order in Polymers J. H. WENDORFF, H. FINKELMANN, and H. RINGSDORF

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch002

Deutsches Kunststoff Institut, Darmstadt, and Institut für Organische Chemie, Universität Mainz, West Germany

In the past few years a considerable number of papers were published which were concerned with liquid crystalline structures in polymeric systems. Different routes were employed to obtain polymers with liquid crystalline structures or even thermodynamica1ly stable l i q u i d crystalline phases 1). In general monomers containing mesogenic groups - groups which are known to have a tendency towards the formation of liquid crystalline s t r u c t u r e s , or rigid groups were used. Cases are known where the monomers e x h i b i t liquid crystalline phases 2). In that case the polymerization can be performed i n a n i s o t r o p i c melts; frozen-in liquid crystalline structures and textures can be obtained i n many instances 1,2). In other cases the monomers do not display liquid crystalline phases. The formation of liquid crystalline polymer structures may nevertheless be possible due to the restriction of the motions of the i n d i v i d u a l repeat units 3). B a s i c a l l y two d i f f e r e n t approaches have been used to obtain liquid crystalline structures i n polymers: E i t h e r the mesogenic or rigid group was b u i l t i n t o the polymer backbone or it was attached to the main chain as a side c h a i n . Main chain polymers. Due to the r i g i d i t y of the monomer units s t i f f polymer chains are obtained which according to the theory should have a tendency towards the formation of a n i s o t r o p i c melts 4). The properties of these melts have been widely used to obtain f i b e r s with very good mechanical properties Disadvantages of r i g i d chains are t h e i r high melting point and strong r e s t r i c t i o n s of r e o r i e n t a t i o n a l motions which are necessary f o r inducing t e x t u r a l changes. One way of overcoming these disadvantages consists i n p u t t i n g β

0-8412-0419-5/78/47-074-012$05.00/0 © 1978 American Chemical Society

2.

WENDORFF ET A L .

X-Ray Diffraction Studies

13

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch002

f l e x i b l e s p a c e r groups between mesogenic groups i n o r d e r t o d e c o u p l e t h e orientâtional m o t i o n s and t h e p o s i t i o n a l o r d e r o f t h e i n d i v i d u a l r e p e a t u n i t s 3J · I t c a n be e x p e c t e d t h a t i n t h i s c a s e t h e m e s o g e n i c groups w i l l form l i q u i d c r y s t a l l i n e s t r u c t u r e s i n t h e same way a s i n t h e c a s e o f l o w m o l e c u l a r w e i g h t s u b stances . Side chain polymers. In t h e case of s i d e chain p o l y mers i n w h i c h t h e m e s o g e n i c g r o u p s a r e a t t a c h e d t o t h e b a c k b o n e t w o ways o f o b t a i n i n g l i q u i d c r y s t a l l i n e structures are possible. I f the side chain i s r i g i d l y a t t a c h e d t o t h e backbone l i q u i d c r y s t a l l i n e s i d e g r o u p s t r u c t u r e s c a n o n l y be o b t a i n e d i f t h e c h a i n conformation i s d i s t o r t e d with respect t o the chain c o n f o r m a t i o n i n t h e i s o t r o p i c f l u i d s t a t e . An e x a m p l e w i l l be d i s c u s s e d w h e r e t h e b a c k b o n e i s c o n f i n e d t o a plane w i t h i n s m e c t i c l a y e r s . I f t h e s i d e groups a r e decoupled from t h e backbone w i t h r e s p e c t t o t h e p o s i t i o n a l and o r i e n t a t i o n a l o r d e r as w e l l as w i t h r e s p e c t to t h e r e o r i e n t a t i o n a l motions i t i s p o s s i b l e f o r t h e s i d e groups t o form l i q u i d c r y s t a l l i n e s t r u c t u r e s without d i s t o r t i n g the conformation of the polymer m a i n c h a i n . One t h e n e x p e c t s t h a t s t r u c t u r e f o r m a t i o n o c c u r s i n a way s i m i l a r t o t h a t known i n l o w m o l e c u l a r w e i g h t l i q u i d c r y s t a 1s. S h o r t m e s o g e n i c groups are e x p e c t e d t o f o r m n e m a t i c s t r u c t u r e s w h e r e a s l o n g groups a r e e x p e c t e d t o form s m e c t i c s t r u c t u r e s . These model c o n s i d e r a t i o n s a r e d i s c u s s e d i n d e t a i l i n conn e c t i o n w i t h t h e s y n t h e s i s o f t h e monomers a n d p o l y mers i n p a p e r -Z ) , In t h i s p a p e r t h r e e k i n d s o f p o l y m e r s w i l l be c o n s i d e r e d ( p o l y m e r s 1, 2 a n d 3) i n w h i c h m e s o g e n i c groups a r e e i t h e r a t t a c h e d t o t h e f l e x i b l e backbone v i a f l e x i b l e s p a c e r g r o u p s ( p o l y m e r s 1 a n d 2) o r d i r e c t l y w i t h o u t s p a c e r g r o u p s . The p o l y m e r s s t u d i e d a r e shown i n t a b l e 1. Experimental The s y n t h e s e s o f t h e monomers a n d p o l y m e r s b a s e d on model c o n s i d e r a t i o n s a r e d e s c r i b e d i n a s e p a r a t e p a p e r A]. The s a m p l e s u s e d i n t h e e x p e r i m e n t s w e r e o b t a i n e d e i t h e r by p r e c i p i t a t i n g t h e p o l y m e r s f r o m s o l u t i o n s o r by c a s t i n g f i 1 m s f r o m s o l u t i o n s . The f i 1 m s were s t u d i e d "as r e c e i v e d " and a l s o a f t e r h e a t i n g t h e m up t o t e m p e r a t u r e s a b o v e t h e m e l t i n g p o i n t a n d c o o l i n g them down t o room t e m p e r a t u r e . The s t r u c t u r e o f t h e p o l y m e r s was s t u d i e d by means of X - r a y d i f f r a c t i o n . The e x p e r i m e n t s w e r e p e r f o r m e d

14

MESOMORPHIC

ORDER I N

POLYMERS

Table 1 Polymers were

studied,

i n most c a s e s m e t h a c r y l i c

backbones

used-

Polymer 1 Backbone-COQ- (CH ) -0-C H -COO-CgH -R 2

(CH )^

flexible

2

n

6

4

5

s p a c e r group,

R variable

Polymer 2 Backbone-COO-C H -(CH~) - C O O - C h o l e s t e r y 1 6 4 2 η ( C H ) f l e x i b l e s p a c e r g r o u p , η = 2, 6 o r 12 C

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch002

2

n

Polymer 3 Backbone-COO-CgH -CH=N-C H -0-C H 4

Figure 1.

6

4

2

5

DSC traces of a polymer disphying a smectic and a nematic phase

2. W E N D O R F F E T A L .

X-Ray Diffraction Studies

15

w i t h a K r a t k y sma11 a n g l e d i f f r a c t i o n u n i t a n d w i t h a w i d e a n g l e d i f f r a c t o m e t e r . The s c a t t e r e d i n t e n s i t y was régistered s t e p w i s e u s i n g a s c i n t i l l a t i o n c o u n t e r c o m b i n e d w i t h an i m p u I s h e i g h t d i s c r i m i n a t o r . D i a grams o f o r i e n t e d s a m p l e s - due t o i n d u c e d t e x t u r e s , w e r e o b t a i n e d by means o f a f l a t f i l m c a m e r a . The p o s i t i o n and t h e w i d t h o f t h e r e f l e c t i o n s were c a l i b r a t e d by c o m p a r i s o n w i t h t h e d i a g r a m s o f q u a r t z . A d d i t i o n a l i n f o r m a t i o n about t h e s t r u c t u r e s and t h e s t a b i l i t y r e g i o n o f t h e s t r u c t u r e s w e r e o b t a i n e d by t h e r m a l a n a l y s i s (DSC) a n d by means o f a p o l a r i z i n g microscope.

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch002

Thermal

Properties

P o l y m e r s w i t h f l e x i b l e s p a c e r g r o u p s . P o l y m e r s obt a i n e d by p r e c i p i t a t i o n o r by c a s t i n g f i l m s f r o m s ο 1 u t i ons w e r e f o u n d t o be amorpho us as shown by X - r a y and m i c r o s c o p i c a l o b s e r v a t i o n s . The DSC d a t a r e v e a l e d t h a t on h e a t i n g up t h e s a m p l e s f o r t h e f i r s t t i m e a s t e p w i s e i n c r e a s e o f t h e s p e c i f i c heat o c c u r r e d which c o u l d be a t t r i b u t e d t o a g l a s s t r a n s i t i o n . Thus a t room t e m p e r a t u r e t h e " a s r e c e i v e d " s a m p l e s w e r e i n the i s o t r o p i c g l a s s y s t a t e , a p p a r e n t l y no l i q u i d crystalline solutions exist. J u s t a b o v e t h e g l a s s t r a n s i t i o n t e m p e r a t u r e an e x o ­ t h e r m i c p e a k was o b s e r v e d , i n d i c a t i n g t h a t an o r d e r e d s t r u c t u r e was f o r m e d . S u b s e q u e n t X - r a y s t u d i e s s h o w e d t h a t e i t h e r nemat i c o r s m e c t i c s t r u c t u r e s we r e f o r m e d , d e p e n d i n g on t h e n a t u r e o f t h e s u b s t i t u e n t R. On f u r t h e r h e a t i n g one o r t w o s h a r p m e l t i n g p e a k s w e r e o b s e r v e d ( F i g u r e 1 ) , t h e p o l y m e r s were t r a n s f o r m e d i n t o t h e i s o t r o p i c f l u i d s t a t e , a s shown by X - r a y d a t a . On c o o l i n g t h e samp l e s t h e t r a n s f o r m a t i o n i n t o l i q u i d c r y s t a l l i n e s t a t e s o c c u r r e d a s shown by e x o ­ t h e r m i c peaks ( F i g u r e 1 ) . At l o w e r t e m p e r a t u r e s a s t e p w i s e d e c r e a s e o f t h e s p e c i f i c h e a t was f o u n d , t h u s a t room t e m p e r a t u r e s t h e s a m p l e s a r e n e m a t i c o r smec­ t i c g l a s s e s . The m e l t i n g a n d c r y s t a l l i z a t i o n r a n g e s w e r e v e r y n a r r o w o f t h e o r d e r o f 1 o r 2 d e g . C. The d e g r e e o f s u p e r - c o o l i n g was v e r y l o w , a t a h e a t i n g and c o o l i n g r a t e o f 4 d e g , p e r m i n u t e t h e d i f f e r e n c e i n m e l t i n g and c r y s t a l l i z a t i o n t e m p e r a t u r e s amounted t o a b o u t 2 d e g . C. I n t h e c a s e o f t h e nemat i c t r a n ­ s i t i o n t h e h e a t s o f f u s i o n were o f t h e o r d e r o f 2 J o u l e s / g whereas i n t h e case o f t h e s m e c t i c t r a n s i t i o n s t h e h e a t s o f f u s i o n w e r e o f t h e o r d e r o f 10 J o u l e s / g . The p r o p e r t i e s d i s c u s s e d a b o v e a r e v e r y unusual f o r p o l y m e r i c systems b u t q u i t e u s u a l f o r low m o l e c u l a r weight l i q u i d c r y s t a l l i n e systems.

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch002

16

MESOMORPHIC

ORDER I N

POLYMERS

The m e l t i n g p o i n t s o f t h e p o l y m e r s s t u d i e d w e r e i n t h e r a n g e o f 100 t o 130 d e g . C f o r p o l y m e r s 1 and a r o u n d 200 d e g . C f o r p o l y m e r s 2. At the g l a s s t r a n s i t i o n a d i s t i n c t s t e p w i s e change of t h e s p e c i f i c h e a t was o n l y o b s e r v e d f o r n e m a t i c p h a s e s whereas f o r the case of the s m e c t i c phase o n l y a change i n the s l o p e o f t h e s p e c i f i c heat t e m p e r a t u r e c u r v e was f o u n d . A d d i t i o n a l t e c h n i q u e s s u c h as d i l a t o m e t r y h a v e t o be u s e d i n o r d e r t o p r o v e t h a t a c t u a l l y a glass t r a n s i t i o n occurs. This result indicates that s i n c e the s m e c t i c s t r u c t u r e i s c l o s e r to t h a t of a c r y s t a l , the m o t i o n s which t a k e p l a c e above t h e g l a s s t r a n s i t i o n w i l l be r e s t r i c t e d . Thus t h e i n c r e a s e i n t h e s p e c i f i c h e a t w i l l be s m a l l . The t y p e s o f m o t i o n s w h i c h f r e e z e i n a t t h e g l a s s t r a n s i t i o n w i l l be d i s cussed below. I s o t r o p i c g l a s s e s a r e c h a r a c t e r i z e d by r e l a x a t i o n p r o c e s s e s , w h i c h a r e d i r e c t l y r e l a t e d t o t h e none q u i l i b r i u m nature of the glassy s t a t e . S i m i l a r processes should also occur i n l i q u i d c r y s t a l l i n e glasses. E n t h a l p y r e l a x a t i o n was o b s e r v e d f o r s a m p l e s , w h i c h had b e e n a n n e a l e d b e l o w t h e g l a s s t r a n s i t i o n t e m p e r a ture f o r s e v e r a l hours, proving the n o n - e q u i l i b r i u m n a t u r e o f s m e c t i c and n e m a t i c g l a s s e s . P o l y m e r s w i t h o u t f l e x i b l e s p a c e r g r o u p s . The DSC curves of the polymer 3 i n d i c a t e d the e x i s t e n c e of a l i q u i d c r y s t a l l i n e g l a s s y s t a t e a t room t e m p e r a t u r e . The p o l y m e r was f o u n d t o be s m e c t i c . Two m e l t i n g p e a k s w e r e o b s e r v e d i n t h e t e m p e r a t u r e r a n g e b e t w e e n 300 and 310 d e g . C. T h e s e p e a k s a r e n o t as e a s i l y o b s e r v e d as i n t h e c a s e o f t h e p o l y m e r s d i s c u s s e d a b o v e , s i n c e t h e d e c o m p o s i t i o n t a k e s p l a c e i n t h e same t e m p e r a t u r e r a n g e . The o c c u r r e n c e o f e x o t h e r m i c p e a k s on c o o l i n g n e v e r t h e l e s s i n d i c a t e s t h a t r e v e r s i b l e m e l t i n g and c r y s t a l l i z a t i o n processes take place. X-Ray

Investigations

Polymers with f l e x i b l e spacer groups. Smectic o r n e m a t i c p o l y m e r s w e r e o b t a i n e d d e p e n d i n g on t h e nature of the s u b s t i t u e n t R i n the case of polymers 1 ( T a b l e 2 ) . I t has t o be p o i n t e d o u t t h a t t h e s t r u c t u r e s a t t e m p e r a t u r e s above t h e g l a s s t r a n s i t i o n t e m p e r a t u r e s a r e e q u i 1 i b r i urn s t r u c t u r e s , s i nee t h e r m o d y n a m i c a l l y s t a b l e l i q u i d c r y s t a l l i n e phases e x i s t . T h i s i s i n c o n t r a s t t o most systems s t u d i e d u n t i l now w h e r e o n l y l i q u i d c r y s t a l l i n e s t r u c t u r e s w e r e obtained · The n e m a t i c p h a s e s w e r e c h a r a c t e r i z e d by one b r o a d halo i n the wide angle s c a t t e r i n g r e g i o n , which c o u l d

2.

WENDORFF

X-Ray Diffraction Studies

ET AL.

17

Table I I Thermal p r o p e r t i e s o f s e l e c t e d examples o f polymers 1 (T smectic t r a n s i t i o n , T nematic t r a n s i t i o n , H heat of fusion) M

b

N

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch002

Nematic

n=6

polymers

R=0CrL

T =121 C

H= 2.3

Joules/g

R=OCH

T

H= 2.1

Joules/g

T =129 C

H = 9.2

J o u l e s /g

T =14D°C

H=11.3 J o u l e s / g

T =ii5"c

H=1>.5 J o u l e s / g

T =17l4-°G

H= 3.1

J o u l e s /g

T =1

H= 1.0

J o u l e s /g

Smectic

N

3

= I O 5

N

c

C

polymers

h=2

R=OC^H

n=2

R=OC H13

n=6

R = o c

7

s

S

6

Diphenyl

6 i3 H

s

derivatives

6\"

n=2

R = C

n=2

R=C H 6

5

O C H

3

N

s

2k°0

T =187°C

H=

.3

Joules /g

T =160°C

H=

.8

Joules /g

T =181 °c

H= 2.3

N

n=6

R = C

6 5 H

S

N

J o u l e s /g

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch002

18

MESOMORPHIC

ORDER IN

POLYMERS

be a t t r i b u t e d t o t h e s h o r t r a n g e p o s i t i o n a l o r d e r o f t h e s i d e g r o u p s c h a r a c t e r i s t i c f o r t h e nemat i c o r d e r . The m o l e c u l a r d i s t a n c e s d e r i v e d f r o m t h e s e d a t a c o r ­ r e s p o n d e d t o t h o s e o f p a r a l l e l s i d e g r o u p s . No r e ­ f l e c t i o n s w e r e o b s e r v e d w h i c h c o u l d be a t t r i b u t e d t o a p o s i t i o n a l o r d e r i n the d i r e c t i o n of the long axes o f t h e s i d e g r o u p s , t h u s no c y b o t a c t i c c l u s t e r i n g t o o k ρ l a c e J±> . The s c a t t e r i n g d i a g r a m i s v e r y s i m i l a r t o t h a t o f a m o r p h o u s p o l y m e r s . One c o n s e q u e n t l y has t o use a d d i t i o n a l t e c h n i q u e s s u c h as p o l a r i z i n g m i c r o ­ scope techniques i n order to v e r i fy a nematic s t r u c ­ t u r e . The n e m a t i c s t r u c t u r e i s c h a r a c t e r i z e d by a l o ­ c a l o r i e n t a t i o n o f t h e s i d e g r o u p s . In t h e a b s e n c e o f a s p e c i f i c t e x t u r e no m a c r o s c o p i c o r i e n t a t i o n w i l l r e s u I t s s i n c e the p r e f e r r e d d i r e c t i o n changes w i t h i n the sample. S l i g h t l y o r i e n t a t e d samples were o b t a i n e d by d r a w i n g , h i g h l y o r i e n t e d samp l e s w e r e o b t a i n e d i f s p e c i f i c t e x t u r e s w e r e i n d u c e d . T h i s w i l l be discussed l a t e r . No i n f o r m a t i o n was g a i n e d a b o u t t h e confor­ m a t i o n o f t h e c h a i n . I t can be a s s u m e d h o w e v e r , t h a t t h e conformâtion i s v e r y c l o s e t o t h a t o f t h e i s o t r o p i c f l u i d s t a t e due t o t h e f l e x i b l e s p a c e r g r o u p s . The s m e c t i c s t r u c t u r e was c h a r a c t e r i z e d by one or more ( h i g h e r o r d e r ) r e f l e c t i o n s i n t h e sma11 angle s c a t t e r i n g r e g i o n , w h i c h w e r e s h a r p , and by a b r o a d h a l o i n t h e w i d e a n g l e r e g i o n . The s m a l l a n g l e r e f l e c t i o n s c o u l d be a t t r i b u t e d t o s m e c t i c l a y e r s , t h e wide angle halo to a two-dimensional f l u i d s t a t e w i t h i n t h e s m e c t i c l a y e r s . Thus t h e s t r u c t u r e i s c h a r a c t e r i s t i c of a smect i c A o r C m o d i f i c a t i o n . In o r d e r t o o b t a i n more i n f o r m a t i o n a b o u t t h e s m e c t i c s t r u c tures i n polymers extended s t u d i e s i n c l u d i n g s t u d i e s on o r i e n t e d s y s t e m s w e r e p e r f o r m e d on a s p e c i f i c p o l y mer d i s p l a y i n g a s m e c t i c s t r u c t u r e $ a p o l y m e r w i t h o u t a f l e x i b l e s p a c e r g r o u p was c h o s e n . T h i s w i l l be d i s c u s s e d be low. In the case of the p o l y m e r s 2 s m e c t i c s t r u c t u r e s were observed f o r the homopolymers, t h a t i s f o r polymers i n w h i c h t h e f l e x i b l e s p a c e r g r o u p was constant. In a d d i t i o n t o the homopolymers a l s o c o p o l y m e r s were s t u d i e d , i n w h i c h t h e comonomers w e r e c h a r a c t e r i z e d by s p a c e r g r o u p s o f d i f f e r e n t l e n g t h . The combinations s t u d i e d w e r e η = 2 / 6 j η « 6/12 and η = 2/12. Smectic p o l y m e r s w e r e o b s e r v e d by c o p o l y m e r i z a t i o n o f mono­ m e r s w i t h η = 2/6 and η = 6/12, whereas c h o l e s t e r i c p o l y m e r s w e r e o b t a i n e d by c o p o l y m e r i z a t i o n o f mono­ m e r s w i t h η = 2/12, i f t h e compos i t i o n was approxim a t e l y 1 : 1. A p p a r e n t l y large differences in spacer l e n g t h , which lead to s h i f t s of the mesogenic cho1e s t e r y l group r e l a t i v e t o each o t h e r are r e q u i r e d f o r

2. W E N D O R F F E T A L .

X-Ray Diffraction Studies

19

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch002

t h e d e s t r u c t i o n o f t h e s m e c t i c o r d e r . The X - r a y p a t t e r n o f t h e h o m o p o l y m e r s a n d t h e c o p o l y m e r s 2/6 a n d 6/12 a r e c h a r a c t e r i z e d by s h a r p r e f l e c t i o n s i n t h e s m a l l angle r e g i o n , whereas t h e p a t t e r n o f t h e c o p o l y m e r 2/12 i s c h a r a c t e r i z e d by i n c r e a s i n g l y b r o a d e r r e f l e c t ions i f t h e c o m p o s i t i o n 1 : 1 i s approached. At t h i s c o m p o s i t i o n o n l y a b r o a d s m a 1 1 a n g l e h a l o i s obs e r v e d . The e x i s t e n c e o f a c h o l e s t e r i c s t r u c t u r e i s e s t a b 1 i s h e d by means o f p o l a r i z i n g m i c r o s c o p e techn i q u e s a n d by t h e observât i o n o f s e l e c t i v e r e f l e c t i o n . The s i d e g r o u p s a r e p a r a l l e l t o a p r e f e r e d d i r e c t i o n i n t h e s e p o l y m e r s on a l o c a l s c a l e , t h e p r e f e r e d d i r e c t i o n c h a n g e s i n t h e s a m p l e i n s u c h a way t h a t a helical structure results. P o l y m e r s w i t h o u t f l e x i b l e s p a c e r g r o u p s . The t e n d e n c y t o f o r m s m e c t i c s t r u c t u r e s i s i ne r e a s e d i f t h e s p a c e r g r o u p i s m i s s i n g . T h i s i s p r o b a b l y c a u s e d by t h e s t r o n g coup l i n g b e t w e e n t h e p o s i t i o n o f n e i g h b o u r i n g m e s o g e n i c s i d e g r o u p s due t o t h e c h a i n b a c k b o n e . O r i e n t e d samp l e s - u s e d f o r s t r u c t u r a l a n a l y s i s , w e r e o b t a i n e d by p e r f o r m i n g t h e p o l y m e r i z a t i o n i n t h e nemat i c p h a s e o f t h e monomer u n d e r t h e i n f l u e n c e o f a m a g n e t i c f i e l d . I t s h o u l d be p o i n t e d o u t t h a t t h e f i n a l s t r u c t u r e o f t h e p o l y m e r d i d n o t d e p e n d on t h e m e t h o d by w h i c h t h e p o l y m e r was s y n t h e s i z e d . I n a l l c a s e s t h e d i f f r a c t i o n p a t t e r n was c h a r a c t e r i z e d by f o u r s h a r p r e f l e c t i o n s i n t h e s m a 1 1 a n g l e r e g i o n and one b r o a d r e f l e c t i o n i n t h e w i d e a n g l e r e g i o n . The small angle r e f l e c t i o n s corresponded t o a l a t t i c e d i m e n s i o n o f 2 0 . 3 Κ, w h i c h was r e l a t e d t o t h e d i ­ mension o f t h e smect i c l a y e r s . The s m a 1 1 a n g l e r e f l e c t i o n s w e r e a n a l y z e d w i t h r e ­ s p e c t t o t h e d e p e n d e n c e o f t h e i r w i d t h on t h e o r d e r o f t h e r e f l e c t i o n s . From t h i s a n a l y s i s i n f o r m a t i o n on s t r u c t u r a 1 d e f e c t s o f t h e l a y e r a r r a n g e m e n t c a n be obtained. According t o the theory of p a r a c r y s t a l l i n e d i s t o r t i o n s _§.) t h e i n t e g r a l w i d t h ί Β o f t h e r e f l e c ­ t i o n s c a n be r e l a t e d t o t h e s i z e L o f s m e c t i c a g g r e gats ( c r y s t a l s i z e i n t h e d i r e c t i o n o f t h e l a y e r n o r m a l ) a n d t o t h e r e l a t i v e f l u c t u a t i o n s fl/l = g of t h e l a t t i c e d i m e n s i o n ( s m e c t i c l a y e r d i m e n s i o n ) 1 by the e x p r e s s i o n : / B

2

- 1 / L

2

4

* (If g h ) / I

2

w h e r e h i s t h e o r d e r o f t h e r e f l e c t i o n . I t was f o u n d t h a t t h e dependence o f t h e w i d t h o f t h e r e f l e c t i o n s on t h e o r d e r c o u I d be r e p r e s e n t e d by t h i s e q u a t i o n .

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch002

20

MESOMORPHIC

ORDER I N

POLYMERS

From t h e i n t e r c e p t and t h e s l o p e o f t h e l i n e a v a l u e o f 1 5 8 0 A was o b t a i n e d f o r L and a v a l u e o f 1.4 % f o r g. Thus up t o 80 l a y e r s a r e w i t h i n one s m e c t i c a g g r e gate t h e r e l a t i v e f l u c t u a t i o n o f t h e l a y e r dimension i s very s m a l l . A d d i t i o n a l i n f o r m a t i o n c a n be o b t a i n e d f r o m o r i e n t e d s a m p l e s , t h e y w e r e c h a r a c t e r i z e d by s m a l l a n g l e r e f l e c t i o n s on t h e m e r i d i o n a n d a b r o a d r e f l e c t i o n i n t h e w i d e a n g l e r e g i o n on t h e e q u a t o r . The r e f l e c t i o n s w e r e e l o n g a t e d a l o n g Debye r i n g s , due t o m i s o r i e n t a t i o n s . The f i b e r d i a g r a m r e v e a l e d t h a t t h e d i r e c t i o n o f t h e one d i m e n s i o n a l l o n g r a n g e o r d e r , w h i c h was i d e n t i c a l w i t h t h e d i r e c t i o n o f t h e f i b e r a x i s , was p e r p e n d i c u l a r t o the d i r e c t i o n , i n which only a short r a n g e o r d e r e x i s t e d . Thus t h e s m e c t i c s t r u c t u r e o f t h e p o l y m e r i s c h a r a c t e r i z e d by a s s e m b l i e s o f s m e c t i c l a y e r s i n t h e d i r e c t i o n o f t h e l a y e r norma 1 and a s h o r t range o r d e r w i t h i n t h e s m e c t i c l a y e r s . In these l a y e r s t h e s i d e groups, c o n t a i n i n g t h e mesogenic group, a r e p a r a l l e l t o each o t h e r and p a r a l l e l t o t h e l a y e r norma 1 a s i n t h e c a s e o f t h e s m e c t i c A m o d i f i c a t i o n . I f one c o m p a r e s t h e m o l e c u l a r d i m e n s i o n s o f t h e c h a i n w i t h t h e v a l u e s o b t a i n e d from t h e s c a t t e r i n g e x p e r i ment o n e h a s t o c o n c l u d e t h a t t h e p o l y m e r c h a i n s a r e a r r a n g e d i n a s t a g g e r e d way. N e i g h b o u r i n g p o l y m e r c h a i n s must be s h i f t e d i n a r e g u l a r way i n t h e d i r e c t i o n o f t h e long axes o f t h e s i d e groups. I ti s p o s s i b l e t h a t t h e CH~ g r o u p s o f t h e m e t h a c r y l i e b a c k bone d i s r u p t t h e c l o s e p a c k i n g o f t h e s i d e g r o u p s s i n c e i n t h e c a s e o f an a c r y 1 i c b a c k b o n e no s h i f t o f t h e n e i g h b o u r i n g s i d e c h a i n s was o b s e r v e d . I n t h e s m e c t i c p o l y m e r s t h e m a i n c h a i n m u s t be c o n fined to p a r a l l e l planes w i t h i n the smectic layers since the observed p e r i o d i c s t r u c t u r e i n the d i r e c t i o n o f t h e l a y e r norma 1 c a n o n l y be o b t a i n e d by t h i s a r r a n g e m e n t . The X - r a y d a t a do n o t y i e l d i n f o r m a t i o n on t h e a c t u a l t w o d i m e n s i o n a 1 conformâtion o f t h e c h a i n on t h e s e s m e c t i c p l a n e s . On h e a t i n g up t h e samp l e t h e X - r a y d i a g r a m r e m a i n e d u n c h a n g e d up t o t h e g l a s s t r a n s i t i o n temperature. Above t h i s t e m p e r a t u r e t h e s m a l l a n g l e r e f l e c t i o n s remaiη u n c h a n g e d w h e r e a s t h e w i d t h a n d t h e p o s i t i o n o f t h e w i d e a n g l e h a l o c h a n g e i n a way c h a r a c t e r i s t i c o f i n c r e a s e d m o l e c u l a r d i s t a n c e s and a b r o a d e r d i s t r i ­ b u t i o n o f t h e m o l e c u l a r d i s t a n c e s . Thus t h e m o t i o n s which s e t i n at the glass t r a n s i t i o n occur only w i t h ­ in the smectic layers i n a d i r e c t i o n p a r a l l e l to the l a y e r s u r f a c e . The s m e c t i c l a y e r a c t s a s a t w o - d i ­ mensional fluid.

2.

WENDORFF E T A L .

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch002

Liquid

21

X-Ray Diffraction Studies

Crystalline

Textures

L i q u i d c r y s t a l l i n e t e x t u r e s i n p o l y m e r i c systems can be o b t a i n e d i n t w o d i f f e r e n t w a y s . One way c o n s i s t s in inducing a s p e c i f i c texture i n a l i q u i d c r y s t a l ­ l i n e monomer p h a s e . O f t e n t h e f o r c e s a c t i n g on t h e s a m p l e w i l l be s u f f i c i e n t l y l a r g e t o s t a b i l i z e t h e t e x t u r e d u r i n g t h e p o l y m e r i z a t i o n . A t e x t u r e may be o b t a i n e d i n t h i s way e v e n i n p o l y m e r s w h i c h do n o t d i s p l a y l i q u i d c r y s t a l l i n e phases. In t h e case of p o l y m e r 3 t h e p o l y m e r i z a t i o n i n t h e n e m a t i c monomer phase under t h e i n f l u e n c e o f a magnetic f i e l d l e d t o a p o l y m e r s a m p l e w i t h h i g h o r i e n t a t i o n a 1 o r d e r on a macroscopic scale. A s e c o n d way t o o b t a i n l i q u i d c r y s t a l l i n e t e x t u r e s c o n s i s t s i n h e a t i n g up p o l y m e r s a m p l e s , w h i c h d i s p l a y l i q u i d c r y s t a l l i n e p h a s e s , between g l a s s s l i d e s o r u n d e r t h e i n f l u e n c e o f e x t e r n a l f o r c e s s u c h as e l e c ­ t r i c o r magneti c f i e Ids. Text ures w i l l then form i n a way s i m i l a r t o t h e c a s e o f l o w m o l e c u l a r w e i g h t l i q u i d c r y s t a l s . T h i s was o b s e r v e d f o r t h e c a s e o f t h e p o l y m e r s 1. On c o o l i n g down t h e t e x t u r e s c a n be f r o z e n i n s i n c e a g l a s s t r a n s i t i o n o c c u r s . Thus i t becomes p o s s i b l e t o keep a s p e c i f i c t e x t ure w i t h i n t e r e s t i n g o p t i c a l p r o p e r t i e s permanently. Literature Cited 1) 2) 3) 4) 5) 6)

Blumstein, A., "Liquid Crystalline Order in Poly­ mers", Academic Press in press Shibaev, V.P., V y s o k o m o l . S o e d i n ( 1 9 7 7 ) A 9 , 923 Blumstein, A., M a c r o m o l e c u l e s ( 1 9 7 7 ) 1 0 , 872 Flory, P.J., Proc.Roy.Soc.Lond. ( 1 9 5 6 ) A 2 3 4 , 73 Jackson, W . J . and K u h f u s s , H.F., J. Pol. Sci.P o l y m e r Chem. E d . ( 1 9 7 6 ) 1 4 , 2 0 4 3 Roviello, A . and Sirigu, Α., Polymer Letters Ed. ( 1 9 7 5 ) 1 3 , 455

7)

Finkelmann, Η., this issue 8) De Vries, A., 219 9) H o s e m a n n , R. and Diffraction by Matter", A m s t e r d a m 1962 RECEIVED December 8, 1977.

Ringsdorf,

Η.

Mol.Cryst.Liquid Bagchi, North

and

Wendorff,

Cryst.

(1970)

J.Η. 10,

31,

S.N., "Direct Analysis of Holland Publ. Comp.,

3 Enantiotropic (Liquid Crystalline) Polymers: Synthesis and Models H. FINKELMANN, H. RINGSDORF, W. SIOL, and J. H. WENDORFF

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch003

Institut für Organische Chemie, Universität Mainz and Deutsches Kunststoff Institut, Darmstadt, West Germany

In the past few years studies on liquid crystalline polymers have attracted Increasing interest because of their theoretical and technological aspects (1). In order for the liquid crystalline phase to form, the molecules must have an extended rigid molecular shape and a large anisotropic polarizability (2). If a polymer has to behave like a conventional liquid crystal, it is best to use a mesogenic molecule as a monomer component. By substituting a vinyl group, the polymerization leads to an alkyl polymer chain, where the mesogenic moieties are fixed as side chains. In the liquid state, the polymer main chain is flexible, and only the rigid mesogenic side chain moieties are required to form the mesophase. They have to build the liquid crystalline order independently from the conformation of the connecting main chain. Consequently the theoretical considerations used in the case of conventional liquid crystals have to be valid for this type of polymer. In the past few years attempts to synthesize liquid crystalline polymers have started with a monomer in a liquid crystalline state. Three different types of polymer systems have been obtained: (1)

Amorphous polymers — which exhibit properties.

no liquid

(2)

Polymers, with fixed liquid crystalline structure — if the polymerization temperature was below the glass transition temperature (T ) of the polymer. These polymers exhibit a liquid crystalline structure in the solid glassy phase because the structure of the ordered monomer phase was "frozen in" by polymerization. By heating the polymer, these frozen structures were irreversibly lost above the Tq (4,5). An additional effect was observed; starting from a nematic or cholesteric monomer in most cases, the resulting polymer structure was smectic (6,7). The decrease of mobility of the mesogenic side chains because of their G

0-8412-0419-5/78/47-074-022$05.00/0 © 1978 American Chemical Society

crystalline

3.

FINKELMANN ETAL.

Enantiotropic (Liquid Crystalline) Polymers

23

f i x a t i o n t o the polymer main c h a i n i m p l i e s an a d d i t i o n a l l o n g range order o f the centers o f g r a v i t y o f the mesogenic groups.

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch003

(3)

L i q u i d c r y s t a l l i n e ( L C ) polymers w i t h a thermodynamically s t a b l e l i q u i d c r y s t a l l i n e phase above the T Q . These were obtained only i n a few cases ( 8 , 9 ) ·

U n t i l now there was no obvious c o r r e l a t i o n found between the monomer s t r u c t u r e and the r e s u l t i n g polymer phase. No - theor e t i c a l s t r u c t u r a l c o n d i t i o n s were d e s c r i b e d which would r e s u l t i n a l i q u i d c r y s t a l l i n e polymer w i t h a d e f i n i t e ordered phase, e.g., w i t h a nematic, a smectic, o r a c h o l e s t e r i c phase as i n c o n v e n t i o n a l l i q u i d c r y s t a l s . Although previous examples have e s t a b l i s h e d (8,9) the e x i s t e n c e o f e n a n t i o t r o p i c l i q u i d c r y s t a l l i n e s i d e c h a i n polymers, a d d i t i o n a l c o n s i d e r a t i o n s are i n order f o r a systematic s y n t h e s i s o f such polymers. Model Considerations I n c o n v e n t i o n a l L C phases the motion o f the molecule i s r e s t r i c t e d only by the a n i s o t r o p i c i n t e r a c t i o n s w i t h i t s neighbors. This l e a d s t o the formation o f the o r i e n t a t i o n a l l o n g range order and, i n the case o f smectic phases, t o an a d d i t i o n a l l a m e l l a r s t r u c t u r e . However, completely d i f f e r e n t c o n d i t i o n s normally e x i s t i n a l i q u i d c r y s t a l l i n e polymer. F i g u r e 1 s c h e m a t i c a l l y shows the t y p i c a l s t r u c t u r e f o r a L C polymer as d e s c r i b e d so f a r . The mesogenic groups are d i r e c t l y f i x e d t o the main chain. Thus f o r the l i q u i d c r y s t a l l i n e polymer s t a t e above the T Q two c o n d i t i o n s have t o be considered. (1)

The polymer main chain has t o be i n the l i q u i d s t a t e , causing a tendency toward a s t a t i s t i c a l chain conformation.

(2)

The mesogenic s i d e chains have t o be i n the l i q u i d c r y s t a l l i n e order. The a n i s o t r o p i c i n t e r a c t i o n s induce an anisotropic orientation.

These two tendencies c o n f l i c t , and s t e r i c hindrance i n the system determines which tendency w i l l dominate. The s t e r i c hindrance r e s u l t s from the d i r e c t l i n k a g e o f the main chain t o the s i d e chain. A d i r e c t c o u p l i n g o f motions o f the main c h a i n to the r i g i d mesogenic s i d e chains can be assumed. Therefore, an amorphous l i q u i d polymer i s obtained i f the a n i s o t r o p i c o r i e n t a t i o n o f the s i d e c h a i n i s hindered o r d i s t u r b e d by the main c h a i n . On the other hand, a s o l i d polymer w i t h a L C s t r u c t u r e i s obtained i f the a n i s o t r o p i c - o r d e r e d r i g i d s i d e chains hinder the normal motions o f the main chain and thus tend t o r e s t r i c t the main chain motions.

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch003

24

MESOMORPHIC

ORDER IN

POLYMERS

The c r i t i c a l p o i n t seems to he the d i r e c t l i n k a g e between the main and s i d e chains. Thus one can assume t h a t to o b t a i n a polymer i n i t s l i q u i d c r y s t a l l i n e s t a t e , the d i r e c t c o u p l i n g has t o be avoided. I f t h i s l i n k a g e were f l e x i b l e , s t e r i c hindrance would be a l l e v i a t e d , and the motions of the s i d e and main chains would be decoupled ( F i g u r e 2). Under these c o n d i t i o n s a s t a t i s t i c a l main chain conformation as w e l l as an a n i s o t r o p i c o r i e n t a t i o n of the side chain would occur, r e s u l t i n g i n an e n a n t i o t r o p i c LC polymer. The f l e x i b l e l i n k a g e ( s c h e m a t i c a l l y represented i n F i g u r e 2 b y ^ ) can be r e a l i z e d by an a l k y l - or a l k y l o x y chain and w i l l be c a l l e d " f l e x i b l e spacer group." I f the model w i t h the decoupled main chain and s i d e chain w i t h the f l e x i b l e spacer group i s v a l i d , the p r o p e r t i e s of the r e s u l t i n g l i q u i d c r y s t a l l i n e polymer should be determined only by the meso­ genic moieties s i m i l a r to c o n v e n t i o n a l LC. The model can be a p p l i e d by homo- and copolymer!zation (Figure 3). Nematic as w e l l as smectic polymers may be expected w i t h homopolymerization. With regard to a homologous s e r i e s of a mesogenic components w i t h v a r y i n g para s u b s t i t u e n t s , nematic phases should be formed p r e f e r e n t i a l l y by u s i n g s h o r t para s u b s t i t u e n t s . Smectic phases should be found p r e f e r e n t i a l l y i f the para s u b s t i t u e n t i s s u f f i c i e n t l y l o n g . This analogy to low molecular l i q u i d c r y s t a l s Is expected i f the main and s i d e chains are decoupled. The knowledge of c o n v e n t i o n a l l i q u i d c r y s t a l s would then be a p p l i c a b l e to these types of polymers. With c o p o l y m e r i z a t i o n b a s i c a l l y the same p r i n c i p l e s can be expected as f o r the homopolymers. U s i n g d i f f e r e n t monomers, a wide v a r i a t i o n of the temperature r e g i o n of the mesogenic phase may occur. An a d d i t i o n a l e f f e c t has to be expected w i t h c ο polymer i ζat iο η of monomers w i t h spacers of d i f f e r e n t l e n g t h s . The r e s u l t i n g co­ polymers should e x h i b i t even l e s s order than the corresponding spacer-group-containing homopolymers. I t should be p o s s i b l e to f a v o r an arrangement of mesogenic s i d e groups i n which the centers of g r a v i t y are d i s t r i b u t e d s t a t i s t i c a l l y and thus a v o i d the smectic order. These models might be of i n t e r e s t , e s p e c i a l l y f o r the formation of nematic polymers. R e s u l t s and D i s c u s s i o n Homopolymers« Phenylesters of benzoic a c i d were chosen as mesogenic groups f o r the s y n t h e s i s of s u i t a b l e monomers. The a c r y l o y l - and the m e t h a c r y l o y l moieties were used as polymerizab l e groups. The f l e x i b l e spacer was an a l k y l chain or an a l k y l o x y chain of v a r y i n g l e n g t h . Thus a homologous s e r i e s of £-.0. -(2-methylpropenoyloxyalkyoxy) benzoic a c i d -p s u b s t i t u t e d phenyl e s t e r s 1 was prepared. The monomers were synthesized by the standard methods as f o l l o w s : 1

FINKELMANN ET AL.

Enantiotropic (Liquid Crystalline) Polymers

M A I N C H A I N IN

MESOGENIC S I D E C H A I N IN LC O R D E R

LIQUID STATE

TENDENCY

TENDENCY

TOWARD!

STATISTICAL

ORIENTATION

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch003

CONFORMATION

STERIC

TOWARD

ANISOTROPIC

CHAIN

HINDRANCE

AMORPHOUS

SOLID

POLYMER

LC

POLYMER

STRUCTURE

Figure 1. Schematic of formation of liquid crystalline order in polymers with mesogenic side groups attached directly to the main chain

MAIN CHAIN LIQUID

IN

STATE

MESOGENIC SIDE C H A I N LC

TENDENCY

TOWARD

STATISTICAL

CHAIN

CONFORMATION

ENANTIOTROPIC

IN

ORDER

TENDENCY

TOWARD

ANISOTROPIC ORIENTATION

LC

POLYMER

Figure 2. Schematic of liquid crystalline order formation in polymers with mesogenic side groups decoupled from the main chain by a flexible spacer

MESOMORPHIC

1.

ORDER

IN POLYMERS

HOMOPOLYMER IΖ AT ION

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch003

NEMATIC POLYMER

SMECTIC POLYMER

2.

COPOLYMERIZATION NEMATIC POLYMER

Figure 3. Schematic of nematic and smectic order in (a) copolymers and (b) homopolymers

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch003

3.

FINKELMANN ETAL.

Flexible spacer

Enantiotropic (Liquid Crystalline) Polymers

27

Mesogenic group

The p r o p e r t i e s o f some monomers a r e l i s t e d i n Table I . Only the d i p h e n y l d e r i v a t i v e s e x h i b i t e n a n t i o t r o p i c l i q u i d c r y s t a l l i n e p r o p e r t i e s whereas the phenylesters melt t o i s o t r o p i c f l u i d s . A monotropic l i q u i d c r y s t a l l i n e phase i s obtainable i f long spacers and para s u b s t i t u e n t s are used. Because o f the high tendency t o c r y s t a l l i z e , the monotropic phase t r a n s i t i o n s o f the monomers were not determined. A l l monomers are r a d i c a l l y polymer!zable. I n accordance w i t h the p r e d i c t i o n s d e r i v e d from the model, these polymers e x h i b i t e n a n t i o t r o p i c l i q u i d c r y s t a l l i n e p r o p e r t i e s . Even the polymers prepared from i s o t r o p i c monomers are l i q u i d c r y s t a l l i n e . Table I I l i s t s the phase t r a n s i t i o n and LC phases which were determined by DSC, x-ray i n v e s t i g a t i o n s ( 1 0 ) , and p o l a r i z a t i o n microscopy. I f one compares the polymers where R i s an a l k y l o x y group, nematic as w e l l as smectic phases are observed. I f R i s a s h o r t s u b s t i t u e n t (-0CH ), the polymer i s nematic, whereas i f R i s a longer s u b s t i t u e n t , the polymer i s smectic. The diphenyl d e r i v a t i v e s e x h i b i t same c h a r a c t e r i s t i c . I n a d d i t i o n the d i phenyl d e r i v a t i v e s w i t h o u t a para s u b s t i t u e n t have a low temperature smectic phase as w e l l as a nematic phase. These r e s u l t s show t h a t the side chain polymers f i t the model w e l l . Furthermore they confirm the expected analogy o f these spacer-group-containing polymers w i t h conventional l i q u i d c r y s t a l s t h a t nematic and smectic phases can be r e a l i z e d , dependi n g on the para s u b s t i t u e n t s o f the mesogenic m o i e t i e s . Copolymers. The second p a r t o f our model i s concerned w i t h the c o p o l y m e r i z a t i o n o f monomers w i t h d i f f e r e n t spacers. I n t h i s case a s t a t i s t i c a l d i s t r i b u t i o n o f the centers o f g r a v i t y of the mesogenic chain might be p r e f e r r e d even more. This p r e d i c t i o n was t e s t e d w i t h c h o l e s t e r y l d e r i v a t i v e s :

MESOMORPHIC

ORDER I N P O L Y M E R S

Table I . Phase T r a n s i t i o n s o f Monomers 1

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch003

r'°-

1.

( C H

) 2

n-

0 _


0 "

c o o




" 0 "

R

Alkylethers η

R

2

OCH

2

O C

Phase T r a n s i t i o n (°c) k 69 i

3

k 67 i

H

3

7

2

OC H

6

OCH

6

O C

6

k 59 i

13

k li-T 1

3

k I4-T η 53 i

H

6 i

3

Diphenyl d e r i v a t i v e s η

R

2

C

3

C H^OC H

3

C

6

Phase T r a n s i t i o n

(°c)

6H!+

6

C

OCH 2

6

H

6

H

k 108 η 211 i

3

5

k 123 η 202 i k 105 i

5

k 6k sm 68 η 92 5

FINKELMANN ET AL.

Enantiotropic (Liquid Crystalline) Polymers

Table I I . L i q u i d C r y s t a l l i n e Phase T r a n s i t i o n of Synthesized Polymers CH

0=C-0-(CH ) -0--

Not y e t determined.

g 132 sm l6k n I8I4- i

MESOMORPHIC

30

ORDER I N

POLYMERS

2 n

= 2, 6,

12

i n which the spacer l e n g t h η i s v a r i e d . A l l synthesized monomers e x h i b i t c h o l e s t e r i c mesophases i n s t e a d of nematic phases because of the c h i r a l i t y o f c h o l e s t e r o l (Table I I I ) .

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch003

Table I I I . Phase T r a n s i t i o n s o f C h o i e s t e r y l D e r i v a t i v e s

/ γ ""Ο η 2 6 12

(CH

^-

S

DSC

measurements.

2

2

b c X-ray i n v e s t i g a t i o n s ^

c

b

Decomposition

before c l e a r i n g .

32

MESOMORPHIC

ORDER I N P O L Y M E R S

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch003

Bulk P o l y m e r i z a t i o n . The monomers were a l s o polymerized i n b u l k . To f o l l o w the process, a p o l a r i z a t i o n microscope was used, which made i t p o s s i b l e t o observe phase separations or phase transitions during polymerization. (1)

A phase s e p a r a t i o n d u r i n g p o l y m e r i z a t i o n occurred when a nematic monomer was polymerized t o a smectic polymer, be­ cause the polymer was I n s o l u b l e i n the monomer.

(2)

No phase s e p a r a t i o n was observed when an i s o t r o p i c monomer was polymerized t o a nematic o r smectic polymer. The nematic or smectic polymers are s o l u b l e i n the i s o t r o p i c monomer. When a c e r t a i n conversion i s obtained, a phase t r a n s i t i o n from i s o t r o p i c t o nematic o r smectic phase takes p l a c e . This phase t r a n s i t i o n , caused by v a r i a t i o n o f the mole f r a c t i o n o f the monomer and the polymer, i s comparable w i t h a phase t r a n s i t i o n caused by v a r y i n g the temperature a t constant composition.

(3)

A homogenous ροlyme r i ζati on was achieved by the polymeriza­ t i o n o f a nematic monomer t o a nematic polymer where the temperature r e g i o n o f the l i q u i d c r y s t a l l i n e monomer phase overlapped the temperature r e g i o n of the l i q u i d c r y s t a l l i n e polymer phase (see Table I I ) . This p o l y m e r i z a t i o n process i s i n f l u e n c e d e i t h e r by a p r e c i p i t a t i o n or by a phase transition.

A d e t a i l e d p h y s i c a l i nve s t i gat io η o f the polymers d e s c r i b e d here i s d i s c u s s e d i n Chapter 2. Literature 1. 2. 3. 4. 5. 6. 7· 8. 9.

Cited

Shibaev, V.P., Vysokomol. Soedin (1977) A9, 923. Gray, G.W., Winsor, P.A., "Liquid Crystals and Plastic Crystals," Ellis Horwood, Chichester, 1974. Strzelecki, L., Liebert, L., Bull. Soc. Chim. (1973) N2, 605. Clough, S.B., Blumstein, A., Hsu, E.C., Macromolecules (1976) 9, 123. Bouligand, Y., Cladis, P.E., Liebert, L., Strzelecki, L., Mol. Cryst., Liq. Cryst. (1974) 25, 233. Lorkorwski, H.J., Reuther, F., Plaste Kautsch. (1976) 2, 81. Hsu, E.C., Blumstein, Α., Clough, S.B., J. Polym. Sci., Polym. Lett. Ed. (1977) 15, 545. Perplies, Ε., Ringsdorf, H., Wendorff, J.H., Ber. Bunsenges. Phys. Chem. (1974) 9, 921. Shibaev, V.P., Freidzon, J.S., Platé, N.A., Dokl. Akad. Nauk, SSSR (1976) 227, 1412.

R E C E I V E D March 2, 1 9 7 8 .

4 Thermotropic Cholesterol-Containing Liquid Crystalline Polymers V. P. SHIBAEV, N. A. PLATÉ, and Y. S. FREIDZON

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

Polymer Chemistry Department, Faculty of Chemistry, Moscow State University, Moscow, USSR

In recent years, i n v e s t i g a t o r s working in the field of physics and chemistry of high-molecular compounds have been paying a l o t of a t t e n t i o n t o the problem of c r e a t i n g l i q u i d c r y s t a l l i n e systems (1-14). The great i n t e r e s t displayed in the study of p r o p e r t i es of such systems can most probably be accounted for by two main f a c t o r s : firstly, by the advances in s t u dies i n t o the s t r u c t u r e , p r o p e r t i e s and p r a c t i c a l use of low-molecular l i q u i d c r y s t a l s in physics, technology and medicine, and, secondly, by the s t u d i e s of the nature and s a l i e n t f e a t u r e s of the l i q u i d c r y s t a l l i n e state in polymers as a s p e c i f i c state of macromolecul a r substances. Advances in t h i s field of research are associated with the development of methods f o r producing polymeric l i q u i d - c r y s t a l l i n e systems and c o n t r o l l i n g the processes of s t r u c t u r e formation in polymers. Unfortunately, at present, the relevant literature not only l a c k s classification of experimental data on polymeric l i q u i d c r y s t a l s , but a l s o criteria determining the existence of the l i q u i d c r y s t a l l i n e state i n polymers are nowhere to be found. More often than not, c e r t a i n authors r e f e r t o polymer systems under study or s p e c i f i c s t a t e s of these systems as liquid­ - c r y s t a l ones without s u f f i c i e n t grounds. The r e c e n t l y published reviews by Papkov on l y o t r o p i c l i q u i d c r y s t a l l i n e polymer systems (12) and by Shibaev and Plate on the l i q u i d c r y s t a l l i n e states i n polymers (13) should be regarded as the first attempts to systematize the great body of a v a i l a b l e experimental data with a view to e l a b o r a t i n g adequate techniques of producing l i q u i d c r y s t a l l i n e polymer systems. In t h i s paper, which deals e x c l u s i v e l y with t h e r motropic l i q u i d c r y s t a l l i n e polymers, we s h a l l apply the term "liquid-crystalline" to the thermodynamical0-8412-0419-5/78/47-074-033$06.00/0 © 1978 American Chemical Society

MESOMORPHIC

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

34

ORDER I N P O L Y M E R S

l y s t a b l e phase state of polymers or polymer systems characterized by a spontaneously o c c u r r i n g (independently from t h e i r state of aggregation) anisotropy of p r o p e r t i e s ( i n p a r t i c u l a r , o p t i c a l anisotropy) i n the absence of a three dimensional c r y s t a l l a t t i c e . It should be pointed out that along with t h i s d e f i n i t i o n which describes the l i q u i d c r y s t a l l i n e state as a phase s t a t e , use i s often made of the term " l i q u i d c r y s t a l l i n e s t r u c t u r e " which i s i n d i c a t i v e only of a c e r t a i n o r i e n t a t i o n ordering i n a system. Despite the narrower meaning of the l a t t e r term, the notion of a l i q u i d c r y s t a l l i n e s t r u c t u r e (or ordering) i s widely used i n the l i t e r a t u r e on s t r u c t u r a l polymer s t u d i e s , therefore, i n some instances, we s h a l l use t h i s term as w e l l . At present, f o u r types of polymer systems can be d i s t i n g u i s h e d to which, i n our opinion, the term of l i q u i d c r y s t a l l i n e (mesomorphous) state i s a p p l i c a b l e : (1) Melts of c r y s t a l l i n e polymers and amorphous polymers c h a r a c t e r i z e d by an o r i e n t a t i o n r e l a t e d t o liquid

crystalline

ordering;

(2) L y o t r o p i c l i q u i d c r y s t a l l i n e systems; (3) Mesomorphous s t r u c t u r e s of block polymers i n gels; (4) Polymers with side anisodiametric groups mod e l i n g the molecular s t r u c t u r e of low-molecular l i q u i d crystals. In t h i s paper, we s h a l l dwell on approaches t o c r e a t i n g l i q u i d c r y s t a l l i n e polymers of the l a t t e r t y pe. As f a r as the f i r s t three systems are concerned, t h e i r d e s c r i p t i o n can be found i n Refs. (12-13) and the c i t e d references. Polymers with side anisodiametric groups modeling the molecular s t r u c t u r e of low-molecular l i q u i d c r y s t a l s can be obtained e i t h e r through synthesis of monomers with l i q u i d c r y s t a l l i n e (mesogenic) groups with subsequent polymerization or through chemical a t t a c h ment of molecules of low-molecular l i q u i d c r y s t a l l i n e compounds to a polymer chain by way of polymer-analogous transformations. As can be i n f e r r e d from the bulk of works d e a l i n g with t h i s problem, at present, the f i r s t of these two methods i s used i n most cases. Ref. (13) reviews the b a s i c types of the so f a r synt h e s i z e d polymers with mesogenic groups along with a d e t a i l e d d e s c r i p t i o n of the s t r u c t u r e of these compounds. A n a l y s i s of these data suggests that the presence of mesogenic groups d i r e c t l y linked with the main chain (Figure 1), as a r u l e , does not r e s u l t i n such polymers manifesting l i q u i d c r y s t a l l i n e p r o p e r t i e s . I f some monomers do i n f a c t e x h i b i t l i q u i d c r y s t a l p r o p e r t i e s , the polymers obtained on t h e i r basis are r i g i d substances f e a t u r i n g high s o f t e n i n g points w i -

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

4.

SHIBAEV E T A L .

Thermotropic Liquid Crystalline Polymers

35

thout d i s p l a y i n g truly l i q u i d c r y s t a l l i n e properties i n accordance with our d e f i n i t i o n . Only some works O t 1 0 t 1 5 - 1 B ) provide evidence that the synthesized polymers possess the property of b i r e f r i n g e n c e , however, no d e t a i l e d s t r u c t u r a l and thermodynamic c h a r a c t e r i s t i c s of these polymers are given. In our opinion, such a macromolecular s t r u c t u r e i n which the mesogenic groups are d i r e c t l y l i n k e d with the main polymer chain renders d i f f i c u l t the packing t y p i c a l for low-molecular l i q u i d c r y s t a l s . To obtain an l i q u i d c r y s t a l l i n e s t r u c t u r e , a c e r t a i n l a b i l i t y of branches i s required, which would, despite the presence of the polymer chain, ensure a p a r t i c u l a r order i n g i n the arrangement of mesogenic groups. To overcome the s t e r i c hindrances o c c u r r i n g i n the packing of branches, one should space the mesogenic groups a c e r t a i n distance apart from the main chain, or somehow enhance i t s f l e x i b i l i t y . In c o n s i d e r i n g various approaches t o c r e a t i n g thermotropic c h o l e s t e r o l - c o n t a i n i n g polymers ( 1 1 , 1 9 2 0 ) , we proceeded from the derived notions on fïïe r e l a t i o n s h i p between the s t r u c t u r e and p r o p e r t i e s of comb-like polymers with long a l i p h a t i c branches i n each monomer u n i t ( 2 1 ) » The independent behaviour of the side chains of comb-like polymers, manifesting i t s e l f i n t h e i r a b i l i t y to form layered s t r u c t u r e s and even t o c r y s t a l l i z e , r e g a r d l e s s of the main c h a i n s c o n f i g u r a t i o n ( 2 1 ) , opens up p o s s i b i l i t i e s to obtain l i q u i d c r y s t a l l i n e comb-like polymers. Indeed, since the chemical bonding of asymmetric side pendants i n such polymers takes place only through the end groups of branches, the l a t t e r may be regarded as a s t r u c t u r a l l y organized arrangement of long-chain molecules, b u i l t around the main chain, which seems to be one of the p r e r e q u i s i t e s f o r a l i q u i d c r y s t a l l i n e s t r u c t u r e . I t could, therefore, be assumed that i f one would add, to the end groups of comb-type polymer branches, g r o ups capable of forming the l i q u i d c r y s t a l l i n e phase, i . e . space them a c e r t a i n distance apart from the main chain, the s t e r i c hindrances imposed by the main chain on the packing of branches would be much l e s s s i g n i ficant. As mesogenic groups we have s e l e c t e d c h o l e s t e r o l d e r i v a t i v e s having, i n the case of low-molecular l i quid c r y s t a l s , most extensive a p p l i c a t i o n . To t h i s end, we have synthesized c h o l e s t e r o l e s t e r s of N-met h a c r y l o y l - GO -aminocarbonic acids (ChMAA-n) having d i f f e r e n t lengths of the a l i p h a t i c r a d i c a l (index η corresponds to the number of methylene groups i n the a l k y l r a d i c a l l i n k i n g c h o l e s t e r o l to the main c h a i n ) , as follows? 1

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

36

MESOMORPHIC

ORDER I N

POLYMERS

where η « 2,5,6,8,10,11. The f i r s t stage y i e l d e d W-methacryloyl-^-aminocarbonic acids (MAA-n) whose subsequent r e a c t i o n with c h o l e s t e r o l y i e l d e d monomers of ChMAA-n. Prom these monomers, homopolymers (PChMAA-n) and copolymers with n - a l k y l a c r y l a t e s (A-m) and n-alkylmethacrylates (MA-m) were obtained by r a d i c a l polymerization (index m c o r ­ responds t o the number of carbons i n the n - a l k y l r a ­ d i c a l ) . In a d d i t i o n , i n order to e l u c i d a t e some of the problems r e l a t i n g to the s t r u c t u r e of l i q u i d c r y s t a l l i ­ ne polymer compounds, monomers were s p e c i a l l y synthe­ s i z e d and polymers were obtained containing methyl (PMMAA), benzyl (PBMAA) and hexadecyf(PHMMA) groups i n the side chain instead of c h o l e s t e r o l : \\2Î-C{CH )-C0NH-(CH )f^C0O-Jfl, where R « -CH^ f o r η « 2,5,6,8,10,11; 5

-CH

z

(PMMAA-n) f o r n m I I (PBMAA-II);

2

-(CH ) -CH 2

15

3

f o r η « I I (PHMAA-II)

I t should be noted that Ref. (22)describes syn­ t h e s i s of c h o l e s t e r o l esters of poly^SF-acryloyl- aminocarbonic acids through a d d i t i o n of c h o l e s t e r o l to the macromolecules of p o l y - N - a c r y l o y l - co -aminocar-

SHIBAEV E T A L .

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

4.

Thermotropic Liquid Crystalline Polymers

37

bonic a c i d s . However, the r e s u l t i n g polymers contained about 10 mol. % of carboxyls and d i d not e x h i b i t any l i q u i d c r y s t a l l i n e p r o p e r t i e s . An i n t e r e s t i n g example of synthesis of comb-like polycholesteryl-II-methacryloyloxyundecanoate has been described by Imoto et a l . (23), however, apart from the study of the phase state olf"the monomer, no data are provided on the l i q u i d c r y s t a l l i n e s t r u c t u r e of the polymer. This work i s , therefore, aimed a t : (1) developing methods f o r obtaining c h o l e s t e r o l containing monomers, as w e l l as polymers with d i f f e ­ rent length of the side chain and frequency of occur­ rence of c h o l e s t e r o l groups; (2) studying the physicochemical behaviour of mo­ nomers of ChMAA-n and c h o l e s t e r o l - c o n t a i n i n g polymers i n the s o l i d phase, as w e l l as d e f i n i n g the conditions under which the polymers and copolymers under conside­ r a t i o n acquire the l i q u i d c r y s t a l l i n e s t r u c t u r e . Experimental Synthesis of Monomers N-me thacry l o y 1ω-amino-* carbonic acids (MAA-n; were obtained as f o l l o w s Added to a s o l u t i o n of 0.08 M of

%

%

calcula-feui found calcula' ted • 10.54 10.82 10.91 11.07 11.21 11.28



2.52 2.55 2.36 2.41 2.12 2.12

2.66 2.47 2.41 2.30 2.19 2.15

Cholesterylmethacrylate (ChMA) were obtained by way of i n t e r a c t i o n of c h l o r i d e of methacrylic acid with c h o l e s t e r o l i n absolute ether. The melting point of the end product was 109°C. which c o i n c i d e s with that of ChMA obtained i n (24)* Hexadecyl and benzyl ethers of MAA-II (HMAA-II and BMAA-II, r e s p e c t i v e l y ) were obtained i n a manner s i m i l a r to the synthesis of ChMAA-n. The melting point of HMAA-II was 58°C and that of BMAA-II, 5 4 ° C Synthesis of Polymers PMAA-n was obtained by radical polymerization of MAA-n i n a s o l u t i o n of d i methyl formamide at 60°C, using d i n i t r i l e of azoisobut y r i c acid (BAA) or UV i r r a d i a t i o n at room temperature i n an argon atmosphere. The obtained polymers were p r e c i p i t a t e d with acetone. Methyl ethers of PMAA-n (PMMAA-n) were obtained by t r e a t i n g PMAA-n with diazomethane i n benzene. ChMAA-n, ChMA, HMAA-II and BMAA-II were polymerized i n a benzene s o l u t i o n at 60°C i n the presence of DAA. The polymers were p r e c i p i t a t e d with acetone.Melt polymerization was conducted on the hot stage of a p o l a r i z i n g microscope, i n a s p e c i a l c e l l between cover glasses. The copolymers of ChMAA-n with A-m and MA-m were obtained by polymerization i n benzene i n the presence of DAA. The composition of the copolymers was determined by the r a t i o of o p t i c a l d e n s i t i e s of the 1.740 cm-1 (C=sO modes i n an e s t e r group) and 1.650cm"^ (C»0 modes i n an amide group) absorption bands. The r e s u l t s of t u r b i d i m e t r i c t i t r a t i o n of polymers i n benzene i n d i c a t e that the copolymers are homogeneous i n

4.

SHIBAEV E T A L .

Thermotropic Liquid Crystalline Polymers

39

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

composition. I n v e s t i g a t i o n Techniques O p t i c a l studies were conducted i n the crossed p o l a r i z e r s of a MIN-8 p o l a r i z i n g microscope with a hot stage. P i c t u r e s were taken by means of a " Z e n i t ^ M " camera mounted on the microscope tube v i a a micro attachment. The X-ray patterns were obtained on a URS-55 X-ray apparatus with a f l a t cassette ( i r r a d i a t i o n with CuK^ ). Small-angle X-ray patterns were obtained on a s p e c i a l l y designed camera with a temperature attachment. The sample f i l m d i s t a n ce was adjusted w i t h i n 90 to 130 mm. Thermographic studies were conducted on a "Dérivâtograph" instrument (Hungary). The glass and f u s i o n temperatures were determined from thermomechanical curves derived on a Kargin balance. The IR absorption spectra were obtained on a UR-10 spectrophotometer from samples made i n the form of f i l m s or p e l l e t s with KBr. The t u r b i d i m e t r i c t i t r a t i o n of copolymer s o l u t i o n s was conducted with methan o l . The o p t i c a l density was measured on a FEK-I phot o e l e c t r i c colorimeter. Results and Discussion Monomers Consider f i r s t the behaviour of synthesized monomers of the ChMAA-n s e r i e s at varying temperatures, as w e l l as the e f f e c t of c r y s t a l l i z a t i on c o n d i t i o n s on t h e i r s t r u c t u r e . The most a c t i v e monomers are ChMA and ChMAA-2 which polymerize r a p i d l y at elevated temperatures. For example, melting of ChMAA-2 at 125°C causes the monomer to polymerize immediately, which i s i n d i c a t e d by a sharp exothermal peak, on the thermogram of ChMAA-2, f o l l o w i n g the endothermal melting peak ( F i gure 2). In the case of melting of ChMAA-5,6,8,10 monomers, an i s o t r o p i c l i q u i d i s formed at temperatures of 108, 98, 85 and 84°C, r e s p e c t i v e l y . Rapid c o o l i n g of these melts r e s u l t s i n the formation of l i q u i d c r y s t a l l i n e phase whose temperature existence i n t e r v a l depends on the rate of c o d l i n g . At slow c o o l i n g , e i t h e r growth of s o l i d c r y s t a l s (ChMAA-10) or polymerization of monomers (ChMAA-5,6,8) i s observed. ChMAA-II forms two c r y s t a l l i n e m o d i f i c a t i o n s d i f f e r i n g i n t h e i r melting points and s t r u c t u r a l paramet e r s (Table I I I ) .

40

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

MESOMORPHIC

ORDER

IN POLYMERS

Figure 1. Structure of macromolecules with side meso­ genic groups, (a) Mesogenic groups are directly linked to the main chain; (b) mesogenic groups are linked to the branches of comb-like poly­ mers.

125 X

Figure 2.

Thermogram of ChMAA-2

80

1 {00

1 120

ι #0

1— 160

4.

SHIBAEV E T A L .

41

Thermotropic Liquid Crystalline Polymers

Table I I I . Interplanar spacings and melting points of ChMAA-II samples i n various c r y s t a l l i n e m o d i f i c a t i o n s Modification*

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

I II

I n t e r p l a n a r spacings, A 4.67 3.72

5.10 4.90

5.95 5.30

7.70 7.70

36.0 36.0

*T

°C 84 102

M o d i f i c a t i o n I i s formed i n the case of c r y s t a l l i z a t i o n from a s o l u t i o n and, at 84°C, changes to mod i f i c a t i o n I I which melts i n t o an i s o t r o p i c l i q u i d at 102°C. Cooling of the ChMAA-II melt leads to the f o r mation of an l i q u i d c r y s t a l l i n e phase which, a f t e r f u r t h e r c o o l i n g , converts to c r y s t a l l i n e m o d i f i c a t i o n I I . Sequential r e c o r d i n g of t h i s process by a camera shows how c r y s t a l l i n e s p h e r u l i t e s grow i n the flowing l i q u i d c r y s t a l l i n e phase (Figure 3a) and gradually f i l l the e n t i r e f i e l d of v i s i o n of the microscope ( F i gure 3b-d). Thus, a l l monomers of the ChMAA-n s e r i e s form a monotropic l i q u i d c r y s t a l l i n e phase of the c h o l e s t e r i c type, whose temperature i n t e r v a l of existence depends on the r a t e of c o o l i n g . The l i q u i d c r y s t a l l i n e phase i s unstable and i s transformed to c r y s t a l phase so soon that X-ray examination of the mesophase s t r u c t u r e becomes d i f f i c u l t . Nevertheless, p o l a r i z a t i o n - o p t i c a l studies have made i t p o s s i b l e to draw c e r t a i n conclusions as to the nature of the l i q u i d c r y s t a l l i n e phase of monomers. Cooling of i s o t r o p i c melts of monomers r e s u l t s i n a c o n f o c a l texture which turns to a planar one when a mechanical f i e l d i s superimposed on the sample, f o r example, by s h i f t i n g a cover g l a s s i n the c e l l of the p o l a r i z i n g microscope (Figure 4 ) . The observed planar texture e x h i b i t s the property of s e l e c t i v e l i g h t r e f l e c t i o n , which i s t y p i c a l of low-molecular cholesteric liquid crystals. Polymers and Copolymers Polymerization of a l l ChMAA-ns and ChMA i n a melt y i e l d s polymers f e a t u r i n g spontaneous o p t i c a l anisotropy. The o p t i c a l pattern observed i n crossed p o l a r i z e r s i s s i m i l a r to the conf o c a l texture of low-molecular l i q u i d c r y s t a l s and r e presents a combination of biréfringent regions 2 to 10 microns i s s i z e (Figure 5). At the same time, the presence of a d i f f u s e halo at wide angles of X-ray s c a t t e r i n g (Figure 5 ) i n the case of polymers of the PChMAA-n s e r i e s , does not give reason enough to a s c r i be c r y s t a l l i n e s t r u c t u r e to them. Consider now the manner i n which the p h y s i c a l state of a polymer and the o p t i c a l pattern vary with f

Figure 3. Optical microphoto graphs showing sequential growth of solid spherulites (b,c,d) from liquid crystalline phase of ChMAA-II (a) (crossed polarizers)

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

Ο

to


200 185 130 130 130 125 120

c

T

°C

f f

_

_

-



200 190 180 150 135

220 215 200 185 180

As can be seen from t h i s t a b l e , PChMAA-2 has the highest g l a s s temperature (Tg) at which the polymer s t a r t s to thermally decompose. The observed o p t i c a l pattern remain i n v a r i a b l e up t o t h i s temperature. As the methylene bridge l i n k i n g c h o l e s t e r o l t o the main chain becomes longer, the values of T~ become lower, and, i n the case of polymers of the PçhMAA-η s e r i e s with η > 5, an e l a s t i c and viscous state may p r e v a i l . I t should be emphasized that, i n the viscous state r e ­ gion, polymers of the PChMAA-n s e r i e s are viscous f l u i d s whose flow i s accompanied by a displacement of the biréfringent regions i n a way s i m i l a r to the behav i o r of low-molecular l i q u i d c r y s t a l s . As can be i n f e r r e d from Table IV, the o p t i c a l anisotropy remains i n the e l a s t i c and v i s c o u s s t a t e s and disappears a t temperature T ^ T r a n s i t i o n from the o p t i c a l l y a n i s o t r o p i c t o an o p t i c a l l y i s o t r o p i c s t a t e at T _^ i s reverse and occurs i n a narrow temperature range (2 to 3 ° ) · Table IV shows that the values of t r a n s i t i o n temperatures T _^ s l i g h t l y decrease with i n c r e a s i n g n, which i s probably due to the e f f e c t of i n t e r n a l p l a s t i f i c a t i o n and was f r e q u e n t l y observed i n the case o f comb-like polymers ( 2 1 ) . The e v a l u a t i o n of the t h e r mal e f f e c t inherent Tii t h i s t r a n s i t i o n f o r PChMAA-II gave the value of 0.76Î0.08 c a l / g , which agrees w e l l with the values of heats of melting, corresponding t o the l i q u i d c r y s t a l l i n e phase-isotropic melt t r a n s i t i on f o r low-molecular l i q u i d c r y s t a l s (2J5)# However, i n contrast to the l a t t e r , which, as a r u l e , c r y s t a l l i z e during c o o l i n g (see, f o r example, Figure 3 / the l i q u i d c r y s t a l l i n e phase of polymers v i t r i f i e s while cooled (Figure 5)· I n other words, i n the case of polymers , the s t r u c t u r e of the l i q u i d c r y s t a l l i n e phase a

0

a

a

f

4.

SHIBAEV E T A L .

Thermotropic Liquid Crystalline Polymers

45

remains i n the glass state as w e l l , whereas polymers of the PChMAA-n s e r i e s e x h i b i t l i q u i d c r y s t a l l i n e pro­ p e r t i e s i n a l l three p h y s i c a l s t a t e s : v i t r i f i e d , e l a s ­ t i c and viscous. The upper l i m i t temperature range of the l i q u i d c r y s t a l l i n e state i s ¥ „Α. What i s i t then that makes the l i q u i d c r y s t a l l i n e state p o s s i b l e i n the polymers under i n v e s t i g a t i o n ? To answer t h i s ques­ t i o n , l e t us analyze the X-ray study r e s u l t s . In the wide angles of X-ray s c a t t e r i n g there i s a d i f f u s e maximum dj whose magnitude, i n the case of ηs*5, does not depend on the branch length (Figure 6 ) . In the region of small angles, three maxima are obser­ ved whose p o s i t i o n changes with the number of the me­ thylene groups l i n k i n g c h o l e s t e r o l to the main chain (Figure b ) . To interprète these X-ray spacings, l e t us f i r s t examine the s t r u c t u r e of model compounds: PMAA-n and PMMAA-n. The macromolecules of these polymers have a chemical structure s i m i l a r to that of PChMAA-n with the d i f f e r e n c e that they do not contain c h o l e s t e r o l groups i n the side chains. The X-ray patterns of PMAA-n and PMMAA-n i n the region of large s c a t t e r i n g angles a l s o d i s p l a y a d i f fuse maximum corresponding to i n t e r p l a n a r spacings: d j = 4·6 to 4#7 A , while i n the small-angle region a s i n g l e X-ray spacings i s observed, whose p o s i t i o n depends on the branch length (Figure 6). The X-ray spacings i n the wide angle region i s s i m i l a r t o that observed on the X-ray patterns of amorphous p o l y - n - a l k y l a c r y l a t e s and poly-n-alkylmethacrylates, where i t i s r e l a t e d to the side groups i n t e r a c t i o n (21). E v i d e n t l y , both i n the case of PMAA-n,"TiiMAA-n and PChMAA-n, the X-ray spacings i n the wide angle region may be a t t r i b u t e d to the distance between the branches arranged i n p a r a l l e l . This assumption i s substantiated by the f a c t that, i n the case of u n i a x i a l o r i e n t a t i o n of polymers, the i n t e n s i t y of t h i s X-ray i n t e r f e r e n c e i n a meridional d i r e c t i o n sharply increases (Figure 7 ) . The value of d j i s 6.3 A f o r PChMA and PChMAA-2, while f o r the other polymers of the PChMAA-n s e r i e s i t i s 5.9 A These values are s l i g h t l y greater than the respective i n t e r p l a n a r spacings f o r PMAA-n and PMMAA-n (which, i n our opinion, i s due to the presence of bulky c h o l e s t e r o l groups) and are close t o the distances between the molecules of low-molecular c h o l e s t e r o l esters i n the c h o l e s t e r i c mesophase (26). The reason why the values of d d i f f e r i n PChMA and PChMAA-2, on the one hand, and i n the other PChMAA-ns, on the other, w i l l be considered below when we s h a l l discuss a polymer s t r u c t u r e model.

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

Β

#

T x

46

MESOMORPHIC

ORDER

IN POLYMERS

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

0

Figure 6. Interplanar spacings vs. the number of carbons in the side chain for PChMAA-n (dj-dj, PMAA-n (d/, d,') and PMMAA-n (d/', d "). The experimental points on the ordinate correspond to the interplanar spacings for polycholesterylmethacrylate. 9

Figure 7. X-ray pattern of an oriented PChMAA-II sample. The primary beam extends at a right angle to thefiberaxis.

4.

SHIBAEV E T A L .

Thermotropic Liquid Crystalline Polymers

As to small-angle X-ray spacings, the dependence of spacings d (PMAA-n, PMMAA-n, PChMAA-n) and (PChMAA-n) on the branch length at n > 5 suggests that they are due to the layered ordering of the side gro­ ups. This i s corroborated by the X-ray texture pat­ terns o f oriented polymer samples. In the case of u n i ­ a x i a l o r i e n t a t i o n , these X-ray i n t e r f e r e n c e s look l i k e s a g i t t a l arcs (Figure 7), which i s i n d i c a t i v e of the branches being arranged s u b s t a n t i a l l y at a r i g h t ang­ l e to the main chain a x i s . R e f r a i n i n g , at t h i s point, from f i n a l and unambiguous i n t e r p r e t a t i o n of X-ray spacings d^, we s h a l l only note that i t s magnitude i s l i t t l e dependent (and at η » 8,10 and 11, not depen­ dent at a l l ) on the branch length, a t t r i b u t i n g t h i s i n t e r f e r e n c e to the s c a t t e r i n g from the main chain and assuming that i t i s responsible f o r a c e r t a i n pe­ r i o d i c i t y associated with i t s folded s t r u c t u r e , i f such occurs. On the basis of the obtained X-ray data, the s t r u c t u r e of c h o l e s t e r o l - c o n t a i n i n g polymers of the PChMAA-n s e r i e s may be presented as f o l l o w s . F i r s t of a l l , i t i s evident that the s t r u c t u r e of PChMA and PChMAA-2 d i f f e r s from that of PChMAA-n where n>5. This d i f f e r e n c e manifests i t s e l f both i n the values of d j and the dependence of small-angle X-ray spacings ά , do, and àA on n. In the case of polymers of tKe PChMAA-n s e r i e s , where η > 5 , d j 5 9 L This value approaches that f o r the c h o l e s t e r i c mesophase o f cholesterylnonanoate (6.05 A) and c h o l e s t e r y l m y r i s t a t e (5.73 1) (26). The­ r e f o r e , the packing of branches i n PChMAA-n seems t o be s i m i l a r to that of molecules o f the above-mentio­ ned low-molecular c h o l e s t e r o l e s t e r s i n the c h o l e s t e ­ r i c mesophase. Wendorff and P r i c e (26) who had s t u d i ­ ed the mesophase s t r u c t u r e of these compounds sugges­ ted that the packing of molecules i n the c h o l e s t e r i c mesophase must be a n t i p a r a l l e l so that a c h o l e s t e r o l group i s surrounded by methylene " t a i l s * , while the l a t t e r are surrounded by c h o l e s t e r o l groups. This i s confirmed by the f a c t that the l a t e r a l s i z e of a cho­ l e s t e r o l group exceeds 6 1, therefore, i n the case of p a r a l l e l arrangement of molecules, d j would be greater than 6 X From the same considerations, i t can be as­ sumed that the packing of side chains i n polymers o f the PChMAA-n s e r i e s , where η > 5 , must be a n t i p a r a l l e l so that the c h o l e s t e r o l groups of one macromolecule are surrounded by the methylene chains of adjacent raacromolecules (Figure 8a-c). I n t h i s case, the bran­ ches are arranged at a r i g h t angle to the main chain and almost i n p a r a l l e l to one another, however, the long axes of the c h o l e s t e r o l - c o n t a i n i n g branches may 2

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

47

2

s

#

#

American

Chemical Library

Society

1155 18th St., N.W. Washington, D £ 20036

f

Figure 8. Modeh of PChMAA-II (a) and PChMA(a') macromolecules and packing of PChMAA-n macromolecules in oriented samples (b,b',c,c') ûi η ^ 5 (b,c) and η < 5 (b',c'); b, b —solid lines indicate macromolecules lying in the drawing plane, broken lines indicate mac­ romolecules lying in a plane parallel to that of the drawing; c,c'—projection along the main chain of macromolecules.

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

4.

SHIBAEV E T A L .

Thermotropic Liquid Crystalline Polymers

49

extend at a c e r t a i n angle t o one another. As can be seen from Figure 8a-c, the p r o p o s e d tural

m o d e l may o c c u r o n l y

length on the sequence of methylene u n i t s permits the " r i g i d " c h o l e s t e r o l skeleton to extend along the methylene chain. C a l c u l a t i o n s and studies u s i n g molecul a r models suggest that the length of a methylene "bridge" must be at l e a s t 10-11 A . In the case of polymers of the PChMAA-n s e r i e s , t h i s i s true at n ^ 5 . At lower values of n, the c h o l e s t e r o l group cannot extend along the methylene chain, therefore, p a r a l l e l packing of branches takes place (Figure 8a -c )# This r e s u l t s i n d j i n c r e a s i n g to 6.3 A, which i s close t o a respective value f o r c h o l e s t e r y l a c e t a t e (6.48 A) and f o r which no a n t i p a r a l l e l packing i s p o s s i b l e e i t h e r . Another reason why i t i s d i f f i c u l t t o discuss the s t r u c t u r a l model of c h o l e s t e r o l - c o n t a i n i n g polymers i s the f a c t that so f a r no adequately substantiated s t r u c t u r a l model of low-molecular c h o l e s t e r i c l i q u i d c r y s t a l s e x i s t s , apart from the already mentioned packing pattern proposed i n Ref. (26). I t seems that f o r a f u l l understanding of the mesophase structure of c h o l e s t e r o l e s t e r s , one should, f i r s t of a l l , caref u l l y study t h e i r c r y s t a l l i n e s t r u c t u r e . Such a study, described i n Refs. (27. 28), has not yet lead to a complete d e s c r i p t i o n of molecular packing i n c h o l e s t e r o l esters. Although the structure of c h o l e s t e r o l - c o n t a i n i n g polymers i s not yet completely understood, there i s no doubt that the l i q u i d c r y s t a l l i n e p r o p e r t i e s e x h i bited by these polymers are due t o a p a r t i c u l a r order i n the arrangement of c h o l e s t e r o l groups. This i s c o r roborated by the r e s u l t s of studying the structure and o p t i c a l p r o p e r t i e s of model compounds not containing c h o l e s t e r o l . The above-mentioned PMAA-n and PMMAA-n are o p t i c a l l y i s o t r o p i c i n a l l three p h y s i c a l s t a t e s : v i t r i f i e d , e l a s t i c and viscous. To e l u c i d a t e the r o l e of c h o l e s t e r o l i n the f o r mation of a l i q u i d c r y s t a l l i n e s t r u c t u r e , consider now the structure and properties of model PBMAA-II and PHMAA-II polymers whose macromolecules lack c h o l e s t e r o l groups. At room temperature, PBMAA i s i n e l a s t i c state and e x h i b i t s no o p t i c a l anisotropy. On the X-ray pattern of t h i s polymer i n the small-angle region, one can see a r e f l e x corresponding to an i n t e r p l a n a r spac i n g of 28 A S u b s t i t u t i o n of the hexadecyl r a d i c a l f o r c h o l e s t e r o l r e s u l t s i n a c r y s t a l l i n e PHMAA-II polymer with a melting point of 40°C. The polymer i s c r y s t a l l i z e d i n a hexagonal c e l l , which i s i n d i c a t e d by an i n t e n s i v e X-ray i n t e r f e r e n c e at wide angles, corresponding t o an i n t e r p l a n a r spacing of 4*19 A. 1

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

struc-

i n such cases i nwhich t h e

#

1

M E S O M O R P H I C ORDER I N P O L Y M E R S

50

In the region of small angles, three X-ray i n t e r f e r e n ­ ces are observed, corresponding t o i n t e r p l a n a r spa­ cings d = 14.5 A , do « 21.6 A, and d* = 38 A Above the melting p o i n t , the i n t e r f e r e n c e i n the wide angle region becomes an amophous halo corresponding t o an i n t e r p l a n a r spacing of 4 · 6 A while i n the small-ang­ l e region there remains a s i n g l e i n t e r f e r e n c e (dg « 36 1) corresponding i n magnitude to the branch length. At temperatures above the melting p o i n t , the polymer i s optically isotropic. The foregoing data i n d i c a t e that i n PMAA-n, PMMAA-n, PBMAA and ΡΗΜΑA-11, the branches are a r r a n ­ ged i n a layered manner. However, the layered orde­ r i n g alone i s not s u f f i c i e n t f o r manifestation of op­ t i c a l anisotropy. A l i q u i d c r y s t a l l i n e state may oc­ cur only i n the presence of groups capable of produ­ c i n g mesomorphous s t r u c t u r e s . I n c h o l e s t e r o l - c o n t a i ­ ning polymers, i t i s p r e c i s e l y the c h o l e s t e r o l groups that perform t h i s f u n c t i o n , t h e i r mutual packing being responsible f o r o p t i c a l anisotropy. We have already considered the s t r u c t u r e and pro­ p e r t i e s of polymers c o n t a i n i n g c h o l e s t e r o l i n such monomer u n i t . I t i s a l s o of i n t e r e s t to examine the s t r u c t u r e and p r o p e r t i e s of polymers i n which the con­ tent of c h o l e s t e r o l groups can be v a r i e d , i . e . , copo­ lymers. Given i n Table V are t r a n s i t i o n temperatures f o r some copolymers that we have synthesized. Table Τ. Τ , T and T . of copolymers of ChMAA-n with a l k y l a c r y l a t e s (A-m) and alkylmethac r y l a t e s (MA-m) 2

#

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

f

f

&

• Copolymer (mol.%, ChMAA--n) i ChMAA-II 42 37 17 ChMAA-II 90 67 40 ChMAA-II 75 58 25 ChMAA-II 45 ChMAA-II 75

T , °C f

i V i > °

C

with A-4 65 60 < 20

115 100 60

160 140 100

115 105 85

140 140 135

180 170 160

90 70 < 20

140 120 90

45

70

70

110

with MA-4

with MA-10 180 170 no anisotropy

with A-16 100

with MA-22 no anisotropy

4.

SHIBAEV E T A L .

50 ChMAA-6 with A-4 45 30

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

51

Thermotropic Liquid Crystalline Polymers

40

80

no anisotropy

100 70

170 105

180 115

As can be seen from t h i s t a b l e , the i n t r o d u c t i o n of a second component, namely, a "solvent" of c h o l e s t e r o l - c o n t a i n i n g u n i t s , whereby the glass temperature i s lowered, r e s u l t e d , i n some cases, i n a longer i n t e r v a l of existence of the e l a s t i c and viscous l i q u i d c r y s t a l l i n e s t a t e s , while i n other cases, i n the f o r mation of o p t i c a l l y i s o t r o p i c polymers* Copolymers of ChMAA-II with b u t y l a c r y l a t e (A-4) and butylmethacrylate (MA-4) form a l i q u i d c r y s t a l l i ne phase i n a wide range of component r a t i o s (Table V and Figure 9a,b). For example, a copolymer containing more than 80% of A-4 can s t i l l e x i s t i n the l i q u i d c r y s t a l l i n e s t a t e . At the same time, a copolymer with MA-22 whose content i s only 25%, i s amorphous and opt i c a l l y i s o t r o p i c . As had been mentioned above, the o p t i c a l anisotropy i n c h o l e s t e r o l - c o n t a i n i n g polymers i s due to a p a r t i c u l a r ordering i n the arrangement of the c h o l e s t e r o l groups. I f , i n copolymers, the second component does not hinder packing of the c h o l e s t e r o l groups, a mesophase may be formed. In copolymers with MA-22, the long branches screen the c h o l e s t e r o l groups, and no o p t i c a l anisotropy i s manifest i n any of the three p h y s i c a l states of polymers. It should be noted that a copolymer with an e q u i molar r a t i o of ChMAA-II and MA-22 u n i t s i s amorphous, too (Table V), although the PMA-22 homopolymer e a s i l y c r y s t a l l i z e s , forming a hexagonal l a t t i c e t y p i c a l of comb-like polymers (29)* As was shown e a r l i e r (21), the i n t r o d u c t i o n of such " d i s t u r b e r s " as i s o p r o p y l a c r y l a t e i n an amount of 80% i n t o c r y s t a l l i n e comb-like polymers does not destroy the c r y s t a l l a t t i c e . In our case, the i n t r o d u c t i o n of only 50% of ChMAA-II i n t o PMA-22 prevents the l a t t e r from c r y s t a l l i z i n g . This copolymer provides a s t r i k i n g example of the impossib i l i t y of a structure c h a r a c t e r i s t i c of each of the homopolymers i n the case of copolymerization of monomers with bulky groups. Thus, copolymers of c h o l e s t e r o l - c o n t a i n i n g monomers with n - a l k y l a c r y l a t e s and n-alkyImethacrylates are capable of y i e l d i n g a l i q u i d c r y s t a l l i n e phase i n cases where the length of the a l k y l chain i n a l k y l a c r y l a t e or alkylmethacrylate does not exceed that of the methylene bridge l i n k i n g c h o l e s t e r o l with the main chain. An X-ray study of copolymers has shown that the i n t r o d u c t i o n of a second component i n t o c h o l e s t e r o l -

52

M E S O M O R P H I C ORDER I N P O L Y M E R S

c o n t a i n i n g polymers r e s u l t s i n a c e r t a i n change i n the l e t t e r ' s s t r u c t u r e . In the small-angle region, only one d i f f r a c t i o n maximum i s retained f o r a l l copolymers ChMAA-II, corresponding to i n t e r p l a n a r spac i n g d « 19*8 A which c o i n c i d e s with d f o r the PChMAA-II homopolymer. In the case of u n i a x i a l o r i e n t a t i o n , t h i s X-ray i n t e r f e r e n c e takes the form of s a g i t t a l arcs. Since copolymers of ChMAA-II are o p t i c a l l y a n i s o t r o p i c , one n a t u r a l l y assumes that i t i s prec i s e l y the high degree of ordering i n the arrangement of the side methylene chains, manifesting i t s e l f i n the occurrence of i n t e r f e r e n c e d , that permits such packing of c h o l e s t e r o l groups, which ensures the opt i c a l anisotropy i n the above polymers. This i s supported by the r e s u l t s of X-ray studies of copolymers at various temperatures. Figure 10 shows that the i n t e n s i t y of the small-angle X-ray spacings remains high i n the viscous state as w e l l when there i s an o p t i c a l anisotropy (Figures 9a,b), and sharply decreases dur i n g t r a n s i t i o n to an o p t i c a l l y i s o t r o p i c state ( F i gure 10, curve 3 ) . The r e s u l t s of studying the s t r u c t u r e and propert i e s of copolymers demonstrate that proper s e l e c t i o n of components f o r copolymerization permits obtaining a wide v a r i e t y of polymers forming a mesophase i n d i f f e r e n t temperature ranges. As f a r as the type of the l i q u i d c r y s t a l l i n e phase formed i n c h o l e s t e r o l - c o n t a i n i n g polymers i s concerned, the morphological s i m i l a r i t y of the t e x t u re appearing i n polymer f i l m s with the confocal texture of c h o l e s t e r i c l i q u i d c r y s t a l l i n e compounds seems t o suggest that we deal with a c h o l e s t e r i c type of l i q u i d c r y s t a l s . However, the planar texture t y p i c a l of c h o l e s t e r i c l i q u i d c r y s t a l s , which i s e s s e n t i a l l y a s i n g l e c r y s t a l of the c h o l e s t e r i c type, does not occur i n f i l m s of these polymers, and when a cover g l a s s i s s h i f t e d , the texture formed i n the p o l a r i z i n g microscope c e l l i s deformed (Figure 9b). T h i s i s probably due to the defects introduced i n t o the r e s u l t i n g l i q u i d c r y s t a l l i n e s t r u c t u r e by the polymer main chain. On the other hand, the layered ordering i n the arrangement of branches i s i n d i c a t i v e of a smectic s t r u c t u r e , hence, the seeming s i m i l a r i t y of the texture of low-molecular l i q u i d c r y s t a l s of the c h o l e s t e r i c type to polymers of the PChMAA-n s e r i e s and t h e i r copolymers has, i n f a c t , nothing to do with the manner i n which s t r u c t u r a l elements of comb-like macromolecules are packed i n the c h o l e s t e r i c phase. Besides, the presence of the main polymer chain h i n ders the formation of a s p i r a l s t r u c t u r e t y p i c a l of low-molecular c h o l e s t e r i c l i q u i d c r y s t a l s . A l l t h i s 2

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

2

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

4.

SHIBAEV E T A L .

Thermotropic Liquid Crystalline Polymers

53

Figure 9. Optical microphoto graphs of a copolymer of ChMAA-II with A-4 (37:63), at 130°C without superposition of a mechanicalfield(a) and after shifting a cover glass in the microscope cell (b) (crossed polarizers)

Figure 10. X-ray scattering intensity vs. scattering angle for a copolymer of ChMAA-II with A-4 (37:63) at 25(1), 130 (2) and 150°C (3)

54

MESOMORPHIC

ORDER I N P O L Y M E R S

renders i t d i f f i c u l t to c l a s s the l i q u i d c r y s t a l l i n e phase of polymers with a d e f i n i t e type of l i q u i d c r y s t a l s . E v i d e n t l y , the c l a s s i f i c a t i o n of l i q u i d c r y s t a l s proposed f o r low -molecular compounds cannot be applied to polymers whose s t r u c t u r a l arrangement i s d i f f e r e n t from that of low-molecular l i q u i d c r y s ­ t a l l i n e systems. We wish to acknowledge the valuable c o l l a b o r a t i ­ on of I.V.Sochava whose group at the P h y s i c a l I n s t i ­ tute of the Leningrad State U n i v e r s i t y has determined the melting heat of the l i q u i d c r y s t a l l i n e phase of PChMAA-II Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

9

Literature cited 1. De Viseer, A.C., De Groot, K., Feyen, J . , and Bant j e s , Α., J.Polymer Science, (1971), A-1, 9, 1893. 2. Bouligand, J . , C l a d i s , P., L i e b e r t , L., and S t r z e l e c k i , L., Mol.Cryst.Liq.Cryst., (1974) 25, 233. 3. Amerik, Yu.B., and K r e n t s e l ' , B.A., i n coll. "Uspek h i k h i m i i i fiziki polimerov" (Advances i n Che­ mistry and physics of Polymers), p. 97, "Khimiya" Publishers, Moscow, 1973. 4. Frenkel, S.Ja., J.Polymer S c i . (1974), C-44, 49. 5. Blumstein, Α., Blumstein, R., Murphy, G., Wilson, C., Billard, J . , "Liquid C r y s t a l s and Ordered F l u ­ i d s " , p. 277, vol.2, Plenum Press, 1974. 6. Freidzon, Ya., Shibaev, V.P., and P l a t é , N.A., Abstracts of papers at the 3rd All-Union Conference on Liquid C r y s t a l s , p. 214, Ivanovo, 1974. 7. Shibaev, V.P., T a l r o s e , R. V., Karahanova, F.J., Haritonov, A.V., and P l a t é , N.A., Dokl.AN SSSR (1975), 225, 632. 8. R o v i e l l o , Α., and S i r i g u , Α., Polymer.Lett.Ed. (1975), 13, 455. 9. P e r p l i e s , Ε., Ringsdorf, Η., and Wendorff, J . , Makromolek.Chemie (1974), 175, 553. 10. Lorkowski, Η., and Reuther, F., Plaste und Kautschuk, (1976), 23, 81. 11. Shibaev, V.P., F r e i d z o n , Ya.S., and P l a t é , N.A., Dokl.AN SSSR (1976), 227, 1412. 12. Papkov, S.P., Vysokomolek.soed. (1977), A-19, 3. 13. Shibaev, V.P., and P l a t é, N.A., Vysokomolek.soed. (1977), A-19. 923. 14. Shibaev, V.P., Freidzon, Ya.S., P l a t é , N.A., Vysokomolek. soed., (1978), A-20, i n press. 15. K r e n t s e l ' , B.A., and Amerik, Yu.B., Vysokomolek. soed. (1971) A-13, 1358. 16. Blumstein, Α., Blumstein. R., Clough, S., and Hsu, Η., Macromolecules (1975), 8, 73.

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

4.

SHIBAEV E T A L .

Thermotropic Liquid Crystalline Polymers

55

17. Clough, S., Blumstein, A., and Hsu, Ε., Macromole­ cules (1976), 9, 123. 18. Blumstein, Α., Clough, S., P a t e l , L., Blumstein, R., and Hsu, Η., Macromolecules (1976), 9, 243. 19. Shibaev, V.P., Freidzon, Ya.S., and P l a t é , N.A., Abstracts of papers at the 11th Mendeleev Congress on General and Applied Chemistry, p. 164, vol. 2, "Nauka" Publishers, (Moscow), 1975. 20. Shibaev, V.P., Freidzon, Ya.S., and P l a t é , N.A., USSR Inventor's C e r t i f i c a t e No. 525, 709, B y u l l . i z o b r e t e n i y (1976), No. 31. 21. P l a t é , N.A., and Shibaev, V.P., J.Polymer S c i . , Macromolec.Rev., (1974), 8, 117. 22. Kamogawa, H., J.Polymer S c i . (1972), B-10, 7. 23. Minezaki, S., Nakaya, T., and Imoto, Μ., Makromolek.Chemie, (1974), 175, 3017. 24. Saeki, H., Iimura, Κ., and Takeda, Μ., Polymer.J. (1972), 3, 414. 25. Kunihisa, K., and Hagiwara, S., Bull.Chem.Soc. Japan, (1976), 49, 2658. 26. Wendorff, J . , and P r i c e , F., Mol.Cryst.Liq.Cryst. (1973), 24, 129. 27. Wendorff, J . , and P r i c e , P., Mol.Cryst.Liq.Cryst. (1973), 22, 85. 28. Barnard, J., and lydon, J . , Mol.Cryst.Liq.Cryst., (1974), 26, 285. 29. Shibaev, V.P., and Freidzon, Ya.S., Vysokomolek. soed., (1975), B-17, 151. R E C E I V E D December 8, 1 9 7 7 .

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch004

4.

SHIBAEV E T A L .

Thermotropic Liquid Crystalline Polymers

55

17. Clough, S., Blumstein, A., and Hsu, Ε., Macromole­ cules (1976), 9, 123. 18. Blumstein, Α., Clough, S., P a t e l , L., Blumstein, R., and Hsu, Η., Macromolecules (1976), 9, 243. 19. Shibaev, V.P., Freidzon, Ya.S., and P l a t é , N.A., Abstracts of papers at the 11th Mendeleev Congress on General and Applied Chemistry, p. 164, vol. 2, "Nauka" Publishers, (Moscow), 1975. 20. Shibaev, V.P., Freidzon, Ya.S., and P l a t é , N.A., USSR Inventor's C e r t i f i c a t e No. 525, 709, B y u l l . i z o b r e t e n i y (1976), No. 31. 21. P l a t é , N.A., and Shibaev, V.P., J.Polymer S c i . , Macromolec.Rev., (1974), 8, 117. 22. Kamogawa, H., J.Polymer S c i . (1972), B-10, 7. 23. Minezaki, S., Nakaya, T., and Imoto, Μ., Makromolek.Chemie, (1974), 175, 3017. 24. Saeki, H., Iimura, Κ., and Takeda, Μ., Polymer.J. (1972), 3, 414. 25. Kunihisa, K., and Hagiwara, S., Bull.Chem.Soc. Japan, (1976), 49, 2658. 26. Wendorff, J . , and P r i c e , F., Mol.Cryst.Liq.Cryst. (1973), 24, 129. 27. Wendorff, J . , and P r i c e , P., Mol.Cryst.Liq.Cryst. (1973), 22, 85. 28. Barnard, J., and Lydon, J . , Mol.Cryst.Liq.Cryst., (1974), 26, 285. 29. Shibaev, V.P., and Freidzon, Ya.S., Vysokomolek. soed., (1975), B-17, 151. R E C E I V E D December 8, 1 9 7 7 .

5 Liquid Crystalline Order in Polymers and Copolymers with Cholesteric Side Groups 1

A. BLUMSTEIN, Y. OSADA, S. B. CLOUGH, E . C. HSU, and R. B. BLUMSTEIN

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch005

Department of Chemistry, Polymer Program, University of Lowell, Lowell, MA 01854

We have recently shown (1, 2) that atactic polymers with side groups characterized by chemical constitution related to mesomorphic behavior tend to organize spontaneously and independently of the conditions of their preparation if given enough segmental mobility. The organization displayed can be lamellar (smectic) or directional (nematic). In the former case the macromolecular backbone is confined to a plane, while the side groups are either perpendicular or tilted with respect to the planes containing the backbone. The side groups are arranged either in single or in double arrays in which the individual side groups are mutually parallel (3). In the latter (nematic) type of organization, the backbones are not restricted to layers but the side groups keep a mutually parallel orientation throughout the domain which can reach submicroscopic dimensions. The development of liquid crystalline order in the polymer may or may not be accompanied by crystallinity. Polymers with benzoic acid side groups were studied and found to display ordering analogous to the smectic C structures of alkoxy benzoic acids (1, 2). Polymers with Schiff base side groups were found to display ordering of the smectic A (1) and nematic type (4). Literature X-ray data (5,6) can be interpreted as being generated by lamellar (smectic) structures and seem to point to the fact that in all cases the intrinsic tendency of side groups to organize is reinforced by the connectivity imposed by the polymeric backbone. Mesomorphic order in polymers with side groups containing the cholesterol moiety has scarcely been studied in spite of the importance of cholesterol derivatives in the field of liquid crystals and biological materials. The main focus of attention has been 'Present address: College of Liberal Arts and Science, Ibaraki University, Mito 310, Japan.

0-8412-0419-5/78/47-074-056$05.00/0 © 1978 American Chemical Society

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch005

5.

BLUMSTEIN E T AL.

57

Liquid Crystalline Order

c e n t e r e d around t h e study o f phase t r a n s i t i o n s o f a c r y ­ l i c ( 7 , 8, 9 ) a n d m e t h a c r y l i c ( 1 0 , 1 1 , 1 2 ) e s t e r s o f cholesterol. I n s p i t e o f c o n s i d e r a b l e c o n t r o v e r s y as to t h e l o c a t i o n o f t h e c h o l e s t e r i c phase t r a n s i t i o n i n t h e s e m o n o m e r s , t h e r e was a c o n s e n s u s t h a t p o l y m e r s o f c h o l e s t e r y l a c r y l a t e and c h o i e s t e r y l m e t h a c r y l a t e a r e amorphous. The amorphous s t r u c t u r e i s r e p o r t e d t o occur i n d e p e n d e n t l y o f t h e phase i n which t h e p o l y ­ m e r i z a t i o n has been c a r r i e d o u t , though Hardy (7) has shown t h a t polymer-monomer m i x t u r e s ( p o l y m e r i z a t i o n a t 0 C) h a v e a s m e c t i c o r g a n i z a t i o n . From o u r p o i n t o f v i e w , t h e s e s t a t e m e n t s w e r e s u r p r i s i n g as we e x p e c t e d the c h o l e s t e r i c m o i e t i e s t o i n t e r a c t s t r o n g l y and o r ­ ganize t h e polymer i n a fashion s i m i l a r t o other p o l y ­ mers w i t h m e s o g e n i c s i d e g r o u p s . They w a r r a n t e d an i n q u i r y i n t o t h e s t r u c t u r e o f polymers with c h o l e s t e r i c side groups. A r e c e n t p u b l i c a t i o n (13) w h i c h a p p e a r e d w h i l e t h i s w o r k was i n p r o g r e s s d e s c r i b e d t h e s p o n t a n e o u s development o f l a y e r e d o r d e r i n polymers w i t h t h e cho­ l e s t e r i c moiety a t t a c h e d t o t h e backbone v i a a l o n g , f l e x i b l e m o l e c u l a r s p a c e r c o n s t i t u t e d by anCo-aminocarboxylie acid chain. L a y e r e d s t r u c t u r e s a r e deve­ loped w i t h t h e long s i d e groups roughly p e r p e n d i c u l a r to t h e main c h a i n . The a u t h o r s a t t r i b u t e d t h e d e v e l o p ­ ment o f t h e s e s t r u c t u r e s t o t h e f l e x i b i l i t y o f t h e bridge connecting t h e c h o l e s t e r o l moiety. One o f t h e f a c t o r s l e a d i n g t o c o n f u s i o n i n i n t e r ­ p r e t i n g d a t a on t h e development o f o r d e r i n p o l y m e r s w i t h mesogenic s i d e groups i s t h e f r e q u e n t phase sepa­ r a t i o n taking place during the polymerization process. The i n t e r m o l e c u l a r d i s o r d e r c h a r a c t e r i z i n g t h e p r e c i ­ p i t a t e d polymer i s o f t e n "locked i n " i f the tempera­ t u r e o f p r e c i p i t a t i o n i s below t h e g l a s s t r a n s i t i o n temperature o f t h e polymer Tg. C a s t i n g o f f i l m s from good, s l o w l y e v a p o r a t i n g s o l v e n t s o r s k i l l f u l a n n e a l ­ i n g i n v a r i a b l y leads t o t h e development o f mesomorphic order ( 1 , 3 ) . S i m i l a r r e s u l t s have been a c h i e v e d w i t h p l a s t i f i c a t i o n o f p o l y ( ^ f - L - b e n z y l g l u t a m a t e ) (_14). I n t h i s p a p e r we d e s c r i b e t h e s t u d y o f d i f f e r e n t polymers c o n t a i n i n g t h e c h o l e s t e r o l moiety i n t h e s i d e g r o u p a s w e l l a s c o p o l y m e r s o f ch οle s t e r y l m e t h a c r y 1 a t e (PChMA) w i t h n - a l k y l m e t h a c r y l a t e s o f v a r i o u s c h a i n lengths. The d e v e l o p m e n t o f o r d e r i n Ρ C h M A s o f d i f ­ f e r e n t t a c t i c i t i e s i s a l s o d e s c r i b e d , p r o v i d i n g some i n s i g h t i n t o t h e f a c t o r s governing t h e development o f mesomorphic o r d e r i n polymers w i t h c h o l e s t e r i c s i d e groups. T

58

M E S O M O R P H I C ORDER I N

POLYMERS

Experimental All

s o l v e n t s and

reagents

were d i s t i l l e d

prior

to

use. Monomers. Choiesteryl p-acryloyloxybenzoate ( C h A B ) was p r e p a r e d i n t h r e e s t e p s by t h e f o l l o w i n g synthetic route : 0 Ho/0VcOOH+CH

2

0

=CH~C-Cl

Q H ^ C H = C H - C O Y Q V C 00H

Ρ

2

2) Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch005

0 S

Q

C

1

2

0

^ C H =CH-(:0-VQVCC1 9

H+

cholesterol

Figure 3. Polymer/monomer state diagram of p-methyl, p'acryloyloxyazoxybenzene ob­ tained by polarizing microscopy M composition (weight fraction of polymer). Characteristic points: (Αλ decreasing birefrin­ gence; (yf), mesomorphic transi­ tion; mesomorphic melting; (Φ), solidus; (O), liquidas. The meaning of the areas: (A), iso­ tropic liquid; (B), isotropic liquid + mesomorphic plasticized poly­ mer; (C), liquid; (D), glassy states of plasticized polymer in mesomorphic phase; (E), crystal­ line monomer -f- mesomorphic plasticized polymer in the glassy state; (F), crystalline monomer -f mesomorphic plasticized poly­ mer in the liquid state; (G), mesomorphic monomer -f- meso­ morphic plasticized polymer in the liquid state.

1

.2

.4

.6

.8

1.

_

Figure 4. Polymer/monomer state diagram of cholesterylvinyhuccinate. M , composition (weight fraction of monomer). ([J), T ; (O), change in the thermal exponent of deformation; (S7), T/, all measured by thermomechanics. (V), shift in the base line, if M < 0.5 or second peak if M > 0.5; (Φ), first peak on the DTA trace. (-{-), clearing point; (V), melting begins; (X), phase transformation, all measured by polarizing microscopy. The mean­ ing of the areas: (A), isotropic liquid; (B, C, D, and E), homo­ geneous mesomorphic plasticized polymer in liquid (B), in high elas­ tic (C and D), and in glassy state (E), respectively. Solid solutions are in solid (G) and in plasticized states (11). Mesomorphic solutions are in smectic (I) and in cholesteric (J) states. G, II, I and J are biphasic in the concentration range of0.5 This i s a strong argument suggesting that overlapping c o i l s (semid i l u t e s o l u t i o n s are necessary to obtain l i q u i d c r y s t a l l i n e order i n s o l u t i o n s of worm-like macromolecules. Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch010

1 1

III.

Mean F i e l d Theory

We now turn to the development of a crude approximation f o r the case of s e m i - d i l u t e s o l u t i o n s of h e l i o g e n i c macromolecules where the i n t e r c h a i n i n t e r a c t i o n s are important. We envisage the molecules at some f i x e d values (s,Σ) as l i n e a r arrays of a l t e r n a t ­ ing r i g i d and c o i l e d segments. The mean number of monomers per h e l i c a l segment i s V ( I I . 5 ) and the number of such segments i s given by η = (Σ/λ) (3λ/3Σ)

.

(III.l)

We assume, f o r t h i s model, that only excluded volume type i n t e r a c ­ t i o n s are important. We then approximate the r i g i d rod Onsager i n t e r a c t i o n — by the lowest angular dependent term i n i t s m u l t i p o l e expansion which i s of quadrupolar symmetry: U..

= -ek TV.V.Q.Q.

,

(III.2)

ε i s a dimensionless constant, v. . are the numbers of monomers th th »3 on the i and j segments; Q^ i s a quadrupole component a s s o c i ­ ated with the o r i e n t a t i o n of each segment Q = \

(3 c o s e - 1) 2

(III.3)

where θ i s the angle between the axis of the segment and the eventual d i r e c t i o n of nematic o r d e r i n g . Each rod experiences mean i n t e r a c t i o n energy = -egk

Β

TOVQ

a

(III.4)

where g i s the volume f r a c t i o n of the sample occupied by the mac­ romolecules, Θ i s the average f r a c t i o n of monomers i n h e l i c a l seg­ ments, and < Q > i s the o r i e n t a t i o n a l order parameter ( < Q > = 0 i n the i s o t r o p i c s t a t e ; < Q > = 1 i f a l l the molecules are r i g i d and

1 2

10.

κίΜ

A N D

Nematic Polymers

PINCUS

131

completely a l i g n e d ) . The thermodynamic p r o b a b i l i t y that a given rod makes an angle θ with the nematic axis i s p r o p o r t i o n a l to h

9

e ^ >

(III.5)

and the dimensionless

mean f i e l d h i s given by .

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch010

h = eg0

(III.6)

In order to s i m p l i f y the algebra, l e t us s p e c i a l i z e to the case of sharp h e l i x - c o i l t r a n s i t i o n s , i . e . , Σ 0 as i s common f o r the s y n t h e t i c polypeptides. (The general s i t u a t i o n w i l l be d i s ­ cussed i n a l a t e r p u b l i c a t i o n . ) For t h i s l i m i t , a given chain i s e i t h e r a f l e x i b l e c o i l or a r i g i d h e l i x , i . e . , V = 0 or Ν ( F i g . 1). The f r e e energy i s separable i n t o two c o n t r i b u t i o n s : (1) the i n t r a - m o l e c u l a r i n t e r a c t i o n s a s s o c i a t e d with the h e l i x - c o i l t r a n s i ­ t i o n ; (2) the i n t e r m o l e c u l a r excluded volume i n t e r a c t i o n s which are r e s p o n s i b l e f o r any nematic order. The d i f f e r e n c e i n f r e e energy per chain between a h e l i c a l and randomly c o i l e d molecule a r i s i n g from i n t r a m o l e c u l a r i n t e r a c t i o n s i s -N £n s. The i n t e r m o l e c u l a r excluded volume i n t e r a c t i o n s i n the mean f i e l d Meier-Saupe l i k e approximation [Eqs. (III.2) - (III.6) with V = N] gives a c o n t r i ­ bution to the f r e e energy d i f f e r e n c e , ( A F ) ^ which i s sketched i n Figure 2 as a f u n c t i o n of the nematic order parameter < Q > f o r s e v e r a l values of the monomer concentration c. For s > 1, the molecules are r i g i d and a f i r s t order l y o t r o p i c phase t r a n s i t i o n i s p r e d i c t e d to occur a t 3

c* = Νσ* = k ( N a )

- 1

.

(III.7)

For s < 1, a phase t r a n s i t i o n may only occur i f the gain i n f r e e energy of ordering exceeds the entropie cost i n l o s s of f l e x i b i l i ­ ty of the i n d i v i d u a l chains. In the (s,c) plane, the phase boundary w i l l then be given by s = exp[(AF) /Nk T] MS

B

.

For s < 1, t h i s implies ( A F ) ^ < 0 or c > c*.

(III.8) Is there a minimum

value of s (=s ) below which the nematic s t a t e i s never stable? We m may estimate that the minimum value of (AF) by s e t t i n g V, = Ν and Q. = 1 i n ( I I I . 2 ) . Then, we f i n d 1

(AF)

(HI.9)

3

m s

> -£k TN(ca ) B

3

where the f a c t o r c a i s the volume f r a c t i o n of the sample occupied by polymer. Thus at the highest concentrations, c a 1, we obtain 3

( A F )

MS " -

£ N k

B

T

(III.10)

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch010

132

M E S O M O R P H I C

ORDER

I N

P O L Y M E R S

Figure 1. Persistence length ν as a function of s for several values of X. For the I sing limit % = 1, the slope of the straight line is N" . For % < < 1, the value v(s = 1) = σ~ . 1/2

1

OC*

Figure 2. Difference in free energy between nematic and isotropic phases of a rigid rod solution for differ­ ent values of the monomer concentration c. There is a predictedfirst-orderlyotropic transition at c = c* = Νσ* = k/Na . 3

10.

κίΜ

A N D PINCUS

Nematic

133

Polymers

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch010

MESOMORPHIC PHASE

ISOTROPIC PHASE

c*

Figure 3. Phase boundary separating the isotropic and nematic phases in the cooperative limit X - » 0. The area to the right of the solid line and below s = 1 represents the region of induced rigidity.

134

M E S O M O R P H I C ORDER IN P O L Y M E R S

or s

- e . For ε - 1, s ^ 1/2, which is a significant renormal­ in * m * ization of the helix-coil transition. This phase boundary is sketched in (Fig. 3) for Σ 0. The experimental signature of the induced rigidity part of the boundary would be, for example, jumps in both the rotary dispersion (helix-coil transition) and optical birefringence (isotropic-nematic transition) at the same polymer concentration. Indeed for PBLG in dichloroacetic acid, the early work of Robinson et al.— gives some indications of such behavior. More recent studies in the same system by Frenkel et al.-H and UematsuLi provide further evidence in support of the induced rigidity concept.

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch010

IV.

&

Final Remarks

The principal goal of this work is to pursue the concept of induced rigidity.— Our current investigations include extensions to the cases of arbitrary values of the cooperativity parameter 1 > Σ > 0, more accurate treatments of the rod-rod excluded volume interaction,— and the inclusion of some attractive dispersion forces. While we refer to the phase transition as lyotropic, in fact we do expect that i t also occurs as a function of temperature (as, well as pH, ionic strength, etc.) because of the dependence of s on these parameters. We must further emphasize the semi­ quantitative nature of our results. Indeed under most actual cir­ cumstances, s and c will not be completely independent variables. Nevertheless we believe that the physical picture presented here has some relation to reality. Abstract 9

We have previously suggested that a cooperative helix-coil­nematic phase transition may occur in solutions of heliogenic macromolecules such as the synthetic polypeptides (e.g., PBLG). In this study, we extend the model to the more explicit case of excluded volume interactions only. For the special case of fully cooperative isolated molecule helix-coil transitions, we sketch out the phase boundary between isotropic and nematic regions. Literature Cited 1. 2. 3. 4.

Such systems were discussed in detail at the ACS Symposium on Rigid Chain Polymers, New Orleans, March, 1977, Polymer Pre­ prints (1977) 18, 1, and J . Poly. Sci. (to be published). ACS Symposium on Mesomorphic Order in Polymers, Chicago, August, 1977, Polymer Preprints (1977) 18, 2. Blumstein, A., "Liquid Crystalline Order in Polymers," Academic Press, New York, 1977 (to be published). Robinson, Ward, and Βevers, Discuss Faraday Soc. (1958) 25, 29.

10.

5. 6. 7. 8. 9. 10.

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch010

11. 12. 13. 14. 15. 16.

κίΜ

A N D PINCUS

Nematic Polymers

135

Murthy, N . S . , I. R. Knox, and Ε. T . Samulski, J. Chem. Phys. (1976) 65, 4835. Onsager, L., Ann. Ν. Y . Acad. Sci. (1949) 51, 627. F l o r y , P. J., Proc. Roy. Soc. (1956) A234, 73. Wadati, Μ . , and A . I s i h a r a , M o l . C r y s t . Liq. C r y s t . (1976) 1 7 , 95. P i n c u s , P., and P. G . de Gennes, Polymer P r e p r i n t s (1977) 18, 131, and J. P o l y . Sci. (to be p u b l i s h e d ) . The statistical mechanics of helix-coil transitions i s well discussed in B i r s h t e i n , Τ. Μ . , and O. Β . Pititsyn, "Conforma­ t i o n s of Macromolecules," I n t e r s c i e n c e , New York, 1966, Chapters 9 and 10. Yamakawa, Η . , and W. H . Stockmeyer, J . Chem. Phys. (1977) 57, 2843. P i n c u s , P., "Macromolecules" (to be p u b l i s h e d ) . See, f o r example, de Gennes, P. G., "The Physics of L i q u i d Crystals," Clarence P r e s s , Oxford, 1975, Chapter 2. F r e n k e l ' , S. Ya., L . G. S h a l t y k o , and G. K. E l y a s h e v i c h , J . Polymer Sci. (1970) C 56, 47. Uematsu, Υ., P r i v a t e Communication. An e x c e l l e n t review of t h i s subject appears i n S t r a l e y , J. P., Molecular C r y s t a l s and L i q u i d C r y s t a l s (1973) 22, 333.

RECEIVED December 8, 1977.

11 Structure and Properties of Polyglutamates in Concentrated Solutions Y. UEMATSU Department of Industrial Chemistry, Tokyo Institute of Polytechnics, Atsugi, Kanagawa, 243-02, Japan

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch011

I. UEMATSU Tokyo Institute of Technology, Megro, Tokyo, 152, Japan

It is well known that some polypeptides form lyotropic liquid crystals at sufficiently high concentrarion of the polymers and exhibit the optical properties characteristic of the cholesteric mesophase. The solutions show the regular striation arranged in a finger - printed pattern under a polarization microscope. Robinson et at have reported that the distance between the striation,S, which is the half pitch of the twisted structure, varies with polymer concentration in an inverse manner. They also discussed the molecular arrangement in the twisted structure in the light of X-ray and other measurements. They suggested that the long-range, electric dipole-dipole interactio plays an important role in the formation of the cholesteric structure, and the helical arrangement of dipoles in the polypeptide molecules would tend to impose a unidirectional twist. From the smallness of the twist angle and the fact that it decreases on dilution, they pointed out that the twistangle arises from a dynamic equilibrium. Samulski et al suggested that an asymetric helical molecular conformation may provide an explanation f o r the c h o l e s t e r i c s t r u c t u r e , and very small oscillations of h e l i c e s r e l a t i v e to t h e i r neighbors in the liquid c r y s t a l would be biased to one side of the parallel p o s i t i o n because of the chirality of the van der Waals surface of the polypeptide molecules. Further, they found a l i n e a r r e l a t i o n s h i p between the p i t c h and the r e c i p r o c a l of temperature. This r e l a t i o n holds quite w e l l f o r a numb er of thermotropic l i q u i d crys t a l sys t ems and was explained t h e o r e t i c a l l y by Keating!) , who treated the macroscopic twis t as a r o t a t i o n a l analogue of thermal expansion with the dominant anharmonic forces coming from nearest neighI)

2)

0-8412-0419-5/78/47-074-136$05.50/0 © 1978 American Chemical Society

11.

U E M A T S U

bors.

A N D

U E M A T S U

The t h e o r y

Poly glutamate s in Concentrated Solutions

gives

the f o l l o w i n g

137

relationship:

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch011

^dlw AkT where k i s the Boltzmann c o n s t a n t , d , the s p a c i n g b e t w e e n n e i g h b o r i n g p l a n e s o f m o l e c u l e s , w, t h e f r e ­ q u e n c y o f t h e e x c i t e d t w i s t m o d e s , I , t h e moment o f i n e r t i a o f t h e m o l e c u l e , and A , t h e c o n s t a n t i n t h e c u b i c a n h a r m o n i c i t y term of the anharmonic e q u a t i o n of m o t i o n d e s c r i b i n g t h e s y s t e m . However, the p i t c h for the p o l y p e p t i d e l i q u i d c r y s t a l s increases with temperature, w h i l e i t decreases f o r the thermotropic liquid crystals. Recently, there are several report discuss ins t h e t w i s t mode o f t h e b i n a r y s y s t e m o f t h e t h e r m o t r o ­ pic liquid crystals composed of a n e m a t i c s o l v e n t and a c h o l e s t e r i c s o l u t e . Another i n t e r e s t i s i n a t t e m p t i n g to pursue the s t r u c t u r a l s i m i l a r i t y between t h e r m o t r o p i c l i q u i d c r y s t a l s and l y o t r o p i c o n e , e s p e ­ c i a l l y f o r t h e d e p e n d e n c e o f c h o l e s t e r i c p i t c h on t h e temperature. One o f t h e b e s t m e a s u r e s o f t w i s t i s t h o u g h t t o be t h e c h o l e s t e r i c p i t c h . The t e m p e r a t u r e dependence of c h o i e s t e r i c p i t c h i s t h e n m e a s u r e d f o r p o l y - γ b e n z y l - L - , and p o l y - y - b e n z y 1 - D - g l u t a m a t e s ( PBLG, and PBDG ) a n d p o l y - y - a l k y 1 - L - g l u t a m a t e s , i n v a r i o u s s o l ­ v e n t s y s t ems. T h e t e m p e r a t u r e d e p e n d e n c e o f some p h y ­ s i c a l p r o p e r t i e s were a l s o m e a s u r e d . Experimental. PBLG ( mw: 2 0 1 , 0 0 0 ) a n d PBDG ( mw: 1 9 7 , 0 0 0 ) u s e d i n t h i s s t u d y were sup 1 i e d b y A j inomo t ο C o . L t d . J a p a n , a n d some s p e c i m e n s o f PBLG w e r e p r e p a r e d b y p o l y m e r i z a t i o n of N - c a r b o x y a n h y d r i d e of γ - b e n z y 1 - L glutamate. P o l y - y - a l k y 1 - L - g l u t a m a t e s ( PALG ) w e r e p r e p a r e d f r o m p o l y - y - m e t h y 1 - L - g l u t a m a t e ( mw: 2 5 0 , 0 0 0 ) by a l c o h o l y s i s by w h i ch a l l m e t h y l r a d i c a l s i n t h e s i d e c h a i n s c a n be r e p l a c e d w i t h t h e d e s i r e d a l k y 1 radicals. P o l y - y - a l k y 1 - L - g l u t amat es u s e d i n t h i s s t u d y w e r e w i t h a l k y 1 g r o u p s s u c h as e t h y l , n - p r o p y 1 , n - b u t y 1 , η - a m y 1 , n - h exy1 , n - h e p t y 1 , and n - o c t y 1 . From t h e v i s c o s i t y measurement s i n d i c h l o r o a c e t i c acid t h e m o l e c u l a r w e i g h t s o f p o l y g l u t a m a t e s were est imat e d . T h e s o l u t i o n s were p r e p a r e d b y w e i g h i n g the p o l y m e r and s o l v e n t i n a s t o p p e r e d b o t t l e . A f t e r s h a k i n g s l o w l y on a magnet i c s t i r r e r f o r long time, t h e s o l u t i o n s were p u t c a r e f u l l y i n t o t h e c e l l , w h i c h was h a v i n g p a r a l l e l s i d e s 2mm a p a r t . Then t h e top o f t h e c a p i l l a r y o f t h e c e l l was s e a l e d t o p r e v e n t t h e

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch011

138

M E S O M O R P H I C

ORDER

I N

P O L Y M E R S

l o s s o f s o l v e n t by v a p o r i z a t i o n . The c o n c e n t r a t i o n was c a l c u l a t e d by u s i n g 0 . 7 8 7 m l / g as t h e s p e c i f i c v o l u m e o f P B G , and 0 . 8 3 m l / g as t h a t o f PALG s , and e x p r e s s e d i n the u n i t s v o l / v o l . A f t e r on s t a n d i n g , u n t i l a r e g u l a r s t r u c t u r e a p p e a r e d , we m e a s u r e d t h e half p i t c h with a p o l a r i z a t i o n microscope. The t e m ­ p e r a t u r e o f t h e s a m p l e was r e g u l a t e d w i t h i n + 0 . 2 ° C by u s e o f a c o n s t a n t t e m p e r a t u r e c i r c u l a t o r . The measurements were c a r r i e d out a f t e r m a i n t a i n i n g the s p e c i m e n s f o r 12 h r s a t e a c h temperature. D i l a t o m e t r i c measurements were c a r r i e d out u s i n g Hg as a c o n f i n i n g l i q u i d , w h i c h was t r a n s f e r r e d i n t o the d i l a t o m e t e r a f t e r s o l i d i f y i n g the sample s o l u t i o n by l i q u i d n i t r o g e n . CD s p e c t r a , were m e a s u r e d w i t h JASCO O R D / U V - 5 0 o v e r t h e r e g i o n f r o m 220 t o 300nm. NMR s p e c t r a w e r e m e a s u r e d by u s e o f J E O L M H - 1 0 0 . The t i m e r e q u i r e d t o a r r i v e a t e q u i l i b r i u m v a r i e d f r o m one t o s e v e r a l h o u r s . The s o l v e n t s u s e d h e r e were p u r i f i e d by s t a n d a r d m e t h o d s . R e s u l t s and d i s c u s s i o n . In g e n e r a l the c h o l e s t e r i c p i t c h of t h e r m o t r o p i c l i q u i d c r y s t a l s decreases with temperature. The theore t i c a l treatments f o r t h i s b e h a v i o r have been r e ported3,4). H o w e v e r , i t was f o u n d t h a t f o r a b i n a r y s y s t e m , t h e d e p e n d e n c e o f t h e c h o l e s t e r i c p i t c h on t e m p e r a t u r e changes f r o m ρ o s i t i v e to n e g a t i v e at a c r i t i c a l compos i t i o n . F o r the b i n a r y s y s t e m of t h e r ­ m o t r o p i c l i q u i d c r y s t a l s , c o m p o s e d o f c h o i e s t e r i c and nemat i c s u b s t a n c e s , d S / d T i s g r e a t e r t h a n z e r o i n t h e nemat i c r i c h r e g i o n , and d S / d T i s l e s s t h a n z e r o i n the c h o l e s t e r i c r i c h r e g i o n . I n t h i s p a p e r , we h a v e i n v e s t i g a t ed t h e t e m p e r a t u r e d e p e n d e n c e o f cholesteric p i t c h f o r the p o l y p e p t i d e l i q u i d crystals. R e c e n t l y DuPre et a l l } reported that , S increases l i n e a r l y with temperature r i s e . Qualitatively, their r e s u l t s are c o n s i s t e n t w i t h o u r s . However, the time r e q u i r e d to r e a c h the e q u i l i b r i u m p i t c h , v a r i e d w i t h temperature, t h e c o n c e n t r a t i o n o f p o l y m e r , and a l s o the t h e r m a l h i s t o r y . F o r PBLG s o l u t i o n i n d i c h l o r o e t h a n e (EDC) , w h i c h c o n c e n t r â t i o n i s 0 . 1 2 v o 1 / v o 1 , the v a r i a t i o n o f p i t c h w i t h t i m e was m e a s u r e d a t a c o n s t a n t t e m p e r a t u r e by T - j ump m e t h o d . F i g . 1 shows t h e t i m e d e p e n d e n c e o f c h o i e s t e r i c p i t c h by t h e T - j ump m e t h o d f r o m - 2 ° C t o + 3 0 ° C , 4 0 ° C and 50°C r e s p e c t i v e l y . I t i s c l e a r t h a t the time r e q u i r e d to a r r i v e at the equilibrium pitch i s s h o r t e r at h i g h e r temperature but i s s t i l l over s e v e r a l h o u r s . T h e r e f o r e , the e q u i l i b r i u m p i t c h mu s t be m e a s u r e d a f t e r p r o l o n g e d a g i n g at each m e a s u r i n g t e m p e r a t u r e . 11 was f o u n d t h a t the

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch011

11.

U E M A T S U

A N D U E M A T S U

Poly glutamates in Concentrated Solutions

139

h a l f p i t c h , S , i n c r e a s e d mono t o n i c a l l y w i t h t e m p e r a t u r e , and f i n a l l y , r e t a r d a t i o n l i n e d i s a p p e a r e d a t a c r i t i c a l t e m p e r a t u r e , and t h e b i r e f r i n g e n c e c h a r a c t e r i s t i c of t h e nemat i c s t r u c t u r e was ob s e r v e d . P l o t o f S v e r s u s t e m p e r a t u r e f o r PBDG i n c h l o r o f o r m i s shown i n f i g . 2 . T h i s b e h a v i o r c o r r e s p o n d s to the b e h a v i o r of b i n a r y m i x t u r e of t h e r m o t r o p i c l i q u i d c r y s t a l s i n t h e nemat i c r i c h r e g i o n . As shown i n f i g . 3, t h e r e c i p r o c a l o f t h e h a l f p i t c h wh i c h i s p r o p o r t i o n a l to the a n g l e of t w i s t between ( 10Ï0) ρ l a n e s , i s a l i n e a r f une t i o n o f t e m p e r a t u r e . The critical t e m p e r a t u r e , w h e r e 1/S = 0, was ob t a i n e d f r o m t h e e x ­ t r a p o l a t i o n o f t h i s c u r v e , and was d e f i n e d as t h e n e ­ m a t i c t e m p e r a t u r e , T^. The o p t i c a l p a t t e r n c h a r a c t e ­ r i s t i c o f t h e nemat i c s t a t e was o b s e r v e d i n t h i s r e ­ g i o n under the p o l a r i z a t i o n m i c r o s c o p e . DuPre et a l def i n e d t h i s t e m p e r a t u r e as t h e c l e a r i n g p o i n t ' ,s i n c e the t w i s t e l a s t i c c o n s t a n t k22> o b t a i n e d f r o m t h e o r i ­ e n t a t i o n i n a magnet i c f i e l d t e n d s t o w a r d z e r o a t t h i s temperature. H o w e v e r , f r o m t h e ob s e r v a t i o n by a p o l a ­ r i z a t i o n m i c r o s c o p e , i t i s o b v i o u s t h a t the newly ap­ p e a r e d p h a s e i s n o t an i s o t r o p i c o n e . The f a c t t h a t k22 t e n d s t o w a r d z e r ο , c a n be e x p l a i n e d w i t h t h e p r e ­ sence of the s i z e of the c l u s t e r of c o h e r e n t l e n g t h , i n w h i c h t h e m o l e c u l e s w o u l d be a r r a n g e d p a r a l l e l . In o r d e r t o o b t a i n t h e r e l a t i o n s h i p b e t w e e n S and the c o n c e n t r a t i o n C, a d o u b l e l o g a r i t h m i c p l o t o f S a g a i n s t C a t e a c h t e m p e r a t u r e was made as shown i n f i g . 4. I t c a n be s e e n t h a t l o g S i s p r o p o r t i o n a l t o l o g C a n d , i t s s l o p e n i s an i n c r e a s i n g f u n e t i o n o f t e m p e r a t u r e , c h a r a c t e r i s t i c of the specimens used. The e x t r a p o l a t e d l i n e o f l o g S - l o g C c r o s s e d e a c h other at a c r i t i c a l c o n c e n t r a t i o n C a t wh i c h S s t a y s c o n s t a n t and i n d e p e n d e n t ο f t e m p e r a t u r e . These r e s u l t s sugges t t h a t the temperature dependence of the c h o l e s t e r i c p i t c h would i n f l e c t at the concentrât i o n higher than C . T h i s i s analogous to the b e h a v i o r of t h e r m o t r o p i c l i q u i d c r y s t a l s comp o s ed o f c h o i e s t er i c s o l u t e and nemat i c s o l v e n t , w h e r e t h e s i g n o f dS/dT r e v e r s e s a t a c r i t i c a l c o n c e n t r a t i o n . 11 i s u n d e r s t o o d t h a t t h e b e h a v i o r o f b o t h t h e r m o t r o p i c and l y o t r o p i c l i q u i d c r y s t a l s i s comparable p r o v i d e d that the nemat i c s ub s t a n c e s o f t h e f o rmer a r e s u b s t i t u t e d w i t h the s o l v e n t s of the l a t t e r . The c r i t i c a l c o n centration C i s a b o u t 0.41 v o l / v o l and t h i s v a l u e i s v e r y c l o s e to the c o n c e n t r a t i o n at which the s i d e c h a i n s on ne i g h b o r i n g m o l e c u l e s o f t h e p o l y m e r come to c o n t a c t e a c h o t h e r ( r e f e r t o f i g . 5 ) . From t h e s e r e s u l t s , i t i s e x p e c t e d t h a t t h e o r i g i n o r me c h a n i s m of t w i s t w o u l d c h a n g e a t t h i s c o n c e n t r a t i o n C . The T

Q

Q

0

Q

MESOMORPHIC

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch011

140

3

0

0

ORDER IN

Time (min.)

Figure 1. The change of cholesteric pitch with time for PBLG-EDC. Polymer concentration is 0.12 vol/vol.

Figure 2. The change of S with temperature for PBDG-CHCk. Numbers represent the concentration of polymer.

POLYMERS

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch011

U E M A T S U

A N D

U E M A T S U

Ρ olij glutamate s in Concentrated Solutions

Figure 3. 1/S vs. temperature for PBDG—EDC. Concentration (from top to bottom) 0.30, 0.23, 0.175, 0.135 (vol/vol).

141

142

M E S O M O R P H I C ORDER IN P O L Y M E R S

e x t r a p o l a t i o n of the p l o t of l o g S v e r s u s l o g C , to C = 1, g i v e s the h a l f p i t c h of pure p o l y m e r , which i s a d e c r e a s i n g f u n c t i o n of t e m p e r a t u r e ; and t h i s b e h a ­ v i o r i s a n a l o g o u s to t h a t of t h e r m o t r o p i c cholesteric liquid crystals. I t i s c o n v e n i e n t to use the r e d u c e d temperature T/T^j, where i s the nematic t e m p e r a t u r e , i n s t e a d of temperature T , i n the temperature range near T . Fig. 6 shows t h e o b s e r v e d v a l u e s o f 1/S v e r s u s Τ / T , f o r PBDG i n c h l o r o f o r m , a t v a r i o u s concentrations. The s l o p e Β d e p e n d s on t h e c o n c e n t r a t i o n , and i t i n c ­ reases with concentration. If the c h o l e s t e r i c p i t c h was m e a s u r e d a t c o n s t a n t c o n c e n t r a t i o n , t h e f o l l o w i n g equation holds: N

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch011

N

1/S

= Β (

1 -

T/T

N

)

The d e p e n d e n c e o f Β on t h e c o n c e n t r a t i o n o f p o l y m e r was o b t a i n e d f r o m t h e p l o t o f l o g 1/P o r 1/S against l o g C , at each T / T . The v a l u e s o f t h e s l o p e η a r e constant and i n d e p e n d e n t o f t e m p e r a t u r e ( f i g . 7 ). A c c o r d i n g t o Rob i n s o n i ) , t h e f o l l o w i n g r e l a t i o n holds : N

θ

Hence

=

Ιττά/Έ

or

ud/S

θ = ( A/d2n-l)(

and

l -

T

C 5 1 ° ; no part of the r e o r i e n t a t i o n curve could be f i t by Equation 1. The d e v i a t i o n from the p r e d i c t e d r e o r i e n t a t i o n curves de­ s c r i b e d above suggests that some fundamental change i n the r e ­ o r i e n t a t i o n mechanism might be o c c u r r i n g . T h i s conjecture i s supported by the changes i n the appearance of the NMR spectra during " y i e l d i n g " . The p a i r of peaks begin to shorten and broad­ en, with shoulders or small a d d i t i o n a l peaks appearing between them, i n d i c a t i n g a d i s r u p t i o n of the o r i g i n a l degree of order of the PBG molecules. None of these changes i n the NMR l i n e shape occurs when Qq < Q . Even a f t e r s e v e r a l consecutive r e o r i e n t a ­ t i o n s below θ , the same " A " value i s found to apply f o r each r e ­ o r i e n t a t i o n and the only v a r i a t i o n i n peak height as the peak sep­ a r a t i o n changes i s due to magnetic s u s c e p t i b i l i t y e f f e c t s (l5 ) » The d i s r u p t i o n of the b a s i c s t r u c t u r e of the l i q u i d c r y s t a l , f o r any reason, can have serious i m p l i c a t i o n s concerning the use of Equations 1 and 2. For example, i f the "microelement" of the continuum theory i s composed of a c o l l e c t i o n of PBG molecules a c t i n g i n a cooperative f a s h i o n , then any change i n the PBG degree of order c o n t r a d i c t s the assumption of a constant m i c r o ­ element, upon which the d e r i v a t i o n of Equation 1 i s based. The c o n d i t i o n s r e q u i s i t e f o r the use of Equation 2 are a l s o v i o l a t e d once d i s r u p t i o n begins to occur. The values of θ p l o t t e d i n F i g u r e 1 with • and Δ a r e , t h e r e f o r e , not to be taken l i t e r a l l y as a n g l e s , but r a t h e r as "apparent" a n g l e s . The reason f o r the existence of a c r i t i c a l angle and the d i s r u p t i o n that occurs when θο > θ can be explained by the f a c t that even at e q u i l i b r i u m with the f i e l d not a l l the PBG molecules are p e r f e c t l y a l i g n e d . Orwoll and Void (ik) have shown, f o r ex­ ample, that only about Qjfo of the polypeptide h e l i c i e s i n t h e i r sample (17-5% P B L G / C H o C l ; molecular weight 310 000; l h . l kG f i e l d ) were w i t h i n 20 of the f i e l d d i r e c t i o n . I f θο i s large 1

1

1

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch012

0

0

C

C

0

0

2

160

M E S O M O R P H I C ORDER IN P O L Y M E R S

enough so that some PBG molecules are rotated beyond 90 to the f i e l d , then some f r a c t i o n of them w i l l r e o r i e n t i n the opposite d i r e c t i o n from the remainder. This process has been c a l l e d " c o u n t e r r o t a t i o n " and i s r e s p o n s i b l e f o r at l e a s t a p a r t i a l randomization of the PBG axes (lA ) . Figure 2 shows a sequence of spectra of a 27-2$ PBDG sample at various times a f t e r a 75° r o t a ­ t i o n of the sample. In less than h a l f a minute the o r i g i n a l doublet (A) has s p l i t i n t o a quartet (B), the inner peaks ap­ proaching each other while the outer two are separating. In (c), the two inner peaks have merged into one, and i n (D) they have separated again, now moving a p a r t . As the r e o r i e n t a t i o n c o n t i n ­ ues ( Ε - ! ) the peaks f i r s t broaden, then sharpen again, e v e n t u a l l y r e t u r n i n g to t h e i r o r i g i n a l shape and separation as i n ( A ) . These r e s u l t s are very s i m i l a r to those presented by Orwoll and Void and are good evidence for the existence of c o u n t e r r o t a t i n g regions. It i s a l s o p o s s i b l e to detect the onset of changes i n the p h y s i c a l p r o p e r t i e s of the system by other procedures. For exam­ p l e , the apparent v i s c o s i t y (T] ) of the l i q u i d c r y s t a l , as meas­ ured by the f a l l i n g sphere method, i s very s e n s i t i v e to any d i s ­ r u p t i o n of the o r i e n t a t i o n of the PBG molecules. When θο < θ , ΤΙ i s found to remain constant at a l l times during the r e o r i e n t a t i o n . Above Q , however, T] f i r s t decreases, goes through a minimum, then increases back to i t s o r i g i n a l v a l u e . The maximum amount of c o u n t e r r o t a t i o n (and d i s r u p t i o n ) occurs when θο = 90°, and the change i n 7| as a f u n c t i o n of time a f t e r such a r e o r i e n t a t i o n i s shown i n Figure 3. Of course, the v i s c o s i t y of the l i q u i d c r y s t a l can only be sampled once during any given experiment, so each data point represents a separate sequence of o r i e n t a t i o n , r o t a t i o n , and measurement. In order to a c c u r a t e l y determine Q from v i s c o s i t y measure­ ments, i t i s d e s i r a b l e to amplify the small d i s r u p t i v e e f f e c t s that occur when θο 8S); (U) (>10S); (G) (~10 S ) ; (C) (8-13 S); (I) (10-15 S). Concentrations of p o l y n u c l e o t i d e s in 0.01 M phosphate/ 0.1 M NaCl (PBS/ pH 7 . 2 ) w e r e d e t e r m i n e d s p e c t r o p h o t o m e t r i c a l l y by u s i n g the f o l l o w i n g e x t i n c t i o n c o e f f i c i e n t s : (A)p · £max=l0.000; (U) : £ x=9.430; (G) : S *9.600; (C) : * m a x ° ; ( )n* ^ a x ' ' n

n

n

n

n

n

=

6

1

5

I

m

a

n

s

l

0

4

0

n

mQX

0

CT-DNA C a l f - t h y m u s DNA was a k i n d g i f t of Dr.G.Luck (Central Institute of M i c r o b i o l o g y and Ex­ p e r i m e n t a l T h e r a p y , A c a d e m y o f S c i e n c e s o f t h e GDR) w i t h a content of 0.28 % of p r o t e i n , s t a b i l i z e d w i t h c h l o r o f o r m . The s t o c k s o l u t i o n was d i l u t e d t o an O D 6 o o f 0 . 6 2 5 by means o f a 0 . 0 0 1 M N a C l s o l u t i o n . 2

Monomeric Thermotropics Long-chained 2-pyridone5 - c a r b o x y l i c e s t e r s were prepared from 2 - p y r i d o n e - 5 c a r b o x y l i c a c i d and the c o r r e s p o n d i n g h a l f e t h e r s of hydroquinone by e s t e r i f i c a t i o n w i t h Ν,Ν -carbonyld i i m i d a z o l e a c c o r d i n g to the S t a a b - p r o c e d u r e (48). D e t a i l e d d e s c r i p t i o n s w i l l be g i v e n e l s e w h e r e JTQ). Long-chained e s t e r s of e n a n t i o m e r i c estradiols and l o n g - c h a i n e d e s t e r - a n i l e s of e n a n t i o m e r i c estro­ nes w e r e p r e p a r e d by m e t h o d s p r e v i o u s l y described ( 5 0 , 5 1 , 5 3 ) . The e n a n t i o m e r i c e s t r o n e s and e s t r a d i o l s β

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

182

MESOMORPHIC

ORDER IN

Figure 1. Amphophilic pattern development in nucleic acids, proteins, and membranes

Figure 2. Nucleic acids "strangening' program

POLYMERS

14.

H O F F M A N N

were w i l l

A N D

wiTKOwsKi

Biomesogens and Their Models

p u r c h a s e d from VEB Jenapharm. F u r t h e r be r e p o r t e d e l s e w h e r e (54,55).

183

details

Base-Pair Analogues 2.7-bis - [(dialkylaminoand {oxa}oligoalkylenimino)-acetylamino]-fluo ren-9-ones ("fluoramides" 1-5) w e r e p r e p a r e d v i a the corresponding 2 . 7 - b i s - [(chloroacetyl)-amino]-fluoren-9-one by a procedure described recently (56); see also (57).

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

Vinylmonomers f o r Homo- and C o p o l y m e r i z a t i o n R e actions 1-Vinyluracil, 9-viny1hypoxanthine, and 9 v i n y l a d e n i n e w e r e p r e p a r e d by p r e v i o u s l y described methods ( 5 8 - 6 2 ) , 1 - v i n y l c y t o s i n e by t h e a m m o n o l y s i s of l-vinyl-4-methylthiopyrimidine-2-one (62,63). Polynucleotide Strand-Analogues The following p o l y m e r s ( T a b l e s I and II) w e r e p r e p a r e d by A I B N - o r f-ray induced (Laboratory R a d i a t i o n U n i t R C H - y - 3 0 as a ^OCo-source) p o l y m e r i z a t i o n and copolymerization reactions, respectively, followed in case of (vA, l v O H 3 o . 7 ) n by a p o l y m e r a n a l o g o u s r e a c t i o n . The start i n g amounts of N - v i n y l n u c l e o b a s e s and t h e i r comonomers were a d j u s t e d to y i e l d a n e a r l y 1 : 1 - r a t i o i n the copolymers. Sedimentation Experiments Sedimentation measurements were c a r r i e d out u s i n g a S p i n c o Model E u l tracentrifuge, e q u i p p e d w i t h an u l t r a v i o l e t absorption o p t i c , a monochromator and a p h o t o e l e c t r i c a l s c a n n e r , i n a way p r e v i o u s l y d e s c r i b e d (66). Base-Pairing Experiments Methods employed for b a s e - p a i r c o m p l e x a t i o n have been d e s c r i b e d previously ( 6 2 , 6 4 , 7 3 , 7 4 ) . U l t r a v i o l e t m i x i n g and t h e r m a l profile e x p e r i m e n t s w e r e p e r f o r m e d a c c o r d i n g t o common p r o c e dures ( 7 3 , 7 4 ) . S p e c t r a f o r mixing curves were measur e d w i t h an U n i c a m S P 1 8 0 0 s p e c t r o p h o t o m e t e r (62,64, 7 5 ) * M e l t i n g c u r v e s w e r e run on t h e same s p e c t r o m e t e r , e q u i p p e d w i t h a SP 871 t e m p e r a t u r e program c o n t r ô l e r ( 6 2 , 6 4 , 7 5 ) . ORD s p e c t r a w e r e m a d e o n a 3 a s c o 0R0/UV-5 spectrometer, and the c i r c u l a r d i c h r o i c s p e c t r a were r e c o r d e d on a Gary M o d e l 6 0 s p e c t r o m e t e r , e q u i p p e d w i t h a M o d e l 6 0 0 1 CD a c c e s s o r y (64,75,76). Electron-Microscopic Studies taken at 36.000 · m a g n i f i c a t i o n s i n a c c o r d i n g to procedures p r e v i o u s l y Hysteresis m e a s u r e m e n t s by

Micrographs an E l m i s k o p given ( 6 5 ) «

were IA

Experiments Molecular hysteresis c y c l i c acid-base t i t r a t i o n s of the

184

M E S O M O R P H I C

Table

n

(vU)

n

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

Table

Induction

I I

(vA,[vC00Na]

0 > 8

(vA,

1

)

3

0

>

7

7

)

2

' W P ]

(vA.IvI]

0

.

0

1

#

9

1


: L

)

8

)

n

n

n

)

( ν Α . [ ν » 3 ι α ]

n

n

ivC0NH ]

(VA, [vPn]

(vC.

n

4

o

(vA,[vOH]

A

(58-61,67-70)

Ura

(58-61,67-70)

X

[vC00Na] " )'

(vA.[vS0 Na] ; )

v

Ade

Copolymers

Copolymer

(

Lit.

Β

AIBN

Β

(vA.

I N P O L Y M E R S

Homopolymers

I

Polymer (vA)

ORDER

0

n

ι

6

)

η

1

>

4

)

[ v œ O N a ]

M

(vC,

[vCX50Na] )'

(vH,

[vCOONa)^

(vH.

tvC00Na]

2

/

) '

:I n d u c t i o n

Β

X

Lit.

AIBN

Ade

COO Ν a

(66,68)

t AIBN

Ade

COON a

(66,68)

Ade

S0 Na

(75)

AIBN

Ade

OH

(65,66)

A I BN

Ade

C0NH

AIBN

Ade

2-pyrrolidone1-yl

AIBN

)

(75) (75)

Ade

4-pyridyl

(75)

Ade

imidazol-l-yl

(75)

AIBN

Ade

3-methyl[(imidazoll-yl) -ium] iodide

(75)

n

n

n

2

AIBN

n

1 > 1

3

Ï AIBN

Ura

COO Ν a

(67,68)

Cyt

COON a

(69,75)

Cyt

COO Ν a

(62,69)

Hyp

COON a

(62,75)

Hyp

COON a

(69)

14.

H O F F M A N N

A N D

Biomesogens and Their Models

wiTKowsKi

185

triplexes ( Ι ) · ( Α ) · ( Ι ) and ( U ) - ( Α ) · ( I ) were car­ r i e d o u t as p r e v i o u s l y d e s c r i b e d ( 1 2 - 1 4 , 7 2 ) , u s i n g the t e c h n i q u e s o f Neumann and K a t c h a l s k y ( 1 , 2 , 4 ) . Titra­ tions were performed in a m o d i f i e d USP-2 spectrometer o f t h e A c a d e m y o f S c i e n c e s o f t h e G D R , w i t h a pH r a n g i n g from 7 . 1 to 3 . 2 5 . η

η

η

n

η

n

DNA-Interaction Measurements ONA i n t e r a c t i o n s w i t h f l u o r a m i d e s w e r e s t u d i e d by D N A - t i t r a t i o n with t h e i n t e r c a l a t o r . M e l t i n g p r o f i l s w e r e o b t a i n e d on U n i c a m S P 1 8 0 0 s p e c t r o p h o t o m e t e r a n d CD s p e c t r a o n a C a r y M o d e l 60 as d e s c r i b e d above u n d e r " b a s e - p a i r i n g s "

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

(21)· Biological Tests The p o l y m e r s w e r e t e s t e d as s i n g l e s t r a n d s i n e u k a r y o t i c and v i r a l p o l y m e r a s e sy­ s t e m s . In b a s e - p a i r e d c o m p l e x e s w i t h t h e i r mate poly­ n u c l e o t i d e s they were t e s t e d w i t h regard to antiviral a c t i v i t i e s in establishing a n t i v i r a l states, inducing and p r i m i n g interferon. CT-polymerase Β (DNA-dependent RNA-polymerase) was o b t a i n e d from c a l f - t h y m u s t i s s u e s and a s s a y e d as reported e a r l i e r (71). A c t i v i t y measurements were per­ formed in a toluene systern, u s i n g a L i q u i d S c i n t i l l a ­ t i o n Counter Mark I ( N u c l e a r Chicago). AMV-Revertase (RNA-dependent DNA-polymerase) was a s s a y e d i n an e n d o g e n o u s A M V - s y s t e m as p r e v i o u s l y de­ s c r i b e d ( 7 0 ) . A v i a n M y e l o b l a s t o s i s V i r u s was a k i n d g i f t of Dr. J . fiiman (Ins t i t u t e of 0 r g a n i c Chemis t ry and B i o c h e m i s t r y , Ï S A V , Ρ r a h a , C z e c h o s l o v a k i a ) . Measu r e m e n t s we r e p e r f o r m e d w i t h a L K B - W a l l a c e L i q u i d S c i n t i l l a t i o n Counter 81.000. F o r es t i m a t i o n s o f a n t i v i r a l a c t i v i t i e s ( 7 8 ) in g e n e r a l and i n t e r f e ron i n d u e t i o n (62) i n particular, a n i n v i t r o m o u s e L - c e l l s y s tern w a s u s e d . V S V (Vesi­ cular Stomatitis Virus - s t rain Indiana) - was taken as a c h a l l e n g e v i r u s . Y i e l d s o f i n f e c t i o u s v i r u s were t i t r a t e d by p l a q u e a s s a y on c h i c k e n e m b r y o f i b r o b l a s t s . For interferon ρ riming experiments the e f f e c t s of t h e s e m i p l a s t i e s o n NOV - ( N e w c a s t i e D i s e a s e V i r u s s t rain Hert fordsh ire)-mediated i n t e r f e r o n induction i n m o u s e L - c e l l s was f o l l o w e d b y t h e s a m e common p r o ­ cedures previously described (78). F i r s t o r i e n t a t i n g es t i m a t i o n s o f i n v i v o a n t i v i ral act i v i t i e s of f l u o r a m i d e s were performed i n mice a c c o r d i n g t o common p r o c e d u r e s . F u l l e r d e t a i l s w i l l be given elsewhere (79).

186

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

Molecular

M E S O M O R P H I C ORDER IN P O L Y M E R S

Hystereses

in

Polynucleotide

Triplexes

When t h e b e a u t i f u l W a t s o n - C r i c k d u p l e x emerged from a n a m e l e s s mass o f more o r l e s s c o m p l i c a t e d mono-, o l i g o - and p o l y m e r i c s t r u c t u r e s , some l o n g l y missed e s t e t h i c a l f e a t u r e s had been g i v e n back to o r g a n i c chemistry, and t h i s i n both s t a t i c and dynamic a s p e c t s ( 8 0 ) . F i g u r e s 4 , 5 and 6 c o n t r a s t the l e s s c l e a r l y ar­ ranged peptide backbones of cytochrome c (81), for i n ­ s t a n c e , w i t h the c l e a r l y d i s t r i b u t e d b a s e - s t a c k / s t r a n d - p a t t e r n a r r a n g e m e n t s o f B-DNA and A-DNA o r 1 1 RNA ( 2 8 ) , r e s p e c t i v e l y . W h i l e j u s t the r e d u c t i o n of strancTedness to the b i o l o g i c a l l y p r o m i s i n g duality granted the b i r t h of t h i s s t r u c t u r e , n e a r l y at the same t i m e s u g g e s t i o n s s t a r t e d o r c o n t i n u e d f o r multip l e - s t r a n d e d n e s s i n the b i o l o g i c a l m a t e r i a l s (Figure 7). Four-strands structures, originally a theoreti­ c a l l y b a s e d p r o p o s a l o f G a v i n ( 9 0 ) , h a v e now b e c o m e a t t r a c t i v e a s p o s s i b l e s t o r a g e f o r m s o f DNA i n the n u c l e o s o m e s o f c h r o m a t i n ( 9 1 ) . Y e t c o n s i d e r a b l y more i n t e r e s t has been s p e n t i n the meantime to triplexes, t h a t had i n f o r m e r time been b e l i e v e d to r e p r e s e n t the common s t r a n d d e s i g n o f DNA a t a l l . F i g u r e 8 r e v e a l s the appearance of the (11) · ( Α ) · ( U ) triplex according to the r e s u l t s of A r n o t t and c o w o r k e r s ( 2 8 ) . The ori­ g i n a l l y rather theoretical aspects in déâTing with those structure f o u n d a much more r e l i a b l e a n d a t the same t i m e e x c i t i n g b a s i s , when p o l y ( A ) ( 7 , 9 2 ) opened the s t i l l c o n t i n u i n g area of monotonie sequences in DNA a n d RNA i n t e r p l a y s . C o n s e r v e d e v e n a s i t s e e m s in some c a s e s d u r i n g e v o l u t i o n , t h e s e m o n o t o n i e s seem to p l a y a n i m p o r t a n t b u t up t o now n o t y e t elucidated r o l e i n , b i o r e g u l a t i o n s . The t r i p l e x e s , w h i c h might arrange around those t r a c t s in p o l y n u c l e o t i d e s , rem a i n i n g n e v e r t h e l e s s s t r u c t u r e s s t i l l i n want f o r def i n i t e b i o l o g i c a l f u n c t i o n s , and i n the meantime start i n g p o i n t s o r g o a l s of a c o n s i d e r a b l e number of different s u g g e s t i o n s , ranging from a p o s s i b l e importance o f t h o s e s t r u c t u r e i n e a r l y b i n a r y p u r i n e c o d e s on t h e p r i m o r d i a l e a r t h ( 9 3 ) , to the involvement in quite different r e g u l a t i o n s between r e p l i c a t i o n , (reverse) t r a n s c r i p t i o n a n d t r a n s l a t i o n up t o t h e s p e c u l a t i o n s f o r a c t i o n s as c y b e r n e t i c u n i t s ( 1 - 4 , 7 - 1 4 , 2 8 ) o f a hysteretic r e g u l a t i o n c o d e a c t i n g by p h a s e d i r e c t i n g and m a n i p u l â t i n g s t r a t e g i e s i n b i o r e g u l a t i o n s (7). The f i e l d of t r i p l e x s t r u c t u r e s - F i g u r e 9 shows common p a i r i n g s c h e m e s - a n d t h e i r h y s t e r e t i c behaviour, w h i c h had o r i g i n a l l y been the r e s e r v a t e of the working g r o u p s o f Neumann and K a t c h a l s k y ( 1 - 4 ) as w e l l as G u s c h l b a u e r ( 9 - 1 0 ) , became a p l a y g r o u n d of endeavours η

η

n

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

H O F F M A N N

A N D

wiTKOwsKi

Biomesogens and Their Models

187

Figure 3. Survey of complementary matrix fits in nucleoproteinic systems

Journal of Biological Chemistry

Figure 4. aC-peptide backbone of cytochrome c (81)

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

188

MESOMORPHIC

Nucleic Acids Research

Figure5. (above) B-DNA (28)

ORDER

IN POLYMERS

Nucleic Acids Research

Figure 6. (below) 11-RNA (28)

A N D

wiTKOwsKi

Biomesogens and Their Models

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

H O F F M A N N

Figure 7. Base-hase recognition schemes in polynucleotides

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

MESOMORPHIC

Nucleic Acids Research

Figure 8.

(U) · (A) · (U) -triplex (28) n

Figure 9. Triple-stranded polynucle­ otide pattern (28). (horn top to bot­ tom and left to right) U AU, C GC\ CIC\ υ·ΑΊ, I AU, I AI; U'AI/IA-U-pattern in an as yet hypothetical arrangement (94, 95).

n

n

V W Xy"V * Λ - < -

ORDER IN P O L Y M E R S

14.

H O F F M A N N

wiTKOwsKi

A N D

Biomesogens and Their Models

from q u i t e d i f f e r e n t p o i n t s o f v i e w ( 7 , 2 8 - 3 2 ) . We h a d been i n t e r e s t e d i n those s t e r e o e l e c t r o n i c p a t t e r n not o n l y g e n e r a l l y because of t h e i r p o s s i b l e involvements in b i o r e g u l a t i o n s , but moreover p a r t i c u l a r l y i n Wat­ s o n - C r i c k and Hoogsteen r e c o g n i t i o n ambit i o n s of poly(A)-monotonics w i t h r e g a r d to p o l y ( I ) - t r a c t s , due to the v e r y e f f e c t s of the l a t t e r in v i r o - , c a n c e r o - and immunemodulations (7,29-32,62). After looking for a molecular hysteresis in the all-purine ( I ) · ( A ) · ( I ) s y s tern ( 1 3 ) , we s p e n t inter­ est to the h y p o t h e t i c a l ( U ) - ( Α ) · χ Γ ) triplex (7) e l u c i d a t e d t o g e t h e r w i t h D e C l e r c q and c o w o r k e r s its e x i s t e n c e ( 1 4 , 9 4 , 9 5 ) - F i g u r e 10 shows m e l t i n g p r o f i ­ les a n d ORD c h a r a c t e r i s t i c s - a n d d e m o n s t r a t e d a l s o in t h i s case of a mixed one-pyrimidine/two-purines-trip l e x a m o l e c u l a r h y s t e r e s i s on c y c l i c a c i d - b a s e t i t r a ­ t i o n s . F i g u r e 11 and 12 s u m m a r i z e s o u r e x p e r i m e n t s in c o m p a r i s o n w i t h t h e p i o n e e r i n g s t u d y o f Neumann and K a t c h a l s k y i n c a s e o f ( U ) - ( Α ) · ( U ) . F o r o u r two u n u ­ sual triplex structures the h y s t e r e t i c "lagging be­ hind" of conformational o r i e n t a t i o n s in t h e i r attempts to f o l l o w the p H - v a r i a t i o n s in the environment seems t o be c a u s e d by s i m i l a r t r a n s c r y s t a l l i s a t i o n between the t r i p l e x and the ( Α ) · ( A ) d u p l e x , as p r o p o s e d by Neumann and K a t c h a l s k y f o r the ( U ) - ( Α ) · ( U ) hys t e ­ r e s i s , e x c e p t t h a t i n o u r c a s e s t h e p r o c e s s s h o u l d be c o m p l i c a t e d i n a s t i l l unknown way by t h e t e n d e n c y to s e l f - a s s o c i a t i o n of p o l y ( I ) ( 1 , 2 , 8 2 , 8 3 ) . W h i l e from here there w i l l a r i s e the n e c e s s i t y to s t u d y those i n ­ t e r r e l a t i o n s h i p s much more t h o r o u g h l y and on a l a r g e r s c a l e , e s p e c i a l l y i n v o l v i n g i n t e r a c t i o n s between nu­ c l e i c a c i d s , p r o t e i n s and membranes as w e l l as their sensitivity to e f f e c t o r m o i e t i e s and o t h e r environmen­ tal i n f l u e n c e s , we t r i e d f a r b e l o w t h i s l e v e l t o i n ­ troduce i n t o the p i c t u r e of b i o e f f e c t o r efficiencies ( F i g u r e 3) the above m e n t i o n e d s i m u l a t i o n c o n c e p t s for p r o v i d i n g a n t i m e t a b o l i t e s and a n t i t e m p l a t e s derived from m o d e l l i n g c o n c e p t i o n s in the f i e l d of n u c l e i c a c i d s a n d a d j us t e d f o r m e s o m o p h i c i n t e r a c t i o n s with b i o p o l y m e r i c s y s terns. η

n

n

n

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

191

η

n

+

η

η

η

+

n

n

n

Modelling

Nucleic

Acids

by

Simple

η

n

Thermotropics

The n i c e l y b a l a n c e d i n t e r p l a y s o f order-disorder f e a t u r e s represented in the a r c h i t e c t u r e of n u c l e i c a c i d s ( F i g u r e 13) ( 8 6 , 8 8 , 9 6 ) , the complex i n t e r g a m e of h y d r o p h o b i c and h y d r o p h i l i c a s p e c t s , of weak and s t r o n g i n t e r a c t i o n s - ranging from the hydrophobic l o n g - c o r e r e g i o n s to the b i z a r r e s t rand c o m p o s i t i o n s with their different f i t s for handling nucleobase ac-

192

M E S O M O R P H I C

ORDER

I N

P O L Y M E R S

30

20

1 0

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

20

30 -I 30

50

70

90

40

t e m p e r a t u r e {*C )

Figure 10. Thermal hysteresis in the melting profile and ORD-characteristics of (U) - (A) - (I) , the latter in comparison with the arrangement alternatives of the constituents. ORD-spectra: ( ; (U) • (A) · (I) ; ( -) (U) · (A) · (U) ; ( — >) (On ' (A) · (I) ; (- - _) (U) · (A) ; (I) + (A) . n

n

n

n

n

n

n

n

n

0.50

Figure 11. Molecular hysteresis in polynucleotide—triplex organizations. Cyclic spectrophotometric acid-base ac 0.40 titrations. Absorbance (A) as a func­ tion of pH; c = 1.67 10' M triplex, Ο ΙΛ (o 0.625, 0.001M NaCl, pH ~ 7, compared with the melting characteristics of CT-DNA/FA-1 · 2HCI complexation. (3 * 10' M aqueous solution of FA-1 · 2HCI; ratio DNA-phosphate/FA-1 = 1/1). (h) ODcharacteristics of CT-DNA/FA-1 · 2IICI interactions on titration. CT-DNA OD 0.902, O.J M NaCl; other conditions like (a). nn

3

2(;o

Curve

Ratio DNA-P/FA-1 · 2IIC1 1/0.1 1/0.15 1/0.2 1/0.3 1/0.5

MESOMORPHIC

ORDER IN

POLYMERS

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

212

Figure 30. CPK-illustration of hypothetical intercalative fit of FA-1 into the large groove of DNA. (horn top to bottom) FA-1 approaching the major groove of DNA; intercalative fit from the major groove; the same arrangement from the minor groove (56, 76, 77).

14.

H O F F M A N N

A N D

wiTKowsKi

Biomesogens and Their Models

213

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

brought back to t h e i r t h e o r e t i c a l s t i m u l u s seems to g a i n a new d i m e n s i o n s f o r m o d e l l i n g h o r m o n e a n d effect o r e f f i c i e n c i e s i n g e n e r a l and i n t e r c a l a t o r effects i n the n u c l e i c a c i d base s t a c k s i n p a r t i c u l a r . It offers a p o s s i b l e e x p l a n a t i o n f o r the v i r o - , canceroand i m m u n e m o d u l a t i v e a c t i v i t i e s of t h o s e compounds in t h e i r a b i l i t y to strangen t h e common n u c l e i c a c i d p a t t e r n of b i o o r g a n i s m and to p r o v o k e both humoral and cellular non-self r e c o g n i t i o n s , w h i l e the o l d V o r l a n der term of " i n f e c t i o n " - r a t h e r unusual in the field of t h e r m o t r o p i c s - f i t s our today b i o l o g i c a l aspects i n a c u r i o u s way, somewhat i n d i c a t i v e and c h a r a c t e r i s t i c f o r the i n h e r e n t connection. M o d e l l i n g and " S t r a n g e n i n g " leotide Strand-Analogues

Nucleic

Acids

by

Polynuc-

Base and s u g a r v a r i a n t s of n u c l e o s i d e s and n u c l e o t i d e s h a v e b e e n d e a l t w i t h i n t h e p a s t i n an a b u n dance, n e a r l y i n c a p a b l e f o r r e v i e w s , monographs or even reference journals (26,121-123). While these var i a n t s of a f i r s t and s e c o n d g e n e r a t i o n o f analogues s t i l l c o n t i n u e a t t r a c t i n g the a t t e n t i o n of people i n t e r e s t e d i n n u c l e i c a c i d chemis t ry and i t s applicat i o n s ( 1 2 3 ) , b e g i n n i n g w i t h the 1960s a t h i r d generat i o n of n u c l e i c a c i d s i m u l a t i o n s emerged from the f l o o d of s t e r e o e l e c t r o n i c i m i t a t i o n s : f a r or l e s s d i s t a n t l y m o d e l l e d s t r a n d a n a l o g u e s r e v e a l e d some import a n c e f o r both t h e o r e t i c a l l y and p r a c t i c a l l y oriented investigations i n the f i e l d of b i o p o l y m e r s and their interaction possibilities (26,58-61,97,124-131). To d e a l o n l y w i t h t h o s e s t r u c t u r e s , modelled from a g r e a t e r d i s t a n c e , there opened f o r s y n t h e t i c a l app r o a c h e s ways of p o l y c o n d e n s a t i o n , p o l y a d d i t i o n freer a d i c a l , photochemical, or ^-ray induced polymerizations or polymeranalogous reactions, possibilities t h a t h a v e b e e n met i n t h e m e a n t i m e by n u m e r o u s synthetic efforts, r e v i e w e d a l r e a d y by d i f f e r e n t authors (26,59,97,128-130,132,133). " As a compromise between the s c r e e n i n g p o s t u l a t i o n s of r a p i d and u n c o m p l i c a t e d a c c e s s to h i g h molec u l a r systems (due to the s e l e c t i o n s of a s i z e criter i o n for i n t e r a c t i o n p o s s i b i l i t i e s of biopolymers within bioregulation hierarchies ( 1 3 4 ) ) by a r o u t e i n d e p e n d e n t f rom t h e n a t u r a l p o l y c o n d e n s a t i o n way (due to a g r e a t e r s u i t a b i l i t y f o r the a l t e r n a t i v e s of matrix polymerizations) and a c e r t a i n degree of stereoe l e c t r o n i c order of our s y n t h e t i e s (due to the desire f o r r e p r o d u c i b i l i t y and f i t of o u r systerns i n their possible interactions with biopolymers) we started

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

214

M E S O M O R P H I C ORDER IN P O L Y M E R S

from N - v i n y l n u c l e o b a s e s ( 2 6 , 9 7 , 1 2 5 ) , that have also been used by A m e r i c a n and J a p a n e s e g r o u p s (58-61,130, 133). However, d i f f e r i n g from t h e i r g e n e r a l c o n c e p ­ t i o n s , we h a v e t r i e d f r o m t h e b e g i n n i n g t o f i t m i n i m a l ­ l y a l t e r e d b a s e s t a c k s by v a r i a b l e s t r a n d patterns, thus to overcome the o t h e r w i s e obvious l i m i t a t i o n s for useful variations in strand-pattern design (64,135). As model b u i l d i n g p r o v i d e d poly(N-vinylnucleobase-vinylX)-systerns of a l t e r n a t i n g s e q u e n c e and s y n diotactic (isotactic respectively) stereo (isotactic in l . 5 - b a s e s u b s t i t u e n t s ) being capable of polynucleot i d e - l i k e h y d r o g e n - b o n d i n g and b a s e - s t a c k i n g a c t i o n s a t l e a s t o v e r s h o r t e r d i s t a n c e s ( 9 9 , 1 2 5 , 1 3 5 ) , we i n ­ t e n d e d t o f a v o r o u r s y n t h e s i s c o n d i t i o n s IrTto t h e d i ­ r e c t i o n o f t h i s w o r k i n g h y p o t h e s i s . B u t a s we felt o u r s e l v e s u n a b l e to e l u c i d a t e and g r a n t those very c o n d i t i o n s , we h o p e d , t h a t o u r s y s t e m s w o u l d a t least p a r t i a l l y meet o f i n t e n s i o n s h a l f - w a y . As n u c l e o b a s e s in aqueous s o l u t i o n s u s u a l l y e x h i b i t l i m i t e d numbers of r e p e a t i n g p a t t e r n of s t a c k i n g i n t e r a c t i o n s (136, 1 3 7 ) , we s u g g e s t e d t h a t c e r t a i n p r e o r i e n t a t i o n s remaining even under our unfavourable s y n t h e s i s condi­ t i o n s - c o u l d b u i l d up s t a c k m a t r i c e s , t h a t might p r a c t i c e some s o r t o f s e q u e n c e - and s t e r e o - r e g u l a t i o n . In these context the f o l l o w i n g F i g u r e s 3 1 - 3 6 d i s p l a y in a though i n t r i g u i n g n e v e r t h e l e s s mere hypothetical way o u r hopes and e x p e c t a t i o n s , s t a r t i n g w i t h t h e i n ­ v i t i n g tendencies of v i n y l polymers for h e l i c a l a r ­ rangements ( 1 3 8 , 1 3 9 ) ( F i g u r e 31) over the useful s t a c k i n g a m b i t i o n s of n u c l e o b a s e s , given here for ex­ ample f o r d i f f e r e n t a d e n i n e s t a c k s ( F i g u r e 32) (135) and one v e r t i c a l i n t e r a c t i o n of a h y p o x a n t h i n e moiety ( F i g u r e 33) ( 1 4 0 ) , to the s p e c u l a t i o n s of v i n y l nucl e o b a s e homo- and c o p o l y m e r i z a t i o n arrangements at the growing-up c h a i n i n the scheme of F i g u r e 3 4 , i l l u s t r a ­ ted further i n case of 9-vinylhypoxanthine-acrylic acid copolymerization (Figures 35 and 36) and e n d i n g w i t h t h e p a r t i a l ( I ) · ( C ) - s i m u l a t i o n as an e x a m p l e for possible biological a c t i v i t i e s (30). Varying both base and s t r a n d c o m p o s i t i o n s , a s p e c t r u m of polymers - i d e a l i z e d w i t h r e g a r d to ratio, s e q u e n c e and s t r u c t u r e f i t i n F i g u r e s 37 and 38 w e r e p r e p a r e d by A I B N - o r j f - r a y i n d u c e d copolymerizat i o n s , f o l l o w e d i n case of (vA, [ ν Ο Η ] ) by a p o l y m e r a n a l o g o u s r e a c t i o n . The s t a r t i n g amounts of N-vi­ n y l n u c l e o b a s e s and comonomers were a d j u s t e d to yield a n e a r l y 1 : 1 r a t i o i n t h e p o l y m e r s . F i g u r e 39 a d d s for some c h a r a c t e r i s t i c c a s e s t h e r e c e i v e d S - v a l u e d i s t r i ­ b u t i o n s , g i v i n g an i d e a o f t h e m o l e c u l a r w e i g h t d i ­ stributions (66). n

n

0

#

7

η

14.

H O F F M A N N

A N D

wiTKOwsKi

Biomesogens and Their Models

215

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

Introduction to Stereochemistry

Figure 31. Helical ambitions of simple vinyl polymers after (138)

Figure 32. Adenine-stacks after (136, 137). (a) RNA; (b) A-DNA; (c) B-DNA; (d) C-DNA; (e) deoxyadenosine-monohydrate and adenosine-S'-phosphate; (f) adenosines'-phosphate; (g) adeninehydrochloride and 9-methyl-adenine-dihydrobromide; (h/k) 9-methtjl-adenine; (i) (A) . n

216

MESOMORPHIC

ORDER IN P O L Y M E R S

Journal of Molecular Biology

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

Figure 33.

Inosine stacks after (140)

Figure 34. Hypothetical insertion of vinyl comonomers into vinyl nucleobase-stack matrices, bridging gaps between the vinyl groups and allowing a convenient zippingup (26, 64,125,135)

Figure 35. CPK illustration of the speculation given in the precedingfigure,(top) 9Vinijlhypoxanthine/acrylic acid-stack insertion-arrangement; (bottom) built up (vHvCOOH) . n

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

14.

H O F F M A N N

A N D

Biomesogens and Their Models

wiTKOwsKi

217

Zeitschrift fuer Chemie

Figure 36. CPK illustration of the hypothetical (C)„ · (vH,vCOO~) hybrid compared with the all-poly nucleotide base-paired ( C) · (I )„, vizualizing the hydrogen-bonding and stack similarities between the polynucleotide/mutual strand-analogue hybrid and the polynucleotide duplex (62) n

n

NH

'Q

1

%

2

^ ^ S ^ X

ΝΗ

COO" COO"

Figure 37. Idealized schemes of vinyl copolymers with varied nucleohase design (top to bottom and left to right); (vA-vCOONa) ; (vU-vCOONa) ; (vC-vCOONa); (vllvCOONa) (64-71, 75) n

u

n

218

ORDER IN P O L Y M E R S

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

MESOMORPHIC

Figure 38. Idealized schemes of 9-vinykidenine copolymers with varied strand pohrity pattern (top to bottom and left to right); (vA) ; (vA-vCOONa) ; (vA-vS0 Na) ; (vA-vOH) ; (vA-vCONH ) ; (vA-vPn) ; (vA-vP) ; (vA-vI) ; (vA-vm IJ) (64-71, 75) n

n

n

3

n

n

n

n

3

2 n

n

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

H O F F M A N N

A N D

wiTKOwsKi

L _ i 0 1

Biomesogens and Their Models

1

2

1

3

.

4

«

5

.

6

.

7

8

1

9

[si Zeitschrift fuer Chemie

Figure 39. S-value distribution of some characteristic co­ polymers. ( ) (υΑ, [υΟΗ] . )η; ( ) (vA, [vCOONa] . ) ; (—•—) (υA, [vCOONa] ) ; ( ) (υA, [vP] . ) (66). 0 7

1Jf

n

0 8

0 9

n

n

220

MESOMORPHIC

ORDER I N P O L Y M E R S

To c h e c k o u r t h o u g h t s as t o t h e p o s s i b i l i t i e s for p o l y n u c l e o t i d e - l i k e mesomophic o r d e r in our synthetic p r o d u c t s , b a s e - p a i r i n g e x p e r i m e n t s w i t h t h e i r mate p o ­ l y n u c l e o t i d e s have been c a r r i e d out i n c l u d i n g the whole set of u s u a l complementary complex formations ( 6 4 , 6 8 , 7 3 , 7 4 , 9 7 ) . The i n v e s t i g a t i o n s - i l l u s t r a t e d by mixing curves, t h e r m a l m e l t i n g p r o f i l e s , and ORD-as w e l l as C D - c h a r a c t e r i s t i c s of F i g u r e s 4 0 and 41 re­ v e a l that c o o p e r a t i v i t y w i t h i n the " b a s e - p a i r e d com­ plexes" varies over a rather broad range, reaching the q u a l i t i e s of mutual p o l y n u c l e o t i d e i n t e r a c t i o n s in c a ­ se of the r a t h e r v A - r i c h (vA,[vOH]Q 7) hybridized w i t h the p o o r l y s t r u c t u r e d (U) (141) demonstrated by d e f i n i t e and c o n s i d e r a b l e h y p o c h r o m i s m i n t h e m i ­ xing curves, sharp absorbance temperature p r o f i l e and i n d i v i d u a l l y s h a p e d 0 R D - and C D - s p e c t r a - , and d r o p ­ p i n g down t o t h e l e v e l o f r a t h e r l i m i t e d interactions b y c h a n c e i n c a s e o f t h e n u m e r o u s mo r e p o o r l y fitted analogues in combination with highly ordered, selfa s s o c i a t e d p o l y n u c l e o t i d e s , i n d i c a t e d by low and dif­ fuse hypoch romism (or even h y p e r c h r o m i s m ) , flat mel­ t i n g p r o f i l e s and o n l y d i s t u r b e d polynucleotide-ORDa n d C D - s p e c t r a . A s we u p t o now h a v e n o t g o t a n y p o s ­ s i b i l i t y f o r an x - r a y p r o o f o f o u r o r i g i n a l h o p e s and e x p e c t a t i o n s - r e p r e s e n t e d by t h e e a r l y p i c t u r e of F i g u r e 4 2 - we t r i e d t o v i s u a l i z e o n e o f o u r hybrides (of c o u r s e n o t t h e w o r s t o n e ) a t l e a s t by electron m i c r o s c o p y as a s u b s t i t u t e ( 6 5 ) , and h e r e t h e overall shape s i m u l a t i o n s between the " n a t i v e " 2 ( ϋ ) · ( Α ) and the s e m i p l a s t i c 2 ( U ) - ( v A , f v O H ] 7 ) n seems to add fur­ t h e r e v i d e n c e f o r s t r u c t u r a l s i m i l a r i t i e s and a c c o m ­ p l i s h e s comparable r e s u l t s of the P i t h a group (130) in the f i e l d of homopolymers (Figure 43). e

n

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

n

η

n

η

0 #

F r o m a l l o f t h i s t h e c o n c l u s i o n s m i g h t be d r a w n very carefully, that our hypothesis works best if at a l l - i n the p o l y m e r i z a t i o n of h i g h l y s t a c k i n g v i ­ n y l n u c l e o b a s e s , f a v o r i n g perhaps at l e a s t in these c a s e s some s o r t o f c o m b i n e d s t e r e o - and s e q u e n c e re­ g u l a t i o n by s e l f - o r g a n i z e d s t a c k m a t r i c e s , and o r d e ­ r i n g the e x p e c t e d j u n g l e of sequence and stereoirreg u l a r i t i e s ( a t p r e s e n t we h a v e n e i t h e r really convin­ c i n g i n d i c a t i o n s for the p r e f e r ence of the expected sequence a l t e r n a t i o n nor f o r the l e s s f a v o r a b l e but p o s s i b l e a l t e r n a t i v e of block polymer formation) at least p a r t i a l l y for short i n t e r p l a y s of monotonie se­ quences of p o l y n u c l e o t i d e s with l i m i t e d recognition t r a c t s of our s y n t h e t i c s - a l l o w i n g the c u r i o u s games of a c q u a i n t a n c e s between l a t e d e r i v a t i v e s of evolu­ t i o n a r y o p t i m i z a t i o n s and p a t t e r n , both r e l a t i v e s of ancestors of e a r l y n u c l e i c acids ambition in nature

)

50

70

4

temperature (°C )

30

90

300 wavelength ( nm )

250

3 50

.

)

(Ξι*!!;

((-

Curve

n

1Jt

n

n

1A

1A

0 8

R

(U)J(vA, [vCOONafo.sh (A)J(vU, [vCOONa] ) > (A) /(vH,vCOONa)' (I)J(vA, [vCOONa] . ) (l)J(vC, [vCOONa] ) > (C)J(vH,vCOONa)' (G)J(vC, [vCQONa] )n'

System

260 260 255 250 248 250 252

2:1 1:2 2:1 4:1 1:1 4:1

1:1

A ( nm ) Mix/Melt Combination Melt/ORD

Figure 40. Mixing-, melting-curves and ORD-spectra of polynucleotide/polymer interactions (varied nucleobase design), c = 10' M (sum of bases), pH 7.2/PBS

*-QÂ

Ο 5 mole fracî ion —^poly(B) poty(vB,[vCOONa]^

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

to

SX.

o

5-

a*

Co

GTQ S

Ο

03

> α

>

ο

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

222

M E S O M O R P H I C ORDER IN P O L Y M E R S

Figure 41. Mixing-, melting curves and ORD-spectra of polynucleotide/polymer inter­ actions (varied strandpohrity pattern), c = 10~ M (sum of bases), pH 7.2/PBS 4

Curve

(—)

(—)

( ( (

e

e

3

;

0 7

s

) ) )

( ((—·

(U) /(vA,[vCOONa] ) (U)J(vA, [vCOONa],.^' (U)J(vA, [vSO Na] . )r, (U)J(vA, [oOH],.,)* (U)J(vA, [vCONH,]^ (U)J(vA, [uPn]„. l (U)J(vA, [vP],.,) (U)J(vA, [υΐ],.,)* (U)J(vA, [vmnj] . ) for comparison: (U)J(A)„ (U)J(A)„ (U)n a

(—) (---)

(—; (

Combination Melt/ORD/CD

System

n

0 e

) ;..)

n

a

A(nm) Mix/Melt

2:1/2:1/2:1 1:4/1:4/ — 3:2/ —/ — 2:1/2:1/2:1 3:2/ —/ — 1:1/—/ — 1:2/1:2/ — 1:1/ —/hi 3:2/ —/hi

260 258 255 260 258 258 258 257 255

hi/—/ — —/ —/2:1 -/ -/i

258

— —

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

14.

H O F F M A N N

A N D

wiTKOwsKi

Biomesogens and Their Models

Figure 42. Speculative interhyhrid arrangements and interactions

223

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

224

M E S O M O R P H I C

30

50

70

ORDER

I N

P O L Y M E R S

90

temperature ("C )

Zeitschrift fuer Chemie

Figure 43. Electron micrographs of (U) · (A) · (U) -triplex and its partial analogue with additional interpretation of complexation by melting profiles (65). n

n

n

(a) PBS, pH 7.2: ( (

)

2(U) · (A) 2(U) • (vA, [vOH] . )

)

n

0 7

A A (10 255

n

n

n

(b) IM NH, ac; 8 mM NaCl; 0.5 m M phosphate; pH 7.1: (U) >(A) -) (U) • (υA, [vOII] ) -)

2

f

n

n

A

2SS

A 58 (α') 2(U) · (A) —Ό Ο (0 Ac) .-stained; (b') 2(U) • (υ A, [vOH] ) —Pt-stainecl solution of a and b like b n

n

n

2

f

(K7

n

r

n

2

IL7

n

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

14.

H O F F M A N N

A N D

wiTKOwsKi

225

Biomesogens and Their Models

and c r e a t i o n s o f l a t e n u c l e i c a c i d a m b i t i o n s i n o u r brains · T h o u g h a l l t h e s e h y p o t h e s e s h a v e t o be l o o k e d u p o n w i t h c a u t i o n , s i n c e we c a n o n l y s u p p l y indirect e v i d e n c e in f a v o r of i t , a c c o r d i n g to the i n d i c a t i o n s from these b a s e - p a i r i n g e x p e r i m e n t s , our s y n t h e t i c po­ l y m e r s seem to r e v e a l b o t h s t r u c t u r a l and f u n c t i o n a l s i m i l a r i t i e s w i t h t h e i r p o l y n u c l e o t i d e s t a n d a r d s . Thus one might hope o r s p e c u l a t e , t h a t a f t e r a p e r i o d of necessary s t e r e o e l e c t r o n i c optimizations - their "na­ t i v e " i d e a l s "was t e d " y e t a b o u t f i v e m i l l i a r d y e a r s f o r i t , a n d t h i s t h o u g h we h a v e n o t g o t t i m e e n o u g h to f o l l o w t h e s e t r a c e s s h o u l d be t a k e n a s an e x c u s e in f a v o r o f us - t h e y m i g h t i n f u r t h e r future appear use­ f u l as a n t i t e m p l a t e s i n b i o r e g u l a t i o n s . A t p r e s e n t our r a t h e r i n s u f f i c i e n t l y f i t t e d s t r a n d s d e p e n d i n g on t h e i r base and s t r a n d - p o l a r i t y c o m p o s i t i o n s exhibit ef f e c t s i n i n v i t ro c a l f - t h y m u s p o l y m e r a s e Β ( D N A - d e pendent RNA-polymerase) ( 7 1 , 1 3 5 ) and AMV-revertase (RNA-dependent DNA-polymerase) assays (70,142) (Figu­ res 44 and 4 5 ) , the s t i m u l a t o r y and i n h i b i t o r y a c t i v i ­ t i e s i n the e u k a r y o t i c and the v i r a l p o l y m e r a s e sys­ tems b e i n g i n t r i g u i n g l y s l i g h t l y c o u n t e r - c u r r e n t with r e g a r d to the m o l e c u l a r s t rand d e s i g n . The antitemplat e e f f e c t s , t h a t seem t o be m a i n l y a r e f l e c t i o n o f the interhybrid r e c o g n i t i o n s r a t h e r t h a n an e x p r e s s i o n of the p r o b a b l y l e s s pronounced p l a s t i c - p r o t e i n i n t e r a c ­ t i o n s , a r e c o m p l e t e d by t h e a s s i s t a n t r o l e o f t h e p o ­ lymer s t rands i n i n d u c i n g ant i v i r a l p r o t e c t i o n in mouse L - c e l l s when b a s e - p a i r e d w i t h t h e i r mate polyn u c l e o t i d e s . W h i l e p a r t i a l 2 ( U ) * ( A ) - and 2(I) -(A) analogues only succeeded in e s t a b l i s h i n g a s l i g h t an­ t i v i r a l s t a t u s , the l a t t e r i n a d d i t i o n demons t r a t i n g some p r i m i n g e f f e c t s ( F i g u r e 46) ( 7 8 , 1 4 3 ) , partial ( Ι ) · ( C ) - s i m u l a t i o n s l i k e t h e i r famous a l l - p o l y n u c leotide ideal induce interferon, the i n t e r f e r o n induct i o n b y t h e ( C ) · ( v H , v C O O N a )' r e p r e s e n t i n g the first example gained with a d r a s t i c a l l y a l t e r e d (I) -component (Figures 36 and 47) (62). n

η

n

n

n

n

n

n

n

These b i o l o g i c a l experiments confirm s i m i l a r re­ s u l t s of o t h e r groups ( 5 9 , 1 3 3 ) - m a i n l y i n the field of h o m o p o l y m e r i c p l a s t i c s - and i l l u s t r a t e the possib i l i t i e s of our today p o l y n u c l e o t i d e - l i k e mesogens to model and s i m u l a t e even at t h e i r p r e s e n t s t a g e s of s t e r e o e l e c t r o n i c i n s u f f i c i e n c i e s rather complex b i o p o l y m e r i n t e r a c t i o n . Thus i n o u r eyes i t seems a l i t t l e b i t e n c o u r a g i n g , that not o n l y the base-over­ c r o w d e d homopolymers but a l s o the more p o o r l y basef i t t e d c o p o l y m e r s - w h i c h d i s p l a y on t h e o t h e r hand developing f a c i l i t i e s of a d j u s t i n g t h e i r variable

226

M E S O M O R P H I C ORDER IN P O L Y M E R S

\°,

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

100

control

- — ο -·

80

poly(vA,[vC00Nay ~

60

40

20

\ poly(vA,[vSO Na] ) 3

-5 10

10

07

10

c o n c e n t r a t i o n (mol/1

Zeitschrift fuer Chemie

Figure 44. Effects of some polynucleotide strand analogues on the transcription of CT-DNA by DNA-dependent RNΑ-polymerase (B) in vitro (71): Assay: pH 7.9; 0.1M Tris-HCl; 2 mU Mn ; 0.1 mM DTT; 0.02 mM BTPs; P-ATP and -OTP; H-ATP and -OTP; 8-10 y DNA; Τ = 37°C. (vA, [vOH] , ) ; (vA, [vCONH ] ) ; (vA, [vPn] . ) ; (vA, [vP] ) ; (vA, [νΙ] ) ; (vA, [vm IJ] . ) ; (vU, [vCOONa] ) like control without definite effect. 2+

32

3

0 7

n

2

nj)

n

1Λ η

iJf

f

n

1A

n

3

0 8

n

0 6

n

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

Zeitschrift fuer Chemie

Figure 45. Effects of some polynucleotide strand analogues in an in vitro AMVrevertase assay (RNA-dependent DNA polymerase; endogenous template-primer com­ bination) (70). Assay: pH 8.0; 50 mM Tris-HCl; 2 mM DTT; 5 mM Mg ; 1 mM Mn ; 50 mM NaCl; 0.2 mM dBTPs; 10 /*C H-TTP; Τ = 37°C. 2+

3

2+

MESOMORPHIC

ORDER I N P O L Y M E R S

25600 -

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

12 800 E

6400

c ο

3200-

I

1600

Β c

800.

Ζ

400-

c

200100-

I

il

III

IV

V

VI

VII

Figure 46. Effects of preincubation of mouse L-cetts with poly­ nucleotide triplexes and their partial analogues on subsequent inter­ feron induction by NDV and on VSV propagation (78, 143). Assays: 10 txg/ml DEAE-dextran; Τ = 37°C; pH 7.2; PBS; concentration of the complexes 10' M (sum of bases), (a) Interferon priming: ( ) control; (—·—) priming only with ΌΕΑΕ-dextran; (WÊÊË ) 3 hr-treatment without DEAE-dextran; ( H i ) 3 hr-treatment with DEAE-dextran; (\ I) 24 hr-treatment with DEAE-dextran. (b) Antiviral states (c = VSV-test, c = VSV control). 4

0

ϊ II III IV V VI VII

Complex

VSV-yield log PFU [c/e ]

(vA, [νΟΗ] . ) · 2(U) (υA, [vCOONa] . ) · 2(U) (vA, [vOH] . ) • 2(I) (vA, [vCOONa] ) · 2(1) (vH,vCOONa) · 2(AL (A) · 2(U) (A) · 2(I)

^07 -0.6 -0.5 -1.0 -0.7 -0.8 -0.5

0

η 7 η

n

0 8

0 7

n

n

n

n

n

n

0

n

n

H

n

n

14.

H O F F M A N N

Biomesogens and Their Models

A N D WITKOWSKI

101

[A]

poly(l) · poly(vqvCOONa] ) OD 248 2

0.7

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

U

jLr/

229

COONa NH

poly(C) · poly(vH,vCO0Na)

2

O D

COONa

poly(vH,vC00Na)'

' r poty(vC,[vœONa] î'

ΛΑ):

30

2

complex

50

cone.

VSV-yield

[M]

logPFU[y

(SU m of bases) antiviral state

-k

poly( 1 ) · poly(vC£vCOONa] )' 3 -10 2

poly(C) · poly(vH,vCOONa)'

250

0.6

ι.3·ιο"

4

70

90

['Cl

interferon ind.

- 0.8

- 0.6

-1.4

-2.0

Zeitschrift fuer Chemie

Figure 47. Establishment of antiviral states and interferon induction by partial (I) * (C) -simulations in a mouse L-cell system; interferon induction by (C) · (I) : —S.5 log PFU [c/c ] for comparison. Other conditions of assaying like Figure 46 (62). n

n

n

0

n

230

M E S O M O R P H I C ORDER IN P O L Y M E R S

s t r a n d d e s i g n at l e a s t to a c e r t a i n degree to wanted l e v e l s of e f f i c i e n c y - r e v e a l a c t i v i t é s , which might be r e g a r d e d ( a s s i s t e d by t h e r e s u l t s o f t h e M e r t e s group (133) of b l o c k i n g d e f i n e d p r o t e i n s ) not o n l y in terms ot the mentioned o b s t r u c t i o n of m e t a b o l i c p a t h ways by u n s p e c i f i c i n t e r a c t i o n s , b u t p e r h a p s as early beginnings of a biomesogen s i m u l a t i o n chemistry, trying t o r e a c h t h e g o a l s o f n a t i v e b i o p o l y m e r s and by t h i s , d e v e l o p i n g t h e i r mesogen a s p e c t s from the u n d i r e c t i o n e d games o f l a r g e e n s e m b l e s o f r a t h e r "unint e l l i g e n t " i n d i v i d u a l s to the d i r e c t i o n e d domain c o o p é r â t i v i t i e s of " i n t e l l i g e n t " s t e r e o e l e c t r o n i c units.

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

Final

Remarks

Yet at t h i s point the q u e s t i o n remains nevertheless without any d e f i n i t e a n s w e r , if there is any sense i n m o d e l l i n g the h i g h l y evolved b i o p o l y m e r i c mes o g e n s o f o u r t o d a y l i f e by d u l l and a t t h i s s t a g e of refinement o v e r s i m p l i f i e d a n a l o g u e s , w i t h the presumption of using those s i m u l a t i o n s a f t e r a t h i n k a b l e p r o c e s s of refinement and a d j u s t m e n t for assisting and even i m p r o v i n g o p t i m i z e d p a t t e r n of n a t u r a l efficiency. It i s p a r t of the q u e s t i o n w e t h e r man-made s t e r e o e l e c t r o n i c p a t t e r n c o u l d a c t not o n l y as c o m p e t i t o r s , b u t m i g h t a d v a n c e for s u b s t i t u t e s a n d partners of the n a t i v e s of the great process.

Literature Cited 1.Neumann,Ε., K a t c h a l s k y , A . , Ber.Bunsenges.Phys.Chem. (1970) 74, 868 2.Neumann,E.,Angew.Chem.(Int.Ed.)(1973) 12,356 3 . N e u m a n n , Ε . , i n "25.Mosbacher C o l l o q u . G e s . B i o l . C h e m . " 1 9 7 4 , ( L . J a e n i c k e , e d . ) S p r i n g e r V e r l a g , Berlin H e i ­ d e l b e r g , New York 1974 4.Spodheim,M.,Neumann,Ε.,Biophys.Chem.(1975) 3,109, and preceding communications 5.Cox,R.A.,Jones,A.S.,Marsh,G.E.,Peacocke,A.R.,Bio chim.Biophys.Acta(1956) 21,576 6.Neumann,Ε.,Katchalsky,A.,Proc.Nat.Acad.Sci.USA (1972) 69,993 7.Hoffmann,S.,Witkowski,W.,Z.Chem.(1975) 15,149 8.Oster,G.,Perelson,A.,Katchalsky,A.,Nature(1971) 234,393 9.Sarvechi,M.-Th.,Guschlbauer,W.,Eur.J.Biochem.(1973) 34,232 10.Guschlbauer,W.,Thiele,D.,Sarvechi,M.-Th.,Marck,Ch., "Phénomènes d'hystérèse dans l e s p o l y n u c l e o t i d e s "

14.

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

tic

H O F F M A N N

A N D

wiTKOwsKi

Biomesogens and Their Models

231

in "Dynamic Aspects of Conformation Changes in Bio­ l o g i c a l Macromolecules",(C.Sadron,ed.),Reidel-Publ. Co. Dordrecht-Holland 1973 11.Revzin,A.,Neumann,E.,Biophys.Chem.(1974) 2,144 12.Hoffmann,S.,Witkowski,W.,Rüttinger,H.-H.,"HystereMetastabilities in the 2Poly(I)•Poly(A)-Tri­ plex" Conf.Proc.IUPAC 4th Disc.Conf."Heterogenities in Polymers",1974,Marianske Lazne,Czechoslovakia 13.Hoffmann,S.,Witkowski,W.,Z.Chem.(1974) 14,438 14.Hoffmann,S.,Witkowski,W.,Rüttinger,H.-H.,"Molecular Hysteresis in Β i o p o l y e l e c t r o l y t e s " , C o n f . P r o c . 1 s t Liquid Crystal Conf.of S o c i a l i s t Countries,1976, Halle/S.,GDR 15.Mevarech,M.,Neumann,E.,Ρrogr.Reρ.Weizmann Inst., Rehovot I s r a e l 1972 16.Mager,P.P.,Arzneimittel-Forsch.(1976) 26,1818 17.Mager,Ρ.Ρ.,"Chronobiologie",Leopoldina-Symp.,1975, Halle/S.,GDR 18.Tasaki,I.,Barry,W.,Carnay,L. in "Physical P r i n c i ­ ples of B i o l o g i c a l Membranes" (F.Snell,ed.),Gordon­ -Breach,New York 1970,p.17 19.Clark,H.R.,Strickholm,A.,Nature(1971) 234,470 20.Träuble,H.,"Phase Transitions in Lipids" in " B i o membranes",Vol.3,p.197,(F.Kreuzer,J.F.G.Slegers,ed.) Plenum Publ.Corp.,New York 21.Träuble,H.,Eibl,H.,Proc.Nat.Acad.Sci.USA(1974) 71, 214, and preceding communications 22.Sackmann,E.,Ber.Bunsenges.(1974) 78,929 23.Nachmansohn,D.,Proc.Nat.Acad.Sci.USA(1976) 73,82, and preceding communications 24.Schneider,F.W.,Biopolymers(1976) 15,1 25.Bhat,R.K.,Schneider,F.W.,Ber.Bunsenges.Phys.Chem. (1976) 80,1153 26.Hoffmann,S.,Witkowski,W.,"Polynucleotide Strand­ -Analogues " and "Base-Pair Analogues" in Conf.Proc. "Wirkungsmechanismen von Herbiciden und synthetischen Wachstumsregulatoren" 1972,RGW-Symp.Halle/S., GDR 27.Langenbeck,W.,Halle/S. 1952-1966 personal communi­ cations 28.Arnott,S.,Bond,P.J.,Smith,P.J.C.,Nucleic Acids Res. (1976) 3,2459 29.Torrence,P.F.,DeClercq,E.,Witkop,B.,Biochim.Biophys.Acta(1977) 475,1, and preceding communications 30.DeClercq,Ε.,Topics in Current Chemistry (1974) 52, 174 3 1 . G i l l e s p i e , D . , G a l l o , R . C . , S c i e n c e (1975) 188,802 32.Carter,W.A.,DeClercq,Ε.,Science (1974) 186,1172 33.Demus,D.,Demus,M.,Zaschke,H.,"Flüssige K r i s t a l l e in Tabellen",VEB Deutscher Verlag für Grundstoffindu­-

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

232

MESOMORPHIC

ORDER IN POLYMERS

strie,Leipzig,1974 34.Schubert,H.,Wiss.Z.Univ.Halle (1970) 19,1 35.Schubert,H., H a l l e / S . 1957 and following years: personal communications 36.Clough,S.B.,Blumstein,A.,Hsu,E.C.,Macromolecules (1976) 9,123 37.Blumstein,A.,Weill,G.,Macromolecules (1977) 10,75, and preceding communications 38.Perplies,E.,Ringsdorf,H.,Wendorf,J.Η.,Ber.Bunsen­ ges.Phys.Chem. (1974) 78,921 39.Wendorff,J.H.,Perplies,E.,Ringsdorf,H.,Ρrogr.Col­ loid & Polymer Sci. (1975) 57,272, and preceding communications 40.Cser,T.,Nyitrai,K.,Ngoc,B.D.,Seyfried,E.,Hardy,G., "Investigations on Polymer-Containing Liquid Cry­ stals ",Conf.Proc.1st Liquid Crystal Conf. of Socia­ list Countries,1976,Halle/S.,and preceding communi­ cations 41.Hardy,G.,Nyitrai,K.,Cser,T.,"Polymerization and Co­ polymerization in Mesomorphic Phases",Conf.Ρroc.1st Liquid Crystal Conf. of S o c i a l i s t Countris,1976, Halle/S.,GDR, and preceding communications 42.Baturin,Α.Α.,Amerik,Y.Β.,Krentsel,B.A.,Mol.Cryst. Liquid Cryst.(1972) 16,117, and preceding communi­ cations 43.Strzelecki,L.,Liebert,L.,Keller,P.,Bull.Soc.Chim. France (1975) 2750, and preceding communications 44.Tanaka,Y.,Hitotsuyanagi,M.,Shimura,Y.,Okada,A., Sakuraba,H.,Sakata,T.,Makromol.Chem. (1976) 177, 3035 45.Kamogawa,Η.,Polymer Letters (1972) 10,7 46.Conf.Proc.IUPAC 5th Disc.Conf.PMM "Phases and In­ terfaces in Macromolecular Systems", 1976,Praha, Czechoslovakia 47.Fernandez-Bermudez,S.,Balta-Calleja,F.J.,Hosemann, R.,Makromol.Chem. (1974) 175,3567, and preceding communications 48.Staab,H.A.,Angew.Chem. (1962) 74,407 49.Hoffmann,S.,Witkowski,W.,Weiβpflog,W.,Borrmann,G., manuscript in preparation 50.Hoffmann,S.,Brandt,W.,Schubert,H.,Z.Chem. (1975) 15,59 51.Hoffmann,S.,Brandt,W.,Z.Chem. (1975) 15,306 52.Hoffmann,S.,Brandt,W.,Schubert,H.,"Mesogen Steroid­ -Hormone Derivatives",Conf.Proc.1st Liquid Crystal Conf. of S o c i a l i s t Countries,1976,Halle/S.,GDR 53.Hoffmann,S.,Brandt,W., unpublished results 54.Hoffmann,S.,Weiβpflog,W.,Kumpf,W.,Witkowski,W., Brandt,W.,manuscript in preparation 55.Hoffmann,S.,Witkowski,W.,Borrmann,G.,manuscript

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

14.

H O F F M A N N

A N D WITKOWSKI

Biomesogens and Their Models

233

in preparation 56.Hoffmann,S.,Witkowski,W.,Borrmann,G.,Z.Chem. (1977) 17,291 57.Meindl,P.,Bodo,G.,Tuppy,H.,Arzneimittel-Forsch. (1976) 26,312 5 8 . K a y e , H . , C h a n g , S . - H . , M a c r o m o l . S c i . - C h e m . (1973) A 7,1127, and preceding communications 5 9 . P i t h a , J . , P o l y m e r , ( 1 9 7 7 ) 18,425 and preceding com­ munications 60.Inaki,Y.,Takada,H.,Kondo,K.,Takemoto,K.,Makromol. Chem. (1977) 178,365 61.Seita,T.,Yamauchi,K.,Kinoshita,M.,Imoto,M.,Makromol.Chem. (1973) 164,7, and preceding communications 62.Hoffmann,S.,Witkowski,W.,Waschke,K.,Waschke,S.-R., Z.Chem. (1977) 1 7 , 6 1 , and preceding communications 63.Hoffmann,S.,Witkowski,W.,Gyulbudagyan,A.,Z.Chem. (1977) 17,102 64.Hoffmann,S.,Witkowski,W.,Nucleic Acids Res. (1975) S 1,s137 65.Hoffmann,S.,Witkowski,W.,Ladhoff,A.-M.,Z.Chem. (1976) 16,228 66.Hoffmann,S.,Witkowski,W.,Behlke,J.,Z.Chem. (1976) 16,275 67.Hoffmann,S.,Witkowski,W.,Schubert,H.,Salewski,D., K ö l l i n g , M . - L . , Z . C h e m . (1974) 14,309 68.Hoffmann,S.,Witkowski,W.,Frahnert,Ch.,Mehnert,Ch., unpublished r e s u l t s 69.Hoffmann,S.,Witkowski,W.,Mehnert,Ch.,Geserick,G., unpublished r e s u l t s 70.Hoffmann,S.,Witkowski,W.,Venker,P.,Röβler,H., Z.Chem. (1976) 16,404 71.Hoffmann,S.,Witkowski,W.,Grade,Κ.,Schönheit,Ch., Z.Chem. (1976) 16,324 7 2 . H o f f m a n n , S . , W i t k o w s k i , W . , R ü t t i n g e r , H . - H . , manu­ script in p r e p a r a t i o n 7 3 . F e l s e n f e l d , G . , M i l e s , Η . Τ . , A n n . R e v . B i o c h e m . (1967) 36,407 74.Michelson,Α.M.,Massoulié,Guschlbauer,W.,Progr. N u c l . A c i d R e s . M o l . B i o l . (1967) 6,83 75.Hoffmann,S.,Witkowski,W.,Munsche,D., manuscript in p r e p a r a t i o n 76.Hoffmann,S.,Witkowski,W.,Luck,G.,Zimmer,Ch., manuscript i n p r e p a r a t i o n 77.Hoffmann,S.,Witkowski,W.,Luck,G.,Zimmer,Ch.,Skölziger,R.,Veckenstedt,A.,manuscript in preparation 78.Hoffmann,S.,Witkowski,W.,Waschke,Κ.,Ζ.Chem. (1976) 16,484 79.Hoffmann,S.,Witkowski,W.,Veckenstedt,A., u n p u b l i ­ shed r e s u l t s

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

234

MESOMORPHIC

ORDER

IN POLYMERS

8 0 . W a t s o n , J . D . , C r i c k , F . H . C . , N a t u r e (1953) 177,964 81.Dickerson,R.E.,Takano,T.,Eisenberg,D.,Kallai,O.Β., Samson,L.,Cooper,A.,Margoliash,E.,J.Biol.Chem. (1971) 246,1511 82.Thiele,D.,Guschlbauer,W.,Biophysik (1973) 9,261 83.Arnott,S.,Chandrasekaran,R.,Marttila,C.M.,Biochem. J. (1974) 141,537 84.Zimmerman,S.B.,Cohen,G.H.,Davies,D.R.,J.Mol.Biol. (1975) 92,181 8 5 . Z i m m e r m a n , S . B . , J . M o l . B i o l . (1976) 106,663 86.Rich,A.,RajBhandary,U.L.,Ann.Rev.Biochem. (1976) 45,806 87.Ladner,J.E.,Jack,A.,Robertus,J.D.,Brown,R.S., Rhodes,D.,Clark,Β.F.C.,Klug,A.,Proc.Nat.Acad.Sci. USA(1975) 72,4414, and preceding communications 88.Saenger,W.,Riecke,J.,Suck,D.,J.Mol.Biol. (1975) 93,529 89.Arnott,S.,Chandrasekaran,R.,Leslie,A.G.W.,J.Mol. Biol. (1976) 106,735 90.McGavin,S.,J.Mol.Biol. (1971) 55,293 91.Lindigkeit,R.,Böttger,M.,v.Mickwitz,C.-U.,Fenske, H.,Karawajew,L.,Karawajew,K.,Acta biol.med.germ. (1977) 36,275 92.Dina,D.,Meza,I.,Crippa,M.,Nature (1974) 248,486 93.Arnott,S.,Bond,Ρ.J.,Nature (1973) 244,99, and Science (1973) 181,68 94.DeClercq,E.,Torrence,P.F.,DeSomer,P.,Witkop,B., J . B i o l . C h e m . (1975) 250,2521 95.Hoffmann,S.,Witkowski,W.,Z.Chem. (1976) 16,442 96.Rosenberg, J . M . , S e e m a n , N . C . , D a y , R . O . , R i c h , A . , Biochim.Biophys.Res.Commun. (1976) 69,979 97.Hoffmann,S., Witkowski,W., " P o l y n u c l e o t i d e Strand­ -Analogues" and " B a s e - P a i r Analogues" i n "Wirkungsmechanismen von Herbiciden und synthetischen Wachstumsregulatoren" (A.Barth,F.Jacob,G.Feyerabend,eds.) VEB Gustav F i s c h e r V e r l a g , Jena 1975 98.Hoffmann,S.,Witkowski,W.,"Negativmodellierungen von Rezeptorregionen", C o n f . Ρ r o c . " P r o b l e m s i n Bioe f f e c t o r Research" 1977,Oberhof,GDR and W i s s . Z . U n i v . H a l l e i n the press 99.Hoffmann,S.,Witkowski,W.,Schubert,H.,Z.Chem. (1974) 14,154 100.Hoffmann,S.,Witkowski,W., Conf.Proc.RGW-Symp. "Wirkungsmechanismen von Herbiciden und s y n t h e t i schen Wachstumsregulatoren", 1972, H a l l e / S . , G D R 1 0 1 . J e n s e n , E . V . , D e S o m b r e , Ε . R . , S c i e n c e (1973) 182,126 102.Duax,W.L.,Wecks,C.M.,Rohrer,D.C., " C r y s t a l S t r u c ­ tures of S t e r o i d s " i n "Stereochemistry" ( A l l i n g e r and E l i e l , e d s . ) John Wiley & Sons I n c . 1976 103.Pohlmann,J.L.W.,Elser,W.,Boyd,P.R.,Μοl.Cryst.Li­-

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

14.

H O F F M A N N

A N D

wiTKOwsKi

Biomesogens and Their Models

235

quid C r y s t . (1971) 13,225, and preceding communi­ cations 104.Malthet,J.,Billard,J., Jacques,J.,Bull.Soc.Chim. France (1974) 1199 1 0 5 . G a b b a y , E . J . , G l a s e r , R . , B i o c h e m i s t r y (1971) 10,1665 106.Waring,M.J.,Chisholm,J.W.,Biochim.Biophys.Acta (1972) 262,18 1 0 7 . V o r l ä n d e r , D . , J a n e c k e , F . , Z . P h y s . C h e m . (1913) A85, 697 1 0 8 . J o h n s o n , W . C . , T i n o c o , I . , B i o p o l y m e r s (1969) 7,727 109.Stegemeyer,H., H a l l e / S . 1977, personal communica­ tion 110.Stegemeyer,H.,Mainusch,K.-J.,Naturwissenschaften (1971) 58,599 111.Stegemeyer,H.,Ber.Bunsenges.Phys.Chem. (1974) 78, 861 112.Waring,M.,Chem.&Ind.,(1975) 105 113.Pigram,W.J.,Fuller,W.,Davies,Μ.Ε.,J.Mol.Biol. (1973) 80,361 1 1 4 . P i g r a m , W . J . , F u l l e r , W . , H a m i l t o n , L . D . , N a t u r e (1972) 235,17 115.Trai,Ch.-Ch.,Jain,S.C.,Sobell,H.M.,Proc.Nat.Acad. Sci.USA (1975) 72,628, and preceding communica­ tions 116.Carr,A.A.,Grunwell,J.F.,Sill,A.D.,Meyer,D.R., Sweet,F.W.,Seneve,B.J.,Grisar,M.,Fleming,R.W., Mayer,G.D.,J.Med.Chem. (1976) 19,1142, and prece­ ding communications 117.Mayer,G.D.,Interscience C o n f . " A n t i m i c r o b i a l Agents and Chemotherapy",1974,San Francisco,USA 118.Chandra,P.,Woltersdorf,M.,Biochem.Pharmacol. (1976) 25,877 1 1 9 . D a u n e , M . , S t u r m , J . , Z a n a , R . , s t u d . b i o p h y s . (1976) 57,139 1 2 0 . M e i n d l . P . , B o d o , G . , T u p p y , H . , D r u g - R e s . (1976) 26,312 121."Analogs of Nucleosides and Nucleotides and T h e i r A p p l i c a t i o n s " , 1 9 . C o n f . G e s . B i o l . C h e m . Hoppe-Seyl e r ' s . Z . P h y s i o l . C h e m . (1974) 355,753 122.Prusoff,W.H.,Ward,D.C.,Biochem.Pharmacol. (1976) 25,1233 123.Shugar,D.,FEBS L e t t e r s (1974) 40,548 1 2 4 . J o n e s , A . S . , W a l k e r , R . T . , N u c l e i c Acids Res. (1975) S1,s109, and preceding communications 125.Hoffmann,S.,Schubert,H.,Witkowski,W.,Z.Chem. (1971) 11,345 126.Jones,A.S.,Markham,A.F.,Walker,R.T.,Tetrahedron (1976) 32,2361, and preceding communications 127.Thiellier,Η.Ρ.Μ.,Koomen,G.J.,Ρandit,U.K.,Tetrahe­ dron (1977) 33,1493, and preceding communications 128.Shomshtein,Z.A.,Hiller,S.A.,Chem.Heterocycl.Comp.

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch014

236

M E S O M O R P H I C

ORDER

I N

P O L Y M E R S

(USSR)(1976) (1),27, and preceding communications 129.Kinoshita,M.,Yamauchi,K.,Imoto,M.,"Synthetic Poly­ mers containing Nucleic Acid Bases and Their D e r i ­ vatives" preprint 1974, and preceding communications 1 3 0 . P i t h a , J . , P i t h a , P . M . , S t u a r t , Ε . , B i o c h e m i s t r y (1971) 10,4595, and preceding communications 131.Holý,A.,Coll.Czechoslov.Chem.Commun. (1975) 40, 187, and preceding communications 132.Walker,R.T.,Ann.Rep.Chem.Soc. (1973) 3,624 133.Boguslawski,S.,Olson,P.E.,Mertes,Μ.Ρ.,Biochemistry (1976) 15,3536, and preceding communications 134.Mohr,S.J.,Brown,D.G.,Coffey,D.S.,Nature (1972) 240,250 135.Hoffmann,S.,Schubert,H.,Witkowski,W.,Z.Chem. (1971) 11,465 136.Bugg,C.E.,Thomas,J.M.,Sundaralingam,M.,Rao,S.T., Biopolymers (1971) 10,175 137.Bugg,C.E.,"The Purines - Theory and Experiment" in "Jerusalem Symp. on Quant.Chem. and Biochem.IV" I s r a e l Academy of Sciences and Humanities Jerusa­ lem 1972 138.Mislow,K.,"Introduction to Stereochemistry", W.A. Benjamin I n c . , 1965 139.Kusanagi,H.,Tadokoro,H.,Chatani,Y.,Macromolecules (1976) 9,531 140.Motherwell,W.D.S.,Isaacs,N.W.,J.Mol.Biol. (1972) 71,231 141.Thrierr,J.C.,Dourlent,M.,Leng,M.,J.Mol.Biol. (1971) 58,815 142.Hoffmann,S.,Witkowski,W.,Venker,P.,Grade,K., un­ published results 143.Waschke,K.,Waschke,S.-R.,Hoffmann,S.,Witkowski,W., "Interferon Induction by Double-Strandes Like Complexes of V i n y l Copolymers with Polynucleoti­ des" in Conf.Proc. 4th Regional Symp. "Interferon and Interferon Inducers" Wroclaw, Poland, October 1976 in the press RECEIVED

December 8,

1977.

15 Cholesteric O r d e r in B i o p o l y m e r s Y. BOULIGAND

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch015

Histophysique et Cytophysique, E.P.H.E. et C.N.R.S., 67, rue Maurice-Günsbourg, 94200 Ivry-sur-Seine, France

Many synthetic polymers form cholesteric phases, and even solids showing certain of the fundamental symmetries of cholesteric liquids. The purpose of this paper is to review the main examples of biological polymers assembling into cholesteric liquids or into more or less solid analogues. We will present them according to the main chemical classes of polymers to which they belong. We will also indicate the main forces involved in creating the cholesteric twist. Analogues of liquid crystals are numerous in biological systems (3-6,8-11). Certain fibrous and regularly twisted materials can be considered as polymerized cholesterics. Such twisted fibrous structures are recognizable by electron microscopy and sometimes by light microscopy, by the observation in thin sections of sets of stacked rows of nested arcs (fig. 1). The structure of a cholesteric system is represented in f i g . 2 and the origin of the arced patterns is indicated in f i g . 3. The first sketch (fig. 2) shows a section which is parallel to the twist axis. Fig. 3 corresponds to a section plane which is oblique with respect to the twist axis. This is the case most frequently observed. Pictures of stacked series of nested arcs in biological analogues of cholesterics have been found in numerous invertebrate materials. They have been reviewed in (6). New references can be found in (20) and (21). Twisted fibrous arrangements have been observed in the organic matrix of compact bone in vertebrates (6,23 and Castanet pers. comm.), the connective tissue of certain invertebrates (6,14 and f i g . 1), in numerous animal cuticles (3-6,8-10,20,30), in the body-wall of certain Tunicates (6,15), in the membranes surrounding various animal eggs (6), in various types of cytoplasmic inclusions (6), in different kinds of plant cell walls (6,21,22,27), in certain plant mucilages (J.-C.Thomas, pers. comm.), in the bacterial nucleus (6, Gourret, pers. comm.) and in the chromosomes of certain Protozoa (9, figs 6 and 7). Nucleic acids, proteins and glycoproteins are the main components of the twisted fibrous arrangements. For many of them, biochemical studies are rare or absent. 0-8412-0419-5/78/47-074-237$05.00/0 © 1978 American Chemical Society

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch015

238

M E S O M O R P H I C

ORDER

I N

P O L Y M E R S

Figure 1. Stacked series of nested arcs observed in oblique section in the con­ nective tissue of Havelockia inermis, Holothuroid, Echinoderm. Phase contrast microscopy, paraffin sec­ tion, Haematoxylin.

ZZZZZZD

Ο

Figure 2, Cholesteric architecture ob­ served in a section plane parallel to the twist axis

'czzzzzz:

Ο

15.

BOULiGAND

Cholesteric Order in Biopolymers

239

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch015

1. N u c l e i c a c i d s . The DNA of the D i n o f l a g e l l a t e chromosomes forms a c h o l e s t e r i c network which i s very s i m i l a r to that o f t e n observed i n the b a c t e r i a l nucleus (6,9,18). S i m i l a r s t r u c t u r e s have been observed i n mitochondrial DNA i n c e r t a i n Trypanosomes, a f t e r a treatment with c e r t a i n drugs (review i n 6). DNA i n concentrated aqueous s o l u t i o n s can form c h o l e s t e r i c mesophases (4,18, 24). Remarkable c h o l e s t e r i c s p h e r u l i t e s have been observed i n concentrated ribosomal RNA ( f i r s t considered as t-RNA, 3 3 - 3 5 ) . 2. P r o t e i n s . Synthetic polypeptides can form c h o l e s t e r i c s o l u t i o n s i n s e v e r a l organic solvents (24-26,29). Twisted arrangements of c o l l a g e n f i b r i l s are common i n sponges (Carrière, pers. comm.), i n Holothurians (Echinoderms, 6,14, see f i g . 1) and i n f l a t worms ( 6 ) . Microtubular haemoglobin has been observed i n erythrocytes i n s i c k l e c e l l anaemia. A f t e r deoxygenation and a d d i t i o n of t h e r mal energy, the mutant molecules of haemoglobin (HbS) stack to form monomolecular f i l a m e n t s . Six strands assemble into a hélicoïdal microtubule showing s i x h e l i c e s of long p i t c h (review i n 19). These microtubules form a c h o l e s t e r i c packing ( 6 ) . Superb twisted arrangements have been observed i n l a r v a l haemocytes (oenocytoid) of the silkworm, forming r e g u l a r and conc e n t r i c s e r i e s of arcs (2). P r o t e i n s a l s o are known to form a twisted f i b r o u s system i n the periostracum of c e r t a i n gastropods (review i n 20) and i n the cortex of the oocytes of numerous Teleost f i s h e s , review i n ( 6 ) . 3. Glycoproteins (associated polysaccharides and p r o t e i n s ) . C e l l u l o s e and p r o t e i n s form m i c r o f i b r i l s i n the body-wall of c e r t a i n marine i n v e r t e b r a t e s , the Tunicates. The f i b r o u s network shows a r e g u l a r twist i n one species Halocynthia p a p u l o s a . Cellulose i s an important component of plant c e l l w a l l s and s e r i e s of nested arcs are o f t e n v i s i b l e . I n t e r e s t i n g p i c t u r e s have been discussed with reference to the c h o l e s t e r i c conception (21,22,27) . Plant c e l l w a l l s contain a great v a r i e t y of polysaccharides and they are o f t e n d i f f e r e n t from c e l l u l o s e . The examples i n d i c a t i n g the presence of a twisted a r c h i t e c t u r e are reviewed i n (6,21,22, 27). C e r t a i n blue-green algae ( R i v u l a r i a a t r a and Chroococcus minutus) show remarkable arced patterns i n t h e i r mucilage (J.-C. Thomas, pers. comm. f i g . 8). C h i t i n / P r o t e i n complexes are found i n f u n g i and i n the a r t h ropod c u t i c l e . C h i t i n i s the poly-N-acetyl-D-glucosamine. Twisted arrangements have been observed i n the c e l l w a l l of the spore of Endogone (Mucorale, fungi) and i n v a r i o u s animal c u t i c l e s , namely i n c e r t a i n medusae (6) and i n almost a l l Arthropods : Crustaceans (3-6) , Insects and other groups (review i n 20). 4. Twisted systems due to v i r u s e s . C e r t a i n v i r u s e s i n the form of long c y l i n d e r s can assemble i n t o c h o l e s t e r i c phases (Narcissus mosaic v i r u s , 6,39) . The presence of a v i r u s i n a c e l l o f t e n leads to the d i f f e r e n t i a t i o n of c h o l e s t e r i c networks of f i b r i l s (6,16).

240

M E S O M O R P H I C ORDER IN P O L Y M E R S

Many works deal with the v a r i a t i o n of the h é l i c o ï d a l p i t c h i n c h o l e s t e r i c phases as a f u n c t i o n of temperature and composition. The best way to e l u c i d a t e the o r i g i n of the twist seems to be to compare the p i t c h v a r i a t i o n s i n l y o t r o p i c and i n thermotropic systems. The f i r s t accurate work i n t h i s f i e l d i s due to Robinson (1958-66) who studied PBLG (polybenzyl-L-glutamate) a s y n t h e t i c polypeptide i n organic solvents as dioxane, e t h y l i c a l c o h o l , c h l o roform e t c . and Cano (1967) who made measurements of the p i t c h e s of nematic paraazoxyphenetol with d i f f e r e n t amounts of c h o l e s t e r o l benzoate. The twist i s p r o p o r t i o n a l to the concentration of the t w i s t ing molecules i n Cano s experiments and to the square of the conc e n t r a t i o n i n Robinson s. These observations suggest that t h i s twist i s p r o p o r t i o n a l to the frequency of molecular c o l l i s i o n s between c h o l e s t e r i c and nematic molecules (C and N) i n Cano s work and between two c h o l e s t e r i c molecules (C with C) i n Robinson s. A c c o r d i n g l y , i t appears that the twist can be derived from the molecular concentrations i n an analogous way to that of the chemical k i n e t i c s (Bouligand, 1974) . More g e n e r a l l y , i n a c h o l e s t e r i c phase, d i f f e r e n t kinds of molecules may be involved and belong to four main types : N: molecules able to form by themselves a nematic phase. C: molecules able to form by themselves a c h o l e s t e r i c phase. R: non-mesogenic molecules showing a molecular r o t a t o r y power and able to twist a nematic l i q u i d . S : non-mesogenic solvent without any t w i s t i n g i n f l u e n c e . The c o l l i s i o n s between two molecules s u s c e p t i b l e to create an elementary twist are of the f o l l o w i n g types 1

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ch015

T

1

T

N+C; N+R; C+C; C+R. The r e s u l t i n g twist i s a l i n e a r expression of the frequencies of the v a r i o u s kinds of molecular contacts and w i l l be : t

ο

= m [N][C]-hn [N][R]-Hn [C][R]+iPL [C] 1

2

J

3

t

2

(7) ,

where m-^ , m , m , m^ are constants at a given temperature and the brackets i n d i c a t e c o n c e n t r a t i o n s . These formulations allow the i n t e r p r e t a t i o n of more recent r e s u l t s (1). Cano s experiments correspond to 2

3

T

t

= m^CHNl-hiiijC] ,

with [C] + [N] = 1.

2

One has thus : t

= m [C]+(m -m ) [C ] l

l+

1

2

and for the range of concentrations studied by Cano 0-aminoBase-pair analogues 183,204,205 carbonic acids (ChMAA-n) .... 37 Benzene 146 in the formation of a liquid crystal­ Benzoic acid, phenylesters of 24 line structure, role of 49 Benzoic acid side groups 56 Benzyl-L-glutamate 169,172 Cholesteryl p-acryoyloxybenzoate (ChAB) 58 Biological tests 185 30, 31 Biomesogens and their models 178 Cholesteryl derivatives 97 Biopolymers, cholesteric order in 237 C h oies terylacrylate monomer Cholesterylmethacrylate (ChMA) 38,57,58 Bioregulations, metastabilitles and hysteresis in 181 Cholesterylvinyl succinate, polymer/ monomer state diagram of 98 Birefringence 77, 245 243 Blends, thin films of 66 Chromosome, dinoflagellate

257

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ix001

258

M E S O M O R P H I C

Circular dichroism 144 Coil conformations, polypeptide chains in random 128 Coil radius 129 Comb-like polymers 35, 127 Comonomers into vinyl nucleobasestack matrices, hypothetical insertion of vinyl 216 Complementary matrix fits in nucleoproteinic systems 187 Composition, glass transition tem­ perature as a function of 67 Concentration, Onsager critical 130 Connective tissue, stacked series of nested arcs in 238 Contractile apparatus in striated muscle, liquid crystalline 248 Copolyesters 119-121 Copolymerization 59 reactions, vinvlmonomers for 183 Copolymers 27, 41, 63, 184 from α-amino acids, block 165, 169 of carbobenzoxy-L-lysine and benzyl-L-glutamate 172 with cholesteric side groups 56 of cholesteryl derivatives 31 of cholesterylmethacrylate (PChMA) with n-alkylmethacrylates 57 or L-leucine and benzyl-L-glutamate 172 with a polyvinyl block and a polypeptide block 166 with a saccharide block and a peptide block 165 thin films of 66 with varied nucleobase design, vinyl 217 with varied strand polarity pattern, 9-vinyladenine 218 x-ray scattering intensity vs. scattering angle for 53 Counterrotation in poly (γ-benzyl glutamate) liquid crystals 157 Crayfish striated muscle 248, 250 Critical angle 159 Critical concentration, Onsager 130 Crystalline, liquid ( see Liquid crystalline ) Crystalline polymers, comparison with 10 Crystallization temperature, melting temperature vs 74 Crystals, liquid (see Liquid crystals) Cuticle, Arthropod 245 4-Cyano-4 -acryloyloxybiphenyl 91 4-Cyano-4 -biphenyl(η -j- 2)alkenoates 86, 87 Cytochrome C, backbone of 187 Cytokinines 204 /

,

ORDER

I N

P O L Y M E R S

D Dichloroethane 151 Dichloromethane , 157 Dielectric anisotropy 88 Dielectric constant during polymerization, static 92 Differential scanning calorimetry 73 Diffraction from polymers with mesomorphic order, x-ray 1 Diffraction studies on mesomorphic order in polymers, x-ray 12 Dilatometric measurements 138 Dinoflagellate chromosome 243 Dioxane 146,171 Diphenyl derivatives 17,28,29 DNA calf-thymus 181 -interaction measurements 185 intercalators 203 n-Dodecylmethacrylate (DMA) 59 DSC 98 Duplexes, Watson-Crick 204

Ε Electron-microscopic studies Enantiotropic (liquid crystalline) polymers Energy, interaction Energy of nematic and isotropic phases of rigid rod solution, free .. Enthalpy (ies) change for the 4-cyano-4'-biphenyl(η + 2)alkenoates of transition Equilibrium separation Ester-aniles of estrone Estrogen cholesterics, long chain terminated Estrone, ester-aniles of Excluded volume effects

183 22 130 132 104 87 87 158 202 200 202 127

F Falling sphere method Fibers from isotropic pitches from mesophase pitches, carbon myofilament lattice of long tonic .... Fibrous arrangements, twisted Filament(s) actin and myosin lattice, effect of ionic strength on .. spacing, effect of pH on Films cast on glass, annealed cast on lead, annealed of copolymers and blends, thin

158 115 118 250 237 248 253 253 82 81 66

259

INDEX

Flexible spacer group 24, 27 Flow temperatures of transition from anisotropic to isotropic state 44 Fluoramides as stereoelectronic simulations of tilerone 210 Fluorenes and flu or en one in classical thermotropics 210 Folds of the polypeptide chains 167 Free energy of nematic and isotropic phases of rigid rod solution 132

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ix001

G Glass ( es ) annealed films cast on 82 isotropic 16 temperatures of transition from anisotropic to isotropic state .... 44 transition 16 temperature 22, 67 Glycoproteins 239 H Half pitch Heats, transition Helical ambitions of simple vinyl polymers α-Helical conformation Helices, double Hélicoïdal model Helix-coil transition of a polypeptide chain Heteroaromatie systems 204, n-Hexadecylmethacrylate (HMA) ... Hexagonal structure Homopolymers 24, of benzyl-L-glutamate of carbobenzoxy-L-lysine of cholesteryl derivatives Homopolymerization reactions, vinylmonomers for Hypothetical insertion of vinyl comonomers into vinyl nucleobase-stack matrices Hysteresis experiments in the melting profile, thermal phenomena in bioregulations in polynucleotide triplexes, molecular

139 98 215 157 242 245 129 206 59 171 184 169 171 31 183 216 183 192 181 186

I "Infective" compounds, "strangening" nucleic acids by Information transfer from nucleic acids to proteins, cellular

197 206

Inosine stacks Interaction energy Intercalations, Sobell visualization of Intercalative fit, hypothetical Intercalators, DNA Interferon priming Interhybrid arrangements and interactions, speculative Intermediate organization Interplanar spacings vs. carbons in side chains Interplanar spacings and melting points Investigation techniques Ionic strength onfilamentlattice, effect of Ising model Isomorphous solid solution of poly ( cetylvinyl ether ) Isotropic glasses phases of rigid rod solution, free energy of pitches,fibersfrom state, glass temperatures, flow temperatures, flow temperatures of transition from anisotropic to

216 130 203 212 203 228 223 7, 9 46 41 39 253 129 95 16 132 115

44

L Lamellar liquid crystal model of the carbonaceous mesophase Ill Lamellar structure 167 Lattice, effect of ionic strength on filament 253 Lattice stability, forces affecting 254 Layers, polypeptide 168 Layers, superimposed 242 Lead, annealed films cast on 81 Length, persistence 132 L-Leu cine 172 Linkage groups 118 Liquid crystalline contractile apparatus in striated muscle 248 order in polymers and copolymers with cholesteric side groups .... 56 phase transition of synthesized polymers 29 polyesters 117 polymers, thermotropic cholesterolcontaining 33 segments, copolyesters containing .. 119 side chains 122 state, polymerization in the 95 structures 12, 49,167 textures 21

260

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ix001

Liquid crystals magnetic reorientation and counterrotation in poly ( y-benzyl glutamate) model of the carbonaceous mesophase, lamellar nematic structure of Low angle x-ray diffraction peak

M E S O M O R P H I C ORDER I N P O L Y M E R S

Mesophase ( continued ) lamellar liquid crystal model of the carbonaceous Ill 157 pitch 109,118 reactions, thermotropic 108 Ill sphere 112 93 spherules 110 118 Metastabilities in Deregulations 181 66 Methacrylic backbones 14 N-Methacrvloyl-to-aminocarbonic acids (ChMAA-n) 35-38,41 M Methylmethaerylate (MMA) 58 Mixing curves of polynucleotide/ Macromolecules polymer interactions 221, 222 with mesogenic groups 40 models of 48 Model(s) biomesogens and their 178 in oriented samples, packing of 48 considerations 23 Magnetic reorientation and countermacromole eu le 48 rotation 157 191, 213 Main chain polymers 12 Modelling nucleic acids Molecular hystereses in polynucleo­ Matrix fits in nucleoproteinic tide triplexes 186 systems, complementary 187 Mean field theory 130 Molecules by aromatic polymeriza­ tion, formation of planar Ill Mechanical properties of copolyesters 121 129 Melt viscosity of copolyesters 120 Molecules, isolated Monomer(s) 39,58,60,61,86 Melting characterization of 59 vs. crystallization temperatures 74 cholestervlaerylate 97 curves of polynucleotide/polymer elemental analyses of ChMAA-n .... 38 interactions 221, 222 mesomorphic 86 points of ChMAA-II 41 phase transitions of 28 points of N-methacryloyl-o)-polymer interactions 95 aminocarbonie acids (MAA-n) 37 -polymer state diagram of profiles, thermal 211 eholesterylvinyl succinate 98 profiles, thermal hysteresis in 192 synthesis of 37 Membranes, amphiphilic pattern 207 development in 182 Monomeric antivirals 181 Mesogenic groups 13, 27, 34, 40 Monomeric thermotropics Mesogenic side chains 23 Mouse L-eel Is with polynucleotide triplexes 228 Mesomorphic 244 monomers, new series of 86 Mucilage Muscle, striated 248, 250 order in block copolymers from Myofilament lattices of long tonic α-amino acids 165 fibers 250 on the physical properties of Myosin filaments 248 poly ( p-biphenyl a cry late ), influence of 71 Ν in polymers, x-ray diffraction studies on 12 7, 56 in polynucleotide analogues 178 Nematic analogues 245 x-ray diffraction from polymers liquid crystal 93 with 1 phases of rigid rod solution, free pattern, superhelical 202 energy of 132 properties 87 polymers 17,29 Mesophase excluded volume effects 127 characteristics of long chain termi­ smectic polymers 24 nated estrogen cholesterics 200 structure 142 characteristics of 2-pyridine-5temperature 142 carboxylic esters, smectic 198 238 formation 115 Nested arcs in connective tissue

261

INDEX

Poly-benzyl-L-glutamate (PBLG) .127, 168 Poly ( γ-L-benzylglutamate ) 57 Poly-y-benzyl-L-glutamates 137 Poly ( p-biphenyl aery late ) (PPBA) 71,74,80 Polybutadiene 168 Poly ( N-p-butoxybenzylidene-paminostyrene ) (PBBAS) 7 Ροΐν-γ-buty 1 -L-glutamate 151 Poly ( cetyl vinyl ether ) 95 Poly ( cholesteryl p-acryloyloxybenzoate) (PChAB) 5 Poly ( cholesteryl mcthacrylate ) (PChMA) 5 Polycholesteryl-II-methacryloyloxyΟ undecanoate 37 η -Ο cty 1 m eth aery 1 ate (OMA) 59 Poly ( Λ - ( p-cyanobenzylidene )-paminostyrene ) (PCBAS) 7 Oligomeric antivirals 208 Onsager critical concentration 130 Poly ( p-cvclohexvlphenylacrylate ) (PPCPA) ..' 71 Optical techniques 157 ORD characteristics 211 Poly ( di ( A -p-acryloyloxybenzyliORD spectra of polynucleotide/ dene ) - ρ - d i am in oben zen e polymer interactions 221, 222 (PdiABAB) 5 Oriented samples, macromolecule Polv ( di ( N-p-acryloyloxvbenzvlipacking in 48 ' dene)hydrazine) (PdiABH) ...... 10 Polyesters, development of liquid crystalline 117 Ρ Poly glutamates 136 Poly-y-heptyl-L-glutamate 151 Packing of macromolecules in 151 oriented samples 48 Poly-y-hexyl-L-glutamate 41,61 Peptide block, copolymers with a 165 Polymer(s) amorphous 22 Persistence length 132 characterization of 59 pH onfilamentspacing, effect of 253 with cholesteric side groups, liquid Phase crystalline order in 56 boundry 131 comb-like 35 diagram 89 crystalline 10 separation 32 enantiotropic (liquid crystalline) .. 22 transitions with flexible spacer groups 15,16 of cholesteryl derivatives 30, 31 withoutflexiblespacer groups 16, 19 of monomers 28 helical ambitions of simple vinyl .... 215 points 98 with intermediate organization 9 of synthesized polymers, liquid crystalline phase transition liquid crystalline 29 of synthesized 29 Phenylesters of benzoic acid 24 with liquid crystalline side chains .. 122 Pitch, cholesteric 140 main chain 12 Pitches, fibers from 115, 118 with mesomorphic order, x-ray Planar molecules, formation of Ill Planar texture 43 diffraction from 1 Polarity patterns, strand 218 -monomer interactions 95 Polarizing microscopy 98 -monomer state diagram of Poly ( p-acryloyloxyazobenzene ) cholesterylvinyl succinate 98 (PPAAB) 71 nematic 17,24,29,127 Poly ( acryloyloxybenzoic acid ) physical properties on poly(p(PABA) 3 biphenyl acrylate) and related 71 Poly-y-alkyl-L-glutamates 137 -polynucleotide interactions 221, 222 Poly-y-amyl-L-glutamate 151 with side anisodiametric groups 34 Poly ( γ-benzyl glutamate ) 157 side chain 13 Poly-y-benzyl-D-glutamates 137 smectic 4,17, 29

Nuclear magnetic resonance (NMR) 72,144,157,161 Nucleic acids 239 amphiphilic pattern development in 182 modelling 191,213 to proteins, cellular information transfer from 206 "strangening" 197,213 Nucleobase design, vinyl copolymer with varied 217 Nucleobase-stack matrices, vinyl 216 Nucleoproteinic systems, comple­ mentary matrix fits in 187

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ix001

7

7

M E S O M O R P H I C ORDER I N P O L Y M E R S

262 Polymer ( s ) ( continued ) synthesis of 38 tacticity , 73 thermal properties of selected 17 thermotropic cholesterol-containing liquid crystalline 33 x-ray diffraction studies on meso­ morphic order in 12 Polymeric antivirals 208 Polymerization 59 of 4-aeryloyloxy-4 -cyanobiphenyl, thin layer 88 bulk 32, 86, 88 of 4-cyano-4 -acryloyloxybiphenyl, cell for thermal 91 formation of planar molecules by aromatic Ill in the liquid crystalline state 95 static dielectric constant during 92 Polv ( m eth a cry 1 oy 1 oxy ben zo i c ' acid) ( P M B A ) 3 Poly ( N-p-m eth aery 1 oy 1 oxyben zy l i dene-p-aminobenzoic acid ) (PMBABA) 3 Polynucleotides 181 amphiphilic pattern of 195 analogues, mesomorphic order in .... 178 base-base recognition schemes in .. 189 pattern, triple standard 190 —polymer interactions 221, 222 strand analogues 183 effects of 226, 227 modelling and "strangening" nucleic acids by 213 triplexes molecular hystereses in 186 preincubation of mouse L-cells with 228 triplet parts of 193 Poly-y-octyl-L-glutamate 151 Polypeptide(s) 136 block, copolymers with a 166 chains folds of the 167 helix-coil transition of 129 in random coil conformations 128 layers 168 Poly ( p-phenylene-bis ( N-methylenep-aminostyrene ) ) ( P P M A S ) 10 Polyvinyl block, copolymers with a .... 166 Preincubation of mouse L-cells with polynucleotide triplexes 228 Propylmethacrylate ( P M A ) 58 Proteins 239 amphiphilic pattern development in 182 cellular information transfer from nucleic acids to 206 2-Pyridine-5-carboxylic esters 198 /

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ix001

/

?j

Q

Quadratic structure

.171 R

Random copolymers of α-amino acids Reduced temperature Reorientation curves, N M R Reorientation in poly ( γ-benzyl glutamate) liquid crystals, magnetic Rigidity, induced Rod(s) concentration solution, nematic and isotropic phases of rigid supramolecular Rundall's model

169 142 161 157 128 128 132 245 241

S Saccharide block, copolymers with a .. 165 Sarcomeric unit cell in crayfish striated muscle 250 Scattering angle for copolymer, x-ray scattering intensity vs 53 S eh iff base side groups 56 Sedimentation experiments 183 Separation, equilibrium 158 Side chain(s) conformation 154 interplanar spacings vs. carbons in . 46 length, effect of 151 mesogenic 23 polymers 13 with liquid crystalline 122 steric hindrance between 149 Side groups anisodiametric 34 benzoic acid 56 cholesteric 56, 64 Schiff base 56 Simulations of tilerone, fluoramides as stereoelectric

210

Smectic 3, 56 mesophase chracteristics of 2pyridine-5-carboxylie esters ... 198 organization 4, 64 polymers 17, 24, 29 S obeli visualization of intercalations .. 203 Solid solution of poly( cetylvinylether ), isomorphous 95 Solution, nematic and isotropic phases of rigid rod 132 Solutions, polyglutamates in concentrated 136 Solvents on T and twisting angle, effect of 146 x

263

INDEX

Spacer groups flexible 24,27 polymers with flexible 15, 16 polymers without flexible 16, 19 Spacings vs. carbons in side chains, interplanar 46 Spacings of ChMAA-II, interplanar .... 41 Specific heat for atactic and isotactic PPBA 74 Spherules, mesophase 110 Spherulites, sequential growth of solid 42 Splitting width 144

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ix001

Stack(s)

adenine 2.15 inosine 216 matrices, hypothetical insertion of vinyl comonomers into vinyl nucleobase216 Stacked series of nested arcs in connective tissue 238 State diagram of cholesterylvinyl succinate, polymer—monomer 98 Stereoelectric simulations of tilerone 210 Steric hindrance between side chains .. 149 Steroids 205 Strand analogues, polynucleotide .226,227 Strand polarity patterns, 9-vinyladenine copolymers with varied 218 "Strangening" nucleic acids 197,213 Striation ..." 136 Structural anologues 205 Structure(s) 166,167,169 cholesteric 142,238 hexagonal 171 lamellar 167 liquid crystalline .167 of polyglutamates in concentrated solutions 136 quadratic 171 triplex 186 Superhelical mesomorphic pattern .... 202 Supramolecular rods 245 Synthesis 38, 86,165,166, 169

Thermal hysteresis in the melting profile melting profiles optical analysis polymerization of 4-eyano-4'-

aeryloyloxybiphenyl 91 properties 15, 17 Thermogravimetric analysis 83 Thermomechanical methods 98 Thermotropic(s) cholesterol-containing liquid crystalline polymers 33 classical 195,196,210 fluorenes and fluorenones in

classical mesophase reactions modelling nucleic acids by simple .. monomeric Thin layer polymerization of 4-acr\Toyloxy-4'-cyanobiphenyl . Tilerone, stereoelectric simulations of Time, apparent viscosity vs Time, change of cholesteric pitch with Tissue, stacked series of nested arcs in connective Tonic fibers, mvofilament lattice of long Transition enthalpies of heats of a polypeptide chain, helix-coil .... sharpness of the temperatures and enthalpies for the 4-cyano-4'-biphenyl(n + 2)alkenoates Triple standard polynucleotide pattern Triplet parts of polynucleotide triplexes Triplexes Arnott-Bond-Felsenfeld

molecular hystereses in poly­ nucleotide preincubation of mouse L-cells with polynucleotide

structures

Tacticity, polymer Temperature ( s ) for the 4-eyano-4'-biphenyl ( η + 2 ) alkenoates, transition flow temperatures and temperatures of transition from anisotropic to isotropic state, glass nematic reduced vs. twist angle Terminal groups Texture, planar

73 87 44 142 142 153 118 43

192 211 75

triplet parts of polynucleotide Twist angle vs. temperature Twist, cholesteric Twisted fibrous arrangements structure systems due to viruses Twisting angle

9-Vinyladenine copolymers with varied strand polarity pattern

210 108 191 181 88 210 162 140 238 250 87 98 129 129 87 190 193 204

186 228 186

193 153 241 237 136 239 142,146

218

Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0074.ix001

264 Vinyl comonomers into vinyl nucleobase-stack matrices, hypothetical insertion of Vinylcopolymer with varied nucleobase design 9 - Vi ny 1 h y pox an th i η e Vinylmonomers for homo- and eopolym eri zation reactions Vinyl nucleobase-stack matrices, hypothetical insertion comono­ mers into Vinyl polymers, helical ambitions of simple Viruses, twisted systems due to Viscometric techniques Viscosities, apparent 158, Volume effects, nematic polymers: excluded Volume measurement, specific

M E S O M O R P H I C ORDER IN P O L Y M E R S

216 217 216 183 216 215 239 157 162 127 142

Watson-Crick duplexes

204

X X-ray diffraction from atactic PPBA peak, low angle from polymers with mesomorphic order studies on mesomorphic order in polymers diffractograms investigations scattering intensity vs. scattering angle for copolymer

79 80 66 1 12 98 16 53