LASL Explosive Property Data [Reprint 2020 ed.] 9780520313743

162 42 31MB

English Pages 488 [480] Year 2020

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

LASL Explosive Property Data [Reprint 2020 ed.]
 9780520313743

Citation preview

LASL EXPLOSIVE PROPERTY DATA

LOS ALAMOS SERIES ON DYNAMIC MATERIAL PROPERTIES

LOS ALAMOS DATA CENTER FOR DYNAMIC MATERIAL PROPERTIES TECHNICAL COMMITTEE Charles L. Mader Terry R. Gibbs Charles E. Morris Stanley P. Marsh Alphonse Popolato Martha S. Hoyt Kasha V. Thayer Sharon L. Crane

Program Manager Explosive Data Editor Shock Wave Profile Editor Equation of State Editor Explosive Data Editor Computer Applications Analyst Technical Editor Technical Editor

John F. Barnes Richard D. Dick John W. Hopson, Jr. James N. Johnson Elisabeth Marshall Timothy R. Neal Suzanne W. Peterson Raymond N. Rogers John W. Taylor Melvin T. Thieme Jerry D. Wackerle John M. Walsh

iii

LASL EXPLOSIVE PROPERTY DATA

Editors — Terry R. Gibbs Alphonse Popolato

CONTRIBUTORS John F. Baytos Bobby G. Craig Arthur W. Campbell William E. Deal Jerry J. Dick Robert H. Dinegar Raymond P. Engelke Thomas E. Larson Elisabeth Marshall John B. Ramsay Raymond N. Rogers Diane Soran Manuel J. Urizar Jerry D. Wackerle

UNIVERSITY OF CALIFORNIA PRESS Berkeley • Los Angeles • London v

University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England Copyright © 1980 by The Regents of the University of California ISBN 0-520-04012-0 Series ISBN 0-520-04007-4 Library of Congress Catalog Card Number: 80-53635 Printed in the United States of America 2 3 4 5 6 7 8 9

vi

CONTENTS

PART I. EXPLOSIVES PROPERTIES BY EXPLOSIVES Baratol Composition B Cyclotol DATB HMX Nitroguanidine Octol PBX 9011 PBX 9404 PBX 9407 PBX 9501 PBX 9502 PETN RDX TATB Tetryl TNT XTX 8003 XTX 8004

1 3 11 24 34 42 52 61 72 84 99 109 120 130 141 152 163 172 188 196

vii

PART II. EXPLOSIVES PROPERTIES BY PROPERTIES 1. Chemical Properties 2. Thermal Properties 2.1 Heat Capacity Determination 2.2 Thermal Conductivity 2.3 Coefficient of Thermal Expansion 2.4 Thermal Decomposition Kinetics 2.5 Heats of Combustion and Formation 2.6 Differential Thermal Analysis and Pyrolysis Test 2.7 Time-to-Explosion Test 3. Detonation Properties 3.1 Detonation Velocity and Diameter Effect 3.2 Cylinder Test Performance 3.3 Detonation Pressure Determined from Initial Free-Surface Velocity 3.4 Plate Dent Test 3.5 Detonation Failure Thickness 4. Shock Initiation Properties 4.1 Wedge Test Data 4.2 Small- and Large-Scale Gap Tests 4.3 Minimum Primary Charge 4.4 Rifle Bullet Tests 4.5 Miscellaneous Tests 5. Sensitivity Tests 5.1 Drop Weight Impact Test 5.2 Skid Test 5.3 Large-Scale Drop Test or Spigot Test 5.4 Spark Sensitivity GLOSSARY AUTHOR INDEX SUBJECT INDEX viii

203 204 216 216 217 218 219 221 223 231 234 234 249 258 280 289 291 293 425 433 434 440 446 446 454 458 460 462 466 468

PREFACE

This volume of the Los Alamos Series on Dynamic Materials Properties is designed to provide a single source of reliable data on high explosives in use or formerly used at the Los Alamos National Scientific Laboratory (LASL). These are the best LASL data available and, as revisions are made, new or better data will be added. The volume is divided into two major parts for the user's convenience. Part I presents in one place the properties of explosives by explosive and summarizes all the property data and the results of various tests generally used to characterize explosives. It covers only pure explosives and explosive formulations that have been well characterized. However, for many of these materials there are some properties or test results that have not been determined and in those cases the section normally used to list the property or test result has been omitted. Part II presents the properties of explosives by property or method of determination. It covers many more materials, often those for which only one property has been determined. Part II permits ready comparison of explosives and, for a number of properties, contains detailed data that permit use of other data reduction methods, such as the user's own fitting techniques. Because many explosives properties depend upon the exact details of charge preparation, and their determination depends upon the exact details of the testing procedures, many of the test procedures used in gathering these data are described. References on the test procedures and data are cited where possible; however, much of the data has been taken from unpublished internal L A S L reports. If more than one group of data or conflicting data were available, we selected the most credible. Also, because almost all of these explosives are heterogeneous polycrystalline materials, some of their properties, especially initiation by strong shocks, depend upon such factors as charge density, the particle size distribution of the crystals, and the degree of crystal perfection. Therefore, Part II includes detailed descriptions of the test explosives wherever possible. In Part I the explosives are discussed alphabetically and the various plasticbonded explosives, PBXs, and extrudable explosives, X T X s , are discussed in numerical order. Part II, because it covers many more explosives formulations, ix

treats pure explosives first, alphabetically; then castables; then plastic-bonded explosives, alphabetically by major explosive constituent; and, finally, propellants. An explosives table gives the composition of each material covered in this volume, and a glossary defines acronyms and unusual terms. The authors gratefully acknowledge the help that was provided by Margaret M. Cox and Jeanne Stein in producing many of the graphics.

PARTI EXPLOSIVES PROPERTIES BY EXPLOSIVE

EXPLOSIVES PROPERTIES BY EXPLOSIVE 1. Baratol 2. Composition B 3. Cyclotol 4. DATB 5. HMX 6. Nitroguanidine 7. Octol 8. PBX 9011 9. PBX 9404 10. PBX 9407 11. PBX 9501 12. PBX 9502 13. PETN 14. RDX 15. TATB 16. Tetryl 17. TNT 18. XTX 8003 19. XTX 8004

2

3 11 24 34 42 52 61 72 84 99 109 120 130 141 152 163 172 188 196

BARATOL

1. GENERAL PROPERTIES 1.1 Chemical and Physical Description. Baratol, a mixture of barium nitrate, Ba(NOs)2, and TNT, C 7 H,N,0„ is off-white to gray. 1.2 Common Use. During World War II, the British developed baratols that contained about 20 wt% barium nitrate to replace TNT. The United States used baratols that contained slightly more barium nitrate in depth charges and other limited munitions. Baratols that contain up to 76 wt% barium nitrate are now used as the low detonation velocity explosive in waveshaping devices such as plane-wave lenses. 1.3 Toxicity.1 Barium nitrate can irritate skin and mucous membranes. 2. MANUFACTURE AND PROCUREMENT 2.1 Manufacture. Finely ground barium nitrate is added to molten TNT to form a castable slurry. To lower the slurry viscosity, which increases with the percentage of barium nitrate, about 0.1 wt% of nitrocellulose (11.8-12.2 wt% nitrogen, 18-25 centipoise) is added to the TNT before the addition of the barium nitrate. After the barium nitrate is added, just before vacuum is applied to the melt, 0.05-0.1 wt% of either decylgallophenone or stearoxyacetic acid is added to prevent cracking. Vacuum is applied to the melt just before casting to remove dissolved and occluded gas and to provide higher, more uniform density. Carefully controlled cooling of the casting also promotes uniform density and composition. 2.2 Procurement. There are no purchase specifications for baratol. It is produced to the user's specific requirements at ordnance plants that have TNTcasting facilities.

3

BARATOL 2.3 Shipping.2 Baratol is shipped as a Class A explosive, as defined by the Code of Federal Regulations. 2.4 Storage.8 Baratol is stored in Compatibility Group D, Storage Class 1.1, as required by US Army Materiel Command regulation. 3. CHEMICAL PROPERTIES 3.1 Composition. Unless otherwise specified, the properties given are for the following composition. Constituent

Weight Percent

Volume Percent

Barium nitrate

76.0 24:0

62.8 37.2

TNT

3.2 Molecular Weight. Constituent

Structure

Molecular Weight

Barium nitrate

Ba(NOa):

261.38

TNT

227.13

NO 2

C7H5N3O,

3.3 Solubility. Barium nitrate solubility in water is given. (°C)

Solubility (g/100 ml of solvent)

20

8.7

Temperature

4

BARATOL 4. PHYSICAL PROPERTIES 4.2 Density. Density (g/cm3) 2.634

Theoretical Vacuum cast

2.60-2.62

4.3 Infrared Spectrum. See Fig. 1. 5. THERMAL PROPERTIES 5.1 Phase Changes. Temperature

Type Solid-to-liquid

(°C)

Latent Heat (cal/g)

79-80

6.1

5.3 Heat Capacity. Heat Capacity at Constant Pressure (cal/g-°C)

Temperature Range

0.192

18 < T < 75

4

WAVELENGTH

6

Ifim)

8

CC)

10

14

ÏÎ

Fig. 1. Infrared spectrum.

3000

2000

1600

1200

WAVE NUMBER (l/cm)

5

BARATOL 5.4 Thermal Conductivity. Conductivity (cal/s-cm-°C)

Temperature Range (°C)

11.84 X IO"4

18 < T < 75

5.5 Coefficient of Thermal Expansion. Coefficient of Expansion (1/C°)

Temperature Range (°C)

3.4 X IO"5 + 2.8 X IO"7 T

- 4 0 < T < 60

5.6 Heats of Combustion and Formation.4 Constituent TNT Ba(NO,)j

AH° (kcal/mole) -817.2

AH° (kcal/mole) -12.0

-238.23

5.8 Other Thermal Stability Test Results. Test Vacuum DTA and pyrolysis

6

Results 0.1-0.4 ml/g of gas evolved after 48 h at 120°C See Fig. 2

BARATOL

J I I I I IL TEMPERATURE CC)

100

300

200

Fig. 2. Baratol DTA and pyrolysis test results.

6. DETONATION PROPERTIES 6.1 Detonation Velocity. The composition of baratol cast to approximately 97% of its theoretical density affects its detonation velocity as follows. Effect of Composition Weight Percent Ba(NO,) 2

Detonation Velocity (mm/Vs)

70 72 74 76

5.12 5.03 4.95 4.86

7

BARATOL 6.2 D e t o n a t i o n P r e s s u r e .

Weight Percent Ba(NO,) 2

Density (g/cm")

Detonation Velocity (mm/^s)

Pressure (GPa)

2:61

4.925

14

76 6.4 P l a t e D e n t Test Results. Charge Diameter (mm)

Density (g/cm 3 )

Dent Depth (mm)

Charge Height (mm)

41.3

2.61

3.21

203

7. SHOCK I N I T I A T I O N P R O P E R T I E S 7.1 Gap T e s t Results. Weight Percent Ba(NO s ) 2

Density g/cm 3 )

G60 (mm)

L„5 (mm)

27.3

0.20

Large Scale 76

2.597 Small Scale

No d a t a because s a m p l e was below failure d i a m e t e r . 7.2 Wedge T e s t Results.

Density (g/cm 8 ) 2.61

Distance, x*, and Time, t*, to Detonation (mm and /us) log P = (1.2±0.03)-(0.30±0.03) log x* logP = (1.01±0.01)-(0.27±0.02) logt*, where P = pressure in gigapascals.

8

Pressure Range (GPa) 6.9 < P < 11.8

BARATOL 7.3 Shock Hugoniots/ Density (g/cm 8 )

Shock Hugoniot (mm/(is)

2.611

U. = 2.40+ 1.66 U p) U. = 1.50+ 2.16 Up,

2.63

U. = 2.79+ 1.25 UP)

Particle Velocity Range (mm/^s) 0 < Up < 0.75 0.75 < Up 320 >320

REFERENCES 1. C. H. Nichols, Picatinny Arsenal Technical report PA-TR-4566 (May 1974). 2. G. Cowan, US Army Armament Materiel Command, private communication (1977). 3. Code of Federal Regulations, 49, Transportation Parts 100-199, Rev. 12-1-76 (Office of the Federal Register, General Services Administration, Washington, DC, 1976). 4. US Army Armament Materiel Command, Regulation No. AMCR 385-100 (1977). 5. W. D. Kumler and P. P. T. Sah, Journal of Organic Chemistry 18, 669-675 (1953). 6. W. D. Kumler, Journal of the American Chemical Society 76,814-816 (1954). 7. W. C. McCrone, Analytical Chemistry 23, 205-206 (1951). 8. J. Donohue and J. H. Bryden, Acta Crystallographica 8, 314-316 (1955). 9. L. Medard and M. T. Thomas, Memorial des Poudres 31,173-196 (1949). 10. R. N. Rogers, Thermochimica Acta 11,131-139 (1975). 11. J. L. Block, US Naval Ordnance Laboratory report NAVORD-2705 (January 1953). 12. D. Price and A. R. Clairmont, US Naval Ordnance Laboratory report N O L T R 67-169 (February 1968).

60

OCTOL

1. GENERAL PROPERTIES 1.1 Chemical and Physical Description. Octol is the generic term for mixtures of TNT and HMX. In the United States, the mixtures consist of 75 wt% HMX and 25 wt% TNT (Type I) or 70 wt% HMX and 30 wt% TNT (Type II), also called Octol 75/25 and Octol 70/30. Neither mixture contains a desensitizer. To improve the flow characteristics of the molten form, a bimodal distribution of HMX crystals generally is used. 1.2 Common Use. Octol is often used as an explosive fill in military applications that require more energy than either Comp B or Type I Cyclotol can provide. 1.3 Toxicity.1-3 Octol toxicity is like that of HMX and TNT. The suggested maximum concentration of HMX in air is 1.5 mg/m s . Inhaled TNT vapor or dust may irritate mucous membranes and cause sneezing, coughing, and sore throat. TNT may produce toxic hepatitis and aplastic anemia. TNT yellows the exposed skin, hair, and nails of workers. Dermatitis, erythema, papules, and itchy eczema can be severe. Ingestion of 1-2 g of TNT is estimated to be an acute fatal dose to humans. The suggested maximum permissible airborne dust concentration is 0.5 mg/m". 2. MANUFACTURE AND PROCUREMENT 2.1 Manufacture. Octols are manufactured from TNT and water-wet HMX. The TNT is melted in a steam-jacketed kettle equipped with a stirrer and brought to about 100°C. The wet HMX is added slowly, and stirring is continued until the water is evaporated. The slurry temperature is reduced until the viscosity is satisfactory for casting. The octol is cast onto a continuous belt as strips or chips.

61

OCTOL These are shipped to an ordnance plant, remelted, and cast into ammunition or into other desired shapes. During this melting, other additives may be introduced. To increase the density of the cast charges, a vacuum may be applied to the molten octol before casting. 2.2 Procurement. Octol is purchased from the US Army Armament Command under military specification MIL-0-45445A, dated September 30,1962. 2.3 Shipping.3 Octol is shipped as a Class A explosive. 2.4 Storage. 4 Octol is stored in Compatibility Group D, Storage Class 1.1. 3. CHEMICAL PROPERTIES 3.1 Composition. Type II

Type I Constituent

Weight Percent

Volume Percent

Weight Percent

Volume Percent

HMX TNT

75 25

72.3 27.7

70 30

66.9 33.1

62

OCTOL 3.2 Molecular Weight. Constituent

Structure

HMX

Molecular Weight 296.17

H

O-N. 2 ^N

09N

N

I2 C

N

,NO2

C N I N02 H,

C4H9Ne0, TNT

227.13

C7H,N,06

63

OCTOL 3.3 Solubility." The solubility is that of the components, HMX and TNT. Grams of HMX Dissolved/100 g of Solvent Solvent Acetic acid Glacial 70% Acetic anhydride Acetone Anhydrous 70% Acetonitrile Cyclohexanone Dimethylformamide Dimethylsulfoxide

20°C

40°C

0.037

0.044 0.033 1.29

2.4 0.66

3.4

60° C

0.090 0.103 1.94

1.20

3.07 5.91

4.34 7.17

6.1

11.1

45.5

47.2

Grams of TNT Dissolved/100 g Solvent Solvent Acetone Benzene Butyl carbinol acetate Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Diethyl ether Ethanol (95%) Ethylene chloride Hexane Methyl acetate Toluene Trichloroethylene Water

64

20°C 109.0 67.0 24.0 0.48 0.65 33.9 19.0 3.29 1.23 18.7

40° C 228.0 180.0 1.53 1.75 66.0

2.92

60° C 600.0 478.0 6.90 302.0 8.30

0.16

72.1 55.0 3.04 0.0130

130.0 0.0285

367.0 0.0675

OCTOL 4. PHYSICAL P R O P E R T I E S 4.2 Density.

Material Type I, Octol 75/25 Typen, Octol 70/30

Density of Typical Casting (g/cm»)

Theoretical Density (g/cm«)

Open Melt

Vacuum Melt

1.835

1.800

1.810-1.825

1.822

1.790

1.805-1.810

4.3 I n f r a r e d Spectrum. See Fig. 1. WAVELENGTH 20 15 8 15 15 15

15

•Surface finish, 1.2-2.0 jim. "Surface finish, 0.5-0.9 jim.

8.4 Susan Test Results.11 Projectile Impact Velocity (ft/s) 90 110 >110

Relative Energy Release

(%) 0 82 82

95

PBX 9404 8.5 Spark Sensitivity.

Electrode Brass Brass

Lead Foil Thickness (mils)

Sample Size (mg)

Energy (J)

28 28

0.42 3.13

3

10

Occurrence of Explosion (%)

9. MECHANICAL PROPERTIES 9.2 Tensile Strength and Modulus. Temperature 40°C for long periods, its strength decreases.

97

PBX 9404 REFERENCES 1. Committee on Threshold Limit Values, Documentation of Threshold Limit Values, 3rd Ed. (American Conference of Governmental Industrial Hygienists, 1014 Broadway, Cincinnati, Ohio, 1971). 2. N. I. Sax, Dangerous Properties of Industrial Materials, 4th Ed. (Van Nostrand Reinhold Company, New York, 1975). 3. Code of Federal Regulations, 49, Transportation Parts 100-199, Rev. 12-1-76, (Office of the Federal Register, General Services Administration, Washington, DC, 1976). 4. US Army Materiel Command, Regulation No. AMCR 385-100 (1977). 5. R. N. Rogers, Thermochemica Acta 11, 131-139 (1975). 6. A. W. Campbell and Ray Engelke, Proceedings—Sixth Symposium (International) on Detonation, Coronado, California, August 24-27, 1976 (Office of Naval Research, Department of the Navy, ACR-221,1976), pp. 642-652. 7. L. C. Smith, Explosivstoffe 15,106-130 (1967). 8. Manuel J. Urizar, Suzanne W. Peterson, and Louis C. Smith, Los Alamos Scientific Laboratory report LA-7193-MS (April 1978). 9. A. Popolato, Proceedings of the International Conference on Sensitivity and Hazards of Explosives, Ministry of Aviation, Waltham Abbey, Essex (October 1963). 10. A. D. Randolph, L. E. Hatler, and A. Popolato, Industrial and Engineering Chemistry Fundamentals 15, 1 (1976). 11. L. G. Green and G. D. Dorough, Proceedings—Fourth Symposium (International) on Detonation, White Oak, Maryland, October 12-15, 1965 (Office of Naval Research, Department of the Navy, ACR-126,1965), pp. 477-486.

98

PBX 9407

1. GENERAL PROPERTIES 1.1 Chemical and Physical Description. PBX 9407 is composed of RDX coated with Exon 461, a chlorotrifluoroethylene/tetrafluoroethylene/vinylidene fluoride copolymer. The molding powder is off-white. 1.2 Common Use. PBX 9407 is generally used as a booster explosive. 1.3 Toxicity.1 Workers who inhaled RDX dust for several months have become unconscious and have suffered loss of reflexes. The suggested maximum permissible airborne concentration is 1.5 mg/m'. Inhaling hot Exon vapor should be avoided. 2. MANUFACTURE AND PROCUREMENT 2.1 Manufacture. PBX-9407 molding powder is prepared by the water slurry process. An Exon lacquer is prepared in a water-immiscible solvent and added to a water slurry containing Type II Class 5 RDX crystals. During solvent removal by distillation, the plastic uniformly coats and agglomerates the RDX crystals in the water phase. The process variables must be carefully controlled to produce satisfactory agglomerates, composition, and bulk density. 2.2 Procurement. PBX 9407 is purchased from the US Army Armament Readiness Command under LASL material specification 13Y-109098 Rev. C, dated August 24,1978.

99

PBX 9407 2.3 Shipping.2 PBX-9407 molding powder is shipped as a Class A explosive. 2.4 Storage.' PBX 9407 is stored in Compatibility Group D, Storage Class 1.1. 3. CHEMICAL PROPERTIES 3.1 Composition. Constituent RDX Exon 461

Weight Percent

Volume Percent

94.0

93.6 6.4

6.0

3.2 Molecular Weight. Constituent

Molecular Weight

Structure H.

RDX

222.13 N

N

NO.2

I NO 2

Exon 461

100

C,H,N«0, [(CF a CFClWCH 2 CHCl)„., 6 | :

(97.05)

P B X 9407 3 . 3 S o l u b i l i t y . T h e s o l u b i l i t y is l i k e t h a t of R D X . Grams R D X Dissolved/100 g of Solvent Solvent Acetic acid 99.6% 71.0% Acetone Isoamyl alcohol Benzene Chlorobenzene Cyclohexanone Dimethylformamide Ethanol Methyl acetate Methylcyclohexanone Methyl ethyl ketone Toluene Trichloroethylene Water

20 °C

40°C

60°C

0.46 0.22 6.81 0.026 0.045 0.33 4.94

0.56 0.37 10.34 0.060 0.085 0.554 9.20 41.5 0.24 4.1 10.34

1.22 0.74

0.12 2.9 6.81 3.23 0.020 0.20 0.005

0.050 0.24 0.0127

0.210 0.195 13.9 60.6 0.58

0.125 0.03

4. P H Y S I C A L P R O P E R T I E S 4.2 Density. Theoretical Density (g/cm 3 ) 1.809

Density of Typical Pressed Charge (g/cm3) 1.65

101

P B X 9407

4.3 Infrared Spectrum. See Fig. 1. 5. THERMAL PROPERTIES 5.1 Phase Changes.

Type

Temperature CC)

Latent Heat (cal/g)

204.1

33.37

RDX (solid-to-liquid)

5.3 Heat Capacity. Density (g/cm3) 1.66

Heat Capacity at Constant Pressure (cal/g-°C)

Temperature Range

0.241 + 7.7 X 10-" T

37 < T < 167

co

WAVELENGTH 320 >320

8.3 Skid Test Results. A formulation of 50 wt% HMX, 40 wt% TATB, and 10 wt% Kel-F gave no events in four 64-ft drops at a 45° impact angle on a garnetpaper target. 8.4 Susan Test Results. At an impact velocity of 1500 ft/s, the relative energy release was equivalent to the kinetic energy of the test vehicle. A similar result was obtained with an inert fill.

127

P B X 9502

9. MECHANICAL PROPERTIES 9.2 Tensile Strength and Modulus. Temperature (°C> -54 24 74

Density (g/cm3)

Ultimate Tensile Strength (psi)

Tensile Modulus (psi X 10 e )

1340 1000 430

6.51 5.60 2.38

1.884 1.886 1.886

9.3 Compressive Strength and Modulus. Temperature CC) -54 24 74

128

Density (g/cm») 1.886 1.886 1.885

Ultimate Compressive Strength (psi)

Compressive Modulus (psi X IO"')

5170 3360 1640

4.97 3.41 1.67

P B X 9502 REFERENCES 1. Code of Federal Regulations, 49, Transportation Parts 100-199, Rev. 12-1-76, (Office of the Federal Register, General Services Administration, Washington, DC, 1976). 2. US Army Materiel Command, Regulation No. AMCR 385-100 (1977). 3. J. M. Rosen and C. Dickenson, US Naval Ordnance Laboratory report NOLTR 69-67 (April 1969). 4. Prince E. Rouse, Journal of Chemical and Engineering Data 21, 16-20 (1976). 5. R. N. Rogers, Thermochimica Acta 11,131-139 (1975). 6. A. W. Campbell and Ray Engelke, Proceedings—Sixth Symposium (International) on Detonation, Coronado, California, August 24-27, 1976 (Office of Naval Research, Department of the Navy, ACR-221,1976), pp. 642-652. 7. Manuel J. Urizar, Suzanne W. Peterson, and Louis C. Smith, Los Alamos Scientific Laboratory report LA-7193-MS (April 1978).

129

PENTAERYTHRITOL TETRANITRATE (PETN)

1. GENERAL PROPERTIES 1.1 Chemical and Physical Description.1 PETN, C8H8N4012, forms colorless prismatic crystals that together appear white and opaque. Its name differs in various countries: PETN, Penthrite, and Penta in English-speaking countries; Pentrit, Niperyth, Nitropenta, and NP in Germany; and TEN in the Union of Soviet Socialist Republics. 1.2 Common Use. PETN is used extensively in detonators, detonating fuzes, and priming compositions. Mixed with another explosive or an inert material, it is used as the main explosive charge in grenades, small-caliber projectiles, and demolition devices. For example, Primacord, a detonating fuze, consists of a tube of waterproofed textile filled with finely powdered PETN. 1.3 Toxicity.2 Because PETN is insoluble in water, it is slightly toxic. The recommended maximum atmospheric concentration for an 8-h period is 15 mg/m3.

130

PETN 2. MANUFACTURE AND PROCUREMENT 2.1 Manufacture.8 Acetaldehyde, aldol, or crotonaldehyde is condensed with formaldehyde in aqueous solution, in the presence of lime, to form pentaerythritol, which is nitrated with 96% nitric acid at 22-23°C to give PETN. The PETN is filtered, washed with water, and recrystallized from acetone by running acetone solution into water. 2.2 Procurement. Purchase is under Military Specification MIL-P-387B, dated November 7, 1967. 2.3 Shipping.4 Bulk PETN is shipped by common carrier as a Class A explosive. It must be shipped wet with at least 40 wt% water. 2.4 Storage.8 PETN is stored wet in Compatibility Group D. In certain conditions, it may be stored dry in Compatibility Group A. Wet or dry, PETN is in Storage Class 1.1. 3. CHEMICAL PROPERTIES 3.1 Structural Formula. NO,

I 0

L,

02 N - 0 - C H 2 - C - C H 2 - 0 - N 0 2

0 I

N0 2

C6H8N4O12

131

PETN 3.2 Molecular Weight. 316.15 3.3 Solubility.8 Grams Dissolved/ 100 g of Solvent Solvent

20 °C

40°C

Acetone Acetone and water (wt% water) 6.23 12.30 18.22 23.99 35.11 55.80 Benzene Ethanol Ethyl acetate

24.8

44.92

16.29 9.31 5.22 2.87 0.68 0.03 0.27 0.13 10.6

31.42 20.25 12.66 7.66 2.33 0.13 0.83 0.37 18.50

60°C

2.58 1.19

4. PHYSICAL PROPERTIES 4.1 Crystal Structure.7 There are two polymorphs of PETN. The most common, PETN I, transforms to PETN II at 130° C. Unit cell parameters for the two forms are as follows. Cell Parameters

Polymorphic Form PETNIat22°C

PETN II at 136°C

9.38 9.38 6.71

13.29 13.49 6.83

2.0

4.0

Unit cell edge length (A) a b c Molecules per unit cell

132

PETN 4.2 Density. Crystal Density 7

Method of Determination

Temperature im. "Median RDX particle diameter is ~25 /im.

RDX 7.3 Shock Hugoniot. 1 4 Density (g/cm a )

Shock Hugoniot" (mm/fis)

1.799

U . = 2 . 7 8 + 1.9 Up

"Computed from the isothermal volume compression data. Two RDX phases were observed in the course of determining its isothermal volume compression. The shock Hugoniot tabulated is that for the orthorhombic form described previously in Sec. 4.1. Another RDX polymorph, Form III, occurs at pressures of 4.4 GPa. The volume change between the two polymorphs was about 1.6% (from 0.4651 to 0.4566 cmVg). The isothermal Hugoniots of t h e two polymorphs were RDX(I) U„ = 2.68 + 1.9 U pt and RDX(II) U„ = 2.49 + 1.8 U pt , where the subscript "t" denotes isothermal conditions.

8. S E N S I T I V I T Y 8.1 Drop Weight I m p a c t Height. Hjo

Tool Type

(cm)

12

22

12B

41

8.5 S p a r k Sensitivity.

Electrode Brass Brass Steel Steel

150

Lead Foil Thickness (mils)

Sample Size (mg)

3 10

61.1 61.1

0.22

1

64.0 64.0

0.12

10

Energy (J)

0.55 0.87

Occurrence of Explosion (%) 50 50 50 50

RDX REFERENCES 1. J. E. Ablard, US Naval Ordnance Laboratory report NAVSEA-03-TR-058 (July 1977). 2. T. Urbanski, The Chemistry and Technology of Explosives 3rd Ed. (Pergamon Press, Oxford, 1965). 3. C. R. Buck and S. E. Wilson, Jr., US Army report USEHA-32-049 (1975). 4. Code of Federal Regulations, 49, Transportation Parts 100-199, Rev. 12-1-76 (Office of the Federal Register, General Services Administration, Washington, DC, 1976). 5. US Army Materiel Command, Regulation No. AMCR-385-100 (1977). 6. W. C. McCrone, Analytical Chemistry 22, (7), 954-955 (1950). 7. C. S. Choi and E. Prince, Acta Crystallographica B28, 2857-2862 (1972). 8. J. M. Rosen and C. Dickenson, Naval Ordnance Laboratory report NOLTR69-67 (April 1969). 9. H. H. Cady, Journal of Chemical and Engineering Data 17, (3), 369-371 (1972). 10. 0 . H. Johnson, Naval Ordnance Laboratory report NAVORD-4371 (October 1956). 11. R. N. Rogers, Thermochimica Acta 11,131-139 (1975). 12. W. E. Deal, Journal of Chemical Physics 27, (1), 796-800 (1957). 13. Manuel J. Urizar, Suzanne W. Peterson, and Louis C. Smith, Los Alamos Scientific Laboratory report LA-7193-MS (April 1978). 14. Bart Olinger, Brad Roof, and Howard Cady, Symposium (International) on High Dynamic Pressures, Paris, France (August 1978).

151

TATB

1. GENERAL PROPERTIES 1.1 Chemical and Physical Description. TATB (1,3,5-trinitrobenzene), C6H6NaOe, is a yellow polycrystalline material. Exposure to sunlight or UV light turns it light green, and prolonged exposure eventually turns it dark brown to black. 1.2 Common Use. The excellent thermal stability and extreme resistance to accidental initiation by impact or shock make TATB useful for special applications. To be used effectively, it is generally coated with a thermoplastic polymer and pressed into desired shapes. 1.3 Toxicity. The maximum permissible concentration of TATB in air is 1.5 mg/m3. It was not mutagenic when tested in five strains of Salmonella typhimurium and in Escherichia coli strain WP. 2. MANUFACTURE AND PROCUREMENT 2.1 Manufacture.1 TATB is synthesized by reacting 1,3,5,-trichlorobenzene with S0 3 (30% oleum) and sodium nitrate to give l,3,5-trichloro-2,4,6-trinitrobenzene. The reaction mixture is then quenched in a large volume of ice, and the 1,3,5,trichloro-2,4,6-trinitrobenzene is recovered by filtration and reacted with ammonia gas in the presence of toluene to give TATB. 2.2 Procurement. There is no dedicated DoD or DOE facility for TATB manufacture. It can be procured, on special order, from a few chemical companies in the United States which have facilities for synthesizing energetic materials. The DOE procures TATB under LASL material specification 13Y-188025, dated August 23,1978. 2.3 Shipping.2 TATB is shipped dry or wet as a Class A explosive. 152

TATB 2.4 Storage.8 TATB is stored dry or wet in Compatibility Group D, Storage Class 1.1. 3. CHEMICAL PROPERTIES 3.1 Structural Formula.

CaH,Ne0, 3.2 Molecular Weight. 258.18 3.3 Solubility.4 TATB is practically insoluble in all organic solvents, but it is soluble in some superacids. Solvent Methanesulfonic acid Hexamethylphosphoric triamide Ethanesulfonic acid Dimethylsulfoxide Hexafluoroacetone sesquihydrate N-methyl-2-pyrrolidinone N, N-dimethylacetamide Dimethylformamide

Solubility® (ppm) 820 150 120 100 68 58 27 26

"Temperature not reported.

153

TATB T A T B solubility in sulfuric acid and water mixtures. Maximum Quantity Dissolved (grams of TATB/100 ml)

Acid (vol%) 50 66.7 80 85 87.5 90 100

24.0

4. P H Y S I C A L P R O P E R T I E S 4.1 Crystal Structure. 5 Only one T A T B polymorph has been observed. The triclinic unit cell parameters are given. Cell Parameters

TATB

Length of unit cell edge (A) a b c Angle (°) a

9.010 ± 0.003 9.028 ± 0.003 6.812 ± 0.003 108.590 ± 0.02 91.820 ±0.03 119.970 ± 0.01

Molecules per unit cell 4.2 Density. Crystal Method of Determination X-ray Direct measurement

State

Temperature (°C)

Density (g/cm3)

Solid Solid

23 23

1.937 1.93 ± 0.01

Pressed T A T B powder at 120°C can be pressed to a density of 1.860 g/cm 3 at a pressure of 30 000 psi. 154

TATB 4.3 Infrared Spectrum. See Fig. 1. 4.4 Refractive Index. 6 TATB crystals are pleochroic, being colorless parallel to the X-axis and yellow in the Y-Z plane. They are anisotropic. The indices of refraction are N x = 1.45, N y = 2.3, and N8 = 3.1. 5. THERMAL PROPERTIES 5.1 Phase Change. Temperature 320

Remarks Flake TNT Flake TNT Granular TNT Granular TNT

8.5 Spark Sensitivity.

Electrode

Lead Foil Thickness (mils)

Sample Size (mg)

Energy

Occurrence of Explosion

Brass Brass Steel Steel

3 10 1 10

47.9 47.9 53.0 53.0

0.46 2.75 0.19 4.00

50 50 50 50

(J)

(%)

9. MECHANICAL PROPERTIES 9.1 Viscosity. Temperature ) 1.60

Ultimate Compressive Strength' (psi) 1400

Compressive Modulus" (psi) 7.9 X 10 4

'Compressive strength is a function of density and method of charge preparation. These are cast T N T data.

REFERENCES 1. T. Urbanski, Chemistry and Technology of Explosives, Vol. I, Pergamon Press, Oxford, 1965). 2. C. R. Buck and S. E. Wilson, Jr., US Army report USEHA-32-049 (1975). 3. Code of Federal Regulations, 49, Transportation Parts 100-199, Rev. 12-1-76 (Office of the Federal Register, General Services Administration, Washington, DC, 1976). 4. US Army Materiel Command, Regulation No. AMCR 385-100 (1977). 5. A. Seidell, Solubilities of Organic Compounds, 3rd Ed., Vol. II, (D. Van Nostrand Co., Inc., New York, 1941). 6. J. R. C. Duke, Explosives Research and Development Establishment informal report, Waltham Abbey (September 1974). 7. L. A. Burkardt and J. H. Bryden, Acta Crystallographica 7,135-137 (1954). 8. D. G. Grabar, F. C. Rauch, and A. J. Fanelli, Journal of Physical Chemistry 73 (5), 3514-3518 (1969). 9. W. Connick, F. G. J. May, and B. W. Thorpe, Australian Journal of Chemistry 22, 2685-2688 (1969). 10. Howard H. Cady and William H. Rogers, Los Alamos Scientific Laboratory report LA-2696 (1962). 11. Department of the Army and Air Force, Technical Manual 9-1300-214 and T011A-1-34 (November 1967).

186

TNT 12. G. Edwards, Transactions of the Faraday Society 46, 423-427 (1950). 13. Prince E. Rouse, Jr., Journal of Chemical and Engineering Data 21, 16-20 (1976). 14. R. N. Rogers, Thermochimica Acta 11,131-139 (1975). 15. J. C. Dacons, H. G. Adolph, and M. J. Kamlet, Journal of Physical Chemistry 74 (5), 3035-3040 (1970). 16. M. J. Urizar, E. James, Jr., and L. C. Smith, Physics of Fluids 4, 262-274 (1961). 17. A. W. Campbell and Ray Engelke, Proceedings—Sixth Symposium (International) on Detonation, Coronado, California, August 24-27, 1976 (Office of Naval Research, Department of the Navy, ACR-221,1976) pp. 642-652. 18. W. B. Garn, Journal of Chemical Physics 30, 819-822 (1959). 19. W. E. Deal, Journal of Chemical Physics 27 (1), 796-800 (1957). 20. J. W. Kury, H. C. Hornig, E. L. Lee, J. L. McDonnel, D. L. Ornellas, M. Finger, F. M. Strange, and M. L. Wilkins, Fourth Symposium (International) on Detonation, White Oak, Maryland, October 12-15, 1965 (Office of Naval Research, Department of the Navy, ACR-126,1965), pp. 3-12. 21. Manuel J. Urizar, Suzanne W. Peterson, and Louis C. Smith, Los Alamos Scientific Laboratory report LA-7193-MS (April 1978). 22. J. B. Ramsay and A. Popolato, Proceedings—Fourth Symposium (International) on Detonation, White Oak, Maryland, October 12-15, 1965 (Office of Naval Research, Department of the Navy, ACR-126,1965), pp. 233-238. 23. N. L. Coleburn and T. P. Liddiard, Jr., Journal of Chemical Physics 44(3), 1929-1936(1966). 24. V. M. Boyle, R. L. Jameson, and M. Sultanoff, Proceedings—Fourth Symposium (International) on Detonation, White Oak, Maryland, October 12-15, 1965, (Department of the Navy, ACR-126,1965), pp. 241-247.

187

XTX 8003

1. GENERAL PROPERTIES 1.1 Chemical and Physical Description. XTX (Extex) 8003 consists of PETN coated with a low-temperature vulcanizing silicone resin, Sylgard 182. Uncured XTX 8003 is putty-like and can be extruded through small openings at modest pressures. After curing, it is white and rubbery. 1.2 Common Use. XTX 8003 is used in special applications that require explosives with small detonation failure diameters. 1.3 Toxicity. 1,2 There are no known toxicity problems associated with the use of Sylgard 182. PETN, because it is insoluble in water, is slightly toxic. The recommended maximum atmospheric concentration over an 8-h period is 15 mg/m 3 . 2. MANUFACTURE AND PROCUREMENT 2.1 Manufacture. Sylgard 182 resin and its curing agent are mixed with PETN in a high-shear vertical mixer to the consistency of wet sea sand. This material is passed through a three-roll differential paint mill until it is the consistency of glazier's putty. After milling, XTX 8003 has a shelf life of 24 h at 25°C. Storage at —30°C increases the shelf life to 8 months. When it is to be used, the XTX 8003 is extruded into molds of the desired configuration. Curing or polymerization is achieved by exposure to 65°C for 8-12 h.

188

X T X 8003 2.2 Procurement. XTX 8003 can be purchased from the DOE under LASL material specification 13Y-104481 Rev. F, dated February 6, 1978. 2.3 Shipping. 9 Cured or uncured XTX 8003 is shipped as a Class A explosive. 2.4 Storage. 4 Uncured XTX 8003 is in Storage Compatibility Group A. When cured, it is stored in Compatibility Group D. Either cured or in a device, it is in Storage Class 1.1. 3. CHEMICAL PROPERTIES 3.1 Composition.

Constituent

Weight Percent

Volume Percent

PETN Sylgard 182

80 20

69.9 30.1

3.2 Molecular Weight. Constituent PETN

Structure NO I 0 1

Molecular Weight 316.15

ch9

I

f-

o., n - o - c h 2 - c - c h 2 - o - n o 2

0 1

no 2

C,HeN„Oia Sylgard 182

Proprietary

189

X T X 8003 3.3 Solubility. 5 The solubility is that of PETN. Grams of PETN Dissolved/100 g of Solvent 20°C

Solvent Acetone Acetone and water (wt% water) 6.23 12.30 18.22

23.99 35.11 55.80 Benzene Ethanol Ethyl acetate

40°C

24.8

44.92

16.29 9.31 5.22 2.87 0.68 0.03 0.27 0.13

31.42 20.25

10.6

60°C

12.66

7.66 2.33 0.13 0.83 0.37 18.50

2.58 1.19

4. PHYSICAL P R O P E R T I E S 4.2 Density. Theoretical Density (g/cm»)

Density of Typical Charges (g/cm s )

1.556

1.50

4.3 Infrared Spectrum. See Fig. 1. WAVELENGTH (/im)

Fig. 1. Infrared spectrum.

3000

2000

1600

WAVE NUMBER (l/cm)

190

1200

XTX 8003 5. THERMAL PROPERTIES 5.1 Phase Change. Type

Temperature (°C)

Latent Heat (cal/g mix)

PETN (solid-to-liquid)

142.9

29.9

5.3 Heat Capacity.

Density (g/cm3)

Heat Capacity at Constant Pressure (caI/g-°C)

Temperature Range (°C)

1.50

0.252 + 8.5 X 10- 4 T

37 < T < 127

5.5 Coefficient of Thermal Expansion.®

Density (g/cm")

Coefficient of Expansion (1/°C)

Temperature Range (cC)

1.50

1.65 X 10"'

- 5 0 < T < 25

5.6 Heats of Combustion and Formation.

PETN

AH"

AH?

(kcal/mole)

(kcal/mole)

-618.7

-110.34

191

X T X 8003 5.7 Thermal Decomposition Kinetics. 7 Property

PETN

Decomposition energy Activation energy Pre-exponential factor

300 cal/g 47.0 kcal/mole 6.3 X 10"/s

5.8 Other Thermal Stability Test Results. Test

Results

Vacuum

0.2 ml/g of gas evolved after 48 h at 100°C See Fig. 2

DTA and pyrolysis 6. D E T O N A T I O N PROPERTIES 8 6.1 Detonation Velocity.

Effect of Charge Radius Charge radius affects the detonation velocity of X T X 8003 at a density of 1.53 g/cm 8 , confined in polycarbonate plastic in a hemicylinder configuration, as follows. D(R) = 7.260[(1 - 0.191 X 10- 2 /R) - 2.12 X 10-"/R (R - 0.111)] where D = detonation velocity in millimeters per microsecond, and R = charge radius in millimeters. The experimentally determined failure diameter in polycarbonate confinement is 0.36 m m .

7. SHOCK INITIATION P R O P E R T I E S 7.1 Gap Test Results. 9 Small Scale

192

Density (g/cm')

G,„ (mm)

L„, (mm)

1.50

4.42

0.28

X T X 8003

Fig. 2. XTX 8003 DTA and pyrolysis test results. 7.2 Wedge Test Results.

Density (g/cma) 1.53

Distance, x*, and Time, t*, to Detonation (mm and fis) log P = (0.74 ± 0.01) - (0.37 ± 0.02) log x* logP = (0.53 ± 0.008) - (0.33 ± 0.02) logt*,

Pressure Range (GPa) 2.5 < P < 8.2

where P = pressure in gigapascals. 7.3 Shock Hugoniot. 10 Density (g/cm')

Shock Hugoniot (mm/Vs)

1.50

U„ = 1.49 + 3.03 Up (Ref. 10)

1.53

U . = (1.59 ±0.39) + (3.24 ±0.63) Up

Particle Velocity Range (mm//is) 0 < Up < 0.8 0.48 < Up < 0.78

7.4 Minimum Priming Charge. X T X 8003 is used as the donor explosive in this test.

193

X T X 8003

8. SENSITIVITY 8.1 Drop Weight Impact Height. Hato

Tool Type

(cm)

12 12B

30 35

•Cured or uncured.

8.4 Susan Test Results. Projectile Impact Velocity

Relative Energy Release

160 750



o

V

co

CO rH

CM* CM I M CM < N

[—

t -

IM (M

00

co

35

(N

'

O

O

.

'

O

O

.

'

O

to co

CM

>0)

CD Id

X

<
© C aj rn — t 0) tQ. co < u CO ic a > o >»o J>> f § X * * S X I o h * g j i x g * "o PH, Q tt a> s

a> G eat 3

co pVJa o i n03i N rao H © rH CO © O i—(rH (N

¡•3

fa co orio

o ooo

9 S"EQ •ti 5 T> £ Eh W

£OJ "S £

212

o Z O

o Eh < OH

tO oOS X m

001 X PQ Oh

H «5 ri-H O O 05 CM Oi X X PQ CQ a s

0 01 X aPP

©

OS X PQ PH

rH O m OS X m &H

C M O lO a> X m OH

C H E M I C A L

•o CO

-a o

CM

U5 o>

T3 © IO

•V

o oo

CM rH

o o CD »H

CD id io T-J

o o oo i—I

lO 00 00

00

lO CO 00 rH

© m t-; »-H

© rH 00 »—I

CD 00 r-

OJ 00

ia cq t-H

T—1

•"J" 00 io T-J

T3

"O lO 00 CM

oo (M

o cd 00

T3

-a lO oo CM

T3 lO

©

rH

Ct-

CJ © 00

05 CO Oi

CD t ^ lO H IO

ic CD

c- © oo ©

1 v C

CD .s a aj £ a> cs o 8 s a> § " 5 - B . S as £ ® .s a a «CL> " o£ t-i CO v o &H

&

o.

K

t— CO [ ttr- i o COlOOOCOOiCOCICOrH o o o f f l o o H o o o o o o q rH i—) © < I H cj (i-H

w T3

io t - io O t > O O t « N 0 5 ^ CO 0 } ^

X s X

§

s « 2« t-. a ; -- » -8C « o c o, ^ S -is ® s B fi * £ - S E-»

&

g « 2 a 5 B £ H

a>

C ,Q &< c n P i c o

CQ

a

o Oh

2 P

Sa> • m •O ' 5 3 cad O Ü fc H M , , " o. > £ — p< *o53 ©1H W - . . 2 E-1 -o " 3 . fn X f H X > * .2 •S -P MV .2

W

I

(8 09 -S C t c B, DO

a S* S

¿ 5 -

.2 3

P R O P E R T I E S

8 S,

7—1 CO

co

1-1 co

co

rH

rH

CO rH CO r-i

ao

co

CO

8 o

o o

S ©

-H ITCO > X>

Xi I5

§3 •PN 1

_Q

2

g I

Ô

S

2 o

M C

S cd

- 2 '

3 I

S

ß

S

, 00 o



S

S

c J 2

c

§ , 2

Ë ^

Ë

S

S

S

oo

Ë

oo

O

> > o - a

o

u

>> o b f

S

S

u

> > 0

6 0 - °

H

2

b u -

S

C

R

S . 2

a

àv

^

S

S

ho

0

C - 2

à

S

S oo

1

Ë

.2 «

s £ s i CO

B

S CD*

Ë

oo

O

|>

o

1 0

c^

1 0

-tS

oo lO

CO CD

^ I a g «

o -M u

. a - a O

S

mV

d i

u > > o x i S (S

>> Xi o +•> Ü

iri (M

(M

O CO

o

00

s

T5

«

Si

Î Î

T-H T-H 00

CO o T-H f—1 oo oo

m i-H 00

CD T—1 oo

t> 7—1 oo

CD 1-H 00

co rH 00

1"H

f-H

1"H

i-î

f-î

rH

rH

r-ï

t-i s; s 5 t c g « " > > u

s o

' Ö O T3 o m ** ce o te T3 O > O

s o S Ë

o

V

•v v 03 fa O

o

.2 S 'S J HH C

.

.2

'S i S

bo fi o

?

s

>> X3 *

2 O i a C5l i-l tD ^ Jg >,Çp •3 J f c Oh

bc a G J2 a £ S S co CD > X x> m

X3 OQ

S 6 as 2 1* =o S o & S a> S S g — ¡â iO CM > co H

S le .s fi +ÏT3

1X1

bo G

è ° s &B s B t us S « ® Ei

Oh PH O-i

h Ci S

s

oo o o CM i-l

os co

3 s

>>

^

' fi 3

S

® O

à 3

co S

00

oo

H

s r-J

& o

^ -J1 -J 00 00 00 T-î

1-î

o

o a

a i

•E * "rt -w -— e ® g 5

CO O O -H m co

00 CO co

lO CM iß

lO lO co oo

00 CM «

oo ao

o 00

o o

o m

t- H N N

^ H

05

A

r o C4 S T3 a LO — o O -H 01 m -te

o a

S

K £ O

& ° °

T3 S JS O fi

o • "S V ® « a) S J2 »

a S H 3 a ff H m 4

.2 k g Js ÎTT 3 w

o c o g - s -Ö c CB O .jM > o) 0) ^

S . —• -s e a> o «H «Ü û) to »O —-

S " 0 S e fi^w •>, ® 5 « œ û Q

245

DETONATION PROPERTIES

Table 3.11 COMPOSITION A DETONATION VELOCITY vs RATE STICK DIAMETER 8 Rate Stick Diameter (mm)

D (mm/(is)b

25.37 12.70 8.46 6.35 5.08 4.24

8.262 8.254 8.236 8.213 8.172 8.143

"Density is 1.687 g/cm3. "Information on the booster, length-todiameter ratio, and shot numbers was unavailable. CD is probably the average of a set of segmental velocities.

246

D

m a S o «

« O) O

o

M

X3

t a « S ^

Q) ï ®

S .2

14

, Oh bo j ^C o

uo



s

s

si

S

00

g

ci

o

00

S

o - o t S

o U

n

to

v^TÎ

o m

to > ?? S u u u o ® S a. l ®> M « S X dJ H MS <
0o1



•ft

X H

260

T—105 r- — COO 00 Nm m o 05 co co o to C O1o m< o Oo m in 1—1o T—1— i i d Ir1— ino icqi 1—1i—i OoS 05 Cj Cl to i-H C in to to oo t> i Î ci ci ci i—) ci ci ci ci ci ci l-H •-h ci ci ci —

m C O i — i in ^ < -3< CO00 rf Cl m C O m C N o C O to 05 i I to t> — i 1tt— — to COto CO t- — i—i CT! 1—1 TJ"' 00 05 -H C Oco COin CO00 in I00 N Im co co _o *3 c9 0S) S "o. S X"c3 S t> oo >o c 00 m IH NH COCNni CH o O O IN ^ «5 C M a> jg "o. X W 13 0) CM O O O O O O T3 COoo^ oo oo oo ^oo oo C a

ce S

oCM TO o E-I E-< 2 EH o TO TO

oTOm CM TO©• t- c-u5 io X X o Q o Q -s m cq o Ô £ çjoi es S a a SO-o-M »x co »x o S ¡j Ë S SO o o >> >> O < < mOÜ O OO

«o oU3 aj "o C ai P-,

> oas-1 aso 1-1 -a-

X

X

MM Oh PM

283

D E T O N A T I O N PROPERTIES

M «H a

E

£

c « a a

s

IO t> H N tO ^coœioioooiNcocçnœio osci aioooT-ît-HT-Hi-ii-HÔ

00 os

o 1—1 1— » -H3

co i-H O 1—1

CD O 1-H

i-H trio O 1—tO »—tÖ 1-H

oo o 1-H

0 -o » a •M

^S M B 01 a X tJ H

S B fi ^

LO CD CO CD C «M• ^ H M j i r a ^ i n t o c o CO D Ca oi-Hi-Hi-l ce

C-oo oö

CO CO CO CO CO CO CO © © © o © © o IN IN N N M N N

CO ©

CO o (MIMO300Tt c— t co co co www

O

£ I z

J3a» .s gà « .2 O -M •a s15&L3&®6s•aE l °a «« •e 0 so5 J3 O •S .s 1 cU f i J2 § e JA 10 |cljo Inrr JsO S2 ** 53 n> « m _.a 0) * > n J-w « J3^ e: M s SU • s s a js tri ea * s ° • •£ Xo •n § «« «• ® bc :s C '> 0) ce «5» „ffl S o P h o « ts S 2 g 6 c® e ce S; B> , B C O 0 3 0e> ^> r •3 I t-l h CO > J3o O IE3.S

s

301

SHOCK INITIATION

PROPERTIES

s

3 C

> CB

CD * c PH Tf -f I Ó

>

tC /O T iS CB CO O -Q C t-H

e

CB c Co O ,o B CO -O

"a

CO CO CD C LO n "3 CD ti "3 3 3 3 3 3 Q •« Q Q '3 Q Q CO C O CO CO r-H CD CO CD

X

2 e 3 CD X ! 00

2

Xi

a

«Ò "a "03 -3 S CB h p >H ^ — ^ ^ h - 3 _3 -O ® Q q ® Q n "ffl ^ ^ ^ £ "i ^ ^f "^ < 3 3 to 5D 5C Ci « K «

«

X

1—1 o © d d 1 1

a> a> "o S o 0fl8 > 13 C 08 B o *o ao> • cH C c8 M T3 a] -u V P. a n •S « H • T3 T3 as 3 e o ® 08 0> 8 ahi> a(tn > aeC 3n H n 3 0n5 -a « a> a, afH > a T3 " 08 C •i-i T3 a> 0in8 "S J5 aC 3o g> caa> > •H S 0) P< _Q "O X C be O O oo t> m m o co i ® Iff >> ® -C ®co * JJ « .H rS C8 -S CO o ® is -S & £ S O a 01 » » « g g g g g g g g « C O ( Z ) C „O £ co3 2 2 2 3 3 3 3 3 3 3 3 3 cqcflQPPBOQQPOQOQQOQ

®E 3 S aV S>> >^ o ft a) e ° -i® -3 s03 Ico 543 a> "S W o v^ o PO Q J3

*x * be be 3

£

oro o q o d -H -H OS IO O o o oa. 1 1 ^, D O us)

SHOCK INITIATION PROPERTIES

Fig. 4.03.

The gas-gun assembly used in P E T N testing.

317

SHOCK INITIATION PROPERTIES

be

O) a> e

l |H s •c £ q E" M a> te

CO

XXX X

X CD 0) 0) A) X CD U PL, E en E OH C CD T-; IO Q D , CO O IO LC I—1 -A- M CTS 00

nf X

O ©

a.

g

00 (M I

«

u w

©

3

o »

l-H

>a.

CO

a a B

Z,

B

PQ PQ

H ©

I _ CO 00

ò co ci CO Vo o d

CO «

S S

d

m oo i co CO q 05 T—1 io ' rH rH o T-H l-H

©

V

c a § o •J3 E" od u b e 6 •pN _ •w CO a 3 .c2" § J«h ^O O^S CCO ® ox O. o O © a u S 11 S S ® _; e n « (S o ^ O H CM Q

1—1 C CD O

B u m io » U3 © ® 'f ia s ^ 00 t o O D O ^ ^ TO •

t- oi oo o oin

©

339

SHOCK INITIATION PROPERTIES

«e O E ? 1>> I GO

-S 5 » 1 CU J S J 3 s S N (O S « CO CQ -a'

tX g> V h Q

& 73 • a> 3

.5 e e o

0> r-fi -m es H

«2 ¡3 a 2 -a .2 " Jg s «O 2 •S Jt ® §

§ ss Q

u

8 JS J £ ^ Pi 8 «Ì 2 ® > d-= K

00 U3 o N H lO H e^ 00TO ioffl® H oo h io h ti ti ri ri n Tji

09 a. . E « E

09 OB J« D E& E ua ct

o o J3 = 1 GO „ * * O

= E be ft E H b « E cc fcs 340

a>

o ai (O t-; o — i I ©i-,©Hco ri

a 15 S ^ u

E

« =1 *

„ « a

T3 O -C V ca 2 s . e -eg 3 6u o o a c 9> £> 1 Jj CO *J Cj '•03 S ® H

ft CU

« I

o 00

o m io n n 01 H n o id n t-; t-' ^ CM' >-H ^ © A

IN U5 (J) ffl O 00 O t" ^ CO

iO (M A

A

(M O O O

oo IO l-H r-H ® 0 t 00 f-H co 00 0 0 co 0 CO CO 0 cvj 0 O 0 0

r-H r-1 O co

10 00 CO

IM O

cco OJ

co H

C^l 10 CO CD 1—i 1—1 1—1 rH CO CO cq CD c i O H o O H N t- tt— CC C*5 CD C5 Pt) W ùà H W H

«— c— eo c i n co co B H H H W

. a

JS

0

CM 00 a> ta> co 02 co IO 00 0 0 0 0

o 00 co co c^ t— 00 t- IO 00 o co 10 00 0 0 0 0 0

E ou E* ~

x» 1E co 9 Z

353

S H O C K

I N I T I A T I O N

P R O P E R T I E S

o pu co CO

o CU co CO

u CU co CO

o cu co CO o U O o Cu cu a< CU co co co CO co CD CD CD o o o o uT b* U Ih" cu 0« CU . « ce ce ce W W M W IO CO CO CD (C CD CO CD CC CO co co . t i .s" .s* o* o " c i O* « 'co ce CU CU Cu CU w co co g ì ® c j a e CO CD CD X 00 00 00 o " o* o " co" co" co* co* >

£ E > c o » ¡ f i g j s ^ u ** o OH O H

co

o < CD O X> J3 > o ts ® >> o ^ o H o ^ a c o g « S C O ® co • co t-

JS

co

z

IO

H CD

tCD

o ai >< m a.

0j Oi

t— 00 O io

o o JS J«

oo

HO 00 00 H t )

aa 0)

o CO

Q

. a 3

* a)

5 a

=

0

o f t i f t 0) a

£

.

S ^ J

-2 >, O -"S 0

o

Tt

a>

fa a

cd e -3 — ® o a Q . s « a o O

CD P. cd 43 xn bJD C '3 13 o CS a T5 C cO b£ c CD tH p.

•w a.

«

CD c o CO CM c o

.M u

o

ZD m © o o ©

©

-H -H CM i-H i—l 1-H o o

00

CU &

a &

Tf m iq d

c o !—< 0 0 CO 00 00 d d

i-H i-H 00 d

+

JB

00 «

IO « o T-H o c ^ -H -H V 0»o CO CM J» 3 cd H

a

& s .fi •g-S s S -c u •pCtiN 1 1 Q rt flj _ B « I d S . H -a ti .ao be «Si® M « c iS "S s oo 75 I S » CO « S § M a< M« -U ^ CS 2 Ph ei Q cu

fa «w = 1 a cd fa 09 cd Ph o 1 M o a o J3 GO o « è

« 1 £ I as

OS CO i-i II o Q.

M t-H oH C CO io cm 1-4 o

O co co io CM C CM o CM a CTS C O 00 o C M + 1—1 ftM C ia A co CM co to CO < s OS 00 co 00 00 II OJ t> CO i a co o as oo rco io O co O CO 05 S cc

cu pl, a, co (m ; _: p

(D 3

IOl l> CDO00 ••HO

. a « a

oo ai o iq a iri i-i u io

00 1-4

*

T—i

CM

w 05 o T à a :

a?

(M CM co i n i r i 1 0

be O

, ^ r—l

T-H 1—1

CO

7 3 « -SP

CM t - ; 0 5 rH C-; i n t o t o IO t o IN in A

tr- i n © q in ni

IN ^ uj N A

Oi co ra H

IN ^ io N A

B '2

*

OS tJ co

«

S o ÌSb

O l CO t - O CO i n OS I-H © © c o i n i-i © q © © * © © © ' +

+

+

I

+

a a

be C

fa v

J3 u ed

«

a a

po m

o y »

*a

a

u

à?

«

s

s

g

2 ^

* cS

o

2

> U«

g O

o

S H

a> 3

ai Oi JS » a" 'to

a

e

s

00

-

1

o

ft

2 PL.

10 IO

Ì

e

H t - 00 c s i-H I N evi

00 !D q c^i

H 00 O H q q I N i-H

Tf in t^ N

I-H © IO q q i-h IN O 00 IN N

co co 00 0 0 CO

>>

S ^

g 3

CO

C 1 1 S 2 2 I g 9 2 2 3 3 S COfflQQO Q N S

p

,o

r

o °3 0 'Co 2 u « to 1

IE IE " a

'C

H

U o

"H o

as

À

8

h «8 01 s « s .a ». § u

u Oj B — O 5 3 O S • ® j3 o .2. ® n o

e -s « «1

•a e

2

6

« ^

* 00 -M a.

t o (N h oo h a o in n h i o n o N H r i r l O O O

a

» S «

S

H o IO C- « H i n oo i n ^ h oo co n C O C O l O ^ ^ H H O A

IB

a cd fa &ed

i l i—i o . > 3 « al 3 ft esco flj «4-1 O °

w hi 5 v «

a

S

«2

J4 u «e

HOOOKl HOJNffi CO CO CO CO

io

00 to

2 3 -+-J 3 s

è


a

O «D a Q

6 u bo i

B •c « S o I

si

GO »

a

m

>>

en

13 oi

CD fi P IS cr u « T3 IB s -W u S3 CD a> O fa O E-i CD 0) £ a> m >> 6 CD i" »H CJ C ^

u -e« V cS X~ Q 0> ¿ I S 05 es a - a 03 S3 >>•2 •w ~ o uW g 50 J3 « £ . S3 i-i •s ^ O M « bo h a 3 d 11 - .2 Q O . Q 2 -2 = e oi* oo -3 05 s rt g t ó ^ etf o -a Q 0. CU U x

01

£

388

-fi

a a .2 S-3 CD CO Ci

»

to CO » al 00 00 (09 O 00 00 O 09 CO to eo 03 to g ed cs go 3 4 etf d o d t3 co fa fa fa *H I f-4 fa fa fa s£ •a ja .a J3 JS J3 Q CO CO OiC4 CN N IN IN N

J3 B

£ 3 2 fi o a> 3 3 O (i -ts „ s" — .a JS fa v "S cai -S ^ a >> fi 0) o •g o 5® -fi .o fa % g B S 0) ^

«B

fa

cd CU

-3 s i o

co O) co oo N ^ O IN o oo oo IN t^ IN ci

IO ^ O O i-i CM IM t > i - l H T-l 1-1 •—I - iH « iH ' m m

ce

a ai ai «H u a)

x

m co £

x — 0)

• s s CM > CM 1 H »

CM CD

OD CO CO

X 01

P R O P E R T I E S

1 1

CO CO ci 00 O o o o o o © 00 -H

V

CS G1 P n

fi

r*H CO— 00 c-35 © — i I o tOJ < co © © © o

a ca

P

I-H scd ti ed o

O &

i o

©

d

d

-H

-H

00 CD + IO

(31

a

1—1 V

o

-C g tK 9 Z

t-t C Oco lO C C o—(— — iO iO 1©1—1 11T "I Ww WW

o d

-H

i—i CO OJ o 1 1

i o q d

i—1 o d

-H

-H

-H a,

CD

a> E t-; cò

a>

E s

O -M

H

bo >5 m »

Pi —

g

« s ®

*

S

a.

o

6 e ce

e

»

o cs

s X! • fH hi •U

«

-S

d o CO (M

C § •pN

o

« . 9

400

e O a

•S

u

i o u ) ra a>

Driving System Thickness (mm)

5.040 5.414 5.796 6.560

17.14 10.16 5.25 1.46

3.04 1.70 0.84 0.21

G, 12.2 PMMA H, 11.9 Plex J, 12.1 PMMA N, 6.1 Plex

U.„

Reduced Data U8„ = (3.032 ± 0.358) + (1.652 ± 0.217)Up0. log P = (1.47 ± 0.02) - (0.32 ± 0.02) log x*. log P = (1.21 ± 0.81) - (0.29 ± 0.02) log t*.

402

SHOCK INITIATION PROPERTIES

Table 4.35

94 TATB/3 EL VAX/3 WAX

Composition 94 wt% TATB, 3 wt% Elvax, 3 wt% wax Theoretical Maximum Density 1.822 g/cm3 Particle Size Distribution Standard Preparation Method Hot pressing and machining to shape Data Summary Po = 1.802 g/cm3. T 0 « 23°C. Technique 3

Shot Number E-2899 E-2904 E-2905 E-2898

Initial Shock Parameters U p0 U,0 Po (GPa) (mm/^s) (mm/iis) 14.98 17.13 21.22 26.17

1.482 1.660 1.847 2.105

5.610 5.725 6.375 6.908

Coordinates for High-Order Detonation x t* (mm) (MS) >19.09 >3.312 17.59 2.951 5.32 0.80 1.92 0.28

Driving System Thickness (mm) H, 13.4PMMA J, 13.2 PMMA G,6.3Plex N, 6.1 Plex

Reduced Data U90 = (2.215 ± 0.585) + (2.221 ± 0.327)UP„. log P = (1.47 ± 0.01) - (0.19 ± 0.01) log x*. log P = (1.32 ± 0.004) - (0.18 ± 0.01) log t*.

403

SHOCK INITIATION PROPERTIES

Table 4.36 94 TATB/4.5 PS/1.5 DOP Composition 94 wt% TATB, 4.5 wt% polystyrene, 1.5 wt% dioctylphthalate (DOP) Theoretical Maximum Density 1.841 g/cm 3 Particle Size Distribution Standard Preparation Method Hot pressing and machining to shape Data Summary T 0 « 23°C. Technique 3

Initial Shock Parameters Shot Number

Po

(GPa)

Up„ (mm/its)

U.„ (mm/fis)

Coordinates for High-Order Detonation x (mm)

t* (MS)

Driving System Thickness (mm)

Po = 1.817 g/cm3 E-2906 E-2851 E-2914 E-2887

12.88 15.24 17.40 25.62

1.403 1.523 1.674 2.083

5.054 5.508 5.719 6.768

16.84 9.06 7.22 1.60

2.97 1.49 1.15 0.22

F, 12.3 Plex H, 6.2 Plex J, 12.1 PMMA N, 6.0 Plex

2.45 1.77 0.23

H, 12.2 Plex H, 6.1 Plex N, 6.0 Plex

Po = 1.825 g/cm3 E-2903 E-2850 E-2888

15.32 17.01 25.86

1.526 1.642 2.080

5.498 5.675 6.813

14.43 10.72 1.78

Reduced Data U90 = (1.69 ± 0.185) + (2.448 ± 0.107)U po . log P = (1.47 ± 0.03) - (0.27 ± 0.03) log x*. log P = (1.25 ± 0.01) - (0.24 ± 0.02) log t*.

404

SHOCK INITIATION PROPERTIES

Table 4.37

92 TATB/6 PS/2 DOP

Composition 92 wt% TATB, 6 wt% polystyrene, 2 wt% dioctylphthalate Theoretical Maximum Density 1.811 g/cm 3 Particle Size Distribution Standard Preparation Method Hot pressing and maching to shape D a t a Summary Po = 1.797 g/cm 3 . To « 23°C. Technique 3

Shot Number E-2920 E-2945 E-2924 E-2917

Initial Shock Parameters Eu U.„ (GPa) (nW/is) (ram/fis) 13.35 13.75 15.25 17.93

1.420 1.452 1.529 1.693

5.231 5.270 5.549 5.895

Coordinates for High-Order Detonation F" (mm) (/is) >25.46 19.25 14.37 7.98

>4.64 3.38 2.44 1.29

Driving System Thickness (mm) G, 11.8PMMA H, 18.1 PMMA H, 12.0 PMMA L, 24.8 Plex

Reduced Data U 90 = (1.676 ± 0.325) + (2.501 ± 0.213)U po .

405

SHOCK INITIATION PROPERTIES

Table 4.38 90 TATB/10 ESTANE Composition 90 wt% TATB, 10 wt% Estane Theoretical Maximum Density 1.827 g/cm 3 Particle Size Distribution Standard Preparation Method Hot pressing and machining to shape Data Summary Po = 1.805 g/cm3. T 0 « 23°C. Technique 3

Shot Number E-2911 E-2908

406

Initial Shock Parameters P0 U^ U: (GPa) (mm//is) (mm/fis) 17.04 24.48

1.646 2.049

5.734 6.620

Coordinates for High-Order Detonation ~~x* t* (mm) (fis) 14.37 1.83

2.40 0.27

Driving System Thickness (mm) J, 13.1 PMMA N, 6.5 Plex

SHOCK INITIATION

PROPERTIES

S

¿i us O ^ 5 a § "C Q

(4 o u « «S mM » »8 U O fll

X X X X X 0) a) a> a> ai E E E OH OH —1 i 03 IO [> 1 (33 CD CD io ^ CM co T-H 00 CO CM co (M ^ T—
CO CO 00 CO CM t-H CM t-H

c &

3 CO

CM © CM

"ft x H

a D bo

CD © co" i—i o rH

co © CD oo s CM cm" cm" d> àTH © r-i i—t i-H

ai O