Math QRH: Algebra II to Calculus III 9781365285820, 1365285820

Math QRH is a tool, not a textbook! A valuable book for anyone in upper-level STEM courses or careers. A Quick Reference

198 70 6MB

English Pages 440 [438] Year 2021

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

Math QRH: Algebra II to Calculus III
 9781365285820, 1365285820

Table of contents :
Cover
Inside Title Page
Complete Table of Contents from Print Version
Section 0 - Introduction
Section 1 - Algebra II
Section 2 - Precalculus
Section 3 - Calculus I
Section 4 - Calculus II
Section 5 - Calculus III
Teachers and Professors
Thank You

Citation preview

 ‌  ‌

www.MathQRH.com‌  ‌  

 ‌

 ‌  ‌  ‌  ‌

“Know‌‌how‌‌to‌‌learn.‌‌Then,‌‌want‌‌to‌‌learn.”‌  ‌ -Katherine‌‌Johnson‌   ‌  ‌  ‌  ‌

QRH:‌‌Quick‌‌Reference‌‌Handbook‌  ‌  ‌ Math‌Q ‌ RH‌i‌s‌a ‌ ‌h ‌ andbook‌a ‌ vailable‌t‌ o‌a ‌ nyone‌o ‌ n‌t‌ heir‌j‌ourney‌i‌n‌‌   mathematics,‌d ‌ esigned‌t‌ o‌c‌ ompliment‌y ‌ our‌o ‌ ther‌a ‌ ssigned‌t‌ exts.‌I‌t‌‌   provides‌a ‌ ‌r‌ eady‌r‌ eference‌t‌ o‌h ‌ elp‌y ‌ ou‌b ‌ e‌s‌ uccessful!‌  ‌  ‌ Why‌Q ‌ RH?‌T ‌ he‌Q ‌ RH‌i‌s‌a ‌ ‌b ‌ ook‌a ‌ vailable‌t‌ o‌p ‌ ilots‌o ‌ n‌t‌ he‌fl ‌ ight‌d ‌ eck‌o ‌ f‌a ‌ n‌‌   airplane‌t‌ hat‌c‌ ontains‌t‌ he‌p ‌ rocedures‌t‌ o‌d ‌ eal‌w ‌ ith‌e ‌ mergencies‌d ‌ uring‌‌   flight.‌I‌t‌w ‌ as,‌i‌n‌p ‌ art,‌a ‌ n‌i‌nspiration‌f‌ or‌t‌ urning‌m ‌ y‌m ‌ ath‌n ‌ otes‌i‌nto‌‌   something‌u ‌ seful‌f‌ or‌y ‌ ou.‌  ‌  ‌  ‌

Get‌‌the‌‌Hardcover‌‌version!‌‌MathQRH.com‌  ‌  ‌ Include‌y ‌ our‌n ‌ otes‌i‌n‌t‌ his‌b ‌ ook.‌U ‌ se‌i‌t‌a ‌ s‌y ‌ our‌Q ‌ RH‌f‌ or‌y ‌ ears‌t‌ o‌c‌ ome.‌  ‌ This‌e ‌ Version‌o ‌ f‌M ‌ ath‌Q ‌ RH‌c‌ an‌b ‌ e‌p ‌ rinted‌a ‌ nd‌p ‌ ut‌i‌nto‌y ‌ our‌o ‌ wn‌‌   notebook,‌b ‌ ut‌g ‌ etting‌t‌ he‌h ‌ ardcover‌v‌ ersion‌c‌ reates‌a ‌ ‌h ‌ andy‌r‌ eference‌‌   tool‌t‌ hat‌y ‌ ou‌c‌ an‌s‌ ave‌i‌n‌y ‌ our‌b ‌ ook‌c‌ ollection‌f‌ or‌u ‌ se‌i‌n‌m ‌ any‌o ‌ f‌y ‌ our‌‌   STEM‌c‌ lasses!‌  ‌

 

 ‌

Math‌‌QRH‌  ‌ Algebra‌‌II‌‌to‌‌Calculus‌‌III‌  ‌  ‌ First‌‌Edition‌  ‌  ‌

Written‌‌and‌‌Published‌‌by:‌‌Katarina‌‌Costa‌  ‌  ‌ Artwork:‌‌Katarina‌‌Costa‌  ‌  ‌ ISBN:‌‌978-1-365-28582-0‌  ‌ (In‌‌hardcover‌‌on‌‌Lulu.com‌‌or‌‌MathQRH.com)‌  ‌  ‌  ‌ For‌A ‌ dditional‌I‌nformation‌a ‌ nd‌R ‌ esources:‌  ‌ www.MathQRH.com‌  ‌  ‌ Printed‌‌in‌‌the‌‌USA‌  ‌ Lulu.com‌  ‌  ‌  ‌ Evaluation‌‌copies‌‌are‌‌provided‌‌to‌‌qualified‌‌academics‌‌and‌‌professionals‌‌for‌‌   review‌‌purposes‌‌only,‌‌for‌‌use‌‌in‌‌their‌‌classes‌‌for‌‌the‌‌next‌‌year.‌‌These‌‌copies‌‌   are‌‌licensed‌‌and‌‌may‌‌not‌‌be‌‌sold‌‌or‌‌transferred‌‌to‌‌any‌‌third‌‌party.‌‌For‌‌details‌‌   on‌‌our‌‌educator‌‌evaluation‌‌program‌‌contact‌‌us‌‌through‌‌www.MathQRH.com.‌  ‌

 ‌  ‌ ©‌‌2021-2022‌K ‌ atarina‌C ‌ osta‌  ‌  ‌ All‌‌rights‌‌reserved.‌‌No‌‌portion‌‌of‌‌this‌‌book‌‌may‌‌be‌‌reproduced‌‌in‌‌any‌‌form‌‌   without‌‌permission‌‌from‌‌the‌‌publisher,‌‌except‌‌as‌‌permitted‌‌by‌‌U.S.‌‌copyright‌‌   law.‌‌For‌‌permissions‌‌contact:‌‌www.MathQRH.com‌  ‌

 

 ‌

 ‌  ‌

Table‌‌Of‌‌Contents‌  ‌  ‌ Section‌‌0:‌I‌ ntroduction‌

21‌  ‌

 ‌ ‌0.0‌

‌Katarina’s‌‌Introduction‌

‌21‌  ‌

0 ‌ .1‌

‌Resources‌‌and‌‌Tips‌

‌23‌  ‌

0 ‌ .2‌

‌My‌‌Notes,‌‌Resources‌‌and‌‌Tips‌

‌26‌  ‌

 ‌ Section‌‌1:‌‌Algebra‌‌II‌

29‌  ‌

 ‌ 1.0‌

‌Summary‌‌Sheet‌

29‌  ‌

1 ‌ .1‌

‌Graphing‌‌Basics‌

36‌  ‌

1.1.1‌

‌Intercepts‌

36‌  ‌

1.1.2‌

‌Symmetry‌

36‌  ‌

1.1.3‌

‌Circles‌

38‌  ‌

1.1.3.a‌ 1.1.4‌ 1 ‌ .2‌

‌Completing‌‌the‌‌Square‌

38‌  ‌

‌Difference‌‌Quotient‌

39‌  ‌

‌Functions‌‌and‌‌Their‌‌Graphs‌

39‌  ‌

1.2.1‌

‌Function‌‌Definition‌

39‌  ‌

1.2.2‌

‌Domain‌‌and‌‌Range‌

40‌  ‌

1.2.2.a‌ 1.2.3‌

‌Notation‌

40‌  ‌

‌Categories‌‌and‌‌Characteristics‌‌of‌‌Functions‌

41‌  ‌

1.2.3.a‌

‌Odd‌‌or‌‌Even‌

41‌  ‌

1.2.3.b‌

‌Increasing,‌‌Decreasing,‌‌and‌‌Constant‌

42‌  ‌

1.2.3.c‌

‌Maximums‌‌and‌‌Minimums‌

42‌  ‌

1.2.4‌

‌Parent‌‌Functions‌

43‌  ‌

1.2.5‌

‌Piecewise‌‌Functions‌

46‌  ‌

1.2.6‌

‌Transformations‌‌of‌‌Functions‌

46‌  ‌

1.2.6.a‌

‌Rigid‌‌Transformations‌

46‌  ‌

1.2.6.b‌

‌Distortions‌

47‌  ‌

1.2.6.c‌

‌Equation‌‌Form‌

47‌ 

Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌

1‌  ‌

 ‌

Table‌‌of‌‌Contents‌  ‌  ‌ 1.3‌

‌Linear‌‌and‌‌Quadratic‌‌Functions‌

1.3.1‌

‌Linear‌‌Definition‌

1.3.1.a‌ 1.3.2‌

1.4‌

48‌  ‌ 48‌  ‌

‌Depreciation‌

48‌  ‌

‌Quadratic‌‌Functions‌

49‌  ‌

1.3.2.a‌

‌Vertex‌‌Form‌

49‌  ‌

1.3.2.b‌

‌Roots‌

50‌  ‌

1.3.2.c‌

‌Axis‌‌of‌‌Symmetry‌

50‌  ‌

1.3.2.d‌

‌Discriminant‌

50‌  ‌

1.3.2.e‌

‌Quadratic‌‌Inequalities‌

51‌  ‌

‌Polynomial‌‌and‌‌Rational‌‌Functions‌

1.4.1‌

51‌  ‌

‌Polynomial‌‌Functions‌

51‌  ‌

1.4.1.a‌

‌End‌‌Behavior‌

52‌  ‌

1.4.1.b‌

‌Behavior‌‌at‌‌Intercepts‌

54‌  ‌

1.4.1.c‌

‌Multiplying‌‌Polynomials‌

54‌  ‌

1.4.1.d‌

‌Polynomial‌‌Long‌‌Division‌

55‌  ‌

1.4.1.e‌

‌Synthetic‌‌Polynomial‌‌Division‌

55‌  ‌

1.4.2‌

‌Rational‌‌Functions‌‌and‌‌Analysis‌

57‌  ‌

1.4.2.a‌

‌Domain‌‌Restrictions‌

57‌  ‌

1,4.2.b‌

‌Vertical‌‌Asymptotes‌

57‌  ‌

1.4.2.c‌

‌Holes‌

58‌  ‌

1.4.2.d‌

‌Multiplicity‌‌of‌‌the‌‌Vertical‌‌Asymptote‌

58‌  ‌

1.4.2.e‌

‌Horizontal‌‌Asymptotes‌

59‌  ‌

1.4.2.f‌

‌Oblique/Slant‌‌Asymptotes‌

60‌  ‌

1.4.3‌

‌Graphing‌‌Rational‌‌Functions‌

61‌  ‌

1.4.4‌

‌Polynomial‌‌and‌‌Rational‌‌Inequalities‌

62‌  ‌

1.4.4.a‌

‌Graphically‌

62‌  ‌

1.4.4.b‌

‌Algebraically‌

62‌  ‌

1.4.5‌

‌Factoring‌‌Polynomials‌‌and‌‌Real‌‌Zeros‌

64‌  ‌

1.4.5.a‌

‌The‌‌Factor‌‌Theorem‌

64‌  ‌

1.4.5.b‌

‌The‌‌Remainder‌‌Theorem‌

64‌  ‌

1.4.5.c‌

‌Descartes’‌‌Rule‌‌of‌‌Signs‌

64‌  ‌

1.4.5.d‌

‌Rational‌‌Zeros‌‌Theorem‌

65‌  ‌

1.4.5.e‌

‌Combining‌‌Tools‌‌to‌‌Find‌‌Zeros‌‌of‌‌Polynomial‌

65‌    ‌ ‌

2‌ 



‌Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌  ‌

Table‌‌of‌‌Contents‌  ‌  ‌ 1.4.6‌

‌Power‌‌Pattern‌

67‌  ‌

1.4.6.b‌

‌Complex‌‌Conjugate‌

68‌  ‌

‌Complex‌‌Zeros‌

68‌  ‌

1.4.7.a‌

‌Finding‌‌Equations‌‌from‌‌Zeros‌‌-‌‌Example‌

68‌  ‌

1.4.7.b‌

‌Finding‌‌Zeros‌‌from‌‌a‌‌Function‌‌-‌‌Example‌

69‌  ‌

‌Exponential‌‌and‌‌Logarithmic‌‌Functions‌

1.5.1‌

70‌  ‌

‌Composite‌‌Functions‌

1.5.1.a‌

70‌  ‌

‌Domain‌‌of‌‌Composite‌‌Functions‌

70‌  ‌

1.5.2‌

‌One‌‌to‌‌One‌‌Functions‌

70‌  ‌

1.5.3‌

‌Inverse‌‌Functions‌

71‌  ‌

1.5.3.a‌

‌Notation‌

71‌  ‌

1.5.3.b‌

‌Process‌‌of‌‌Finding‌‌an‌‌Inverse‌‌Function‌

71‌  ‌

1.5.3.c‌

‌Graphs‌‌and‌‌Inverse‌‌Functions‌

72‌  ‌

1.5.4‌

‌Exponential‌‌Functions‌

73‌  ‌

1.5.4.a‌

‌Transformations‌

73‌  ‌

1.5.4.b‌

‌Checking‌‌for‌‌an‌‌Exponential‌

74‌  ‌

1.5.4.c‌

‌Euler’s‌‌Number‌

74‌  ‌

1.5.4.d‌

‌Solving‌‌Exponential‌‌Functions‌‌-‌‌Example‌

75‌  ‌

1.5.5‌

1 ‌ .6‌

66‌  ‌

1.4.6.a‌ 1.4.7‌

1.5‌

‌Imaginary‌‌and‌‌Complex‌‌Numbers‌

‌Logarithmic‌‌Functions‌

76‌  ‌

1.5.5.a‌

‌Implementing‌‌log‌‌-‌‌Examples‌

76‌  ‌

1.5.5.b‌

‌Domain‌‌and‌‌Range‌

77‌  ‌

1.5.5.c‌

‌Graphing‌

78‌  ‌

1.5.5.d‌

‌Laws‌‌of‌‌Logarithms‌

79‌  ‌

1.5.6‌

‌Financial‌‌Model‌‌Formulas‌

80‌  ‌

1.5.7‌

‌Growth‌‌and‌‌Decay‌

81‌  ‌

1.5.7.a‌

‌Uninhibited‌‌Growth‌‌and‌‌Decay‌

81‌  ‌

1.5.7.b‌

‌Newton’s‌‌Law‌‌of‌‌Cooling‌

82‌  ‌

1.5.7.c‌

‌Logistical‌‌Model‌

83‌  ‌

‌My‌‌Notes‌‌for‌‌Algebra‌‌II‌

Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌

‌84‌ 

3‌  ‌

 ‌  ‌

Table‌‌of‌‌Contents‌  ‌ Section‌‌2:‌‌Pre-Calculus‌

87‌  ‌

 ‌ 2.0‌

‌Summary‌‌Sheet‌

88‌  ‌

2 ‌ .1‌

‌Trigonometric‌‌Functions‌

98‌  ‌

2.1.1‌

‌Angles,‌‌Arc‌‌Length,‌‌Circular‌‌Motion‌

98‌  ‌

2.1.1.a‌

‌Basic‌‌Vocabulary‌

98‌  ‌

2.1.1.b‌

‌Minutes‌‌and‌‌Seconds‌

99‌  ‌

2.1.1.c‌

‌Arc‌‌Length‌

100‌  ‌

2.1.1.d‌

‌Radians‌‌and‌‌Degrees‌

100‌  ‌

2.1.1.e‌

‌Area‌‌of‌‌a‌‌Sector‌

101‌  ‌

2.1.1.f‌

‌Linear‌‌Speed‌

101‌  ‌

2.1.1.g‌

‌Angular‌‌Speed‌

101‌  ‌

2.1.2‌

‌Trigonometric‌‌Functions:‌‌Unit‌‌Circle‌‌Approach‌

102‌  ‌

2.1.2.a‌

‌Trigonometric‌‌Functions‌‌of‌‌a‌‌Real‌‌Number‌

102‌  ‌

2.1.2.b‌

‌Undefined‌‌Functions‌

103‌  ‌

2.1.2.c‌

‌Trigonometry‌‌and‌‌Triangles‌

103‌  ‌

2.1.2.d‌

‌Common‌‌Angles‌

104‌  ‌

2.1.2.e‌

‌Symmetry‌

104‌  ‌

2.1.2.f‌

‌Finding‌‌Radius‌

105‌  ‌

2.1.3‌

‌Properties‌‌of‌‌Trigonometric‌‌Functions‌

105‌  ‌

2.1.3.a‌

‌Periodic‌‌Functions‌‌and‌‌the‌‌Fundamental‌‌Period‌

105‌  ‌

2.1.3.b‌

‌Signs‌‌of‌‌Trigonometric‌‌Functions‌

106‌  ‌

2.1.3.c‌

‌Pythagorean‌‌Identities‌

106‌  ‌

2.1.3.d‌

‌Finding‌‌Exact‌‌Values‌‌Using‌‌Identities‌‌-‌‌Example‌

106‌  ‌

2.1.3.e‌

‌Finding‌‌Exact‌‌Values‌‌Given‌‌One‌‌Value‌‌and‌‌Sign‌‌of‌‌Other‌‌-‌‌Example‌ 107‌  ‌

2.1.3.f‌

‌Even‌‌and‌‌Odd‌‌Properties‌‌Theorem‌

107‌ 

  ‌ ‌ 4‌ 



‌Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌  ‌

Table‌‌of‌‌Contents‌  ‌  ‌ 2.1.4‌

108‌  ‌

2.1.4.a‌

‌Sine‌‌Function‌

108‌  ‌

2.1.4.b‌

‌Cosine‌‌Function‌

109‌  ‌

2.1.4.c‌

‌Relationship‌

110‌  ‌

2.1.4.d‌

‌Transformations‌

110‌  ‌

2.1.4.e‌

G ‌ raphing‌‌Using‌‌Key‌‌Points‌‌-‌‌Example‌

111‌  ‌

2.1.4.f‌

‌Finding‌‌the‌‌Equation‌‌Using‌‌the‌‌Graph‌‌-‌‌Example‌

111‌  ‌

2.1.5‌

2 ‌ .2‌

‌Graphs‌‌of‌‌the‌‌Sine‌‌and‌‌Cosine‌‌Functions‌

‌Graphs‌‌of‌‌Tangent,‌‌Cotangent,‌‌Secant,‌‌and‌‌Cosecant‌‌Functions‌

112‌  ‌

2.1.5.a‌

‌Tangent‌‌Function‌

112‌  ‌

2.1.5.b‌

‌Cotangent‌‌Function‌

113‌  ‌

2.1.5.c‌

‌Writing‌‌Domain‌

114‌  ‌

2.1.5.d‌

‌Transformations‌

114‌  ‌

2.1.5.e‌

‌Cosecant‌‌Function‌

115‌  ‌

2.1.5.f‌

‌Secant‌‌Function‌

115‌  ‌

2.1.5.g‌

‌Transformations‌‌of‌‌the‌‌Cosecant‌‌and‌‌Secant‌‌Functions‌

116‌  ‌

2.1.5.h‌

‌Amplitudes‌‌of‌‌these‌‌Graphs‌

116‌  ‌

‌Analytic‌‌Trigonometry‌ 2.2.1‌

117‌  ‌

‌The‌‌Inverse‌‌Functions‌

117‌  ‌

2.2.1.a‌

‌Inverse‌‌Sine‌‌Function‌

117‌  ‌

2.2.1.b‌

‌Inverse‌‌Cosine‌‌Function‌

118‌  ‌

2.2.1.c‌

‌Inverse‌‌Tangent‌‌Function‌

119‌  ‌

2.2.1.d‌

‌Properties‌‌of‌‌Inverse‌‌Functions‌

119‌  ‌

2.2.1.e‌

‌Finding‌‌the‌‌Inverse‌‌of‌‌a‌‌Trig‌‌Function‌‌-‌‌Example‌

120‌  ‌

2.2.1.f‌

‌Solving‌‌an‌‌Inverse‌‌Trig‌‌Function‌‌-‌‌Example‌

121‌  ‌

2.2.2‌

‌Trigonometric‌‌Identities‌

121‌  ‌

2.2.2.a‌

‌Identically‌‌Equal,‌‌Identity,‌‌and‌‌Conditional‌‌Expression‌

121‌  ‌

2.2.2.b‌

‌Identities‌

122‌  ‌

2.2.2.c‌

‌Algebraic‌‌Techniques‌

122‌  ‌

2.2.2.d‌

‌Guidelines‌‌for‌‌Establishing‌‌Identities‌

123‌ 

Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌

5‌  ‌

 ‌

Table‌‌of‌‌Contents‌  ‌  ‌ 2.2.3‌

123‌  ‌

2.2.3.a‌

‌Theorem‌‌(Cosine)‌

123‌  ‌

2.2.3.b‌

‌Theorem‌‌(Sine)‌

124‌  ‌

2.2.3.c‌

‌Theorem‌‌(Tangent)‌

125‌  ‌

2.2.3.d‌

‌Exact‌‌Values‌‌of‌‌Inverse‌‌Trigonometric‌‌Functions‌‌-‌‌Example‌

125‌  ‌

2.2.3.e‌

‌Writing‌‌Trig‌‌Expressions‌‌as‌‌Algebraic‌‌Expression‌‌-‌‌Example‌

126‌  ‌

2.2.3.f‌

T ‌ rigonometric‌‌Equation‌‌Linear‌‌in‌‌Sine‌‌and‌‌Cosine‌‌-‌‌Example‌

127‌  ‌

2.2.4‌

2 ‌ .3‌

‌Sum‌‌and‌‌Difference‌‌Formulas‌

‌Double‌‌Angle‌‌and‌‌Half-Angle‌‌Formulas‌

128‌  ‌

2.2.4.a‌

‌Double‌‌Angle‌‌Formulas‌

128‌  ‌

2.2.4.b‌

‌Finding‌‌Exact‌‌Value‌‌-‌‌Example‌

128‌  ‌

2.2.4.c‌

‌Establishing‌‌an‌‌Identity‌‌-‌‌Example‌

129‌  ‌

2.2.4.d‌ ‌Squared‌‌Trig‌‌Functions‌‌Formulas‌

129‌  ‌

2.2.4.e‌

‌Solving‌‌Using‌‌Identities‌‌-‌‌Example‌

130‌  ‌

2.2.4.f‌

‌Projectile‌‌Motion‌

130‌  ‌

2.2.4.g‌

‌Half-Angle‌‌Formulas‌

131‌  ‌

2.2.4.h‌

‌Squared‌‌Half-Angle‌‌Formulas‌

131‌  ‌

‌Applications‌‌of‌‌Trigonometric‌‌Functions‌ 2.3.1‌

132‌  ‌

‌Right‌‌Angle‌‌Trigonometry:‌‌Applications‌

132‌  ‌

2.3.1.a‌

‌Complementary‌‌Angles‌

132‌  ‌

2.3.1.b‌

‌Complementary‌‌Angle‌‌Theorem‌

132‌  ‌

2.3.1.c‌

‌Solving‌‌a‌‌Right‌‌Triangle‌‌-‌‌Example‌

133‌  ‌

2.3.2‌

‌Solving‌‌Oblique‌‌Triangles‌

134‌  ‌

2.3.3‌

‌The‌‌Law‌‌of‌‌Sines‌

135‌  ‌

2.3.3.a‌

‌Example‌‌-‌‌SAA‌‌Triangle‌

135‌  ‌

2.3.3.b‌

‌Solving‌‌SSA‌‌Triangles‌

136‌  ‌

2.3.4‌

‌The‌‌Law‌‌of‌‌Cosines‌

2.3.4.a‌ 2.3.5‌

136‌  ‌

‌Example‌‌-‌‌SAS‌‌Triangle‌

137‌  ‌

‌Area‌‌of‌‌a‌‌Triangle‌

138‌  ‌

2.3.5.a‌

‌Area‌‌of‌‌an‌‌SAS‌‌Triangle‌‌Theorem‌

138‌  ‌

2.3.5.b‌

‌Heron’s‌‌Formula‌‌-‌‌Area‌‌of‌‌a‌‌SSS‌‌Triangle‌

138‌ 

  ‌ ‌ 6‌ 



‌Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌  ‌

Table‌‌of‌‌Contents‌  ‌  ‌ 2.4‌

‌Polar‌‌Coordinates‌‌and‌‌Vectors‌

2.4.1‌

139‌  ‌

‌Polar‌‌Coordinates‌

139‌  ‌

2.4.1.a‌

‌Finding‌‌Several‌‌Polar‌‌Coordinates‌‌of‌‌a‌‌Single‌‌Point‌

140‌  ‌

2.4.1.b‌

‌Converting‌‌from‌‌Polar‌‌to‌‌Rectangular‌‌Coordinates‌

141‌  ‌

2.4.1.c‌

‌Points‌‌that‌‌Lie‌‌on‌‌an‌‌Axis‌

141‌  ‌

2.4.1.d‌

‌Converting‌‌from‌‌Rectangular‌‌to‌‌Polar‌‌Coordinates‌

141‌  ‌

2.4.2‌

‌Polar‌‌Equations‌‌and‌‌their‌‌Graphs‌

142‌  ‌

2.4.2.a‌

‌Theorem‌‌(Vertical/Horizontal‌‌Lines)‌

142‌  ‌

2.4.2.b‌

‌Theorem‌‌(Circles)‌

143‌  ‌

2.4.2.c‌

‌Symmetric‌‌Points‌

143‌  ‌

2.4.2.d‌

‌Tests‌‌for‌‌Symmetry‌

143‌  ‌

2.4.2.e‌

‌Cardioids‌

144‌  ‌

2.4.2.f‌

‌Limaçons‌‌without‌‌an‌‌Inner‌‌Loop‌

145‌  ‌

2.4.2.g‌

‌Limaçons‌‌with‌‌an‌‌Inner‌‌Loop‌

146‌  ‌

2.4.2.h‌

‌Rose‌

147‌  ‌

2.4.2.i‌

‌Leminscates‌

148‌  ‌

2.4.2.j‌

‌Spiral‌

148‌  ‌

2.4.2.k‌

‌Graphing‌‌Polar‌‌Equations‌

149‌  ‌

2.4.3‌

‌Complex‌‌Plane‌

149‌  ‌

2.4.3.a‌

‌Magnitude‌‌or‌‌Modulus‌

150‌  ‌

2.4.3.b‌

‌Cartesian‌‌Form‌

150‌  ‌

2.4.3.c‌

‌Polar‌‌Form‌‌of‌‌a‌‌Complex‌‌Number‌

150‌  ‌

2.4.3.d‌

‌Argument‌

150‌  ‌

2.4.3.e‌

‌Euler’s‌‌Formula‌

151‌  ‌

2.4.3.f‌

‌Exponential‌‌Form‌

151‌  ‌

2.4.3.g‌

‌Multiplication‌‌and‌‌Division‌‌Theorem‌

151‌  ‌

2.4.3.h‌

‌Periodic‌‌Theorem‌

151‌  ‌

2.4.3.i‌

‌De‌‌Moivre’s‌‌Theorem‌

152‌  ‌

2.4.3.j‌

‌Complex‌‌Roots‌

152‌  ‌

2.4.3.k‌

‌Finding‌‌Complex‌‌Roots‌

152‌ 

Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌

7‌  ‌

 ‌

Table‌‌of‌‌Contents‌  ‌ 2.4.4‌

2 ‌ .5‌

‌Vectors‌

2.4.4.a‌

‌Geometric‌‌Vectors‌

153‌  ‌

2.4.4.b‌

‌Adding‌‌Vectors‌‌Geometrically‌

154‌  ‌

2.4.4.c‌

‌Multiplying‌‌Vectors‌‌by‌‌Numbers‌‌Geometrically‌

155‌  ‌

2.4.4.d‌

‌Properties‌

156‌  ‌

‌Analytic‌‌Geometry‌‌(Conic‌‌Sections)‌

156‌  ‌

2.5.1‌

‌Equation‌‌Characteristics‌

157‌  ‌

2.5.2‌

‌Parabolas‌

157‌  ‌

2.5.2.a‌ 2.5.3‌ 2.5.4‌

‌Example‌

158‌  ‌

‌Ellipses‌

2.5.3.a‌

159‌  ‌

‌Graphing‌

160‌  ‌

‌Hyperbolas‌

161‌  ‌

2.5.4.a‌

‌Graphing‌

161‌  ‌

2.5.4.b‌

‌Analyzing‌‌an‌‌Equation‌

162‌  ‌

2.5.5‌

2 ‌ .6‌

153‌  ‌

‌Parametric‌‌Equations‌‌and‌‌Plane‌‌Curves‌

162‌  ‌

2.5.5.a‌

‌Graphing‌‌a‌‌Plane‌‌Curve‌

163‌  ‌

2.5.5.b‌

‌Finding‌‌Rectangular‌‌Equation‌‌of‌‌a‌‌Parametrically‌‌Defined‌‌Curve‌

164‌  ‌

2.5.5.c‌

‌Use‌‌Time‌‌as‌‌a‌‌Parameter‌‌in‌‌Parametric‌‌Equations‌

164‌  ‌

‌Matrices‌ 2.6.1‌

165‌  ‌

‌Solving‌‌a‌‌System‌‌of‌‌Equations‌

165‌  ‌

2.6.1.a‌

‌Example‌

166‌  ‌

2.6.1.b‌

‌Possible‌‌Solutions‌

166‌  ‌

‌Determinant‌‌of‌‌a‌‌Matrix‌

167‌  ‌

2.6.2‌

2.6.2.a‌

‌2x2‌‌Matrix‌

167‌  ‌

2.6.2.b‌

‌3x3‌‌Matrix‌

168‌  ‌

2.6.2.c‌

‌Switch‌‌Rows‌‌or‌‌Columns‌

170‌  ‌

2.6.2.d‌

‌Multiples‌‌of‌‌Rows/Columns‌

170‌  ‌

2.6.3‌

‌Cramer’s‌‌Rule‌

171‌  ‌

2.6.4‌

‌Operations‌‌with‌‌Matrices‌

172‌  ‌

2.6.4.a‌

‌Identity‌‌Matrices‌

174‌  ‌

2.6.4.b‌

‌Inverse‌‌Matrices‌

175‌ 

  ‌ ‌ 8‌ 



‌Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌  ‌

Table‌‌of‌‌Contents‌  ‌  ‌ 2.7‌

‌Partial‌‌Fraction‌‌Decomposition‌

2.7.1‌

‌Case‌‌1‌

177‌  ‌

2.7.2‌

‌Case‌‌2‌

178‌  ‌

2.7.3‌

‌Case‌‌3‌

178‌  ‌

2.7.4‌

‌Case‌‌4‌

178‌  ‌

2.7.4.a‌ 2 ‌ .8‌

177‌  ‌

‌Example‌‌(Case‌‌1‌‌and‌‌Case‌‌2)‌

179‌  ‌

‌My‌‌Notes‌‌for‌‌Precalculus‌

180‌  ‌

 ‌ Section‌‌3:‌‌C ‌ alculus‌‌I‌

183‌  ‌

 ‌ ‌3.0‌ ‌Summary‌‌Sheet‌

183‌  ‌

3 ‌ .1‌

189‌  ‌

‌Limits‌ 3.1.1‌

‌Limit‌‌Laws‌

190‌  ‌

3.1.2‌

‌Direct‌‌Substitution‌‌Property‌

190‌  ‌

3.1.3‌

‌The‌‌Squeeze‌‌Theorem‌

191‌  ‌

3.1.4‌

‌Continuous‌‌Functions‌

191‌  ‌

3.1.5‌

‌Continuity‌‌Theorems‌

192‌  ‌

3.1.6‌

‌Composite‌‌Function‌‌Theorem‌

192‌  ‌

3.1.7‌

‌Composites‌‌of‌‌Continuous‌‌Functions‌‌Theorem‌

193‌  ‌

3.1.8‌

‌The‌‌Intermediate‌‌Value‌‌Theorem‌

193‌  ‌

3.1.9‌

‌“Intuitive”‌‌Definition‌‌of‌‌a‌‌Limit‌‌at‌‌Infinity‌

193‌  ‌

3.1.10‌ ‌Limits‌‌of‌‌Rational‌‌Numbers‌‌Theorem‌ 3 ‌ .2‌

194‌  ‌

‌Derivatives‌

194‌  ‌

3.2.1‌

‌Derivatives‌‌at‌‌the‌‌Point‌‌(a,‌‌f(a))‌

195‌  ‌

3.2.2‌

‌The‌‌Derivative‌‌of‌‌a‌‌Function‌

195‌  ‌

3.2.3‌

‌Differentiability‌

195‌  ‌

3.2.3.a‌

‌Theorem‌

196‌  ‌

3.2.3.b‌

‌A‌‌Function‌‌is‌‌Not‌‌Differentiable‌‌at‌‌the‌‌Following‌

196‌ 

Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌

9‌  ‌

 ‌

Table‌‌of‌‌Contents‌  ‌  ‌ 3.2.4‌

‌Higher‌‌Order‌‌Derivatives‌

197‌  ‌

3.2.5‌

‌Basic‌‌Derivative‌‌Formulas‌

197‌  ‌

3.2.6‌

D ‌ erivatives‌‌of‌‌Trigonometric‌‌Identities‌

198‌  ‌

3.2.6.a‌

‌Theorem‌

198‌  ‌

3.2.7‌

‌The‌‌Chain‌‌Rule‌

198‌  ‌

3.2.8‌

‌The‌‌Derivative‌‌of‌‌an‌‌Exponential‌‌Function‌

199‌  ‌

3.2.9‌

I‌mplicit‌‌Differentiation‌

199‌  ‌

3.2.9.a‌

‌Example‌

3.2.10‌ ‌Derivatives‌‌of‌‌Logarithmic‌‌Functions‌

200‌  ‌ 201‌  ‌

3.2.10.a‌ ‌Proof‌

201‌  ‌

3.2.10.b‌ ‌Properties‌‌of‌‌Logarithms‌

202‌  ‌

3.2.11‌ ‌Steps‌‌in‌‌Logarithmic‌‌Differentiation‌

202‌  ‌

3.2.12‌ ‌Exponential‌‌Growth‌‌and‌‌Decay‌

203‌  ‌

3.2.12.a‌ P ‌ opulation‌‌Growth‌

204‌  ‌

3.2.12.b‌ ‌Radioactive‌‌Decay‌

204‌  ‌

3.2.12.c‌ ‌Newton’s‌‌Law‌‌of‌‌Cooling‌

205‌  ‌

3.2.13‌ ‌Related‌‌Rates‌

205‌  ‌

3.2.13.a‌ ‌Example‌

206‌  ‌

3.2.14‌ ‌Linear‌‌Approximations‌

207‌  ‌

3.2.15‌ D ‌ ifferentials‌

208‌  ‌

3.2.16‌ ‌Minimums‌‌and‌‌Maximums‌

209‌  ‌

3.2.17‌ ‌Extreme‌‌Value‌‌Theorem‌‌(EVT)‌

209‌  ‌

3.2.18‌ ‌Fermat’s‌‌Theorem‌

210‌  ‌

3.2.19‌ ‌The‌‌Closed‌‌Interval‌‌Method‌

210‌  ‌

3.2.20‌ ‌Rolle’s‌‌Theorem‌

211‌  ‌

3.2.21‌ ‌Mean‌‌Value‌‌Theorem‌

212‌  ‌

3.2.22‌ ‌Corollary‌

213‌ 

  ‌ ‌ 10‌ 



‌Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌  ‌

Table‌‌of‌‌Contents‌  ‌  ‌ 3.2.23‌ ‌How‌‌Derivatives‌‌Affect‌‌the‌‌Graph‌ 3.2.23.a‌ ‌Increasing/Decreasing‌‌Test‌

213‌  ‌

3.2.23.b‌ ‌The‌‌First‌‌Derivative‌‌Test‌

213‌  ‌

3.2.23.c‌ ‌Concavity‌

214‌  ‌

3.2.23.d‌ ‌Concavity‌‌Test‌

215‌  ‌

3.2.23.e‌ ‌Inflection‌‌Point‌

215‌  ‌

3.2.23.f‌ ‌The‌‌Second‌‌Derivative‌‌Test‌

215‌  ‌

3.2.24‌ ‌Indeterminate‌‌Forms‌

215‌  ‌

3.2.25‌ ‌L’Hospital’s‌‌Rule‌

216‌  ‌

3.2.25.a‌ ‌Indeterminate‌‌Products‌

217‌  ‌

3.2.25.b‌ ‌Indeterminate‌‌Difference‌

217‌  ‌

3.2.25.c‌ I‌ndeterminate‌‌Powers‌

218‌  ‌

3.2.26‌ ‌Graph‌‌Sketching‌

219‌  ‌

3.2.27‌ ‌Optimization‌

219‌  ‌

3.2.27.a‌ ‌Example‌ 3 ‌ .3‌

213‌  ‌

‌Integrals‌ 3.3.1‌

220‌  ‌ 222‌  ‌

‌Antiderivatives‌

222‌  ‌

3.3.1.a‌

‌Power‌‌Rule‌‌and‌‌Antiderivatives‌

222‌  ‌

3.3.1.b‌

‌Functions‌‌and‌‌Their‌‌Particular‌‌Antiderivatives‌

222‌  ‌

3.3.2‌

‌Particle‌‌Motion‌

224‌  ‌

3.3.3‌

‌Sigma‌‌Notation‌

224‌  ‌

3.3.3.a‌

‌Theorem‌

225‌  ‌

3.3.3.b‌

‌Theorem‌

225‌  ‌

3.3.4‌

‌Definite‌‌Integrals‌

226‌  ‌

3.3.4.a‌

‌Negative‌‌Integrals‌

227‌  ‌

3.3.4.b‌

‌Theorem‌‌(Jump‌‌Discontinuities)‌

227‌  ‌

3.3.4.c‌

‌Theorem‌

228‌  ‌

3.3.4.d‌

‌Midpoint‌‌Rule‌

228‌  ‌

3.3.4.e‌

‌Properties‌‌of‌‌a‌‌Definite‌‌Integral‌

228‌  ‌

3.3.4.f‌

‌Comparison‌‌Properties‌

229‌ 

Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌

11‌  ‌

 ‌

Table‌‌of‌‌Contents‌  ‌  ‌ 3.3.5‌

‌The‌‌Fundamental‌‌Theorem‌‌of‌‌Calculus‌

230‌  ‌

3.3.5.a‌

‌Part‌‌One‌

230‌  ‌

3.3.5.b‌

‌Part‌‌Two‌

231‌  ‌

3.3.5.c‌

‌Notation‌

231‌  ‌

3.3.5.d‌

‌Composite‌

231‌  ‌

3.3.6‌

‌Indefinite‌‌Integrals‌

3.3.6.a‌ 3.3.7‌

232‌  ‌

‌Common‌‌Indefinite‌‌Integrals‌

233‌  ‌

‌The‌‌Substitution‌‌Rule‌‌(Indefinite‌‌Integrals)‌

3.3.7.a‌

234‌  ‌

‌Example‌

234‌  ‌

3.3.8‌

‌The‌‌Substitution‌‌Rule‌‌(Definite‌‌Integrals)‌

236‌  ‌

3.3.9‌

‌Integrals‌‌of‌‌Symmetric‌‌Functions‌

236‌  ‌

3 ‌ .4‌ ‌My‌‌Notes‌‌For‌‌Calculus‌‌I‌

‌238‌  ‌

 ‌ Section‌‌4‌‌-‌‌Calculus‌‌II‌

241‌  ‌

 ‌ ‌4.0‌

‌Summary‌‌Sheet‌

241‌  ‌

4 ‌ .1‌

‌Applications‌‌of‌‌Integration‌

253‌  ‌

4.1.1‌

‌Area‌‌Between‌‌Curves‌

253‌  ‌

4.1.2‌

‌Average‌‌Value‌‌of‌‌a‌‌Function‌

254‌  ‌

4.1.3‌

‌Arc‌‌Length‌

254‌  ‌

4.1.4‌

‌y-Axis‌‌Integration‌

255‌  ‌

4.1.4.a‌

‌Graphing‌‌a‌‌Complicated‌‌Function‌‌of‌‌y‌

255‌  ‌

4.1.4.b‌

‌Area‌‌Between‌‌the‌‌Graph‌‌of‌‌x‌‌=‌‌f(y)‌‌and‌‌the‌‌y-Axis‌

255‌  ‌

4.1.4.c‌

‌Finding‌‌the‌‌Area‌‌Between‌‌Two‌‌Curves‌

256‌  ‌

4.1.5‌

‌Volume‌

256‌  ‌

4.1.5.a‌

‌Mathematical‌‌Definition‌‌of‌‌Volume‌

256‌  ‌

4.1.5.b‌

‌Example‌

257‌ 

  ‌ ‌ 12‌ 



‌Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌  ‌

Table‌‌of‌‌Contents‌  ‌  ‌ 4.1.6‌

258‌  ‌

4.1.6.a‌

‌Disk‌

259‌  ‌

4.1.6.b‌

‌Washer‌

260‌  ‌

4.1.6.c‌

‌Cylindrical‌‌Shells‌

261‌  ‌

4.1.7‌

4 ‌ .2‌

‌Volumes‌‌of‌‌Revolution‌

‌Work‌

261‌  ‌

4.1.7.a‌

‌Units‌‌for‌‌Work‌‌Word‌‌Problems‌

262‌  ‌

4.1.7.b‌

‌Changing‌‌Force‌

262‌  ‌

4.1.7.c‌

‌Hooke’s‌‌Law‌

263‌  ‌

4.1.7.d‌

‌Cable‌‌Problems‌

263‌  ‌

4.1.7.e‌

‌Tank‌‌Problems‌

263‌  ‌

‌Techniques‌‌of‌‌Integration‌ 4.2.1‌

‌Integration‌‌by‌‌Parts‌

264‌  ‌ 264‌  ‌

4.2.1.a‌

‌Example‌

265‌  ‌

4.2.1.b‌

‌How‌‌to‌‌Choose‌‌u‌

266‌  ‌

4.2.2‌

‌Trigonometric‌‌Integrals‌

266‌  ‌

4.2.2.a‌

‌Important‌‌Identities‌

266‌  ‌

4.2.2.b‌

S ‌ trategies/Guidelines‌

267‌  ‌

‌Trigonometric‌‌Substitution‌

269‌  ‌

4.2.3‌

4.2.3.a‌

‌Example‌

270‌  ‌

4.2.3.b‌

‌Definite‌‌Integrals‌

272‌  ‌

4.2.4‌

‌Integration‌‌by‌‌Partial‌‌Fractions‌

272‌  ‌

4.2.4.a‌

‌Example‌

273‌  ‌

4.2.4.b‌

‌Trick‌‌1‌‌-‌‌Rationalizing‌‌Substitution‌

274‌  ‌

4.2.4.c‌

‌Trick‌‌2‌‌-‌‌Completing‌‌the‌‌Square‌

275‌  ‌

4.2.5‌

‌Improper‌‌Integrals‌

276‌  ‌

4.2.5.a‌

‌Type‌‌I:‌‌Unbounded‌‌Integrals‌

276‌  ‌

4.2.5.b‌

‌Type‌‌II:‌‌Discontinuous‌‌Integrand‌

277‌  ‌

4.2.5.c‌

‌Important‌‌Rule‌

277‌  ‌

4.2.5.d‌

‌Comparison‌‌Test‌‌for‌‌Improper‌‌Integrals‌

278‌ 

Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌

13‌  ‌

 ‌

Table‌‌of‌‌Contents‌  ‌  ‌ 4.3‌

‌Sequences‌‌and‌‌Series‌

4.3.1‌

278‌  ‌

‌Sequences‌

278‌  ‌

4.3.1.a‌

‌Recurrence‌‌Relation‌

279‌  ‌

4.3.1.b‌

‌Arithmetic‌‌Sequence‌

279‌  ‌

4.3.1.c‌

‌Geometric‌‌Sequence‌

280‌  ‌

4.3.1.d‌

‌Limits‌‌of‌‌Sequences‌

281‌  ‌

4.3.1.e‌

‌Vocabulary‌

282‌  ‌

4.3.2‌

‌Series‌

283‌  ‌

4.3.2.a‌

‌Notation‌

284‌  ‌

4.3.2.b‌

E ‌ stimating‌‌Convergence‌

285‌  ‌

4.3.2.c‌

‌Determining‌‌Divergence/Convergence‌‌with‌‌Partial‌‌Sums‌

285‌  ‌

4.3.2.d‌

‌Test‌‌for‌‌Divergence‌‌(nth‌‌Term‌‌Test)‌

286‌  ‌

4.3.2.e‌

‌Harmonic‌‌Series‌

287‌  ‌

4.3.2.f‌

‌Geometric‌‌Series‌

288‌  ‌

4.3.2.g‌

‌Series‌‌Facts‌

289‌  ‌

4.3.2.h‌

‌Telescoping‌‌Series‌

290‌  ‌

4.3.3‌

‌Integral‌‌Test‌

291‌  ‌

4.3.3.a‌

‌Example‌

293‌  ‌

4.3.3.b‌

‌p-Series‌

293‌  ‌

4.3.3.c‌

U ‌ sing‌‌the‌‌Integral‌‌Test‌‌to‌‌Estimate‌‌the‌‌Sum‌

294‌  ‌

4.3.4‌

‌Comparison‌‌Tests‌

295‌  ‌

4.3.4.a‌

‌Direct‌‌Comparison‌‌Test‌

295‌  ‌

4.3.4.b‌

‌Limit‌‌Comparison‌‌Test‌

297‌  ‌

4.3.5‌

‌Alternating‌‌Series‌‌Test‌

4.3.5.a‌ 4.3.6‌

298‌  ‌

‌Estimate‌‌the‌‌Sum‌‌of‌‌an‌‌Alternating‌‌Series‌

‌Ratio‌‌and‌‌Root‌‌Tests‌

299‌  ‌ 299‌  ‌

4.3.6.a‌

‌Conditionally/Absolutely‌‌Convergent‌

299‌  ‌

4.3.6.b‌

‌Ratio‌‌Test‌

300‌  ‌

4.3.6.c‌

R ‌ oot‌‌Test‌

301‌  ‌

 

 ‌

  ‌ ‌ 14‌ 



‌Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌  ‌

Table‌‌of‌‌Contents‌  ‌  ‌ 4.4‌

‌Power‌‌Series‌

4.4.1‌

‌Theorem‌

4.4.1.a‌ 4.4.2‌

‌Representation‌‌of‌‌Functions‌‌by‌‌Power‌‌Series‌

305‌  ‌ 305‌  ‌

4.4.2.b‌

‌Integrals‌‌and‌‌Derivatives‌

306‌  ‌

‌Taylor‌‌Series‌

307‌  ‌

4.4.3.a‌

‌Example‌

308‌  ‌

4.4.3.b‌

‌Taylor’s‌‌Remainder‌‌Theorem‌

309‌  ‌

4.4.3.c‌

‌Important‌‌Taylor‌‌Series‌

310‌  ‌

4.4.3.d‌

‌Operations‌‌with‌‌Taylor‌‌Series‌

311‌  ‌

‌Differential‌‌Equations‌

311‌  ‌

4.5.1‌

‌Checking‌‌Solutions‌

312‌  ‌

4.5.2‌

‌Slope/Direction‌‌Fields‌

313‌  ‌

‌Example‌

313‌  ‌

4.5.3‌

‌Euler’s‌‌Method‌

314‌  ‌

4.5.4‌

‌Separable‌‌Differential‌‌Equations‌

315‌  ‌

4.5.4.a‌

‌Method‌‌1‌

316‌  ‌

4.5.4.b‌

‌Method‌‌2‌

317‌  ‌

4.5.4.c‌

‌Mixing‌‌Problems‌

318‌  ‌

‌Calculus‌‌with‌‌Parametric‌‌Equations‌‌and‌‌Polar‌‌Coordinates‌ 4.6.1‌

‌Calculus‌‌with‌‌Parametric‌‌Curves‌

319‌  ‌ 319‌  ‌

4.6.1.a‌

‌Slope‌‌and‌‌Concavity‌

319‌  ‌

4.6.1.b‌

‌Areas‌

321‌  ‌

4.6.1.c‌

‌Arc‌‌Length‌

322‌  ‌

4.6.2‌

4 ‌ .7‌

304‌  ‌

‌Example‌

4.5.2.a‌

4 ‌ .6‌

303‌  ‌

4.4.2.a‌ 4.4.3‌

4 ‌ .5‌

‌Example‌

302‌  ‌

‌Tangents‌‌and‌‌Areas‌‌with‌‌Polar‌‌Curves‌

322‌  ‌

4.6.2.a‌

D ‌ erivatives‌‌with‌‌a‌‌Polar‌‌Curve‌

323‌  ‌

4.6.2.b‌

‌Area‌‌of‌‌a‌‌Polar‌‌Curve‌

323‌  ‌

‌My‌‌Notes‌‌for‌‌Calculus‌‌II‌

Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌

‌325‌ 

15‌  ‌

 ‌

 ‌

Table‌‌Of‌‌Contents‌  ‌  ‌ Section‌‌5‌‌-‌‌Calculus‌‌III‌

327‌  ‌

 ‌ ‌5.0‌

S ‌ ummary‌‌Sheet‌

327‌  ‌

5 ‌ .1‌

‌Vectors‌‌in‌‌Space‌

341‌  ‌

5.1.1‌

‌Vectors‌‌in‌‌the‌‌Plane‌

5.1.1.a‌ 5.1.2‌

‌Properties‌‌of‌‌Vector‌‌Operations‌

‌Vectors‌‌in‌‌Three‌‌Dimensions‌

341‌  ‌ 342‌  ‌ 343‌  ‌

5.1.2.a‌

‌Plotting‌‌Points‌

343‌  ‌

5.1.2.b‌

‌The‌‌Coordinate‌‌Planes‌

344‌  ‌

5.1.2.c‌

‌Distance‌‌Formula‌‌(3D)‌

344‌  ‌

5.1.2.d‌

‌Equations‌‌of‌‌Surfaces‌‌(3D)‌

345‌  ‌

5.1.2.e‌

‌Spheres‌

345‌  ‌

5.1.2.f‌

‌3D‌‌Vectors‌

346‌  ‌

5.1.2.g‌

‌Properties‌‌of‌‌Vectors‌‌in‌‌Space‌

347‌  ‌

5.1.3‌

‌Dot‌‌Product‌

347‌  ‌

5.1.3.a‌

‌Properties‌‌of‌‌the‌‌Dot‌‌Product‌

348‌  ‌

5.1.3.b‌

‌Orthogonal‌‌Vectors‌

349‌  ‌

5.1.3.c‌

‌Vector‌‌Projection/Component‌

349‌  ‌

5.1.4‌

‌Cross‌‌Product‌

5.1.4.a‌ 5.1.5‌

‌Properties‌‌of‌‌the‌‌Cross‌‌Product‌

‌Equations‌‌of‌‌Lines‌‌and‌‌Planes‌‌in‌‌Space‌

350‌  ‌ 351‌  ‌ 353‌  ‌

5.1.5.a‌

‌Parametric‌‌Curves‌

353‌  ‌

5.1.5.b‌

‌Equation‌‌of‌‌a‌‌Plane‌

354‌ 

  ‌ ‌ 16‌ 



‌Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌  ‌

Table‌‌of‌‌Contents‌  ‌  ‌ 5.1.6‌

5 ‌ .2‌

‌Quadric‌‌Surfaces‌

356‌  ‌

5.1.6.a‌

‌Cylinders‌

356‌  ‌

5.1.6.b‌

‌Traces/Cross‌‌Sections‌

357‌  ‌

5.1.6.c‌

‌Ellipsoid‌

357‌  ‌

5.1.6.d‌

‌Paraboloid‌

358‌  ‌

5.1.6.e‌

‌Hyperboloid‌‌of‌‌One‌‌Sheet‌

358‌  ‌

5.1.6.f‌

‌Hyperboloid‌‌of‌‌Two‌‌Sheets‌

359‌  ‌

5.1.6.g‌

‌Elliptic‌‌Cone‌

360‌  ‌

5.1.6.h‌

‌Hyperbolic‌‌Paraboloid‌

361‌  ‌

‌Differentiation‌‌of‌‌Functions‌‌of‌‌Several‌‌Variables‌ 5.2.1‌

‌Functions‌‌of‌‌Several‌‌Variables‌

361‌  ‌ 361‌  ‌

5.2.1.a‌

‌Level‌‌Curves‌

362‌  ‌

5.2.1.b‌

‌Three‌‌Variable‌‌Functions‌

362‌  ‌

5.2.1.c‌

‌Level‌‌Surfaces‌

362‌  ‌

5.2.2‌

‌Limits‌‌and‌‌Continuity‌

363‌  ‌

5.2.2.a‌

‌Epsilon/Delta‌‌Definition‌‌of‌‌a‌‌Limit‌‌(1D)‌

363‌  ‌

5.2.2.b‌

‌Limits‌‌with‌‌Two‌‌or‌‌More‌‌Variables‌

363‌  ‌

5.2.2.c‌

‌Limit‌‌Laws‌

364‌  ‌

5.2.3‌

‌Partial‌‌Derivatives‌

365‌  ‌

5.2.3.a‌

‌Alternative‌‌Notations‌

365‌  ‌

5.2.3.b‌

‌Calculating‌‌Partial‌‌Derivatives‌

366‌  ‌

5.2.3.c‌

‌Partial‌‌Derivatives‌‌with‌‌Three‌‌or‌‌More‌‌Variables‌

367‌  ‌

5.2.3.d‌

‌Higher‌‌Order‌‌Partial‌‌Derivatives‌

367‌  ‌

5.2.3.e‌

‌Clairaut’s‌‌Theorem‌

368‌  ‌

5.2.4‌

‌Tangent‌‌Planes‌‌and‌‌Linear‌‌Approximations‌

368‌  ‌

5.2.4.a‌

‌Tangent‌‌Planes‌

368‌  ‌

5.2.4.b‌

‌Linear‌‌Approximations‌

369‌  ‌

5.2.4.c‌

‌Differentials‌

370‌  ‌

5.2.4.d‌

‌Helpful‌‌Fact‌‌with‌‌Normal‌‌Vectors‌

370‌ 

Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌

17‌  ‌

 ‌

Table‌‌of‌‌Contents‌  ‌  ‌ 5.2.5‌

‌Chain‌‌Rule‌

5.2.5.a‌ 5.2.6‌

‌Implicit‌‌Differentiation‌

373‌  ‌

‌Directional‌‌Derivatives‌‌and‌‌the‌‌Gradient‌

374‌  ‌

5.2.6.a‌

‌Gradient‌‌Vector‌

375‌  ‌

5.2.6.b‌

‌Theorem‌

375‌  ‌

5.2.6.c‌

‌Properties‌‌of‌‌the‌‌Gradient‌

376‌  ‌

5.2.6.d‌

‌Level‌‌Curve‌‌Theorem‌

376‌  ‌

5.2.6.e‌

H ‌ igher‌‌Dimensional‌‌Gradients‌

377‌  ‌

5.2.7‌

‌Maxima/Minima‌‌Problems‌

5.2.7.a‌ 5.2.8‌

377‌  ‌

‌Second‌‌Derivative‌‌Test‌

378‌  ‌

‌Lagrange‌‌Multipliers‌

5.2.8.a‌ 5 ‌ .3‌

371‌  ‌

379‌  ‌

‌Note‌‌on‌‌Extrema‌

381‌  ‌

‌Double‌‌and‌‌Triple‌‌Integrals‌ 5.3.1‌

381‌  ‌

‌Double‌‌Integrals‌‌over‌‌Rectangular‌‌Regions‌

381‌  ‌

5.3.1.a‌

‌Fubini’s‌‌Theorem‌‌and‌‌Iterated‌‌Integrals‌

382‌  ‌

5.3.1.b‌

‌Properties‌‌of‌‌Double‌‌Integrals‌

384‌  ‌

5.3.2‌

‌Double‌‌Integrals‌‌over‌‌General‌‌Regions‌

385‌  ‌

5.3.3‌

‌Double‌‌Integrals‌‌in‌‌Polar‌‌Coordinates‌

387‌  ‌

5.3.4‌

‌Triple‌‌Integrals‌

389‌  ‌

5.3.4.a‌

‌Triple‌‌Integrals‌‌over‌‌a‌‌General‌‌Bounded‌‌Region‌

389‌  ‌

5.3.4.b‌

‌Average‌‌Value‌‌of‌‌a‌‌Function‌‌of‌‌Three‌‌Variables‌

391‌  ‌

5.3.5‌

‌Triple‌‌Integrals‌‌and‌‌Cylindrical/Spherical‌‌Coordinates‌

392‌  ‌

5.3.5.a‌

‌Cylindrical‌‌Coordinates‌

392‌  ‌

5.3.5.b‌

‌Spherical‌‌Coordinates‌

393‌  ‌

5.3.6‌

‌Centers‌‌of‌‌Mass‌

396‌  ‌

5.3.6.a‌

‌One‌‌Dimensional‌

396‌  ‌

5.3.6.b‌

‌Two‌‌Dimensional‌

397‌  ‌

5.3.6.c‌

‌Three‌‌Dimensional‌

398‌ 

  ‌ ‌ 18‌ 



‌Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌  ‌

Table‌‌of‌‌Contents‌  ‌  ‌ 5.4‌

‌Vector‌‌Calculus‌

5.4.1‌

‌Vector‌‌Fields‌

399‌  ‌ 399‌  ‌

5.4.1.a‌

‌Notation‌

399‌  ‌

5.4.1.b‌

‌Unit‌‌Vector‌‌Field‌

400‌  ‌

5.4.1.c‌

‌Gradient‌‌Vector‌‌Field‌

401‌  ‌

5.4.2‌

‌Line‌‌Integrals‌

401‌  ‌

5.4.2.a‌

‌Scalar‌‌Line‌‌Integral‌

401‌  ‌

5.4.2.b‌

‌Arc‌‌Length‌

403‌  ‌

5.4.2.c‌

‌Vector‌‌Line‌‌Integrals‌‌-‌‌Work‌

403‌  ‌

5.4.2.d‌

‌Vector‌‌Line‌‌Integrals‌‌-‌‌Flux‌

406‌  ‌

5.4.2.e‌

‌Tip:‌‌Parameterizing‌‌a‌‌Line‌‌Segment‌‌in‌‌3D‌

407‌  ‌

5.4.3‌

‌Conservative‌‌Vector‌‌Fields‌

407‌  ‌

5.4.3.a‌

‌Simple/Closed‌‌Curves‌

407‌  ‌

5.4.3.b‌

C ‌ onservative‌‌Field‌‌Theorem‌

408‌  ‌

5.4.3.c‌

‌Fundamental‌‌Theorem‌‌of‌‌Line‌‌Integrals‌

408‌  ‌

5.4.3.d‌

‌Theorem‌

409‌  ‌

5.4.3.e‌

‌Finding‌‌Potential‌‌Functions‌

409‌  ‌

5.4.4‌

‌Green’s‌‌Theorem‌

410‌  ‌

5.4.4.a‌

‌Connectivity‌‌of‌‌Regions‌

410‌  ‌

5.4.4.b‌

‌Piecewise‌‌Smooth‌

411‌  ‌

5.4.4.c‌

‌Green’s‌‌Theorem‌

411‌  ‌

5.4.5‌

‌Divergence‌

414‌  ‌

5.4.6‌

‌Curl‌

416‌  ‌

5.4.7‌

‌Parametric‌‌Surfaces‌

417‌  ‌

5.4.8‌

‌Surface‌‌Integrals‌

418‌  ‌

5.4.8.a‌

‌Surface‌‌Area‌

418‌  ‌

5.4.8.b‌

‌Scalar‌‌Surface‌‌Integrals‌

420‌  ‌

5.4.8.c‌

‌Orientation‌‌of‌‌a‌‌Surface‌

421‌  ‌

5.4.8.d‌

‌Surface‌‌Integral‌‌in‌‌a‌‌Vector‌‌Field‌

421‌ 

Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌

19‌  ‌

 ‌

Table‌‌of‌‌Contents‌  ‌  ‌ 5.4.9‌

‌Stokes’‌‌Theorem‌

5.4.9.a‌

‌Example‌

5.4.10‌ ‌Divergence‌‌Theorem‌ 5.4.10.a‌ ‌Example‌ 5 ‌ .5‌

‌My‌‌Notes‌‌For‌‌Calculus‌‌III‌

423‌  ‌ 424‌  ‌ 426‌  ‌ 427‌  ‌ ‌428‌  ‌

 ‌

  ‌ ‌ 20‌ 



‌Table‌‌of‌‌Contents‌‌-‌‌M ath‌‌Q RH‌  ‌

“Reserve‌‌y our‌‌right‌‌to‌‌think,‌‌for‌‌e ven‌‌to‌‌think‌‌wrongly‌‌is‌‌b etter‌‌than‌‌n ot‌‌   to‌‌think‌‌a t‌‌a ll”‌  -Hypatia‌‌of‌‌Alexandria‌  ‌  ‌

Section‌‌0‌‌-‌‌Introduction‌  ‌ 0.0‌

‌Introduction‌  ‌

Mathematics‌:‌‌many‌‌people‌‌hear‌‌this‌‌word‌‌and‌‌internally‌‌groan.‌ ‌This‌‌makes‌‌sense!‌  ‌ Everyone‌‌has‌‌been‌‌told‌‌at‌‌least‌‌once‌‌in‌‌their‌‌life‌‌that‌‌math‌‌is‌‌hard,‌‌even‌‌from‌‌their‌‌own‌‌   teachers.‌ ‌When‌‌I‌‌was‌‌in‌‌eighth‌‌grade,‌‌one‌‌of‌‌the‌‌first‌‌things‌‌my‌‌teacher‌‌told‌‌us‌‌was‌‌how‌‌   hard‌‌math‌‌is.‌ ‌This‌‌was‌‌really‌‌demotivating‌‌for‌‌many‌‌kids‌‌in‌‌the‌‌class.‌ ‌How‌‌were‌‌they‌‌   expected‌‌to‌‌understand‌‌concepts‌‌that‌‌even‌‌their‌‌teacher‌‌thought‌‌was‌‌difficult?‌   ‌ ‌ Although‌‌I‌‌love‌‌it‌‌now,‌‌I‌‌was‌‌not‌‌always‌‌math’s‌‌biggest‌‌fan.‌ ‌One‌‌of‌‌my‌‌first‌‌memories‌‌of‌‌   math‌‌is‌‌when‌‌I‌‌was‌‌around‌‌three‌‌years‌‌old‌‌and‌‌learning‌‌how‌‌to‌‌count.‌ ‌Everything‌‌was‌‌fine‌‌   until‌‌I‌‌hit‌‌one‌‌number.‌ ‌I‌‌was‌‌sitting‌‌with‌‌my‌‌dad‌‌and‌‌getting‌‌increasingly‌‌angry‌‌at‌‌him,‌‌as‌‌I ‌‌ was‌‌positive‌‌that‌‌he‌‌was‌‌wrong‌‌about‌‌80‌‌coming‌‌after‌‌79.‌ ‌After‌‌he‌‌tried‌‌to‌‌convince‌‌me‌‌   many‌‌times‌‌that‌‌he‌‌did,‌‌in‌‌fact,‌‌know‌‌how‌‌to‌‌count,‌‌I‌‌stomped‌‌off‌‌to‌‌go‌‌watch‌‌TV‌‌with‌‌my‌‌   mom‌‌and‌‌sister.‌ ‌Let’s‌‌say‌‌that‌‌counting‌‌from‌‌79‌‌to‌‌80‌‌was‌‌not‌‌my‌‌strong‌‌suit‌‌at‌‌that‌‌time.‌  ‌ When‌‌I‌‌got‌‌a‌‌little‌‌older‌‌I‌‌needed‌‌to‌‌take‌‌the‌‌ACT‌‌test‌‌in‌‌order‌‌to‌‌apply‌‌for‌‌a‌‌school‌‌that‌‌I ‌‌ wanted‌‌to‌‌attend.‌ ‌I‌‌had‌‌not‌‌yet‌‌taken‌‌any‌‌trigonometry,‌‌however.‌ ‌As‌‌many‌‌dads‌‌do,‌‌my‌‌   dad‌‌joked‌‌that‌‌it‌‌may‌‌be‌‌“too‌‌tough‌‌for‌‌a‌‌girl‌‌to‌‌learn‌‌on‌‌her‌‌own.”‌ ‌With‌‌my‌‌spite‌‌giving‌‌me‌‌   an‌‌even‌‌bigger‌‌motivation,‌‌I‌‌taught‌‌myself‌‌enough‌‌trigonometry‌‌to‌‌get‌‌a‌‌good‌‌score,‌‌which‌‌   helped‌‌to‌‌get‌‌me‌‌accepted‌‌into‌‌the‌‌school‌‌that‌‌I‌‌wanted.‌   ‌

Section‌‌0‌‌-‌‌Introduction‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

21‌  ‌

 ‌ Mathematics‌‌requires‌‌us‌‌to‌‌put‌‌in‌‌work‌‌and‌‌effort.‌ ‌With‌‌the‌‌number‌‌of‌‌tools‌‌that‌‌are‌‌   available‌‌to‌‌everyone,‌‌anyone‌‌can‌‌do‌‌well‌‌at‌‌mathematics!‌ ‌Maybe‌‌my‌‌teacher‌‌who‌‌said‌‌   that‌‌math‌‌was‌‌hard‌‌was‌‌right.‌ ‌Mathematics‌‌can‌‌be‌‌challenging‌‌and‌‌it‌‌can‌‌wrap‌‌your‌‌brain‌‌   into‌‌circles‌‌at‌‌times.‌ ‌But‌‌it‌‌is‌‌really‌‌about‌‌how‌‌you‌‌look‌‌at‌‌it.‌ ‌Think‌‌of‌‌mathematics‌‌as‌‌a ‌‌ puzzle‌‌or‌‌a‌‌game‌‌to‌‌enjoy!‌ ‌It‌‌is‌‌as‌‌much‌‌an‌‌art‌‌as‌‌it‌‌is‌‌a‌‌science.‌‌    ‌ While‌‌I‌‌may‌‌love‌‌math‌‌now,‌‌I‌‌know‌‌that‌‌many‌‌people‌‌don’t.‌ ‌When‌‌I‌‌was‌‌a‌‌math‌‌tutor,‌‌I‌‌saw‌‌   so‌‌many‌‌smart‌‌kids‌‌struggle‌‌with‌‌math‌‌when‌‌they‌‌didn’t‌‌need‌‌to.‌ ‌It’s‌‌hard‌‌to‌‌remember‌‌   everything‌‌that‌‌was‌‌covered‌‌in‌‌previous‌‌math‌‌classes!‌ ‌This‌‌book‌‌is‌‌a‌‌compilation‌‌of‌‌all‌‌the‌‌   notes‌‌I‌‌took,‌‌as‌‌I‌‌found‌‌myself‌‌frequently‌‌referring‌‌back‌‌to‌‌them.‌ ‌My‌‌hope‌‌with‌‌this‌‌book‌‌is‌‌   that‌‌I‌‌can‌‌be‌‌a‌‌small‌‌part‌‌of‌‌your‌‌journey‌‌in‌‌math.‌ ‌I‌‌am‌‌no‌‌expert;‌‌I‌‌am‌‌just‌‌like‌‌you!‌ ‌I‌‌have‌‌   a‌‌lot‌‌going‌‌on‌‌in‌‌my‌‌life‌‌and‌‌look‌‌for‌‌tools‌‌all‌‌the‌‌time‌‌to‌‌make‌‌getting‌‌good‌‌grades‌‌in‌‌   school‌‌easier.‌ ‌This‌‌book‌‌is‌‌my‌‌way‌‌of‌‌helping‌‌you‌‌save‌‌time‌‌and‌‌find‌‌success‌‌in‌‌your‌‌math‌‌   classes‌‌by‌‌condensing‌‌what‌‌I’ve‌‌found‌‌useful‌‌into‌‌one‌‌place.‌  ‌ Disclaimer:‌‌this‌‌is‌‌not‌‌a‌‌textbook!‌  ‌ Math‌‌QRH‌‌is‌‌meant‌‌to‌‌be‌‌used‌‌as‌‌a‌‌complementary‌‌tool‌‌to‌‌your‌‌assigned‌‌textbooks.‌ ‌I‌‌have‌‌   summarized‌‌the‌‌most‌‌important‌‌aspects‌‌of‌‌each‌‌class‌‌so‌‌that‌‌it‌‌is‌‌easy‌‌to‌‌review‌‌things‌‌you‌‌   may‌‌have‌‌forgotten‌‌(or‌‌jump‌‌ahead‌‌for‌‌fun!).‌ ‌Use‌‌this‌‌book‌‌as‌‌a‌‌way‌‌to‌‌guide‌‌your‌‌notes,‌‌   quickly‌‌find‌‌important‌‌formulas/concepts,‌‌and‌‌study‌‌for‌‌upcoming‌‌tests.‌ ‌Write‌‌in‌‌this‌‌   book!‌ ‌I‌‌left‌‌room‌‌for‌‌your‌‌notes‌‌in‌‌Math‌‌QRH.‌   ‌ ‌ I‌‌did‌‌my‌‌best‌‌to‌‌be‌‌accurate,‌‌of‌‌course,‌‌but‌‌I‌‌wrote‌‌this‌‌book‌‌from‌‌my‌‌notes.‌ ‌If‌‌you‌‌find‌‌   errors‌‌or‌‌have‌‌notes‌‌of‌‌your‌‌own‌‌that‌‌you‌‌think‌‌will‌‌benefit‌‌others,‌‌please‌‌share‌‌them‌‌at‌‌   MathQRH.com!‌ ‌As‌‌for‌‌the‌‌images‌‌in‌‌this‌‌book,‌‌do‌‌refer‌‌to‌‌the‌‌chapter‌‌“Reasoning‌‌Well‌‌   from‌‌Poorly‌‌Drawn‌‌Figures”‌‌in‌‌Jordan‌‌Ellenberg’s‌‌book‌S ‌ hape‌. ‌  ‌ ‌ I‌‌wish‌‌you‌‌great‌‌success‌‌with‌‌your‌‌journey‌‌in‌‌mathematics!‌  ‌

 ‌

‌22‌

‌Section‌‌0‌‌-‌‌Introduction‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌

0.1‌

‌Tips‌‌and‌‌Resources‌  ‌

None‌‌of‌‌these‌‌tips‌‌are‌‌super‌‌groundbreaking;‌‌you’ve‌‌likely‌‌heard‌‌most‌‌of‌‌them!‌ ‌But‌‌I‌‌think‌‌   it‌‌is‌‌important‌‌to‌‌reiterate‌‌them‌‌here,‌‌as‌‌they‌‌really‌‌do‌‌help‌‌you‌‌to‌‌be‌‌successful‌‌in‌‌your‌‌   classes.‌ ‌There‌‌is‌‌no‌‌“trick”‌‌to‌‌math‌‌classes‌‌and‌‌no‌‌one‌‌is‌‌inherently‌‌good‌‌at‌‌math,‌‌it‌‌just‌‌   takes‌‌work.‌   ‌ ‌ My‌‌biggest‌‌tip‌‌for‌‌being‌‌successful‌‌in‌‌a‌‌math‌‌class‌‌is‌‌very‌‌basic:‌‌take‌‌good‌‌notes.‌ ‌“Good‌‌   notes”‌‌do‌‌not‌‌have‌‌to‌‌mean‌‌writing‌‌with‌‌ten‌‌different‌‌pens‌‌and‌‌pencils‌‌in‌‌perfect‌‌   handwriting.‌ ‌While‌‌I‌‌love‌‌using‌‌fun‌‌colored‌‌pens‌‌for‌‌my‌‌online‌‌lectures,‌‌it’s‌‌not‌‌really‌‌   feasible‌‌for‌‌in‌‌person‌‌classes.‌ ‌All‌‌you‌‌need‌‌is‌‌paper‌‌(I‌‌prefer‌‌loose‌‌graph‌‌paper‌‌in‌‌a‌‌binder)‌‌   and‌‌at‌‌least‌‌one‌‌pencil‌‌with‌‌an‌‌eraser.‌ ‌“Good‌‌notes”‌‌is‌‌different‌‌for‌‌everyone‌‌but‌‌all‌‌good‌‌   notes‌‌include‌‌(1)‌‌handwriting‌y‌ ou‌‌‌can‌‌read‌‌and‌‌(2)‌‌the‌‌strategies‌‌and‌‌examples‌‌your‌‌   teacher‌‌gives‌‌you.‌  ‌ This‌‌book‌‌has‌‌already‌‌provided‌‌many‌‌of‌‌the‌‌notes‌‌that‌‌you‌‌will‌‌need‌‌in‌‌Algebra‌‌II,‌‌   Precalculus,‌‌and‌‌Calculus‌‌I,‌‌II‌‌and‌‌III.‌ ‌Fill‌‌up‌‌your‌‌copy‌‌of‌‌this‌‌book‌‌with‌‌your‌‌notes‌‌and‌‌it‌‌   will‌‌serve‌‌you‌‌in‌‌upper‌‌mathematics‌‌as‌‌well‌‌as‌‌science‌‌and‌‌engineering‌‌classes!‌  ‌ Staying‌‌organized‌‌is‌‌super‌‌important‌‌for‌‌getting‌‌a‌‌good‌‌grade‌‌in‌‌(and‌‌getting‌‌something‌‌   out‌‌of)‌‌your‌‌math‌‌classes.‌ ‌I‌‌get‌‌that‌‌it‌‌is‌‌easier‌‌said‌‌than‌‌done,‌‌but‌‌it's‌‌all‌‌about‌‌finding‌‌   what’s‌‌right‌‌for‌‌you.‌ ‌While‌‌I‌‌love‌‌binders‌‌and‌‌weekly‌‌to-do‌‌lists‌‌on‌‌my‌‌laptop,‌‌some‌‌people‌‌   prefer‌‌to‌‌use‌‌a‌‌physical‌‌or‌‌online‌‌planner.‌ ‌Experiment‌‌and‌‌find‌‌out‌‌what‌‌works‌‌best‌‌for‌‌   you.‌   ‌ ‌ Math‌‌is‌‌a‌‌very‌‌involved‌‌subject‌‌that‌‌cannot‌‌be‌‌learned‌‌in‌‌just‌‌a‌‌couple‌‌hours‌‌a‌‌week‌‌in‌‌a ‌‌ lecture.‌ ‌This‌‌means‌‌that‌‌to‌‌truly‌‌learn‌‌math‌‌you‌‌will‌‌need‌‌to‌‌put‌‌in‌‌time‌‌outside‌‌of‌‌class.‌  ‌ I’m‌‌sure‌‌you’ve‌‌been‌‌nagged‌‌by‌‌teachers‌‌and‌‌parents‌‌alike‌‌to‌‌do‌‌your‌‌homework,‌‌but‌‌this‌‌is‌‌   for‌‌good‌‌reason.‌ ‌Even‌‌if‌‌you‌‌need‌‌to‌‌look‌‌up‌‌an‌‌answer‌‌or‌‌use‌‌a‌‌calculator‌‌to‌‌solve‌‌a ‌‌ problem,‌‌just‌‌putting‌‌in‌‌the‌‌extra‌‌time‌‌can‌‌make‌‌a‌‌huge‌‌difference.‌‌    ‌ Section‌‌0‌‌-‌‌Introduction‌‌-‌‌M ath‌‌Q RH‌

23‌  ‌

 ‌

If‌‌you‌‌completely‌‌forget‌‌how‌‌to‌‌do‌‌a‌‌problem‌‌while‌‌taking‌‌a‌‌test,‌‌try‌‌anything,‌‌even‌‌if‌‌you‌‌   think‌‌it’s‌‌wrong.‌ ‌Don’t‌‌just‌‌leave‌‌it‌‌blank!‌ ‌You‌‌can‌‌even‌‌add‌‌a‌‌note‌‌where‌‌you‌‌say‌‌you‌‌don’t‌‌   think‌‌it’s‌‌right‌‌and‌‌explain‌‌your‌‌reasoning‌‌or‌‌define‌‌what‌‌you‌‌used.‌ ‌Even‌‌for‌‌questions‌‌you‌‌   are‌‌pretty‌‌sure‌‌on,‌‌it‌‌is‌‌helpful‌‌to‌‌add‌‌notes‌‌to‌‌your‌‌teacher‌‌so,‌‌if‌‌you‌‌get‌‌it‌‌wrong,‌‌you‌‌can‌‌   maybe‌‌keep‌‌some‌‌points.‌   ‌ ‌ This‌‌may‌‌seem‌‌counter‌‌intuitive,‌‌but‌‌you‌‌don’t‌‌necessarily‌‌need‌‌to‌‌understand‌‌every‌‌little‌‌   detail‌‌of‌‌math.‌ ‌Sometimes‌‌you‌‌just‌‌need‌‌to‌‌know‌‌that‌‌a‌‌formula‌‌works,‌‌be‌‌able‌‌to‌‌use‌‌it,‌‌   and‌‌move‌‌on.‌   ‌ ‌  ‌ Here‌‌is‌‌a‌‌list‌‌of‌‌a‌‌few‌‌great‌‌resources‌‌that‌‌I‌‌recommend:‌  ‌ ●

Symbolab‌  ‌ ○



This‌‌is‌‌my‌‌favorite‌‌online‌‌calculator.‌ ‌It‌‌can‌‌handle‌‌almost‌‌any‌‌math‌‌problem.‌   ‌ ‌

GeoGebra‌  ‌ ○

GeoGebra‌‌is‌‌one‌‌of‌‌the‌‌only‌‌graphing‌‌calculators‌‌that‌‌can‌‌actually‌‌plot‌‌in‌‌   both‌‌2D‌‌and‌‌3D.‌ ‌It‌‌has‌‌a‌‌lot‌‌of‌‌useful‌‌functions‌‌that‌‌are‌‌helpful‌‌for‌‌more‌‌   complex‌‌graphs.‌ ‌However,‌‌it‌‌can‌‌take‌‌some‌‌time‌‌to‌‌get‌‌used‌‌to‌‌the‌‌format‌‌   that‌‌it‌‌uses‌‌for‌‌functions.‌   ‌ ‌

○ ●

I‌‌actually‌‌used‌‌this‌‌website‌‌to‌‌create‌‌most‌‌of‌‌the‌‌Calculus‌‌III‌‌images.‌   ‌ ‌

Desmos‌  ‌ ○

Desmos‌‌is‌‌a‌‌more‌‌user-friendly‌‌version‌‌of‌‌GeoGebra.‌ ‌It‌‌doesn’t‌‌have‌‌the‌‌   ability‌‌to‌‌do‌‌3D‌‌graphing,‌‌but‌‌if‌‌you‌‌are‌‌looking‌‌to‌‌make‌‌2D‌‌graphs,‌‌this‌‌is‌‌the‌‌   best‌‌website‌‌to‌‌use.‌   ‌

‌24‌

 ‌ ‌

‌Section‌‌0‌‌-‌‌Introduction‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ●

Khan‌‌Academy‌  ‌ ○

Khan‌‌Academy‌‌provides‌‌entire‌‌courses‌‌(including‌‌an‌‌amazing‌‌SAT‌‌prep‌‌   program)‌‌with‌‌video‌‌explanations‌‌for‌‌free.‌   ‌ ‌



OpenStax‌  ‌ ○

OpenStax‌‌provides‌‌completely‌‌free‌‌textbooks‌‌for‌‌every‌‌math‌‌class‌‌   mentioned‌‌in‌‌this‌‌book.‌ ‌While‌‌you‌‌may‌‌already‌‌have‌‌a‌‌textbook‌‌for‌‌your‌‌   class,‌‌sometimes‌‌it‌‌can‌‌be‌‌helpful‌‌to‌‌see‌‌concepts‌‌described‌‌in‌‌a‌‌couple‌‌   different‌‌ways.‌   ‌ ‌



MatrixCalc.org‌  ‌ ○



This‌‌is‌‌one‌‌of‌‌the‌‌best‌‌matrix‌‌calculators‌‌I’ve‌‌used.‌ 

Wolfram‌‌Alpha‌  ‌ ○

Personally,‌‌I’m‌‌not‌‌a‌‌big‌‌fan‌‌of‌‌Wolfram‌‌Alpha‌‌(I‌‌think‌‌the‌‌user‌‌interface‌‌is‌‌   ugly),‌‌but‌‌it‌‌is‌‌able‌‌to‌‌solve‌‌most‌‌problems.‌   ‌ ‌

 ‌ If‌‌you‌‌are‌‌looking‌‌for‌‌some‌‌more‌‌fun‌‌math‌‌books,‌‌I‌‌highly‌‌recommend‌I‌nfinite‌‌Powers‌‌‌by‌‌   Steven‌‌Strogatz‌‌and‌S ‌ hape‌‌‌by‌‌Jordan‌‌Ellenberg.‌ ‌These‌‌books‌‌are‌‌super‌‌accessible‌‌and‌‌   allow‌‌you‌‌to‌‌see‌‌how‌‌important‌‌math‌‌is‌‌outside‌‌of‌‌a‌‌classroom.‌   ‌ ‌  ‌ Don’t‌‌let‌‌anyone‌‌tell‌‌you‌‌that‌‌you‌‌should‌‌not‌‌expect‌‌an‌‌A‌‌in‌‌your‌‌classes.‌ ‌It‌‌might‌‌not‌‌be‌‌   easy‌‌and‌‌it‌‌might‌‌take‌‌some‌‌work,‌‌but‌‌you‌‌can‌‌do‌‌it;‌‌I‌‌believe‌‌in‌‌you!‌ 

Section‌‌0‌‌-‌‌Introduction‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

25‌  ‌

 ‌

Mathematics‌‌is‌‌n ot‌‌just‌‌a nother‌‌language...It‌‌is‌‌a ‌‌language‌‌p lus‌‌logic.‌‌   Mathematics‌‌is‌‌a ‌‌tool‌‌for‌‌reasoning.”‌  -Richard‌‌Feynman‌  ‌

0.2‌  

‌My‌‌notes,‌‌resources‌‌and‌‌tips:‌  ‌  ‌

‌26‌

‌Section‌‌0‌‌-‌‌Introduction‌‌-‌‌M ath‌‌Q RH‌  ‌

0.2‌  ‌  

‌My‌‌notes,‌‌resources‌‌and‌‌tips:‌‌(con’t)‌  ‌

 ‌

Section‌‌0‌‌-‌‌Introduction‌‌-‌‌M ath‌‌Q RH‌

27‌  ‌

 ‌

0.2‌

‌28‌

‌My‌‌notes,‌‌resources‌‌and‌‌tips:‌‌(con’t)‌ 



‌Section‌‌0‌‌-‌‌Introduction‌‌-‌‌M ath‌‌Q RH‌  ‌

“Everybody‌‌is‌‌a ‌‌g enius.‌‌But‌‌if‌‌y ou‌‌judge‌‌a ‌‌fish‌‌b y‌‌its‌‌a bility‌‌to‌‌c limb‌‌a ‌‌   tree,‌‌it‌‌will‌‌live‌‌its‌‌whole‌‌life‌‌b elieving‌‌that‌‌it‌‌is‌‌s tupid.”‌  Albert‌‌Einstein‌  ‌  ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌

 ‌

1.0‌

‌Summary‌‌Sheet‌  ‌

General‌‌Graphing‌  ‌ Intercepts:‌‌f (0) = y  intercept ,‌‌f (x) = 0 = x  intercept   ‌ Symmetry:‌‌    ‌ ●

x ‌axis‌‌symmetry:‌‌f (x) =   − f (x)   ‌



y ‌axis‌‌symmetry:‌‌f (x) = f (− x )   ‌ ○



this‌‌is‌‌the‌‌test‌‌for‌‌even‌‌functions‌  ‌

origin‌‌symmetry:‌‌f (x) =   − f (− x )   ‌ ○

this‌‌is‌‌the‌‌test‌‌for‌‌odd‌‌functions‌  ‌

Circle‌‌Equation:‌‌(x − h )2 + (y − k )2 = r 2 ,‌‌where‌‌(h, k ) ‌is‌‌the‌‌center‌‌and‌‌r ‌is‌‌the‌‌radius‌  ‌ Completing‌‌the‌‌Square:‌‌a x 2 + a y 2 + b x + c y + d = 0   Difference‌‌Quotient:‌‌ DQ =  

f (x + h) − f (x) h

⇒  (x +

b 2 2a )

+ (y + 2ac )2 =   −

d a

+ ( 2ab )2 + ( 2ac )2   ‌

 ‌

 ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

29‌  ‌

 ‌  ‌ Function‌‌Basics‌  ‌ A‌‌function‌‌must‌‌pass‌‌the‌‌vertical‌‌line‌‌test:‌‌every‌‌x ‌has‌‌one‌‌y .‌   ‌ ‌ The‌‌domain‌‌is‌‌all‌‌of‌‌the‌‌possible‌‌input‌‌values,‌‌and‌‌the‌‌range‌‌is‌‌all‌‌of‌‌the‌‌possible‌‌output‌‌   values.‌   ‌ ‌ ●

Interval‌‌Notation:‌‌( ) ‌-‌‌endpoint‌‌is‌‌not‌‌included,‌‌[ ] ‌-‌‌endpoint‌‌is‌‌included‌  ‌

Extrema:‌  ‌ ●

A‌‌local‌‌extrema‌‌is‌‌the‌‌extreme‌‌on‌‌a‌‌certain‌‌interval.‌ ‌It‌‌must‌‌have‌‌points‌‌on‌‌both‌‌   sides‌‌for‌‌it‌‌to‌‌be‌‌local.‌  ‌



An‌‌absolute‌‌extrema‌‌is‌‌the‌‌highest/lowest‌‌value‌‌of‌‌the‌‌entire‌‌function.‌  ‌

(note:‌‌add‌‌parent‌‌functions‌‌here?)‌‌-‌‌visit‌‌www.MathQRH.com‌‌and‌‌let‌‌us‌‌know!‌  ‌ Transformations:‌‌y = a (b(x − h ))2 + k   ‌ ●

a ,‌‌vertical‌‌stretch‌‌or‌‌compression‌  ‌



b ,‌‌reciprocal‌‌of‌‌the‌‌horizontal‌‌stretch‌‌or‌‌compression‌  ‌



h ,‌‌horizontal‌‌shift‌  ‌



k ,‌‌vertical‌‌shift‌  ‌

Linear‌‌Definition:‌‌constant‌‌change‌‌over‌‌time‌  ‌ Quadratic‌‌Definition:‌‌standard‌‌form‌‌-‌‌a x 2 + b x + c = 0 ,‌ ‌vertex‌‌form‌‌-‌‌y = a (x − h )2 + k ,‌‌   v ertex = (h, k ) = (−  

b 4ac − b 2 , 4a )   2a



 ‌

30‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

The‌‌discriminant‌‌can‌‌be‌‌used‌‌to‌‌determine‌‌the‌‌number‌‌of‌‌solutions‌‌that‌‌a‌‌quadratic‌‌   function‌‌has.‌  ‌ ●

b 2 − 4 ac < 0 ,‌‌no‌‌solutions‌  ‌



b 2 − 4 ac = 0 ,‌‌one‌‌solution‌  ‌



b 2 − 4 ac > 0 ,‌‌two‌‌solutions‌  ‌

 ‌ Polynomial‌‌and‌‌Rational‌‌Functions‌  ‌ A‌‌polynomial‌‌f (x) = a x n + b x n−1 + ... + z ‌has‌‌only‌‌one‌‌variable,‌‌where‌‌n > 0 ,‌‌and‌‌the‌‌graph‌‌is‌‌   smooth‌‌and‌‌continuous.‌   ‌ ‌ End‌‌Behavior:‌  ●

‌even‌‌exponent,‌‌positive‌‌a   ‌



○ as‌‌x → ∞ ,  y → ∞ ,‌‌as‌‌x →   − ∞ ,  y →  ∞   ‌ ‌even‌‌exponent,‌‌negative‌a   ‌



○ as‌‌x → ∞ ,  y →   − ∞ ,‌‌as‌‌x →   − ∞ ,  y →   − ∞   ‌ ‌odd‌‌exponent,‌‌positive‌‌a   ‌



○ as‌‌x → ∞ ,  y → ∞ ,‌‌as‌‌x →   − ∞ ,  y →   − ∞   ‌ ‌odd‌‌exponent,‌‌negative‌a   ‌ ○

as‌‌x → ∞ ,  y →   − ∞ ,‌‌as‌‌x →   − ∞ ,  y →  ∞   ‌

 ‌ Multiplicity‌‌of‌‌a‌‌root‌‌(‌x ‌intercept)‌‌determines‌‌how‌‌the‌‌graph‌‌behaves.‌ ‌If‌‌it‌‌is‌‌odd,‌‌the‌‌graph‌‌   will‌‌cross‌‌through‌‌the‌‌x ‌intercept.‌ ‌If‌‌it‌‌is‌‌even,‌‌the‌‌graph‌‌will‌‌bounce‌‌off‌‌of‌‌the‌‌x ‌intercept.‌  ‌  

 ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

31‌  ‌

 ‌  ‌ A‌‌rational‌‌function‌‌has‌‌at‌‌least‌‌a‌‌first‌‌degree‌‌polynomial‌‌in‌‌the‌‌denominator‌‌and‌‌takes‌‌the‌‌   form‌‌r(x) =

p(x) q(x)

‌. ‌  ‌ ‌

To‌‌graph‌‌a‌‌rational‌‌function:‌  ‌ 1. Factor‌‌both‌‌polynomials.‌‌    ‌ 2. See‌‌if‌‌any‌‌of‌‌the‌‌factors‌‌cancel‌‌out.‌ ‌If‌‌they‌‌do,‌‌note‌‌that‌‌that‌‌value‌‌of‌‌x ‌has‌‌a‌‌hole‌‌in‌‌   the‌‌graph.‌ ‌Remember‌‌that‌‌if‌‌there‌‌is‌‌a‌‌hole‌‌at‌‌an‌‌x ‌coordinate‌‌there‌‌cannot‌‌be‌‌a ‌‌ vertical‌‌asymptote‌‌at‌‌the‌‌same‌‌x ‌value.‌   ‌ ‌ 3. Find‌‌the‌‌x ‌values‌‌that‌‌make‌‌the‌‌denominator‌‌equal‌‌to‌‌zero.‌ ‌Make‌‌a‌‌note‌‌that‌‌these‌‌   are‌‌vertical‌‌asymptotes.‌ ‌Also‌‌note‌‌the‌‌multiplicity‌‌of‌‌these‌‌asymptotes,‌‌as‌‌these‌‌   determine‌‌end‌‌behavior.‌   ‌ ‌ 4. Find‌‌the‌‌x ‌values‌‌that‌‌make‌‌the‌‌numerator‌‌equal‌‌to‌‌zero.‌ ‌These‌‌are‌‌the‌‌x  ‌ intercepts‌‌of‌‌the‌‌function.‌   ‌ ‌ 5. Plug‌‌in‌‌zero‌‌for‌‌x ‌to‌‌find‌‌the‌‌y ‌intercept‌‌of‌‌the‌‌function,‌‌if‌‌one‌‌exists.‌   ‌ ‌ 6. If‌‌the‌‌numerator‌‌polynomial‌‌of‌‌the‌‌function‌‌is‌‌one‌‌degree‌‌higher‌‌than‌‌the‌‌   denominator‌‌polynomial,‌‌then‌‌use‌‌polynomial‌‌division‌‌to‌‌find‌‌the‌‌slant‌‌asymptote.‌   ‌ ‌ 7. “Plug‌‌in”‌‌infinity‌‌for‌‌x ‌to‌‌find‌‌if‌‌there‌‌are‌‌any‌‌horizontal‌‌asymptotes.‌   ‌ ‌ a. If‌‌the‌‌function‌‌has‌‌a‌‌slant‌‌asymptote,‌‌it‌‌will‌‌not‌‌have‌‌a‌‌horizontal‌‌asymptote.‌  ‌ 8. Once‌‌you‌‌have‌‌noted‌‌all‌‌important‌‌information,‌‌plot‌‌all‌‌points‌‌and/or‌‌asymptotes‌‌   and‌‌sketch‌‌in‌‌the‌‌graph.‌   ‌ ‌  ‌ Sum‌‌and‌‌Difference‌‌of‌‌Cubes:‌  ‌ a 3 + b 3 = (a + b )(a 2 − a b + b 2 )   ‌ a 3 − b 3 = (a − b )(a 2 + a b + b 2 )   ‌  ‌ Factor‌‌Theorem:‌‌if‌‌f (c) = 0 ,‌‌(x − c ) ‌is‌‌a‌‌factor‌‌of‌‌the‌‌polynomial‌‌f (x) .‌  ‌  

 ‌

32‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ f(x)

Remainder‌‌Theorem:‌‌if‌‌f (c) =/ 0 ,‌‌f (c) ‌is‌‌the‌‌remainder‌‌of‌‌ x − c ‌. ‌ ‌ Descartes’‌‌Rule‌‌of‌‌Signs:‌  ‌ ●

if‌‌n ‌is‌‌equal‌‌to‌‌the‌‌number‌‌of‌‌sign‌‌changes‌‌in‌‌f (x) ,‌‌the‌‌function‌‌has‌‌n ‌or‌‌n − 2 ... positive‌‌zeros‌  ‌



if‌‌n ‌is‌‌equal‌‌to‌‌the‌‌number‌‌of‌‌sign‌‌changes‌‌in‌‌f (− x ) ,‌‌the‌‌function‌‌has‌‌n ‌or‌‌n − 2 ... negative‌‌zeros‌  ‌

 ‌ Rational‌‌Zeros‌‌Theorem:‌‌for‌‌f (x) = a n x n + a n−1 x n−1 + ... + a 0 ,‌‌the‌‌rational‌‌zeros‌‌take‌‌the‌‌form‌‌  

±

p q

‌,‌‌where‌‌p ‌is‌‌a‌‌factor‌‌of‌‌a 0 ‌and‌‌q ‌is‌‌a‌‌factor‌‌of‌‌a n .‌  ‌

 ‌ Imaginary‌‌and‌‌Complex‌‌Numbers‌  ‌ The‌‌imaginary‌‌number‌‌i ‌is‌‌equal‌‌to‌‌√− 1 .‌ ‌This‌‌means‌‌that‌‌i2 =   − 1 ,  i3 =   − i ‌and‌‌i4 = 1 .‌   ‌ ‌ A‌‌complex‌‌number‌‌is‌‌a‌‌combination‌‌of‌‌real‌‌and‌‌imaginary‌‌numbers‌‌in‌‌the‌‌form‌‌a + b i ,‌‌   where‌‌a ‌and‌‌b ‌are‌‌real‌‌numbers.‌‌    ‌  ‌ Composite‌‌Functions‌  ‌ Composite‌‌Function:‌‌f (g(x)) = f ° g  (x) ,‌‌plugs‌‌a‌‌function‌‌into‌‌another‌  ‌ Inverse‌‌Function:‌‌f (a) = b   →  f −1 (b) = a .‌  ‌

 



Test:‌‌f (g(x)) = g (f (x)) = x   ‌



To‌‌find‌‌an‌‌inverse‌‌function:‌‌plug‌‌in‌‌x ‌for‌‌y ‌and‌‌y ‌for‌‌x,‌‌then‌‌solve‌‌for‌‌y   ‌  ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

33‌  ‌

 ‌  ‌ Exponential‌‌and‌‌Logarithmic‌‌Functions‌  ‌ An‌‌exponential‌‌function‌‌has‌‌the‌‌form‌‌f (x) = a x .‌  ‌ ●



Transformations:‌‌f (x) = c ·   − (a −x − h ) + k   ‌ ○

c ‌is‌‌a‌‌constant‌‌multiplier‌  ‌



the‌‌negative‌‌out‌‌front‌‌of‌‌the‌‌a ‌flips‌‌it‌‌over‌‌the‌‌x ‌axis‌  ‌



the‌‌negative‌‌out‌‌front‌‌of‌‌the‌‌x ‌flips‌‌it‌‌over‌‌the‌‌y ‌axis‌  ‌



h ‌is‌‌the‌‌horizontal‌‌shift‌  ‌



k ‌is‌‌the‌‌vertical‌‌shift‌  ‌

Common‌‌Quotient:‌‌a =

f(x + 1) f(x)

 ‌

 ‌ Euler’s‌‌Number‌‌= e ≈ 2 .71828   ‌  ‌ Logarithms:‌‌if‌‌b y = x ,‌‌then‌‌y = log b x   ‌ Logarithm‌‌Laws:‌  ‌

⇒  x = 0  ‌  ‌ log a = x   ⇒  x = 1    ‌

1. log a 1 = x   2.

a

⇒  M = x   ‌ log a = x  ⇒  x = r   ‌

3. alog a M = x   4.

a

r

5. log a (MN ) = log a M + log a N   ‌

6. log a ( M ) = log a M − log a N   ‌ N 7. log a M r = r · log a M   ‌ r

8. eln a = ar ‌. ‌ ‌ 9. If‌‌and‌‌only‌‌if‌‌M = N ,‌‌then‌‌log a M = log a N .‌  ‌

10. log a M =  

log b M log b a

‌,‌‌where‌‌b ‌is‌‌a‌‌base‌‌of‌‌your‌‌choice.‌  ‌

 ‌

34‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ Financial‌‌Formulas‌  ‌ Simple‌‌Interest:‌‌I = P rt   ‌ Compound‌‌Interest:‌‌A = P · (1 + nr )nt   ‌ Continuous‌‌Compounding:‌‌A = P e rt   ‌ Effective‌‌Rate‌‌of‌‌Interest:‌‌r e = (1 + nr )n − 1 ,‌‌r e = e r − 1   ‌ Present‌‌Value:‌‌P = A · (1 + nr )−nt ,‌‌P = A · e −rt   ‌  ‌ Growth‌‌and‌‌Decay‌  ‌ Uninhibited‌‌Growth:‌‌N (t) = N 0 e±kt   ‌ Newton’s‌‌Law‌‌of‌‌Cooling:‌‌u(t) = T + (u0 − t)ekt   ‌ c Logistic‌‌Model:‌‌p(t) = 1 + ae −bt   ‌

Add‌‌your‌‌own‌‌notes‌‌below.‌‌Share‌‌them!‌‌QRHMath.com‌ 

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

35‌  ‌

 ‌

1.1‌

‌Graphing‌‌Basics‌  ‌

1.1.1‌

I‌ ntercepts‌ 

Intercepts‌‌are‌‌the‌‌points‌‌(or‌‌point)‌‌on‌‌a‌‌graph‌‌that‌‌intersects‌‌with‌‌the‌‌x ‌or‌‌y ‌axis.‌ ‌To‌‌find‌‌   an‌‌intercept,‌‌plug‌‌zero‌‌into‌‌the‌‌other‌‌variable‌‌and‌‌solve.‌ ‌For‌‌example,‌‌if‌‌you’re‌‌trying‌‌to‌‌   find‌‌the‌‌y ‌intercept‌‌of‌‌a‌‌function,‌‌plug‌‌in‌‌zero‌‌for‌‌x ‌and‌‌simplify.‌   ‌ ‌ ●

If‌‌you‌‌are‌‌trying‌‌to‌‌find‌‌the‌‌intercept‌‌of‌‌a‌‌variable‌‌that‌‌is‌‌squared,‌‌be‌‌sure‌‌to‌‌note‌‌   that‌‌the‌‌number‌‌could‌‌be‌‌positive‌‌or‌‌negative.‌ ‌Since‌‌squaring‌‌a‌‌number‌‌makes‌‌it‌‌   positive,‌‌we‌‌cannot‌‌be‌‌sure‌‌that‌‌the‌‌original‌‌number‌‌is‌‌positive.‌   ‌ ‌ ○

For‌‌example,‌‌the‌‌x ‌intercepts‌‌of‌‌y = x 2 − 4 ‌are‌‌− 2 ‌and‌‌2 .‌ ‌This‌‌is‌‌because‌‌   when‌‌you‌‌plug‌‌in‌‌0 ‌for‌‌y ‌and‌‌simplify‌‌you‌‌get‌‌x 2 = 4 .‌ ‌Notice‌‌how‌‌both‌‌− 2  ‌ and‌‌2 ‌satisfy‌‌that‌‌equation.‌   ‌ ‌

 ‌ 1.1.2‌

S ‌ ymmetry‌  ‌

There‌‌are‌‌three‌‌types‌‌of‌‌symmetry:‌  ‌ ●

x -‌‌axis‌‌symmetry‌  ‌ ○

A‌‌graph‌‌has‌‌x -‌‌axis‌‌symmetry‌‌when‌‌you‌‌can‌‌plug‌‌in‌‌− y ‌and‌‌get‌‌the‌‌same‌‌   equation.‌ ‌In‌‌other‌‌words,‌‌f (x)  =   − f (x) .‌   ‌ ‌

 

36‌

 ‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌ ‌

 ‌ ●

y -‌‌axis‌‌symmetry‌  ‌ ○

A‌‌graph‌‌has‌‌y -‌‌axis‌‌symmetry‌‌when‌‌you‌‌can‌‌plug‌‌in‌‌− x ‌and‌‌get‌‌the‌‌same‌‌   equation.‌ ‌In‌‌other‌‌words,‌‌f (x)  =  f (− x ) .‌  ‌

 ‌ ●

origin‌‌symmetry‌  ‌ ○

A‌‌graph‌‌has‌‌symmetry‌‌about‌‌the‌‌origin‌‌when‌‌you‌‌can‌‌plug‌‌in‌‌both‌‌− y ‌and‌‌   − x ‌and‌‌get‌‌the‌‌same‌‌equation.‌ ‌In‌‌other‌‌words,‌‌f (x)  =   − f (− x ) .‌  ‌



If‌‌you‌‌spin‌‌the‌‌graph‌‌1 80 ° ,‌‌it‌‌will‌‌land‌‌on‌‌itself,‌‌as‌‌it‌‌is‌‌reflected‌‌across‌‌both‌‌   the‌‌x ‌and‌‌y ‌axis.‌   ‌ ‌

 

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌

37‌ ‌

 ‌  ‌

1.1.3‌

C ‌ ircles‌  ‌

A‌‌circle‌‌is‌‌a‌‌set‌‌of‌‌points‌‌that‌‌are‌‌all‌‌equidistant‌‌from‌‌one‌‌point,‌‌the‌‌center.‌ ‌There‌‌are‌‌two‌‌   forms‌‌of‌‌a‌‌circle‌‌equation:‌  ‌ ●

Standard‌‌Form‌‌(used‌‌for‌‌graphing):‌‌(x − h )2 + (y − k )2 = r 2 ,‌‌where‌‌(h,  k) ‌is‌‌the‌‌center‌‌   and‌‌r ‌is‌‌the‌‌radius.‌   ‌ ‌



General‌‌Form:‌‌a x 2 + a y 2 + b x + c y + d = 0 ,‌‌notice‌‌that‌‌the‌‌x 2 and‌‌y 2 ‌have‌‌the‌‌same‌‌   coefficient‌‌and‌‌sign.‌   ‌ ‌

 ‌ 1 ‌ .1.3.a‌

‌Completing‌‌the‌‌Square‌  ‌

As‌‌noted,‌‌standard‌‌form‌‌is‌‌the‌‌form‌‌used‌‌for‌‌graphing.‌ ‌So,‌‌when‌‌given‌‌a‌‌general‌‌form‌‌   equation,‌‌you‌‌must‌‌complete‌‌the‌‌square.‌‌    ‌ a x2 + a y 2 + b x + cy + d = 0   ‌ Divide‌‌both‌‌sides‌‌by‌‌a .‌  ‌ x 2 + y 2 + ab x + ac y +

d a

=0  ‌

Move‌‌the‌‌constant‌‌to‌‌the‌‌other‌‌side.‌  ‌ x 2 + y 2 + ab x + ac y =   − ad   ‌ Divide‌‌the‌‌constant‌‌coefficients‌‌by‌‌two‌‌and‌‌square,‌‌then‌‌add‌‌to‌‌both‌‌sides.‌  ‌ x 2 + ab x + ( 2ab )2 + y 2 + ac y + ( 2ac )2 =   −

d a

+ ( 2ab )2 + ( 2ac )2   ‌

Then,‌‌factor‌‌both‌‌quadratics.‌  ‌ (x +

38‌

b 2 2a )

 ‌

+ (y + 2ac )2 =   −

d a

+ ( 2ab )2 + ( 2ac )2  

 ‌ ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ Remember,‌‌for‌‌this‌‌equation,‌‌the‌‌center‌‌is‌‌(−

b 2a ,  



− 2ac ) ‌and‌‌the‌‌radius‌‌is‌‌ −

d a

+ ( 2ab )2 + ( 2ac )2     ‌ ‌

 ‌

1.1.4‌

D ‌ ifference‌‌Quotient‌  ‌

The‌‌difference‌‌quotient‌‌is‌‌used‌‌to‌‌find‌‌the‌‌slope‌‌of‌‌a‌‌curve‌‌using‌‌a‌‌tangent‌‌line.‌   ‌ ‌ The‌‌formula‌‌for‌‌the‌‌difference‌‌quotient‌‌is:‌‌D Q =

f(x + h) − f(x) h

‌.‌ ‌If‌‌you‌‌plug‌‌in‌‌a‌‌formula,‌‌like‌‌ 

f (x) =   − 3 x 4 ,‌‌you’ll‌‌get‌‌a‌‌formula‌‌that‌‌is‌‌the‌‌slope‌‌of‌‌that‌‌specific‌‌function.‌   ‌ ‌

 ‌

1.2‌

‌Functions‌‌and‌‌Their‌‌Graphs‌  ‌

1.2.1‌

F ‌ unction‌‌Definition‌  ‌

A‌‌set‌‌of‌‌points‌‌can‌‌be‌‌called‌‌a‌‌relation.‌ ‌This‌‌can‌‌be‌‌a‌‌few‌‌points,‌‌or‌‌an‌‌infinite‌‌number‌‌of‌‌   points.‌ ‌If‌‌a‌‌relation‌‌has‌‌a‌‌property‌‌where‌‌each‌‌x ‌value‌‌produces‌‌only‌‌one‌‌y ‌value,‌‌it‌‌is‌‌   called‌‌a‌‌function.‌ ‌This‌‌means‌‌that‌‌two‌‌x ’s‌‌can‌‌produce‌‌the‌‌same‌‌y ‌in‌‌a‌‌function,‌‌but‌‌any‌‌x  ‌ cannot‌‌produce‌‌more‌‌than‌‌one‌‌y .‌ ‌The‌‌vertical‌‌line‌‌test‌‌can‌‌be‌‌used‌‌to‌‌determine‌‌if‌‌a‌‌graph‌‌   is‌‌a‌‌function;‌‌if‌‌a‌‌line‌‌can‌‌be‌‌drawn‌‌that‌‌crosses‌‌the‌‌graph‌‌more‌‌than‌‌once,‌‌it’s‌‌not‌‌a ‌‌ function.‌   ‌

 ‌ ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

39‌ ‌

 ‌  ‌

1.2.2‌

D ‌ omain‌a ‌ nd‌R ‌ ange‌  ‌

The‌‌domain‌‌of‌‌a‌‌function‌‌is‌‌a‌‌set‌‌of‌‌all‌‌possible‌‌x ‌coordinates‌‌or‌‌input‌‌values.‌ ‌The‌‌range‌‌of‌‌   a‌‌function‌‌is‌‌the‌‌set‌‌of‌‌all‌‌possible‌‌y ‌coordinates‌‌or‌‌output‌‌values.‌   ‌ ‌ To‌‌find‌‌the‌‌domain‌‌and‌‌range,‌‌look‌‌for‌‌any‌‌restrictions‌‌on‌‌x ‌and‌‌y .‌ ‌This‌‌means‌‌looking‌‌at‌‌   values‌‌where‌‌the‌‌function‌‌is‌‌undefined‌‌or‌‌imaginary,‌‌looking‌‌at‌‌end‌‌behavior‌‌(positive‌‌or‌‌   negative‌‌infinity),‌‌if‌‌there‌‌are‌‌any‌‌gaps‌‌in‌‌the‌‌graph‌‌of‌‌the‌‌function,‌‌etc.‌‌    ‌ ‌1.2.2.a‌ ●

‌Notation‌  ‌

Set‌‌Notation:‌‌D = {x ○



∈ R | (some exception)}   ‌

Read‌‌as‌‌“‌x ‌is‌‌an‌‌element‌‌of‌‌the‌‌real‌‌numbers‌‌such‌‌that…”‌  ‌

Interval‌‌Notation:‌‌this‌‌notation‌‌shows‌‌all‌‌of‌‌the‌‌numbers‌‌in‌‌a‌‌domain,‌‌rather‌‌than‌‌   focusing‌‌on‌‌the‌‌exceptions.‌‌    ‌ ○

Use‌‌( ) ‌if‌‌the‌‌endpoint‌‌is‌‌not‌‌included‌  ‌ ■

these‌‌are‌‌used‌‌whenever‌‌infinity‌‌is‌‌an‌‌endpoint‌  ‌



Use‌‌[ ] ‌if‌‌the‌‌endpoint‌‌is‌‌included‌  ‌



‘‌⋃ ’‌  ‌is‌‌used‌‌to‌‌show‌‌a‌‌union‌‌of‌‌intervals‌  ‌

Example:‌   ‌ ‌ For‌‌the‌‌function‌‌f (x) = x 2 − 4 ,‌‌the‌‌vertex‌‌is‌‌(0,   − 4 ) .‌ ‌Notice‌‌that‌‌you‌‌can‌‌plug‌‌in‌‌any‌‌x ‌value,‌‌   since‌‌it‌‌is‌‌a‌‌parabola.‌ ‌For‌‌y ‌values,‌‌however,‌‌all‌‌numbers‌‌have‌‌to‌‌be‌‌greater‌‌than‌‌or‌‌equal‌‌   to‌‌4 ,‌‌since‌‌the‌‌minimum‌‌is‌‌equal‌‌to‌‌4 .‌   ‌ ‌ Therefore,‌‌the‌‌domain‌‌is‌‌D = {x R = {y

∈ R | y ≥ 4} or [− 4,  ∞).‌   ‌

40‌

∈ R} or (− ∞,  ∞) ‌a  nd‌‌the‌‌range‌‌is‌‌   ‌ ‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌  ‌

1.2.3‌

C ‌ ategories‌‌and‌C ‌ haracteristics‌‌of‌F ‌ unctions‌  ‌

‌1.2.3.a‌

‌Odd‌‌or‌‌Even‌  ‌

A‌‌function‌‌is‌e ‌ ven‌w ‌ hen‌‌it‌‌has‌‌symmetry‌‌about‌‌the‌‌y -‌‌axis.‌ ‌This‌‌means‌‌that‌‌f (x) = f (− x ) .‌   ‌ ‌

 ‌  ‌  ‌ A‌‌function‌‌is‌o ‌ dd‌‌‌if‌‌it‌‌has‌‌symmetry‌‌about‌‌the‌‌origin.‌ ‌This‌‌means‌‌that‌‌f (− x ) =   − f (x) .‌   ‌ ‌

   ‌ ‌  ‌ It‌‌is‌‌important‌‌to‌‌note‌‌that‌‌the‌‌exponent‌‌alone‌‌does‌‌not‌‌signify‌‌that‌‌a‌‌function‌‌is‌‌even‌‌or‌‌   odd.‌ ‌For‌‌example,‌‌f (x) = x 2 + x + 1 ‌has‌‌an‌‌even‌‌highest‌‌degree,‌‌but‌‌it‌‌is‌‌not‌‌an‌‌even‌‌   function.‌   ‌

 ‌ ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

41‌ ‌

 ‌  ‌ ‌1.2.3.b‌

‌Increasing,‌‌Decreasing,‌‌and‌‌Constant‌  ‌

A‌‌function‌‌is‌i‌ncreasing‌‌‌if‌‌the‌‌y-value‌‌increases‌‌as‌‌the‌‌x-value‌‌increases.‌   ‌ ‌ A‌‌function‌‌is‌d ‌ ecreasing‌‌‌if‌‌the‌‌y-value‌‌decreases‌‌as‌‌the‌‌x-value‌‌increases.‌‌    ‌ A‌‌function‌‌is‌c‌ onstant‌‌‌if‌‌there‌‌is‌‌no‌‌change‌‌in‌‌slope.‌   ‌ ‌

 ‌ In‌‌this‌‌graph,‌‌the‌‌function‌‌is‌‌increasing‌‌over‌‌the‌‌intervals‌‌(− 5 ,− 2 ) ‌and‌‌(3, ∞ ) .‌ ‌The‌‌function‌‌   is‌‌decreasing‌‌over‌‌the‌‌interval‌‌(− ∞ ,− 5 ) .‌ ‌The‌‌function‌‌is‌‌constant‌‌over‌‌(− 2 , 3 ) .‌   ‌ ‌  ‌ ‌1.2.3.c‌

‌Maximums‌‌and‌‌Minimums‌  ‌

There‌‌are‌‌two‌‌types‌‌of‌‌maximums‌‌and‌‌minimums:‌‌absolute‌‌and‌‌local.‌   ‌ ‌ A‌l‌ocal‌‌‌maximum‌‌and‌‌minimum‌‌is‌‌the‌‌highest‌‌or‌‌lowest‌‌point‌‌of‌‌the‌‌graph‌‌on‌‌a‌‌certain‌‌   interval.‌ ‌While‌‌it‌‌may‌‌be‌‌the‌‌extrema‌‌for‌‌that‌‌interval,‌‌it‌‌may‌‌not‌‌be‌‌the‌‌highest‌‌or‌‌lowest‌‌   point‌‌of‌‌the‌‌entire‌‌function.‌ ‌A‌‌local‌‌extrema‌‌cannot‌‌be‌‌at‌‌the‌‌end‌‌point‌‌of‌‌a‌‌function.‌ 

42‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌ ‌

 ‌ ‌

 ‌ An‌a ‌ bsolute‌‌‌(or‌‌global)‌‌maximum‌‌or‌‌minimum‌‌is‌‌the‌‌highest‌‌or‌‌lowest‌‌point‌‌of‌‌the‌‌entire‌‌   function.‌   ‌ ‌

 ‌  ‌

1.2.4‌

P ‌ arent‌‌Functions‌  ‌

A‌p ‌ arent‌‌function‌‌‌is‌‌the‌‌simplest‌‌form‌‌of‌‌a‌‌function‌‌in‌‌a‌‌family‌‌of‌‌functions.‌ ‌A‌‌family‌‌of‌‌   functions‌‌has‌‌the‌‌same‌‌highest‌‌degree.‌ ‌Parent‌‌functions‌‌can‌‌guide‌‌us‌‌in‌‌graphing‌‌more‌‌   complicated‌‌functions.‌   ‌ ‌ See‌‌the‌‌next‌‌page‌‌for‌‌examples‌‌of‌‌Parent‌‌Functions:‌ 

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

43‌ ‌

 ‌  ‌  ‌ Name‌‌of‌‌Function‌  ‌

Graph‌  ‌

 ‌  ‌  ‌ Linear‌  ‌

y =x  ‌

 ‌ y = x2   ‌

 ‌  ‌  ‌ Quadratic‌  ‌

 ‌ y = x3   ‌

 ‌  ‌  ‌ Cubic‌  ‌

 ‌ y = |x |   ‌

 ‌  ‌  ‌ Absolute‌‌Value‌  ‌

 ‌ y = √x   ‌

 ‌  ‌  ‌ Square‌‌Root‌  ‌

 ‌  

 ‌

44‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ Name‌‌of‌‌Function‌  ‌

Graph‌  ‌

 ‌  ‌ Cube‌‌Root‌  ‌

y = √x   ‌ 3

 ‌  ‌  ‌  ‌ Reciprocal/Rational‌  ‌

y = 1x   ‌

 ‌  ‌

y=  ‌ Rational‌  ‌

1 x2

 ‌

 ‌  ‌  ‌  ‌ Exponential‌  ‌

y = ex   ‌

 ‌ y = ln(x)   ‌

 ‌  ‌  ‌ Logarithmic‌  ‌

 ‌  

 ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

45‌  ‌

 ‌  ‌

1.2.5‌

P ‌ iecewise‌‌Functions‌  ‌

A‌p ‌ iecewise‌‌function‌‌‌is‌‌a‌‌combination‌‌of‌‌functions,‌‌where‌‌each‌‌function‌‌is‌‌defined‌‌over‌‌a ‌‌ certain‌‌interval.‌ ‌Since‌‌these‌‌are‌‌called‌‌functions,‌‌they‌‌must‌‌still‌‌pass‌‌the‌‌vertical‌‌line‌‌test.‌‌    ‌  ‌ ‌− 2 x + 1 ,   − 3 ≤ x < 1   ‌ ‌f (x)  =   2,  x = 1   ‌ ‌x 2 ,  x > 1   ‌  ‌ Notice‌‌that‌‌this‌‌function‌‌does‌‌still‌‌pass‌‌the‌‌vertical‌‌line‌‌test‌‌as‌‌   the‌‌open‌‌circles‌‌denote‌o ‌ pen‌‌‌intervals.‌ ‌This‌‌means‌‌that‌‌the‌‌   function‌‌is‌‌not‌‌actually‌‌“at”‌‌this‌‌point‌  ‌ Tip:‌‌graph‌‌the‌‌boundaries‌‌first‌‌before‌‌trying‌‌to‌‌make‌‌the‌‌shapes.‌   ‌ ‌  ‌

1.2.6‌

T ‌ ransformations‌‌of‌F ‌ unctions‌  ‌

‌1.2.6.a‌

‌Rigid‌‌Transformations‌  ‌

These‌‌types‌‌of‌‌transformations‌‌maintain‌‌the‌‌size‌‌and‌‌shape‌‌of‌‌the‌‌graph,‌‌they‌‌solely‌‌affect‌‌   the‌‌geometric‌‌location‌‌of‌‌the‌‌graphs.‌   ‌ ‌ ●

Translations‌  ‌ ○



This‌‌is‌‌a‌‌vertical‌‌or‌‌horizontal‌‌shift‌‌along‌‌the‌‌graph.‌  ‌

Reflections‌  ‌ ○

 

“Flips”‌‌the‌‌graph‌‌over‌‌an‌‌axis.‌   ‌

46‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌ ‌

 ‌ ‌1.2.6.b‌

‌Distortions‌  ‌

These‌‌transformations‌‌will‌‌change‌‌the‌‌size‌‌and‌‌shape‌‌of‌‌the‌‌graph.‌   ‌ ‌ ●

Vertical‌‌Stretch/Compression‌  ‌



Horizontal‌‌Stretch/Compression‌  ‌

Note‌‌that‌‌vertical‌‌stretches‌‌are‌‌very‌‌similar‌‌to‌‌horizontal‌‌compressions.‌   ‌ ‌  ‌ ‌1.2.6.c‌

‌Equation‌‌Form‌  ‌

These‌‌transformations‌‌can‌‌be‌‌shown‌‌in‌‌the‌‌vertex‌‌form‌‌of‌‌a‌‌quadratic‌‌equation.‌   ‌ ‌

y = a(b(x − h))2 + k   ‌ The‌‌second‌‌degree‌‌exponent‌‌is‌‌just‌‌an‌‌example.‌   ‌ ‌ ➔ ‘‌a ’‌‌represents‌‌the‌‌coefficient‌‌of‌‌vertical‌‌stretch‌‌or‌‌compression‌  ‌

◆ ◆ ◆

If‌‌a > 1 ,‌‌it‌‌is‌‌a‌‌vertical‌‌stretch‌  ‌ If‌‌a < 1 ,‌‌it‌‌is‌‌a‌‌vertical‌‌compression‌  ‌ If‌‌a ‌is‌‌negative,‌‌there‌‌is‌‌a‌‌1 80 ° reflection‌‌vertically‌‌(‌↕ )‌  ‌

➔ ‘‌b ’‌‌represents‌‌the‌‌coefficient‌‌of‌‌the‌‌horizontal‌‌stretch‌‌or‌‌compression‌  ‌

◆ ◆

The‌‌reciprocal‌‌of‌‌this‌‌number‌‌determines‌‌stretch‌‌or‌‌compression.‌ ‌So,‌‌if‌‌   1 b

< 1 ‌it‌‌is‌‌a‌‌horizontal‌‌compression.‌ ‌If‌‌b1 > 1 ‌there‌‌is‌‌a‌‌horizontal‌‌stretch.‌  ‌

If‌‌b ‌is‌‌negative,‌‌there‌‌is‌‌a‌‌1 80 ° ‌reflection‌‌horizontally‌‌(‌↔ )‌ 

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

47‌  ‌

 ‌  ‌ ➔ ‘‌h ’‌‌represents‌‌the‌‌opposite‌‌of‌‌the‌‌horizontal‌‌shift‌  ‌

◆ ◆

This‌‌means‌‌that‌‌having‌‌(x − 2 )2 shifts‌‌the‌‌graph‌‌to‌‌the‌‌right.‌   ‌ ‌ It‌‌is‌‌important‌‌to‌‌note‌‌that‌‌x ‌must‌‌have‌‌a‌‌coefficient‌‌of‌‌positive‌‌1.‌ ‌So,‌‌if‌‌a ‌‌ function‌‌is‌‌written‌‌as‌‌f (x) = 2 7 |2 − 3 x | + 5 ,‌‌factor‌‌out‌‌the‌‌3‌‌to‌‌find‌‌the‌‌   horizontal‌‌shift‌a ‌ nd‌‌‌stretch/compression.‌ ‌This‌‌would‌‌make‌‌   f (x) = 2 7 ||− 3 (x − 32 )|| + 5 .‌ ‌Now,‌‌we‌‌can‌‌more‌‌clearly‌‌see‌‌that‌‌the‌‌graph‌‌is‌‌shifted‌‌   to‌‌the‌‌right‌‌by‌‌ 32 ‌and‌‌there‌‌is‌‌a‌‌horizontal‌‌compression‌‌by‌‌a‌‌factor‌‌of‌‌ 31 .‌   ‌ ‌

➔ ‘‌k ’‌‌represents‌‌the‌‌vertical‌‌shift‌  ‌

◆ ◆

If‌‌k ‌is‌‌positive,‌‌the‌‌graph‌‌is‌‌shifted‌‌up.‌  ‌ If‌‌k ‌is‌‌negative,‌‌the‌‌graph‌‌is‌‌shifted‌‌down.‌  ‌

 ‌

1.3‌

‌Linear‌‌and‌‌Quadratic‌‌Functions‌  ‌

1.3.1‌

L ‌ inear‌D ‌ efinition‌  ‌

Linear‌‌change‌‌is‌‌constant‌‌over‌‌time.‌ ‌This‌‌means‌‌that‌‌the‌‌slope‌‌(change‌‌in‌‌y ‌over‌‌change‌‌in‌‌   x )‌‌does‌‌not‌‌change.‌   ‌ ‌  ‌ ‌1.3.1.a‌

‌Depreciation‌  ‌

Depreciation‌‌is‌‌the‌‌reduction‌‌of‌‌value‌‌as‌‌time‌‌passes.‌   ‌ ‌ The‌‌annual‌‌depreciation‌‌can‌‌be‌‌calculated‌‌by‌‌dividing‌‌the‌‌purchase‌‌value‌‌over‌‌the‌‌years‌‌of‌‌   usefulness.‌   ‌ ‌ Annual Depreciation =

48‌

 ‌

purchase value years of usefulness

 

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ To‌‌find‌‌the‌‌value‌‌change‌‌over‌‌time,‌‌subtract‌‌the‌‌annual‌‌depreciation‌‌from‌‌the‌‌original‌‌   value.‌   ‌ ‌ Scheduled‌‌‌depreciation‌‌is‌‌the‌‌equation‌‌that‌‌is‌‌created‌‌from‌‌generalizing‌‌the‌‌formula‌‌for‌‌   value‌‌change‌‌over‌‌time.‌ ‌If‌‌x ‌represents‌‌the‌‌number‌‌of‌‌years‌‌since‌‌purchase,‌‌then‌  ‌ V alue = p urchase value  −

x (purchase value) years of usefulness

The‌‌slope‌‌of‌‌the‌‌line‌‌for‌‌the‌‌graph‌‌of‌‌depreciation‌‌is‌‌−

 ‌

purchase value years of usefulness

‌‌(value‌‌decreases‌‌over‌‌ 

time‌‌so‌‌the‌‌slope‌‌must‌‌be‌‌negative).‌ ‌The‌‌line‌‌intersects‌‌the‌‌x -‌‌axis‌‌at‌‌the‌‌x ‌value‌‌that‌‌   corresponds‌‌with‌‌the‌‌years‌‌of‌‌usefulness.‌   ‌ ‌  ‌

1.3.2‌

Q ‌ uadratic‌F ‌ unctions‌  ‌

‌1.3.2.a‌

‌Vertex‌‌Form‌  ‌

The‌‌vertex‌‌form‌‌of‌‌a‌‌quadratic‌‌function‌‌is‌‌written‌‌as‌‌f (x) = a (x − h )2 + k .‌ ‌It‌‌is‌‌called‌‌the‌‌vertex‌‌   form‌‌as‌‌h ‌is‌‌the‌‌x ‌component‌‌of‌‌the‌‌vertex‌‌and‌‌k ‌is‌‌the‌‌y ‌component‌‌of‌‌the‌‌vertex.‌ ‌When‌‌   a‌‌quadratic‌‌function‌‌is‌‌in‌‌vertex‌‌form‌‌it‌‌is‌‌the‌‌easiest‌‌to‌‌graph.‌   ‌ ‌ To‌‌change‌‌a‌‌function‌‌from‌‌standard‌‌form‌‌(‌f (x) = a x 2 + b x + c )‌‌to‌‌vertex‌‌form,‌‌complete‌‌the‌‌   square,‌‌keeping‌‌everything‌‌to‌‌one‌‌side.‌   ‌ ‌ When‌‌generalized,‌‌the‌‌following‌‌formulas‌‌are‌‌found:‌  ‌ v ertex = (−  

2 b ,   4ac−b )   ‌ 2a 4a



 ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

49‌  ‌

 ‌  ‌ ‌1.3.2.b‌

‌Roots‌  ‌

The‌‌“roots”‌‌of‌‌a‌‌function‌‌are‌‌the‌‌x -‌‌intercepts,‌‌i.e.‌‌where‌‌the‌‌y ‌value‌‌is‌‌equal‌‌to‌‌zero.‌   ‌ ‌ To‌‌find‌‌the‌‌roots,‌‌set‌‌the‌‌equation‌‌equal‌‌to‌‌zero‌‌and‌‌solve‌‌for‌‌the‌‌variable.‌   ‌ ‌  ‌ ‌1.3.2.c‌

‌Axis‌‌of‌‌Symmetry‌  ‌

The‌‌axis‌‌of‌‌symmetry‌‌is‌‌the‌‌line‌‌about‌‌which‌‌the‌‌parabola‌‌is‌‌symmetrical.‌‌    ‌ For‌‌a‌‌vertical‌‌parabola‌‌(opens‌‌upward‌‌or‌‌downward),‌‌the‌‌axis‌‌of‌‌symmetry‌‌is‌‌vertical‌‌and‌‌   equal‌‌to‌‌the‌‌x ‌coordinate‌‌of‌‌the‌‌vertex‌‌(‌x =   −

b 2a

‌).‌  ‌

For‌‌a‌‌horizontal‌‌parabola‌‌(opens‌‌right‌‌or‌‌left),‌‌the‌‌axis‌‌of‌‌symmetry‌‌is‌‌horizontal‌‌and‌‌equal‌‌   to‌‌the‌‌y ‌coordinate‌‌of‌‌the‌‌vertex.‌   ‌ ‌  ‌ ‌1.3.2.d‌

‌Discriminant‌  ‌

Using‌‌the‌‌quadratic‌‌formula,‌‌if‌‌0 = a x 2 + b x + c ,‌‌then‌‌x =

−b 

∓ √b −4ac .‌   ‌ ‌ 2

2a



when‌‌b 2 − 4 ac < 0 ,‌‌there‌‌are‌‌no‌‌solutions‌‌and‌‌therefore‌‌no‌‌x ‌intercepts‌  ‌



when‌‌b 2 − 4 ac = 0 ,‌‌there‌‌is‌‌one‌‌solution‌‌and‌‌the‌‌vertex‌‌is‌‌on‌‌the‌‌x -‌‌axis‌  ‌



when‌‌b 2 − 4 ac > 0 ,‌‌there‌‌are‌‌two‌‌solutions‌  ‌

 

 ‌

50‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ‌1.3.2.a‌

‌Quadratic‌‌Inequalities‌  ‌

Remember‌‌that‌‌y = f (x) = some‌‌function‌‌of‌‌x .‌ ‌So,‌‌when‌‌you‌‌see‌‌something‌‌like‌‌f (x) ≤ 0 ‌you‌‌   need‌‌to‌‌look‌‌for‌‌the‌‌x ‌values‌‌that‌‌satisfy‌‌the‌‌inequality.‌   ‌ ‌ For‌‌example,‌‌if‌‌given‌‌x 2 − 4 x − 1 2 ≤ 0 ,‌‌you‌‌are‌‌looking‌‌for‌‌the‌‌x‌‌values‌‌that‌‌make‌‌y ≤ 0 .‌ ‌To‌‌   do‌‌this,‌‌find‌‌the‌‌roots‌‌of‌‌the‌‌function:‌‌(x − 6 )(x + 2 ) ,‌‌x = 6 ‌and‌‌x =   − 2 .‌ ‌When‌‌graphed,‌‌we‌‌   see‌‌that‌‌all‌‌values‌‌including‌‌and‌‌between‌‌− 2 ‌and‌‌6 ‌produce‌‌a‌‌y ‌value‌‌that‌‌is‌‌less‌‌than‌‌or‌‌   equal‌‌to‌‌0 .‌    ‌

 ‌

1.4‌

‌Polynomial‌‌and‌‌Rational‌‌Functions‌  ‌

1.4.1‌

P ‌ olynomial‌F ‌ unctions‌  ‌

A‌‌polynomial‌‌function‌  ‌ ●



has‌‌one‌‌variable‌  ‌ ○

f (x) = a x n + b x n−1 + ... + z   ‌



powers‌‌can‌‌be‌‌missing‌‌in‌‌the‌‌equation‌  ‌

n ‌must‌‌be‌‌greater‌‌than‌‌or‌‌equal‌‌to‌‌zero‌  ‌ ○

●  

n ‌also‌‌must‌‌be‌‌an‌‌integer‌‌(whole‌‌number)‌  ‌

has‌‌a‌‌smooth,‌‌continuous‌‌graph‌‌(i.e.‌‌no‌‌gaps‌‌or‌‌corners)‌  ‌  ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

51‌ ‌

 ‌ For‌‌example,‌‌P (x) = 5 x 3 − 41 x 2 − 9 ‌and‌‌G(x) = 8 ‌are‌‌polynomial‌‌functions‌‌but‌‌h (x) =

x2 −2 x3 −1

‌(‌x ‌is‌‌  

1

in‌‌the‌‌denominator‌‌and‌‌therefore‌‌has‌‌a‌‌negative‌‌exponent)‌‌and‌‌g (x) = √x ‌(‌√x = x 2 )‌‌are‌‌not.‌   ‌ ‌  ‌ ‌1.4.1.a.‌

‌End‌‌Behavior‌  ‌

The‌‌“end‌‌behavior”‌‌of‌‌a‌‌graph‌‌is‌‌determined‌‌by‌‌the‌‌highest‌‌powered‌‌term‌‌of‌‌a‌‌function‌‌and‌‌   its‌‌sign.‌   ‌ ‌  

52‌

 ‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌  ‌ Exponent‌‌and‌‌Sign‌  ‌

End‌‌Behavior‌  ‌

x‌‌approches,‌‌y‌‌approches‌  ‌

 ‌  ‌  ‌  ‌ even‌‌exponent,‌‌positive‌‌a ‌ ‌

 ‌  ‌  ‌ as‌‌x → ∞ ,  y → ∞   ‌ as‌‌x →   − ∞ ,  y →  ∞   ‌

 ‌  ‌  ‌  ‌  ‌ even‌‌exponent,‌‌negative‌‌a ‌ ‌

 ‌  ‌  ‌ as‌‌x →  ∞,  y →   − ∞   ‌ as‌‌x →   − ∞ ,  y →   − ∞   ‌  ‌  ‌

 ‌  ‌  ‌  ‌ odd‌‌exponent,‌‌positive‌‌a ‌ ‌

 ‌  ‌  ‌ as‌‌x → ∞ ,  y → ∞   ‌ as‌‌x →   − ∞ ,  y →   − ∞   ‌  ‌  ‌

 ‌  ‌  ‌  ‌ odd‌‌exponent,‌‌negative‌‌a ‌ ‌

 ‌  ‌  ‌ as‌‌x →  ∞,  y →   − ∞   ‌ as‌‌x →   − ∞ ,  y →  ∞   ‌  ‌  ‌

 

 ‌ Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

53‌  ‌

 ‌  ‌ ‌1.4.1.b‌ ‌Behavior‌‌at‌‌Intercepts‌  ‌ When‌‌factored,‌‌a‌‌polynomial‌‌is‌‌broken‌‌down‌‌into‌‌its‌‌roots.‌ ‌Some‌‌of‌‌these‌‌roots‌‌will‌‌have‌‌   exponents‌‌attached‌‌to‌‌them,‌‌meaning‌‌they‌‌have‌‌a‌‌multiplicity.‌   ‌ ‌ ●

When‌‌the‌‌multiplicity‌‌is‌‌odd,‌‌the‌‌graph‌‌will‌‌cross‌‌through‌‌the‌‌intercept.‌  ‌



When‌‌the‌‌multiplicity‌‌is‌‌even,‌‌the‌‌graph‌‌will‌‌“bounce”‌‌off‌‌of‌‌the‌‌intercept.‌   ‌ ‌

For‌‌example,‌‌the‌‌function‌‌f (x) = x 4 + 1 5x 3 + 5 7x 2 − 3 5x − 2 94 ‌factors‌‌into‌‌   f (x) = (x − 2 )(x + 3 )(x + 7 )2 .‌ ‌Therefore,‌‌this‌‌function‌‌is‌‌graphed‌‌as‌‌follows.‌  ‌

 ‌ ‌1.4.1.c‌

‌Multiplying‌‌Polynomials‌  ‌

Multiplying‌‌polynomials‌‌is‌‌essentially‌‌the‌‌same‌‌as‌‌multiplying‌‌numbers.‌ ‌Set‌‌them‌‌up‌‌one‌‌   above‌‌the‌‌other,‌‌then‌‌multiply‌‌as‌‌you‌‌would‌‌any‌‌numbers‌‌with‌‌multiple‌‌digits.‌ ‌Treat‌‌each‌‌   component‌‌of‌‌the‌‌polynomial‌‌as‌‌its‌‌own‌‌number.‌   ‌ ‌

 ‌   54‌

 ‌

 ‌ Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌ ‌

 ‌ ‌1.4.1.d‌

‌Polynomial‌‌Long‌‌Division‌‌    ‌

For‌‌polynomial‌‌long‌‌division,‌‌you‌‌begin‌‌by‌‌setting‌‌up‌‌the‌‌polynomials‌‌in‌‌a‌‌normal‌‌long‌‌   division‌‌set‌‌up.‌ ‌Then,‌‌divide‌‌the‌‌first‌‌term‌‌of‌‌the‌‌dividend‌‌(the‌‌polynomial‌‌to‌‌be‌‌divided)‌‌by‌‌   the‌‌first‌‌term‌‌of‌‌the‌‌divisor‌‌(the‌‌polynomial‌‌doing‌‌the‌‌dividing).‌ ‌The‌‌answer‌‌to‌‌this‌‌goes‌‌   into‌‌the‌‌answer‌‌row.‌ ‌Multiply‌‌the‌‌entire‌‌divisor‌‌by‌‌this‌‌answer‌‌and‌‌put‌‌the‌‌product‌‌the‌‌   dividend.‌ ‌Subtract‌‌the‌‌product‌‌from‌‌the‌‌original‌‌dividend‌‌and‌‌repeat‌‌until‌‌the‌‌largest‌‌   power‌‌of‌‌the‌‌difference‌‌is‌‌smaller‌‌than‌‌the‌‌largest‌‌power‌‌of‌‌the‌‌divisor.‌ ‌If‌‌there‌‌is‌‌a ‌‌ remainder,‌‌put‌‌it‌‌in‌‌the‌‌form‌‌ remainder ‌and‌‌add‌‌it‌‌to‌‌the‌‌end‌‌of‌‌the‌‌answer.‌   ‌ ‌ divisor Below‌‌is‌‌an‌‌example‌‌dividing‌‌6 x 4 + x 3 − 2 x + 4 ‌by‌‌x 2 − 5 x + 7 .‌   ‌ ‌

 ‌ The‌‌final‌‌answer‌‌is‌‌6 x 2 + 3 1x − 1 13 +

346x + 795 x2  − 5x + 7

.‌   ‌ ‌

 ‌ ‌1.4.1.e‌

‌Synthetic‌‌Polynomial‌‌Division‌  ‌

Synthetic‌‌division‌‌is‌‌a‌‌shortcut‌‌that‌‌can‌‌be‌‌used‌‌for‌‌divisors‌‌where‌‌the‌‌highest‌‌powered‌‌   term‌‌is‌‌one.‌   ‌ ‌ For‌‌example,‌‌synthetic‌‌division‌‌can‌‌be‌‌used‌‌to‌‌divide‌‌3 x 3 − 4 x 2 + x + 5 ‌by‌‌x + 1 .‌   ‌ ‌  

 ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

55‌ ‌

 ‌ First,‌‌set‌‌the‌‌divisor‌‌equal‌‌to‌‌zero.‌   ‌ ‌ x+1 =0

⇒ x =   − 1   ‌

For‌‌synthetic‌‌division,‌‌a‌‌special‌‌diagram‌‌is‌‌used.‌‌In‌‌this‌‌diagram,‌‌the‌‌top‌‌left‌‌corner‌‌holds‌‌   the‌‌x =   − 1 .‌ ‌On‌‌the‌‌left‌‌side‌‌of‌‌the‌‌vertical‌‌line,‌‌the‌‌coefficients‌‌of‌‌the‌‌x ‌terms‌‌of‌‌the‌‌   dividend‌‌are‌‌placed.‌ ‌On‌‌the‌‌right‌‌side‌‌of‌‌the‌‌vertical‌‌line,‌‌the‌‌constant‌‌term‌‌is‌‌held.‌   ‌ ‌

 ‌ The‌‌first‌‌coefficient‌‌term‌‌is‌‌carried‌‌down‌‌to‌‌the‌‌answer‌‌line‌‌(below‌‌the‌‌horizontal‌‌line).‌ ‌This‌‌   answer‌‌is‌‌then‌‌multiplied‌‌by‌‌the‌‌− 1 ‌and‌‌added‌‌to‌‌the‌‌next‌‌term.‌ ‌This‌‌is‌‌repeated‌‌until‌‌the‌‌   answer‌‌is‌‌added‌‌to‌‌the‌‌constant.‌ ‌Whatever‌‌is‌‌in‌‌the‌‌bottom‌‌right‌‌corner‌‌is‌‌the‌‌remainder.‌  ‌

 ‌ So,‌‌the‌‌final‌‌answer‌‌is‌‌3 x 2 − 7 x + 8 −

56‌

 ‌

3 x+1

.‌ 

 ‌ ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌ ‌

 ‌

1.4.2‌

R ‌ ational‌F ‌ unctions‌a ‌ nd‌A ‌ nalysis‌  ‌

A‌‌rational‌‌function‌‌is‌‌a‌‌quotient‌‌of‌‌two‌‌polynomial‌‌functions:‌‌r(x) =

p(x) q(x)

‌.‌ ‌In‌‌order‌‌for‌‌a ‌‌

function‌‌to‌‌be‌‌a‌‌rational‌‌function‌‌there‌‌must‌‌be‌‌at‌‌least‌‌a‌‌first‌‌degree‌‌power‌‌of‌‌x ‌in‌‌the‌‌   denominator.‌   ‌ ‌ ‌1.4.2.a‌

‌Domain‌‌Restrictions‌  ‌

Since‌‌we‌‌cannot‌‌divide‌‌anything‌‌by‌‌zero,‌‌any‌‌x ‌value‌‌that‌‌makes‌‌the‌‌denominator‌‌   polynomial‌‌equal‌‌to‌‌zero‌‌is‌‌out‌‌of‌‌the‌‌domain‌‌of‌‌the‌‌function.‌    ‌ For‌‌example,‌‌in‌‌the‌‌equation‌‌R(x) = x+5 =0

2x2  − 4 x + 5  

‌when‌‌x =   − 5 ‌the‌‌denominator‌‌will‌‌equal‌‌zero‌‌(‌

⇒ x =   − 5).‌  ‌Therefore,‌‌the‌‌domain‌‌of‌‌this‌‌function‌‌is‌‌D = {x| x =/   − 5}

In‌‌the‌‌equation‌‌R(x) =

x3 x2 +1

.‌ 

‌,‌‌however,‌‌the‌‌domain‌‌is‌‌all‌‌real‌‌numbers,‌‌as‌‌x 2 + 1 = 0 ‌is‌‌equal‌‌ 

to‌‌√− 1 ,‌‌which‌‌is‌‌an‌‌imaginary‌‌number.‌   ‌ ‌  ‌ ‌1.4.2.b‌

‌Vertical‌‌Asymptotes‌  ‌

A‌‌vertical‌‌asymptote‌‌is‌‌a‌‌line‌‌where‌‌a‌‌function‌‌will‌‌infinitely‌‌get‌‌closer‌‌and‌‌closer‌‌to‌‌the‌‌   number‌‌but‌‌never‌‌actually‌‌reach‌‌it.‌   ‌ ‌ The‌‌vertical‌‌asymptotes‌‌of‌‌a‌‌function‌‌are,‌‌generally,‌‌the‌‌same‌‌as‌‌the‌‌domain‌‌restrictions.‌  ‌ Meaning‌‌that‌‌wherever‌‌the‌‌function‌‌is‌‌undefined,‌‌there‌‌will‌‌likely‌‌be‌‌a‌‌vertical‌‌asymptote‌‌in‌‌   the‌‌form‌‌x = some number .‌   ‌ ‌ In‌‌the‌‌R(x) =  

2x2  − 4 x + 5

‌‌example‌‌above,‌‌there‌‌is‌‌a‌‌vertical‌‌asymptote‌‌at‌‌x =   − 5 .‌   ‌ ‌

 ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

57‌  ‌

 ‌  ‌ ‌1.4.2.c‌

‌Holes‌  ‌

A‌‌hole‌‌in‌‌a‌‌graph‌‌occurs‌‌when‌‌a‌‌factor‌‌of‌‌both‌‌of‌‌the‌‌polynomials‌‌cancels‌‌out.‌ ‌When‌‌this‌‌   occurs,‌‌the‌‌domain‌‌exception‌‌is‌‌no‌‌longer‌‌a‌‌vertical‌‌asymptote,‌‌but‌‌rather‌‌the‌‌x ‌coordinate‌‌   of‌‌the‌‌hole.‌    ‌ For‌‌example,‌‌the‌‌function‌‌R(x) =

x2  − 1 x − 1

‌‌can‌‌be‌‌factored‌‌into‌‌R(x) =

(x + 1)(x − 1) x − 1

‌.‌ ‌Notice‌‌that‌‌ 

there‌‌is‌‌an‌‌x − 1 ‌factor‌‌in‌‌both‌‌the‌‌numerator‌‌and‌‌the‌‌denominator,‌‌meaning‌‌they‌‌cancel‌‌   out.‌ ‌So,‌‌after‌‌reducing,‌‌the‌‌function‌‌is‌‌R(x) = x + 1 .‌ ‌The‌‌graph‌‌has‌‌a‌‌hole‌‌at‌‌(1,  2) .‌   ‌ ‌

 ‌  ‌ ‌1.4.2.d‌

‌Multiplicity‌‌of‌‌the‌‌Vertical‌‌Asymptote‌  ‌

The‌‌multiplicity‌‌of‌‌the‌‌vertical‌‌asymptote‌‌affects‌‌how‌‌the‌‌graph‌‌behaves.‌ ‌While‌‌the‌‌   asymptote‌‌is‌‌not‌‌changed,‌‌the‌‌graph’s‌‌behavior‌‌around‌‌it‌‌does.‌   ‌

58‌

 ‌

 ‌ ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌ ‌

 ‌ ●

If‌‌the‌‌vertical‌‌asymptote‌‌has‌‌an‌‌odd‌‌multiplicity‌‌(1,‌‌3,‌‌5,‌‌etc.),‌‌one‌‌side‌‌of‌‌the‌‌graph‌‌   will‌‌go‌‌to‌‌positive‌‌infinity‌‌and‌‌the‌‌other‌‌will‌‌go‌‌to‌‌negative‌‌infinity.‌   ‌ ‌

 ‌

f (x) = ●

1 x

 ‌

If‌‌the‌‌vertical‌‌asymptote‌‌has‌‌an‌‌even‌‌multiplicity‌‌(2,‌‌4,‌‌6,‌‌etc.),‌‌both‌‌sides‌‌will‌‌either‌‌   go‌‌to‌‌positive‌‌or‌‌negative‌‌infinity‌‌(they‌‌will‌‌match‌‌each‌‌other).‌  ‌

 ‌

f (x) =

1 x2

 ‌

 ‌ ‌1.4.2.e‌

‌Horizontal‌‌Asymptotes‌  ‌

A‌‌horizontal‌‌asymptote‌‌is‌‌just‌‌like‌‌a‌‌vertical‌‌asymptote‌‌but‌‌instead‌‌of‌‌it‌‌being‌‌   x = some number ‌it‌‌is‌‌y = some number .‌ ‌Because‌‌horizontal‌‌asymptotes‌‌only‌‌affect‌‌end‌‌   behavior,‌‌the‌‌graph‌‌can‌‌intersect‌‌the‌‌horizontal‌‌asymptotes‌‌at‌‌some‌‌point,‌‌unlike‌‌vertical‌‌   asymptotes.‌   ‌

 ‌ ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

59‌ ‌

 ‌  ‌ To‌‌find‌‌a‌‌vertical‌‌asymptote,‌‌“plug‌‌in”‌‌infinity‌‌(it‌‌is‌‌important‌‌to‌‌note‌‌that‌‌you‌‌cannot‌‌   actually‌‌plug‌‌in‌‌infinity‌‌since‌‌it‌‌is‌‌not‌‌a‌‌number)‌‌to‌‌see‌‌the‌‌behavior‌‌of‌‌the‌‌function‌‌as‌‌x  ‌ infinitely‌‌increases.‌ ‌If‌‌it‌‌approaches‌‌a‌‌number‌‌as‌‌x ‌gets‌‌infinitely‌‌large,‌‌it‌‌has‌‌a‌‌horizontal‌‌   ∞ asymptote.‌ ‌Remember‌‌that‌‌ some number ‌‌approaches‌‌zero‌‌and‌‌ some number ‌‌approaches‌‌infinity.‌   ‌ ‌ ∞

For‌‌example,‌‌as‌‌x ‌approaches‌‌infinity‌‌in‌‌ x12 ‌,‌‌the‌‌function‌‌approaches‌‌zero.‌ ‌If‌‌you‌‌“plug‌‌in”‌‌   infinity,‌‌you‌‌will‌‌get‌‌‌ ∞12 ‌,‌‌which‌‌divides‌‌one‌‌by‌‌increasingly‌‌larger‌‌numbers.‌ ‌So,‌‌it‌‌will‌‌get‌‌   smaller‌‌and‌‌smaller‌‌and‌‌therefore‌‌closer‌‌to‌‌zero‌‌as‌‌time‌‌goes‌‌on.‌   ‌ ‌ In‌‌the‌‌function‌‌3x − 5 ‌,‌‌plugging‌‌in‌‌infinity‌‌for‌‌x ‌leaves‌‌0 − 5 ,‌‌or‌‌− 5 .‌ ‌So‌‌the‌‌horizontal‌‌   asymptote‌‌for‌‌this‌‌function‌‌is‌‌at‌‌y =   − 5 .‌   ‌ ‌ Note‌‌about‌‌this‌‌section:‌‌this‌‌is‌‌basically‌‌an‌‌introduction‌‌to‌‌limits‌‌of‌‌a‌‌function.‌ ‌If‌‌you‌‌want‌‌   to‌‌read‌‌ahead‌‌or‌‌get‌‌a‌‌better‌‌grasp‌‌on‌‌the‌‌subject,‌‌go‌‌to‌‌the‌‌calculus‌‌I‌‌limits‌‌section.‌   ‌ ‌  ‌ ‌1.4.2.f‌

‌Oblique/Slant‌‌Asymptotes‌  ‌

An‌‌oblique‌‌or‌‌slant‌‌asymptote‌‌is‌‌just‌‌like‌‌a‌‌horizontal‌‌or‌‌vertical‌‌asymptote‌‌in‌‌that‌‌it‌‌deals‌‌   with‌‌the‌‌end‌‌behavior‌‌of‌‌a‌‌function,‌‌but‌‌it‌‌sits‌‌at‌‌an‌‌angle‌‌(slanted,‌‌if‌‌you‌‌will).‌   ‌ ‌ An‌‌oblique‌‌asymptote‌‌occurs‌‌when‌‌the‌‌numerator’s‌‌highest‌‌degree‌‌term‌‌is‌‌exactly‌‌one‌‌   degree‌‌higher‌‌than‌‌the‌‌denominator’s‌‌highest‌‌degree‌‌term.‌ ‌To‌‌find‌‌the‌‌equation‌‌of‌‌the‌‌   oblique‌‌asymptote,‌‌divide‌‌the‌‌numerator‌‌by‌‌the‌‌denominator‌‌using‌‌polynomial‌‌division.‌   ‌ ‌  

 ‌

60‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌

1.4.3‌

G ‌ raphing‌R ‌ ational‌F ‌ unctions‌  ‌

To‌‌graph‌‌a‌‌rational‌‌function,‌‌follow‌‌the‌‌instructions‌‌below:‌  ‌ 9. Factor‌‌both‌‌polynomials.‌‌    ‌ 10. See‌‌if‌‌any‌‌of‌‌the‌‌factors‌‌cancel‌‌out.‌ ‌If‌‌they‌‌do,‌‌note‌‌that‌‌that‌‌value‌‌of‌‌x ‌has‌‌a‌‌hole‌‌in‌‌   the‌‌graph.‌ ‌Remember‌‌that‌‌if‌‌there‌‌is‌‌a‌‌hole‌‌at‌‌an‌‌x ‌coordinate‌‌there‌‌cannot‌‌be‌‌a ‌‌ vertical‌‌asymptote‌‌at‌‌the‌‌same‌‌x ‌value.‌   ‌ ‌ 11. Find‌‌the‌‌x ‌values‌‌that‌‌make‌‌the‌‌denominator‌‌equal‌‌to‌‌zero.‌ ‌Make‌‌a‌‌note‌‌that‌‌these‌‌   are‌‌vertical‌‌asymptotes.‌ ‌Also‌‌note‌‌the‌‌multiplicity‌‌of‌‌these‌‌asymptotes,‌‌as‌‌these‌‌   determine‌‌end‌‌behavior.‌   ‌ ‌ 12. Find‌‌the‌‌x ‌values‌‌that‌‌make‌‌the‌‌numerator‌‌equal‌‌to‌‌zero.‌ ‌These‌‌are‌‌the‌‌x  ‌ intercepts‌‌of‌‌the‌‌function.‌   ‌ ‌ 13. Plug‌‌in‌‌zero‌‌for‌‌x ‌to‌‌find‌‌the‌‌y ‌intercept‌‌of‌‌the‌‌function,‌‌if‌‌one‌‌exists.‌   ‌ ‌ 14. If‌‌the‌‌numerator‌‌polynomial‌‌of‌‌the‌‌function‌‌is‌‌one‌‌degree‌‌higher‌‌than‌‌the‌‌   denominator‌‌polynomial,‌‌then‌‌use‌‌polynomial‌‌division‌‌to‌‌find‌‌the‌‌slant‌‌asymptote.‌   ‌ ‌ 15. “Plug‌‌in”‌‌infinity‌‌for‌‌x ‌to‌‌find‌‌if‌‌there‌‌are‌‌any‌‌horizontal‌‌asymptotes.‌   ‌ ‌ a. If‌‌the‌‌function‌‌has‌‌a‌‌slant‌‌asymptote,‌‌it‌‌will‌‌not‌‌have‌‌a‌‌horizontal‌‌asymptote.‌  ‌ 16. Once‌‌you‌‌have‌‌noted‌‌all‌‌important‌‌information,‌‌plot‌‌all‌‌points‌‌and/or‌‌asymptotes‌‌   and‌‌sketch‌‌in‌‌the‌‌graph.‌   ‌ ‌  ‌  

 ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

61‌  ‌

 ‌  ‌

1.4.4‌

P ‌ olynomial‌a ‌ nd‌R ‌ ational‌I‌ nequalities‌  ‌

‌1.4.4.a‌

‌Graphically‌  ‌

To‌‌graphically‌‌solve‌‌a‌‌polynomial‌‌or‌‌rational‌‌inequality,‌‌graph‌‌the‌‌function‌‌and‌‌find‌‌the‌‌   intervals‌‌of‌‌x ‌on‌‌the‌‌graph‌‌that‌‌satisfies‌‌the‌‌inequality.‌‌    ‌  ‌ ‌1.4.4.b‌

‌Algebraically‌  ‌

To‌‌algebraically‌‌solve‌‌a‌‌polynomial‌‌inequality,‌‌first‌‌find‌‌the‌‌zeros‌‌(where‌‌f (x) = 0 ‌and‌‌the‌‌x intercepts)‌‌of‌‌the‌‌function‌‌and‌‌put‌‌them‌‌on‌‌a‌‌number‌‌line.‌ ‌Then,‌‌plug‌‌in‌‌numbers‌‌that‌‌are‌‌   in‌‌between‌‌the‌‌intervals‌‌you‌‌found‌‌to‌‌see‌‌whether‌‌they‌‌are‌‌positive‌‌or‌‌negative.‌ ‌This‌‌will‌‌   tell‌‌you‌‌where‌‌the‌‌function‌‌is‌‌greater‌‌than‌‌or‌‌less‌‌than‌‌zero.‌    ‌ You‌‌may‌‌need‌‌to‌‌use‌‌the‌‌formulas‌‌for‌‌the‌‌sum‌‌or‌‌difference‌‌of‌‌cubes:‌  ‌ a 3 + b 3 = (a + b )(a 2 − a b + b 2 )   ‌ a 3 − b 3 = (a − b )(a 2 + a b + b 2 )   ‌ Example:‌‌Solve‌‌x 4 > x .‌   ‌ ‌ First,‌‌get‌‌zero‌‌on‌‌one‌‌side‌‌by‌‌moving‌‌the‌‌x :‌‌x 4 − x > 0 .‌ ‌This‌‌will‌‌make‌‌it‌‌easier‌‌to‌‌solve.‌‌    ‌ Factor‌‌this‌‌to‌‌find‌‌the‌‌zeros:‌‌x (x 3 − 1 ) > 0 .‌ ‌If‌‌x = 0 ,‌‌then‌‌the‌‌equation‌‌will‌‌equal‌‌zero,‌‌so‌‌   x = 0 ‌is‌‌a‌‌zero‌‌of‌‌the‌‌function.‌ ‌Use‌‌the‌‌difference‌‌of‌‌cubes‌‌formula‌‌to‌‌factor‌‌x 3 − 1 :‌‌   x 3 − 1 = (x − 1 )(x 2 + x + 1 ) .‌ ‌Set‌‌this‌‌equal‌‌to‌‌zero‌‌to‌‌find‌‌the‌‌other‌‌zero‌‌of‌‌the‌‌function:‌‌   (x − 1 )(x 2 + x + 1 ) = 0

62‌

⇒ x = 1.‌   ‌

 ‌ ‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ Put‌‌the‌‌two‌‌zeros‌‌on‌‌a‌‌number‌‌line.‌  ‌

 ‌ Plug‌‌in‌‌numbers‌‌that‌‌are‌‌in‌‌the‌‌intervals‌‌(− ∞ , 0 ) ,‌‌(0, 1 ) ,‌‌(1, ∞ ) .‌   ‌ ‌ f (− 1 ) = (− 1 )(− 1 3 − 1 ) = 2 .‌ ‌This‌‌means‌‌that‌‌on‌‌the‌‌interval‌‌(− ∞ , 0 )  the‌‌y ‌value‌‌is‌ ‌always‌‌   positive.‌‌    ‌ 3

f ( 21 ) = ( 21 )( 21 − 1 ) =   −

7 16

.‌ ‌So,‌‌on‌‌the‌‌interval‌‌(0, 1 ) ‌the‌‌y ‌values‌‌are‌‌negative.‌‌    ‌

f (2) = (2)(2 3 − 1 ) = 1 4 .‌ ‌The‌‌y ‌values‌‌are‌‌also‌‌positive‌‌on‌‌the‌‌interval‌‌(1, ∞ ) .‌   ‌ ‌ On‌‌the‌‌number‌‌line:‌  ‌

 ‌ Therefore‌‌x 4 > x ‌on‌‌the‌‌intervals‌‌(− ∞ , 0 ) ⋃ (1, ∞ ).‌    ‌ ‌  ‌ To‌‌algebraically‌‌solve‌‌a‌‌rational‌‌inequality,‌‌follow‌‌the‌‌same‌‌steps‌‌as‌‌above,‌‌but‌‌also‌‌put‌‌the‌‌   vertical‌‌asymptotes‌‌on‌‌the‌‌number‌‌line.‌   ‌ ‌  ‌ Tip:‌‌there‌‌is‌‌actually‌‌a‌‌pattern‌‌with‌‌the‌‌positives‌‌and‌‌negatives.‌ ‌Generally,‌‌it‌‌will‌‌just‌‌   alternate‌‌between‌‌positive‌‌and‌‌negative.‌ ‌However,‌‌if‌‌one‌‌of‌‌the‌‌zeros‌‌has‌‌an‌‌even‌‌   multiplicity,‌‌the‌‌sign‌‌will‌‌remain‌‌the‌‌same‌‌over‌‌that‌‌zero.‌   ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

63‌ ‌

 ‌

1.4.5‌

F ‌ actoring‌P ‌ olynomials‌a ‌ nd‌R ‌ eal‌Z ‌ eros‌  ‌

Zeros‌‌are‌‌the‌‌numbers‌‌that‌‌make‌‌a‌‌function‌‌f (x) ‌equal‌‌to‌‌zero‌‌(the‌‌x ‌intercepts).‌ ‌The‌‌   factors‌‌of‌‌a‌‌polynomial‌‌are‌‌expressions‌‌that,‌‌when‌‌multiplied‌‌together,‌‌create‌‌a ‌‌ polynomial.‌   ‌ ‌  ‌ ‌1.4.5.a‌

‌The‌‌Factor‌‌Theorem‌  ‌

The‌‌factor‌‌theorem‌‌states‌‌that‌‌if‌‌f (c) = 0 ,‌‌then‌‌(x − c ) ‌is‌‌a‌‌factor‌‌of‌‌the‌‌polynomial.‌‌    ‌  ‌ ‌1.4.5.b‌

‌The‌‌Remainder‌‌Theorem‌  ‌ f(x)

The‌‌remainder‌‌theorem‌‌states‌‌that‌‌if‌‌f (c) =/ 0 ,‌‌then‌‌f (c) ‌is‌‌the‌‌remainder‌‌of‌‌ (x − c) ‌. ‌ ‌ This‌‌theorem‌‌is‌‌used‌‌in‌‌synthetic‌‌substitution.‌   ‌ ‌  ‌ ‌1.4.5.c‌

‌Descartes’‌‌Rule‌‌of‌‌Signs‌  ‌

Descartes’‌‌Rule‌‌of‌‌Signs‌‌is‌‌used‌‌to‌‌find‌‌the‌n ‌ umber‌o ‌ f‌‌positive‌‌and‌‌negative‌‌zeros‌‌that‌‌a ‌‌ polynomial‌‌function‌‌has.‌ ‌This‌‌is‌‌done‌‌by‌‌looking‌‌at‌‌the‌‌number‌‌of‌‌sign‌‌changes‌‌that‌‌a ‌‌ polynomial‌‌has.‌   ‌ ‌ For‌‌the‌‌number‌‌of‌‌positive‌‌zeros,‌‌first‌‌put‌‌the‌‌polynomial‌‌“in‌‌order”:‌‌decreasing‌‌powers‌‌of‌‌   x .‌ ‌Then,‌‌the‌‌number‌‌of‌‌positive‌‌zeros,‌‌if‌‌n ‌is‌‌equal‌‌to‌‌the‌‌number‌‌of‌‌sign‌‌changes,‌‌is‌‌equal‌‌   to‌‌n ‌or‌‌n − 2 ‌(counting‌‌down‌‌by‌‌two‌‌until‌‌you‌‌reach‌‌zero).‌ ‌To‌‌account‌‌for‌‌possible‌‌complex‌‌   zeros‌‌(read‌‌more‌‌about‌‌these‌‌in‌‌the‌‌next‌‌section),‌‌we‌‌need‌‌to‌‌count‌‌down‌‌by‌‌two,‌‌as‌‌   complex‌‌zeros‌‌always‌‌come‌‌in‌‌pairs.‌ 

64‌

 ‌

 ‌ ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ For‌‌the‌‌number‌‌of‌‌negative‌‌zeros,‌‌repeat‌‌the‌‌steps‌‌above,‌‌but‌‌first‌‌plug‌‌in‌‌− x .‌  ‌ Example:‌‌Find‌‌the‌‌number‌‌of‌‌positive‌‌and‌‌negative‌‌roots‌‌that‌‌the‌‌function‌‌   f (x) = x 3 + 3 x 2 − 1 3x − 1 5 ‌has.‌   ‌ ‌ There‌‌is‌‌one‌‌sign‌‌change‌‌in‌‌the‌‌original‌‌function‌‌(between‌‌3 x 2 ‌and‌‌− 1 3x ).‌ ‌Therefore,‌‌there‌‌   is‌‌exactly‌‌one‌‌positive‌‌zero.‌ ‌Since‌‌counting‌‌down‌‌two‌‌from‌‌one‌‌produces‌‌− 1 ,‌‌and‌‌it‌‌is‌‌   impossible‌‌to‌‌have‌‌negative‌‌one‌‌zeros,‌‌we‌‌know‌‌that‌‌there‌‌is‌‌exactly‌‌one‌‌positive‌‌zero.‌‌    Plugging‌‌in‌‌− x ‌to‌‌the‌‌function‌‌gives‌‌f (− x ) =   − x 3 + 3 x 2 + 1 3x − 1 5 .‌ ‌There‌‌are‌‌two‌‌sign‌‌   changes‌‌in‌‌this‌‌function.‌ ‌This‌‌means‌‌that‌‌there‌‌are‌‌either‌‌2 ‌or‌‌0 ‌negative‌‌zeros.‌   ‌ ‌ ‌1.4.5.d‌

‌Rational‌‌Zeros‌‌Theorem‌  ‌

The‌‌rational‌‌zeros‌‌theorem‌‌states‌‌that‌‌every‌‌rational‌‌zero‌‌of‌‌the‌‌function‌‌   f (x) = a n x n + a n−1 x n−1 + ... + a 1 x + a 0 ‌has‌‌the‌‌form‌‌±

p q

‌‌where‌‌p ‌is‌‌a‌‌factor‌‌of‌‌a 0 ‌and‌‌q ‌is‌‌a ‌‌

factor‌‌of‌‌a n .‌   ‌ ‌  ‌ ‌1.4.5.e‌

‌Combining‌‌Tools‌‌to‌‌Find‌‌Zeros‌‌of‌‌Polynomial‌  ‌

Example:‌‌Find‌‌the‌‌zeros‌‌of‌‌the‌‌function‌‌f (x) = x 3 + 8 x 2 + 1 1x − 2 0 .‌  ‌ First,‌‌use‌‌the‌‌rule‌‌of‌‌signs‌‌to‌‌find‌‌the‌‌number‌‌of‌‌zeros.‌ ‌f (x) ‌has‌‌one‌‌sign‌‌change,‌‌and‌‌   therefore‌‌it‌‌has‌‌one‌‌positive‌‌zero.‌ ‌f (− x ) =   − x 3 + 8 x 2 − 1 1x − 2 0 ‌has‌‌two‌‌sign‌‌changes,‌‌so‌‌it‌‌   has‌‌either‌‌2 ‌or‌‌0 ‌negative‌‌zeros.‌   ‌ ‌ Then,‌‌apply‌‌the‌‌rational‌‌zeros‌‌theorem.‌ ‌p ‌is‌‌equal‌‌to‌‌− 2 0 .‌ ‌All‌‌of‌‌the‌‌factors‌‌of‌‌− 2 0 ‌are‌ p :± (1,  2,  4,  5,  10,  20) .‌ ‌q ‌is‌‌equal‌‌to‌‌1 ,‌‌so‌‌q ‌must‌‌be‌‌equal‌‌to‌‌1 .‌ ‌Because‌‌q ‌is‌‌equal‌‌to‌‌1 ,‌‌   p q

: ± (1,  2,  4,  5,  10,  20) .‌   ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

65‌  ‌

 ‌  ‌ Now,‌‌perform‌‌synthetic‌‌substitution.‌ ‌Synthetic‌‌substitution‌‌is‌‌very‌‌similar‌‌to‌‌synthetic‌‌   division‌‌of‌‌polynomials,‌‌but‌‌instead‌‌of‌‌having‌‌one‌‌divisor,‌‌there‌‌will‌‌be‌‌multiple.‌   ‌ ‌

 ‌ The‌‌set‌‌up‌‌is‌‌the‌‌same‌‌as‌‌normal‌‌synthetic‌‌division,‌‌but‌‌instead‌‌of‌‌the‌‌divisor‌‌being‌‌in‌‌the‌‌   p

top‌‌left‌‌corner,‌‌it‌‌is‌‌on‌‌the‌‌left‌‌side‌‌in‌‌line‌‌with‌‌the‌‌quotient.‌ ‌Start‌‌with‌‌the‌‌first‌‌possible‌‌ q  ‌ factor.‌ ‌Notice‌‌how‌‌the‌‌remainder‌‌is‌‌zero.‌ ‌From‌‌the‌‌factor‌‌theorem,‌‌we‌‌know‌‌that‌‌this‌‌   means‌‌that‌‌x 2 + 9 x + 2 0 ‌is‌‌a‌‌factor‌‌of‌‌the‌‌function.‌ ‌So,‌‌the‌‌positive‌‌zero‌‌of‌‌the‌‌function‌‌is‌‌   x = 1 .‌   ‌ ‌ Now‌‌that‌‌the‌‌function‌‌is‌‌“depressed”‌‌(broken‌‌down‌‌into‌‌a‌‌second‌‌degree‌‌polynomial),‌‌we‌‌   can‌‌factor‌‌it‌‌out‌‌to‌‌find‌‌the‌‌negative‌‌zeros,‌‌if‌‌they‌‌exist.‌   ‌ ‌ x 2 + 9 x + 2 0 ‌can‌‌be‌‌factored‌‌into‌‌(x + 4 )(x + 5 ) ,‌‌meaning‌‌that‌‌the‌‌two‌‌negative‌‌zeros‌‌are‌‌   x =   − 4 ‌and‌‌x =   − 5 .‌   ‌ ‌

 ‌ 1.4.6‌

I‌ maginary‌‌and‌‌Complex‌N ‌ umbers‌  ‌

An‌‌imaginary‌‌number‌‌is‌‌a‌‌non-real‌‌number.‌ ‌Usually,‌‌these‌‌numbers‌‌are‌‌multiples‌‌of‌‌i ,‌‌or‌‌   the‌‌square‌‌root‌‌of‌‌negative‌‌one.‌   ‌ ‌ For‌‌example,‌‌√− 7 ‌is‌‌an‌‌imaginary‌‌number.‌ ‌It‌‌can‌‌be‌‌broken‌‌down‌‌into‌‌√7 · √− 1 ‌or‌‌i√7 .‌   ‌ ‌ A‌‌complex‌‌number‌‌is‌‌a‌‌mixture‌‌of‌‌real‌‌and‌‌imaginary‌‌numbers,‌‌usually‌‌in‌‌the‌‌form‌‌a + b i ,‌‌   where‌‌a ‌and‌‌b ‌are‌‌real‌‌numbers.‌ ‌Any‌‌real‌‌or‌‌imaginary‌‌number‌‌can‌‌be‌‌written‌‌out‌‌as‌‌a ‌‌ complex‌‌number‌‌(i.e.‌‌3 + 0 i ‌or‌‌0 + i√7 ).‌   

66‌

 ‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌ ‌

 ‌  ‌ ‌1.4.6.a‌

‌Power‌‌Pattern‌  ‌

Just‌‌like‌‌real‌‌numbers,‌‌you‌‌can‌‌raise‌‌i ‌to‌‌exponents.‌ ‌For‌‌example,‌‌i2 ‌is‌‌√− 1 · √− 1 ,‌‌which‌‌   equals‌‌− 1 .‌ ‌We‌‌can‌‌raise‌‌i ‌to‌‌any‌‌exponent‌‌we’d‌‌like,‌‌but‌‌it‌‌turns‌‌out‌‌that‌‌there‌‌is‌‌a‌‌pattern‌‌   that‌‌arises:‌  ‌ i = √− 1   ‌ i2 =   − 1   ‌ i3 =   − i   ‌ i4 = 1   ‌ i5 = √− 1   ‌ i6 =   − 1   ‌ i7 =   − i   ‌ i8 = 1   ‌ Notice‌‌how‌‌after‌‌after‌‌i ‌was‌‌raised‌‌to‌‌the‌‌fourth‌‌power,‌‌the‌‌pattern‌‌repeats‌‌itself.‌   ‌ ‌ This‌‌pattern‌‌can‌‌be‌‌used‌‌to‌‌simplify‌‌large‌‌exponents.‌ ‌Since‌‌i4 = 1 ,‌‌find‌‌the‌‌highest‌‌multiple‌‌   of‌‌four‌‌that‌‌can‌‌“fit”‌‌into‌‌the‌‌exponent.‌ ‌Then,‌‌multiply‌‌this‌‌by‌‌i ‌raised‌‌to‌‌the‌‌difference‌‌   between‌‌the‌‌original‌‌exponent‌‌and‌‌the‌‌highest‌‌multiple‌‌of‌‌four.‌   ‌ ‌ Example:‌‌Find‌‌the‌‌value‌‌of‌‌i59 .‌   ‌ ‌ The‌‌largest‌‌multiple‌‌of‌‌four‌‌that‌‌can‌‌fit‌‌into‌‌the‌‌exponent‌‌is‌‌5 6 .‌ ‌5 9 − 5 6 = 3 .‌ ‌So,‌‌   i59 = i56 · i3 = (i4 )14 · i3 = 1 14 · i3 = i3 =   − i .‌   ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

67‌  ‌

 ‌  ‌  ‌ ‌1.4.6.b‌

‌Complex‌‌Conjugate‌  ‌

To‌‌rationalize‌‌a‌‌quotient‌‌of‌‌complex‌‌numbers‌‌(like‌‌ 5 + 7i ‌)‌‌you‌‌need‌‌to‌‌use‌‌a‌‌complex‌  2 − 3i conjugate.‌ ‌A‌‌complex‌‌conjugate‌‌is‌‌a‌‌fraction‌‌that‌‌is‌‌equal‌‌to‌‌one‌‌that‌‌is‌‌made‌‌up‌‌of‌‌two‌‌   complex‌‌numbers.‌ ‌These‌‌complex‌‌numbers‌‌are‌‌the‌‌same‌‌(which‌‌is‌‌why‌‌the‌‌fraction‌‌is‌‌   equal‌‌to‌‌one)‌‌and‌‌are‌‌the‌‌denominator‌‌of‌‌the‌‌original‌‌quotient‌‌with‌‌the‌‌opposite‌‌sign‌‌on‌‌   the‌‌imaginary‌‌part.‌   ‌ ‌ For‌‌example,‌‌to‌‌rationalize‌‌ 5 + 7i ‌you‌‌would‌‌multiply‌‌it‌‌by‌‌the‌‌complex‌‌conjugate‌‌2 + 3i ‌. ‌  ‌ ‌ 2 − 3i 2 + 3i  ‌

1.4.7‌

C ‌ omplex‌Z ‌ eros‌  ‌

For‌‌functions‌‌f (x) = a x n + b x n − 1 + c x − 2 + ... + z ,‌‌if‌‌all‌‌coefficients‌‌are‌‌real‌‌numbers,‌‌complex‌‌   zeros‌‌must‌‌come‌‌in‌‌conjugate‌‌pairs.‌ ‌This‌‌means‌‌they‌‌cancel‌‌out.‌   ‌ ‌ The‌‌zeros‌‌would‌‌be‌‌a + b i ‌and‌‌a − b i .‌   ‌ ‌  ‌ ‌1.4.7.a‌

‌Finding‌‌Equations‌‌from‌‌Zeros‌‌-‌‌Example‌  ‌

Find‌‌the‌‌equation‌‌of‌‌the‌‌degree‌‌four‌‌function‌‌with‌‌the‌‌zeros‌‌1 ,‌‌1 ,‌‌and‌‌− 4 + i .‌   ‌ ‌ Use‌‌these‌‌zeros‌‌and‌‌the‌‌degree‌‌to‌‌set‌‌up‌‌a‌‌factored‌‌version‌‌of‌‌the‌‌equation.‌ ‌Use‌‌a ‌as‌‌a ‌‌ placeholder‌‌for‌‌the‌‌possible‌‌coefficient.‌   ‌ ‌ f (x) = a (x − 1 )2 (x − (− 4 + i))(x − (− 4 − i))   ‌ Remember‌‌that‌‌complex‌‌zeros‌‌must‌‌come‌‌in‌‌conjugate‌‌pairs.‌ ‌Also,‌‌since‌‌1 ‌was‌‌listed‌‌as‌‌a ‌‌ zero‌‌twice,‌‌it‌‌has‌‌a‌‌multiplicity‌‌of‌‌two,‌‌and‌‌it‌‌therefore‌‌squared.‌   ‌

68‌

 ‌

 ‌ ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ Distribute‌‌the‌‌negatives,‌‌expand,‌‌and‌‌simplify.‌  ‌ a (x 2 − 2 x + 1 )(x + (4 − i))(x + (4 + i))   ‌ a (x 2 − 2 x + 1 )(x 2 + 4 x + ix + 4 x − ix + 1 7)   ‌ a (x 2 − 2 x + 1 )(x 2 + 8 x + 1 7)   ‌ f (x) = a (x 4 + 6 x 3 + 2 x 2 − 2 6x + 1 7)   ‌ Without‌‌a‌‌point‌‌on‌‌the‌‌graph‌‌we‌‌cannot‌‌find‌‌a ,‌‌so‌‌this‌‌is‌‌the‌‌final‌‌answer.‌  ‌  ‌ ‌1.4.7.b‌

‌Finding‌‌Zeros‌‌from‌‌a‌‌Function‌‌-‌‌Example‌  ‌

Find‌‌all‌‌zeros,‌‌real‌‌and‌‌non-real,‌‌of‌‌the‌‌function‌‌f (x) = 3 x 4 + 5 x 3 + 3 5x 2 + 4 5x − 1 8 .‌  ‌ Using‌‌Descartes’‌‌Rule‌‌of‌‌Signs‌‌we‌‌know‌‌that‌‌f (x) ‌has‌‌one‌‌real‌‌positive‌‌zero‌‌and‌‌three‌‌or‌‌one‌‌   negative‌‌zeros.‌ ‌From‌‌the‌‌rational‌‌zeros‌‌function,‌‌we‌‌know‌‌that‌‌the‌‌possible‌‌rational‌‌zeros‌‌   p

are‌‌ q : ± (1,  2,  3,  6,  9,  18,   31 ,   32 ) .‌   ‌ ‌ Use‌‌synthetic‌‌substitution‌‌to‌‌find‌‌the‌‌zeros‌‌and‌‌break‌‌down‌‌the‌‌polynomial.‌  ‌

 ‌ Now,‌‌the‌‌function‌‌is‌‌broken‌‌down‌‌where‌‌we‌‌know‌‌that‌‌two‌‌of‌‌the‌‌factors‌‌are‌‌x = 31 ,− 2 ‌and‌‌   the‌‌rest‌‌of‌‌the‌‌function‌‌is‌‌3 x 2 + 2 7 = 0 .‌ ‌When‌‌solved‌‌for‌‌x ,‌‌this‌‌function‌‌produces‌‌   x =   ± √− 9 =   ± 3 i .‌   ‌ ‌ So,‌‌the‌‌two‌‌real‌‌solutions‌‌are‌‌x = 31 ,   − 2 ‌and‌‌the‌‌two‌‌non-real‌‌solutions‌‌are‌‌x = 3 i,   − 3 i .‌   ‌ Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

69‌ ‌

 ‌ ‌

 ‌  ‌

1.5‌

‌Exponential‌‌and‌‌Logarithmic‌‌Functions‌  ‌

1.5.1‌

C ‌ omposite‌F ‌ unctions‌  ‌

A‌‌composite‌‌function‌‌is‌‌a‌‌function‌‌that‌‌gets‌‌plugged‌‌into‌‌another.‌   ‌ ‌ Example:‌‌If‌‌f (x) = 2 x + 3 ‌and‌‌g (x) = 7 x + 7 ,‌‌find‌‌the‌‌composite‌‌function‌‌f ° g  (x) ‌(pronounced‌‌f  ‌ of‌‌g ‌of‌‌x ).‌  ‌ Plug‌‌g (x) ‌into‌‌f (x) ‌wherever‌‌you‌‌see‌‌x .‌   ‌ ‌ f ° g  (x) = f (g(x)) = 2 (7x + 7 ) + 3 = 1 4x + 1 7   ‌  ‌ Note:‌‌you‌‌can‌‌also‌‌do‌‌f ° f  (x) ,‌‌where‌‌you‌‌plug‌‌the‌‌function‌‌back‌‌into‌‌itself.‌‌    ‌  ‌ ‌1.5.1.a‌

‌Domain‌‌of‌‌Composite‌‌Functions‌  ‌

Consider‌‌the‌‌domain‌‌restrictions‌‌of‌‌both‌‌the‌‌composite‌‌function‌a ‌ nd‌‌‌the‌‌function‌‌that‌‌was‌‌   plugged‌‌in.‌ ‌So,‌‌if‌‌you‌‌have‌‌a‌‌composite‌‌function‌‌f ° g  (x) ,‌‌find‌‌the‌‌domain‌‌of‌‌both‌‌f ° g  (x)  ‌ and‌‌g (x) .‌   ‌ ‌  ‌

1.5.2‌

O ‌ ne‌t‌ o‌O ‌ ne‌F ‌ unctions‌  ‌

A‌‌one‌‌to‌‌one‌‌function‌‌is‌‌a‌‌function‌‌in‌‌which‌‌every‌‌x ‌has‌‌one‌‌y ‌and‌‌every‌‌y ‌has‌‌one‌‌x .‌ ‌A ‌ one‌‌to‌‌one‌‌function‌‌will‌‌pass‌‌both‌‌the‌‌vertical‌‌line‌‌test‌‌and‌‌the‌‌horizontal‌‌line‌‌test.‌‌    ‌  

 ‌

70‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌

1.5.3‌

I‌ nverse‌F ‌ unctions‌  ‌

An‌‌inverse‌‌of‌‌a‌‌function‌‌is‌‌the‌‌reverse‌‌of‌‌the‌‌original‌‌function:‌‌the‌‌domain‌‌of‌‌the‌‌original‌‌   function‌‌is‌‌the‌‌range‌‌of‌‌the‌‌inverse‌‌and‌‌vice‌‌versa.‌ ‌So,‌‌if‌‌f (a) = b ‌then‌‌f −1 (b) = a .‌   ‌ ‌ To‌‌test‌‌if‌‌a‌‌function‌‌is‌‌an‌‌inverse‌‌of‌‌another‌‌use‌‌the‌‌following‌‌test:‌  ‌ f (g(x)) = g (f (x)) = x   ‌  ‌ ‌1.5.3.a‌

‌Notation‌  ‌

The‌‌inverse‌‌of‌‌function‌‌f (x) ‌is‌‌denoted‌‌as‌‌f −1 (x) ,‌‌read‌‌as‌‌“‌f ‌inverse”.‌‌    ‌  ‌ ‌1.5.3.b‌

‌Process‌‌of‌‌Finding‌‌an‌‌Inverse‌‌Function‌  ‌

To‌‌find‌‌the‌‌inverse‌‌of‌‌a‌‌function,‌‌change‌‌y ‌to‌‌x ‌and‌‌put‌‌y ’s‌‌wherever‌‌x ‌is.‌   ‌ ‌ Then,‌‌solve‌‌for‌‌y .‌   ‌ ‌ Rational‌‌Function‌‌Example:‌‌Find‌‌the‌‌inverse‌‌of‌‌f (x) =

2x + 1 x − 1

.‌   ‌ ‌

Begin‌‌by‌‌changing‌‌x ’s‌‌to‌‌y ’s‌‌and‌‌vice‌‌versa.‌   ‌ ‌ x=

2y + 1 y − 1

 ‌

Cross‌‌multiply‌‌to‌‌get‌‌rid‌‌of‌‌the‌‌fraction.‌  ‌ x 1

=

2y + 1   y − 1

⇒  xy − x = 2y + 1   ‌

Move‌‌all‌‌y ’s‌‌to‌‌one‌‌side‌‌and‌‌everything‌‌else‌‌to‌‌the‌‌other‌‌side.‌   ‌ ‌ xy − 2 y = x + 1  

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

71‌  ‌

 ‌  ‌ Undistribute‌‌the‌‌y ’s‌‌on‌‌the‌‌left‌‌side.‌ ‌Solve‌‌for‌‌y .‌   ‌ ‌ y (x − 2 ) = x + 1   ‌ y = f −1 (x) =

x + 1 x − 2

 ‌

 ‌ ‌1.5.3.c‌

‌Graphs‌‌and‌‌Inverse‌‌Functions‌  ‌

The‌‌graph‌‌of‌‌a‌‌function’s‌‌inverse‌‌is‌‌the‌‌graph‌‌of‌‌the‌‌original‌‌function‌‌reflected‌‌across‌‌the‌‌   line‌‌y = x .‌   ‌ ‌

 ‌  ‌

 ‌  

 ‌

72‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌ ‌

1.5.4‌

E ‌ xponential‌‌Functions‌  ‌

An‌‌exponential‌‌function‌‌is‌‌a‌‌function‌‌where‌‌a‌‌constant‌‌is‌‌raised‌‌to‌‌the‌‌argument:‌‌f (x) = a x .‌  ‌ ➔ Remember‌‌that‌‌a‌‌number‌‌raised‌‌to‌‌the‌‌zeroth‌‌power‌‌always‌‌equals‌‌one.‌   ‌ ‌ ➔ When‌‌x > 1 ,‌‌the‌‌graph‌‌will‌‌get‌‌steep‌‌fast.‌   ‌ ‌ ➔ When‌‌x < 1 ,‌‌this‌‌is‌‌the‌‌same‌‌as‌‌√a .‌‌ ‌This‌‌means‌‌that‌‌there‌‌will‌‌be‌‌very‌‌little‌‌growth.‌  ‌ x

➔ When‌‌x < 0 ,‌‌tiny‌‌numbers‌‌are‌‌created.‌ ‌Therefore,‌‌the‌‌graph‌‌will‌‌approach‌‌zero.‌   ‌ ‌

 ‌ ‌1.5.4.a‌ ●

‌Transformations‌  ‌

f (x) = c · a x :‌‌c ‌is‌‌the‌‌multiplier,‌‌which‌‌enhances‌‌the‌‌growth‌  ‌ ○

Generally,‌‌this‌‌multiplier‌‌doesn’t‌‌make‌‌that‌‌much‌‌of‌‌a‌‌difference‌‌in‌‌how‌‌the‌‌   graph‌‌looks.‌ ‌It‌‌is‌‌mainly‌‌noticeable‌‌in‌‌the‌‌y ‌intercept.‌  ‌



f (x) = a x − h :‌‌h ‌shifts‌‌the‌‌graph‌‌horizontally‌  ‌ ○

Notice‌‌the‌‌negative‌‌sign‌‌in‌‌front‌‌of‌‌h .‌ ‌Just‌‌as‌‌before,‌‌this‌‌means‌‌that‌‌the‌‌   graph‌‌moves‌‌opposite‌‌the‌‌sign.‌ ‌So,‌‌if‌‌the‌‌exponent‌‌is‌‌x + 2 ,‌‌h =   − 2 ‌and‌‌the‌‌   graph‌‌will‌‌shift‌‌two‌‌to‌‌the‌‌left.‌   ‌ ‌



f (x) = a x + k :‌‌k ‌shifts‌‌the‌‌graph‌‌up‌‌or‌‌down‌  ‌



f (x) =   − (a x) :‌‌the‌‌negative‌‌sign‌‌out‌‌front‌‌of‌‌the‌‌term‌‌flips‌‌the‌‌graph‌‌over‌‌the‌‌x ‌axis‌  ‌ ○



It‌‌changes‌‌the‌‌sign‌‌of‌‌the‌‌y ‌values,‌‌flipping‌‌it‌‌up‌‌or‌‌down.‌  ‌

f (x) = a −x :‌‌the‌‌negative‌‌sign‌‌on‌‌the‌‌exponent‌‌flips‌‌the‌‌graph‌‌over‌‌the‌‌y ‌axis‌  ‌ ○

It‌‌changes‌‌the‌‌sign‌‌of‌‌the‌‌x ‌values,‌‌flipping‌‌it‌‌side‌‌to‌‌side.‌ 

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

73‌ ‌

 ‌  ‌ ‌1.5.4.b‌

‌Checking‌‌for‌‌an‌‌Exponential‌  ‌

If‌‌a‌‌function‌‌is‌‌exponential,‌‌it‌‌will‌‌have‌‌a‌‌common‌‌quotient‌‌between‌‌the‌‌y ‌values,‌‌rather‌‌   than‌‌having‌‌a‌‌common‌‌difference‌‌like‌‌linear‌‌and‌‌quadratic‌‌formulas.‌   ‌ ‌ Example:‌‌Find‌‌the‌‌equation‌‌of‌‌the‌‌following‌‌function.‌  ‌  ‌ x  ‌

f (x)   ‌

0‌  ‌

5‌  ‌

1‌  ‌

10‌  ‌

2‌  ‌

20‌  ‌

3‌  ‌

40‌  ‌

4‌  ‌

80‌  ‌

Notice‌‌that‌‌8 0/40 = 4 0/20 = 2 0/10 = 1 0/5 = 2 .‌ ‌Therefore,‌‌2 ‌is‌‌the‌‌common‌‌quotient,‌‌or‌‌a .‌ ‌The‌‌   general‌‌formula‌‌for‌‌this‌‌common‌‌quotient‌‌is‌‌

f(x + 1) f(x)

= a ‌. ‌  ‌ ‌

Notice‌‌how‌‌f (0) = 5 .‌ ‌If‌‌an‌‌exponential‌‌function‌‌has‌‌no‌‌constant‌‌f (0) ‌would‌‌equal‌‌1 .‌ ‌Since‌‌   0 this‌‌is‌‌not‌‌the‌‌case‌‌for‌‌this‌‌function,‌‌we‌‌know‌‌that‌‌the‌‌constant‌‌is‌‌5 ‌(‌5 = c · 2

⇒ c = 5).‌  ‌

Therefore‌‌the‌‌equation‌‌of‌‌this‌‌function‌‌is‌‌f (x) = 5 · 2 x .‌   ‌ ‌  ‌ ‌1.5.4.c‌

‌Euler’s‌‌Number‌  ‌

Euler’s‌‌number,‌‌also‌‌known‌‌as‌‌the‌‌natural‌‌number,‌‌is‌‌a‌‌constant‌‌approximately‌‌equal‌‌to‌‌   ∞

e ≈ 2 .71828 .‌ ‌This‌‌number‌‌was‌‌found‌‌through‌‌the‌‌infinite‌‌sum‌‌e = ∑

n=0

a‌‌division‌‌by‌‌zero‌‌error,‌‌as‌‌0 ! = 1 ).‌ 

74‌

 ‌

1 n!

‌(this‌‌will‌‌not‌‌create‌‌  

 ‌ ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ Note:‌‌if‌‌you‌‌want‌‌to‌‌learn‌‌more‌‌about‌‌infinite‌‌sums‌‌and‌‌how‌‌adding‌‌numbers‌‌infinitely‌‌can‌‌   produce‌‌a‌‌number,‌‌jump‌‌to‌‌the‌‌calculus‌‌II‌‌section‌‌on‌‌series.‌   ‌ ‌ e ‌is‌‌a‌‌common‌‌base‌‌for‌‌exponential‌‌and‌‌logarithmic‌‌functions.‌   ‌ ‌  ‌ ‌1.5.4.d‌

‌Solving‌‌Exponential‌‌Functions‌‌-‌‌Example‌  ‌

Solve‌‌e−x = (ex )2 · 2

1 e3

‌. ‌ ‌

Begin‌‌by‌‌making‌‌every‌‌term‌‌a‌‌base‌‌number‌‌to‌‌the‌‌x ‌power.‌  ‌ 2

e−x = e2x · e−3   ‌ Combine‌‌the‌‌terms‌‌on‌‌the‌‌right‌‌side‌‌using‌‌the‌‌exponent‌‌rule‌‌ea · eb = ea + b ‌. ‌ 2

e−x = e2x − 3   ‌ Since‌‌both‌‌terms‌‌have‌‌the‌‌same‌‌base‌‌number,‌‌you‌‌can‌‌take‌‌the‌‌natural‌‌log‌‌of‌‌both‌‌sides:‌‌   x ... = x ... .‌  ‌ − x2 = 2 x − 3   ‌ Solve‌‌for‌‌x .‌  ‌ 0 = x2 + 2 x − 3   ‌ 0 = (x + 3 )(x − 1 )   ‌ x = 1,   − 3   ‌ Once‌‌you‌‌get‌‌the‌‌answers,‌‌be‌‌sure‌‌to‌‌check‌‌if‌‌they‌‌fall‌‌out‌‌of‌‌the‌‌domain‌‌restrictions,‌‌as‌‌   that‌‌would‌‌make‌‌them‌‌extraneous‌‌solutions.‌ 

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌

75‌  ‌

 ‌  ‌

‌1.5.5‌

L ‌ ogarithmic‌‌Functions‌  ‌

A‌‌logarithmic‌‌function‌‌is‌‌the‌‌inverse‌‌of‌‌an‌‌exponential‌‌function.‌ ‌If‌‌b y = x ,‌‌then‌‌y = log b x .‌  ‌ This‌‌y = ‌formula‌‌is‌‌essentially‌‌asking‌‌“what‌‌power‌‌of‌‌b ‌makes‌‌x ?”‌‌where‌‌y ‌is‌‌the‌‌power.‌   ‌ ‌ ●

y ‌is‌‌equal‌‌to‌‌the‌‌exponent‌  ‌



b ‌is‌‌the‌‌base‌‌of‌‌the‌‌exponential‌‌function‌  ‌



x ‌is‌‌the‌‌answer‌‌of‌b y   ‌

 ‌ Important‌‌Notation‌‌Notes:‌  ‌ log e = ln = ‌natural‌‌log‌  ‌ log 10 = log   ‌  ‌ ‌1.5.5.a‌

‌Implementing‌‌log‌‌-‌‌Examples‌  ‌

Rewrite‌‌2y + 1 =

76‌

x − 10 9

‌‌as‌‌a‌‌logarithmic‌‌function.‌ 

 ‌

 ‌ ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌ ‌

 ‌ The‌‌base‌‌of‌‌the‌‌exponent‌‌is‌‌2 ,‌‌so‌‌b = 2 .‌ ‌The‌‌answer‌‌to‌‌this‌‌exponential‌‌function‌‌is‌‌ x − 10 ‌, ‌‌ 9 so‌‌x =

x − 10 9

‌.‌ ‌The‌‌logarithmic‌‌function‌‌solves‌‌for‌‌the‌‌exponent,‌‌so‌‌set‌‌the‌‌log‌‌function‌‌equal‌‌ 

to‌‌y + 1 ‌and‌‌solve‌‌for‌‌y .‌  ‌

log 2 ( x − 10 ) = y +1  ‌ 9 y = log 2 ( x − 10 )−1  ‌ 9  ‌ 1 Rewrite‌‌log 6 216 = x ‌‌as‌‌an‌‌exponential‌‌function‌‌and‌‌solve‌‌for‌‌x .‌   ‌ ‌ 1 The‌‌base‌‌is‌‌6 ,‌‌the‌‌exponent‌‌is‌‌x ,‌‌and‌‌the‌‌answer‌‌is‌‌216 .‌‌So,‌  ‌

6x =

1 216

 ‌

1 6 3 ‌is‌‌equal‌‌to‌‌2 16 .‌ ‌To‌‌get‌‌216 ,‌‌make‌‌the‌‌exponent‌‌negative.‌ ‌Therefore,‌  ‌

x = −3  ‌  ‌ ‌1.5.5.b‌

‌Domain‌‌and‌‌Range‌  ‌

The‌‌domain‌‌of‌‌a‌‌logarithmic‌‌function‌‌is‌‌determined‌‌by‌‌the‌‌argument‌‌of‌‌the‌‌logarithmic‌‌   function,‌‌as‌‌the‌‌argument‌‌(what‌‌comes‌‌after‌‌the‌‌log ‌symbol)‌‌must‌‌be‌‌greater‌‌than‌‌zero.‌  ‌ So,‌‌the‌‌domain‌‌is‌‌D = {x ε R| x > 0 } ,‌‌or,‌‌if‌‌an‌‌h ‌transformation‌‌exists,‌‌then‌‌D = {x ε R| x > h } .‌   ‌ ‌ The‌‌range‌‌of‌‌a‌‌logarithmic‌‌function‌‌is‌‌all‌‌real‌‌numbers.‌  ‌ Notice‌‌how‌‌this‌‌is‌‌the‌‌domain‌‌and‌‌range‌‌of‌‌an‌‌exponential‌‌function‌‌but‌‌flipped.‌   ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

77‌  ‌

 ‌  ‌ ‌1.5.5.c‌

‌Graphing‌  ‌

To‌‌graph‌‌a‌‌logarithmic‌‌function,‌‌find‌‌its‌‌inverse,‌‌and‌‌flip‌‌that‌‌graph‌‌across‌‌the‌‌line‌‌y = x .‌   ‌ ‌ Example:‌‌graph‌‌f (x) =   − ln (x − 2 ) .‌‌    ‌ Flip‌‌the‌‌x ’s‌‌and‌‌y ’s‌‌and‌‌expand‌‌ln ‌into‌‌log ‌form.‌  ‌ x =   − log e(y − 2 )   ‌ Divide‌‌both‌‌sides‌‌by‌‌− 1 .‌ ‌To‌‌get‌‌rid‌‌of‌‌the‌‌log ,‌e ‌ xponentiate.‌  ‌ − x = log e(y − 2 )   ‌ e −x = y − 2   ‌ Solve‌‌for‌‌y .‌  ‌ y = e −x + 2   ‌ The‌‌y ‌intercept‌‌is‌‌(0, 3 ) ,‌‌there‌‌is‌‌a‌‌horizontal‌‌asymptotes‌‌at‌‌y = 2 ,‌‌and‌‌the‌‌negative‌‌sign‌‌in‌‌   front‌‌of‌‌x ‌flips‌‌the‌‌graph‌‌over‌‌the‌‌y ‌axis.‌ ‌Plot‌‌this,‌‌then‌‌reflect‌‌it‌‌across‌‌the‌‌line‌‌y = x ‌to‌‌   get‌‌the‌‌graph‌‌for‌‌f (x) =   − ln(y − 2 ) .‌  ‌

 

78‌

 ‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌ ‌

 ‌ ‌1.5.5.d‌ ●







‌Laws‌‌of‌‌Logarithms‌  ‌

If‌‌the‌‌argument‌‌is‌‌equal‌‌to‌‌one,‌‌the‌‌answer/exponent‌‌is‌‌zero.‌  ‌ ○

log a 1 = x   ‌



ax = 1 

⇒  a

0

= 1 

⇒  x = 0   ‌

If‌‌the‌‌argument‌‌is‌‌equal‌‌to‌‌the‌‌base,‌‌the‌‌answer‌‌is‌‌one.‌  ‌ ○

log a a = x   ‌



ax = a 

⇒  a

1

= 1 

⇒  x = 1   ‌

If‌‌the‌‌base‌‌is‌‌raised‌‌to‌‌an‌‌equation‌‌with‌‌the‌‌same‌‌base,‌‌the‌‌argument‌‌is‌‌the‌‌answer.‌  ‌



alog a M = x   ‌



When‌‌you‌‌convert‌‌this‌‌into‌‌logarithmic‌‌form,‌‌you‌‌see‌‌that‌‌log a M = log a x .‌  ‌



Since‌‌all‌‌else‌‌is‌‌held‌‌constant‌‌x ‌must‌‌be‌‌equal‌‌to‌‌M .‌  ‌



They‌‌are‌‌essentially‌‌undoing‌‌each‌‌other.‌  ‌

If‌‌the‌‌base‌‌is‌‌equal‌‌to‌‌the‌‌argument‌‌raised‌‌to‌‌the‌‌power,‌‌then‌‌the‌‌power‌‌is‌‌equal‌‌to‌‌   the‌‌answer‌‌or‌‌the‌‌answer‌‌is‌‌equal‌‌to‌‌the‌‌power.‌  ‌



log a ar = x   ‌



If‌‌you‌‌convert‌‌this‌‌into‌‌exponential‌‌form,‌‌you‌‌see‌‌that‌‌a x = a r .‌  ‌



Since‌‌the‌‌base‌‌is‌‌the‌‌same,‌‌x ‌must‌‌be‌‌equal‌‌to‌‌r .‌ ‌Therefore,‌‌log a ar = r .‌  ‌



log a (MN ) = log a M + log a N   ‌



log a ( M ) = log a M − log a N   ‌ N



log a M r = r · log a M   ‌



Exponents‌‌and‌‌logarithms‌‌can‌‌cancel‌‌each‌‌other‌‌out.‌   ‌ ‌ r



er · ln a = eln a   ‌



Remember‌‌that‌‌ln ‌(the‌‌natural‌‌log)‌‌is‌‌equal‌‌to‌‌log e .‌ ‌When‌‌a‌‌logarithm‌‌is‌‌in‌‌   the‌‌exponent‌‌of‌‌an‌‌exponential‌‌function‌‌with‌‌the‌‌same‌‌base,‌‌they‌‌will‌‌cancel‌‌   each‌‌other‌‌out.‌   ‌ ‌



r

Therefore,‌‌eln a = ar ‌. ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

79‌  ‌

 ‌  ‌ ●

If‌‌and‌‌only‌‌if‌‌M = N ,‌‌then‌‌log a M = log a N .‌  ‌



log a M = ○

log b M log b a

‌,‌‌where‌‌b ‌is‌‌a‌‌base‌‌of‌‌your‌‌choice.‌  ‌

This‌‌is‌‌helpful‌‌for‌‌calculating‌‌logarithms‌‌in‌‌calculators.‌ ‌A‌‌lot‌‌of‌‌calculators‌‌   have‌‌a‌‌log ‌button,‌‌but‌‌it‌‌is‌‌only‌‌for‌‌log 10 .‌ ‌So,‌‌if‌‌you‌‌want‌‌to‌‌calculate‌‌a‌‌non‌‌   base‌‌ten‌‌logarithm‌‌using‌‌a‌‌calculator,‌‌you‌‌will‌‌likely‌‌need‌‌to‌‌apply‌‌this‌‌rule.‌   ‌ ‌

 ‌

1.5.6‌

F ‌ inancial‌M ‌ odel‌F ‌ ormulas‌  ‌

Simple‌‌Interest:‌‌I = P rt   ‌ ➔ I ‌is‌‌equal‌‌to‌‌interest,‌‌P ‌is‌‌the‌‌principal‌‌amount‌‌(i.e.‌‌the‌‌amount‌‌started‌‌with),‌‌r ‌is‌‌   the‌‌percent‌‌interest‌‌rate,‌‌t ‌is‌‌time‌‌in‌‌years‌  ‌ Compound‌‌Interest:‌‌A = P · (1 + nr )nt   ‌ ➔ Compound‌‌interest‌‌is‌‌interest‌‌on‌‌the‌c‌ urrent‌‌‌amount,‌‌so‌‌it‌‌changes‌‌every‌‌year‌‌and‌‌is‌‌   added‌‌to‌‌the‌‌balance‌‌periodically.‌‌    ‌ ➔ P ‌is‌‌the‌‌principal‌‌amount,‌‌r ‌is‌‌the‌‌percent‌‌interest‌‌rate,‌‌n ‌is‌‌the‌‌number‌‌of‌‌times‌‌   that‌‌the‌‌interest‌‌is‌‌compounded‌‌per‌‌year,‌‌t ‌is‌‌time‌‌in‌‌years‌  ‌ ➔ the‌‌n t ‌term‌‌shows‌‌how‌‌many‌‌times‌‌the‌‌interest‌‌was‌‌added‌‌to‌‌the‌‌principal‌‌amount‌  ‌  ‌ Continuous‌‌Compounding:‌‌A = P e rt   ‌ ➔ If‌‌something‌‌is‌‌continuously‌‌compounding,‌‌n ‌is‌‌approaching‌‌infinity.‌ ‌It‌‌is‌‌essentially‌‌   compounding‌‌every‌‌second.‌‌    ‌ ➔ P ‌is‌‌the‌‌principal‌‌amount,‌‌r ‌is‌‌the‌‌percent‌‌interest‌‌rate,‌‌t ‌is‌‌time‌‌in‌‌years‌ 

80‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ‌

 ‌ Effective‌‌Rate‌‌of‌‌Interest:‌‌r e = (1 + nr )n − 1 ,‌‌r e = e r − 1   ‌ ➔ The‌‌effective‌‌interest‌‌rate‌‌is‌‌used‌‌to‌‌compare‌‌loans‌‌that‌‌have‌‌different‌‌terms.‌ ‌The‌‌   formula‌‌is‌‌used‌‌to‌‌adjust‌‌the‌‌interest‌‌amount‌‌to‌‌take‌‌into‌‌account‌‌compounding.‌   ‌ ‌ ➔ The‌‌second‌‌formula‌‌is‌‌used‌‌when‌‌something‌‌is‌‌being‌‌compounded‌‌continuously,‌‌   rather‌‌than‌‌periodically.‌  ‌ ➔ r ‌is‌‌the‌‌percent‌‌interest‌‌rate,‌‌n ‌is‌‌the‌‌number‌‌of‌‌times‌‌that‌‌the‌‌interest‌‌is‌‌   compounded‌‌per‌‌year‌  ‌ Present‌‌Value:‌‌P = A · (1 + nr )−nt ,‌‌P = A · e −rt   ‌ ➔ The‌‌present‌‌value‌‌formula‌‌calculates‌‌what‌‌you‌‌need‌‌to‌‌put‌‌in‌‌(principal‌‌amount)‌‌to‌‌   get‌‌back‌‌a‌‌certain‌‌interest.‌‌    ‌ ➔ The‌‌second‌‌formula‌‌is‌‌used‌‌when‌‌something‌‌is‌‌being‌‌compounded‌‌continuously‌  ‌ ➔ A ‌is‌‌the‌‌amount‌‌of‌‌interest,‌‌r ‌is‌‌the‌‌percent‌‌interest‌‌rate,‌‌n ‌is‌‌the‌‌number‌‌of‌‌times‌‌   that‌‌the‌‌interest‌‌is‌‌compounded‌‌per‌‌year,‌‌t ‌is‌‌time‌‌in‌‌years‌  ‌  ‌

1.5.7‌

G ‌ rowth‌a ‌ nd‌D ‌ ecay‌  ‌

There‌‌are‌‌two‌‌different‌‌types‌‌of‌‌growth‌‌and‌‌decay:‌‌uninhibited‌‌growth‌‌and‌‌logistical‌‌   models.‌  ‌  ‌ ‌1.5.7.a‌

‌Uninhibited‌‌Growth‌‌and‌‌Decay‌  ‌

Uninhibited‌‌growth‌‌and‌‌decay‌‌occurs‌‌in‌‌bacteria‌‌colonies,‌‌radioactive‌‌materials,‌‌etc.‌ ‌It‌‌is‌‌   called‌‌uninhibited‌‌growth‌‌and‌‌decay,‌‌as‌‌it‌‌has‌‌“no‌‌limits”‌‌(for‌‌the‌‌most‌‌part:‌‌in‌‌the‌‌real‌‌   world,‌‌there‌‌are‌‌still‌‌population‌‌limits‌‌with‌‌bacteria,‌‌but‌‌we‌‌disregard‌‌those‌‌in‌‌this‌‌case).‌ 

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

81‌  ‌

 ‌

 ‌  ‌ Just‌‌as‌‌we‌‌use‌‌Euler’s‌‌number‌‌in‌‌continuous‌‌compounding,‌‌it‌‌is‌‌also‌‌used‌‌in‌‌uninhibited‌‌   growth‌‌and‌‌decay.‌   ‌ ‌ Growth‌‌formula:‌‌N (t) = N 0 e kt   ‌ Decay‌‌formula:‌‌N (t) = N 0 e −kt   ‌ ●

N 0 ‌is‌‌the‌‌initial‌‌value/population‌  ‌



k ‌is‌‌the‌‌rate‌‌of‌‌growth/decay‌  ‌



t ‌is‌‌the‌‌amount‌‌of‌‌time‌‌that‌‌has‌‌passed‌  ‌

 ‌ ‌1.5.7.b‌

‌Newton’s‌‌Law‌‌of‌‌Cooling‌  ‌

Newton’s‌‌law‌‌of‌‌cooling‌‌is‌‌used‌‌when‌‌something‌‌hot‌‌is‌‌cooling‌‌down‌‌(this‌‌is‌‌a‌‌decay‌‌model).‌   ‌ ‌ u (t) = T + (u 0 − T )e kt   ‌ ●

u (t) ‌is‌‌the‌‌temperature‌‌after‌‌time‌‌has‌‌passed‌  ‌



T ‌is‌‌the‌‌surrounding‌‌temperature‌  ‌



u 0 ‌is‌‌the‌‌initial‌‌temperature‌  ‌

 

 ‌

82‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ‌1.5.7.c‌

‌Logistical‌‌Model‌  ‌

Logistical‌‌models‌‌are‌‌used‌‌when‌‌there‌‌is‌‌a‌‌limit‌‌on‌‌the‌‌growth,‌‌like‌‌the‌‌population‌‌of‌‌   people‌‌on‌‌Earth.‌   ‌ ‌ c p (t) = 1 + ae −bt   ‌



c 1 + a

‌‌is‌‌the‌‌initial‌‌value‌‌   ‌



you‌‌will‌‌use‌‌c ‌and‌‌the‌‌initial‌‌value‌‌given‌‌to‌‌solve‌‌for‌‌a   ‌



c ‌is‌‌the‌‌carrying‌‌capacity,‌‌or‌‌what‌‌the‌‌growth‌‌is‌‌limited‌‌to‌  ‌



b ‌is‌‌the‌‌rate‌‌    ‌

 ‌ What‌‌other‌‌notes‌‌do‌‌you‌‌w ish‌‌to‌‌add‌‌for‌‌Algebra‌‌II?‌‌Remember,‌‌to‌‌share‌‌them‌‌on‌‌   MathQRH.com!‌‌    ‌    ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

83‌  ‌

 ‌

“Genius‌‌is‌‌a‌‌thing‌‌that‌‌happens,‌‌not‌‌a‌‌kind‌‌of‌‌person”‌  ‌ -Jordan‌‌Ellenberg‌  ‌

1.6‌  ‌  ‌  

‌My‌‌Notes‌‌for‌‌Algebra‌‌II‌  ‌  ‌

84‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

1.6‌  ‌  ‌  ‌  ‌  ‌  

‌My‌‌Notes‌‌for‌‌Algebra‌‌II‌‌(con’t)‌  ‌

 ‌

Section‌‌1‌‌-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌

85‌  ‌

 ‌

1.6‌

‌My‌‌Notes‌‌for‌‌Algebra‌‌II‌‌(con’t)‌ 



 ‌  ‌  ‌  ‌  ‌  ‌  ‌  ‌  ‌  ‌  ‌  ‌  ‌  ‌  ‌  ‌  ‌  ‌  ‌  ‌  ‌  ‌  ‌

86‌

 ‌

Section‌‌1-‌‌Algebra‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

“Safety‌‌Warning:‌‌    ‌ Never‌‌d ivide‌‌b y‌‌z ero‌‌u nless‌‌a ‌‌licensed‌‌mathematician‌‌is‌‌p resent.”‌  -Jordan‌‌Ellenberg‌  ‌  ‌

Section‌‌2‌‌-‌‌Precalculus‌  ‌

 

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

87‌ ‌

 ‌

 ‌

2.0‌

‌Summary‌‌Sheet‌  ‌

Unit‌‌Circle‌‌    ‌

 ‌ Graphing‌‌Form:‌‌(x,  y) = (cos θ,  sin θ)  

88‌

 ‌ ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌ ‌

Trigonometric‌‌Functions‌  ‌ Arc‌‌Length:‌‌s = r θ   ‌ Sector‌‌Area:‌‌A = 21 r 2 θ   ‌ Linear‌‌Speed:‌‌v =

s t

Angular‌‌Speed:‌‌ω =

= rω   ‌ θ t

= 2 πf   ‌

Time‌‌and‌‌Angle‌‌Conversions:‌  ‌ 1° = 60′   ‌ 1 ° = 3 600 ′′   ‌ 1 ′ = 1 /60 °   ‌ 1 ′′ = 1 /3600 °   ‌ where‌‌′ ‌represents‌‌minutes‌‌and‌‌′′ ‌represents‌‌seconds‌  ‌ Radian‌‌and‌‌Degree‌‌Conversions:‌  ‌ 1  revolution = 3 60 ° = 2 π radians   1 80 ° = π  radians   ‌ 1 ° = π /180 radians   ‌ 1  radian = 1 80/π °   ‌  

 ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

89‌  ‌

 ‌ Trigonometric‌‌Definitions:‌  ‌

 ‌

sin θ =

y r

=

opposite hypotenuse

 ‌

csc θ =

r y

=

1 sin θ

 ‌

cos θ =

x r

=

adjacent hypotenuse

 ‌

sec θ =

r x

=

1 cos θ

 ‌

cot θ =

x y

=

1 tan θ

 ‌

tan θ =

y x

=

opposite adjacent

 ‌

r = √x 2 + y 2   ‌ Periodic‌‌Function‌‌Definition:‌‌f (θ + p ) = f (θ)   ‌ Relationship:‌‌sin x = c os (x − 2π )   ‌

 ‌ Pythagorean‌‌Identities:‌  ‌ sin 2  θ + c os2  θ = 1   ‌ tan 2  θ + 1 = sec 2  θ   ‌ c ot2  θ + 1 = c sc 2  θ   ‌ Period:‌‌T =

2π ω

Phase‌‌Shift‌‌=

90‌

= ϕ ω

 

π ω

‌,‌‌depending‌‌on‌‌the‌‌interval‌‌at‌‌which‌‌the‌‌given‌‌graph‌‌completes‌‌a‌‌circle‌  ‌  ‌ ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ Analytic‌‌Trigonometry‌  ‌ Properties‌‌of‌‌Inverse‌‌Functions:‌  ‌ sin (sin −1 x) = x ,‌‌c os (cos−1 x) = x   ‌ Even-Odd‌‌Identities:‌  ‌ sin (− θ) =   − sin θ   ‌

c os (− θ) = c os θ   ‌

tan (− θ) =   − tan θ   ‌

c sc (− θ) =   − c sc θ   ‌

sec (− θ) = sec θ   ‌

c ot (− θ) =   − c ot θ   ‌

 ‌ Sum‌‌and‌‌Difference‌‌Formulas:‌  ‌ c os (α + β ) = c os α cos β  −  sin α sin β   ‌ c os (α − β ) = c os α cos β  +  sin α sin β   ‌ sin (α + β ) = sin α cos β  +  cos α sin β   ‌ sin (α − β ) = sin α cos β  −  cos α sin β   ‌ tan α + tan β

tan (α + β ) = 1 − tan α tan β   ‌ tan α − tan β

tan (α − β ) = 1 + tan α tan β   ‌ Double‌‌Angle‌‌Formulas:‌  ‌ sin (2θ) = 2 sin θ cos θ   ‌ c os (2θ) = c os2 θ − sin 2 θ = 1 − 2 sin 2 θ = 2 cos2 θ − 1   ‌ 2tan θ tan (2θ) = 1 − tan 2θ  

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

91‌  ‌

 ‌ Squared‌‌Formulas:‌  ‌ sin 2 θ =

1 − cos (2θ) 2

 ‌

c os2 θ =

1 + cos (2θ) 2

 ‌

1 − cos (2θ)

tan 2 θ = 1 + cos (2θ)   ‌ Half-Angle‌‌Formulas:‌  ‌

sin  2a =   ±



cos  2a =   ±



1 + cos a 2

   ‌

tan  2a =   ±



1 − cos a 1 + cos a

=

1 − cos a 2

   ‌

1 − cos a sin a

=

sin a 1 + cos a

   ‌

Applications‌‌of‌‌Trigonometric‌‌Functions‌  Cofunctions‌‌of‌‌complementary‌‌angles‌‌are‌‌equal.‌  ‌ Law‌‌of‌‌Sines‌‌Theorem:‌  ‌ For‌‌a‌‌triangle‌‌with‌‌sides‌‌a ,‌‌b ,‌‌and‌‌c ‌and‌‌opposite‌‌angles‌‌A ,‌‌B ,‌‌C ,‌‌respectively:‌  ‌ sin A a

for‌‌ASA,‌‌SSA,‌‌and‌‌SAA‌‌triangles.‌ 

92‌

=

sin B b

=

sin C c

 ‌

 ‌ ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

Law‌‌of‌‌Cosines‌‌Theorem:‌  ‌ For‌‌a‌‌triangle‌‌with‌‌sides‌‌a ,‌‌b ,‌‌and‌‌c ‌and‌‌opposite‌‌angles‌‌A ,‌‌B ,‌‌C ,‌‌respectively:‌  ‌ c 2 = a 2 + b 2 − 2 ab cos C ,‌‌b 2 = a 2 + c 2 − 2 ac cos B ,‌‌a 2 = b 2 + b 2 − 2 bc cos A   ‌

cos A =

b 2  + c2  − a 2 2bc

,‌‌cos B =

a 2  + c2  − b 2 2ac

,‌‌cos C =

a 2  + b 2  − c2 2ab

 ‌

for‌‌SAS‌‌and‌‌SSS‌‌triangles.‌  ‌ Area‌‌of‌‌a‌‌SAS‌‌Triangle:‌  ‌ K = 21 ab sin C   ‌

K = 21 bc sin A   ‌

K = 21 ac sin B   ‌

Area‌‌of‌‌a‌‌SSS‌‌Triangle‌‌(Heron’s‌‌Formula):‌  ‌ K = √s(s − a )(s − b )(s − c ),‌ ‌where‌‌s = 21 (a + b + c )   ‌  ‌ Polar‌‌Coordinates‌‌and‌‌Vectors‌  ‌ Polar‌‌to‌‌Rectangular:‌‌x = r cos θ ,‌‌y = r cos θ   ‌ y

Rectangular‌‌to‌‌Polar:‌‌r 2 = x 2 + y 2 ,‌‌θ = tan −1 ( x )   ‌ Symmetry‌‌Tests:‌  ‌ ●

polar‌‌axis‌‌symmetry:‌‌replace‌‌θ ‌with‌‌− θ   ‌



y -‌‌axis‌‌symmetry:‌‌replace‌‌θ ‌with‌‌π − θ   ‌



symmetry‌‌along‌‌the‌‌pole:‌‌replace‌‌r ‌with‌‌− r ‌or‌‌θ ‌with‌‌θ + π    

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

93‌  ‌

 ‌ Polar‌‌Equations:‌  ‌ Type‌‌of‌‌Graph‌  ‌

Equation‌  ‌

circle‌  ‌

± 2 asin θ ,‌‌± 2 acos θ   ‌

cardioid‌  ‌

a (1 ± sin θ) ,‌‌a (1 ± c os θ)   ‌

limaçon‌‌without‌‌an‌‌inner‌‌loop‌  ‌

a ± b sin θ ,‌‌a > b > 0   ‌

limaçon‌‌with‌‌an‌‌inner‌‌loop‌  ‌

a ± b sin θ ,‌‌b > a > 0   ‌

rose‌  ‌

a cos (nθ) ,‌‌a sin (nθ)   ‌

lemniscate‌  ‌

r 2 = a 2 sin (2θ) ,‌‌r 2 = a 2 cos (2θ)   ‌

spiral‌  ‌

r = e θ/4  

 ‌ Complex‌‌Number:‌‌z = x + y i ‌(rectangular‌‌form)‌  ‌ ●

Magnitude:‌‌|z | = √x 2 + y 2 = r    ‌



Polar‌‌Form:‌‌r (cos θ + isin θ)   ‌



Exponential‌‌Form:‌‌r e iθ   ‌ e iθ = c os θ + isin θ ‌(Euler’s‌‌Formula)‌  ‌

○ ●

z 1 z 2 = r 1 r 2 e i(θ1  + θ2 )   ‌



z1 z2



z n = r n e i(nθ) ,‌‌if‌‌z = r e iθ ‌(De‌‌Moivre’s‌‌Theorem)‌  ‌

=

r1 r2

e i(θ1  − θ2 ) ‌(‌z 2 =/ 0 )‌  ‌

1

● z k = √r ei n (θ + 2kπ) ‌,‌‌supposing‌‌w = r eiθ ‌is‌‌a‌‌complex‌‌number‌‌and‌‌n ≥ 2 ‌is‌‌an‌‌integer‌  n

94‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ‌

Vectors:‌  ‌ ●

Magnitude:‌‌||v|| = √a 2 + b 2  



Unit‌‌Vector:‌‌u =



v = a i + b j = ||v||cos θi + ||v||sin θj  

v ||v||

 ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

95‌  ‌

 ‌  ‌ Analytic‌‌Geometry‌‌-‌‌Conic‌‌Sections‌  ‌ Parabola‌‌Equation:‌‌(y − k )2 = 4 a(x − h ) ,‌‌where‌‌4 a = f ocal length   ‌ Circle‌‌Equation:‌‌(x − h )2 + (y − k )2 = r 2   ‌ 2

Ellipse‌‌Equation:‌‌ ax2 +

y2 b2

= 1  ‌



The‌‌largest‌‌term‌‌(‌a ‌or‌‌b )‌‌will‌‌determine‌‌the‌‌dominating‌‌axis‌  ‌



c 2 = a 2 + b 2 ,‌‌where‌‌c ‌is‌‌the‌‌distance‌‌between‌‌the‌‌center‌‌and‌‌the‌‌focus‌  ‌

 ‌ 2

Hyperbola‌‌Equation:‌‌ ax2 − ●

y2 b2

= 1  ‌

The‌‌positive‌‌term‌‌will‌‌determine‌‌the‌‌dominating‌‌axis‌  ‌

 ‌ Parametric‌‌Equations:‌‌x = x (t) ,‌‌y = y (t)   ‌ ●  

Path‌‌of‌‌a‌‌Projectile:‌‌x (t) = (v 0 cos θ)t ,‌‌y (t) =   − 21 gt2 + (v 0 sin θ)t + h   ‌  ‌

96‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌ ‌

 ‌ Matrices‌  ‌ Identity/Echelon‌‌Matrix:‌  ‌

 ‌ The‌‌determinant‌‌of‌‌a‌‌matrix‌‌A ‌is‌‌a d − b c ,‌‌where‌‌    ‌

 ‌ A‌‌matrix‌‌is‌‌the‌‌inverse‌‌of‌‌another‌‌if‌  ‌ A · A−1 = I   ‌ Inverses‌‌of‌‌2 × 2 ‌matrices‌‌have‌‌a‌‌pattern:‌  ‌

 ‌  

 ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

97‌ ‌

 ‌  ‌ Partial‌‌Fraction‌‌Decomposition:‌  ‌ Case‌  ‌

Formula‌  ‌

1.‌‌Q ‌has‌‌only‌‌non‌‌repeated‌‌linear‌‌factors‌  ‌

P (x) Q(x)

2.‌‌Q ‌has‌‌a‌‌repeated‌‌linear‌‌factor‌  ‌

P (x) Q(x)

=

=

A1 x − a1

A1 x − a 

+

3.‌‌Q ‌contains‌‌a‌‌non‌‌repeated‌‌irreducible‌  quadratic‌‌factor‌  ‌ 4.‌‌Q ‌contains‌‌a‌‌repeated‌‌irreducible‌‌   quadratic‌‌factor‌  ‌

+ ... +

An x − an

A2 (x − a)2  

+ ... +

An (x − a)n  

Ax + B ax2  + bx + c A1 x + B1 ax2  + bx + c

2.1‌

‌Trigonometric‌‌Functions‌  ‌

2.1.1‌

A ‌ ngles,‌‌Arc‌‌Length,‌‌Circular‌‌Motion‌  ‌

‌2.1.1.a‌

A2 x − a2

+

+

A2 x + B2 (ax2  + bx + c)2

 ‌  ‌

 ‌

+ ... +

An x + Bn (ax2  + bx + c)n

 

‌Basic‌‌Vocabulary‌  ‌

 ‌ Standard‌‌Position‌‌-‌‌the‌‌vertex‌‌is‌‌at‌‌the‌‌origin‌‌of‌‌a‌‌rectangular‌‌coordinate‌‌plane‌‌and‌‌the‌‌   initial‌‌side‌‌corresponds‌‌with‌‌the‌‌positive‌‌x ‌axis.‌   ‌ ‌ ●

θ ‌is‌‌positive‌‌when‌‌the‌‌terminal‌‌side‌‌is‌‌moved‌‌counter-clockwise‌‌from‌‌the‌‌initial‌‌   side.‌   ‌ ‌



98‌

θ ‌is‌‌negative‌‌when‌‌the‌‌terminal‌‌side‌‌is‌‌moved‌‌clockwise‌‌from‌‌the‌‌initial‌‌side.‌   ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ‌

 ‌ ‌2.1.1.b‌

‌Minutes‌‌and‌‌Seconds‌  ‌

The‌‌conversions‌‌between‌‌degrees,‌‌minutes,‌‌and‌‌seconds‌‌are‌‌as‌‌follows:‌  ‌ 1° = 60′   ‌ 1 ° = 3 600 ′′   ‌ 1 ′ = 1 /60 °   ‌ 1 ′′ = 1 /3600 °   ‌ where‌‌′ ‌represents‌‌minutes‌‌and‌‌′′ ‌represents‌‌seconds.‌  ‌ Converting‌‌-‌‌Examples‌  ‌ 1. Convert‌‌6 5 ° 9 ′17 ′′ ‌to‌‌a‌‌decimal‌‌in‌‌degrees.‌  ‌ a. The‌‌6 5 ‌is‌‌already‌‌in‌‌degrees,‌‌so‌‌we‌‌can‌‌leave‌‌that‌‌alone.‌ ‌For‌‌the‌‌9 ‌and‌‌1 7 ,‌‌   use‌‌the‌‌minute‌‌to‌‌degrees‌‌and‌‌seconds‌‌to‌‌degrees‌‌conversion‌‌rates.‌‌    ‌

65° (9′ ·

1 ° 1 ° ) (17′′ · 3600 )  60



6 5 ° + 0 .15 ° + 0 .0047 ° = 6 5.1547 °   ‌ 2. Convert‌‌3 2.479 ° ‌into‌‌D ° M ′S ′′   ‌ a. First,‌‌pull‌‌out‌‌the‌‌whole‌‌number‌‌(‌3 2 ).‌ ‌This‌‌will‌‌be‌‌the‌‌D ° ‌portion‌‌of‌‌the‌‌   answer.‌ ‌Now,‌‌we‌‌are‌‌left‌‌with‌‌0 .479 ° ‌(‌3 2.479 ° = 3 2 ° + 0 .479 ° ).‌  ‌ b. Multiply‌‌the‌‌leftover‌‌decimal‌‌by‌‌6 0 ‌(‌1 ° = 6 0 ′ )‌‌to‌‌find‌‌the‌‌minutes‌‌portion‌‌of‌‌   the‌‌answer.‌  ‌ 0 .479 ° · 6 0 ′ = 2 8.74 ′   ‌ c. As‌‌we‌‌did‌‌in‌‌the‌‌first‌‌step,‌‌pull‌‌out‌‌the‌‌whole‌‌number‌‌(‌2 8 ).‌ ‌We‌‌are‌‌now‌‌left‌‌   with‌‌0 .74 ′ .‌   ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

99‌  ‌

 ‌  ‌ d. Multiply‌‌this‌‌decimal‌‌by‌‌6 0 ‌(‌1 ′ = 6 0 ′′ )‌‌to‌‌find‌‌the‌‌S ′′ ‌portion‌‌of‌‌the‌‌answer.‌  ‌ 0 .74 ′ · 6 0 ′′ = 4 4.4 ′′   ‌ e. We‌‌can‌‌disregard‌‌the‌‌decimal‌‌portion‌‌of‌‌this‌‌answer:‌‌round‌‌to‌‌the‌‌nearest‌‌   whole‌‌number,‌‌then‌‌put‌‌all‌‌the‌‌answers‌‌into‌‌the‌‌correct‌‌form.‌  ‌ 3 2 ° 28 ′44 ′′   ‌  ‌ ‌2.1.1.c‌

‌Arc‌‌Length‌  ‌

For‌‌a‌‌circle‌‌of‌‌radius‌‌r ,‌‌a‌‌central‌‌angle‌‌of‌‌θ ‌radians‌‌subtends‌‌an‌‌arc‌‌whose‌‌length‌‌is‌‌s = r θ .‌   ‌ ‌

 ‌  ‌ ‌2.1.1.d‌

‌Radians‌‌and‌‌Degrees‌  ‌ 1  revolution = 3 60 ° = 2 π radians   1 80 ° = π  radians   ‌ 1 ° = π /180 radians   ‌ 1  radian = 1 80/π °   ‌

 

 ‌

100‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ‌2.1.1.e‌

‌Area‌‌of‌‌a‌‌Sector‌  ‌

The‌‌area‌‌A ‌of‌‌the‌‌sector‌‌of‌‌a‌‌circle‌‌of‌‌radius‌‌r ‌formed‌‌by‌‌the‌‌central‌‌angle‌‌θ ‌radians‌‌is‌  A = 21 r 2 θ .‌  ‌

 ‌ ‌2.1.1.f‌

‌Linear‌‌Speed‌  ‌

Suppose‌‌that‌‌an‌‌object‌‌moves‌‌on‌‌a‌‌circle‌‌of‌‌radius‌‌r ‌at‌‌a‌‌constant‌‌speed.‌ ‌If‌‌s ‌is‌‌the‌‌   distance‌‌traveled‌‌in‌‌time‌‌t ‌on‌‌this‌‌circle,‌‌then‌‌the‌‌linear‌‌speed‌‌of‌‌the‌‌object‌‌is‌‌defined‌‌as‌‌  

v = st .‌ ‌  ‌ ‌

 ‌ ‌2.1.1.g‌

‌Angular‌‌Speed‌ 

The‌‌angular‌‌speed‌‌ω ‌(Greek‌‌lowercase‌‌omega)‌‌of‌‌an‌‌object‌‌is‌‌the‌‌angle‌‌θ ‌radians‌‌swept‌‌   out,‌‌divided‌‌by‌‌the‌‌elapsed‌‌time‌‌t .‌ ‌That‌‌is,‌‌    ‌

ω=  

θ t

=

v r

= 2 πf ,‌‌where‌‌f ‌is‌‌the‌‌revolutions‌‌per‌‌unit‌  ‌

 ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

101‌ ‌

 ‌

2.1.2‌

T ‌ rigonometric‌F ‌ unctions:‌U ‌ nit‌C ‌ ircle‌A ‌ pproach‌  ‌

A‌‌unit‌‌circle‌‌is‌‌a‌‌circle‌‌whose‌‌center‌‌is‌‌at‌‌the‌‌origin‌‌and‌‌has‌‌a‌‌radius‌‌of‌‌one.‌ ‌The‌‌   circumference‌‌of‌‌the‌‌unit‌‌circle‌‌is‌‌2 π ,‌‌as‌‌C = 2 πr .‌   ‌ ‌  ‌ ‌2.1.2.a‌

‌Trigonometric‌‌Functions‌‌of‌‌a‌‌Real‌‌Number‌  ‌

Let‌‌t = θ ‌be‌‌a‌‌real‌‌number‌‌and‌‌P = (x,  y) ‌be‌‌a‌‌point‌‌on‌‌the‌‌unit‌‌circle‌‌that‌‌corresponds‌‌to‌‌t .‌   ‌ ‌ ●

Sine‌‌Function‌  ‌ ○

associates‌‌with‌‌t ‌the‌‌y ‌coordinate‌‌of‌‌P ‌and‌‌is‌‌denoted‌‌by‌‌    ‌ sin t = y   ‌



Cosine‌‌Function‌  ‌ ○

associates‌‌with‌‌t ‌the‌‌x ‌coordinate‌‌of‌‌P ‌and‌‌is‌‌denoted‌‌by‌‌    ‌ c os t = x   ‌



Tangent‌‌Function‌  ‌ ○

associates‌‌t ‌with‌‌the‌‌ratio‌‌of‌‌the‌‌y ‌coordinate‌‌to‌‌the‌‌x ‌coordinate‌‌of‌‌P ‌and‌‌   is‌‌denoted‌‌by‌‌    ‌ y

sin t tan t = x = cos t  ‌



Cosecant‌‌Function‌  ‌ 1 c sc t = 1y = sin t  ‌



Secant‌‌Function‌  ‌ 1 sec t = 1x = cos t  

102‌

 ‌ ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ●

Cotangent‌‌Function‌  ‌ c ot t = xy = cos t sin t   ‌ ‌2.1.2.b‌

‌Undefined‌‌Functions‌  ‌



When‌‌y = 0 ,‌‌c sc θ ‌and‌‌c ot θ ‌are‌‌undefined.‌  ‌



When‌‌x = 0 ,‌‌tan θ ‌and‌‌sec θ ‌are‌‌undefined.‌   ‌ ‌

 ‌ ‌2.1.2.c‌

‌Trigonometry‌‌and‌‌Triangles‌  ‌

 ‌  ‌

sin θ =

a c

=

y r

 ‌

csc θ =

c a

=

r y

 

cos θ =

b c

=

x r

 ‌

sec θ =

c b

=

r x

 

tan θ =

a b

= x  ‌

cot θ =

b a

= xy  

y

 

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌

103‌  ‌

 ‌  ‌ ‌2.1.2.d‌

‌Common‌‌Angles‌  ‌

θ  ‌ θ  ‌ (radians)‌  (degrees)‌ 

sin θ   ‌

c os θ   ‌

tan θ   ‌

π 6

 ‌

30°   ‌

1 2

 ‌

√3 2

 ‌

√3 3

π 4

 ‌

45°   ‌

√2 2

 ‌

√2 2

 ‌

1  ‌

π 3

 ‌

60°   ‌

√3 2

 ‌

1 2

 ‌

√3   ‌

 ‌

c sc θ   ‌ 2  ‌ √2   ‌ 2√3 3

 ‌

sec θ   ‌

2√3 3

 ‌

c ot θ   ‌ √3   ‌

√2   ‌ 2  ‌

1  ‌ √3 3

 ‌

Note:‌‌it‌‌is‌‌helpful‌‌if‌‌you‌‌memorize‌‌the‌‌sin ‌and‌‌c os ‌of‌‌these‌‌angles,‌‌as‌‌they‌‌are‌‌very‌‌   commonly‌‌asked‌‌for.‌ ‌Alternatively,‌‌you‌‌could‌‌keep‌‌handy‌‌the‌‌unit‌‌circle‌‌at‌‌the‌‌beginning‌‌of‌‌   this‌‌chapter.‌  ‌ ‌2.1.2.e‌

‌Symmetry‌  ‌

Circles‌‌are‌‌symmetric,‌‌so‌‌the‌‌values‌‌above‌‌are‌‌held‌‌constant‌‌for‌‌each‌‌angle’s‌‌   corresponding‌‌angles‌‌(like‌‌6π ,‌‌5π6 ,‌‌7π6 ,‌‌and‌‌11π   6 ),‌‌but‌‌the‌‌signs‌‌will‌‌change‌‌depending‌‌on‌‌the‌‌ quadrant.‌   ‌ ‌

 ‌  

 ‌

104‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ‌2.1.2.f‌

‌Finding‌‌Radius‌  ‌

The‌‌radius‌‌of‌‌the‌‌circle‌‌is‌‌found‌‌by‌‌using‌‌the‌‌equation‌‌r = √x 2 + y 2 .‌    ‌ ‌  ‌

2.1.3‌

P ‌ roperties‌o ‌ f‌T ‌ rigonometric‌F ‌ unctions‌  ‌

Function‌  ‌

Symbol‌  ‌

Domain‌  ‌

Range‌  ‌

sine‌  ‌

f (θ) = sin θ   ‌

{x ε R}   ‌

[− 1 ,  1]   ‌

cosine‌  ‌

f (θ) = c os θ   ‌

{x ε R}   ‌

[− 1 ,  1]   ‌

tangent‌  ‌

f (θ) = tan θ   ‌ {x ε R} ,‌‌except‌‌odd‌‌integer‌‌multiples‌‌of‌‌ π   2

cosecant‌  ‌

f (θ) = c sc θ   ‌

secant‌  ‌

{x ε R} ,‌‌except‌‌integer‌‌multiples‌‌of‌‌ 2π   ‌

{y ε R}   ‌ (− ∞ ,   − 1 ] ⋃ [1,  ∞) 

f (θ) = sec θ   ‌ {x ε R} ,‌‌except‌‌odd‌‌integer‌‌multiples‌‌of‌‌ π   (− ∞ ,   − 1 ] ⋃ [1,  ∞)  2

cotangent‌  ‌ f (θ) = c ot θ   ‌

{x ε R} ,‌‌except‌‌integer‌‌multiples‌‌of‌‌ 2π   ‌

{y ε R}   ‌  ‌

Remember‌‌that‌‌ 2π = 9 0 ° ‌and‌‌π = 1 80 ° .‌  ‌  ‌ ‌2.1.3.a‌

‌Periodic‌‌Functions‌‌and‌‌the‌‌Fundamental‌‌Period‌  ‌

A‌‌function‌‌f ‌is‌‌called‌‌periodic‌‌if‌‌there‌‌is‌‌a‌‌positive‌‌number‌‌p ‌with‌‌the‌‌property‌‌that‌‌   whenever‌‌θ ‌is‌‌in‌‌the‌‌domain‌‌of‌‌f ‌so‌‌is‌‌θ + p ,‌‌and‌  ‌ f (θ + p ) = f (θ)   ‌ If‌‌there‌‌is‌‌a‌‌smallest‌‌such‌‌number‌‌p ,‌‌this‌‌smallest‌‌value‌‌is‌‌called‌‌the‌‌fundamental‌‌period‌‌of‌‌   f .‌   ‌

 ‌ ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

105‌  ‌

 ‌  ‌ ‌2.1.3.b‌

‌Signs‌‌of‌‌Trigonometric‌‌Functions‌  ‌

 ‌  ‌ ‌2.1.3.c‌

‌Pythagorean‌‌Identities‌  ‌

sin 2  θ + c os2  θ = 1   ‌ tan 2  θ + 1 = sec 2  θ   ‌ c ot2  θ + 1 = c sc 2  θ   ‌  ‌ ‌2.1.3.d‌

‌Finding‌‌Exact‌‌Values‌‌Using‌‌Identities‌‌-‌‌Example‌  ‌

π Find‌‌the‌‌value‌‌of‌‌ csc12   π + c os2   16 .‌  ‌ 16

Use‌‌the‌‌definition‌‌of‌‌c sc ‌to‌‌get‌‌the‌‌equation‌‌in‌‌terms‌‌of‌‌sin ‌and‌‌c os .‌   ‌ ‌ 1 π 1/sin2 16

π + c os2   16  ‌

Flip‌‌and‌‌multiply‌‌to‌‌get‌‌rid‌‌of‌‌the‌‌fraction.‌  ‌ π π sin 2   16 + c os2   16  ‌

Remember‌‌that‌‌sin 2  θ + c os2  θ = 1 ,‌‌therefore‌  ‌ π π π sin 2   16 + c os2   16 = csc12   π + c os2   16 =1  ‌ 16

 

106‌

 ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌ ‌

 ‌ ‌2.1.3.e‌

‌Finding‌‌Exact‌‌Values‌‌Given‌‌One‌‌Value‌‌and‌‌Sign‌‌of‌‌Other‌‌-‌‌Example‌  ‌

Given‌‌that‌‌sin θ =

1 3

‌and‌‌c os θ < 0 ,‌‌find‌‌the‌‌exact‌‌value‌‌of‌‌each‌‌of‌‌the‌‌remaining‌‌five‌‌trig‌‌  

functions.‌   ‌ ‌ Since‌‌sin ‌is‌‌positive‌‌and‌‌c os  is‌‌negative,‌‌we‌‌know‌‌that‌‌the‌‌value‌‌lies‌‌in‌‌quadrant‌‌two.‌   ‌ ‌ y

Remember‌‌that‌‌sin θ = r .‌ ‌Since‌‌sin θ =

,‌‌y = 1 ‌and‌‌r = 3 .‌   ‌ ‌

1 3

We‌‌can‌‌use‌‌the‌‌formula‌‌for‌‌the‌‌radius‌‌to‌‌find‌‌x .‌‌    ‌ r = √x 2 + y 2 3 2 = x2 + 1 2

⇒r

2

= x2 + y 2   ‌

⇒ x = √8 =   − 2√2    ‌

The‌‌x ‌value‌‌must‌‌be‌‌negative,‌‌as‌‌the‌‌radius‌‌cannot‌‌be‌‌and‌‌we‌‌were‌‌given‌‌that‌‌c os θ < 0 .‌   ‌ ‌ Use‌‌the‌‌definitions‌‌of‌‌the‌‌trigonometric‌‌functions‌‌and‌‌the‌‌values‌‌of‌‌x ,  y, ‌and‌‌r ‌to‌‌find‌‌the‌‌   values‌‌of‌‌the‌‌remaining‌‌functions.‌‌    ‌ c os θ = c sc θ =

r y

=

3 1

x r

= −

2√2 3

= 3 ,‌‌sec θ =

r x

,‌‌tan θ = = −

3 2√2

y x

= −

= −

1 2√2

3√2 4

= −

√2 4

,‌‌c ot θ =

 ‌ x y

=   − 2 √2    ‌ ‌

There‌‌are‌‌multiple‌‌ways‌‌to‌‌do‌‌this,‌‌this‌‌is‌‌just‌‌one‌‌of‌‌them.‌   ‌ ‌  ‌  ‌  ‌ ‌2.1.3.f‌

 

‌Even‌‌and‌‌Odd‌‌Properties‌‌Theorem‌  ‌ sin (− θ) =   − sin θ   ‌

c os (− θ) = c os θ   ‌

tan (− θ) =   − tan θ   ‌

c sc (− θ) =   − c sc θ   ‌

sec (− θ) = sec θ   ‌

c ot (− θ) =   − c ot θ   ‌

 ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

107‌  ‌

 ‌

2.1.4‌

‌Graphs‌‌of‌‌the‌‌Sine‌‌and‌‌Cosine‌‌Functions‌  ‌

‌2.1.4.a‌

‌Sine‌‌Function‌  ‌

x  ‌

y = sin x   ‌

(x,  y)   ‌

0  ‌

0  ‌

(0,  0)   ‌

π 6

 ‌

1 2

 ‌

( 6π ,   21 )   ‌

π 2

 ‌

1  ‌

( 2π ,  1)   ‌

5π 6

 ‌

1 2

 ‌

( 5π ,   21 )   ‌ 6

π  ‌

0  ‌

(π,  0)   ‌

7π 6

 ‌



 ‌

( 7π ,   − 21 )   ‌ 6

3π 2

 ‌

−1  ‌

( 3π ,   − 1)   ‌ 2

 ‌



11π 6

2π   ‌

1 2

1 2

 ‌

0  ‌

( 11π ,   − 21 )   ‌ 6 (2π,  0)   ‌

 ‌ D = {x ε R},  R = [− 1 ,  1]   ‌  ‌ ●

The‌‌function/shape‌‌of‌‌the‌‌graph‌‌repeats‌‌after‌‌a‌‌full‌‌circle,‌‌or‌‌2 π .‌   ‌ ‌



The‌‌x ‌intercepts‌‌are‌‌...,   − 2 π,   − π ,  0,  π,  2π,  3π,  ... ‌(these‌‌go‌‌on‌‌in‌‌this‌‌pattern‌‌   forever,‌‌hence‌‌the‌‌ellipses).‌   ‌

108‌

 ‌ ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

‌2.1.4.a‌

‌Sine‌‌Function‌‌(con’t)‌  ‌



It‌‌is‌‌an‌‌odd‌‌function‌  ‌



The‌‌maximum‌‌value‌‌(1)‌‌occurs‌‌at‌‌‌x = ...,   −



The‌‌minimum‌‌value‌‌(-1)‌‌occurs‌‌at‌‌x = ...,   −

‌2.1.4.b‌

‌Cosine‌‌Function‌  ‌

x  ‌

y = c os x   ‌

(x,  y)   ‌

0  ‌

1  ‌

(0,  1)   ‌

π 3

 ‌

1 2

 ‌

( 3π ,   21 )   ‌

π 2

 ‌

0  ‌

( 2π ,  0)   ‌

2π 3

 ‌

π  ‌



1 2

 ‌

−1  ‌

( 2π ,   −   21 )   ‌ 3 (π,   − 1 )   ‌

4π 3

 ‌

3π 2

 ‌

0  ‌

( 3π ,  0)   ‌ 2

5π 3

 ‌

1 2

 ‌

( 5π ,   21 )   ‌ 3

1  ‌

(2π,  1)   ‌

2π   ‌

3π π 5π 9π ,   2 ,   2 ,   2 ,  ...   ‌ 2 π 3π 7π 11π ,   2 ,   2 ,   2 ,  ...   ‌ 2



1 2

 ‌

( 4π ,   − 21 )   ‌ 3

 ‌

 ‌ D = {x ε R},  R = [− 1 ,  1]   ‌ ●

The‌‌function/shape‌‌of‌‌the‌‌graph‌‌repeats‌‌after‌‌a‌‌full‌‌circle,‌‌or‌‌2 π .‌   ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

109‌  ‌

 ‌ ‌2.1.4.b‌ ●

‌Cosine‌‌Function‌‌(con’t)‌  ‌

The‌‌x ‌intercepts‌‌are‌‌...,   −

3π ,  2

− 2π ,   2π ,   3π ,   5π ,  ... ‌‌(these‌‌go‌‌on‌‌in‌‌this‌‌pattern‌‌  2 2

forever,‌‌hence‌‌the‌‌ellipses).‌   ‌ ‌ ●

It‌‌is‌‌an‌‌even‌‌function‌  ‌



The‌‌maximum‌‌value‌‌(1)‌‌occurs‌‌at‌‌‌x = ...,   − 2 π,   − π ,  0,  π,  2π,  3π,  ...   ‌



The‌‌minimum‌‌value‌‌(-1)‌‌occurs‌‌at‌‌x = ...,   − π ,  π,  3π,  5π,  ...   ‌

 ‌ ‌2.1.4.c‌

‌Relationship‌  ‌ sin x = c os (x − 2π )  

‌2.1.4.d‌

‌Transformations‌ 

If‌‌ω > 0 ,‌‌the‌‌amplitude‌‌and‌‌period‌‌of‌‌y = Asin (ωx) ‌and‌‌y = Acos (ωx) ‌are‌‌given‌‌by‌  ‌ ●



Amplitude = |A|   ‌ ○

This‌‌is‌‌a‌‌vertical‌‌stretch‌  ‌



− A ‌is‌‌a‌‌reflection‌‌over‌‌the‌‌x ‌axis‌  ‌

P eriod = T =

2π ω

 ‌



This‌‌is‌‌a‌‌horizontal‌‌stretch‌  ‌



A‌‌“change‌‌in‌‌period”‌‌is‌‌a‌‌change‌‌in‌‌the‌‌interval‌‌at‌‌which‌‌the‌‌given‌‌graph‌‌   completes‌‌a‌‌full‌‌circle.‌   ‌ ‌



P hase S hif t = ○

 

ϕ ω

 ‌

y = c os (x − ϕ) + β ‌or‌‌y = sin (x − ϕ) + β   ‌  ‌

110‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

‌2.1.4.e‌

‌Graphing‌‌Using‌‌Key‌‌Points‌‌-‌‌Example‌ 

If‌‌y = 2 sin (2x) ,‌‌A = 2 ‌and‌‌T =

2π ω

=

2π 2

= π ‌. ‌  ‌ ‌

Because‌‌the‌‌amplitude‌‌is‌‌2 ,‌‌the‌‌range‌‌is‌‌now‌‌R = [− 2 ,  2] .‌   ‌ ‌ One‌‌of‌‌the‌‌points‌‌is‌‌(0,  0) ‌because‌‌it‌‌is‌‌a‌‌sine‌‌graph‌‌that‌‌has‌‌no‌‌phase‌‌shifts.‌ ‌The‌‌period‌‌is‌‌   π ,‌‌so‌‌one‌‌of‌‌the‌‌points‌‌is‌‌(π,  0) .‌ ‌Half‌‌of‌‌a‌‌rotation‌‌occurs‌‌at‌‌( 2π ,  0) .‌ ‌The‌‌midpoints‌‌between‌‌   these‌‌two‌‌intercepts‌‌are‌‌( 4π ,  2) ‌and‌‌( 3π4 ,   − 2 ) .‌   ‌ ‌

 ‌  ‌ ‌2.1.4.f‌

‌Finding‌‌the‌‌Equation‌‌Using‌‌the‌‌Graph‌‌-‌‌Example‌  ‌

 ‌ The‌‌graph‌‌goes‌‌through‌‌the‌‌origin,‌‌so‌‌we‌‌know‌‌that‌‌it‌‌is‌‌a‌‌sine‌‌graph.‌ ‌Since‌‌the‌‌graph‌‌goes‌‌   up‌‌first‌‌after‌‌the‌‌origin,‌‌A ‌is‌‌positive.‌ ‌The‌‌maximums‌‌and‌‌minimums‌‌occur‌‌at‌‌|2 | ,‌‌therefore‌‌   A = 2 .‌ ‌The‌‌circle‌‌is‌‌completed‌‌at‌‌4 .‌ ‌Since‌‌T = 4 ,‌‌4 = y = 2 sin ( 2π x)  

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

2π ω  

⇒  ω =

π 2

 .‌ ‌Therefore,‌  ‌  ‌ ‌

111‌ ‌

 ‌  ‌

2.1.5‌

G ‌ raphs‌‌of‌T ‌ angent,‌‌Cotangent,‌‌Secant,‌a ‌ nd‌C ‌ osecant‌‌Functions‌  ‌

‌2.1.5.a‌ x  ‌

‌Tangent‌‌Function‌  ‌ y = tan x   ‌

(x,  y)   ‌



π 3

 ‌

− √3   ‌

(− 3π ,   − √3)   ‌



π 4

 ‌

−1  ‌

(− 4π ,   − 1)   ‌



π 6

 ‌

0  ‌



√3 3

 ‌

(− 6π ,   −   √33 )  

0  ‌

(0,  0)   ‌

π 6

 ‌

√3 3

π 4

 ‌

1  ‌

( 4π ,  1)   ‌

π 3

 ‌

√3   ‌

( 3π ,  √3)   ‌

 ‌

( 6π ,   √33 )   ‌

 ‌  ‌  ‌ D = {x ε R} except odd multiples of   2π ,  R = {y ε R}   ‌ ●

The‌‌function‌‌cycles‌‌at‌‌(− 2π ,   2π ) ‌‌or‌‌after‌‌π   ‌



It‌‌is‌‌an‌‌odd‌‌function‌  ‌



The‌‌x ‌intercepts‌‌occur‌‌at‌‌...,   − 2 π,   − π ,  0,  π,  2π,  3π,  ...   ‌ ‌



The‌‌vertical‌‌asymptotes‌‌are‌‌at‌‌x = ...,   −

112‌

3π ,  2

− 2π ,   2π ,   3π ,  ...   2

 ‌ ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

‌2.1.5.b‌ x  ‌

‌Cotangent‌‌Function‌  y = c ot x   ‌

(x,  y)   ‌

π 6

 ‌

√3   ‌

( 6π ,  √3)   ‌

π 4

 ‌

1  ‌

( 4π ,  1)   ‌

π 3

 ‌

√3 3

π 2

 ‌

0  ‌

2π 3

 ‌

3π 4

 ‌

−1  ‌

( 3π ,   − 1)   ‌ 4

5π 6

 ‌

− √3   ‌

( 5π ,   − √3)   ‌ 6



( 3π ,   √33 )   ‌

 ‌

√3 3

 ‌

( 2π ,  0)   ‌ ( 2π 3 ,  −

√3 3 ) 



 ‌

D = {x ε R} except multiples of  π,  R = {y ε R}   ‌

 



The‌‌function‌‌cycles‌‌at‌‌π   ‌



It‌‌is‌‌an‌‌odd‌‌function‌  ‌  ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

113‌  ‌

 ‌  ‌ ‌2.1.5.c‌

‌Writing‌‌Domain‌ 

Instead‌‌of‌‌saying‌‌“‌D = {x ε R} except odd multiples of   2π ”,‌‌you‌‌can‌‌write:‌  ‌ D = {x| x =/

kπ 2 ,   k is an odd integer}  



or‌  ‌ D = {x| x =/ k π,  k is an integer}   ‌  ‌  ‌ ‌2.1.5.d‌

‌Transformations‌ 

For‌‌tangent‌‌and‌‌cotangent‌‌graphs,‌‌finding‌‌the‌‌period‌‌uses‌‌the‌‌equation‌  ‌ π p eriod = T = ω  

 

 ‌

114‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ‌2.1.5.e‌

‌Cosecant‌‌Function‌  ‌

c sc x = 1 /sin x   ‌

 ‌ (The‌‌solid‌‌line‌‌is‌‌the‌‌graph‌‌of‌‌c sc (x) ,‌‌the‌‌vertical‌‌lines‌‌are‌‌asymptotes,‌‌and‌‌the‌‌dotted‌‌line‌‌   along‌‌the‌‌x ‌axis‌‌is‌‌the‌‌sin ‌graph)‌  ‌  ‌ ‌2.1.5.f‌

‌Secant‌‌Function‌  ‌

sec x = 1 /cos x   ‌

 ‌ (The‌‌solid‌‌line‌‌is‌‌the‌‌graph‌‌of‌‌sec (x) ,‌‌the‌‌vertical‌‌lines‌‌are‌‌asymptotes,‌‌and‌‌the‌‌dotted‌‌line‌‌   along‌‌the‌‌x ‌axis‌‌is‌‌the‌‌c os ‌graph)‌ 

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

115‌ ‌

 ‌  ‌ ‌2.1.5.g‌

‌Transformations‌‌of‌‌the‌‌Cosecant‌‌and‌‌Secant‌‌Functions‌  ‌

For‌‌vertical‌‌stretches‌‌of‌‌these‌‌functions,‌‌it‌‌is‌‌like‌‌you‌‌are‌‌stretching‌‌either‌‌the‌‌sine‌‌or‌‌cosine‌‌   function.‌ ‌The‌‌parabolas‌‌themselves‌‌stay‌‌the‌‌same‌‌for‌‌the‌‌most‌‌part,‌‌but‌‌the‌‌sine/cosine‌‌   functions‌‌will‌‌stretch,‌‌making‌‌the‌‌intercepts‌‌increase‌‌and‌‌the‌‌asymptotes‌‌change.‌   ‌ ‌  ‌ ‌2.1.5.h‌

‌Amplitudes‌‌of‌‌these‌‌Graphs‌  ‌

For‌‌the‌‌tangent,‌‌cotangent,‌‌cosecant,‌‌and‌‌secant‌‌graphs,‌‌there‌‌are‌‌no‌‌amplitudes‌‌as‌‌they‌  go‌‌on‌‌forever‌‌in‌‌the‌‌vertical‌‌direction.‌ ‌They‌‌can‌‌still‌‌have‌‌multipliers‌‌(like‌‌y = 5 tan x ),‌‌but‌‌   they‌‌are‌‌not‌‌called‌‌amplitudes.‌   ‌ ‌  ‌

 

 ‌

116‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

2.2‌

‌Analytic‌‌Trigonometry‌  ‌

2.2.1‌

T ‌ he‌‌Inverse‌F ‌ unctions‌  ‌

‌2.2.1.a‌

‌Inverse‌‌Sine‌‌Function‌‌    ‌

Definition:‌‌y = sin −1 x ‌if‌‌and‌‌only‌‌if‌‌x = sin y ‌where‌‌− 1 ≤ x ≤ 1 ‌and‌‌−

π 2

≤y≤

π 2

‌. ‌ ‌

 ‌ y = sin −1 x ‌gives‌‌the‌‌y ‌coordinate‌‌and‌‌finds‌‌the‌‌angle‌‌associated.‌   ‌ ‌  ‌ θ  ‌



sin θ   ‌ Note:‌‌−

π 2

π 2

 ‌

−1  ‌

− −

π 3 √3 2

 ‌



 ‌ −

π 4

 ‌



π 6

 ‌

0  ‌

π 6

 ‌

π 4

 ‌

π 3

 ‌

π 2

√2 2

 ‌



1 2

 ‌

0  ‌

1 2

 ‌

√2 2

 ‌

√3 2

 ‌

1  ‌

 ‌

‌‌also‌‌equals‌‌3π2 ,‌‌but‌‌that‌‌is‌‌not‌‌the‌‌answer‌‌as‌‌it‌‌is‌‌not‌‌within‌‌the‌‌range‌‌of‌‌the‌‌ 

function.‌   ‌

 ‌ ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

117‌  ‌

 ‌ ‌2.2.1.b‌

‌Inverse‌‌Cosine‌‌Function‌  ‌

Definition:‌‌y = c os−1 x ‌if‌‌and‌‌only‌‌if‌‌x = c os y ‌where‌‌− 1 ≤ x ≤ 1 ‌and‌‌0 ≤ y ≤ π .‌   ‌ ‌

 ‌  ‌ θ  ‌

0  ‌

π 6

 ‌

π 4

 ‌

π 3

 ‌

π 2

sin θ   ‌

1  ‌

√3 2

 ‌

√2 2

 ‌

1 2

 ‌

0  ‌

 

 ‌

2π 3



1 2

 ‌  ‌

3π 4



 ‌

√2 2

 ‌ −

5π 6

 ‌

√3 2

 ‌

π  ‌ −1  ‌

 ‌

118‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

‌2.2.1.c‌

‌Inverse‌‌Tangent‌‌Function‌  ‌

Definition:‌‌y = tan −1 x ‌if‌‌and‌‌only‌‌if‌‌x = tan y ‌where‌‌− ∞ < x < ∞ ‌and‌‌−

π 2

≤y≤

π 2

‌. ‌ ‌

 ‌  ‌ θ  ‌ tan θ   ‌



π 2

 ‌

undefined‌  ‌



π 3

 ‌

− √3   ‌



π 4

 ‌

−1  ‌

− −

π 6

 ‌

0  ‌

π 6

 ‌

π 4

 ‌

√3 3

 ‌

0  ‌

√3 3

 ‌

1  ‌

π 3

 ‌

√3   ‌

π 2

 ‌

undefined‌ 

 ‌ ‌2.2.1.d‌

‌Properties‌‌of‌‌Inverse‌‌Functions‌  ‌

f −1 (f (x)) = sin −1 (sin x) = x ,‌‌where‌‌−

π 2

≤x≤

π 2

.‌  ‌

f (f −1 (x)) = sin (sin −1 x) = x ,‌‌where‌‌− 1 ≤ x ≤ 1 .‌   ‌ ‌ f −1 (f (x)) = c os−1 (cos x) = x ,‌‌where‌‌0 ≤ x ≤ π .‌  ‌ f (f −1 (x)) = c os (cos−1 x) = x ,‌‌where‌‌− 1 ≤ x ≤ 1 .‌  ‌ f −1 (f (x)) = tan −1 (tan x) = x ,‌‌where‌‌−

π 2

≤x≤

π 2

.‌  ‌

f (f −1 (x)) = tan (tan −1 x) = x ,‌‌where‌‌− ∞ ≤ x ≤ ∞ .‌‌   

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

119‌  ‌

 ‌ ‌2.2.1.e‌

‌Finding‌‌the‌‌Inverse‌‌of‌‌a‌‌Trig‌‌Function‌‌-‌‌Example‌  ‌

Find‌‌the‌‌inverse‌‌function‌‌f −1 ‌of‌‌f (x) = 2 sin (x) − 1 ,‌‌−

π 2

≤x≤

π 2

‌. ‌  ‌ ‌

First,‌‌swap‌‌the‌‌x ‌and‌‌y .‌‌    ‌ x = 2 sin (y) − 1   ‌ Isolate‌‌sin .‌  ‌ x + 1 = 2 sin (y)   ‌ sin y =

x + 1 2

 ‌

Take‌‌the‌‌inverse‌‌of‌‌both‌‌sides.‌‌    ‌ y = sin −1 ( x + 1 )  ‌ 2 f −1 (x) = sin −1 ( x + 1 )  ‌ 2 To‌‌find‌‌the‌‌domain‌‌of‌‌this‌‌function,‌‌take‌‌the‌‌original‌‌domain‌‌and‌‌plug‌‌in‌‌the‌‌new‌‌argument.‌   ‌ ‌ original:‌‌[− 1 ,  1] ,‌‌argument:‌‌ x + 1  ‌ 2 −1 ≤

x + 1 2

≤1  ‌

Isolate‌‌x .‌  ‌ −2 ≤ x+1 ≤ 2  ‌ −3 ≤ x ≤ 1  ‌ The‌‌range‌‌remains‌‌the‌‌same.‌   ‌ ‌  

 ‌

120‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ‌2.2.1.f‌

‌Solving‌‌an‌‌Inverse‌‌Trig‌‌Function‌‌-‌‌Example‌  ‌

Solve‌‌1 2sin −1 x = 3 π .‌   ‌ ‌ Isolate‌‌the‌‌inverse.‌  ‌ sin −1 x =

3π 12

⇒ sin

−1 x

=  4π   ‌

Take‌‌the‌‌sine‌‌of‌‌both‌‌sides.‌  ‌ x = sin  4π   ‌ x=

√2 2

 ‌

 ‌

2.2.2‌

T ‌ rigonometric‌I‌ dentities‌  ‌

‌2.2.2.a‌

‌Identically‌‌Equal,‌‌Identity,‌‌and‌‌Conditional‌‌Expression‌  ‌

Two‌‌functions‌‌f ‌and‌‌g ‌are‌‌identically‌‌equal‌‌if‌‌    ‌ f (x) = g (x)   ‌ for‌‌every‌‌value‌‌of‌‌x ‌for‌‌which‌‌both‌‌functions‌‌are‌‌defined.‌ ‌Such‌‌an‌‌equation‌‌is‌‌referred‌‌to‌‌   as‌‌an‌‌identity.‌ ‌An‌‌equation‌‌that‌‌is‌‌not‌‌an‌‌identity‌‌is‌‌called‌‌a‌‌conditional‌‌equation.‌   ‌ ‌  

 ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

121‌  ‌

 ‌  ‌ ‌2.2.2.b‌

‌Identities‌  ‌

Quotient‌‌Identities:‌  ‌ sin θ tan θ = cos θ ‌,‌‌cot θ = cos θ sin θ   ‌

Reciprocal‌‌Identities:‌  ‌ 1 1 1 c sc θ = sin θ ‌,‌‌sec θ = cos θ ‌,‌‌cot θ = tan θ  ‌

Pythagorean‌‌Identities:‌  ‌ sin 2  θ + c os2  θ = 1 ,‌‌tan 2  θ + 1 = sec 2  θ ,‌‌c ot2  θ + 1 = c sc 2  θ   ‌ Even-Odd‌‌Identities:‌  ‌ sin (− θ) =   − sin θ   ‌

c os (− θ) = c os θ   ‌

tan (− θ) =   − tan θ   ‌

c sc (− θ) =   − c sc θ   ‌

sec (− θ) = sec θ   ‌

c ot (− θ) =   − c ot θ   ‌

 ‌ ‌2.2.2.c‌

‌Algebraic‌‌Techniques‌  ‌

There‌‌are‌‌four‌‌basic‌‌techniques:‌  ‌ 1. Rewriting‌‌a‌‌trig‌‌expression‌‌in‌‌terms‌‌of‌‌sine‌‌and‌‌cosine‌‌only‌  ‌ 2. Multiplying‌‌the‌‌numerator‌‌and‌‌denominator‌‌of‌‌a‌‌ratio‌‌by‌‌a‌‌“well‌‌chosen‌‌1”‌  ‌ 3. Writing‌‌sums‌‌of‌‌trigonometric‌‌ratios‌‌as‌‌a‌‌single‌‌ratio‌‌    4. Factoring‌  ‌  

 ‌

122‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

‌2.2.2.d‌

‌Guidelines‌‌for‌‌Establishing‌‌Identities‌  ‌

1. It‌‌is‌‌almost‌‌always‌‌preferable‌‌to‌‌start‌‌with‌‌the‌‌side‌‌containing‌‌the‌‌more‌‌complicated‌‌   expression.‌  2. Rewrite‌‌sums‌‌and‌‌differences‌‌of‌‌quotients‌‌as‌‌a‌‌single‌‌quotient.‌  ‌ 3. Sometimes‌‌it‌‌helps‌‌to‌‌rewrite‌‌one‌‌side‌‌of‌‌the‌‌equation‌‌in‌‌terms‌‌of‌‌sine‌‌and‌‌cosine‌‌   functions‌‌only.‌  ‌ 4. Always‌‌keep‌‌the‌‌goal‌‌in‌‌mind.‌ ‌As‌‌you‌‌manipulate‌‌one‌‌side‌‌of‌‌the‌‌expression,‌‌keep‌‌   in‌‌mind‌‌the‌‌form‌‌of‌‌the‌‌expression‌‌on‌‌the‌‌other‌‌side.‌   ‌ ‌

 ‌ 2.2.3‌

S ‌ um‌a ‌ nd‌D ‌ ifference‌F ‌ ormulas‌  ‌

‌2.2.3.a‌

‌Theorem‌‌(Cosine)‌  ‌

Sum‌‌and‌‌difference‌‌formulas‌‌for‌‌the‌‌cosine‌‌function:‌  ‌ c os (α + β ) = c os α cos β  −  sin α sin β   ‌ c os (α − β ) = c os α cos β  +  sin α sin β   ‌ Example:‌‌Solve‌‌c os (105 ° ) .‌  ‌ Notice‌‌how‌‌it‌‌would‌‌be‌‌harder‌‌to‌‌solve‌‌this‌‌by‌‌hand,‌‌as‌‌1 05 ‌is‌‌not‌‌a‌‌common‌‌angle.‌  ‌ However,‌‌it‌‌is‌‌the‌‌sum‌‌of‌‌the‌‌common‌‌angles‌‌4 5 ° ‌and‌‌6 0 ° .‌ ‌Therefore,‌  ‌ c os (105) = c os (45 + 6 0)   ‌ We‌‌can‌‌now‌‌use‌‌the‌‌sum‌‌formula.‌  ‌ c os (45 + 6 0) = (cos 45)(cos 60) − (sin 45)(sin 60)  

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

123‌  ‌

 ‌ Use‌‌the‌‌table‌‌of‌‌common‌‌angles‌‌to‌‌help‌‌solve‌‌(it’s‌‌even‌‌better‌‌if‌‌you‌‌have‌‌the‌‌unit‌‌circle‌‌   memorized).‌   ‌ ‌ √2 √3 1 ( √2 2 )( 2 ) − ( 2 )( 2 )   ‌ 1 √ 4( 2

‌2.2.3.b‌

− √6 )   ‌

‌Theorem‌‌(Sine)‌  ‌

Sum‌‌and‌‌difference‌‌formulas‌‌for‌‌the‌‌sine‌‌function:‌  ‌ sin (α + β ) = sin α cos β  +  cos α sin β   ‌ sin (α − β ) = sin α cos β  −  cos α sin β   ‌ Example:‌‌solve‌‌sin

π 12

 ‌

Find‌‌a‌‌way‌‌to‌‌break‌‌this‌‌angle‌‌into‌‌two‌‌common‌‌angles.‌   ‌ ‌ π 12

=

3π 12

− 2π 12 =

π 4



π 6

 ‌

Now,‌‌use‌‌the‌‌difference‌‌formula‌‌and‌‌the‌‌unit‌‌circle‌‌to‌‌solve.‌  ‌ sin ( 4π − 6π ) = (sin  4π )(cos  6π ) − (cos  4π )(sin  6π )   ‌ √3 √2 1 ( √2 2 )( 2 ) − ( 2 )( 2 )   ‌ 1 √ 4( 6

 

− √2 )   ‌

 ‌

124‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ‌2.2.3.c‌

‌Theorem‌‌(Tangent)‌  ‌

Sum‌‌and‌‌difference‌‌formulas‌‌for‌‌the‌‌tangent‌‌function:‌  ‌ tan α + tan β

tan (α + β ) = 1 − tan α tan β   ‌ tan α − tan β

tan (α − β ) = 1 + tan α tan β   ‌  ‌ ‌2.2.3.d‌

‌Exact‌‌Values‌‌of‌‌Inverse‌‌Trigonometric‌‌Functions‌‌-‌‌Example‌  ‌

Find‌‌the‌‌value‌‌of‌‌sin (cos−1 21 + sin −1 53 ) .‌  ‌ We‌‌want‌‌the‌‌sine‌‌of‌‌the‌‌sum‌‌of‌‌two‌‌angles‌‌α = c os−1 21 ‌and‌‌β = sin −1 53 .‌ ‌Then‌‌c os α = 0 ≤ α ≤ π ‌and‌‌sin β =

3 5

,‌‌−

π 2

≤β ≤

π 2

1 2

,‌‌  

.‌   ‌ ‌

Use‌‌pythagorean‌‌identities‌‌to‌‌obtain‌‌sin α ‌(‌≥ 0 )‌‌and‌‌c os β ‌(‌≥ 0 ).‌    ‌ sin α = √1 − c os2  α =

√1 − = √

3 4

c os β = √1 − sin 2  β =

√1 −

16 25

1 4

9 25

=



=

√3 2   



= 54   ‌

Now,‌‌you‌‌can‌‌use‌‌the‌‌sine‌‌sum‌‌formula.‌  ‌ sin (cos−1   21 + sin −1 53 ) = sin (α + β ) = (sin α)(cos β) + (cos α)(sin β)   ‌ 4 1 3 = ( √3 2 )( 5 ) + ( 2 )( 5 ) =

 

4 √3  + 3 10

 ‌

 ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

125‌  ‌

 ‌  ‌ ‌2.2.3.e‌

‌Writing‌‌Trig‌‌Expressions‌‌as‌‌Algebraic‌‌Expression‌‌-‌‌Example‌  ‌

Write‌‌sin (sin −1 u + c os−1 v) ‌as‌‌an‌‌algebraic‌‌expression‌‌with‌‌u ‌and‌‌v .‌ ‌Don’t‌‌use‌‌any‌‌trig‌‌   functions‌‌and‌‌state‌‌restrictions‌‌on‌‌u ‌and‌‌v .‌   ‌ ‌ Remember‌‌that‌‌u ‌and‌‌v ‌are‌‌the‌‌y ‌values‌‌that‌‌are‌‌associated‌‌with‌‌a‌‌certain‌‌angle.‌  ‌ Therefore,‌‌they‌‌must‌‌be‌‌within‌‌the‌‌ranges‌‌of‌‌sin ‌and‌‌c os .‌ ‌This‌‌means‌‌that‌‌the‌‌restrictions‌‌   on‌‌u ‌and‌‌v ‌are‌‌− 1 ≤ u ≤ 1 ‌and‌‌− 1 ≤ v ≤ 1 .‌   ‌ ‌ Let‌‌α = sin −1 u ‌and‌‌β = c os−1 v .‌ ‌Then:‌  ‌ sin α = u ,   −

π 2

≤ α ≤ 2π ,   − 1 ≤ u ≤ 1   ‌

c os β = v ,  0 ≤ β ≤ π ,   − 1 ≤ v ≤ 1   ‌ Because‌‌−

π 2

≤α≤

π 2

,‌‌c os α ≥ 0 .‌ ‌So,‌‌    ‌ ‌c os α = √1 − sin 2  α = √1 − u 2   ‌

Also‌‌because‌‌0 ≤ β ≤ π ,‌‌sin β ≥ 0 .‌ ‌Then,‌  ‌ sin β = √1 − c os2  β = √1 − v 2   ‌ As‌‌a‌‌result,‌  ‌ sin (sin −1  u + c os−1 v) = sin (α + β ) = (sin α)(cos β) + (cos α)(sin β)   ‌ = u v + √1 − u 2 + √1 − v 2  

126‌

 ‌ ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ‌2.2.3.f‌

‌Trigonometric‌‌Equation‌‌Linear‌‌in‌‌Sine‌‌and‌‌Cosine‌‌-‌‌Example‌  ‌

Solve‌‌a sin θ + b cos θ = c .‌   ‌ ‌ Divide‌‌both‌‌sides‌‌by‌‌√a 2 + b 2 .‌   ‌ ‌ a

√a

2

 + b

2

sin θ +

b

√a

2

 + b

2

cos θ =

c

√a

2

 + b

2

 ‌

There‌‌is‌‌a‌‌unique‌‌angle‌‌ϕ,  0 ≤ ϕ ≤ 2 π ,‌‌for‌‌which‌  ‌ c os ϕ =

‌and‌‌sin ϕ =

a

√a2  + b2

b

√a2  + b2

 ‌

Meaning‌‌we‌‌can‌‌rewrite‌‌to‌  ‌ sin θ cos ϕ + c os θ sin ϕ =

c

√a2  + b2

 ‌

which‌‌equals‌  ‌ sin (θ + ϕ) =

c

√a2  + b2

 ‌

If‌‌|c | > √a 2 + b 2 ,‌‌then‌‌1 < sin (θ + ϕ) <   − 1 ,‌‌meaning‌‌no‌‌solution.‌  ‌ If‌‌|c | ≤ √a 2 + b 2 ,‌‌then‌‌solutions‌‌to‌‌sin (θ + ϕ) = θ + ϕ = sin −1

 

c

√a2  + b2

c

√a2  + b2

‌are‌  ‌

‌or‌‌θ + ϕ = π − sin −1

c

√a2  + b2

 ‌

 ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

127‌  ‌

 ‌

2.2.4‌

D ‌ ouble‌‌Angle‌a ‌ nd‌H ‌ alf-Angle‌F ‌ ormulas‌  ‌

‌2.2.4.a‌

‌Double‌‌Angle‌‌Formulas‌  ‌ sin (2θ) = 2 sin θ cos θ   ‌ c os (2θ) = c os2  θ − sin 2  θ   ‌ c os (2θ) = 1 − 2 sin 2  θ   ‌ c os (2θ) = 2 cos2  θ − 1   ‌ 2tan θ tan (2θ) = 1 − tan 2θ   ‌

 ‌ ‌2.2.4.b‌ If‌‌sin θ =

5 6

‌Finding‌‌Exact‌‌Value‌‌-‌‌Example‌  ‌ ,‌‌find‌‌sin (2θ) ‌and‌‌c os (2θ) .‌‌    ‌

sin (2θ) = 2 sin θ cos θ .‌ ‌sin θ =

5 6

,‌‌find‌‌c os θ .‌   ‌ ‌

sin θ =

5 6

y

= r ,‌ ‌2π < θ < π ,‌ ‌y = 5 ‌and‌‌r = 6    ‌ ‌

This‌‌means‌‌that‌‌it‌‌is‌‌in‌‌quadrant‌‌two.‌   ‌ ‌

 ‌ a 2 + 2 5 = 3 6  →  a =   − √11  

128‌

 ‌ ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌ ‌

Therefore,‌‌    ‌ c os θ =

x r

=   − √611   ‌

2 sin θ cos θ = 2 ( 65 )(− √611 ) =   ‌

− 5√1811   ‌ c os (2θ)  →  cos (2θ) = 1 − 2 sin 2  θ ,‌‌sin θ =

5 6

.‌ ‌Therefore,‌‌c os (2θ) =   −

7 18

.‌   ‌ ‌

 ‌ ‌2.2.4.c‌

‌Establishing‌‌an‌‌Identity‌‌-‌‌Example‌  ‌

Develop‌‌a‌‌formula‌‌for‌‌sin (3θ) .‌   ‌ ‌ Use‌‌(2θ + θ) ‌in‌‌the‌‌sum‌‌formula.‌‌    ‌ sin (3θ) = sin (2θ + θ) = sin (2θ) cos θ + c os (2θ) sin θ   ‌ Now‌‌use‌‌the‌‌double‌‌angle‌‌formulas‌‌and‌‌simplify.‌  ‌ sin (3θ) = (2sin θ cos θ)(cos θ) + (cos2 θ − sin 2 θ)(sin θ) = 2 sin θ cos2 θ + sin θ cos2 θ − sin 3 θ   ‌ 3 sin θ cos2 θ − sin 3 θ   ‌  ‌ ‌2.2.4.d‌

‌Squared‌‌Trig‌‌Functions‌‌Formulas‌  ‌ sin 2 θ =

1 − cos (2θ) 2

 ‌

c os2 θ =

1 + cos (2θ) 2

 ‌

1 − cos (2θ)

tan 2 θ = 1 + cos (2θ)  

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

129‌  ‌

 ‌ ‌2.2.4.e‌

‌Solving‌‌Using‌‌Identities‌‌-‌‌Example‌  ‌

Solve‌‌sin θ cos θ =   − 41 ,‌‌0 ≤ θ ≤ 2 π .‌   ‌ ‌ Notice‌‌how‌‌this‌‌is‌‌in‌‌the‌‌form‌‌of‌‌the‌‌sine‌‌double‌‌angle‌‌formula,‌‌except‌‌by‌‌a‌‌factor‌‌of‌‌2.‌ ‌So,‌‌   multiply‌‌both‌‌sides‌‌by‌‌2.‌   ‌ ‌ 2 sin θ cos θ =   − 21   ‌ Now‌‌we‌‌can‌‌simplify‌‌this‌‌by‌‌using‌‌the‌‌double‌‌angle‌‌formula.‌  ‌ sin (2θ) =   − 21   ‌ Put‌‌this‌‌into‌‌general‌‌form‌‌by‌‌using‌‌the‌‌table‌‌to‌‌find‌‌what‌‌theta‌‌values‌‌produce‌‌− 21 .‌   ‌ ‌ 1 sin ( 11π 6 + 2 πk) =   − 2   ‌

sin ( 7π6 + 2 πk) =   − 21   ‌ 2 θ ‌is‌‌equal‌‌to‌‌both‌‌of‌‌these‌‌arguments.‌ ‌So,‌‌set‌‌these‌‌both‌‌equal‌‌to‌‌2 θ ‌and‌‌solve‌‌for‌‌θ .‌   ‌ ‌ 2θ =

11π 6

+ 2 πk  →  θ =

11π 12

7π 6

+ 2 πk  →  θ =

7π 12

2θ =

+ πk   ‌ + πk   ‌

Plug‌‌in‌‌numbers‌‌for‌‌k ‌to‌‌find‌‌solutions.‌   ‌ ‌  ‌ ‌2.2.4.f‌

‌Projectile‌‌Motion‌  ‌

An‌‌object‌‌is‌‌propelled‌‌upward‌‌at‌‌an‌‌angle‌‌θ ‌to‌‌the‌‌horizontal‌‌with‌‌an‌‌initial‌‌velocity‌‌of‌‌v 0  ‌ ft/sec.‌ ‌Range‌‌R ‌-‌‌the‌‌horizontal‌‌distance‌‌that‌‌the‌‌object‌‌travels‌‌-‌‌is‌‌given‌‌by‌‌the‌‌function:‌  ‌ R(θ) =

130‌

1 2 16 v 0  sin θ cos θ  

 ‌ ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ‌2.2.4.g‌

‌Half-Angle‌‌Formulas‌  ‌

sin  2a =   ±



1 − cos a 2

   ‌

cos  2a =   ±



1 + cos a 2

   ‌

=

1 − cos a sin a

=

tan  2a =   ±



1 − cos a 1 + cos a

sin a 1 + cos a

   ‌

where‌‌the‌‌+ ‌or‌‌− ‌sign‌‌is‌‌determined‌‌by‌‌the‌‌quadrant‌‌of‌‌angle‌‌2a .‌   ‌ ‌ ‌2.2.4.h‌

‌Squared‌‌Half-Angle‌‌Formulas‌  ‌

sin2   2a =   ±

1 − cos a 2

 ‌

cos2   2a =   ±

1 + cos a 2

 ‌

tan2   2a =   ±

1 − cos a 1 + cos a

 ‌

 ‌

 

 ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

131‌  ‌

 ‌

2.3‌

‌Applications‌‌of‌‌Trigonometric‌‌Functions‌  ‌

2.3.1‌

R ‌ ight‌‌Angle‌T ‌ rigonometry:‌‌Applications‌  ‌

 ‌

sin θ =

opposite hypotenuse

=

b c

 ‌

csc θ =

hypotenuse opposite

=

c b

 ‌

cos θ =

adjacent hypotenuse

=

a c

 ‌

sec θ =

hypotenuse adjacent

=

c a

 ‌

tan θ =

opposite adjacent

=

b a

 ‌

cot θ =

adjacent opposite

=

a b

 ‌

 ‌ ‌2.3.1.a‌

‌Complementary‌‌Angles‌  ‌

sin B =

b c

= c os A   ‌

c os B =

a c

= sin A   ‌

tan B =

b a

= c ot A   ‌

c sc B =

c b

= sec A   ‌

sec B =

c a

= c sc A   ‌

c ot B =

a b

= tan A   ‌

 ‌ ‌2.3.1.b‌

‌Complementary‌‌Angle‌‌Theorem‌  ‌

Cofunctions‌‌of‌‌complementary‌‌angles‌‌are‌‌equal.‌‌   

132‌

 ‌ ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ‌2.3.1.c‌

‌Solving‌‌a‌‌Right‌‌Triangle‌‌-‌‌Example‌  ‌

Use‌‌the‌‌given‌‌information‌‌to‌‌find‌‌the‌‌remaining‌‌values‌‌a ,  c,  B .‌  ‌

 ‌ Remember‌‌that‌‌A + B = 9 0 ° ,‌‌as‌‌the‌‌interior‌‌angles‌‌of‌‌all‌‌triangles‌‌must‌‌equal‌‌1 80 ° .‌  ‌ Therefore,‌‌    ‌ B = 9 0 − A  →   B = 5 5 °   ‌ Using‌‌trig‌‌definitions‌‌for‌‌right‌‌triangles‌‌we‌‌know‌‌that‌  tan 35 =

a 4

‌and‌‌c os 35 = 4c   ‌

Now‌‌rearrange‌‌these‌‌equations‌‌to‌‌solve‌‌for‌‌a ‌and‌‌c .‌‌    ‌ a = 4 tan 35 ≈ 2 .80 ‌and‌‌c =

 

4 cos 35

≈ 4 .88   ‌

 ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

133‌ ‌

 ‌

2.3.2‌

S ‌ olving‌‌Oblique‌‌Triangles‌  ‌

To‌‌solve‌‌an‌‌oblique‌‌triangle‌‌(i.e.‌‌a‌‌triangle‌‌that‌‌is‌‌not‌‌a‌‌right‌‌triangle)‌‌means‌‌to‌‌find‌‌the‌‌   lengths‌‌of‌‌its‌‌sides‌‌and‌‌the‌‌measures‌‌of‌‌its‌‌angles.‌ ‌To‌‌do‌‌this,‌‌we‌‌need‌‌to‌‌know‌‌the‌‌length‌‌   of‌‌one‌‌side,‌‌along‌‌with‌‌at‌‌least‌‌one‌‌of‌‌the‌‌following:‌  ‌ I.

two‌‌angles‌  ‌

II.

one‌‌angle‌‌and‌‌one‌‌other‌‌side‌  ‌

III.

the‌‌other‌‌two‌‌sides‌  ‌

 ‌ There‌‌are‌‌four‌‌possibilities‌‌to‌‌consider:‌  ‌ 1. one‌‌side‌‌and‌‌two‌‌angles‌‌known‌‌(ASA‌‌or‌‌SAA)‌  ‌ 2. two‌‌sides‌‌and‌‌the‌‌angle‌‌opposite‌‌one‌‌of‌‌them‌‌(SSA)‌  ‌ 3. two‌‌sides‌‌and‌‌the‌‌included‌‌angle‌‌known‌‌(SAS)‌  ‌ 4. three‌‌sides‌‌known‌‌(SSS)‌  ‌

 ‌

 ‌  

 ‌

134‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌ ‌

2.3.3‌

T ‌ he‌‌Law‌‌of‌‌Sines‌  ‌

For‌‌a‌‌triangle‌‌with‌‌sides‌‌a ,‌‌b ,‌‌and‌‌c ‌and‌‌opposite‌‌angles‌‌A ,‌‌B ,‌‌C ,‌‌respectively:‌  ‌ sin A a

=

sin B b

=

 ‌

sin C c

for‌‌ASA,‌‌SSA,‌‌and‌‌SAA‌‌triangles.‌  ‌ The‌‌Law‌‌of‌‌Sines‌‌actually‌‌consists‌‌of‌‌three‌‌equalities:‌  ‌ sin A a

‌2.3.3.a‌

=

sin B sin A b         a

=

sin C sin B c         b

=

sin C c

 ‌

‌Example‌‌-‌‌SAA‌‌Triangle‌  ‌

Solve‌‌the‌‌triangle:‌  ‌

 ‌ Remember‌‌that‌‌A + B + C = 1 80 ° .‌ ‌Therefore,‌‌    ‌ 4 5 + 5 5 + C = 1 80  

⇒   C = 80   ‌ °

Use‌‌the‌‌Law‌‌of‌‌Sines:‌  ‌ sin A a sin 45 5

= =

sin B sin A b         a sin 55 sin 45 b         5

=

sin C c

=

 ‌

sin 80 c

 ‌

Cross‌‌multiply‌‌and‌‌solve‌‌for‌‌b ‌and‌‌c .‌    ‌ b = 5sin 55 sin 45 ≈ 5 .79   ‌ c = 5sin 80 sin 45 ≈ 6 .96  

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

135‌ ‌

 ‌ ‌2.3.3.b‌

‌Solving‌‌SSA‌‌Triangles‌‌    ‌

Case‌‌2:‌‌SSA,‌‌is‌‌referred‌‌to‌‌as‌‌the‌‌ambiguous‌‌case,‌‌because‌‌the‌‌known‌‌information‌‌may‌‌   result‌‌in‌‌one‌‌triangle,‌‌two‌‌triangles,‌‌or‌‌no‌‌triangle‌‌at‌‌all.‌   ‌ ‌

 ‌  ‌

2.3.4‌

T ‌ he‌‌Law‌‌of‌‌Cosines‌  ‌

Since‌‌the‌‌Law‌‌of‌‌Sines‌‌is‌‌used‌‌to‌‌solve‌‌SAA/ASA‌‌and‌‌SSA‌‌triangles,‌‌the‌‌Law‌‌of‌‌Cosines‌‌is‌‌   used‌‌to‌‌solve‌‌cases‌‌3‌‌and‌‌4.‌   ‌ ‌ For‌‌a‌‌triangle‌‌with‌‌sides‌‌a ,‌‌b ,‌‌and‌‌c ‌and‌‌opposite‌‌angles‌‌A ,‌‌B ,‌‌C ,‌‌respectively:‌  ‌ c 2 = a 2 + b 2 − 2 ab cos C

cos A =  

b 2  + c2  − a 2 2bc

‌b 2 = a 2 + c 2 − 2 ac cos B

‌cos B =

a 2  + c2  − b 2 2ac

‌a 2 = b 2 + b 2 − 2 bc cos A   ‌

‌cos C =

a 2  + b 2  − c2 2ab

 ‌

 ‌

136‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌ ‌

for‌‌SAS‌‌and‌‌SSS‌‌triangles.‌  ‌ The‌‌square‌‌of‌‌one‌‌side‌‌of‌‌a‌‌triangle‌‌equals‌‌the‌‌sum‌‌of‌‌the‌‌squares‌‌of‌‌the‌‌other‌‌two‌‌sides,‌‌   minus‌‌twice‌‌their‌‌product‌‌times‌‌the‌‌cosine‌‌of‌‌their‌‌included‌‌angle.‌   ‌ ‌ Note:‌‌The‌‌angle‌‌equations‌‌shown‌‌here‌‌are‌‌derived‌‌from‌‌the‌‌three‌‌equations‌‌above‌‌them.‌  ‌ Usually,‌‌only‌‌the‌‌“side‌‌squared”‌‌equations‌‌are‌‌given‌‌and‌‌you‌‌would‌‌have‌‌to‌‌derive‌‌the‌‌   angle‌‌equations‌‌yourself.‌ ‌While‌‌it‌‌is‌‌totally‌‌cool‌‌to‌‌use‌‌them‌‌as‌‌reference‌‌while‌‌doing‌‌your‌‌   homework,‌‌I‌‌recommend‌‌knowing‌‌how‌‌to‌‌do‌‌this‌‌for‌‌any‌‌tests‌‌you‌‌may‌‌have.‌   ‌ ‌  ‌ ‌2.3.4.a‌

‌Example‌‌-‌‌SAS‌‌Triangle‌  ‌

Solve‌‌the‌‌triangle:‌  ‌

 ‌ While‌‌both‌‌the‌‌Law‌‌of‌‌Sines‌‌or‌‌the‌‌Law‌‌of‌‌Cosines‌‌could‌‌be‌‌used,‌‌the‌‌Law‌‌of‌‌Cosines‌‌is‌‌   preferable,‌‌as‌‌it‌‌will‌‌result‌‌in‌‌one‌‌solution.‌‌    ‌ First,‌‌use‌‌the‌‌c 2 = a 2 + b 2 − 2 abcos C ‌formula‌‌to‌‌solve‌‌for‌‌c .‌   ‌ ‌ c 2 = 4 2 + 5 2 − (2)(4)(5)(cos 50)   ‌ c ≈ 3 .91   ‌ Now,‌‌use‌‌the‌‌cos A =

b 2  + c2  − a 2 2bc

‌and‌‌‌cos B =

‌cos A =

5 2  + 3.91 2  − 4 2    (2)(5)(3.91)

a 2  + c2  − b 2 2ac

‌formulas‌‌to‌‌solve‌‌for‌‌A ‌and‌‌B .‌  ‌

⇒  A = cos

−1 5 2  + 3.91 2  − 4 2 ( (2)(5)(3.91) )   



A ≈ 5 1.6 °   ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

137‌ ‌

 ‌

‌cos B =

2

2

4  + 3.91  − 5 (2)(4)(3.91)

2

  

⇒   B = cos

2

2

−1 4  + 3.91  − 5 ( (2)(4)(3.91)

2

)   ‌

B ≈ 7 8.4 °   ‌

 ‌ 2.3.5‌

A ‌ rea‌o ‌ f‌a ‌ ‌T ‌ riangle‌  ‌

Remember‌‌that‌‌the‌‌area‌‌of‌‌a‌‌triangle‌‌is‌‌    ‌ K = 21 bh   ‌  ‌ ‌2.3.5.a‌

‌Area‌‌of‌‌an‌‌SAS‌‌Triangle‌‌Theorem‌  ‌

The‌‌area‌‌K ‌of‌‌a‌‌triangle‌‌equals‌‌one-half‌‌the‌‌product‌‌of‌‌its‌‌sides‌‌times‌‌the‌‌sine‌‌of‌‌their‌‌   included‌‌angle.‌  ‌ K = 21 ab sin C   ‌

K = 21 bc sin A   ‌

K = 21 ac sin B   ‌

 ‌ ‌2.3.5.b‌

‌Heron’s‌‌Formula‌‌-‌‌Area‌‌of‌‌a‌‌SSS‌‌Triangle‌  ‌

The‌‌area‌‌K ‌of‌‌a‌‌triangle‌‌with‌‌sides‌‌a ,  b,  c ‌is‌‌    ‌ K = √s(s − a )(s − b )(s − c )  ‌ where‌‌s = 21 (a + b + c ) .‌  ‌  

 ‌

138‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

2.4‌

‌Polar‌‌Coordinates‌‌and‌‌Vectors‌  ‌

2.4.1‌

P ‌ olar‌‌Coordinates‌  ‌

In‌‌a‌‌rectangular‌‌coordinate‌‌system,‌‌a‌‌point‌‌in‌‌the‌‌plane‌‌is‌‌represented‌‌by‌‌an‌‌ordered‌‌pair‌‌   of‌‌numbers‌‌(x,  y) ,‌‌where‌‌x ‌and‌‌y ‌equal‌‌the‌‌signed‌‌distances‌‌of‌‌the‌‌point‌‌from‌‌the‌‌y ‌axis‌‌   and‌‌the‌‌x ‌axis,‌‌respectively.‌   ‌ ‌ In‌‌a‌‌polar‌‌coordinate‌‌system,‌‌we‌‌select‌‌a‌‌point,‌‌called‌‌the‌‌pole,‌‌and‌‌then‌‌a‌‌ray‌‌with‌‌a‌‌vertex‌‌   at‌‌the‌‌pole,‌‌called‌‌the‌‌polar‌‌axis.‌   ‌ ‌

 ‌ A‌‌point‌‌P ‌in‌‌a‌‌polar‌‌coordinate‌‌system‌‌is‌‌represented‌‌by‌‌an‌‌ordered‌‌pair‌‌of‌‌numbers‌‌   (r,  θ). ‌If‌‌r > 0 ,‌‌then‌‌r ‌is‌‌the‌‌distance‌‌of‌‌the‌‌point‌‌from‌‌the‌‌pole;‌‌θ ‌is‌‌an‌‌angle‌‌(in‌‌degrees‌‌   or‌‌radians)‌‌formed‌‌by‌‌the‌‌polar‌‌axis‌‌and‌‌a‌‌ray‌‌from‌‌the‌‌pole‌‌through‌‌the‌‌point.‌ ‌We‌‌called‌‌   the‌‌ordered‌‌pair‌‌(r,  θ) ‌the‌‌polar‌‌coordinates‌‌of‌‌the‌‌point.‌   ‌ ‌

 ‌

 

 ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

139‌ ‌

 ‌

2 ‌ .4.1.a‌

F ‌ inding‌S ‌ everal‌‌Polar‌C ‌ oordinates‌o ‌ f‌a ‌ ‌‌Single‌P ‌ oint‌  ‌

Consider‌‌the‌‌point‌‌P ‌with‌‌polar‌‌coordinates‌‌(3,   6π )   ‌

 ‌ π 13π ,  6 ,  6



11π 6

‌‌all‌‌have‌‌the‌‌same‌‌terminal‌‌side‌‌so,‌‌this‌‌point‌‌P ‌can‌‌also‌‌be‌‌located‌‌by‌‌using‌‌ 

the‌‌polar‌‌coordinates‌‌(3,   13π 6 ) ‌or‌‌(3,   −

11π 6 ) .‌ 

 ‌ ‌

 ‌ ‌The‌‌point‌‌(3,   6π ) ‌can‌‌also‌‌be‌‌represented‌‌by‌‌the‌‌polar‌‌coordinates‌‌(− 3 ,   7π6 ) .‌ ‌The‌‌− 3  ‌ means‌‌you‌‌make‌‌the‌‌rotation‌‌to‌‌the‌‌angle‌‌θ ‌and‌‌go‌‌back‌‌r ‌times.‌   ‌ ‌

 ‌  

 ‌

140‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌ ‌

‌2.4.1.b‌

‌Converting‌‌from‌‌Polar‌‌to‌‌Rectangular‌‌Coordinates‌  ‌

If‌‌P ‌is‌‌a‌‌point‌‌with‌‌polar‌‌coordinates‌‌(r,  θ) ,‌‌the‌‌rectangular‌‌coordinates‌‌(x,  y) ‌at‌‌P ‌are‌‌   given‌‌by‌  ‌ x = r cos θ      y = r sin θ   ‌  ‌ ‌2.4.1.c‌

‌Points‌‌that‌‌Lie‌‌on‌‌an‌‌Axis‌  ‌

The‌‌figures‌‌show‌‌polar‌‌coordinates‌‌of‌‌points‌‌that‌‌lie‌‌on‌‌either‌‌the‌‌x ‌axis‌‌or‌‌the‌‌y ‌axis.‌ ‌In‌‌   each‌‌illustration,‌‌a > 0 .‌   ‌ ‌

 ‌    (x,  y) = (a,  0)                      (x,  y) = (0,  a)                            (x,  y) = (− a ,  0)              (x,  y) = (0,   − a )   ‌    (r,  θ) = (a,  0)                      (r,  θ) = (a,   2π )                            (r,  θ) = (a,  π)                  (r,  θ) = (a,   3π2 )   ‌  ‌ ‌2.4.1.d‌

‌Converting‌‌from‌‌Rectangular‌‌to‌‌Polar‌‌Coordinates‌  ‌

If‌‌P ‌is‌‌a‌‌point‌‌with‌‌rectangular‌‌coordinates‌‌(x,  y) ,‌‌the‌‌polar‌‌coordinates‌‌(r,  θ) ‌of‌‌P ‌are‌‌   given‌‌by‌  ‌ y

r 2 = x 2 + y 2       tan θ = x       if  x =/ 0   ‌ r = y       θ = 2π       if  x = 0   ‌  

 ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

141‌ ‌

 ‌  ‌

2.4.2‌

P ‌ olar‌E ‌ quations‌a ‌ nd‌t‌ heir‌G ‌ raphs‌  ‌

An‌‌equation‌‌whose‌‌variables‌‌are‌‌polar‌‌coordinates‌‌is‌‌called‌‌a‌‌polar‌‌equation.‌ ‌The‌‌graph‌‌of‌‌   a‌‌polar‌‌equation‌‌consists‌‌of‌‌all‌‌points‌‌whose‌‌polar‌‌coordinates‌‌satisfy‌‌the‌‌equation.‌   ‌ ‌  ‌ ‌2.4.2.a‌

‌Theorem‌‌(Vertical/Horizontal‌‌Lines)‌  ‌

Let‌‌a ‌be‌‌a‌‌real‌‌number.‌ ‌Then,‌‌the‌‌graph‌‌of‌‌the‌‌equation‌‌    ‌ r sin θ = a   ‌ is‌‌a‌‌horizontal‌‌line.‌ ‌It‌‌lies‌‌a ‌units‌‌above‌‌the‌‌pole‌‌if‌‌a ≥ 0 ‌and‌‌lies‌‌|a | ‌units‌‌below‌‌the‌‌pole‌‌if‌‌   a < 0 .‌  ‌ Then,‌‌the‌‌graph‌‌of‌‌the‌‌equation‌‌    ‌ r cos θ = a   ‌ is‌‌a‌‌vertical‌‌line.‌ ‌It‌‌lies‌‌a ‌units‌‌to‌‌the‌‌right‌‌of‌‌the‌‌pole‌‌if‌‌a ≥ 0 ‌and‌‌lies‌‌|a | ‌units‌‌to‌‌the‌‌left‌‌of‌‌   the‌‌pole‌‌if‌‌a < 0 .‌  ‌  

 ‌

142‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

‌2.4.2.b‌

‌Theorem‌‌(Circles)‌  ‌

Suppose‌‌a ‌is‌‌a‌‌positive‌‌number.‌   ‌ ‌  ‌ Equation‌  ‌

Description‌  ‌

r = 2 asin θ   ‌

circle,‌‌radius‌‌a ,‌‌center‌‌(0,  a)   ‌

r =   − 2 asin θ   ‌

circle,‌‌radius‌‌a ,‌‌center‌‌(0,   − a )   ‌

r = 2 acos θ   ‌

circle,‌‌radius‌‌a ,‌‌center‌‌(a,  0)   ‌

r =   − 2 acos θ   ‌

circle,‌‌radius‌‌a ,‌‌center‌‌(− a ,  0)   ‌

Each‌‌circle‌‌passes‌‌through‌‌the‌‌pole.‌   ‌ ‌  ‌ ‌2.4.2.c‌

‌Symmetric‌‌Points‌  ‌

There‌‌can‌‌be‌‌three‌‌types‌‌of‌‌symmetry:‌‌    ‌ a) polar‌‌axis‌‌(‌x ‌axis)‌

‌b)‌‌along‌‌the‌‌line‌‌θ =

π 2

‌(‌y ‌axis)‌

‌c)‌‌along‌‌the‌‌pole‌  ‌

 ‌ ‌2.4.2.d‌

‌Tests‌‌for‌‌Symmetry‌  ‌

a) polar‌‌axis‌  ‌ i)

replace‌‌θ ‌by‌‌− θ ‌and‌‌see‌‌if‌‌an‌‌equivalent‌‌equation‌‌results‌  ‌

b) along‌‌θ = i)

π 2

‌(‌y ‌axis)‌  ‌

replace‌‌θ ‌by‌‌π − θ ‌and‌‌see‌‌if‌‌an‌‌equivalent‌‌equation‌‌results‌  ‌

c) along‌‌the‌‌pole‌  ‌ i)  

replace‌‌r ‌by‌‌− r ‌or‌‌θ ‌by‌‌θ + π ‌and‌‌see‌‌if‌‌an‌‌equivalent‌‌equation‌‌results‌  ‌  ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

143‌  ‌

 ‌ ‌2.4.2.e‌

‌Cardioids‌  ‌

Cardioids‌‌are‌‌characterized‌‌by‌  ‌ r = a (1 + c os θ)   ‌

r = a (1 + sin θ)   ‌

r = a (1 − c os θ)   ‌

r = a (1 − sin θ)   ‌

where‌‌a > 0 .‌ ‌The‌‌graph‌‌of‌‌a‌‌cardioid‌‌passes‌‌through‌‌the‌‌pole.‌   ‌ ‌

 ‌ r = 2 (1 − sin θ)   ‌  

 ‌

144‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

‌2.4.2.f‌

‌Limaçons‌‌without‌‌an‌‌Inner‌‌Loop‌  ‌

Definition‌‌of‌‌limaçons‌‌without‌‌an‌‌inner‌‌loop,‌‌equations:‌  ‌ r = a + b cos θ   ‌

r = a + b sin θ   ‌

r = a − b cos θ   ‌

r = a − b sin θ   ‌

where‌‌a > b > 0 ‌the‌‌graph‌‌of‌‌a‌‌limaçon‌‌without‌‌an‌‌inner‌‌loop‌‌does‌‌not‌‌pass‌‌through‌‌the‌‌   pole.‌   ‌ ‌

 ‌ r = 4 + 2 cos θ   ‌  

 ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

145‌  ‌

 ‌ ‌2.4.2.g‌

‌Limaçons‌‌with‌‌an‌‌Inner‌‌Loop‌ 

Definition:‌‌limaçons‌‌with‌‌an‌‌inner‌‌loop‌‌are‌‌characterized‌‌by‌‌  

 ‌

r = a + b cos θ   ‌

r = a + b sin θ   ‌

r = a − b cos θ   ‌

r = a − b sin θ   ‌

where‌‌b > a > 0 .‌ ‌The‌‌graph‌‌of‌‌a‌‌limaçon‌‌with‌‌an‌‌inner‌‌loop‌‌passes‌‌through‌‌the‌‌pole‌‌twice.‌   ‌ ‌

 ‌ y = 1 + 3 cos θ    

 ‌

146‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

‌2.4.2.h‌

‌Rose‌  ‌

Definition:‌‌rose‌‌curves‌‌are‌‌characterized‌‌by‌‌    ‌ r = a cos (nθ)      r = a sin (nθ)      a =/ 0   ‌ and‌‌have‌‌graphs‌‌that‌‌are‌‌rose‌‌shaped.‌ ‌If‌‌n =/ 0 ‌is‌‌even,‌‌the‌‌rose‌‌has‌‌2 n ‌petals;‌‌if‌‌n =/ 0 ‌is‌‌   odd,‌‌the‌‌rose‌‌has‌‌n ‌petals.‌   ‌ ‌

 ‌ r = 3 cos (2θ)   ‌  

 ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

147‌ ‌

 ‌ ‌2.4.2.i‌

‌Leminscates‌  ‌

Leminscates‌‌are‌‌characterized‌‌by‌  ‌ r 2 = a 2 sin (2θ)      r 2 = a 2 cos (2θ)      a =/ 0   ‌ and‌‌the‌‌graphs‌‌are‌‌propeller‌‌shaped.‌‌    ‌

 ‌ r 2 = 3 sin (2θ)   ‌ ‌2.4.2.j‌

‌Spiral‌  ‌

Some‌‌spiral‌‌curves‌‌(like‌‌r = e θ/4 )‌‌are‌‌called‌‌logarithmic‌‌spirals,‌‌since‌‌their‌‌equations‌‌may‌‌be‌‌   written‌‌as‌‌θ = 4 ln r .‌ ‌It‌‌spirals‌‌indefinitely‌‌both‌‌towards‌‌the‌‌pole‌‌and‌‌away‌‌from‌‌it.‌   ‌ ‌

 ‌ r = e θ/4  

148‌

 ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌ ‌

‌2.4.2.k‌

‌Graphing‌‌Polar‌‌Equations‌  ‌

When‌‌graphing‌‌a‌‌polar‌‌equation‌‌you‌‌should‌‌first‌‌check‌‌for‌‌symmetry.‌ ‌This‌‌will‌‌reduce‌‌the‌‌   number‌‌of‌‌points‌‌you‌‌have‌‌to‌‌find.‌   ‌ ‌ Then,‌‌find‌‌points‌‌on‌‌the‌‌graph‌‌using‌‌theta‌‌values‌‌that‌‌are‌‌in‌‌the‌‌range‌‌of‌‌the‌‌trig‌‌function‌‌   within‌‌the‌‌equation.‌ ‌So,‌‌if‌‌the‌‌function‌‌has‌‌c os (2θ) ‌in‌‌it,‌‌find‌‌theta‌‌values‌‌from‌‌0 ‌to‌‌2π .‌   ‌ ‌ Once‌‌you‌‌plot‌‌a‌‌couple‌‌of‌‌points,‌‌reflect‌‌the‌‌graph‌‌you‌‌have‌‌over‌‌the‌‌axis‌‌(or‌‌axes)‌‌the‌‌   equation‌‌is‌‌symmetric‌‌with.‌   ‌ ‌  ‌

2.4.3‌

C ‌ omplex‌P ‌ lane‌  ‌

A‌‌complex‌‌number‌‌z = x + y i ‌can‌‌be‌‌interpreted‌‌geometrically‌‌as‌‌the‌‌point‌‌(x,  y) ‌in‌‌the‌‌x y -‌‌   plane.‌ ‌Each‌‌point‌‌in‌‌the‌‌plane‌‌corresponds‌‌to‌‌a‌‌complex‌‌number‌‌and,‌‌conversely,‌‌each‌‌   complex‌‌number‌‌corresponds‌‌to‌‌a‌‌point‌‌in‌‌the‌‌plane.‌ ‌The‌‌collection‌‌of‌‌such‌‌points‌‌is‌‌   referred‌‌to‌‌as‌‌the‌‌complex‌‌plane.‌   ‌ ‌ ●

The‌‌x ‌axis‌‌is‌‌referred‌‌to‌‌as‌‌the‌‌real‌‌axis,‌‌because‌‌any‌‌point‌‌on‌‌the‌‌real‌‌axis‌‌is‌‌of‌‌the‌‌   form‌‌z = x + 0 i ,‌‌a‌‌real‌‌number.‌   ‌ ‌



The‌‌y ‌axis‌‌is‌‌called‌‌the‌‌imaginary‌‌axis,‌‌because‌‌any‌‌point‌‌that‌‌lies‌‌on‌‌it‌‌is‌‌of‌‌the‌‌   form‌‌z = 0 + y i ,‌‌a‌‌pure‌‌imaginary‌‌number.‌   ‌ ‌

 

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌

149‌ ‌

 ‌ ‌2.4.3.a‌

‌Magnitude‌‌or‌‌Modulus‌  ‌

Suppose‌‌z = x + y i ‌is‌‌a‌‌complex‌‌number.‌ ‌The‌‌magnitude‌‌or‌‌modulus‌‌of‌‌z ,‌‌denoted‌‌|z | ,‌‌is‌‌   the‌‌distance‌‌from‌‌the‌‌origin‌‌to‌‌the‌‌point‌‌(x,  y) .‌ ‌That‌‌is‌  |z | =

√x   +  y 2

2

= r    ‌

The‌‌magnitude‌‌of‌‌z ‌is‌‌sometimes‌‌called‌‌the‌‌absolute‌‌value‌‌of‌‌z .‌  ‌ |z | = √zz   ‌  ‌ ‌2.4.3.b‌

‌Cartesian‌‌Form‌  ‌

When‌‌a‌‌complex‌‌number‌‌is‌‌written‌‌in‌‌the‌‌standard‌‌form‌‌z = x + y i ,‌‌it‌‌is‌‌in‌‌the‌‌rectangular,‌‌   or‌‌Cartesian,‌‌form,‌‌because‌‌(x,  y) ‌are‌‌the‌‌rectangular‌‌coordinates‌‌of‌‌the‌‌corresponding‌‌   point‌‌in‌‌the‌‌complex‌‌plane.‌ ‌Suppose‌‌that‌‌(r,  θ  ) ‌are‌‌the‌‌polar‌‌coordinates‌‌of‌‌this‌‌point.‌  ‌ Then,‌‌    ‌ x = r cos θ      y = r sin θ   ‌ ‌2.4.3.c‌

‌Polar‌‌Form‌‌of‌‌a‌‌Complex‌‌Number‌  ‌

If‌‌r ≥ 0 ‌and‌‌0 ≤ θ ≤ 2 π ,‌‌the‌‌complex‌‌number‌‌z = x + y i ‌can‌‌be‌‌written‌‌in‌‌polar‌‌form.‌  ‌ z = r (cos θ + isin θ)   ‌ ‌ ‌2.4.3.d‌

‌Argument‌  ‌

If‌‌z = r (cos θ + isin θ) ‌is‌‌the‌‌polar‌‌form‌‌of‌‌a‌‌complex‌‌number,‌‌the‌‌angle‌‌θ ‌is‌‌called‌‌the‌‌   argument.‌  ‌ The‌‌magnitude‌‌of‌‌z = r (cos θ + isin θ) ‌is:‌  ‌ |z | = r  

150‌

 ‌ ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

‌2.4.3.e‌

‌Euler’s‌‌Formula‌  ‌

Euler’s‌‌Formula,‌‌for‌‌any‌‌real‌‌number‌‌θ ,‌‌    ‌ e iθ = c os θ + isin θ   ‌  ‌ ‌2.4.3.f‌

‌Exponential‌‌Form‌  ‌

Euler’s‌‌Formula‌‌allows‌‌us‌‌to‌‌write‌‌the‌‌polar‌‌form‌‌of‌‌a‌‌complex‌‌number‌‌using‌‌exponential‌‌   notation.‌   ‌ ‌ r (cos θ + isin θ) = r e iθ   ‌  ‌ ‌2.4.3.g‌

‌Multiplication‌‌and‌‌Division‌‌Theorem‌  ‌

Suppose‌‌z 1 = r 1 e iθ1 ‌and‌‌z 2 = r 2 e iθ2 ‌are‌‌two‌‌complex‌‌numbers.‌ ‌Then,‌‌    ‌ z 1 z 2 = r 1 r 2 e i(θ1  + θ2 )   ‌ If‌‌z 2 =/ 0 ,‌‌then,‌‌    ‌ z1 z2

=

r1 r2

e i(θ1  − θ2 )   ‌  ‌

‌2.4.3.h‌

‌Periodic‌‌Theorem‌  ‌

The‌‌argument‌‌of‌‌a‌‌complex‌‌number‌‌is‌‌periodic.‌  ‌ r e iθ = r e i(θ + 2k) ,‌‌where‌‌k ‌is‌‌an‌‌integer‌ 

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

151‌  ‌

 ‌ ‌2.4.3.i‌

‌De‌‌Moivre’s‌‌Theorem‌  ‌

If‌‌z = r e iθ ‌is‌‌a‌‌complex‌‌number,‌‌then‌  ‌ z n = r n e i(nθ) ,‌‌if‌‌z = r e iθ   ‌ where‌‌n ≥ 1 ‌is‌‌an‌‌integer.‌‌    ‌ Example:‌‌Using‌‌De‌‌Moivre’s‌‌Theorem,‌‌express‌‌[3(cos  6π + isin  6π )]3 ‌in‌‌the‌‌form‌‌r e iθ ‌and‌‌x + y i .‌‌    ‌ π

First,‌‌convert‌‌from‌‌polar‌‌to‌‌exponential‌‌form:‌‌[3(cos  6π + isin  6π )]3 = (3ei 6 )3 ‌. ‌  ‌ ‌ Now,‌‌use‌‌De‌‌Moivre’s‌‌Theorem:‌‌    ‌ π

π

33 (ei(3· 6 ) = 27ei 2   ‌ Convert‌‌back‌‌to‌‌polar‌‌form‌‌and‌‌solve.‌  ‌ 2 7(cos  2π + isin  2π ) = 2 7(0 + i(1)) = 2 7i   ‌ ‌2.4.3.j‌

‌Complex‌‌Roots‌  ‌

Suppose‌‌w ‌is‌‌a‌‌complex‌‌number,‌‌and‌‌n ≥ 2 ‌is‌‌a‌‌positive‌‌integer.‌ ‌Any‌‌complex‌‌number‌‌z  ‌ that‌‌satisfies‌‌the‌‌equation‌  ‌ zn = w ‌2.4.3.k‌

‌is‌‌a‌‌complex‌‌n th ‌root‌‌of‌‌w .‌   ‌ ‌

‌Finding‌‌Complex‌‌Roots‌ 

Suppose‌‌w = r e iθ ‌is‌‌a‌‌complex‌‌number‌‌and‌‌n ≥ 2 ‌is‌‌an‌‌integer.‌ ‌If‌‌w =/ 0 there‌‌are‌‌n ‌distinct‌‌   complex‌‌roots‌‌of‌‌w ‌given‌‌by‌‌the‌‌formula‌  ‌ 1

z k = √r ei n (θ + 2kπ)   ‌ n

where‌‌k = 0 ,  1,  2,  ...,  n − 1 .‌   ‌

152‌

 ‌ ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

2.4.4‌

V ‌ ectors‌  ‌

A‌‌vector‌‌is‌‌a‌‌quantity‌‌that‌‌has‌‌both‌‌magnitude‌‌and‌‌direction.‌ ‌It‌‌is‌‌customary‌‌to‌‌represent‌‌a ‌‌ vector‌‌by‌‌using‌‌an‌‌arrow.‌ ‌The‌‌length‌‌of‌‌the‌‌arrow‌‌represents‌‌the‌‌magnitude‌‌and‌‌the‌‌   arrowhead‌‌indicates‌‌direction.‌   ‌ ‌ ‌2.4.4.a‌

‌Geometric‌‌Vectors‌  ‌

If‌‌P ‌and‌‌Q ‌are‌‌two‌‌distinct‌‌points‌‌in‌‌the‌‌x y -‌‌plane,‌‌there‌‌is‌‌exactly‌‌one‌‌line‌‌containing‌‌both‌‌   P ‌and‌‌Q ‌[Figure‌‌(a)].‌ ‌The‌‌points‌‌on‌‌that‌‌part‌‌of‌‌the‌‌line‌‌that‌‌joins‌‌P ‌and‌‌Q ,‌‌including‌‌P  ‌ and‌‌Q ,‌‌form‌‌what‌‌is‌‌called‌‌a‌‌line‌‌segment‌‌[Figure‌‌(b)]‌  ‌

 ‌ Ordering‌‌the‌‌points‌‌so‌‌that‌‌they‌‌proceed‌‌from‌‌P ‌to‌‌Q ‌results‌‌in‌‌a‌‌directed‌‌line‌‌segment‌‌   →



from‌‌P ‌to‌‌Q ,‌‌or‌‌a‌‌geometric‌‌vector,‌‌which‌‌is‌‌denoted‌‌P Q .‌ ‌In‌‌a‌‌directed‌‌line‌‌segment‌‌P Q ,‌‌   P ‌is‌‌called‌‌the‌‌initial‌‌point‌‌and‌‌Q ‌the‌‌terminal‌‌point,‌‌as‌‌indicated‌‌in‌‌Figure‌‌(c).‌  ‌

 ‌  

 ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

153‌ ‌

 ‌ The‌‌vector‌‌v ‌whose‌‌magnitude‌‌is‌‌0 ‌is‌‌called‌‌the‌‌zero‌‌vector,‌‌0 .‌ ‌The‌‌zero‌‌vector‌‌is‌‌assigned‌‌   no‌‌direction.‌   ‌ ‌ Two‌‌vectors‌‌v ‌and‌‌w ‌are‌‌equal,‌‌written‌‌v = w ,‌‌if‌‌they‌‌have‌‌the‌‌same‌‌magnitude‌‌and‌‌   direction.‌   ‌ ‌  ‌ ‌2.4.4.b‌

‌Adding‌‌Vectors‌‌Geometrically‌  ‌

The‌‌sum‌‌v + w ‌of‌‌two‌‌vectors‌‌is‌‌defined‌‌as‌‌follows:‌  ‌ Position‌‌the‌‌vectors‌‌v ‌and‌‌w ‌so‌‌that‌‌the‌‌terminal‌‌point‌‌of‌‌v ‌coincides‌‌with‌‌the‌‌initial‌‌point‌‌   of‌‌w ‌(this‌‌is‌‌also‌‌known‌‌as‌‌putting‌‌the‌‌vectors‌‌“tip‌‌to‌‌tail”).‌ ‌The‌‌vector‌‌v + w ‌is‌‌the‌‌unique‌‌   vector‌‌whose‌‌initial‌‌point‌‌coincides‌‌with‌‌the‌‌initial‌‌point‌‌of‌‌v ‌and‌‌whose‌‌terminal‌‌point‌‌   coincides‌‌with‌‌the‌‌terminal‌‌point‌‌of‌‌w .‌   ‌ ‌

 ‌ Vector‌‌addition‌‌is‌‌commutative‌‌(‌v + w = w + v )‌‌and‌‌associative‌‌(‌u + (v + w ) = (u + v ) + w ).‌   ‌ ‌  ‌ The‌‌zero‌‌vector‌‌0 ‌has‌‌the‌‌property‌‌that‌‌    ‌ v +0 =0 +v =v  ‌ for‌‌any‌‌vector‌‌v .‌   ‌ ‌  

 ‌

154‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌ ‌

If‌‌v ‌is‌‌a‌‌vector,‌‌then‌‌− v ‌is‌‌the‌‌vector‌‌that‌‌has‌‌the‌‌same‌‌magnitude‌‌as‌‌v ,‌‌but‌‌whose‌‌   direction‌‌is‌‌opposite‌‌to‌‌v .‌   ‌ ‌ v + (− v ) = 0   ‌

 ‌  ‌ If‌‌v ‌and‌‌w ‌are‌‌two‌‌vectors,‌‌then‌‌the‌‌difference‌‌v − w ‌is‌‌defined‌‌as‌‌    ‌ v − w = v + (− w )   ‌  ‌ ‌2.4.4.c‌

‌Multiplying‌‌Vectors‌‌by‌‌Numbers‌‌Geometrically‌  ‌

When‌‌using‌‌vectors,‌‌real‌‌numbers‌‌are‌‌referred‌‌to‌‌as‌‌scalars.‌ ‌Scalars‌‌are‌‌quantities‌‌that‌‌   have‌‌only‌‌magnitude.‌   ‌ ‌ If‌‌a ‌is‌‌a‌‌scalar‌‌and‌‌v ‌is‌‌a‌‌vector,‌‌the‌‌scalar‌‌multiple‌‌is‌‌defined‌‌as‌‌follows:‌  ‌ ●

If‌‌a > 0 ,‌‌a v ‌is‌‌the‌‌vector‌‌whose‌‌magnitude‌‌is‌‌a ‌times‌‌the‌‌magnitude‌‌of‌‌v ‌and‌‌whose‌‌   direction‌‌is‌‌the‌‌same‌‌as‌‌that‌‌of‌‌v .‌  ‌



If‌‌a < 0 ,‌‌a v ‌is‌‌the‌‌vector‌‌whose‌‌magnitude‌‌is‌‌|a | ‌times‌‌the‌‌magnitude‌‌of‌‌v ‌and‌‌   whose‌‌direction‌‌is‌‌opposite‌‌to‌‌v .‌‌    ‌



If‌‌a = 0 ‌or‌‌if‌‌v = 0 ,‌‌then‌‌a v = 0  

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

155‌ ‌

 ‌ ‌2.4.4.c‌

‌Multiplying‌‌Vectors‌‌by‌‌Numbers‌‌Geometrically‌‌(con’t)‌  ‌

 ‌

 ‌  ‌ ‌2.4.4.d‌

‌Properties‌  ‌ 0v = 0   ‌

1v = v   ‌

− 1v =   − v   ‌

(a + B )v = a v + B v   ‌

a (v + w ) = a v + a w   ‌

a (Bv) = (aB)v   ‌

 ‌

2.5‌

‌Analytic‌‌Geometry‌‌(Conic‌‌Sections)‌  ‌

Conic‌‌sections‌‌are‌‌figures‌‌that‌‌are‌‌formed‌‌from‌‌the‌‌intersection‌‌of‌‌a‌‌plane‌‌and‌‌two‌‌right‌‌   circular‌‌cones‌‌stacked‌‌on‌‌top‌‌of‌‌each‌‌other‌‌(tip‌‌to‌‌tip).‌   ‌ ‌  ‌

 

 ‌

156‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

2.5.1‌

E ‌ quation‌‌Characteristics‌  ‌

All‌‌four‌‌of‌‌the‌‌equations‌‌are‌‌based‌‌on‌‌the‌‌distance‌‌formula.‌ ‌Note‌‌that‌‌none‌‌of‌‌the‌‌   equations‌‌are‌‌functions,‌‌except‌‌for‌‌vertical‌‌parabolas.‌   ‌ ‌  ‌ Conic‌‌Section‌  ‌

Characteristics‌  ‌

Parabola‌  ‌

only‌‌one‌‌squared‌‌variable‌  ‌

Circle‌  ‌

two‌‌squared‌‌variables,‌‌coefficients‌‌identical‌‌(including‌‌sign)‌  ‌

Ellipse‌  ‌

two‌‌squared‌‌variables,‌‌coefficients‌‌are‌‌not‌‌equal‌‌but‌‌have‌‌the‌‌   same‌‌sign‌  ‌

Hyperbola‌  ‌

two‌‌squared‌‌variables,‌‌coefficients‌‌have‌‌different‌‌signs‌  ‌

You‌‌get‌‌these‌‌equations‌‌by‌‌completing‌‌the‌‌square.‌   ‌ ‌  ‌

2.5.2‌

P ‌ arabolas‌  ‌

 ‌ f ‌is‌‌the‌‌focus‌‌of‌‌the‌‌parabola.‌ ‌A‌‌parabola‌‌is‌‌defined‌‌as‌‌the‌‌set‌‌of‌‌points‌‌equidistant‌‌from‌‌a ‌‌ point‌‌and‌‌a‌‌line.‌ ‌The‌‌point‌‌is‌‌the‌‌focus‌‌and‌‌the‌‌line‌‌is‌‌the‌‌directrix.‌   ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

157‌  ‌

 ‌  ‌  ‌  ‌ Equation‌  ‌ Axis‌‌of‌‌Symmetry‌ 

Horizontal‌  ‌

Vertical‌  ‌

(y − k )2 = 4 a(x − h )   ‌

(x − h )2 = 4 a(y − k )   ‌

y =k  ‌

x =h  ‌

where‌‌the‌‌vertex‌‌is‌‌(h,  k) .‌  There‌‌are‌‌no‌‌coefficients‌‌on‌‌the‌‌left‌‌side‌‌of‌‌the‌‌equation‌‌or‌‌in‌‌front‌‌of‌‌the‌‌unsquared‌‌   variable‌‌(the‌‌x 1 ‌or‌‌y 1 ).‌   ‌ ‌ a ‌is‌‌the‌‌distance‌‌between‌‌the‌‌vertex‌‌and‌‌the‌‌focus.‌ ‌4 a ‌is‌‌the‌‌focal‌‌width.‌   ‌ ‌ To‌‌find‌‌all‌‌the‌‌information‌‌(focus,‌‌focal‌‌width,‌‌the‌‌vertex,‌‌etc.)‌‌you‌‌may‌‌need‌‌to‌‌complete‌‌   the‌‌square‌‌(if‌‌the‌‌equation‌‌is‌‌in‌‌standard‌‌a x 2 + b x + c y + d = 0 ‌form,‌‌for‌‌example).‌ ‌To‌‌find‌‌a ‌‌ walkthrough‌‌of‌‌how‌‌to‌‌do‌‌this,‌‌go‌‌to‌‌the‌‌Algebra‌‌II‌‌section.‌   ‌ ‌  ‌ ‌2.5.2.a‌

‌Example‌  ‌

Find‌‌the‌‌focus,‌‌a ,‌‌the‌‌focal‌‌width,‌‌axis‌‌of‌‌symmetry,‌‌and‌‌the‌‌vertex‌‌of‌‌the‌‌parabola‌‌   y=

1 10 (x

+ 2 )2 − 3 .‌   ‌ ‌

The‌‌main‌‌“trick”‌‌with‌‌conic‌‌sections‌‌is‌‌just‌‌putting‌‌them‌‌into‌‌the‌‌exact‌‌equation‌‌form‌‌they‌‌   are‌‌defined‌‌with.‌ ‌This‌‌makes‌‌it‌‌easy‌‌to‌‌determine‌‌all‌‌of‌‌the‌‌values,‌‌as‌‌it‌‌is‌‌basically‌‌given‌‌to‌‌   you.‌ ‌All‌‌you‌‌need‌‌to‌‌do‌‌is‌‌mess‌‌with‌‌the‌‌equation‌‌a‌‌bit:‌‌move‌‌things‌‌around!‌ ‌So,‌‌start‌‌by‌‌   isolating‌‌the‌‌squared‌‌quantity,‌‌as‌‌we‌‌see‌‌it‌‌in‌‌the‌‌above‌‌equations.‌   ‌

158‌

 ‌ ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

‌2.5.2.a‌

‌Example‌‌(con’t)‌  ‌    y =

1 10 (x

+ 2 )2 − 3   →   y + 3 =

1 10 (x

+ 2 )2   →  (x + 2 )2 = 1 0(y + 3 )   ‌

Now,‌‌it‌‌is‌‌relatively‌‌easy‌‌to‌‌get‌‌all‌‌the‌‌information‌‌asked‌‌for.‌ ‌Start‌‌with‌‌the‌‌vertex;‌‌   remember‌‌that‌‌the‌‌values‌‌are‌‌the‌o ‌ pposite‌‌s‌ ign‌‌‌of‌‌what‌‌you‌‌see‌‌being‌‌added/subtracted‌‌to‌‌   the‌‌x ‌and‌‌y .‌ ‌So,‌‌for‌‌this‌‌parabola,‌‌the‌‌vertex‌‌is‌  ‌ x + 2 = 0   →  x =   − 2            y + 3 = 0   →  y =   − 3   ‌ v = (− 2 ,   − 3 )   ‌ Remember‌‌that‌‌the‌‌focal‌‌width‌‌is‌‌equal‌‌to‌‌4 a ,‌‌or‌‌the‌‌coefficient‌‌in‌‌front‌‌of‌‌the‌‌unsquared‌‌   quantity‌‌(not‌‌the‌‌variable‌‌y ,‌‌but‌‌the‌‌quantity‌‌y + 3 ).‌ ‌So,‌‌we‌‌know‌‌the‌‌focal‌‌width‌‌is‌‌1 0 .‌ ‌To‌‌   find‌‌a ,‌‌divide‌‌1 0 ‌by‌‌4 :‌‌a = 2 .5 .‌   ‌ ‌ The‌‌focus‌‌is‌‌on‌‌the‌‌axis‌‌of‌‌symmetry‌‌of‌‌the‌‌parabola.‌ ‌The‌‌axis‌‌of‌‌symmetry‌‌is‌‌x = h ‌(see‌‌   table),‌‌so‌‌the‌‌axis‌‌of‌‌symmetry‌‌of‌‌this‌‌parabola‌‌is‌‌x =   − 2 .‌ ‌To‌‌find‌‌the‌‌coordinates‌‌of‌‌the‌‌   focus,‌‌add‌‌a ‌to‌‌the‌‌y ‌value‌‌of‌‌the‌‌vertex.‌   ‌ ‌ f = (− 2 ,   − 3 + 2 .5) = (− 2 ,   − 21 )   ‌ ‌  ‌

2.5.3‌

E ‌ llipses‌  ‌

  ‌ ‌ a ‌is‌‌the‌‌longest‌‌distance,‌‌b ‌is‌‌the‌‌shortest‌‌distance,‌‌and‌‌c ‌is‌‌the‌‌distance‌‌between‌‌the‌‌   center‌‌and‌‌the‌‌focus.‌   ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

159‌ ‌

 ‌  ‌ The‌‌sum‌‌of‌‌two‌‌lengths‌‌stays‌‌constant‌‌between‌‌two‌‌fosci.‌ ‌2 a ‌is‌‌the‌‌combined‌‌distance‌‌to‌‌   the‌‌fosci‌‌from‌‌any‌‌point‌‌on‌‌the‌‌ellipse.‌‌    ‌ The‌‌fosci‌‌are‌‌on‌‌the‌‌major‌‌axis.‌ ‌The‌‌vertices‌‌of‌‌an‌‌ellipse‌‌are‌‌the‌‌end‌‌point‌‌of‌‌the‌‌major‌‌   axis.‌   ‌ ‌ Standard‌‌Ellipse‌‌Equation:‌  ‌ (x − h)2 a2

+

(y − k)2 b2

= 1  ‌

where‌‌(h,  k) ‌is‌‌the‌‌center‌‌of‌‌the‌‌ellipse.‌ ‌a 2 ‌is‌‌the‌‌bigger‌‌number‌‌and‌‌the‌‌variable‌‌   associated‌‌with‌‌this‌‌number‌‌is‌‌the‌‌major‌‌axis.‌ ‌Find‌‌c ‌with‌‌the‌‌equation‌‌c = √a 2 − b 2 .‌‌    ‌  ‌ ‌2.5.3.a‌

‌Graphing‌  ‌

To‌‌graph‌‌an‌‌ellipse,‌‌first‌‌plot‌‌the‌‌center.‌ ‌Then,‌‌take‌‌the‌‌square‌‌root‌‌of‌‌a 2 ‌and‌‌b 2 .‌ ‌Starting‌‌   from‌‌the‌‌center,‌‌go‌‌out‌‌a ‌units‌‌in‌‌both‌‌directions‌‌on‌‌the‌‌axis‌‌corresponding‌‌to‌‌the‌‌variable.‌  ‌ Repeat‌‌this‌‌with‌‌b .‌   ‌ ‌ 2

y2

Here‌‌is‌‌a‌‌walkthrough‌‌for‌‌graphing‌‌the‌‌equation‌‌ x4 + 16 = 1 :‌  ‌

 ‌ In‌‌this‌‌case,‌‌the‌‌major‌‌axis‌‌is‌‌the‌‌y ‌axis.‌‌   

160‌

 ‌ ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌ ‌

2.5.4‌

H ‌ yperbolas‌  ‌

 ‌ where‌‌a 2 + b 2 = c 2 ‌and‌‌f ‌is‌‌(h ± c ,  k) .‌  ‌ Hyperbolas‌‌have‌‌a‌‌center‌‌that‌‌is‌‌not‌‌on‌‌the‌‌graph,‌‌but‌‌between‌‌the‌‌two‌‌parts‌‌of‌‌the‌‌   hyperbola.‌ ‌The‌‌center‌‌is‌‌the‌‌intersection‌‌of‌‌the‌‌two‌‌asymptotes‌‌(the‌‌dotted‌‌lines‌‌in‌‌the‌‌   picture).‌   ‌ ‌ The‌‌equation‌‌of‌‌a‌‌hyperbola‌‌is‌‌

(x − h)2 a2



(y − k)2 b2

= 1 .‌ ‌The‌‌positive‌‌term‌‌dominates‌‌the‌‌graph‌‌  

(the‌‌graph‌‌will‌‌open‌‌on‌‌the‌‌axis‌‌that‌‌corresponds‌‌with‌‌the‌‌positive‌‌term).‌ ‌The‌‌denominator‌‌   of‌‌the‌‌positive‌‌term‌‌can‌‌be‌‌less‌‌than‌‌b 2 .‌‌    ‌  ‌ ‌2.5.4.a‌

‌Graphing‌  ‌

To‌‌graph‌‌a‌‌hyperbola,‌‌begin‌‌by‌‌making‌‌a‌‌rectangular‌‌guide.‌ ‌Go‌‌out‌‌a ‌units‌‌in‌‌both‌‌   directions‌‌on‌‌the‌‌x ‌axis,‌‌and‌‌b ‌units‌‌in‌‌both‌‌directions‌‌on‌‌the‌‌y ‌axis:‌‌these‌‌are‌‌the‌‌center‌‌   points‌‌of‌‌the‌‌rectangle.‌‌   

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

161‌ ‌

 ‌ Then,‌‌draw‌‌the‌‌slant‌‌asymptotes‌‌(the‌‌diagonals‌‌of‌‌the‌‌triangle).‌ ‌These‌‌will‌‌show‌‌you‌‌where‌‌   the‌‌graph‌‌approaches.‌   ‌ ‌ Now‌‌you‌‌can‌‌draw‌‌your‌‌graph.‌ ‌The‌‌vertices‌‌of‌‌the‌‌parabola‌‌are‌‌the‌‌points‌‌a ‌or‌‌b ‌units‌‌   away‌‌from‌‌the‌‌center,‌‌depending‌‌on‌‌what‌‌the‌‌dominating‌‌term‌‌of‌‌the‌‌graph‌‌is.‌ ‌Sketch‌‌a ‌‌ parabola-shaped‌‌curve‌‌on‌‌both‌‌sides,‌‌approaching‌‌the‌‌slant‌‌asymptotes‌‌as‌‌you‌‌get‌‌further‌‌   from‌‌the‌‌vertices.‌   ‌ ‌  ‌ ‌2.5.4.b‌

‌Analyzing‌‌an‌‌Equation‌  ‌

When‌‌a‌‌question‌‌asks‌‌you‌‌to‌‌analyze‌‌an‌‌equation,‌‌find‌‌the‌‌following:‌  ‌ ●

graph‌  ‌



vertices‌  ‌



center‌  ‌



foci‌  ‌



transverse‌‌axis‌‌    ‌





goes‌‌through‌‌the‌‌center,‌‌vertices,‌‌and‌‌foci‌  ‌



this‌‌can‌‌be‌‌a‌‌vertical‌‌or‌‌horizontal‌‌line,‌‌it‌‌does‌‌not‌‌have‌‌to‌‌be‌‌the‌‌x ‌or‌‌y ‌axis‌  ‌

asymptotes’‌‌equations‌‌    ‌ ○

slope‌‌is‌‌± ab ,‌‌goes‌‌through‌‌center‌‌→ ‌use‌‌point-slope‌‌formula‌  ‌

 ‌

2.5.5‌

P ‌ arametric‌E ‌ quations‌a ‌ nd‌P ‌ lane‌C ‌ urves‌  ‌

Suppose‌‌x = x (t) ‌and‌‌y = y (t) ‌are‌‌two‌‌functions‌‌of‌‌a‌‌third‌‌variable‌‌t ,‌‌called‌‌the‌‌parameter,‌‌   that‌‌are‌‌defined‌‌on‌‌the‌‌same‌‌interval‌‌I .‌ ‌Then‌‌the‌‌equations‌  ‌ x = x (t)      y = y (t)  

162‌

 ‌ ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ where‌‌t ‌is‌‌in‌‌I ,‌‌are‌‌called‌‌parametric‌‌equations‌‌and‌‌the‌‌graph‌‌of‌‌the‌‌parametric‌‌equations‌‌   is‌‌defined‌‌by‌‌    ‌ (x,  y) = (x(t),  y(t))   ‌ is‌‌called‌‌a‌‌plane‌‌curve.‌   ‌ ‌  ‌ ‌2.5.5.a‌

‌Graphing‌‌a‌‌Plane‌‌Curve‌  ‌

To‌‌graph‌‌a‌‌plane‌‌curve,‌‌you‌‌make‌‌a‌‌table‌‌of‌‌values,‌‌as‌‌seen‌‌below.‌   ‌ ‌ Graph‌‌x (t) = 2 t2 ‌y (t) = 3 t ,‌‌− 2 ≤ t ≤ 2   ‌ For‌‌each‌‌number‌‌t ,‌‌there‌‌corresponds‌‌a‌‌number‌‌x ‌and‌‌a‌‌number‌‌y .‌ ‌So‌‌when‌‌t =   − 2 ,‌‌   then‌‌x = 2 (− 2 )2 = 8 ‌and‌‌y = 3 (− 2 ) =   − 6 .‌ ‌Set‌‌up‌‌a‌‌table‌‌of‌‌values,‌‌then‌‌graph.‌   ‌ ‌  ‌ t  ‌

x  ‌

y  ‌

−2  ‌

8  ‌

−6  ‌

−1  ‌

2  ‌

−3  ‌

0  ‌

0  ‌

0  ‌

1  ‌

2  ‌

3  ‌

2  ‌

8  ‌

6  ‌

 ‌ The‌‌arrows‌‌indicate‌‌orientation.‌ 

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

163‌  ‌

 ‌ 2.5.5.b‌

‌Finding‌‌Rectangular‌‌Equation‌‌of‌‌a‌‌Parametrically‌‌Defined‌‌Curve‌  ‌

Find‌‌the‌‌rectangular‌‌equation‌‌of‌‌x (t) = a sin t ‌y (t) = a cos t ,‌‌− ∞ < t < ∞ .‌ ‌Graph‌‌the‌‌curve‌‌and‌‌   indicate‌‌orientation.‌   ‌ ‌ Use‌‌a‌‌pythagorean‌‌identity:‌ ‌sin t =

x a

‌‌and‌‌c os t =

y a

.‌ T ‌ his‌‌means‌‌that‌‌( ax )2 + ( ay )2 = 1

  →  x 2 + y 2 = a 2 .‌   ‌ ‌ Now‌‌we‌‌can‌‌see‌‌that‌‌the‌‌plane‌‌curve‌‌is‌‌a‌‌circle‌‌with‌‌center‌‌(0,  0) ‌and‌‌radius‌‌a .‌   ‌ ‌

 ‌ As‌‌parameter‌‌t ‌increases,‌‌say‌‌from‌‌t = 0 ‌[the‌‌point‌‌(0,  a) ]‌‌to‌‌t =

π 2

‌[the‌‌point‌‌(a,  0) ],‌‌the‌‌  

corresponding‌‌points‌‌are‌‌traced‌‌in‌‌a‌‌counterclockwise‌‌direction‌‌around‌‌the‌‌circle.‌   ‌ ‌ The‌‌big‌‌thing‌‌when‌‌turning‌‌parametric‌‌equations‌‌into‌‌rectangular‌‌ones‌‌is‌‌eliminating‌‌t ,‌‌as‌‌   this‌‌will‌‌make‌‌it‌‌easier‌‌to‌‌graph.‌ ‌Also,‌‌be‌‌sure‌‌to‌‌pay‌‌attention‌‌to‌‌the‌‌parameters‌‌that‌‌t ‌is‌‌   limited‌‌to;‌‌these‌‌will‌‌change‌‌where‌‌the‌‌graph‌‌starts‌‌and‌‌ends.‌   ‌ ‌  ‌ ‌2.5.5.c‌

‌Use‌‌Time‌‌as‌‌a‌‌Parameter‌‌in‌‌Parametric‌‌Equations‌  ‌

The‌‌parametric‌‌equations‌‌of‌‌the‌‌path‌‌of‌‌a‌‌projectile‌‌fired‌‌at‌‌an‌‌inclination‌‌θ ‌to‌‌the‌‌   horizontal,‌‌with‌‌an‌‌initial‌‌speed‌‌v 0 ,‌‌from‌‌a‌‌height‌‌h ‌above‌‌the‌‌horizontal‌‌are‌  ‌ x (t) = (v 0 cos θ)t

‌y (t) =   − 21 gt2 + (v 0 sin θ)t + h   ‌

where‌‌t ‌is‌‌time‌‌and‌‌g ‌is‌‌the‌‌constant‌‌acceleration‌‌due‌‌to‌‌gravity‌‌(approximately‌‌3 2 f t/sec 2  ‌ or‌‌9 .8 m/s2 ).‌   

164‌

 ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌ ‌

2.6‌

‌Matrices‌  ‌

2.6.1‌

S ‌ olving‌‌a‌S ‌ ystem‌o ‌ f‌‌Equations‌  ‌

Matrices‌‌can‌‌be‌‌used‌‌to‌‌make‌‌solving‌‌a‌‌system‌‌of‌‌equations‌‌easier.‌ ‌This‌‌is‌‌done‌‌through‌‌   the‌‌use‌‌of‌‌row‌‌operations‌‌like‌‌multiplying/dividing,‌‌adding‌‌and‌‌replacing‌‌one‌‌of‌‌the‌‌rows‌‌   with‌‌the‌‌sum,‌‌multiplying/adding‌‌and‌‌replacing‌‌one‌‌row,‌‌or‌‌switching‌‌any‌‌two‌‌rows.‌ ‌When‌‌   you‌‌do‌‌these‌‌row‌‌operations,‌‌you‌‌need‌‌to‌‌record‌‌them‌‌next‌‌to‌‌the‌‌matrix.‌   ‌ ‌ When‌‌putting‌‌a‌‌system‌‌of‌‌equations‌‌into‌‌matrix‌‌form,‌‌you‌‌place‌‌the‌‌coefficients‌‌of‌‌the‌‌   variables‌‌into‌‌a‌‌row,‌‌with‌‌the‌‌number‌‌the‌‌equation‌‌is‌‌equal‌‌to‌‌on‌‌the‌‌right‌‌side‌‌of‌‌the‌‌   dotted‌‌line.‌ ‌All‌‌of‌‌the‌‌coefficients‌‌of‌‌the‌‌same‌‌variable‌‌are‌‌in‌‌a‌‌row‌‌together.‌ ‌For‌‌example,‌‌   the‌‌matrix‌‌form‌‌of‌‌the‌‌system‌‌of‌‌equations‌‌3 x + y − 2 z = 3 ,   x + 4 z = 1 ,   − 2 x + 2 y + 2 z =   − 3   ‌is‌  ‌

  ‌ ‌ Each‌‌number‌‌in‌‌a‌‌matrix‌‌can‌‌be‌‌identified‌‌as‌‌mrc ,‌‌where‌‌r ‌is‌‌the‌‌row‌‌number‌‌and‌‌c ‌is‌‌the‌‌   column‌‌number.‌ ‌So‌‌4 ‌is‌‌at‌‌m23 .‌   ‌ ‌ When‌‌using‌‌matrices‌‌to‌‌solve‌‌systems‌‌of‌‌equations,‌‌your‌‌goal‌‌is‌‌to‌‌put‌‌the‌‌matrix‌‌into‌‌   row-echelon‌‌form:‌  ‌

 ‌ The‌‌answers‌‌to‌‌the‌‌system‌‌will‌‌be‌‌the‌‌numbers‌‌to‌‌the‌‌right‌‌of‌‌the‌‌dotted‌‌line.‌ ‌Start‌‌with‌‌   getting‌‌a‌‌1 ‌in‌‌m11 ,‌‌then‌‌m22 ,‌‌then‌‌m33 .‌   ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

165‌ ‌

 ‌ ‌2.6.1.a‌

‌Example‌  ‌

Solve‌‌the‌‌system‌‌of‌‌equations‌‌x + 2 y = 3 ,  4x − y = 2 .‌   ‌ ‌

 ‌ This‌‌shows‌‌that‌‌x =

7 9

‌and‌‌y =

10 9

.‌ ‌This‌‌means‌‌that‌‌there‌‌is‌‌one‌‌solution‌‌(independent‌‌and‌‌  

consistent).‌   ‌ ‌  ‌ ‌2.6.1.b‌

‌Possible‌‌Solutions‌  ‌

 ‌ This‌‌is‌‌essentially‌‌0 = 0 ,‌‌which‌‌means‌‌that‌‌all‌‌real‌‌numbers‌‌work‌‌and‌‌it‌‌is‌‌a‌‌dependent‌‌   system.‌ ‌However,‌‌there‌‌are‌‌still‌‌constraints:‌‌the‌‌first‌‌two‌‌variables‌‌in‌‌terms‌‌of‌‌the‌‌last‌‌   variable.‌‌   

166‌

 ‌ ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌ ‌

‌2.6.1.b‌

‌Possible‌‌Solutions‌‌(con’t)‌  ‌ x = ...z...      y = ...z...      z ε R   ‌  ‌

 ‌ This‌‌shows‌‌that‌‌0 = 7 ,‌‌which‌‌is‌‌false.‌ ‌This‌‌means‌‌that‌‌there‌‌is‌‌no‌‌solution.‌   ‌ ‌  ‌

2.6.2‌

D ‌ eterminant‌‌of‌‌a‌M ‌ atrix‌  ‌

To‌‌find‌‌the‌‌determinant‌‌of‌‌a‌‌matrix,‌‌the‌‌matrix‌‌can‌‌only‌‌be‌‌a‌‌square‌‌(‌n × n ).‌   ‌ ‌ ‌2.6.2.a‌

‌2x2‌‌Matrix‌  ‌

If‌‌A ‌is‌‌a‌‌2 × 2 ‌matrix,‌‌then‌‌d et(A) ‌is‌‌    ‌

 ‌ d et(A) = a d − b c  

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

167‌ ‌

 ‌  ‌ ‌2.6.2.b‌

‌3x3‌‌Matrix‌  ‌

There‌‌are‌‌two‌‌ways‌‌to‌‌find‌‌the‌‌determinant‌‌of‌‌a‌‌3 × 3 ‌matrix.‌   ‌ ‌ Basket‌‌Weave:‌  ‌ To‌‌begin‌‌the‌‌basket‌‌weave‌‌method,‌‌recopy‌‌the‌‌first‌‌two‌‌columns‌‌to‌‌the‌‌right‌‌of‌‌the‌‌matrix.‌  ‌

 ‌ Then,‌‌starting‌‌from‌‌the‌‌first‌‌number‌‌in‌‌the‌‌matrix‌‌(‌5 ),‌‌add‌‌the‌‌diagonal‌‌products‌‌from‌‌left‌‌   to‌‌right...‌   ‌ ‌

 ‌ (5 ·− 2 · 4 ) + (1 · 9 · 5 ) + (− 4 · 1 · 0 ) =   − 4 0 + 4 5 + 0 = 5   ‌ and‌‌right‌‌to‌‌left.‌  ‌

 ‌ (− 4 ·− 2 · 3 ) + (0 · 9 · 5 ) + (1 · 1 · 4 ) = 4 0 + 0 + 4 = 4 4   ‌  

 ‌

168‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌ ‌

Basket‌‌Weave:‌‌(con’t)‌  ‌ Now‌‌subtract‌‌the‌‌right‌‌to‌‌left‌‌from‌‌the‌‌left‌‌to‌‌right.‌   ‌ ‌ 5 − 44 =   − 39   ‌ The‌‌determinant‌‌is‌‌− 3 9 .‌‌     ‌ Expansion‌‌by‌‌Minors:‌  ‌ To‌‌do‌‌the‌‌expansion‌‌by‌‌minors‌‌technique,‌‌start‌‌by‌‌choosing‌‌one‌‌row‌‌or‌‌column‌‌to‌‌use‌‌as‌‌   multipliers.‌ ‌Use‌‌the‌‌diagram‌‌below‌‌to‌‌determine‌‌the‌‌signs‌‌of‌‌the‌‌multipliers.‌  ‌

 ‌ I‌‌will‌‌show‌‌the‌‌technique‌‌with‌‌the‌‌following‌‌matrix,‌‌using‌‌row‌‌1 ‌as‌‌the‌‌multipliers.‌  ‌

 ‌ Now,‌‌wipe‌‌out‌‌the‌‌row‌‌and‌‌column‌‌of‌‌each‌‌multiplier‌‌and‌‌make‌‌three‌‌2 × 2 ‌matrices‌‌out‌‌of‌‌   the‌‌remaining‌‌matrix.‌   ‌ ‌

 ‌ Calculate‌‌the‌‌determinant‌‌of‌‌each‌‌matrix,‌‌multiply‌‌it‌‌by‌‌the‌‌multiplier,‌‌and‌‌add‌‌together.‌   ‌ ‌ − 3 + 12 − 9 = 0  

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

169‌ ‌

 ‌  ‌ ‌2.6.2.c‌

‌Switch‌‌Rows‌‌or‌‌Columns‌  ‌

 ‌ This‌‌is‌‌essentially‌‌the‌‌same‌‌matrix,‌‌but‌‌the‌‌columns‌‌are‌‌reversed.‌ ‌The‌‌determinant‌‌is‌‌   related;‌‌they‌‌are‌‌opposites‌‌of‌‌each‌‌other.‌   ‌ ‌ a d − b c ‌vs.‌‌b c − a d   ‌ For‌‌a‌‌3 × 3 ‌matrix,‌‌two‌‌rows‌‌or‌‌columns‌‌are‌‌switched.‌   ‌ ‌  ‌ ‌2.6.2.d‌

‌Multiples‌‌of‌‌Rows/Columns‌  ‌

 ‌ The‌‌determinant‌‌is‌‌multiplied‌‌by‌‌the‌‌same‌‌constant‌‌as‌‌the‌‌rows/columns.‌  ‌ − 2                                      − 2 k      ‌  ‌

 

 ‌

170‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌ ‌

2.6.3‌

C ‌ ramer’s‌‌Rule‌  ‌

Cramer’s‌‌rule‌‌is‌‌used‌‌to‌‌solve‌‌three‌‌variable,‌‌three‌‌equation‌‌systems‌‌of‌‌equations.‌   ‌ ‌

 ‌ This‌‌is‌‌done‌‌by‌‌finding‌‌the‌‌four‌‌following‌‌determinants:‌  ‌ First,‌‌leave‌‌out‌‌the‌‌answer‌‌column‌‌and‌‌find‌‌the‌‌determinant.‌  ‌

 ‌ d et(D) = (− 1 2 + 4 − 2 ) − (− 2 − 1 6 + 3 ) = 5   ‌ Repeat‌‌this,‌‌but‌‌leave‌‌out‌‌x ‌(‌D x ),‌‌leave‌‌out‌‌y ‌(‌D y ),‌‌then‌‌leave‌‌out‌‌z ‌(‌D z ).‌ ‌Replace‌‌the‌‌   taken‌‌out‌‌variable‌‌with‌‌the‌‌answer‌‌column.‌   ‌ ‌

 ‌ d et(D x) = 1 5      det(D y ) =   − 1 0      det(D z ) = 5   ‌ To‌‌find‌‌the‌‌values‌‌of‌‌the‌‌variables,‌‌divide‌‌the‌‌D x,  D y ,   and‌‌D z ‌by‌‌D .‌   ‌ x=

Dx D

=

15 5

= 3 ,‌ ‌y =

Dy D

=

−10 5

=   − 2 ,‌ ‌z =

The‌‌solution‌‌of‌‌the‌‌system‌‌of‌‌equations‌‌is‌‌(3,   − 2 ,  1) .‌   ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

Dz D

=

5 5

=1  ‌  ‌ ‌

171‌ ‌

 ‌

2.6.4‌

O ‌ perations‌‌with‌‌Matrices‌  ‌

Two‌‌matrices‌‌are‌‌equal‌‌to‌‌each‌‌other‌‌when‌‌all‌‌numbers‌‌in‌‌the‌‌same‌‌location‌‌are‌‌equal‌‌(i.e.‌‌   m11 = m11 ,  m12 = m12 ,  ... )‌‌and‌‌the‌‌matrices‌‌have‌‌the‌‌same‌‌dimensions‌‌(number‌‌of‌‌rows‌‌and‌‌   columns).‌  ‌ To‌‌demonstrate‌‌the‌‌operations‌‌with‌‌matrices,‌‌I‌‌will‌‌be‌‌using‌‌the‌‌following‌‌matrices:‌  ‌

 ‌ To‌‌add‌‌or‌‌subtract‌‌two‌‌matrices,‌‌the‌‌matrices‌‌must‌‌be‌‌the‌‌same‌‌dimensions.‌ ‌So,‌‌with‌‌the‌‌   matrices‌‌we‌‌have‌‌above,‌‌we‌‌can‌‌only‌‌add‌‌and‌‌subtract‌‌A ‌and‌‌B ‌from‌‌each‌‌other.‌ ‌To‌‌do‌‌   this,‌‌add‌‌or‌‌subtract‌‌the‌‌corresponding‌‌terms‌‌together‌‌for‌‌each‌‌element‌‌of‌‌the‌‌matrix.‌   ‌ ‌

 ‌

 ‌ To‌‌use‌‌a‌‌scalar‌‌factor,‌‌multiply‌‌each‌‌element‌‌of‌‌the‌‌matrix‌‌by‌‌the‌‌scalar.‌   ‌ ‌

 ‌   ‌ ‌ When‌‌multiplying‌‌two‌‌matrices,‌‌the‌‌number‌‌of‌‌columns‌‌in‌‌the‌‌first‌‌matrix‌‌must‌‌be‌‌equal‌‌to‌‌   the‌‌number‌‌of‌‌rows‌‌in‌‌the‌‌second‌‌matrix‌‌(this‌‌indicates‌‌that‌‌matrix‌‌multiplication‌‌is‌‌not‌‌   communicative).‌ ‌The‌‌answer‌‌matrix‌‌will‌‌have‌‌dimensions‌‌where‌‌the‌‌number‌‌of‌‌rows‌‌is‌‌   

172‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌ ‌

 ‌ ‌

equal‌‌to‌‌the‌‌number‌‌of‌‌rows‌‌of‌‌the‌‌first‌‌matrix‌‌and‌‌the‌‌number‌‌of‌‌columns‌‌is‌‌equal‌‌to‌‌the‌‌   number‌‌of‌‌columns‌‌for‌‌the‌‌second‌‌matrix.‌   ‌ ‌ Let’s‌‌say‌‌we’re‌‌multiplying‌‌the‌‌following‌‌two‌‌matrices‌‌together.‌  ‌

 ‌ Notice‌‌how‌‌the‌‌columns‌‌of‌‌the‌‌first‌‌matrix‌‌are‌‌equal‌‌to‌‌the‌‌rows‌‌of‌‌the‌‌second‌‌matrix.‌ ‌We‌‌   can‌‌also‌‌see‌‌that‌‌the‌‌answer‌‌matrix‌‌will‌‌have‌‌dimensions‌‌2 × 3 .‌   ‌ ‌ To‌‌begin‌‌multiplying,‌‌do‌‌the‌‌dot‌‌product‌‌of‌‌row‌‌one‌‌of‌‌the‌‌first‌‌matrix‌‌with‌‌column‌‌one‌‌of‌‌   the‌‌second‌‌matrix.‌ ‌This‌‌will‌‌be‌‌element‌‌m11 ‌of‌‌the‌‌answer‌‌matrix.‌  ‌

 ‌ (1,  3,  4) • (5,   − 1 ,  0)  =  (1 · 5 ) + (3 ·− 1 ) + (4 · 0 )  =  5 − 3 + 0   =  2   ‌ Now,‌‌let’s‌‌do‌‌the‌‌same‌‌thing‌‌for‌‌element‌‌m21 ‌of‌‌the‌‌matrix.‌ ‌This‌‌time,‌‌we‌‌will‌‌do‌‌the‌‌dot‌‌   product‌‌of‌‌row‌‌two‌‌of‌‌the‌‌first‌‌matrix‌‌and‌‌column‌‌one‌‌of‌‌the‌‌second‌‌matrix.‌   ‌ ‌

 ‌ (− 2 ,  3,  1) • (5,   − 1 ,  0)   =  (− 2 · 5 ) + (3 ·− 1 ) + (1 · 0 )  =    − 1 0 − 3 + 0 =   − 1 3  

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

173‌ ‌

 ‌  ‌ Repeat‌‌this‌‌process‌‌until‌‌you’ve‌‌found‌‌all‌‌elements‌‌of‌‌the‌‌matrix.‌  ‌

 ‌ ‌2.6.4.a‌

‌Identity‌‌Matrices‌  ‌

A‌‌multiplicative‌‌identity‌‌is‌‌where‌‌you‌‌can‌‌multiply‌‌any‌‌number‌‌by‌‌the‌‌identity‌‌and‌‌you‌‌will‌‌   get‌‌the‌‌number‌‌you‌‌started‌‌with‌‌(i.e.‌‌8 · x = 8 ,  x = 1 ).‌   ‌ ‌ Only‌‌square‌‌echelon‌‌matrices‌‌form‌‌identity‌‌matrices‌‌(‌I ).‌   ‌ ‌

 ‌ So,‌‌if‌‌you‌‌have‌‌a‌‌4 × 2 ‌matrix,‌‌you‌‌would‌‌multiply‌‌it‌‌by‌‌a‌‌2 × 2 ‌identity‌‌matrix‌‌and‌‌would‌‌get‌‌   the‌‌original‌‌4 × 2 ‌matrix‌‌as‌‌an‌‌answer.‌‌    ‌  

 ‌

174‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌ ‌

‌2.6.4.b‌

‌Inverse‌‌Matrices‌  ‌

These‌‌only‌‌exist‌‌for‌‌square‌‌matrices.‌   ‌ ‌ A‌‌matrix‌‌is‌‌the‌‌inverse‌‌of‌‌another‌‌if‌  ‌ A · A−1 = I   ‌ For‌‌example,‌‌    ‌

 ‌ When‌‌you‌‌multiply‌‌this‌‌out‌‌you‌‌get:‌  ‌

 ‌ Now,‌‌when‌‌we‌‌solve‌‌the‌‌four‌‌equations‌‌that‌‌come‌‌out‌‌of‌‌this‌‌we‌‌get:‌  ‌ 3 a + c = 1       2a + c = 0       3b + d = 0      2b + d = 1   ‌

 ‌  ‌ Inverses‌‌of‌‌2 × 2 ‌matrices‌‌have‌‌a‌‌pattern:‌  ‌

 ‌  

 ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

175‌ ‌

 ‌  ‌ Finding‌‌the‌‌inverse‌‌matrix‌‌of‌‌a‌‌3 × 3 ‌matrix‌‌is‌‌a‌‌bit‌‌different.‌ ‌Just‌‌as‌‌we‌‌did‌‌with‌‌systems‌‌of‌‌   equations,‌‌we‌‌will‌‌put‌‌a‌‌line‌‌after‌‌the‌‌given‌‌matrix,‌‌but‌‌this‌‌time‌‌we‌‌will‌‌put‌‌a‌‌3 × 3 ‌identity‌‌   matrix‌‌to‌‌the‌‌right‌‌of‌‌the‌‌line.‌   ‌ ‌

 ‌ Find‌‌the‌‌identity‌‌matrix‌‌by‌‌getting‌‌the‌‌matrix‌‌to‌‌the‌‌left‌‌of‌‌the‌‌line‌‌into‌‌row‌‌echelon‌‌form.‌  ‌ The‌‌matrix‌‌that‌‌results‌‌to‌‌the‌‌right‌‌of‌‌the‌‌line‌‌will‌‌be‌‌the‌‌inverse‌‌matrix.‌   ‌ ‌

 ‌ This‌‌can‌‌be‌‌used‌‌when‌‌solving‌‌equations‌‌as‌‌well.‌ ‌If‌‌you‌‌have‌‌the‌‌inverse‌‌of‌‌a‌‌matrix‌‌of‌‌the‌‌   coefficients‌‌of‌‌the‌‌equations,‌‌you‌‌can‌‌multiply‌‌this‌‌by‌‌a‌‌matrix‌‌made‌‌of‌‌only‌‌what‌‌the‌‌   equations‌‌are‌‌equal‌‌to.‌ ‌This‌‌will‌‌give‌‌you‌‌what‌‌all‌‌the‌‌variables‌‌are‌‌equal‌‌to.‌ ‌For‌‌example,‌‌   take‌‌the‌‌system‌‌of‌‌equations‌‌below.‌   ‌ ‌ x + y = 3        − x + 3 y + 4 z =   − 3       4y + 3 z = 2   ‌ Make‌‌a‌‌matrix‌‌of‌‌the‌‌coefficients‌‌and‌‌a‌‌different‌‌matrix‌‌of‌‌the‌‌constants‌‌the‌‌equations‌‌are‌‌   equal‌‌to.‌   ‌ ‌

 

176‌

 ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌ ‌

 ‌ Find‌‌the‌‌inverse‌‌of‌‌the‌‌3 × 3 ‌matrix‌‌(notice‌‌that‌‌this‌‌is‌‌the‌‌matrix‌‌we‌‌found‌‌the‌‌inverse‌‌of‌‌   above)‌‌and‌‌multiply‌‌it‌‌by‌‌the‌‌3 × 1 ‌matrix.‌ ‌This‌‌will‌‌give‌‌you‌‌a‌‌3 × 1 ‌matrix‌‌that‌‌holds‌‌what‌‌   each‌‌variable‌‌is‌‌equal‌‌to.‌   ‌ ‌

 ‌  ‌

2.7‌ ‌Partial‌‌Fraction‌‌Decomposition‌  ‌ 2.7.1‌

C ‌ ase‌‌1‌  ‌

Under‌‌the‌‌assumption‌‌that‌‌Q ‌has‌‌only‌‌non‌‌repeated‌‌linear‌‌factors,‌‌the‌‌polynomial‌‌Q ‌has‌‌   the‌‌form‌  ‌ Q(x) = (x − a 1 )(x − a 2 )...(x − a n )   ‌ where‌‌no‌‌two‌‌of‌‌the‌‌numbers‌‌a 1 ,  a 2 ,  ...,  a n ‌are‌‌equal.‌ ‌In‌‌this‌‌case,‌‌the‌‌partial‌‌fraction‌‌   decomposition‌‌of‌‌PQ ‌is‌‌of‌‌the‌‌form‌  ‌ P (x) Q(x)

=

A1 x − a1

+

A2 x − a2

+ ... +

An x − an

 ‌

where‌‌the‌‌numbers‌‌A1 ,  A2 ,  ...,  An ‌are‌‌to‌‌be‌‌determined.‌   ‌ ‌  

 ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

177‌ ‌

 ‌

2.7.2‌

C ‌ ase‌2 ‌ ‌  ‌

If‌‌the‌‌polynomial‌‌Q ‌has‌‌a‌‌repeated‌‌linear‌‌factor,‌‌say‌‌(x − a )n,  n ≥ 2 ‌is‌‌an‌‌integer,‌‌then,‌‌in‌‌the‌‌   partial‌‌fraction‌‌decomposition‌‌of‌‌PQ ,‌‌allow‌‌for‌‌the‌‌terms‌  ‌ A1 x − a

+

A2

(x − a)2

+ ... +

An (x − a)n

 ‌

where‌‌the‌‌numbers‌‌A1 ,  A2 ,  ...,  An ‌are‌‌to‌‌be‌‌determined.‌   ‌ ‌  ‌

2.7.3‌ C ‌ ase‌3 ‌ ‌  ‌ Suppose‌‌Q ‌contains‌‌a‌‌non‌‌repeated‌‌irreducible‌‌quadratic‌‌factor‌‌of‌‌the‌‌form‌‌a x 2 + b x + c .‌  ‌ Then,‌‌in‌‌the‌‌partial‌‌fraction‌‌decomposition‌‌of‌‌PQ ,‌‌allow‌‌for‌‌the‌‌term‌  ‌ Ax + B ax2  + bx + c

 ‌

where‌‌the‌‌numbers‌‌A ‌and‌‌B ‌are‌‌to‌‌be‌‌determined.‌  ‌  ‌

2.7.4‌ C ‌ ase‌4 ‌ ‌  ‌ Suppose‌‌the‌‌polynomial‌‌Q ‌contains‌‌a‌‌repeated‌‌irreducible‌‌quadratic‌‌factor‌‌of‌‌the‌‌form‌‌   (ax 2 + b x + c )n ,‌‌n ≥ 2 ,‌‌n ‌is‌‌an‌‌integer,‌‌and‌‌b 2 − 4 ac < 0 .‌ ‌Then,‌‌in‌‌the‌‌partial‌‌fraction‌‌   decomposition‌‌of‌‌PQ ,‌‌allow‌‌for‌‌the‌‌terms‌  ‌ A1 x + B1 ax2  + bx + c

+

A2 x + B2

(ax2  + bx + c)2

+ ... +

An x + Bn (ax2  + bx + c)n

 ‌

where‌‌the‌‌numbers‌‌A1 ,  B 1 ,  A2 ,  B 2 ,  ...,  An ,  B n ‌are‌‌to‌‌be‌‌determined.‌‌   

178‌

 ‌ ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ‌2.7.4.a‌

‌Example‌‌(Case‌‌1‌‌and‌‌Case‌‌2)‌  ‌ 2

 − 4x + 12 Find‌‌the‌‌partial‌‌fraction‌‌decomposition‌‌of‌‌xx3  − 4x . ‌  ‌ ‌ 2  + 4x ‌

Begin‌‌by‌‌factoring‌‌the‌‌denominator.‌  ‌ x 3 − 4 x 2 + 4 x = x (x 2 − 4 x + 4 ) = x (x − 2 )2   ‌ Notice‌‌we‌‌have‌‌one‌‌non‌‌repeated‌‌linear‌‌factor‌‌x ‌and‌‌one‌‌repeated‌‌linear‌‌factor‌‌(x − 2 )2 .‌  ‌ B So,‌‌case‌‌1:‌‌Ax ‌and‌‌case‌‌2:‌‌ x − 2 +

C (x − 2)2

‌is‌‌in‌‌the‌‌decomposition.‌ ‌Rewrite‌‌the‌‌fraction.‌  ‌

x2  − 4x + 12 x3  − 4x2  + 4x

=

A x

+

B x − 2

+

C (x − 2)2

 ‌

Now,‌‌multiply‌‌both‌‌sides‌‌by‌‌x (x − 2 )2 ‌to‌‌get‌‌rid‌‌of‌‌the‌‌fractions.‌  ‌ x 2 − 4 x + 1 2 = A(x − 2 )2 + B x(x − 2 ) + C x   ‌ When‌‌you‌‌let‌‌x = 0 ,‌‌everything‌‌multiplied‌‌by‌‌x ‌gets‌‌cancelled‌‌out,‌‌leaving‌‌1 2 = 4 A .‌ ‌This‌‌   means‌‌A = 3 .‌   ‌ ‌ When‌‌you‌‌let‌‌x = 2 ,‌‌both‌‌the‌‌A ‌and‌‌B ‌terms‌‌drop,‌‌leaving‌‌2 C = 8 .‌ ‌This‌‌means‌‌C = 4 .‌   ‌ ‌ To‌‌find‌‌B ‌let‌‌x = 1 ‌(or‌‌anything‌‌that‌‌is‌‌not‌‌0 ‌or‌‌2 )‌‌and‌‌plug‌‌in‌‌what‌‌you‌‌have‌‌for‌‌A ‌and‌‌C   ‌ 1 − 4 + 1 2 = 3 (− 1 )2 + B (− 1 ) + 4   ‌ B = −2  ‌ Now,‌‌we‌‌have‌‌found‌‌all‌‌unknown‌‌values.‌ ‌Plug‌‌these‌‌into‌‌the‌‌decomposition‌‌we‌‌found‌‌   above.‌   ‌ ‌ x2  + 4x + 12 x3  − 4x2  + 4x

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

=

3 x



2 x − 2

+

4 (x − 2)2

 

 ‌ ‌

179‌  ‌

 ‌

“Nature‌‌-‌‌cue‌‌the‌‌theme‌‌from‌‌the‌‌Twilight‌‌Zone‌‌-‌‌somehow‌‌knows‌‌calculus”‌  ‌ -Steven‌‌Strogatz‌  ‌

2.8‌  ‌  ‌  ‌  ‌  

180‌

‌My‌‌Notes‌‌for‌‌Precalculus‌  ‌

 ‌

‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

2.8‌  ‌  ‌  ‌  ‌  ‌  ‌  ‌  

‌My‌‌Notes‌‌for‌‌Precalculus‌‌(con’t)‌ 



 ‌

Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌

181‌  ‌

 ‌

2.8‌

182‌

‌My‌‌Notes‌‌for‌‌Precalculus‌‌(con’t)‌ 



‌Section‌‌2‌‌-‌‌Precalculus‌‌-‌‌M ath‌‌Q RH‌  ‌

“Change‌‌is‌‌most‌‌s luggish‌‌a t‌‌the‌‌e xtremes‌‌    ‌ because‌‌the‌‌d erivative‌‌is‌‌z ero‌‌there.”‌  -Steven‌‌Strogatz‌  ‌  ‌

Section‌‌3‌‌-‌‌Calculus‌‌I ‌ ‌ 3.0‌

‌Summary‌‌Sheet‌  ‌ ‌

Limit‌‌Laws‌  ‌ 1.

lim  [f (x) ± g (x)] = lim  f (x)  ± lim  g(x)   ‌

2.

lim  [c · f (x)] = c · lim  f (x)   ‌

3.

lim  [f (x) · g (x)] = lim  f (x) · lim  g(x)   ‌

4.

f (x) lim  [ g(x) ]=

x→a

x→a

x→a

x→a

x→a

x→a

x→a

x→a

lim   f (x)

x→a

lim   g(x)

x→a

x→a

,‌‌if‌‌lim  g(x) =/ 0   ‌ x→a

5.

lim  x = a   ‌

6.

lim  c = c   ‌

7.

lim  [f (x)]n = [lim  f (x)]n   ‌

x→a x→a x→a

x→a

8. If‌‌n‌‌is‌‌even‌‌and‌‌a‌‌>‌‌0,‌‌we‌‌have‌‌lim  √x = √a .‌ ‌If‌‌n‌‌is‌‌even‌‌and‌‌we‌‌assume‌‌that‌‌   n

n

x→a

lim  f (x) > 0 ‌as‌‌x → a ‌then,‌‌    ‌ x→a

n lim √ f(x) =

x→a

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

√lim  f(x) ‌, ‌‌n ∈ Z  ,‌‌n > 1   n

x→a

 ‌ ‌

183‌  ‌

 ‌ Limits‌‌of‌‌Rational‌‌Numbers‌‌Theorem‌  ‌ If‌‌r‌‌>‌‌0‌‌is‌‌a‌‌rational‌‌number‌‌then,‌ lim   x1r = 0   ‌ x→∞

If‌‌r‌‌>‌‌0‌‌is‌‌a‌‌rational‌‌number‌‌such‌‌that‌‌x r is‌‌defined‌‌for‌‌all‌‌x‌‌then,‌ lim   x1r = 0   ‌ x→−∞ ➔ If‌‌r‌‌is‌‌a‌‌positive‌‌exponent‌‌in‌‌the‌‌denominator,‌‌x r → ∞ ,‌‌as‌‌x → ∞ .‌  ‌  ‌ Basic‌‌Derivative‌‌Functions‌  ‌ ●

d constant‌‌function‌‌(f (x) = c ) :‌‌ dx (c) = 0   ‌



d n power‌‌rule:‌‌ dx (x ) = nxn−1   ‌



d constant‌‌multiple‌‌rule:‌‌ dx (c · f (x)) = c · dxd  f (x)   ‌



d sum‌‌rule:‌‌ dx [f (x) + g (x)] = dxd  f (x) + dxd  g(x)   ‌ ‌



d difference‌‌rule:‌‌ dx [f (x) − g (x)] = dxd  f (x) − dxd  g(x)   ‌



d x natural‌‌exponential‌‌function:‌‌ dx (e ) = ex   ‌



d product‌‌rule:‌‌ dx [f (x) · g (x)] = f (x) · dxd  g(x) + g (x) · dxd  f (x)  



d quotient‌‌rule:‌‌ dx [ g(x) ] =



chain‌‌rule:‌ dx = du · du dx   ‌ ‌



‌exponential‌‌functions:‌‌dxd (b x) = b x · ln b   ‌



1 logarithmic‌‌functions:‌‌ dx (log b x) = x·ln b  ‌

f(x)

dy

 

d d g(x)· dx  f(x) − f(x)· dx  g(x) 2 [g(x)]

 ‌

dy

dy

 ‌

184‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

Derivative‌‌Trigonometric‌‌Identities‌  ‌ ●

d dx  (sin x)

= c os(x)   ‌



d dx (cos x)

=   − sin(x)   ‌



d dx (tan x)

= sec 2 (x)   ‌



d dx (csc x)

=   − c sc(x)cot(x)   ‌



d dx (sec x)

= sec(x)tan(x)   ‌



d dx (cot x)

=   − c sc 2 (x)   ‌

 ‌ Differentials‌  ‌ ●

d y = f ′(x)dx   ‌



“measurement‌‌error”‌‌means‌‌the‌‌derivative‌‌of‌‌a‌‌variable‌  ‌



relative‌‌error‌‌=‌‌dxx ,‌‌where‌‌d x ‌is‌‌the‌‌derivative‌‌of‌‌the‌‌functions‌‌and‌‌x ‌is‌‌the‌‌actual‌‌   function‌  ‌

 ‌

Absolute‌‌Maximums‌‌and‌‌Minimums‌  ‌ 1. Set‌‌f ′(x) = 0 ‌and‌‌find‌‌roots.‌ ‌Plug‌‌these‌‌numbers‌‌back‌‌into‌‌f .‌  ‌ 2. Find‌‌f ‌of‌‌endpoints‌‌a ‌and‌‌b   ‌ 3. Find‌‌the‌‌largest‌‌and‌‌smallest‌‌values‌  ‌  ‌

How‌‌Derivatives‌‌Affect‌‌the‌‌Shape‌‌of‌‌a‌‌Graph‌  ‌ Increasing/Decreasing‌‌Test:‌  ‌ ●

If‌‌f ′(x)  >  0 ‌on‌‌an‌‌interval,‌‌then‌‌the‌‌function‌‌f ‌is‌‌increasing‌‌on‌‌that‌‌interval‌  ‌



If‌‌f ′(x)  <  0 ‌on‌‌an‌‌interval,‌‌then‌‌the‌‌function‌‌f ‌is‌‌decreasing‌‌on‌‌that‌‌interval‌ 

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

185‌  ‌

 ‌ The‌‌First‌‌Derivative‌‌Test:‌  ‌ a. if‌‌f ′ ‌changes‌‌from‌‌positive‌‌to‌‌negative‌‌at‌‌c ,‌‌then‌‌f ‌has‌‌a‌‌local‌‌max‌‌at‌‌c   ‌ b. if‌‌f ′ ‌changes‌‌from‌‌negative‌‌to‌‌positive‌‌at‌‌c ,‌‌then‌‌f ‌has‌‌a‌‌local‌‌min‌‌at‌‌c   ‌ c. if‌‌f ‌is‌‌positive‌‌on‌‌both‌‌sides‌‌or‌‌negative‌‌on‌‌both‌‌sides‌‌of‌‌c ,‌‌then‌‌f ‌has‌‌no‌‌local‌‌   min/max‌  ‌ Concavity‌‌Test:‌  ‌ ●

if‌‌f ′′  >  0 ‌for‌‌all‌‌x ‌in‌‌I ,‌‌then‌‌the‌‌graph‌‌of‌‌f ‌is‌‌concave‌‌upward‌‌on‌‌I   ‌



if‌‌f ′′  <  0 ‌for‌‌all‌‌x ‌in‌‌I ,‌‌then‌‌the‌‌graph‌‌of‌‌f ‌is‌‌concave‌‌downward‌‌on‌‌I   ‌

The‌‌Second‌‌Derivative‌‌Test:‌  ‌ a. if‌‌f ′′(c) = 0 ‌and‌‌f ′′(c)  >  0 ,‌‌then‌‌f ‌has‌‌a‌‌local‌‌minimum‌‌at‌‌c   ‌ b. if‌‌f ′′(c) = 0 ‌and‌‌f ′′(c)  <  0 ,‌‌then‌‌f ‌has‌‌a‌‌local‌‌maximum‌‌at‌‌c   ‌  ‌

Mean‌‌Value‌‌Theorem‌  ‌ f ′(c) =

f (b) − f (a) b − a

,‌‌f (b) − f (a) = f ′(c)(b − a )   ‌

 ‌ Definite‌‌Integrals‌  ‌ b

∫ f (x) dx = F (b) − F (a)   a

 



 ‌

186‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

The‌‌Fundamental‌‌Theorem‌‌of‌‌Calculus‌  ‌ Suppose‌‌f ‌is‌‌continuous‌‌on‌‌[a,  b]   ‌ x

1. if‌‌g (x) = ∫ f (t)dt ,‌‌then‌‌g ′(x) = f (x)   ‌ a

2.

b

∫ f (x)dx = F (b) − F (a) ,‌‌where‌‌F a

‌is‌‌any‌‌antiderivative‌‌of‌‌f   ‌

Common‌‌Indefinite‌‌Integrals‌  ‌  

 

 

 

1.

∫ c · f (x)dx = c · ∫ f (x)dx  

2.

∫[f (x) ± g (x)]dx = ∫ f (x)dx ± ∫ g (x)dx  

3.



 

 

 

 

 

 

 

∫ k  dx = k x + C  





 

4.

 

∫ xn dx =  

5.

xn+1 n+1

 

+ C ‌‌where‌‌n =/ 1   ‌

∫ exdx = ex + C  



 

6.

 

∫ 1x dx = ln |x| + C  



 

7.

 

x

b +C  ∫ b xdx = ln b



 

8.

 

∫ |x | d x =  

9.

x|x| 2

+C  ‌

 

∫ sin x dx =   − cos x  + C  



 

 

10. ∫ c os x dx = sin x  + C   ‌  

 

11. ∫ c sc 2 x dx =   − c ot x + C   ‌  

 

12. ∫ sec 2 x dx = tan x + C  

 ‌ ‌

 

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

187‌  ‌

 ‌ Common‌‌Indefinite‌‌Integrals‌‌(con’t)‌  ‌  

13. ∫ c sc x cot x dx =   − c sc x + C   ‌  

 

14. ∫ x21+1 dx = tan −1 x + C   ‌  

 

15. ∫  

1

√1−x2

dx = sin −1 x + C   ‌

Indefinite‌‌Integral‌‌Substitution‌‌Rule‌  ‌  

 

 

 

∫ f (g(x)) · g ′(x) dx = ∫ f (u) du  



Definite‌‌Integral‌‌Substitution‌‌Rule‌  ‌ b

g(b)

a

g(a)

∫ f (g(x)) · g ′(x) dx =



f (u) du   ‌

Integrals‌‌of‌‌Symmetric‌‌Functions‌  ‌ Suppose‌‌f ‌is‌‌continuous‌‌on‌‌[− a ,  a]   ‌ a

a

a. if‌‌f ‌is‌‌even‌‌[f (− x ) = f (x)] ,‌‌then‌‌ ∫ f (x) dx = 2 ∫ f (x) dx   ‌ −a

0

a

b. if‌‌f ‌is‌‌odd‌‌[f (− x ) =   − f (x)] ,‌‌then‌‌ ∫ f (x) dx = 0   −a

188‌

 ‌ ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

3.1‌ ‌Limits‌  ‌ Definition‌‌of‌‌a‌‌Limit‌  ‌ ➔ Suppose‌‌f (x) is‌‌defined‌‌when‌‌x‌‌is‌‌near‌‌the‌‌number‌‌a‌‌(this‌‌means‌‌that‌‌f is‌‌defined‌‌on‌‌   some‌‌open‌‌interval‌‌that‌‌contains‌‌a,‌‌except‌‌possibly‌‌a‌‌itself).‌ ‌Then,‌‌we‌‌write‌  ‌ lim f (x) = L   ‌ x→a

and‌‌say‌‌“the‌‌limit‌‌of‌‌f (x) ,‌‌as‌‌x‌‌approaches‌‌a,‌‌equals‌‌L”‌‌if‌‌we‌‌can‌‌make‌‌the‌‌values‌‌of‌‌   f (x) arbitrarily‌‌close‌‌to‌‌L‌‌(as‌‌close‌‌to‌‌L‌‌as‌‌we‌‌like)‌‌by‌‌restricting‌‌x‌‌to‌‌be‌‌sufficiently‌‌   close‌‌to‌‌a‌‌(on‌‌either‌‌side)‌‌but‌‌not‌‌equal‌‌to‌‌a”.‌   ‌ ‌ ➔

lim f (x) ‌means‌‌“the‌‌limit‌‌of‌‌f (x) as‌‌x‌‌approaches‌‌a‌‌from‌‌the‌‌left.‌ ‌We‌‌are‌‌ 

x→a−

taking‌‌x‌‌sufficiently‌‌close‌‌to‌‌a‌‌but‌‌x‌‌‌‌a.‌  ‌ ➔ If‌‌L‌‌=‌‌± ∞ ,‌‌the‌‌limit‌‌does‌‌not‌‌exist‌‌(DNE).‌   ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

189‌  ‌

 ‌

3.1.1‌

L ‌ imit‌L ‌ aws‌  ‌

Suppose‌‌c‌‌is‌‌a‌‌constant‌‌and‌‌lim f (x) and‌‌lim g (x) exist.‌   ‌ ‌ x→a

x→a

1.

lim  [f (x) ± g (x)] = lim  f (x)  ± lim  g(x)   ‌

2.

lim  [c · f (x)] = c · lim  f (x)   ‌

3.

lim  [f (x) · g (x)] = lim  f (x) · lim  g(x)   ‌

4.

f (x) lim  [ g(x) ]=

x→a

x→a

x→a

x→a

x→a

x→a

x→a

x→a

lim   f (x)

x→a

lim   g(x)

x→a

x→a

,‌‌if‌‌lim  g(x) =/ 0   ‌ x→a

5.

lim  x = a   ‌

6.

lim  c = c   ‌

7.

lim  [f (x)]n = [lim  f (x)]n   ‌

x→a

x→a x→a

x→a

8. If‌‌n‌‌is‌‌even‌‌and‌‌a‌‌>‌‌0,‌‌we‌‌have‌‌lim  √x = √a .‌ ‌If‌‌n‌‌is‌‌even‌‌and‌‌we‌‌assume‌‌that‌‌   n

n

x→a

lim  f (x) > 0 ‌as‌‌x → a ‌then,‌‌    ‌ x→a

n lim √ f(x) =

x→a

3.1.2‌

√lim  f(x) ‌, ‌‌n ∈ Z  ,‌‌n > 1   ‌ n

x→a

D ‌ irect‌S ‌ ubstitution‌P ‌ roperty‌  ‌

➔ If‌‌f (x) is‌‌a‌‌polynomial‌‌or‌‌a‌‌rational‌‌function‌‌and‌‌a‌‌is‌‌in‌‌the‌‌domain‌‌of‌‌f (x)   ‌ lim  f (x) = f (a)   ‌ x→a

➔ This‌‌rule‌‌does‌‌not‌‌work‌‌both‌‌ways‌  ‌ ➔ This‌‌rule‌‌only‌‌works‌‌because‌‌polynomial‌‌and‌‌rational‌‌functions‌‌are‌‌defined‌‌   everywhere.‌  ‌

 

 ‌

190‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

3.1.3‌

T ‌ he‌‌Squeeze‌‌Theorem‌  ‌

➔ If‌‌f (x) ≤ g (x) ≤ h (x) ‌when‌‌x‌‌is‌‌near‌‌a‌‌(except‌‌possibly‌‌at‌‌a)‌‌and‌  ‌ lim  f (x) = lim  h(x) = L   ‌ x→a

x→a

then,‌  ‌ lim  g(x) = L   ‌ x→a

 ‌

3.1.4‌ C ‌ ontinuous‌‌Functions‌  ‌ ➔ A‌‌function‌‌f ‌is‌‌continuous‌‌(no‌‌interruptions,‌‌breaks/holes,‌‌or‌‌gaps)‌ ‌at‌‌a‌‌number‌‌a‌‌if‌‌   lim  f (x) = f (a) .‌  ‌ x→a

➔ There‌‌are‌‌three‌‌regulations‌‌that‌‌all‌‌must‌‌be‌‌met‌  ‌

◆ ◆ ◆

f (a) ‌is‌‌defined‌‌(a‌‌is‌‌in‌‌the‌‌domain‌‌of‌‌f )‌  ‌ lim  f (x) ‌exists‌‌(not‌‌± ∞ )‌  ‌ x→a

lim  f (x) = f (a)   ‌ x→a

➔ If‌‌f is‌‌defined‌‌on‌‌an‌‌open‌‌interval‌‌containing‌‌a,‌‌except‌‌perhaps‌‌at‌‌a,‌‌we‌‌say‌‌that‌‌f ‌is‌‌   discontinuous‌‌at‌‌a,‌‌or‌‌that‌‌f ‌has‌‌a‌‌discontinuity‌‌at‌‌a,‌‌if‌‌f ‌is‌‌not‌‌continuous‌‌at‌‌a.‌   ‌ ‌ ➔ A‌‌function‌‌f ‌is‌‌continuous‌‌from‌‌the‌‌right‌‌at‌‌a‌‌number‌‌a‌‌if‌‌‌ lim+  f (x)  = f (a) ‌. ‌ ‌ x→a

➔ A‌‌function‌‌f is‌‌continuous‌‌from‌‌the‌‌left‌‌at‌‌a‌‌number‌‌a‌‌if‌‌ lim−  f (x)  = f (a) ‌. ‌

 ‌ ‌

x→a

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

191‌ ‌

 ‌

3.1.5‌

C ‌ ontinuity‌T ‌ heorems‌  ‌

If‌‌f ‌and‌‌g ‌are‌‌continuous‌‌at‌‌a‌‌and‌‌c‌‌is‌‌a‌‌constant,‌‌then‌‌the‌‌following‌‌are‌‌also‌‌continuous‌‌at‌‌   a.‌  ‌ ●

f +g  ‌



f −g  ‌



c·f  ‌



fg   ‌



f g

,‌‌if‌‌g (a) =/ 0   ‌

 ‌ The‌‌following‌‌types‌‌of‌‌functions‌‌are‌‌continuous‌‌at‌‌every‌‌number‌‌in‌‌their‌‌domains.‌   ‌ ‌ ●

polynomial‌  ‌



rational‌  ‌



root‌  ‌



trigonometric‌  ‌



inverse‌‌trigonometric‌  ‌



exponential‌  ‌



logarithmic‌  ‌

 ‌

3.1.6‌

C ‌ omposite‌F ‌ unction‌T ‌ heorem‌  ‌

➔ If‌‌f (x) is‌‌continuous‌‌at‌‌b‌‌and‌‌lim  g(x) = b ,‌‌then‌‌lim  f (g(x)) = f (b) .‌ ‌In‌‌other‌‌words,‌  ‌ x→a

x→a

lim  f (g(x)) = f ( lim  g(x))   ‌ x→a

x→a

 

192‌

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

3.1.7‌

C ‌ omposites‌o ‌ f‌‌Continuous‌‌Functions‌‌Theorem‌  ‌

➔ If‌‌g ‌is‌‌continuous‌‌at‌‌a‌‌and‌‌f ‌is‌‌continuous‌‌at‌‌g (a) ,‌‌then‌‌the‌‌composite‌‌function‌‌f ° g  ‌ given‌‌by‌‌(f ° g )(x) = f (g(x)) ‌is‌‌continuous‌‌at‌‌a.‌  ‌



3.1.8‌

i.e.‌‌composites‌‌of‌‌continuous‌‌functions‌‌at‌‌a‌‌are‌‌continuous‌‌at‌‌a ‌ ‌

T ‌ he‌‌Intermediate‌‌Value‌T ‌ heorem‌  ‌

➔ Suppose‌‌that‌‌f ‌is‌‌continuous‌‌at‌‌a‌‌on‌‌the‌‌closed‌‌interval‌‌[a,‌‌b]‌‌and‌‌let‌‌N‌‌be‌‌any‌‌   number‌‌between‌‌f (a) ‌and‌‌f (b) ,‌‌where‌‌f (a) =/ f (b) .‌ ‌Then‌‌there‌‌exists‌‌a‌‌number‌‌c‌‌in‌‌   the‌‌open‌‌interval‌‌(a,‌‌b)‌‌such‌‌that‌‌f (c) = N .‌   ‌ ‌



This‌‌is‌‌solely‌‌an‌‌existence‌‌theorem,‌‌it‌‌does‌‌not‌‌show‌‌how‌‌to‌‌find‌‌this.‌  ‌

 ‌

3.1.9‌

“‌ Intuitive”‌D ‌ efinition‌‌of‌‌a‌L ‌ imit‌a ‌ t‌I‌ nfinity‌  ‌

➔ Let‌‌f ‌be‌‌a‌‌function‌‌that‌‌is‌‌defined‌‌at‌‌some‌‌interval‌‌(a,  ∞) .‌ ‌Then,‌  ‌ lim  f (x) = L   ‌ x→∞

which‌‌means‌‌that‌‌the‌‌values‌‌of‌‌f (x) ‌can‌‌be‌‌made‌‌arbitrarily‌‌close‌‌to‌‌L‌‌by‌‌requiring‌‌x‌ to‌‌be‌‌sufficiently‌‌large.‌  ‌ ➔ The‌‌same‌‌applies‌‌to‌‌(− ∞ ,  a) ‌where‌‌    ‌ lim  f (x) = L   ‌

x→−∞

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

193‌ ‌

 ‌

3.1.10‌

L ‌ imits‌o ‌ f‌R ‌ ational‌N ‌ umbers‌T ‌ heorem‌  ‌

➔ If‌‌r‌‌>‌‌0‌‌is‌‌a‌‌rational‌‌number‌‌then,‌  ‌

lim   x1r = 0   ‌

x→∞

If‌‌r‌‌>‌‌0‌‌is‌‌a‌‌rational‌‌number‌‌such‌‌that‌‌x r is‌‌defined‌‌for‌‌all‌‌x‌‌then,‌  ‌

lim   1r x→−∞ x

= 0  ‌

➔ If‌‌r‌‌is‌‌a‌‌positive‌‌exponent‌‌in‌‌the‌‌denominator,‌‌x r → ∞ ,‌‌as‌‌x → ∞ .‌  ‌ ➔ The‌‌numerator‌‌can‌‌be‌‌a‌‌constant‌‌(see:‌‌limit‌‌rules)‌  ‌  ‌

3.2‌

‌Derivatives‌  ‌

A‌‌derivative‌‌is‌‌the‌‌slope‌‌of‌‌a‌‌point,‌‌also‌‌known‌‌as‌‌the‌‌instantaneous‌‌rate‌‌of‌‌change‌‌or‌‌the‌‌   slope‌‌of‌‌a‌‌tangent‌‌line.‌   ‌ ‌ ❏ Notation‌  ‌ ❏ f ′(x) ,‌‌read‌‌as‌‌“f‌‌prime”‌  ‌ ❏ y ′ ,‌‌read‌‌as‌‌“y‌‌prime”‌  ‌



dy dx



d dx f (x) ,‌r‌ ead‌‌as‌‌“the‌‌derivative‌‌with‌‌respect‌‌to‌‌x‌‌of‌‌f (x) ”‌ 

‌,‌‌read‌‌as‌‌“the‌‌derivative‌‌of‌‌y‌‌with‌‌respect‌‌to‌‌x”‌  ‌ ‌

❏ D f (x) ,‌‌read‌‌as‌‌“the‌‌derivative‌‌of‌‌f (x) ”‌  ‌ ❏ D xf (x) ,‌‌read‌‌as‌‌“the‌‌derivative‌‌with‌‌respect‌‌to‌‌x‌‌of‌‌f (x) ”‌  ‌  

 ‌

194‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

3.2.1‌

D ‌ erivatives‌a ‌ t‌t‌ he‌P ‌ oint‌(‌ a,‌f‌ (a))‌‌    ‌

➔ Given‌‌the‌‌function‌‌f (x) ‌and‌‌x‌‌=‌‌a,‌  ‌

f ′(a) = lim   h→0

f(a+h)−f(a) h

 ‌

where‌‌h ‌represents‌‌|x − a | .‌   ‌ ‌ ➔ This‌‌is‌‌essentially‌‌taking‌‌the‌‌limit‌‌as‌‌h‌‌approaches‌‌0‌‌of‌‌the‌‌difference‌‌   quotient.‌   ‌ ‌



This‌‌equation‌‌comes‌‌from‌‌the‌‌traditional‌‌equation‌‌for‌‌taking‌‌the‌‌slope‌‌   of‌‌a‌‌secant‌‌line‌‌(two‌‌intersection‌‌points).‌ ‌However,‌‌instead‌‌of‌‌having‌‌   an‌‌f (a) ‌and‌‌a‌‌f (b) ,‌‌h‌‌is‌‌used‌‌to‌‌represent‌‌the‌‌horizontal‌‌distance‌‌   between‌‌two‌‌points‌‌getting‌‌smaller‌‌and‌‌smaller‌‌(i.e.‌‌approaching‌‌0).‌   ‌ ‌

 ‌

3.2.2‌

T ‌ he‌D ‌ erivative‌o ‌ f‌a ‌ ‌F ‌ unction‌  ‌

➔ The‌‌derivative‌‌function‌‌gives‌‌the‌‌slopes‌‌of‌‌the‌‌tangent‌‌lines/instantaneous‌‌rate‌‌of‌‌   change‌‌at‌‌any‌‌point.‌  ‌

f ′(x) = lim

h→0

f(x+h)−f(x) h

 ‌

This‌‌function‌‌will‌‌usually‌‌produce‌‌another‌‌function.‌   ‌

3.2.3‌

D ‌ ifferentiability‌  ‌

➔ A‌‌function‌‌f ‌is‌‌differentiable‌‌at‌‌a‌‌if‌‌f ′(a) ‌exists.‌  ‌ ➔ A‌‌function‌‌f ‌is‌‌differentiable‌‌on‌‌an‌‌open‌‌interval‌‌(a,‌‌b)‌‌[or‌‌(a,‌‌∞ )‌‌/‌‌(-‌∞ ,‌‌a)‌‌/‌‌(-‌∞ ,‌‌∞ )]‌‌if‌‌   it‌‌is‌‌differentiable‌‌at‌‌every‌‌number‌‌on‌‌the‌‌interval.‌   ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

195‌  ‌

 ‌ ‌3.2.3.a‌

‌Theorem‌  ‌

➔ If‌‌f ‌is‌‌differentiable‌‌at‌‌a,‌‌then‌‌f ‌is‌‌continuous‌‌at‌‌a ‌ ‌



It‌‌is‌‌important‌‌to‌‌note‌‌that‌‌the‌‌converse‌‌of‌‌this‌‌theorem‌‌is‌‌not‌‌true.‌  ‌

 ‌ ‌3.2.3.b‌ ●

‌A‌‌Function‌‌is‌‌Not‌‌Differentiable‌‌at‌‌the‌‌Following‌  ‌

A‌‌corner‌‌or‌‌cusp‌  ‌

 ‌ ●

A‌‌jump‌‌discontinuity‌  ‌

 ‌ ●

A‌‌vertical‌‌tangent‌‌line/when‌‌it‌‌approaches‌‌a‌‌vertical‌‌asymptote‌  ‌

 ‌

 

 ‌

196‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌ ‌

3.2.4‌

H ‌ igher‌O ‌ rder‌D ‌ erivatives‌  ‌

➔ If‌‌f (x) ‌is‌‌differentiable,‌‌then‌‌so‌‌is‌‌f ′(x) .‌  ‌ ➔ The‌‌derivative‌‌may‌‌have‌‌derivatives‌‌of‌‌its‌‌own.‌  ‌ (f ′)′ = f ′′   ‌ This‌‌notation‌‌means‌‌the‌‌second‌‌derivative,‌‌and‌‌is‌‌read‌‌as‌‌“f‌‌double‌‌prime”.‌  ‌ ➔ There‌‌could‌‌be‌‌f ,  f ′,  f ′′,  f ′′′,  f (4), f (5) ,‌‌etc.‌   ‌ ‌ dy d2 y d3 y

➔ In‌‌Leibniz‌‌notation:‌‌ dx , dx2 , dx3 ‌,‌‌etc.‌  ‌  ‌

3.2.5‌

B ‌ asic‌D ‌ erivative‌F ‌ ormulas‌  ‌



d constant‌‌function‌‌(f (x) = c ) :‌‌ dx (c) = 0   ‌



d n power‌‌rule:‌‌ dx (x ) = nxn−1   ‌



Don’t‌‌use‌‌this‌‌rule‌‌in‌‌the‌‌following‌‌situations:‌  ■

n d dx (b )



n d dx [f (x)]



g(x) d ] dx [b



g(x) d dx [f (x)]

= 0 ‌(where‌‌b ‌and‌‌n ‌are‌‌constants)‌  ‌ = n · [f (x)]n−1 · f ′(x) ‌(chain‌‌rule)‌  ‌ = b g(x) · ln b · g ′(x) ‌(chain‌‌rule)‌  ‌ ‌(use‌‌logarithmic‌‌differentiation)‌‌    ‌



d constant‌‌multiple‌‌rule:‌‌ dx (c · f (x)) = c · dxd  f (x)   ‌



d sum‌‌rule:‌‌ dx [f (x) + g (x)] = dxd  f (x) + dxd  g(x)   ‌ ‌



d difference‌‌rule:‌‌ dx [f (x) − g (x)] = dxd  f (x) − dxd  g(x)   ‌



d x natural‌‌exponential‌‌function:‌‌ dx (e ) = ex   ‌



d product‌‌rule:‌‌ dx [f (x) · g (x)] = f (x) · dxd  g(x) + g (x) · dxd  f (x)  



d quotient‌‌rule:‌‌ dx [ g(x) ] =

f(x)

d d g(x)· dx  f(x) − f(x)· dx  g(x) 2 [g(x)]

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

 

 ‌ ‌

197‌  ‌

 ‌

3.2.6‌

D ‌ erivatives‌o ‌ f‌T ‌ rigonometric‌I‌ dentities‌  ‌



d dx  (sin x)

= c os(x)   ‌



d dx (cos x)

=   − sin(x)   ‌



d dx (tan x)

= sec 2 (x)   ‌



d dx (csc x)

=   − c sc(x)cot(x)   ‌



d dx (sec x)

= sec(x)tan(x)   ‌



d dx (cot x)

=   − c sc 2 (x)   ‌

‌3.2.6.a‌

➔ lim

‌Theorem‌  ‌ sin θ θ

= 1  ‌

θ sin θ θ→0

= 1  ‌

θ→0

➔ lim  ‌

3.2.7‌

T ‌ he‌C ‌ hain‌R ‌ ule‌  ‌

➔ This‌‌rule‌‌is‌‌used‌‌for‌‌differentiating‌‌composite‌‌functions.‌  ‌ ➔ If‌‌g ‌is‌‌differentiable‌‌at‌‌x ‌and‌‌f ‌is‌‌differentiable‌‌at‌‌g (x) ,‌‌then‌‌the‌‌composite‌‌function‌‌   F = f ° g ‌defined‌‌by‌‌F (x) = f (g(x)) ‌is‌‌differentiable‌‌at‌‌x ,‌‌and‌‌F ′ ‌is‌‌given‌‌by‌‌    ‌ F ′(x) = f ′(g(x)) · g ′(x)   ‌ ‌ In‌‌Leibnitz‌‌notation,‌‌if‌‌y = f (x) ‌and‌‌u = g (x) ‌are‌‌both‌‌differentiable‌‌functions,‌‌then‌  ‌ dy dx

=

dy du

·

du dx

 ‌

read‌‌as‌‌“the‌‌derivative‌‌of‌‌the‌‌function‌‌y‌‌with‌‌respect‌‌to‌‌u‌‌times‌‌the‌‌derivative‌‌of‌‌   function‌‌u‌‌with‌‌respect‌‌to‌‌x”.‌ 

198‌

 ‌ ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ➔ This‌‌definition‌‌pretty‌‌much‌‌makes‌‌no‌‌sense‌‌and‌‌when‌‌I‌‌first‌‌heard‌‌it,‌‌I‌‌had‌‌no‌‌clue‌‌   what‌‌to‌‌do.‌ ‌However,‌‌in‌‌practice‌‌it‌‌is‌‌very‌‌easy‌‌to‌‌use.‌  ‌



To‌‌differentiate‌‌a‌‌composite‌‌function‌‌f (g(x)) ,‌‌let‌‌the‌‌outer‌‌function‌‌be‌‌equal‌‌   to‌‌f (u) ‌where‌‌the‌‌inner‌‌function‌‌g (x) ‌is‌‌replaced‌‌by‌‌u .‌ ‌Then,‌‌find‌‌the‌‌   derivative‌‌of‌‌f (u) ,‌‌with‌‌respect‌‌to‌‌u .‌ ‌Replace‌‌u ‌with‌‌the‌‌original‌‌inner‌‌   function‌‌g (x) .‌ ‌Now,‌‌find‌‌the‌‌derivative‌‌of‌‌the‌‌inner‌‌function‌‌and‌‌multiply‌‌this‌‌   derivative‌‌by‌‌the‌‌other‌‌derivative‌‌you‌‌found‌‌(‌f ′(u) ‌where‌‌u ‌is‌‌then‌‌replaced‌‌   with‌‌the‌‌original‌‌inner‌‌function).‌   ‌ ‌

 ‌

3.2.8‌

T ‌ he‌D ‌ erivative‌o ‌ f‌a ‌ n‌E ‌ xponential‌F ‌ unction‌  ‌

➔ Using‌‌exponent‌‌identities‌‌we‌‌know‌‌that‌‌b x = (e ln b )x = e (ln b) x .‌  ‌ ➔ The‌‌chain‌‌rule‌‌tells‌‌us‌‌that‌  ‌ y = e u ‌and‌‌u = (ln b) x   ‌ dy du dy dx

= e u ‌and‌‌du dx = ln b   ‌

= e u · ln b  = e (ln b) x · ln b = b x · ln b   ‌

➔ Therefore,‌‌we‌‌know‌‌that‌‌dxd (b x) = b x · ln b .‌  ‌  ‌

3.2.9‌

I‌ mplicit‌D ‌ ifferentiation‌  ‌

➔ This‌‌is‌‌used‌‌to‌‌differentiate‌‌functions‌‌where‌‌it‌‌is‌‌implied‌‌that‌‌y‌‌is‌‌a‌‌function‌‌of‌‌x,‌‌or‌‌   any‌‌other‌‌independent‌‌variable‌‌(i.e.‌‌when‌‌y‌‌is‌‌the‌‌dependent‌‌variable).‌   ‌ ‌ ➔ I‌‌think‌‌that‌‌the‌‌best‌‌way‌‌to‌‌describe‌‌this‌‌is‌‌not‌‌through‌‌words,‌‌but‌‌rather‌‌through‌‌an‌‌   example.‌   ‌

 ‌ ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

199‌  ‌

 ‌ ‌3.2.9.a‌

‌Example‌  ‌

Differentiate‌‌the‌‌equation‌‌x 3 + y 3 = 6 xy ,‌‌where‌‌y‌‌is‌‌a‌‌function‌‌of‌‌x.‌ ‌Since‌‌6 xy ‌is‌‌inseparable,‌‌   you‌‌must‌‌plug‌‌in‌‌(3,‌‌3)‌‌at‌‌the‌‌end.‌   ‌ ‌ 1. Differentiate‌‌both‌‌sides‌‌of‌‌the‌‌equation‌‌with‌‌respect‌‌to‌‌x ‌ ‌ d (x3 dx

+ y3 ) =

d (6xy)   dx



2. To‌‌solve‌‌the‌‌left‌‌side‌‌of‌‌the‌‌equation,‌‌first‌‌implement‌‌the‌‌sum‌‌rule‌‌(derivative‌‌of‌‌a ‌‌ 3

sum‌‌is‌‌a‌‌sum‌‌of‌‌derivatives).‌ ‌Use‌‌the‌‌power‌‌rule‌‌for‌‌dxd (x ) .‌ ‌You‌‌need‌‌to‌‌use‌‌the‌‌   3

chain‌‌rule‌‌for‌‌dxd (y ) .‌ ‌To‌‌do‌‌this,‌‌set‌‌the‌‌outer‌‌function‌‌to‌‌be‌‌f (u) = u 3 ,‌‌where‌‌u = y .‌  ‌ To‌‌solve‌‌the‌‌right‌‌side‌‌of‌‌the‌‌equation,‌‌use‌‌the‌‌product‌‌rule,‌‌where‌‌f (x) = 3 x ‌and‌‌   dy

g (x) = y .‌ ‌The‌‌derivative‌‌of‌‌y‌‌is‌‌dx .‌  ‌

3x2 + 3y2 ·

dy dx

= 6x ·

dy dx

+ 6y   ‌

3. Divide‌‌everything‌‌by‌‌3‌‌to‌‌get‌‌rid‌‌of‌‌some‌‌constants.‌  ‌

x2 + y2 ·

dy dx

= 2x ·

dy dx

+ 2y   ‌

dy

4. Collect‌‌ dx t‌ o‌‌one‌‌side.‌  ‌

y2 ·

dy dx

− 2x ·

dy dx

= 2y − x2   ‌

dy

5. Factor‌‌‌dx ‌out.‌  ‌ dy 2 dx (y

− 2x) = 2y − x2   ‌

6. Divide‌‌both‌‌sides‌‌by‌‌y 2 − 2 x .‌  ‌ dy dx

200‌

=

2y−x2 y2 −2x

 

 ‌ ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

‌3.2.9.a‌

‌Example‌‌(con’t)‌  ‌

7. We‌‌do‌‌not‌‌need‌‌to‌‌substitute‌‌in‌‌an‌‌equation‌‌for‌‌y ‌as‌‌we‌‌usually‌‌would,‌‌since‌‌6 xy ‌is‌‌   inseparable.‌ ‌Therefore,‌‌we‌‌need‌‌to‌‌plug‌‌in‌‌(3,‌‌3).‌  ‌ dy dx

=

2(3)−32 32 −2(3)

=   − 1 a‌ t‌‌point‌‌(3,‌‌3)‌  ‌

8. Now,‌‌using‌‌the‌‌point-slope‌‌formula,‌‌find‌‌an‌‌equation.‌  ‌ y − 3 =   − 1 (x − 3 )  → y =   − x + 6   ‌  ‌

3.2.10‌



D ‌ erivatives‌o ‌ f‌L ‌ ogarithmic‌F ‌ unctions‌  ‌ dy dx (log b x)

‌3.2.10.a‌

=

1 x·ln b

 ‌

‌Proof‌  ‌

Let‌‌y = log b x .‌ ‌Then,‌‌b y = x .‌  ‌ Differentiate‌‌both‌‌sides.‌  ‌ y d dx (b )

=

d dx (x) 

→ by · ln b ·

dy dx

= 1  →

dy dx

=

1 y b ·ln b

 ‌

Substitute‌‌in‌‌x = b y .‌  ‌ dy dx

=

1 x·ln b

‌‌Q.E.D.‌  ‌

 ‌ ➔ If‌‌we‌‌let‌‌b = e ,‌‌the‌‌natural‌‌base,‌‌then‌‌log e x = ln x ‌and‌‌ln e = 1 .‌ ‌Then,‌  ‌ d (ln x) dx

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

=

1 x

 

 ‌ ‌

201‌  ‌

 ‌ ‌3.2.10.b‌

‌Properties‌‌of‌‌Logarithms‌  ‌

When‌‌doing‌‌these‌‌types‌‌of‌‌problems,‌‌it‌‌saves‌‌a‌‌lot‌‌of‌‌work‌‌if‌‌you‌‌know‌‌the‌‌logarithmic‌‌   properties.‌  ‌ ●

log b ( xy ) = log b  x − log b  y   ‌



log b (xy) = log b  x + log b  y   ‌



log b  xn = nlog b  x   ‌

 ‌ 3.2.11‌

S ‌ teps‌i‌ n‌L ‌ ogarithmic‌D ‌ ifferentiation‌  ‌

1. Take‌‌the‌‌natural‌‌logarithms‌‌of‌‌both‌‌sides‌‌of‌‌the‌‌equation‌‌and‌‌use‌‌the‌‌laws‌‌of‌‌   logarithms‌‌to‌‌simplify.‌  ‌ 2. Differentiate‌‌both‌‌sides‌‌implicitly‌‌with‌‌respect‌‌to‌‌x‌‌(or‌‌whatever‌‌the‌‌independent‌‌   variable‌‌may‌‌be).‌  ‌ dy

3. Solve‌‌for‌‌ dx ‌or‌‌y ′ ‌(whichever‌‌you‌‌choose‌‌to‌‌use).‌  ‌ 4. Replace‌‌any‌‌occurrence‌‌of‌‌y ‌with‌‌its‌‌original‌‌expression.‌  ‌  ‌

 

 ‌

202‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

3.2.12‌

E ‌ xponential‌G ‌ rowth‌a ‌ nd‌D ‌ ecay‌  ‌

Quantities‌‌grow‌‌and‌‌decay‌‌at‌‌a‌‌rate‌‌proportional‌‌to‌‌their‌‌size.‌   ‌ ‌ ●

If‌‌y = f (t) ‌is‌‌the‌‌number‌‌of‌‌individuals‌‌in‌‌a‌‌population‌‌in‌‌time‌‌t ,‌‌it‌‌seems‌‌reasonable‌‌   to‌‌expect‌‌the‌‌rate‌‌of‌‌growth‌‌f ′(t) ‌is‌‌proportional‌‌to‌‌the‌‌population‌‌f (t) .‌  ‌ f ′(t) 



∝ f (t)   ‌

Thus,‌‌    ‌ f ′(t) = k · f (t) ,‌‌where‌‌k ‌is‌‌a‌‌constant‌  ‌ dy dt

= k y ,‌‌where‌‌y ‌is‌‌a‌‌function‌‌of‌‌t   ‌

This‌‌is‌‌called‌‌the‌l‌aw‌‌of‌‌natural‌‌growth‌‌‌if‌‌k > 0 ‌or‌‌the‌l‌aw‌‌of‌‌natural‌‌decay‌‌‌if‌‌k < 0 .‌   ‌ ‌ This‌‌is‌‌also‌‌called‌‌a‌d ‌ ifferential‌‌equation‌‌‌(which‌‌will‌‌be‌‌seen‌‌in‌‌more‌‌detail‌‌in‌‌Calculus‌‌II‌‌   dy

and)‌‌because‌‌it‌‌involves‌‌an‌‌unknown‌‌function‌‌y ‌and‌‌its‌‌derivative‌‌ dt .‌   ‌ ‌ The‌‌common‌‌function‌‌for‌‌differential‌‌equations‌‌is‌‌y (t) = C e kt ,‌‌where‌‌C ‌is‌‌a‌‌constant‌‌and‌‌will‌‌   be‌‌a‌‌solution‌‌when‌‌t = 0 .‌   ‌ ‌ ●

 

Proof‌‌that‌‌y (t) = C e kt is‌‌a‌‌solution‌‌to‌‌f ′(t) = k · f (t)   ‌ y ′(t) = C (ke kt ) ,‌‌swap‌‌C ‌and‌‌k   ‌ y ′(t) = k (Ce kt ) ,‌‌remember‌‌that‌‌y (t) = C e kt   ‌ y ′(t) = k · y (t)   ‌  ‌

 

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

203‌  ‌

 ‌ ‌3.2.12.a‌

‌Population‌‌Growth‌  ‌ dP dt

= kP  

Relative‌‌Growth‌‌Rate‌‌is‌  ‌

k=

1 P

·

dP

(‌ ‌ Pdt = k )‌  ‌

dP dt

Population‌‌Model‌‌is‌  ‌ P (t) = P o e kt ,‌‌where‌‌P o is‌‌the‌‌initial‌‌population‌‌at‌‌t = 0   ‌  ‌ ‌3.2.12.b‌

‌Radioactive‌‌Decay‌  ‌

Radioactive‌‌substances‌‌decay‌‌spontaneously‌‌by‌‌emitting‌‌gamma‌‌and‌‌other‌‌particles.‌ ‌In‌‌   the‌‌process,‌‌a‌‌certain‌‌amount‌‌undergoing‌‌radioactive‌‌decay‌‌loses‌‌mass.‌  ‌ ●

Let‌‌m(t) ‌represent‌‌the‌‌mass‌‌of‌‌a‌‌substance‌‌at‌‌time‌‌t ,‌‌where‌‌mo ‌is‌‌the‌‌initial‌‌value.‌  ‌

Radioactive‌‌decay‌‌is‌‌−

1 m

·

dm dt

 ‌

So,‌ ‌ dm = km (‌ ‌k < 0 )‌  ‌ dt We‌‌use‌‌the‌‌equation‌‌m(t) = mo · e kt ‌(‌k < 0 )‌  ‌ And,‌‌the‌‌half-life‌‌of‌‌a‌‌radioactive‌‌substance‌‌is‌‌the‌‌time‌‌required‌‌for‌‌half‌‌of‌‌the‌‌given‌‌   amount‌‌of‌‌the‌‌initial‌‌substance‌‌to‌‌decay.‌   ‌ ‌  

 ‌

204‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

‌3.2.12.c‌

‌Newton’s‌‌Law‌‌of‌‌Cooling‌  ‌

The‌‌rate‌‌of‌‌cooling‌‌of‌‌an‌‌object‌‌is‌‌proportional‌‌to‌‌the‌‌difference‌‌in‌‌temperature‌‌between‌‌   the‌‌object‌‌and‌‌its‌‌surroundings,‌‌provided‌‌that‌‌the‌‌difference‌‌is‌‌not‌‌too‌‌large.‌   ‌ ‌ ●

T (t) ‌is‌‌the‌‌temperature‌‌of‌‌an‌‌object‌‌at‌‌time‌‌t ‌(this‌‌is‌‌usually‌‌written‌‌as‌‌T )‌ 



T s ‌is‌‌the‌‌temperature‌‌of‌‌the‌‌objects’‌‌surroundings‌‌    ‌

Then,‌‌    ‌ dT dt

= k(T − T s) ‌,‌‌where‌‌k ‌is‌‌a‌‌constant‌  ‌

We‌‌view‌‌the‌‌expression‌‌(T − T s ) ‌as‌‌y (t) = T (t) − T s ‌and‌‌differential‌‌with‌‌respect‌‌to‌‌t ,‌‌we’d‌‌   have‌  ‌ y ′(t) = T ′(t)  

∴  

dy dt

= k y  ‌  ‌

 ‌

3.2.13‌

R ‌ elated‌R ‌ ates‌  ‌

Strategy:‌  ‌ 1. Read‌‌the‌‌problem‌‌carefully‌  ‌ 2. Draw‌‌a‌‌diagram,‌‌if‌‌possible‌‌(as‌‌someone‌‌who‌‌used‌‌to‌‌be‌‌against‌‌diagrams‌‌for‌‌some‌‌   reason,‌‌I‌‌promise‌‌that‌‌this‌‌is‌‌important)‌  ‌ 3. Introduce‌‌notation‌‌and‌‌assign‌‌symbols‌‌to‌‌all‌‌quantities‌‌that‌‌are‌‌functions‌‌of‌‌time‌  ‌ 4. Express‌‌the‌‌given‌‌information‌‌and‌‌the‌‌required‌‌rate‌‌in‌‌terms‌‌of‌‌derivatives‌‌   (remember‌‌that‌‌a‌‌derivative‌‌is‌‌change‌‌over‌‌time)‌  ‌ 5. Write‌‌an‌‌equation‌‌that‌‌relates‌‌the‌‌various‌‌quantities‌‌of‌‌the‌‌problem.‌ ‌Use‌‌geometry‌‌   to‌‌eliminate‌‌one‌‌of‌‌the‌‌variables,‌‌if‌‌needed.‌   ‌ ‌ 6. Use‌‌the‌‌chain‌‌rule‌‌to‌‌differentiate‌‌both‌‌sides‌‌of‌‌the‌‌equation‌‌with‌‌respect‌‌to‌‌t .‌  ‌ 7. Substitute‌‌the‌‌given‌‌information‌‌into‌‌the‌‌resulting‌‌equation.‌   ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

205‌  ‌

 ‌ I‌‌think‌‌that‌‌this‌‌section‌‌of‌‌Calc‌‌I‌‌is‌‌much‌‌easier‌‌to‌‌understand‌‌when‌‌an‌‌example‌‌is‌‌worked‌‌   through,‌‌so‌‌see‌‌below‌‌for‌‌a‌‌common‌‌question‌‌found‌‌when‌‌working‌‌with‌‌related‌‌rates.‌   ‌ ‌ ‌3.2.13.a‌

‌Example‌  ‌  

Gravel‌‌is‌‌being‌‌dumped‌‌from‌‌a‌‌conveyor‌‌belt‌‌at‌‌a‌‌rate‌‌of‌‌3 0 f t3 /min ,‌‌and‌‌its‌‌coarseness‌‌is‌‌such‌‌   that‌‌it‌‌forms‌‌a‌‌pile‌‌in‌‌the‌‌shape‌‌of‌‌a‌‌cone‌‌whose‌‌base‌‌diameter‌‌and‌‌height‌‌are‌‌always‌‌equal.‌  ‌ How‌‌fast‌‌is‌‌the‌‌height‌‌of‌‌the‌‌pile‌‌increasing‌‌when‌‌the‌‌pile‌‌is‌‌7  f t ‌high?‌‌    ‌ First,‌‌let’s‌‌make‌‌a‌‌diagram.‌  ‌  ‌ Now,‌‌identify‌‌the‌‌given‌‌information‌‌and‌‌what‌‌we‌‌want‌‌to‌‌find‌‌out.‌  ‌ We‌‌know‌‌that‌‌the‌‌base‌‌diameter‌‌is‌‌equal‌‌to‌‌the‌‌height.‌ ‌This‌‌means‌‌   that‌‌2 r = h .‌ ‌With‌‌the‌‌given‌‌number‌‌3 0 f t3 /min ,‌‌we‌‌can‌‌tell‌‌that‌‌this‌‌is‌‌   a‌‌rate‌‌of‌‌change‌‌of‌‌a‌‌volume‌‌(‌f t ‌is‌‌cubed).‌‌We‌‌are‌‌looking‌‌for‌‌the‌‌   rate‌‌of‌‌change‌‌of‌‌the‌‌height‌‌of‌‌the‌‌pile.‌ ‌So,‌‌we‌‌know‌‌that‌‌   dV dt

= 30 ft3 /min ‌and‌‌h = 7 .‌ ‌The‌‌question‌‌is‌‌asking‌‌us‌‌to‌‌calculate‌‌ dh .‌   ‌ ‌ dt

The‌‌equation‌‌for‌‌volume‌‌of‌‌a‌‌cone‌‌is‌‌V = 31 πr 2 h .‌ ‌This‌‌equation‌‌has‌‌two‌‌variables,‌‌and‌‌we‌‌   want‌‌it‌‌in‌‌terms‌‌of‌‌height,‌‌as‌‌that‌‌was‌‌the‌‌given‌‌variable‌‌(‌7  f t ‌high).‌ ‌We‌‌can‌‌replace‌‌r 2 ‌in‌‌   the‌‌volume‌‌equation‌‌by‌‌rearranging‌‌the‌‌2 r = h ‌equation.‌ ‌To‌‌do‌‌this,‌‌divide‌‌both‌‌sides‌‌by‌‌   two,‌‌then‌‌square‌‌both‌‌sides‌‌to‌‌get‌‌r 2 =

h2 4

V =

.‌ ‌Now,‌‌replace‌‌and‌‌simplify.‌  ‌ π 3

·

h2 4

 

206‌

·h =

πh 3 12

 ‌  ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌ ‌

Take‌‌the‌‌derivative‌‌of‌‌both‌‌sides:‌‌ dV = dt

π 12

· 3h2 ·

dh dt

= 4π h2 ·

dh dt

‌(similar‌‌to‌‌implicit‌‌ 

differentiation,‌‌we‌‌need‌‌to‌‌multiply‌‌by‌‌ dh ‌‌to‌‌differentiate‌‌in‌‌terms‌‌of‌‌t )‌  ‌ dt Now,‌‌solve‌‌for‌‌ dh ‌:‌‌ dh = dt dt

4 πh 2

·

dV dt

 ‌

Since‌‌everything‌‌is‌‌simplified,‌‌we‌‌can‌‌plug‌‌in‌‌the‌‌given‌‌information:‌‌   dh dt

=

4 π

·

1 72

· 30 =

120 49π

≈ 0.78 ft/min   ‌

 ‌

3.2.14‌ ●

L ‌ inear‌A ‌ pproximations‌  ‌

To‌‌do‌‌linear‌‌approximations,‌‌we‌‌must‌‌implement‌‌our‌‌knowledge‌‌of‌‌tangent‌‌lines.‌  ‌ We‌‌begin‌‌with‌‌point-slope‌‌formula‌‌and‌‌convert‌‌it‌‌into‌‌calculus‌‌terms.‌   ‌ ‌ (y − y 1 ) = m(x − x 1 ) ‌and‌‌(x,  y)   ‌

This‌‌becomes‌‌f (x) − f (a) = f ′(a)(x − a ) ‌for‌‌the‌‌derivative‌‌at‌‌′a ′ ‌and‌‌the‌‌point‌‌(a,  f (a)) ‌for‌‌y = f (x)   ‌ The‌‌equation‌‌of‌‌the‌‌tangent‌‌line‌‌is‌‌then‌‌y = f (a)  +  f ′(a)(x − a )   ‌ ➔ For‌‌x ‌near‌‌a ‌of‌‌the‌‌actual‌‌function‌‌f (x) ,‌‌we‌‌say‌‌that‌‌the‌‌linear‌‌approximation‌‌of‌‌f ‌at‌‌   a ‌is‌‌given‌‌by‌‌    ‌ L(x) = f (a)  +  f ′(a)(x − a )   ‌  ‌

 

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

207‌  ‌

 ‌

3.2.15‌

D ‌ ifferentials‌  ‌

If‌‌y = f (x) ‌where‌‌f ‌is‌‌differentiable,‌‌then‌‌the‌‌differential‌‌is‌‌d x .‌ ‌d x ‌is‌‌an‌‌independent‌‌   variable.‌   ‌ ‌ ❏ If‌‌x ‌is‌‌the‌‌independent‌‌variable‌‌(input)‌‌and‌‌y ‌is‌‌the‌‌dependent‌‌variable,‌‌taking‌‌a ‌‌ small‌‌piece‌‌of‌‌x ‌(which‌‌is‌‌what‌‌a‌‌differential‌‌really‌‌is)‌‌does‌‌not‌‌make‌‌it‌‌lose‌‌its‌‌   independence‌  ‌ The‌‌differential‌‌d y ‌is‌‌defined‌‌in‌‌terms‌‌of‌‌d x ,‌‌so‌‌it’s‌‌a‌‌dependent‌‌variable.‌‌    ‌ d y = f ′(x) dx  →  f ′(x) =

dy dx

 ‌

Δ y = f (x − Δ x) − f (x)   ‌

 ‌ There‌‌is‌‌going‌‌to‌‌be‌‌an‌‌error‌‌between‌‌the‌‌derivative‌‌height‌‌and‌‌the‌‌approximate‌‌height.‌   ‌  ‌

 

 ‌

208‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌ ‌

3.2.16‌

M ‌ inimums‌a ‌ nd‌M ‌ aximums‌  ‌

➔ Let‌‌c ‌be‌‌a‌‌number‌‌in‌‌the‌‌domain‌‌D ‌of‌‌a‌‌function‌‌f   ‌ ●

absolute‌‌max‌‌value‌‌of‌‌f ‌on‌‌the‌‌domain‌‌D ‌if‌‌f (c)  ≥  f (x) ‌for‌‌all‌‌x ‌in‌‌domain‌‌D   ‌



absolute‌‌min‌‌value‌‌of‌‌f ‌on‌‌the‌‌domain‌‌D ‌if‌‌f (c)  ≤  f (x) ‌for‌‌all‌‌x ‌in‌‌domain‌‌D   ‌

 ‌ We‌‌can‌‌know‌‌that‌‌values‌‌are‌‌absolute‌‌extrema,‌‌even‌‌when‌‌not‌‌in‌‌a‌‌closed‌‌interval,‌‌by‌‌both‌‌   looking‌‌at‌‌end‌‌behavior‌‌and‌‌making‌‌calculations.‌   ‌ ‌ ●

local‌‌max‌‌value‌‌of‌‌f ‌if‌‌f (c)  ≥  f (x) ‌when‌‌x ‌is‌‌near‌‌c   ‌



local‌‌min‌‌value‌‌of‌‌f ‌if‌‌f (c)  ≤  f (x) ‌when‌‌x ‌is‌‌near‌‌c   ‌ ‌

 ‌

3.2.17‌ E ‌ xtreme‌V ‌ alue‌‌Theorem‌(‌ EVT)‌  ‌ ➔ If‌‌f ‌is‌‌continuous‌‌on‌‌a‌‌closed‌‌interval‌‌[a,  b] ,‌‌then‌‌f ‌attains‌‌an‌‌absolute‌‌maximum‌‌   value‌‌f (c) ‌and‌‌an‌‌absolute‌‌minimum‌‌value‌‌f (d) ‌at‌‌some‌‌numbers‌‌c ‌and‌‌d ‌in‌‌[a,  b] .‌  ‌ ➔ Remember‌‌that‌‌every‌‌differentiable‌‌function‌‌is‌‌continuous‌‌but‌‌not‌‌every‌‌continuous‌‌   function‌‌is‌‌differentiable.‌  ‌  ‌

 ‌  

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

209‌ ‌

 ‌

3.2.18‌

F ‌ ermat’s‌T ‌ heorem‌  ‌

➔ If‌‌f ‌has‌‌a‌‌local‌‌maximum‌‌or‌‌minimum‌‌at‌‌c ,‌‌and‌‌if‌‌f ′(c) ‌exists,‌‌then‌‌f ′(c) = 0 .‌‌    ‌



This‌‌gives‌‌a‌‌hint‌‌that‌‌wherever‌‌the‌‌derivative‌‌is‌‌0,‌‌there‌m ‌ ay‌‌‌be‌‌an‌‌extrema‌  ‌

➔ Alternatively,‌‌if‌‌x ‌has‌‌a‌‌local‌‌maximum‌‌or‌‌minimum‌‌at‌‌c ,‌‌then‌‌c ‌is‌‌a‌c‌ ritical‌‌number‌‌   of‌‌f .‌  ‌



This‌‌is‌‌not‌‌saying‌‌that‌‌the‌‌critical‌‌number‌‌must‌‌be‌‌a‌‌local/absolute‌‌   minimum/maximum,‌‌it‌‌is‌‌saying‌‌that,‌‌if‌‌there‌‌is‌‌an‌‌extrema,‌‌it‌‌will‌‌be‌‌found‌‌   there.‌   ‌ ‌

 ‌

3.2.19‌

T ‌ he‌C ‌ losed‌I‌ nterval‌M ‌ ethod‌  ‌

To‌‌find‌‌the‌a ‌ bsolute‌‌‌maximum‌‌and‌‌minimum‌‌values‌‌of‌‌a‌‌continuous‌‌function‌‌f ‌on‌‌a‌‌closed‌‌   interval‌‌[a,  b] .‌   ‌ ‌ 1. Find‌‌the‌‌values‌‌of‌‌f ‌at‌‌the‌‌critical‌‌numbers‌‌of‌‌f ‌in‌‌(a,  b) .‌  ‌ a. set‌‌f (x) = 0 ‌and‌‌solve‌‌to‌‌find‌‌c ‌and‌‌evaluate‌‌them‌  ‌ 2. Evaluate‌‌f (a) ‌and‌‌f (b)   ‌ 3. The‌‌largest‌‌of‌‌the‌‌values‌‌from‌‌steps‌‌1‌‌and‌‌2‌‌is‌‌the‌‌absolute‌‌maximum‌‌value,‌‌the‌‌   smallest‌‌of‌‌these‌‌values‌‌is‌‌the‌‌absolute‌‌minimum‌  ‌  ‌

 

 ‌

210‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

3.2.20‌

R ‌ olle’s‌‌Theorem‌  ‌

➔ Let‌‌f ‌be‌‌a‌‌continuous‌‌function‌‌that‌‌satisfies‌‌all‌‌three‌‌hypotheses:‌  ‌

◆ ◆ ◆

f ‌is‌‌a‌‌continuous‌‌function‌‌on‌‌the‌‌closed‌‌interval‌‌[a,  b]   ‌ f ‌is‌‌differentiable‌‌on‌‌the‌‌open‌‌interval‌‌(a,  b)   ‌ f (a) = f (b)   ‌

➔ Then,‌‌there‌‌is‌‌at‌‌least‌‌one‌‌number‌‌c ‌in‌‌(a,  b) ,‌‌such‌‌that‌‌f ′(c) = 0 .‌  ‌

 ‌  ‌

 

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

211‌ ‌

 ‌

3.2.21‌

M ‌ ean‌V ‌ alue‌T ‌ heorem‌  ‌

➔ Let‌‌f ‌be‌‌a‌‌function‌‌that‌‌satisfies‌‌both‌‌hypotheses:‌  ‌ 1. f ‌is‌‌continuous‌‌on‌‌the‌‌closed‌‌interval‌‌[a,  b]   ‌ 2. f ‌is‌‌differentiable‌‌on‌‌the‌‌open‌‌interval‌‌(a,  b)   ‌ Then,‌‌there‌‌is‌‌a‌‌number‌‌c ‌in‌‌(a,  b) ,‌‌such‌‌that‌  ‌

f ′(c) =

f(b) − f(a) b − a

‌or‌‌f (b) − f (a) = f ′(c)(b − a )   ‌

f ′(c) = m ‌or‌‌average‌‌rate‌‌of‌‌change‌‌on‌‌[a,  b]   ‌

 ‌ All‌‌lines‌‌are‌‌parallel.‌  ‌  ‌

 

 ‌

212‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌ ‌

3.2.22‌

C ‌ orollary‌  ‌

➔ f ′(x) = g ′(x) ‌for‌‌all‌‌x ‌in‌‌interval‌‌(a,  b) ,‌‌then‌‌f − g ‌is‌‌constant‌‌on‌‌(a,  b) ;‌‌that‌‌is,‌‌   f (x) = g (x)  +  c ‌where‌‌c ‌is‌‌a‌‌constant.‌  ‌

 ‌  ‌

3.2.23‌

H ‌ ow‌D ‌ erivatives‌‌Affect‌t‌ he‌G ‌ raph‌  ‌

‌3.2.23.a‌

‌Increasing/Decreasing‌‌Test‌  ‌



If‌‌f ′(x)  >  0 ‌on‌‌an‌‌interval,‌‌then‌‌the‌‌function‌‌f ‌is‌‌increasing‌‌on‌‌that‌‌interval‌  ‌



If‌‌f ′(x)  <  0 ‌on‌‌an‌‌interval,‌‌then‌‌the‌‌function‌‌f ‌is‌‌decreasing‌‌on‌‌that‌‌interval‌  ‌

 ‌ ‌3.2.23.b‌

‌The‌‌First‌‌Derivative‌‌Test‌  ‌

➔ Suppose‌‌that‌‌c ‌is‌‌a‌‌critical‌‌number‌‌of‌‌a‌‌continuous‌‌function‌‌f   ‌ a. if‌‌f ′ ‌changes‌‌from‌‌positive‌‌to‌‌negative‌‌at‌‌c ,‌‌then‌‌f ‌has‌‌a‌‌local‌‌max‌‌at‌‌c   ‌ b. if‌‌f ′ ‌changes‌‌from‌‌negative‌‌to‌‌positive‌‌at‌‌c ,‌‌then‌‌f ‌has‌‌a‌‌local‌‌min‌‌at‌‌c   ‌ c. if‌‌f ‌is‌‌positive‌‌on‌‌both‌‌sides‌‌or‌‌negative‌‌on‌‌both‌‌sides‌‌of‌‌c ,‌‌then‌‌f ‌has‌‌no‌‌local‌‌   min/max‌  ‌  

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

213‌ ‌

 ‌ To‌‌apply‌‌this‌‌test,‌‌use‌‌the‌‌same‌‌technique‌‌as‌‌before.‌  ‌ 1. Differentiate‌‌f (x) ‌and‌‌set‌‌the‌‌answer‌‌equal‌‌to‌‌zero.‌ ‌Each‌‌solution‌‌of‌‌the‌‌equation‌‌   f ′(x) = 0 ‌is‌‌a‌‌critical‌‌point‌‌x = c ‌where‌‌the‌‌function‌‌f m ‌ ay‌‌‌change‌‌sign‌‌(do‌‌not‌‌   assume‌‌it‌‌does)‌  ‌ 2. Divide‌‌the‌‌interval‌‌[a,  b] ‌into‌‌the‌‌subintervals‌‌between‌‌the‌‌critical‌‌points‌‌(number‌‌   line)‌  ‌ 3. Determine‌‌the‌‌sign‌‌of‌‌f ′(x) ‌in‌‌each‌‌subinterval‌  ‌ 4. Use‌‌a ,‌‌b ,‌‌or‌‌c ‌in‌‌the‌‌first‌‌derivative‌‌test‌‌to‌‌determine‌‌whether‌‌a‌‌local‌‌max,‌‌local‌‌   min,‌‌or‌‌neither‌‌occurs‌‌at‌‌each‌‌x = c   ‌  ‌ ‌3.2.23.c‌

‌Concavity‌  ‌

Concavity‌‌is‌‌a‌‌term‌‌used‌‌to‌‌describe‌‌how‌‌a‌‌curve‌‌bends‌‌as‌‌it‌‌increases‌‌or‌‌decreases.‌ ‌The‌‌   second‌‌derivative‌‌will‌‌describe‌‌this‌‌behavior‌‌based‌‌on‌‌its‌‌sign‌  ‌ ●

If‌‌the‌‌graph‌‌of‌‌f ‌lies‌‌above‌‌all‌‌its‌‌tangent‌‌lines‌‌on‌‌an‌‌interval‌‌I ,‌‌then‌‌it‌‌is‌‌called‌‌   concave‌‌upward‌  ‌



If‌‌the‌‌graph‌‌of‌‌f ‌lies‌‌below‌‌all‌‌its‌‌tangent‌‌lines‌‌on‌‌an‌‌interval‌‌I ,‌‌then‌‌it‌‌is‌‌called‌‌   concave‌‌downward‌  ‌

 ‌

214‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌ ‌

‌3.2.23.d‌

‌Concavity‌‌Test‌  ‌



if‌‌f ′′  >  0 ‌for‌‌all‌‌x ‌in‌‌I ,‌‌then‌‌the‌‌graph‌‌of‌‌f ‌is‌‌concave‌‌upward‌‌on‌‌I   ‌



if‌‌f ′′  <  0 ‌for‌‌all‌‌x ‌in‌‌I ,‌‌then‌‌the‌‌graph‌‌of‌‌f ‌is‌‌concave‌‌downward‌‌on‌‌I   ‌

 ‌ ‌3.2.23.e‌

‌Inflection‌‌Point‌  ‌

➔ a‌‌point‌‌P ‌on‌‌a‌‌curve‌‌y = f (x) ‌is‌‌called‌‌an‌‌inflection‌‌point‌‌if‌‌f ‌is‌‌continuous‌‌there‌‌and‌‌   the‌‌curve‌‌changes‌‌concavity‌  ‌  ‌ ‌3.2.23.f‌

‌The‌‌Second‌‌Derivative‌‌Test‌  ‌

➔ Suppose‌‌f ′′ ‌is‌‌continuous‌‌near‌‌c   ‌ a. if‌‌f ′′(c) = 0 ‌and‌‌f ′′(c)  >  0 ,‌‌then‌‌f ‌has‌‌a‌‌local‌‌minimum‌‌at‌‌c   ‌ b. if‌‌f ′′(c) = 0 ‌and‌‌f ′′(c)  <  0 ,‌‌then‌‌f ‌has‌‌a‌‌local‌‌maximum‌‌at‌‌c   ‌  ‌

3.2.24‌

I‌ ndeterminate‌F ‌ orms‌  ‌

➔ An‌‌indeterminate‌‌form‌‌occurs‌‌when‌‌you‌‌are‌‌taking‌‌the‌‌limit‌‌of‌‌a‌‌quotient‌‌and‌‌it‌‌   ∞ equals‌‌ 00 ‌or‌‌ ∞ .‌  ‌

 ‌  

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

215‌  ‌

 ‌

3.2.25‌

L ‌ 'Hôpital's‌R ‌ ule‌  ‌

➔ L'Hôpital's‌‌Rule‌‌is‌‌used‌‌to‌‌solve‌‌limits‌‌that‌‌are‌‌indeterminate‌‌forms.‌  ‌ ➔ Suppose‌‌f ‌and‌‌g ‌are‌‌differentiable‌‌and‌‌that‌‌g ′(x) =/ 0 ‌on‌‌an‌‌open‌‌interval‌‌f ‌that‌‌   contains‌‌a ‌(except‌‌possibly‌‌at‌‌a ).‌ ‌Also‌‌suppose‌‌that,‌  ‌ lim  f (x) = 0 ‌and‌‌lim  g(x) = 0   ‌ x→a

x→a

or‌‌that‌  ‌ lim  f (x) =   ± ∞ ‌and‌‌lim  g(x) =   ± ∞   ‌ ‌ x→a

x→a

Then,‌  ‌ f(x)

f ′(x) g x→a ′(x)

lim   g(x) = lim

x→a

 ‌

if‌‌the‌‌limit‌‌on‌‌the‌‌right‌‌hand‌‌side‌‌exists‌‌(or‌‌is‌‌∞ ‌or‌‌− ∞ ).‌  ‌ ➔ In‌‌summation,‌‌the‌‌limit‌‌of‌‌a‌‌quotient‌‌of‌‌functions‌‌is‌‌equal‌‌to‌‌the‌‌limit‌‌of‌‌the‌‌quotient‌‌   of‌‌their‌‌derivatives,‌‌provided‌‌that‌‌the‌‌given‌‌conditions‌‌are‌‌satisfied:‌  ‌

◆ ◆

indeterminate‌‌forms‌‌(‌ 00 o ‌ r‌‌ ∞∞ ‌) ‌ ‌ f ‌and‌‌g ‌are‌‌differentiable‌‌(‌g ′(x) =/ 0 )‌  ‌

L'Hôpital's‌‌Rule‌‌is‌‌also‌‌valid‌‌for‌‌one-sided‌‌limits‌‌and‌‌for‌‌limits‌‌at‌‌infinity‌‌or‌‌negative‌‌infinity.‌  ‌



Notation:‌‌ ‌‌over‌‌an‌‌equal‌‌sign‌‌shows‌‌that‌‌L'Hôpital's‌‌Rule‌‌was‌‌applied.‌ ‌This‌‌must‌‌be‌‌   included‌‌in‌‌all‌‌problems.‌   ‌ ‌  

 ‌

216‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

‌3.2.25.a‌

‌Indeterminate‌‌Products‌  ‌

If‌‌we‌‌find‌‌that‌  ‌ lim  f (x) = 0 ‌and‌‌lim  g(x) = ∞   ‌ x→a

x→a

and‌‌we‌‌are‌‌asked‌‌to‌‌find‌  ‌ lim  [f (x) · g (x)]   ‌ x→a

we‌‌end‌‌up‌‌with‌‌the‌‌indeterminate‌‌form‌‌0 · ∞ .‌ ‌L'Hôpital's‌‌Rule‌‌does‌‌not‌‌apply‌‌to‌‌this‌‌form.‌   ‌ ‌ Therefore,‌‌we‌‌must‌‌rewrite‌‌the‌‌expression‌‌as‌‌a‌‌quotient.‌  ‌

lim  [f(x) · g (x)] = lim   f(x) ,‌‌you‌‌can‌‌pick‌‌either‌‌function‌‌to‌‌be‌‌in‌‌the‌‌numerator‌  ‌ 1 ‌

x→a

x→a

g(x)

1 Now‌‌we‌‌have‌‌the‌‌numerator‌‌f (x) → 0 ‌and‌‌the‌‌denominator‌‌g(x) → 0 .‌ ‌This‌‌is‌‌the‌‌  

indeterminate‌‌form‌‌00 ,‌‌and‌‌now‌‌L'Hôpital's‌‌Rule‌‌can‌‌be‌‌applied.‌  ‌  ‌ ‌3.2.25.b‌

‌Indeterminate‌‌Difference‌  ‌

If‌‌lim  f (x) = ∞ ‌and‌‌lim  g(x) = ∞ ,‌‌then‌‌the‌  ‌ x→a

x→a

lim  [f (x) − g (x)]   ‌ x→a

is‌‌called‌‌the‌‌indeterminate‌‌form‌‌∞ − ∞ .‌  ‌ You‌‌cannot‌‌apply‌‌L'Hôpital's‌‌Rule‌‌to‌‌this‌‌limit,‌‌so‌‌rearrange‌‌to‌‌get‌‌a‌‌quotient.‌  ‌  

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

217‌  ‌

 ‌ ‌3.2.25.c‌

‌Indeterminate‌‌Powers‌  ‌

With‌‌the‌‌limit‌‌form‌‌lim  [f (x)]g(x) ,‌‌we‌‌could‌‌end‌‌up‌‌with‌‌0 0 ,  ∞ ∞,  1 ∞, ‌or‌‌∞ 0 .‌ ‌These‌‌are‌‌all‌‌   x→a

indeterminate‌‌forms.‌ ‌To‌‌solve‌‌these‌‌limits,‌‌we‌‌must‌‌use‌‌logarithms.‌   ‌ ‌ If,‌  ‌ y = [f (x)]g(x)   ‌ then,‌‌    ‌ ln y = g (x) · ln(f (x))    ‌ ‌ or,‌‌    [f (x)]g(x) = e g(x)·ln(f (x))   ‌  ‌ Table‌‌of‌‌Determinate‌‌and‌‌Indeterminate‌‌Forms‌  ‌ Indeterminate‌‌Forms‌  ‌

Determinate‌‌Forms‌  ‌

0 /0   ‌

∞+∞ =∞  ‌

± ∞/ ± ∞   ‌

−∞−∞ = −∞  ‌

∞−∞  ‌

0∞ = 0   ‌

0 (∞)   ‌

0 −∞ = ∞   ‌

00   ‌

(∞) · (∞) = ∞   ‌

1∞   ‌

 ‌

∞0   ‌

 ‌

Use‌‌L’Hôpital’s‌‌Rule‌  ‌

Do‌‌Not‌‌Use‌‌L’Hôpital’s‌‌Rule‌  ‌  

218‌

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

3.2.26‌

G ‌ raph‌S ‌ ketching‌  ‌

Things‌‌you‌‌must‌‌include:‌  ‌ 1. domain‌  ‌ 2. symmetry/odd‌‌and‌‌even‌  ‌ 3. intercepts‌  ‌ 4. asymptotes‌  ‌ 5. intervals‌‌of‌‌increasing‌‌and‌‌decreasing‌  ‌ 6. local‌‌maximum‌‌and‌‌minimum‌  ‌ 7. concavity‌‌and‌‌points‌‌of‌‌inflection‌  ‌ 8. sketch‌  ‌

 ‌ 3.2.27‌

O ‌ ptimization‌  ‌

Steps‌‌in‌‌Solving:‌  ‌ 1. Read‌‌carefully,‌‌identify‌‌values‌‌and‌‌conditions‌  ‌ 2. Draw‌‌a‌‌picture‌‌    ‌ 3. Assign‌‌a‌‌variable‌‌or‌‌symbol‌‌to‌‌represent‌‌unknowns‌  ‌ 4. Write‌‌expressions‌  ‌ This‌‌is‌‌yet‌‌another‌‌part‌‌of‌‌Calculus‌‌I‌‌that‌‌I‌‌think‌‌is‌‌best‌‌shown‌‌through‌‌an‌‌example.‌  ‌  

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

219‌  ‌

 ‌ ‌3.2.27.a‌

‌Example‌  ‌

A‌‌right‌‌circular‌‌cylinder‌‌is‌‌inscribed‌‌in‌‌a‌‌cone‌‌with‌‌height‌‌h ‌and‌‌radius‌‌r .‌ ‌Find‌‌the‌‌largest‌‌   possible‌‌volume‌‌of‌‌such‌‌a‌‌cylinder.‌   ‌ ‌ To‌‌begin‌‌to‌‌solve‌‌this‌‌question,‌‌we‌‌must‌‌make‌‌a‌‌diagram.‌   ‌ ‌

 ‌ The‌‌volume‌‌of‌‌a‌‌cylinder‌‌is‌‌V cyl = π r 2 h .‌ ‌The‌‌cylinder‌‌height‌‌is‌‌h − y ‌(height‌‌of‌‌the‌‌cone‌‌   minus‌‌the‌‌space‌‌between‌‌the‌‌top‌‌of‌‌the‌‌cone‌‌and‌‌the‌‌top‌‌of‌‌the‌‌cylinder).‌   ‌ ‌ We‌‌can‌‌use‌‌similar‌‌triangles:‌  ‌

 ‌ We‌‌can‌‌then‌‌use‌‌the‌‌properties‌‌of‌‌similar‌‌triangles‌‌to‌‌find‌‌an‌‌expression‌‌for‌‌y .‌  ‌ y x

220‌

=

h r

→y=

xh r

 

 ‌ ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌ ‌

Then,‌‌we‌‌can‌‌use‌‌these‌‌two‌‌expressions‌‌and‌‌substitute‌‌them‌‌into‌‌the‌‌formula‌‌for‌‌the‌‌   volume‌‌of‌‌a‌‌cylinder.‌  ‌ V (x) = π x 2 (h − y ) = π r 2 (h − V (x) = π x 2 h −

xh 3 rx

xh r ) 



 ‌

It‌‌is‌‌important‌‌to‌‌remember‌‌that‌‌π ,  h, ‌and‌‌r ‌are‌‌all‌‌constants,‌‌not‌‌variables.‌  ‌ Also,‌‌we‌‌must‌‌note‌‌that‌‌the‌‌volume‌‌of‌‌the‌‌cylinder‌‌is‌‌constrained‌‌by‌‌the‌‌cone.‌   ‌ ‌ Since‌‌we‌‌are‌‌looking‌‌for‌‌the‌‌maximum‌‌volume‌‌of‌‌the‌‌cylinder,‌‌we‌‌are‌‌going‌‌to‌‌use‌‌the‌‌   same‌‌strategy‌‌that‌‌we‌‌use‌‌with‌‌graphing‌‌functions.‌ ‌That‌‌is,‌‌we‌‌will‌‌take‌‌the‌‌derivative‌‌of‌‌   the‌‌function,‌‌find‌‌the‌‌critical‌‌points,‌‌and‌‌evaluate‌‌the‌‌function‌‌at‌‌the‌‌points.‌   ‌ ‌ 3πh r

V ′(x) = 2 πxh − V ′(x) = x πh(2 −

3x r)

· x2   ‌ =0  ‌

The‌‌critical‌‌numbers‌‌are‌‌x = 0 ‌and‌‌x = 32 r .‌ ‌Since‌‌the‌‌radius‌‌of‌‌the‌‌cylinder‌‌cannot‌‌be‌‌0,‌‌so‌‌   we‌‌can‌‌only‌‌use‌‌x = 32 r .‌   ‌ ‌ V ( 32 r) = π ( 32 r)2 h −

πh 2 3 r ( 3 r)

=

4πr2 h 9

2

− 8πhr 27 =

4 2 27 (3πhr

− 2 πhr 2 ) =

4 2 27 πhr

 ‌

Therefore,‌‌the‌‌largest‌‌possible‌‌volume‌‌of‌‌the‌‌cylinder‌‌is‌‌274 πhr 2 .‌  ‌  

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

221‌  ‌

 ‌

3.3‌

‌Integrals‌  ‌

3.3.1‌

A ‌ ntiderivatives‌  ‌

➔ A‌‌function‌‌F is‌‌called‌‌an‌‌antiderivative‌‌of‌‌f ‌on‌‌an‌‌interval‌‌I ‌if‌‌F ′(x) = f (x) ‌for‌‌all‌‌x ‌in‌‌   I .‌   ‌ ‌ ‌3.3.1.a‌

‌Power‌‌Rule‌‌and‌‌Antiderivatives‌  ‌

When‌‌using‌‌the‌‌“power‌‌rule”‌‌for‌‌antiderivatives,‌‌you‌‌apply‌‌it‌‌backwards.‌  ‌ ‌This‌‌means‌‌that‌‌you‌‌add‌‌one‌‌to‌‌the‌‌exponent‌‌and‌‌divide‌‌by‌‌that‌‌number.‌‌    ‌

f (x) = xn → F (x) =

xn+1 n+1

 ‌

 ‌ ‌3.3.1.b‌

‌Functions‌‌and‌‌Their‌‌Particular‌‌Antiderivatives‌  ‌

➔ Remember‌‌that,‌‌when‌‌you‌‌take‌‌a‌‌derivative‌‌of‌‌a‌‌function,‌‌you‌‌“lose”‌‌any‌‌constants.‌  ‌ So,‌‌when‌‌we‌‌take‌‌the‌‌antiderivative,‌‌we‌‌must‌‌add‌‌a‌‌general‌‌constant‌‌“‌C ”‌‌to‌‌the‌‌end‌‌   of‌‌the‌‌antiderivative‌‌to‌‌make‌‌up‌‌for‌‌this‌‌loss.‌ ‌This‌‌is‌‌known‌‌as‌‌a‌g ‌ eneral‌‌   antiderivative‌. ‌

222‌

 ‌ ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

‌3.3.1.b‌

‌Functions‌‌and‌‌Their‌‌Particular‌‌Antiderivatives‌‌(con’t)‌  ‌

➔ A‌p ‌ articular‌‌antiderivative‌,‌‌however,‌‌is‌‌the‌‌antiderivative‌‌of‌‌a‌‌specific‌‌function.‌ ‌So,‌‌   the‌‌constant‌‌C ‌will‌‌have‌‌a‌‌defined‌‌value‌‌(‌C ‌can‌‌equal‌‌zero).‌   ‌ ‌  ‌ Function‌  ‌

Particular‌‌Antiderivative‌  ‌

c · f (x)   ‌

c · F (x)  

f (x) · g (x)   ‌

F (x) · G(x)  

f (x) − g (x)   ‌

F (x) − G(x)  

x n ,  n =/   − 1   ‌ 1 x

 ‌

 ‌

l n |x |   ‌

ex   ‌

ex   ‌

bx   ‌

bx ln b

 ‌

c os x   ‌

sin x   ‌

sin x   ‌

− c os x   ‌

sec 2  x   ‌

tan x   ‌

sec x tan x   ‌

sec x   ‌

1 √1−x2 1 1+x2

 ‌  ‌

c ‌(constant)‌  ‌

 

xn+1 n+1

sin −1  x   ‌ tan −1  x   ‌ cx + d   ‌

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

223‌  ‌

 ‌

3.3.2‌ P ‌ article‌M ‌ otion‌  ‌ ➔ t ‌represents‌‌time‌  ‌ ●

position‌‌function‌‌s(t)   ‌



velocity‌‌function‌‌s′(t) = v (t)  



acceleration‌‌function‌‌v ′(t) = a (t)   ‌



jerk‌‌function‌‌a ′(t) = j (t)   ‌

➔ This‌‌is‌‌known‌‌as‌‌“rectilinear‌‌motion”.‌ ‌This‌‌list‌‌also‌‌works‌‌in‌‌reverse‌‌(i.e.‌‌the‌‌   antiderivative‌‌of‌‌a (t) ‌will‌‌produce‌‌v (t) ,‌‌and‌‌so‌‌on).‌  ‌  ‌

3.3.3‌

S ‌ igma‌N ‌ otation‌  ‌

If‌‌a m ,‌‌a m+1 ,‌‌…,‌‌a n ‌are‌‌all‌‌real‌‌numbers‌‌an‌‌m ‌and‌‌n ‌are‌‌integers‌‌such‌‌that‌‌m ≤ n ,‌‌then:‌  ‌ n

∑ a i = a m + a m+1 + a m+2 + ... + a n−1 + a n   ‌

i=m  

❏ the‌‌symbol‌‌∑ ‌is‌‌pronounced‌‌“sigma”‌‌and‌‌it‌‌means‌‌“add”‌  ‌  

❏ the‌‌i ‌represents‌‌iterate/index‌‌of‌‌summation‌  ‌ ❏ a i ‌represents‌‌the‌‌argument‌  ‌ ❏ the‌‌‘‌... ’‌‌represents‌‌“and‌‌so‌‌on”‌  ‌ ❏ use‌‌a n−1 ‌when‌‌n ‌is‌‌unknown,‌‌as‌‌this‌‌shows‌‌the‌‌term‌‌before‌‌a n   ‌  

 ‌

224‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

‌3.3.3.a‌

‌Theorem‌  ‌

➔ if‌‌c ‌is‌‌any‌‌constant‌‌(that‌‌doesn’t‌‌depend‌‌on‌‌i ),‌‌then‌  ‌ a. b. c.

n

n

i=m

i=m

∑ c a i = c ∑ a i ‌(factoring‌‌out‌‌a‌‌common‌‌factor)‌  ‌ n

n

n

i=m

i=m

i=m

n

n

n

i=m

i=m

i=m

∑ (a i + b i ) = ∑ a i + ∑ b i ‌(associative‌‌and‌‌commutative‌‌property)‌  ‌

‌ ∑ (a i − b i ) = ∑ a i − ∑ b i   ‌

‌3.3.3.b‌

‌Theorem‌  ‌

➔ let‌‌c ‌be‌‌a‌‌constant‌‌and‌‌n ‌be‌‌a‌‌positive‌‌integer.‌‌Then,‌‌    ‌ a. b. c. d. e.

n

∑ 1 =n 

i=1 n

∑ c =c·n  ‌

i=1 n

∑i= i=1 n

n(n+1) 2

∑ i2 = i=1

 ‌

n(n+1)(2n+1) 6

 ‌

n

2 ∑ i3 = [ n(n+1) 2 ]   ‌

i=1

 ‌

 

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

225‌  ‌

 ‌

3.3.4‌

D ‌ efinite‌‌Integrals‌‌    ‌

➔ If‌‌f ‌is‌‌a‌‌function‌‌defined‌‌for‌‌a ≤ x ≤ b ,‌‌we‌‌divide‌‌the‌‌interval‌‌[a,  b] ‌into‌‌n  ‌ subintervals‌‌of‌‌equal‌‌width‌‌Δx =

b−a n

.‌ ‌We‌‌let‌‌x 0 = a ,  x 1 ,  x 2 ,  x 3 ,  ... ,  x n = b ‌be‌‌the‌‌  

endpoints‌‌of‌‌these‌‌subintervals‌‌and‌‌we‌‌let‌‌x1*,  x2*,  x3*,  ... ,  xn* ‌be‌‌any‌‌sample‌‌points‌‌in‌‌   these‌‌subintervals,‌‌so‌‌x*i ‌lies‌‌in‌‌the‌‌ith ‌subinterval‌‌[x i−1 ,  x i ] .‌ ‌Then‌‌the‌‌definite‌‌   integral‌‌from‌‌a ‌to‌‌b ‌is‌  ‌ b

∫ f (x)dx = a

n

lim ∑ f (x*i )Δx   ‌ ‌

n→∞ i=1

provided‌‌that‌‌the‌‌limit‌‌exists‌‌and‌‌gives‌‌the‌‌same‌‌value‌‌for‌‌all‌‌possible‌‌choices‌‌of‌‌   sample‌‌points.‌ ‌If‌‌it‌‌does‌‌exist,‌‌we‌‌say‌‌that‌‌f ‌is‌‌integrable‌‌on‌‌[a,  b]   ‌ ➔ Notation:‌  ‌ b

∫ f (x)dx   a





f (x) ‌is‌‌the‌‌integrand‌  ‌



d x ‌indicates‌‌“with‌‌respect‌‌to‌‌x ”‌  ‌



a ‌is‌‌the‌‌lower‌‌limit,‌‌and‌‌b ‌is‌‌the‌‌upper‌‌limit‌  ‌



the‌‌definite‌‌integral‌‌∫ f (x)dx ‌is‌‌a‌n ‌ umber‌  ‌

b

a

➔ The‌‌definite‌‌integral‌‌gives‌‌the‌‌area‌‌under‌‌a‌‌function.‌   ‌ ‌

 

226‌

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌ ‌

‌3.3.4.a‌

‌Negative‌‌Integrals‌  ‌

Area‌‌cannot‌‌be‌‌negative,‌‌but‌‌integrals‌‌find‌‌the‌n ‌ et‌‌‌area‌‌from‌‌the‌‌curve‌‌to‌‌the‌‌x -axis.‌ ‌So,‌‌   you‌‌must‌‌subtract‌‌the‌‌part‌‌of‌‌the‌‌curve‌‌that‌‌is‌‌below‌‌the‌‌x -axis‌  ‌ b

∫ f (x)dx =‌‌area‌‌above‌‌x -axis‌‌-‌‌area‌‌below‌‌x -axis‌  a



 ‌ b

c

d

b

a

a

c

d

∫ f (x)dx = ∫ f (x)dx − ∫ f (x)dx + ∫ f (x)dx   ‌  ‌ ‌3.3.4.b‌

‌Theorem‌‌(Jump‌‌Discontinuities)‌  ‌

If‌‌f ‌is‌‌continuous‌‌on‌‌[a,  b] ,‌‌or‌‌if‌‌f ‌has‌‌only‌‌a‌‌finite‌‌number‌‌of‌‌jump‌‌discontinuities,‌‌then‌‌f  ‌ is‌‌integrable‌‌on‌‌[a,  b] ‌(i.e.‌‌the‌‌definite‌‌integral‌‌exists)‌  ‌

 ‌ All‌‌three‌‌areas‌‌are‌‌finite‌‌numbers.‌   ‌ ‌ Since‌‌this‌‌integral‌‌would‌‌be‌‌a‌‌sum‌‌of‌‌areas,‌‌it‌‌is‌‌fine‌‌if‌‌it‌‌has‌‌jumps.‌ 

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

227‌ ‌

 ‌ ‌3.3.4.c‌

‌Theorem‌  ‌

If‌‌f ‌is‌‌integrable‌‌on‌‌[a,  b] .‌‌Then,‌  ‌ b

∫ f (x)dx = a

n

lim ∑ f (x i )dx   ‌

n→∞ i=1

where,‌  ‌

Δx =

b−a n

‌‌and‌‌x i = a + iΔx   ‌

 ‌ ‌3.3.4.d‌

‌Midpoint‌‌Rule‌  ‌ b

∫ f (x)dx = a

n

∑ f (x i )Δx = Δ x[f (x i ) + ... + f (x n )]   ‌

i=1

where‌‌Δ x =

b−a n

‌and‌  ‌

x i = 21 (x i−1 + x i ) = mdpt of  [x i−1 , x i ] = M n   ‌  ‌ ‌3.3.4.e‌ 1.

‌Properties‌‌of‌‌a‌‌Definite‌‌Integral‌  ‌

b

a

a

b

∫ f (x)dx =   − ∫ f (x)dx

‌(interchanging‌‌limits‌‌changes‌‌the‌‌sign)‌  ‌ a

2. if‌‌a = b ,‌‌Δ x = 0 ,‌‌so‌‌∫ f (x)dx = 0   a

228‌

 ‌ ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

‌3.3.4.e‌ 3.

‌Properties‌‌of‌‌a‌‌Definite‌‌Integral‌‌(con’t)‌  ‌

b

∫ c dx = c(b − a ) ,‌‌where‌‌c a

‌is‌‌any‌‌constant‌  ‌

a. a‌‌rectangle’s‌‌area‌‌is‌‌c (b − a )   ‌

 ‌ b

b

b

a

a

a

4.

∫ [f (x) ± g (x)]dx = ∫ f (x)dx  ± ∫ g (x)dx   ‌

5.

∫ c · f (x)dx = c · ∫ f (x)dx  

6.

∫ f (x)dx + ∫ f (x)dx = ∫ f (x)dx ,‌‌where‌ 

b

b

a

a

c

b

b

a

c

a

‌ ‌

 ‌ ‌(this‌‌could‌‌be‌‌something‌‌like‌‌a‌‌jump‌‌discontinuity)‌  ‌  ‌ ‌3.3.4.f‌

‌Comparison‌‌Properties‌  ‌ b

1. if‌‌f (x) ≥ 0 ‌for‌‌a ≤ x ≤ b ,‌‌then‌‌∫ f (x)dx ≥ 0   ‌ a

b

b

a

a

2. if‌‌f (x) ≥ g (x) ‌for‌‌[a,  b] ,‌‌then‌‌∫ f (x)dx ≥ ∫ g (x)dx   ‌ a. f (x) ‌is‌‌higher‌‌than‌‌g (x) ,‌‌therefore,‌‌h f (x) > h g(x)  

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

229‌ ‌

 ‌ ‌3.3.4.f‌

‌Comparison‌‌Properties‌‌(con’t)‌  ‌ b

3. if‌‌m ≤ f (x) ≤ M ‌for‌‌[a,  b] ,‌‌then‌‌m(b − a ) ≤ ∫ f (x)dx ≤ M (b − a )   ‌ a

 ‌  ‌

 ‌ 3.3.5‌

T ‌ he‌‌Fundamental‌‌Theorem‌o ‌ f‌C ‌ alculus‌  ‌

 ‌ ‌3.3.5.a‌

‌Part‌‌One‌  ‌

➔ If‌‌f ‌is‌‌continuous‌‌on‌‌[a,  b] ,‌‌then‌‌the‌‌function‌‌g ‌is‌‌defined‌‌by‌  ‌ x

g (x) = ∫ f (t)dt ‌where‌‌a ≤ x ≤ b   a

is‌‌continuous‌‌on‌‌[a,  b] ‌and‌‌differentiable‌‌on‌‌(a,  b) ,‌‌and‌‌g ′(x) = f (x) .‌ 

230‌

 ‌ ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌ ‌

‌3.3.5.b‌

‌Part‌‌Two‌  ‌

➔ if‌‌f ‌is‌‌continuous‌‌on‌‌[a,  b] ,‌‌then‌‌    ‌ b

∫ f (x)dx = F (b) − F (a)   a



where‌‌F ‌is‌a ‌ ny‌‌‌antiderivative‌‌of‌‌f ,‌‌that‌‌is,‌‌a‌‌function‌‌such‌‌that‌‌F ′ = f .‌  ‌ ➔ this‌‌will‌‌give‌‌the‌e ‌ xact‌‌‌area‌‌under‌‌the‌‌curve‌‌as‌‌a‌‌number‌  ‌  ‌ ‌3.3.5.c‌

‌Notation‌  ‌

The‌‌common‌‌notation‌‌for‌‌evaluating‌‌integrals‌‌is‌  ‌ b

∫ f (x)dx = F (x)|ab = F (b) − F (a)   a



b

or,‌‌∫ f (x)dx = F (x)]ab = F (b) − F (a)   ‌ a

‌3.3.5.d‌

‌Composite‌  ‌

Suppose‌‌f ‌is‌‌continuous‌‌on‌‌[a,  b]   ‌ x

1. if‌‌g (x) = ∫ f (t)dt ,‌‌then‌‌g ′(x) = f (x)   ‌ a

2.

b

∫ f (x)dx = F (b) − F (a) ,‌‌where‌‌F a

‌is‌‌any‌‌antiderivative‌‌of‌‌f   ‌

 ‌

 

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

231‌  ‌

 ‌

3.3.6‌

I‌ ndefinite‌I‌ ntegrals‌  ‌  

∫ f (x)dx = F (x) + C  

‌means‌‌F ′(x) = f (x) ,‌‌where‌‌F (x) + C ‌is‌‌the‌‌general‌‌antiderivative‌  ‌

 ‌ Keep‌‌in‌‌mind‌‌that:‌  ‌ b

1. A‌‌definite‌‌integral‌‌∫ f (x)dx ‌is‌‌a‌‌number‌  ‌ a

 

2. An‌‌indefinite‌‌integral‌‌∫ f (x)dx ‌is‌‌a‌‌function/a‌‌family‌‌of‌‌functions‌‌(adding‌‌‘‌+ C ’‌‌will‌‌    

change‌‌the‌‌function‌‌depending‌‌on‌‌C ,‌‌which‌‌we‌‌cannot‌‌find‌‌without‌‌more‌‌info,‌‌like‌‌a ‌‌ point‌‌on‌‌the‌‌graph‌‌of‌‌the‌‌function)‌  ‌  

a. example‌‌of‌‌why‌‌+ C ‌is‌‌needed:‌‌∫ x 2 dx =  

x3 3

+ C ‌because‌‌dxd ( x3 + C ) = x 2   ‌ 3

3. An‌‌indefinite‌‌integral‌‌does‌‌not‌‌have‌‌limits‌‌of‌‌integration‌  ‌  

 ‌

232‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

‌3.3.6.a‌

‌Common‌‌Indefinite‌‌Integrals:‌   ‌ ‌

The‌‌following‌‌indefinite‌‌integrals‌‌(aka‌‌antiderivatives)‌‌are‌‌very‌‌common‌‌and‌‌it‌‌would‌‌help‌‌greatly‌‌if‌‌   you‌‌memorized‌‌them.‌   ‌ ‌  

 

 

 

1.

∫ c · f (x)dx = c · ∫ f (x)dx  

2.

∫[f (x) ± g (x)]dx = ∫ f (x)dx ± ∫ g (x)dx  

3.



 

 

 

 

 

 

 

∫ k  dx = k x + C  





 

4.

 

∫ xn dx =  

5.

xn+1 n+1

 

+ C ‌‌where‌‌n =/ 1   ‌

∫ exdx = ex + C  



 

6.

 

∫ 1x dx = ln |x| + C  



 

7.

 

x

b +C  ∫ b xdx = ln b



 

8.

 

∫ |x | d x =  

9.

x|x| 2

+C  ‌

 

∫ sin x dx =   − cos x  + C  



 

 

10. ∫ c os x dx = sin x  + C   ‌  

 

11. ∫ c sc 2 x dx =   − c ot x + C   ‌  

 

12. ∫ sec 2 x dx = tan x + C   ‌  

 

13. ∫ c sc x cot x dx =   − c sc x + C   ‌  

 

14. ∫ x21+1 dx = tan −1 x + C   ‌  

 

15. ∫  

1

√1−x2

dx = sin −1 x + C  

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

233‌  ‌

 ‌

3.3.7‌

T ‌ he‌S ‌ ubstitution‌R ‌ ule‌(‌ Indefinite‌I‌ ntegrals)‌  ‌

➔ if‌‌u = g (x) ‌is‌‌a‌‌differentiable‌‌function‌‌whose‌‌range‌‌is‌‌an‌‌interval‌‌I ‌and‌‌f ‌is‌‌   continuous‌‌on‌‌I ,‌‌then‌  ‌  

 

 

 

∫ f (g(x)) · g ′(x) dx = ∫ f (u) du   ‌ ➔ Look‌‌for‌‌a‌‌function‌‌and‌‌its‌‌derivative‌‌in‌‌the‌‌same‌‌integrand‌  ‌ I‌‌totally‌‌understand‌‌that‌‌this‌‌definition‌‌probably‌‌makes‌‌no‌‌sense,‌‌so‌‌I‌‌will‌‌put‌‌an‌‌example‌‌   below.‌   ‌ ‌ ‌3.3.7.a‌ ‌Example‌  ‌  

3

Find‌‌ ‌∫ x4x−2 dx ‌. ‌  ‌ ‌  

This‌‌equation‌‌cannot‌‌be‌‌simplified‌‌down‌‌and‌‌none‌‌of‌‌our‌‌known‌‌rules‌‌can‌‌help‌‌us.‌  ‌ Therefore,‌‌we‌‌need‌‌to‌‌use‌‌the‌‌substitution‌‌rule‌‌to‌‌make‌‌this‌‌equation‌‌into‌‌something‌‌more‌‌   familiar.‌   ‌ ‌ Notice‌‌how‌‌the‌‌numerator‌‌is‌‌x 3 .‌ ‌This‌‌is‌‌very‌‌similar‌‌to‌‌the‌‌derivative‌‌of‌‌x 4 − 2 .‌ ‌Therefore,‌‌   let‌‌u = x 4 − 2 .‌ ‌Then,‌‌we‌‌need‌‌to‌‌find‌‌d u ,‌‌which‌‌is‌‌simply‌‌the‌‌derivative‌‌of‌‌u .‌    ‌ d u = 4 x 3 dx ‌(power‌‌rule)‌  ‌ Now,‌‌we‌‌are‌‌looking‌‌for‌‌something‌‌in‌‌this‌‌derivative‌‌that‌‌can‌‌replace‌‌something‌‌in‌‌the‌‌   original‌‌function.‌ ‌Ideally,‌‌we‌‌are‌‌looking‌‌for‌‌something‌‌to‌‌replace‌‌x 3 dx .‌ ‌Rearrange‌‌the‌‌   function.‌  ‌ 1 4 du

234‌

= x 3 dx  

 ‌ ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ This‌‌is‌‌exactly‌‌what‌‌we‌‌are‌‌looking‌‌for.‌ ‌In‌‌the‌‌original‌‌function,‌‌there‌‌was‌‌no‌‌coefficient‌‌of‌‌4 ‌‌ on‌‌x 3 .‌ ‌So,‌‌we‌‌had‌‌to‌‌divide‌‌by‌‌4‌‌on‌‌both‌‌sides.‌ ‌Now,‌‌we‌‌can‌‌substitute‌‌in‌‌our‌‌new‌‌   equations.‌  ‌  

∫  

x3 x4 −2 dx

 

→ ∫ u1 · 41 du   ‌  

 

This‌‌new‌‌function‌‌follows‌‌the‌‌substitution‌‌rule‌‌of‌‌∫ f (u) du ,‌‌so‌‌we‌‌may‌‌proceed.‌ ‌First,‌‌we‌‌can‌‌    

factor‌‌out‌‌41 ,‌‌as‌‌it‌‌is‌‌a‌‌coefficient.‌  ‌ 1 4

 

· ∫ u1 du   ‌  

 

Look‌‌back‌‌at‌‌the‌‌list‌‌of‌‌common‌‌indefinite‌‌integrals.‌ ‌Notice‌‌that‌‌∫ 1x dx = ln |x | + C .‌ ‌This‌‌    

means‌‌that‌  ‌ 1 4

 

· ∫ u1  du = 41 ln |u | + C   ‌  

Replace‌‌u ‌with‌‌x 4 − 2 ‌(which‌‌we‌‌set‌‌u ‌equal‌‌to‌‌in‌‌the‌‌beginning‌‌of‌‌the‌‌problem)‌‌to‌‌get‌‌the‌‌   final‌‌answer.‌ ‌So,‌  ‌  

3

∫ x x−2 dx = 41 ln ||x4 − 2 || + C   4

 

 ‌

 

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

235‌  ‌

 ‌

3.3.8‌

T ‌ he‌‌Substitution‌R ‌ ule‌(‌ Definite‌I‌ ntegrals)‌  ‌

➔ if‌‌g ′ ‌is‌‌continuous‌‌on‌‌[a,  b] ‌and‌‌f ‌is‌‌continuous‌‌on‌‌the‌‌range‌‌of‌‌u = g (x) ,‌‌then‌‌    ‌ b

g(b)

a

g(a)

∫ f (g(x)) · g ′(x) dx = ∫

f (u) du   ‌

➔ You‌‌use‌‌the‌‌same‌‌method‌‌you‌‌would‌‌use‌‌for‌‌indefinite‌‌integrals,‌‌but‌‌at‌‌the‌‌end‌‌you‌‌   evaluate‌‌your‌‌answer‌‌at‌‌g (b) ‌and‌‌g (a) ,‌‌and‌‌subtract‌‌F (g(a)) ‌from‌‌F (g(b)) ,‌‌as‌‌you‌‌   would‌‌with‌‌a‌‌regular‌‌definite‌‌integral.‌   ‌ ‌  ‌

3.3.9‌

I‌ ntegrals‌‌of‌S ‌ ymmetric‌‌Functions‌  ‌

Suppose‌‌f ‌is‌‌continuous‌‌on‌‌[− a ,  a]   ‌ a

a

−a

0

a. if‌‌f ‌is‌‌even‌‌[f (− x ) = f (x)] ,‌‌then‌‌ ∫ f (x) dx = 2 ∫ f (x) dx   ‌

 ‌  ‌  

236‌

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌ ‌

 ‌ a

b. if‌‌f ‌is‌‌odd‌‌[f (− x ) =   − f (x)] ,‌‌then‌‌ ∫ f (x) dx = 0   ‌ −a

 ‌  ‌  

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

237‌ ‌

 ‌

“‌What‌‌did‌‌one‌‌c alculus‌‌textbook‌‌s ay‌‌to‌‌the‌‌other?‌‌    ‌

Don’t‌‌bother‌‌m e.‌‌I’ve‌‌got‌‌m y‌‌own‌‌problems.”‌  ‌ -Homoropedia.com‌  ‌  ‌

3.4‌  ‌  ‌  ‌  ‌  

‌My‌‌Notes‌‌for‌‌Calculus‌‌I ‌ ‌

 ‌

238‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

3.4‌  ‌  ‌  ‌  ‌  

‌My‌‌Notes‌‌for‌‌Calculus‌‌I‌‌(con’t)‌  ‌

 ‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌

239‌  ‌

 ‌

3.4‌

‌My‌‌Notes‌‌for‌‌Calculus‌‌I‌‌(con’t)‌  ‌

 ‌  ‌  ‌  ‌  ‌  ‌

240‌

Section‌‌3‌‌-‌‌Calculus‌‌I‌‌-‌‌M ath‌‌Q RH‌  ‌

“Math.‌‌It’s‌‌just‌‌there...You’re‌‌e ither‌‌right‌‌o r‌‌y ou're‌‌wrong.‌‌    ‌ That’s‌‌what‌‌I‌‌like‌‌a bout‌‌it.”‌‌    ‌ -‌‌Katherine‌‌J ohnson‌  ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌  ‌ 4.0‌ ‌Summary‌‌Sheet‌  ‌ Applications‌‌of‌‌Integration‌  ‌ b

Area‌‌Between‌‌Curves:‌‌∫ |f (x) − g (x)| d x   ‌ a



top − b ottom  for‌‌x ‌axis‌‌integration‌  ‌



r ight − lef t ‌for‌‌y ‌axis‌‌integration‌  ‌

Average‌‌Value‌‌of‌‌a‌‌Function:‌‌f ave = b

Arc‌‌Length:‌‌L = ∫

a

1 b − a

b

· ∫ f (x) dx   ‌ a

√1 + [f ′(x)] dx   ‌ 2

b

Volume‌‌of‌‌a‌‌Solid:‌‌V = ∫ A(x) dx ,‌‌where‌‌A(x) ‌is‌‌the‌‌area‌‌of‌‌a‌‌cross‌‌section‌  ‌ a

Volumes‌‌of‌‌Revolution:‌  ‌ b



Disk:‌‌V = ∫ π R2  dx ,‌‌where‌‌R ‌is‌‌the‌‌distance‌‌from‌‌the‌‌function‌‌and‌‌the‌‌axis‌‌of‌‌   a

rotation.‌ 

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

241‌  ‌

 ‌  ‌ b



Washer:‌‌V = ∫ (πR2 − π r 2 ) dx .‌  a



R ‌is‌‌the‌‌distance‌‌from‌‌the‌‌“spinning‌‌line”‌‌to‌‌the‌‌furthest‌‌function.‌ ‌r ‌is‌‌the‌‌   distance‌‌from‌‌the‌‌spinning‌‌line‌‌to‌‌the‌‌closer‌‌function.‌   ‌ ‌

○ ●

Always‌‌use‌‌top − b ottom ‌or‌‌r ight − lef t ‌when‌‌using‌‌this‌‌method‌  ‌ b

Cylindrical‌‌Shells:‌‌V = ∫ 2 πxf (x) dx   ‌ a



Tips:‌  ‌ ○

Always‌‌draw‌‌a‌‌sample‌‌rectangle.‌ ‌Spin‌‌your‌‌finger‌‌(as‌‌if‌‌it‌‌were‌‌the‌‌rectangle)‌‌   along‌‌the‌‌revolution.‌ ‌If‌‌your‌‌finger‌‌changes‌‌direction‌‌as‌‌it‌‌spins,‌‌use‌‌the‌  disk/washer‌‌method.‌‌If‌‌your‌‌finger‌‌stays‌‌upright‌‌and‌‌only‌‌your‌‌hand‌‌moves,‌‌   use‌‌the‌‌cylindrical‌‌shells‌‌method.‌    ‌



Make‌‌sure‌‌your‌‌functions‌‌are‌‌in‌‌terms‌‌of‌‌the‌‌variable‌‌that‌‌corresponds‌‌to‌‌the‌‌   rectangle’s‌‌thickness.‌   ‌ ‌



Sometimes‌‌both‌‌techniques‌‌are‌‌possible‌‌to‌‌use.‌ ‌Choose‌‌the‌‌easier‌‌option:‌‌   the‌‌one‌‌that‌‌doesn’t‌‌make‌‌you‌‌split‌‌up‌‌the‌‌integral‌‌into‌‌several‌‌integrals,‌‌and‌‌   where‌‌limits‌‌of‌‌integration‌‌are‌‌easy‌‌to‌‌find.‌   ‌ ‌

b

Work:‌‌W = ∫ F (x) dx ‌for‌‌a‌‌variable‌‌force‌‌F (x)   ‌ a



Hooke’s‌‌Law‌‌(springs):‌‌F (x) = k x ,‌‌where‌‌k ‌is‌‌the‌‌spring‌‌constant‌  ‌



Cable‌‌Problems:‌‌F (x) = (initial weight) − (weight lost af ter lif ting · f eet)   ‌  ‌  

 

 

 

Integration‌‌by‌‌Parts‌‌Formula:‌‌∫ u · d v = u · v − ∫ v · d u  

242‌

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ●

To‌‌choose‌‌u ,‌‌start‌‌at‌‌the‌‌top‌‌and‌‌work‌‌your‌‌way‌‌down,‌‌the‌‌first‌‌one‌‌you‌‌encounter‌‌   should‌‌be‌‌your‌‌u .‌   ‌ ‌ ○

L‌-‌ ‌‌Logarithmic‌‌functions‌  ‌

○ ○ ○ ○

I‌-‌ ‌‌Inverse‌‌trig‌‌functions‌  ‌ P‌-‌ ‌‌Polynomials‌  ‌ E‌‌‌-‌‌Exponential‌‌functions‌  ‌ T‌-‌ ‌‌Trig‌‌functions‌  ‌

 ‌ Trigonometric‌‌Integrals‌  ‌ Strategy‌‌for‌‌evaluating‌‌integrals‌‌of‌‌the‌‌form‌‌    ‌  

∫ sinm (x) cosn (x) dx   ‌  



If‌‌the‌‌power‌‌on‌‌cosine‌‌is‌o ‌ dd‌,‌‌use‌‌c os2 (x) = 1 − sin 2 (x) ‌to‌‌replace‌‌all‌‌but‌‌one‌‌of‌‌the‌‌the‌‌   c os (x) .‌ ‌Group‌‌this‌‌lone‌‌c os (x) ‌with‌‌d x ‌and‌‌perform‌‌the‌‌substitution‌  ‌ u = sin (x)      du = c os (x) dx   ‌



If‌‌the‌‌power‌‌on‌‌sine‌‌is‌o ‌ dd‌,‌‌use‌‌sin 2 (x) = 1 − c os2 (x) ‌to‌‌replace‌‌all‌‌but‌‌one‌‌of‌‌the‌‌the‌‌   sin (x) .‌ ‌Group‌‌this‌‌lone‌‌sin (x) ‌with‌‌d x ‌and‌‌perform‌‌the‌‌substitution‌  ‌ u = c os (x)      du =   − sin (x) dx   ‌



If‌‌both‌‌powers‌‌are‌e ‌ ven‌,‌‌use‌‌the‌‌half‌‌angle‌‌identities‌‌repeatedly‌‌until‌‌you‌‌are‌‌left‌‌   with‌‌c os (kx) ‌terms‌‌only‌ 

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

243‌  ‌

 ‌  ‌ Important‌‌to‌‌Memorize‌  ‌  

 

∫ cos (kx) dx  →  u = kx,  dx = 1k du  →   1k ∫ cos (u) du = 1k sin (kn) + C   ‌  

 

 

∫ sin (kx) dx =   − 1k cos (kx) + C    

 ‌ Strategy‌‌for‌‌evaluating‌‌integrals‌‌of‌‌the‌‌form‌‌    ‌  

∫ tanm (x) secn (x) dx   ‌  



If‌‌the‌‌power‌‌on‌‌secant‌‌is‌e ‌ ven‌,‌‌group‌‌sec 2 (x) ‌with‌‌the‌‌d x .‌ ‌Then‌‌use‌‌   sec 2 (x) = tan 2 (x) + 1 ‌to‌‌replace‌‌all‌‌of‌‌the‌‌remaining‌‌sec (x) ‌terms.‌ ‌Perform‌‌the‌‌   substitution‌  ‌ u = tan (x)      du = sec 2 (x) dx   ‌



If‌‌the‌‌power‌‌on‌‌tangent‌‌is‌o ‌ dd‌,‌‌group‌‌sec (x) tan (x) ‌with‌‌the‌‌d x .‌ ‌Use‌‌   tan 2 (x) = sec 2 (x) − 1 ‌to‌‌replace‌‌all‌‌of‌‌the‌‌remaining‌‌tan (x) ‌terms.‌ ‌Perform‌‌the‌‌   substitution‌‌    ‌ u = sec (x)     du = sec (x) tan (x) dx   ‌



For‌‌other‌‌cases,‌‌you‌‌will‌‌need‌‌to‌‌be‌‌creative‌‌and‌‌use‌‌other‌‌tools.‌ ‌Some‌‌suggestions‌‌   are‌  ‌ ○

rewriting‌‌everything‌‌in‌‌terms‌‌of‌‌sine‌‌and‌‌cosine‌  ‌



using‌‌a‌‌trig‌‌identity‌‌and‌‌splitting‌‌up‌‌the‌‌integral‌‌(see‌‌the‌‌precalculus‌‌   summary‌‌sheet)‌  ‌

244‌



using‌‌integration‌‌by‌‌parts‌  ‌



trial‌‌and‌‌error‌ 

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

Strategy‌‌for‌‌solving‌‌other‌‌trig‌‌integrals‌‌where‌‌m =/ n   ‌  



∫ sin (mx) cos (nx) dx   ‌  

Use‌‌sin A cos B = 21 [sin (A − B ) + sin (A + B )]   ‌

○  



∫ sin (mx) sin (nx) dx   ‌  

Use‌‌sin A sin B = 21 [cos (A − B ) − c os (A + B )]   ‌

○  



∫ cos (mx) cos (nx) dx   ‌  

Use‌‌c os A cos B = 21 [cos (A − B ) + c os(A + B )]   ‌

○  ‌

Trigonometric‌‌Substitution‌  ‌ a ‌is‌‌some‌‌number‌  ‌ Expression‌  ‌

Substitution‌  ‌

Valid‌‌Interval‌  ‌

Identity‌  ‌

√a 2 − x2  



x = a sin θ     dx = a cos θ dθ   ‌



π 2

≤θ≤

π 2

 ‌

1 − sin 2 θ = c os2 θ   ‌

√a 2 + x2  



x = a tan θ     dx = a sec 2 θ dθ   ‌



π 2

≤θ≤

π 2

 ‌

1 + tan 2 θ = sec 2 θ   ‌

√x2 − a 2  



π 2

‌or‌‌π ≤ θ ≤

x = a sec θ     dx = a sec θ tan θ dθ 0 ≤ θ ≤

3π 2

 ‌

sec 2 θ − 1 = tan 2 θ   ‌

You‌‌will‌‌commonly‌‌see‌‌these‌‌with‌‌a‌‌square‌‌root,‌‌but‌‌it‌‌doesn’t‌‌have‌‌to‌‌be‌‌there.‌  ‌  ‌  

 ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

245‌  ‌

 ‌ More‌‌Integration‌‌Strategies‌  ‌ Integration‌‌by‌‌Partial‌‌Fractions:‌‌If‌‌an‌‌integral‌‌has‌‌a‌‌complicated‌‌rational‌‌function,‌‌we‌‌can‌‌   use‌‌partial‌‌fractions‌‌to‌‌help‌‌evaluate‌‌the‌‌integral.‌   ‌ ‌ ●

If‌‌the‌‌degree‌‌of‌‌the‌‌numerator‌‌is‌‌greater‌‌than‌‌or‌‌equal‌‌to‌‌the‌‌degree‌‌of‌‌the‌‌   denominator,‌‌you‌‌must‌‌perform‌‌long‌‌division‌‌(see‌‌Algebra‌‌II‌‌section)‌‌before‌‌moving‌‌   on‌‌to‌‌the‌‌next‌‌step.‌   ‌ ‌



Factor‌‌the‌‌denominator.‌  ‌



Perform‌‌a‌‌partial‌‌fraction‌‌decomposition.‌  ‌



Evaluate‌‌the‌‌integrals‌‌of‌‌each‌‌partial‌‌fraction‌‌to‌‌get‌‌the‌‌integral‌‌of‌‌the‌‌entire‌‌   function.‌   ‌ ‌

 ‌ Integrals‌‌You‌‌Must‌‌Know‌   

∫ 1x  dx = ln |x| + C   ‌  

 

∫  

1 x2  + 1  dx

= tan−1 (x) + C   ‌

 ‌  

1  dx = ∫ mx + b  

1 m

· ln |mx + b| + C   ‌

 

1  dx = a1 · tan−1 ( ax ) + C   ‌ ∫ x  + a 2

2

 

 ‌ Log‌‌Properties‌‌to‌‌Know‌  ‌ n · ln  |ax + b| = ln |(ax + b )n |   ‌ ax + b | ln |ax + b | − ln |cx + d | = ln || cx + d |  ‌

ln |ax + b| + ln |cx + d| = ln |(ax + b )(cx + d )|   ‌  ‌  

 ‌

246‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

Improper‌‌Integrals:‌‌    ‌ ●

Type‌‌I:‌‌Unbounded‌‌Integrals‌  ‌ ∞

∫ f (x) dx =



a

b





−∞

t

t → ∞ a

b

f (x) dx = lim   ∫ f (x) dx   ‌ t → −∞ t





○ ●

−∞

lim   ∫ f (x) dx   ‌

c

f (x) dx =



−∞



f (x) dx + ∫ f (x) dx   ‌ c

Type‌‌II:‌‌Discontinuous‌‌Integrand‌  ‌ b

t

Discontinuous‌‌at‌‌b :‌‌∫ f (x) dx = lim −   ∫ f (x) dx ,‌‌t < b   ‌



a

t → b

b

a

b

Discontinuous‌‌at‌‌a :‌‌∫ f (x) dx = lim +   ∫ f (x) dx ,‌‌t > a   ‌



a

t → a

t

b

c

b

a

a

c

Discontinuous‌‌at‌‌c ‌between‌‌a ‌and‌‌b :‌‌∫ f (x) dx = ∫ f (x) dx + ∫ f (x) dx   ‌

○ ∞

The‌‌integral‌‌∫

1

1 xP

 dx ‌converges‌‌if‌‌p > 1 ‌and‌‌diverges‌‌if‌‌p ≤ 1 .‌   ‌ ‌

Comparison‌‌Test‌‌for‌‌Improper‌‌Integrals:‌‌If‌‌big‌‌B (x) ‌and‌‌little‌‌L(x) ‌are‌‌continuous‌‌functions‌‌   with‌‌B (x) ≥ L(x) ≥ 0 ,‌‌then‌  ‌

 





a

a



If‌‌∫ B (x) dx ‌converges,‌‌then‌‌∫ L(x) dx ‌converges.‌  ‌



If‌‌∫ B (x) dx ‌diverges,‌‌then‌‌∫ L(x) dx ‌is‌‌unknown.‌  ‌



If‌‌∫ L(x) dx ‌diverges,‌‌then‌‌∫ B (x) dx ‌diverges.‌  ‌



If‌‌∫ L(x) dx ‌converges,‌‌then‌‌∫ B (x) dx ‌is‌‌unknown.‌  ‌





a

a





a

a





a

a

 ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

247‌  ‌

 ‌ Series‌  ‌ n

A‌‌series‌‌n th ‌partial‌‌sum:‌‌sn = ∑ a i = a 1 + a 2 + ... + a n   ‌ i = 1



If‌‌the‌‌sequence‌‌of‌‌partial‌‌sums‌‌{sn } ‌is‌‌convergent‌‌and‌‌ lim sn = S ‌is‌‌a‌‌real‌‌number,‌‌   n → ∞

 



 

i = 1

then‌‌we‌‌say‌‌the‌‌series‌‌∑ a i ‌is‌‌convergent‌‌and‌‌we‌‌write‌ ∑ a i = S   ‌ ∞

n th ‌Term‌‌Test:‌‌If‌‌ lim a n =/ 0 ‌or‌‌D N E ,‌‌then‌‌the‌‌series‌‌ ∑ a n ‌is‌‌divergent.‌ ‌Just‌‌because‌‌   n → ∞ 

n = 1

 

lim a n = 0 ,‌‌doesn’t‌‌mean‌‌∑ a n ‌converges!‌  ‌

n → ∞ 

 



Geometric‌‌Series:‌‌Convergent‌‌only‌‌when‌‌|r | > 1 .‌ ‌Furthermore,‌‌ ∑ a r n = n = 0

a 1 − r

.‌  ‌

 

 











 

 

n = 1

n = 1

n = 1

n = 1

n = 1

If‌‌∑ a n ‌and‌‌∑ b n ‌are‌‌convergent,‌‌then‌ ∑ (c · a n ) = c · ∑ a n ‌and‌ ∑ (a n ± b n ) = ∑ a n ± ∑ b n .‌  ‌ Integral‌‌Test:‌‌If‌‌f (x) ‌is‌‌a‌‌continuous,‌‌positive,‌‌and‌‌decreasing‌‌(‌f ′(x) < 0 )‌‌function‌‌on‌‌the‌‌   interval‌‌[1,  ∞] ‌with‌‌f (x) = a n ‌(the‌‌same‌‌terms‌‌as‌‌the‌‌series),‌‌then‌  ‌ ∞

∫ f (x) dx



‌converges‌‌

1



∫ f (x) dx



‌diverges‌‌

1



p-Series:‌ ∑

n = 1

1 nP



∑ a n ‌converges‌  ‌

n = 1 ∞

∑ a n ‌diverges‌  ‌

n = 1

‌,‌‌convergent‌‌when‌‌p > 1 ‌and‌‌divergent‌‌when‌‌p ≤ 1 .‌  ‌  

 

 

 

Direct‌‌Comparison‌‌Test:‌‌If‌‌∑ a n ‌(given)‌‌and‌‌∑ b n ‌(similar)‌‌are‌‌series‌‌with‌‌positive‌‌terms‌‌and‌  ‌

● ●

248‌

 

 

 

 

If‌‌∑ b n ‌converges‌‌and‌‌0 ≤ a n ≤ b n ,‌‌then‌‌∑ a n ‌converges‌‌(is‌‌a‌‌finite‌‌number)‌  ‌  

 

 

 

If‌‌∑ b n ‌diverges‌‌and‌‌0 ≤ b n ≤ a n ,‌‌then‌‌∑ a n ‌diverges‌‌(is‌‌infinite)‌ 

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ For‌‌determining‌‌b n ‌on‌p ‌ -‌ series‌‌comparisons:‌  ‌ ∞

∑ n = 1

largest power in numerator largest power in denominator

 ‌

 ‌  

 

 

 

Limit‌‌Comparison‌‌Test:‌‌If‌‌∑ a n ‌and‌‌∑ b n ‌are‌‌series‌‌with‌‌positive‌‌terms‌‌and‌‌you‌‌evaluate‌‌the‌‌   limit‌  ‌ an n → ∞ b n

lim

=C‌

a ‌ nd‌‌

‌0 < C < ∞ ‌(strict‌‌inequality)‌   ‌ ‌

Then‌‌both‌‌series‌‌do‌‌the‌‌same‌‌thing:‌‌they‌‌either‌‌both‌‌converge‌‌or‌‌they‌‌both‌‌diverge.‌  ‌  

Alternating‌‌Series‌‌Test:‌‌An‌‌alternating‌‌series‌‌∑  (− 1 )n b n ‌converges‌‌if‌‌both:‌  ‌  

1. The‌‌terms‌‌go‌‌to‌‌0 :‌‌ lim b n = 0   ‌ n → ∞

2. The‌‌terms‌‌b n ‌decrease:‌‌b 1 ≥ b 2 ≥ b 3 ≥ ... ‌(check‌‌by‌‌showing‌‌the‌‌derivative‌‌is‌‌negative)‌  ‌ When‌‌testing‌‌both‌‌of‌‌the‌‌above‌‌conditions,‌‌do‌‌not‌‌include‌‌the‌‌alternating‌‌terms.‌ ‌If‌‌the‌‌first‌‌   condition‌‌does‌‌not‌‌happen,‌‌then‌‌the‌‌series‌‌diverges‌‌by‌‌the‌‌n th ‌term‌‌test.‌   ‌ ‌  

a | Ratio‌‌Test:‌‌Consider‌‌the‌‌series‌‌∑ a n ‌and‌‌find‌‌the‌‌limit‌‌ lim || n + 1 a n | = r ‌.‌ ‌If‌  ‌  



n → ∞

 

r < 1 ‌the‌‌series‌‌∑ a n ‌converges‌‌absolutely‌  ‌  



 

r > 1 ‌the‌‌series‌‌∑ a n ‌diverges‌  ‌  

●  

r = 1 ‌test‌‌is‌‌inconclusive,‌‌try‌‌a‌‌different‌‌test‌    ‌  ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

249‌  ‌

 ‌ The‌‌ratio‌‌test‌‌works‌‌best‌‌when‌‌factorials‌‌show‌‌up,‌‌or‌‌when‌‌you‌‌have‌‌a‌m ‌ ix‌‌‌of‌‌polynomials,‌‌   exponentials,‌‌and/or‌‌factorials‌‌(don’t‌‌use‌‌it‌‌when‌‌there‌‌is‌‌only‌‌one‌‌of‌‌these!).‌‌    ‌  

Root‌‌Test:‌‌Consider‌‌the‌‌series‌‌∑ a n ‌and‌‌find‌‌the‌‌limit‌‌ lim  



n

√|an |  = r .‌ ‌If‌‌   ‌ n → ∞

 

r < 1 ‌the‌‌series‌‌∑ a n ‌converges‌‌absolutely‌  ‌  



 

r > 1 ‌the‌‌series‌‌∑ a n ‌diverges‌  ‌  



r = 1 ‌test‌‌inconclusive,‌‌try‌‌a‌‌different‌‌test‌  ‌

The‌‌root‌‌test‌‌is‌‌only‌‌useful‌‌when‌‌the‌‌terms‌‌of‌‌the‌‌series‌‌are‌‌all‌‌raised‌‌to‌‌the‌‌power‌‌n .‌   ‌ ‌  ‌ Power‌‌Series‌  ‌ A‌‌power‌‌series‌‌is‌‌a‌‌series‌‌of‌‌the‌‌form‌  ‌ ∞

‌ ∑ c n (x − a )n = c 0 + c 1 (x − a ) + c 2 (x − a )2 + c 3 (x − a )3 + ...   ‌ n = 0

where‌‌x ‌is‌‌the‌‌variable,‌‌c n ’s‌‌are‌‌called‌‌the‌‌coefficients,‌‌and‌‌a ‌is‌‌some‌‌number.‌ ‌This‌‌is‌‌an‌‌   infinite‌‌polynomial.‌ ‌When‌‌you‌‌plug‌‌in‌‌x = a ,‌‌the‌‌series‌‌converges‌‌to‌‌c 0 .‌‌    ‌ Integrals‌‌and‌‌Derivatives:‌‌Treat‌‌the‌‌series‌‌just‌‌as‌‌functions;‌‌use‌‌the‌‌power‌‌rule‌‌and‌‌inverse‌‌   power‌‌rule.‌ ‌The‌‌ROC‌‌will‌‌be‌‌the‌‌same‌‌as‌‌the‌‌original,‌‌but‌‌you‌‌must‌‌check‌‌the‌‌endpoints‌‌of‌‌   the‌‌IOC.‌ 

250‌

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

Taylor‌‌Series:‌‌To‌‌find‌‌the‌‌Taylor‌‌polynomial‌‌of‌‌degree‌‌n ‌for‌‌the‌‌function‌‌f (x) ‌at‌‌x = a :‌  ‌ T n (x) = f (a) +

f ′(a) 1!

(x − a )1 +

f ′′(a) 2!

(x − a )2 +

f (3) (a) 3!

(x − a )3 + ... +

f (n) (a) n!

(x − a )n   ‌

A‌‌Taylor‌‌Series‌‌of‌‌the‌‌function‌‌f (x) ‌centered‌‌at‌‌x = a ‌is‌‌the‌‌infinite‌‌series‌  ‌ ∞

∑ n = 0

f (n) (a) n!

(x − a )n = f (a) +

f ′(a) 1!

(x − a )1 +

f ′′(a) 2!

(x − a )2 +

f (3) (a) 3!

(x − a )3 + ...   ‌

When‌‌the‌‌series‌‌is‌‌centered‌‌at‌‌x = 0 ‌(meaning‌‌the‌‌number‌‌a ‌is‌‌zero),‌‌it‌‌is‌‌called‌‌a‌‌Maclaurin‌‌   series.‌   ‌ ‌ Important‌‌Taylor‌‌Series:‌  ‌ Function‌  ‌ 1 1 − x

Taylor‌‌Series‌  ‌ ∞

 ‌

∑ xn   ‌

ROC‌  ‌ R =1  ‌

n = 0

ln (1 + x )   ‌



xn + 1 ∑ (− 1 )n n + 1  ‌

R =1  ‌



R =1  ‌

n = 0

tan −1 (x)   ‌

x2n + 1 ∑ (− 1 )n 2n + 1  ‌

n = 0



ex   ‌

n ∑ xn!   ‌

R =∞  ‌

n = 0

c os (x)   ‌



x2n ∑ (− 1 )n (2n)!  ‌

R =∞  ‌

n = 0

sin (x)   ‌



2n + 1

x ∑ (− 1 )n (2n + 1)!  ‌ n = 0

R =∞  ‌

 ‌  

 ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

251‌  ‌

 ‌ Differential‌‌Equations‌  ‌ A‌‌differential‌‌equation‌‌is‌‌an‌‌equation‌‌containing‌‌an‌‌unknown‌‌function‌‌(typically‌‌y )‌‌and‌‌one‌‌   or‌‌more‌‌of‌‌its‌‌derivatives.‌ ‌Differential‌‌equations‌‌have‌‌“orders”‌‌that‌‌correspond‌‌to‌‌the‌‌   highest‌‌order‌‌derivative.‌‌    ‌ A‌‌separable‌‌differential‌‌equation‌‌is‌‌a‌‌first‌‌order‌‌differential‌‌equation‌‌that‌‌factors‌‌into‌‌a ‌‌ function‌‌of‌‌x ‌and‌‌a‌‌function‌‌of‌‌y ‌(separating‌‌x ’s‌‌and‌‌y ’s).‌ ‌Not‌‌every‌‌differential‌‌equation‌‌   f(x)

is‌‌separable.‌ ‌They‌‌need‌‌to‌‌be‌‌one‌‌of‌‌the‌‌two‌‌following‌‌forms:‌‌f (x) · g (y) ‌or‌‌ h(y) ‌. ‌ ‌  ‌ Calculus‌‌with‌‌Parametric‌‌Equations‌  ‌ dy

derivative of y

dy/dt

Derivative‌‌of‌‌a‌‌Parametric‌‌Equation:‌‌ dx = derivative of x = dx/dt   ‌ d2 y

dy

d( ) = Second‌‌Derivative‌‌of‌‌a‌‌Parametric‌‌Equation:‌‌ dx2 = dx dx

d (dy/dx) dt

dx/dt

 ‌

β

Area‌‌Under‌‌a‌‌Parametric‌‌Equation:‌‌If‌‌x = f (t) ‌and‌‌y = g (t) ,‌‌∫ g (t) f ′(t) dt ‌for‌‌a‌‌curve‌‌traveling‌‌   α

from‌‌left‌‌to‌‌right.‌   ‌ ‌ b

Arc‌‌Length‌‌of‌‌Parametric‌‌Curve:‌‌∫

a

√(

dx 2 dt )

dy

+ ( dt )2  dt   ‌

 ‌ Calculus‌‌with‌‌Polar‌‌Coordinates‌  ‌ r = f (θ) ‌is‌‌a‌‌polar‌‌curve.‌ ‌You‌‌need‌‌to‌‌convert‌‌this‌‌into‌‌equations‌‌for‌‌x ‌and‌‌y ‌using‌‌   x = r cos θ ‌and‌‌y = r sin θ .‌   ‌ ‌ r = f (θ)   →   x = f (θ)cos θ      y = f (θ)sin θ   ‌  

 ‌

252‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

dy

dy/dθ

Derivative‌‌of‌‌a‌‌Polar‌‌Curve:‌‌ dx = dx/dθ   ‌ b

Area‌‌of‌‌a‌‌Polar‌‌Curve:‌‌∫ 21 r 2  dθ   ‌ a

 ‌

4.1‌

‌Applications‌‌of‌‌Integration‌  ‌

4.1.1‌

A ‌ rea‌‌Between‌C ‌ urves‌  ‌

The‌‌area‌‌on‌‌the‌‌interval‌‌[a,  b] ‌bounded‌‌by‌‌the‌‌graphs‌‌of‌‌two‌‌continuous‌‌functions‌‌y = f (x)  ‌ and‌‌y = g (x) ‌is‌‌denoted‌  ‌ b

∫ |f (x) − g (x)| d x   a



where‌‌f (x) ‌is‌‌the‌‌function‌‌on‌‌top‌‌and‌‌g (x) ‌is‌‌the‌‌function‌‌on‌‌the‌‌bottom.‌ ‌So,‌‌it‌‌is‌‌the‌‌   integral‌‌of‌‌the‌‌top‌‌minus‌‌the‌‌integral‌‌of‌‌the‌‌bottom.‌   ‌ ‌

 ‌ To‌‌find‌‌this‌‌value,‌‌perform‌‌the‌‌following:‌  ‌ ●

Graph‌‌the‌‌functions‌  ‌



Find‌‌the‌‌intersection‌‌points,‌‌when‌‌f (x) = g (x) ,‌‌using‌‌algebra‌  ‌ ○



these‌‌intersection‌‌points‌‌are‌‌the‌‌a ‌and‌‌b ‌values‌  ‌

Evaluate‌‌the‌‌integral(s)‌‌of‌‌top-bottom‌‌on‌‌these‌‌intervals‌ 

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

253‌ ‌

 ‌

4.1.2‌

A ‌ verage‌V ‌ alue‌o ‌ f‌a ‌ ‌F ‌ unction‌  ‌

The‌‌exact‌‌average‌‌value‌‌of‌‌the‌‌function‌‌y = f (x) ‌on‌‌the‌‌interval‌‌[a,  b] ‌is‌  ‌ f ave =

1 b − a

b

· ∫ f (x) dx   ‌ a

b

1 where‌‌∫ f (x) dx ‌is‌‌a‌‌normal‌‌integral‌‌and‌‌b − a ‌is‌‌a‌‌constant.‌   ‌ ‌ a

This‌‌is‌‌function‌‌is‌‌finding‌‌the‌‌average‌‌of‌‌n ‌equally‌‌spaced‌‌y ‌values,‌‌where‌‌n → ∞ .‌   ‌ ‌ This‌‌function‌‌is‌‌derived‌‌from‌‌the‌‌regular‌‌average‌‌formula‌‌(the‌‌total‌‌sum‌‌of‌‌all‌‌numbers‌‌   over‌‌the‌‌number‌‌of‌‌items‌‌in‌‌the‌‌set)‌‌and‌‌the‌‌infinite‌‌sum‌‌definition‌‌of‌‌an‌‌integral.‌ ‌If‌‌you‌‌   want‌‌to‌‌see‌‌a‌‌great‌‌walkthrough‌‌of‌‌this,‌‌go‌‌to‌‌section‌‌1.2‌‌of‌‌the‌‌OpenStax‌‌Calculus‌‌Volume‌‌   2‌‌free‌‌online‌‌textbook.‌   ‌ ‌  ‌

4.1.3‌

A ‌ rc‌L ‌ ength‌  ‌

The‌‌formula‌‌for‌‌the‌‌arc‌‌length‌‌of‌‌a‌‌curve‌‌from‌‌x = a ‌to‌‌x = b ‌is‌  ‌ b

L=∫

a

√1 + [f ′(x)] dx   ‌ 2

This‌‌formula‌‌is‌‌derived‌‌from‌‌the‌‌Pythagorean‌‌Theorem.‌ ‌Basically,‌‌the‌‌curve‌‌is‌‌cut‌‌up‌‌into‌‌n  ‌



tiny‌‌straight‌‌line‌‌segments,‌‌where‌‌the‌‌length‌‌of‌‌the‌‌segments‌‌are‌‌ (dx)2 + (dy)2 .‌  ‌If‌‌we‌‌take‌‌   n ‌to‌‌infinity‌‌and‌‌add‌‌up‌‌all‌‌the‌‌segments,‌‌we‌‌are‌‌performing‌‌an‌‌infinite‌‌sum‌‌calculation,‌‌   also‌‌known‌‌as‌‌an‌‌integral.‌ ‌The‌‌integrand‌‌is‌‌then‌‌rewritten‌‌using‌‌algebra‌‌into‌‌the‌‌above‌‌   integrand.‌   ‌

254‌

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

4.1.4‌

y ‌ -Axis‌I‌ ntegration‌  ‌

Remember‌‌that‌‌a‌‌function‌‌can‌‌be‌‌written‌‌as‌‌x = f (y) .‌ ‌For‌‌this‌‌section,‌‌it‌‌may‌‌be‌‌helpful‌‌to‌‌   review‌‌inverse‌‌functions‌‌(this‌‌is‌‌in‌‌the‌‌Exponential‌‌and‌‌Logarithmic‌‌Functions‌‌section‌‌of‌‌the‌‌   Algebra‌‌II‌‌chapter).‌   ‌  ‌ ‌4.1.4.a‌

‌Graphing‌‌a‌‌Complicated‌‌Function‌‌of‌‌y ‌ ‌

Here‌‌are‌‌two‌‌ways‌‌to‌‌graph‌‌a‌‌function‌‌of‌‌y :‌  ‌ ●

Make‌‌a‌‌table‌‌of‌‌points‌‌by‌‌plugging‌‌in‌‌numbers‌‌for‌‌y ‌and‌‌solving‌‌for‌‌x .‌  ‌



Identify‌‌and‌‌analyze‌‌the‌‌function‌‌(i.e.‌‌if‌‌it’s‌‌a‌‌parabola,‌‌find‌‌the‌‌intercepts‌‌and‌‌how‌‌it‌‌   opens),‌‌then‌‌sketch‌‌the‌‌function.‌   ‌ ‌

 ‌ ‌4.1.4.b‌

‌Area‌‌Between‌‌the‌‌Graph‌‌of‌‌x‌‌=‌‌f(y)‌‌and‌‌the‌‌y-Axis‌  ‌

We‌‌can‌‌find‌‌the‌‌area‌‌between‌‌the‌‌graph‌‌of‌‌x = f (y) ‌and‌‌the‌‌y -‌‌axis‌‌between‌‌a‌‌starting‌‌y  ‌ value‌‌of‌‌y = a ‌and‌‌an‌‌ending‌‌y ‌value‌‌of‌‌y = b .‌ ‌We‌‌just‌‌use‌‌integration‌‌a‌‌before,‌‌except‌‌   everything‌‌is‌‌sideways‌‌because‌‌x ‌and‌‌y ‌are‌‌switched.‌ ‌This‌‌means‌‌that,‌‌since‌‌we‌‌are‌‌doing‌  y -‌‌axis‌‌integration,‌‌d y ‌is‌‌the‌‌differential.‌   ‌ ‌

 

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌

255‌ ‌

 ‌ Just‌‌as‌‌we‌‌did‌‌with‌‌regular‌‌integration,‌‌we‌‌can‌‌make‌‌rectangles‌‌to‌‌show‌‌the‌‌area‌‌to‌‌the‌‌left‌‌   of‌‌(instead‌‌of‌‌under)‌‌the‌‌curve.‌ ‌The‌‌integral‌‌will‌‌be‌  ‌ y = b



f (y) dy   ‌

y = a

Now,‌‌the‌‌area‌‌to‌‌the‌‌right‌‌of‌‌the‌‌y -‌‌axis‌‌is‌‌counted‌‌as‌‌positive‌‌and‌‌the‌‌area‌‌to‌‌the‌‌left‌‌of‌‌   the‌‌y -‌‌axis‌‌is‌‌counted‌‌as‌‌negative.‌   ‌ ‌  ‌ ‌4.1.4.c‌

‌Finding‌‌the‌‌Area‌‌Between‌‌Two‌‌Curves‌  ‌

You‌‌can‌‌find‌‌the‌‌area‌‌between‌‌two‌‌curves‌‌written‌‌in‌‌the‌‌form‌‌x = f (y) ‌and‌‌x = g (y) .‌ ‌Instead‌‌   of‌‌finding‌‌the‌‌integral‌‌of‌‌top‌‌minus‌‌bottom,‌‌you‌‌calculate‌  ‌ y = b



(right − lef t) dy   ‌

y = a

 ‌

4.1.5‌

V ‌ olume‌  ‌

Volume‌‌is‌‌a‌‌three‌‌dimensional‌‌amount‌‌of‌‌space‌‌that‌‌something‌‌takes‌‌up.‌   ‌ ‌ A‌‌cross‌‌section‌‌is‌‌the‌‌resulting‌‌object‌‌when‌‌you‌‌cut‌‌(or‌‌slice)‌‌a‌‌solid‌‌object‌‌with‌‌a‌‌plane‌‌   region.‌   ‌ ‌  ‌ ‌4.1.5.a‌

‌Mathematical‌‌Definition‌‌of‌‌Volume‌  ‌

Let‌‌S ‌be‌‌a‌‌solid‌‌shape‌‌which‌‌lies‌‌on‌‌the‌‌x ‌-‌‌axis‌‌between‌‌a ‌and‌‌b .‌ ‌In‌‌general,‌‌a ‌‌ cross-section‌‌(perpendicular‌‌to‌‌the‌‌x -‌‌axis)‌‌will‌‌have‌‌an‌‌area‌‌which‌‌depends‌‌on‌‌the‌‌x -‌‌   value:‌‌A(x) .‌ ‌Think‌‌of‌‌this‌‌as‌‌having‌‌a‌‌tiny‌‌thickness‌‌d x .‌   ‌

256‌

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

As‌‌you‌‌cut‌‌S ‌into‌‌thinner‌‌and‌‌thinner‌‌slices‌‌(number‌‌of‌‌slices‌‌approaches‌‌infinity‌‌and‌‌d x  ‌ approaches‌‌0 )‌‌and‌‌add‌‌up‌‌all‌‌these‌‌“little‌‌volumes”‌‌A(x) dx ‌for‌‌all‌‌the‌‌thin‌‌slices,‌‌you‌‌get‌‌the‌‌   volume‌‌of‌‌S .‌  ‌  

b

n → ∞  

a

V = lim ∑ A(x) dx = ∫ A(x) dx   ‌

 ‌  ‌ ‌4.1.5.b‌

‌Example‌  ‌

The‌‌base‌‌of‌‌a‌‌solid‌‌shape‌‌S ‌consists‌‌of‌‌the‌‌region‌‌between‌‌the‌‌graph‌‌of‌‌y = 1 ‌and‌‌the‌‌x  ‌ axis‌‌for‌‌x ‌between‌‌0 ‌and‌‌2 .‌ ‌Cross‌‌sections‌‌perpendicular‌‌to‌‌the‌‌x ‌axis‌‌are‌‌rectangles‌‌with‌‌   height‌‌equal‌‌to‌‌half‌‌of‌‌the‌‌corresponding‌‌x ‌value.‌ ‌Draw‌‌S ‌and‌‌find‌‌the‌‌volume‌‌of‌‌S .‌   ‌ ‌ It‌‌helps‌‌to‌‌tilt‌‌the‌‌y ‌axis‌‌when‌‌drawing‌‌S ‌so‌‌that‌‌you‌‌can‌‌show‌‌height.‌   ‌ ‌

 

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌

257‌ ‌

 ‌ 2

For‌‌this‌‌problem,‌‌V = ∫ A(x) dx .‌ ‌Now,‌‌we‌‌need‌‌to‌‌find‌‌A(x) .‌ ‌To‌‌do‌‌this,‌‌pick‌‌an‌‌x ‌value‌‌and‌‌   0

draw‌‌in‌‌a‌‌rectangle‌‌(this‌‌is‌‌the‌‌cross‌‌section‌‌in‌‌the‌‌picture‌‌above).‌ ‌We‌‌know‌‌from‌‌the‌‌given‌‌   information‌‌that‌‌h = 21 x .‌‌    ‌

 ‌ A(x) ‌is‌‌equal‌‌to‌‌the‌‌area‌‌of‌‌this‌‌cross‌‌section‌‌which‌‌is‌‌A(x) = ( 21 x)(1) = 2x .‌   ‌ ‌ 2

So,‌‌the‌‌volume‌‌of‌‌this‌‌solid‌‌S ‌is‌‌V = ∫ ( 2x ) dx = 1  cubic unit .‌   ‌ ‌ 0

 ‌

4.1.6‌

V ‌ olumes‌‌of‌‌Revolution‌  ‌

A‌‌solid‌‌of‌‌revolution‌‌occurs‌‌when‌‌you‌‌revolve‌‌a‌‌plane‌‌region‌‌(like‌‌a‌‌graph‌‌of‌‌a‌‌function)‌‌   around‌‌a‌‌horizontal‌‌or‌‌vertical‌‌line‌‌that‌‌does‌‌not‌‌pass‌‌through‌‌the‌‌plane.‌ ‌There‌‌are‌‌three‌‌   types‌‌of‌‌volumes‌‌of‌‌revolution:‌‌disks,‌‌washers,‌‌and‌‌cylindrical‌‌shells.‌ ‌Disks‌‌and‌‌washers‌‌   are‌‌very‌‌similar,‌‌so‌‌they‌‌are‌‌often‌‌grouped‌‌together.‌   ‌ ‌ There‌‌are‌‌a‌‌few‌‌things‌‌to‌‌keep‌‌in‌‌mind:‌  ‌ ●

Always‌‌draw‌‌a‌‌sample‌‌rectangle.‌ ‌Spin‌‌your‌‌finger‌‌(as‌‌if‌‌it‌‌were‌‌the‌‌rectangle)‌‌along‌‌   the‌‌revolution‌‌to‌‌determine‌‌if‌‌you‌‌should‌‌use‌‌the‌‌disk/washer‌‌method‌‌or‌‌the‌‌   cylindrical‌‌shells‌‌method.‌‌    ‌ ○

If‌‌your‌‌finger‌‌changes‌‌direction‌‌as‌‌it‌‌spins,‌‌use‌‌the‌‌disk/washer‌‌method.‌‌    ‌



If‌‌your‌‌finger‌‌stays‌‌upright‌‌and‌‌only‌‌your‌‌hand‌‌moves,‌‌use‌‌the‌‌cylindrical‌‌   shells‌‌method.‌   ‌

258‌

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌ ‌

 ‌ ●

Make‌‌sure‌‌your‌‌functions‌‌are‌‌in‌‌terms‌‌of‌‌the‌‌variable‌‌that‌‌corresponds‌‌to‌‌the‌‌   rectangles‌‌thickness.‌   ‌ ‌ ○

i.e.‌‌if‌‌the‌‌rectangle‌‌has‌‌d x ‌thickness,‌‌the‌‌functions‌‌should‌‌be‌‌in‌‌terms‌‌of‌‌x ,‌‌   and‌‌vice‌‌versa.‌‌    ‌



Sometimes‌‌both‌‌techniques‌‌are‌‌possible‌‌to‌‌use.‌ ‌Choose‌‌the‌‌easier‌‌option:‌‌the‌‌one‌‌   that‌‌doesn’t‌‌make‌‌you‌‌split‌‌up‌‌the‌‌integral‌‌into‌‌several‌‌integrals,‌‌and‌‌where‌‌limits‌‌of‌‌   integration‌‌are‌‌easy‌‌to‌‌find.‌   ‌ ‌

‌4.1.6.a‌

‌Disk‌  ‌

We‌‌use‌‌the‌‌disk‌‌method‌‌to‌‌find‌‌the‌‌volume‌‌of‌‌a‌‌region‌‌when‌‌we‌‌rotate‌‌a‌‌region‌‌bounded‌‌   by‌‌a‌‌curve‌‌and‌‌an‌‌axis‌‌or‌‌line‌‌around‌‌an‌‌axis.‌‌    For‌‌example,‌‌if‌‌we‌‌rotate‌‌the‌‌region‌‌bounded‌‌by‌‌y = √x ‌and‌‌the‌‌x -‌‌axis‌‌from‌‌x = 0 ‌to‌‌x = 9  ‌ around‌‌the‌‌x ‌axis,‌‌we‌‌get‌‌the‌‌following.‌    ‌

 ‌ b

To‌‌find‌‌the‌‌volume‌‌of‌‌this‌‌solid,‌‌we‌‌use‌‌the‌‌formula‌‌V = ∫ π R2  dx ‌where‌‌R ‌is‌‌the‌‌distance‌‌   a

from‌‌the‌‌function‌‌and‌‌the‌‌axis‌‌of‌‌rotation.‌   ‌ ‌ So,‌‌the‌‌volume‌‌is‌‌    ‌ 9

V = ∫ π (√x )2  dx = 0

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

81π 2

 

 ‌ ‌

259‌ ‌

 ‌ ‌4.1.6.b‌

‌Washer‌  ‌

The‌‌washer‌‌method‌‌is‌‌very‌‌similar‌‌to‌‌the‌‌disk‌‌method,‌‌but‌‌there‌‌is‌‌a‌‌hole‌‌in‌‌the‌‌middle.‌   ‌ For‌‌example,‌‌if‌‌we‌‌rotate‌‌the‌‌region‌‌bounded‌‌by‌‌y = 1 ‌and‌‌y = x 2 ‌around‌‌the‌‌line‌‌y = 2 ,‌‌we‌‌   get‌‌the‌‌following.‌  ‌

 ‌ b

To‌‌find‌‌the‌‌area‌‌of‌‌this‌‌solid,‌‌use‌‌the‌‌formula‌‌V = ∫ (πR2 − π r 2 ) dx .‌ ‌R ‌is‌‌the‌‌distance‌‌from‌‌   a

the‌‌“spinning‌‌line”‌‌(in‌‌this‌‌case‌‌y = 2 )‌‌to‌‌the‌‌furthest‌‌function‌‌(‌y = x 2 ‌for‌‌this‌‌example).‌ ‌r ‌is‌‌   the‌‌distance‌‌from‌‌the‌‌spinning‌‌line‌‌to‌‌the‌‌closer‌‌function.‌ ‌Always‌‌use‌‌top − b ottom ‌or‌‌   r ight − lef t ‌when‌‌using‌‌this‌‌method.‌  ‌ The‌‌volume‌‌of‌‌this‌‌solid‌‌is‌  ‌ 1

V =

∫ (π(2 − x2 )2 − π (1)2 ) dx =

−1

260‌

56π 15

c ubic units  

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌ ‌

‌4.1.6.c‌

‌Cylindrical‌‌Shells‌  ‌

Find‌‌the‌‌volume‌‌of‌‌the‌‌solid‌‌obtained‌‌by‌‌rotating,‌‌about‌‌the‌‌y ‌axis,‌‌the‌‌region‌‌in‌‌the‌‌first‌‌   quadrant‌‌bounded‌‌by‌‌y = 2 x 2 − x 3 ‌and‌‌the‌‌x ‌axis.‌   ‌ ‌

 ‌ b

To‌‌find‌‌the‌‌volume‌‌of‌‌this‌‌solid,‌‌use‌‌the‌‌formula‌‌V = ∫ 2 πxf (x) dx .‌ ‌So,‌  ‌ a

2

V = ∫ 2 π (x) (2x 2 − x 3 ) dx = 0

16π 5

c ubic units   ‌

 ‌

4.1.7‌

W ‌ ork‌  ‌

Force‌‌is‌‌the‌‌“pull”‌‌on‌‌an‌‌object,‌‌where‌‌f orce (F ) = mass · a cceleration .‌ ‌Mass‌‌measures‌‌the‌‌   amount‌‌of‌‌matter‌‌something‌‌contains,‌‌which‌‌is‌‌different‌‌from‌‌weight.‌   ‌ Work‌‌is‌‌equal‌‌to‌‌force‌‌times‌‌distance,‌‌when‌‌the‌‌force‌‌is‌‌constant.‌   ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

261‌ ‌

 ‌  ‌ ‌4.1.7.a‌

‌Units‌‌for‌‌Work‌‌Word‌‌Problems‌  ‌  ‌

SI‌‌Metric‌‌System‌  ‌

US‌‌System‌  ‌

Mass‌  ‌

kg   ‌

-----‌  ‌

Acceleration‌ 

m/s2   ‌

-----‌  ‌

Force‌  ‌

“Newton”‌‌N = k g · m/s2   ‌

pound‌‌(‌lb )‌  ‌

Distance‌  ‌

meters‌‌(‌m )‌  ‌

feet‌‌(‌f t )‌  ‌

Work‌  ‌

“Joule”‌‌J = N · m   ‌

“foot‌‌pound”‌‌(f t − lb)  

 ‌ ‌4.1.7.b‌

‌Changing‌‌Force‌  ‌

Variable‌‌force‌‌is‌‌a‌‌term‌‌for‌‌changing‌‌force.‌ ‌Since‌‌the‌‌force‌‌changes‌‌over‌‌time‌‌(depending‌‌   on‌‌the‌‌distance‌‌x ‌moved),‌‌we‌‌will‌‌write‌‌F (x) ‌instead‌‌of‌‌just‌‌F .‌ ‌The‌‌work‌‌over‌‌a‌‌small‌‌   distance‌‌would‌‌be‌‌F (x) dx .‌ ‌As‌‌you‌‌continue‌‌to‌‌move,‌‌the‌‌force‌‌continues‌‌to‌‌change,‌‌   meaning‌‌the‌‌work‌‌is‌‌also‌‌changing‌‌over‌‌time.‌ ‌Adding‌‌up‌‌all‌‌of‌‌these‌‌pieces‌‌of‌‌    

F orce · D istance ‌you‌‌end‌‌up‌‌with‌‌the‌‌total‌‌work:‌‌W = ∑ F (x) dx .‌ ‌As‌‌you‌‌consider‌‌smaller‌‌and‌‌    

smaller‌‌distances‌‌(‌d x → 0 ),‌‌the‌‌force‌‌will‌‌not‌‌change‌‌much‌‌over‌‌that‌‌tiny‌‌distance.‌ ‌This‌‌   gives:‌  ‌ b

W = ∫ F (x) dx   ‌ a

for‌‌a‌‌variable‌‌force‌‌F (x) .‌   ‌ ‌  

 ‌

262‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

‌4.1.7.c‌

‌Hooke’s‌‌Law‌  ‌

The‌‌force‌‌required‌‌to‌‌maintain‌‌a‌‌spring‌‌stretched‌‌x ‌units‌‌beyond‌‌its‌‌natural‌‌length‌‌is‌‌   proportional‌‌to‌‌x :‌  ‌ F (x) = k x   ‌ as‌‌long‌‌as‌‌x ‌isn’t‌‌large‌‌enough‌‌to‌‌break‌‌the‌‌spring.‌ ‌k ‌is‌‌called‌‌the‌‌spring‌‌constant.‌ ‌The‌‌   equation‌‌states‌‌that‌‌the‌‌larger‌‌x ‌is,‌‌the‌‌harder‌‌it‌‌is‌‌to‌‌hold‌‌in‌‌place.‌ ‌To‌‌find‌‌the‌‌work‌‌done,‌‌   find‌‌F (x) ‌then‌‌integrate.‌   ‌ ‌  ‌ ‌4.1.7.d‌

‌Cable‌‌Problems‌  ‌

If‌‌there‌‌is‌‌a‌‌long‌‌rope‌‌hanging‌‌off‌‌a‌‌building‌‌and‌‌you‌‌want‌‌to‌‌pull‌‌it‌‌up,‌‌it‌‌will‌‌start‌‌off‌‌   feeling‌‌very‌‌heavy‌‌because‌‌there‌‌is‌‌a‌‌lot‌‌of‌‌weight‌‌hanging‌‌off‌‌the‌‌building.‌ ‌But‌‌as‌‌you‌‌lift‌‌   more‌‌and‌‌more‌‌of‌‌the‌‌rope‌‌onto‌‌the‌‌rooftop,‌‌there‌‌will‌‌be‌‌less‌‌weight‌‌hanging‌‌over,‌‌   meaning‌‌it‌‌will‌‌feel‌‌lighter.‌ ‌This‌‌is‌‌another‌‌example‌‌of‌‌variable‌‌force.‌   ‌ ‌ For‌‌these‌‌examples,‌‌let‌‌x ‌represent‌‌the‌‌distance‌‌you‌‌have‌‌lifted‌‌the‌‌rope.‌ ‌Therefore,‌‌    ‌ F (x) = (initial weight) − (weight lost af ter lif ting · f eet)   ‌  ‌ ‌4.1.7.e‌

‌Tank‌‌Problems‌  ‌

An‌‌important‌‌engineering‌‌task‌‌is‌‌to‌‌find‌‌out‌‌the‌‌minimum‌‌amount‌‌of‌‌work‌‌that‌‌is‌‌required‌‌   to‌‌pump‌‌a‌‌liquid‌‌out‌‌of‌‌a‌‌tank.‌ ‌The‌‌most‌‌efficient‌‌way‌‌to‌‌do‌‌this‌‌is‌‌actually‌‌from‌‌the‌‌top,‌‌as‌‌   opposed‌‌to‌‌the‌‌bottom,‌‌as‌‌the‌‌top‌‌layer‌‌of‌‌liquid‌‌only‌‌has‌‌to‌‌be‌‌moved‌‌a‌‌small‌‌distance.‌  ‌ The‌‌pump‌‌then‌‌descends‌‌as‌‌the‌‌level‌‌of‌‌the‌‌liquid‌‌drops.‌   ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

263‌  ‌

 ‌ For‌‌these‌‌examples,‌ ‌let‌‌x ‌represent‌‌the‌‌distance‌‌from‌‌the‌‌bottom‌‌of‌‌the‌‌tank.‌   ‌ ‌ Procedure:‌  ‌ 1. Find‌‌the‌‌area‌‌A(x) ‌of‌‌a‌‌horizontal‌‌cross‌‌section‌‌of‌‌the‌‌tank‌‌x ‌units‌‌up.‌ ‌The‌‌volume‌‌   of‌‌this‌‌little‌‌layer‌‌will‌‌be‌‌A(x) dx ,‌‌where‌‌d x ‌represents‌‌the‌‌tiny‌‌thickness‌‌of‌‌the‌‌layer.‌   ‌ ‌ 2. From‌‌the‌‌volume,‌‌determine‌‌the‌‌force‌‌(weight)‌‌of‌‌the‌‌layer‌‌and‌‌find‌‌the‌‌distance‌‌   that‌‌this‌‌particular‌‌layer‌‌needs‌‌to‌‌move.‌   ‌ ‌ 3. Multiply‌‌F orce · D istance ‌to‌‌get‌‌the‌‌work‌‌to‌‌move‌‌this‌‌layer.‌‌    ‌ 4. Integrate‌‌to‌‌find‌‌the‌‌total‌‌work‌‌done‌‌in‌‌moving‌‌all‌‌the‌‌layers‌‌of‌‌liquid.‌   ‌ ‌  ‌

4.2‌

‌Techniques‌‌of‌‌Integration‌  ‌

4.2.1‌

I‌ ntegration‌b ‌ y‌P ‌ arts‌  ‌

Integration‌‌by‌‌parts‌‌is‌‌the‌‌reverse‌‌of‌‌the‌‌product‌‌rule.‌ ‌Remember‌‌that‌‌the‌‌product‌‌rule‌‌   states‌‌that‌  ‌ (u · v )′ = u ′ · v   +   u · v ′   ‌ From‌‌this‌‌we‌‌derive‌‌the‌‌Integration‌‌by‌‌Parts‌‌formula:‌  ‌  

 

 

 

∫ u · dv = u · v − ∫ v · du  



You‌‌can‌‌remember‌‌this‌‌by‌‌using‌‌“ultraviolet‌‌(‌u v )‌‌voodoo‌‌(‌v · d u )”‌  ‌ We‌‌will‌‌use‌‌this‌‌when‌‌we‌‌have‌‌to‌‌integrate‌‌two‌‌unrelated‌‌functions‌‌that‌‌are‌‌multiplied‌‌   together.‌ ‌One‌‌function‌‌is‌‌called‌‌‘‌u ’‌‌and‌‌the‌‌other‌‌is‌‌called‌‌‘‌d v ’.‌   ‌

264‌

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ‌4.2.1.a‌

‌Example‌  ‌

 

Find‌‌∫ x  sin (x) dx .‌  ‌  

We‌‌have‌‌two‌‌unrelated‌‌functions‌‌(a‌‌polynomial‌‌and‌‌a‌‌trig‌‌function)‌‌multiplied‌‌together.‌ ‌We‌‌   assign‌‌u = x ‌and‌‌d v = sin (x) dx .‌ ‌To‌‌find‌‌d u ‌derive‌‌u ‌and‌‌take‌‌the‌‌antiderivative‌‌of‌‌(integrate)‌‌   d v .‌   ‌ ‌ u = x       v =   − c os x   ‌ d u = d x      dv = sin (x) dx   ‌ Then‌‌we‌‌fill‌‌in‌‌the‌‌IBP‌‌template‌‌and‌‌evaluate‌‌a‌‌simple‌‌integral.‌   ‌ ‌  

 

 

 

∫ x sin (x) dx = (x)(− cos x) − ∫(− cos x)(dx)  



 

=   − x  cos (x) + ∫ c os (x) dx   ‌  

=   − x  cos (x) + sin (x) + C   ‌  

 ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

265‌  ‌

 ‌ ‌4.2.1.b‌

‌How‌‌to‌‌Choose‌‌u ‌

Choose‌‌u ‌to‌‌be‌‌the‌‌function‌‌whose‌‌derivative‌‌gets‌‌easier,‌‌but‌‌make‌‌sure‌‌that‌‌d v ‌is‌‌   something‌‌whose‌‌antiderivative‌‌is‌‌something‌‌you‌‌know‌‌(you‌‌can‌‌find‌‌a‌‌list‌‌of‌‌common‌‌   antiderivatives‌‌in‌‌the‌‌beginning‌‌of‌‌the‌‌calculus‌‌I‌‌section;‌‌it‌‌is‌‌helpful‌‌to‌‌memorize‌‌these).‌  ‌ There‌‌is‌‌an‌‌acronym‌‌to‌‌help‌‌you‌‌pick‌‌the‌‌correct‌‌u .‌ ‌Start‌‌at‌‌the‌‌top‌‌and‌‌work‌‌your‌‌way‌‌   down,‌‌the‌‌first‌‌one‌‌you‌‌encounter‌‌should‌‌be‌‌your‌‌u .‌   ‌ ‌ L‌-‌ ‌‌Logarithmic‌‌functions‌  ‌ I‌-‌ ‌‌Inverse‌‌trig‌‌functions‌  ‌ P‌-‌ ‌‌Polynomials‌  ‌ E‌‌‌-‌‌Exponential‌‌functions‌  ‌ T‌-‌ ‌‌Trig‌‌functions‌  ‌ There‌‌are‌‌some‌‌occasions‌‌where‌‌this‌‌acronym‌‌will‌‌not‌‌work,‌‌but‌‌these‌‌are‌‌rare.‌   ‌ ‌  ‌

4.2.2‌

T ‌ rigonometric‌I‌ ntegrals‌  ‌

‌4.2.2.a‌

‌Important‌‌Identities‌  ‌

Pythagorean‌‌Identities:‌  ‌ c os2 (x) + sin 2 (x) = 1         tan 2 (x) + 1 = sec 2 (x)   ‌ Half‌‌Angle‌‌Identities:‌  ‌ sin 2 (x) = 21 (1 − c os (2x))

‌c os2 (x) = 21 (1 + c os (2x))   ‌

Double‌‌Angle‌‌Identity:‌  ‌ sin (x) cos (x) = 21 sin (2x)   ‌  

 ‌

266‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

‌4.2.2.b‌

‌Strategies/Guidelines‌  ‌

Strategy‌‌for‌‌evaluating‌‌integrals‌‌of‌‌the‌‌form‌‌    ‌  

∫ sinm (x) cosn (x) dx   ‌  



If‌‌the‌‌power‌‌on‌‌cosine‌‌is‌o ‌ dd‌,‌‌use‌‌c os2 (x) = 1 − sin 2 (x) ‌to‌‌replace‌‌all‌‌but‌‌one‌‌of‌‌the‌‌the‌‌   c os (x) .‌ ‌Group‌‌this‌‌lone‌‌c os (x) ‌with‌‌d x ‌and‌‌perform‌‌the‌‌substitution‌  ‌ u = sin (x)      du = c os (x) dx   ‌



If‌‌the‌‌power‌‌on‌‌sine‌‌is‌o ‌ dd‌,‌‌use‌‌sin 2 (x) = 1 − c os2 (x) ‌to‌‌replace‌‌all‌‌but‌‌one‌‌of‌‌the‌‌the‌‌   sin (x) .‌ ‌Group‌‌this‌‌lone‌‌sin (x) ‌with‌‌d x ‌and‌‌perform‌‌the‌‌substitution‌  ‌ u = c os (x)      du =   − sin (x) dx   ‌



If‌‌both‌‌powers‌‌are‌e ‌ ven‌,‌‌use‌‌the‌‌half‌‌angle‌‌identities‌‌repeatedly‌‌until‌‌you‌‌are‌‌left‌‌   with‌‌c os (kx) ‌terms‌‌only‌  ‌

 ‌ Important‌‌to‌‌Memorize‌  ‌  

 

∫ cos (kx) dx  →  u = kx,  dx = 1k du  →   1k ∫ cos (u) du = 1k sin (kx) + C   ‌  

 

 

∫ sin (kx) dx =   − 1k cos (kx) + C    

 ‌  

 ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

267‌  ‌

 ‌ Strategy‌‌for‌‌evaluating‌‌integrals‌‌of‌‌the‌‌form‌‌    ‌  

∫ tanm (x) secn (x) dx   ‌  



If‌‌the‌‌power‌‌on‌‌secant‌‌is‌e ‌ ven‌,‌‌group‌‌sec 2 (x) ‌with‌‌the‌‌d x .‌ ‌Then‌‌use‌‌   sec 2 (x) = tan 2 (x) + 1 ‌to‌‌replace‌‌all‌‌of‌‌the‌‌remaining‌‌sec (x) ‌terms.‌ ‌Perform‌‌the‌‌   substitution‌  ‌ u = tan (x)      du = sec 2 (x) dx   ‌



If‌‌the‌‌power‌‌on‌‌tangent‌‌is‌o ‌ dd‌,‌‌group‌‌sec (x) tan (x) ‌with‌‌the‌‌d x .‌ ‌Use‌‌   tan 2 (x) = sec 2 (x) − 1 ‌to‌‌replace‌‌all‌‌of‌‌the‌‌remaining‌‌tan (x) ‌terms.‌ ‌Perform‌‌the‌‌   substitution‌‌    ‌ u = sec (x)     du = sec (x) tan (x) dx   ‌



For‌‌other‌‌cases,‌‌you‌‌will‌‌need‌‌to‌‌be‌‌creative‌‌and‌‌use‌‌other‌‌tools.‌ ‌Some‌‌suggestions‌‌   are‌  ‌ ○

rewriting‌‌everything‌‌in‌‌terms‌‌of‌‌sine‌‌and‌‌cosine‌  ‌



using‌‌a‌‌trig‌‌identity‌‌and‌‌splitting‌‌up‌‌the‌‌integral‌‌(see‌‌the‌‌precalculus‌‌   summary‌‌sheet)‌  ‌

 



using‌‌integration‌‌by‌‌parts‌  ‌



trial‌‌and‌‌error‌  ‌  ‌

268‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

Strategy‌‌for‌‌solving‌‌other‌‌trig‌‌integrals‌‌where‌‌m =/ n   ‌  



∫ sin (mx) cos (nx) dx   ‌  

Use‌‌sin A cos B = 21 [sin (A − B ) + sin (A + B )]   ‌

○  



∫ sin (mx) sin (nx) dx   ‌  

Use‌‌sin A sin B = 21 [cos (A − B ) − c os (A + B )]   ‌

○  



∫ cos (mx) cos (nx) dx   ‌  

Use‌‌c os A cos B = 21 [cos (A − B ) + c os(A + B )]   ‌

○  ‌

4.2.3‌

T ‌ rigonometric‌S ‌ ubstitution‌  ‌

Trigonometric‌‌substitution‌‌is‌‌used‌‌to‌‌solve‌‌integrals‌‌that‌‌cannot‌‌be‌‌solved‌‌using‌‌u  ‌ substitution‌‌or‌‌IBP.‌ ‌We‌‌use‌‌trigonometric‌‌functions‌‌to‌‌simplify‌‌the‌‌integral.‌  ‌ a ‌is‌‌some‌‌number‌  ‌ Expression‌  ‌

Substitution‌  ‌

Valid‌‌Interval‌  ‌

Identity‌  ‌

√a 2 − x2  



x = a sin θ     dx = a cos θ dθ   ‌



π 2

≤θ≤

π 2

 ‌

1 − sin 2 θ = c os2 θ   ‌

√a 2 + x2  



x = a tan θ     dx = a sec 2 θ dθ   ‌



π 2

≤θ≤

π 2

 ‌

1 + tan 2 θ = sec 2 θ   ‌

√x2 − a 2  



π 2

‌or‌‌π ≤ θ ≤

x = a sec θ     dx = a sec θ tan θ dθ 0 ≤ θ ≤

3π 2

 ‌

sec 2 θ − 1 = tan 2 θ   ‌

You‌‌will‌‌commonly‌‌see‌‌these‌‌with‌‌a‌‌square‌‌root,‌‌but‌‌it‌‌doesn’t‌‌have‌‌to‌‌be‌‌there.‌   ‌ ‌  

 ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

269‌  ‌

 ‌ ‌4.2.3.a‌

‌Example‌  ‌  

Solve‌‌the‌‌integral‌‌∫ √4 − x 2  dx .‌   ‌ ‌  

u ‌substitution‌‌is‌‌not‌‌possible‌‌for‌‌this‌‌integral.‌ ‌Notice‌‌how‌‌this‌‌looks‌‌like‌‌the‌‌expression‌‌  

√a 2 − x2

‌in‌‌the‌‌table‌‌above,‌‌where‌‌a = 2 .‌   ‌ ‌

Apply‌‌the‌‌associated‌‌substitution.‌   ‌ ‌ x = 2 sin θ      dx = 2 cos θ dθ   ‌ Substitute‌‌this‌‌in‌‌the‌‌original‌‌integral.‌   

 

∫√

4 − (2sin θ)2 · 2 cos θ dθ = ∫ √4 − 4 sin 2  θ · 2 cos θ dθ   ‌ 

 

 

Factor‌‌out‌‌the‌‌4 ‌and‌‌use‌‌the‌‌trig‌‌identity‌‌c os2  θ = 1 − sin 2  θ ‌to‌‌simplify‌‌the‌‌square‌‌root.‌   ‌ ‌  

 

 

 

∫ √4(1 − sin 2  θ) · 2 cos θ dθ = ∫ √4cos2  θ · 2 cos θ dθ    

 

 

 

∫ 2 cos θ · 2 cos θ dθ = 4 ∫ cos2  θ dθ  





This‌‌is‌‌now‌‌a‌‌trig‌‌integral‌‌which‌‌we‌‌know‌‌how‌‌to‌‌evaluate‌‌using‌‌the‌‌trig‌‌identity‌  ‌ c os2  θ = 21 (1 + c os (2θ))   ‌ Substitute‌‌this‌‌back‌‌into‌‌the‌‌integral‌‌and‌‌simplify.‌  ‌  

 

 

 

4 ∫ c os2  θ dθ = 2 ∫[1 + c os (2θ)] dθ   ‌ = 2 (θ + 21 sin (2θ)) + C  

270‌

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

There‌‌cannot‌‌be‌‌a‌‌double‌‌angle‌‌inside‌‌of‌‌a‌‌trig‌‌function,‌‌as‌‌it‌‌won’t‌‌work‌‌when‌‌we‌‌put‌‌the‌‌   final‌‌answer‌‌back‌‌in‌‌terms‌‌of‌‌x .‌ ‌Therefore,‌‌we‌‌use‌‌the‌‌identity‌‌sin (2θ) = 2 sin θ cos θ .‌   ‌ ‌ 2 [θ + sin θ cos θ] + C = 2 θ + 2 sin θ cos θ + C   ‌ Now‌‌we‌‌must‌‌put‌‌this‌‌in‌‌terms‌‌of‌‌x .‌ ‌To‌‌do‌‌this,‌‌recall‌‌that‌‌x = 2 sin θ ‌(this‌‌is‌‌the‌‌substitution‌‌   we‌‌performed‌‌at‌‌the‌‌beginning‌‌of‌‌the‌‌problem).‌ ‌This‌‌is‌‌the‌‌same‌‌as‌‌sin θ = 2x .‌ ‌Draw‌‌the‌‌   triangle‌‌this‌‌creates‌‌to‌‌get‌‌rid‌‌of‌‌the‌‌trig‌‌functions.‌   ‌ ‌

 ‌  

∫ √4 − x2  dx = 2 (sin −1 ( 2x )) + 2 ( 2x )( √4 − x 2  

2

)+C   ‌

Now‌‌the‌‌integration‌‌is‌‌complete.‌   ‌ ‌  ‌ Tips:‌‌    ‌ ●

always‌‌draw‌‌a‌‌triangle‌‌when‌‌you‌‌use‌‌trig‌‌substitution.‌ ‌It‌‌helps‌‌to‌‌visualize‌‌the‌‌   problem‌‌and‌‌is‌‌a‌‌way‌‌to‌‌check‌‌your‌‌work‌‌(the‌‌expression‌‌on‌‌the‌‌third‌‌side‌‌of‌‌the‌‌   triangle‌‌will‌‌appear‌‌in‌‌your‌‌integral).‌   ‌ ‌



always‌‌check‌‌if‌‌u ‌sub‌‌is‌‌possible‌‌before‌‌beginning‌‌the‌‌process‌‌of‌‌trig‌‌sub,‌‌as‌‌it‌‌takes‌‌   a‌‌long‌‌time‌‌to‌‌complete‌  ‌

 

 ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

271‌ ‌

 ‌  ‌ ‌4.2.3.b‌

‌Definite‌‌Integrals‌  ‌

When‌‌using‌‌trig‌‌substitution‌‌for‌‌definite‌‌integrals,‌‌as‌‌you‌‌would‌‌with‌‌other‌‌substitutions,‌‌   we‌‌must‌‌change‌‌the‌‌bounds‌‌to‌‌match‌‌the‌‌variable.‌ ‌When‌‌we‌‌do‌‌this,‌‌we‌‌don’t‌‌need‌‌to‌‌   return‌‌to‌‌x ‌for‌‌the‌‌final‌‌answer.‌   ‌ ‌

4.2.4‌

I‌ ntegration‌b ‌ y‌P ‌ artial‌F ‌ ractions‌  ‌

If‌‌you‌‌forget‌‌how‌‌to‌‌do‌‌partial‌‌fraction‌‌decomposition‌‌(or‌‌just‌‌need‌‌a‌‌refresher),‌‌go‌‌to‌‌the‌‌   Partial‌‌Fraction‌‌Decomposition‌‌section‌‌of‌‌Precalculus.‌   ‌ ‌ If‌‌an‌‌integral‌‌has‌‌a‌‌complicated‌‌rational‌‌function,‌‌we‌‌can‌‌use‌‌partial‌‌fractions‌‌to‌‌help‌‌   evaluate‌‌the‌‌integral.‌   ‌ ‌ ●

If‌‌the‌‌degree‌‌of‌‌the‌‌numerator‌‌is‌‌greater‌‌than‌‌or‌‌equal‌‌to‌‌the‌‌degree‌‌of‌‌the‌‌   denominator,‌‌you‌‌must‌‌perform‌‌long‌‌division‌‌(see‌‌Algebra‌‌II‌‌section)‌‌before‌‌moving‌‌   on‌‌to‌‌the‌‌next‌‌step.‌   ‌ ‌



Factor‌‌the‌‌denominator.‌  ‌



Perform‌‌a‌‌partial‌‌fraction‌‌decomposition.‌  ‌



Evaluate‌‌the‌‌integrals‌‌of‌‌each‌‌partial‌‌fraction‌‌to‌‌get‌‌the‌‌integral‌‌of‌‌the‌‌entire‌‌   function.‌   ‌ ‌

 

 ‌

272‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ Integrals‌‌You‌‌Must‌‌Know‌   

∫  

1 x  dx

 ‌  

= ln |x| + C   ‌

1  dx = ∫ mx + b  

 

1 m

· ln |mx + b| + C   ‌

 

1  dx = tan−1 (x) + C   ‌ ∫ x  + 1

1  dx = a1 · tan−1 ( ax ) + C   ‌ ∫ x  + a

2

2

 

2

 

 ‌ Log‌‌Properties‌‌to‌‌Know‌  ‌ n · ln  |ax + b| = ln |(ax + b )n |   ‌ ax + b | ln |ax + b | − ln |cx + d | = ln || cx + d |  ‌

ln |ax + b| + ln |cx + d| = ln |(ax + b )(cx + d )|   ‌  ‌ ‌4.2.4.a‌

‌Example‌  ‌

 

1 Integrate‌‌∫ (x − 2)(x .   ‌‌ ‌ 2  + 1)  dx ‌  

Let’s‌‌work‌‌on‌‌the‌‌algebra‌‌separately‌‌first.‌ ‌In‌‌this‌‌problem,‌‌we‌‌have‌‌a‌‌distinct‌‌linear‌‌factor‌‌   and‌‌an‌‌irreducible‌‌quadratic‌‌factor.‌ ‌Therefore,‌‌    ‌ 1 (x − 2)(x2  + 1)

=

A (x − 2)

+

Bx + C (x2  + 1)

 ‌

Multiply‌‌both‌‌sides‌‌by‌‌(x − 2 )(x 2 + 1 ) ‌to‌‌get‌‌rid‌‌of‌‌the‌‌fractions.‌  ‌ 1 = A(x 2 + 1 ) + (Bx + C )(x − 2 )  

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

273‌  ‌

 ‌  ‌ Plug‌‌in‌‌values‌‌for‌‌x ‌that‌‌will‌‌eliminate‌‌one‌‌or‌‌two‌‌of‌‌the‌‌factors,‌‌allowing‌‌you‌‌to‌‌solve‌‌for‌‌   A,  B,   and‌‌C .‌   ‌ ‌ x = 2   →  1 = A(2 2 + 1 )  →  A = x = 0   →  1 = A − 2 C  →  1 =

1 5

1 5

 ‌

− 2 C  →  C =   − 52   ‌

x = 1   →  1 = 2 A + (B + C )(− 1 )  →  1 = 2 ( 51 ) + (B − 52 )(− 1 )  →  B =   − 51   ‌ Now‌‌break‌‌up‌‌the‌‌integral‌‌according‌‌to‌‌these‌‌fractions‌‌and‌‌solve.‌‌    ‌ 1 5

 

 

 

1 x 1  dx − 51 ∫ x  + 1   dx − 52 ∫ x  + 1 dx   ‌ ∫ x − 2 2

 

 

2

 

Use‌‌u ‌-‌‌sub‌‌for‌‌the‌‌middle‌‌integral,‌‌where‌‌u = x 2 + 1 ‌and‌‌d u = 2 xdx .‌  ‌ 1 5 ln

|x − 2 | −

1 10 ln

|x 2 + 1 | − 2 tan −1  (x) + C   ‌ | | 5

| (x − 2)1/5 | = ln | (x2  + 1)1/10 | − 52 tan −1  (x) + C   ‌ | |  ‌ ‌4.2.4.b‌

‌Trick‌‌1‌‌-‌‌Rationalizing‌‌Substitution‌‌    ‌

This‌‌trick‌‌is‌‌called‌‌a‌‌rationalizing‌‌substitution.‌    ‌  

If‌‌you‌‌have‌‌the‌‌integral‌‌‌∫ √x + 4   x  dx ‌,‌‌set‌‌u ‌equal‌‌to‌‌whatever‌‌the‌‌radical‌‌is.‌ ‌In‌‌this‌‌case,‌‌  

u = √x + 4 .‌ ‌Use‌‌this‌‌statement‌ ‌to‌‌find‌‌what‌‌x ‌is‌‌equal‌‌to‌‌in‌‌terms‌‌of‌‌u .‌   ‌ ‌ u = √x + 4   →  u 2 = x + 4   →  x = u 2 − 4   ‌ Find‌‌what‌‌d x ‌is‌‌equal‌‌to‌‌in‌‌terms‌‌of‌‌u ‌and‌‌d u .‌  ‌ du =

274‌

1 dx  2√x + 4

→  dx = 2 √x + 4  du  →  dx = 2 u du   ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

Now,‌‌replace‌‌all‌‌x ‌and‌‌d x ‌terms‌‌in‌‌the‌‌integral‌‌and‌‌simplify.‌   ‌ ‌  

∫  

u u 2  − 4

 

2

· 2u du  =   ∫ u2u  du   ‌ 2  − 4  

You‌‌can‌‌now‌‌perform‌‌long‌‌division‌‌and‌‌partial‌‌fraction‌‌decomposition‌‌to‌‌solve.‌   ‌ ‌  ‌ ‌4.2.4.c‌

‌Trick‌‌2‌‌-‌‌Completing‌‌the‌‌Square‌ 

Completing‌‌the‌‌square‌‌can‌‌also‌‌help‌‌you‌‌solve‌‌integrals.‌   ‌ ‌  

For‌‌example,‌‌if‌‌you‌‌have‌‌the‌‌integral‌‌∫ x4  + xx2  + 10  dx ‌,‌‌complete‌‌the‌‌square‌‌of‌‌the‌‌polynomial‌‌    

in‌‌the‌‌denominator.‌   ‌ ‌ x 4 + x 2 + 1 0 = x 4 + x 2 + 1 + 9 = (x 2 + 1 )2 + 9   ‌ Replace‌‌the‌‌polynomial‌‌with‌‌the‌‌factored‌‌version.‌  ‌  

∫ (x  + 1)x  + 9  dx   ‌  

2

2

Now,‌‌use‌‌u ‌substitution‌‌where‌‌u = x 2 + 1 ‌and‌‌d u = 2 xdx .‌   ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

275‌  ‌

 ‌

4.2.5‌

I‌ mproper‌I‌ ntegrals‌  ‌

There‌‌are‌‌two‌‌types‌‌of‌‌improper‌‌integrals.‌ ‌Type‌‌one‌‌is‌‌unbounded‌‌integrals‌‌(at‌‌least‌‌one‌‌   endpoint‌‌is‌‌infinite)‌‌and‌‌type‌‌two‌‌is‌‌an‌‌integral‌‌of‌‌a‌‌discontinuous‌‌function.‌   ‌ ‌ An‌‌improper‌‌integral‌‌is‌c‌ onvergent‌‌‌if‌‌the‌‌limit‌‌exists‌‌but‌‌it‌‌is‌d ‌ ivergent‌‌‌is‌‌the‌‌limit‌‌does‌‌not‌‌   exist‌‌(DNE)‌‌or‌‌is‌‌± ∞ .‌   ‌ ‌  ‌ ‌4.2.5.a‌

‌Type‌‌I:‌‌Unbounded‌‌Integrals‌  ‌

It‌‌is‌‌possible‌‌for‌‌a‌‌finite‌‌area‌‌to‌‌exist‌‌between‌‌the‌‌graph‌‌of‌‌a‌‌function‌‌and‌‌the‌‌x ‌axis,‌‌even‌‌   when‌‌the‌‌integral‌‌is‌‌unbounded.‌   ‌ ‌ ‌Since‌‌integrals‌‌are‌‌only‌‌defined‌‌on‌‌bounded‌‌intervals,‌‌we‌‌must‌‌use‌‌limits‌‌to‌‌evaluate‌‌   improper‌‌integrals.‌ ‌Type‌‌I‌‌integrals‌‌will‌‌look‌‌like‌  ‌ ∞



∫ f (x) dx =





a

b

−∞

t

t → ∞ a

b

f (x) dx = lim   ∫ f (x) dx   ‌ t → −∞ t







−∞

c

f (x) dx = ○

276‌

lim   ∫ f (x) dx   ‌



−∞



f (x) dx + ∫ f (x) dx   ‌ c

find‌‌each‌‌of‌‌these‌‌integrals‌‌as‌‌above‌ 

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ‌4.2.5.b‌

‌Type‌‌II:‌‌Discontinuous‌‌Integrand‌  ‌

These‌‌can‌‌be‌‌hard‌‌to‌‌spot‌‌at‌‌times,‌‌as‌‌they‌‌will‌‌look‌‌like‌‌any‌‌other‌‌integral.‌   ‌ ‌ Integrals‌‌are‌‌only‌‌legal‌‌if‌‌f (x) ‌is‌‌continuous‌‌on‌‌the‌‌entire‌‌interval‌‌[a,  b] .‌ ‌Discontinuities‌‌   cause‌‌problems.‌ ‌Type‌‌II‌‌integrals‌‌will‌‌look‌‌like‌  ‌ b

t



Discontinuous‌‌at‌‌b :‌‌∫ f (x) dx = lim −   ∫ f (x) dx ,‌‌t < b   ‌



Discontinuous‌‌at‌‌a :‌‌∫ f (x) dx = lim +   ∫ f (x) dx ,‌‌t > a   ‌

a

a

b

a



t → b

b

t → a

t

b

c

b

a

a

c

Discontinuous‌‌at‌‌c ‌between‌‌a ‌and‌‌b :‌‌∫ f (x) dx = ∫ f (x) dx + ∫ f (x) dx   ‌ ○

find‌‌each‌‌of‌‌these‌‌integrals‌‌as‌‌above‌  ‌

 ‌ ‌4.2.5.c‌

‌Important‌‌Rule‌  ‌

A‌‌helpful‌‌rule‌‌states‌‌that‌‌the‌‌integral‌  ‌ ∞



1

1 xP

 dx   ‌

converges‌‌if‌‌p > 1 ‌and‌‌diverges‌‌if‌‌p ≤ 1 .‌   ‌ ‌  

 ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

277‌  ‌

 ‌ ‌4.2.5.d‌

‌Comparison‌‌Test‌‌for‌‌Improper‌‌Integrals‌  ‌

If‌‌big‌‌B (x) ‌and‌‌little‌‌L(x) ‌are‌‌continuous‌‌functions‌‌with‌‌B (x) ≥ L(x) ≥ 0 ,‌‌then‌  ‌ ∞



a

a



If‌‌∫ B (x) dx ‌converges,‌‌then‌‌∫ L(x) dx ‌converges.‌  ‌



If‌‌∫ B (x) dx ‌diverges,‌‌then‌‌∫ L(x) dx ‌is‌‌unknown.‌  ‌



● ●



a

a





a

a

If‌‌∫ L(x) dx ‌diverges,‌‌then‌‌∫ B (x) dx ‌diverges.‌  ‌ ∞



a

a

If‌‌∫ L(x) dx ‌converges,‌‌then‌‌∫ B (x) dx ‌is‌‌unknown.‌  ‌

This‌‌technique‌‌is‌‌helpful‌‌when‌‌you‌‌want‌‌to‌‌determine‌‌if‌‌an‌‌integral‌‌is‌‌convergent‌‌or‌‌   divergent,‌‌but‌‌the‌‌function‌‌is‌‌really‌‌difficult‌‌(or‌‌even‌‌impossible)‌‌to‌‌integrate.‌   ‌ ‌  ‌

4.3‌

‌Sequences‌‌and‌‌Series‌  ‌

4.3.1‌

S ‌ equences‌  ‌

Note:‌‌you‌‌may‌‌need‌‌to‌‌brush‌‌up‌‌on‌‌L’Hôpital’s‌‌Rule‌‌for‌‌this‌‌section.‌ ‌Go‌‌to‌‌the‌‌Calculus‌‌I ‌ section‌‌on‌‌L’Hôpital’s‌‌Rule‌‌to‌‌see‌‌the‌‌definition‌‌of‌‌the‌‌rule‌‌and‌‌a‌‌table‌‌of‌‌determinate‌‌and‌‌   indeterminate‌‌forms.‌   ‌ ‌ A‌‌sequence‌‌is‌‌an‌‌infinite‌‌list‌‌of‌‌numbers‌  ‌ a 1 ,  a 2 ,  a 3 ,  ... ,  a n ,  ...   ‌ ∞ or‌‌simply‌‌{a n }n = 1 ‌or‌‌sometimes‌‌just‌‌{a n } .‌ ‌The‌‌term‌‌a n ‌is‌‌called‌‌the‌‌general‌‌term‌‌and‌‌it‌‌  

will‌‌generally‌‌have‌‌a‌‌formula.‌ ‌You‌‌can‌‌graph‌‌sequences,‌‌you‌‌just‌‌plot‌‌the‌‌points‌‌and‌‌don’t‌‌   connect‌‌the‌‌dots.‌   ‌

278‌

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

n The‌‌first‌‌four‌‌terms‌‌of‌‌{ n + 1 }



  n = 1

n ‌‌are‌‌21 ,   32 ,   43 ,   54 .‌ ‌The‌‌general‌‌term‌‌is‌‌n + 1 .‌ ‌As‌‌we‌‌can‌‌  

see‌‌from‌‌the‌‌first‌‌four‌‌terms,‌‌the‌‌sequence‌‌is‌‌approaching‌‌one.‌   ‌ ‌ The‌‌first‌‌four‌‌terms‌‌of‌‌{

(−1)n (n + 1) ∞ } n = 1 3n

a ‌ re‌‌− 32 ,   93 ,   −

4 5 27 ,   81

.‌ ‌This‌‌sequence‌‌approaches‌‌  

zero.‌ ‌Note‌‌that‌‌(− 1 )n ‌indicates‌‌an‌‌alternating‌‌sequence,‌‌which‌‌causes‌‌the‌‌terms‌‌to‌‌switch‌‌   between‌‌positive‌‌and‌‌negative‌‌as‌‌n ‌increases.‌   ‌ ‌  ‌ ‌4.3.1.a‌

‌Recurrence‌‌Relation‌  ‌

There‌‌is‌‌another‌‌way‌‌to‌‌write‌‌sequences‌‌called‌‌a‌‌“recurrence‌‌relation”.‌ ‌A‌‌recurrence‌‌   relation‌‌tells‌‌you‌‌the‌‌first‌‌term/terms‌‌then‌‌tells‌‌you‌‌how‌‌to‌‌find‌‌the‌‌next‌‌one‌‌from‌‌the‌‌   previous‌‌ones.‌ ‌One‌‌example‌‌is‌‌the‌‌famous‌‌Fibonacci‌‌Sequence‌‌{f n } .‌   ‌ ‌ f 1 = 1       f 2 = 1       f n = f n − 1 + f n − 2   ‌ This‌‌recurrence‌‌relation‌‌tells‌‌you‌‌to‌‌add‌‌the‌‌previous‌‌two‌‌terms‌‌together‌‌to‌‌find‌‌the‌‌next‌‌   term.‌ ‌The‌‌first‌‌eight‌‌terms‌‌are:‌  ‌ f 1 = 1       f 2 = 1       f 3 = f 2 + f 1 = 2       f 4 = f 3 + f 2 = 3   ‌ f 5 = 5       f 6 = 8       f 7 = 1 3      f 8 = 2 1   ‌  ‌ ‌4.3.1.b‌

‌Arithmetic‌‌Sequence‌  ‌

An‌‌arithmetic‌‌sequence‌‌is‌‌a‌‌type‌‌of‌‌sequence‌‌where‌‌a‌‌specific‌‌number‌‌is‌‌added‌‌to‌‌the‌‌   terms‌‌to‌‌get‌‌the‌‌next‌‌term.‌ ‌This‌‌is‌‌the‌‌equivalent‌‌of‌‌a‌‌linear‌‌function.‌ ‌For‌‌example,‌  ‌ {2,  4,  6,  8,  10,  ...}   ‌ Notice‌‌how‌‌you‌‌can‌‌get‌‌the‌‌next‌‌term‌‌by‌‌adding‌‌2 ‌to‌‌the‌‌previous‌‌term.‌ ‌In‌‌this‌‌case,‌‌2 ‌is‌‌   the‌‌common‌‌difference.‌   ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

279‌  ‌

 ‌ The‌‌general‌‌term‌‌is‌‌equivalent‌‌to‌‌finding‌‌a‌‌function‌‌which‌‌has‌‌these‌‌values.‌ ‌Since‌‌this‌‌type‌‌   of‌‌sequence‌‌is‌‌equivalent‌‌to‌‌a‌‌linear‌‌function,‌‌it‌‌is‌‌like‌‌you‌‌are‌‌finding‌‌the‌‌slope.‌ ‌This‌‌   sequence’s‌‌general‌‌term‌‌is‌‌a n = 2 n .‌ ‌The‌‌recursion‌‌relation‌‌is‌‌a 1 = 2 ,  a n = a n −1  + 2 .‌   ‌ ‌  ‌ ‌4.3.1.c‌

‌Geometric‌‌Sequence‌  ‌

A‌‌geometric‌‌sequence‌‌is‌‌a‌‌type‌‌of‌‌sequence‌‌where‌‌a‌‌specific‌‌number‌‌is‌‌multiplied‌‌to‌‌the‌‌   terms‌‌to‌‌get‌‌the‌‌next‌‌term.‌ ‌The‌‌number‌‌that‌‌is‌‌multiplied‌‌is‌‌called‌‌the‌‌common‌‌ratio‌‌(‌r )‌‌   a

n and‌‌can‌‌be‌‌found‌‌using‌‌the‌‌equation‌‌r = an  − 1 ‌.‌ ‌This‌‌is‌‌the‌‌sequence‌‌equivalent‌‌of‌‌an‌‌ 

exponential‌‌function.‌ ‌For‌‌example,‌  ‌ 80 {5,   103 ,   209 ,   40 27 ,   81 ,   ...}   ‌

There‌‌are‌‌two‌‌possibilities‌‌for‌‌the‌‌general‌‌term‌‌of‌‌a‌‌geometric‌‌sequence:‌  ‌ a n = a r n ‌(‌a 0 ‌is‌‌the‌‌first‌‌term)‌

‌or‌

‌a n = a r n − 1 (‌a 1 ‌is‌‌the‌‌first‌‌term)‌  ‌

where‌‌a ‌is‌‌the‌‌first‌‌term‌‌of‌‌the‌‌sequence.‌   ‌ ‌ For‌‌the‌‌sequence‌‌above,‌‌the‌‌general‌‌term‌‌is‌‌{5 ·

2 n − 1 ∞ } n = 1 3

.‌ ‌The‌‌recursion‌‌relation‌‌is‌‌  

a 1 = 5 ,  a n = a n − 1 · 32 .‌   ‌ ‌ When‌‌finding‌‌the‌‌common‌‌ratio‌‌of‌‌a‌‌geometric‌‌sequence‌‌be‌‌sure‌‌to‌‌check‌‌at‌‌least‌‌three‌‌   terms.‌ ‌Checking‌‌only‌‌one‌‌or‌‌two‌‌terms‌‌can‌‌lead‌‌to‌‌an‌‌incorrect‌‌answer.‌   ‌ ‌  ‌ It‌‌is‌‌important‌‌to‌‌note‌‌that‌‌not‌‌all‌‌sequences‌‌are‌‌one‌‌of‌‌the‌‌two‌‌types‌‌above.‌ ‌Sometimes‌‌   you‌‌need‌‌to‌‌get‌‌creative‌‌to‌‌find‌‌the‌‌general‌‌term‌‌of‌‌a‌‌sequence:‌‌it‌‌is‌‌really‌‌just‌‌about‌‌   finding‌‌patterns‌‌in‌‌the‌‌numbers.‌ ‌For‌‌example,‌‌find‌‌the‌‌general‌‌term‌‌of‌‌the‌‌sequence‌  ‌

{ 53 ,   −

280‌

4 ,  5 ,  25 125



6 ,  ...}   625

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

First,‌‌notice‌‌that‌‌the‌‌terms‌‌are‌‌alternating‌‌between‌‌positive‌‌and‌‌negative,‌‌meaning‌‌that‌‌   there‌‌will‌‌be‌‌some‌‌variation‌‌of‌‌(− 1 )n ‌in‌‌the‌‌general‌‌term.‌ ‌Since‌‌the‌‌first‌‌term‌‌is‌‌positive‌‌   and‌‌plugging‌‌in‌‌1 ‌to‌‌(− 1 )n ‌gives‌‌− 1 ,‌‌we‌‌know‌‌that‌‌the‌‌alternating‌‌term‌‌will‌‌be‌‌(− 1 )n + 1 .‌   ‌ ‌ Now,‌‌find‌‌a‌‌pattern‌‌in‌‌the‌‌numerator.‌ ‌If‌‌n = 1 ,‌‌the‌‌numerator‌‌equals‌‌3 .‌ ‌If‌‌n = 2 ,‌‌the‌‌   numerator‌‌equals‌‌4 .‌ ‌Therefore,‌‌we‌‌know‌‌the‌‌pattern‌‌in‌‌the‌‌numerator‌‌is‌‌(n + 2 ) .‌   ‌ ‌ Lastly,‌‌find‌‌a‌‌pattern‌‌in‌‌the‌‌denominator.‌ ‌The‌‌numbers‌‌increase‌‌by‌‌a‌‌factor‌‌of‌‌five‌‌   everytime‌‌n ‌increases‌‌by‌‌one.‌ ‌So,‌‌the‌‌pattern‌‌in‌‌the‌‌denominator‌‌is‌‌5 n .‌   ‌ ‌ Put‌‌all‌‌of‌‌this‌‌information‌‌together‌‌to‌‌find‌‌the‌‌general‌‌term.‌   ‌ ‌

{

(−1)n + 1 (n + 2) ∞ } n = 1 5n

 ‌

 ‌ ‌4.3.1.d‌

‌Limits‌‌of‌‌Sequences‌  ‌

A‌‌sequence‌‌{a n } ‌has‌‌the‌‌limit‌‌L ‌if‌‌ lim a n = L .‌ ‌This‌‌is‌‌the‌‌same‌‌definition‌‌as‌‌the‌‌one‌‌in‌‌   n → ∞ 

Calculus‌‌I;‌‌the‌‌terms‌‌get‌‌closer‌‌and‌‌closer‌‌to‌‌the‌‌number‌‌L ‌as‌‌n ‌gets‌‌closer‌‌to‌‌infinity.‌ ‌In‌  other‌‌words,‌‌ lim f (x) = L ‌means‌‌ lim a n = L .‌‌If‌‌the‌‌limit‌‌is‌‌a‌‌finite‌‌number,‌‌we‌‌say‌‌the‌‌   x → ∞

n → ∞

sequence‌‌converges.‌ ‌If‌‌the‌‌limit‌‌is‌‌infinite‌‌or‌‌does‌‌not‌‌exist‌‌(DNE),‌‌we‌‌say‌‌the‌‌sequence‌‌   diverges.‌   ‌

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

281‌  ‌

 ‌ When‌‌we‌‌found‌‌the‌‌general‌‌terms‌‌of‌‌sequences,‌‌we‌‌were‌‌finding‌‌a‌‌function‌‌f (x) ‌with‌‌   f (n) = a n .‌ ‌So,‌‌sequences‌‌are‌‌really‌‌just‌‌functions.‌ ‌Meaning‌‌we‌‌can‌‌use‌‌the‌‌limit‌‌laws‌‌from‌‌   Calculus‌‌I‌‌to‌‌find‌‌the‌‌limits‌‌of‌‌sequences.‌ ‌We‌‌will‌‌mainly‌‌use‌‌L’Hôpital’s‌‌Rule‌‌and‌‌the‌‌   Squeeze‌‌Theorem‌‌(you‌‌can‌‌review‌‌these‌‌in‌‌the‌‌Calculus‌‌I‌‌section).‌   ‌ ‌

 ‌

f (x) =

2x2  − 8x + 8                                        an 2x2  − 11x + 16

=

2n 2  − 8n + 8 2n 2  − 11n + 16

 ‌

 ‌ Note:‌‌We‌‌see‌‌factorials‌‌a‌‌lot‌‌in‌‌Calculus‌‌II.‌ ‌A‌‌factorial‌‌is‌‌shown‌‌as‌‌n ! ‌and‌‌you‌‌multiply‌‌n  ‌ times‌‌all‌‌the‌‌numbers‌‌less‌‌than‌‌it‌‌until‌‌you‌‌reach‌‌1 .‌ ‌For‌‌example,‌‌4 ! = 4 · 3 · 2 · 1 = 2 4 .‌  ‌ Remember‌‌that‌‌0 ! = 1 .‌ ‌Maybe‌‌surprisingly,‌‌this‌‌is‌‌not‌‌the‌‌fastest‌‌growing‌‌function:‌‌n n ‌is.‌   ‌ ‌ ‌4.3.1.e‌

‌Vocabulary‌  ‌



Increasing:‌‌a 1 < a 2 < a 3 < ...   ‌



Decreasing:‌‌a 1 > a 2 > a 3 > ...   ‌



Monotonic:‌‌if‌‌the‌‌sequence‌‌is‌‌either‌‌increasing‌‌or‌‌decreasing‌  ‌ ○

it‌‌is‌‌not‌‌possible‌‌to‌‌be‌‌both‌  ‌



Bounded‌‌Above:‌‌if‌‌a n ≤ M ‌for‌‌some‌‌number‌‌M   ‌



Bounded‌‌Below:‌‌if‌‌a n ≥ m ‌for‌‌some‌‌number‌‌m   ‌



Bounded:‌‌if‌‌bounded‌‌both‌‌above‌‌and‌‌below‌  ‌

 

 ‌

282‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌ ‌

To‌‌prove,‌‌for‌‌example,‌‌that‌‌a‌‌sequence‌‌is‌‌decreasing,‌‌we‌‌need‌‌to‌‌show‌‌that‌‌a n ≥ a n + 1 .‌‌In‌‌   other‌‌words,‌‌you‌‌need‌‌to‌‌prove‌‌that‌‌the‌‌current‌‌term‌‌is‌‌larger‌‌than‌‌the‌‌next‌‌term.‌   ‌ ‌ 3 n + 5

>

3 (n + 1) + 5

 ‌

Cross‌‌multiply‌‌and‌‌simplify.‌  ‌ 3n + 18 > 3n + 15   ‌ This‌‌is‌‌a‌‌true‌‌statement,‌‌therefore‌‌the‌‌sequence‌‌is‌‌decreasing.‌   ‌ ‌  ‌ Monotonic‌‌Sequence‌‌Theorem:‌‌A‌‌sequence‌‌which‌‌is‌‌increasing‌‌and‌‌bounded‌‌above‌‌is‌‌   automatically‌‌convergent.‌ ‌Similarly,‌‌a‌‌sequence‌‌which‌‌is‌‌decreasing‌‌and‌‌bounded‌‌below‌‌is‌‌   automatically‌‌convergent.‌  ‌ Sometimes‌‌it‌‌is‌‌hard‌‌to‌‌find‌‌the‌‌limit‌‌of‌‌a‌‌sequence.‌ ‌It‌‌is‌‌easier‌‌to‌‌say‌‌whether‌‌or‌‌not‌‌a ‌‌ sequence‌‌converges‌‌than‌‌to‌‌say‌‌exactly‌‌what‌‌the‌‌sequence‌‌converges‌‌to.‌   ‌ ‌  ‌

4.3.2‌

S ‌ eries‌  ‌

Series‌‌are‌‌sequences‌‌with‌‌addition‌‌signs‌‌where‌‌the‌‌commas‌‌are.‌ ‌The‌‌individual‌‌pieces‌‌that‌‌   are‌‌added‌‌together‌‌are‌‌called‌‌terms.‌   ‌ ‌ The‌‌sequence‌‌    ‌

{ 31n }∞ n = 1 = 31 ,   91 ,   271 ,   811 ,  ...   ‌ in‌‌series‌‌form‌‌is‌  ‌ ∞

∑ n = 1

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

1 3n

=

1 3

+

1 9

+

1 27

+

1 81

+ ...   ‌

283‌  ‌

 ‌ To‌‌read‌‌this‌‌out‌‌loud,‌‌you‌‌say‌‌“the‌‌sum‌‌from‌‌one‌‌to‌‌infinity‌‌of‌‌ 31n ‌”.‌   ‌ ‌ Adding‌‌numbers‌‌infinitely‌‌sounds‌‌pretty‌‌strange,‌‌but‌‌it‌‌is‌‌something‌‌that‌‌we‌‌are‌‌already‌‌   familiar‌‌with.‌ ‌Non-terminating‌‌decimals,‌‌for‌‌example,‌‌are‌‌technically‌‌infinite‌‌sums.‌   ‌ ‌ 2 9 

=  0.222222222222...  =  0.2 + 0 .02 + 0 .002 + 0 .0002  + ...   ‌

This‌‌can‌‌also‌‌be‌‌written‌‌as‌  ‌ 2 9

2 10

=

+

2 100

+

2 1000



+ ... = ∑ n = 1

2 10 n

 ‌

 ‌ ‌4.3.2.a‌

‌Notation‌  ‌

There‌‌are‌‌many‌‌ways‌‌to‌‌write‌‌an‌‌equivalent‌‌series,‌‌such‌‌as‌‌a‌‌different‌‌counting‌‌variable,‌‌   rewriting‌‌algebraically,‌‌or‌‌starting‌‌at‌‌a‌‌different‌‌number.‌ ‌Below‌‌are‌‌some‌‌examples‌‌of‌‌the‌‌   same‌‌series‌‌written‌‌differently.‌   ‌ ‌ ∞

∑ n = 1 ∞

1 3n

=

∑ ( 31 )n =

n = 1 ∞

1 3

1 3

+ +

∑ ( 31 )i = 1 +

1 9

+

1 9

+

1 3

+

1 27

1 27

+

1 9

+

∑ ( 31 )k − 1 = 1 +  31 +

1 9

i = 0 ∞

k = 1

+ ...   ‌

1 81

+

1 81

1 27

+

+ ...   ‌

+ ...   ‌ 1 27

+ ...   ‌



1 3i

∑ i = 1 ∞

∑ n = 0 ∞

∑ n = 1 ∞

1 3n

1 3

+

=1+

1

3

n − 1

∑ 3· n = 1

=

1 3n

1 9

1 3

+ +

1 27

+

1 81

+ ...   ‌

1 9

+

1 27

+ ...   ‌

=1+

1 3

+

1 9

+

1 27

+ ...   ‌

=1+

1 3

+

1 9

+

1 27

+ ...   ‌

 ‌  

 ‌

284‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

‌4.3.2.b‌

‌Estimating‌‌Convergence‌  ‌

Using‌‌the‌‌series‌‌above,‌‌we‌‌will‌‌try‌‌to‌‌find‌‌what‌‌it‌‌converges‌‌to.‌ ‌We‌‌can’t‌‌add‌‌up‌‌infinitely‌‌   many‌‌numbers‌‌on‌‌a‌‌calculator,‌‌but‌‌we‌‌can‌‌add‌‌up‌‌part‌‌of‌‌the‌‌entire‌‌sum‌‌(called‌‌a‌‌partial‌‌   sum,‌‌denoted‌‌sn ).‌ ‌Note‌‌that‌‌s10 ‌is‌‌the‌‌first‌‌1 0 ‌terms‌‌added‌‌together,‌‌and‌‌so‌‌on.‌   ‌ ‌ n  ‌

sn = ‌sum‌‌the‌‌first‌‌n ‌terms‌  ‌

1‌  ‌

s1 = 0 .3333333...   ‌

2‌  ‌

s2 = 0 .4444444...   ‌

3‌  ‌

s3 = 0 .481481...   ‌

10‌  ‌

s10 = 0 .499991...   ‌

20‌  ‌

s20 = 0 .499999...   ‌

1000‌  ‌

s1000 = 0 .499999999999...   ‌

This‌‌is‌‌an‌‌estimation,‌‌but‌‌we‌‌can‌‌see‌‌that‌‌the‌‌partial‌‌sums‌‌seem‌‌to‌‌converge‌‌to‌‌21 .‌  ‌ ∞

Therefore,‌‌it‌‌seems‌‌like‌‌‌ ∑

n = 1

1 3n

=

1 2

‌‌(which‌‌is‌‌true).‌   ‌ ‌

 ‌ ‌4.3.2.c‌

‌Determining‌‌Divergence/Convergence‌‌with‌‌Partial‌‌Sums‌  ‌ ∞

Given‌‌a‌‌series‌‌ ∑ a i = a 1 + a 2 + a 3 + a 4 + ... ,‌‌let‌‌sn ‌denote‌‌its‌‌n th ‌partial‌‌sum:‌  ‌ i = 1

n

sn = ∑ a i = a 1 + a 2 + ... + a n   ‌ i = 1

This‌‌is‌‌a‌‌list‌‌of‌‌numbers.‌ ‌If‌‌the‌‌sequence‌‌of‌‌partial‌‌sums‌‌{sn } ‌is‌‌convergent‌‌and‌‌ lim sn = S  ‌ n → ∞

 

is‌‌a‌‌real‌‌number,‌‌then‌‌we‌‌say‌‌the‌‌series‌‌∑ a i ‌is‌‌convergent‌‌and‌‌we‌‌write‌  ‌  



∑ ai = S   ‌

i = 1

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

285‌  ‌

 ‌ This‌‌number‌‌S ‌is‌‌called‌‌the‌‌sum‌‌of‌‌the‌‌series.‌ ‌If‌‌the‌‌sequence‌‌of‌‌partial‌‌sums‌‌{sn } ‌is‌‌   divergent,‌‌we‌‌say‌‌the‌‌series‌‌is‌‌divergent.‌ ‌The‌‌following‌‌symbols‌‌all‌‌have‌‌the‌‌same‌‌meaning‌  ‌ ∞

n

∑ a i = lim ∑ a i = lim sn   ‌ n → ∞  i = 1

i = 1

n → ∞ 

 ‌ ∞

One‌‌really‌‌cool‌‌fact‌‌is‌‌that‌‌ ∑

n = 1

1 n2

=

π2 6

.‌ T ‌ he‌‌proof‌‌of‌‌this‌‌is‌‌super‌‌interesting:‌‌I‌‌recommend‌‌ 

looking‌‌into‌‌it!‌  ‌  ‌ ‌4.3.2.d‌

‌Test‌‌for‌‌Divergence‌‌(nth‌‌Term‌‌Test)‌  ‌

Convergence‌‌of‌‌a‌‌series‌‌is‌‌not‌‌common.‌ ‌Divergence‌‌of‌‌a‌‌series,‌‌however,‌‌is.‌ ‌Here‌‌is‌‌a‌‌test‌‌   to‌‌see‌‌if‌‌a‌‌series‌‌is‌‌divergent:‌  ‌ ∞

If‌‌ lim a n =/ 0 ‌or‌‌D N E ,‌‌then‌‌the‌‌series‌‌ ∑ a n ‌is‌‌divergent.‌  ‌ n → ∞ 

n = 1

In‌‌other‌‌words,‌‌the‌‌individual‌‌terms‌‌of‌‌the‌‌series‌‌must‌‌go‌‌to‌‌0 ‌for‌‌the‌‌series‌‌to‌‌have‌‌a ‌‌ chance‌‌at‌‌converging.‌ ‌It‌‌does‌‌not‌‌say‌‌that‌‌if‌‌the‌‌individual‌‌terms‌‌go‌‌to‌‌0 ‌that‌‌the‌‌series‌‌   automatically‌‌converges.‌   ‌ ‌  

IMPORTANT‌‌NOTE:‌‌Just‌‌because‌‌ lim a n = 0 ,‌‌doesn’t‌‌mean‌‌∑ a n ‌converges!‌  ‌ n → ∞ 

 



Example:‌‌Using‌‌the‌‌n th ‌term‌‌test,‌‌determine‌‌if‌‌ ∑

n = 1

2 lim 2n n → ∞ 5n  + 4

n2 5n2  + 4

‌is‌‌divergent‌‌or‌‌convergent.‌   ‌ ‌

2n n → ∞ 10n

= (L′H opital′s Rule) = lim

2 n → ∞ 10

= lim

=

1 5

=/ 0   ‌

Because‌‌the‌‌limit‌‌is‌‌not‌‌equal‌‌to‌‌zero,‌‌the‌‌series‌‌diverges‌‌by‌‌the‌‌n th ‌term‌‌test.‌   ‌

286‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ‌



Example:‌‌Using‌‌the‌‌n th ‌term‌‌test,‌‌determine‌‌if‌‌ ∑

n = 1

1 n

‌is‌‌divergent‌‌or‌‌convergent.‌   ‌ ‌

=0  ‌

lim 1 n → ∞ n

Because‌‌the‌‌limit‌‌equals‌‌zero,‌‌the‌‌n th ‌term‌‌test‌‌is‌‌inconclusive.‌   ‌ ‌  ‌ ‌4.3.2.e‌

‌Harmonic‌‌Series‌  ‌ ∞

The‌‌series‌‌ ∑

n = 1

1 n

=1+

1 2



‌∑

n = 1

+

1 3

1 n

=1+

+

1 4

+ ... actually‌‌diverges‌‌even‌‌though‌‌the‌‌terms‌‌go‌‌to‌‌zero:‌  ‌

1 2

+ ( 31 + 41 ) + ( 51 +

1 6

1 7

+

+ 81 ) + ( 91 + ... +

1 16 )

+ ...   ‌

Now,‌‌you‌‌can‌‌simplify‌‌the‌‌terms‌‌in‌‌the‌‌parentheses‌‌by‌‌replacing‌‌the‌‌largest‌‌numbers‌‌with‌‌   the‌‌smallest‌‌number.‌ ‌This‌‌will‌‌help‌‌to‌‌make‌‌estimation‌‌easier‌‌and,‌‌since‌‌it‌‌is‌‌an‌‌   underestimate,‌‌it‌‌is‌‌“legal.”‌  ‌ ∞

‌∑

n = 1

1 n

=1+

1 2

+ ( 41 + 41 ) + ( 81 +

1 8

+

1 8

+ 81 ) + ( 161 + ... +

1 16 )

+ ...   ‌

Notice‌‌how‌‌all‌‌the‌‌sums‌‌in‌‌the‌‌parentheses‌‌simplify‌‌to‌‌21 ,‌‌so‌  ‌ ∞

∑ n = 1 ∞

So,‌‌ ∑

n = 1

1 n

1 n

=1+

1 2

+

1 2

+

1 2

+

1 2

+ ...   ‌

= ∞ ‌but‌‌very‌‌slowly.‌ ‌It‌‌takes‌‌adding‌‌over‌‌250‌‌million‌‌terms‌‌to‌‌get‌‌a‌‌sum‌‌that‌‌is‌‌  

greater‌‌than‌‌20.‌   ‌ ‌  

 ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

287‌  ‌

 ‌ ‌4.3.2.f‌

‌Geometric‌‌Series‌  ‌

Zeno’s‌‌Paradox:‌‌Suppose‌‌you‌‌want‌‌to‌‌walk‌‌2‌‌miles,‌‌but‌‌maybe‌‌that‌‌seems‌‌like‌‌a‌‌long‌‌   distance,‌‌so‌‌you‌‌decide‌‌to‌‌think‌‌of‌‌only‌‌walking‌‌half‌‌of‌‌the‌‌distance‌‌(1‌‌mile).‌ ‌Once‌‌you‌‌   complete‌‌that‌‌1‌‌mile,‌‌the‌‌remaining‌‌part‌‌seems‌‌too‌‌long,‌‌so‌‌you‌‌decide‌‌to‌‌think‌‌of‌‌only‌‌   walking‌‌half‌‌of‌‌the‌‌remaining‌‌distance‌‌(½‌‌a‌‌mile).‌ ‌Once‌‌you‌‌complete‌‌that,‌‌the‌‌remaining‌‌   part‌‌seems‌‌too‌‌long,‌‌so‌‌you‌‌decide‌‌to‌‌think‌‌of‌‌only‌‌walking‌‌half‌‌of‌‌the‌‌distance‌‌(¼‌‌mile).‌ ‌By‌‌   continuing‌‌this‌‌process‌‌of‌‌walking‌‌only‌‌half‌‌of‌‌the‌‌remaining‌‌distance,‌‌you‌‌end‌‌up‌‌traveling‌  ‌ 1+

1 2

+

1 4

+

1 8

+

1 16

+ ... = 2  miles   ‌

A‌‌series‌‌where‌‌n ‌only‌‌lives‌‌in‌‌the‌‌exponent‌‌(like‌‌an‌‌exponential‌‌function)‌‌such‌‌as‌  ‌ ∞

∑ n = 0

1 2n





n = 1

n = 1

1 n ‌‌or‌‌ ∑ ( 31 )n ‌or‌‌ ∑ 2 · ( 10 )  ‌

is‌‌called‌‌a‌‌geometric‌‌series.‌ ‌A‌‌geometric‌‌series‌‌isn’t‌‌required‌‌to‌‌start‌‌at‌‌n = 0 ,‌‌but‌‌it‌‌is‌‌good‌‌   if‌‌it‌‌does,‌‌as‌‌it‌‌makes‌‌things‌‌easier.‌   ‌ ‌ ∞

∑ a r n = a + a r + a r 2 + a r 3 + a r 4 + ...   ‌

n = 0

The‌‌number‌‌a ‌is‌‌the‌‌starting‌‌term,‌‌and‌‌r ‌is‌‌the‌‌ratio‌‌that‌‌we‌‌are‌‌multiplying‌‌by.‌  ‌ ∞

A‌‌geometric‌‌series‌‌is‌‌convergent‌‌only‌‌when‌‌|r | < 1 .‌ ‌Furthermore,‌‌ ∑ a r n = n = 0

a 1 − r

.‌  ‌

This‌‌is‌‌a‌‌type‌‌of‌‌series‌‌that‌‌we‌‌can‌‌actually‌‌add‌‌up.‌ ‌If‌‌|r | ⪰1 ,‌  ‌the‌‌series‌‌diverges.‌   ‌ ‌  

 ‌

288‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌



Example:‌‌If‌‌the‌‌series‌‌converges,‌‌find‌‌the‌‌sum‌‌of‌‌ ∑ 2 2n · 3 1 − n .‌  ‌ n = 1

First,‌‌simplify‌‌the‌‌term.‌  ‌ 2 2n · 3 1 − n = (2 2 )n · 3 1 · 3 −n = 4 n · 3 · 3 −n = 3 · ( 34 )n   ‌ ∞



n = 1

n = 1

Therefore,‌‌ ∑ 2 2n · 3 1 − n = ∑ 3   · ( 34 )n ‌.‌ ‌Since‌‌r =

4 3

> 1 ,‌‌the‌‌series‌‌diverges.‌   ‌ ‌

 ‌ ‌4.3.2.g‌

‌Series‌‌Facts‌  ‌

A‌‌finite‌‌number‌‌of‌‌terms‌‌doesn’t‌‌affect‌‌convergence/divergence‌‌of‌‌a‌‌series.‌ ‌Add‌‌up‌‌a ‌‌ million‌‌numbers,‌‌you‌‌will‌‌still‌‌get‌‌a‌‌finite‌‌number.‌ ‌It’s‌‌the‌‌infinite‌‌part‌‌that‌‌really‌‌matters.‌  ‌ ∞

k

n = 1

n = 1

∑ an = ∑ an +



∑ n = k + 1

an   ‌

 ‌  

 

 

 

If‌‌∑ a n ‌and‌‌∑ b n ‌are‌‌convergent‌‌series,‌‌then‌  ‌ ∞



n = 1

n = 1

∑ (c · a n ) = c · ∑ a n

 

‌and‌







n = 1

n = 1

n = 1

‌ ∑ (a n ± b n ) = ∑ a n   ±   ∑ b n   ‌

 ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

289‌  ‌

 ‌ ‌4.3.2.h‌

‌Telescoping‌‌Series‌  ‌

Consider‌‌the‌‌series‌  ‌ ∞

∑ n = 1

1 n(n + 1)

=

1 2

+

1 6

+

1 12

+

1 20

+

1 30

+ ...   ‌

This‌‌is‌‌not‌‌a‌‌geometric‌‌series‌‌so‌‌we‌‌can’t‌‌tell‌‌if‌‌the‌‌series‌‌converges‌‌or‌‌diverges.‌ ‌So,‌‌let’s‌‌   perform‌‌partial‌‌fraction‌‌decomposition‌‌on‌‌the‌‌term‌‌to‌‌break‌‌down‌‌this‌‌problem.‌   ‌ ‌ 1 n(n + 1)

=

1 n



1 n + 1

 ‌

Therefore,‌‌    ‌ ∞

∑ n = 1

1 n(n + 1)



= ∑ ( n1 − n = 1

1 ) n + 1

= ( 11 − 21 ) + ( 21 − 31 ) + ( 31 − 41 ) + ( 41 − 51 )   ‌

Now,‌‌we‌‌can‌‌see‌‌a‌‌pattern.‌  ‌ s1 = ( 11 − 21 ) =

1 2

 ‌

s2 = ( 11 − 21 ) + ( 21 − 31 ) =

2 3

 ‌

s3 = ( 11 − 21 ) + ( 21 − 31 ) + ( 31 − 41 ) =

3 4

 ‌

.. .  ‌ sn = ( 11 − 21 ) + ( 21 − 31 ) + ( 31 − 41 ) + ... + ( n1 −

1 n + 1 )

=

n n + 1

 ‌ ∞

If‌‌we‌‌take‌‌the‌‌limit‌‌of‌‌sn ,‌‌we‌‌can‌‌see‌‌that‌‌ lim sn = 1 .‌ ‌This‌‌means‌‌that‌‌ ∑ n → ∞

n = 1

1 n(n + 1)

= 1 ‌. ‌ ‌

Notice‌‌that‌‌this‌‌is‌‌not‌‌the‌‌n th ‌term‌‌test,‌‌as‌‌we‌‌are‌‌looking‌‌at‌‌the‌‌partial‌‌sums‌‌themselves.‌  ‌  

 ‌

290‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

There‌‌are‌‌two‌‌main‌‌things‌‌to‌‌look‌‌out‌‌for‌‌in‌‌a‌‌telescoping‌‌series:‌  ‌ 1. two‌‌fractions‌‌subtracted‌‌from‌‌each‌‌other‌  ‌ 2. something‌‌where‌‌you’d‌‌use‌‌partial‌‌fractions‌‌to‌‌break‌‌it‌‌up‌  ‌

4.3.3‌

I‌ ntegral‌T ‌ est‌  ‌

Remember‌‌that‌‌we‌‌visualize‌‌sequences‌‌with‌‌functions‌‌without‌‌the‌‌dots‌‌connected.‌ ‌With‌‌   series,‌‌we‌‌visualize‌‌with‌‌the‌‌area‌‌under‌‌the‌‌graph‌‌(i.e.‌‌an‌‌integral).‌   ‌ ‌ ∞

For‌‌example,‌‌take‌‌the‌‌series‌‌ ∑

n = 1

1 n2

=1+

1 4

+

1 9

+ ... .‌‌    ‌

Draw‌‌rectangles‌‌whose‌‌areas‌‌represent‌‌the‌‌areas‌‌of‌‌the‌‌corresponding‌‌terms.‌ ‌The‌‌areas‌‌of‌‌   all‌‌these‌‌rectangles‌‌added‌‌up‌‌gives‌‌the‌‌sum‌‌of‌‌the‌‌series.‌ ‌Now‌‌on‌‌top‌‌of‌‌this,‌‌draw‌‌the‌‌   graph‌‌of‌‌y =

1 x2

,‌‌as‌‌the‌‌terms‌‌of‌‌the‌‌series‌‌are‌‌n12 .‌   ‌ ‌

 ‌ ∞

The‌‌integral‌‌∫

1

1   x2  dx  is‌‌related‌‌to‌‌the‌‌series‌‌in‌‌that‌‌it‌‌follows‌‌the‌‌points‌‌but‌‌captures‌‌more‌‌ ∞

area‌‌than‌‌the‌‌series.‌ ‌But‌‌if‌‌∫

1

1 x2  dx  converges,‌‌then‌‌so‌‌does‌‌





n = 1

1 n2

.‌   ‌ ‌

Note‌‌that‌‌we‌‌can‌‌disregard‌‌the‌‌one‌‌by‌‌one‌‌rectangle‌‌when‌‌testing‌‌for‌‌convergence,‌‌as‌‌it‌‌is‌‌   a‌‌finite‌‌number‌‌and‌‌f inite number + f inite number = f inite number .‌   ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

291‌ ‌

 ‌ Integral‌‌Test:‌‌If‌‌f (x) ‌is‌‌a‌‌continuous,‌‌positive,‌‌and‌‌decreasing‌‌function‌‌on‌‌the‌‌interval‌‌[1,  ∞]  ‌ with‌‌f (x) = a n ‌(the‌‌same‌‌terms‌‌as‌‌the‌‌series),‌‌then‌  ‌ ∞

∫ f (x) dx



‌converges‌‌

1



∫ f (x) dx



‌diverges‌‌

1



∑ a n ‌converges‌  ‌

n = 1 ∞

∑ a n ‌diverges‌  ‌

n = 1

So,‌‌the‌‌series‌‌will‌‌do‌‌the‌‌same‌‌as‌‌the‌‌integral.‌   ‌ ‌  ‌ Notes‌‌on‌‌the‌‌integral‌‌test:‌  ‌ ●

It‌‌is‌‌not‌‌necessary‌‌for‌‌the‌‌interval‌‌to‌‌start‌‌at‌‌one,‌‌you‌‌can‌‌start‌‌at‌‌a‌‌later‌‌number.‌  ‌



You‌‌have‌‌to‌‌check‌‌the‌‌hypotheses‌‌for‌‌the‌‌interval‌‌test‌‌to‌‌be‌‌valid:‌‌continuous,‌‌   positive,‌‌and‌‌decreasing.‌  ‌ ○

To‌‌check‌‌if‌‌the‌‌function‌‌is‌‌decreasing,‌‌show‌‌that‌‌the‌‌derivative‌‌of‌‌the‌‌   function‌‌is‌‌negative‌‌(f ′(x) < 0 ) .‌  ‌



Also,‌‌this‌‌does‌‌not‌‌have‌‌to‌‌apply‌‌to‌‌the‌‌entire‌‌interval,‌‌just‌‌over‌‌the‌‌interval‌‌   of‌‌the‌‌series‌‌(some‌‌number‌‌to‌‌infinity).‌   ‌ ‌



The‌‌integral‌‌test‌‌does‌‌not‌‌tell‌‌you‌‌what‌‌the‌‌series‌‌converges‌‌to,‌‌only‌‌whether‌‌or‌‌not‌‌   the‌‌series‌‌is‌‌a‌‌finite‌‌number.‌   ‌ ‌



The‌‌integral‌‌test‌‌is‌‌one‌‌of‌‌the‌‌more‌‌time‌‌consuming‌‌tests‌‌that‌‌we‌‌use‌‌in‌‌Calc‌‌II,‌‌so‌‌   look‌‌for‌‌another‌‌test‌‌that‌‌will‌‌work‌‌before‌‌deciding‌‌to‌‌use‌‌this‌‌one.‌   ‌ ‌

 

 ‌

292‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

‌4.3.3.a‌

‌Example‌  ‌ ∞

Determine‌‌whether‌‌ ∑ n = 200

1 √n

‌converges‌‌or‌‌diverges.‌   ‌ ‌

First,‌‌determine‌‌if‌‌the‌‌function‌‌f (x) =

1 √x

‌is‌‌continuous,‌‌positive,‌‌and‌‌decreasing‌‌on‌‌the‌ 

interval‌‌[200,  ∞) .‌ ‌The‌‌function’s‌‌only‌‌place‌‌where‌‌it‌‌is‌‌not‌‌defined‌‌is‌‌x ≤ 0 ,‌‌which‌‌is‌‌outside‌‌   of‌‌the‌‌interval,‌‌so‌‌it‌‌is‌‌continuous.‌ ‌The‌‌function‌‌has‌‌to‌‌be‌‌positive,‌‌as‌‌it‌‌has‌‌a‌‌square‌‌root‌‌in‌‌   it.‌ ‌The‌‌derivative‌‌of‌‌the‌‌function‌‌is‌‌f ′(x) =   − 21 x −3/2 ,‌‌which‌‌is‌‌less‌‌than‌‌zero,‌‌so‌‌the‌‌function‌‌is‌‌   decreasing.‌ ‌So,‌‌we‌‌can‌‌use‌‌the‌‌integral‌‌test.‌  ‌ Now‌‌we‌‌can‌‌set‌‌up‌‌the‌‌integral‌‌and‌‌solve.‌  ‌ ∞



200

1  dx √x

t

= lim

t lim 2√x|200 = lim (2√t − 2√100) = ∞   ‌ ‌ ∫ x−1/2 dx = t → ∞ t → ∞

t → ∞ 200



Therefore,‌‌the‌‌series‌‌ ∑ n = 200

1 √n

i‌s‌‌divergent‌‌by‌‌the‌‌integral‌‌test.‌   ‌ ‌

 ‌ ‌4.3.3.b‌

‌p-Series‌  ‌ ∞

The‌‌series‌‌ ∑

n = 1

 

1 nP

‌is‌‌called‌‌a‌p ‌ -‌ Series.‌ ‌It‌‌is‌‌    ‌



convergent‌‌when‌‌p > 1   ‌



divergent‌‌when‌‌p ≤ 1   ‌  ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

293‌  ‌

 ‌ ‌4.3.3.c‌

‌Using‌‌the‌‌Integral‌‌Test‌‌to‌‌Estimate‌‌the‌‌Sum‌  ‌

If‌‌we‌‌find‌‌that‌‌a‌‌series‌‌is‌‌convergent‌‌by‌‌the‌‌Integral‌‌Test,‌‌we‌‌can‌‌also‌‌use‌‌an‌‌integral‌‌to‌‌   estimate‌‌the‌‌actual‌‌sum‌‌of‌‌the‌‌series.‌ ‌Consider‌‌the‌‌series‌  ‌ ∞

∑ a n = a 1 + a 2 + a 3 + a 4 + ... + a n + a n + 1 +  a n + 2 + ...   ‌

n = 1

You‌‌compute‌‌sn = a 1 + a 2 + a 3 + ... + a n ‌and‌‌stop.‌ ‌How‌‌close‌‌are‌‌you‌‌to‌‌the‌‌actual‌‌sum‌‌of‌‌the‌  series?‌ ‌Call‌  ‌ Rn = a n + 1 + a n + 2 + ...   ‌ the‌‌remainder‌‌because‌‌it‌‌is‌‌the‌‌remaining‌‌part‌‌of‌‌the‌‌series‌‌that‌‌you‌‌haven’t‌‌added‌‌up‌‌yet.‌  ‌ This‌‌remainder‌‌can‌‌be‌‌estimated‌‌by‌  ‌ ∞





n + 1

f (x) dx ≤ Rn ≤ ∫ f (x) dx   ‌ n



We‌‌typically‌‌only‌‌use‌‌Rn ≤ ∫ f (x) dx ‌because‌‌we‌‌want‌‌to‌‌see‌‌what‌‌the‌‌remainder‌‌is‌‌smaller‌‌   n

than.‌   ‌ ‌ ∞

Example:‌‌Estimate‌‌the‌‌sum‌‌of‌‌ ∑

n = 1

1 n3

‌‌if‌‌it‌‌is‌‌convergent.‌  ‌

The‌‌series‌‌is‌‌convergent‌‌by‌p ‌ -‌ Series‌‌with‌‌p = 3 ‌being‌‌greater‌‌than‌‌1 .‌ ‌So,‌‌we‌‌can‌‌estimate‌‌   using‌‌the‌‌integral‌‌test.‌   ‌ ‌ ∞

∑ n = 1

s10 = 1 .1975 ,‌‌Rn = ‌

1 3 11





n

294‌

+

1 3 12

1 x3  dx

1 n3

=

1 13

+

1 23

+

1 33

+ ... +

1 10 3

+[

1 11 3



+ ... ‌.‌ ‌Now,‌‌find‌‌the‌‌integral‌‌∫

n

t

∫ x−3  dx = t → ∞

= lim

n

lim   −

t → ∞

1 t 2x2 |n

+

1 12 3

1 x3  dx .‌ 

= lim [− n → ∞

1 2t2

+ ...]   ‌



+

1 2n2 ]

=

1 2n2

 ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

So‌‌now‌‌we‌‌know‌‌that‌‌R10 ≤

1 2(10)2

= 0 .005 .‌ ‌Therefore‌‌n = 1 1 ‌to‌‌n = ∞ ‌is‌‌≤ 0 .005 .‌ ‌Now‌‌plug‌‌in‌‌  

n + 1 ‌to‌‌get‌‌a‌‌handle‌‌on‌‌how‌‌big‌‌this‌‌integral‌‌is‌‌going‌‌to‌‌be.‌   ‌ ‌ 1 2(11)2



∑ n = 1

1 n3

≤ R10 ≤

1   2(10)2

→  0.004 ≤ R10 ≤ 0 .005   ‌

‌‌is‌‌between‌‌1 .2015 ‌and‌‌1 .2025 ‌(‌s10 + 0 .004 ‌and‌‌s10 + 0 .005 ).‌‌   ‌

 ‌

4.3.4‌

C ‌ omparison‌T ‌ ests‌  ‌

‌4.3.4.a‌

‌Direct‌‌Comparison‌‌Test‌  ‌

 

 

 

 

If‌‌∑ a n ‌(given)‌‌and‌‌∑ b n ‌(similar)‌‌are‌‌series‌‌with‌‌positive‌‌terms‌‌and‌  ‌

● ●

 

 

 

 

If‌‌∑ b n ‌converges‌‌and‌‌0 ≤ a n ≤ b n ,‌‌then‌‌∑ a n ‌converges‌‌(is‌‌a‌‌finite‌‌number)‌  ‌  

 

 

 

If‌‌∑ b n ‌diverges‌‌and‌‌0 ≤ b n ≤ a n ,‌‌then‌‌∑ a n ‌diverges‌‌(is‌‌infinite)‌  ‌  

Note:‌‌you‌‌will‌‌choose‌‌the‌‌series‌‌∑ b n ‌to‌‌be‌‌either‌‌a‌p ‌ -‌ series‌‌or‌‌a‌‌geometric‌‌series‌‌which‌‌    

 

resembles‌‌the‌‌given‌‌series‌‌∑ a n .‌  ‌  

For‌‌determining‌‌b n ‌on‌p ‌ -‌ series‌‌comparisons:‌  ‌ ∞

∑ n = 1

largest power in numerator largest power in denominator

 ‌

 ‌  

 ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

295‌  ‌

 ‌ ∞

Example:‌‌Determine‌‌if‌‌the‌‌series‌‌ ∑

n = 1

1 n 2  + 1

‌‌converges‌‌or‌‌diverges.‌   ‌ ‌ ∞

The‌‌series‌‌is‌‌not‌‌a‌p ‌ -‌ series,‌‌but‌‌it‌‌looks‌‌like‌‌the‌p ‌ -‌ series‌‌ ∑

n = 1

1 n2  

‌‌(which‌‌is‌‌convergent‌‌  ∞

because‌‌p = 2 > 1 ).‌ ‌All‌‌of‌‌the‌‌terms‌‌are‌‌positive,‌‌so‌‌if‌‌we‌‌can‌‌show‌‌that‌‌ ∑

n = 1

1

n 2  + 1



≤ ∑ n = 1

1 n2

,‌‌  

it‌‌will‌‌mean‌‌the‌‌series‌‌converges.‌ ‌Check‌‌the‌‌terms:‌  ‌ 1 n 2  + 1



1 n2

 ‌

Cross‌‌multiply.‌  ‌ n2 ≤ n2 + 1   ‌ Simplify.‌  ‌ 0 ≤1  ‌ ∞

This‌‌is‌‌a‌‌true‌‌statement,‌‌so‌‌according‌‌to‌‌the‌‌first‌‌bullet‌‌point‌‌of‌‌the‌‌DCT,‌‌ ∑

n = 1

1 n 2  + 1

 ‌

converges‌‌as‌‌well.‌   ‌ ‌ To‌‌see‌‌which‌‌series‌‌is‌‌larger:‌‌if‌‌the‌‌denominators‌‌are‌‌the‌‌same,‌‌the‌‌one‌‌with‌‌the‌‌larger‌‌   numerator‌‌is‌‌bigger;‌‌if‌‌the‌‌numerators‌‌are‌‌the‌‌same,‌‌the‌‌one‌‌with‌‌the‌‌smaller‌‌denominator‌‌   is‌‌bigger.‌ ‌Though‌‌you‌‌will‌‌still‌‌need‌‌to‌‌perform‌‌the‌‌algebra‌‌to‌‌show‌‌this‌‌is‌‌true,‌‌this‌‌can‌‌   help‌‌you‌‌check‌‌your‌‌answer.‌  ‌  

 ‌

296‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

‌4.3.4.b‌

‌Limit‌‌Comparison‌‌Test‌  ‌

 

 

 

 

If‌‌∑ a n ‌and‌‌∑ b n ‌are‌‌series‌‌with‌‌positive‌‌terms‌‌and‌‌you‌‌evaluate‌‌the‌‌limit‌  ‌ an n → ∞ b n

lim

=C‌

a ‌ nd‌‌

‌0 < C < ∞ ‌(strict‌‌inequality)‌   ‌ ‌

Then‌‌both‌‌series‌‌do‌‌the‌‌same‌‌thing:‌‌they‌‌either‌‌both‌‌converge‌‌or‌‌they‌‌both‌‌diverge.‌   ‌ ‌  

Note:‌‌as‌‌before,‌‌you‌‌will‌‌choose‌‌the‌‌series‌‌∑ b n ‌to‌‌be‌‌either‌‌a‌p ‌ -‌ series‌‌or‌‌a‌‌geometric‌‌series‌‌    

 

which‌‌resembles‌‌the‌‌given‌‌series‌‌∑ a n .‌   ‌ ‌  



Example:‌‌Use‌‌the‌‌LCT‌‌to‌‌determine‌‌whether‌‌ ∑

n = 1

 



 

n = 1

∑ bn = ∑

1 2n

1 2 n  − 1

‌converges‌‌or‌‌diverges.‌   ‌ ‌

‌,‌‌which‌‌is‌‌a‌‌convergent‌‌geometric‌‌series‌‌with‌‌r = 21 .‌ ‌Now,‌‌set‌‌up‌‌the‌‌limit.‌  ‌

lim

n → ∞



Since‌‌0 < 1 < ∞ ,‌‌ ∑

n = 1

1 2 n  − 1 1 2n

1 2 n  − 1

2n n → ∞ 2  − 1

= lim

n

ln(2) 2 n n n → ∞ ln(2) 2

= (L′H opital′s Rule) = lim

=1  ‌

‌‌converges‌‌by‌‌the‌‌Limit‌‌Comparison‌‌Test.‌   ‌ ‌

 ‌ Note:‌‌Both‌‌the‌‌DCT‌‌and‌‌the‌‌LCT‌‌deal‌‌with‌‌series‌‌that‌‌have‌‌all‌‌positive‌‌terms,‌‌but‌‌they‌‌also‌‌   work‌‌for‌‌series‌‌that‌‌have‌‌all‌‌negative‌‌terms‌‌because‌‌− 1 ‌is‌‌a‌‌common‌‌multiple.‌ ‌So,‌‌    

 

 

 

∑ − a n =   − ∑ a n .‌   ‌ ‌  

 ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

297‌  ‌

 ‌

4.3.5‌

A ‌ lternating‌S ‌ eries‌T ‌ est‌  ‌  

An‌‌alternating‌‌series‌‌∑  (− 1 )n b n ‌converges‌‌if‌‌both:‌  ‌  

3. The‌‌terms‌‌go‌‌to‌‌0 :‌‌ lim b n = 0   ‌ n → ∞

4. The‌‌terms‌‌b n ‌decrease:‌‌b 1 ≥ b 2 ≥ b 3 ≥ ... ‌(check‌‌by‌‌showing‌‌the‌‌derivative‌‌is‌‌negative)‌  ‌ When‌‌testing‌‌both‌‌of‌‌the‌‌above‌‌conditions,‌‌do‌‌not‌‌include‌‌the‌‌alternating‌‌terms.‌ ‌If‌‌the‌‌first‌‌   condition‌‌does‌‌not‌‌happen,‌‌then‌‌the‌‌series‌‌diverges‌‌by‌‌the‌‌n th ‌term‌‌test.‌   ‌ ‌  ‌ ∞

Example:‌‌Prove‌‌that‌‌the‌‌series‌‌ ∑

n = 1

First,‌‌check‌‌if‌‌ lim

1 n → ∞ n

(−1)n−1 n

‌converges‌‌by‌‌the‌‌Alternating‌‌Series‌‌Test.‌  ‌

= 0 ,‌‌which‌‌it‌‌does,‌‌as‌‌when‌‌you‌‌divide‌‌by‌‌a‌‌larger‌‌and‌‌larger‌‌number‌‌  

you‌‌approach‌‌0 .‌   ‌ ‌ Now,‌‌check‌‌if‌‌the‌‌terms‌‌n1 ‌decrease.‌  ‌ f ′(x) =   −

1 x2

 ‌

This‌‌derivative‌‌is‌‌always‌‌negative,‌‌so‌‌the‌‌terms‌‌do‌‌decrease.‌  ‌ ∞

Therefore,‌‌the‌‌series‌‌ ∑

n = 1

 

(−1)n−1 n

‌ ‌converges‌‌by‌‌the‌‌Alternating‌‌Series‌‌Test.‌   ‌ ‌

 ‌

298‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

‌4.3.5.a‌

‌Estimate‌‌the‌‌Sum‌‌of‌‌an‌‌Alternating‌‌Series‌  ‌

If‌‌we‌‌find‌‌that‌‌a‌‌series‌‌is‌‌convergent‌‌by‌‌the‌‌Alternating‌‌Series‌‌Test,‌‌we‌‌can‌‌also‌‌estimate‌‌the‌‌   actual‌‌sum‌‌of‌‌the‌‌series.‌ ‌Consider‌‌a‌‌series‌  ‌ ∞

∑ (− 1 )n − 1 b n = b 1 − b 2 + b 3 − b 4 + ... + b n − b n + 1 + b n + 2 − ...   ‌

n = 1

You‌‌compute‌‌sn = b 1 − b 2 + b 3 − b 4 + ... + b n .‌ ‌If‌‌you‌‌want‌‌to‌‌find‌‌out‌‌how‌‌close‌‌you‌‌are‌‌to‌‌the‌‌   actual‌‌sum‌‌of‌‌the‌‌series,‌‌let‌‌Rn ‌denote‌‌the‌‌remainder‌‌because‌‌it’s‌‌the‌‌remaining‌‌part‌‌of‌‌the‌‌   series‌‌that‌‌you‌‌haven’t‌‌added‌‌up‌‌yet.‌ ‌This‌‌remainder‌‌can‌‌be‌‌estimated‌‌by‌  ‌ |Rn | ≤ b n + 1   ‌  ‌

4.3.6‌

R ‌ atio‌a ‌ nd‌R ‌ oot‌T ‌ ests‌  ‌

‌4.3.6.a‌

‌Conditionally/Absolutely‌‌Convergent‌  ‌

With‌‌alternating‌‌series,‌‌adding‌‌a‌‌term‌‌then‌‌subtracting‌‌a‌‌term‌‌makes‌‌the‌‌series‌‌more‌‌likely‌‌   to‌‌converge,‌‌since‌‌it‌‌doesn’t‌‌grow‌‌as‌‌quickly.‌   ‌ ‌ We‌‌know‌‌that‌‌    ‌ ∞

∑ n = 1

(−1)n−1 n



‌‌converges‌ b ‌ ut‌‌ ‌ ∑

n = 1

1 n

‌diverges‌  ‌

This‌‌means‌‌that‌‌the‌‌series‌‌is‌‌conditionally‌‌convergent:‌‌when‌‌the‌‌alternating‌‌symbol‌‌is‌‌   removed,‌‌the‌‌series‌‌changes‌‌from‌‌convergent‌‌to‌‌divergent,‌   ‌ ‌ In‌‌another‌‌case‌  ‌ ∞

∑ n = 1

(−1)n − 1 n2



‌‌converges‌ a ‌ nd‌‌ ‌ ∑

n = 1

This‌‌means‌‌that‌‌the‌‌series‌‌is‌‌absolutely‌‌convergent.‌   ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

1 n2

‌‌converges‌  ‌  ‌ ‌

299‌  ‌

 ‌  

 

Absolute‌‌Convergence:‌‌A‌‌series‌‌∑ a n ‌is‌‌“absolutely‌‌convergent”‌‌if‌‌∑ |a n | converges.‌ ‌It‌‌turns‌‌    

 

 

 

 

 

out‌‌that‌‌if‌‌∑ |a n | ‌(the‌‌original‌‌series)‌‌converges,‌‌then‌‌∑ a n ‌automatically‌‌converges‌‌(even‌‌if‌‌   its‌‌terms‌‌are‌‌negative‌‌or‌‌alternating).‌   ‌ ‌  ‌  

Conditional‌‌Convergence:‌‌A‌‌series‌‌(typically‌‌alternating)‌‌∑ a n ‌is‌‌“conditionally‌‌convergent”‌‌if‌‌    

 

 

 

 

∑ a n ‌converges‌b ‌ ut‌‌‌∑ |a n | ‌diverges.‌   ‌ ‌  ‌ ‌4.3.6.b‌

‌Ratio‌‌Test‌  ‌  

a | Consider‌‌the‌‌series‌‌∑ a n ‌and‌‌find‌‌the‌‌limit‌‌ lim || n + 1 a n | = r ‌.‌ ‌If‌  ‌ n → ∞

 



 

r < 1 ‌the‌‌series‌‌∑ a n ‌converges‌‌absolutely‌  ‌  



 

r > 1 ‌the‌‌series‌‌∑ a n ‌diverges‌  ‌  



r = 1 ‌test‌‌is‌‌inconclusive,‌‌try‌‌a‌‌different‌‌test‌    ‌

The‌‌ratio‌‌test‌‌works‌‌best‌‌when‌‌factorials‌‌show‌‌up,‌‌or‌‌when‌‌you‌‌have‌‌a‌m ‌ ix‌‌‌of‌‌polynomials,‌‌   exponentials,‌‌and/or‌‌factorials‌‌(don’t‌‌use‌‌it‌‌when‌‌there‌‌is‌‌only‌‌one‌‌of‌‌these!).‌   ‌ ‌ You‌‌can‌‌use‌‌the‌‌following‌‌list‌‌ordered‌‌from‌‌slowest‌‌to‌‌fastest‌‌growth‌‌to‌‌predict‌‌outcome:‌  ‌ polynomial‌‌→ ‌exponential‌  →   factorial‌‌→   n n   ‌  ‌ ∞

Example:‌‌Use‌‌the‌‌ratio‌‌test‌‌on‌‌ ∑

n = 1

| lim | n → ∞ |

300‌

2 n + 1 (n + 1)! 2n n!

2n n!

‌‌to‌‌determine‌‌convergence‌‌or‌‌divergence.‌   ‌ ‌

| | (2n + 1 )n! | 2 | | = lim | 2n (n + 1)! | = lim || n + 1 | =0  n → ∞ n → ∞ | | |

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

Note‌‌that‌‌n ! = n · (n − 1 ) · (n − 2 ) · ...  · 1 ‌and‌‌(n + 1 )! = (n + 1 ) · n · (n − 1 ) · ... · 1 .‌ ‌When‌‌n ! ‌is‌‌put‌‌   1 over‌‌(n + 1 )! ,‌‌everything‌‌cancels‌‌out‌‌except‌‌for‌‌n + 1 ,‌‌leaving‌‌ n + 1 .‌   ‌ ‌ ∞

r < 1 ‌therefore‌‌ ∑

n = 1

2n n!

‌‌is‌‌absolutely‌‌convergent‌‌by‌‌the‌‌ratio‌‌test.‌   ‌ ‌

 ‌ Note:‌‌corresponding‌‌pieces‌‌will‌‌always‌‌be‌‌on‌‌opposite‌‌sides‌‌of‌‌the‌‌fraction;‌‌group‌‌them‌‌   together.‌   ‌ ‌  ‌ ‌4.3.6.c‌

‌Root‌‌Test‌  ‌  

Consider‌‌the‌‌series‌‌∑ a n ‌and‌‌find‌‌the‌‌limit‌‌ lim

n → ∞

 



n

√|an |  = r .‌ ‌If‌‌   ‌

 

r < 1 ‌the‌‌series‌‌∑ a n ‌converges‌‌absolutely‌  ‌  



 

r > 1 ‌the‌‌series‌‌∑ a n ‌diverges‌  ‌  



r = 1 ‌test‌‌inconclusive,‌‌try‌‌a‌‌different‌‌test‌  ‌

The‌‌root‌‌test‌‌is‌‌only‌‌useful‌‌when‌‌the‌‌terms‌‌of‌‌the‌‌series‌‌are‌‌all‌‌raised‌‌to‌‌the‌‌power‌‌n .‌   ‌ ‌  ‌ ∞

3n + 1 n Example:‌‌Determine‌‌if‌‌the‌‌series‌‌ ∑ ( 4n + 17 ) ‌‌converges‌‌or‌‌diverges.‌   ‌ ‌ n = 0

Set‌‌up‌‌the‌‌limit‌‌and‌‌solve.‌  ‌ lim

n → ∞

3 4

√( n

3n + 1 n 4n + 17 )



 = lim

3n + 1

n → ∞ 4n + 17

=  (L′H opital′s Rule) =

3n + 1 n < 1 ,‌‌so‌‌ ∑ ( 4n + 17 ) ‌‌is‌‌absolutely‌‌convergent‌‌by‌‌the‌‌root‌‌test.‌   ‌ n = 0

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

3 4

 ‌

 ‌ ‌

301‌  ‌

 ‌

4.4‌

‌Power‌‌Series‌  ‌

Recall‌‌that‌‌a‌‌geometric‌‌series‌‌is‌‌convergent‌‌if‌‌|r | < 1 ‌and‌‌that‌‌we‌‌can‌‌actually‌‌find‌‌its‌‌sum.‌   ‌ ‌ ∞

∑ a r n = a + a r + a r 2 + a r 3 + ... = n = 0

a 1 − r

   ‌

Notice‌‌that‌‌the‌‌sum‌‌starts‌‌with‌‌n = 0 .‌ ‌If‌‌|r | ≥ 1 ,‌‌then‌‌the‌‌geometric‌‌series‌‌diverges,‌‌so‌‌we‌‌   cannot‌‌use‌‌this‌‌formula‌‌because‌‌the‌‌series‌‌doesn’t‌‌converge‌‌to‌‌a‌‌number.‌   ‌ ‌ Some‌‌examples:‌  ‌ ∞

∑ ( 21 )n = 1 +

1 2

+

1 4

+

1 8

+ ... =

∑ (− 31 )n = 1 −

1 3

+

1 9



1 27

n = 0 ∞

n = 0

1 1 −  12

+ ... =

= 2  ‌

1 1 − (− 13 )

=

3 4

 ‌

If‌‌we‌‌replace‌‌the‌‌numbers‌‌with‌‌a‌‌variable‌‌x ,‌‌we‌‌have‌‌the‌‌following‌‌(remember‌‌x 0 = 1 )‌  ∞

∑ x n = 1 + x + x 2 + x 3 + ...   ‌

n = 0

This‌‌is‌‌a‌‌function,‌‌so‌‌we‌‌can‌‌write‌‌it‌‌using‌‌function‌‌notation.‌ ‌If‌‌we‌‌write‌‌   f (x) = 1 + x + x 2 + x 3 + ... ‌then‌‌we‌‌see‌‌that‌‌f (0) = 1 ‌and‌‌from‌‌the‌‌above‌‌computations‌‌f ( 21 ) = 2  ‌ and‌‌f (− 31 ) =

3 4

.‌ ‌Since‌‌it‌‌is‌‌still‌‌a‌‌geometric‌‌series,‌‌you‌‌can‌‌only‌‌plug‌‌in‌‌values‌‌|x | < 1 :‌‌this‌‌is‌‌  

the‌‌domain‌‌of‌‌the‌‌function.‌   ‌ ‌  ‌ A‌‌power‌‌series‌‌is‌‌a‌‌series‌‌of‌‌the‌‌form‌  ‌ ∞

∑ c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + ...   ‌

n = 0

where‌‌x ‌is‌‌the‌‌variable‌‌and‌‌c n ’s‌‌are‌‌called‌‌the‌‌coefficients.‌ ‌This‌‌is‌‌an‌‌infinite‌‌polynomial.‌  ‌ When‌‌you‌‌plug‌‌in‌‌x = 0 ,‌‌the‌‌series‌‌converges‌‌to‌‌c 0 .‌ ‌This‌‌means‌‌the‌‌power‌‌series‌‌is‌‌   “centered‌‌at‌‌x = 0 .”‌  302‌

 ‌ ‌ Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

A‌‌power‌‌series‌‌centered‌‌at‌‌x = a ‌is‌‌a‌‌series‌‌of‌‌the‌‌form‌  ‌ ∞

‌ ∑ c n (x − a )n = c 0 + c 1 (x − a ) + c 2 (x − a )2 + c 3 (x − a )3 + ...   ‌ n = 0

where‌‌a ‌is‌‌some‌‌number.‌ ‌When‌‌you‌‌plug‌‌in‌‌x = a ,‌‌the‌‌series‌‌converges‌‌to‌‌c 0 .‌ ‌The‌‌center‌‌   is‌‌the‌‌terms‌‌that‌‌can‌‌make‌‌all‌‌but‌‌one‌‌term‌‌cancel‌‌out‌‌(‌c 0 ).‌   ‌ ‌ All‌‌the‌‌numbers‌‌you‌‌can‌‌plug‌‌in‌‌for‌‌x ‌that‌‌makes‌‌the‌‌power‌‌series‌‌converge‌‌is‌‌called‌‌the‌‌   interval‌‌of‌‌convergence,‌‌and‌‌it‌‌is‌‌written‌‌in‌‌interval‌‌notation.‌  ‌  ‌

4.4.1‌

T ‌ heorem‌  ‌ ∞

For‌‌a‌‌given‌‌power‌‌series‌‌ ∑ c n (x − a )n ,‌‌there‌‌are‌‌only‌‌3‌‌possibilities:‌  ‌ n = 0



The‌‌series‌‌converges‌‌only‌‌when‌‌x = a ‌(converges‌‌to‌‌c 0 )‌  ‌



The‌‌series‌‌converges‌‌for‌‌all‌‌numbers‌‌x ,‌‌(− ∞ ,  ∞)   ‌



There‌‌is‌‌a‌‌number‌‌R ‌where‌‌series‌‌converges‌‌if‌‌|x − a| < R ,‌‌but‌‌diverges‌‌if‌‌|x − a| > R .‌  ‌ This‌‌number‌‌R ‌is‌‌called‌‌the‌‌Radius‌‌of‌‌Convergence‌‌(ROC).‌   ‌ ‌ ○

You‌‌must‌‌check‌‌for‌‌convergence‌‌at‌‌the‌‌endpoints‌‌of‌‌this‌‌interval‌‌to‌‌   determine‌‌if‌‌the‌‌endpoints‌‌are‌‌open‌‌or‌‌closed.‌ ‌The‌‌corresponding‌‌interval‌‌is‌‌   called‌‌the‌‌Interval‌‌of‌‌Convergence‌‌(IOC).‌   ‌ ‌

We‌‌will‌‌find‌‌the‌‌interval‌‌of‌‌convergence‌‌of‌‌a‌‌power‌‌series‌‌by‌‌running‌‌the‌‌ratio‌‌test‌‌and‌‌   finding‌‌when‌‌the‌‌result‌‌is‌‌less‌‌than‌‌one.‌ ‌Once‌‌you‌‌have‌‌this‌‌interval,‌‌check‌‌the‌‌endpoints.‌   ‌ ‌  

 ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

303‌  ‌

 ‌ ‌4.4.1.a‌

‌Example‌  ‌ ∞

Find‌‌the‌‌ROC‌‌and‌‌IOC‌‌of‌‌the‌‌power‌‌series‌‌ ∑

n = 1

(x − 3)n n

‌‌. ‌ ‌

Notice‌‌the‌‌center‌‌is‌‌x = 3 .‌ ‌In‌‌order‌‌for‌‌the‌‌series‌‌to‌‌converge,‌‌the‌‌ratio‌‌test‌‌must‌‌give‌‌a ‌‌ result‌‌that‌‌is‌‌less‌‌than‌‌one.‌   ‌ ‌ n + 1

| (x − 3) | | (x − 3)n + 1  · n | n + 1 n | lim | (x − 3)  n | = lim | | = lim ||(x − 3 ) · (n + 1) n  | = |x − 3 |   ‌ (x − 3) · (n + 1) n → ∞ | n → ∞ n → ∞ | | n | Set‌‌up‌‌the‌‌interval.‌  ‌ |x  −  3 | < 1  

⇒   − 1 < x − 3 < 1  ⇒  2 < x < 4   ‌

This‌‌means‌‌that‌‌any‌‌number‌‌between‌‌2 ‌and‌‌4 ‌will‌‌make‌‌the‌‌series‌‌converge.‌ ‌We‌‌also‌‌   know‌‌that‌‌any‌‌x ‌smaller‌‌than‌‌2 ‌and‌‌larger‌‌than‌‌4 ‌will‌‌make‌‌the‌‌series‌‌diverge.‌ ‌Now,‌‌we‌‌   need‌‌to‌‌check‌‌the‌‌endpoints‌‌2 ‌and‌‌4 .‌   ‌ ‌ Plug‌‌in‌‌x = 2 ‌to‌‌the‌‌original‌‌series.‌‌    ‌ ∞

(2−3)n n

∑ n = 1

lim 1 n → ∞ n



= ∑ n = 1

(−1)n n

 ‌

= 0       f ′(x) =   −

1 n2

   ‌ ‌

Therefore,‌‌the‌‌series‌‌converges‌‌by‌‌the‌‌alternating‌‌series‌‌test.‌   ‌ ‌ Plug‌‌in‌‌x = 4 ‌to‌‌the‌‌original‌‌series.‌  ∞

∑ n = 1

(4 − 3)  n

n



= ∑ n = 1

1 n

 ‌

This‌‌is‌‌the‌‌harmonic‌‌series.‌ ‌So,‌‌it‌‌diverges‌‌by‌p ‌ -‌ series‌‌with‌‌p = 1 .‌   ‌ ‌ Therefore,‌‌the‌‌interval‌‌of‌‌convergence‌‌is‌‌[2,  4) ‌and‌‌the‌‌radius‌‌of‌‌convergence‌‌is‌‌1 ‌(it‌‌is‌‌how‌‌   far‌‌you‌‌can‌‌go‌‌left‌‌or‌‌right‌‌of‌‌the‌‌center‌‌and‌‌still‌‌converge).‌   ‌ ‌

304‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌

4.4.2‌

R ‌ epresentation‌o ‌ f‌F ‌ unctions‌b ‌ y‌P ‌ ower‌S ‌ eries‌ 

a We‌‌can‌‌use‌‌the‌‌sum‌‌formula‌‌for‌‌a‌‌geometric‌‌series‌‌ 1 − r ‌‌to‌‌find‌‌the‌‌sum‌‌of‌‌the‌‌power‌‌ 

series.‌   ‌ ‌ ∞

‌ ∑ x n = 1 + x + x 2 + x 3 + ... = n = 0

1 1 − x

 ‌

You‌‌may‌‌recognize‌‌this‌‌function‌‌from‌‌Pre-Calculus.‌ ‌It‌‌is‌‌the‌‌same‌‌as‌‌the‌‌function‌‌y =

1 1 − x

‌, ‌‌

but‌‌only‌‌when‌‌|x | < 1 .‌ ‌They‌‌are‌‌on‌‌the‌‌same‌‌IOC‌‌of‌‌the‌‌power‌‌series‌‌(− 1 ,  1) .‌  ‌  ‌ a If‌‌we‌‌can‌‌turn‌‌a‌‌function‌‌into‌‌the‌‌form‌‌ 1 − r ‌,‌‌then‌‌we‌‌can‌‌write‌‌it‌‌as‌‌a‌‌geometric‌‌series‌‌  ∞

∑ a r n ‌which‌‌converges‌‌when‌‌|r | ≥ 1 .‌   ‌ ‌

n = 0

 ‌ ‌4.4.2.a‌

‌Example‌  ‌

Write‌‌the‌‌function‌‌y =

x3 x + 2

‌‌as‌‌a‌‌power‌‌series‌‌and‌‌find‌‌the‌‌IOC.‌  ‌

a First,‌‌get‌‌the‌‌function‌‌in‌‌the‌‌form‌‌ 1 − r ‌. ‌  ‌ ‌ x3 2 + x

So,‌‌a =

x3 2

‌‌and‌‌r =   −

x 2

=

x3 /2 1 − (−x/2)

 ‌

‌.‌ ‌Now,‌‌use‌‌this‌‌information‌‌to‌‌put‌‌the‌‌function‌‌into‌‌power‌‌series‌‌ 

form.‌   ‌ ‌ ∞

∑ n = 0

When‌‌||− 2x || < 1   

x3 2



· (− 2x )n = ∑ (− 1)n n = 0

⇒    − 2 < x < 2,‌ ‌the‌‌series‌‌will‌‌converge.‌   ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

xn + 3 2n + 1

 ‌

 ‌ ‌

305‌  ‌

 ‌  ‌ a A‌‌common‌‌mistake‌‌is‌‌that‌‌when‌‌manipulating‌‌a‌‌rational‌‌function‌‌to‌‌get‌‌it‌‌in‌‌the‌‌form‌‌ 1 − r ,‌‌  

some‌‌people‌‌will‌‌divide‌‌by‌‌x .‌ ‌This‌‌will‌‌put‌‌powers‌‌of‌‌x ‌in‌‌the‌‌denominator,‌‌which‌‌will‌‌not‌‌   create‌‌an‌‌infinite‌‌polynomial,‌‌meaning‌‌it‌‌will‌‌not‌‌create‌‌a‌‌power‌‌series.‌ ‌a ‌can‌‌have‌‌an‌‌x ‌in‌‌   it,‌‌but‌‌there‌‌should‌‌never‌‌be‌‌an‌‌x ‌in‌‌the‌‌denominator‌‌of‌‌r .‌   ‌ ‌  ‌ ‌4.4.2.b‌

‌Integrals‌‌and‌‌Derivatives‌  ‌

Because‌‌power‌‌series‌‌are‌‌just‌‌functions,‌‌you‌‌can‌‌take‌‌derivatives‌‌and‌‌integrals‌‌of‌‌them‌‌to‌‌   come‌‌up‌‌with‌‌different‌‌functions.‌   ‌ ‌ Original:‌

Derivative:‌

Integral:‌

 

‌f (x) = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + ...

‌f ′(x) = c 1 + 2 c 2 x + 3 c 3 x 2 + ...

2

3

‌∫ f (x) dx = C + c 0 x + c 1 x2 + c 2 x3 + ...  



‌= ∑ c n x n   ‌ n = 0



‌= ∑ n · c n x n − 1   ‌ n = 0



xn + 1 ‌= C + ∑ c n · n + 1  ‌ n = 0

Treat‌‌the‌‌series‌‌just‌‌as‌‌functions;‌‌use‌‌the‌‌power‌‌rule‌‌and‌‌inverse‌‌power‌‌rule.‌  ‌ The‌‌ROC‌‌will‌‌be‌‌the‌‌same‌‌as‌‌the‌‌original,‌‌but‌‌you‌‌must‌‌check‌‌the‌‌endpoints‌‌of‌‌the‌‌IOC.‌   ‌ ‌ Note‌‌that‌‌you‌‌can‌‌also‌‌start‌‌the‌‌series‌‌at‌‌n = 1 ‌and‌‌it‌‌will‌‌be‌‌the‌‌same.‌   ‌ ‌  

 ‌

306‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

Example:‌‌Find‌‌a‌‌power‌‌series‌‌representation‌‌for‌‌the‌‌function‌‌f (x) =

1 (1 − x)2

‌. ‌  ‌ ‌

All‌‌of‌‌these‌‌problems‌‌begin‌‌with‌‌the‌‌basic‌‌power‌‌series:‌  ‌ 1 1 − x



= ∑ x n ‌on‌‌the‌‌interval‌‌− 1 < x < 1 ,‌‌meaning‌‌ROC = 1   ‌ n = 0

Now,‌‌determine‌‌how‌‌the‌‌given‌‌function‌‌is‌‌related‌‌to‌‌the‌‌basic‌‌power‌‌series.‌  ‌ d ( 1 ) dx 1 − x

This‌‌means‌‌that,‌‌to‌‌find‌‌the‌‌power‌‌series‌‌for‌‌

=

1 (1 − x)2

1 (1 − x)2

 ‌

‌‌,‌‌we‌‌need‌‌to‌‌take‌‌the‌‌derivative‌‌of‌‌the‌‌ 

1 power‌‌series‌‌for‌‌ 1 − x .‌   ‌ ‌

1 (1 − x)2



= ∑ n x n − 1   ‌ n = 0

The‌‌ROC‌‌and‌‌IOC‌‌remain‌‌the‌‌same,‌‌as‌‌both‌‌of‌‌the‌‌endpoints‌‌give‌‌divergent‌‌series‌‌by‌‌the‌‌   n th ‌term‌‌test.‌   ‌ ‌  ‌

4.4.3‌

T ‌ aylor‌S ‌ eries‌  ‌

Taylor‌‌polynomials‌‌are‌‌polynomials‌‌that‌‌approximate‌‌functions‌‌and‌‌are‌‌denoted‌‌T n (x) ,‌‌   where‌‌n ‌is‌‌the‌‌degree‌‌of‌‌the‌‌polynomial.‌ ‌You‌‌can‌‌improve‌‌approximations‌‌with‌‌finding‌‌   higher‌‌degree‌‌polynomials.‌ ‌Adding‌‌on‌‌new‌‌terms‌‌doesn’t‌‌mess‌‌up‌‌what‌‌old‌‌terms‌‌should‌‌   be.‌   ‌ ‌ To‌‌find‌‌the‌‌Taylor‌‌polynomial‌‌of‌‌degree‌‌n ‌for‌‌the‌‌function‌‌f (x) ‌at‌‌x = a :‌  ‌ T n (x) = f (a) +

f ′(a) 1!

(x − a )1 +

f ′′(a) 2!

(x − a )2 +

f (3) (a) 3!

(x − a )3 + ... +

f (n) (a) n!

(x − a )n   ‌

Remember‌‌that‌‌f (3)(a) ‌means‌‌the‌‌third‌‌order‌‌derivative‌‌at‌‌a ,‌‌f (4)(a) ‌means‌‌the‌‌fourth‌‌   derivative‌‌at‌‌a ,‌‌and‌‌so‌‌on.‌   ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

307‌  ‌

 ‌  ‌ A‌‌Taylor‌‌Series‌‌of‌‌the‌‌function‌‌f (x) ‌centered‌‌at‌‌x = a ‌is‌‌the‌‌infinite‌‌series‌  ‌ ∞

∑ n = 0

f (n) (a) n!

(x − a )n = f (a) +

f ′(a) 1!

(x − a )1 +

f ′′(a) 2!

(x − a )2 +

f (3) (a) 3!

(x − a )3 + ...   ‌

When‌‌the‌‌series‌‌is‌‌centered‌‌at‌‌x = 0 ‌(meaning‌‌the‌‌number‌‌a ‌is‌‌zero),‌‌it‌‌is‌‌called‌‌a‌‌Maclaurin‌‌   series.‌   ‌ ‌ Taylor‌‌series‌‌build‌‌a‌‌power‌‌series‌‌for‌‌any‌‌function.‌ ‌When‌‌you‌‌build‌‌a‌‌series‌‌for‌‌these‌‌   functions,‌‌they‌‌are‌‌equal‌‌to‌‌each‌‌other‌‌on‌‌the‌‌IOC‌‌of‌‌the‌‌series.‌   ‌ ‌ ‌4.4.3.a‌

‌Example‌  ‌

Find‌‌the‌‌Maclaurin‌‌series‌‌for‌‌f (x) = c os (x) .‌   ‌ ‌ Begin‌‌by‌‌building‌‌the‌‌Taylor‌‌polynomial.‌ ‌Remember‌‌that,‌‌since‌‌it‌‌is‌‌a‌‌Maclaurin‌‌series,‌‌   a = 0 .‌   ‌ ‌ −cos (0) 2 sin (0) 3 cos (0) 4 −sin (0) 5 −cos (x) 6 sin (0) 7 cos (0) 8 1 T 8 (x) = c os(0) + −sin (0) 1! x + 2! x + 3! x + 4! x + 5! x + 6! x + 7! x + 8! x   ‌

T 8 (x) = 1 − 2!1 x 2 + 4!1 x 4 − 6!1 x 6 + 8!1 x 8   ‌ Notice‌‌how‌‌it‌‌is‌‌only‌‌even‌‌numbers,‌‌as‌‌all‌‌of‌‌the‌‌sin ‌terms‌‌cancelled‌‌out‌‌(‌sin (0) = 0 ,‌‌   c os (0) = 1 ).‌   ‌ ‌ Now,‌‌find‌‌the‌‌pattern.‌ ‌We‌‌can‌‌see‌‌that‌‌it‌‌is‌‌an‌‌alternating‌‌series,‌‌so‌‌the‌‌series‌‌will‌‌have‌‌a ‌‌ (− 1 )n ‌term‌‌in‌‌it.‌ ‌Also,‌‌since‌‌both‌‌the‌‌factorials‌‌and‌‌the‌‌exponents‌‌are‌‌always‌‌even,‌‌they‌‌all‌‌   have‌‌to‌‌be‌‌divisible‌‌by‌‌2 .‌ ‌With‌‌all‌‌of‌‌this‌‌in‌‌mind,‌‌the‌‌Maclaurin‌‌series‌‌for‌‌c os (x) ‌is‌  ‌ ∞

x cos(x) = ∑ (− 1)n (2n)!  ‌ 2n

n = 0

By‌‌the‌‌ratio‌‌test,‌‌the‌‌ROC = ∞ .‌   ‌ ‌  ‌ 308‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌



Note:‌‌One‌‌of‌‌my‌‌favorite‌‌math‌‌facts‌‌is‌‌that‌‌ex = ∑

n = 0

xn n!

‌.‌ ‌Just‌‌like‌‌the‌‌function‌‌e x ,‌‌the‌‌original‌‌ 

series,‌‌derivative,‌‌and‌‌integral‌‌of‌‌the‌‌series‌‌are‌‌all‌‌the‌‌same!‌  ‌  ‌ ‌4.4.3.b‌

‌Taylor’s‌‌Remainder‌‌Theorem‌  ‌

If‌‌f (x) ‌is‌‌a‌‌function‌‌and‌‌T n (x) ‌is‌‌the‌‌corresponding‌‌Taylor‌‌polynomial‌‌of‌‌degree‌‌n ‌centered‌‌   at‌‌a ,‌‌the‌‌remainder‌‌is‌  ‌ Rn (x) = f (x) − T n (x)   ‌ If‌‌ lim Rn (x) = 0 ,‌‌then‌‌that‌‌means‌‌that‌‌as‌‌you‌‌add‌‌more‌‌terms‌‌to‌‌the‌‌Taylor‌‌polynomial,‌‌you‌‌   n → ∞

get‌‌closer‌‌to‌‌the‌‌exact‌‌function‌‌f (x) .‌ ‌This‌‌means‌‌that‌‌the‌‌function‌‌is‌‌equal‌‌to‌‌its‌‌Taylor‌‌   series.‌   ‌ ‌ If‌‌||f (n + 1)(x)|| ≤ M ‌on‌‌an‌‌interval‌‌centered‌‌at‌‌the‌‌number‌‌a ,‌‌then‌‌the‌‌remainder‌‌Rn (x) ‌of‌‌the‌‌   Taylor‌‌series‌‌satisfies‌‌the‌‌inequality‌  ‌ |Rn (x)| ≤

M (n + 1)! |x

− a |n + 1   ‌

on‌‌that‌‌same‌‌interval.‌   ‌ ‌  

 ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

309‌  ‌

 ‌  ‌ ‌4.4.3.c‌

‌Important‌‌Taylor‌‌Series‌  ‌ Function‌  ‌ 1 1 − x

Taylor‌‌Series‌  ‌

ROC‌  ‌



 ‌

R =1  ‌

∑ xn   ‌

n = 0 ∞

ln (1 + x )   ‌

xn + 1 ∑ (− 1 )n n + 1  ‌

R =1  ‌



R =1  ‌

n = 0

tan −1 (x)   ‌

x2n + 1 ∑ (− 1 )n 2n + 1  ‌

n = 0



ex   ‌

R =∞  ‌

n ∑ xn!   ‌

n = 0 ∞

c os (x)   ‌

R =∞  ‌

x2n ∑ (− 1 )n (2n)!  ‌

n = 0 ∞

sin (x)   ‌

R =∞  ‌

2n + 1

x ∑ (− 1 )n (2n + 1)!  ‌ n = 0

 ‌ ∞

(−1)n  π2n + 1  (2n + 1)! n = 0 3

Example:‌‌Use‌‌Taylor‌‌series‌‌to‌‌find‌‌the‌‌exact‌‌sum‌‌of‌‌ ∑

2n + 1

.‌  ‌

Notice‌‌how‌‌there‌‌is‌‌a‌‌(2n + 1 )! ‌in‌‌the‌‌denominator‌‌and‌‌π ‌and‌‌3 ‌are‌‌raised‌‌to‌‌2 n + 1 .‌ ‌This‌‌   looks‌‌like‌‌the‌‌Taylor‌‌series‌‌for‌‌sin(x) .‌ ‌Let’s‌‌rearrange‌‌to‌‌find‌‌out‌‌what‌‌x ‌is‌‌equal‌‌to.‌   ‌ ‌ ∞

(−1)n



2n + 1

(−1)n

∑ (2n + 1)! · π2n + 1 = ∑ (2n + 1)! · ( 3π ) 3 n = 0 n = 0 So,‌‌x =

π 3



2n + 1

 ‌

2n + 1

x .‌ ‌Since‌‌sin (x)  = ∑ (− 1 )n (2n + 1)! ‌,‌‌we‌‌can‌‌plug‌‌the‌‌x ‌from‌‌the‌‌series‌‌into‌‌sin (x) ‌to‌‌  n = 0

find‌‌the‌‌exact‌‌sum‌‌of‌‌the‌‌series.‌ ‌Therefore,‌‌    ‌ ∞

(−1)n  π2n + 1  (2n + 1)! n = 0 3

sin ( 3π ) = ∑

310‌

2n + 1

=

√3 2

 

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ Note:‌‌When‌‌using‌‌Taylor‌‌series‌‌to‌‌find‌‌exact‌‌sums,‌‌you‌‌need‌‌to‌‌make‌‌sure‌‌that‌‌the‌‌indices‌‌   match‌‌(i.e.‌‌n ‌must‌‌equal‌‌0 ).‌ ‌So,‌‌if‌‌you‌‌need‌‌to‌‌subtract‌‌one‌‌from‌‌your‌‌index‌‌(if‌‌n = 1 ),‌‌you‌‌   must‌‌add‌‌one‌‌to‌‌all‌‌of‌‌the‌‌n ’s‌‌in‌‌the‌‌series.‌   ‌ ‌  ‌ ‌4.4.3.d‌

‌Operations‌‌with‌‌Taylor‌‌Series‌  ‌

You‌‌can‌‌combine‌‌series‌‌and‌‌use‌‌scalars‌‌when‌‌dealing‌‌with‌‌Taylor‌‌series.‌ ‌Say‌‌you‌‌want‌‌to‌‌   find‌‌the‌‌Maclaurin‌‌series‌‌for‌‌f (x) = x cos(x) ,‌‌instead‌‌of‌‌using‌‌the‌‌product‌‌rule‌‌to‌‌find‌‌the‌‌   derivative‌‌of‌‌the‌‌function‌‌multiple‌‌times,‌‌just‌‌multiply‌‌the‌‌Taylor‌‌series‌‌for‌‌c os(x) ‌by‌‌x .‌   ‌ ‌ The‌‌same‌‌applies‌‌for‌‌finding‌‌the‌‌Maclaurin‌‌series‌‌for‌‌a‌‌function‌‌like‌‌f (x) = e xsin (x) .‌ ‌Multiply‌‌   the‌‌Taylor‌‌series‌‌for‌‌e x ‌by‌‌the‌‌Taylor‌‌series‌‌of‌‌sin (x) .‌   ‌ ‌  ‌

4.5‌

‌Differential‌‌Equations‌  ‌

A‌‌differential‌‌equation‌‌is‌‌an‌‌equation‌‌containing‌‌an‌‌unknown‌‌function‌‌(typically‌‌y )‌‌and‌‌one‌‌   or‌‌more‌‌of‌‌its‌‌derivatives.‌ ‌Differential‌‌equations‌‌have‌‌“orders”‌‌that‌‌correspond‌‌to‌‌the‌‌   highest‌‌order‌‌derivative.‌ ‌So,‌‌x 2 y ′ + x y = 1 ‌is‌‌a‌‌first‌‌order‌‌differential‌‌and‌‌y ′′ = x + y ‌is‌‌a ‌‌ second‌‌order‌‌differential.‌   ‌ ‌ Example:‌‌dy dx = 2 x .‌ ‌Solve‌‌for‌‌y .‌   ‌ ‌ To‌‌solve‌‌for‌‌y ,‌‌we‌‌need‌‌to‌‌get‌‌rid‌‌of‌‌the‌‌derivative‌‌dy dx .‌ ‌To‌‌do‌‌this,‌‌we‌‌integrate‌‌both‌‌sides.‌  ‌  

 

 

 

∫ dydx = ∫ 2 x dx   →   y = x2 + C  

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

311‌  ‌

 ‌ This‌‌is‌‌known‌‌as‌‌the‌‌general‌‌solution‌‌of‌‌the‌‌differential‌‌equation.‌ ‌If‌‌we‌‌want‌‌to‌‌find‌‌the‌‌   particular‌‌solution,‌‌we‌‌need‌‌to‌‌have‌‌an‌‌initial‌‌condition,‌‌like‌‌y (1) = 4 .‌‌    ‌ y = x 2 + C    →   4 = 1 2 + C    →   C = 3   ‌ So,‌‌a‌‌particular‌‌solution‌‌of‌‌the‌‌differential‌‌equation‌‌is‌  ‌ y = x2 + 3   ‌  ‌

4.5.1‌

C ‌ hecking‌S ‌ olutions‌  ‌

Some‌‌differential‌‌equations‌‌are‌‌hard‌‌to‌‌solve.‌ ‌So,‌‌we‌‌can‌‌check‌‌if‌‌a‌‌solution‌‌is‌‌correct‌‌   instead‌‌of‌‌solving‌‌it.‌‌    ‌ Example:‌‌y ′′ = x + y ,‌‌check‌‌that‌‌y = Ae x + B e −x − x ‌(general‌‌solution)‌‌is‌‌a‌‌solution.‌  ‌ Begin‌‌by‌‌finding‌‌the‌‌appropriate‌‌derivative‌‌of‌‌the‌‌given‌‌function.‌   ‌ ‌ y ′ = Ae x − B e −x − 1   ‌ y ′′ = Ae x + B e −x   ‌ Now,‌‌replace‌‌the‌‌y ′′ ‌in‌‌the‌‌differential‌‌equation‌‌with‌‌the‌‌second‌‌order‌‌derivative‌‌you‌‌just‌‌   found.‌   ‌ ‌ Ae x + B e −x = x + y   ‌ ‌ In‌‌place‌‌of‌‌y ,‌‌put‌‌in‌‌the‌‌general‌‌solution.‌   ‌ ‌ Ae x + B e −x = x + Ae x + B e −x − x   ‌ Ae x + B e −x = Ae x + B e −x   ‌ So,‌‌y = Ae x + B e −x − x ‌is‌‌a‌‌solution‌‌to‌‌y ′′ = x + y .‌   

312‌

 ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

4.5.2‌

S ‌ lope/Direction‌F ‌ ields‌  ‌

Solving‌‌most‌‌differential‌‌equations‌‌is‌‌impossible,‌ ‌but‌‌we‌‌can‌‌visualize‌‌a‌‌solution‌‌by‌‌   drawing‌‌slope‌‌or‌‌direction‌‌fields.‌ ‌It‌‌is‌‌like‌‌drawing‌‌a‌‌graph‌‌without‌‌an‌‌equation.‌   ‌ ‌  ‌ ‌4.5.2.a‌

‌Example‌  ‌

Draw‌‌the‌‌slope‌‌field‌‌for‌‌the‌‌differential‌‌equation‌‌dy dx = x + y .‌   ‌ ‌ First,‌‌make‌‌a‌‌table‌‌of‌‌values‌‌and‌‌plug‌‌different‌‌(x,  y) ‌coordinates‌‌into‌‌dy   dx .‌ ‌Then,‌‌go‌‌to‌‌that‌‌ point‌‌on‌‌the‌‌graph‌‌and‌‌draw‌‌a‌‌tiny‌‌section‌‌that‌‌shows‌‌the‌‌slope‌‌(remember‌‌that‌‌derivatives‌‌   find‌‌slope).‌ ‌You‌‌can‌‌do‌‌this‌‌for‌‌any‌‌point.‌   ‌ ‌  ‌  ‌ (x,  y)   ‌

dy dx  

(0,  0)   ‌

0  ‌

(1,  0)   ‌

1  ‌

(0,  1)   ‌

1  ‌

(1,  1)   ‌

2  ‌



If‌‌you‌‌want‌‌to‌‌find‌‌the‌‌solution‌‌to‌‌a‌‌particular‌‌equation‌‌(like‌‌with‌‌y (0) = 1 ),‌‌you‌‌can‌‌go‌‌to‌‌the‌‌   Desmos‌‌Slope‌‌Field‌‌Generator‌‌to‌‌plot‌‌out‌‌the‌‌entire‌‌field.‌ ‌Then,‌‌you‌‌can‌‌find‌‌the‌‌point‌‌and‌‌   follow‌‌the‌‌curve‌‌created‌‌by‌‌the‌‌lines.‌ ‌This‌‌is‌‌because‌‌you‌‌drew‌‌the‌‌graph‌‌of‌‌the‌‌function‌‌   that‌‌satisfies‌‌the‌‌solution.‌   ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

313‌  ‌

 ‌ dy

See‌‌the‌‌slope‌‌field‌‌for‌‌dx = x + y ‌below.‌   ‌ ‌

 ‌  ‌

4.5.3‌

E ‌ uler’s‌M ‌ ethod‌  ‌

Use‌‌Euler’s‌‌Method‌‌with‌‌step‌‌size‌‌Δ x = 0 .5 ‌to‌‌sketch‌‌the‌‌solution‌‌to‌‌the‌‌differential‌‌   equation‌‌y ′ = x + y ‌with‌‌the‌‌initial‌‌condition‌‌y (0) = 1 .‌   ‌ ‌  

 ‌

314‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌ ‌

dy

Start‌‌a‌‌table‌‌of‌‌values‌‌beginning‌‌with‌‌the‌‌initial‌‌condition‌‌(0,  1) ;‌‌use‌‌this‌‌to‌‌find‌‌dx ‌at‌‌this‌‌   point.‌ ‌The‌‌next‌‌value‌‌of‌‌x ‌will‌‌be‌‌the‌‌previous‌‌x ‌value‌‌plus‌‌the‌‌given‌‌step‌‌size.‌ ‌The‌‌next‌‌   dy

value‌‌of‌‌y ‌will‌‌be‌‌the‌‌previous‌‌dx ‌value‌‌plus‌‌the‌‌given‌‌step‌‌size.‌   ‌ ‌  ‌ (x,  y)   ‌

dy dx  

(0,  1)   ‌

1‌  ‌

(0.5,  1.5)  

2  ‌

(1,  2.5)  

3 .5   ‌



 ‌

4.5.4‌

S ‌ eparable‌‌Differential‌E ‌ quations‌  ‌

A‌‌separable‌‌differential‌‌equation‌‌is‌‌a‌‌first‌‌order‌‌differential‌‌equation‌‌that‌‌factors‌‌into‌‌a ‌‌ function‌‌of‌‌x ‌and‌‌a‌‌function‌‌of‌‌y ‌(separating‌‌x ’s‌‌and‌‌y ’s).‌ ‌You‌‌can‌‌actually‌‌solve‌‌these‌  equations.‌   ‌ ‌ Not‌‌every‌‌differential‌‌equation‌‌is‌‌separable.‌ ‌They‌‌need‌‌to‌‌be‌‌one‌‌of‌‌the‌‌two‌‌following‌‌   f(x)

forms:‌‌f (x) · g (y) ‌or‌‌ h(y) ‌. ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

315‌  ‌

 ‌ To‌‌solve‌‌these‌‌types‌‌of‌‌differential‌‌equations,‌‌use‌‌one‌‌of‌‌the‌‌methods‌‌below:‌  ‌  ‌ ‌4.5.4.a‌

‌Method‌‌1 ‌ ‌ dy dx

= f (x) · g (y)   ‌

Divide‌‌both‌‌sides‌‌by‌‌g (y) .‌   ‌ ‌ 1 g(y)

· dy dx = f (x)   ‌

“Multiply‌‌by”‌‌d x .‌   ‌ ‌ 1 g(y)

· d y = f (x) · d x   ‌

Integrate‌‌both‌‌sides.‌   

 

 

 

1 dy = ∫ f (x) dx   ∫ g(y)



Note:‌‌you‌‌aren’t‌‌technically‌‌multiplying‌‌both‌‌sides‌‌by‌‌d x ,‌‌it‌‌implements‌‌the‌‌chain‌‌rule,‌‌but‌‌   it’s‌‌just‌‌easier‌‌to‌‌say‌‌you‌‌multiply‌‌both‌‌sides‌‌by‌‌d x .‌  ‌  ‌ 2 Example:‌‌Solve‌‌y ′ = x 2 y   →    dy dx = x y .‌  ‌

Isolate‌‌the‌‌x ‌and‌‌y ‌variables.‌   ‌ ‌ 1 y

d y = x 2 dx   ‌

Integrate‌‌both‌‌sides.‌   

 

 

 

∫ 1y  dy = ∫ x2  dx   →   ln |y | =

316‌

1 3 3x

+C  

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ You‌‌only‌‌need‌‌a‌‌+C‌‌on‌‌one‌‌s ide.‌ ‌Exponentiate‌‌both‌‌s ides‌‌by‌‌e‌‌to‌‌s implify.‌  ‌ |y | = e ( 3 x  + C) = e 3 x · e C   ‌ 1 3

1 3

e C ‌is‌‌still‌‌a‌‌constant‌‌but‌‌it‌‌is‌‌a‌‌different‌‌one‌‌from‌‌C .‌   ‌ ‌ 1 3

|y | = Ae 3 x   ‌ Know‌‌that‌‌the‌‌constant‌‌will‌‌not‌‌always‌‌be‌‌‘‌+ C ’,‌‌it‌‌could‌‌also‌‌be‌‌a‌‌multiplier.‌  ‌  ‌ ‌4.5.4.b‌

‌Method‌‌2 ‌ ‌ dy dx

=

f(x) h(y)

 ‌

Multiply‌‌both‌‌sides‌‌by‌‌h (y) .‌  ‌ h (y) · dy dx = f (x)   ‌ Integrate‌‌both‌‌sides.‌   

 

 

 

∫ h (y) dy = ∫ f (x) dx  



 ‌ dy

Example:‌‌Solve‌‌ dx =

x2 y2

‌‌with‌‌y (0) = 2 .‌  ‌

Isolate‌‌both‌‌variables‌‌and‌‌integrate.‌  ‌  

 

 

 

∫ y 2  dy = ∫ x2  dx   →    31 y 3 =

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

1 3 3x

3

+ C    →   y 3 = x 3 + A   →   y = √x 3 + A  

 ‌ ‌

317‌  ‌

 ‌  ‌ You‌‌need‌‌to‌‌use‌‌a‌‌different‌‌letter‌‌than‌‌C ‌because‌‌they‌‌are‌‌different‌‌constants.‌   ‌ ‌ Now,‌‌plug‌‌in‌‌(0,  2) .‌   ‌ ‌ 2=

√(0) 3

3

+ A   →   A = 8   ‌ 3

y = √x 3 + 8   ‌  ‌ ‌4.5.4.c‌

‌Mixing‌‌Problems‌  ‌

These‌‌are‌‌classic‌‌differential‌‌problems.‌ ‌In‌‌these‌‌problems,‌‌something‌‌is‌‌being‌‌mixed‌‌in‌‌a ‌‌ tank.‌ ‌At‌‌the‌‌same‌‌time,‌‌something‌‌is‌‌being‌‌added‌‌and‌‌something‌‌is‌‌being‌‌taken‌‌out.‌   ‌ ‌  ‌ Example:‌‌A‌‌tank‌‌contains‌‌2 0 kg ‌of‌‌salt‌‌dissolved‌‌in‌‌5 000 L ‌of‌‌water.‌ ‌A‌‌mixture‌‌of‌‌0 .03 kg  ‌ salt‌‌per‌‌liter‌‌of‌‌water‌‌enters‌‌the‌‌tank‌‌at‌‌a‌‌rate‌‌of‌‌2 5 L/min .‌ ‌The‌‌solution‌‌is‌‌kept‌‌mixed‌‌and‌‌it‌‌   drains‌‌out‌‌at‌‌the‌‌same‌‌rate.‌ ‌How‌‌much‌‌salt‌‌remains‌‌after‌‌3 0 min ?‌  ‌ Let’s‌‌say‌‌that‌‌y (t) ‌is‌‌the‌‌amount‌‌of‌‌salt‌‌after‌‌t ‌minutes.‌ ‌We‌‌know‌‌that‌‌y (0) = 2 0 ‌and‌‌we‌‌are‌‌   dy

looking‌‌for‌‌y (30) .‌ ‌ dt = r ate in  − r ate out .‌   ‌ ‌ We‌‌want‌‌to‌‌find‌‌the‌‌rates‌‌in‌‌terms‌‌of‌‌k g/min ,‌‌since‌‌we‌‌are‌‌looking‌‌for‌‌the‌‌k g ‌of‌‌salt‌‌after‌‌   3 0 min .‌ ‌Therefore,‌‌    r ate in = mixture of  salt · r ate entering = (0.03 kg/L)(25 L/min) = 0 .75 kg/min   ‌ y

r ate out = solution · r ate leaving = ( 5000  kg/L)(25 L/min) =

y 200  kg/min

 ‌

where‌‌y ‌is‌‌the‌‌solution‌‌in‌‌the‌‌tank‌‌that‌‌is‌‌draining‌‌out.‌ ‌So,‌  dy dt

318‌

y

= 0 .75 kg/min − 200  kg/min =

150 − y 200

 

 ‌ ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

Now,‌‌isolate‌‌the‌‌y ‌terms‌‌and‌‌integrate‌‌both‌‌sides.‌   ‌ ‌  

∫  

1 150 − y  dy

 

1 = ∫ 200  dt   ‌  

Simplify‌‌and‌‌plug‌‌in‌‌the‌‌initial‌‌value.‌  ‌ − ln |150 − y | =

1 200 t

+ C    →   150 − y = Ae − 200 t   ‌ 1

When‌‌y (0) = 2 0 ,‌‌A = 1 30 ,‌‌therefore‌‌y = 1 50 − 1 30e − 200 t   ‌ 1

Now‌‌we‌‌can‌‌plug‌‌in‌‌3 0 ‌for‌‌t ‌to‌‌get‌‌our‌‌final‌‌answer.‌  ‌ y = 1 50 − 1 30e − 200 (30) ≈ 3 8.108 kg   ‌ 1

 ‌

4.6‌ ‌Calculus‌‌with‌‌Parametric‌‌Equations‌‌and‌‌   Polar‌‌Coordinates‌  ‌ 4.6.1‌

C ‌ alculus‌w ‌ ith‌P ‌ arametric‌C ‌ urves‌  ‌

To‌‌review‌‌parametric‌‌equations‌‌and‌‌plane‌‌curves,‌‌go‌‌to‌‌the‌‌Analytic‌‌Geometry‌‌section‌‌of‌‌   Pre-Calculus.‌   ‌ ‌ ‌4.6.1.a‌

‌Slope‌‌and‌‌Concavity‌  ‌

Remember‌‌that‌‌a‌‌parametric‌‌equation‌‌is‌‌defined‌‌by‌‌x ‌as‌‌a‌‌function‌‌of‌‌t ‌and‌‌y ‌as‌‌a ‌‌ function‌‌of‌‌t .‌ ‌So,‌‌to‌‌find‌‌the‌‌derivative‌‌of‌‌a‌‌parametric‌‌equation,‌‌use‌‌the‌‌formula‌‌below‌  ‌ dy dx

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

=

derivative of y dy/dt derivative of x = dx/dt  

 ‌ ‌

319‌  ‌

 ‌ To‌‌find‌‌the‌‌second‌‌derivative‌‌of‌‌the‌‌parametric‌‌equation,‌‌first‌‌remember‌‌that‌‌the‌‌second‌‌   dy

derivative‌‌is‌‌the‌‌derivative‌‌of‌‌dx .‌ ‌So,‌  ‌ d2 y dx2

=

d dy dx ( dx )

d (dy/dx) dt

=

dx/dt

 ‌

 ‌ Example:‌‌Find‌‌the‌‌first‌‌and‌‌second‌‌derivatives‌‌of‌‌the‌‌parametric‌‌equation‌‌x = t2    y = t3 − 3 t .‌   ‌ ‌ dy dx

=

d/dt (t3 −3t) d/dt (t2 )

=

3t2 −3 2t

 ‌

To‌‌find‌‌the‌‌second‌‌derivative,‌‌first‌‌find‌‌the‌‌derivative‌‌of‌‌dy    ‌ dx ‌with‌‌respect‌‌to‌‌t .‌‌ d dy dt ( dx )

=

(6t)(2t) − (3t2 − 3)(2) 2 

(2t)

=

6t2  + 6 (2t)2

 ‌

Now,‌‌plug‌‌this‌‌into‌‌the‌‌second‌‌derivative‌‌formula‌‌above.‌  ‌ d2 y dx2

=

6t 2  + 6 (2t)2

2t

=

6t2  + 6 (2t)3

 ‌

The‌‌same‌‌rules‌‌apply‌‌for‌‌derivatives‌‌of‌‌parametric‌‌equations‌‌as‌‌they‌‌do‌‌with‌‌regular‌‌   dy

dy

equations:‌‌the‌‌tangent‌‌line‌‌is‌‌horizontal‌‌when‌‌dx = 0 ‌and‌‌vertical‌‌when‌‌dx = u ndef ined .‌   ‌ ‌ d2 y

In‌‌addition‌‌to‌‌this,‌‌the‌‌graph‌‌is‌‌concave‌‌up‌‌when‌‌dx2 ‌is‌‌positive‌‌and‌‌concave‌‌down‌‌when‌‌   d2 y dx2

‌is‌‌negative.‌   ‌ ‌

 

 ‌

320‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

‌4.6.1.b‌

‌Areas‌  ‌

 ‌ If‌‌x = f (t) ‌and‌‌y = g (t) ,‌‌the‌‌area‌‌under‌‌the‌‌curve‌‌is‌‌    ‌ β



α

g (t) f ′(t) dt   ‌

for‌‌a‌‌curve‌‌traveling‌‌from‌‌left‌‌to‌‌right.‌   ‌ ‌  ‌ Example:‌‌Find‌‌the‌‌area‌‌under‌‌one‌‌arch‌‌of‌‌the‌‌cycloid‌‌x = r (θ − sin θ)    y = r (1 − c os θ) .‌   ‌ ‌ One‌‌arch‌‌is‌‌completed‌‌from‌‌θ = 0 ‌to‌‌θ = 2 π ,‌‌so‌‌α = 0 ‌and‌‌β = 2 π .‌ ‌Now,‌‌find‌‌d x .‌  ‌ dx =

d dθ (r(θ

− sin θ)) = r (1 − c os θ) dθ   ‌

r ‌is‌‌a‌‌constant,‌‌so‌‌it‌‌is‌‌not‌‌affected‌‌when‌‌taking‌‌the‌‌derivative.‌   ‌ ‌ Plug‌‌in‌‌all‌‌information‌‌to‌‌the‌‌formula‌‌above‌‌and‌‌solve.‌‌    ‌ 2π





0

0

0

∫ [r(1 − cos θ)] · [r(1 − cos θ)] dθ = r 2 ∫ (1 − 2 cos θ + cos2 θ) dθ = r 2 ∫ [1 − 2 cos θ + 21 (1 + cos (2θ))] dθ   2 a rea = r 2 [ 23 θ − 2 sin θ + 41 sin (2θ)]2π 0 = 3 πr  

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

321‌ ‌



 ‌ ‌4.6.1.c‌

‌Arc‌‌Length‌  ‌

Assume‌‌the‌‌curve‌‌doesn’t‌‌traverse‌‌back‌‌over‌‌itself.‌   ‌ ‌  ‌   ‌ ‌  ‌ The‌‌arc‌‌length‌‌of‌‌a‌‌parametric‌‌curve‌‌is‌  ‌ b

dy 2 2 ∫ √( dx dt ) + ( dt )  dt   ‌ a

 ‌ Example:‌‌Find‌‌the‌‌arc‌‌length‌‌of‌‌x = r cos t   y = r sin t,  0 ≤ t ≤ 2 π .‌  ‌ 2π



0



(− r sin t)2 + (rcos t)2  dt =





0

0

  ‌  ∫ √r 2 (sin 2  t + cos2  t dt = ∫ √r 2 (1) dt = r t|2π 0 = 2 πr

 ‌

4.6.2‌

T ‌ angents‌‌and‌A ‌ reas‌w ‌ ith‌‌Polar‌C ‌ urves‌  ‌

To‌‌review‌‌polar‌‌coordinates‌‌and‌‌their‌‌graphs,‌‌go‌‌to‌‌the‌‌Polar‌‌Coordinates‌‌and‌‌Vectors‌‌   section‌‌of‌‌Pre-Calculus.‌   ‌ ‌  

 ‌

322‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌ ‌

‌4.6.2.a‌

‌Derivatives‌‌with‌‌a‌‌Polar‌‌Curve‌  ‌

r = f (θ) ‌is‌‌a‌‌polar‌‌curve.‌ ‌You‌‌need‌‌to‌‌convert‌‌this‌‌into‌‌equations‌‌for‌‌x ‌and‌‌y ‌using‌‌   x = r cos θ ‌and‌‌y = r sin θ .‌   ‌ ‌ r = f (θ)   →   x = f (θ)cos θ      y = f (θ)sin θ   ‌ Notice‌‌that‌‌this‌‌is‌‌a‌‌parametric‌‌equation.‌ ‌Therefore,‌‌we‌‌will‌‌use‌‌the‌‌same‌‌method‌‌that‌‌we‌‌   used‌‌before.‌   ‌ ‌ dy dx

=

dy/dθ dx/dθ

 ‌

 ‌ ‌4.6.2.b‌

‌Area‌‌of‌‌a‌‌Polar‌‌Curve‌  ‌

When‌‌measuring‌‌the‌‌area‌‌of‌‌a‌‌polar‌‌curve,‌‌measure‌‌from‌‌the‌‌origin‌‌to‌‌the‌‌r ‌value.‌   ‌ ‌

 ‌ This‌‌is‌‌like‌‌a‌‌fan‌‌that‌‌opens‌‌and‌‌closes.‌ ‌When‌‌working‌‌with‌‌areas‌‌of‌‌polar‌‌curves,‌‌none‌‌of‌‌   the‌‌area‌‌gets‌‌counted‌‌as‌‌negative.‌   ‌ ‌ The‌‌formula‌‌for‌‌the‌‌area‌‌inside‌‌a‌‌polar‌‌curve‌‌is‌  ‌ b

∫ 21 r 2  dθ   a

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

323‌ ‌

 ‌  ‌ Example:‌‌Find‌‌the‌‌area‌‌of‌‌the‌‌region‌‌inside‌‌r = 3 sin θ ‌and‌‌outside‌‌r = 1 + sin θ .‌  ‌ First,‌‌graph‌‌the‌‌equations.‌  ‌

 ‌ Now,‌‌find‌‌the‌‌values‌‌of‌‌theta‌‌where‌‌they‌‌intersect.‌   ‌ ‌ 3 sin θ = 1 + sin θ   →   2sin θ = 1    →   sin θ = 21    →   θ = 6π ,   5π6   ‌ To‌‌find‌‌the‌‌area‌‌between‌‌the‌‌two‌‌graphs,‌‌use‌‌the‌‌formula‌‌A = 5π/6

A=



π/6

 

2 1 2 (3sin θ)  dθ

5π/6





π/6

1 2 (1

+ sin θ)2  dθ =

1 2

5π/6



1 2

b

b

a

a

∫ top 2  dθ − 21 ∫ b ottom2  dθ .‌ 



[(3sin θ)2 − (1 + sin θ)2 ] dθ = π  square units   ‌

π/6

 ‌

324‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌ ‌

“Mathematics‌‌is‌‌n ot‌‌just‌‌a nother‌‌language...It‌‌is‌‌a ‌‌language‌‌p lus‌‌logic.‌‌   Mathematics‌‌is‌‌a ‌‌tool‌‌for‌‌reasoning.”‌  -Richard‌‌Feynman‌‌    ‌  ‌

4.7‌

‌ y‌‌Notes‌‌for‌‌Calculus‌‌II‌  ‌ M  ‌    ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌

325‌  ‌

 ‌

4.7‌

326‌

‌My‌‌Notes‌‌for‌‌Calculus‌‌II‌‌(con’t)‌  ‌

Section‌‌4‌‌-‌‌Calculus‌‌II‌‌-‌‌M ath‌‌Q RH‌  ‌

“‌I‌‌d on't‌‌think‌‌that‌‌e veryone‌‌s hould‌‌b ecome‌‌a ‌‌mathematician,‌‌b ut‌‌I‌‌d o‌‌   believe‌‌that‌‌many‌‌s tudents‌‌d on't‌‌g ive‌‌mathematics‌‌a ‌‌real‌‌c hance.”‌  -‌M aryam‌‌M irzakhani‌  ‌  ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌  ‌ 5.0‌

‌Summary‌‌Sheet‌  ‌

Vectors‌  ‌ A‌‌position‌‌vector‌‌starts‌‌at‌‌the‌‌origin.‌   ‌ ‌ A‌‌unit‌‌vector‌‌is‌‌a‌‌vector‌‌with‌‌magnitude‌‌1.‌  ‌ ●

u→ =

1 → v  ||v||



Vector‌‌addition‌‌and‌‌subtraction:‌  ‌

 ‌ Distance‌‌between‌‌(x 1 ,  y 1 ,  z 1 ) ‌and‌‌(x 2 ,  y 2 ,  z 2 ) :‌‌d =

√(x

Vector‌‌magnitude:‌‌||v || = √x 2 + y 2 + z 2 ,‌  ‌angle:‌‌tan −1 ( yx )  

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

2

− x 1 )2 + (y 2 − y 1 )2 + (z 2 − z 1 )2   ‌  ‌ ‌

327‌ ‌

 ‌ Dot‌‌product:‌‌u→ · v→ = ||u || ||v || c os θ = u 1 v 1 + u 2 v 2 + u 3 v 3   ‌ ●

This‌‌produces‌‌a‌‌number.‌  ‌



Properties:‌  ‌ ○

u·v =v ·u  ‌



u · (v + w ) = u · v + u · w   ‌



c (u · v ) = (cu) · v = u · (cv)   ‌



v · v = ||v ||2   ‌

Vector‌‌of‌‌projection:‌‌p roj v (u) =

u · v → 2 v   ||v ||



Length‌‌of‌‌projection‌‌of‌‌u ‌onto‌‌v :‌‌c omp v (u) = λ =

u · v ||v ||

 ‌

Cross‌‌product‌‌is‌‌a‌‌vector‌‌that‌‌is‌‌perpendicular‌‌to‌‌both‌‌u→ ‌and‌‌v→ .‌   ‌ ‌ ●

u × v =   < u 2 v 3 − u 3 v 2 ,   − (u 1 v 3 − u 3 v 1 ),  u 1 v 2 − u 2 v 1 >   ‌



||u × v|| = ||u || ||v || sin θ = a rea of  parallelogram = 2 (area of  triangle)   ‌



if‌‌u→ ‌and‌‌v→ ‌are‌‌parallel,‌‌u × v =   < 0 ,  0,  0 >   ‌ →



Parametric‌‌line:‌‌r→(t) = P + tP Q   ‌ Planes‌‌and‌‌Surfaces‌  ‌ Parametric‌‌curve:‌‌trace‌‌every‌‌point,‌‌t ‌is‌‌a‌‌parameter.‌ ‌The‌‌curve‌‌is‌‌defined‌‌by:‌  ‌ x = x (t)   ‌ y = y (t)   ‌

 ‌  ‌ r→(t) =   < x (t),  y(t),  z(t) >  

z = z (t)   ‌  ‌ ●

The‌‌vector‌‌< l,  m,  n > ‌is‌‌parallel‌‌to‌‌the‌‌line‌‌with‌‌parametric‌‌equations‌  ‌ ○

328‌

x = a + lt,  y = b + mt,  z = c + n t  

 ‌ ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

Equation‌‌of‌‌a‌‌plane:‌‌a (x − x 0 ) + b (y − y 0 ) + c (z − z 0 ) = 0   ‌ ●

if‌‌two‌‌planes‌‌are‌‌parallel,‌‌they‌‌have‌‌the‌‌same‌‌normal‌‌vector‌  ‌



the‌‌normal‌‌vector‌‌< a ,  b,  c > ‌is‌‌perpendicular‌‌to‌‌the‌‌plane‌  ‌

Cylinder:‌‌a‌‌set‌‌of‌‌lines‌‌parallel‌‌to‌‌a‌‌given‌‌line‌‌passing‌‌through‌‌a‌‌given‌‌curve‌  ‌ ●

any‌‌equation‌‌missing‌‌one‌‌of‌‌x ,  y,   or‌‌z ‌will‌‌be‌‌a‌‌cylinder‌  ‌

Traces:‌‌cross‌‌sections‌‌created‌‌when‌‌the‌‌surface‌‌intersects‌‌a‌‌plane‌‌parallel‌‌to‌‌one‌‌of‌‌the‌‌   coordinate‌‌planes‌  ‌  ‌ Types‌‌of‌‌Surfaces‌‌and‌‌their‌‌Equations:‌  ‌ Surface‌  ‌ ellipsoid‌  ‌

Equation‌  ‌ x2 a2

paraboloid‌  ‌

y2 b

2

x2 a2

+

 ‌ hyperboloid‌‌of‌‌two‌‌sheets‌  ‌

z2 c2



 ‌ elliptic‌‌cone‌  ‌

x2 a2

+

+

x2 a2

z=

 ‌ hyperboloid‌‌of‌‌one‌‌sheet‌  ‌

hyperbolic‌‌paraboloid‌  ‌

 

+

y2

z2 c2

= 1  ‌ y2

+

b

2

Axis‌  ‌ -----‌  ‌

 ‌

axis‌‌corresponds‌‌to‌‌linear‌‌   variable‌  ‌



z2 c2

= 1  ‌

axis‌‌corresponds‌‌to‌‌the‌‌   variable‌‌with‌‌the‌‌negative‌‌   coefficient‌  ‌

x2 a2



y2 2

= 1  ‌

axis‌‌corresponds‌‌to‌‌the‌‌   variable‌‌with‌‌the‌‌positive‌‌   coefficient‌  ‌

y2



z2 c2

= 0  ‌

axis‌‌corresponds‌‌to‌‌the‌‌   variable‌‌with‌‌the‌‌negative‌‌   coefficient‌  ‌

b

b

z=

2

2

x2 a2

b



y2 b

2

 ‌

axis‌‌corresponds‌‌to‌‌the‌‌   linear‌‌variable‌  ‌

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

329‌  ‌

 ‌ Functions‌‌of‌‌Several‌‌Variables‌  ‌ Level‌‌curve‌‌of‌‌a‌‌function:‌‌the‌‌set‌‌of‌‌points‌‌satisfying‌‌the‌‌equation‌‌f (x,  y) = c   ‌

 ‌  ‌ Limits:‌‌

lim

(x, y) → (a, b)

f (x,  y) = L ,‌‌(x,  y) ‌gets‌‌‘close‌‌to’‌‌(a,  b) ‌then‌‌f (x,  y) ‌gets‌‌‘close‌‌to’‌‌L .‌  ‌



if‌‌(a,  b) ‌is‌‌not‌‌a‌‌discontinuity,‌‌plug‌‌in‌‌values‌  ‌



if‌‌(a,  b) ‌is‌‌a‌‌discontinuity,‌‌check‌‌paths‌‌(sub‌‌in‌‌y = b ‌and‌‌take‌‌limit‌‌for‌‌x )‌  ‌ ○



it's‌‌basically‌‌impossible‌‌to‌‌find‌‌the‌‌value‌‌of‌‌the‌‌limit‌‌this‌‌way‌  ‌

use‌‌the‌‌squeeze‌‌theorem‌‌(see:‌‌Calc‌‌I)‌  ‌

 ‌ Partial‌‌Derivatives‌  ‌ ∂f

f(x + h, y) − f(x, y) h h → 0

There’s‌‌a‌‌partial‌‌derivative‌‌in‌‌each‌‌direction:‌‌ ∂x = f x = lim

 ‌



rate‌‌of‌‌change‌‌of‌‌the‌‌height‌‌on‌‌the‌‌surface‌‌as‌‌x ‌moves‌‌in‌‌the‌‌h ‌direction‌  ‌



use‌‌derivative‌‌rules‌‌from‌‌calc‌‌I,‌‌but‌‌treat‌‌all‌‌variables‌‌you‌‌are‌‌not‌‌solving‌‌for‌‌as‌‌   constants‌  ‌

 

330‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

Estimating‌‌partial‌‌derivatives‌‌from‌‌a‌‌contour‌‌map:‌‌pick‌‌a‌‌small‌‌k ,  h,  l ‌and‌‌use‌  corresponding‌‌x ,  y ‌values‌  ‌ Higher‌‌order‌‌derivatives:‌‌take‌‌the‌‌derivative‌‌with‌‌respect‌‌to‌‌the‌‌first‌‌variable,‌‌then‌‌derive‌‌   that‌‌with‌‌respect‌‌to‌‌the‌‌second‌‌variable.‌  ‌ ●

f xy :‌‌take‌‌x ‌derivative‌‌then‌‌derive‌‌that‌‌with‌‌respect‌‌to‌‌y   ‌



Clairaut’s‌‌Theorem:‌‌f xy = f yx ,‌‌order‌‌doesn’t‌‌matter‌  ‌

Tangent‌‌plane:‌‌touches‌‌curve‌‌at‌‌one‌‌point‌‌(x 0 ,  y 0 ) → z = f (x 0 ,  y 0 ) + f x(x 0 ,  y 0 )(x − x 0 ) + f y (x 0 ,  y 0 )(y − y 0 )   ‌ ●

this‌‌is‌‌the‌‌equation‌‌used‌‌for‌‌linear‌‌approximations‌  ‌ ∂f

Chain‌‌rule:‌‌ ∂t =

∂f dx ∂x dt

+

∂f dy ∂y dt

 ‌



use‌‌a‌‌dependency‌‌chart‌  ‌



replace‌‌x ‌and‌‌y ‌with‌‌other‌‌variables‌  ‌

Implicit‌‌Differentiation:‌  ‌ ●

suppose‌‌z = f (x,  y) ‌defines‌‌y ‌implicitly‌‌→



if‌‌f (x,  y,  z) = 0 ‌defines‌‌z ‌implicitly‌‌→

∂z ∂x

dy dx

= −

= − ∂f/∂x ∂f/∂z

∂f/∂y ∂f/∂z

 ‌

∂z ,‌‌ ∂y = −

∂f/∂y ∂f/∂z

 ‌

Directional‌‌derivative:‌‌rate‌‌of‌‌change‌‌of‌‌height‌‌of‌‌f ‌as‌‌we‌‌travel‌‌along‌‌r (t)   ‌

∇f (x,  y) · u,‌ ‌where‌‌∇f (x,  y) =   < f ,  f

>   ‌



D uf =



fastest‌‌increase:‌‌follows‌‌the‌‌gradient,‌‌fastest‌‌decrease:‌‌follows‌‌the‌‌negative‌‌of‌‌the‌‌   gradient‌  ‌







remember:‌‌ f · u→ = ||

x

∇f || ||u|| cos θ,‌ ‌u →





tan

=

y

∇f (x,  y) ·   ∇

1 || f(x, y)||

 ‌

Theorem:‌‌ f (x 0 ,  y 0 )  ‌is‌‌perpendicular‌‌to‌‌the‌‌level‌‌curve‌‌of‌‌f ‌at‌‌(x 0 ,  y 0 )  

 ‌ ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

331‌  ‌

 ‌







  nd‌‌f y = 0 ‌or‌‌ f (x 0 ,  y 0 ) DN E   ‌ Critical‌‌point:‌‌ f (x 0 ,  y 0 ) = 0   →  f x = 0 ‌a Second‌‌Derivative‌‌Test:‌‌D = f xx(x 0 ,  y 0 )f yy (x 0 ,  y 0 ) − (f xy (x 0 ,  y 0 ))2   ‌ ●

if‌‌D > 0 ‌and‌‌f xx(x 0 ,  y 0 ) > 0 ,‌‌then‌‌f ‌has‌‌a‌‌local‌‌minimum‌‌at‌‌(x 0 ,  y 0 )   ‌



if‌‌D > 0 ‌and‌‌f xx(x 0 ,  y 0 ) < 0 ,‌‌then‌‌f ‌has‌‌a‌‌local‌‌maximum‌‌at‌‌(x 0 ,  y 0 )   ‌



if‌‌D < 0 ,‌‌then‌‌f ‌has‌‌a‌‌saddle‌‌point‌‌at‌‌(x 0 ,  y 0 )   ‌



if‌‌D = 0 ,‌‌then‌‌the‌‌test‌‌is‌‌inconclusive‌  ‌

Lagrange‌‌Multipliers:‌‌find‌‌the‌‌extrema‌‌of‌‌f ‌subject‌‌to‌‌a‌‌constraint‌‌g (x,  y) = c   ‌ ●

∇f = λ∇g ,‌  ‌lamda‌‌is‌‌the‌‌Lagrange‌‌multiplier‌  ‌ ○



this‌‌is‌‌a‌‌system‌‌of‌‌equations‌  ‌

absolute‌‌maximum‌‌will‌‌occur‌‌at‌‌either‌‌a‌‌critical‌‌point‌‌or‌‌a‌‌boundary‌‌point‌‌   (Lagrange)‌  ‌

Differential:‌‌d f =

∂f ∂x dx

+

∂f ∂y dy

 ‌

 ‌ Double‌‌Integrals‌  ‌    

Fubini’s‌‌Theorem‌‌and‌‌Iterated‌‌Integrals:‌‌∫ ∫ f (x,  y) dA   ‌  R



d A = d ydx ‌or‌‌d xdy ‌(rectangular)‌  ‌



to‌‌evaluate,‌‌start‌‌on‌‌the‌‌inside‌‌and‌‌work‌‌out‌‌(pretend‌‌the‌‌other‌‌variable‌‌is‌‌constant)‌  ‌

Properties:‌  ‌ ●

sum‌‌rule,‌‌constant‌‌rule,‌‌squeeze‌‌theorem‌  ‌



if‌‌R = S ⋃ T  ‌and‌‌S ⋂ T = 0 ,‌  ‌∫ ∫ f (x,  y) dA = ∫ ∫ f (x,  y) dA + ∫ ∫ f (x,  y) dA   ‌

332‌

   

   

   

 R

 S

 T

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌



   

b

d

 R

a

c

if‌‌R = {(x,  y) | a ≤ x ≤ b ,  c ≤ y ≤ d },   ∫ ∫ f (x,  y) dA = (∫ g (x) dx)(∫ h (y) dy) ,‌‌where‌‌f (x,  y) ‌is‌  factored‌‌into‌‌g (x) ‌and‌‌h (y)   ‌

 ‌ Two‌‌Types‌‌of‌‌General‌‌Regions:‌  ‌ Domain‌  ‌ D = {(x,  y) | a ≤ x ≤ b ,  g 1 (x) ≤ y ≤ g 2 (x)} Integral‌  ‌

b g2 (x)

∫ ∫

a g1 (x)

f (x,  y) dydx   ‌

D = {(x,  y) | h 1 (y) ≤ x ≤ h 2 (y),  c ≤ y ≤ d }   d h2 (y)

∫ ∫

ch1 (y)

f (x,  y) dxdy   ‌

 ‌  ‌  ‌  ‌ Graphed‌‌   Region‌  ‌

 ‌ y b ‌ ounded‌‌by‌‌a‌‌function‌‌of‌‌x   ‌

 ‌  ‌ x ‌bounded‌‌by‌‌a‌‌function‌‌of‌‌y   ‌

To‌‌reverse‌‌the‌‌order‌‌of‌‌integration,‌‌draw‌‌out‌‌given‌‌bounds‌‌and‌‌re-set‌‌up‌‌for‌‌opposite‌‌   integration.‌   ‌ ‌    

‌∫ ∫ 1  dA ‌gives‌‌area‌  ‌  D

 

∫ ecx = 1c ecx    

 

‌  ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

333‌  ‌

 ‌ Polar‌‌Coordinates‌  ‌ Conversion‌‌between‌‌polar‌‌and‌‌rectangular:‌  ‌ ●

x = r cos θ,  y = r sin θ ‌(polar‌‌to‌‌rectangular)‌  ‌



x 2 + y 2 = r 2 ,  tan θ =

y x

‌(rectangular‌‌to‌‌polar)‌  ‌

“Polar‌‌rectangles”‌‌are‌‌sections‌‌with‌‌the‌‌inequalities‌‌of‌‌the‌‌form‌‌0 ≤ θ ≤ 2π ,  1 ≤ r ≤ 2 .‌  ‌

 ‌ To‌‌integrate‌‌over‌‌polar‌‌regions,‌‌use‌‌d A = r drdθ   ‌ ●

the‌‌constraints‌‌for‌‌r ‌is‌‌where‌‌r ‌starts‌‌and‌‌ends‌  ‌    

When‌‌there‌‌are‌‌two‌‌surfaces‌‌overlapping,‌‌use‌‌∫ ∫ (top − b ottom) dA .‌  ‌  D

Triple‌‌Integrals‌  ‌ Rectangular‌‌Coordinates:‌‌d V = d zdydx ‌or‌‌d zdxdy ‌(4‌‌other‌‌options)‌  ‌ ●

innermost‌‌bounds‌‌represent‌‌surfaces‌‌that‌‌bound‌‌shape‌  ‌



middle‌‌bounds‌‌represent‌‌curves‌  ‌



outermost‌‌bounds‌‌represent‌‌numbers‌  ‌

If‌‌D ‌is‌‌the‌‌bounded‌‌region‌‌that‌‌is‌‌a‌‌projection‌‌of‌‌E ;‌‌   E = {(x,  y,  z) | (x,  y) ε D,  u 1 (x,  y) ≤ z ≤ u 2 (x,  y)}   ‌ u2 (x, y)

     

   

 E 

  D u1 (x, y)

∫ ∫ ∫  f (x,  y,  z) dV = ∫ ∫  [ ∫ 334‌

f (x,  y,  z) dz] dA  

 ‌ ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

Average‌‌Value‌‌of‌‌a‌‌Function:‌  ‌ f ave =

1 V (E)

     

∫ ∫ ∫  f (x,  y,  z) dV  E 

 ‌

     

where‌‌V (E) = ∫ ∫ ∫ 1  dV (volume).‌  ‌  E 

 ‌ Cylindrical/Spherical‌‌Coordinates‌  ‌ Cylindrical‌‌coordinates‌‌are‌‌polar‌‌coordinates‌‌with‌‌z ‌attached.‌  ‌ ●

x = r cos θ,  y = r sin θ,  z = z   ‌



d V = r dzdrdθ   ‌

Spherical‌‌coordinates‌‌are‌‌two‌‌angles‌‌and‌‌one‌‌length.‌  ‌ ●

ρ = d istance f rom origin,  θ = a ngle measure f rom positive x,  ϕ = a ngle f rom positive z   ‌

Rectangular‌‌to‌‌Spherical‌‌Transformation:‌  ‌ x = ρsin ϕ cos θ   ‌

y = ρsin ϕ sin θ   ‌

y

θ = tan −1 ( x )   ‌

ϕ = tan −1 (

√x2  + y2 )   z

z = ρcos ϕ   ‌ ϕ = c os−1 (

z

√x2  + y2  + z2

)  ‌

x 2 + y 2 + z 2 = ρ2   ‌ Spherical‌‌Coordinate‌‌Integration:‌‌d V = ρ2 sin ϕ dpdϕdθ   ‌    

If‌‌ρ(x,  y,  z) ‌is‌‌mass‌‌density,‌‌∫ ∫ ∫  ρ(x,  y,  z) dV = mass .‌‌       

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

335‌  ‌

 ‌ Centers‌‌of‌‌Mass‌  ‌ Two‌‌dimensional‌‌laminas,‌‌flat‌‌2D‌‌object‌  ‌    



mass‌‌=‌‌∫ ∫ ρ(x,  y) dA   ‌  D



   

moment‌‌about‌‌the‌‌x ‌axis:‌‌M x = ∫ ∫ x  ρ(x,  y) dA   ‌  D



   

moment‌‌about‌‌the‌‌y ‌axis:‌‌M y = ∫ ∫ y  ρ(x,  y) dA   ‌  D



Center‌‌of‌‌Mass‌‌=‌‌(

Mx My m ,  m ) 



Three‌‌dimensional‌  ‌     



mass‌‌=‌‌∫ ∫ ∫ ρ(x,  y,  z) dV   ‌   E



    

M x = ∫ ∫ ∫ x  ρ(x,  y,  z) dV   ‌   E



    

M y = ∫ ∫ ∫ y  ρ(x,  y,  z) dV     E



    

M z = ∫ ∫ ∫ z  ρ(x,  y,  z) dV   ‌   E



Center‌‌of‌‌Mass‌‌=‌‌(

Mx My Mz m ,   m ,   m ) ‌=‌(x,  y,  z)  



If‌‌the‌‌mass‌‌density‌‌is‌‌constant,‌‌the‌‌center‌‌of‌‌mass‌‌is‌‌called‌‌the‌‌centroid.‌   ‌ ‌  

336‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

Vector‌‌Fields‌  ‌ Vector‌‌Field:‌‌function‌‌that‌‌outputs‌‌a‌‌vector‌‌at‌‌every‌‌point‌  ‌ Notation:‌  ‌ 2D:‌‌< P (x,  y),  Q(x,  y) >   ‌

3D:‌‌< P (x,  y,  z),  Q(x,  y,  z),  R(x,  y,  z) >

 ‌ Unit‌‌Vector‌‌Field:‌‌vector‌‌field‌‌where‌‌all‌‌vectors‌‌have‌‌length‌‌1 ‌ ‌ ●



divide‌‌each‌‌component‌‌by‌‌magnitude‌‌ P (x,  y)2 + Q(x,  y)2   ‌

Gradient‌‌Vector‌‌Field:‌‌vector‌‌field‌‌which‌‌is‌‌the‌‌gradient‌‌of‌‌a‌‌scalar‌‌function‌  ‌ ●

scalar‌‌function:‌‌output‌‌is‌‌a‌‌number‌  ‌



use‌‌ f =   < f x,  f y >   ‌



level‌‌curves‌‌of‌‌f ‌are‌‌perpendicular‌‌to‌‌the‌‌vectors‌‌in‌‌the‌‌gradient‌‌field‌  ‌



 ‌ Line‌‌Integrals‌  ‌  

Scalar‌‌Line‌‌Integral:‌‌∫  f (x,  y) dS ,‌‌d S = c

√1 + (

dy 2 dx ) dx   



r (t) = p arameterization of  a curve   ‌ ● ●

√( 3D:‌‌d s = √( 2D:‌‌d s =

dx )2 dt

+ ( dy )2 dt   ‌ dt

dx 2 dt )

2 + ( dt )2 + ( dz dt ) dt  

dy

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

337‌  ‌

 ‌ Line‌‌Integrals‌‌(con’t)‌  ‌ ●

when‌‌using‌‌this,‌‌put‌‌f (x,  y) ‌into‌‌terms‌‌of‌‌t   ‌

 ‌ →



x = (1 − t)x 1 + tx 2 ,‌‌r (t) = A + tAB   ‌  

Arc‌‌Length‌‌of‌‌c :‌‌∫ 1  ds = length (c)   ‌ c

Vector‌‌Line‌‌Integral:‌‌line‌‌integral‌‌over‌‌vector‌‌fields‌‌(work‌‌and‌‌flux)‌  ‌ ●

t2

t2

t1

t1

Work‌‌done‌‌on‌‌a‌‌particle:‌‌∫ P dx + Qdy ‌or‌‌∫ P dx + Qdy + Rdz ‌where‌‌   d x = x ′(t)dt,  dy = y ′(t)dt,  dz = z ′(t)dt   ‌ ○

Parameterize‌‌F =   < P (x,  y),  Q(x,  y) > ‌to‌‌< x (t),  y(t) > ,‌‌replace‌‌x ‌and‌‌y ‌in‌‌P  ‌ and‌‌Q ,‌‌sub‌‌into‌‌equation‌‌P dx + Qdy ‌with‌‌d x = x ′(t)dt ‌and‌‌d y = y ′(t)   ‌

○ ●

this‌‌is‌‌derived‌‌from‌‌(F (r(t)) · r ′(t))   ‌  

Flux,‌‌flow‌‌over‌‌time:‌‌∫ P dy − Qdx ‌where‌‌v→ = v elocity f ield,  ϕ = g eneric vector f ield  → →

c

ϕ = (P ,  Q) ‌or‌‌v = (P ,  Q) .‌‌    ‌ ○

positive‌‌flux:‌‌in‌‌to‌‌out‌  ‌



negative‌‌flux:‌‌out‌‌to‌‌in‌  ‌  ‌

Curve‌‌Types:‌‌closed‌‌(forms‌‌loop),‌‌simple‌‌(doesn’t‌‌intersect‌‌self),‌‌connected‌‌(two‌‌points‌‌form‌‌   path)‌ 

338‌

 ‌ ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

Conservative‌‌Vector‌‌Field:‌‌path‌‌taken‌‌doesn’t‌‌matter,‌‌path‌‌independent‌  ‌ ●

 

then,‌‌∫ ϕ · d r = ϕ ‌for‌‌all‌‌closed‌‌curves‌‌c ‌[‌ϕ = (P ,  Q) ,‌‌d r = (dx,  dy) ]‌  ‌ c

Fundamental‌‌Theorem‌‌of‌‌Line‌‌Integrals:‌‌all‌‌gradient‌‌fields‌‌are‌‌conservative‌‌if‌‌ϕ =  

∫ ϕ dr = f (B) − f (A) ,‌‌f c

∇f   ‌

‌is‌‌the‌‌antigradient‌  ‌

If‌‌a‌‌vector‌‌field‌‌is‌‌conservative,‌‌then‌‌P y = Qx .‌  ‌ To‌‌find‌‌a‌‌potential‌‌function‌‌for‌‌F (x,  y) =   < P ,  Q > ‌(use‌‌this‌‌in‌‌the‌‌fundamental‌‌theorem‌‌of‌‌   line‌‌integrals):‌  ‌ 1. Check‌‌if‌‌it’s‌‌conservative‌  ‌



2. Find‌‌ f  ‌to‌‌get‌‌f x ‌and‌‌f y   ‌ 3. Partially‌‌integrate‌‌F x ‌(the‌‌x ‌component,‌‌P ,‌‌of‌‌F (x,  y) )‌‌with‌‌respect‌‌to‌‌x ‌to‌‌find‌‌f   ‌ 4. Differentiate‌‌the‌‌f ‌found‌‌in‌‌step‌‌three‌‌with‌‌respect‌‌to‌‌y   ‌ 5. Set‌‌f y = F y ‌to‌‌find‌‌C (y)   ‌ 6. Final‌‌result‌‌is‌‌the‌‌function‌‌f   ‌  ‌ Transformation‌‌Theorems‌  ‌ Green’s‌‌Theorem:‌‌D ‌is‌‌an‌‌open,‌‌simply‌‌connected‌‌region‌‌with‌‌a‌‌boundary‌‌curve‌‌c ‌that‌‌is‌‌a ‌‌ piecewise‌‌smooth,‌‌simple‌‌closed‌‌curve‌‌oriented‌‌counterclockwise.‌  ‌

∮  

c

∮  

F · dr =

c

   

P dx + Qdy = ∫ ∫ (Qx − P y ) dA   ‌  D



It‌‌needs‌‌to‌‌be‌‌in‌‌this‌‌order!‌  ‌



recognize‌‌that‌‌the‌‌interim‌‌equation‌‌is‌‌the‌‌work‌‌done‌‌on‌‌a‌‌particle;‌‌this‌‌is‌‌important‌‌   to‌‌notice‌‌so‌‌that‌‌you‌‌are‌‌able‌‌to‌‌choose‌‌the‌‌right‌‌theorem‌‌while‌‌solving‌‌problems‌  ‌



If‌‌clockwise,‌‌add‌‌a‌‌negative‌‌sign‌ 

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

339‌  ‌

 ‌ Divergence:‌‌d iv(ϕ) =

∇ · ϕ,‌ ‌where‌‌ϕ =   < P ,  Q > ‌→ ‌div(ϕ) = ∂P ∂x

∂Q ∂y

∂R ∂z

In‌‌3D‌‌(‌ϕ =   < P ,  Q,  R > ),‌‌d iv(ϕ) =



all‌‌flux‌‌integrals‌‌across‌‌closed‌‌surfaces‌‌will‌‌be‌‌0   ‌

+

+

∂Q ∂y

 ‌

‌. ‌ ‌



+

∂P ∂x

Curl‌‌measures‌‌the‌‌spin‌‌at‌‌a‌‌point;‌‌vector‌‌where‌‌d r ‌is‌‌equal‌‌to‌‌the‌‌axis‌‌of‌‌rotation‌‌and‌‌the‌‌   magnitudes‌‌are‌‌equal‌  ‌ ●

clockwise,‌‌points‌‌upward‌  ‌



c url(ϕ) = ○

∇×ϕ =(

∂ ∂ ∂ ∂x ,   ∂y ,   ∂z )

× (P ,  Q,  R) = (  ∂R   ∂y −

∂Q ∂P ∂z ,   ∂z



∂R ∂Q ∂x ,   ∂x



∂P ∂y

)  ‌

if‌‌2D,‌‌R = 0   ‌

Parameterizing‌‌Functions:‌‌r→(u,  v) =   < x (u,  v),  y(u,  v),  z(u,  v) >   ‌ ●

→ for‌‌a‌‌function‌‌z = (x,  y) :  r(t) =   < u ,  v,  f (u,  v) >   ‌

 ‌ Surface‌‌Integrals‌  ‌ Surface‌‌Integral:‌‌domain‌‌of‌‌integration‌‌is‌‌over‌‌a‌‌boundary‌‌surface‌  ‌ Transformation‌‌between‌‌area‌‌piece‌‌d A ‌and‌‌area‌‌piece‌‌d S :‌  ‌ d S = ||tu × tv ||  dA ,‌‌where‌‌tu =  
‌‌and‌‌tv =  
  ‌

   

integral‌‌formula:‌‌∫ ∫ ||tu × tv ||  dA   ‌  D

   

Scalar‌‌Surface‌‌Integral:‌‌∫ ∫ f (r(u,  v))  ||tu × tv ||  dA   ‌  D



use‌‌this‌‌for‌‌things‌‌like‌‌mass‌‌of‌‌a‌‌sheet‌  ‌



surface‌‌area:‌‌integrand‌‌is‌‌1 ‌ ‌



surface‌‌integral:‌‌integrand‌‌is‌‌f (x,  y) ‌in‌‌terms‌‌of‌‌u ‌and‌‌v  

340‌

 ‌ ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

t  × t

Unit‌‌Normal‌‌= N = ||tuu  × tvv || ‌‌(length‌‌1)‌  ‌ ●

points‌‌from‌‌in‌‌to‌‌out‌  ‌



positive:‌‌outward‌‌pointing‌‌normal‌  ‌



flux:‌‌with‌‌arrow‌‌→ ‌positive,‌‌without‌‌arrow‌‌→ ‌negative‌  ‌    

Surface‌‌Integral‌‌in‌‌a‌‌Vector‌‌Field:‌‌∫ ∫ (F (r(u,  v)) · (tu × tv )) dV   ‌  D



volume‌‌passing‌‌through‌‌a‌‌d S ‌portion‌‌over‌‌time‌  ‌



if‌‌z = f (x,  y) ‌passes‌‌vertical‌‌line‌‌test:‌‌∫ ∫ [− P · f x − Q · f y + R] dA   ‌

   

 D

 

   

c

 S

Stokes’‌‌Theorem:‌‌∫ F · d r = ∫ ∫ ●

 

∫ F · dr c

∇ × F  dS   ‌

‌is‌‌the‌‌circulation‌‌or‌‌work‌‌around‌‌the‌‌boundary‌‌curve‌  ‌  ‌    





    

Divergence‌‌Theorem:‌‌∫ ∫ F · d S = ∫ ∫ ∫ d iv F  dV ,‌‌where‌‌S ‌is‌‌a‌‌closed‌‌surface‌  ‌  S



   





∫ ∫ F · dS

  E

‌is‌‌the‌‌flux‌‌across‌‌a‌‌surface‌  ‌

 S

 ‌

 ‌  ‌

5.1‌

‌Vectors‌‌in‌‌Space‌  ‌

5.1.1‌

V ‌ ectors‌i‌ n‌‌the‌P ‌ lane‌  ‌

For‌‌more‌‌review‌‌on‌‌vectors,‌‌see‌‌the‌‌Polar‌‌Coordinates‌‌and‌‌Vectors‌‌section‌‌of‌‌Pre-Calculus.‌  ‌ I‌‌will‌‌restate‌‌some‌‌important‌‌facts‌‌to‌‌know‌‌here.‌   ‌ ‌ A‌‌position‌‌vector‌‌starts‌‌at‌‌the‌‌origin.‌   ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

341‌ ‌

 ‌ The‌‌magnitude‌‌of‌‌a‌‌vector‌‌is‌‌denoted‌‌||v || ‌and‌‌calculated‌‌using‌‌the‌‌formula‌  ‌ ||v || = √x 2 + y 2    ‌ A‌‌unit‌‌vector‌‌is‌‌a‌‌vector‌‌with‌‌magnitude‌‌1 .‌ ‌To‌‌find‌‌the‌‌unit‌‌vector‌‌u→ ‌of‌‌the‌‌vector‌‌v→ ,‌‌use‌‌   the‌‌formula‌  ‌ u→ =

1 → v  ||v ||



 ‌ ‌5.1.1.a‌ ‌Properties‌‌of‌‌Vector‌‌Operations‌  ‌ → → Let‌‌u→,  v, ‌and‌‌w ‌be‌‌vectors‌‌in‌‌a‌‌plane.‌ ‌Let‌‌r ‌and‌‌s ‌be‌‌scalars.‌   ‌ ‌

Property‌  ‌

Name‌  ‌

u→ + v→ = v→ + u→   ‌

commutative‌‌property‌  ‌

(u + v ) + w = u + (v + w )   ‌

associative‌‌property‌  ‌



u +0 =u  ‌

additive‌‌identity‌‌property‌  ‌

u + (− u ) = 0   ‌

additive‌‌inverse‌‌property‌  ‌

r (su) = (rs)u   ‌

associativity‌‌of‌‌scalar‌‌multiplication‌  ‌

(r + s)u = r u + su   ‌

distributive‌‌property‌  ‌

r (u + v ) = r u + r v   ‌

distributive‌‌property‌  ‌

1 u = u ,  0u = 0   ‌

identity‌‌and‌‌zero‌‌properties‌  ‌

 ‌  

342‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

5.1.2‌

V ‌ ectors‌i‌ n‌‌Three‌D ‌ imensions‌  ‌

The‌‌three‌‌dimensional‌‌rectangular‌‌coordinate‌‌system‌‌consists‌‌of‌‌three‌‌perpendicular‌‌axes:‌‌   the‌‌x ‌axis,‌‌the‌‌y ‌axis,‌‌and‌‌the‌‌z ‌axis.‌ ‌Because‌‌each‌‌axis‌‌is‌‌a‌‌number‌‌line‌‌representing‌‌all‌‌   real‌‌numbers‌‌in‌‌R ,‌‌the‌‌three‌‌dimensional‌‌system‌‌is‌‌often‌‌denoted‌‌R3 .‌   ‌ ‌  ‌ ‌5.1.2.a‌

‌Plotting‌‌Points‌  ‌

You‌‌draw‌‌the‌‌3D‌‌coordinate‌‌axis‌‌by‌‌putting‌‌the‌‌regular‌‌x y ‌axis‌‌on‌‌the‌‌“ground”‌‌and‌‌having‌‌   the‌‌z ‌axis‌‌point‌‌straight‌‌up.‌   ‌ ‌

 ‌ To‌‌plot‌‌a‌‌point,‌‌go‌‌x ‌units‌‌along‌‌the‌‌x ‌axis,‌‌then‌‌y ‌units‌‌in‌‌the‌‌direction‌‌of‌‌the‌‌y ‌axis,‌‌then‌‌   z ‌units‌‌in‌‌the‌‌direction‌‌of‌‌the‌‌z ‌axis‌‌(up‌‌or‌‌down).‌   ‌ ‌  

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

343‌ ‌

 ‌ ‌5.1.2.b‌

‌The‌‌Coordinate‌‌Planes‌  ‌

 ‌ There‌‌are‌‌eight‌‌octants‌‌in‌‌the‌‌3D‌‌plane.‌   ‌ ‌  ‌ ‌5.1.2.c‌

‌Distance‌‌Formula‌‌(3D)‌  ‌

The‌‌distance‌‌between‌‌points‌‌(x 1 ,  y 1 ,  z 1 ) ‌and‌‌(x 2 ,  y 2 ,  z 2 ) ‌is‌‌given‌‌by‌  ‌ d=  

344‌

√(x

2

− x 1 )2 + (y 2 − y 1 )2 + (z 2 − z 1 )2   ‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

‌5.1.2.d‌

‌Equations‌‌of‌‌Surfaces‌‌(3D)‌  ‌

In‌‌2D,‌‌horizontal‌‌and‌‌vertical‌‌lines‌‌have‌‌the‌‌equation‌‌y = some number ‌and‌‌x = some number ,‌‌   respectively,‌ ‌where‌‌any‌‌number‌‌with‌‌those‌‌x ‌or‌‌y ‌coordinates‌‌will‌‌satisfy‌‌it.‌  ‌ In‌‌3D,‌‌it‌‌is‌‌similar.‌ ‌For‌‌the‌‌equation‌‌z = 6 ,‌‌for‌‌example,‌‌any‌‌point‌‌where‌‌z = 6 ‌will‌‌satisfy‌‌   the‌‌equation.‌ ‌The‌‌graph‌‌of‌‌this‌‌equation‌‌is‌‌an‌‌x y ‌plane‌‌at‌‌height‌‌6 .‌   ‌ ‌ Equations‌‌of‌‌Planes‌‌Parallel‌‌to‌‌Coordinate‌‌Planes:‌  ‌ 1. The‌‌plane‌‌in‌‌space‌‌that‌‌is‌‌parallel‌‌to‌‌the‌‌x y ‌plane‌‌and‌‌contains‌‌point‌‌(a,  b,  c) ‌can‌‌be‌‌   represented‌‌by‌‌the‌‌equation‌‌z = c .‌  ‌ 2. The‌‌plane‌‌in‌‌space‌‌that‌‌is‌‌parallel‌‌to‌‌the‌‌x z ‌plane‌‌and‌‌contains‌‌point‌‌(a,  b,  c) ‌can‌‌be‌‌   represented‌‌by‌‌the‌‌equation‌‌y = b .‌‌    ‌ 3. The‌‌plane‌‌in‌‌space‌‌that‌‌is‌‌parallel‌‌to‌‌the‌‌y z ‌plane‌‌and‌‌contains‌‌point‌‌(a,  b,  c) ‌can‌‌be‌‌   represented‌‌by‌‌the‌‌equation‌‌x = a .‌  ‌ ‌5.1.2.e‌

‌Spheres‌  ‌

A‌‌sphere‌‌is‌‌the‌‌set‌‌of‌‌all‌‌points‌‌in‌‌space‌‌equidistant‌‌from‌‌a‌‌fixed‌‌point,‌‌the‌‌center‌‌of‌‌the‌‌   sphere.‌ ‌In‌‌a‌‌sphere,‌‌the‌‌distance‌‌from‌‌the‌‌center‌‌to‌‌a‌‌point‌‌on‌‌the‌‌sphere‌‌is‌‌called‌‌the‌‌   radius.‌   ‌ ‌

 ‌ Note‌‌that‌‌a‌‌sphere‌‌is‌‌not‌‌filled‌‌in,‌‌as‌‌that‌‌would‌‌make‌‌it‌‌a‌‌ball.‌ 

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

345‌ ‌

 ‌ Equation‌‌of‌‌a‌‌Sphere:‌‌(x − a )2 + (y − b )2 + (z − c )2 = ρ2   ‌ ●

ρ ‌is‌‌the‌‌Greek‌‌letter‌‌“rho”‌‌and‌‌is‌‌used‌‌instead‌‌of‌‌r   ‌

 ‌ ‌5.1.2.f‌

‌3D‌‌Vectors‌  ‌

3D‌‌vectors‌‌are‌‌very‌‌similar‌‌to‌‌2D‌‌vectors.‌   ‌ ‌ Example:‌‌Graph‌‌the‌‌vector‌‌< 2 ,  4,  1 > .‌‌    ‌ Go‌‌two‌‌in‌‌the‌‌x ‌direction,‌‌go‌‌four‌‌in‌‌the‌‌y ‌direction,‌‌go‌‌one‌‌in‌‌the‌‌z ‌direction.‌   ‌ ‌

 ‌  ‌  

346‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

‌5.1.2.g‌

‌Properties‌‌of‌‌Vectors‌‌in‌‌Space‌  ‌

Let‌‌v =   < x 1 ,  y 1 ,  z 1 > ‌and‌‌w =   < x 2 ,  y 2 ,  z 2 > ‌be‌‌vectors‌‌and‌‌let‌‌k ‌be‌‌a‌‌scalar.‌   ‌ ‌ ●

scalar‌‌multiplication:‌‌k v =   < k x 1 ,  ky 1 ,  kz 1 >   ‌



vector‌‌addition:‌ 



v + w =   < x 1 ,  y 1 ,  z 1 >   +   < x 2 ,  y 2 ,  z 2 >   =   < x 1 + x 2 ,  y 1 + y 2 ,  z 1 + z 2 >   ‌ ●

vector‌‌subtraction:‌‌   v − w =   < x 1 ,  y 1 ,  z 1 >   −   < x 2 ,  y 2 ,  z 2 >   =   < x 1 − x 2 ,  y 1 − y 2 ,  z 1 − z 2 >   ‌

√x



vector‌‌magnitude:‌‌||v || =



unit‌‌vector‌‌in‌‌the‌‌direction‌‌of‌‌v :‌‌ ||1v|| v = ○

1

2

+ y 12 + z 12   ‌ 1 ||v ||

< x 1 ,  y 1 ,  z 1 >   =  
  ‌

if‌‌||v || =/ 0   ‌

 ‌

5.1.3‌

D ‌ ot‌‌Product‌  ‌

The‌‌dot‌‌product‌‌of‌‌two‌‌vectors‌‌is‌‌the‌‌product‌‌of‌‌the‌‌magnitude‌‌of‌‌each‌‌vector‌‌and‌‌the‌‌   cosine‌‌of‌‌the‌‌angle‌‌between‌‌them.‌   ‌ ‌

 ‌ u→ · v→ = ||u|| ||v|| cos θ   ‌  

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

347‌ ‌

 ‌ If‌‌you‌‌have‌‌the‌‌components‌‌of‌‌the‌‌vector,‌‌you‌‌can‌‌use‌‌another‌‌formula.‌ ‌The‌‌dot‌‌product‌‌of‌‌   the‌‌vectors‌‌u→ =   < u 1 ,  u 2 ,  u 3 > ‌and‌‌v→ =   < v 1 ,  v 2 ,  v 3 > ‌is‌‌given‌‌by‌‌the‌‌sum‌‌of‌‌the‌‌products‌‌of‌  the‌‌components.‌   ‌ ‌ u→ · v→ = u 1 v 1 + u 2 v 2 + u 3 v 3   ‌  ‌ Note‌‌that‌‌the‌‌dot‌‌product‌‌is‌‌a‌‌number,‌‌not‌‌a‌‌vector.‌   ‌ ‌ ‌5.1.3.a‌

‌Properties‌‌of‌‌the‌‌Dot‌‌Product‌  ‌

→ → Let‌‌u→,  v,   and‌‌w ‌be‌‌vectors‌‌and‌‌c ‌be‌‌a‌‌scalar.‌   ‌ ‌

Property‌  ‌

Name‌  ‌

u·v =v ·u  ‌

commutative‌‌property‌  ‌

u · (v + w ) = u · v + u · w   ‌

distributive‌‌property‌  ‌

c (u · v ) = (cu) · v = u · (cv)   ‌

associative‌‌property‌  ‌

2

v · v = ||v||   ‌

property‌‌of‌‌magnitude‌  ‌

 ‌ Example:‌‌Find‌‌the‌‌measure‌‌of‌‌the‌‌angle‌‌formed‌‌by‌‌vectors‌‌a =   < 1 ,  2,  0 > ‌and‌‌   b =   < 2 ,  4,  1 > .‌   ‌ ‌ Begin‌‌by‌‌finding‌‌the‌‌dot‌‌product‌‌of‌‌the‌‌vectors.‌   ‌ ‌ a · b = 1 · 2 + 2 · 4 + 0 · 1 = 2 + 8 + 0 = 10  

348‌

 ‌ ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

We‌‌know‌‌that‌  ‌ a · b = ||a|| ||b|| cos θ   ‌ ||a|| = √1 2 + 2 2 + 0 2 = √5       ||b|| = √2 2 + 4 2 + 1 2 =√21   ‌ Replace‌‌the‌‌above‌‌formula‌‌with‌‌all‌‌known‌‌values.‌  ‌ 1 0 = (√5 )(√21 ) cos θ   ‌ Solve‌‌for‌‌θ .‌‌    ‌ θ = c os−1 (

10 ) (√5)(√21)

≈ 1 2.60 °   ‌

 ‌ ‌5.1.3.b‌

‌Orthogonal‌‌Vectors‌  ‌

The‌‌nonzero‌‌vectors‌‌u ‌and‌‌v ‌are‌‌orthogonal‌‌(perpendicular)‌‌vectors‌‌if‌‌and‌‌only‌‌if‌‌u · v = 0 .‌  ‌  ‌ ‌5.1.3.c‌

‌Vector‌‌Projection/Component‌  ‌

Derivation:‌‌    Say‌‌that‌‌the‌‌sun‌‌casts‌‌a‌‌shadow‌‌of‌‌u ‌onto‌‌v .‌  ‌

 

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

 ‌

349‌ ‌

 ‌ This‌‌is‌‌denoted‌‌p roj v (u) ,‌‌the‌‌“projection‌‌onto‌‌v ‌of‌‌u .”‌ ‌This‌‌is‌‌a‌‌function‌‌that‌‌inputs‌‌a‌‌vector‌‌   u→ ‌and‌‌outputs‌‌the‌‌projected‌‌vector.‌   ‌ ‌ To‌‌calculate:‌  ‌ 1. Find‌‌a‌‌unit‌‌vector‌‌in‌‌the‌‌direction‌‌of‌‌v→ .‌  ‌ 2. Multiply‌‌by‌‌some‌‌number‌‌λ ‌(lambda)‌‌to‌‌scale‌‌it‌‌to‌‌the‌‌right‌‌size.‌‌    ‌ a. λ ‌is‌‌the‌‌length‌‌of‌‌the‌‌projected‌‌vector‌  ‌ b. λ = ||u|| · c os θ   ‌ Therefore,‌‌    ‌ p roj v (u) = ||u|| cos θ ·

v ||v||

 ‌

||v|| If‌‌you‌‌don’t‌‌have‌‌θ ,‌‌multiply‌‌by‌‌ ||v|| (1) ‌to‌‌get‌‌the‌‌dot‌‌product‌‌formula.‌   ‌ ‌

Vector‌‌of‌‌Projection:‌‌p roj v (u) =

u · v → 2 v   ||v||



Similarly,‌‌to‌‌find‌‌the‌‌length‌‌of‌‌this‌‌vector‌‌with‌‌out‌‌θ ‌use‌‌the‌‌formula‌  ‌ Length‌‌of‌‌Projection‌‌Vector:‌‌λ = c omp v (u) =

u · v ||v||

   ‌

 ‌ 5.1.4‌

C ‌ ross‌P ‌ roduct‌  ‌

Let‌‌u =   < u 1 ,  u 2 ,  u 3 > ‌and‌‌v =   < v 1 ,  v 2 ,  v 3 > .‌ ‌Then‌‌the‌‌cross‌‌product‌‌u × v ‌is‌‌vector‌  ‌ u × v = (u 2 v 3 − u 3 v 2 )i − (u 1 u 3 − u 3 v 1 )j + (u 1 v 2 − u 2   v 1 )k   ‌ =   < u 2 v 3 − u 3 v 2 ,   − (u 1 v 3 − u 3 v 1 ),  u 1 v 2 − u 2 v 1 >   ‌  

350‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

‌5.1.4.a‌

‌Properties‌‌of‌‌the‌‌Cross‌‌Product‌  ‌



u × v ‌is‌‌a‌‌new‌‌vector‌‌perpendicular‌‌to‌‌both‌‌u→ ‌and‌‌v→   ‌



||u × v || = ||u|| ||v|| sin θ = a rea of  parallelogram = 2 (area of  triangle)   ‌

 ‌ ●

If‌‌u→ ‌and‌‌v→ ‌are‌‌parallel,‌‌u × v =   < 0 ,  0,  0 >   ‌

  ‌ ‌ Let‌‌u ,  v,   and‌‌w ‌be‌‌vectors‌‌in‌‌space‌‌and‌‌let‌‌c ‌be‌‌a‌‌scalar.‌  ‌ Property‌  ‌

Name‌  ‌

u × v =   − (v × u )   ‌

anti‌‌commutative‌‌property‌  ‌

u × (v + w ) = u × v + u × w   ‌

distributive‌‌property‌  ‌

c (u × v ) = (cu) × v = u × (cv)   ‌

scalar‌‌multiplication‌  ‌

u ×0 =0 ×u =0  ‌

zero‌‌vector‌‌cross‌‌product‌  ‌

v ×v =0  ‌

cross‌‌product‌‌with‌‌itself‌  ‌

u · (v × w ) = (u × v ) · w   ‌

scalar‌‌triple‌‌product‌  ‌

 ‌  

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

351‌  ‌

 ‌ Example:‌‌Find‌‌the‌‌area‌‌of‌‌the‌‌triangle‌‌P QR ,‌‌where‌‌P = (2,   − 2 ,   − 2 ) ,‌‌Q = (0,  2,  5) ,‌‌and‌‌   R = (5,  6,  2) .‌  ‌

 ‌ →







The‌‌area‌‌of‌‌the‌‌triangle‌‌AOT = 21 ||P Q × P R|| .‌ ‌So,‌‌find‌‌P Q ‌and‌‌P R .‌   ‌ ‌ →

P Q = (0,  2,  5) − (2,   − 2 ,   − 2 ) =   < 0 − 2 ,  2 + 2 ,  5 + 2 >   =     ‌ →

P R = (5,  6,  2) − (2,   − 2 ,   − 2 ) =   < 5 − 2 ,  6 + 2 ,  2 + 2 >   =   < 3 ,  8,  4 >   ‌ Now,‌‌find‌‌the‌‌cross‌‌product‌‌of‌‌the‌‌vectors.‌   ‌ ‌ →



P Q × P R =   < (4)(4) − (7)(8),   − ((− 2 )(4) − (7)(3)),  (− 2 )(8) − (4)(3) >   ‌ →



P Q × P R =     ‌ Use‌‌this‌‌information‌‌to‌‌solve‌‌the‌‌AOT ‌equation‌‌above.‌   ‌ ‌ →



AOT = 21 ||P Q × P R|| =

352‌

1 2

√(− 40)

2

+ (29)2 + (− 2 8)2 = 21 (56.79) ≈ 2 8.395   

 ‌ ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

5.1.5‌

E ‌ quations‌o ‌ f‌L ‌ ines‌a ‌ nd‌P ‌ lanes‌i‌ n‌S ‌ pace‌  ‌

‌5.1.5.a‌

‌Parametric‌‌Curves‌  ‌

Parametric‌‌equations‌‌are‌‌a‌‌set‌‌of‌‌equations,‌‌one‌‌for‌‌each‌‌variable,‌‌dependent‌‌on‌‌the‌‌   parameter.‌   ‌ ‌ x = x (t)   ‌ y = y (t)   ‌ z = z (t)   ‌ t ‌is‌‌the‌‌parameter.‌ ‌It‌‌is‌‌often‌‌time‌‌and‌‌restricted‌‌to‌‌a‌‌certain‌‌interval‌‌t0 ≤ t ≤ tf .‌   ‌ ‌ Vector‌‌Form:‌‌r→(t) =   < x (t),  y(t),  z(t) > ,‌‌where‌‌r→(t) ‌is‌‌a‌‌position‌‌vector.‌  ‌  ‌ A‌‌parametric‌‌curve‌‌is‌‌what‌‌we‌‌get‌‌when‌‌we‌‌trace‌‌out‌‌every‌‌point.‌   ‌ ‌ The‌‌equation‌‌of‌‌a‌‌straight‌‌line‌‌through‌‌points‌‌P ‌and‌‌Q ‌is‌‌    ‌ →



r→ = P + t P Q   ‌ →

where‌‌t ‌is‌‌a‌‌multiple‌‌and‌‌parameter‌‌and‌‌P   is‌‌a‌‌position‌‌vector.‌   ‌ ‌  ‌  

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

353‌  ‌

 ‌ Symmetric‌‌Equations:‌  ‌ Solve‌‌for‌‌t‌‌and‌‌eliminate‌‌the‌‌parameter.‌‌    ‌ x (t) =   − 1 + 5 t   →   t = y (t) = 2 t   →   t = z (t) = 3 − 4 t   →   t =

y 2

x + 1 5

 ‌

 ‌

3 − z 4

 ‌

So,‌‌another‌‌way‌‌to‌‌write‌‌the‌‌equation‌‌of‌‌a‌‌line‌‌in‌‌3D‌‌is‌‌ x + 1 = 5 ‌5.1.5.b‌

y 2

=

3 − z 4

‌. ‌  ‌ ‌

‌Equation‌‌of‌‌a‌‌Plane‌  ‌

 ‌ If‌‌two‌‌vectors‌‌are‌‌perpendicular,‌‌their‌‌dot‌‌product‌‌is‌‌zero:‌‌n→ · v→ = 0 .‌   ‌ ‌ v→ =   < x − x 0 ,  y − y 0 ,  z − z 0 >   ‌ Therefore,‌‌the‌‌equation‌‌of‌‌a‌‌plane‌‌is‌  ‌ < a ,  b,  c >   ·   < x − x 0 ,  y − y 0 ,  z − z 0 >   =  0   ‌ a (x − x 0 ) + b (y − y 0 ) + c (z − z 0 ) = 0   ‌ This‌‌is‌‌the‌‌equation‌‌of‌‌the‌‌plane‌‌with‌‌normal‌‌(perpendicular)‌‌vector‌‌< a ,  b,  c > ‌through‌‌the‌‌   point‌‌P  (x 0 ,  y 0 ,  z 0 ) .‌   ‌

354‌

 ‌ ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

Note‌‌that‌‌if‌‌two‌‌planes‌‌are‌‌parallel,‌‌they‌‌should‌‌have‌‌the‌‌same‌‌normal‌‌vector.‌ ‌In‌‌addition‌‌   to‌‌this,‌‌vector‌‌< l,  m,  n > ‌is‌‌parallel‌‌to‌‌the‌‌line‌‌with‌‌parametric‌‌equations‌  ‌ x = a + lt      y = b + mt      z = c + n t   ‌  ‌ Example:‌‌Write‌‌an‌‌equation‌‌for‌‌the‌‌plane‌‌containing‌‌the‌‌points‌‌P = (1,  1,   − 2 ),  Q = (0,  2,  1),  ‌ and‌‌R = (− 1 ,   − 1 ,  0) .‌  ‌

   ‌ ‌ →



P R ‌and‌‌P Q ‌are‌‌both‌‌in‌‌the‌‌plane‌‌and‌‌we‌‌know‌‌that‌‌the‌‌cross‌‌product‌‌is‌‌perpendicular‌‌to‌‌   both‌‌of‌‌the‌‌vectors.‌ ‌Therefore,‌‌it‌‌is‌‌parallel‌‌to‌‌the‌‌plane,‌‌meaning‌‌it‌‌is‌‌the‌‌normal‌‌vector.‌  →



So,‌‌find‌‌the‌‌vectors‌‌P R ‌and‌‌P Q ‌and‌‌their‌‌cross‌‌product.‌   ‌ ‌ →



P R =         P Q =     ‌ →



P R × P Q =   < (− 2 )(3) − (2)(1),   − ((− 2 )(3) − (2)(− 1 )),  (− 2 )(1) − (− 2 )(− 1 ) >   ‌ n→ =     ‌ Now,‌‌you‌‌can‌‌use‌‌one‌‌of‌‌the‌‌three‌‌of‌‌the‌‌points‌‌to‌‌find‌‌the‌‌equation‌‌of‌‌the‌‌plane.‌ ‌In‌‌this‌‌   example‌‌I‌‌will‌‌use‌‌point‌‌P .‌   ‌ ‌ − 8 (x − 1 ) + 4 (y − 1 ) − 4 (z + 2 ) = 0    →    − 8 x + 4 y − 4 z − 4 = 0   ‌  ‌

 

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

355‌ ‌

 ‌

5.1.6‌

Q ‌ uadric‌‌Surfaces‌  ‌

It‌‌may‌‌be‌‌helpful‌‌to‌‌review‌‌the‌‌Conic‌‌Sections‌‌section‌‌of‌‌Algebra‌‌II,‌‌as‌‌quadric‌‌surfaces‌‌are‌‌   really‌‌just‌‌higher‌‌dimensional‌‌conic‌‌sections.‌   ‌ ‌ Quadric‌‌surfaces‌‌are‌‌the‌‌graphs‌‌of‌‌equations‌‌that‌‌can‌‌be‌‌expressed‌‌in‌‌the‌‌form‌‌    ‌ Ax 2 + B y 2 + C z 2 + D xy + E xz + F yz + Gx + H y + J z + K = 0   ‌ Usually‌‌most‌‌of‌‌the‌‌coefficients‌‌are‌‌equal‌‌to‌‌zero.‌   ‌ ‌  ‌ ‌5.1.6.a‌

‌Cylinders‌  ‌

A‌‌set‌‌of‌‌lines‌‌parallel‌‌to‌‌a‌‌given‌‌line‌‌passing‌‌through‌‌a‌‌given‌‌curve‌‌is‌‌known‌‌as‌‌a‌‌cylindrical‌‌   surface,‌‌or‌‌cylinder.‌ ‌The‌‌parallel‌‌lines‌‌are‌‌called‌‌rulings.‌   ‌ ‌

 ‌ This,‌‌for‌‌example,‌‌is‌‌a‌‌right‌‌circular‌‌cylinder‌‌that‌‌is‌‌perpendicular‌‌to‌‌the‌‌x y ‌plane.‌   ‌ ‌ Any‌‌‌equation‌‌which‌‌missing‌‌x ,  y,   or‌‌z ‌will‌‌be‌‌a‌‌cylinder.‌   ‌ ‌ ●

Tip:‌‌Draw‌‌the‌‌equation‌‌in‌‌2D‌‌and‌‌imagine‌‌the‌‌rulings‌‌coming‌‌out‌‌at‌‌you‌‌(i.e.‌‌the‌‌2D‌‌   equation‌‌is‌‌stacked‌‌up‌‌in‌‌the‌‌direction‌‌of‌‌the‌‌missing‌‌variable).‌ 

356‌

 ‌ ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

‌5.1.6.b‌

‌Traces/Cross‌‌Sections‌  ‌

The‌‌traces‌‌of‌‌a‌‌surface‌‌are‌‌the‌‌cross‌‌sections‌‌created‌‌when‌‌the‌‌surface‌‌intersects‌‌a‌‌plane‌‌   parallel‌‌to‌‌one‌‌of‌‌the‌‌coordinate‌‌planes.‌ ‌The‌‌equation‌‌will‌‌be‌‌of‌‌the‌‌form‌‌v ariable = c onstant   ‌

 ‌ It’s‌‌kind‌‌of‌‌like‌‌a‌‌plane‌‌is‌‌“slicing”‌‌through‌‌the‌‌graph‌‌and‌‌the‌‌result‌‌is‌‌a‌‌2d‌‌shape‌‌(i.e.‌‌one‌‌of‌‌   the‌‌variables‌‌is‌‌being‌‌held‌‌constant).‌   ‌ ‌   ‌ ‌ ‌5.1.6.c‌ x2 a2

+

y2 b2

+

‌Ellipsoid‌  ‌ z2 c2

= 1  ‌

Traces:‌  ‌ ●

in‌‌plane‌‌z = p :‌‌an‌‌ellipse‌  ‌



in‌‌plane‌‌y = q :‌‌an‌‌ellipse‌  ‌



in‌‌plane‌‌x = r :‌‌an‌‌ellipse‌  ‌

If‌‌a = b = c ,‌‌the‌‌surface‌‌is‌‌a‌‌sphere.‌   ‌ ‌ Graphing‌‌works‌‌the‌‌same‌‌as‌‌it‌‌does‌‌in‌‌2D.‌ ‌Go‌‌out‌‌a ‌units‌‌in‌‌the‌‌x ‌direction,‌‌b ‌units‌‌in‌‌the‌‌   y ‌direction,‌‌and‌‌c ‌units‌‌in‌‌the‌‌z ‌direction.‌   ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

357‌ ‌

 ‌  ‌ ‌5.1.6.d‌

z=

x2 a2

+

‌Paraboloid‌  ‌

y2 b2

 ‌

Traces:‌  ‌ ●

in‌‌plane‌‌z = p :‌‌an‌‌ellipse‌  ‌



in‌‌plane‌‌y = q :‌‌a‌‌parabola‌  ‌



in‌‌plane‌‌x = r :‌‌a‌‌parabola‌  ‌

 ‌ The‌‌axis‌‌of‌‌the‌‌surface‌‌corresponds‌‌to‌‌the‌‌linear‌‌variable,‌‌meaning‌‌the‌‌graph‌‌will‌‌open‌‌up‌‌   along‌‌the‌‌non-squared‌‌axis.‌   ‌ ‌  ‌ ‌5.1.6.e‌ x2 a2

+

y2 b2



‌Hyperboloid‌‌of‌‌One‌‌Sheet‌  ‌ z2 c2

= 1  ‌

Traces:‌  ‌ ●

in‌‌plane‌‌z = p :‌‌an‌‌ellipse‌  ‌



in‌‌plane‌‌y = q :‌‌a‌‌hyperbola‌  ‌



in‌‌plane‌‌x = r :‌‌a‌‌hyperbola‌  ‌

 ‌ The‌‌axis‌‌of‌‌the‌‌surface‌‌corresponds‌‌to‌‌the‌‌variable‌‌with‌‌the‌‌negative‌‌coefficient.‌ 

358‌

 ‌ ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

 ‌  ‌ ‌5.1.6.f‌ z2 c2



x2 a2



‌Hyperboloid‌‌of‌‌Two‌‌Sheets‌  ‌ y2 b2

= 1  ‌

‌Traces:‌  ‌ ●

in‌‌plane‌‌z = p :‌‌an‌‌ellipse‌‌or‌‌nothing‌  ‌



in‌‌plane‌‌y = q :‌‌a‌‌hyperbola‌  ‌



in‌‌plane‌‌x = r :‌‌a‌‌hyperbola‌  ‌

 ‌  ‌  ‌ The‌‌axis‌‌of‌‌the‌‌surface‌‌corresponds‌‌to‌‌the‌‌variable‌‌with‌‌the‌‌positive‌‌coefficient.‌ ‌The‌‌   surface‌‌does‌‌not‌‌intersect‌‌the‌‌coordinate‌‌plane‌‌perpendicular‌‌to‌‌the‌‌axis.‌ ‌The‌‌graphs‌‌   intersect‌‌the‌‌axis‌‌of‌‌the‌‌surface‌‌at‌‌the‌‌square‌‌root‌‌of‌‌the‌‌positive‌‌coefficient.‌ ‌So,‌‌if‌‌the‌‌   surface’s‌‌axis‌‌is‌‌the‌‌z ‌axis,‌‌the‌‌graph‌‌will‌‌intersect‌‌the‌‌z ‌axis‌‌at‌‌c ‌and‌‌− c .‌   ‌ ‌  

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

359‌ ‌

 ‌  ‌ ‌5.1.6.g‌ x2 a2

+

y2 b2



‌Elliptic‌‌Cone‌  ‌ z2 c2

= 0  ‌

Traces:‌  ‌ ●

in‌‌plane‌‌z = p :‌‌an‌‌ellipse‌  ‌



in‌‌plane‌‌y = q :‌‌a‌‌hyperbola‌  ‌



in‌‌plane‌‌x = r :‌‌a‌‌hyperbola‌  ‌



in‌‌the‌‌x z ‌plane:‌‌a‌‌pair‌‌of‌‌lines‌  ‌



in‌‌the‌‌y z ‌plane:‌‌a‌‌pair‌‌of‌‌lines‌  ‌

 ‌  ‌ The‌‌axis‌‌of‌‌the‌‌surface‌‌corresponds‌‌to‌‌the‌‌variable‌‌with‌‌the‌‌negative‌‌coefficient.‌ ‌The‌‌traces‌‌   in‌‌the‌‌coordinate‌‌planes‌‌parallel‌‌to‌‌the‌‌axis‌‌are‌‌intersecting‌‌lines.‌   ‌

360‌

 ‌ ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

 ‌ ‌5.1.6.h‌

z=

x2 a2



y2 b2

‌Hyperbolic‌‌Paraboloid‌  ‌

 ‌

Traces:‌  ‌ ●

in‌‌plane‌‌z = p :‌‌a‌‌hyperbola‌  ‌



in‌‌plane‌‌y = q :‌‌a‌‌parabola‌  ‌



in‌‌plane‌‌x = r :‌‌a‌‌parabola‌  ‌

The‌‌axis‌‌of‌‌the‌‌surface‌‌corresponds‌‌to‌‌the‌‌   linear‌‌variable.‌ ‌This‌‌is‌‌a‌‌weird‌‌graph;‌‌when‌‌   really‌‌zoomed‌‌out‌‌it‌‌looks‌‌like‌‌a‌‌saddle.‌   ‌ ‌  ‌

5.2‌ ‌Differentiation‌‌of‌‌Functions‌‌of‌‌Several‌‌   Variables‌  ‌ 5.2.1‌

F ‌ unctions‌o ‌ f‌S ‌ everal‌‌Variables‌  ‌

A‌‌function‌‌of‌‌two‌‌variables‌‌z = f (x,  y) ‌maps‌‌each‌‌ordered‌‌pair‌‌(x,  y) ‌in‌‌subset‌‌D ‌of‌‌the‌‌real‌‌   plane‌‌R2 ‌to‌‌a‌‌unique‌‌real‌‌number‌‌z .‌ ‌The‌‌set‌‌D ‌is‌‌called‌‌the‌‌domain‌‌of‌‌the‌‌function.‌ ‌The‌‌   range‌‌of‌‌f ‌is‌‌the‌‌set‌‌of‌‌all‌‌real‌‌numbers‌‌z ‌that‌‌has‌‌at‌‌least‌‌one‌‌ordered‌‌pair‌‌(x,  y) ε D ‌such‌‌   that‌‌f (x,  y) = z .‌   ‌ ‌

 ‌ This‌‌is‌‌a‌‌“2D‌‌function”‌‌(as‌‌there‌‌are‌‌two‌‌input‌‌variables)‌‌that‌‌creates‌‌a‌‌3D‌‌graph.‌   ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

361‌ ‌

 ‌ ‌5.2.1.a‌

‌Level‌‌Curves‌  ‌

Given‌‌a‌‌function‌‌f (x,  y) ‌and‌‌a‌‌number‌‌c ‌in‌‌the‌‌range‌‌f ,‌‌a‌‌level‌‌curve‌‌of‌‌a‌‌function‌‌of‌‌two‌‌   variables‌‌for‌‌the‌‌value‌‌c ‌is‌‌defined‌‌to‌‌be‌‌the‌‌set‌‌of‌‌points‌‌satisfying‌‌the‌‌equation‌‌f (x,  y) = c .‌‌    ‌

 ‌  ‌  ‌ ‌5.2.1.b‌

‌Three‌‌Variable‌‌Functions‌  ‌

w = f (x,  y,  z)   ‌ ‌ A‌‌function‌‌of‌‌three‌‌variables‌‌is‌‌a‌‌quantity‌‌that‌‌depends‌‌on‌‌three‌‌others.‌   ‌ ‌  ‌ ‌5.2.1.c‌

‌Level‌‌Surfaces‌  ‌

Given‌‌a‌‌function‌‌f (x,  y,  z) ‌and‌‌a‌‌number‌‌c ‌in‌‌the‌‌range‌‌of‌‌f ,‌‌a‌‌level‌‌surface‌‌of‌‌a‌‌function‌‌of‌‌   three‌‌variables‌‌is‌‌defined‌‌to‌‌be‌‌the‌‌set‌‌of‌‌points‌‌satisfying‌‌the‌‌equation‌‌f (x,  y,  z) = c .‌   ‌ ‌  

362‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

5.2.2‌

L ‌ imits‌‌and‌C ‌ ontinuity‌  ‌

‌5.2.2.a‌

‌Epsilon/Delta‌‌Definition‌‌of‌‌a‌‌Limit‌‌(1D)‌  ‌

Let‌‌f (x) ‌be‌‌defined‌‌for‌‌all‌‌x =/ a ‌over‌‌an‌‌open‌‌interval‌‌containing‌‌a .‌ ‌Let‌‌L ‌be‌‌a‌‌real‌‌number.‌  ‌ lim f (x) = L   ‌

x → a

If,‌‌for‌‌every‌‌ε > 0 ,‌‌there‌‌exists‌‌a‌‌δ > 0 ,‌‌such‌‌that‌‌if‌‌0 < |x − a | < δ ,‌‌then‌‌|f (x) − L| < ε .‌   ‌ ‌

 ‌  ‌ ‌5.2.2.b‌

‌Limits‌‌with‌‌Two‌‌or‌‌More‌‌Variables‌  ‌

When‌‌dealing‌‌with‌‌limits‌‌of‌‌functions‌‌with‌‌two‌‌or‌‌more‌‌variables,‌‌we‌‌can‌‌approach‌‌a‌‌point‌‌   (x,  y) ‌in‌‌infinitely‌‌many‌‌directions.‌   ‌ ‌ lim

(x, y) → (a, b)

f (x,  y) = L   ‌

(x,  y) ‌gets‌‌“close‌‌to”‌‌(a,  b) ‌then‌‌f (x,  y) ‌gets‌‌“close‌‌to”‌‌L .‌  ‌ ●

if‌‌(a,  b) ‌is‌‌not‌‌a‌‌discontinuity,‌‌plug‌‌in‌‌values‌  ‌



if‌‌(a,  b) ‌is‌‌a‌‌discontinuity,‌‌check‌‌paths‌‌(sub‌‌in‌‌y = b ‌and‌‌take‌‌limit‌‌for‌‌x )‌  ‌ ○

it's‌‌basically‌‌impossible‌‌to‌‌find‌‌the‌‌value‌‌of‌‌the‌‌entire‌‌limit‌‌this‌‌way,‌‌but‌‌you‌‌   can‌‌find‌‌the‌‌value‌‌of‌‌the‌‌limit‌‌when‌‌a‌‌variable‌‌is‌‌held‌‌constant‌  ‌



‌use‌‌the‌‌squeeze‌‌theorem‌‌(see:‌‌Calc‌‌I)‌ 

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

363‌ ‌

 ‌ ‌5.2.2.c‌

‌Limit‌‌Laws‌  ‌



Constant‌‌Law:‌‌

lim

c =c  ‌



Identity‌‌Laws:‌‌

lim

x = a ,‌‌



Sum‌‌and‌‌Difference‌‌Law:‌‌



Constant‌‌Multiple‌‌Law:‌‌



Product‌‌Law:‌‌



Quotient‌‌Law:‌‌



Power‌‌Law:‌‌



Root‌‌Law:‌‌

(x, y) → (a, b)

(x, y) → (a, b)

lim

(x, y) → (a, b)

y =b  ‌

(f (x,  y) ± g (x,  y)) = L ± M   ‌

lim

(x, y) → (a, b)

(c f (x,  y)) = c L   ‌

lim

(x, y) → (a, b)

(f (x,  y) g(x,  y)) = LM   ‌

lim

(x, y) → (a, b)

f(x, y)

lim

(x, y) → (a, b) g(x, y)

=

L M

‌‌for‌‌M =/ 0   ‌

(f (x,  y))n = Ln ,‌‌for‌‌any‌‌positive‌‌integer‌‌n   ‌

lim

(x, y) → (a, b)

f (x,  y) = √L,‌  ‌for‌‌all‌‌L (x, y) → (a, b) √ lim

n

n

‌if‌‌n ‌is‌‌odd,‌‌for‌‌all‌‌L ≥ 0 ‌if‌‌n ‌is‌‌even‌  ‌

 ‌ Example:‌‌Find‌‌

xy 2 2 (x, y) → (−1, −3) x  + y

lim

2

  .‌  ‌

There‌‌is‌‌only‌‌a‌‌discontinuity‌‌at‌‌the‌‌origin‌‌for‌‌this‌‌function,‌‌so‌‌we‌‌can‌‌plug‌‌in‌‌(− 1 ,   − 3 ) ‌to‌‌   find‌‌the‌‌value‌‌of‌‌the‌‌limit.‌    ‌ (−1)(−3 2 ) 2

(−1)  + (−3)

So,‌‌

lim

(x, y) → (−1, −3)

xy 2 x2  + y 2

= −

9 10

2

= −

9 10

 ‌

‌. ‌  ‌ ‌

 ‌  

364‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

5.2.3‌

P ‌ artial‌D ‌ erivatives‌  ‌

Remember‌‌that‌‌derivatives‌‌tell‌‌you‌‌the‌‌slope,‌‌or‌‌instantaneous‌‌rate‌‌of‌‌change,‌‌at‌‌a‌‌certain‌‌   point.‌ ‌In‌‌3D,‌‌slope‌‌depends‌‌on‌‌the‌‌direction‌‌you‌‌go‌‌in.‌ ‌Therefore,‌‌there‌‌is‌‌not‌‌just‌‌one‌‌   derivative,‌‌but‌‌there‌‌is‌‌one‌‌partial‌‌derivative‌‌in‌‌each‌‌direction.‌   ‌ ‌ Let‌‌f (x,  y) ‌be‌‌a‌‌function‌‌of‌‌two‌‌variables.‌ ‌Then‌‌the‌‌partial‌‌derivative‌‌of‌‌f ‌with‌‌respect‌‌to‌‌x ,‌‌   ∂f

written‌‌as‌‌ ∂x ‌‌or‌‌f x ,‌‌is‌‌defined‌‌as‌  ‌ ∂f ∂x

= lim

h → 0

f(x + h, y) − f(x, y) h

 ‌

This‌‌is‌‌read‌‌as‌‌“‌d f  dx ,”‌‌which‌‌means‌‌the‌‌rate‌‌of‌‌change‌‌of‌‌the‌‌function‌‌f ‌with‌‌respect‌‌to‌‌x .‌  ‌ ∂f

The‌‌partial‌‌derivative‌‌of‌‌f ‌with‌‌respect‌‌to‌‌y ,‌‌written‌‌as‌‌ ∂y ‌‌or‌‌f y ,‌‌is‌‌defined‌‌as‌  ‌ ∂f ∂y

f(x, y + k) − f(x, y) k k → 0

= lim

 ‌

Notice‌‌how‌‌only‌‌one‌‌variable‌‌is‌‌changing,‌‌the‌‌other‌‌is‌‌held‌‌constant.‌   ‌ ‌  ‌ ‌5.2.3.a‌ ∂f ∂x

= fx

‌Alternative‌‌Notations‌  ‌ ∂f

‌ ∂x = f x

‌or‌

‌“the‌‌x ‌or‌‌y ‌derivative”‌  ‌

We‌‌can’t‌‌use‌‌f ′ ‌like‌‌we‌‌would‌‌for‌‌functions‌‌of‌‌one‌‌variable,‌‌as‌‌it‌‌does‌‌not‌‌show‌‌what‌  variable‌‌we‌‌are‌‌deriving‌‌with‌‌respect‌‌to.‌   ‌ ‌ You’ll‌‌also‌‌see‌  ‌ z = f (x,  y)   →     

∂z ∂x

=

∂f ∂x

= zx   ‌

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

365‌  ‌

 ‌ ‌5.2.3.b‌

‌Calculating‌‌Partial‌‌Derivatives‌  ‌

When‌‌calculating‌‌a‌‌partial‌‌derivative,‌‌use‌‌the‌‌same‌‌rules‌‌from‌‌Calculus‌‌I,‌‌but‌‌treat‌‌all‌‌   variables‌‌as‌‌constant‌e ‌ xcept‌‌‌the‌‌variable‌‌for‌‌which‌‌we‌‌are‌‌taking‌‌the‌‌derivative.‌   ‌ ‌  ‌ Example:‌‌Calculate‌‌f x ‌and‌‌f y ‌of‌‌f (x,  y) = x 2 − 3 xy + 2 y 2 − 4 x + 5 y − 1 2   ‌ Let’s‌‌begin‌‌by‌‌finding‌‌    ‌ fx =

∂ 2 ∂x [x

− 3 xy + 2 y 2 − 4 x + 5 y − 1 2]   ‌

Pretend‌‌that‌‌y ‌is‌‌a‌‌constant.‌ ‌So,‌‌if‌‌y = c ‌and‌‌c = some number   ‌ ∂ 2 ∂x [x

− 3 xc + 2 c 2 − 4 x + 5 c − 1 2]   ‌

Derive‌‌as‌‌normal,‌‌then‌‌replace‌‌c ‌with‌‌y .‌  ‌ f x = 2x − 3c − 4   ‌ f x = 2x − 3y − 4   ‌ Now,‌‌repeat‌‌this‌‌process‌‌with‌‌x = c ‌to‌‌find‌‌f y .‌  ∂ 2 ∂y [c

− 3 cy + 2 y 2 − 4 c + 5 y − 1 2] = 0 − 3 x + 4 y + 0 + 5 + 0   ‌ f y =   − 3x + 4y + 5   ‌

 

366‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

‌5.2.3.c‌

‌Partial‌‌Derivatives‌‌with‌‌Three‌‌or‌‌More‌‌Variables‌  ‌

Let‌‌f (x,  y,  z) ‌be‌‌a‌‌function‌‌of‌‌three‌‌variables.‌ ‌Then‌‌the‌‌partial‌‌derivatives‌‌of‌‌f ‌with‌‌respect‌‌   to‌‌x ,‌‌y ,‌‌and‌‌z ,‌‌respectively‌‌are:‌  ‌ ∂f ∂x

= lim

f(x + h, y, z) − f(x, y, z) h

 ‌

∂f ∂y

= lim

f(x , y + k, z) − f(x, y, z) k k → 0

 ‌

∂f ∂z

= lim

h → 0

m → 0

f(x, y, z + m) − f(x, y, z) m

 ‌

This‌‌can‌‌also‌‌be‌‌done‌‌with‌‌even‌‌higher‌‌dimensions,‌‌just‌‌repeat‌‌the‌‌pattern.‌   ‌  ‌ ‌5.2.3.d‌

‌Higher‌‌Order‌‌Partial‌‌Derivatives‌  ‌

Notation:‌  ‌ ●

f xx   →    partial‌‌derivative‌‌with‌‌respect‌‌to‌‌x ‌twice‌‌or‌‌the‌‌second‌‌derivative‌‌with‌‌   respect‌‌to‌‌x   ‌



f yy    →    second‌‌derivative‌‌with‌‌respect‌‌to‌‌y   ‌



f xy    →    first‌‌take‌‌the‌‌x ‌derivative,‌‌then‌‌take‌‌the‌‌y ‌derivative‌  ‌



f xyxx   →    first‌‌take‌‌the‌‌x ‌derivative,‌‌then‌‌the‌‌y ‌derivative,‌‌then‌‌x ,‌‌then‌‌x ‌again.‌  ‌

There‌‌are‌‌many‌‌different‌‌possibilities.‌   ‌ ‌ You‌‌can‌‌also‌‌use‌‌Leibniz‌‌Notation:‌  ‌ ∂2 f ∂x2

   →    second‌‌derivative‌‌with‌‌respect‌‌to‌‌x   ‌

∂2 f ∂xy

   →    f yx ‌(notice‌‌how‌‌the‌‌variables‌‌are‌‌in‌‌the‌‌opposite‌‌direction)‌ 

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

 ‌

367‌  ‌

 ‌ ‌5.2.3.e‌

‌Clairaut’s‌‌Theorem‌  ‌

Suppose‌‌that‌‌f (x,  y) ‌is‌‌defined‌‌on‌‌an‌‌open‌‌disk‌‌D ‌that‌‌contains‌‌the‌‌point‌‌(a,  b) .‌ ‌If‌‌the‌‌   functions‌‌f xy ‌and‌‌f yx ‌are‌‌continuous‌‌on‌‌D ,‌‌then‌‌f xy = f yx .‌‌    ‌ This‌‌also‌‌means‌‌that‌‌f yxx = f xxy = f xyx .‌ ‌In‌‌other‌‌words,‌‌order‌‌doesn’t‌‌matter.‌   ‌ ‌  ‌

5.2.4‌ T ‌ angent‌P ‌ lanes‌‌and‌L ‌ inear‌‌Approximations‌  ‌ ‌5.2.4.a‌

‌Tangent‌‌Planes‌ 

Remember‌‌that‌‌a‌‌plane‌‌is‌‌just‌‌a‌‌higher‌‌dimensional‌‌version‌‌of‌‌a‌‌line.‌ ‌So,‌‌the‌‌equation‌‌for‌‌a ‌‌ tangent‌‌plane‌‌is‌‌very‌‌similar‌‌to‌‌the‌‌equation‌‌of‌‌a‌‌tangent‌‌line.‌‌    ‌ Let‌‌S ‌be‌‌a‌‌surface‌‌defined‌‌by‌‌a‌‌differentiable‌‌function‌‌z = f (x,  y) ,‌‌and‌‌let‌‌P 0 = (x 0 ,  y 0 ) ‌be‌‌a ‌‌ point‌‌in‌‌the‌‌domain‌‌of‌‌f .‌ ‌Then,‌‌the‌‌equation‌‌of‌‌the‌‌tangent‌‌plane‌‌to‌‌S ‌at‌‌P 0 ‌is‌‌given‌‌by‌  ‌ z = f (x 0 ,  y 0 ) + f x(x 0 ,  y 0 )(x − x 0 ) + f y (x 0 ,  y 0 )(y − y 0 )   ‌

 ‌ A‌‌tangent‌‌plane‌‌to‌‌a‌‌surface‌‌does‌‌not‌‌always‌‌exist‌‌at‌‌every‌‌point‌‌on‌‌the‌‌surface.‌ ‌Just‌‌like‌‌in‌‌   Calc‌‌I,‌‌if‌‌you‌‌have‌‌sharp/undefined‌‌points,‌‌you‌‌cannot‌‌have‌‌a‌‌tangent‌‌plane.‌   ‌ 368‌

 ‌ ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

‌5.2.4.b‌

‌Linear‌‌Approximations‌  ‌

Linear‌‌approximations‌‌in‌‌higher‌‌dimensions‌‌are‌‌planes‌‌(tangent‌‌planes,‌‌to‌‌be‌‌exact).‌   ‌ ‌ Given‌‌a‌‌function‌‌z = f (x,  y) ‌with‌‌continuous‌‌partial‌‌derivatives‌‌that‌‌exist‌‌at‌‌point‌‌(x 0 ,  y 0 ) ,‌‌   the‌‌linear‌‌approximation‌‌of‌‌f ‌at‌‌point‌‌(x 0 ,  y 0 ) ‌is‌‌given‌‌by‌‌the‌‌equation‌  ‌ L(x,  y) = f (x 0 ,  y 0 ) + f x(x 0 ,  y 0 )(x − x 0 ) + f y (x 0 ,  y 0 )(y − y 0 )   ‌  ‌ Example:‌‌Given‌‌f (x,  y) = √41 − 4 x 2 − y 2,‌ ‌approximate‌‌f (2.1,  2.9) ‌using‌‌(2,  3) .‌ ‌What‌‌is‌‌the‌‌   approximate‌‌value‌‌of‌‌(2.1,  2.9) .‌   ‌ ‌ Begin‌‌by‌‌finding‌‌f (2,  3),  f x(2,  3) ‌and‌‌f y (2,  3) .‌   ‌ ‌ f (2,  3) =

√41 − 4(2 ) − 3 2

2

= √16 = 4   ‌

f x = 21 (41 − 4 x 2 − y 2 )−1/2 · (− 8 x)   →   f x(2,  3) =   − 2   ‌ f y = 21 (41 − 4 x 2 − y 2 )−1/2 · (− 2 y)   →   f y (2,  3) =   − 43   ‌ Now,‌‌plug‌‌in‌‌the‌‌knowns‌‌to‌‌the‌‌L(x,  y) ‌formula‌‌and‌‌simplify.‌‌    ‌ L(x,  y) =   − 2 (x − 2 ) − 43 (y − 3 ) + 4 =   − 2 x − 43 y +

41 4

 ‌

Now,‌‌plug‌‌in‌‌x = 2 .1 ‌and‌‌y = 2 .9 ‌to‌‌approximate‌‌the‌‌value‌‌of‌‌f (2.1,  2.9) .‌‌    ‌ L(2.1,  2.9) = 3 .879   The‌‌actual‌‌value‌‌of‌‌f (2.1,  2.9) = 3 .866522986 ,‌‌so‌‌the‌‌approximation‌‌is‌‌very‌‌close.‌   ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

369‌  ‌

 ‌ ‌5.2.4.c‌

‌Differentials‌  ‌

Let‌‌z = f (x,  y) ‌be‌‌a‌‌function‌‌of‌‌two‌‌variables‌‌with‌‌(x 0 ,  y 0 ) ‌in‌‌the‌‌domain‌‌of‌‌f ,‌‌and‌‌let‌‌Δ x ‌and‌‌   Δ y ‌be‌‌chosen‌‌so‌‌that‌‌(x 0 + Δ x,  y 0 + Δ y) ‌is‌‌also‌‌in‌‌the‌‌domain‌‌of‌‌f .‌ ‌If‌‌f ‌is‌‌differentiable‌‌at‌‌the‌‌   point‌‌(x 0 ,  y 0 ) ,‌‌the‌‌the‌‌differentials‌‌d x ‌and‌‌d y ‌are‌‌defined‌‌as‌‌    ‌ d x = Δ x 

‌and‌

‌d y = Δ y   ‌

The‌‌differential‌‌d z ,‌‌also‌‌called‌‌the‌‌total‌‌differential‌‌of‌‌z = f (x,  y) ‌at‌‌(x 0 ,  y 0 ) ,‌‌is‌‌defined‌‌as‌  ‌ d z = f x(x 0 ,  y 0 )dx + f y (x 0 ,  y 0 )dy   ‌ where‌‌Δ z ‌is‌‌the‌‌change‌‌in‌‌output‌‌of‌‌the‌‌surface,‌‌d z ‌is‌‌the‌‌change‌‌in‌‌output‌‌of‌‌the‌‌tangent‌‌   plane,‌‌and‌‌d z ≈ Δ z .‌   ‌ ‌  ‌ ‌5.2.4.d‌

‌Helpful‌‌Fact‌‌with‌‌Normal‌‌Vectors‌  ‌

Because‌‌of‌‌tangent‌‌planes,‌‌we‌‌know‌‌that‌‌the‌‌normal‌‌vector‌‌of‌‌a‌‌function‌‌f (x) ‌through‌‌a ‌‌ point‌‌(x,  y) ‌is‌  ‌ n→ =   < f x,  f y ,   − 1 >   ‌  

370‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

5.2.5‌

C ‌ hain‌R ‌ ule‌  ‌

Say‌‌we‌‌have‌‌a‌‌function‌‌z = f (x,  y) ,‌‌where‌‌x = g (t) ‌and‌‌y = h (t) .‌ ‌We‌‌can‌‌make‌‌a‌‌dependency‌‌   chart‌‌to‌‌show‌‌this‌‌relationship.‌‌    ‌

 ‌ To‌‌find‌‌the‌‌derivative‌‌of‌‌ dz ‌‌(notice‌‌how‌‌it‌‌is‌‌not‌‌a‌‌partial‌‌derivative,‌‌as‌‌it‌‌encompasses‌‌the‌‌  dt entire‌‌function),‌‌follow‌‌all‌‌the‌‌paths‌‌down‌‌the‌‌chain‌‌and‌‌add‌‌them‌‌up.‌‌    ‌  ‌

 ‌ Multiply‌‌derivatives‌‌that‌‌contain‌‌the‌‌same‌‌variable‌‌(i.e.‌‌multiply‌‌derivatives‌‌that‌‌contain‌‌x  ‌ by‌‌derivatives‌‌that‌‌contain‌‌x )‌‌and‌‌add‌‌derivatives‌‌that‌‌contain‌‌different‌‌variables.‌ ‌The‌‌   derivative‌‌ dz ‌‌will‌‌be‌  ‌ dt dz dt

= ( ∂z ∂x ·

dx ) dt

+ ( ∂z ∂y ·

dy dt )  



 ‌  

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

371‌ ‌

 ‌ Example:‌‌Find‌‌the‌‌derivative‌‌∂w ‌‌where‌‌w = x 2 + y 3 + z ,  x = u + v 2 ,  y = u − v ,   and‌‌z = 1 − 2 v .‌   ‌ ‌ ∂u Begin‌‌by‌‌making‌‌a‌‌dependency‌‌chart‌‌to‌‌keep‌‌track‌‌of‌‌the‌‌various‌‌chains‌‌of‌‌derivatives.‌   ‌ ‌

 ‌ Follow‌‌the‌‌chain‌‌from‌‌w ‌down‌‌to‌‌u ‌and‌‌build‌‌the‌‌derivative‌‌∂w ‌. ‌  ‌ ‌ ∂u

 ‌ ∂x ) + ( ∂w ∂u ∂y

∂y ) + ( ∂w ∂u ∂z

∂z )  ∂u



∂w ∂u

= ( ∂w · ∂x

∂w ∂u

= (2x)(1) + (3y 2 )(1) + (1)(0) = 2 x + 3 y 2   ‌

·

·

Now,‌‌find‌‌the‌‌derivatives.‌   ‌ ‌

Now‌‌replace‌‌the‌‌x ‌and‌‌y ,‌‌putting‌‌the‌‌derivative‌‌in‌‌terms‌‌of‌‌u ‌and‌‌v .‌   ‌ ‌ ∂w ∂u

 

372‌

= 2 (u + v 2 ) + 3 (u − v )2   ‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

‌5.2.5.a‌

‌Implicit‌‌Differentiation‌  ‌

Assume‌‌that‌‌y ‌is‌‌a‌‌function‌‌of‌‌x .‌‌    ‌ dy

Let‌‌6 x 2 − 1 0xy − 4 y 2 + 2 7x − 1 9y + 3 0 = 0 .‌ ‌Use‌‌partial‌‌derivatives‌‌to‌‌calculate‌‌ dx ‌‌at‌‌the‌‌point‌‌   (− 3 ,  3) .‌    ‌ Start‌‌by‌‌taking‌‌the‌‌derivative‌‌with‌‌respect‌‌to‌‌x ‌of‌‌both‌‌sides.‌   ‌ ‌ d 2 dx (6x

− 1 0xy − 4 y 2 + 2 7x − 1 9y + 3 0) =

d dx (0)  



dy dy 1 2x − 1 0(1 · y + x · dy dx ) − 8 y dx + 2 7 − 1 9 dx = 0   ‌ dy Solve‌‌for‌‌dy dx ‌by‌‌moving‌‌all‌‌ dx ‌terms‌‌to‌‌one‌‌side‌‌and‌‌factor.‌   ‌ ‌ dy dy dy dy dy 1 2x − 1 0y − 1 0x dy dx − 8 y dx + 2 7 − 1 9 dx = 0 ‌→     − 1 0x dx − 8 y dx − 1 9 dx =   − 1 2x + 1 0y − 2 7   ‌ dy

(− 1 0x − 8 y − 1 9) dx =   − 1 2x + 1 0y − 2 7   →   

dy dx

=

−12x + 10y − 27 −10x − 8y − 19

 ‌

Plug‌‌in‌‌(− 3 ,  3) .‌  ‌ dy dx

= −3 

 ‌  ‌  ‌ Tip:‌  ‌ dy

∂f/∂x

If‌‌you‌‌have‌‌f (x,  y) ,‌‌then‌‌ dx =   − ( ∂f/∂y ) ‌. ‌ ‌ ∂f/∂x

∂z If‌‌you‌‌have‌‌f (x,  y,  z) ,‌‌then‌‌ ∂x =   − ( ∂f/∂z )   ‌

 

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

373‌  ‌

 ‌

5.2.6‌

D ‌ irectional‌D ‌ erivatives‌‌and‌‌the‌G ‌ radient‌  ‌

The‌‌directional‌‌derivative‌‌is‌‌the‌‌rate‌‌of‌‌change‌‌of‌‌height‌‌(output)‌‌of‌‌f ‌as‌‌we‌‌travel‌‌along‌‌r (t) .‌   ‌ ‌

 ‌ One‌‌way‌‌of‌‌defining‌‌the‌‌directional‌‌derivative‌‌is‌‌by‌‌using‌‌the‌‌parametric‌‌equation‌  r (t) = x→ + tu→ ,‌‌where‌‌x→ ‌is‌‌the‌‌point‌‌(x,  y) ‌where‌‌we‌‌take‌‌the‌‌derivative,‌‌u→ ‌is‌‌the‌‌unit‌‌vector‌‌   that‌‌indicates‌‌the‌‌direction‌‌in‌‌which‌‌we‌‌are‌‌going,‌‌and‌‌t ‌is‌‌the‌‌parameter.‌ ‌f (r(t)) ‌is‌‌the‌‌path‌‌   on‌‌the‌‌surface‌‌above‌‌the‌‌line.‌ ‌Then,‌‌we‌‌can‌‌take‌‌the‌‌derivative.‌ ‌So,‌‌the‌‌directional‌‌   derivative‌‌D u f ‌is‌  ‌ D uf = dy This‌‌definition‌‌is‌‌the‌‌same‌‌as‌‌f x dx dt + f y dt .‌   ‌

374‌

d dt [f (r(t))]t = 0

 ‌  ‌ ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

‌5.2.6.a‌

‌Gradient‌‌Vector‌  ‌





Given‌‌a‌‌function‌‌f (x,  y) ,‌‌we‌‌define‌‌the‌‌gradient‌‌vector‌‌as‌‌ f (x,  y) =   < f x,  f y >,‌ ‌where‌‌ f  ‌is‌‌   read‌‌as‌‌“del‌‌f .”‌   ‌ ‌  ‌ ‌5.2.6.b‌

‌Theorem‌  ‌

An‌‌easier‌‌version‌‌of‌‌the‌‌directional‌‌derivative‌‌formula‌‌is‌  ‌ D uf =

∇f (x,  y) · u   ‌

where‌‌D u f ‌is‌‌read‌‌as‌‌the‌‌derivative‌‌of‌‌f ‌in‌‌the‌‌direction‌‌of‌‌u .‌ ‌Notice‌‌that‌‌we‌‌are‌‌taking‌‌the‌‌   dot‌‌product‌‌of‌‌the‌‌vectors.‌   ‌ ‌ So,‌‌to‌‌find‌‌the‌‌directional‌‌derivative‌‌of‌‌f (x,  y) ‌at‌‌the‌‌point‌‌(x 0 ,  y 0 ) ‌in‌‌the‌‌direction‌‌of‌‌   v =   < a ,  b > …‌  ‌ 1. Find‌‌u =



v ||v||

‌(unit‌‌vector‌‌of‌‌v )‌  ‌

2. Use‌‌ f  ‌for‌‌D u f =

∇f (x ,  y ) · u   ‌ 0

0

 ‌ Example:‌‌Find‌‌the‌‌directional‌‌derivative‌‌at‌‌x = (1,   − 1 ) ‌in‌‌the‌‌direction‌‌of‌‌u =   < 2 ,   − 3 > ‌of‌‌   f (x,  y) = 2 x 3 + y 2 .‌   ‌ ‌ Find‌‌the‌‌unit‌‌vector‌‌of‌‌the‌‌given‌‌vector‌‌and‌‌find‌‌the‌‌gradient‌‌vector‌‌of‌‌the‌‌function.‌   ‌ ‌ ||u|| =

√2

2

+ (− 3 )2 = √13    →   unit vector =  
   ‌

∇f =   < 6x ,  2y >    →   f (1,   − 1) =   < 6(1) ,  2(− 1) >   =   < 6,   − 2 >‌   2

 

2

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

375‌  ‌

 ‌ Now,‌‌use‌‌the‌‌directional‌‌derivative‌‌formula.‌   ‌ ‌ D uf = You‌‌can‌‌factor‌‌out‌‌

1

√13

∇f · u   →   D f =   < 6,   − 2 >   ·   < √ →

2 ,  13

u



3

√13

>   ‌

‌as‌‌a‌‌multiplier‌‌to‌‌make‌‌it‌‌easier‌‌to‌‌solve.‌   ‌ ‌

D uf =

1

√13

(< 6 ,   − 2 >   ·   < 2 ,   − 3 >) =

1

√13

(12 + 6 ) =

18

√13

 ‌

 ‌ ‌5.2.6.c‌

‌Properties‌‌of‌‌the‌‌Gradient‌  ‌

Suppose‌‌the‌‌function‌‌z = f (x,  y) ‌is‌‌differentiable‌‌at‌‌(x 0 ,  y 0 ) .‌  ‌ ● ●

∇ If‌‌∇f (x ,  y ) =/ 0,‌  ‌then‌‌D f (x ,  y ) ‌is‌‌maximized‌‌when‌‌u ‌points‌‌in‌‌the‌‌same‌‌direction‌‌   as‌‌∇f (x ,  y ).‌  ‌The‌‌maximum‌‌value‌‌of‌‌D f (x ,  y ) ‌is‌‌||∇f (x ,  y )||.‌   ‌ ‌ If‌‌ f (x 0 ,  y 0 ) = 0 ,‌  ‌then‌‌D u f (x 0 ,  y 0 ) = 0 ‌for‌‌any‌‌unit‌‌vector‌‌u→ .‌  ‌ 0

0







u

0



0

0

u

0

0

0

0

0

i.e.‌‌if‌‌you‌‌are‌‌looking‌‌for‌‌the‌‌fastest‌‌increase,‌‌follow‌‌the‌‌gradient‌  ‌

If‌‌ f (x 0 ,  y 0 ) =/ 0,‌  ‌then‌‌D u f (x 0 ,  y 0 ) ‌is‌‌minimized‌‌when‌‌u→ ‌points‌‌in‌‌the‌‌opposite‌‌  



direction‌‌as‌‌ f (x 0 ,  y 0 ).‌  ‌The‌‌minimum‌‌value‌‌of‌‌D u f (x 0 ,  y 0 ) ‌is‌‌− || ○

∇f (x ,  y )||.‌‌    ‌ 0

0

if‌‌you‌‌are‌‌looking‌‌for‌‌the‌‌fastest‌‌decrease,‌‌follow‌‌the‌‌negative‌‌of‌‌the‌‌gradient‌  ‌

 ‌ ‌5.2.6.d‌

‌Level‌‌Curve‌‌Theorem‌  ‌

Suppose‌‌the‌‌function‌‌z = f (x,  y) ‌has‌‌continuous‌‌first‌‌order‌‌partial‌‌derivatives‌‌in‌‌an‌‌open‌‌  





disk‌‌centered‌‌at‌‌a‌‌point‌‌(x 0 ,  y 0 ) .‌ ‌If‌‌ f (x 0 ,  y 0 ) =/ 0,‌  ‌then‌‌ f (x 0 ,  y 0 )  ‌is‌‌normal‌‌(perpendicular)‌‌   to‌‌the‌‌level‌‌curve‌‌of‌‌f ‌at‌‌(x 0 ,  y 0 ) .‌   ‌ ‌ So,‌‌if‌‌you‌‌have‌‌the‌‌level‌‌curve‌‌diagram‌‌of‌‌a‌‌function‌‌f ,‌‌you‌‌can‌‌draw‌‌the‌‌direction‌‌of‌‌fastest‌‌   increase‌‌by‌‌making‌‌a‌‌right‌‌angle‌‌with‌‌the‌‌level‌‌curve.‌   ‌

376‌

 ‌ ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

‌5.2.6.e‌

‌Higher‌‌Dimensional‌‌Gradients‌  ‌

Let‌‌w = f (x,  y,  z) ‌be‌‌a‌‌function‌‌of‌‌three‌‌(this‌‌can‌‌be‌‌generalized‌‌for‌‌any‌‌amount‌‌of‌‌  



dimensions)‌‌variables‌‌such‌‌that‌‌f x,   f y ,   and‌‌f z ‌exist.‌ ‌The‌‌vector‌‌ f (x,  y,  z) ‌i s‌‌called‌‌the‌‌   gradient‌‌of‌‌f ‌and‌‌is‌‌defined‌‌as‌‌    ‌

∇f (x,  y,  z) = f (x,  y,  z)i + f (x,  y,  z)j + f (x,  y,  z)k  ‌  x



y

z



In‌‌other‌‌words,‌‌ w =   < f x,  f y ,  f z >.‌  ‌ f (x,  y,  z) ‌c  an‌‌also‌‌be‌‌written‌‌as‌‌g rad f (x,  y,  z) .‌   ‌ ‌ You‌‌calculate‌‌the‌‌directional‌‌derivative‌‌of‌‌functions‌‌with‌‌three‌‌or‌‌more‌‌variables‌‌the‌‌same‌‌   as‌‌you‌‌would‌‌with‌‌functions‌‌of‌‌two‌‌variables.‌   ‌ ‌  ‌  ‌

5.2.7‌

M ‌ axima/Minima‌P ‌ roblems‌  ‌

In‌‌Calculus‌‌I,‌‌we‌‌would‌‌find‌‌minimums‌‌and‌‌maximums‌‌by‌‌setting‌‌the‌‌derivatives‌‌equal‌‌to‌‌   zero‌‌and‌‌solving.‌ ‌The‌‌points‌‌on‌‌the‌‌graph‌‌where‌‌the‌‌derivative‌‌is‌‌equal‌‌to‌‌zero‌‌are‌‌called‌‌   critical‌‌points.‌   ‌ ‌ To‌‌find‌‌the‌‌minima‌‌and‌‌maxima‌‌of‌‌two‌‌variable‌‌equations,‌‌we‌‌still‌‌use‌‌critical‌‌points.‌  ‌ Remember‌‌that‌‌the‌‌tangent‌‌plane‌‌to‌‌z = f (x,  y) ‌at‌‌(x 0 ,  y 0 ,  z 0 ) ‌is‌‌    ‌ z = f x(x 0 ,  y 0 )(x − x 0 ) + f y (x 0 ,  y 0 )(y − y 0 ) + z 0   ‌ To‌‌get‌‌a‌‌tangent‌‌plane‌‌equal‌‌to‌‌zero,‌‌f x(x 0 ,  y 0 )(x − x 0 ) ‌and‌‌f y (x 0 ,  y 0 )(y − y 0 ) ‌must‌‌be‌‌equal‌‌to‌‌   zero.‌ ‌When‌‌this‌‌happens,‌‌z ‌is‌‌a‌‌critical‌‌point‌‌c .‌   ‌ ‌ A‌‌point‌‌(x 0 ,  y 0 ) ‌is‌‌called‌‌a‌‌critical‌‌point‌‌of‌‌f (x,  y) ‌if‌‌    ‌

∇f (x ,  y ) = 0   (f →

0

0

x

= 0 ‌a   nd‌‌f y = 0 )‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

‌or‌



‌ f (x 0 ,  y 0 ) DN E  ‌(this‌‌is‌‌rare)‌ 

 ‌ ‌

377‌  ‌

 ‌  ‌ Example:‌‌Find‌‌the‌‌critical‌‌points‌‌of‌‌f (x,  y) = x 2 − 6 x + y 2 + 2 y + 1 2 .‌  ‌

∇f  ‌must‌‌be‌‌equal‌‌to‌‌the‌‌zero‌‌vector.‌ ‌So‌‌find‌‌∇f ,‌  ‌set‌‌each‌‌component‌‌of‌‌the‌‌vector‌‌equal‌‌  to‌‌zero,‌‌and‌‌solve.‌   ‌ ‌

∇f =   < 2x − 6,  2y + 2 >   ‌ 2 x − 6 = 0    →   x = 3           2y + 2 = 0    →   y =   − 1   ‌ So,‌‌the‌‌critical‌‌point‌‌of‌‌the‌‌function‌‌is‌‌(3,   − 1 ) .‌ ‌To‌‌find‌‌the‌‌z ‌value‌‌of‌‌this‌‌point,‌‌plug‌‌in‌‌the‌‌   point‌‌to‌‌the‌‌original‌‌function:‌‌f (3,   − 1 ) = 2 .‌ ‌When‌‌we‌‌graph‌‌this‌‌equation,‌‌we‌‌see‌‌that‌‌this‌‌   critical‌‌point‌‌is‌‌the‌‌local‌‌and‌‌absolute‌‌minimum.‌   ‌ ‌  ‌ ‌5.2.7.a‌

‌Second‌‌Derivative‌‌Test‌  ‌

Let‌‌z = f (x,  y) ‌be‌‌a‌‌function‌‌of‌‌two‌‌variables‌‌for‌‌which‌‌the‌‌first‌‌and‌‌second‌‌order‌‌partial‌‌   derivatives‌‌are‌‌continuous‌‌on‌‌some‌‌disk‌‌containing‌‌the‌‌point‌‌(x 0 ,  y 0 ) .‌ ‌Suppose‌‌   f x(x 0 ,  y 0 ) = 0 ‌and‌‌f y (x 0 ,  y 0 ) = 0 .‌ ‌Define‌‌the‌‌quantity‌  ‌ D = f xx(x 0 ,  y 0 )f yy (x 0 ,  y 0 ) − (f xy (x 0 ,  y 0 ))2   ‌ ●

if‌‌D > 0 ‌and‌‌f xx(x 0 ,  y 0 ) > 0 ,‌‌then‌‌f ‌has‌‌a‌‌local‌‌minimum‌‌at‌‌(x 0 ,  y 0 )   ‌



if‌‌D > 0 ‌and‌‌f xx(x 0 ,  y 0 ) < 0 ,‌‌then‌‌f ‌has‌‌a‌‌local‌‌maximum‌‌at‌‌(x 0 ,  y 0 )   ‌



if‌‌D < 0 ,‌‌then‌‌f ‌has‌‌a‌‌saddle‌‌point‌‌at‌‌(x 0 ,  y 0 )   ‌ ○

A‌‌saddle‌‌point‌‌is‌‌neither‌‌a‌‌maximum‌‌or‌‌a‌‌minimum.‌ ‌It‌‌is‌‌a‌‌higher‌‌   dimensional‌‌version‌‌of‌‌an‌‌inflection‌‌point.‌   ‌ ‌

●  

378‌

if‌‌D = 0 ,‌‌then‌‌the‌‌test‌‌is‌‌inconclusive‌  ‌  ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

Example:‌‌Find‌‌the‌‌critical‌‌points‌‌of‌‌g (x,  y) = x 2 + 3 xy + x + 6 y ‌and‌‌use‌‌the‌‌second‌‌derivative‌‌   test‌‌to‌‌find‌‌out‌‌what‌‌kind‌‌of‌‌critical‌‌point‌‌it‌‌is.‌   ‌ ‌ First,‌‌find‌‌the‌‌gradient‌‌vector‌‌of‌‌g ‌and‌‌set‌‌each‌‌component‌‌to‌‌zero‌‌to‌‌find‌‌the‌‌critical‌‌   points.‌‌    ‌

∇g =   < 2x + 3y + 1,  3x + 6 >   ‌ critical‌‌point‌‌= (− 2 ,  1)   ‌ Use‌‌this‌‌point‌‌as‌‌(x 0 ,  y 0 ) .‌ ‌Now,‌‌find‌‌g xx,  g yy , ‌and‌‌g xy .‌  ‌ g xx = 2       g yy = 0       g xy = 3   ‌ Use‌‌these‌‌values‌‌to‌‌find‌‌D .‌  ‌ D = (2)(0) − 3 2 =   − 9   ‌ Since‌‌D < 0 ,‌‌the‌‌critical‌‌point‌‌(− 2 ,  1) ‌is‌‌a‌‌saddle‌‌point.‌  ‌  ‌

5.2.8‌

L ‌ agrange‌M ‌ ultipliers‌  ‌

The‌‌method‌‌of‌‌Lagrange‌‌multipliers‌‌is‌‌a‌‌way‌‌of‌‌finding‌‌the‌‌local‌‌extrema‌‌of‌‌a‌‌function‌‌   f (x,  y) ‌subject‌‌to‌‌a‌‌constraint‌‌equation‌‌g (x,  y) = c .‌  ‌

∇ ∇

The‌‌Lagrange‌‌equation‌‌is‌‌ f = λ g .‌  ‌λ ,‌‌lambda,‌‌is‌‌the‌‌Lagrange‌‌multiplier.‌   ‌ ‌ So,‌‌to‌‌find‌‌the‌‌extrema‌‌of‌‌f (x,  y) ‌subject‌‌to‌‌constraint‌‌g (x,  y) = c ,‌‌one‌‌needs‌‌to‌‌solve‌‌the‌‌   vector‌‌equation‌  ‌

∇f = λ∇g   ‌ This‌‌is‌‌really‌‌a‌‌system‌‌of‌‌equations.‌ ‌The‌‌Lagrange‌‌multiplier‌‌is‌‌only‌‌used‌‌to‌‌help‌‌find‌‌the‌‌   solution,‌‌we‌‌don’t‌‌really‌‌care‌‌what‌‌λ ‌is‌‌most‌‌of‌‌the‌‌time.‌   ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

379‌  ‌

 ‌ Example:‌‌Find‌‌the‌‌minimum‌‌and‌‌maximum‌‌of‌‌the‌‌function‌‌f (x,  y) = x + 5 y ‌(function‌‌to‌‌be‌‌   optimized)‌‌on‌‌the‌‌circle‌‌x 2 + y 2 = 1 6 ‌(‌g (x,  y) ‌constraint).‌  ‌ Set‌‌up‌‌the‌‌Lagrange‌‌equation.‌   ‌ ‌ < 1 ,  5 >   =  λ < 2 x,  2y >   ‌ Now,‌‌set‌‌up‌‌the‌‌system‌‌of‌‌equations:‌‌there‌‌will‌‌be‌‌three‌‌equations‌‌in‌‌the‌‌system‌‌as‌‌we‌‌   have‌‌three‌‌unknowns‌‌(‌x ,  y,   and‌‌λ ).‌ ‌To‌‌get‌‌the‌‌first‌‌two,‌‌distribute‌‌the‌‌lambda‌‌then‌‌set‌‌   corresponding‌‌components‌‌equal‌‌to‌‌each‌‌other.‌ ‌The‌‌third‌‌equation‌‌will‌‌be‌‌the‌‌original‌‌   constraint‌‌(‌g (x,  y) ).‌   ‌ ‌ 1 = λ2x   ‌ 5 = λ2y   ‌ x 2 + y 2 = 1 6    ‌ ‌ You‌‌can‌‌use‌‌substitution,‌‌elimination,‌‌or‌‌something‌‌creative‌‌to‌‌solve‌‌this‌‌system‌‌of‌‌   equations‌‌(you‌‌could‌‌also‌‌use‌‌an‌‌online‌‌calculator—there’s‌‌one‌‌I‌‌recommend‌‌in‌‌Section‌‌1 ‌ ‌ of‌‌this‌‌book—but‌‌I’ll‌‌work‌‌it‌‌out‌‌by‌‌hand‌‌here).‌   ‌ ‌ Solve‌‌for‌‌x ‌in‌‌the‌‌first‌‌equation,‌‌y ‌in‌‌the‌‌second‌‌equation,‌‌then‌‌plug‌‌these‌‌into‌‌the‌‌third‌‌   equation.‌ ‌Solve‌‌for‌‌λ .‌ 

 ‌ ‌ ‌5 = λ2y   →   y = 25 λ   ‌

1 = λ2x   →   x = 21 λ

26 ( 21 λ)2 + ( 25 λ)2 = 1 6   →    4λ12 + 4λ252 = 1 6   →   26 = 6 4λ2    →   λ =   ± √8   ‌

Notice‌‌how‌‌there‌‌are‌‌two‌‌possibilities‌‌for‌‌lambda.‌ ‌Plug‌‌both‌‌of‌‌these‌‌in‌‌to‌‌find‌‌the‌‌   maximum‌‌and‌‌minimum‌‌values.‌   ‌ ‌ λ = √826    →   x = λ =   − √826    →   x =   −

380‌

4

√26 4

√26

,  y =

20

√26

,  y =   −

   →   f (

20

√26

4 , 20 ) = 104   ‌ √26 √26 √26

   →   f (−

4

√26

,−

20

√26

)= −

104

√26

 

 ‌ ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ So,‌‌the‌‌maximum‌‌value‌‌of‌‌the‌‌function‌‌bounded‌‌by‌‌x 2 + y 2 = 1 6 ‌is‌‌ 104 ‌and‌‌the‌‌minimum‌‌   √26 value‌‌is‌‌−

104

√26

.‌   ‌ ‌

 ‌ ‌5.2.8.a‌

‌Note‌‌on‌‌Extrema‌  ‌

In‌‌higher‌‌dimensional‌‌problems‌‌an‌‌absolute‌‌maximum‌w ‌ ill‌‌‌occur‌‌at‌‌either‌‌    ‌ 1. a‌‌critical‌‌point‌‌(see‌‌the‌‌section‌‌before‌‌this‌‌one)‌  ‌ 2. a‌‌boundary‌‌point‌‌(this‌‌is‌‌the‌‌Lagrange‌‌method)‌  ‌ Therefore,‌‌when‌‌looking‌‌for‌‌absolute‌‌maxima‌‌of‌‌functions,‌‌check‌‌using‌‌both‌‌of‌‌these‌‌   methods.‌   ‌ ‌

 ‌

5.3‌

‌Double‌‌and‌‌Triple‌‌Integrals‌  ‌

5.3.1‌

D ‌ ouble‌I‌ ntegrals‌o ‌ ver‌R ‌ ectangular‌R ‌ egions‌  ‌

Remember‌‌that‌‌integrals‌‌find‌‌areas‌‌under‌‌curves.‌ ‌The‌‌integral‌‌formula‌‌is‌‌derived‌‌from‌‌   adding‌‌up‌‌the‌‌area‌‌of‌‌infinitely‌‌many‌‌rectangles‌‌under‌‌curves.‌   ‌ ‌ It‌‌is‌‌similar‌‌for‌‌3D‌‌graphs,‌‌but‌‌instead‌‌of‌‌finding‌‌the‌‌area‌‌under‌‌a‌‌curve,‌‌we‌‌are‌‌finding‌‌the‌‌   volume‌‌under‌‌a‌‌surface.‌ ‌So,‌‌instead‌‌of‌‌rectangles,‌‌we‌‌are‌‌adding‌‌up‌‌the‌‌volumes‌‌of‌‌   infinitely‌‌many‌‌little‌‌boxes.‌   ‌ ‌  

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

381‌  ‌

 ‌ ‌5.3.1.a‌

‌Fubini’s‌‌Theorem‌‌and‌‌Iterated‌‌Integrals‌  ‌

 ‌ To‌‌find‌‌the‌‌volume‌‌above‌‌the‌‌region‌‌R ‌and‌‌below‌‌the‌‌function‌‌f (x) ,‌‌we‌‌will‌‌need‌‌to‌‌use‌‌an‌‌      

iterated‌‌integral.‌ ‌An‌‌iterated‌‌integral‌‌is‌‌set‌‌up‌‌as‌‌∫ ∫ f (x,  y) dA ,‌‌where‌‌R ‌is‌‌the‌‌region‌‌we‌‌are‌‌    R

integrating‌‌over,‌‌f (x,  y) ‌is‌‌the‌‌function,‌‌and‌‌d A ‌is‌‌an‌‌infinitesimal‌‌piece‌‌of‌‌area.‌ ‌In‌‌the‌‌case‌‌   of‌‌double‌‌integrals‌‌over‌‌rectangular‌‌regions‌‌d A ‌can‌‌either‌‌be‌‌equal‌‌to‌‌d xdy ‌or‌‌d ydx .‌  ‌ For‌‌the‌‌graph‌‌above,‌‌to‌‌find‌‌the‌‌volume‌‌between‌‌R ‌and‌‌f (x) ‌we‌‌would‌‌use‌‌the‌‌double‌‌   integral‌  ‌ x = d y = b





f (x,  y) dydx    ‌ ‌

x = c y = a

y = b

The‌‌inner‌‌integral‌‌



f (x,  y) dy ‌finds‌‌the‌‌area‌‌of‌‌the‌‌vertical‌‌piece‌‌and‌‌the‌‌outer‌‌integral‌‌  

y = a

finds‌‌the‌‌volume.‌ ‌Notice‌‌how‌‌the‌‌variable‌‌of‌‌the‌‌inner‌‌integral’s‌‌limits‌‌match‌‌the‌‌variable‌‌   of‌‌the‌‌inner‌‌differential‌‌and‌‌vice‌‌versa.‌ ‌This‌‌is‌‌a‌‌crucial‌‌part‌‌of‌‌iterated‌‌integrals.‌ ‌To‌‌   evaluate‌‌this‌‌integral,‌‌start‌‌on‌‌the‌‌inside‌‌and‌‌work‌‌your‌‌way‌‌out.‌   ‌

382‌

 ‌ ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

Example:‌‌Find‌‌the‌‌volume‌‌above‌‌R = [0,  1] × [1,  2] ‌and‌‌below‌‌f (x,  y) = x 2 + y 2 .‌   ‌ ‌ Let’s‌‌start‌‌by‌‌drawing‌‌out‌‌R .‌   ‌ ‌

 ‌ Now,‌‌set‌‌up‌‌the‌‌integral.‌ ‌We‌‌can‌‌use‌‌either‌‌d ydx ‌or‌‌d xdy ,‌‌as‌‌for‌‌this‌‌problem‌‌it‌‌doesn’t‌‌   matter‌‌which‌‌variable‌‌we‌‌integrate‌‌with‌‌respect‌‌to‌‌first.‌ ‌For‌‌this‌‌example,‌‌I‌‌will‌‌use‌‌d ydx .‌   ‌ ‌ x = 1 y = 2





(x 2 + y 2 ) dydx   ‌

x = 0 y = 1

Start‌‌by‌‌taking‌‌the‌‌inside‌‌integral‌‌and‌‌partially‌‌integrate‌‌with‌‌respect‌‌to‌‌y ,‌‌pretending‌‌x ‌is‌‌a ‌‌ constant.‌   ‌ ‌ x = 1



x = 0

y = 2

(x 2 y + 31 y 3 )|y = 1  dx =

x = 1

1

x = 0

0



[(2x 2 + 31 (2 3 )) − (x 2 + 31 (1 3 )) dx = ∫ (x 2 + 37 ) dx   ‌

Now,‌‌evaluate‌‌the‌‌remaining‌‌integral.‌   ‌ ‌ 1 3 3x

 

+ 37 x|01 =

8 3

 ‌

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

383‌ ‌

 ‌ ‌5.3.1.b‌

‌Properties‌‌of‌‌Double‌‌Integrals‌  ‌

Assume‌‌that‌‌the‌‌function‌‌f (x,  y) ‌and‌‌g (x,  y) ‌are‌‌integrable‌‌over‌‌the‌‌rectangular‌‌region‌‌R ;‌‌S  ‌ and‌‌T ‌are‌‌subregions‌‌of‌‌R ;‌‌and‌‌assume‌‌that‌‌m ‌and‌‌M ‌are‌‌real‌‌numbers.‌  ‌ 1. The‌‌sum‌‌f (x,  y) + g (x,  y) ‌is‌‌integrable‌‌and‌  ‌    

   

   

 R

 R

 R

∫ ∫ [f (x,  y) + g (x,  y)] dA = ∫ ∫ f (x,  y) dA + ∫ ∫ g (x,  y) dA  



2. If‌‌c ‌is‌‌a‌‌constant,‌‌then‌‌c · f (x,  y) ‌is‌‌integrable‌  ‌    

   

 R

 R

∫ ∫ c · f (x,  y) dA = c ∫ ∫ f (x,  y) dA  



3. If‌‌R = S ⋃ T  ‌and‌‌S ⋂ T = 0  ‌except‌‌an‌‌overlap‌‌on‌‌the‌‌boundaries,‌‌then‌  ‌    

   

   

 R

 S

 T

∫ ∫ f (x,  y) dA = ∫ ∫ f (x,  y) dA + ∫ ∫ f (x,  y) dA  



4. If‌‌f (x,  y) ≥ g (x,  y) ‌for‌‌(x,  y) ‌in‌‌R ,‌‌then‌  ‌    

   

 R

 R

∫ ∫ f (x,  y) dA ≥ ∫ ∫ g (x,  y) dA  



5. If‌‌m ≤ f (x,  y) ≤ M ,‌‌then‌  ‌    

m · A(R) ≤ ∫ ∫ f (x,  y) dA ≤ M · A(R)   ‌  R

6. In‌‌the‌‌case‌‌where‌‌f (x,  y) ‌can‌‌be‌‌factored‌‌as‌‌a‌‌product‌‌of‌‌a‌‌function‌‌g (x) ‌of‌‌x ‌only‌‌   and‌‌a‌‌function‌‌h (y) ‌of‌‌y ‌only,‌‌then‌‌over‌‌the‌‌region‌‌R = {(x,  y) | a ≤ x ≤ b ,  c ≤ y ≤ d } ,‌‌   the‌‌double‌‌integral‌‌can‌‌be‌‌written‌‌as‌‌    ‌    

b

d

 R

a

c

∫ ∫ f (x,  y) dA = (∫ g (x) dx)(∫ h (y) dy)  

384‌

 ‌ ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

5.3.2‌

D ‌ ouble‌‌Integrals‌o ‌ ver‌G ‌ eneral‌‌Regions‌  ‌

What‌‌do‌‌we‌‌do‌‌if‌‌the‌‌region‌‌is‌‌curved?‌ ‌There‌‌are‌‌two‌‌types‌‌of‌‌regions:‌  ‌ Domain‌  ‌ D = {(x,  y) | a ≤ x ≤ b ,  g 1 (x) ≤ y ≤ g 2 (x)} Integral‌  ‌

D = {(x,  y) | h 1 (y) ≤ x ≤ h 2 (y),  c ≤ y ≤ d }  

b g2 (x)

∫ ∫

a g1 (x)

d h2 (y)

f (x,  y) dydx   ‌

∫ ∫

ch1 (y)

f (x,  y) dxdy   ‌

 ‌  ‌  ‌  ‌ Graphed‌‌   Region‌  ‌

 ‌ y b ‌ ounded‌‌by‌‌a‌‌function‌‌of‌‌x   ‌

 ‌  ‌ x b ‌ ounded‌‌by‌‌a‌‌function‌‌of‌‌y   ‌

 ‌    

Example:‌‌Find‌‌the‌‌value‌‌of‌‌the‌‌integral‌‌∫ ∫ 4 xy − y 3  dA ,‌‌where‌‌D ‌is‌‌the‌‌region‌‌bounded‌‌by‌‌    D

y = √x ‌and‌‌y = x 3 .‌   ‌ ‌ Draw‌‌out‌‌the‌‌region‌‌so‌‌we‌‌can‌‌see‌‌which‌‌case‌‌it‌‌is.‌   ‌ ‌

 ‌  

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

385‌  ‌

 ‌ We‌‌can‌‌use‌‌either‌‌case,‌‌but‌‌both‌‌equations‌‌are‌‌already‌‌solved‌‌for‌‌y ,‌‌so‌‌use‌‌d ydx .‌ ‌To‌‌find‌‌   the‌‌upper‌‌bound‌‌of‌‌x :‌‌x 3 = √x    →   x = 1 .‌   ‌ ‌ 1 √x

∫ ∫ (4xy − y 3 ) dydx  



0 x3

Evaluate‌‌the‌‌integral.‌   ‌ ‌ 1

1

∫ [2xy 2 − 41 y 4 |x√x] dx = ∫ (− 41 x2 + 41 x12 + 2 x2 − 2 x7 ) dx   3

0

[−

1 3 12 x

0

+

1 13 52 x

+ 32 x 3 − 41 x 8 ]01 =

55 156



 ‌

 ‌ Sometimes,‌‌we‌‌need‌‌to‌‌reverse‌‌the‌‌order‌‌of‌‌integration‌‌if‌‌one‌‌of‌‌the‌‌integrals‌‌is‌‌impossible‌‌   to‌‌solve.‌   ‌ ‌ 3 9

Example:‌‌Evaluate‌‌the‌‌integral‌‌∫ ∫ x 3 e y  dydx .‌  ‌ 3

0 x2

 

The‌‌integral‌‌∫ e y dy ‌is‌‌impossible‌‌to‌‌solve.‌ ‌So,‌‌draw‌‌out‌‌the‌‌bounds‌‌given‌‌and‌‌find‌‌new‌‌   3

 

bounds‌‌that‌‌satisfy‌‌the‌‌d xdy ‌case.‌   ‌ ‌

 

386‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

Now,‌‌set‌‌up‌‌the‌‌new‌‌integral‌‌and‌‌solve.‌‌    ‌ 9 √y

9

9

9

∫ ∫ x3 ey  dxdy = ∫ 41 x4 ey |√0y dy = 41 ∫ ey ((√y )4 − 0 ) dy = 41 ∫ ey y 2  dy   3

0 0

3

0

3

0

3



0

We‌‌need‌‌to‌‌perform‌‌a‌‌u ‌substitution‌‌here.‌‌    ‌ u = y 3       du = 3 y 2 dy   →   y 2 dy = 31 du   ‌ 1 12

729



0

e u  du =

1 u 729 12 e |0

=

1 729 12 (e

− 1)   ‌

 ‌

5.3.3‌

D ‌ ouble‌‌Integrals‌i‌ n‌‌Polar‌C ‌ oordinates‌  ‌

We‌‌can‌‌create‌‌polar‌‌rectangles‌‌with‌‌inequalities‌‌of‌‌the‌‌form‌‌0 ≤ θ ≤ 2π ,  1 ≤ r ≤ 2 .‌  ‌

 ‌ Because‌‌of‌‌this,‌‌we‌‌can‌‌set‌‌up‌‌integrals‌‌where‌‌the‌‌region‌‌is‌‌circular.‌   ‌ ‌ In‌‌polar‌‌coordinates,‌‌d A = r drdθ .‌ ‌Unlike‌‌rectangular‌‌coordinates,‌‌the‌‌differential‌‌must‌‌be‌‌in‌‌   this‌‌order.‌   ‌

 ‌ ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

387‌ ‌

 ‌  ‌

 ‌ Example:‌‌Set‌‌up‌‌the‌‌double‌‌integral‌‌of‌‌f (x,  y) = x 2 + y 2 + x ‌over‌‌the‌‌region‌‌2π ≤ θ ≤

3π 2

,‌‌  

2 ≤ r ≤ 3 .‌   ‌ ‌ Convert‌‌the‌‌formula‌‌from‌‌rectangular‌‌to‌‌polar‌‌coordinates.‌  ‌ x 2 + y 2 = r 2       x = r cos θ   ‌ f (r,  θ) = r 2 + r cos θ   ‌ Now,‌‌set‌‌up‌‌the‌‌integral.‌  ‌ 3π 2

3

∫∫

π 2

(r 2

+ r cos θ) rdrdθ =

2

3π 2

3

π 2

2

∫∫

r 3 + r 2 cos θ drdθ   ‌

 ‌

 ‌  

388‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

5.3.4‌

T ‌ riple‌I‌ ntegrals‌‌    ‌

Remember‌‌that‌‌d x ‌is‌‌a‌‌small‌‌change‌‌in‌‌x ‌and‌‌d A ‌is‌‌a‌‌small‌‌piece‌‌of‌‌area.‌ ‌So,‌‌d V ‌is‌‌a‌‌small‌‌   piece‌‌of‌‌volume.‌‌    ‌ d V = d zdydx ‌or‌‌d zdxdy ‌(or‌‌4‌‌other‌‌combinations)‌  ‌

 ‌  ‌ ‌5.3.4.a‌

‌Triple‌‌Integrals‌‌over‌‌a‌‌General‌‌Bounded‌‌Region‌  ‌

We‌‌can‌‌find‌‌the‌‌triple‌‌integral‌‌over‌‌a‌‌general‌‌bounded‌‌region‌‌E ‌in‌‌R3 .‌ ‌The‌‌general‌‌   bounded‌‌regions‌‌we‌‌consider‌‌are‌‌of‌‌three‌‌types.‌ ‌First,‌‌let‌‌D ‌be‌‌in‌‌the‌‌bounded‌‌region‌‌that‌‌   is‌‌a‌‌projection‌‌of‌‌E ‌onto‌‌the‌‌x y ‌plane.‌ ‌Suppose‌‌the‌‌region‌‌E ‌in‌‌R3 ‌has‌‌the‌‌form‌  ‌ E = {(x,  y,  z)| (x,  y) ε D,  u 1 (x,  y) ≤ z ≤ u 2 (x,  y)}   ‌ For‌‌two‌‌functions‌‌z = u 1 (x,  y) ‌and‌‌z = u 2 (x,  y) ,‌‌such‌‌that‌‌u 1 (x,  y) ≤ u 2 (x,  y) ‌for‌‌all‌‌(x,  y) in‌‌D ,‌‌   as‌‌shown.‌   ‌ ‌

 ‌      

    u2 (x, y)

 E 

  D u1 (x, y)

This‌‌means‌‌that‌‌∫ ∫ ∫  f (x,  y,  z) dV = ∫ ∫ [

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌



f (x,  y,  z) dz] dA .‌   ‌

 ‌ ‌

389‌ ‌

 ‌ Example:‌‌Set‌‌up‌‌a‌‌triple‌‌integral‌‌to‌‌find‌‌the‌‌mass‌‌of‌‌a‌‌tetrahedron‌‌with‌‌vertices‌‌(0,  0,  0) ,‌‌   (2,  0,  0) ,‌‌(0,  0,  3) ,‌‌and‌‌(0,  4,  0) .‌ ‌The‌‌mass‌‌density‌‌function‌‌is‌‌ρ(x,  y,  z) = x 2 + y z .‌‌    ‌ Graph‌‌the‌‌equation:‌‌this‌‌helps‌‌to‌‌visualize‌‌the‌‌bounds.‌   ‌ ‌

 ‌ Notice‌‌how‌‌the‌‌lower‌‌z ‌bound‌‌is‌‌z = 0 ‌and‌‌the‌‌upper‌‌z ‌bound‌‌is‌‌the‌‌plane‌‌through‌‌the‌‌   points‌‌(2,  0,  0),  (0,  4,  0) ,‌‌and‌‌(0,  0,  3) .‌ ‌Since‌‌these‌‌are‌‌all‌‌axis‌‌intercepts,‌‌we‌‌can‌‌do‌‌the‌‌   following‌‌to‌‌find‌‌the‌‌equation‌‌of‌‌the‌‌plane.‌  ‌ x 2

y

+4+

z 3

y

= 1    →   z = 3 (1 − 2x − 4 )   ‌

We‌‌now‌‌have‌‌the‌‌inner‌‌bounds‌‌of‌‌the‌‌integral.‌   ‌ ‌ 3 3     3− 2 x− 4 y

∫∫ ∫   

 

390‌

0

(x 2 + y z) dzdA   ‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

To‌‌find‌‌the‌‌bounds‌‌for‌‌x ‌and‌‌y ,‌‌graph‌‌the‌‌triangle‌‌that‌‌is‌‌on‌‌the‌‌x y ‌plane‌‌in‌‌the‌‌original‌‌   graph.‌   ‌ ‌

 ‌ The‌‌equation‌‌of‌‌the‌‌line‌‌connecting‌‌the‌‌points‌‌(0,  4) ‌and‌‌(2,  0 )‌‌is‌‌y = 4 − 2 x ,‌‌which,‌‌when‌‌   we‌‌solve‌‌for‌‌x ,‌‌is‌‌equal‌‌to‌‌x =

y − 4 −2

y

= 2 − 2 .‌ ‌So,‌‌the‌‌lower‌‌x ‌bound‌‌is‌‌zero‌‌and‌‌the‌‌upper‌‌x  ‌

y

bound‌‌is‌‌x = 2 − 2 .‌ ‌The‌‌bounds‌‌for‌‌y ‌are‌‌0 ‌and‌‌4 .‌ ‌With‌‌all‌‌the‌‌bounds,‌‌set‌‌up‌‌the‌‌integral.‌   ‌ ‌ y

3 3 4 2− 2 3− 2 x− 4 y

∫ ∫ 0 0



(x 2 + y z) dzdxdy   ‌

0

 ‌ ‌5.3.4.b‌

‌Average‌‌Value‌‌of‌‌a‌‌Function‌‌of‌‌Three‌‌Variables‌  ‌

If‌‌f (x,  y,  z) ‌is‌‌integrable‌‌over‌‌a‌‌solid‌‌bounded‌‌region‌‌E ‌with‌‌positive‌‌volume‌‌V (E) ,‌‌then‌‌the‌‌   average‌‌value‌‌of‌‌the‌‌function‌‌is‌‌    ‌ f ave =

1 V (E)

     

∫ ∫ ∫  f (x,  y,  z) dV  E 

 ‌

     

Note‌‌that‌‌the‌‌volume‌‌is‌‌V (E) = ∫ ∫ ∫  1 dV .‌   ‌ ‌  E 

 

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

391‌ ‌

 ‌

5.3.5‌

T ‌ riple‌I‌ ntegrals‌‌and‌‌Cylindrical/Spherical‌‌Coordinates‌  ‌

 ‌ ‌5.3.5.a‌

‌Cylindrical‌‌Coordinates‌  ‌

Cylindrical‌‌coordinates‌‌are‌‌just‌‌polar‌‌coordinates‌‌for‌‌(x,  y) ‌with‌‌z ‌attached.‌   ‌ ‌ x = r cos θ      y = r sin θ      z = z   ‌

 ‌ When‌‌calculating‌‌a‌‌triple‌‌integral‌‌in‌‌cylindrical‌‌coordinates,‌‌use‌‌the‌‌differential‌‌   d V = r dzdrdθ .‌   ‌ ‌  

392‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

‌5.3.5.b‌

‌Spherical‌‌Coordinates‌  ‌

Spherical‌‌coordinates‌‌are‌‌made‌‌up‌‌of‌‌two‌‌angles‌‌and‌‌one‌‌length.‌   ‌ ‌ ●

ρ = distance‌‌from‌‌the‌‌origin‌ 



θ = ‌angle‌‌measure‌‌from‌‌the‌‌positive‌‌x ‌axis,‌‌counterclockwise‌  ‌



ϕ = angle‌‌measure‌‌from‌‌the‌‌positive‌‌z ‌axis,‌‌going‌‌down‌  ‌

 ‌ Rectangular‌‌to‌‌Spherical‌‌Transformation:‌  ‌ x = ρsin ϕ cos θ   ‌ y

θ = tan −1 ( x )   ‌

y = ρsin ϕ sin θ   ‌ ϕ = tan −1 (

√x2  + y2 )   z

z = ρcos ϕ   ‌ ϕ = c os−1 (

z

√x2  + y2  + z2

)  ‌

x 2 + y 2 + z 2 = ρ2   ‌  ‌ To‌‌integrate‌‌with‌‌spherical‌‌regions,‌‌use‌‌the‌‌differential‌‌d V = ρ2 sin ϕ dρdϕdθ .‌   ‌ ‌  

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

393‌  ‌

 ‌ Example:‌‌Set‌‌up‌‌the‌‌integral‌‌that‌‌finds‌‌the‌‌mass‌‌of‌‌the‌‌sphere‌‌of‌‌radius‌‌3 ‌at‌‌the‌‌origin.‌  ‌ ρ(x,  y,  z) = 2 x 2 + 2 y 2 + 2 z 2 .‌‌    ‌ First,‌‌note‌‌that‌‌rho‌‌(‌ρ )‌‌is‌‌both‌‌mass‌‌density‌a ‌ nd‌‌‌distance‌‌from‌‌the‌‌origin.‌ ‌The‌‌mass‌‌of‌‌the‌‌   sphere‌‌will‌‌be‌‌equal‌‌to‌‌the‌‌triple‌‌integral‌‌of‌‌the‌‌mass‌‌density‌‌equation.‌   ‌ ‌ Convert‌‌the‌‌mass‌‌density‌‌equation‌‌into‌‌spherical‌‌coordinates.‌   ‌ ‌ ρ2 = x 2 + y 2 + z 2   ‌ mass density = 2 ρ2   ‌ We‌‌are‌‌told‌‌that‌‌the‌‌sphere‌‌has‌‌a‌‌radius‌‌of‌‌3 ,‌‌and‌‌since‌‌we‌‌aren’t‌‌given‌‌an‌‌inner‌‌radius,‌‌we‌‌   know‌‌that‌‌the‌‌bounds‌‌for‌‌ρ ‌are‌‌0 ‌and‌‌3 .‌ ‌The‌‌sphere‌‌ranges‌‌from‌‌the‌‌north‌‌pole‌‌(positive‌‌   z ‌axis)‌‌to‌‌the‌‌south‌‌pole‌‌(negative‌‌z ‌axis).‌ ‌Therefore,‌‌the‌‌bounds‌‌for‌‌ϕ ‌go‌‌from‌‌0 ‌to‌‌π .‌  We‌‌are‌‌making‌‌a‌‌full‌‌circle‌‌on‌‌the‌‌x y ‌plane,‌‌so‌‌the‌‌bounds‌‌for‌‌θ ‌go‌‌from‌‌0 ‌to‌‌2 π .‌   ‌ ‌ Now‌‌we‌‌can‌‌finish‌‌the‌‌set‌‌up‌‌for‌‌the‌‌integral.‌   ‌ ‌ 2π π 3

2π π 3

0 00

0 00

∫ ∫ ∫  (2ρ2 ) ρ2 sin ϕ dρdϕdθ = ∫ ∫ ∫ 2 ρ4 sin ϕ dρdϕdθ  



 ‌ Example:‌‌Let‌‌E ‌be‌‌the‌‌region‌‌bounded‌‌by‌‌the‌‌cone‌‌z = √7(x 2 + y 2 )  ‌and‌‌the‌‌hemisphere‌‌   z=

√10

2

− x 2 − y 2 .‌  ‌Find‌‌the‌‌volume‌‌of‌‌E .‌   ‌ ‌

Remember‌‌that‌‌to‌‌find‌‌the‌‌volume,‌‌we‌‌set‌‌the‌‌integrand‌‌equal‌‌to‌‌one.‌ ‌So,‌‌we‌‌only‌‌need‌‌to‌‌   find‌‌the‌‌limits‌‌of‌‌each‌‌variable.‌   ‌

394‌

 ‌ ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

Having‌‌a‌‌graph‌‌of‌‌the‌‌equations‌‌can‌‌help‌‌when‌‌solving‌‌this‌‌problem.‌   ‌ ‌

 ‌ Start‌‌by‌‌rearranging‌‌the‌‌hemisphere‌‌equation.‌   ‌ ‌ z 2 = 1 0 2 − x 2 − y 2    →   x 2 + y 2 + z 2 = 1 0 2    →   ρ2 = 1 0 2    →   ρ = 1 0   ‌ 10

Since‌‌the‌‌graph‌‌starts‌‌at‌‌the‌‌origin,‌‌we‌‌know‌‌that‌‌ ∫ d p .‌‌    ‌ 0

For‌‌ϕ ,‌‌it‌‌starts‌‌at‌‌zero‌‌(north‌‌pole)‌‌and‌‌stops‌‌when‌‌it‌‌intersects‌‌with‌‌the‌‌cone.‌ ‌However,‌‌   since‌‌that‌‌angle‌‌is‌‌on‌‌the‌‌cone‌‌regardless‌‌of‌‌the‌‌hemisphere,‌‌we‌‌can‌‌just‌‌use‌‌the‌‌cone‌‌   equation‌‌to‌‌solve‌‌for‌‌ϕ .‌   ‌ ‌ z = √7(x 2 + y 2 )   →   use‌   ‌spherical‌‌transformations‌  ‌ ρcos ϕ =

√7((ρsin ϕ cos θ)

2

+ (ρsin ϕ sin θ)  2‌ 

ρcos ϕ = √7ρ2 sin 2 ϕ [cos2  θ + sin 2  θ] = √7ρ2 sin 2 ϕ = √7 psin ϕ   ‌  ρcos ϕ = √7 ρsin ϕ   →   cos ϕ = √7 sin ϕ   →    √1 = tan ϕ   →   ϕ = tan −1 ( √1 )   7

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

7

395‌ ‌

 ‌  ‌ tan−1 (1/√7)

So,‌‌



d ϕ .‌   ‌ ‌

0

The‌‌core‌‌and‌‌the‌‌hemisphere‌‌are‌‌radially‌‌symmetric‌‌so‌‌0 ≤ θ ≤ 2 π .‌ ‌Therefore,‌  ‌ 2π tan−1 (1/√7) 10



0



0

∫ ρ2 sin ϕ dρdϕdθ  



0

 ‌

 ‌ 5.3.6‌

C ‌ enters‌o ‌ f‌‌Mass‌  ‌

The‌‌center‌‌of‌‌mass‌‌is‌‌the‌‌average‌‌position‌‌of‌‌the‌‌mass‌‌in‌‌an‌‌object.‌ ‌It‌‌is‌‌also‌‌known‌‌as‌‌the‌‌   balance‌‌point.‌   ‌ ‌  ‌ ‌5.3.6.a‌

‌One‌‌Dimensional‌  ‌

A‌‌one‌‌dimensional‌‌example‌‌of‌‌finding‌‌the‌‌center‌‌of‌‌mass‌‌is‌‌finding‌‌the‌‌center‌‌of‌‌mass‌‌in‌‌a ‌‌ rod.‌   ‌ ‌

 ‌ In‌‌this‌‌example,‌‌the‌‌rod‌‌is‌‌massless.‌ ‌To‌‌calculate‌‌the‌‌center‌‌of‌‌mass,‌‌use‌‌a‌‌weighted‌‌   average.‌  ‌ sum of weights multiplied by position    total weight

 

396‌

→   

3(−2) + 3(1) 6

= −

1 2

 ‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

If‌‌there‌‌was‌‌a‌‌rod‌‌with‌‌continuously‌‌varying‌‌mass‌‌density‌‌defined‌‌by‌‌ρ(x) ‌on‌‌the‌‌interval‌‌   [a,  b] ,‌‌the‌‌center‌‌of‌‌mass‌‌would‌‌be‌‌calculated‌‌with‌‌the‌‌equation‌  ‌ b

∫ xρ(x) dx

a b

∫ ρ(x) dx

 ‌

a

 ‌ ‌5.3.6.b‌

‌Two‌‌Dimensional‌  ‌

A‌‌lamina‌‌is‌‌a‌‌flat,‌‌2D‌‌object.‌   ‌ ‌

 ‌ P ‌is‌‌the‌‌center‌‌of‌‌mass‌‌(x,  y) .‌   ‌ ‌   

∫ ∫  x·ρ(x, y) dA

  

∫ ∫  y·ρ(x, y) dA

x = L   

‌y =   L    

 L

 L

∫ ∫ ρ(x, y) dA

∫ ∫ ρ(x, y) dA

  ‌ ‌

The‌‌numerators‌‌are‌‌called‌‌the‌‌x ‌and‌‌y ‌moments,‌‌respectively.‌   ‌ ‌  

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

397‌ ‌

 ‌ ‌5.3.6.c‌

‌Three‌‌Dimensional‌  ‌    

∫∫∫  x·ρ(x, y, z) dV

   

∫∫∫  y·ρ(x, y, z) dV

   

∫∫∫  z·ρ(x, y, z) dV

x =           

‌y =            

‌z =            

   

   

   

∫∫∫ ρ(x, y, z) dV

∫∫∫ ρ(x, y, z) dV

∫∫∫ ρ(x, y, z) dV

  ‌ ‌

Example:‌‌Suppose‌‌you‌‌have‌‌a‌‌half‌‌ball‌‌(bottom‌‌half‌‌of‌‌ball‌‌of‌‌radius‌‌3 ).‌ ‌The‌‌mass‌‌density‌‌is‌‌   ρ(x,  y,  z) = x 2 + y 2 .‌ ‌What‌‌is‌‌the‌‌center‌‌of‌‌mass‌‌of‌‌the‌‌object?‌  ‌

 ‌ We‌‌don’t‌‌actually‌‌need‌‌to‌‌do‌‌all‌‌four‌‌triple‌‌integrals.‌ ‌The‌‌density‌‌increases‌‌as‌‌we‌‌move‌‌   away‌‌from‌‌the‌‌origin.‌ ‌It‌‌doesn’t‌‌depend‌‌on‌‌x ‌and‌‌both‌‌the‌‌equation‌‌and‌‌the‌‌graph‌‌are‌‌   symmetric‌‌with‌‌respect‌‌to‌‌x ‌and‌‌y ,‌‌so‌‌x = 0 ‌and‌‌y = 0 .‌ ‌Therefore,‌‌we‌‌only‌‌need‌‌to‌‌find‌‌z .‌  ‌    

2π π 3

   

0 π/2 0

mass = ∫ ∫ ∫ ρ(x,  y,  z) dV    →   

∫ ∫ ∫  [(ρsin ϕ cos θ)2 + (ρsin ϕ sin θ)2 ] ρ2 sin ϕ dρdϕdθ  

   

2π π 3

   

0 π/2 0

z  moment = ∫ ∫ ∫ z ρ(x,  y,  z) dV    →   



∫ ∫ ∫  ρcos ϕ[(ρsin ϕ cos θ)2 + (ρsin ϕ sin θ)2 ] ρ2 sin ϕ dρdϕdθ  



To‌‌find‌‌z ,‌‌divide‌‌the‌‌z ‌moment‌‌by‌‌the‌‌mass.‌   ‌ ‌  

398‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

5.4‌

‌Vector‌‌Calculus‌  ‌

5.4.1‌

V ‌ ector‌‌Fields‌  ‌

A‌‌vector‌‌field‌‌is‌‌a‌‌function‌‌that‌‌outputs‌‌a‌‌vector‌‌at‌‌every‌‌point.‌   ‌ ‌

 ‌ ‌5.4.1.a‌

‌Notation‌  ‌

Two‌‌Dimensional:‌‌F (x,  y) =   < P (x,  y),  Q(x,  y) > ‌or‌‌F (x,  y) = P (x,  y)i + Q(x,  y)j   ‌ Three‌‌Dimensional:‌‌F (x,  y,  z) =   < P (x,  y,  z),  Q(x,  y,  z),  R(x,  y,  z) >   ‌ or‌‌F (x,  y,  z) = P (x,  y,  z)i + Q(x,  y,  z)j + R(x,  y,  z)k   ‌  

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

399‌ ‌

 ‌  ‌ →

Example:‌‌Sketch‌‌the‌‌vector‌‌field‌‌F (x,  y) =   < 2y ,   2x > .‌  ‌  ‌ x  ‌

 ‌ y  ‌

2  ‌

0  ‌

< 0 ,  1 >  

0  ‌

2  ‌

< 1 ,  0 >  

−2  ‌

0  ‌

< 0,   − 1 >   ‌

0  ‌

−2  ‌

  ‌

2  ‌

2  ‌

−2  ‌

2  ‌

< 1,   − 1 >   ‌

−2  ‌

−2  ‌

  ‌

2  ‌

−2  ‌

  ‌



F (x,  y) =   < 2y ,   2x >   ‌

< 1 ,  1 >  

It‌‌is‌‌difficult‌‌to‌‌get‌‌a‌‌good‌‌sketch‌‌by‌‌hand,‌‌so‌‌you‌‌should‌‌use‌‌a‌‌graphing‌‌calculator‌‌like‌‌   GeoGebra‌‌(or‌‌Desmos,‌‌but‌‌I’ve‌‌found‌‌that‌‌GeoGebra’s‌‌are‌‌a‌‌bit‌‌better).‌   ‌ ‌  ‌ ‌5.4.1.b‌

‌Unit‌‌Vector‌‌Field‌  ‌

A‌‌unit‌‌vector‌‌field‌‌is‌‌a‌‌vector‌‌field‌‌where‌‌all‌‌vectors‌‌have‌‌length‌‌1 .‌   ‌ ‌  

400‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

‌5.4.1.c‌

‌Gradient‌‌Vector‌‌Field‌  ‌

A‌‌gradient‌‌vector‌‌field‌‌is‌‌a‌‌vector‌‌field‌‌which‌‌is‌‌the‌‌gradient‌‌of‌‌a‌‌scalar‌‌function.‌   ‌ ‌ Example:‌‌f (x,  y) = x 2 + y 2   ‌



This‌‌function’s‌‌gradient‌‌field‌‌is‌‌ f =   < 2 x,  2y >.‌   ‌ ‌

 ‌ Note‌‌that‌‌the‌‌level‌‌curves‌‌of‌‌f ‌are‌‌perpendicular‌‌to‌‌the‌‌vectors‌‌in‌‌the‌‌gradient‌‌field.‌ ‌This‌‌is‌‌   helpful‌‌for‌‌sketching‌‌gradient‌‌fields.‌   ‌ ‌  ‌

5.4.2‌

L ‌ ine‌‌Integrals‌  ‌

‌5.4.2.a‌

‌Scalar‌‌Line‌‌Integral‌  ‌  

A‌‌scalar‌‌line‌‌integral‌‌is‌‌an‌‌integral‌‌of‌‌the‌‌form‌‌∫ f (x,  y) dS ,‌‌where‌‌c ‌is‌‌the‌‌curve,‌‌f (x,  y) ‌is‌‌the‌‌   c

linear‌‌density,‌‌and‌‌d S ‌is‌‌a‌‌small‌‌chunk‌‌of‌‌“string.”‌ ‌When‌‌performing‌‌scalar‌‌line‌‌integrals,‌‌   you‌‌will‌‌have‌‌to‌‌parameterize‌‌the‌‌curve.‌   ‌ ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

401‌ ‌

 ‌

 ‌ Remember‌‌that‌‌r (t) ‌is‌‌the‌‌parameterization‌‌of‌‌a‌‌curve.‌‌    ‌ In‌‌2D,‌‌d S =

√(

dx )2 dt

+ ( dy )2 dt .‌  ‌In‌‌3D,‌‌d S = dt

√(

dx )2 dt

+ ( dy )2 + ( dz )2 dt .‌    ‌ dt dt

 ‌  

Example:‌ ‌Find‌‌the‌‌value‌‌of‌‌the‌‌integral‌‌∫(x 2 + y 2 + z 2 ) dS ,‌‌where‌‌c ‌is‌‌part‌‌of‌‌the‌‌helix‌‌   c

parameterized‌‌by‌‌r (t) =   < c os t,  sin t,  t >,  0 ≤ t ≤ 2 π .‌   ‌ ‌ We‌‌can‌‌find‌‌the‌‌mass‌‌of‌‌the‌‌curved‌‌string‌‌by‌‌solving‌‌this.‌ ‌First,‌‌find‌‌d S ‌by‌‌finding‌‌the‌‌   appropriate‌‌derivatives‌‌of‌‌r (t) .‌‌    ‌ dS =

√(

dx 2 dt )

dy

2 + ( dt )2 + ( dz dt ) dt   →    dS =

√(− sint t)

2

+ (cos t)2 + 1 2 = √2 dt   ‌ 

Replace‌‌d S ‌in‌‌the‌‌integral‌‌with‌‌what‌‌we‌‌just‌‌found.‌  ‌  

 

c

c

∫(x2 + y 2 + z 2 ) dS = ∫(x2 + y 2 + z 2 ) √2  dt  



Replace‌‌x ,  y,   and‌‌z ‌to‌‌put‌‌the‌‌integral‌‌in‌‌terms‌‌of‌‌t .‌ ‌Solve.‌   ‌ ‌ 2π



0

0

2 ∫ (cos2 t + sin 2 t + t) √2  dt = √2 ∫ (1 + t) dt = √2 [t + 21 t2 ]2π 0 = √2 [2π + 2 π ]  

 

402‌



 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

‌5.4.2.b‌

‌Arc‌‌Length‌  ‌    

    

 

 D

  E

c

Remember‌‌that‌‌∫ ∫  1 dA = a rea(D) ‌and‌‌∫ ∫ ∫  1 dV = v olume(E) .‌ ‌So,‌‌∫  1 dS = length(c) .‌   ‌ ‌  ‌ ‌5.4.2.c‌

‌Vector‌‌Line‌‌Integrals‌‌-‌‌Work‌‌    ‌

These‌‌are‌‌also‌‌called‌‌line‌‌integrals‌‌over‌‌vector‌‌fields.‌ ‌There‌‌are‌‌two‌‌main‌‌applications‌‌for‌‌   these‌‌types‌‌of‌‌integrals:‌‌work‌‌and‌‌flux.‌ ‌The‌‌equations‌‌we‌‌use‌‌to‌‌calculate‌‌these‌‌two‌‌things‌‌   look‌‌very‌‌similar,‌‌so‌‌it‌‌is‌‌important‌‌to‌‌read‌‌the‌‌question‌‌carefully‌‌when‌‌dealing‌‌with‌‌vector‌‌   line‌‌integrals.‌   ‌ ‌ Say‌‌an‌‌object‌‌moves‌‌along‌‌a‌‌curve‌‌r→(t) ‌or‌‌c ‌in‌‌a‌‌force‌‌field‌‌(a‌‌vector‌‌field‌‌where‌‌vectors‌‌   represent‌‌forces)‌‌F (x,  y) .‌   ‌ ‌

 ‌ Adding‌‌up‌‌all‌‌the‌‌work‌‌from‌‌the‌‌little‌‌forces‌‌and‌‌distances‌‌gives‌‌work‌‌done‌‌by‌‌the‌‌force‌‌   field.‌    ‌  

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

403‌ ‌

 ‌ Calculate‌‌the‌‌work‌‌done‌‌by‌‌the‌‌vector‌‌field‌‌on‌‌the‌‌particle‌‌as‌‌it‌‌moves‌‌along‌‌the‌‌curve‌‌c .‌‌    ‌

 ‌  





Work‌‌done‌‌is‌‌F · d r→ .‌ ‌Work‌‌done‌‌over‌‌the‌‌entire‌‌curve‌‌is‌‌∫ F · d r→ ,‌‌where‌‌c ‌represents‌‌the‌‌   c

parameterized‌‌curve.‌   ‌ ‌ We‌‌know‌‌that‌‌d r→ = (dx,  dy) ‌and‌‌r→(t) =   < x (t),  y(t) > .‌ ‌Since‌‌dx   dt = x ′(t),   dx = x ′(t) dt .‌ ‌Similarly,‌‌ d y = y ′(t)dt .‌ ‌Therefore,‌‌d r→ = (dx,  dy) =   < x ′(t) dt,  y ′(t) dt >   = r→ ′(t) dt .‌   ‌ ‌  ‌ In‌‌summation,‌‌c ‌is‌‌a‌‌curve‌‌parameterized‌‌by‌‌r (t) ,‌‌t1 ≤ t ≤ t2 .‌ ‌A‌‌particle‌‌travels‌‌along‌‌curve‌‌c  ‌ in‌‌force‌‌field‌‌F (x,  y) ,‌‌r (t) =   < x (t),  y(t) > .‌   ‌ ‌ The‌‌total‌‌work‌‌done‌‌by‌‌F ‌on‌‌the‌‌particle‌‌is‌‌    ‌ t2

t2

t2

t1

t1

t1

∫ F · d r = ∫ F (r(t)) · r ′(t) dt = ∫ P dx + Qdy  



t2

In‌‌3D,‌‌W = ∫ P dx + Qdy + Rdz .‌   ‌ ‌ t1

 

404‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

2

Example:‌‌Calculate‌‌the‌‌work‌‌done‌‌on‌‌a‌‌particle‌‌as‌‌it‌‌travels‌‌around‌‌the‌‌ellipse‌‌ x4 +

y2 9

= 1 ‌‌in‌‌ 

a‌‌counterclockwise‌‌direction,‌‌starting‌‌at‌‌(2,  0) .‌ ‌F (x,  y) =   < 1 + x ,  2 > ‌(‌P = 1 + x ‌and‌‌Q = 2 ).‌  ‌

 ‌ Parameterize‌‌the‌‌ellipse‌‌equation‌‌(look‌‌at‌‌the‌‌graph‌‌intercepts).‌  ‌ x = 2 cos t        y = 3 sin t      0 ≤ t  ≤ 2 π   ‌  

Work‌= ∫ P dx + Qdy .‌ ‌P ‌will‌‌be‌‌equal‌‌to‌‌the‌‌P ‌component‌‌of‌‌F ‌with‌‌t ‌substituted‌‌and,‌‌d x  ‌ c

will‌‌be‌‌equal‌‌to‌‌x ′(t) dt .‌ ‌Since‌‌Q ‌has‌‌no‌‌variables,‌‌Q ‌will‌‌still‌‌be‌‌equal‌‌to‌‌2 .‌ ‌d y ‌will‌‌be‌‌equal‌‌   to‌‌y ′(t) dt .‌  ‌ 2π



0

0

∫ (1 + 2 cos t)(− 2 sin t) dt + (2)(3cos t) dt = ∫ [− 2 sin t − 4 cos t sin t + 6 cos t] dt  

Integrate‌‌as‌‌usual.‌ ‌The‌‌answer‌‌is‌‌W = 0 .‌   ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌



 ‌ ‌

405‌ ‌

 ‌ ‌5.4.2.d‌ F lux =

f low time

‌Vector‌‌Line‌‌Integrals‌‌-‌‌Flux‌  ‌ .‌ ‌Flux‌‌can‌‌be‌‌measured‌‌across‌‌a‌‌curve‌‌(2D)‌‌or‌‌a‌‌surface‌‌(3D).‌ ‌In‌‌these‌‌problems,‌‌  

the‌‌vector‌‌field‌‌is‌‌a‌‌velocity‌‌field.‌ ‌Instead‌‌of‌‌F ,‌‌use‌‌v→ ‌or‌‌ϕ .‌   ‌ ‌ v→ = v elocity f ield (P ,  Q)      ϕ = g eneric vector f ield (P ,  Q)   ‌ →

 ‌ v = (x 2 ,  y) ‌and‌‌r (t) = (t,  4 − t2 ) 0 ≤ t ≤ 2   ‌ Based‌‌on‌‌the‌‌direction‌‌and‌‌orientation‌‌of‌‌the‌‌curve‌‌(the‌‌arrow‌‌on‌‌the‌‌curve),‌‌inside‌‌is‌‌to‌‌the‌‌   left‌‌of‌‌the‌‌particle‌‌and‌‌outside‌‌is‌‌to‌‌the‌‌right‌‌of‌‌the‌‌particle.‌ ‌Positive‌‌flux‌‌goes‌‌from‌‌in‌‌to‌‌   out‌‌and‌‌negative‌‌flux‌‌goes‌‌from‌‌out‌‌to‌‌in.‌ ‌The‌‌flux‌‌integral‌‌finds‌‌how‌‌much‌‌is‌‌flowing‌‌from‌‌   out‌‌to‌‌in.‌   ‌ ‌ You‌‌can‌‌prove‌‌that‌‌flux‌‌in‌‌the‌‌tiny‌‌length‌‌d S ‌is‌‌v→ · n→ dS .‌  ‌

 ‌  

 

c

c

Flux‌‌integrals‌‌look‌‌like‌‌∫ v→ · n→ dS = ∫ P dy − Qdx  

406‌

 ‌ ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

Use‌‌this‌‌formula‌‌to‌‌calculate‌‌the‌‌flux‌‌of‌‌the‌‌above‌‌field.‌   ‌ v = (x 2 ,  y) ,‌‌r (t) = (t,  4 − t2 ),  0 ≤ t ≤ 2   ‌ x (t) = t   →   dx = 1 dt      y(t) = 4 − t2    →   dy =   − 2 t dt   ‌ 2

2

0

0

∫ (t2 )(− 2 ) dt − (4 − t2 ) dt = ∫ [− 2 t3 − 4 + t2 ] dt =   − 403  



 ‌ ‌5.4.2.e‌

‌Tip:‌‌Parameterizing‌‌a‌‌Line‌‌Segment‌‌in‌‌3D‌  ‌

An‌‌easy‌‌way‌‌to‌‌parameterize‌‌a‌‌line‌‌segment‌‌in‌‌3D‌‌is‌‌with‌‌the‌‌following‌‌equations.‌  ‌ x = (1 − t)x 1 + tx 2       y = (1 − t)y 1 + ty 2       z = (1 − t)z 1 + tz 2       0 ≤ t ≤ 1    ‌  ‌

5.4.3‌

C ‌ onservative‌V ‌ ector‌‌Fields‌  ‌

‌5.4.3.a‌

‌Simple/Closed‌‌Curves‌  ‌

A‌‌curve‌‌is‌‌called‌‌closed‌‌if‌‌it‌‌forms‌‌a‌‌loop.‌ ‌A‌‌curve‌‌is‌‌called‌‌simple‌‌if‌‌it‌‌does‌‌not‌‌intersect‌‌   itself.‌   ‌ ‌

 ‌  

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

407‌ ‌

 ‌ ‌5.4.3.b‌

‌Conservative‌‌Field‌‌Theorem‌  ‌

A‌‌conservative‌‌field‌‌is‌‌one‌‌in‌‌which‌‌the‌‌path‌‌taken‌‌does‌‌not‌‌matter‌‌(i.e.‌‌it‌‌is‌‌path‌‌   independent).‌ ‌So,‌‌if‌‌we‌‌are‌‌finding‌‌work‌‌over‌‌a‌‌vector‌‌field‌‌and‌‌changing‌‌the‌‌path‌‌from‌‌A  ‌ to‌‌B ‌does‌‌not‌‌change‌‌the‌‌value‌‌of‌‌work‌‌that‌‌we‌‌get,‌‌the‌‌vector‌‌field‌‌is‌‌conservative.‌   ‌ If‌‌ϕ ‌is‌‌a‌‌conservative‌‌vector‌‌field‌‌then,‌  ‌  

∫ ϕ · dr = 0 c



We‌‌can‌‌also‌‌use‌‌the‌‌notation‌‌

 

c

‌for‌‌all‌‌close‌‌curves‌‌c   ‌



ϕ · d r = 0 .‌ ‌

 

 

‌indicates‌‌a‌‌line‌‌integral‌‌over‌‌a‌‌simple‌‌closed‌‌  

curve‌‌in‌‌counterclockwise‌‌fashion.‌   ‌ ‌ b

a

a

b

This‌‌theorem‌‌works‌‌because‌‌∫ f (x) dx =   − ∫ f (x) dx .‌ ‌Note‌‌that‌‌there‌‌is‌‌a‌‌much‌‌longer‌‌proof‌‌   that‌‌usually‌‌accompanies‌‌this.‌ ‌It‌‌is‌‌not‌‌necessary‌‌to‌‌memorize‌‌the‌‌proof,‌‌but‌‌it‌‌can‌‌be‌‌   helpful‌‌to‌‌look‌‌into‌‌it.‌   ‌ ‌  ‌ ‌5.4.3.c‌

‌Fundamental‌‌Theorem‌‌of‌‌Line‌‌Integrals‌  ‌

All‌‌gradient‌‌fields‌‌are‌‌conservative.‌ ‌In‌‌fact,‌‌if‌‌ϕ =  

∇f  ‌then‌  ‌

∫ ϕ · d r = f (B) − f (A)   c



 ‌ A = r (t0 )      B = r (t1 )   ‌   408‌

 ‌ ‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

Proof:‌  ‌  

t1

t1

c

t0

t0

∫ ϕ dr = ∫ ϕ (r(t)) · r (t) dt = ∫

∇f (r(t)) · r(t) dt   ‌

Notice‌‌how‌‌the‌‌last‌‌integrand‌‌looks‌‌like‌‌the‌‌chain‌‌rule.‌  ‌ t1



t0

d dt [f (r(t))] dt

= f (r(t1 )) − f (r(t0 )) = f (B) − f (A)   ‌

f ‌is‌‌called‌‌the‌‌antigradient‌‌or‌‌potential‌‌function‌‌for‌‌the‌‌vector‌‌field.‌ ‌Not‌‌all‌‌vector‌‌fields‌‌   have‌‌potential‌‌functions,‌‌only‌‌conservative‌‌ones‌‌do.‌   ‌ ‌  ‌ ‌5.4.3.d‌

‌Theorem‌  ‌

If‌‌a‌‌vector‌‌field‌‌is‌‌conservative,‌‌then‌‌P y = Qx .‌ ‌This‌‌can‌‌be‌‌used‌‌as‌‌a‌‌quick‌‌check‌‌to‌‌   determine‌‌if‌‌a‌‌vector‌‌field‌‌is‌‌conservative.‌   ‌ ‌  ‌ ‌5.4.3.c‌

‌Finding‌‌Potential‌‌Functions‌  ‌

Find‌‌a‌‌potential‌‌function‌‌for‌‌F (x,  y) =   < e xy 3 + y ,  3e xy 2 + x > .‌  ‌ First,‌‌check‌‌if‌‌it’s‌‌conservative‌‌(P y = Qx) .‌   ‌ ‌ Py =

d x 3 dy [e y

+ y ] = 3 y 2 e x + 1       Qx =

d x 2 dx [3e y

+ x] = 3 y 2ex + 1   ‌

Now‌‌that‌‌we‌‌know‌‌it’s‌‌conservative,‌‌we‌‌can‌‌find‌‌the‌‌potential‌‌function.‌   ‌ ‌ F =

∇f =   < f ,  f x

y

>  ,‌‌so‌‌F x = e xy 3 + y ‌and‌‌F y = 3 y 2 e x + x   ‌

Partially‌‌integrate‌‌F x  with‌‌respect‌‌to‌‌x ‌to‌‌find‌‌f .‌‌    ‌ f = e xy 3 + x y + C (y)  

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

409‌  ‌

 ‌ We‌‌need‌‌to‌‌add‌‌in‌‌the‌‌C (y) ‌as‌‌when‌‌we‌‌differentiate‌‌with‌‌respect‌‌to‌‌x ,‌‌we‌‌lose‌‌anything‌‌   that‌‌only‌‌has‌‌a‌‌y ‌term.‌ ‌So,‌‌this‌‌term‌‌makes‌‌up‌‌for‌‌any‌‌potential‌‌loss.‌   ‌ ‌ Now‌‌differentiate‌‌f ‌with‌‌respect‌‌to‌‌y .‌ ‌We‌‌do‌‌this‌‌to‌‌find‌‌the‌‌value‌‌of‌‌C (y) .‌   ‌ ‌ f y = 3 y 2 e x + x + C (y)   ‌ This‌‌f y ‌term‌‌needs‌‌to‌‌match‌‌the‌‌above‌‌F y ‌term.‌ ‌In‌‌this‌‌case,‌‌C (y) = 0 ,‌‌as‌‌we‌‌do‌‌not‌‌need‌‌   to‌‌add‌‌anything‌‌to‌‌make‌‌f y = F y .‌   ‌ ‌ Therefore,‌‌    ‌ f = e xy 3 + x y   ‌  ‌

5.4.4‌

G ‌ reen’s‌‌Theorem‌  ‌

‌5.4.4.a‌

‌Connectivity‌‌of‌‌Regions‌  ‌

A‌‌region‌‌D ‌is‌‌a‌‌connected‌‌region‌‌if,‌‌for‌‌any‌‌two‌‌points‌‌P 1 ‌and‌‌P 2 ,‌‌there‌‌is‌‌a‌‌path‌‌from‌‌P 1  ‌ to‌‌P 2 ‌with‌‌a‌‌trace‌‌contained‌‌entirely‌‌inside‌‌D .‌ ‌A‌‌region‌‌D ‌is‌‌a‌‌simply‌‌connected‌‌region‌‌if‌‌   D ‌is‌‌connected‌‌for‌‌any‌‌simple‌‌closed‌‌curve‌‌C ‌that‌‌lies‌‌inside‌‌D ,‌‌and‌‌curve‌‌C ‌can‌‌be‌‌   shrunk‌‌continuously‌‌to‌‌a‌‌point‌‌while‌‌staying‌‌entirely‌‌inside‌‌D .‌ ‌In‌‌two‌‌dimensions,‌‌a‌‌region‌‌   is‌‌simply‌‌connected‌‌if‌‌it‌‌is‌‌connected‌‌and‌‌has‌‌no‌‌holes.‌   ‌ ‌

 

410‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

If‌‌you‌‌shrink‌‌the‌‌simple‌‌closed‌‌curve‌‌in‌‌the‌‌simply‌‌connected‌‌region,‌‌it‌‌will‌‌always‌‌be‌‌in‌‌the‌‌   region.‌ ‌However,‌‌if‌‌you‌‌shrink‌‌the‌‌simple‌‌closed‌‌curve‌‌in‌‌the‌‌connected‌‌region‌‌diagram,‌‌it‌‌   will‌‌leave‌‌the‌‌region‌‌at‌‌some‌‌point.‌ ‌The‌‌last‌‌diagram‌‌is‌‌not‌‌connected.‌ ‌Notice‌‌how‌‌no‌‌   matter‌‌how‌‌you‌‌draw‌‌the‌‌path‌‌from‌‌P 1 ‌to‌‌P 2 ,‌‌it‌‌will‌‌have‌‌to‌‌leave‌‌the‌‌region.‌   ‌ ‌  ‌ ‌5.4.4.b‌

‌Piecewise‌‌Smooth‌  ‌

A‌‌curve‌‌is‌‌called‌‌piecewise‌‌smooth‌‌if‌‌it‌‌is‌‌made‌‌up‌‌of‌‌finitely‌‌many‌‌smooth‌‌pieces‌‌(i.e.‌‌it’s‌‌   not‌‌a‌‌fractal).‌   ‌ ‌  ‌ ‌5.4.4.c‌

‌Green’s‌‌Theorem‌  ‌

Let‌‌D‌‌be‌‌an‌‌open,‌‌simply‌‌connected‌‌region‌‌with‌‌a‌‌boundary‌‌curve‌‌C ‌that‌‌is‌‌a‌‌piecewise‌‌   smooth,‌‌simple‌‌closed‌‌curve‌‌oriented‌‌counterclockwise.‌ ‌Let‌‌F =   < P ,  Q > ‌be‌‌a‌‌vector‌‌field‌‌   with‌‌component‌‌functions‌‌that‌‌have‌‌continuous‌‌partial‌‌derivatives‌‌on‌‌D .‌ ‌Then,‌  ‌

∮  

∮  

F · dr =

C

C

   

P dx + Qdy = ∫ ∫ (Qx − P y ) dA   ‌  D

It‌‌needs‌‌to‌‌be‌‌in‌‌this‌‌order.‌ ‌Recognize‌‌that‌‌the‌‌interim‌‌equation‌‌is‌‌the‌‌work‌‌done‌‌on‌‌a ‌ particle;‌‌this‌‌is‌‌important‌‌to‌‌notice‌‌so‌‌that‌‌you‌‌don’t‌‌solve‌‌the‌‌problem‌‌incorrectly‌‌(see‌‌the‌‌   flux‌‌example‌‌below).‌ ‌If‌‌it‌‌is‌‌clockwise‌‌instead‌‌of‌‌counterclockwise,‌‌add‌‌a‌‌negative‌‌sign.‌   ‌ ‌ This‌‌theorem‌‌also‌‌applies‌‌to‌‌regions‌‌with‌‌finitely‌‌many‌‌holes.‌   ‌ ‌  

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

411‌  ‌

 ‌



Example:‌‌Calculate‌‌the‌‌line‌‌integral‌‌

 

x 2 y dx + (y − 3 ) dy ‌where‌‌C ‌is‌‌a‌‌rectangle‌‌with‌‌vertices‌‌  

C

(1,  1),  (4,  1),  (4,  5), ‌and‌‌(1,  5) ‌oriented‌‌counterclockwise.‌   ‌ ‌ Without‌‌Green’s‌‌Theorem,‌‌we’d‌‌have‌‌to‌‌do‌‌four‌‌different‌‌line‌‌integrals.‌   ‌ ‌

∮  

C

   

P dx + Qdy = ∫ ∫ (Qx − P y ) dA   ‌  D

P = x 2 y ‌and‌‌Q = y − 3 .‌  ‌    

∫∫

 D

d dx (y

− 3) −

d 2 dy (x y) dA

   

  

 D

  

= ∫ ∫ (0 − x 2 ) dA =   − ∫ ∫ x 2  dydx   ‌

To‌‌find‌‌the‌‌limits,‌‌look‌‌at‌‌the‌‌given‌‌vertices‌‌and‌‌find‌‌both‌‌the‌‌lowest‌‌and‌‌highest‌‌x ‌and‌‌y  ‌ coordinates.‌ ‌These‌‌are‌‌the‌‌lower‌‌and‌‌upper‌‌limits,‌‌respectively.‌   ‌ ‌ 45

4

4

11

1

1

− ∫ ∫ x 2  dydx =   − ∫ [x 2 y]15dx =   − ∫ 4 x 2  dx =   − 34 [x 3 ]14 =   − 8 4   ‌  

412‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ Flux‌‌Example:‌‌Use‌‌Green’s‌‌Theorem‌‌to‌‌calculate‌‌flux‌‌of‌‌v→ =   < 6 y − 9 x,  yx − x 3 > ‌across‌‌curve‌‌   C .‌   ‌ ‌

 ‌  

 

C

C

Flux‌= ∫ P dy − Qdx = ∫ (6y − 9 x) dy − (yx − x 3 ) dx .‌ ‌Green’s‌‌Theorem‌‌states‌‌that‌   

   

C

 D

∫ P dx + Qdy = ∫ ∫ (Qx − P y) dA .‌ ‌Notice‌‌that‌‌the‌‌left‌‌hand‌‌side‌‌of‌‌the‌‌equation‌‌doesn’t‌‌match‌‌ 

the‌‌integral‌‌for‌‌flux.‌ ‌So,‌‌rearrange.‌   ‌ ‌  

 

C

C

∫ (6y − 9 x) dy − (yx − x3 ) dx = ∫ (− y x + x3 ) dx + (6y − 9 x) dy  



Now,‌‌P =   − y x + x 3 ‌and‌‌Q = 6 y − 9 x .‌ ‌When‌‌using‌‌Green’s‌‌Theorem‌‌for‌‌flux‌‌integrals,‌‌be‌‌   careful‌‌not‌‌to‌‌mix‌‌up‌‌P ‌and‌‌Q .‌   ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

413‌ ‌

 ‌  ‌    

   

  

 D

 D

  

∫ ∫ [ dxd [6y − 9 x] − dyd [− y x + x3 ]] dA = ∫ ∫ [− 9 − (− x)] dA = ∫ ∫(x − 9 ) dA  



See‌‌the‌‌graph‌‌on‌‌the‌‌previous‌‌page‌‌to‌‌set‌‌up‌‌the‌‌limits‌‌of‌‌integration.‌   ‌ ‌ 1 3−x

∫ ∫

(x − 9 ) dydx =   −

−1 −1

218 3

 ‌

 ‌ 5.4.5‌

D ‌ ivergence‌  ‌

Let’s‌‌start‌‌with‌‌a‌‌vector‌‌field‌‌ϕ =   < P ,  Q > .‌  ‌ →

 ‌ Convergence‌‌is‌‌also‌‌called‌‌“negative‌‌divergence.”‌  ‌ The‌‌divergence‌‌of‌‌a‌‌vector‌‌field,‌‌denoted‌‌d iv(ϕ) ,‌‌is‌‌a‌‌scalar‌‌quantity‌‌that‌‌measures‌‌this.‌   ‌ ‌ →

 ‌ →



414‌



  1 |v| → 0 |v| ∂v

d iv(ϕ)|x0 = lim

v · n  dS   ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

where‌‌|v| ‌is‌‌the‌‌volume‌‌(or‌‌area‌‌for‌‌2D).‌ ‌The‌‌integral‌‌calculates‌‌the‌‌flux‌‌outside‌‌of‌‌the‌‌   circle‌‌and‌‌|v|1 ‌makes‌‌it‌‌flux/volume.‌‌    ‌  ‌ It‌‌can‌‌be‌‌proven‌‌that‌  ‌ d iv(ϕ) =

∇ · ϕ,‌ ‌where‌‌ϕ =   < P ,  Q >   ‌

∂ ∂ = ( ∂x ,   ∂y ) · (P ,  Q) =

In‌‌3D‌‌(‌ϕ =   < P ,  Q,  R > ),‌‌d iv(ϕ) =

∂P ∂x

+

∂Q ∂y

+

∂R ∂z

∂P ∂x

+

∂Q ∂y

 ‌

‌. ‌ ‌

Note‌‌that‌‌all‌‌flux‌‌integrals‌‌across‌‌closed‌‌curves‌‌will‌‌be‌‌zero‌‌and‌‌that‌‌magnetic‌‌fields‌‌will‌‌   have‌‌zero‌‌divergence.‌   ‌ ‌  ‌ Example:‌‌Find‌‌the‌‌divergence‌‌of‌‌ϕ(x,  y) =   < x cos y,   − sin y > .‌  ‌

∇·ϕ =

∂ ∂x (xcos y)

+

∂ ∂y (− sin y)

= c os y − c os y =  0‌  

Since‌‌d iv(ϕ) = 0 ,‌‌this‌‌vector‌‌field‌‌is‌‌called‌‌divergence‌‌free.‌ ‌No‌‌matter‌‌where‌‌and‌‌what‌‌   shape,‌‌there‌‌will‌‌be‌‌no‌‌divergence.‌   ‌ ‌  

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

415‌  ‌

 ‌

5.4.6‌

C ‌ url‌  ‌

Curl‌‌attempts‌‌to‌‌measure‌‌the‌‌spin‌‌at‌‌a‌‌point.‌ ‌c url(ϕ) ‌is‌‌a‌‌vector‌‌where‌‌the‌‌direction‌‌is‌‌the‌‌   axis‌‌of‌‌rotation‌‌and‌‌the‌‌magnitude‌‌is‌‌the‌‌magnitude‌‌of‌‌rotation.‌   ‌ ‌ If‌‌the‌‌vector‌‌field‌‌is‌‌spinning‌‌counterclockwise,‌‌the‌‌vector‌‌will‌‌point‌‌upward.‌ ‌For‌‌example,‌‌   the‌‌curl‌‌vector‌‌at‌‌(0,  0) ‌points‌‌up‌‌out‌‌of‌‌the‌‌page‌‌for‌‌the‌‌vector‌‌field‌‌ϕ =   ‌(pictured‌‌   below).‌  ‌

 ‌  ‌

∇ × ϕ .‌    ‌ ‌ ∇×ϕ =(

To‌‌calculate‌‌c url(ϕ) ,‌‌perform‌‌

∂ ∂ ∂ ∂x ,   ∂y ,   ∂z )

× (P ,  Q,  R)   ‌

For‌‌a‌‌2D‌‌vector‌‌field,‌‌R = 0 .‌   ‌ ‌ Expanded‌‌out:‌  ‌

∇ × ϕ =  (

416‌

∂R ∂y



∂Q ∂P ∂z ,   ∂z



∂R ∂Q ∂x ,   ∂x



∂P ∂y



 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

Example:‌‌ϕ(x,  y,  z) =   < x 2 z,  e y + x z,  xyz > .‌ ‌Find‌‌the‌‌curl‌‌of‌‌the‌‌vector‌‌field.‌  ‌ c url(ϕ) =

∇ × ϕ =   < x z − x ,  x

2

− y z,  z − 0 >   =   < x z − x ,  x 2 − y z,  z  >‌  

Curl‌‌will‌‌be‌‌different‌‌depending‌‌on‌‌the‌‌point‌‌on‌‌the‌‌graph.‌   ‌ ‌ c url ϕ (1,  1,  1) =   < 0 ,  0,  1 >   ‌ c url ϕ (1, 2 ,  2) =   < 1 ,   − 3 ,  2 >   ‌  ‌

5.4.7‌

P ‌ arametric‌S ‌ urfaces‌  ‌

Curves‌‌are‌‌parameterized‌‌with‌‌one‌‌parameter,‌‌usually‌‌t .‌ ‌For‌‌surfaces,‌‌we‌‌need‌‌two‌‌   parameters.‌   ‌ ‌ 2D‌‌parametric‌‌surfaces:‌  ‌ x = x (u,  v)      y = y (u,  v)      z = z (u,  v)   ‌ r→(u,  v) =   < x (u,  v),  y(u,  v),  z(u,  v) >       u 0 ≤ u ≤ u 1       v 0 ≤ v ≤ v 1    ‌ We‌‌can‌‌parameterize‌‌a‌‌function‌‌z = (x,  y) ‌with‌‌r→(u,  v) =   < u ,  v,  f (u,  v) > .‌   ‌ ‌ You‌‌can‌‌also‌‌parameterize‌‌spherical‌‌“chunks”‌‌using‌‌x = ρsin ϕ cos θ,  y = ρsin ϕ sin θ, ‌and‌‌   z = ρcos ϕ .‌ ‌Use‌‌r→(u,  v) =   < sin u cos v,  sin u sin v,  cos v > ‌and‌‌then,‌‌by‌‌changing‌‌ranges,‌‌you‌‌   can‌‌get‌‌different‌‌parts‌‌of‌‌a‌‌sphere.‌   ‌ ‌  

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

417‌  ‌

 ‌

5.4.8‌

S ‌ urface‌I‌ ntegrals‌  ‌

For‌‌a‌‌quick‌‌review:‌  ‌ Name‌  ‌

Integral‌  ‌

integral‌  ‌

b

∫ f (x) dx   a

double‌‌integral‌ 

Domain‌‌of‌‌Integration‌  ‌ over‌‌a‌‌section‌‌of‌‌the‌‌   number‌‌line‌  ‌



   

∫ ∫ f (x,  y) dA  

“double”‌‌the‌‌amount‌‌of‌‌   integration;‌‌two‌‌number‌‌   lines‌  ‌



 D

triple‌‌integral‌  ‌

    

 ‌

∫ ∫ ∫ f (x,  y,  z) dV

domain‌‌of‌‌integration‌‌is‌‌3D‌  ‌

  E

line‌‌integral‌  ‌

 

∫ P dx + Qdy  



C

domain‌‌of‌‌integration‌‌is‌‌a ‌‌ line‌  ‌

 ‌ A‌‌surface‌‌integral’s‌‌domain‌‌of‌‌integration‌‌is‌‌over‌‌a‌‌bendy‌‌surface.‌   ‌ ‌  ‌ ‌5.4.8.a‌

‌Surface‌‌Area‌  ‌

There‌‌is‌‌a‌‌transformation‌‌between‌‌area‌‌piece‌‌d A ‌(small‌‌piece‌‌of‌‌area‌‌on‌‌a‌‌2D‌‌surface)‌‌and‌‌   area‌‌piece‌‌d S ‌(small‌‌piece‌‌of‌‌area‌‌on‌‌a‌‌curved‌‌3D‌‌surface).‌ ‌It‌‌follows‌‌the‌‌equation‌  ‌ d S = ||tu × tv || dA   ‌ where‌‌tu =  
‌and‌‌tv =  
.‌ ‌Note‌‌that‌‌t ‌stands‌‌for‌‌tangent.‌   ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌ ‌

 ‌

 ‌ The‌‌area‌‌of‌‌this‌‌parallelogram‌‌is‌‌the‌‌magnitude‌‌of‌‌tu × tv .‌  ‌    

Integral‌‌Formula:‌‌∫ ∫ ||tu × tv || dA   ‌  D

 ‌ Example:‌‌Find‌‌the‌‌surface‌‌area‌‌of‌‌the‌‌surface‌‌with‌‌parameterization‌‌   r (u,  v) =   < u + v ,  u 2 ,  2v >,  0 ≤ u ≤ 3 ,  0 ≤ v ≤ 2 .‌   ‌ ‌ Find‌‌tu ‌and‌‌tv .‌  ‌ tu =   < 1 ,  2u,  0 >       tv =   < 1 ,  0,  2 >   ‌ Find‌‌the‌‌integrand‌‌||tu × tv || .‌  ‌ tu × tv =   < 4 u,   − 2 ,   − 2 u >    →   ||tu × tv || =

√(4u)

2

+ (− 2 )2 + (− 2 u)2 = √20u 2 +  4 ‌ 

Now,‌‌integrate.‌  ‌ 23

∫ ∫ √20u 2 + 4  dudv   ‌ 00



You’d‌‌have‌‌to‌‌use‌‌trigonometric‌‌substitution‌‌to‌‌solve‌‌this‌‌integral‌‌(‌u =  

1 tan θ ).‌  √5

 ‌ ‌

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

419‌ ‌

 ‌ ‌5.4.8.b‌

‌Scalar‌‌Surface‌‌Integrals‌  ‌    

   

 S

 D

∫ ∫ f (x,  y,  z) dS = ∫ ∫ f (r(u,  v)) ||tu × tv|| dA  



d S ‌is‌‌an‌‌infinitesimal‌‌surface‌‌piece,‌ ‌and‌‌||tu × tv || dA ‌is‌‌the‌‌area‌‌of‌‌a‌‌parallelogram‌‌on‌‌the‌‌   surface.‌ ‌When‌‌calculating‌‌these,‌‌replace‌‌everything‌‌in‌‌the‌‌f ‌equation‌‌with‌‌u ’s‌ ‌and‌‌v ’s.‌   ‌ ‌  ‌ Example:‌‌A‌‌flat‌‌sheet‌‌of‌‌metal‌‌has‌‌the‌‌shape‌‌of‌‌surface‌‌z = 1 + x + 2 y ‌that‌‌lies‌‌above‌‌the‌‌   rectangle‌‌0 ≤ x ≤ 4 ‌and‌‌0 ≤ y ≤ 2 .‌ ‌If‌‌the‌‌density‌‌of‌‌the‌‌sheet‌‌is‌‌given‌‌by‌‌ρ(x,  y,  z) = x 2 yz ,‌‌   what‌‌is‌‌the‌‌mass‌‌of‌‌the‌‌sheet?‌‌    ‌ Since‌‌the‌‌surface‌‌equation‌‌is‌‌solved‌‌for‌‌z ‌and‌‌passes‌‌the‌‌vertical‌‌line‌‌test,‌‌we‌‌can‌‌use‌‌the‌‌   shortcut‌‌to‌‌parameterize‌‌the‌‌function.‌   ‌ ‌ x = u       y = v       z = 1 + u + 2 v   →   r(u,  v) =   < u ,  v,  1 + u + 2 v >   ‌ Now‌‌find‌‌tu ,  tv ,  tu × tv , ‌and‌‌||tu × tv || .‌   ‌ ‌ tu =   < 1 ,  0,  1 >       tv =   < 0 ,  1,  2 >       tu × tv =     ‌ ||tu × tv || =

√(− 1)

2

+ (2)2 + (1)2 = √6   ‌

Replace‌‌x ,  y,   and‌‌z ‌in‌‌the‌‌mass‌‌density‌‌equation.‌  ‌ ρ(x,  y,  z) = x 2 yz   →   f (r(u,  v)) = u 2 v(1 + u + 2 v)   ‌ Integrate.‌  ‌ 24

√6 ∫ ∫ u 2 v(1 + u + 2 v) dudv   ‌ 00

 

420‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

‌5.4.8.c‌

‌Orientation‌‌of‌‌a‌‌Surface‌  ‌

 ‌ t  × t

u nit normal = N = ||tu  × tv || ‌‌(length‌‌1)‌  ‌ u v The‌‌normal‌‌vector‌‌points‌‌from‌‌in‌‌to‌‌out.‌ ‌There‌‌is‌‌both‌‌positive‌‌and‌‌negative‌‌orientation:‌‌   positive‌‌is‌‌outward‌‌pointing‌‌normal.‌ ‌Assume‌‌positive‌‌orientation‌‌unless‌‌otherwise‌‌   mentioned.‌   ‌ ‌ For‌‌flux,‌‌if‌‌it‌‌is‌‌going‌‌with‌‌the‌‌arrow‌‌it‌‌is‌‌positive.‌ ‌If‌‌it‌‌is‌‌going‌‌against‌‌the‌‌arrow,‌‌it‌‌is‌‌   negative‌‌flux.‌   ‌ ‌  ‌ ‌5.4.8.d‌

‌Surface‌‌Integral‌‌in‌‌a‌‌Vector‌‌Field‌  ‌

This‌‌is‌‌3D‌‌flux.‌ ‌You‌‌can‌‌imagine‌‌it‌‌is‌‌a‌‌velocity‌‌of‌‌fluids‌‌flowing‌‌through‌‌a‌‌surface.‌ ‌What‌‌   portion‌‌(volume)‌‌of‌‌the‌‌fluid‌‌flows‌‌through‌‌a‌‌surface‌‌per‌‌unit‌‌of‌‌time?‌   ‌ ‌ Let‌‌F = (P ,  Q,  R) ‌be‌‌a‌‌continuous‌‌vector‌‌field‌‌with‌‌a‌‌domain‌‌that‌‌contains‌‌the‌‌oriented‌‌   surface‌‌S ‌with‌‌a‌‌unit‌‌normal‌‌vector‌‌N .‌ ‌The‌‌surface‌‌integral‌‌of‌‌F ‌over‌‌S ‌is‌  ‌    

   

 S

 D

∫ ∫ F · N  dS = ∫ ∫ (F (r(u,  v)) · (tu × tv)) dA   ‌  

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

 ‌

421‌ ‌

 ‌    

Example:‌‌Calculate‌‌the‌‌surface‌‌integral‌‌∫ ∫ F · N  dS ‌where‌‌F =   ‌and‌‌S ‌is‌‌the‌‌    S

surface‌‌with‌‌parameterization‌‌r (u,  v) =   < u ,  v 2 − u , u + v > ,‌‌0 ≤ u ≤ 3 ,‌‌0 ≤ v ≤ 4 .‌   ‌ ‌ Find‌‌tu ,  tv , ‌and‌‌tu × tv .‌  ‌ tu =   < 1 ,   − 1 ,  1 >       tv =   < 0 ,  2v,  1 >       tu × tv =     ‌ →

At‌‌0 ,‌‌tu × tv =     ‌ Replace‌‌x ,  y,   and‌‌z ‌in‌‌F .‌  ‌ F =      →   F (r(u,  v)) =     ‌ Now‌‌integrate‌‌using‌‌the‌‌3D‌‌flux‌‌formula.‌  ‌    

∫∫

 D

   

< u − v 2 ,  u,  0 >·  dA = ∫ ∫ [(u − v 2 )(− 1 − 2 v) − u ] dA   ‌  D

43

∫ ∫ [(u − v 2 )(− 1 − 2 v) − u ] dudv   00



 ‌ Shortcut:‌‌    ‌ If‌‌the‌‌surface‌‌of‌‌integration‌‌is‌‌a‌‌piece‌‌of‌‌a‌‌function‌‌z = f (x,  y) ,‌‌we‌‌can‌‌develop‌‌a‌‌shortcut‌‌for‌‌   setting‌‌up‌‌surface‌‌integrals.‌ ‌If‌‌the‌‌function‌‌passes‌‌the‌‌vertical‌‌line‌‌test,‌  ‌    

   

 D

 D

∫ ∫ (F (r(u,  v)) · (tu × tv)) dA = ∫ ∫ [− P · f x − Q · f y + R] dA  



 ‌  

422‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

5.4.9‌

S ‌ tokes’‌T ‌ heorem‌ 

Stokes’‌‌Theorem‌‌is‌‌the‌‌higher‌‌dimensional‌‌version‌‌of‌‌Green’s‌‌Theorem.‌   ‌ ‌ Let‌‌S ‌be‌‌an‌‌oriented‌‌smooth‌‌surface‌‌that‌‌is‌‌bounded‌‌by‌‌a‌‌simple,‌‌closed,‌‌smooth‌‌   boundary‌‌curve‌‌c ‌with‌‌positive‌‌orientation.‌ ‌Also,‌‌let‌‌F ‌be‌‌a‌‌vector‌‌field,‌‌then,‌  ‌

∫ F · dr = ∫ ∫ ∇ × F · dS    

   

c

 S



 

   

c

 S

where‌‌∫ F · d r ‌is‌‌the‌‌circulation‌‌or‌‌work‌‌around‌‌a‌‌boundary‌‌curve‌‌and‌‌∫ ∫

∇ × F · dS ‌is‌‌the‌‌ 

surface‌‌integral‌‌of‌‌a‌‌curve.‌   ‌ ‌

 ‌ This‌‌is‌‌like‌‌a‌‌hemisphere‌‌where‌‌the‌‌“crust”‌‌is‌‌a‌‌boundary‌‌curve.‌   ‌ ‌  

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

423‌ ‌

 ‌ ‌5.4.9.a‌

‌Example‌  ‌  











Use‌‌Stokes’‌‌Theorem‌‌to‌‌evaluate‌‌∫ F · d r→ ‌where‌‌F = z 2 i + y 2 j + x k ‌and‌‌c ‌is‌‌the‌‌triangle‌‌with‌‌   c

vertices‌‌(1,  0,  0) ,‌‌(0,  1,  0) ,‌‌and‌‌(0,  0,  1) ‌with‌‌counterclockwise‌‌rotation.‌   ‌ ‌

   ‌ ‌  

   







Instead‌‌of‌‌using‌‌∫ F · d r→ ,‌‌use‌‌∫ ∫ c urlF · d S .‌‌    ‌ c

 S



c url (F ) =

∇ × F ,‌  ‌where‌‌∇ = (

∂ ,  ∂ ,  ∂ )  ∂x ∂y ∂z ‌and‌‌F

=  (x 2 ,  y 2 ,  x)   ‌

∇ × F = ϕ = (0,  2z − 1,  0)   ‌ Now,‌‌parameterize‌‌the‌‌plane.‌   ‌ ‌ x 1

y

+1+

z 1

= 1    →   z = 1 − x − y   ‌

r→(u,  v) = (u,  v,  1 − u − v )   ‌  

424‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

Graph‌‌the‌‌equation‌‌of‌‌the‌‌plane‌‌on‌‌the‌‌x y ‌plane.‌ ‌This‌‌is‌‌done‌‌by‌‌graphing‌‌the‌‌x ‌and‌‌y  ‌ intercepts‌‌and‌‌ignoring‌‌z .‌ ‌This‌‌is‌‌also‌‌known‌‌as‌‌the‌‌“shadow”‌‌of‌‌the‌‌plane.‌ ‌Notice‌‌that‌‌this‌  is‌‌the‌‌same‌‌as‌‌graphing‌‌the‌‌equation‌‌on‌‌the‌‌u v ‌plane.‌   ‌ ‌

 ‌ The‌‌equation‌‌of‌‌this‌‌line‌‌is‌‌y = 1 − x ‌or‌‌v = 1 − u .‌ ‌We‌‌will‌‌use‌‌this‌‌equation‌‌for‌‌the‌‌upper‌‌v  ‌ bound‌‌of‌‌the‌‌d v ‌integral.‌   ‌ ‌    





Now,‌‌use‌‌∫ ∫ c urlF · d S .‌  ‌  S

   





   

∫ ∫ curlF · d S = ∫ ∫ ϕ (r(u,  v)) · (tu × tv) dA    S

 D



Remember‌‌that‌‌we‌‌need‌‌to‌‌use‌‌(r(u,  v)) · (tu × tv ) dA ,‌‌as‌‌this‌‌is‌‌a‌‌surface‌‌integral,‌‌which‌‌was‌  covered‌‌in‌‌the‌‌previous‌‌section.‌ ‌Find‌‌tu × tv .‌  ‌ tu =   < 1 ,  0,   − 1 >      tv =   < 0 ,  1,   − 1 >    tu × tv =   < 1 ,  1,  1 >   ‌ Plug‌‌in‌‌all‌‌knowns‌‌into‌‌the‌‌double‌‌integral‌‌over‌‌D ‌and‌‌solve.‌   ‌ ‌    

∫∫

 D

   

ϕ (r(u,  v)) · (tu × tv ) dA = ∫ ∫ (0,  2(1 − u − v ),  0) ·   < 1 ,  1,  1 >  dA   ‌  D

Add‌‌in‌‌limits‌‌and‌‌simplify.‌   ‌ ‌ 1 1−u

∫ ∫

[1 − 2 u − 2 v] dvdu   ‌

0 0

When‌‌fully‌‌solved,‌‌the‌‌final‌‌answer‌‌is‌‌− 61 .‌   ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

425‌ ‌

 ‌

5.4.10‌

D ‌ ivergence‌‌Theorem‌  ‌

Let‌‌E ‌be‌‌a‌‌simple‌‌solid‌‌region‌‌and‌‌S ‌is‌‌the‌‌boundary‌‌surface‌‌of‌‌E ‌with‌‌positive‌‌   orientation.‌ ‌Let‌‌F ‌be‌‌a‌‌vector‌‌field‌‌whose‌‌components‌‌have‌‌continuous‌‌first‌‌order‌‌partial‌‌   derivatives.‌ ‌Then,‌‌    ‌    





    



∫ ∫ F · d S = ∫ ∫ ∫ d iv F dV  S

   





  E

    

 ‌



where‌‌∫ ∫ F · d S ‌is‌‌the‌‌flux‌‌across‌‌the‌‌surface‌‌and‌‌∫ ∫ ∫ d iv F dV is‌‌the‌‌triple‌‌integral‌‌of‌‌the‌‌    S

  E

divergence.‌   ‌ ‌

 ‌ S ‌is‌‌a‌‌closed‌‌surface‌‌that‌‌completely‌‌surrounds‌‌the‌‌solid‌‌region.‌   ‌ ‌  

426‌

 ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌ ‌

‌5.4.10.a‌

‌Example‌  ‌    













Use‌‌the‌‌divergence‌‌theorem‌‌to‌‌evaluate‌‌∫ ∫ F · d S ‌where‌‌F = x yi − 21 y 2 j + z k ‌and‌‌the‌‌surface‌‌    S

consists‌‌of‌‌three‌‌surfaces:‌‌z = 4 − 3 x 2 = 3 y 2 ,  1 ≤ z ≤ 4 ‌on‌‌the‌‌top,‌‌x 2 + y 2 = 1 ,  0 ≤ z ≤ 1 ‌on‌‌the‌‌   sides,‌‌and‌‌z = 0 ‌on‌‌the‌‌bottom.‌   ‌ ‌

 ‌     





Use‌‌∫ ∫ ∫ d iv F  dV .‌ ‌First,‌‌find‌‌d iv F .‌‌    ‌   E

d iv F =

∇ · F    →   div F = (     

∂ ∂ ∂ ∂x ,   ∂y ,   ∂z )

∫ ∫ ∫ 1  dV   E

· (xy,   − 21 y 2 ,  z) =  1‌ 

 ‌

Using‌‌cylindrical‌‌coordinates,‌‌find‌‌the‌‌bounds‌‌of‌‌the‌‌integrals.‌   ‌ ‌ r oof = 4 − 3 x 2 − 3 y 2 = 4 − 3 r 2   ‌ unit‌‌circle‌‌on‌‌x y ‌plane‌‌(‌x 2 + y 2 = 1 )‌  ‌ So,‌  ‌ 2π 1 4−3r2

∫∫ ∫

0 0

0

r  dzdrdθ   ‌

This‌‌is‌‌much‌‌easier‌‌to‌‌calculate‌‌than‌‌three‌‌surface‌‌integrals.‌   ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

 ‌ ‌

427‌ ‌

 ‌

“‌Mathematics‌‌is‌‌a‌‌game‌‌played‌‌according‌‌to‌‌certain‌‌simple‌‌rules‌‌with‌‌   meaningless‌‌marks‌‌on‌‌paper!”‌  ‌ -David‌‌Hilbert‌  ‌

5.5‌  

428‌

‌My‌‌Notes‌‌for‌‌Calculus‌‌III‌  ‌  ‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

5.5‌

‌My‌‌Notes‌‌for‌‌Calculus‌‌III‌‌(con’t)‌  ‌

 ‌  ‌  ‌  ‌  

 ‌

Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌

429‌  ‌

 ‌

5.5‌

‌My‌‌Notes‌‌for‌‌Calculus‌‌III‌‌(con’t)‌  ‌

 ‌  ‌

430‌

‌Section‌‌5‌‌-‌‌Calculus‌‌III‌‌-‌‌M ath‌‌Q RH‌  ‌

 ‌  ‌  ‌  ‌  ‌ “We‌‌look‌‌at‌‌science‌‌as‌‌something‌‌very‌‌elite,‌‌which‌‌only‌‌a‌‌few‌‌people‌‌can‌‌   learn.‌‌That's‌‌just‌‌not‌‌true.‌‌You‌‌just‌‌have‌‌to‌‌start‌‌early‌‌and‌‌give‌‌kids‌‌a ‌‌ foundation.‌‌Kids‌‌live‌‌up,‌‌or‌‌down,‌‌to‌‌expectations.”‌  ‌ -Mae‌J‌emison‌  ‌  ‌  ‌  ‌ Teachers‌a ‌ nd‌P ‌ rofessors‌  ‌  ‌ Evaluation‌c‌ opies‌o ‌ f‌t‌ his‌b ‌ ook‌a ‌ re‌a ‌ vailable‌t‌ o‌q ‌ ualified‌a ‌ cademics‌a ‌ nd‌‌   professionals‌f‌ or‌r‌ eview‌p ‌ urposes‌o ‌ nly,‌f‌ or‌u ‌ se‌i‌n‌t‌ he‌d ‌ evelopment‌o ‌ f‌y ‌ our‌c‌ ourses‌‌   and‌i‌nstruction.‌T ‌ hese‌c‌ opies‌a ‌ re‌l‌icensed‌a ‌ nd‌m ‌ ay‌n ‌ ot‌b ‌ e‌s‌ old‌o ‌ r‌t‌ ransferred‌t‌ o‌a ‌  ‌‌ third‌p ‌ arty.‌U ‌ pon‌c‌ ompletion‌o ‌ f‌t‌ he‌r‌ eview‌p ‌ eriod,‌p ‌ lease‌r‌ eturn‌t‌ he‌e ‌ valuation‌‌   copy‌s‌ o‌t‌ hat‌i‌t‌c‌ an‌b ‌ e‌s‌ hared‌w ‌ ith‌o ‌ ther‌p ‌ rofessionals.‌V ‌ isit‌t‌ he‌w ‌ ebsite‌f‌ or‌d ‌ etails.‌  ‌  ‌ Share‌y ‌ our‌c‌ omments,‌s‌ uggestions‌a ‌ nd‌h ‌ elp‌i‌mprove‌o ‌ ur‌n ‌ ext‌e ‌ dition‌o ‌ f‌t‌ his‌t‌ ool!‌  ‌  ‌

www.MathQRH.com‌  ‌  ‌  

 

 ‌

 ‌  ‌  ‌  ‌  ‌  ‌ “Proofs‌‌can‌‌cause‌‌dizziness‌‌or‌‌excessive‌‌drowsiness.‌‌Side‌‌effects‌‌of‌‌   prolonged‌‌exposure‌‌may‌‌include:‌‌night‌‌sweats,‌‌panic‌‌attacks‌‌and,‌‌in‌‌rare‌‌   circumstances,‌‌euphoria.‌‌Ask‌‌your‌‌doctor‌‌if‌‌proofs‌‌are‌‌right‌‌for‌‌you.”‌  ‌ -Steven‌‌Strogatz‌  ‌  ‌  ‌  ‌

What‌s‌ tarted‌f‌ or‌m ‌ e‌a ‌ s‌j‌ ust‌a ‌ nother‌s‌ ubject‌i‌ n‌s‌ chool‌b ‌ ecame‌m ‌ y‌p ‌ assion.‌I‌  ‌‌ hope‌t‌ hat‌y ‌ ou‌w ‌ ill‌fi ‌ nd‌v ‌ alue‌i‌ n‌t‌ his‌t‌ ool‌a ‌ nd‌w ‌ ish‌y ‌ ou‌s‌ uccess‌i‌ n‌w ‌ hatever‌‌   path‌y ‌ ou‌c ‌ hoose‌i‌ n‌l‌ ife.‌I‌ f‌t‌ his‌b ‌ ook‌h ‌ as‌h ‌ elped‌y ‌ ou,‌m ‌ y‌m ‌ ission‌i‌ s‌a ‌ ‌s‌ uccess.‌  ‌  ‌ Katarina‌C ‌ osta,‌A ‌ uthor‌  ‌ MathQRH.com‌  ‌  ‌  ‌  ‌  

 ‌

 ‌