Handbook on the Physics and Chemistry of Rare Earths [Volume 20] 9780444820143, 0444820140

Volume 20 completes the second decade of volumes in this series and focuses on the physical aspects of metallic compound

689 54 10MB

English Pages 472 Year 1995

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

Handbook on the Physics and Chemistry of Rare Earths [Volume 20]
 9780444820143, 0444820140

Citation preview

Handbook on the Physics and Chemistry of Rare Earths, volume 20 Elsevier, 1995 Edited by: Karl A. Gschneidner, Jr. and LeRoy Eyring ISBN: 978-0444820143

Handbook on the Physics and Chemistry of Rare Earths VoL 20 edited by K.A. Gschneidner, Jr. and L. Eyring © 1995 Elsevier Science B.V. All rights reserved

PREFACE Karl A. G S C H N E I D N E R , Jr., and L e R o y E Y R I N G

These elements perplex us in our rearches [sic], baffle us in our speculations, and haunt us in our very dreams. They stretch like an unknown sea before us - mocking, mystifying, and murmuring strange revelations and possibilities.

Sir William Crookes (February 16, 1887)

This volume, which completes the second decade of volumes in this series, is focused on physical aspects of metallic compounds. Research efforts on metallic rare earth compounds started in earnest about 50 years ago and received a significant boost with the discovery of the RCo5 permanent magnets about 12 3(ears later. In this time much has been learned about the structure as well as the electrical, magnetic and thermal properties of ~2500 binary rare earth metallic compounds. But considering the possible true ternary compounds, and possible pseudo-binary ternary alloys formed by mixing two binary compounds, we have just begun to scratch the surface of the wealth of knowledge these yet-to-be discovered materials will bring to mankind. The information contained in this volume will be but a few footsteps in our journey to unravel the mysteries hidden in these unknown materials. Hopefully, the four chapters will serve as useful guides in our quest for this new knowledge. The first chapter (135) in this volume, by Onuki and Hasegawa, deals with the Fermi surfaces of rare earth (Y, La, Ce, Pr, Nd, Sm, Gd and Yb) intermetallic compounds. Initially, the reader is introduced to the relevant theories required to describe the electronic behavior of the electrons near the Fermi surface, and then to the basic experimental techniques to study these surfaces. The main portion of the chapter is devoted to a comparison of the experimental results with the band structure calculations for a large number of compounds. The authors have found some systematics in the observed behaviors, and have grouped the compounds into several different classes: i.e. non-4f behaviors, including some cerium compounds; valence fluctuation compounds; Kondo regime materials; and magnetic materials with magnetic energy gaps etc. They also note that the more complicated the crystal structure the larger the discrepancy between theory and experiment. Next, Gasgnier examines the world of thin films of rare earth metals, alloys, and compounds in chapter 136. The three main topics are the pure metals themselves, metallic

vi

PREFACE

alloys and compounds, and metalloid compounds. Many of the metallic elements exhibit a "valence" change when they change from the vapor to solid or vice-versa and this has some strong influences on the physical properties, especially the vapor pressure. Another major problem is the easy way which the rare earth metal films can become contaminated especially by the strongly electronegative non-metallic elements, i.e. H, N, O. The reported results are critically examined by Gasgnier. Included in his coverage are the results on metallic alloy/compound thin films include permanent magnets, R-Ni and R-Co hydrogen storage alloys, modulated and multilayered structures, and superconducting materials. The metalloid films include those with the chalcogenides, bismuth, lead and their combinations. The third chapter (137) in this volume, by Vajda, is devoted to hydrogen in metals and their binary compounds RH2 and R H 3 . One of the critical problems is the purity of the starting rare earth metal itself because phase relations can be greatly affected by impurities. Therefore, Vajda devotes some time discussing the preparation of specimens and the phase diagrams. The interesting structural properties, kinetics and thermodynamic behavior, as well as electronic, magnetic and thermal properties are reviewed. The occurrence of H-H pairs in zig-zag chains along the c-axis in the heavy lanthanides and Sc and Y terminal solid solution alloys is one of the unusual structural behaviors observed in these materials. The formation or annihilation of these pairs lead to some interesting kinetic effects and phase transitions during heating and cooling. Also examined is the profound influence of hydrogen on the magnetic properties by the mediation of RKKY interaction in these materials. The final chapter (138) of this volume, by Gignoux and Schmitt, is an update on the magnetic behaviors of lanthanide intermetatlic compounds. This chapter builds on the review of Kirchmayr and Poldy in chapter 14 of volume 2 of this Handbook series. When one examines chapter 138, it will immediately be apparent that a great deal of science and technology has occurred in the past 15 years in the magnetic behaviors of lanthanide compounds. Gignoux and Schmitt divide their chapter into two main parts: one is devoted to 3d magnetism where both the 3d metal and the lanthanide element contribute to the magnetic behavior; and the second is concerned with lanthanide magnetism by itself. In the first group the major emphasis is on systems which exhibit collective electron metamagnetism. In addition, magnetocrystalline anistropy, and topological frustration and magnetic instability are reviewed. The section devoted to compounds with the lanthanide as a magnetic atom, deals with materials which exhibit metamagnetic processes from different origins. It is found that the majority of these compounds order antiferromagnetically with complex magnetic field vs. temperature phase diagrams. This is due to the long range and oscillatory nature of the RKKY exchange interaction.

CONTENTS

Preface Contents

v

vii

Contents of Volumes 1-19

ix

135. Y. 0nuki and A. Hasegawa Fermi surfaces of intermetallic compounds

1

136. M. Gasgnier The intricate world of rare earth thin films." metals, alloys, intermetallics, chemical compounds . . . . 105 137. P. Vajda Hydrogen in rare-earth metals, including RH2+x phases 138. D. Gignoux and D. Schmitt Magnetic properties of intermetallic compounds

Author Index

425

Subject Index

457

vii

293

207

CONTENTS OF VOLUMES 1-19

V O L U M E 1: Metals 1978, 1st repr. 1982, 2nd repr. 1991; ISBN 0-444-85020-1 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

Z.B. Goldschmidt, Atomic properties (free atom) 1 B.J. Beaudry and K.A. Gschneidner Jr, Preparation and basic properties of the rare earth metals 173 S.H. Liu, Electronic structure of rare earth metals 233 D.C. Koskenmaki and K.A. Gschneidner Jr, Cerium 337 L.J. Sundstr6m, Low temperature heat capacity of the rare earth metals 379 K.A. McEwen, Magnetic and transport properties of the rare earths 411 S.K. Sinha, Magnetic structures and inelastic neutron scattering." metals, alloys and compounds 489 T.E. Scott, Elastic and mechanical properties 591 A. Jayaraman, High pressure studies: metals, alloys and compounds 707 C. Probst and J. Wittig, Superconductivity: metals, alloys and compounds 749 M.B. Maple, L.E. DeLong and B.C. Sales, Kondo effect." alloys and compounds 797 M.E Dariel, Diffusion in rare earth metals 847 Subject index 877

V O L U M E 2: Alloys and intermetallics 1979, 1st repr. 1982, 2nd repr. 1991; ISBN 0-444-85021-X 13. 14. 15. 16. 17. 18. 19. 20.

A. Iandelli and A. Palenzona, Crystal chemistry ofintermetallic compounds l H.R. Kirchmayr and C.A. Poldy, Magnetic properties of intermetallic compounds of rare earth metals 55 A.E. Clark, Magnetostrictive RFe2 intermetallic compounds 231 J.J. Rhyne, Amorphous magnetic rare earth alloys 259 E Fulde, Crystalfields 295 R.G. Barnes, NMR, EPR and M6ssbauer effect: metals, alloys and compounds 387 E Wachter, Europium chalcogenides: EuO, EuS, EuSe and EuTe 507 A. Jayaraman, Valence changes in compounds 575 Subject Index 613

V O L U M E 3: Non-metallic compounds - I 1979, 1st repr. 1984; ISBN 0-444-85215-8 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.

L.A. Haskin and T.P. Paster, Geochemistry and mineralogy of the rare earths 1 J.E. Powell, Separation chemistry 81 C.K. Jorgensen, Theoretical chemistry of rare earths 111 W.T. Carnall, The absorption and fluorescence spectra of rare earth ions in solution L.C. Thompson, Complexes 209 G.G. Libowitz and A.J. Maeland, Hydrides 299 L. Eyring, The binary rare earth oxides 337 D.J.M. Bevan and E. Summerville, Mixed rare earth oxides 401 C.P. Khattak and EEY. Wang, Perovskites and garnets 525 L.H. Brixne~ J.R. Barkley and W. Jeitschko, Rare earth molybdates (VI) 609 Subject index 655 ix

171

x

CONTENTS OF VOLUMES 1-19

V O L U M E 4: N o n - m e t a l l i c c o m p o u n d s - I I 1979, 1st repr. 1984; ISBN 0-444-85216-6

31. 32. 33. 34. 35. 36. 37A. 37B. 37C. 37D. 37E. 37E 37G. 38. 39. 40.

J. Flahaut, Sulfides, selenides and tellurides 1 J.M. H~chke, Halides 89 E Hulliger, Rare earth pnictides 153 G. Blasse, Chemistry and physics of R-activated phosphors 237 M.J. Weber, Rare earth lasers 275 EK. Fong, Nonradiative processes of rare-earth ions in crystals 317 J.W. O'Laughlin, Chemical spectrophotometric and polarographic methods 341 S.R. Taylor, Trace element analysis of rare earth elements by spark source mass spectroscopy 359 R.J. Conzemius, Analysis of rare earth matrices by spark source mass spectrometry 377 E.L. DeKalb and V.A. Fassel, Optical atomic emission and absorption methods 405 A.P. D'Silva and V.A. Fassel, X-ray excited optical luminescence of the rare earths 441 EW.V. Boynton, Neutron activation analysis 457 S. Schuhmann and J.A. Philpotts, Mass-spectrometric stable-isotope dilution analysis for lanthanides in geochemical materials 471 J. Reuben and G.A. Elgavish, Shift reagents and NMR of paramagnetic lanthanide complexes 483 J. Reuben, Bioinorganic chemistry: lanthanides as probes in systems of biological interest 515 T.J. Haley, Toxicity 553 Subject index 587

VOLUME 5 1982, 1st repr. 1984; ISBN 0-444-86375-3 41. 42. 43. 44. 45. 46.

M. Gasgnier, Rare earth alloys and compounds as thin films 1 E. Gratz and M.J. Zuckermann, Transport properties (electrical resitivity, thermoelectric power and thermal conductivity) of rare earth intermetallic compounds 117 EP. Netzer and E. Bertel, Adsorption and catalysis on rare earth surfaces 217 C. Boulesteix, Defects and phase transformation near room temperature in rare earth sesquioxides 321 O. Greis and J.M. Haschke, Rare earth fluorides 387 C.A. Morrison and R.P. Leavitt, Spectroscopic properties of triply ionized lanthanides in transparent host crystals 461 Subject index 693

VOLUME 6 1984; ISBN 0-444-86592-6 47. 48. 49. 50.

K.H.J. Busehow, Hydrogen absorption in intermetallic compounds 1 E. Parth~ and B. Chabot, Crystal structures and crystal chemistry of ternary rare earth-transition metal borides, silicides and homologues 113 P. Rogl, Phase equilibria in ternary and higher order systems with rare earth elements and boron 335 H.B. Kagan and J.L. Namy, Preparation of divalent ytterbium and samarium derivatives and their use in organic chemistry 525 Subject index 567

VOLUME 7 1984; ISBN 0-444-86851-8

51. 52. 53.

P. Rogl, Phase equilibria in ternary and higher order systems with rare earth elements and silicon K.H.J. Buschow, Amorphous alloys 265 H. Schumann and W Genthe, OrganametalIic compounds of the rare earths 446 Subject index 573

CONTENTS OF VOLUMES 1-19

xi

VOLUME 8 1986; ISBN 0-444-86971-9 54. 55. 56. 57.

K.A. Gschneidner Jr and EW. Calderwood, Intra rare earth binary alloys: phase relationships, lattice parameters and systematics 1 X. Gao, Polarographie analysis of the rare earths 163 M. Leskel~t and L. Niinist6, Inorganic complex compounds I 203 J.R. Long, Implications in organic synthesis 335 Errata 375 Subject index

379

VOLUME 9 1987; ISBN 0-444-87045-8 58. 59. 60. 61.

R. Reisfeld and C.K. Jorgensen, Excited state phenomena in vitreous materials 1 L. Niinist6 and M. Leskel~i, Inorganic complex compounds II 91 J.-C.G. Biinzli, Complexes with synthetic ionophores 321 Zhiquan Shen and Jun Ouyang, Rare earth coordination catalysis in stereospecific polymerization Errata 429 Subject index 431

395

VOLUME 10: High energy spectroscopy 1988; ISBN 0-444-87063-6 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72.

Y. Baer and W.-D. Schneider, High-energy spectroscopy of lanthanide materials - An overview 1 M. Campagna and EU. Hillebrecht, f-electron hybridization and dynamical screening of core holes in intermetallic compounds 75 O. Gunnarsson and K. Sch6nhammer, Many-body formulation of spectra of mixed valence systems 103 A.J. Freeman, B.I. Min and M.R. Norman, Local density supercell theory ofphotoemission and inverse photoemission spectra 165 D.W.Lynch and J.H. Weaver, Photoemission of Ce and its compounds 231 S. Hfifner, Photoemission in chalcogenides 301 J.E Herbst and J.W Wilkins, Calculation of 4f excitation energies in the metals and relevance to mixed valence systems 321 B. Johansson and N. M~trtensson, Thermodynamic aspects of 4f levels in metals and compounds 361 EU. Hillebrecht and M. Campagna, Bremsstrahlung isochromat spectroscopy of alloys and mixed valent compounds 425 J. R6hler, X-ray absorption and emission spectra 453 EP. Netzer and J.A.D. Matthew, Inelastic electron scattering measurements 547 Subject index 601

VOLUME 11: Two-hundred-year impact of rare earths on science t988; ISBN 0-444-87080-6 73. 74. 75. 76. 77. 78. 79.

H.J. Svec, Prologue 1 E Szabadv~ry, The history of the discovery and separation of the rare earths 33 B.R. Judd, Atomic theory and optical spectroscopy 81 C.K. Jorgensen, Influence of rare earths on chemical understanding and classification 197 J.J. Rhyne, Highlights from the exotic phenomena of lanthanide magnetism 293 B. Bleaney, Magnetic resonance spectroscopy and hyperfine interactions 323 K.A. Gschneidner Jr and A.H. Daane, Physical metallurgy 409 S.R. Taylor and S.M. McLennan, The significance of the rare earths in geochemistry and cosmochemistry 485 Errata 579 Subject index 581

xii

CONTENTS OF VOLUMES 1-19

V O L U M E 12 1989; ISBN 0-444-87105-5 80. 81. 82. 83. 84. 85. 86. 87.

J.S. Abell, Preparation and crystal growth of rare earth elements and intermetallic compounds 1 Z. Fisk and J.E Remeika, Growth of single crystals from molten metal fluxes 53 E. Burzo and H.R. Kirchmayr, Physical properties of R2Fel4B-based alloys 71 A. Szytuta and J. Leciejewicz, Magnetic properties of ternary intermetallie eompounds of the RT2X2 type 133 H. Maletta and W. Zinn, Spin glasses 213 J. van Zytveld, Liquid metals and alloys 357 M.S. Chandrasekharaiah and K.A. Gingerich, Thermodynamic properties ofgaseoas species 409 W.M. Yen, Laser spectroscopy 433 Subject index 479

V O L U M E 13 1990; ISBN 0-444-88547-1 88. 89. 90. 91, 92,

E.I. Gladyshevsky, O.I. Bodak and V.K. Pecharsky, Phase equilibria and crystal chemistry in ternary rare earth systems with metallic elements 1 A.A. Eliseev and G.M. Kuzmichyeva, Phase equilibrium and crystal chemistry in ternary rare earth systems with chalcogenide elements 191 N. Kimizuka, E. Takayama-Muromachi and K. Siratori, The systems R203-M203-MtO 283 R.S. Houk, Elemental analysis by atomic emission and mass spectrometry with inductively coupled plasmas 385 P.H, Brown, A.H. Rathjen, R.D, Graham and D.E. Tribe, Rare earth elements in biologicalsystems 423 Errata 453 Subject index 455

V O L U M E 14 1991; ISBN 0-444-88743-1 93. 94. 95. 96. 97.

R. Osborn, S.W. Lovesey, A.D. Taylor and E. Balcar, Intermultiplet transitions using neutron spectroscopy 1 E. Dormann, NMR in intermetallic compounds 63 E. Zirngiebl and G. Giintherodt, Light scattering in intermetallic compounds 163 E Thalmeier and B. Liithi, The electron-phonon interaction in intermetallic compounds 225 N. Grewe and E Steglich, Heaoyfermions 343 Subject index 475

V O L U M E 15 1991; ISBN 0-444-88966-3 98. 99. 100. 101. 102. 103. 104.

J.G. Sereni, Low-temperature behaviour of cerium compounds 1 G.-y. Adachi, N. Imanaka and Zhang Fuzhong, Rare earth carbides 61 A. Simon, Hj. Mattausch, G.J. Miller, W. Bauhofer and R.K. Kremer, Metal-rich halides 191 R.M. Almeida, Fluoride glasses 287 K.L. Nash and J.C. Sullivan, Kinetics of complexation and redox reactions of the lanthanides in aqueous solutions 347 E.N. Rizkalla and G.R. Choppin, Hydration and hydrolysis oflanthanides 393 L.M. Vallarino, Macroeycle complexes of the lanthanide(llI) yttrium(IIl) and dioxouranium(VI) ions from metal-templated syntheses 443 Errata 513 Subject index 515

CONTENTS OF VOLUMES 1-19

xiii

M A S T E R INDEX, Vols. 1 - 1 5 1993; ISBN 0-444-89965-0 V O L U M E 16 1993; ISBN 0-444-89782-8 105. 106. 107. 108. 109.

M. Loewenhaupt and K.H. Fischer, Valence-fluctuation and heavy-fermion 4fsystems 1 I.A. Smirnov and V.S. Oskotski, Thermal conductivity of rare earth compounds 107 M.A. Subramanian and A.W. Sleight, Rare earthspyrochlores 225 R. Miyawaki and I. Nakai, Crystal structures of rare earth minerals 249 D.R. Chopra, Appearance potential spectroscopy of lanthanides and their intermetallics 519 Author index 547 Subject index 579

V O L U M E 17: Lanthanides/Actinides: Physics - I 1993; ISBN 0-444-81502-3 M.R. Norman and D.D. Koelling, Electronic structure, Fermi surfaces, and superconductivity in f electron metals 1 111. S.H. Liu, Phenomenological approach to heavy-fermion systems 87 112. B. Johansson and M.S.S. Brooks, Theory of cohesion in rare earths and actinides 149 113. U. Benedict and W.B. Holzapfel, High-pressure studies - Structural aspects 245 114. O. Vogt and K. Mattenberger, Magnetic measurements on rare earth and aetinide monopnictides and monochaleogenides 301 115. J.M. Fournier and E. Gratz, Transport properties of rare earth and actinide intermetallies 409 116. W. Potzel, G.M. Kalvius and J. Gal, M6ssbauer studies on electronic structure of intermetallie compounds 539 117. G.H. Lander, Neutron elastic scattering from actinides and anomalous lanthanides 635 Author index 711 Subject index 753 110.

V O L U M E 18: Lanthanides/Actinides: Chemistry 1994; ISBN 0-444-81724-7 118. 119. 120. 121. 122. 123. 124. 125. 126. 127. 128. 129.

G.T. Seaborg, Origin of the aetinide concept 1 K. Ba|asubramanian, Relativistic effects and electronic structure of lanthanide and actinide molecules 29 J.V. Beitz, Similarities and differences in trivalent lanthanide- and actinide-ion solution absorption spectra and luminescence studies 159 K.L. Nash, Separation chemistry for lanthanides and trivalent actinides 197 L.R. Morss, Comparative thermochemical and oxidation-reduction properties of lanthanides and actinides 239 J.W.Ward and J.M. Haschke, Comparison o f 4 f a n d 5felement hydride properties 293 H.A. Eiek, Lanthanide and aetinide halides 365 R.G. Haire and L. Eyring, Comparisons of the binary oxides 413 S.A. Kinkead, K.D. Abney and T.A. O'Donnell,f-element speciation in strongly acidic media: lanthanide and mid-actinide metals, oxides, fluorides and oxide fluorides in superacids 507 E.N. Rizkalla and G.R. Choppin, Lanthanides and aetinides hydration and hydrolysis 529 G.R. Choppin and E.N. Rizkalla, Solution chemistry ofactinides and lanthanides 559 J.R. Duffield, D.M. Taylor and D.R. Williams, The biochemistry of the f-elements 591 Author index 623 Subject index 659

xiv

CONTENTS OF VOLUMES 1-19

VOLUME

19: L a n t h a n i d e s / A c t i n i d e s : P h y s i c s - II

1994; ISBN 0-444-82015-9 130. 131. 132. 133. 134.

E. Holland-Moritz and G.H. Lander, Neutron inelastic scattering from actinides and anomalous lanthanides 1 G. Aeppli and C. Broholm, Magnetic correlations in heavy-fermion systerr~." neutron scattering from single crystals 123 P. Wachter, Intermediate valence and heavy fermions 177 J.D. Thompson and J.M. Lawrence, High pressure studies - Physical properties of anomalous Ce, Yb and U compounds 383 C. Colinet and A. Pasturel, Thermodynamic properties of metallic systems 479 Author Index 649 Subject Index 693

Handbook on the Physics and Chemistry of Rare Earths Vol. 20 edited by K.A. Gschneidner, Jr. and L. Eyring © 1995 Elsevier Science B.V. All rights reserved

Chapter 135 F E R M I SURFACES OF INTERMETALLIC C O M P O U N D S Yoshichika Onuki

Department of Physics, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan Akira Hasegawa

Department of Physics, Faculty of Science, Niigata University, Niigata 950-21, Japan

Co~e~s List of symbols and abbreviations 1. Introduction 2. Theory of energy band structure 2.1. Relativistic effect in the lanthanide atoms 2.2, Luttinger's theorem on the Fermi surface 2.3. Relativistic band theory 2.3.1. Kohn-Sham-Dirac one-electron equation 2.3.2. Self-consistent, symmetrized relativistic APW approach 2.3.2.1. APW matrix elements in a symmetrized form 2,3.2.2. Determination of eigenvalues and eigenfunctions 2.3.2.3. Electron density function 2.3.2.4. Self-consistent calculation 2.4. Determination of the density of states, the Fermi surface and the cyclotron effective mass 2.5. Mass enhancement factors 3. Transverse magnetoresistance and de Haasvan Alphen effect 3.1. Transverse magnetoresistance 3.2. de Haas-van Alphen effect

1 2 8 8 11 12 14 16 16

19 20 21

22 24 26 26 27

4. Experimental results and comparisons with band calculations 30 4.1. Fermi surfaces in the simple cubic Brillouin zone 30 4.1.1. RB 6 30 4.1.2. LaAg and YZn 38 4.1.3. RIn3 40 4.1.4. RSn 3 52 4.2. Fermi surfaces in the bcc Brillouin zone 59 4.2.1. RX 59 4.2.2. RAt 2 67 4.3. Fermi surfaces in the hexagonal Brillouin zone 70 4.3.1. RG% 70 4.4. Fermi surfaces in the tetragonal Bfillouin zone 74 4.4.1. RRu2Si 2 and RRu2Ge2 74 4.4.2. CeCu2Si2 81 4.5. Fermi surface in the orthorhombic Brillouin zone 82 4.5.1. RNi 82 4.5.2, RCu 2 87 4.5.3. RCu 6 90 5. Conclusions 95 Acknowledgement 98 References 98

List of symbols and abbreviations a

lattice constant

AF1,2

antiferromagnetic states

2 APW c C dHvA e EF Ef Eex Ei F FFT FS g

Y. 0NUKI and A. HASEGAWA

KKR LAFW

augmented plane wave phase velocity of light specific heat de Haas-van Alphen electronic charge Fermi energy f level exchange splitting energy eigenvalue of ~pi de Haas-van Alphen frequency fast Fourier transformation Fermi surface g factor for the spin of the conduction electron Land6 g factor magnetic field critical field for the metamagnetic transition Planck constant divided by 2~ effective H including the exchange field current total angular momentum z-component of J wave vector magnitude of k Boltzmann constant magnitude of wave vector along the field direction Fermi vector along the three principal axes (i = 1,2, 3) Korringa-Kohn-Rostoker linearized augmented plane wave

LDA LMTO m0 mb

local density approximation linearized muffin-tin orbital free electron mass band mass

gj H Hc h Hex J J J~ k k kB kH kv~

m* m~ Mosc MBZ

N(EF) ne nh RKKY S T Tc TD TK TN TQ U v vF v±

V(r) V 7 7b )~ ~'m ~,p /tB #x~[p(r)]

Ap/p a(r) z wc

effective mass cyclotron effective mass oscillatory component of magnetization magnetic Brillouin zone density of states at E F number of electron carriers number of hole carriers Ruderman-Kittel-Kasuya-Yosida extremal cross-sectional area of the Fermi surface absolute temperature Curie temperature Dingle temperature Kondo temperature N6el temperature quadrupolar ordering temperature Coulomb repulsive force velocity of an electron Fermi velocity velocity component perpendicular to the Fermi surface or cyclotron orbit external potential hybridized coupling constant electronic specific heat coefficient 7 calculated from the band model mass enhancement factor ~, due to electron-magnon interaction ), due to electron-phonon interaction Bohr magneton exchange-correlation potential magnetoresistance, Ap/p = [p(H)-p(O)]/p(O) local spin density at r scattering lifetime cyclotron frequency

1. Introduction T h e l a n t h a n i d e c o m p o u n d s are u s u a l l y t r e a t e d in m a g n e t i s m b y a n f - l o c a l i z e d m o d e l , b u t s h o w v a r i o u s i n t e r e s t i n g p h e n o m e n a s u c h as v a l e n c e fluctuations, gap states, K o n d o lattice, a n d h e a v y electrons. T h e s e o r i g i n a t e f r o m t h e 4 f e l e c t r o n s i n t h e l a n t h a n i d e c o m p o u n d s , w h i c h are e i t h e r b o u n d to t h e l a n t h a n i d e a t o m s or delocalized, i n d i c a t i n g

FERMI SURFACESOF INTERMETALLICCOMPOUNDS

3

an itinerant nature. The 4f electrons in the atom are pushed deep into the interior of the closed 5s and 5p shells because of the strong centrifugal potential l(l + 1)/r 2, where l = 3 holds for the f electrons. This is why the 4f electrons possess an atomic-like character in the crystal. On the other hand, the tail of their wave function spreads to the outside of the closed 5s and 5p shells, which is highly influenced by the potential energy, the relativistic effect and the distance between the lanthanide atoms; this results in hybridization of the 4f electrons with the conduction electrons. These cause the various phenomena mentioned above. The Coulomb repulsive force of the 4f electron (or the intra-atomic correlation energy) U at the same atomic site is so strong, for example U ~ 5 eV in Ce compounds, that occupancy of a same site by two 4f electrons is usually prohibited. The 4f partial density of states determined by resonant photoemission experiments shows a maximum below the Fermi level which corresponds to the binding energy or the level of the 4f electrons El. For example, the distance from this 4f level to the Fermi level is 7.0 eV and 1.2 eV in SmCu6, 5.5 eV in NdCu6, 3.5 eV in PrCu6 and 2.4eV in CeCu6 (Ishii et al. 1987). The tail of the 4f partial density of states extends to the Fermi level even at room temperature in CeCu6 and also slightly in PrCu6, while no trend of 4f states is observed around the Fermi level in NdCu6. Near the Ce or Yb end of the R series, the 4f level thus approaches the Fermi level in energy and the 4f electrons hybridize more strongly with the conduction electrons with the kinetic energy Ek. This f-hybridized coupling constant is denoted by V. A theoretical treatment for such a system is called the periodic Anderson model (Anderson 1961). The parameters Ek, V, Ef and U predominantly control the dynamics of the system. These values depend actually on the crystal structure. The relation between the magnetic ordering temperature and the distance between the Ce (or U) atoms is known as a Hill plot (Hill 1970). When U is strong and/or V is ignored, the freedom of the charge in the 4f electron is suppressed, while the freedom of the spin is retained, representing the 4f-localized state. Naturally, the degree of localization depends on El, where larger Ef helps to increase the localization. This situation is applied to most of the lanthanide compounds in which the RKKY interaction (Ruderman and Kittel 1954, Kasuya 1956, Yosida 1957) plays a predominant role in magnetism. Therefore, the mutual magnetic interaction between the 4f electrons occupying different atomic sites cannot be of a direct type, such as in 3d metal magnetism, but should be indirect, which occurs only through the conduction electrons. In the RKKY interaction, a localized spin Si interacts with a conduction electron with spin s, which leads to a spin polarization of the conduction electron. This polarization interacts with another spin Sj localized on ion j and therefore creates an indirect interaction between the spins Si and Sj. This indirect interaction extends to the far distance and damps with a sinusoidal 2kv oscillation, where kv is half of the caliper dimension of the Fermi surface. When the number of 4f electrons increases in such a way that the lanthanide element changes from Ce to Gd or reversely from Yb to Gd in the compound, the magnetic moment becomes larger and the RKKY interaction stronger, leading to

4

Y. ONUKI and A. HASEGAWA i00

"~"1

,

,,,,,,,i

'

'

'''"'1

'

_X=

0.50 . . . . . . . . . . . . . . . . . . . . _ -o.73

0

~ ' ~ 1

~

,

',,,,q

,

,

CexLal-xCu6 J//b-axis .

.

.

.

.

~

~

.

o 50

-

,/

9 0 ......... 0.01

0,1

1

Temperature (K)

10

100

Fig. 1. Temperature dependence of the electric resistivity in CexLa~_xCu6 (Sumiyama et al. 1986).

magnetic order of which the ordering temperature roughly follows the de Gennes relation, (gj-1)2j(j + 1). Here gj and J are the Land6 g factor and the total angular momentum, respectively. Contrary to what happens at large U, higher V tends to enhance the hybridization of 4f electrons with conduction electrons, thus accelerating the delocalization of the 4f electrons (Koelling et al. 1985). The delocalization of 4f electrons tends to make the 4fband wide. When Ef > V, we have still better localization and expect the Kondo regime in the Ce (or Yb) compounds. The Kondo effect was studied for the first time in a dilute alloy where a ppm range of the 3d transition metal is dissolved in a pure metal of copper. Kondo (1964) showed that the third-order scattering of the conduction electron with the localized moment of the transition impurity diverges logarithmically with decreasing temperature, and clarified the origin of the long standing problem of the resistivity minimum. This became the start of the Kondo problem, and it took ten years for theorists to solve this divergence problem at the Fermi energy (Wilson 1975). The many-body Kondo bound state is now understood as follows. For the simplest case of no orbital degeneracy, the localized spin S(T) is coupled antiferromagnetitally with the spin of the conduction electron s(+). Consequently the singlet state {S(i") • s(J,) + S(1)" s(T)} is formed with binding energy kBTK. Here the Kondo temperature TK is the single energy scale. In other words, disappearance of the localized moment is thought to be due to the formation of a spin-compensating cloud of the conduction electron around the impurity moment. Kondo-like behavior was observed in the ianthanide compounds, typically in Ce and Yb compounds (Buschow et al. 1971, Parks 1977, Falicov et al. 1981). For example, the electric resistivity in CexLal-xCu6 increases logarithmically with decreasing temperature for all the x-values (Sumiyama et al. 1986), as shown in fig. 1. The Kondo effect occurs independently at each cerium site even in a dense system. Therefore, this phenomenon was called the dense Kondo effect.

FERMI SURFACESOF INTERMETALLICCOMPOUNDS

5

The Kondo temperature in the Ce (or Yb) compound is large compared to the magnetic ordering temperature based on the RKKY interaction. For example, the cerium ion is trivalent (J = 5/2), and the 4f energy level is split into three doublets by the crystalline electric field, namely possessing the splitting energies of A1 and A2. The Kondo temperature is given as follows (Yamada et al. 1984):

T~z=Dexp

- 3

[JexlD(EF)

when T > AI, A2,

(1)

when T < At, A2.

(2)

and TK = A---~Dexp

I&xlb(EF)

Here D, [Jex [ and D(Ev) are the band width, exchange energy and density of states, respectively. If we postulate TK ~ 5 K, for D = 104 K, zll = 100 K and A2 = 200 K, the value of T~ ~ 50K is obtained, which is compared to the S = ½-Kondo temperature of 10 3 K defined as T ° = D exp(-1/IJex I D(EF)). These large values of Kondo temperatures shown in eqs. (1) and (2) are due to the orbital degeneracy of the 4f levels. Therefore, even at low temperatures the Kondo temperature is not T ° but TK shown in eq. (2). On the other hand, the magnetic ordering temperature is about 5 K in the Ce (or Yb) compound, which can be simply estimated from the de Gennes relation under the consideration of the Curie temperature of about 300K in Gd. Therefore, T~ is much higher than the magnetic ordering temperature, but TK is close to it. Therefore, it depends on the compound whether or not magnetic ordering occurs at low temperatures (Brandt and Moshchalkov 1984). As shown in table 1, some compounds such as CeB6 or CeAI2 order antiferromagnetically below 5 K, while CeCu6 (TK = 4 K) does not order magnetically. The ground-state properties of dense Kondo systems are interesting in magnetism, which is highly different from the dilute Kondo effect. In the cerium intermetallic compounds such as CeCu6, cerium ions are periodically aligned whose ground state cannot be a scattering state but becomes a coherent Kondo-lattice state. The electric resistivity p decreases steeply with decreasing temperature, following p ~ A T 2 with a large value of the coefficient A. The v/A-value is proportional to the effective mass of the carrier and thus inversely proportional to the Kondo temperature (Kadowaki and Woods 1986). Correspondingly, the electronic specific heat coefficient y roughly follows the simple relation y ~ 104/TK (mJ/K2mol). It reaches 1600mJ/K2mol for CeCu6 because of a small Kondo temperature (Satoh et al. 1989). The Ce Kondolattice compound with magnetic ordering also possesses the large y value even if the RKKY interaction overcomes the Kondo effect at low temperatures. For example, the ~, value of CeB6 is 250 mJ/K 2 mol, which is roughly one hundred times larger than that of LAB6, 2.6 mJ/K 2 tool. The conduction electrons possess large effective masses and thus move slowly in the crystal. These heavy electrons become superconductive in CeCuaSi2

Y. ONUKI and A. HASEGAWA Table 1 Characteristic properties of Ce compounds~ Compound

Crystal structure

a (.&)

Tn (K)

(a) Non-Kondo lattice compounds with magnetic ordering CeGa2 hexa 4.32 11.4 CeRu2Ge2 tetra 4.27 8.5

Tc (K)

y (mJ/K2mol)

8.2

9

7.5

20

H c (kOe)

(b) Kondo lattice compounds with magnetic ordering CeSb cubic 4.54 16.2 Celn3 cubic 4.69 10.2 CeA12 cubic 3.49 3.8 CeCu2 ortho 3.57 3.4 CeB6 cubic 4.14 2.3 b CeCu2Si2 tetra 4.11 0.7 c

20 130 135 82 250 1000

38 >150 53 18 15 70

(c) Kondo lattice compounds without magnetic ordering CeCu6 ortho 4.83 CeRu2Si2 tetra 4.19 CeNi ortho 3.59 CeSn3 cubic 4.72

1600 350 65-85 53

20 80

" Symbols: a, distance between nearest Ce atoms; TN, N6el temperature; Tc, Curie temperature; TQ, quadrupolar ordering temperature; To, superconducting transition temperature; ~/, electronic specific heat coefficient; He, critical field for metamagnetic transition. b TQ=3.2K. e T0=0.7K '

(Steglich et al. 1980). Therefore, the Kondo-lattice system is called a heavy-electron or heavy-Fermion system. W h e n E f < V, the 4 f electrons may tend to be delocalized, manifesting the valencefluctuation regime. CeSn3 and CeNi were once called valence-fluctuation compounds or mixed-valent compounds. The magnetic susceptibility in these compounds follows the Curie-Weiss law at higher temperatures than room temperature, possessing the magnetic moment near Ce 3+, while it becomes approximately temperature-independent with decreasing temperature, showing a broad m a x i m u m around 150-200 K (Gschneidner et al. 1985). Thus the valence o f Ce atoms seems to change from Ce 3+ into Ce 4+ (nonmagnetic state) with decreasing temperature. The ionic radius o f the lanthanide atom decreases with increasing number o f 4 f electrons, which is well known as lanthanide contraction. A plot o f the lattice constant o f the lanthanide compound versus the atomic number o f the lanthanide element shows a nearly straight line, except for some Ce, Sm, Eu, Tm and Yb compounds, where the lanthanides can take integral valencies different from 3 as in Ce 4÷ and Sm 2+, Eu 2+, Tm 2+, Yb z+. The valence change in these compounds is brought about by changing the constitution x (such as in Sml-xLaxB6 Kasaya et al. 1980) or by

FERMI SURFACESOF INTERMETALLICCOMPOUNDS

7

introducing pressure (for SmS Jayaraman et al. 1970) or a magnetic field (YbB12 Sugiyama et al. 1988), as well as by changing the temperature as mentioned above for CeSn3 and CeNi. The first insulating valence fluctuations were studied by Jayaraman et al. (1970) for SINS. An insulating black phase of SmS at ambient pressure changes into a metallic golden phase at high pressures. In other words, divalence of Sm 2+ changes into the intermediate valence between 2+ and 3+. The application of hydrostatic pressure is associated with a smaller volume, which introduces the 4f valence transition and consequently delocalization of 4f electrons. Fermi surface studies are very important to know the ground-state properties of these various magnetic compounds (Norman and Koelling 1993, Onuki et al. 1991a). Even in the localized system, the presence of 4f electrons alters the Fermi surface through the 4f-electron contribution to the crystal potential and through the introduction of new Brillouin zone boundaries and magnetic energy gaps which occur when 4f electron moments order. The latter effect may be approximated by a band-folding procedure where the paramagnetic Fermi surface, which is roughly similar to the Fermi surface of the corresponding La compound, is folded into a smaller Brillouin zone based on the magnetic unit cell, which is larger than the chemical unit cell. If the magnetic energy gaps associated with the magnetic structure are small enough, conduction electrons undergoing cyclotron motion in the presence of a magnetic field can tunnel through these gaps and circulate the orbits on the paramagnetic Fermi surface. If this magnetic breakthrough (or breakdown) occurs, the paramagnetic Fermi surface may be observed in the de Haas-van Alphen (dHvA) effect even in the presence of magnetic order. For Kondo-lattice compounds with magnetic ordering, the Kondo effect is expected to have minor influence on the topology of the Fermi surface, representing that Fermi surfaces of the Ce compounds are roughly similar to those of the corresponding La compounds, but are altered by the magnetic Brillouin zone boundaries mentioned above. Nevertheless, the effective masses of the conduction carriers are extremely large compared to those of La compounds mentioned above. In this system a small amount of 4f electron most likely contributes to make a sharp density of states at the Fermi energy. Thus the energy band becomes flat around the Fermi energy, which brings about the large mass. There is a big difference in f-electron character between the Kondo regime and the valence-fluctuation regime. One may be tempted to think that the 4f electrons in a Kondo lattice compound with a large value of TK are itinerant. This seems to be true, as shown later in detail for CeSn3 and CeNi or CeRu2 Si2. In the following sections we present the dHvA results of the lanthanide compounds shown in table 2, which are compared to the results of energy band calculations. Comparisons of the dHvA experiments with band calculations are essentially important to determine the f character, namely whether the 4f electrons are itinerant or localized. These Fermi surface properties should shed light on the basic understanding of the strongly correlated 4f-electron system.

Y. (3NUKI and A. HASEGAWA Table 2 Rare earth compounds for which dHvA results and energy band calculations are presented in the text. Elements

La

Ce

Pr

Nd

B

LaB 6

CeB 6

PrB 6

NdB 6

Ag

LaAg Prln 3

Ndln 3

Zn

Y

Lain3

Celn 3

Sn

LaSh 3

CeSn 3

Bi

LaBi

CeBi

Sb

LaSb

CeSb

As

Smln 3

Gdln 3

PrSb

SmSb

GdSb

CeAs YA12

LaA1z

Yb

Ga

LaGa2

CeG%

LaRu2Siz

CeRu2Si2

Ru/Ge

LaRu2Ge2 CeRu2Ge z

Cu/Si

YbAs

CeAIz

Ru/Si

SmGa 2

CeCu2Si2

Ni Cu

Gd

YZn

In

A1

Sm

LaNi YCu z

CeNi

PrNi

CeCu 2 LaCu 6

CeCu 6

SmCu 2 PrCu 6

NdCu 6

SmCu 6

2. Theory of energy band structure 2.1. Relativistic effect in the lanthanide atoms The lanthanide atoms have fairly large atomic numbers and their compounds contain other heavy atoms as the constituent elements. Therefore, it is essential to take into account the relativistic effect in calculations of the energy band structures for the lanthanide compounds. In this section, we explain how the energy and the wave function of an electron in these compounds may be influenced by relativity. We treat the neutral cerium atom as an example, and explain the important effect of relativity on the electrons in its outer shells such as the 4f, 5d and 6s electrons. The electrons in the s states in both inner (the Xe core) and outer shells have finite probability amplitudes at the nucleus. As the nuclear potential is deep in the vicinity of the nucleus, electron velocity approaches light velocity and consequently the relativistic effect becomes appreciably large. Compared to the non-relativistic theory, the corresponding energy of all the s (l = 0) electrons decreases significantly, because the s electrons have relatively large probability amplitudes at the nucleus and their wave functions contract toward the nucleus. This direct relativistic effect on the s electrons induces an indirect effect on the other (l ~ 0) electrons. Namely, the s electrons tend to screen more effectively the nuclear potential which the 4f and 5d electrons feel, and therefore the latter would be bound more loosely. As a result, their energies increase and their wave functions tend to spread outward in contrast to the 6s electrons.

FERMI SURFACES OF INTERMETALLIC COMPOUNDS

9

.72_ 5d

V

'> 1, it is possible to know whether the compound under investigation is a compensated metal with an equal carrier number of electrons and holes, ne = nh, or an uncompensated metal, n e e nh, and whether or not open orbits exist. Here, coc = ell~roSe is the cyclotron frequency, r is the scattering lifetime, mS is the effective cyclotron mass and cocr/2~r means the number of the cyclotron motions performed by the carrier without being scattered. The characteristic features of the high-field magnetoresistance are summarized as follows: (1) when all cyclotron orbits are closed, (a) for the uncompensated metal the magnetoresistance saturates, A p / p ~ H °, and (b) for the compensated metal the magnetoresistance increases quadratically, A p / p ~ (wcz) 2. (2) When some of the cyclotron orbits are not closed but form open orbits, the magnetoresistance increases quadratically and depends on the current direction as

FERMI SURFACESOF INTERMETALLICCOMPOUNDS

27

A p / p ~ H2cos2c~, where a is the angle between the current direction and the open orbit direction in k-space. This is true regardless of the state of compensation. If we count the number of valence electrons in a primitive cell, most of the lanthanide compounds are even in number, meaning that they are compensated metals. In this case the transverse magnetoresistance increases as H n (1 < n ~2) become vanishingly small, and the fundamental one (r= 1) becomes dominant in the usual dHvA measurements. However, when the cyclotron mass is not large and the temperature becomes lower than 1 K, the higher harmonics become detectable. To distinguish the higher harmonics from the fundamental one, it is necessary to check carefully the magnitude, intensity and angular dependences of the dHvA frequencies and their cyclotron masses. The quantity ]OzS/Ok~i]-1/2 is the inverse square root of the curvature factor 02S/Ok~. The rapid change of the cross-sectional area around the extremal cross-sectional area along the field direction diminishes the dHvA amplitude for this extremal area. The term cos(~grmS/2mo) is called the spin factor. When g = 2 (free-electron value) and m* =0.5m0, this term becomes zero for the fundamental oscillation (r= 1) and the dHvA oscillation vanishes for all values of magnetic field. This is called the zero spinsplitting situation in which the up and down spin contributions to the oscillation cancel

FERMI SURFACES OF INTERMETALLIC COMPOUNDS

29

LaSh3

(a)

Magnetic Field Fig. 5. Schematic picture of the change in the extremal cross-sectional areas depending on the up and down spin states. AF~ and AF2 mean the different antiferromagnetic states, and H c is the critical field showing the metamagnetic transition. St, and S~ are the extremal areas for the up and down spin electrons, respectively, obtained from the dHvA measurements in the AF2 region (Harima 1988).

I

r

I

'Y,Ti

80

90kOe

H// (b)

0.SK ~7z-- Or

2,e

L, ojhlll,

7,+2z!

II

0 5 10 15x1070e Fig. 6. dHvA oscillation and its FFT spectrum for LaSn3 (Umehara et al. 1991a). The Greek letters in the FFT spectrum designate the various orbits.

out, and this can be useful for determining the g value. Note that in this situation the second harmonics for r = 2 should have a full amplitude. When the extremal area changes linearly with increasing external field, the dHvA frequencies of the up and down spin electrons coincide, giving the extremal crosssectional area for zero field mentioned above. Many lanthanide compounds show a magnetically ordered state at low temperatures. Conduction electrons in this system have different Zeeman and exchange energies, depending on the up and down spin electrons. For example, the antiferromagnetic AF~ state of these compounds often changes into a different antiferromagnetic AF2 state or into the field-induced ferromagnetic (paramagnetic) state. In this case, we usually get different Fermi surface areas for the up and down spin electrons, S T and St, when the field is increased above the critical field showing the metamagnetic transition He, as shown in fig. 5. The spin factor Sr becomes

y'grm e

=c°S 2mo

(62)

30

Y. (3NUKIand A. HASEGAWA

where Hex is defined by the exchange splitting energy Eex = ~BHex. In ferromagnetic compounds, it is possible to obtain different Fermi surface areas associated with the up and down spin electrons in zero field. Simply thinking, the dHvA oscillation is detected when the high-field condition is almost satisfied; ~oer/2zr > 1 and the spacing between the Landau levels is larger than the thermal broadening kBT; hcoc > kBT. I f the magnetic field H is 100kOe or 10T and the carrier possesses a cyclotron mass of 10m0, the following conditions for the temperature and the scattering lifetime are required: T < 1.3 K and 7: > 3.6× 10-11 s or TD < 0.03 K. A temperature of 0.4 K can be attained in the He3-cryostat (Windmiller and Ketterson 1968), and much lower temperatures are obtained in a dilution refrigerator (Reinders et al. 1987). Values of 77= 10-12-10 -11 s or TD=0.1-1 K are usual in samples. The exact dHvA oscillation contains many dHvA frequencies Fi (i = 1, 2, 3, ... ) or cross-sectional areas Si and becomes a sum of their contributions, which are analyzed by the fast Fourier transformation (FFT) method. The amplitude Ai corresponds to the amplitude in the FFT spectrum. Figure 6 shows the dHvA oscillation and its FFT spectrum for a field along the (111) direction of the cubic crystal LaSn3 at 0.5 K (Umehara et al. 1991a). From the FFT spectrum we can see many dHvA oscillations due to harmonics or sums and differences of the several dHvA frequencies.

4. Experimental results and comparisons with band calculations 4.1. Fermi surfaces in the simple cubic Brillouin zone 4.1.1. RB 6 The rare earth hexaborides RB 6 crystallize in the cubic (CaB 6 type) structure which possesses a CsCI type arrangement of R atoms and B6 octahedra. Figure 7 shows the crystal structure of RB6 and its simple cubic Brillouin zone. LaB6 is a reference non-f compound. CeB6 is a typical Kondo-lattice compound undergoing two magnetic ordering (a)

I

(b)

()

Fig. 7. (a) RBt-cubic crystal structure. Large spheres without pattern and small spheres with pattern show the R atoms and the B atoms, respectively.(b) Brillouin zone of the simple cubic crystal lattice.

FERMI SURFACES OF INTERMETALLIC COMPOUNDS

31

Table 4 Characteristic properties of the RB 6 compounds with a cubic crystal structure~ Compound

T N (K)

n

7 (m J/K2 tool) 2.6

LaB 6

Pauli para

ne

CeB6

2.3 TN = 3.2 K Kondo lattice

n~

PrB6

7.0

ne

Ndt36

7.8

n~ = nh

250

Fermi surface three ellipsoids connected by necks similar to LaBr, but spin-split

similar to LaBr, but spin-split strongly altered by MBZ

Symbols: n~, number of electron carders; nh, number of hole carders; when no=nh the carders are compensated. MBZ, magnetic Brillouin zone.

transitions at the quadrupolar ordering temperature TQ = 3.2 K and at the Nrel temperature TN=2.3 K (Effantin et al. 1985, Komatsubara et al. 1983). Existence of quadrupolar ordering is due to the quartet F8 ground state in the 4flevels. PrB6 (TN = 7.0 K) and NdB6 (TN = 7.8 K) are typical localized 4f systems with magnetic ordering. Their characteristic properties are summarized in table 4. The measurements of the dHvA effect in LaB6 (Suzuki et al. 1988, Ishizawa et al. 1977, 1980, Arko et al. 1976), shown in fig. 8, revealed that the Fermi surface consists of a set of three equivalent nearly spherical ellipsoids, denoted by ai (i = 1, 2 and 3), which i

f

~

i

i--~

LaB6 i lZ { 1 0 0 }

i

¢

I

i

3.

*

I

i

,

{110}

10 8

o~ {D

1

o}

~i0 7

I

6 >

10 5

80

0

30

60

Field Angle (Degrees)

90

Fig. 8. Angular dependence of the dHvA frequency in LaB 6 (Ishizawa et al. 1977, 1980, Suzuki et al. 1988). The solid and dashed lines connecting the data are guidelines. The Greek letters designate the various orbits.

32

Y. 0NUKI and A. HASEGAWA R

LaB6

(b) M

(a)

/

R

(e)

"q---------- ~" R Fig. 9. (a) Cross-sections of the multiply connected ellipsoidal Fermi surfaces (Ishizawa et al. 1977). Co) Main three multiply connected ellipsoidal Fermi surfaces (Hasegawa and Yanase 1977b). (c) Twelve pocket Fermi surfaces in LaB 6 (Harima et al. 1988). The pocket Fermi surface is enlarged for visual convenience. The Greek letters designate the various orbits.

are connected by necks. This topology of the Fermi surface was constructed from the magnitude of the dHvA frequencies and the angle range where the dHvA branches a i were detected. The energy band structure of LaB6 is characterized by the wide B 2s-2p bands which are split into the bonding and antibonding bands and by the La 5d bands which lie across the energy gap between the bonding and antibonding bands. This feature originates from a particular configuration of atoms in the CeB6 crystal structure. The six s states of the B atoms in an octahedron form d-like orbitals with F12 symmetry about the center of the octahedron, and the six p states of these B atoms also form d-like orbitals with both F12 and F25 symmetries about the same center (Longuet-Higgins and Roberts 1954). These d-like orbitals and the La 5d states have nearly equal energies, and therefore strong hybridization occurs between them. The strong hybridization causes a large wave-vector dependence of the d bands, and the Fermi surface is formed by one such d(eg) band (Hasegawa and Yanase 1977b). The Fermi surface of LaB6 is shown in figs. 9a,b. It consists of three equivalent electron sheets which are centered at the X point and are connected by small necks which intersect the E axes in the simple cubic Brillouin zone. The total number of carriers is almost equal to one electron per primitive cell. The electrons on the Fermi surface have dominantly La d character, and on the average the magnitude of their cyclotron effective masses is smaller than the free electron mass.

FERMI SURFACESOF INTERMETALLICCOMPOUNDS

33

The neck orbit was not detected, however, in the above mentioned dHvA measurements done by Ishizawa et al. (1977) and Arko et al. (1976). Later, branches Pi (i = 1. . . . . 6) shown in fig. 8 by open circles were detected by the torque method (Ishizawa et al. 1980) and were attributed to the necks because the angular dependence of branches Pi are consistent with the topologies of the necks. This Fermi surface of the neck is, however, thin and rather cylindrical, which is inconsistent with the short and thick neck constructed from the unobserved region of the ellipsoidal branches cti and also the results of band calculations. This puzzle was solved later by a combination of the improved ultrasonic dHvA measurements done by Suzuki et al. (1988) and the careful band calculations done by Harima et al. (1988). In fig. 9c twelve pocket Fermi surfaces calculated by Harima et al. are shown as an enlarged scale by a factor of ten. It was shown that branches p; are not due to the necks but due to the small and flat electron Fermi surfaces. The data shown as triangles in fig. 8 were obtained by the ultrasonic dHvA measurements (Suzuki et al. 1988). The complete observation of branches P3 and p5 is a clear evidence for existence of the small closed Fermi surfaces. New band calculations done by Harima et al. were made by shifting the unoccupied La 4f levels upwards by an amount of 0.10 Ry, which leads to a new band which crosses the Fermi energy very slightly. Langford et al. (1990) also confirmed existence of the pocket Fermi surface by the LMTO band calculations. The neck orbit is, however, not detected experimentally because of the rapid variation of the cross-sectional area around the extremal neck orbit, implying a large curvature factor 02S/Ok~. Similar Fermi surface topologies were obtained in CeB6 (0nuki et al. 1989a, Joss et al. 1987, 1989, Goto et al. 1988a, Suzuki et al. 1987, van Deursen et al. 1985) and PrB6 (Onuki et al. 1985b, 1989d, van Deursen et al. 1985), as shown in figs. I0 and 11, respectively. Judging from the values of branches ai for field along the (100) direction, the main Fermi surface is more spherical in CeB6 than in LaB6 and PrB6. The ratio of the maximum to minimum areas of the ellipsoidal Fermi surface is about 1.16 in CeB6, 1.24 in PrB6 and 1.27 in LAB6. We also show in fig. 12 the cross-sectional area of the small and flat Fermi surface deduced from branch pi for RB6. It is approximated as an ellipsoidal Fermi surface. The Fermi wave vectors kFi (i = x, y and z) along the three principal axes are kvx = 0.012 (2~v/a), kFy = 0.023 (2st/a) and kvz = 0.0044 (2Jr/a) in LAB6. In PrB6 two kinds of pockets Pi and pf as well as the ellipsoids a3 and a~ are found, as shown in fig. 11. The cross-sectional areas ofpi and pf are 118 and 28 times larger than in LAB6, respectively. The existence of two kinds of Fermi surfaces in PrB6 is explained by an exchange splitting of the up and down spin states of the conduction electrons as shown in fig. 5. This is due to a change of the antiferromagnetic spin structure at about 10kOe in PrB6 (Galera et al. 1992). The up and down spin states have different effective Fermi surface areas and cyclotron masses. For example, branches a3 and a~ in PrB6 have the values of 8.19x 1070e (1.95mo) and 7.25x 1070e (2.52m0) for field along the (100) direction, respectively. A similar spin splitting of the Fermi surfaces is expected in CeB6 because the antiferromagnetic state of the so-called phase III changes into that of phase II

34

¥. 0NUKI and A. HASEGAWA I

'

I

I

' --

I

CeB6

{lOO} 0~i

10 8

+4--

'

[

~

'

I

'

'

PrB8

{11o}

(i00}

! ~ ~ o {Ii0}

0~

108

L+-:~-o-~-o-+ ~

2 _~_~

~__a~j~-~-~F~-

_ .~

. . . . . .

%, O o) O

"

o

~=-~-+~-o.__~_o~ . . . . .

107

I

~

> ~'Lx -

P3~, P4

'

~P3 ~ D5

p,

106 -.e.-,a--',,~o~ ~ I

30

,

s ,

i

,

,

I

,

,

I

0 30 60

F i e l d Angle (Degrees)

~

,

/

90

Fig. 10. Angular dependence of the dHvA frequency in CeB 6, Data shown by circles, crosses, squares and triangles are cited from ()nuki et al. (1989a), van Deursen et al. (1985), Joss et al. (1987, 1989) and Suzuki et al. (1987) and Goto et al. (1988a) Goto (1992), respectively. The solid lines connecting the data are guidelines. The Greek letters designate the various orbits.

LaB6

CeB6

,

I

30

,

,

,

L

I

4

,

I

0 30 60

F i e l d Angle (Degrees)

,

,

]

90

Fig. 11. Angular dependence of the dHvA frequency in PrB~ (Onuki et al. 1985b, 1989d). The solid and dashed lines connecting the data are guidelines. The Greek letters designate the various orbits.

PrB 6

O!

p' ¢- 0.2 @rc/a~

Fig. 12. Cross-sections of the pocket-Fermi surfaces in LAB6, CeB~ and PrB 6. These electron pockets are fiat in character (()nuki et al. 1989a).

(quadrupolar ordering) at about 15 kOe. Goto (1992) confirmed that branches P6 and p~ shown in fig. 10 are due to two kinds of Fermi surfaces with different spin states. The Fermi surface of branch Pi in CeB6 accidentally possesses the same size as branch pf in PrB6.

FERMI SURFACES OF INTERMETALLIC COMPOUNDS

35

Table 5 dHvA frequencies F and cyclotron masses m~ in RB 6 compounds (Ishizawa et al. !977, 1980, Onuki et al. 1989a,d, Goto 1992) a RB 6

a3 F

a~ m~

F

y m~

F

LaB 6

7.89

0.64

3.22

CeB 6

8.67

14-21

2.19

PrB 6

8.19

1.95

7.25

a F NdB 6

9.90

2.52

2.00

F 3.44

2.43

F 1.27

p'

m~

F

0.85

0.49

0.0052

0.046

1.30 0.188

9.2 5.5

0.120

1.7-3.5

0.080

4.6

1.94

0.94 0.79

0.94 0.66

0.590

0.64

0.150

0.28

m~

F

g m~

p

F

15.5

3.27

c m~

e m~

m~

F

m~

hi

1.47

0.95

m* 1.08

F values in 107 Oe, m~ expressed in m 0.

Here, we note the occurrence of dHvA branches with frequencies of (1-2)x 107 0 e in CeB6 and (3-4)x 107 0 e in PrB6. These branches are not present in LAB6, and are probably produced by the small antiferromagnetic Brillouin zone boundaries in CeB6 and PrB6. The cyclotron masses in LaBr, CeB6 and PrB6 are summarized in table 5. All masses in CeB6 are heavily renormalized by the many-body Kondo effect compared to those of LaB 6 and PrB6. The cyclotron masses in PrB6 are also three times larger than those in LAB6, which should be attributed to the usual electron-magnon interaction. The cyclotron mass of branch a3 in CeB6 shows a striking variation as a function of magnetic field, as shown in fig. 13. Quite a different field dependence is observed in the electronic specific heat coefficient y (Mfiller et al. 1988), as shown also in fig. 13. It varies from 250mJ/K2mol in zero field to 50mJ/K2mol in 220kOe. Here, the masses shown by the solid line through the crosses in fig. 13 were estimated from the y value of CeB6 by using the relation ofmc(CeB6 ) = me(LaB6) [y(CeB6)/y(LaBr)], where mc(LaB6) = 0.6 lm0 for a3 and y (LaBr)= 2.6 mJ/K 2 tool. There exists a clear discrepancy between the results of two types of experiments. The reason for this is thought to be as follows. When one compares the Fermi surface of CeB6 to that of PrBr, one is led to believe that the observed a3-Fermi surface in CeB6 corresponds to branch a3 in PrB6. In PrB6, the mass of branch a~ is larger than that of branch a3. Therefore, it is natural to assume that branch a~ in CeB6 has also a larger mass and hence could not be observed experimentally. Therefore, the missing branch af is the main origin of the present discrepancy. We note that the field dependence of the cyclotron mass or the yvalue was discussed briefly in sect. 2. The theoretical treatment for CeB6 was done by Wasserman et al. (1989). The dHvA frequencies observed in NdB6 (Onuki et al. 1989d) are substantially different from those of LAB6, PrB6 and CeBr, as shown in fig. 14. One main reason for the discrepancy between the dHvA branches in NdB6 and in LaB 6 or PrB 6 seems to be the

36

Y. 0NUKI and A. HASEGAWA '

I

7--

I

'

I

{100} [ {110l /•

CeB6 H//

i00

10 8 • o o o o o O O O

NdB6

~OOOoo O O o o o

D .................... .; .................

a

I

o

+•+

c g phase

50

:

° ° ° g @'15° b

~

~i~6o-o-o ° d~

hs .........



i

I

f8 ............

::"35L exposures. Gimzewski et al. (1979) observe, from XPS experiments, that reaction of Sc with water at 293 K gives initially the oxide (Sc203), and above ~50L the hydroxide. However, at 80 K only hydroxide and chemisorbed water are produced, which is in contrast to the behavior of the lanthanides. But, since no experiments show the plasmon energy loss spectra (below 50 eV) the possible formation of the dihydride is not observed (see Gimzewski et al. 1977 and Gasgnier 1980). 2.9.2. Physical characteristics 2.9.2.1. Electric resistance and resistivity. From the results reported by Curzon and Singh (1979, 1981a,b) it appears that the electric resistance of RH2 films (R = Pr, Nd and Y) is complex. As a function of thickness, temperature, H2 partial pressure, and aging, the variations of resistance differ from one element to the other with a nearly similar but not systematic identical appearance. For Y thin layers, the complex variation of the electric resistance as a function of time at constant H2 pressure is shown in fig. 11. The resistivity curves, for Y, YH2 and YH3, as a function of temperature are given in fig. 12. Rahrnan Khan (1981, 1984, 1987a) has shown that the formation of the trihydride involved a rapid fall in conductivity and a negative value of the TCR. This indicates that the metallic dihydrides have become converted to semiconducting trihydrides. This transition has been also observed by Curzon and Singh (1979, 1981a,b) in the course of over hydrogenation of their samples (under H2 pressures of 2670 Pa). The increasing in resistivity for ScH2 thin films has been observed by Loboda et al. (1980) and Loboda and Protsenko (1981b). Rahman Khan (1977, 1987b) explains the variation of resistivity with temperature and thickness in terms of structural phase changes. It is observed that the temperature dependence of the resistance and TCR values indicate metallic conduction characteristics of the hydrides. The thickness dependence of resistivity of HoH2 films (7-90 rim) at 293 and 77K is given in fig. 13. Surplice and Kandasamy (1982), Kandasamy and Surplice (1981, 1982, 1985) have studied H-Sc, H E r and H-Yb systems and deduced phase boundaries from changes of film resistance with atomic ratio H/R. The slow variation of

138

M. GASGNIER 18

16

14

12

I0

8

B

Time

• rains

Fig. 11. The effect of 20 Torr of H 2 at 293 K on the electric resistance of a 180 n m Y film. At point A hydrogen is admitted to the system: an ordered phase develops and the resistance drops. At point B the hydrogen is pumped away and the resistance remains constant up to point C. (By courtesy of Prof. A.E. Cnrzon). 9O

70

...~-~"~p

n -c m

60 ~ 5O

T4° 2O iJ~l-cm 10 r

I00

,

,

,

I

150

,

,

,

,

I

,

,

,

200

i

I

250

,

,

,

,

I

300

T°K-~

Fig. 12. A plot of resistivity versus T for films containing predominantly Y (circles), YH 2 (squares) and YH 3 (triangles). (By courtesy of Prof. A.E. Curzon).

THE INTRICATE WORLD OF RARE EARTH THIN FILMS

139

200 Room

I

. . . . .

150

of

77

temperature o

K

< IO0 I--

~_

>

Vff)

-

-

~..e . . . .

"

__

Bulk

50

bJ

I00

2 0

3 0

4.00

500

THICKNESS,

600

700

800

900

.~

Fig. 13. Thickness dependence of resistivity of HoH z films (7-90nm). (By courtesy of Dr. M.S. Rahman Khan).

109

108

107.

10~-

a-_ 10~'.

I0~ 1

d7 ~ / xz/ V..~,

1o7]

100

Fig. 14. Change of resistance with atomic ratio r = H/Yb. Solid and dashed curves are for films that were hydrided slowly and quickly, respectively. (After Surplice and Kandasamy 1982.)

resistivity in RH2 indicates that most of the modifications of the conduction band occur in the mixed phase; this could be due to the R-RH2 structural transformation between the metal and the metal + dihydride phases. In the case of H-Yb system, in which the hydride is a poor conductor, the solubility limit (the position of the first phase boundary) has been estimated. Changes of resistance with atomic ratio are reported in fig. 14.

140

M. GASGNIER

2.9.2.2. Workfunction. The changes in work function in the course of hydrogenation have been determined for Sc and Er thin films by Miiller and Surplice (1977) and Kandasamy and Surplice (1985). As for the electric resistance they correlate the variations with changes of phase in the R/H system. In a general manner, first, small doses of H2 reduce the work function to about 0.!0 eV below the value for the clean metal; second, larger doses increase it to about 0.20 eV above this value; and third, further doses quickly raise the work function to a maximum of about 0.55 eV above the one of the clean metal. The results relative to the metallic phase can be interpreted as changes of surface potential; but for the other phases they depend on changes of the Fermi level of the H/R system as well as on the surface potential. Moreover these results are compared to those obtained for other metal hydrides (La, Ta, Ti, U, Pd, Nb and Zr). Similar observations have been reported by Eley and Needham (1984) for Gd films. 2.9.2.3. Surface magnetization. Cerri et al. (1983) have studied the spin-polarized emission of clean and hydrided (submonolayer coverages) polycrystalline Gd thin films. At 20 K, hydrogen coverage (chemisorption) drastically reduces the spin polarization from 70% (clean surface) to 45% (N0.5L H2) and 30% (~I.0L H2). With increasing temperature the polarization decreases linearly, up to 130K, then rises to a maximum near 200K, and finally decreases again. Extrapolation of the linear part of the curves shows that chemisorbed hydrogen strongly reduces the ordering temperature and induces a canted or disordered spin structure at the Gd surface. This experiment is a sensitive monitor of hydrogen contamination. 2.10. Rare earth deuteride and tritide 2.10.1. Bulk materials 2.10.1.1. Introduction. As a short introduction, one must emphasize the latest results of Adachi et a1.(1992) who report the possibility of "cold fusion" using the system D2LaNis. This has been deduced from analysis of H2 in gases resulting from D2 absorption with an LaNi5 ingot at 100-300 K under a pressure of ~5x 105 Pa. Such an assertion calls for new experiments and will certainly be the subject of new polemics. 2.10.1.2. Gettering. Maienschein (1978) has reported that cerium is one of the best chemical getters which can be used to scavenge tritium from inert gases. Indeed, this metal, as well as Sc, Y and Er, has low dissociation pressures for temperatures between 298 and 523 K. Maienschein assumes that dissociation of the tritium molecule to two tritium atoms and diffusion of tritium atoms through the solid tritide (due to the flaking and spalling effects of the material during tritiding) are both rapid. As cerium hydrides are stable and exhibit plateau regions, it is also assumed that the gas-phase mass transfer is the controlling step in the gettering process. Hubberstey et al. (1976) have used yttrium sponge as a getter for hydrogen isotope removal from liquid lithium. The rate of gettering is remarkably rapid at 673K. Hydrogen isotope concentration in Li can be reduced from 1.00 to less than 0.05 tool%

THE INTRICATE WORLD OF RARE EARTH THIN FILMS

141

x (x = H or D). Such a result should be extrapolated to lithium-tritide solutions. In the same way Buxbaum (1982) have used yttrium for the separation of tritium from the liquid lithium breeder-blanket of a fusion reactor. 2.10.2. Thinfilms 2.10.2.1. Scandium and yttrium. Malinowski (1981)has shown, from AES spectra, that the so-called LMV peak of Sc might be a useful indicator of film deuterium content. Indeed, he reports a linear dependence of the Sc LMV peak height on the deuterium content of the film (100nm thick). This is observed as a function of the fractional decomposition of the film such as S c D 2 ----r ScD0.5 --+ Scmetal

(at 673

K).

One must notice that films were contaminated by C and O (from evaporator), and S (from Mo substrates). Cowgill (1979) has studied dynamic deuteron implant effects (at 40keV) using Sc targets (previous experiments gave results at 200keV, see Cowgill (1977)). The experimental system is useful for studying D2 retention and mobility in materials under deuteron bombardment. Isotopic hydrogen exchange has been observed dynamically at 413 K. It is also shown that oxygen implants deplete the target of D2 within the implant range due to the formation of ScaO3. Cowgill (1981) has used the same technique for measuring D2 diffusion in films. He notices that no significantly different behavior is observed for films of different thicknesses (0.5-5.5 ~tm), the diffusion being identical to the one observed in bulk samples. Singleton and Yannopoulos (1975) have used Sc and Y films (500-1200 nm thick) for fabrication of radioactive electron emitters (tritriated electron sources). The stability of the sources in flow gas streams increases from Ti to Y to Sc. Once again, it is shown that the surface contamination has a profound influence on both the loading and loss of tritium in the films. Bacon et al. (1984) have manufactured SoD2 and ScDT thin film targets (10-50gm) for neutron protection inside an intense neutron source for use in cancer therapy. The films must not be heated at temperatures over 723 K to maintain their chemical stability. 2.10.2.2. Erbium. Thin ErD2 or ErT2 films are used for neutron generator targets (or tubes), for high-intensity rotating target neutron sources, for radiotherapy, and for highintensity neutron sources for cancer research. Provo (1979) has studied the hydriding process for the following system: Er (400600nm thiek)/Cr (100-500nm thick)/Cu (substrate). He determines that to achieve an E r D 2 / T 2 occhider film gas-to-metal atomic ratio of 1.7, a minimum of 150nm of Cr underlay is required for an in situ hydriding process, whereas such a minimum is 300 nm for an air-exposed hydriding process. The formation of oxides at each interface and the interfacial metal loss (diffusion) at the Er/Cr edge can limit the optimum hydriding process. Another characteristic of ErT2 films has been studied by Mitchell and Patrick

142

M. GASGNIER

(1981) and Mitchell and Provo (1985). They report the temperature dependence and irregularities of helium release rates from EfT2 films. Some fragmented results had been reported previously by Beavis (1980), Beavis and Kass (1977) and Kass (1977). Mitchell and Patrick (1981) give details on He release fraction as a function of aging and of temperature. The samples are aged over very long periods (70-2587 days), either maintained at different temperatures (from 77 to 500K) or sometimes annealed in the course of aging. The main results indicate first that large changes in He release rates follow immediately upon temperature changes and second that the accelerated release process is reversible. Then, Mitchell and Provo (1985) observe that nonuniformity of the release is greatest for samples undergoing the transition into accelerated release, which occurs when the oecluders (EFT2 films, 0.5-2 ~tm thick) approach the maximum quantities of helium that they can retain. It is concluded that the variability in He release rates might be due to a bursting activity: 3He is released in bursts of at least 109 atoms; this release is also stimulated by vibrating or flexing the film substrates. Holloway et al. (1978) and Antepenko and Holloway (1980) have studied the degradation of ErD2 and ErT3 films, ranging in areal density from 0.012 to 0.534 mg/cm2, and deposited by e-beam onto Mo substrates. It is shown that the total unavailable metal for the nonannealed films, if converted to total oxide, would be 11.5 nm. For in situ hydrided films this thickness does not excess 5 nm. It has been also determined that 0.01 mg/cm2 of Er is not hydrided for films that were e-beam deposited and in situ hydrided. Lastly samples subjected to vacuum annealing at 773 K (1 h) exhibit a total nonhydrided metal quantity of ~0.02 mg/cm2, therefore a total surface oxide level of 16.5 nm. 2.11. Formation o f the rare earth nitrides

The formation of pure rare earth nitrides is often difficult to carried out, because the presence of oxygen can lead to the formation of oxynitrides. However under certain experimental conditions it is possible to form pure nitrides. One of these procedures consists of carrying out the interaction of nitrogen with continuously renewed films of rare earth metals as reported by Varkanova and Nazarov (1977), Varkanova and Morozova (1981), Varkanova (1982) and Varkanova et al. (1982). These studies have been done for Sc, Y, Sm, Gd, Er and Yb metals. The absorption of nitrogen has been investigated as a function either of the rate of condensation of the metals, or of the temperature (between 298 and 473 K), and/or of the nitrogen pressure (between 10-6 and 5x 10-4pa). The most important study is relative to the sticking coefficient of nitrogen against the various parameters above-mentioned. In a general manner, the functions obey linear, increasing or decreasing, laws. Two kinds of composition have been observed. For scandium in the gas-excess regions it forms a singlephase nitride system (ScN0.9, fec with a = 0.453 rim). In the metal-excess region there is a mixture of two phases: one relative to the metal and the other to the nitride. Varkanova (1982) has also established, as a first approximation, that the changes in the sticking coefficient are due to the heat of sublimation of the metal: higher heat of sublimation

THE INTRICATE WORLD OF RARE EARTH THIN FILMS

143

leads to higher sticking. The nitrogen absorption of rare earths is always compared to that of titanium which seems to be similar. Another technique has been carried out by Ma et al. (1987): thin films (150nm thick) are deposited onto Si or NaC1 substrates, and then irradiated at high dose with nitrogen ions (2-5×1017N+cm-2). In the case of gadolinium there is, at lower doses (2 × 1017N+cm-2), formation of a compound of which the crystallographic parameters do not exactly correspond to the lattice standard value of GdN due, probably, to a deficiency in nitrogen content. In the same way, XRD indicates that the gadolinium lattice is also not correct. This is possibly due to a metastable structure of gadolinium supersaturated with nitrogen. At higher doses the GdN compound becomes predominant and the interplanar spacings are close to the standard values. However, one must remark that the correct XRD interplanar spacings show clearly that the "so-called" Gd (110) line (with a low intensity) with a spacing value of 0.187 um is in fact the (220) line of GdH2. In this way the formation of a new metastable compound seems less probable. The presence of hydrogen throughout the starting material is once again not surprising (the authors do not give their vacuum evaporation parameters). 2.12. Reaetioity with CO, C02 and CnHn gases 2.12.1. Rare earth~CO and CnHn interactions In an earlier chapter of this Handbook series, Netzer and Bertel (1982) have reviewed work carried out in order to study the reaction of rare earth metal surface with carbon monoxide. Affrossman (1981) has studied the reactions of CO with clean scandium film. He reports, from XPS experiments, that this metal dissociates CO to form a carbide and sorbed oxygen. The behavior of scandium shows strong similarities with that of tungsten. In the same way methanol and ethanol dissociate to leave oxygen preferentially at the Sc surface at low exposures and to form carbides at higher doses. In this case, there is formation o f a "~-CO" type layer. Cern~ and Pientka (1987) and Cern~, and Smutek (1990) for thin Dy films (150 nm) report, from calorimetric experiments (heat measurements), that CO dissociates on the metal surface (see also Surplice and Brearley 1978). This is followed by rapid penetration of the oxygen atoms (formation of the oxide), while the carbon atoms remain on the surface and cause a gradual blocking. They do not observe the formation of carbides. Moreover, it is determined that the rate of heat production is fairly high, but lower than with hydrogen at the same H/Dy ratios (Boeva et al. 1986). From mass spectrometry studies Curzon (1984) reports that the reduction of CO, inside the vacuum chamber, leads to the formation of CH4 (and consequently of CH3, CH2 and CH). The results indicate that the CH4 (and also H2) arises from the reduction of the CO (and also H20, which reacts with CO). That is another way to explain the formation of hydrides with rare earth thin films. The adsorption of C3H6, C2H2 and CH4 on clean polyerystalline Dy films at 295K has been studied by Cern~ and Smutek (1990). The experiments suggest that at low doses, the gases are completely dissociated into C and H atoms. The bonding of these atoms to Dy is assumed to be equivalent to that which

144

M. GASGNIER

occurs in chemisorption of CO. That leads to a surface-blocking effect of the formed species, and Dy films possess a higher chemisorption capacity for C2H2 than for C3H6. 2.12.2. Lanthanide/C02 reactions Little research has been carried out to study lanthanide/CO2 reactions (see Netzer and Bertel 1982). Mehrhoff (1980) has studied the gettering of CO2 by erbium thin films deposited onto Mo substrate discs heated at about 700 K. The reaction begins near 570 K in an abrupt manner (no reaction is detected with Mo). Mehrhoff (1980) also reports isothermal measurements, ratios of CO2 pumped by the films at various temperatures (from 890 to 1185 K), sticking coefficients versus exposure to CO2, and monolayers of CO2 absorbed as a function of the temperature. It is also shown that there is formation of CO near 770 K, that could be due to the interaction of CO2 and erbium metal. Arakawa et al. (1988) have reported the dissociation of CO2 on some rare earth (Pr, Nd, Sm, Dy and Er) films (1 ~tm thick). The oxidation of the metal is investigated by measurement of the resistivity of the films. Under CO2 atmosphere the resistivity increases strongly: for Dy, at 603 K, it is 14 times that at 298 K. Above 823 K the films have insulating properties due to the metal --+ sesquioxide transformation. For praseodymium the resistivity behaviour is fully different, which is possibly due to the formation of a non-stoichiometric oxide.

3. Metallic R-alloys Metallic R-alloys are now being studied increasingly in order to obtain numerous manufactured products. However, as for pure metallic thin films, the cross-shaped problem is the contamination by atmospheric gases. This is a dramatic feature, not always pointed out by numerous research groups, and it can be on the contrary a benefit in the case of hydrogen storage materials like RNi5 or RCos. 3.1. Permanent magnets 3.1.1. Introduction Numerous papers have been published on these permanent magnet materials; we cannot list all of them in this chapter (see Burzo and Kirchmayr 1989 and Gasgnier 1991 for example). A publication of the Gorham Advanced Materials Institute (May 10, 1991) showed that the global permanent magnet market was clearly influenced by the increasing NdFeB sales ($2.7 billion or 12.652 metric tons, therefore 17% of the market), and by the continued penetration of RCo alloys (11% of the market). One of the most important problems relative to the synthesis of these materials remains the formation of new phases and structural inhomogeneities inside the matrices. From XRD after heat treatment at 740K of NdFeB melt-spun ribbons, Strzeszewski et al. (1990) have pointed out four phases: Nd, Nd203, and two (Nd, Fe)O iron-rich phases (with tetragonal and hexagonal structures, 70 at.% and 85 at.% Fe, respectively). TEM imaging showed that such phases were present as spherical groins. As different kinds of

THE INTRICATEWORLDOF RAREEARTHTHINFILMS

145

phases can be formed, it follows that the magnetic properties can be different from one sample to the other. The aim of this section is to report the new experiments and results obtained since about 1987. 3.1.2. [R(Pr, Nd),R' (Dy)]xFeyBz alloys In a previous paper (Gasgnier 1991) we have shown that, since 1984, the research and development on these materials was growing more and more. Thus, there are a lot of recent papers which give details on new experimental methods and unusual synthesis treatments.

3.1.2.1. Magnetic properties. 3.1.2.1.1. Thick and thin films. Sputtering deposition methods of R-TM permanent magnet films (SmCos, Sm2(Co, Fe, Zr)17, Sm-Yi-Fe and Nd2Fel4B) which exhibit high intrinsic coercive forces, large remanent moment values, and special anisotropies have been studied by Cadieu (1988). In the case of thick crystallized Nd2FeI4B films (thickness 0.8-3.2 ~xm), Cadieu claims that, as a function of the sputtering rates, it is possible to synthetize in-plane or perpendicular easy direction of magnetization. So, at deposition rates 1256kAm-1). The sputtered and annealed (up to 823K) films are magnetically soft with a low coercivity (l.5nm/s exhibit a columnar structure with voids between the columns. The latter possess an effective vertical anisotropy. It is concluded that grain size and orientation are the most important factors determining the coercivity. Other parameters are the degree of isolation between grains and the density of faults which increases with the sputtering rate. For the thinnest amorphous films (100nm) deposited by triode sputtering onto substrates maintained at 293 and 77K, and then annealed upto 773 K, Alameda et al. (1990) show that the in-plane magnetic (induced) anisotropy, measured at the glass-film interface, increases at low temperature and falls to low values after annealing. The same

146

M. GASGNIER

result is valid for Ku. The authors give a clear correlation between the behaviors of these macroscopic and microscopic anisotropies (i.e. the product of the magnitude of local anisotropy and the volume where the principal axes of these anisotropies are correlated). 3.1.2.1.2. Multilayers and modulated films. Aylesworth et al. (1988, 1989) report the properties of Nd17(Fe0.9Co0.1)76B7/Fe or Ag sputtered multilayer specimens deposited onto mica or tantalum substrates at different temperatures (between 293 and 993 K). The individual layer thicknesses are 10-50urn for the alloy and 0.5-20 nm for the Fe or Ag, the total thickness being 1 ~tm. After annealing at 873 K, XRD reveals first the formation of the Nd2Fe17 and AgNd alloys, and second the presence of a contaminant labelled as "NdO" with a fcc structrue (a0 ~ 0.510 nm). One must point out that this compound does not exist. Moreover, although the measured interplanar spacings (0.288 and 0.250urn for the two first diffraction lines) are consistent with a fee lattice (dm/d2oo = 1.15), they have been indexed as a bcc structure, i.e., according to the (110) and (200) planes (dllo/d2oo = 1.415). In fact, the value of the fcc lattice parameter corresponds to that of NdNxOy which is formed after moderate annealing of R thin films (Gasgnier et al. 1976). This compound cannot be confused with NdH2, NdN, or C- and A-Nd203. The authors observe that the "NdO" contaminant diminishes in amount when the mica substrate is covered by an Fe layer (50nm) and disappears completely if a Ta substrate is used. However, in the case of (ProrNd)2Fe14B/Ta cosputtered multilayers this contaminant coexists with the Nd2Fe14B and Fe2Ta alloys (Aylesworth et al. 1991). But, in the case of Pr2Fe14B/Pr or Ta multilayers this contaminant is not observed (Aylesworth et al. 1990, 1991). Multilayers which are contaminated have larger coercivity, lower magnetization and are more randomly aligned than clean films prepared under similar conditions. The grain orientations and the anisotropies strongly depend on the substrate material and the insitu applied magnetic field. So, non-multilayer samples deposited onto mica tend to have larger Ku than similar films deposited onto Ta. Moreover a magnetic field (104 kA m -1) applied parallel to the film plane during Nd2(FeCo)14B formation, produced films with in-plane anisotropy. For these samples, after annealing between 723 and 873 K, He can reach values as 800kAm -I at 293 K. Variations of Hc versus maximum applied field (NdFeB/Fe samples), temperature (PrFeB/Pr samples) and nominal Ta thickness ((Pr or Nd)FeB/Ta samples) are shown in figs. 15, 16 and 17, respectively. Martinez et al. (1988a,b) have investigated Nda6Fe68B6 or Nd12FesoB6/Fe92B8 compositionally modulated films with a modulation length varying between 0.34 to 5.47 um for the Nd-rich alloy, and a thicker Fe-rich layer (200 urn). At helium temperature and as a function of the applied magnetic fields (perpendicular or parallel to the substrate), the magnetization increases as these fields increase. From hysteresis loops it is shown that the spin-wave modes (collective excitations) depend on both the thickness and the modulation of the multilayers (geometry of the samples). The perpendicular magnetization values decrease as the modulation lengths increase. This phenomenon may be attributed to the increase of the number of paramagnetic Fe atoms, as deduced from Mtssbauer spectra which show an increase of the paramagnetic doublet contribution with increasing modulation length. From these spectra it is shown that both the hyperfine fields and the easy magnetization magnitude are not correlated.

THE INTRICATE WORLD OF RARE EARTH THIN FILMS I

1

i

147

I

perpendicular

T=2OOK X

~fl~

I ~ 1 1 1 ~

8 °

C3 c£ Fig. 15. Coercivity versus maximarn applied field at T=200K for a NdFeB (20nm)/Fe(0.5nm) sample. The result indicates that magnetization reversal in the easy direction is controlled by a domain-wall pinning mechanism. (By courtesy of Dr. D. Sellmyer,Behlen Lab. of Physics, Univ. Nebraska, Lincoln, NB, USA).

:£o

210

O tO

'

410 Hma× ( k O e )

I

'

610

810

18

1

NFB(200A):Ta(XA) 'random~ /

-$O 9 -rO

(U C)

NFB(200A):Ta(XA) 'aligned'

PFB(200A):Ta(XA)

3~

•--

zoo ~: 40 ~,

+-A--

200

x

0

--

~: l o

iO0 $,: I0 I

",,,%,.',,, \",~

~ A

Temperature

,,IJ~,,I,~,,l,~l,,,~l,~,,lJ,,,

0

lam

100

0

200

300

(K)

5

10 15 20 25 30 35 X

Fig, 17. Coercivity versus nominal Ta thickness with the field applied perpendicular to the film for "aligned" PrFeB (20nm)/Fe (xnm) and "aligned" and "randomized" NdFeB (20nm)/Ta (xnm) films (By courtesy of Dr. D. Sellmyer).

Fig. 16. Summary of coercivity versus temperature data with the field applied perpendicular to PrFeB film plane. (By courtesy of Dr. D. Sellmyer).

3.1.2.1.3. Magnetic domains. In a general manner magnetic domains are observed either by means o f Lorentz electron microscopy investigations (thin specimens) or by decorative methods (thick samples). In the first case, Bras et al. (1988a,b, 1990) have improved the suitable conditions to investigate magnetic domain nucleation, domain wall motion, domain size and wall energy in highly uniaxial magnetocrystalline anisotropy materials. This technique is available by using the magnetic field o f the standard objective lens

148

M. GASGNIER

which induces magnetic structure variations and by optimizing the grain orientation (i.e., a small angle between the anisotropy axis and the normal to the foil). The "optimal orientation" is obtained by means of a rotating specimen holder. This allows separate study of small grains and their interactions. In the case of a thinned Nd2Fe14B ribbon the authors have determined from the unusual Foucault mode images the wall width, the diameter of bubbles near stripe domains (70-100nm) and their stability, the global grain magnetization which permits one to deduce that the reversal domain nucleation arises under the influence of a demagnetizing field, and the neighbouring grain influence (abrupt change in the grain magnetization). Examples of strip domains obtained by 200 kV Foucault images are shown in figure 18. In another set of experiments Griitter et al. (1988, 1990a,b) have used magnetic force microscopy (Heinzelmann et al. 1987) to study Nda4FeglB5 materials having optimum magnetic properties. This allows them to observe magnetic domains in air, and to achieve a high lateral magnetic resolution ( AI foil > Cu foil > Cu > A1 > glass. Such an order appears to be due to the difference of the thermal expansivity at the film-substrate interface. 3.4.1.2. Electric resistivity. The effect of H2 absorption on the electric resistivity of LaNi5 films has been studied by Adachi et al. (1981, 1982, 1985a,b) and Sakaguchi et al. (1985b,e). The films (0.3-1.8 ~tm thick) prepared by evaporation of the powder placed on a tungsten filament and deposited onto quartz plate, are amorphous. As a function of temperature, thickness, and H2 pressure, the variation of the resistivity with the time of H2 absorption-desorption cycles presents an initial increase and a sharp decrease during H2 absorption. Figures 22a--c show the variations of the electric resistance as a function of the time of application of 1-12pressure. The resistivity decreases as the number of cycles is increased; increases as the temperature is raised to 363 K; and saturates at a H2 pressure of 1.2× 106 Pa. However, Adaehi et al. (1985a) noticed that the low 1-12 uptake for the

6.5

..%

uE9£

t

~8.C

,~ 6.0

6 5.5i

0 a

30 Time/rain

60

b

30 Time/min

3b Time/rnin

6b

60

Fig. 22. Variation of the resistivity versus time during activation (first and second cycles at 313 K, others at 363 K; hydrogen pressure 2.5×106 Pa): (a) thick LaNi 5 film (0.63 btm); (b) thin LaNi 5 film (0.20 p.m); (e) very thin LaNi 5 film (0.038 btm). (By courtesy of Prof. G.Y. Adachi, Dept. Applied Chemistry, Fac. Engineering, Osaka Univ., Osaka, Japan).

THE INTRICATEWORLDOF RAREEARTHTHIN FILMS

17i

films in comparison with that for the bulk, is due to the amorphous character and to the presence of a surface oxide such as Ni-free La203 which is a passivation layer for H2 absorption. For thinner films (50-150 nm) Ramakrisna and Srivastava (1987) claim that the dependence of resistivity on hydrogenation time is originates solely from the surface characteristics of the films. The resistivity, for aged layers, drops rapidly after exposure to air. Such a phenomenon is explained to be due to the formation ofa La203-free Ni surface layer. S.K. Singh et al. (1985) observe a curious variation of the electric resistivity which decreases to nearly zero during the early exposure on hydrogenation and then increases and reaches a saturation value. Larsen et al. (1981) report measurements of resistance as a function of H2 pressure. 3.4.1.3. Hydrogen separation and permeation. Adachi et al. (1984) have investigated the property of flash-evaporated LaNi5 films for the separation of hydrogen. This material is less expensive than thin palladium films. The LaNi5 film (10 gm thick) is deposited onto a stainless steel disc which is inserted into a special apparatus, where Hz-Ar and H2-N2 gas mixtures are blown. It is observed that above 333 K hydrogen does not permeate the films. For Hz-C3Hs, Hz-CH4, Hz-N2 and Hz-Ar gas mixtures, Sakaguchi et al. (1986b) have studied hydrogen separation in the case of stainless steel discs/Ni or A1 films/LaNi5 flash-evaporated films. The results are discussed first in terms of microcracks formed during H2 absorption, second as a function of the film thickness, and third according to the nature of the intermediate metallic layer. In particular it is observed that A1 allows the highest value of H2 concentration. Sakaguchi and Adachi (1990) have studied the influence of CO on the hydrogenation of amorphous LaNi5 films and on hydrogen separation. The H2-CO gas separation is performed by using films deposited onto Nicoated polyimide membranes. In the case of multilayer Ni (1.4 gm)/LaNi5 (0.1 gin) films the H2 permeability (penetration rate) is greater than that for Ni films up to 373 K. Moreover, LaNi5 films are found to have excellent resistance to harmful CO in comparison with the crystalline bulk material (H2 is concentrated to more than 98 tool% in the permeated gas). Another interesting experiment has been reported for Hz-D2 gas mixtures by Sakaguehi et al. (1989b). The rf magnetron sputtered LaNi5 films are deposited onto teflon and polyimide membranes. Isotope separation is mainly influenced by the difference in solubility of H2 and Dz atoms in metals, the difference in diffusivity in metals, and the polymer's own isotope effects. LaNi5 films have a permeability coefficient about twice as large as that of Ni films, and less than one-thousandth that of Pd films. Previously, Adaehi et al. (1986, 1987), in the ease of amorphous WO3/Metal/LaNi5 sandwich-type films, have studied the hydrogen permeability for various metals. The amorphous WO3 films, which have electrochromic properties, become blue only under the area covered by the LaNi5 layer when H2 is introduced into the system. The authors conclude on the following order for hydrogen permeability: LaNis, Pt, Pd > Fe > Ni, Co, Ti > Mn > Cu > Mg, Cr > A1 > Au, Ag, Zn.

172

M. GASGNIER

In the same way, Shirai et al. (1990) have studied the H2 penetration into amorphous V205 films. For a LaNis/VzOs/WO3 multilayer system, the diffusivity at the VzOs/WO3 interface seems to be much smaller than that at the Cu/WO3 interface. 3.4.2. Other RNis alloys Other studies report that MmNi4.sMn0.5 films (Mm--mischmetal, generally as a (La, Pr, Ce, Nd) mixture) have resistivities almost identical to that of LaNi5 films. However, the former are more easily oxidized (Adachi et al. 1982). S.K. Singh et al. (1985) prepared RNi5 films (R = Sm, Gd, Ho, Mm and Mm cerium free) by thermal vapor deposition; these are initially amorphous, and then crystallize on annealing. S.K. Singh et al. (1985) conclude that the amorphous state absorbs the hydrogen more easily. 3.4.3. RCos alloy (R = La, Sin) Sakaguchi et al. (1985a, 1987) have studied the effects of hydrogen absorption on the electric resistivity of LaCo5 films deposited as LaNi5 layers (Adachi et al. 1985a). The resistivity behavior of LaCo5 specimens during H2 absorption-desorption cycles resembles that for the LaNi5 films. However, LaCo5 films absorb less 1-12.But the amount of absorbed H2 increases with increasing film thickness. The pressure-composition isotherms indicate a monotonous increase with increasing pressure, while a plateau pressure is absent. For SmCo5 films Sakaguehi et al. (1985a,b) report that, as a function of thickness, the resistivity varies differently depending on the 1-12absorption-desorption cycles. Hydrogen molecules are absorbed on the surface and then dissociate into atoms. The dissolved H2 anions diffuse into the films and then react with Sin, giving a highly conductive hydride which lowers resistivity. It is asserted that the H2 concentration in SmCo5 is of an order of magnitude 5 times smaller than that of LaNi5 films (in the bulk the ratio is close to 3/7). 3.4.4. Remark R(Ni, Co)5 thin and thick films are available as materials for hydrogen storage. The different authors referred to throughout sect. 3.4 report the possibility of a lot of applications. However, to our knowledge, no patent has been taken out during the last decade. This should be explained from the fact that these materials do not present the perfect characteristics of stability during aging, annealing, H2 absorption-desorption cycling, etc. The formation of compounds such as RH2, R203, ... seem to attest this explanation. 3.5. Polytypic structures Verma and Krishna (1966) have reported the main properties of polytypic materials. Different notations have been used to describe the stacking sequence of successive packed layers in the hexagonal unit cell. This has been chosen as the basic lattice because it

THE INTRICATEWORLD OF RARE EARTH THIN FILMS

173

includes at one and at the same time the cubic (C), rhombohedral (R) and hexagonal (H) structures. The different structures are characterized by the following law relative to the lattice parameters: a = constant, c = n x h (n = number of block layers, h = spacing between two layers).

3.5.1. Ferromagnetic samarium-nickel alloys Polytypic and intergrowth properties of SmxNiy alloys have been studied by S. Takeda et al. (1982, 1983), S. Takeda (1983), Horikoshi et al. (1985) and Komura (1989). This system appears somewhat complex. So, the following intermetallic compounds have been observed: 3C; SmNi2: SmNi3:

3R;

Sm2NiT:

2H, 3R, 4H, 5T (trigonal) 9R and 12R"

2H, 3R, 4H, 5T, 6T, 7T, 9R, 12R, 15R and 18R. SmsNi19: A model of stacking sequences is shown in fig. 23. HREM studies show, first, that such structures can coexist inside thin crystals electrolytically polished, and second, that anomalous intergrowths can occur. For instance, in the first case small "blocks" of Sm2Ni7 can grow in the matrix of SmsNi19, and in the second case small "blocks" of Sm7Ni29 and SmNi4 can grow in the same matrix. Such intergrowths can be caused by a small amount of concentration fluctuation in one part of the specimen. Moreover, such crystals are characterized by various complicated defect structures: non-periodic stacking sequences and stacking faults of the block layers. The oT

OSrn

• T .,I-T

)°0~ °°

X X

~o0~o

~ ~

oo c

~ X )oo0

A X

oo

c

')-I°-°~ B"

Oo

A

A

/

)°°0 Y

V I

)~°~v

y

X

X

x

_G I

a

b

x

x

x

c

d

e

f

Fig. 23. Projections onto (1;20) plane along [010] direction of (a) SmTm2, (b) 3R polytype of SmzTm7, (c) 2H polytype of Sm2TmT,(d) 3R polytype of SmsTm19, (e) 2H polytype of SmsTmj9, and (f) SrnTm5. (By courtesy of Prof. S. Takeda, College of General Education, Osaka Univ., Osaka, Japan).

174

M. GASGNIER

presence of intergrowth phases and of defects could affect the physical properties of these materials, but apparently the above-mentioned authors have not resolved this problem up to now. So, the problem of layer sequences, intergrowths, syntaxies, . . . , becomes very complex because a great number of compounds can be formed but also each of them can be characterized by a wide range of crystalline structures (ten at least, in the case of SmsNi19). 3.5.2. Samarium-cobalt alloys The approach of using crystallographic polytypic structures was been reported first by Cromer and Larson (1959) and later on by Parth6 and Moreau (1977) who have discussed the problem in terms of stacking-blocks of various rare earth alloys. C.W. Allen et al. (1974a,b, 1977); Melton and Perkins (1976), Melton and Nagel (1977) and Fidler and Skalicky (1978, 1981) have investigated by electron microscopy the polytypic stacking faults and defect structures in R2Co17 and SmCo5 materials. C.W. Allen et al. (1974a) have reported the first atomic arrangements for six structural modifications (2H, 1R, 4H, 5H, 6H1 and 61-12) of R2Coa7. They correlate such structures, by the way of R sites, to magnetic properties. For example they conclude that an intrinsic fault in the 1R structure could provide a source for domain-wall nucleation. The authors illustrate the various stacking sequences for different stacking faults in 2H and 1R R2Col7 alloys. More detailed results have been given by Komura et al. (1981), S. Takeda (1983), and Sahashi et al. (1983). The studies were carried out on thinned materials by electron microscopy (TEM, EDP and HREM). This has allowed them to observe the classical structures as: SmCo3-3R, Sm2CoT-2H and 3R and SmsCo19-2H and 3R; and to find new long-period structures such as Sm2Co7-4H and 15R and SmsCo19-18R types. The lattice parameters for the 15R and 18R structures are respectively: 15R: Sm2Co7: a=0.50nm and c= 19.50nm, i.e., 15×l.3nm 18R: S m 5 C o 1 9 : a=0.50nm and c=31.00nm, i.e., ~18× 1.72nm (1.30 and 1.72nm being, respectively, the values of the c parameters of the 2H basic structure for each alloy). HREM imaging permits one to observe stacking faults inside the stacking sequences. This also allows one to build these sequences, recognize the different polytypic structures, and determine the possible stacking sequences. Thus, the 18R polytype relative to the Sm5Co19 alloy can be depicted according to three different sequences. An interesting conclusion comes from the experiments by S. Takeda (1983). He notices that, for electrolytically polished specimens, the axial ratios co/ao obtained from EDP are about 6-8% greater than those obtained by the X-ray method. Such a discrepancy was not observed in the case of crushed specimens. The author concludes that possibly a chemical reaction of inclusions occurred in the course of polishing. Other studies have dealt with the eutectic decomposition of these alloys. Linetski and Salo (1989) report, from X-ray investigations, that thick (20-200~tm) sputtered amorphous layers, as SmxCoy (18-34% Sm), can form a great number of alloys: Sm2C017, Sm2C024, Sm2C026, SmC05, SmC07, SmCo8, SmCo8.5, SmCo9, SmCo9.5, SmC012, SmC013 and other unidentified phases. The results are discussed on the basis of

THE INTRICATEWORLD OF RARE EARTHTHIN FILMS

175

the equilibrium diagram. It is concluded that the formation of a wide range of continuous metastable solid solutions on crystallization from the amorphous state is probably due to the similarity of the free energies and related crystal structures of the SmC05 and Sm2Co17 phases. Such observations seem to be a general phenomenon as reported by Gasgnier (1982) for other binary amorphous R-TM alloys. The amorphous system can be also taken as thermodynamically far from equilibrium and the amorphous ~ crystalline transition and the reerystallization which follow as the temperature increases, are often very complex. Moreover one cannot exclude the important role of impurities (overall oxygen) which can act as catalysts. Pan et al. (1989) have studied polished and ion-beam thinned SmCo5 platelets between 673 and 1023 K. They observed first, the formation of Sm2Co17 precipitates (as homogeneous centers formed at 693 K) and second, the eutectic decomposition below 1023 K (formation of Sm2Co7 and Sm2Co17 phases). It is noticed that at 1023 K the coercivity degraded abruptly, but it can be restored after annealing at 1123-1273 K. Such a phenomenon has been attributed to the various microstructure changes as a function of the temperature. Shen and Laughlin (1990) have prepared near stoichiometric (Sm0.75Pr0.25)sCo19 materials. TEM studies were carried out after ion-milling of the specimens. Thermomagnetic analysis indicates that this alloy consists mainly of the 5:19 phase (>85%), 2:7 phase and 1:5 phase (10nm)

THE INTRICATEWORLDOF RAREEARTHTHINFILMS

179

which contains about 80 at.% Ce ions. These Ce ions are in their trivalent state. After exposure to oxygen Ce 4+ ions are formed and the copper film is not oxidized. 3.6.1.2.3. Cu-Dy, Cu-Ho, Cu-Er. The crystallization behavior in amorphous vacuumdeposited Cu-Dy, Cu-Ho and Cu-Er films has been investigated by Shikhmanter et al. (1982, 1983a) and Venkert et al. (1987). Either Dy(or Er)0.a0Cu0.60 films or (Cu/Ho)n (45 at.% Ho) multilayers have been studied. The nucleation and crystallization processes are determined by TEM and EDP. As expected from the R-Cu phase diagram (Franceschi 1982), the DyCu and ErCu alloys (CsCl-type structure) are formed at about 430K. Kinetics of crystallization and nucleation sites are discussed and analyzed with simple models. The presence of the R203 compound has been observed in all cases. For (Cu/Ho)n samples it is reported that the initially crystallized films (160 nm thick) become nearly amorphous after heating at 373 K, and become crystalline again at 533 K due to the formation of HoCu2 and Ho203. The mixing process and the depth profiling have been analyzed by XPS, UPS and AES measurements. It is observed that, first, the topmost layer formed is Ho203, which is induced by surface segregation of Ho, and second, the interfaces are not sharp due to interdiffusion between the two metals. 3.6.1.2.4. Yb/Cu. Y.S. Huang and Murgai (1989) report that Yb/Cu films annealed up to 873 K form the YbCu2 alloy. In the course of this reaction the ytterbium valence changes from 3 to 2.2. It is asserted that the YbCu2 alloy is characterized by a homogeneous mixed valence state. The results are discussed in terms of the number of f holes and 4ff contributions to the photoemission spectra.

3.6.1.3. R-Cu samples as precursors for synthesis catalysts. Nix and coworkers (Nix and Lambert 1987, Nix et al. 1988a, 1989a) and Jaffey et al. (1989) have shown that at 3001100K pure Nd and Sm overlayers on Cu (100) and Cu (11 l) substrates transform to Nd(Sm)Cu and Nd(Sm)Cu5 intermetallie phases. The interaction of Nd with Cu has been widely studied by AES, XPS, UPS and LEED. It is shown that at 300 K pure Nd films grow on the Cu substrate by a layer-by-layer mechanism. At higher temperatures (800 K) rearrangement occurs with the formation of alloy phases. Nix et al. (1988a) compared the results obtained for Cu (111) and Cu (100) substrates, and those reported by Jaffey et al. (1989) for the Sm/Cu (111) system. Such studies have been carried out in order to broadly investigate the properties of the Nd(or Ce)-Cu intermetallic catalyst precursors as reported by Nix and Lambert (1989a,b), Nix et al. (1987, 1988b, 1989b), Owen et al. (1987), Bryan et al. (1988), Hay et al. (1988) and Jennings et al. (1989). The oxidation of Nd (or Ce) overlayers; oxidation by dissociative chemisorption of CO; sorption, chemisorption and desorption of H2; treatments with CO2, CO/Hz, N2 and N20/H2; and, overall the activation and performance of methanol synthesis catalysts have been studied. The whole of these results, obtained by different experimental procedures, shows that the mechanism by which low-temperature methanol synthesis occurs on these catalysts is quite different from that which operates on commercial Cu/ZnO/A1203 catalysts (Nix et al. 1989b). Jennings et al. (1989) have shown that for R/Cu precursors, C Q causes strong irreversible deactiviation, whereas inclusion of Ti, or A1, or Zr enhances poison resistance.

180

M. GASGNIER

3.6.1.4. Ion-beam mixing. In order to prepare the new high-Te superconductors as thin films, a large number of methods have been used. One of them, ion-beam mixing, has been investigated by Borgensen and Lilienfeld (1989) and Mathevet et al. (1990). The former have irradiated their Cu/Y/Cu samples ~vith 600 keV Xe ions. The results are analyzed by RBS spectra. The formation of YCu2, YCu4, YCu5 and YCu7 alloys has been determined. It is concluded that, as a function of temperature, the mixing phenomenon varies strongly. At 100K it is dominated by thermal spike effects, whereas at 323 K the rapid growth of the hexagonal YCu7 phase becomes predominant. In another investigation, Mathevet et al. (1990) have irradiated La(OH)3/Cu bilayers with 3.65 MeV Au ions, at 300 K and 700 K. The results are analyzed by RBS spectra and XRD. It is concluded that a homogeneous depth distribution is not reached, and that ion irradiation simultaneously breaks down the La-O-H bonds and pushes in the Cu atoms. This induces the formation of unknown alloys and/or compounds. These results seem to indicate that the above methods of ionbeam mixing do not form a preferential route for fabricating the ternary RBa2Cu307 and La2_xSrxCuO4 ceramics. 3.6.2. The R-Au system 3.6.2.1. Amorphous GdAu and GdFeAufilms. The magnetic properties, Hall conductivity, Curie temperature and resistivity of GdxAUl-x films (x = 0.26-0.72) have been studied by Gambino et al. (1981). It is suggested that conduction-electron spin polarization determines the magnitude of the spontaneous Hall effect. Gambino and McGuire (I 984) have determined that the addition of a non-S-state heavy lanthanide (Tb, Ho, Er or Tin) to ferromagnetic Gd-Au does not increase the spontaneous Hall effect to a greater extent than would be caused by a similar increase in Gd. In contrast, the addition of Nd leads to a significant increase in this transport parameter, von Molnar et al. (1982b) have shown that Dy-Au amorphous alloys are highly anisotropic magnets. They develop a spontaneous moment at any temperature, and never reach infinite susceptibility. One must also point out the work of Hartmann and McGuire (1983) and Hansen and Hartmann (1986) relative to the magnetic and magneto-optics properties of GdFe-Au films. We also note the investigations of De Luca et al. (1981) relative to the bias-field dependence of domain drag propagation velocities in GdCoAu bubble films. 3.6.2.2. Crystallinefilms. Schwarz and Johnson (1983) have studied (La/Au)n multilayers at temperatures of 323-353K. The unannealed samples are characterized by the coexistence of the well-crystallized Au and ~-La (fcc) and/or (~-La or LaH2 phases (the interplanar spacings being equal). The most interesting result is the formation, after heating at 353 K for 4 h, of a single amorphous phase. This is essentially due to the fast diffusion behavior of Au in La, and the existence of a negative heat of mixing in the amorphous alloys. The latter provides the necessary chemical driving force for the reaction. Raaen (1990) has investigated the Ce/Au system by means of XPS. Ce films of various thicknesses are deposited onto Au films (>20nm thick). XPS core-level intensities for

THE INTRICATEWORLDOF RAREEARTHTHINFILMS

181

Au 4f and Ce 3d emissions indicate the formation of a mixed amorphous interface (5 nm thick) with an average volume content of Ce estimated at -35%. The Au 4f level shifts by 0.8 eV to higher binding energies which may be explained by changes in final-state screening caused by alloying of Ce and Au. Shikhmanter et al. (1983b) have carried out TEM experiments in order to study the crystallization behavior of some R-Au (R = Gd, Tb, Dy and Er) vapor-deposited amorphous films (120nm thick). Crystallization takes places in the temperature range of 463-513K, and further heating by an additional 50K leads to the formation of the RAu alloys (CsC1 structure type). Further annealing at 533 K induces an allotropie transformation such as CsC1 type (cubic structure) ~ CrB type (orthorhombic structure). The former is metastable, while the latter is, as in the bulk, more stable at low temperatures. The presence of R203 crystallites can act as catalyst for the transformation. It is concluded that conditions amenable to heterogeneous nucleation will appear on the R-Au films at higher temperatures than in the R-Cu films (413-423 K) or R A g films (388-398 K). L.I. Johansson et al. (1982a,b) have studied the chemically shifted surface core-level binding energies and surface segregation in Eu-Au and Yb-Au alloys. Photoemission spectra show that Au atoms deposited on the top of an Eu film dissolve into the film more readily at 293 K than for an Yb film. The authors studied mainly the intensity ratio [surf/Ibulk of Au, Eu and Yb 4f lines, and the chemical shifts upon alloying for different Au, Eu and Yb thicknesses and annealing temperatures. The most important feature is the persistence of the rare-earth surface 4f signal with increasing Au content. 3.7. R-Pd alloys (R=Ce, Eu, Er, Yb)

3.7.1. Valence change in R-Pd alloys 3.7.1.1. Ce-Pd amorphous crystalline samples. Comparison to other materials. The Ce valence-state disparity between crystalline and amorphous Ce-TM alloy films has been studied by Lu et al. (1985, 1986) and Croft et al. (1984, 1985). For CePd3 and CePdt.5 films (700 nm thick) Lm absorption spectra show that crystalline samples possess a lower valence state (3.17) than amorphous films (3.30). Moreover, Ag substitution for Pd in crystalline CePd3 acts to stabilize nearly pure Ce 3+ behavior. In the case of Cel-xMxPd3 materials (M=Y, La), the Ce valence decreases from 3.17 at x = 0 to 3.09 at x=0.75 (M = La), and increases to 3.23 (M = La) and 3.29 (M = Y) for x = 0.40. (In the case of Th 4+ and U 4+ substitutions the valence decreases to 3.10 at x = 0.40.) The results are discussed in terms of lattice-parameter changes, electronegativity arguments and band filling. These valence changes have also been determined for other metals, such as Cu, Ni, Co, Fe, Mn, Mo, Ru, Rh and A1 (or AlSo). Parks et al. (1983) have established a linear relation between the Lm-based valence estimates (from 3.00 to 3.21) and the bulk-property based valence estimates (from 3.00 to 4.00) in the Ce(Ag or Rh, Pd)3 systems. Then, Parks et al. (1984) in the case of fracturing clean RPd3 samples (R = La, Ce, Pr, Nd) have observed a 4f-derived resonant photoemission. The authors speculate that a mixed-valence state can occur in Ce systems

182

M. GASGNIER

only if the 4f holes are locally screened. The contraction of a valence electron may explain the anomalously large lattice contraction observed in these systems. 3.7.1.2. Eu and Yb-Pd amorphous specimens. For amorphous films of EuxPd~_x (0.16 ~ 0.12 (el. also fig. 46 in sect. 5) which could be due to the appearance of a new magnetic phase caused by the LRO in the x-sublattice, similar to GdH2+x and TbH2+x. The magnetic structure of ErH2, the heaviest of the magnetically ordering dihydrides, is a complex AF below TN = 2.15-2.30 K (Bieganski and Stalinski 1976), with a mixture of both eommensurate and incommensurate components down to 1.5 K (Shaked et al. 1984). The incommensurate structure lines in the neutron diffraction pattern are at the same positions as those of the intermediate structures in TbD2, DyD2 and HoD2, showing their close relationship to each other. It should, in fact, be interesting to investigate ErH2 down to even lower temperatures in view of an eventual observation, by analogy, of the pure commensurate structure, since the measured "mixed" spectra might be representative only for the overlap region between the two phases such as noted in TbD2 (Vajda et al. 1993). This close relationship is also evident in the behaviour of the superstoichiometrie ErH2+x-system, in that it is similar to other heavy RH2+x compounds: a decrease of TN for small x and the appearance of a new magnetic structure at higher temperatures for x high enough to form a H sublattice (figs. 67 and 48). The tentative phase diagram for the characteristic temperatures in the magnetically ordering range (fig. 68) was constructed from the available resistivity (Vajda and Daou 1994) and susceptibility data (Boukraa et al. 1993b, Carlin and Krause 1981b). Again, as for DyH2+x, neutronscattering measurements are required to determine the precise SRO and LRO magnetic configurations.

285

HYDROGEN IN RARE-EARTH METALS, INCLUDING RH2+x PHASES 0.02 121 x = 0.088 " ~

29.5

~~

+

_

29

119 117

r

L 3!

L

I

0,1 I ....

Er H2+x

g ~ pM

~ \x=oo7 2.5

~-2~

12.0

1.5

1 0

0.6 0

0.06

I

I 1

I 2

I 3

I

1 _l 0.04 x(at.H/at.Er)

f 0.08

I 4 T(K)

Fig. 67. Resistivity of various ErH2+x speeimens in the magnetie region showing the evolution of the transition temperature with increasing x (Vajda and Daou 1994).

Fig. 68. Tentative magnetic phase diagram of ErH2+« indicating the different coexisting eommensurate and incommensurate phases as well as the SRO domains, constructed from resistivity (solid triangles, solid inverted triängles, Vajda and Daou 1994) and suseeptibility data (solid cireles, solid squares, Boukraa et al. 1993b; crosses, Carlin and Krause 1981b).

No magnetic transitions have been observed in TmH2 down to 1.5 K. An analysis of the spin-disorder resistivity, Pm, shows that the ground stare (F2) is non-magnetic but separated from the first excited magnetic state (F~2)) by AE ~ 170K - a Van Vleck paramagnet (Burger et al. 1986a, Shaltiel et al. 1991a). The only low-temperature investigation undertaken up to now in the TmI-I2+x system coneerned Tm-169 Mössbauer studies on samples with ill-defined eompositions by Waibel et al. (1980) who interpreted the spectra as evidence for the presence of two non-magnetic phases. Further thorough experiments should, however, be interesting in view of the great sensitivity of such a Van Vleck compound to minor changes in the surroundings of the Tm-ions. For example, it was shown in EPR-linewidth measurements of substitutional Gd and Er impurities (0.01 at.%) in TmH2 that the latter reduced the first CF-level separation AE by nearly a factor of two (Shaltiel et al. 1991b). Even greater effeets should be expected from interstitial type defects such as the oetahedral x-hydrogens. The orthorhombic YbH2 is non-magnetic because of the divalency of the yb2+-ion, which becomes an analog of Lu 3+. In the fee superstoiehiometric dihydrides with x > 0.25, the presence of yb3+-ions, yielding a mixed-valence system, seems to lead to Kondolattiee behaviour, with a eoherent-incoherent transition near 4 K (Drulis et al. 1988b, but: cf. also the note in sect. 5.2.2).

286

R VAJDA

7. Summary and outlook

This review of experimental data concerning hydrogen in rare earths, both in the form of solid solutions and of hydrides, shows - as a first general result - the great influence of the initial metal purity upon the characterization of the fmal specimen and its physical and physico-chemical properties. A thorough control of the preparation conditions is a further (related) requirement for obtaining unambiguous and reproducible results. Among the general regularities along the R-series, one can note the evolution of eertain dimension-dependent properties, for example a decreasing solubility in the B-phase (i.e. a narrowing of the pure R-phase region). On the other hand and for the same reasons, the solubility in the low-temperature «*-phase increases, as the eventual preeipitation of the B-phase is retarded in lattices with smaller unit cells. Similarly, for the J-dependent magnetic properties, such as the transition temperatures TN and the spindisorder resistivities Pmag, the B-RH2hydrides follow the de Gennes factor, just as in the pure metals. As to the more prominent properties, one has to mention the hydrogen sublattice ordering occurring below room temperature both in the «*-phase solid solutions and in the [3-phase RHz+x systems. In the former case one observes zig-zagging chains along the c-axis made of H-H pairs on tetrahedral sites of the hcp lattice, and in the latter, the excess hydrogen atoms x on octahedral sites of the fluorite type fee lattice form a tetragonal DO22 configuration, at least in the heavy RH2+x compounds. This ordering has a striking influence on the magnetie manifestations, via modification of the Fermi surfaee and/or the crystal-field symmetry. Also related to the above x-sublattice ordering are the recently observed metalsemiconductor transitions near room temperature in the heavy superstoichiometric dihydrides GdH2+x, HoH2+x, ErH2+x and in YH2+x for x dose to the R-phase boundary (0.1< Xmax ~ < 0.3). Another M-S transition oecurring in these systems at lower temperatures (20-12010 seems to be due to carrier localization caused by atomic disorder. Analogous effects were noted in the light substoichiometric trihydrides (also in the B-phase) LaHz+x and CeH2+x in the range 0,7 < x < 0.9. As to future developments, one expects a more intense neutron-scattering work both for the determination of structural phase diagrams (mainly concerning the H sublattice) and of magnetic phase diagrams, in particular the complex ineommensurate configurations in the heavy RHz+x compotmds. Inelastic neutron-scattering studies are required for the investigation of phonon-dispersion relations and of H local modes. Also, further work is needed for the determination of the precise electronic mechanism responsible for the M-S transitions. And, finally, little is known of the low-T properties of the y-phase trihydrides because of their inherent chemical instability. Last but not least, a major effort should be devoted to the growth of monoerystalline hydride specimens other than CeH2+x, a prerequisite for the study of short-range-ordered configurations.

HYDROGEN IN RARE-EARTH METALS, INCLUDING RH2+x PHASES

287

References Abeln, A., 1987, Report no. Jül.-2152 (Jülich). Anderson, I.S., J.J. Rush, T.J. Udovic and J.M. Rowe, 1986, Phys. Rev. Lett. 57, 2822. Anderson, I.S., N.E Berk, J.J. Rush and T.J. Udovic, 1988, Phys. Rev. B 37, 4358. Anderson, I.S., D.K. Ross and J.E. Bonnet, 1989, Z. Phys. Chem. NF 164, 923. André, G., O. Blaschko, W. Schwarz, J.N. Daou and E Vajda, 1992, Phys. Rev. B 46, 8644. Arons, R.R., 1982, Rare earth hydrides, in: LandoltBömstein New Seiles, Vol. 12c, ed. K.H. Hellwege, eh. 6.3. Arons, R.R., 1991, Rare earth hydrides, in: LandoltBömstein New Series, Vol. 19dl, ed. H.EJ. Wijn, ch. 2.3. Arons, R.R., and J.W. Cable, 1985, Solid State Commun. 55, 835. Arons, R.R., and J. Schweizer, 1982, J. Appl. Phys. 53, 2645. Arons, R.R., W. Schaefer and J. Schweizer, 1982, J. Appl. Phys. 53, 2631. Arons, R.R., A. Abeln-Heidel and H. Mutka, 1987a, ILL Exptl. Report (Grenoble) p. 81. Arons, R.R., A. Abeln-Heidel and C. Ritter, 1987b, ILL Exptl. Report (Grenoble) p. 186. Arons, R.R., J.W. Cable and R.M. Nicldow, 1987c, J. Appl. Phys. 61, 3423. Barnes, R.G., D.R. Torgeson, T.J.M. Bastow, G.W. West, E.EW. Seymour and M.E. Smith, 1989, Z. Phys. Chem. NF 164, 867. Barnfather, K.J., E.EW. Seymour, G.A. Styles, A.J. Dianoux, R.G. Barnes and D.R. Torgeson, 1989, Z. Phys. Chem. NF 164, 935. Bashkin, I.O., E.G. Ponyatovskii and M.E. Kost, 1977, Phys. Status Solidi b 83, 517. Bashkin, I.O., E.G. Ponyatovskii and M.E. Kost, 1978, Phys. Status Solidi b 87, 369. Beattie, A.G., 1972, J. Appl. Phys. 43, 3219. Beaudry, B.J., and EH. Spedding, 1975, Metall. Trans. B 6, 419. Belhoul, M., R.L Schoenberger, D.R. Torgeson and R.G. Barnes, 1991, J. Less-Common Met. 172-174, 366. Bermington, S.M., R. Osborn, D.K. Ross and M.J. Benham, 1991, J. Less-Common Met. 172-174, 440. Berk, N.E, J.J. Rush, T.J. Udovic and I.S. Anderson, 1991, J. Less-Cornmon Mer. 172, 496.

Bieganski, Z., and M. Drulis, 1977, Phys. Status Solidi (a) 44, 91. Bieganski, Z., and B. Stalinski, 1976, J. Less-Common Mer. 49, 421. Bieganski, Z., J. Opyrehal and M. Drulis, 1975, Phys. Status Solidi (a) 28, 217. Bischof, R., E. Kaldis and E Waehter, 1983, J. Magn. & Magn. Mater. 31-34, 255. Bischof, R., M. Tellefsen and E. Kaldis, 1985, J. LessCommon Mer. 110, 99. Blaschko, O., G. Krexner, J.N. Daou and E Vajda, 1985, Phys. Rev. Lett. 55, 2876. Blaschko, O., G. Krexner, L. Pintsohovius, E Vajda and J.N. Daou, 1988, Phys. Rev. B 38, 9612. Blasehko, O., G. Krexner, J. Plesehiutschnig, G. Ernst, J.N. Daou and P. Vajda, 1989a, Phys. Rer. B 39, 5605. Blaschko, O., J. Pleschiutsehnig, L. Pintschovius, LP. Burger, J.N. Daou and P. Vajda, 1989b, Phys. Rer. B 40, 907. Blaschko, O., J. Pleschiutschnig, E Vajda, LE Burger and J.N. Daou, 1989c, Phys. Rev. B 40, 5344. Boeva, O.A., K.N. Zhavoronkova, M. Smutek and S. Cern~, 1986, J. Less-Common Mer. 118, 1. Bohrt, H.G., and R.R. Arons, 1982, J. Appl. Phys. 53, 2072. Bonnet, J.E., 1975, Thesis (University of Paris). Bonnet, J.E., and J.N. Daou, 1977, J. Appl. Phys. 48, 964. Bonnet, J.E., and J.N. Daou, 1979, J. Phys. & Chem. Solids 40, 421. Boroch, E., and E. Kaldis, 1987, Inorg. Chim. Acta 140, 89. Boroeh, E., and E. Kaldis, 1989, Z. Phys. Chem. NF 163, 117. Borsa, E, R.G. Barnes, B.J. Beaudry and D.R. Torgeson, 1982, Phys. Rev. B 26, 1471. Boukraa, A., E Vajda and J.N. Daou, 1993a, in: Proc. lnt. Conf. on Metal-Hydrogen Systems, Uppsala, Sweden, 1992, Z. Phys. Chem. NF 179, 413. Boukraa, A., P. Vajda and J.N. Daou, 1993b, J. Magn. & Magn. Mater. 123, L5. Burger, J.R, J.N. Daou, P. Vajda and A. Lucasson, 1984, J. Less-Common Met. 103, 381. Burger, J.R, J.N. Daou, A. Lucasson and R Vajda, 1986a, Phys. Rev. B 34, 4782. Burger, J.P., P. Vajda, J.N. Daou and G. Chouteau, 1986b, J. Phys. F 16, 1275.

288

R VAJDA

Burger, J.P., J.N. Daou and P. Vajda, 1988, Philos. Mag. B 58, 349. Burger, J.P., J.N. Daou and R Vajda, 1990, Z. Phys. B 80, 233. Burger, J.R, P. Vajda and J.N. Daou, 1991, J. Phys. & Chem. Solids 52, 779. Cannelli, G., R. Cantelli, E Cordero, E Trequattrini, I.S. Anderson and J.J. Rush, 1991, Phys. Rev. Lett. 67, 2682. Carlin, R.L., and L.J. Krause, 1981% Chem. Phys. Lett. 82, 323. Carlin, R.L., and L.J. Krause, 1981b, Phys. Rer. B 23, 6149. Carlin, R.L., R.D. Chirico, K.O. Joung, G.K. Shenoy and D.G. Westlake, 1980, Phys. Lett. A 75, 413. Carlin, R.L., L.J. Krause, A. Lambreeht and H. Claus, 1982, J. Appl. Phys. 53, 2634. Chiheb, M., 1980, Thesis (University of Paris-Sud). Chiheb, M., LN. Daou and E Vajda, 1993, in: Proe. Int. Conf. on Metal-Hydrogen Systems, Uppsala, Sweden, 1992, Z. Phys. Chem. NF 179, 255. Chowdhury, M.R., G.A. Styles, E.EW. Seymour, S.EL Cox, C.A. Scott and G.H. Eaton, 1989, J. Phys.: Condens. Marter 1, 4659. Cordero, E, 1993, Phys. Rev. B 47, 7674. Danielou, R., J.N. Daou, E. Ligeon and P. Vajda, 1981, Phys. Status Solidi a 67, 453. Daou, J.N., 1965, C.R. Aead. Sei. Paris, Ser. C 261, 1675. Daou, J.N., and J.E. Bonner, 1974, J. Phys. & Chem. Solids 35, 59. Daou, J.N., and P, Vajda, 19??, unpublished. Daou, J.N., and R Vajda, 1988, Arm. Chim. (Paris) 13, 567. Daou, J.N., and P. Vajda, 1992, Phys. Rev. B 45, 10907. Daou, J.N., and R. Viallard, 1972, in: Hydrogène dans les Métaux, Vol. 1 (Seience et Industrie, Paris) p. 123. Daou, J.N., A. Lueasson and P. Lueasson, 1976, Solid Stare Commtm. 19, 895. Daou, J.N., P. Vajda, M. Biget, A. Lucasson and R Lueasson, 1977, Phys. Status Solidi a 40, 101. Daou, J.N., R Vajda, A. Lueasson and P. Lueasson, 1980a, J. Phys. F 10, L305. Daou, J.N., R Vajda, A. Lueasson and P. Lucasson, 1980b, Solid State Commun. 34, 959. Erratum: 35, 809. Daou, J.N., M. Chiheb and P. Lucasson, 1981a, J. Less-Common Met. 79, 65.

Daou, J.N., P. Radhakrishna, R. Tur and R Vajda, 1981b, J. Phys. F 11, L263. Daou, J.N., P. Vajda, A. Lucasson and E Lueasson, 1981e, J. Phys. C 14, 129. Daou, J.N., R Vajda, A. Lueasson and P. Lueasson, 1981d, J. Phys. C 14, 3155. Daou, LN., R Vajda, A. Lueasson and E Lucasson, 1981e, Solid State Commtm. 40, 261. Daou, J.N., P. Radhakrishna, R Vajda and Y. Allain, 1983, J. Phys. F 13, 1093. Daou, J.N., A. Lueasson, E Vajda and J.R Burger, 1984a, L Phys. F 14, 2983. Daou, J.N., P. Vajda, E Radhakrishna and Y. Allain, 1984b, Solid State Commun. 52, 1051. Daou, J.N., E Vajda, J.R Burger and A. Lueasson, 1986a, Phys, Status Solidi a 98, 183. Daou, LN., P. Vajda, A. Lueasson and J.R Burger, 1986b, Phys. Status Solidi a 95, 543. Daou, J,N., 13. Vajda, A. Lueasson, E Lueasson and J.P. Burger, 1986e, Philos. Mag. A 53, 611. Daou, J.N., R Vajda and LE Burger, 1987, Solid Stare Commun. 64, 937. Daou, J.N., E Vajda and J.P. Burger, 1988a, Phys. Rev. B 37, 5236. Daou, J.N., R Vajda, J.P. Burger and D. Shaltiel, 1988b, Europhys. Lett. 6, 647. Erratum: 1989, 8, 587. Daou, J,N., E Vajda, G. Hilseher and N. PilImayr, 1988e, J. Phys. (Paris) 49(Suppl.), C8-357. Daou, J.N., J.E Burger and R Vajda, 1989a, Phys. Status Solidi b 154, 321. Daou, J.N., R Vajda and J.P. Burger, 1989b, Solid State Commun. 71, 1145. Daou, J.N., J.P. Burger, E Vajda, G. Chouteau and R. Tur, 1990, J. Phys.: Condens. Marter 2, 7897. Daou, J.N., J.E Burger and E Vajda, 1992, Philos. Mag. B 65, 127. Drulis, H., and K.P. Hoffmann, 1985, Z. Phys. Chem. NF 145, 11. Drulis, H., M. Drulis and W. lwasieezko, 1988a, J. Less-Common Met. 141, 201. Drulis, M., 1985, Z. Phys. Chem. NF 145, 19. Drulis, M., and Z. Bieganski, 1979, Phys. Status Solidi a 53, 277. Drulis, M., and B. Stalinskl, 1982, Phys. Status Solidi a 69, 385. Drulis, M., and B. Stalinski, 1989, Z. Phys. Chem. NF 163, 155. Drulis, M., J. Opyrehal and W. Borkowska, 1984, J. Less-Common Met. 101, 211. Drulis, M., H. Drulis and B. Stalinsld, 1988b, J. LessCommon Met. 141, 207.

HYDROGEN IN RARE-EARTH METALS, INCLUDING RH2÷x PHASES Fairclough, J.EA., D.K. Ross and S.M. Bermington, 1993, in: Proc. lnt. Conf. on Metal-Hydrogen Systems, Uppsala, Sweden, 1992, Z. Phys. Chem. NE 179, 281. Fedotov, V.K., VG. Fedotov, M.E. Kost and E.G. Ponyatovskii, 1982, Sov. Phys. Solid State 24, 1252. Ferreira, R, G. Teisseron, E Vuillet, J.M. Gil, RJ. Mendes, A.R de Lima and N. Ayres de Campos, 1987, J. Less-Common Met. 130, 155. Friedt, J.M., G.K. Shenoy, B.D. Dunlap, D.G. Westlake and A.T. Aldred, 1979, Phys. Rev. B 20, 251. Fujimori, A., and L. Schlapbach, 1984, J. Phys. C 17, 341 and refereneës therein. Gibbs, D., J. Bohr, J.D. Axe, D.E. Moncton and K.L. D'Amico, 1986, Phys. Rev. B 34, 8182. Glinka, C.J., J.M. Rowe, J.J. Rush, G.G. Libowitz and A. Maeland, 1977, Solid State Commun. 22, 541. Greis, O., E Knappe and H. Müller, 1981, J. Solid Stare Chem. 39, 49. Gschneidner Jr, K.A., J. Tang, S.K. Dhar and A. Goldman, 1990, Physiea B 163, 507. Gupta, M., 1978, Solid State Commun. 27, 1355. Gupta, M., and J.E Burger, 1980, Phys. Rev. B 22, 6074. Gygax, EN., A. Amato, I.S. Anderson, J.J. Rush and A. Schenk, 1993, in: Proc. Int. Conf. on MetalHydmgen Systems, Uppsala, Sweden, 1992, Z. Phys. Chem. NF 179, 181. Han, J.W., C.T. Chang, D.R. Torgeson, E.EW. Seymour and R.G. Barnes, 1987, Phys. Rev. B 36, 615. Haschke, J.M., and M.R. Clark, 1975, High-Temp. Sei. 7, 152. Herbst, G., and H. KronmüUer, 1981, Phys. Status Solidi a 66, 255. Hunt, D.G., and D.K. Ross, 1976, J. Less-Common Met. 49, 169. Ito, T., B.J. Beaudry, K.A. Gschneidner Jr and T. Takeshita, 1983, Phys. Rer. B 27, 2830. Ito, T., S. Legvold and B.J. Beaudry, 1984, Phys. Rev. B 30, 240. Iwasieezko, W., H. Drulis and R.M. Frak, 1992, J. Alloys & Compounds 180, 265. Jacob, I., A. Wolf and M.H. Mintz, 1981, Solid State Commun. 40, 877. Jensen, C.L., and M.E Zalesky, 1980, J. Less-Common Met. 75, 197. Jensen, J., and R.A. Cowley, 1992, J. Phys.: Condens. Matter 4, 9673. Jensen, J., and A.R. Mackintosh, 1991, Rare Earth Magnetism (Clarendon Press, Oxford).

289

Jones, RM.S., J. Southall and K. Goodhead, 1964, AWRE-Report 0-22/64 (Atomie Weapon Researeh Establishment). Juckum, C., 1980, Ph.D. Thesis (University of Paris VI). Jung, P., and R. Lässer, 1988, Phys. Rev. B 37, 2844. Kai, K., K.A. Gsehneidner Jr, B.J. Beaudry and D.T. Peterson, 1989, Phys. Rev. B 40, 6591. Kaldis, E., E. Boroeh and M. Tellefsen, 1987, J. LessCommon Met. 129, 57. Kamitakahara, W.A., and R.K. Crawford, 1982, Solid State Commun. 41,843. Khatamian, D., and ED. Manchester, 1988, Bull. Alloy Phase Diagrams 9, 252. Khatamian, D., and ED. Manchester, 1990, Bull. Alloy Phase Diagrams 11, 90. Khatamian, D., C. Stassis and B.J. Beaudry, 1981, Phys. Rev. B 23, 624. Klavins, E, R.N. Shelton, R.G. Barnes and B.J. Beaudry, 1984, Phys. Rev. B 29, 5349. Knappe, R, and H. Müller, 1986, J. Less-Common Met. 124, 263. Knorr, K., B.E.E Fender and W. Drexel, 1978, Z. Phys. B 30, 265. Kulikov, N.J., 1985, J. Less-Common Met. 107, 111. Lässer, R., B. Lengeler, K.A. Gschneidner Jr and E Palmer, 1979, Phys. Rev. B 20, 1390. Lea, K.R., M.J.M. Leask and W.E Wolf, 1962, J. Phys. & Chem. Solids 23, 1381. Leisure, R.G, R.B. Schwarz, A. Migliori, D.R. Torgeson, I. Svare and I.S. Anderson, I993, in: Proe. Int. Conf. on Metal-Hydrogen Systems, Uppsala, Sweden, 1992, Z. Phys. Chem. NF 179, 359. Libowitz, G.G., 1972, Ber. Bunsenges. Phys. Chem. 76, 837 and rel. therein. Libowitz, G.G., and A. Maeland, 1979, Hydrides, in: Handbook on the Physies and Chemistry of Rare Earths, Vol. 3, eds. K.A. Gschneidner Jr and L. Eyring (North-Holland, Amsterdam) ch. 26. Libowitz, G.G., and J.G. Pack, 1969, 3. Chem. Phys. 50, 3557. Lichty, L.R., R.J. Sehoenberger, D.R. Torgeson and R.G. Barnes, 1987, J. Less-Common Met. 129, 31. Liehty, L.R, J.W. Han, R. Ibanez-Meier, D.R. Torgeson, R.G. Bames, E.EW. Seymour and C,A. Sholl, 1989, Phys. Rev. B 39, 2012. Lueasson, A., R Vajda, J.E Burger and J.N. Daou, 1985, Solid State Commun. 54, 807. Maeland, A.J., 1970, J. Chem. Phys. 52, 3952. Mansmann, W., and W.E. Wallace, 1964, J. Phys. (Paris) 25, 454.

290

R VAJDA

Messer, C.E., and M.K. Park, 1972, J. Less-Common Met. 26, 235. Metzger, T.H., P. Vajda and J.N. Daou, 1985, Z. Phys. Chem. NF 143, 129. Mintz, M.H., D. Hierschler and Z. Hadari, 1976, J. Less-Common Met. 48, 241. Müller, H., P. Knappe and O. Greis, 1979, Z. Phys. Chem. NF 114, 45. Mustaehi, A., 1974, J. Phys. & Chem. Solids 35, 1447. Ohki, C., M. Tada, Y.C. Huang, H. Uchida and H.H. Uchida, 1984, J. Less-Common Mer. 103, 103. Ohki, C., H. Uchida and Y.C. Huang, 1989, Z. Phys. Chem. NF 163, 149. Opyrchal, J., and Z. Bieganski, 1978, Solid State Commun. 26, 965. Parshin, P.E, M.G. Zemlyanov, M.E. Kost, A.Yu. Rumyantsev and N.A. Chemoplekov, 1978, Inorg. Mater. 14, 1288. Pebler, A., and W.E. Wallace, 1962, J. Phys. Chem. 66, 148. Phua, T.T., B.J. Beaudry, D.T. Peterson, D.R. Torgeson, R.G. Barnes, M. Belhoul, G.A. Styles and E.EW. Seymour, 1983, Phys. Rev. B 28, 6227. Pleschiutschnig, J., W. Schwarz, O. Blaschko, P. Vajda and J.N. Daou, 1991, Phys. Rev. B 43, 5139. Rush, J.J., H.E. Flotow, D.W. Connor and C.L. Thaper, 1966, J. Chem. Phys. 45, 3817. Saw, C.K., B.J. Beaudry and C. Stassis, 1983, Phys. Rev. B 27, 7013. Schefer, J., P. Fischer, W. Hälg, J. Osterwalder, L. Schlapbach and LD. Jorgensen, 1984, J. Phys. C 17, 1575. Schlapbach, L., 1992, Surface properties and activation, in: Hydrogen in Intermetallic Compounds II, ed. L. Schlapbaeh L., Vol. 67 of Topics in Applied Physics (Springer, Berlin) eh. 2. Schlapbach, L., H.R. Ott, E. Felder, H. Rudigier, P. Thiry, J.E. Bonnet, Y. Petroff and J.P. Burger, 1986, J. Less-Common Met. 130, 239. Schlapbach, L., J.P. Burger, J.E. Bonner, P. Thiry and Y. Petroff, 1987, Surf. Sci. 189/190, 747. Schmitzer, C., G. Hilscher, P. Vajda and J.N, Daou, 1987, J. Phys. F 17, 865. Schreiber, D.S., and R.M. Cotts, 1963, Phys. Rev. 131, 1118. Senoussi, S., J.N. Daou, P. Vajda and J.P. Burger, 1987, J. Less-Common Met. 130, 55. Shaked, H., D.G. Westlake, J. Faber and M.H. Mueller, 1984, Phys. Rev. B 30, 328.

Shaltiel, D., J.P. Burger, J.N. Daou, P. Vajda and A. Grayevsky, 1991a, Phys. Rev. B 43, 6022. Shaltiel, D., H. Winter, E. Dormann, J.P. Burger, J.N. Daou, P. Vajda and A. Grayevsky, 1991b, J. LessCommon Mer. 172-174, 293. Shinar, J., B. Dehner, B.J. Beaudry and D.T. Peterson, 1988, Phys. Rev. B 37, 2066. Shinar, J., B. Dehner and BA. Beaudry, 1989, Z. Phys. Chem. NF 163, 591. Shinar, J., B. Dehner, R.G. Barnes and B.J. Beandry, 1990, Phys. Rev. Lett. 64, 563. Smimov, I.A., L.S. Parfen'eva, T.B. Zhukova, Kh.M. Kholmedov, V.S. Oskotski, I.N. Kulikova, V.A. Shaburov, L.G. Karpukhina, H. Drulis, M. Drulis and W. Iwasieczko, 1992, Sov. Phys. Solid Stare 34, 281. Stierman, R.J., and K.A. Gschneidner Jr, 1984, J. Magn. & Magn. Mater. 42, 309. Stuhr, U., D. Steinbinder, H. Wipf and B. Frick, 1993, in: Proc. Int. Conf. on Metal-Hydrogen Systems, Uppsala, Sweden, 1992, Z. Phys. Chem. NF 181, 1. Sturdy, G.E., and R.N.R. Mulford, 1956, J. Am. Chem. Soc. 78, 1083. Subramanian, RR., and J.E Smith, 1982, J. LessCommon Met. 87, 205. Switendick, A.C., 1970, Solid State Commtm. 8, 1463. Switendick, A.C., 1971, Int. J. Quantum Chem. 5, 459. Switendick, A.C., 1972, Ber. Bunsenges. Phys. Chem. 76, 535. Thome, D.K., K.A. Gsehneidner Jr, G.S. Mowry and J.E Smith, 1978, Solid State Commun. 25, 297. Titcomb, C.G., A.K. Cheetham and B.E.E Fender, 1972, J. Phys. C 7, 2409. Toguchi, K., M. Tada and Y.C. Huang, 1982, J. LessCommon Met. 88, 469. Torgeson, D.R., J.W. Hart, C.T. Chang, L.R. Lichty, R.G. Bames, E.EW. Seymour and G.W. West, 1989, Z. Phys. Chem. NF 164, 853. Udovic, T.J., J.J. Rush, I.S. Anderson and R.G. Barnes, 1990, Phys. Rev. B 41, 3460. Udovic, T.J., JJ. Rush, N.E Berk and I.S. Anderson, 1992, Phys. Rer. B 45, 12573. Udovic, T.J., J.L Rush, N.E Berk, I.S. Anderson, J.N. Daou, P. Vajda and O. Blaschko, 1993, in: Proc. Int. Conf. on Metal-Hydrogen Systems, Uppsala, Sweden, 1992, Z. Phys. Chem. NF 179, 349. Vajda, P., and J.N. Danu, 1984, J. Less-Common Met. 101, 269.

HYDROGEN IN RARE-EARTH METALS, INCLUDING RH2÷x PHASES Vajda, R, and J.N. Daou, 1991, Phys. Rev. Lett. 66, 3176. Vajda, P., and LN. Daou, 1992a, Phys. Rer. B 45, 9749. Vajda, P., and J.N. Daou, 1992b, Mod. Phys. Lett. B 6, 251. Vajda, R, and J.N. Daou, 1993a, in: Proc. Int. Conf. on Metal-Hydrogen Systems, Uppsala, Sweden, i992, Z. Phys. Chem. NF 179, 403. Vajda, R, and J.N. Daou, 1993b, The rare-earth hydrogen systems, in: Metal-Hydrogen Systems, Vol. 1, eds A. Aladjem and RA. Lewis (VCH, Weinheim) ch. 3a. Vajda, R, and J.N. Daou, 1994, Phys. Rev. B, to be published. Vajda, E, J.N. Daou and P. Moser, 1983a, J. Phys. (Paris) 44, 543. Vajda, R, J.N. Daou, E Radhakrishna and G. Chouteau, 1983b, J. Phys. F 13, 2359. Vajda, E, J.N. Daou, J.E Burger and A. Lucasson, 1985, Phys. Rer. B 31, 6900. Vajda, E, J.N. Daou, J.R Burger, K. Kai, K.A. Gsehneidner Jr and B.J. Beaudry, 1986, Phys. Rev. B 34, 5154. Vajda, E, J.N. Daou and J.R Burger, 1987a, Phys. Rev. B 36, 8669. Vajda, R, J.N. Daou, J.R Burger, C. Schmitzer and G. Hilscher, 1987b, J. Phys. F 17, 2097. Vajda, E, J.N. Daou, A. Lucasson and J.R Burger, 1987c, J. Phys. F 17, 1029. Vajda, R, J.N. Daou and J.E Burger, 1989a, Z. Phys. Chem. NF 163, 637. Vajda, R, J.N. Daou and J.R Burger, 1989b, Phys. Rev. B 40, 500. Vajda, R, J.N. Daou, J.R Burger, G. Hilseher and N. Pillmayr, 1989e, J. Phys. Cond. Matter 1, 4099. Vajda, R, J.E Burger and J.N. Daou, 1990a, Europhys. Lett. 11,567. Vajda, R, J.N. Daou, R Moser and R Remy, 1990b, J. Phys.: Condens. Marter 2, 3885.

291

Vajda, R, J.N. Daou and J.R Burger, 1991a, J. LessCommon Met. 172-174, 271. Vajda, R, J.N. Daou and J.R Burger, 1991b, J. Phys. Cond. Matter 3, 6267. Vajda, R, J.N. Daou, R Moser and R Remy, 1991c, J. Less-Common Met. 173, 522; Solid State Commun. 79, 383. Vajda, R, J.N. Daou and G. André, 1993, Phys. Rer. B, to be published. Viallard, R., and J.N. Daou, 1972, in: Hydrogène dans les Métaux, Vol. 1 (Science et Industrie, Paris) p. 76. Volkenshtein, N.V., E.V. Gatoshina, M.E. Kost and T.S. Shubina, 1983, Phys. Status Solidi b 117, K47. Völkl, J., H. Wipf, B.J. Beaudry and K.A. Gschneidner Jr, 1987, Phys. Status Solidi b, 144, 315. Vorderwisch, P., S. Hautecler and W. Wegener, 1980, J. Less-Common Met. 74, 117. Waibel, F., A. Strauss, W. Potzel, EE. Wagner and G. Wortmarm, 1980, J. Phys. (Paris) 41(Suppl.), C1231. Weaver, J.H., R. Rosei and D.T. Peterson, 1979, Phys. Rev. B 19, 4855. Wegener, W., P. Vorderwisch and S. Hautecler, 1980, Phys. Status Solidi b 98, Kl71. Wiesinger, G., and G. Hilscher, 1991, Magnetism of hydrides, in: Handbook of Magnetic Materials, Vol. 6, ed. K.H.J. Buschow (North-Holland, Amsterdam) ch. 6. Zarnir, D., R.G. Barnes, N. Salibi, R.M. Cotts, T.T. Phua, D.R. Torgeson and D.T. Peterson, 1984, Phys. Rev. B 29, 61. Zogal, O.J., 1987, J. Less-Common Met. 130, 187. Zogal, O.J., and R UHéritier, 1991, J. Alloys & Compounds 177, 83. Zogal, O.J., Ch. Jäger, H. Döhler and B. Schnabel, 1984, Phys. Status Solidi a 82, K153.

Handbook on the Physics and Chemistry of Rare Earths VoL 20 edited by K.A. Gschneidner, Jr. and L. Eyring © 1995 Elsevier Science B.V.. All rights reserved

Chapter 138 MAGNETIC PROPERTIES OF INTERMETALLIC COMPOUNDS* D. G I G N O U X

a n d D. S C H M I T T

Laboratoire de Magndtisme Louis N~el, C.N.R.S., B P 166, 38042 Grenoble Cddex 9, France

Contents List of symbols and abbreviations 1. Introduction 2. 3d Magnetism 2.1. Onset of magnetism in Co- and Nibased alloys 2.1.1. Collective electron metamagnetism (CEM) 2.1.1.1. The WohlfarthRhodes model 2.1.1.2. RCo2 2.1.1.3. ThCo 5 2.1.1.4. Further CEM systems 2.1,1.5, Strong magnetoelastic effects 2.1. t .6. Spin fluctuation effects 2.1.1.7. A new model of CEM 2.1.2. Very weak itinerant ferromagnetism (VWIF) 2.1.3. Cobalt antiferromagnetism 2.2. 3d Magnetocrystalline anisotropy 2.2.1. Experimental characteristics 2.2.2. Theoretical interpretations 2.3. Instability and frustration of Mn magnetism in RMn 2 compounds 2.3.1. Topological frustration 2.3.2. Mn moment instability and complex magnetic structures

294 295 296 297 298 298 299 301 302

303 304 306 308 309 310 310 313 316 316 317

* In memory of Remy Lemaire. 293

2.3.3. Large Mn anisotropy 2.3.4. Giant spin fluctuations 2.3.5. Theoretical approaches 2.4. Lanthanide-3d transition-metal compounds where both carry a well defined magnetic moment 2.4.1. General characteristics 2.4.2. Curie temperatures and 3d-4f exchange interactions 2.4.3. High-field magnetization processes, 3d-4f interaction and magnetocrystalline anisotropy 3. 4f Magnetism 3.1. Crystal-field and exchange interactions in ferromagnetic compounds 3.2. Metamagnetism and associated phase diagrams 3.2.1, General considerations 3.2.1.1. Demagnetizing field effects and hysteresis 3.2.2. CEF metamagnetic systems 3.2.3. Quadrupolar metamagnetic systems 3.2.4. Ferromagnetic metamagnetic systems 3.2.5. Weakly anisotropic metamagnetic systems

322 323 325

327 327 328

331 337 338 345 345

347 350 355 359 363

294

D. GIGNOUX and D. SCHMITT

3.2.6. Spin-flip metamagnetic systems: simple antiferromagnets 3.2.7. Modulated metamagnetic systems 3.2.8. Spin-flip metamagnetism: long-period commensurate systems 3.2.9. Spin-slip metamagnetism: long-period commensurate systems 3.2.10. Complex multistep metamagnetism: long-period commensurate systems 3.2,11. Planar metamagnetic systems 3.2.12. Multiaxial metamagnetic systems 3.3. Quantitative analysis of incommensurate magnetic systems 4. Summary and conclusion 5. Appendix: Definitions and/or descriptions of magnetic terms or phenomena 5.1. Antiferroquadrupolar and ferroquadrupolar ordering 5.2. Amplitude-modulated structure

5.3. Antiphase structure 5.4. Collinear and noncollinear structures 5.5. Commensurate and incommensurate structures 5.6. Equal-moment structure 5.7. Exchange interaction J(/j) and Fourier transform J(q) 5.8. Fan structure 5.9. Flopside structure 5. i 0. Frustration 5.11. Helical structure 5.12. Helifan 5.13. Multiaxial structure 5.14. Multistep metamagnetic process 5.15. Multi-Q structure (double, triple. . . . ) 5.16. Quadrupolar moment 5.17. RKKY (Ruderman, Kittel, Kasuya, Yosida) exchange interaction 5.18. Single-Q structure 5.19. Spin-flip transition 5.20. Spin-flop transition 5.21. Spin fluctuations 5.22. Spin-slips (or spin discommensurations) 5.23. Spin-reorientation transition References

367 369

373

378

380 390 394 399 406 408 408 408

409 409 409 410 410 410 411 411 412 413 413 413 413 413 414 415 415 415 416 416 417 417

List of symbols and abbreviations a, b, e a*, b*, c* AM B B~ C phase CEF

basis vectors of the unit cell basis vectors of the reciprocal unit cell amplitude modulated magnetic induction crystal field parameters commensurate phase crystalline electric field

CEM EM F FOMR Gj

collective electron metamagnetism equal moment free energy first-order magnetic reorientation tetragonal quadrupolar parameter

G2 gj H

trigonal quadrupolar parameter Land~ factor magnetic field

7-( I phase INS

Hamiltonian incommensurate phase inelastic neutron scattering

J J1

Jz J(ij) J(q) J(0) kB K K~ L LMTO M M

total kinetic moment operator exchange interaction between nearest neighbours exchange interaction between second-nearest neighbours exchange interaction between moments i andj Fourier transform of the exchange interactions paramagnetic exchange parameter Boltzmann constant reciprocal lattice vector second-order anisotropy constant of tmiaxial systems orbital kinetic moment operator linear muffin tin orbital chemical symbol for 3d transition metals magnetization

MAGNETIC PROPERTIES OF INTERMETALLICCOMPOUNDS Ms M-NM n, n n(/?F)

Na N NMR O~ PF model Q q R Ri RKKY RPA S S SCR Tc

component of the total kinetic

Tt~

moment

TQ

magnetic-nonmagnetic bilinear exchange coefficient density of states at the Fermi level demagnetizing field factor number of moments per magnetic unit cell nuclear magnetic resonance Stevens operators periodic field model propagation vector of magnetic structure vector of the reciprocal space chemical symbol for rare earth, lanthanide position of atom i Ruderman-Kittel-Kasuya-Yosida random phase approximation Stoner enhancement factor spin kinetic moment operator self-consistent renormalization Curie temperature

TR TsF Tt, TI, T2, ... TEC U VWIF W Fi

y eF )~ ~ #B ~tSR r X Z~)

295

Nrel temperature quadrupolar ordering temperature spin reorientation temperature spin fluctuation temperature transition temperatures thermal expansion coefficient Coulomb repulsion or exchange energy very weak itinerant ferromagnetism bandwidth irreducible representation of a symmetry group electronic specific heat coefficient Fermi energy spin orbit coupling constant wavelength Bohr magneton muon spin resonance incommensurate component of the magnetic propagation vector magnetic susceptibility third-order paramagnetic susceptibility

1. Introduction This chapter is devoted to the magnetic properties o f rare earth intermetallic compounds investigated during the last fifteen years. The earlier works in this field have been described by Kirchmayr and Poldy (1979) in a previous chapter o f this Handbook series (volume 2, chapter 14), During the last 15 years, research in magnetism can be characterized by a b o o m in the field o f rare-earth (R)-based materials, in particular the metallic ones. Currently, rare earth intermetallics are in a prominent situation not only from a fundamental point o f view but also for the large number o f technological applications, in particular in the field o f permanent magnets. Rare-earth intermetallics play an important role in a large range o f current research fields, in particular those devoted to heavy fermions, valence fluctuations, Kondo lattices, magnetostrictive materials, permanent-magnet materials, spin glasses and random anisotropy systems. Since these aspects o f magnetism in rare-earth intermetallics are treated elsewhere, they will not be discussed here. In this chapter we are mainly concerned with the basic properties o f intermetallic compounds with normal lanthanides, i.e. those with a well localized 4 f shell. This means that most o f the Ce and Yb materials are excluded. Furthermore, rather than giving an exhaustive report on magnetic properties with many physical values reported

296

D. GIGNOUXand D. SCHMITT

in tables, we prefer to emphasize what we consider to be the major steps in this field of research during the period under consideration. This chapter is divided into two major parts. The first part is devoted to systems in which the obtained results led to a better knowledge of 3d magnetism. Four major aspects will be considered. First (sect. 2.1), the onset of magnetism in Co and Ni, in which the major part is devoted to the systems where collective electron metamagnetism has been observed. The understanding of the large 3d magnetocrystalline anisotropy of many intermetallic compounds is treated in sect. 2.2. In the cubic Laves phase RMn2, the instability of Mn magnetism together with the topological frustration of antiferromagnetic interactions lead to quite original properties which are at the origin of new physical concepts and theoretical approaches. The magnetic properties of these fascinating compounds are presented in sect. 2.3. The last section of this part is devoted to rareearth-3d transition-metal compounds where both carry a well defined magnetic moment. These compounds generally are excellent materials for permanent-magnet applications, but only the last results obtained concerning their intrinsic properties are presented. The second part of this chapter concerns the magnetic properties of compounds in which only the lanthanide atom is magnetic. After a description (sect. 3. I) of recent progress made in the quantitative knowledge of the main interactions (exchange and crystal field) in the small number of lanthanide-based series which are ferromagnetic, the main purpose of this part is devoted to the compounds which exhibit metamagnetic processes of quite different origins (sect. 3.2). Because of the long range and oscillatory character of the indirect RKKY exchange interaction the majority of these compounds order antiferromagnetically with complex magnetic-field-temperature phase diagrams often characterized by the competition between commensurate and incommensurate magnetic structures. Dramatic progress has been made in the knowledge of these systems during the last decade due to the improvement of experimental devices, the increasing number of single crystals of good quality and the evolution of theoretical models. Parallel to the experimental advances in this field, theoretical models have been proposed to quantitatively analyze these complex phase diagrams, in particular the incommensurate magnetic systems, which is the purpose of the last section (sect. 3.3) of this part. In this chapter a large number of experimental results and theoretical approaches, already presented in previous review papers, are assumed to be known. The reader will find useful information in the reports on rare-earth-based intermetallic compounds by Buschow (1977a, 1979, 1980, 1988) and by Kirchmayr and Poldy (1979).

2. 3d Magnetism The R-M systems, where M is a 3d transition metal, form an outstanding tool for the study of 3d band magnetism and in particular the interactions, instabilities and anisotropies of such magnetism. In the majority of cases, for a given M element, a series of compounds with different rare earths crystallize in the same crystallographic structure and thus have practically the same band structure. It is then possible to study the 3d magnetism under

MAGNETIC PROPERTIES OF INTERMETALLIC COMPOUNDS

297

several conditions depending on the rare earth (nonmagnetic or magnetic, isotropic or not, different sign of the magnetocrystalline anisotropy parameters . . . . ). Many studies are devoted to these systems and it is impossible to describe all the results obtained. We focus on the most original advances in 3d magnetism discovered in R-M intermetallic compounds during the last decade. 2.1. Onset of magnetism in Co- and Ni-based alloys These compounds are formed by the association of the 3d band of the M element with the 5d band of R (4d for Y) with higher energy. The electronegativity difference between the constituents causes a transfer of 5d (4d) electrons towards the unfilled 3d band. Since the screening of the nuclear potentials by the electrons is modified, the two bands approach each other leading to 3d-5d (or 3d-4d) hybridized states (Cyrot and Lavagna 1979, Shimizu et al. 1984). The Fermi level of the compounds often lies in this region of the density of states. This itinerant description of 3d magnetism is the most appropriate for Co and Ni in which, due to the width of the 3d band, the Un(ev) product (U is the Coulomb repulsion or exchange energy between up and down spins, and n(eF) the density of states at the Fermi level) is smaller than unity (with Mn and Fe this ratio is closer to unity and accordingly magnetism is more localized). Starting from pure Ni or Co, the progressive increase of the R percentage leads first to a decrease of the density of states at the Fermi level n(eF). For a critical concentration range (around RCo2 for cobalt and RNi5 for nickel) alloys are close to the conditions required for the onset of magnetism (Stoner criterion) and magnetic instabilities can be observed, each behaviour strongly depending on the fine structure of n(e) near eF. However, resurgence of 3d magnetism appears for a slightly larger R amount and then disappears altogether as shown in fig. 1. e--

o~ 6~-e,l (.9 ~.-__

1.5 "

,

I

I

+

.-~

go I

I

+

g

• Yxcol-x

,-~ ~,',ec

~r v

o

, 1.0

LaxCOl_ x

YxN,l_ x

g,

Iii

k)

~+I om 'I ~

...1

g +'

t~

5-

u

c,4

I +

0.5

~; ~,

' t, t--,

0

0.1

0.2

~ ~

o c9

0.3

0.4

0'.5 x ~-

Fig. 1. Mean value of the 3d moment as a function of the rare earth concentration in the compounds of the La-Co, Y-Co and Y-Ni systems (Gignoux and Schmitt 1991).

298

D. GIGNOUX and D. SCHMITT

Three types of characteristic behaviours are mainly observed for R concentrations near or larger than the critical ones, namely collective electron metamagnetism (CEM), very weak itinerant ferromagnetism (VWIF) and Co antiferromagnetism. 2.1.1. Collective electron m e t a m a g n e t i s m (CEM) 2.1.1.1. The Wohlfarth-Rhodes model. Collective electron magnetism (CEM), predicted in 1962 by Wohlfarth and Rhodes (1962), refers to the transition from a nonmagnetic to a magnetic state when the field acting on the band is larger than a critical value HM. Using a Landau-type expansion of the magnetic free energy of the d-electrons, such as F = AM 2 + BM 4 + CM 6 + ....

(1)

MH,

the theory led to the following expressions for the first lower-order coefficients

1 (2)

A - 4n,gF,---~ o,ot)

1 B-=-64n3(eF)

2] 3n(eF------)- \ n(eF) J J '

(3)

where S = (1 - Un(eF)) -1 is the Stoner enhancement factor, n, n' and n" are the density of states and its first and second derivatives at the Fermi level. CEM occurs when the magnetization dependence of F has the upper variation shown in fig. 2a in zero field and it becomes the lower curve of this figure above the critical field HM. The corresponding expected low-temperature magnetization curve is shown in fig. 2b. The above formulae show that such a behaviour can occur when: (1) A is weakly positive, i.e. when the Stoner criterion for the onset of ferromagnetism is almost satisfied, and (2) B is negative, which implies another minimum for a nonzero value of M. This latter condition requires n"(eF) to be large enough, which means that the density of states at the Fermi level has a strong positive curvature. The system is now a Pauli paramagnet in low field and the thermal and field dependences of its susceptibility are given by X = SXo

[,7~2(.BH(EF) Rt(EF)2) 1 - --~S

T2+

S3(Bt"(EF)_nt(EF)2"~H2 ] + • ...

(4)

This formula shows that a maximum in the thermal variation of the susceptibility, having the same origin, is also predicted (fig. 3b). Because of this increase of the susceptibility with temperature, the shape of the magnetization curves changes with temperature; the magnetization discontinuity tends to decrease and even to disappear above a given temperature. The high magnetization state is then reached continuously (fig. 3a). This behaviour, which was assumed only to occur on Co in RCo2, but had not been directly observed until the late seventies, has since clearly shown up in several rareearth-transition-metal alloys. The best examples are RCo2 and ThCo5 which are presented below.

MAGNETIC PROPERTIESOF 1NTERMETALLICCOMPOUNDS z~F (a)

M

299

(b)

H=0

HE i

/M= H H~

HM

H~

Fig. 2. Collective Electron Metamagnetism. (a) Variation of the difference between the free energy of the ferromagnetic and paramagnetic states as a function of magnetization at different fields; (b) variation of magnetization with increasing field (Barbara et al. 1988).

M~ (a)

0

X

HM

I~

(b)

T2

Fig. 3. Schematic representation of the Collective Electron Metamagnetism. (a) M vs. H at various temperatures; Co)thermal variation of the initial susceptibility (Gignoux et al. 1983).

2.1.1.2. RCo2. As shown in fig. 1, RCo2 compounds are at the limit o f the onset o f Co magnetism. In these cubic Laves-phase compounds Co atoms belong to one crystallographic site. With magnetic rare earths the compounds are ferromagnetic (with light lanthanides) or ferrimagnetic (with heavy lanthanides) and, below the Curie temperature, Co is magnetic with a moment close to I#B. Conversely in YCo2 and LuCo2, Co is nonmagnetic (Lemaire 1966). These latter compounds are enhanced Pauli

300

D. GIGNOUX and D. SCHMITT 20

A 18 ol

YCo2 ........... v- 12 ,.J

-~ ~o n

U8 ~

6

,6o

26o

Fig. 4. Thermal variationof the susceptibility of YCo2 and LuCo2 (Gignoux et al. 1983).

36o

TEMPERATURE (K)

Y(C°I"xAtx)2 0.5

4.2K

'

~

¢,O0'6 ..~

t/oo, I/t= 10

B

20 (T)

LuCU°

J r-,..

~ ~ - - ~ " 1

LJ

0

'

30

Fig. 5. Magnetization curves of Y(Col_xAlx)2 at 4.2 K (Sakakibara et al. 1987).

T=IO K

0,

z,o

20

40

60

80

100

H(T)

Fig. 6. Magnetization curves of YCo2 and LuCo2 at 10 K in pulsed ultra-high magnetic field up to 94 T (Gignoux and Schmitt 1991, after Goto et al. 1990). The magnetizationdata measured in a long pulse field are also plotted as dots. paramagnets but the field and thermal effects indicate the possibility o f CEM. Indeed, in YCo2 and LuCo2 the susceptibility exhibits a broad m a x i m u m around 230 K and 370 K, respectively (fig. 4). Moreover, at 4.2 K the superimposed susceptibility o f YCo2 increases by about 20% between 0 and 35 T (Bloch et al. 1975), whereas in LuCo2 this effect is much smaller (Schinkel 1978). Actually, CEM was not observed because this m a x i m u m magnetic field was smaller than the critical field HM o f the metamagnetic transition. With

MAGNETICPROPERTIESOF 1NTERMETALLICCOMPOUNDS

301

magnetic rare earths the high magnetization state was reached owing to the molecular field contribution of the rare earth. Moreover, the first-order transition observed at the Curie temperature in some of these compounds, namely DyCo2, HoCo2 and ErCo2, has been ascribed to the collapse of the Co magnetic moment at this temperature (Lemaire 1966, Petrich and M5ssbauer 1968, Givord and Shah 1972). In 1977, polarized neutron diffraction studies on TmCo2 and HoCo2 carried out by Gignoux et al. (1977) showed that HM should be smaller than 100T (around 70T with Tin). From a theoretical point of view, the first calculations (Bloch et al. 1975) led to a much larger value of Hr~ (142 T). Later, more realistic band structure calculations led to H ~ values around 80 T (Cyrot et al. 1979, Yamada et al. 1985, 1987, Yamada and Shimizu 1985, 1990). In order to directly observe the metamagnetic transition in this system, a large effort was undertaken to depress the critical field by substitution effects, and in 1987 this was obtained by substituting a small amount of A1 for Co in YCo2 and LuCo2 (Sakakibara et al. 1987) where the transition occurs below 40 T (fig. 5). In the Y(Col-xFex)2 system, although less dramatic, the CEM has been observed for 0.04 ~

="

-5

_ ~ '

/1""~

/

S (a.u.)

-10

,m

-20 -40

g ._= ,4 0 for holes (n > 5). The anisotropy constant is KI = Eso, ± - Eso, [I = ,~(L± - Lrl) S = -~. z ~ . S, if one assumes that the spin is independent of the direction. Then KI is proportional to AL with the same sign for n > 5 and with opposite sign for n < 5. The large anisotropy in many R-3d intermetallic compounds arises from the large orbital moment and hence its large anisotropy. In principle the Coulomb repulsion U between electrons depends on the orbitals occupied by the two electrons, and this could be important for the calculation of orbital effects. However it has been established that this has little effect on the anisotropy energy. In conclusion, the large magnetocrystalline anisotropies in rare-earth-3d intermetallics arise from the orbitally selective 3d band energy dispersion due to the particular character of the 3d atoms surrounding, associated with the presence of the rare earth, this effect being much larger than the usual crystal field effects. 2.3. Instability and frustration of Mn magnetism in RMn2 compounds It is well known that exchange interactions in metallic Mn-based systems are negative. Moreover, when two nearest neighbours of an atom can be nearest neighbours to each other (e.g. triangular lattices or atoms on the tops of a regular tetrahedron) one is faced with frustrated magnetic systems. Such a topological frustration occurs in the RMnl2, R6Mn23 and RMnz series. Among them, the RMnz compounds are especially fascinating because the Mn moment is close to the instability of band magnetism. So, magnetism is complex and presents exotic features which have attracted much attention during the last ten years and have been investigated by using macroscopic techniques (such as magnetization and thermal expansion measurements) as well as microscopic techniques (e.g. neutron and X-ray diffraction, nuclear magnetic resonance (NMR) and Mrssbauer measurements).

2.3.1. Topologicalfrustration For light lanthanides or for heavy ones, that is for large or small R atoms (R = Pr, Nd or Er, Tm, Lu), the RMn2 compounds crystallize in the hexagonal C14 Laves phase. ThMn2 and ScMn: also crystallize in this C14 phase. For intermediate R atoms (R= Gd, Y, Tb, Dy) the RMn2 compounds crystallize in the cubic (f.c.c.) C15 Laves phase. A dimorphism is observed for R = Sm or Ho. As shown in fig. 20, in both structures Mn atoms are at the tops of regular tetrahedra. These tetrahedra are stacked in chains along the six-fold axis in the hexagonal phase and they are packed in the diamond arrangement, connected by sharing vertices, in the cubic structure. In both structures, the topology of the packing ensures that any antiferromagnetic ordering will be highly frustrated.

MAGNETIC PROPERTIES OF INTERMETALLIC COMPOUNDS

,

C15

7

I .

....

o-- .-o 0

0

317

.

.

.

q

' - ~ C

14

Fig. 20. Crystallographic structures of f.c.c. CI5 and hexagonal C14 Laves phases. Left, projection in (001) plane; right, stacking of Mn tetrahedrons.

2.3.2. Mn moment instability and complex magnetic structures A characteristic signature of the magnetic instability of manganese in the RMn2 intermetallics is well illustrated by the large magnetovolume anomalies observed (fig. 21) for some R atoms. In fact, as shown (Wada et al. 1987a and references therein, Shimizu 1985) through thermal expansion and NMR measurements (fig. 22), such anomalies occur depending upon the Mn-Mn interatomie distances. A critical distance (de = 2.66 A) for the onset of a Mn moment appears to exist, which allows us to divide the compounds into three different subsets of magnetic behaviours. When the Mn-Mn distance is significantly lower than de, as in ScMnz, ErMn2 and HoMn2, Mn is nonmagnetic. ScMn2 is a Pauli paramagnet and its thermal expansion coefficient (TEC) is small. ErMn2 and HoMn2 exhibit ferromagnetic ordering characteristic of the rare-earth moment only (Feleher et al. 1965). The paramagnetic TEC is large but no volume discontinuity appears at TN. (The situation of HoMn2 is not quite clear and NMR seems to indicate that, depending on the preparation, some Mn sites could be magnetic.) When the Mn-Mn distance is larger than de, as in PrMn2, NdMn2, SmMn2 and GdMn2, the Mn magnetism is well stabilized with large values of the Mn moment (about 2.7/~B). Magnetic Mn ordering is accompanied by a large volume discontinuity and a paramagnetic TEC is as large as in the compounds with Er and Ho. Collinear antiferromagnetic structures with moments parallel to [120] have been determined by neutron diffraction in PrMn2 (TN = I15K) and NdMn2 (TN = 104K). However, in the latter, below 50 K, some Mn moments and all Nd moments progressively rotate toward the [100] axis due to the magnetocrystalline anisotropy ofNd (Ballou et al. 1988a, Ouladdiaf 1986). The magnetic structure of GdMn2 bears some similarities [same propagation vector

318

D. GIGNOUX and D. SCHMITT

J

YMn2

I



L :17:--_-:;

PrM n 2

.

c

1,

....

J

0

]

100

J

I

~

200 TEMPERATURE (N)

'

2

ditcttometer

I

300

Fig. 21. Thermal expansion curves of RMn2 obtained by X-ray diffraction measurements (circles) and dilatornetric measurements (dashed lines). Open and solid circles show the processes with decreasing and increasing temperature, respectively. Solid lines are guides for the eye (Wada et al. 1987a). 2 3, 2 0)] with the virgin magnetic structure of TbMn2 (Ouladdiaf 1986). The magnetic (3, structure of SmMn2 is still unknown. The most dramatic properties are observed in the other compounds, where Mn is close to the magnetic instability and where magnetism is very sensitive to external parameters such as temperature, pressure, magnetic field and alloying. When temperature is increased, YMn2 shows a first-order transition (with a large hysteresis) at TN accompanied with a giant volume drop of about 5%, which is ascribed to a substantial reduction of the Mn moment at TN. The TEC above TN is the largest of the series (50× 10-6 K -1 at 300 K). The magnetic structure of YMn2, determined from neutron diffraction, is helimagnetic (fig. 23) with a long period (~380 ]~). On the other hand NMR spectra have shown that the helix is not regular but distorted owing to a large Mn magnetic anisotropy which favours

319

MAGNETIC PROPERTIES OF INTERMETALLIC COMPOUNDS

4

(o)

% zL ~3

Fir

T o

2

:d. I

i

Sc.

I

2.5

2.6

Ho

im

,

I

2.8

d~n_t4n Qt 4.2 K2 "~,)

! ff6

(b)

~2-

2O

Tb{

0.05 are surprising as Ce has a larger ionic volume than Y in both the 3+ and the

320

D. GIGNOUX and D. SCHMITT

2N-I

~

~"/

22N !

2N+2

s

O ,

~J~+

~' ~ >?:

b I

, / ~-/

')

y /'

>

/

! ,.i ....

!

b

0~. I .....

..............

....,j

Fig. 23. Magnetic structure of YMnz. Only Mn atoms are shown. (a) Collinear antiferromagnetic structure previously reported (Nakamura et al. 1983), open and solid circles represent Mn atoms with up and down spins, respectively. The propagation vector is Q = (0, 0,1); (b) helimagnetic structure deduced from neutron diffraction studies using a long wavelength. In the tetrahedron layers (solid lines) the antiferromagnetic arrangement is collinear as in (a). The propagation vector is Q=(r,0,1) with r=0.02. A and z~' are the two easy directions of Mn moments. Inset: in both models, the Heisenberg exchange interactions do not cancel between pairs of atomic layers 2N - 1,2N, but do cancel between pairs of atomic layers 2N, 2N + I. Magnetic structures are then formed of highly correlated layers of tetrahedra with weak coupling between these layers. (Ballou et al. 1987). 4+ state. This property has b e e n ascribed to a strong hybridization o f the C e - 4 f and M n - 3 d b a n d s ( M o n d a l et al. 1992). In T b M n 2 , the m a g n e t i c field structure in zero applied field is complex, with all m a n g a n e s e atoms i n the m a g n e t i c state. However, a " m i x e d structure" with coexisting m a g n e t i c a n d n o n m a g n e t i c M n atoms (fig. 24) is i n d u c e d b y an applied field o f 4.5 T at 25 K or b y chemical pressure i n d u c e d b y the substitution o f smaller Fe atoms

MAGNETICPROPERTIESOF INTERMETALLICCOMPOUNDS

321

Mn(lb)~ Mn(3d)~ Tb~ Fig. 24. Magnetic structure of Tb0Vlno.96Fe0.04)2below 30 K, or the S2-typestructure of TbMn2 induced by an applied field of 4.5 T at 25 K (Brown et al. 1992). for a small amount (~4%) of Mn atoms as shown by neutron diffraction (Brown et al. 1992) and by M6ssbauer measurements (Oddou et al. 1993). In this magnetic structure, although all the Mn sites are chemically equivalent, only 25% of them bear a magnetic moment. Note that in TbMn2, as well as in YMn2, the variation of the N6el temperature with hydrostatic pressure reaches a huge value, namely - 3 6 K/kbar (Voiron et al. 1990, Oomi et al. 1987). DyMn2 is the first compound in which, in the absence of applied field, a mixed magnetic-nonmagnetic Mn state was evidenced by NMR (Yoshimura and Nakamura 1984, Yoshimura et al. 1986a). The magnetic structure, as determined from neutron diffraction (Ritter et al. 1991), is similar to that of TbMn2 in an applied field when considering the Mn sublattiee only. Because thorium is tetravalent, the M n - M n distance in ThMn2 cannot be compared with dc determined for trivalent R elements; however in this compound, due to the larger filling of the 3d band, Mn is also close to the magnetic instability. ThMn2 orders antiferromagnetically at TN=ll5 K (Buschow 1977b) in a mixed structure, shown in fig. 25, in which magnetic Mn atoms form a triangular structure resulting from the topological frustration of antiferromagnetic interactions (D6portes et al. 1987a). Note that in all these mixed states the nonmagnetic Mn atoms are those which are subjected to a

322

D. GIGNOUXand D. SCHMITT

In 2

Fig. 25. Projection into the basal plane of the ThMn2 magnetic structure. Only Mn atoms of the 6h site are magnetic (Drportes et al. 1987a). total field smaller than the critical value necessary to induce a magnetic state of higher energy. In particular, in ThMn2 the molecular field on nonmagnetic atoms is strictly zero. However the cancellation of Mn moment on some sites is really a nonmagnetic state and not a paramagnetic one which would have resulted from a simple cancellation of the field on localized moments. Indeed, the susceptibility does not increase at decreasing temperatures as expected for local moments in paramagnetic state in an applied field. Consequently the splitting of the local band is cancelled. 2.3.3. Large Mn anisotropy Although it cannot be measured directly because of the complex frustrated structures, a large local magnetocrystalline anisotropy of Mn moments has been shown in the RMn2 compounds. It manifests itself clearly in YMn2 and NdMn2. In the former, a quantitative analysis of the tilt of the moments with respect to a perfect helix, inferred from NMR and neutron diffraction experiments (Ballou et al. 1987), leads to a local anisotropy of the same order of magnitude as generally observed in uniaxial 3d intermetallics, in particular those containing cobalt (see sect. 2.2). In NdMn2 this anisotropy, of the same order of magnitude as that of Nd in the plane perpendicular to c, is responsible for the noncollinear magnetic structure observed at low temperature (Ballou et al. 1988a).

MAGNETIC PROPERTIES OF INTERMETALLIC COMPOUNDS

323

2.3.4. Giant spin fluctuations Most physical properties of the RMn2 series bear witness to the importance of spin fluctuations in these frustrated systems, which are dramatically enhanced in the compounds close to the Mn magnetic instability, in particular in YMn2. As cited above, the large volume change at TN and the large TEC above this temperature in this compound is ascribed to a substantial reduction of the Mn local moment mMn and then to its rapid recovery with temperature in the paramagnetic state. Indeed, a phenomenological theory of magnetovolume effects (Shiga 1981) has shown that the magnetic contribution to the TEC is proportional to the square amplitude of the local spin fluctuations or, in other words, the square of the local moment. The lattice contribution to the TEC has been taken as that of the Y(Mnl-xAlx)2 compounds for x > 0.1; there it has been established from different measurements (lattice parameter as a function of the AI content, NMR experiments, Yoshimura et al. 1986b) that mMn is stable and takes the maximum local value of about 3/~B which is temperature independent. From this weak contribution to the TEC, it has been possible to deduce the thermal variations of local spin fluctuations, i.e. (m2n), in the different RMn2 compounds. They are schematically shown in fig. 26. Curve (e) is the local moment limit (Y(Mnl_xAlx)2 compounds with x > 0.1, Shiga et al. 1987, Motoya et al. 1988) whereas, at the opposite, curve (a) is the Pauli paramagnetic type limit (ScMn2). In YMn2 the Mn moment, which reaches 2.7#B at low temperature, is reduced to about 1/tB just above TN and recovers to 2#B at room temperature. This result has been confirmed from neutron diffraction experiments below TN and from paramagnetic scattering measurements using polarized neutrons (D@ortes et al. 1987b, Freltoft et al. 1988). The results revealed that the amplitude of the local magnetic moment of Mn atoms drops by more than 30% at TN and then slowly increases with increasing temperature. Moreover, up to 6TN, the paramagnetie scattering was strongly enhanced about the staggered antiferromagnetic wavevector. The thermal variation of the magnetic susceptibility of YMn2 is also quite unusual (fig. 27) and its increase with temperature above TN is further evidence for the increase of the local spin-fluctuation amplitude with temperature. In the nonmagnetic Y0.97Sc0.03Mn2 compound, the TEC as large as in pure (e__])

( PrMn~ Ndt,,tn ,j--F~--~, ts~Mr~2 ' ~u t |GdMn 2 ~ ~c

YMn2

~(c)

/X (

D

-I V

~

Mn2

}HoMn)

Er~4n-

)

(O)

T EMPERATURE

i~ xSC2xi,An

ScMn 2

"ID

Fig. 26. Schematic representation of the temperature variation of ( ~ 2 n ) of RMn2. Curve (a) shows the Pauli paramagnetic type and (e) the local moment limit. The type of spin fluctuations changes from (b) to (d) in RMn 2 with increasing dMn_Mn(Wada et al. 1987a).

324

D. GIGNOUXand D. SCHMITT

...,.. x =0.05



e Xe ¢ 0 • •

•t

..~"

; • • Jl•e• - • • •

i



e 0•* 101

~

x=O.02 ' eev*"- = oI

e

~ I*=l.

i~' %e,

•• •

le • •%

eI

o

x

\



e= I

.o e

•=joe •~eg***oe

o• t,e

• •

i•e • •

leo • • lee • •l*

%

oe e

.e

•e

,•=

..........o.:..f.....

~**

........

ieoQ~ •

"x._AY 0

,

I

100

i

I

200

i

I

~

I

,

I

i

300 t~00 500 T(K} Fig. 27. Temperaturedependenceof the susceptibilityof Y(MnI_~Alx)2 for 0 ~ He, the flipping of all or part of the moments antiparallel to the field which then become parallel to the latter (fig. 125). The concept of spin-flip transition was first introduced by Nrel to interprete the metamagnetism of this type of compounds. In some cases the metamagnetic behaviour involves simultaneously spin-flip and anti spin-flip processes (see for instance Gignoux et al. 1993). HHc M1 ~

M2 .

.

.

.

M1 ~

_ _ _

~

__

Fig. 125. Spin-fliptransition. M t and M z schematizethe directionsof the two sublatticesinvolved.

5.20. Spin-flop transition In compounds with small magnetocrystalline anisotropy, when the field is applied along the moment direction of a collinear antiferromagnetic structure, for a critical field Hc

D. GIGNOUX and D. SCHMITT

416

HHc

Fig. 126. Spin-flop transition. M1 and M 2 schematize the directions of the two sublattices involved. the moments take the magnetic configuration schematized in fig. 126. The concept o f spin-flop transition was first introduced by N6el to account for this type o f transition. For larger fields the moments progressively rotate towards the field direction. 5.21.

Spin fluctuations

This quite general concept is used to specify any shift (in time and space) between the instantaneous value o f magnetic moments and their mean value given by the molecular field approximation and the Boltzmann statistics. Spin fluctuations can be individual and/or collective. In the latter case processes such as spin waves or paramagnons are considered and many models have been developed to interprete experiments with these concepts. 5.22.

Spin-slips (or spin discommensurations)

The concept o f spin-slips or discommensurations was first introduced to explain the observed lock-in transitions in the magnetic spirals o f lanthanide metals such pure Ho and D y in terms o f simple commensurate structures (fig. 127). More generally this term can be used to characterize structures which present periodic faults in a simple sequence o f magnetic moments. For instance, let us consider, in an Ising chain, a sequence o f 4 moments up followed by 3 moments down (this is found in some compounds). The propagation vector is ~. In certain regions of H-T space the propagation vector is slightly

o

b

Fig. 127. Self-consistent mean-field calculations of periodic structures in Ho. Each circle represents the magnitude and direction of the ordered moment in a specific plane, relative to the size of the moment at absolute zero (10/~B), indicated by the length of the horizontal lines. The orientation of moments in adjacent planes is depicted by the positions of the neighbouring circles. (a) The 12-layer zero-spin-slip structure at 4 K. The open circle in the centre indicates the ferromagnetic component in the cone structure; (b) the 1l-layer one-spin-slip structure at 25 K. The bunched pairs of moments are disposed asymmetricallywith respect to the easy axis in the vicinity of the spin slip (after Jensen and Mackintosh 1992).

MAGNETIC PROPERTIES OF INTERMETALLICCOMPOUNDS

417

different, for instance 4 instead of 4 . This indicates the presence of a fault each four sequences. The term spin-slip transition is used to characterize the change from one discommensuration to another. It is generally associated with a metamagnetic transition of small amplitude in the magnetization process and a small shift of the propagation vector, as in PrGa2 (fig. 81) at 1,5K in fields smaller than 9 k O e (Ball et al. 1994a). Relevant references are Gibbs et al. (1985), Cowley and Bates (1988), Jensen and Mackintosh (1992), Gibbs et al. (1986) and Bohr et al. (1986). 5.23. Spin-reorientation transition This term specifies all transitions with temperature (or even pressure) which involve a change in the magnetization direction associated with a symmetry change. These transitions can be of first or second order. Many compounds exhibit such spin reorientations. For instance, in the cubic HoZn compound the magnetization, which is along a two-fold axis below 25K, aligns, through a first-order transition, along a three-fold axis above 2 5 K (Morin and Schmitt 1990). As well, in the hexagonal TbCo5 compound, magnetization is along the six-fold axis below 3 9 0 K and in the basal plane above 440 K. Between these two temperatures a progressive rotation takes place (Lemaire 1966). Under an applied magnetic field spin-reorientation transitions are more specific phenomena in a sense that, when the applied field is not parallel to the initial magnetization, a rotation of the latter always occurs. In that case, spin-reorientation transitions, generally of first order, characterize drastic acceleration o f such rotation process. Such transitions, called FOMR (first-order magnetization reorientation), are frequently observed in lanthanide-3d intermetallics such as Ho2Co17 and Dy2COl7 (Franse and Radwanski 1993). Field-induced spin reorientations have been reviewed by Asti (1990).

References Abe, S., T. Kaneko, M. Ohashi, Y. Nakagawa and T. Kitai, 1992, J. Magn. & Magn. Mater. 104-107, 1403. Alameda, J.M., D. Givord, R. Lemaire and Q. Lu, 1981, J. Appl. Phys. 52, 2079. Alekseev, P.A., A. Andreeff, H. Griessmann, L.P. Kaun, B. Lippold, W. Matz, I.P. Sadikov, O.D. Christyakov, I.A. Markova and E.M. Savitskii, 1980, Phys. Status Solidi b 97, 87. A16onard, R., and E Morin, 1979, Phys. Rev. B 19, 3868. Al~onard, R., and E Morin, 1984, J. Magn. & Magn. Mater. 42, 151.

A16onard, R., and P. Morin, 1990, L Magn. & Magn. Mater. 84, 255. A16onard, R., P. Morin, D. Schmitt and E Hulliger, 1984a, J. Phys. F 14, 2689. A16onard, R., P. Morin and J. Rouchy, 1984b, J. Magn. & Magn. Mater. 46, 233. Amara, M., R.M. Gal~ra, R Morin, T. Veres and P. Burlet, 1994, J. Magn. & Magn. Mater. 130, 127. Andoh, Y., 1987, J. Phys. Soc. Jpn. 56, 4075. Andres, K., and S. Darack, 1977, Physiea B 86-88, 1071. Andres, K., S. Darack and H.R. Ott, 1979, Phys. Rev. B 19, 5475. Asti, G., 1990, in: FerromagneticMaterials, Vol. 5, eds

418

D. GIGNOUX and D. SCHMITT

K.H.J. Buschow and E.P. Wohlfarth (North-Holland, Amsterdam) ch. 5, p. 397. Aubert, G., D. Gignoux, B. Hermion, B. Michelutti and A. Nait-Saada, 1981, Solid State Commtm. 37, 741. Bak, P., 1982, Rep. Prog. Phys. 45, 587. Bak, P., and J. von Boehm, 1980, Phys. Rev. B 21, 5297. Ball, A.R., 1993, Thesis (University of Grenoble) unpublished. Ball, A.R., D. Gignoux, EE. Kayzel, D. Schmitt and A. de Visser, 1992a, L Magn. & Magn. Mater. 110, 337. Ball, A,R., D. Gignoux, D. Schmitt, EY. Zhang and M. Reehuis, 1992b, J. Magn. & Magn. Mater. 110, 343. Ball, A.R., D. Gignoux and D, Schmitt, 1992e, Physica B 180-181, 58. Ball, A.R., D. Gignoux and D. Schmitt, 1993a, J. Magn. & Magn. Mater. 119, 96. Ball, A,R., D. Gignoux, D. Sehmitt and EY. Zhang, 1993b, Phys. Rev. B 47, 11887. Ball, A.R., D. Gignoux, A.E Murani and D. Schmitt, 1993c, Physica B 190, 214. Ball, A.R., D. Gignoux, D. Sehmitt, EY. Zhang and P. Burlet, 1994a, J. Magn. & Magn. Mater. 130, 317. Ball, A.R., D. Gignoux, J. Rodriguez Fernandez and D. Sehmitt, 1994b, J. Magn. & Magn. Mater. 137, 281. Ballou, R., and R. Lemaire, 1988, J. Physique 49, C8-523. Ballou, R., D. Gignoux, R. Lemaire, R. MendiaMonterroso and J. Schweizer, 1986a, J. Magn, & Magn. Mater. 54-57, 499. Ballou, R., D. Gignoux, B. Gorges and R. Lemaire, 1986b, J. Magn. & Magn. Mater. 54-57, 497. Ballou, R., J. Ddportes, R. Lemaire, Y. Nakamura and B. Ouladdiaf, 1987, J. Magn. & Magn. Mater. 70, 129. Ballou, R., J. Ddportes, R. Lemaire and B. Ouladdiaf, 1988a, J. Appl. Phys. 63, 3487. Ballou, R., VM.T.S. Barthem and D. Gignoux, 1988b, Physica 149B, 340. Ballou, R., B. Gorges, R. Lemaire, H. Rakoto and J.C. Ousset, 1989, Physica B 155, 266. Ballou, R., J. Ddportes, R. Lemaire, R Rouault and J.L. Soubeyroux, 1990a, J. Magn. & Magn. Mater. 90-91, 559. Ballou, R., B. Gorges and P. Molho, 1990b, J. Magn. & Magn. Mater. 84, L1.

Ballou, R., C. Lacroix and M.D. Nunez-Regueiro, 1991, Phys. Rev. Lett. 66, 1910. Ballou, R., B. Ouladdiaf, P.J. Brown, M.D. NunezRegueiro and C. Lacroix, 1992, Phys. Rev. B 45, 3158. Barandiaran, J.M., D. Gignoux, D. Schmitt, J.C. Gomez-Sal, J. Rodriguez Fernandez, P. Chieux and J. Schweizer, 1988, J. Magn. & Magn. Mater. 73, 233. Barbara, B., M. Rossignol and P. Bak, 1978, J. Phys. C 11, L183. Barbara, B., D. Gignoux and C. Vettier, 1988, in: Lectures on Modern Magnetism, ed. Li Yifa (Springer, Heidelberg) ch. 10. Barthem, V.M.T.S., D. Gignoux, A. Nait-Saada and D. Schmitt, 1988, Phys. Rev. B 37, 1733. Barthem, V.M.T.S., D. Gignoux, A. Nait-Saada, D. Schmitt and A. Takeuchi, 1989a, J. Magn. & Magn. Mater. 80, 142. Barthem, V.M,T.S., D, Gignoux, D, Schmitt and G. Creuzet, 1989b, J. Magn. & Magn. Mater. 78, 56. Bdal-Monod, M.T., 1982, Physiea B 109-110, 1837. B~al-Monod, M.T., and J.M. Lawrence, 1980, Phys. Rev. B 21, 5400. B~al-Monod, M.T., S.K. Ma and D.R. Fredkin, 1968, Phys. Rev. Lett. 22, 929. B~cle, C., R. Lemaire and D. Paccard, 1970, J. Appl. Phys. 41, 855. Belorizky, E., M.A. Frdmy, J.P. Gavigan, D. Givord and H.S. Li, 1987, J. Appl. Phys. 61, 3971. Belorizky, E., J.P. Gavigan, D. Givord and H.S. Li, 1988, Europhys. Lett. 5, 349. Berk, N., and J.R. Schrieffer, 1966, Phys. Rev. Lett. 17, 433. Berthier, Y., J. D~portes, M. Horvatic and P. Rouault, 1988, J. Phys. (Paris) 49, C8-261. Blanco, J.A., D. Gignoux and D. Schmitt, 1991a, Phys. Rev. B 43, 13145. Blanco, J.A., D. Gignoux, D. Schmitt and C. Vettier, 1991b, J. Magn. & Magn. Mater. 97, 4. Blanco, J.A., D. Schmitt and J.C. Gomez-Sal, 1992a, J. Magn. & Magn. Mater. 116, 128. Blanco, J.A., D. Gignoux and D. Sehrnitt, 1992b, Phys. Rev. B 45, 2529. Blanco, J.A., D. Gignoux and D. Schmitt, 1992c, Z. Phys. B 89, 343. Bloch, D., E Chaissd, E Givord, J. Voiron and E. Burzo, 1971, J. Phys. (Paris) 32, Clq559. Bloeh, D., D.M. Edwards, M. Shimizu and J. Voiron, 1975, J. Phys. F 5, 1217.

MAGNETIC PROPERTIES OF INTERMETALLIC COMPOUNDS Bohr, J., D. Gibbs, D.E. Moncton and K.L. D'Amico, 1986, Physica A 140, 349. Borombaev, M.K., R.Z. Levitin, A.S. Markosyan, VA. Reimer, E.V. Sinitsyn and Z. Smetana, 1987, Sov. Phys.-JETP 66, 866. Boutron, P., 1973, Phys. Rev. 7, 3226. Bouvier, M., P. Lethuillier and D. Schmitt, 1991, Phys. Rev. B 43, 13137. Brinkman, W.E, and S. Engelsberg, 1968, Phys. Rev. 169, 417. Brown, P.J., B. Ouladdiaf, R. Ballou, J. D@ortes and A.S. Markosyan, 1992, J. Phys.: Condens. Matter 4, 1103. Brtm, T.O., EW. Korty and J.S. Kouvel, 1980, L Magn. & Magn. Mater. 15-18, 298. Bruno, R, 1989, Phys. Rev. B 39, 865. Burzo, E., and R. Lemaire, 1992, Solid State Commun. 84, 1145. Buschow, K.H.J., 1977a, Rep. Prog. Phys. 40, 1179. Busehow, K.H.J., 1977b, Solid State Commun. 21, 1031. Buschow, K.H.J., 1979, Rep. Prog. Phys. 42, 1373. Buschow, K.H.J., 1980, in Ferromagnetic Materials, Vol. 1, ed. E.P. Wohlfarth (North-Holland, Amsterdam) oh. 4, p. 297. Buschow, K.H.J., 1988, in: Ferromagnetic Materials, Vol. 4, eds E.P. Wohlfarth and K.H.J. Buschow (North-Holland, Amsterdam) ch. 1, p. 1. Buschow, K.H.J., and R.P. van Stapele, 1970, J. Appl. Phys. 41, 4066. Campbell, I.A., 1972, J. Phys. F 2, L47. Chattopadhyay, T., P. Burlet and J. Rossat-Mignod, 1986, J. Magn. & Magn. Mater. 54--57, 503. Cooper, B.R., 1966, Phys. Lett. 22, 244. Coqblin, B., 1977, The Electronic Structure of RareEarth Metals and Alloys: the Magnetic Heavy RareEarths (Academic Press, New York). Cowley, R.A., and S. Bates, 1988, J. Phys. C 21, 4113. Cyrot, M., and M. Lavagna, 1979, J. Phys. (Paris) 40, 763. Cyrot, M., D. Gignoux, E Givord and M. Lavagna, 1979, J. Phys. (Paris) 40, C5-171. Czjzek, G., V. Oestreich, H. Schmidt, K. Latka and K. Tomala, 1989, J. Magn. & Magn. Mater. 79, 42. Czopnik, A., N. Iliew, B. Stalinski, C. Bazan, H. M~idge and R. Port, 1985, Physica B 130, 259. Daalderop, G.H.O., RJ. Kelly and M.EH. Schuurrnans, 1992, J. Magn. & Magn. Mater. 104--107, 737. Date, M., 1988, J. Phys. Soc. Jpn. 57, 3682. Date, M., 1990, J. Magn. & Magn. Mater. 90-91, 1.

419

del Moral, A., M.R. Ibarra, LS. Abell and LED. Montenegro, 1987, Phys. Rev. B 35, 6800. D@ortes, J., R. Lemaire, B. Ouladdiaf, E. Roudaut and E Sayetat, 1987a, J. Magn. & Magn. Mater. 70, 191. Drportes, J., B. Ouladdiaf and K.R.A. Ziebeck, 1987b, J. Magn. & Magn. Mater. 70, 14. Doniach, S., and S. Engelsberg, 1966, Phys. Rev. Lett. 17, 750. Doukourr, M., and D. Gignoux, 1982, J. Magn. & Magn. Mater. 30, I 11. Duc, N.H., D. Givord, C. Lacroix and C. Pinettes, 1992, Europhys. Lett. 20(1), 47. Effantin, J.M., J. Rossat-Mignod, R Butler, H. Bartholin, S. Kunii and T. Kasuya, 1985, J. Magn. & Magn. Mater. 47-48, 145. Everett, G.E., and P. Streit, 1979, J. Magn. & Magn. Mater. 12, 277. Felcher, G.R, L.M. Corliss and L.M. Hastings, 1965, J. Appl. Phys. 36, 1001. Fillion, G., E Givord, P. Lejay, E. Ressouche, J. Schweizer and A. Stunault, 1992, Physica B 180181, 142. Fischer, E, A. Furrer, E. Kaldis, D. Kim, J.K. Kjerns and P.M. Levy, 1985, Phys. Rev. B 31, 456. Fisher, R.A., R. Ballou, J.P. Emerson, E. Leli~vreBerna and N.E. Phillips, 1992, Int. J. Mod. Phys. B 7, 830. Franse, J.J.M., and R.J. Radwanski, 1993, in: Handbook of Magnetic Materials, Vol. 7, ed. K.H.J. Buschow (North-Holland, Amsterdam) ch. 5, p. 307. Franse, J.J.M., A.A. Menovsky, A. de Visser, C.D. Bredl, U. Gottwich, W. Lieke, H.M. Mayer, U. Rauchschwalbe, G. Sparn and E Steglich, 1985a, Z. Phys. B 59, 15. Franse, LJ.M., ER. de Boer, RH. Frings, R. Gersdoff, A.A. Menovsky, EA. Muller, R.J. Radwanski and S. Sinnema, 1985b, Phys. Rev. B 31, 4347. Franse, J.J.M., N.R Thuy and N.M. Hong, 1988, J. Magn. & Magn. Mater. 72, 361. Franse, J.J;M., R.J. Radwanski and R. Verhoef, 1990, J. Magn. & Magn. Mater. 81,299. Freltoft, T., P. Brni, G. Shirane and K. Motoya, 1988, Phys. Rev. B 37, 3454. FrOmy,M.A., D. Gignoux, D. Schmitt and A. Takeuchi, 1989, J. Magn. & Magn. Mater. 82, 175. Friedel, J., 1969, in: The Physics of Metals, 2. Electrons, ed. J.M. Zeeman (Cambridge University Press, Cambridge) ch. 8.

420

D. GIGNOUX and D, SCHMITT

Fujii, H., and T. Shigeoka, 1990, J. Magn. & Magn. Mater. 90-91, 115. Fukauna, H., T. Komatsubara, T. Suzuki, E. Kaldis and T. Kasuya, 1985, J. Phys. Soc. Jpn. 54, 3067. Ganapathy, E.V., W.E. Wallace and R.S. Craig, 1974, in: Proc. l lth Rare Earth Research Conf., eds J.M. Hoschke and H.A. Eick (USAEC, Oak Ridge, TN) p. 430. Gibbs, D., D.E. Moncton, K.L. D'Amico, J. Bohr and B.H. Grier, 1985, Phys. Rev. Lett. 55, 234. Gibbs, D., J. Bohr, J.D. Axe, D.E. Moncton and K.L. D'Amico, 1986, Phys. Rev. B 34, 8182. Gignoux, D., and R. Lemaire, 1974, Solid State Commun. 14, 877. Gignoux, D., and J.J. Rhyne, 1986, J. Magn. & Magn. Mater. 54-57, 1179. Gignoux, D., and D. Schmitt, 1991, J. Magn. & Magn. Mater. 100, 99. Gignoux, D., and D. Schmitt, 1993, Phys. Rev. B 48, 12682. Gignoux, D., E Givord and R. Lemaire, 1975, Phys. Rev. B 9, 3878. G-ignoux, D., E Givord and W.C. Koehler, 1977, Physiea B 86-88, 165. Gignoux, D., A. Nait-Saada and R. Perrier de la Bathie, 1979, J. Phys. (Paris) 40, C5-188. Gignoux, D., R. Lemaire and P. Molho, 1980a, J. Magn. & Magn. Mater. 21, 119. Gignoux, D., R. Lemaire, P. Molho and E Tasset, 1980b, J. Magn. & Magn. Mater. 21, 307. Gignoux, D., E Givord, R. Lemaire and E Tasset, 1983, J. Less-Common Met. 94, 1. Gignoux, D., R. Lemaire, R. Mendia-Monterroso, J.M. Moreau and J. Schweizer, 1985, Physiea B 130, 376. Gignoux, D., D. Schmitt and M. Zerguine, 1987, J. Magn. & Magn. Mater. 66, 373. Gignoux, D., D. Schmitt and M. Zerguine, 1988, J. Phys. (Paris) 49, C8-433. Gignoux, D., D. Schmitt, A. Takeuchi and EY. Zhang, 1991a, J. Magn. & Magn. Mater. 97, 15. Gignoux, D., D. Schmitt, T. Takeuchi, EY. Zhang, C. Rouchon and E. Roudaut, 1991b, J. Magn. & Magn. Mater. 98, 333. Gignoux, D,, R Morin and D. Schmitt, 1991c, J. Magn. & Magn. Mater. 102, 33. Gignoux, D., E Morin, J. Voiron and P. Burlet, 1992, Phys. Rev. B 46, 8877. Gignoux, D., D. Schmitt, J. Voiron, EY. Zhang, E. Bauer and G. Schandy, 1993, J. Alloys & Compounds 191, 139.

Givord, D., L Laforest and R. Lemaire, 1977, Physica B 86--88, 204. Givord, D., J. Laforest and R. Lemaire, 1979, J. Appl. Phys. 50, 7489. Givord, D., J. Laforest, R. Lemaire and Q. Lu, 1983, J. Magn. & Magn. Mater. 31-34, 191. Givord, E, and LS. Shah, 1972, Comptes Rendus 274, 923. Goremychkin, E.A., E. Mtihle, P.G. Ivanitskii, V.T. Krotenko, M.V. Pasechnik, V.V. Slisenko, A.A. Vasilkevich, B. Lippold, O.D. Chistyakov and E.M. Savitskii, 1984, Phys. Status Solidi b 121, 623. Goremychldn, E.A., E. Mtihle, I. Natkaniec, M. Popescu and O.D. Christyakov, 1985a, Sov. Phys. Solid State 27, 1195. Goremychkin, E.A., E. Miihle, B. Lippold, O.D. Christyakov and E.M. Savitskii, 1985b, Phys. Status Solidi b 127, 371. Goto, T., T, Sakakibara, K. Murata, H. Komatsu and K. Fukamichi, 1990, J. Magn. & Magn. Mater. 90&91, 700. Gubbens, EC.M., A.M. Van der Kraan and K.H.J. Buschow, 1988, J. Magn. & Magn. Mater. 76-77, 187. Hashimoto, Y., 1988, 1. Phys. (Paris) 49, C8-421. Hashimoto, Y., H. Fujii, H. Fujiwara and T. Okamoto, 1979, J. Phys. Soc. Jpn. 47, 67. Herbst, J.H., J.J. Croat, R.W. Lee and W.B. Yelon, 1982, J. Appl. Phys. 53, 250. Hirosawa, S., and Y. Nakamura, 1982, J. Magn. & Magn. Mater. 25, 284. Hulliger, E, 1978, J. Magn. & Magn. Mater. 8, 183. Hulliger, F., 1980, J. Magn. & Magn. Mater. 15--18, 1243. Hutehings, M.T., 1964, Solid State Physics, Vol. 16 (Academic Press, New York) p. 227. Ikeda, K., K.A. Gschneidner Jr, R.J. Stierman, T.-W.E. Tsang and O.D. McMasters, 1984, Phys, Rev. B. 29, 5039. Ikeda, K,, S.K. Dhar, M. Yoshizawa and K.A. Gschneidner Jr, 1991, J. Magn. & Magn. Mater. 100, 292. Ivanov, V., L. Vinokurova and A. Szytuta, 1992a, J. Magn. & Magn. Mater. 110, L259. Ivanov, V., L. Vinokurova, A. Szytuta and A. Zygmunt, 1992b, J. Magn. & Magn. Mater. 114, L225. Iwata, N., 1990, J. Magn. & Magn. Mater. 86, 225. Iwata, N., T. Kimura, T. Shigeoka and Y. Hashimoto, 1987, J. Magn. & Magn. Mater. 70, 279. Iwata, N., T. Kimura, T. Shigeoka and Y. Hashimoto, 1988, J. Magn. & Magn. Mater. 73, 79.

MAGNETIC PROPERTIES OF INTERMETALLIC COMPOUNDS Iwata, N., Y. Hashimoto, T. Kimura and T. Shigeoka, 1989, J. Magn. & Magn. Mater. 81, 354. Iwata, N., K. Honda, T. Shigeoka, Y. Hashimoto and H. Fujii, 1990, J. Magn. & Magn. Mater. 90-91, 63. Iwata, N., M. Nishikawa and T. Shigeoka, 1991, J. Magn. & Magn. Mater. 99, 209. Janak, J.E, and A.R. Williams, 1976, Phys. Rev. B 14, 4199. Jaussaud, C., P. Morin and D. Schmitt, 1980, J. Magn. & Magn. Mater. 22, 98. Jehan, D.A., D.E McMorrow, R.A. Cowley and G.J. Melntyre, 1992, L Magn. & Magn. Mater. 104.107, 1523. Jensen, J., and A.R. Mackintosh, 1990, Phys. Rev. Lett. 64, 2699. Jansen, J., and A.R. Mackintosh, 1992, J. Magn. & Magn. Mater. 104-107, 1481. Je~jini, M., M. Bonnet, P. Burlet, G. Lapertot, J. Rossat-Mignod, J.Y. Henry and D. Gignoux, 1988, J. Magn. & Magn. Mater. 76-77, 405. Kakol, Z., H. Figiel and K. Turek, 1984, IEEE Trans. Mug. MAG-20, 1605. Ka/vius, G.M., 1994, Hyp. Int. 84, 249. Kamimura, H., J. Sakurai, Y. Komura, H. Nakamura, M. Shiga and Y. Nakamura, 1987, J. Magn. & Magn. Mater. 70, 145. Kaneko, T., S. Abe, S. Sakurada, H. Yoshida, G. Kido and Y. Nakagawa, 1992a, J. Magn. & Magn. Mater. 104.107, 1401. Kaneko, T., T. Kitai, S. Abe, M. Ohashi and Y. Nakagawa, 1992b, Physica B 177, 295. Kasuya, T., 1956, Progr. Theor. Phys. 16, 45. Kim, D., and P.M. Levy, 1982, J. Magn. & Magn. Mater. 27, 257. Kirchmayr, H.R., and C.A. Poldy, 1979, in: Handbook on the Physics and Chemistry of Rare Earths, Vol. 2, eds K.A. Gschneidner Jr and L. Eyring (NorthHolland, Amsterdam) oh. 14, p. 55. Kitai, T., T. Kaneko, S. Abe, S. Tomiyoshi and Y. Nakagawa, 1990, L Magn. & Magn. Mater. 90-91, 55. Klein, H.P., A. Menth and R.S. Perkins, 1975, Physiea B 80, 153. Landau, L., and E. Lifshitz, 1981, Statistical Physics (Pergamon Press, Oxford). Lavagna, M., C. Lacroix and M. Cyrot, 1983, J. Phys. F 13, 1007. Lebech, B., Z. Smetana and V. Sima, 1987, J. Magn. & Magn. Mater. 70, 97.

421

Lee, E.W., and E Pourarian, 1976, Phys. Status Solidi a 33, 483. Lemaire, R., 1966, Cobalt 32, 132. Li, H.S., and J.M.D. Coey, 1991, in: Handbook of Magnetic Materials, Vol. 6, ed. K.H.J. Buschow (North-Holland, Amsterdam) ch. 1, p. 1. Lin, H., M.E Collins, T.M. Holden and W. Wei, 1992, J. Magn. & Magn. Mater. 104-107, 1551. Liu, W.L., M. Kurisu, H. Kadomatsu and H. Fujiwara, 1986, J. Phys. Soc. Jpn. 55, 33. Luong, N.H., J.J.M. Franse and TD. Hien, 1985, J. Phys. F 15, 1751. Liithi, B., R. Sommer and R Morin, 1979, J. Magn. & Magn. Mater. 13, 198. Mackintosh, A.R., and J. Jensen, 1992, Physica B 180-181, 1. McAlister, S.E, 1984, J. Phys. F 14, 2167. MeEwen, K.A., and S.W. Zochowski, 1990, J. Magn. & Magn. Mater. 90-91, 94. McEwen, K.A., G.J. Cock, L.W. Roeland and A.R. Mackintosh, 1973, Phys. Rev. Lett. 30, 287. Minakata, R., M. Shiga and Y. Nakamura, 1976, J. Phys. Soc. Jpn. 41, 1435. Misawa, S., 1988, Physica B 149, 162. Mitsuda, S., H. Yoshizawa, N. Wada, Y. (3nuki and I". Komatsubara, 1991, J. Phys. Soe. Jpn. 60, 1428. Mondal, S., S.I-I. Kllcoyne, R. Cywinski, B.D. Rainford and C. Ritter, 1992, J. Magn. & Magn. Mater. 104-107, 1421. Morin, R, 1988, J. Magn. & Magn. Mater. 71, 151. Morin, R, 1993, private communication. Morin, R, and J. Pierre, 1975, Phys. Status Solidi a 30, 549. Morin, R, and D. Schmitt, 1978, J. Phys. F 8, 951. Morin, P., and D. Sehmitt, 1982, Phys. Rev. B 26, 3891. Morin, R, and D. Schmitt, 1990, in: Ferromagnetic Materials, Vol. 5, eds K.H.J. Buschow and E.P. Wohlfarth (North-Holland, Amsterdam) ch. 1, p. 1. Morin, P., J. Rouehy and D. Schrnitt, 1978, Phys. Rev. B 17, 3684. Morin, P., D. Schmitt and E. de Lacheisserie, 1982, J. Magn. & Magn. Mater. 30, 257. Morin, P., J. Rouchy, M. Giraud and A. Czopnik, 1987a, J. Magn. & Magn. Mater. 67, 95, Morin, R, M. Giraud, P. Burlet and A. Czopnik, 1987b, J. Magn. & Magn. Mater. 68, 107. Morin, P., J. Rouchy and D. Sctunitt, 1988, Phys. Rev. B 37, 5401.

422

D. GIGNOUX and D. SCHMITT

Morin, R, J. Rouchy, K. Yonenobu, A. Yamagishi and M. Date, 1989, J. Magn. & Magn. Mater. 81,247. Morin, E, J. Rouchy, D. Schmitt and E. de Laeheisserie, 1990, J. Magn. & Magn. Mater. 90-91, 105. Morin, E, S. Kunii and T. Kasuya, 1991, J. Magn. & Magn, Mater. 96, 145. Moriya, T., 1991, J. Magn. & Magn. Mater. 100, 261. Moriya, T., and H. Hasegawa, 1980, J. Phys. Soc. Jpn. 48, 1490. Moriya, T., and Y. Takahashi, 1978, J. Phys. Soc. Jpn. 45, 397. Motokawa, M., H. Nojiri and 5(. Endoh, 1992, Physica B 177, 279. Motoya, K., T. Freltoft, R B6ni and G. Shirane, 1988, Phys. Rev. B 38, 4796. Mrachkov, J., and E. Leyarovski, 1988, Physica B 150, 404. Mttraoka, Y., M. Shiga and Y. Nakamura, 1983, J. Magn. & Magn. Mater. 31-34, 121. Muraoka, Y., H. Okuda, M. Shiga and Y. Nakarnura, 1984, J. Phys. Soc. Jpn. 53, 331. Murata, K.K., and S. Doniach, 1972, Phys. Rev. Lett. 29, 285. Nakamura, H., Y. Kitaoka, K. Yoshimura, Y. Kohori, K. Asayama, M. Shiga and Y. Nakamura, 1988a, J. Phys. (Pads) Colloq. 49, C8-257. Nakamura, H., H. Wada, K. Yoshimura, M. Shiga, Y. Nakamura, J. Sakurai and Y. Komura, 1988b, J. Phys. F 18, 981. Nakamura, Y., 1983, J. Magn. & Magn. Mater. 31-34, 829. Nakamura, Y., M. Shiga and S. Kawano, 1983, Physica B 120, 212. Nimori, S., G. KJdo, D.X. Li, Y. Haga and T. Suzuki, 1995, J. Magn. & Magn. Mater. 140-144, to appear. Nojiri, H., M. Uchi, S. Watamura, M. Motokawa, H. Kawai, Y. Endoh and T. Shigeoka, 1991, J. Phys. Soc. Jpn. 60, 2380. NordstrOm, L., M.S.S. Brooks and B. Johansson, 1992, J. Magn. & Magn. Mater. 104-107, 1942. Nozaki, H., T. Tanaka and Y. Ishizawa, 1980, J. Phys. C 13, 2751. Nunez-Regueiro, M.D., C. Lacroix and R. Ballou, 1992a, Phys. Rev. B 46, 990. Nunez-Regueiro, M.D., C. Lacroix, R. Ballou and E. Leli~vre-Bema, 1992b, J. Magn. & Magn. Mater. 104-107, 285. Oddou, J.L., C. Jeandey, R. Ballou, J. D6portes and B. Ouladdiaf, 1993, Solid State Commun. 85, 419. Ohkawa, EJ., 1989, Solid State Commun. 71,907.

Ohkoshi, M., H. Kobayashi, T. Katayama, M. Hirano and T. Tsushima, 1976, AlP Conf. Proc. 29, 616. Ohkoshi, M., H. Kobayashi, T. Katayama, M. Hirano and T. Tsushima, 1977, Physica 86--88B, 195. Okamoto, T., H. Fujii, Y. Andoh and H. Fujiwara, 1985, J. Magn. & Magn. Mater. 52, 208. ()nuki, Y., K. Ina, M. Nishihara, T. Komatsubara, S. Takayanagi, K. Kameda and N. Wada, 1986, J. Phys. Soc. Jpn. 55, 1818. Oomi, G., T. Terada, M. Shiga and Y. Nakamura, 1987, J. Magn. & Magn. Mater. 70, 137. Ouladdiaf, B., 1986, Thesis (University of Grenoble) unpublished. Peeharsky, V.K., K.A. Gsehneidner Jr and D. Fort, 1993, Phys. Rev. B 47, 5063. Perkins, R.S., and H. Nagel, 1975, Physica B 80, 143. Perkins, R.S., and S. Str~issler, 1977, Phys. Rev. B 15, 477. Petrieh, G., and R.L. M6ssbauer, 1968, Phys. Lett. A 26, 403. Pines, D., and P. Nozi~res, 1966, The Theory of Quantum Fluids, Vol. I (Benjamin, New York). Pinettes, C., and C. Lacroix, 1993a, J. Magn. & Magn. Mater. 123, 153. Pinettes, C., and C. Lacroix, 1993b, Solid State Commun. 85, 565. Pszczola, J., and K. Krop, 1986, J. Magn. & Magn. Mater. 59, 95. Purwins, H.G., E. Walker, B. Barbara, M. Rossignol and A. Furrer, 1976, J. Phys. C 9, 1025. Radwanski, R.J., 1986, Physica B 142, 57. Radwanski, R.J., J.J.M. Franse and S. Sinnema, 1985, J. Phys. F 15, 969. Radwanski, R.J., J.J.M. Franse and R. Verhoef, 1990, J. Magn. & Magn. Mater. 83, 127. Radwanski, R.J., J.J.M. Franse, EH. Quang and EE. Kayzel, 1992a, J. Magn. & Magn. Mater. 104-107, 1321. Radwanski, R.J., N.H. Kim-Ngan, EE. Kayzel, J.J.M. Franse, D. Gignoux, D. Schmitt and F.Y. Zhang, 1992b, J. Phys.: Condens. Matter 4, 8853. Raffius, G., and J. K6tzler, 1983, Phys. Lett. A 93, 423. Reiffers, M., Y.G. Naidyuk, A.G.M. Jansen, P. Wyder, I.K. Yanson, D. Gignoux and D. Schmitt, 1989, Phys. Rev. Lett. 62, 1560. Ritter, C., S.H. Kilcoyne and R. Cywinski, 1991, J. Phys.: Condens. Matter 3, 727. Rossat-Mignod, J., 1986, in: Neutron Scattering in Condensed Matter Research, eds K. Skold and D.L. Price (Academic Press, New York).

MAGNETIC PROPERTIES OF INTERMETALLIC COMPOUNDS

423

Rossat-Mignod, J., E Burlet, S. Quezel, J.M. Effantin, Stmat, K.J., 1988, in: Ferromagnetic Materials, Vol. D. Delacote, H. Bartholin, O. Vogt and D. Ravot, 4, eds E.P. Wohlfarth and K.H.J. Buschow (North1983, J. Magn. & Magn. Mater. 31-34, 398. Holland, Amsterdam) ch. 2, p. 131. Ruderman, M.A., and C. Kittel, 1954, Phys. Rev. 96, Stryjewski, E., and N. Cfiordano, 1977, Adv. Phys. 26, 487. 99. Sakakibara, T., T. Goto, K. Yoshimura, M. Shiga, Y. Sugiura, E., K. Sugiyama, H. Kawanaka, T. Takabatake, H. Fujii and M. Date, 1990, J. Magn. & Nakamura and K. Fukamichi, 1987, J. Magn. & Magn. Mater. 90-91, 65. Magn. Mater. 70, 126. Sato, K., Y. Yosida, Y. Isikawa and K. Moil, 1986, Sugiyama, K., Y. Koyoshi, S. Kunii, T. Kasuya and M. Date, 1988, J. Phys. Soc. Jpn. 57, 1762. J. Magn. & Magn. Mater. 54-57, 467. Sugiyama, K., K. Yonenobu, M. Date, T. Shigeoka Schinkel, C., 1978, J. Phys. F 8, L87. and H. Fujii, 1992, Physica B 177, 275. Schmitt, D., 1986, J. Phys. (Paris) 47, 677. Svoboda, P., M. Divis, A.V. Andreev, N.V. Baranov, Schweizer, J., and E Tasset, 1980, J. Phys. F 10, 2799. M.I. Bartashevich and P.E. Markin, 1992, J. Magn. Selke, W., and RM. Duxbury, 1984, Z. Phys. B 57, & Magn. Mater. 104-107, 1329. 49. Szytuta, A., R.J. Radwanski and ER. de Boer, 1992, Shiga, M., 1981, J. Phys. Soc. Jpn. 50, 2573. J. Magn. & Magn. Mater. 104-107, 1237. Shiga, M., H. Wada, H. Nakamura, K. Yoshimura and Takahashi, M., H. Tanaka, T. Satoh, M. Kohgi, Y. Y. Nakamura, 1987, J. Phys. F 17, 1781. Ishikawa, T. Miura and H. Takei, t988, J. Phys. Shigeoka, T., N. Iwata, H. Fujii, T. Okamoto and Y. Soc. Jpn. 57, 1377. Hashimoto, 1987, J. Magn. & Magn. Mater. 70, Takayanagi, S., Y. ()nuki, K. Ina, T. Komatsubara, 239. N. Wada, T. Watanabe, T. Sakakibara and T. Goto, Shigeoka, T., N. Iwata, Y. Hashimoto, Y. Andoh and 1989, J. Phys. Soe. Jpn. 58, 1031. H. Fujii, 1988, J. Phys. (Paris) 49, C8-431. Takayanagi, S., N. Wada, Y. ()nuki and T. KomatsubShigeoka, I"., H. Fujii, K. Yonenobu, K. Sugiyama and ara, 1991, J. Phys. Soc. Jpn. 60, 975. M. Date, 1989, J. Phys. Soc. Jpn. 58, 394. Shigeoka, T., M. Saeki, N. Iwata, T. Takabatake and Tanaka, Y., I". Tsuchida and Y. Nakamura, 1980, J. Phys. Soc. Jpn. 48, 1092. H. Fujii, 1990, J. Magn. & Magn. Mater. 90-91, Thuy, N.P., and J.J.M. Franse, 1986, J. Magn. & Magn. 557. Mater. 54-57, 915. Shigeoka, T., H. Fujii, M. Nishi, Y. Uwatoko, T. Thuy, N.P., J.J~M. Franse, N.M. Hong and R.D. Hien, Takabatake, I. Oguro, K. Motoya, N. Iwata and 1988, J. Phys. (Paris) 49, C8-499. Y. Ito, 1992a, J. Phys. Soc. Jpn. 61, 4559. Tomiyama, F., M. Ono, M. Date, A. Yamagishi, R. Shigeoka, T., S. Kawano, N. Iwata and H. Fujii, 1992b, Verhoef, F.R. de Boer, LJ.M. Franse and X.P. Zhong, Physica B 180-181, 82. 1991, J. Appl. Phys. 69, 5539. Shigeoka, T., A. Gamier, D. Gignoux, D. Schmitt, EY. Tsuneto, T., and T. Mumo, 1971, Physiea 51, 186. Zhang and R Buffet, 1994, J. Phys. Soc. Jpn. 63, Ueda, K., and T Moriya, 1975, J. Phys. Soc. Jpn. 39, 2731. 605. Shimizu, K., 1985, J. Phys. Soc. Jpn. 54, 1154. Uhl, M., L. Sandratskii and J. KObler, I993, Int. J. Shimizu, M., J. Inoue and S. Nagasawa, 1984, J. Phys. Mod. Phys. 7, 1027. F 14, 2673. Van der Goot, A.S., and K.H.J. Buschow, 1971, Phys. Shohata, N., 1977, J. Phys. Soe. Jpn. 42, 1873. Status Solidi a 5, 665. Sinnema, S., R.J. Radwanski, JJ.M. Franse, D.B. de Verhoef, R., F.R. de Boer, J.J.M. Franse, C.J.M. Mooij and K.H.J. Buschow, 1984, J. Magn. & Magn. Denissen, T.H. Jacobs and K.H.J. Busehow, 1989, Mater. 44, 333. J. Magn. & Magn. Mater. 80, 41. Sinnema, S., J.J.M. Franse, A.A. Menovsky and R.J. Verhoef, R., R.J. Radwanski and JJ.M. Franse, 1990, Radwanski, 1986, J. Magn. & Magn. Mater. 54-57, J. Magn. & Magn. Mater. 89, 176. 1639. Verhoef, R., S. Sinnema, P.H. Quang and JJ.M. Franse, Sinnema, S., J.J.M. Franse, R.J. Radwanski, A.A. 1992, J. Magn. & Magn. Mater. 104-107, 1325. Menovsky and ER. de Boer, 1987, J. Phys. F 17, Vinokurova, L., V. Ivanov and A. Szytuta, 1991, 233. J. Magn. & Magn. Mater. 99, 193.

424

D. GIGNOUX and D. SCHMITT

Voiron, J., and D. Bloch, 1971, J. Phys. (Paris) 32, 949. Voiron, J., J. Beille, D. Bloch and C. Vettier, 1973, Solid State Commun. 13, 201. Voiron, J., R. Ballou, J. D6portes, R.M. Gal~ra and E. Leli~vre-Bema, 1990, J. Appl. Phys. 69, 5678. Wada, H., H. Nakamura, K. Yoshimura, M. Shiga and Y. Nakamura, 1987a, J. Magn. & Magn. Mater. 70, 134. Wada, H., H. Nakamura, E. Fukami, K. Yoshimura, M. Shiga and Y. Nakamura, 1987b, J. Magn. & Magn. Mater. 70, 17. Wada, H., K. Yoshimura, G. Kido, M. Shiga, M. Mekata and Y. Nakamura, 1988, Solid State Commun. 65, 23. Waind, ER., I,S. MacKenzie and M.A.H. McCausland, 1983, J. Phys. F 13, 1041. Weber, K., 1977, Physiea B 86--88, 91. Weinert, M., and A.J. Freeman, 1983, J. Magn. & Magn. Mater. 38, 23. Wohlfarth, E.E, 1951, Philos. Mag. 42, 374. Wohlfarth, E.E, and E Rhodes, 1962, Philos. Mag. 7, 1817. Yamada, H., and M. Shimizu, 1985, J. Phys. F 15, L175. Yamada, H., and M. Shimizu, 1988, J. Phys. (Pads) 49, C8-247. Yamada, H., and M. Shimizu, 1990, J. Magn. & Magn. Mater. 90&91, 703.

Yamada, H., J. Inoue, K. Terao, S. Kanda and M. Shimizu, 1984, J. Phys. F 14, 1943. Yamada, H., J. Inoue and M. Shimizu, 1985, J. Phys. F 15, 169. Yamada, H., T. Tohyama and M. Shimizu, 1987, J. Magn. & Magn. Mater. 70, 44. Yamashita, M., M. Kurisu, H. Kadomatsu, I. Oguro and H. Fujiwara, 1987, J. Phys. Soe. Jpn. 56, 32. Yoshie, H., M. Shiga and Y. Nakamura, 1985, J. Phys. Soe. Jpn 54, 1116. Yoshimura, K., and Y. Nakamura, 1984, J. Phys. Soe. Jpn, 53, 3611. Yoshimura, K., T. Shimizu, M. Takigawa, H. Yosuoka and Y. Nakamttra, 1984, J. Phys. Soe. Jpn. 53, 503. Yoshimura, K., M. Shiga and Y. Nakamura, 1986a, J. Phys. Soc. Jpn. 55, 3585. Yoshimura, K., M. Takigawa, H. Yasuoka, M. Shiga and Y. Nakamura, 1986b, J. Magn. & Magn. Mater. 54-57, 1075. Yoshimura, K., Y. Yoshimoto, M. Mekata, T. Sakakibara and T. Goto, 1987, J. Magn. & Magn. Mater. 70, 147. Yosida, K., 1957, Phys. Rev. 106, 893. Zhang, EY., 1992, Thesis (University of Grenoble) unpublished. Zhang, EY., D. Gignoux, D. Schmitt, J.J.M. Franse, EE. Kayzel, N.H. Kim-Ngan and R.J. Radwanski, 1994, J. Magn. & Magn. Mater. 130, 108.

AUTHOR INDEX Aarts, J., s e e Steglich, F. 6 Abe, S. 388 Abe, S., s e e Kaneko, T. 388, 397 Abe, S., s e e Kitai, T. 388 Abell, J.S., s e e del Moral, A. 355 Abeln, A. 212, 229, 252, 271,273, 276, 277 Abeln-Heidel, A., s e e Arons, R.R. 271,273 Aehard, J.C., s e e Rossat-Mignod, J. 62 Adachi, G. 140, 170-172 Adachi, G., s e e Arakawa, T. 144 Adachi, G., s e e Sakaguchi, H. 169-172 Adaehi, G., s e e Shirai, H. 172 Adams, RE, s e e Hubberstey, P. 140 Affrossman, S. 143 Affrossman, S., s e e Gimzewski, J.K. 137 Aguilera-Granja, E 122 Ahmed-Mokhtar, N. 127 Ahn, C.C., s e e Johnson, R.W. 178 Aidun, J.B. 132 Aknetey, A . , s e e McMinn, R. 134 Aksela, H., s e e Chorkendorff, I. 114 Aksela, S., s e e Chorkendorff, I. 114 A1-Bassam, T.S., s e e Hussain, A . A . A . 134 Alameda, J.M. 145, 311,312 Alameda, J.M., s e e Dieny, B. 165 Albert, L., s e e Gasgnier, M. 132 Albessard, A.K., s e e Aoki, H. 76-78 Albessard, A.K., s e e Ebihara, T. 42, 44-46, 48, 49, 51 Albessard, A.K., s e e Onuki, Y. 74-78, 80 Aldred, A.T., s e e Friedt, J.M. 282 Alekseev, P.A. 339, 341 Al~onard, R. 355, 357, 394, 395, 397 Aliotta, C.E, s e e Ronay, M. 185 Allain, Y., s e e Daou, J.N. 216, 268, 269 Allay, L., s e e Bosca, G. 132 Allen, C.W. 174 Allen, J.W. 115 Allen, J.W., s e e Heeht, M.H. 131 Allen, J.W., s e e Johansson, L.I. 115, 131 Allen Jr, S.J. 186, 187 Allen Jr, S.J., s e e Palmstrom, C.J. 186 Allenspach, R., s e e Landolt, M. 124 Allenspach, R., s e e Taburelli, M. 124 Allibert, C.H. 153

Alvarado, S.E 131 Alvarado, S.E, s e e Weller, D. 122-124 Amara, M. 398 Amaral, V.S., s e e Freitas, P.P. 185 Amato, A. 94, 95 Amato, A., s e e Gygax, EN. 232 Amato, A., s e e Rossat-Mignod, J. 81 Ambroth, K.E., s e e Krost, A. 188, 189 Andersen J.N. 115, 116 Andersen J.N., s e e Nilsson, A. 116 Andersen J.N., s e e Stenborg, A. 117 Andersen O.K. 12 Anderson I.S. 216, 233, 234 Anderson I.S., s e e Berk, N.E 232 Anderson I.S., s e e Carmelli, G. 232 Anderson I.S., s e e Gygax, EN. 232 Anderson I.S., s e e Leisure, R.G. 232 Anderson I.S., s e e Udovie, T.J. 234, 235, 243 Anderson O.K., s e e Jepson, J. 22 Anderson P.W. 3 Andoh, Y. 361 Andoh, Y., s e e Okamoto, T. 360, 361 Andoh, Y., s e e Shigeoka, T. 382 Andr6, G. 227, 230, 281 Andr6, G., s e e Vajda, P. 259, 275, 281,282 Andreeff, A., s e e Alekseev, P.A. 339, 341 Andreev, A.V., s e e Svoboda, P. 387 Andres, K. 339, 341 Andrews, B., s e e Li, D. 123 Angadi, M.A. 133 Angadi, M.A., s e e Ashrit, EV. 133 Annapoorni, S. 168 Antepenko, R.J. 142 Antepenko, R.J., s e e Holloway, D.M. 142 Anthony, T., s e e Coulman, D. 166 Anthony, T.C. 168 Antomangeli, F., s e e Sigrist, M. 126, 128 Aoki, H. 63~55, 76-78 Aoki, H., s e e Crabtree, G.W. 62-64 Aoyama, A. 166 Apai, G., s e e Mason, M.G. 114 Apostolov, A.V 126, 127 Arakawa, T. 144 Arbman, G.O., s e e Koelling, D.D. 12 Arko, A.J. 31, 33 425

426

AUTHOR INDEX

Arons, R.R. 210, 267, 271,273, 277-279, 281 Arons, R.R., s e e Bohn, H.G. 277 Asano, A., s e e Kubo, Y. 14, 36, 37 Asano, H. 91 Asayama, K., s e e Nakamura, H. 319 Ashrit, P.V. 133 Ashrit, EV., s e e Angadi, M.A. 133 Aso, K . , s e e Hashimoto, S. 168 Assmus, W., s e e Hunt, M. 81, 82 Asti, G. 417 Atzrnony, U., s e e Venkert, A. 179 Aubert, G. 339 Awano, H., s e e Katayama, T. 166 Axe, J.D., s e e Gibbs, D. 268, 378, 417 Aylesworth, K.D. 146, 150, 151 Aylesworth, K.D., s e e Shan, Z.S. 158 Aylesworth, K.D., s e e Strzeszewski, J. 151 Ayres de Campos, N., s e e Ferreira, P. 260 Baba, K. 188 Baba, K., s e e Nakamura, O. 118, 125 Baberschke, K. 122 Baberschke, K., s e e Farle, M. 122, 123 Babldn, G.V., s e e Gonchar, EM. 118 Babkin, G.V., s e e Lozovyi, Ya.B. 119 Bacburin, V.I. 125 Bacon, EM. 141 Baczewski, L.T. 159, 161 Baczewski, L.T., s e e Piecuch, M. 159, 161 Badia, E 157 Badia, E, s e e Ferrater, C. 158 Baenziger, C., s e e Eick, H.A. 110 Baer, Y., s e e Lang, J.K. 115 Baer, Y., s e e Moser, H.R. 130-132 Baihe, M., s e e Zhao, Z.B. 152 Baillif, P., s e e Gasgnier, M. 109 Bak, R 399, 400 Bak, P., s e e Barbara, B. 360 Ball, A.R. 342, 351-353, 365, 366, 375, 377, 378, 380, 386, 391,392, 402-406, 417 Ballou, R. 308, 310, 313, 317, 319, 320, 322, 324-327, 336, 339 Ballou, R., s e e Brown, P.J. 321 Ballou, R., s e e Fisher, R.A. 324 Ballou, R., s e e Nunez-Regueiro, M.D. 325 Ballou, R., s e e Oddou, J.L. 321 Ballou, R., s e e Voiron, J. 321 Bannai, E., s e e Ishizawa, Y. 31-33, 35 Barandiaran, J.M. 366 Baranov, N.V.., s e e Svoboda, R 387 Barbara, B. 67, 299, 360 Barbara, B., s e e Gratz, E. 87 Barbara, B., s e e Kaindl, G. 117 Barbara, B., s e e Lethuillier, R 48

Barbara, B., s e e Purwins, H.G. 360 Barbara, B., s e e von Molnar, S. 178, 180 Bardolle, J., s e e Gasgnier, M. 109 Bareham, H., s e e Corner, W.D. 126 Barnes, R.G. 216 Barnes, R.G., s e e Barnfather, K.J. 237 Barnes, R.G., s e e Belhoul, M. 277 Barnes, R.G., s e e Borsa, E 237 Barnes, R.G., s e e Han, J.W. 233 Barnes, R.G., s e e Klavins, P. 215, 221,225, 226, 229 Barnes, R.G., s e e Lichty, L.R. 232, 233,244 Barnes, R.G., s e e Phua, T.T. 237 Barnes, R.G., s e e Shinar, J. 251,253, 255 Barnes, R.G., s e e Torgeson, D.R. 233 Barnes, R.G., s e e Udovic, T.J. 234 Barnes, R.G., s e e Zamir, D. 256 Barnfather, K.J. 237 Barski, A., s e e Rossi, G. 130 Bartashevich, M.I., s e e Svoboda, E 387 Barth, J., s e e Gerken, F. 115, 131 Barth, J., s e e Johansson, L.I. 181 Barth, J., s e e Kammerer, R. 115 Barthem, VM.T.S. 339 341,343,344 Barthem, V.M.T.S., s e e Ballou, R. 339 Bartholin, H., s e e Effantin, J.M. 31,359, 397 Bartholin, H., s e e Rossat-Mignod, J. 62, 401 Bashev, V.E, s e e Tkach, V.I. 110 Bashkin, I.O. 225, 231 Bastow, T.J.M., s e e Barnes, R.G. 216 Bates, S., s e e Cowley, R.A. 417 Bauer, E. 128 Bauer, E., s e e Gignoux, D. 375, 377, 415 Bauer, E., s e e Gratz, E. 87 Bauer, E., s e e Kolaczkiewicz, J. 122 Bauer, E., s e e Stenborg, A. 116, 117 Bauer, G., s e e Krost, A. 188, 189 Bauer, R.S., s e e Allen, J.W. 115 Bauman, E, s e e Haussler, P. 118 Bazan, C., s e e Czopnik, A. 398 B6al-Monod, M.T. 304, 305 Beatfie, A.G. 241 Beaudry, B.J. 112, 217, 219, 234, 245 Beaudry, B.J., s e e Borsa, E 237 Beaudry, B.J., s e e Corner, W.D. 126 Beaudry, B.J., s e e Gschneidner Jr, K.A. 112 Beaudry, B.J., s e e Ito, T. 229, 268, 269 Beaudry, B.J., s e e Kai, K. 229, 241,252, 256 Beaudry, B.J., s e e Khatamian, D. 216, 219 Beaudry, B.J., s e e Klavins, P. 215, 221,225, 226, 229 Beaudry, B.J., s e e Phua, T.T. 237 Beaudry, B.J., s e e Saw, C.K. 216, 219 Beaudry, B.J., s e e Shinar, J. 251,253, 255, 257

AUTHOR INDEX Beaudry, B.J., s e e Vajda, R 220, 236, 243, 245 Beaudry, B.J., s e e V611d, J. 233 Beavis, L.C. 142 Becker, M.E, s e e Choe, G. 163 B~cle, C. 367 Beille, J., s e e Voiron, J. 303 Belhoul, M. 277 Belhoul, M., s e e Phua, T.T. 237 Belorizky, E. 328-330, 337, 343-345 Benham, M.J., s e e Bennington, S.M. 234, 269 Bermington, S.M. 234, 269 Bennington, S.M., s e e Fairclough, J.EA. 219 Benoit, A. 52 Berendschot, T.T.J.M., s e e van der Meulen, H.E 81 Berger, L., s e e De Luca, J.C. 180 Berghaus, A., s e e Farle, M. 123 Berk, N. 304 Berk, N.E 232 Berk, N.E, s e e Anderson, I.S. 234 Berk, N.E, s e e Udovic, T.J. 234, 235 Bertel, E., s e e Netzer, EP. 108, I 11, 143, 144 Berthier, Y. 313 Besenicar, S., s e e Hole, J. 150 Besnus, M.J. 74 Bieganski, Z. 229, 282-284 Bieganski, Z., s e e Drulis, M. 241,252 Bieganski, Z., s e e Opyrchal, J. 278 Biget, M., s e e Daou, J.N. 219 Birecki, H., s e e Anthony, T.C. 168 Bischof, R. 214, 217, 271,273, 279 Bischoff, E., s e e Knoch, K.G. 152 Bittner, H., s e e Oesterreicher, H. 137 Biyadi, K., s e e Bras, J. 147 Bj6rneholm, O., s e e Stenborg, A. 117 Blancard, C. 112, 114 Blancard, C., s e e Gasgnier, M. 132 Blancard, C., s e e Sarpal, B.K. 112 Blaneo, J.A. 365, 370-373, 382, 383, 401-406 Blasehko, O. 215, 219, 220, 234 Blasehko, 0 . , s e e Andr6, G. 227, 230, 281 Blaschko, 0 . , s e e Pleschiutschnig, J. 234 Blaschko, O, s e e Udovie, T.J. 234, 235 Bloch, D. 300, 301,303 Bloch, D., s e e Voiron, J. 303 Block, J.H., s e e Melmed, A.J. 118, 119 Boespflug, E.R, s e e Harris, J.M. 177 Boeva, O.A. 136, 143, 240 Boeva, O.A., s e e Zhavoronkova, K.N. 136 Boffa, G., s e e Taborelli, M. 124 Bohdziewicz, A. 184 Bohn, H.G. 277 Bohr, J. 417 Bohr, J., s e e Gibbs, D. 268, 378, 417

427

Boltich, E.B., s e e Cheng, S.E 155 B6ni, P., s e e Freltoft, T. 323 B6ni, R, s e e Motoya, K. 323 Bonnet, J.E. 219, 225, 240 Bonnet, J.E., s e e Anderson, I.S. 216, 233 Bonnet, J.E., s e e Daou, J.N. 219, 245 Bonnet, J.E., s e e Schlapbach, L. 252, 257, 265, 266 Bonnet, M., s e e Jerjini, M. 70, 392 Borgensen, P. 180 Borkowska, W., s e e Drulis, M. 282 Boroch, E. 221,225, 226 Boroch, E., s e e Kaldis, E. 225 Borombaev, M.K. 364 Borsa, E 237 Bosca, G. 132 Boucherle, J.X., s e e Barbara, B. 67 Boucherle, LX., s e e Benoit, A. 52 Boukraa, A. 275, 282-285 Boukraa, A., s e e Ratishvili, I.G. 227 Boulesteix, C. 108 Boulet, R.M. 52 Bouten, RC.R, s e e Buschow, K.HJ. 108 Boutron, P. 340 Bouvier, M. 365, 405 Braaten, N.A. 178 Bracconi, R 137 Brag, J., s e e Anthony, T.C. 168 Braicovich, L., s e e Carbnne, C. 124, 158 Bran&, N.B. 5 Brar, N.S. 132 Bras, J. 147 Braun, H.E, s e e Kuboth, M. 185 Brearley, W., s e e Surplice, N.A. 143 Br~chignac, C. 114 Bredl, C.D. 70, 90 Bredl, C.D., s e e Franse, J.J.M. 325 Bredl, C.D., s e e Gratz, E. 87 Bredl, C.D., s e e Steglich, E 6 Brinkrnan, W.E 305 Briones, E, s e e Martinez, B. 146 Brooks, J.W. 182 Brooks, M.S.S., s e e Nordstr6m, L. 313, 314 Brouder, C. 159, 165 Brouder, C., s e e Guilmin, E 165 Brousseau, B., s e e Frandon, L 128-130 Brousseau-Lahaye, B. 128, 129 Brown, L.M., s e e Colliex, C. 132 Brown, L.M., s e e Gasgnier, M. 130 Brown, RJ. 321 Brown, RJ., s e e Ballou, R. 325, 327 Broyer, B., s e e Rayane, D. 114 Brun, T.O. 394 Bruno~ E 313

428

AUTHOR INDEX

Bruson, A., s e e Brouder, C. 159 Bryan, S.I. 179 Bucher, E., s e e Jayaraman, A. 7 Buevoz, J.L., s e e Barbara, B. 67 Burger, J.P. 229, 238, 243, 251,252, 257-261, 268, 271,273, 275-277, 283, 285 Burger, J.P., s e e Blaschko, O. 219, 234 Burger, J.P., s e e Daou, J.N. 213, 217, 219, 220, 225, 229, 233, 238, 239, 241,243-246, 248, 251,252, 255, 258, 262, 264, 267, 269, 271, 273, 277-279, 283 Burger, J.E, s e e Gupta, M. 243, 256 Burger, J.P., s e e Lucasson, A. 241,243, 251,252 Burger, J.P., s e e Schlapbach, L. 252, 257, 265, 266 Burger, J.P., s e e Senoussi, S. 271,273, 277, 279 Burger, J.P., s e e Shaltiel, D. 285 Burger, J.P., s e e Vajda, P. 213, 220, 227, 229, 230, 233, 236-238, 243-246, 251,256-259, 262, 267-271,273,275, 277-281 Buffet, P., s e e Amara, M. 398 Burlet, E, s e e Ball, A.R. 377, 378, 380, 417 Burlet, P., s e e Chattopadhyay, T. 401 Buffet, P., s e e Effantin, J.M. 31,359, 397 Burlet, P., s e e Gignoux, D. 389, 406 Buffet, P., s e e Jerjini, M. 70, 392 Burlet, P., s e e Morin, E 397-399 Burlet, P., s e e Rossat-Mignod, J. 62, 401 Buffet, P., s e e Shigeoka, T. 368 Burmistrova, O.P. 119 Burzo, E. 108, 144, 306 Burzo, E., s e e Bloch, D. 303 Buschow, K.H.J. 4, 108, 156, 177, 296, 321,328, 329, 338 Busehow, K.H.J., s e e Coene, W. 152 Buschow, K.H.J., s e e Gubbens, P.C.M. 339 Buschow, K.H.J., s e e Sirmema, S. 329 Buschow, K.H.J., s e e Van der Goot, A.S. 301 Busehow, K.H.J., s e e Verhoef, R. 331,332 Buxbaum, R.E. 141 Cable, J.W., s e e Arons, R.R. 273, 277 Cabuad, E, s e e Rayane, D. 114 Cadieu, EJ. 145, 155, 156 Cadieu, EJ., s e e Kamprath, N. 155 Cadieu, F.J., s e e Liu, N.C. 155 Cadieu, EJ., s e e Stadelmaier, H.H. 155 Cahuzae, Ph., s e e Br~chignac, C. 114 Callaway, J. 9 Camley, R.E. 159, 163 Camley, R.E., s e e LePage, J.G. 159 Campagna, M., s e e Alvarado, S.E 131 Campagna, M., s e e Hillebrecht, F.U. 63 Campagna, M., s e e Weller, D. 122, 124

Campbell, I.A. 329, 345 Cannelli, G. 232 Cantelli, R., s e e Cannelli, G. 232 Capellen, J., s e e Gschneidner Jr, K.A. 112 Carbone, C. 124, 158 Carlier, E, s e e Br6chignae, C. 114 Carlin, R.L. 271,275, 277, 281,282, 284, 285 Caro, P., s e e Dexpert-Ghys, J. 137 Caro, P., s e e Gasgnier, M. 132, 146, 160 Carter, C.B., s e e Zhu, J.G. 186 Castaing, B., s e e Goy, P. 25 Caulet, J. 187 Caulet, J., s e e Guivarc'h, A. 187 Caulet, J., s e e Le Corre, A. 187, 188 Cendlewska, B. 184 Cendlewska, B., s e e Bohdziewicz, A. 184 Cern~,, S, 143 Cern~,, S, s e e Boeva, O.A. 136, 143, 240 CereS,, S., s e e Smutek, M. 136 Cerri, A. 125, 140 Chaiss6, E, s e e Bloch, D. 303 Chang, C.L., s e e den Boer, M.L. 115, 130 Chang, C.T., s e e Han, J.W. 233 Chang, C.T., s e e Torgeson, D.R. 233 Chang, S., s e e Franciosi, A. 132 Chang, S., s e e Raisanen, A. 132 Chang, S., s e e Wall, A. 132 Chang, Y.S., s e e Parks, R.D. 181 Chapman, J.W. 126 Chapman, S.B. 92, 94, 95 Chassaing, G., s e e Sigrist, M. 126, 128 Chattopadhyay, T. 401 Chattopadhyay, T., s e e Rossat-Mignod, J. 62 Chaumont, J., s e e Mathevet, J.P. 180 Chee, K.T. 128, 129 Cheetham, A.K., s e e Titcomb, C.G. 225 Chen, D.Y. 132 Chen, EL., s e e Sakamoto, Y. 182 Chen, J.K., s e e Ramesh, R. 150, 151 Chen, K., s e e Cadieu, EJ. 156 Chen, N,, s e e Rau, C. 123 Chen, X., s e e Ma, E. 143 Cheng, S.E 155 Chang, S.E, s e e Demczyk, G.B. 155 Cherifi, K. 160 Chernoplekov, N.A., s e e Parshin, EP. 243 Chieux, E, s e e Barandiaran, J.M. 366 Chiheb, M. 219, 221,225, 227 Chiheb, M., s e e Daou, J.N. 219, 234 Chirico, R.D., s e e Carlin, R.L. 275, 281 Chistyakov, O.D., s e e Goremyehkin, E.A. 339, 342 Chizhov, P.E. 134 Chizhov, P.E., s e e Kostygov, A.N. 134

AUTHOR INDEX Chizhov, RE., s e e Morozov, Yu.G. 134 Chlebeck, H.G., s e e Curzon, A.E. 110 Choe, G. 163 Chorkendorff, I. 114, 116 Chorkendorff, I., s e e Andersen, J.N. 115, 116 Chorkendorff, I., s e e Nyholm, R. 116 Chorkendorff, I., s e e Onsgaard, J. 116, 117, 127, 129, 131 Chouteau, G., s e e Burger, J.E 268 Chouteau, G., s e e Daou, J.N. 269 Chouteau, G., s e e Vajda, E 268, 269 Chowdhury, M.R. 229, 237 Christensen, N.E., s e e Zwieknagl, G. 14, 77, 78 Christyakov, O.D., s e e Alekseev, RA. 339, 341 Christyakov, O.D., s e e Goremyehkin, E.A. 339 Ciszewski, A. 118 Clark, M.R., s e e Haschke, J.M. 231 Claus, H., s e e Carlin, R.L. 271,277 Cochet-Muchy, D. 151 Cock, GJ., s e e McEwen, K.A. 350, 351 Coene, W. 152 Coey, J.M.D. 108, 178 Coey, J.M.D., s e e Li, H.S. 328 Cofield, M.L., s e e Shin, S.C. 160 Colliex, C. 117, 128-130, 132, 137 Colliex, C., s e e Brousseau-Lahaye, B. 128, 129 Colliex, C., s e e M a n o u b i , T. 132 Collins, M.E, s e e Lin, H. 379 Connerade, J.R 111, 112, 114, 115 Connerade, J.P., s e e Blancard, C. 112, 114 Connerade, J.R, s e e Esteva, JM. 131, 132 Cormerade, J.R, s e e Sarpal, B.K. 112 Cormor, D.W., s e e Rush, JA. 243 Contreras, M.C., s e e Alameda, J.M. 145 Cooper, B.R. 350, 353 Coqblin, B. 415 Cordero, E 232 Cordero, E, s e e Cannelli, G. 232 Corliss, L.M., s e e Feleher, G.R 317 Comer, W.D. 126 Comer, W.D., s e e Smith, R.L. 126 Cosier, J., s e e Hill, R.W. 39 Cotts, R.M., s e e Schreiber, D.S. 236, 237 Cotts, R.M., s e e Zamir, D. 256 Coulman, D. 166 Cowgill, D.F. 141 Cowgill, D.E, s e e Bacon, EM. 141 Cowley, R.A. 417 Cowley, R.A., s e e Jehan, D.A. 379 Cowley, R.A., s e e Jensen, J. 268 Cox, RA., s e e Lang, J.K. 115 Cox, S.RJ., s e e Chowdhury, M.R. 229, 237 Crabtree, G.W. 62-64 Crabtree, G.W., s e e Aoki, H. 63~55

429

Crabtree, G.W., s e e Arko, A.J. 31, 33 Crabtree, G.W., s e e Johanson, W.R. 52, 53 Crabtree, G.W., s e e Joss, W. 33, 34, 36 Crabtree, G.W., s e e Koelling, D.D. 4 Crabtree, G.W., s e e 0nuki, Y. 33-37, 91-93, 95 Craig, R.S., s e e Ganapathy, E.V 301 Craig, R.S., s e e Nasu, S. 40 Craig, R.S., s e e Smith, H.K. 137 Cmwford, R.K., s e e Kamitakahara, W.A. 243 Creeelius, G., s e e Wertheim, G.K. 115 Creuzet, G., s e e Barthem, V.M.T.S. 339 Croat, J.J., s e e Herbst, J.H. 312 Croft, M. 181 Croft, M., s e e Lu, F. 181 Cromer, D.T. 174 Cromer, D.T., s e e Larson, A.C. 87 Cromer, D.T., s e e Liberman, D. 9, 21 Cukier, M. 128, 129, 131 Curzon, A.E. 110, 120, 133-135, 137, 143 Curzon, A.E., s e e Rajora, O.S. 133 Curzon, A.E., s e e Singh, O. 134 Cyrot, M. 297, 301 Cyrot, M., s e e Lavagna, M. 308 Cywinski, R., s e e Mondal, S. 320 Cywinski, R, s e e Ritter, C. 321 Czjzek, G. 366 Czopnik, A. 47, 398 Czopnik, A., s e e Morin, P. 355, 397-399 Daalderop, G.H.O. 313-315 Daane, A.H., s e e Gschneidner Jr, K.A. 112 Dadiani, T.O. 188 Dadiani, T.O., s e e Dzhabua, Z.U. 188 Dadiani, T.O., s e e Glurdzhidze, L.N. 188 Dai, D.S., s e e Fang, R.Y. 157 d'Ambrumenil, N., s e e Stieht, J. 81 D'Amico, K.L., s e e Bohr, J. 417 D'Amieo, K.L., s e e Gibbs, D. 268, 378, 417 Daniel-Szab6, J., s e e Dudks, L 120 Danielou, R. 216 Daou, J.N. 212, 213, 216, 217, 219-221,225, 229, 233, 234, 238, 239, 241,243-248, 251-253, 255, 258, 261, 262, 264, 267-269, 271,273, 275, 277-279, 283, 284 Daou, J.N., s e e Andre, G. 227, 230, 281 Daou, J.N., s e e Blaschko, O. 215, 219, 220, 234 Daou, J.N., s e e Bonnet, J.E. 219, 225, 240 Daou, J.N., s e e Boukraa, A. 275, 282-285 Daou, J.N., s e e Burger, J.P. 229, 238, 243, 251, 252, 257-261,268, 271,273, 275-277, 283, 285 Daou, J.N,, s e e Chiheb, M. 221,225, 227 Daou, J.N., s e e Danielou, R. 216 Daou, LN., s e e Lucasson, A. 241,243, 251,252 Daou, J.N., s e e Metzger, T.H. 236

430

AUTHOR INDEX

Daou, J.N., s e e Pleschiutschnig, J. 234 Daou, J.N., s e e Schmitzer, C. 236, 248, 268 Daou, J.N., s e e Senoussi, S, 271,273, 277, 279 Daou, J.N., s e e Shaltiel, D. 285 Daou, J.N., s e e Udovic, T.J. 234, 235 Daou, J.N., s e e Vajda, P. 210, 213,219, 220, 227, 229, 230, 232, 233, 236-238, 243-246, 251, 253-260, 262, 263, 265, 267-271,273, 275, 277-285 Daou, J.N., s e e Viallard, R. 240 Daraek, S., s e e Andres, K. 339, 341 Dariel, M.E, s e e Shikhmanter, L. 179, 181 Dariel, M.R, s e e Venkert, A. 179 Darmon, J.M., s e e Bosca, G. 132 Dartyge, E., s e e Brouder, C. 159, 165 Dartyge, E., s e e Guilmin, R 165 Das, S.K. 190 Das, S.K., s e e Suryanarayanan, R. 189 Date, M. 345, 381,401 Date, M., s e e Morin, R 396, 397 Date, M., s e e Shigeoka, T. 401 Date, M., s e e Sugiura, E. 401 Date, M., s e e Sugiyama, K. 7, 365, 371 Date, M., s e e Tomiyama, E 336 David, J., s e e Bosca, G. 132 Davis, R.E, s e e Mason, M.G. 114 de Boer, ER., s e e Franse, J.J.M. 336 de Boer, ER., s e e Meyer, R.T.W. 51 de Boer, ER., s e e Sinnema, S. 336, 337 de Boer, ER., s e e Szytuta, A. 384 de Boer, ER., s e e Tomiyama, E 336 de Boer, ER., s e e Verhoef, R. 331,332 de Frutos, M., s e e Br~chignac, C. 114 de Haas, W.J. 27 de Lacheisserie, E., s e e Morin, R 355, 394, 396 de Lima, A.E, s e e Ferreira, R 260 De Luea, J.C. 180 de Mooij, D.B., s e e Coene, W. 152 de Mooij, D.B., s e e Sinnema, S. 329 De Rosa, E, s e e Allen Jr, S.J. 186, 187 de Visser, A., s e e Ball, A.R. 342, 351-353 de Visser, A., s e e Franse, J.J.M. 325 de Visser, A., s e e van der Meulen, H.E 81 de Vroomen, A.R., s e e van Deursen, A.J.R 33, 34, 36 Degtyareva, V.E, s e e Kostygov, A.N. 134 Dehner, B., s e e Shinar, J. 251,253, 255, 257 Dejauque, J., s e e Bras, J. 147 del Moral, A. 355 Delaeote, D., s e e Rossat-Mignod, J. 401 Deleroix, R, s e e Baezewski, L.T. 159, 161 Deleroix, P., s e e Brouder, C. 159 Delcroix, P., s e e Piecueh, M. 159, 161 Delley, B . , s e e Moser, H.R. 130-132

Demczyk, B.G., s e e Cheng, S.E 155 Demczyk, G.B. 155 den Boer, M.L. 115, 130 den Boer, M.L., s e e Murgai, V. 129, 130 den Boer, M.L., s e e Parks, R.D. 181 Denda, A., s e e Kojima, T. 169 Denda, A., s e e Uchida, H. 169, 170 Denissen, C.J.M., s e e Verhoef, R. 331,332 D~portes, J. 321-323 D6portes, J., s e e Ballou, R. 317, 319, 320, 322, 324 D6portes, J., s e e Berthier, Y. 313 D6portes, J., s e e Brown, EJ. 321 D6portes, J., s e e Oddou, J.L. 321 D6portes, J., s e e Voiron, J. 321 Devlin, E., s e e McGuiness, P.J. 148 Dexpert, H., s e e Gasgnier, M. 132 Dexpert-Ghys, J. 137 Dhar, S.K., s e e Gschneidner Jr, K.A. 6, 52, 264 Dhar, S.K., s e e Ikeda, K. 305 Dianoux, A.J., s e e Barnfather, K.J. 237 Dickinson, P.H., s e e Webb, D.J. 162 Dieny, B. 165 Dijkman, W.H. 70, 72 Dimmock, J.O. 12 Divis, M., s e e Svoboda, P. 387 Dobbertin, D.C., s e e Marshall, A.N. 164 D6hler, H., s e e Zogal, O.J. 237 Dokadze, E.V., s e e Dadiani, T.O. 188 Dokadze, E.V., s e e Dzhabua, Z.U. 188 Dokadze, E.V., s e e Glurdzhidze, L.N. 188 Domke, M. 114, 115 Doniach, S. 304 Doniach, S., s e e Murata, K.K. 327 Donovan, E, s e e Cherifi, K. 160 Donovan, P.E., s e e McMinn, R. 134 Dormann, E., s e e Shalfiel, D. 285 Doukour6, M. 368, 369 Dowben, P.A. 124 Dowben, P.A., s e e LaGraffe, D. 124 Dowben, P.A., s e e Li, D. 123 Drexel, W., s e e Knorr, K. 225, 243, 277 Drulis, H. 225, 256 Drulis, H., s e e Drulis, M. 241,252, 263, 275, 285 Drulis, H., s e e Iwasieczko, W. 225 Drulis, H., s e e Smirnov, I.A. 25t, 264 Drulis, M. 241,243, 252, 258, 263, 273, 275, 277-279, 282, 285 Drulis, M., s e e Bieganski, Z. 229, 282 Drulis, M., s e e Drulis, H. 225 Drulis, M., s e e Smirnov, I.A. 251,264 Due, N.H. 307, 308 Dud~s, J. 118, 120

AUTHOR INDEX Dudfis, J., s e e Jinos, S. 120 Dufour, C., s e e Cherifi, K. 160 Dunlap, B.D., s e e Friedt, J.M. 282 Dunlap, B.D., s e e Koelling, D.D. 4 Durand, J., s e e Baczewski, L.T. 159, 161 Durand, J., s e e Malterre, D. 182 Durand, J., s e e Piecuch, M. 159, 161 Duxbury, RM., s e e Selke, W. 399 Dzhabua, Z.U. 188 Dzhabua, Z.U., s e e Dadiani, T.O. 188 Dzhabua, Z.U., s e e Glurdzhidze, L.N. 188 Eastman, D.E., s e e Kaindl, G. 117 Eaton, G.H., s e e Chowdhury, M.R. 229, 237 Ebe, H., s e e Ishida, A. 188 Ebihara, T. 42, 44-46, 48, 49, 51 Ebihara, T., s e e Umehara, I. 47-51 Ebihara, T., s e e Onuki, Y. 74-78, 80 Ebisawa, T., s e e Uehida, H. 169, 170 Eeher, C.J., s e e Koestler, C. 150, 151 Edelstein, A.S., s e e Johanson, W.R. 52, 53 Edwards, D.M., s e e Bloch, D. 300, 301 Efendiev, E.G. 187 Effantin, J.M. 31,359, 397 Effantin, J.M., s e e Rossat-Mignod, J. 62, 401 EgelhoffJr, W.E 116, 131 Egelhoff Jr, W.E, s e e Tibbetts, G.G. 116 Eguchi, T., s e e Kuwano, N. 182, 184 Eichner, S., s e e Rau, C. 124 Eick, H.A. 110 el Mandouh, Z.S., s e e Mahmoud, S. 118, 127 Elbicki, J.M., s e e Cheng, S.E 155 Eley, D.D. 136, 140 Ellegaard, 0 . , s e e Onsgaard, J. 116 Ellinger, EH. 110 Elyutin, A.V, s e e Savrin, V.D. 109 Emerson, J.P., s e e Fisher, R.A. 324 Endoh, D. 92, 93 Endoh, Y., s e e Hosoito, N. 158 Endoh, Y., s e e Motokawa, M. 380 Endoh, Y., s e e Nojiri, H. 381 Engelhardt, M.A., s e e Jaswal, S.S. 151 Engelsberg, S., s e e Brinkman, W.E 305 Engelsberg, S., s e e Doniach, S. 304 Eremenko, Z.V, s e e Savrin, V.D. 109 Eriksson, B., s e e Andersen, J.N. 116 Eriksson, B., s e e Nilsson, A. 116 Ernst, G., s e e Blaschko, O. 219, 220 Erskine, J.L., s e e Li, D. 123 Eschenfelder, A.H. 108 Esteva, J.M. 131, 132 Esteva, J.M., s e e Blancard, C. 112, 114 Esteva, J.M., s e e Gasgnier, M. 132 Esteva, J.M., s e e Sarpal, B.K. 112

Esteva, J.M., s e e Thole, B.T. t 14 Etourneau, J., s e e Kasaya, M. 6 Evans, J., s e e Hughes, D.T. 182 Everett, G.E. 394, 411 Eyring, L. 108 Eyring, L., s e e Eick, H.A. 110 Eyring, L., s e e Felmlee, T.L. 110

Faber, J., s e e Shaked, H. 271,275, 281-284 Fabian, D.J., s e e Gimzewski, J.K. 137 Fagot, M., s e e Bras, J. 147 Fairclough, J.P.A. 219 F/ildt, A. 115, 116 Falicov, L.M. 4 Fang, R.Y. 157 Fantner, E.J., s e e Krost, A. 188, 189 Farle, M. 122, 123 Farle, M., s e e Baberschke, K. 122 Farr, LEG., s e e Hirst, J.R. 182 Farraut, S., s e e Corner, W.D. 126 Fawcett, E. 26 Fedorus, A.G., s e e Gonchar, V.V 119 Fedotov, V.G., s e e Fedotov, V.K. 225 Fedotov, V.K. 225 Feh6r, A., s e e Dudfis, J. 118, 120 Feh~r, A., s e e J~inos, S. 120 Felcher, G.P. 317 Felder, E., s e e Schlapbach, L. 252, 257 Feldman, W.L., s e e Lowe, W.P. 125 Felmlee, T.L. 110 Felsch, W., s e e Brouder, C. 165 Felsch, W., s e e Guilmin, P. 165 Fender, B.E.E, s e e Knorr, K. 225, 243, 277 Fender, B.E.E, s e e Titcomb, C.G. 225 Fernengel, W., s e e Rodewald, W. 152, 153 Ferrater, C. 158 Ferrater, C., s e e Badia, E 157 Ferreira, P. 260 Ferro, R., s e e Rossi, D. 184 Fidler, J. 150, 152, 153, 155, 174 Fidler, J., s e e Knoch, K.G. 152 Fidler, J., s e e Parker, S.EH. 153 Figiel, H., s e e Kakol, Z. 311 Fillion, G. 393 Fillion, G., s e e Lethuillier, E 48 Finstad, T.G., s e e Palmstrom, C.J. 186, 187 Fischer, P. 394, 411 Fischer, R, s e e Schefer, J. 225, 273, 277 Fisher, R.A. 324 Fisher, R.A., s e e Amato, A. 94, 95 Fisk, Z., s e e Arko, A.J. 31, 33 Fisk, Z., s e e Joss, W. 33, 34, 36 Fisk, Z . , s e e van Deursen, A.J.R 33, 34, 36

431

432

AUTHOR INDEX

Flanagan, T.B., s e e Sakamoto, Y. 182 Flanagan, T.B., s e e Takao, K. 182 Flodstr6m, A., s e e Johansson, L.I. 181 Flodstr6m, A., s e e Kammerer, R. 115 Flodstr6m, A.S., s e e Gerken, E 115 Flotow, H.E., s e e Rush, J.J. 243 Flouquet, J., s e e Amato, A. 94, 95 Flouquet, J., s e e Benoit, A. 52 Flouquet, J., s e e Rossat-Mignod, J. 81 Flouquet, J., s e e van der Meulen, H.R 81 Fontaine, A., s e e Brouder, C. 159, 165 Fontaine, A., s e e Guilmin, P. 165 Forester, D.W. 168 Forester, D.W., s e e Schelleng, J.H. 167 Forester, D.W., s e e Vittoria, C. 168 Forgan, G.M. 26 Forker, M. 231 Forsyth, H., s e e McGuiness, P.J. 148 Fort, D., s e e Chapman, J.W. 126 Fort, D., s e e Hirst, J.R. 182 Fort, D., s e e Pecharsky, V.K. 379 Fraisse, R., s e e Ahmed-Mokhtar, N. 127 Frak, R.M., s e e Iwasieczko, W. 225 Franceschi, E. 179 Franciosi, A. 132 Franciosi, A., s e e Mason, M.G. 114 Franciosi, A., s e e Raisanen, A. 132 Franciosi, A., s e e Wall, A. 132 Franck, O., s e e Melmed, A.J. 118, 119 Franqois, J.C., s e e Sigrist, M. 126, 128 Frandon, J. 128-130 Frandon, J., s e e Brousseau-Lahaye, B. 128, 129 Frankenthal, R.E 168 Frankenthal, R.P., s e e van Dover, R.B. 168 Franse, J.J.M. 325, 328, 336, 350, 417 Franse, J.J.M., s e e Luong, N.H. 90, 365 Franse LJ.M., s e e Radwanski, R.J. 331,334-336, 339 342 Franse J.J.M., s e e Sinnema, S. 329, 336, 337 Franse J.J.M., s e e Thuy, N.P. 311,312 Franse J.J.M., s e e Tomiyama, E 336 Franse J.J.M., s e e Verhoef, R. 331-333 Franse J.J.M., s e e Zhang, EY. 339, 340, 342, 343 361 Franse J.J.M., s e e van der Meulen, H.P. 81 Franz W., s e e Steglich, E 6 Fraustc ER. 168 Fraymonville, R., s e e Krost, A. 188, 189 Fredkin, D.R., s e e B~al-Monod, M.T. 305 Freeman, A.J., s e e Rath, J. 22 Freeman, A.J., s e e Weinert, M. 309, 314 Freeman, A.J., s e e Wu, R. 122 Freitas, EP. 185 Freltoft, T. 323

Freltoft, T., s e e Motoya, K. 323 Fr~my, M.A. 392 Fr6my, M.A., s e e Belorizky, E. 328-330, 337 Frick, B., s e e Stuhr, U. 237 Friedel, J. 311,313 Friedt, J.M. 282 Friedt, J.M., s e e Shinjo, T. 158 Frigerio, J.M. 177 Ffigerio, J.M., s e e Martin, M. 177 Frings, P.H., s e e Franse, J.J.M. 336 Fromm, E., s e e Wulz, H.G. 136, 169 Fuertes, J.E, s e e Alameda, J.M. 145 Fuggle, J.C., s e e Esteva, J.M. 131, 132 Fuggle, J.C., s e e Thole, B.T. 114 Fujii, A., s e e Isikawa, Y. 85 Fujii, H. 380, 381,384 Fujii, H., s e e Hashimoto, Y. 387 Fujii, H., s e e Iwata, N. 368 Fujii, H., s e e Okamoto, T. 360, 361 Fujii, H., s e e Shigeoka, T. 380, 382-385, 401 Fujii, H., s e e Sugiura, E. 401 Fujii, H., s e e Sugiyama, K. 371 Fujii, T., s e e Inoue, A. 166 Fujimaki, Y., s e e Ebihara, T. 48, 49, 51 Fujimaki, Y., s e e Umehara, I. 47-51, 70-72 Fujimori, A. 265 Fujimori, H. 159 Fujimori, N., s e e Kamiguchi, 3(. 159 Fujimura, S., s e e Yamamoto, H. 151, 152 Fujimura, T., s e e Endoh, D. 92, 93 Fujimura, T., s e e Goto, T. 33, 34 Fujimura, T., s e e Settai, R. 87-89 Fujimura, T., s e e Suzuki, T. 31, 33, 91 Fujita, T., s e e Satoh, K. 5, 94 Fujita, T., s e e Onuki, Y. 87 Fujiwara, H., s e e Hashimoto, Y. 387 Fujiwara, H., s e e Liu, W.L. 366 Fujiwara, H., s e e Okamoto, T. 360, 361 Fujiwara, H., s e e Yamashita, M. 388 Fujiyasu, H., s e e Ishida, A. 188, 189 Fukada, A., s e e Umehara, I. 70-72 Fukada, A., s e e Onuki, Y. 87 Fukami, E., s e e Wada, H. 324, 325 Fukamichi, K., s e e Gambino, R.J. 180 Fukamichi, K., s e e Goto, T. 300, 301,306 Fukamichi, K., s e e Sakakibara, T. 300, 301 Fukuhara, T. 74-76 Fukuma, H. 394 Fulde, E 14, 26 Fuller, M.L., s e e Larsen, J.W. 169, 171 Furrer, A., s e e Fischer, E 394, 411 Furrer, A., s e e Purwins, H.G. 360 Furukawa, M., s e e Sakamoto, Y. 182 Furukawa, Y., s e e Komatsubara, T. 31

AUTHOR INDEX Galera, R.M. 33 Gal6ra, R.M., s e e Amara, M. 398 Gal6ra, R.M., s e e Voimn, J. 321 Galoshina, E.V, s e e Volkenshtein, N.V. 271 Gambino, R.J. 180 Gambino, R.J., s e e De Luca, J.C. 180 Gambino, R.J., s e e Pickart, S.J. 178 Gambino, R.J., s e e yon Molnar, S. 178, 180 Ganapathy, E.V. 301 Gao, Q.Z., s e e Kitazawa, H. 41-43 G a o , W . M . , s e e Huang, G.X. 150 Gamier, A., s e e Shigeoka, T. 368 Garrison, K.C., s e e Allen Jr, S.J. 186, 187 Garrisson, K.C., s e e Palmstrom, C.J. 186 Gasgnier, M. 108-110, 118, 120, 126, 130, 132, 137, 144-146, 150, 155, 156, 160, 163, 167, 175, 177, 184, 190 Gasgnier, M., s e e Brousseau-Lahaye, B. 128, 129 Gasgnier, M., s e e Colliex, C. 117, 128-130, 132, 137 Gasgnier, M., s e e Curzon, A.E. 134 Gaukler, K.H., s e e Reiehl, R. 111, 131 Gauth~, B., s e e Cukier, M. 128, 129, 131 Gavigan, J.P., s e e Belorizky, E. 328-330, 337, 343-345 Geballe, T.H., s e e Toxen, A.M. 163 Geballe, T.H., s e e Webb, D.J. 162, 163 Gehring, G.A., s e e Langford, H.D. 33 Gellman, A., s e e Jaffey, D.M. 116, 179 Gerken, E 115, 131 Gerken, E, s e e Johansson, L.I. 181 Gerken, E, s e e Kammerer, R. 115 Gersdorf, R., s e e Franse, J.J.M. 336 Ghijsen, J., s e e Andersen, J.N. 115, 116 Gibbs, D. 268, 378, 417 Gibbs, D., s e e Bohr, J. 417 Gibson, M.T., s e e Gimzewski, J.K. 137 Gignoux, D. 83, 85, 297, 299-303, 308-310, 313, 339, 342, 345, 362, 366, 369, 371, 373, 375-377, 385, 387, 389, 392, 393, 406, 409, 415 Gignoux, D., s e e Aubert, G. 339 Gignotlx, D., s e e Bail, A.R. 342, 351-353, 375, 377, 378, 380, 386, 391,392, 402-406, 417 Gignoux, D., s e e Ballou, R. 310, 339 Gignoux, D., s e e Barandiaran, LM. 366 Gignoux, D., s e e Barbara, B. 299 Gignoux, D., s e e Barthem, V.M.T.S. 339-341, 343, 344 Gignoux, D., s e e Blaneo, J.A. 365, 370, 371,382, 383, 401-403, 405, 406 Gignoux, D., s e e Cyrot, M. 301 Gignoux, D., s e e Doukour6, M. 368, 369 Gignoux, D., s e e Fr6my, M.A. 392 Gignoux, D., s e e Jerjini, M. 70, 392

433

Gignoux, D., s e e Radwanski, R.J. 339, 342 Gignoux, D., s e e Reiffers, M. 339-341,351 Gignoux, D., s e e Shigeoka, T. 368 Gignoux, D., s e e Zhang, EY. 339, 340, 342, 343, 361 Gil, J.M., s e e Ferreira, R 260 Gilchrist, H.L., s e e Allen Jr, S.J. 186, 187 Gilchrist, H.L., s e e Palmstrom, C.J. 186 Gimzewski, J.K. 137 Ginsberg, M.J., s e e Grady, D.E. 132 Giordano, N., s e e Stryjewski, E. 345-347 Giraud, M., s e e Morin, E 355, 397-399 Girouard, EE., s e e Ashrit, RV. 133 Girouard, EE., s e e Chee, K.T. 128, 129 Givord, D. 301,302 Givord, D., s e e Alameda, J.M. 311, 312 Givord, D., s e e Belorizky, E. 328-330, 337, 343-345 Givord, D., s e e Dieny, B. 165 Givord, D., s e e Due, N.H. 307, 308 Givord, E 301 Givord, E, s e e Bloeh, D. 303 Givord, E, s e e Cyrot, M. 301 Givord, E, s e e Fillion, G. 393 Givord, E, s e e Gignoux, D. 83, 85, 299-302, 313 Glinka, C.J. 243 Glinski, M., s e e Kletowski, Z. 41-43 Glurdzhidze, L.N. 188 Glurdzhidze, L.N., s e e Dadiani, T.O. 188 Glurdzhidze, L.N., s e e Dzhabua, Z.U. 188 Goldman, A., s e e Gsehneidner Jr, K.A. 264 Goltros, W. 188 Gomez-Sal, J.C., s e e Barandiaran, J.M. 366 Gomez-Sal, J.C., s e e Blanco, J.A. 372, 373, 401, 403-405 Gonchar, EM. 118 Gonehar, V.V. 119 Gond6, Y. 167 Gond6, Y., s e e Suezawa, Y. 167 Goodhead, K., s e e Jones, P.M.S. 217 Goremychkin, E.A. 339, 342 Gorges, B., s e e Ballou, R. 308, 310, 336 Gorodetskii, D.A. 118, 119 G6seiafiska, I., s e e Ratajezak, H. 157 Goto, T. 33-35, 6 5 , 6 6 , 300, 301,306 Goto, T., s e e Endoh, D. 92, 93 Goto, T., s e e O n u l d , Y . 7 Goto, T . , s e e Sakakibara, T. 300, 301 Goto, T., s e e Settai, R. 52, 53, 60, 61, 65, 87-89 Goto, T., s e e Suzuki, T. 31, 33, 34, 91 Goto, Z, s e e Takayanagi, S. 363, 364 Goto, T., s e e Yoshimura, K. 301 Gottwich, U., s e e Franse, J.J.M. 325 Goy, P. 25

434

AUTHOR INDEX

Grady, D.E. 132 Graham Jr, C.D., s e e Tang, W. 150 Grant, W.A. 167 Gratz, E. 87 Grayevsky, A., s e e Shaltiel, D. 285 Greene, L.H., s e e Lowe, W.P. 125 Greis, O. 221,225, 231 Greis, O., s e e Mfiller, H. 225 Grepstad, J.K., s e e Bmaten, N.A. 178 Grey, F., s e e Andersen, J.N. 115, 116 Grieb, B. 152 Grieb, B., s e e Knoch, K.G. 152, 153 Grier, B.H., s e e Gibbs, D. 378, 417 Griessmann, H., s e e Alekseev, P.A. 339, 341 Groiss, C., s e e Fidler, J. 153 Gr6ssinger, R. 153 Grozdev, K.I., s e e Apostolov, A.V. 126, 127 Grundy, R.J., s e e Parker, S.EH. 153 Griitter, P. 148 G~tter, P., s e e Heinzelmann, H. 148 Gsehneidner Jr, K.A. 6, 25, 52, 72, 112, 118, 135, 264 Gsehneidner Jr, K.A., s e e Beaudry, B.J. 112 Gsehneidner Jr, K.A., s e e Corner, W.D. 126 Gsehneidner Jr, K.A., s e e Hungsberg, R.E. 70 Gsehneidner Jr, K.A., s e e Ikeda, K. 305 Gsehneidner Jr, K.A., s e e Ito, T. 229 Gselmeidner Jr, K.A., s e e Kai, K. 229, 241,252, 256 Gschneidner Jr, K.A., s e e Lgsser, R. 265 Gsehneidner Jr, K.A., s e e Pecharsky, V.K. 379 Gschneidner Jr, K.A., s e e Stierman, R.J. 246, 271 Gschneidner Jr, K.A., s e e Tang, J. 70, 72 Gsehneidner Jr, K.A., s e e Thome, D.K. 236, 241, 246, 247, 252 Gschneidner Jr, K.A., s e e Vajda, E 220, 236, 243, 245 Gsehneidner Jr, K.A., s e e Vglkl, J. 233 Gu, B.X. 145 Gu, B.X., s e e Homburg, H. 145 Gubbens, EC.M. 339 Gudat, W., s e e Alvarado, S.E 131 Gudat, W., s e e Hillebreebt, EU. 63 Gudat, W., s e e Weller, D. 122, 124 Guesnais, B., s e e Caulet, J. 187 Guesnais, B., s e e Le Corre, A. 187 Guilmin, E 165 Guilmin, E, s e e Brouder, C. 159, 165 Guivarc'h, A. 187 Guivarc'h, A., s e e Cadet, J. 187 Guivarc'h, A., s e e Le Corre, A. 187, 188 Gunnarsson, O. 15 Gt~ntherodt, H.-J., s e e Grtitter, E 148 Gantherodt, H.-J., s e e Heinzelmann, H. 148

Guo, G.Y. 14, 69 Guo, Y., s e e Li, H. 185 Gupta, M. 243, 256 Gupta, S.C. 132 Gupta, Y.M. 132 Gupta, Y.M., s e e Brar, N.S. 132 Gupta, Y.M., s e e Chen, D.Y. 132 Gupta, Y.M., s e e Gupta, S.C. 132 Gustafsson, T., s e e Johansson, L.I. 131 Guy, C.N., s e e yon Molnar, S. 178 Gygax, EN. 232 Gyorgy, E.M., s e e Hellman, E 165 Gyorgy, E.M., s e e Lowe, W.P. 125 Gyorgy, E.M., s e e van Dover, R.B. 168 Habu, K., s e e Sato, N. 160, 164 Habu, K., s e e Yamauehi, K. 160 Haekemer, M., s e e Czopnik, A. 47 Hadari, Z., see Mintz, M.H. 213, 240 Hadjipanayis, G.C., s e e Aylesworth, K.D. 146, 150, 151 Hadjipanayis, G.C., s e e Jaswal, S.S. 152 Hadjipanayis, G.C., s e e Strzeszewski, J. 144, 151 Haensel, R., s e e Niemann, W. 114 Haga, Y., s e e Nimori, S. 350 Haga, Y., s e e Ozeki, S. 65, 66 Haga, Y., s e e Takeda, N. 65, 67 Hagstr6m, S.B.M., s e e Allen, J.W. 115 Hagstr6m, S.B.M., s e e Johansson, L,I. 131 Hahn, H., s e e Li, Z. 110 Hakkens, E, s e e Coene, W. 152 H~ilg, W., s e e Schefer, J. 225, 273, 277 Hall, G., s e e Croft, M. 181 Hall, G., s e e Lu, E 181 Halpem, H.A., s e e Pickart, S.J. 178 Harnaker, M.C., s e e Huang, C.Y. 185 Hart, J.W. 233 Han, J.W., s e e Lichty, L.R. 232, 244 Hart, J . W . , s e e Torgeson, D.R. 233 Handstein, A., s e e Moch, Th. 178 Hanke, W., s e e Falieov, L.M. 4 Hansen, P. 180 H a n y u , T., s e e Miyahara, T. 129, 130 Hanzawa, K., s e e Yamada, K. 5 Hara, K., s e e Harada, T. 157 Hara, K., s e e Yamashita, S. 155 Harada, T. 157 Harbecke, B., s e e Krost, A. 188, 189 Harima, H. 14, 29, 32, 33, 72, 73, 81, 82, 89, 92, 94 Harima, H., s e e Kubo, Y. 14, 36, 37 Harima, H., s e e Sakai, O. 60, 61, 63, 64 Harris, I.R., s e e Brooks, J.W. 182 Harris, I.R., s e e Hirst, J.R. 182

AUTHOR INDEX Harris, I.R., s e e Hughes, D.T. 182 Harris, I.R., s e e McGuiness, EJ. 148 Harris, I.R., s e e Smith, D.A. 182 Harris, J.M. 177 Hartmann, M. 180 Hartmann, M., s e e Hansen, P. 180 Haschke, J.M. 231 Hasegawa, A. 22, 32, 39-43, 52-58, 60, 61, 67~69 Hasegawa, A., s e e Harima, H. 92, 94 Hasegawa, A., s e e Kitazawa, H. 41-43, 60, 63 Hasegawa, A., s e e Kletowski, Z. 41-43 Hasegawa, A., s e e Yamagami, H. 13, 75, 77-79, 84-86 Hasegawa, H., s e e Moriya, T. 305 Hashimoto, S. 168 Hashimoto, Y. 362, 387 Hashimoto, Y., s e e Iwata, N. 368, 374, 375 Hashimoto, Y., s e e Shigeoka, T. 380, 382, 401 Hastings, L.M., s e e Felcher, G.E 317 Hauser, J.J. 118, 125 Haussler, E 118 Hautecler, S., s e e Vorderwisch, E 243 Hautecler, S., s e e Wegener, W. 234 Hawkes, C.M., s e e Owen, G. 179 Hay, C.M. 179 Hayakawa, Y., s e e Fujimori, H. 159 Hayakawa, Y., s e e Kamiguchi, Y. 159 Hecht, M.H. 131 Hecht, M.H., s e e Egelhoff Jr, W.E 131 Hedge, H., s e e Cadieu, EJ. 156 Hedge, H., s e e Kamprath, N. 155 Heinzelmann, H. 148 Heinzelmarm, H., s e e Grfitter, P. 148 Heitmann, H. 168 HelIman, E 165 Henig, E.-Th., s e e Grieb, B. 152 Henig, E.-Th., s e e Knoch, K.G. 152, 153 Hennion, B., s e e Aubert, G. 339 Henry, J.Y., s e e Jerjini, M. 70, 392 Henry La Blanehetais, Cb., s e e Dexpert-Ghys, J. 137 Henry La Blanchetais, Ch., s e e Gasgnier, M. 1 4 6 , 160 Herbst, G. 233 Herbst, J.H. 312 Heremans, J., s e e Salamanca-Young, L. 189 Herman, F. 9 Herring, C. 19 Herses, N., s e e Richter, H.J. 187 Hewson, A.C., s e e Wasserman, A. 35 Hickox, C.E., s e e Bacon, EM. 141 Hidber, H.-R., s e e Grfitter, R 148 Hidber, H.-R., s e e Heinzelmann, H. 148

435

Hien, R.D., s e e Thuy, N.P. 311, 312 Hien, T.D., s e e Luong, N.H. 90, 365 Hierschler, D., s e e Mintz, M.H. 213, 240 Higo, S., s e e Kuwano, N. 182, 184 Hill, H.H. 3, 10 Hill, R.W. 39 Hillebrecht, EU. 63 Hilscher, G., s e e Daou, J.N. 248, 251,269 Hilscher, G., s e e Schmitzer, C. 236, 248, 268 Hilscher, G., s e e Vajda, E 245, 246, 268-270 Hilscher, G., s e e Wiesinger, G. 210 Hilton, P., s e e Reinders, P.H.E 30 Himpsel, EJ., s e e Reihl, R. 122 Hirano, M., s e e Ohkoshi, M. 311 Hirosawa, S. 313 Hirosawa, S., s e e Yamamoto, H. 151, 152 Hirst, J.R. 182 Hoareau, B., s e e Rayane, D. 114 Hoffmann, K.E, s e e Drulis, H. 256 Hohenberg, R 14 Holc, J. 150 Holden, T.M., s e e Lin, H. 379 Holloway, D.M. 142 Holloway, D.M., s e e Antepenko, R.J. t42 Holloway, D.M., s e e Harris, J.M. 177 Homburg, H. 145 Homburg, H., s e e Gu, B.X. 145 Homma, H. 119 Homma, H., s e e Yang, K.A. 119 Honda, K., s e e Iwata, N. 368 Honda, S. 164 Hong, M., s e e Kwo, J. 119 Hong, M., s e e van Dover, R.B. 168 Hong, N.M., s e e Franse, J.J.M. 336 Hong, N.M., s e e Thuy, N.E 311, 312 Horikoshi, H. 173 Horikoshi, H., s e e Takeda, S. 173 Hormes, J., s e e Blancard, C. 112, 114 Hormes, J., s e e Sarpal, B.K. 112 Horn, S., s e e den Boer, M.L. 115, 130 Horn, S., s e e Murgai, V. 129, 130 HSrnstr6m, S.E., s e e Johansson, L.I. 181 Horvatic, M., s e e Berthier, Y. 313 Hoshi, Y. 168 Hoshi, Y, s e e Naoe, M. 168 Hosoda, N. 136 Hosoda, N., s e e Uehida, H. 169 Hosoito, N. 158 Hosoito, N., s e e Mibu, K. 158 Hosoito, N., s e e Shinjo, T. 158 Hosoito, N., s e e Yoden, K. 158 Hrossman, S.A., s e e Gimzewski, J.K. 137 Hua, H.C., s e e Huang, G.X. 150 Huang, C.Y. 185

436

AUTHOR INDEX

Huang, G.X. 150 Huang, Y.C., s e e Ohki, C. 239, 240 Huang, Y.C., s e e Toguchi, K. 240 Huang, Y.C., s e e Uchida, H. 169 Huang, Y.S. 179 Huang, Y.S., s e e Murgai, V. 129, 130 Hubberstey, P. 140 Hughes, D.T. 182 Hukin, D.A., s e e Hill, R.W. 39 Hull, G.W., s e e Allen Jr, S.J. 186, 187 Hulliger, F. 394, 395 Hulliger, F., s e e A16onard, R. 355 Hulliger, E, s e e Aoki, H. 63-65 Hulliger, E, s e e Crabtree, G.W. 62-64 Hungsberg, R.E. 70 Hunt, D.G. 243 Hunt, M. 81, 82 Hunt, M., s e e Chapman, S.B. 92, 94, 95 Hunt, M., s e e Satoh, K. 42, 44, 48, 51 Hussain, A.A.A. 134 Hutchings, C.W., s e e Li, D. 123 Hutchings, M.T. 414 Hiitten, U., s e e Forker, M. 231 Hwang, C., s e e Li~ D. 123 Iandelli, A., s e e Palenzona, A. 182 Ibanez-Meier, R., s e e Liehty, L.R. 232, 244 Ibarra, M.R., s e e del Moral, A. 355 Ichikawa, T., s e e Tsunashima, S. 163 Idczak, E. 128 Iga, E, s e e Settai, R. 87-89 Iga, E, s e e Sugiyama, K. 7 Ignatiev, A . , s e e Onsgaard, J. 111 Ignatiev, A., s e e Tougaard, S. 111, 126, 128 Ikeda, H., s e e 0nuki, Y. 95 Ikeda, K. 305 Ikeda, K., s e e Gsctmeidner Jr, K.A. 25 Ikeda, M., s e e Harada, T. 157 Ikematsu, M., s e e Inoue, A. 166 Iliew, N., s e e Czopnik, A. 398 Iliew, N., s e e Kletowski, Z. 52 tlyasov, T.M., s e e Efendiev, E.G. 187 Ina, K., s e e ()nuki, Y. 90-93, 390 Ina, K., s e e Takayanagi, S. 363, 364 Inokuchi, S., s e e Numata, T. 156 Inomata, K., s e e Sahashi, M. 156, 174 Inoue, A. 166 Inoue, J., s e e Shimizu, M. 297 Inoue, J., s e e Yamada, H. 301,306 Ishida, A. 188, 189 Ishii, H., s e e Baba, K. 188 Ishli, H., s e e Miyahara, T. 129, 130 Ishii, H., s e e Nakamura, O. 118, 125 Ishii, H., s e e Takeda, K. 133

Ishii, T. 3 Ishikawa, Y., s e e Takahashi, M. 70, 392 Ishiwatari, T., s e e Naoe, M. 168 Ishizawa, Y. 31-33, 35 Ishizawa, Y., s e e Nozaki, H. 365 Isikawa, Y. 85 Isikawa, Y., s e e Maezawa, K. 83, 84, 86, 90 Isikawa, Y., s e e Sato, K. 362, 363 Isikawa, Y., s e e Onuki, Y. 83, 84, 86 Ito, T. 229, 268, 269 Ito, Y., s e e Shigeoka, T. 383 Itoh, T., s e e Uchida, H. 169, 170 Ivanitskii, P.G., s e e Goremychkin, E.A. 339, 342 Ivanov, V. 384, 385 Ivanov, V., s e e Vinokurova, L. 382 Iwamura, E. 150 lwasieczko, W. 225 Iwasieczko, W., s e e Drulis, H. 225 Iwasieczko, W., s e e Smirnov, I.A. 251,264 Iwata, N. 368, 374, 375, 381,401,402 lwata, N., s e e Shigeoka, T. 380, 382-385, 401 Izumi, E, s e e Asano, H. 91

Jaccard, D., s e e Amato, A. 94, 95 Jaccard, D., s e e Rossat-Mignod, J. 81 Jacob, I. 241 Jacobs, T.H., s e e Coene, W. 152 Jacobs, T.H., s e e Verhoef, R. 331,332 Jacoud, J.L., s e e Rossat-Mignod, J. 81 Jaffey, D.M. 116, 179 J~iger, Ch., s e e Zogal, O.J. 237 Jan, J.-P. 39, 40 Jan, J.-P., s e e Boulet, R.M. 52 Janak, J.E 303 Jang, Y.-R., s e e Min, B.I. 36 J~nos, S. 120 J~nos, S., s e e Dud~s, J. 120 Jansen, A.G.M., s e e Reiffers, M. 339-341,351 Jaswal, S.S. 151, 152 Jaswal, S.S., s e e Shan, Z.S. 164 Jaussaud, C. 355, 356 Jayanetti, J.K.D., s e e Kamprath, N. 155 Jayaraman, A. 7 Jeandey, C., s e e Oddou, J.L. 321 Jehan, D.A. 379 Jennings, J.R. 179 Jennings, J.R., s e e Bryan, ST 179 Jennings, J.R., s e e Hay, C.M. 179 Jeunings, J.R., s e e Nix, R.M. 179 Jennings, J.R., s e e Owen, G. 179 Jensen, C.L. 245 Jensen, J. 266, 268, 379, 390, 391,412, 413, 416, 417

AUTHOR INDEX Jensen, J., s e e Fulde, P. 26 Jensen, J., s e e Mackintosh, A.R. 390 Jepson, J. 22 Jerjini, M. 70, 392 Jezequel, G., s e e Quemerais, A. 127, 129 Jiang, S., s e e Li, H. 185 Jin, C., s e e Rau, C. 123 Jin, H., s e e Pan, S.M. 175 Johanson, W.R. 52, 53 Johansson, B. 111, 115 Johansson, B., s e e Johansson, L.I. 181 Johansson, B., s e e Nordstr6m, L. 313, 314 Johansson, B., s e e Rosengren, A. 111 Johansson, L.I. 115, 131, 181 Johansson, L.I., s e e Allen, J.W. 115 Johansson, L.I., s e e Gerken, E 115 Johansson, L.I., s e e Hecht, M.H. 131 Johansson, L.I., s e e Kammerer, R. 115 Johbettoh, H., s e e Hasegawa, A. 22, 54-57 Johnson, D.A. 109, 112 Johnson, R.L., s e e Andersen, J.N. 115, 116 Johnson, R.W. 178 Johnson, W.B., s e e Frausto, RR. 168 Johnson, W.L., s e e Schwarz, R.B. 180 Jones, D.W., s e e Chapman, J.W. 126 Jones, D.W., s e e Corner, W.D. 126 Jones, I.R, s e e Smith, D.A. 182 Jones, RM.S. 217 Jordan, R.G. 182 Jordan, R.G., s e e Corner, W.D. 126 Jorgensen, J.D., s p e Schefer, J. 225, 273, 277 Joss, W. 33, 34, .,6 Joss, W., s e e Aoki, H. 63-65 Joss, W., s e e Crabtree, G.W. 62-64 Joss, W., s e e Muller, T. 35, 36 Joung, K.O., s e e Carlin, R.L. 275, 281 Juckum, C. 213, 219, 225, 245 Judd, R.W., s e e Nix, R.M. 179 Julien, L.S., s e e Miller, R.E 118, 126, 127 Jung, R 220, 221,244, 245 Jung, Th., s e e Grfitter, R 148 Jungblut, R., s e e Carbone, C. 124, 158 Kaehel, I"., s e e Carbone, C. 124, 158 Kadomatsu, H., s e e Liu, W.L. 366 Kadomatsu, H., s e e Yamashita, M. 388 Kadowaki, K. 5 Kagami, S., s e e Nakamura, T. 162 Kagawa, M., s e e Takeda, N. 67 Kai, K. 229, 241,252, 256 Kai, K., s e e Vajda, E 220, 236, 243,245 Kaindl, G. 115, 117 Kaindl, G., s e e Domke, M. 114, 115 Kajiura, M. 157

437

Kakizaki, A., s e e Ishii, T. 3 Kakol, Z. 311 Kakuno, K., s e e Gond6, Y. 167 Kakuno, K., s e e Suezawa, Y. 167 Kaldis, E. 225 Kaldis, E., s e e Bischof, R. 214, 217, 271,273, 279 Kaldis, E., s e e Boroch, E. 221,225, 226 Kaldis, E., s e e Fischer, E 394, 411 Kaldis, E., s e e Fukuma, H. 394 Kalvius, G.M. 324 Kameda, K., s e e Onuki, Y. 90, 390 Kamiguchi, Y. 159 Kamiguchi, Y., s e e Fujimori, H. 159 Kamimura, H. 324 Kamitakahara, W.A. 243 Kammerer, R. 115 Kammerer, R., s e e Gerken, E 115 Kamprath, N. 155 Kamprath, N., s e e Liu, N.C. 155 Kanash, O.K., s e e Gonchar, VV 119 Kanayama, T., s e e Tsukahara, S. 167 Kanda, S., s e e Yamada, H. 306 Kandasamy, K. 137, 140 Kandasamy, K., s e e Surplice, N.A. 135, 137, 139 Kaneko, K., s e e Niihara, T. 168 Kaneko, M., s e e Hashimoto, S. 168 Kaneko, T. 388, 397 Kaneko, T., s e e Abe, S. 388 Kaneko, T., s e e Kitai, T. 388 Kanski, J. 131 Kappler, J.R, s e e Besnus, M.J. 74 Karim, D., s e e Arko, A.J. 31, 33 Karnatak, R.C., s e e Blancard, C. 112, 114 Karnatak, R.C., s e e Connerade, J.R 111, 112, 114, 115 Karnatak, R.C., s e e Esteva, J.M. 131, 132 Karnatak, R.C., s e e Gasgnier, M. 132 Karnatak, R.C., s e e Sarpal, B.K. 112 Karnatak, R.C., s e e Thole, B.T. 114 Karpukhina, L.G., s e e Smirnov, I.A. 251,264 Kasaya, M. 6 Kasaya, M., s e e Settai, R. 87-89 Kasaya, M., s e e Sugiyama, K. 7 Kass, W.J. 142 Kass, W.J., s e e Beavis, L.C. 142 Kasuya, M., s e e Ebihara, T. 48, 49, 51 Kasuya, T. 3, 13, 59, 60, 63-65, 415 Kasuya, T., s e e Effantin, J.M. 31,359, 397 Kasuya, T., s e e Fukuma, H. 394 Kasuya, T., s e e Galera, R.M. 33 Kasuya, T., s e e Goto, T. 33, 34 Kasuya, T., s e e Harima, H. 32, 33 Kasuya, T., s e e Kitazawa, H. 41-43, 60, 63, 65

438

AUTHOR INDEX

Kasuya, T., s e e Kwon, Y.S. 65, 67 Kasuya, T., s e e Morin, E 397 Kasuya, T., s e e Ozeki, S. 65, 66 Kasuya, T., s e e Sakai, O. 60, 61, 63, 64 Kasuya, T., s e e Settai, R. 60, 61, 65 Kasuya, T., s e e Sugiyama, K. 7, 365 Kasuya, T., s e e Suzuki, T. 33, 34 Kasuya, T., s e e Takahashi, H. 62 Kasuya, T., s e e ()nuki, Y. 7 Katayama, T. 166 Katayama, T., s e e Ohkoshi, M. 311 Kato, H., s e e Ishii, T. 3 Kato, T., s e e Maezawa, K. 83, 84, 86 Kaun, L.E, s e e Alekseev, P.A. 339, 341 Kavecansk), V, s e e Dudfis, J. 118, 120 Kawabata, H., s e e Uchida, K. 178 Kawaguchi, K., s e e Yoden, K. 158 Kawahata, T. 136 Kawai, H., s e e Nojiri, H. 381 Kawai, S., s e e Ishizawa, Y. 31-33, 35 Kawanaka, H., s e e Sugiura, E. 401 Kawano, S., s e e Nakamura, Y. 320 Kawano, S., s e e Shigeoka, T. 383, 384 Kayzel, EE., s e e Ball, A.R. 342, 351-353 Kayzel, EE., s e e Radwanski, R.J. 334, 335, 339, 342 Kayzel, EE., s e e Zhang, EY. 339, 340, 342, 343, 361 Kazimierzki, M., s e e Bohdziewicz, A. 184 Kelly, EJ., s e e Daalderop, G.H.O. 313-315 Kerley, N., s e e Reinders, EH.E 30 Ketterson, J.B., s e e Arko, A.J. 31, 33 Ketterson, J.B., s e e Windmiller, L.R. 30 Khanudova, Kh.Kh., s e e Varkanova, R.G. 142 Kharlamockhin, E.S., s e e Bachurin, V.I. 125 Khatamian, D. 215, 216, 219 Khatsernova, E.L., s e e Linetski, Ya.L. 153 Kholmedov, Kh.M., s e e Smirnov, I.A. 251,264 Kido, G., s e e Kaneko, T. 397 Kido, G., s e e Nimori, S. 350 Kido, G., s e e Ozeki, S. 65, 66 Kido, G., s e e Wada, H. 303,304 Kikuchi, M., s e e Kurosawa, Y. 42, 44, 51 Kikuchi, M., s e e Umehara, I. 53-58 Kilcoyne, S.H., s e e Mondal, S. 320 Kilcoyne, S.H., s e e Ritter, C. 321 Killoran, N., s e e Reinders, EH.E 30 Kim, D. 394 Kim, D., s e e Fischer, E 394, 411 Kim-Ngan, N.H., s e e Radwanski, R.J. 339, 342 Kim-Ngan, N.H., s e e Zhang, EY. 339, 340, 342, 343, 361 Kimura, T., s e e Iwata, N. 374, 375 King, C.A. 76, 78

Kipling, S.J., s e e Bryan, S.I. 179 Kirchmayr, H.R. 295, 296, 328, 369 Kirchmayr, H.R., s e e Burzo, E. 108, 144 Kirchmayr, H.R., s e e Gr6ssinger, R. 153 Kiriyama, H., s e e Numata, T. 156 Kisker, E., s e e Carbone, C. 124, 158 Kita, E., s e e Umemura, S. 159 Kitai, T. 388 Kitai, T., s e e Abe, S. 388 Kitai, T., s e e Kaneko, T. 388 Kitano, K., s e e Takeda, S. 173 Kitano, Y., s e e Komura, Y. 174 Kitaoka, Y., s e e Nakamura, H. 319 Kitazawa, H. 41-43, 60, 61, 63, 65 Kitazawa, H., s e e Kasuya, T. 13, 59, 60, 63-65 Kittel, C., s e e Ruderman, M.A. 3,415 Kjems, J.K., s e e Fischer, P. 394, 411 Klaasse, J.C.E, s e e Meyer, R.T.W. 51 Kiatt, K.H., s e e Bracconi, E 137 Kiavins, E 215, 221,225, 226, 229 Klein, H.E 311 Kletowski, Z. 41-43, 52 Knappe, E 225 Knappe, E, s e e Greis, O. 221,225, 231 Knappe, E, s e e Mfiller, H. 225 Knezo, D., s e e Dudfis, J. 120 Knoch, K.G. 152, 153 Knoch, K.G., s e e Fidler, J. 152, 153 Knoch, K.G., s e e Grieb, B. 152 Knorr, K. 225, 243,277 Kobayashi, H., s e e Ohkoshi, M. 311 Kobayashi, K.L.I., s e e Gerken, E 131 Kobayashi, T., s e e Sagasaki, M. 166 Koehler, W.C., s e e Gignoux, D. 301 Koelling, D.D. 4, 12, 13, 52, 55 Koelling, D.D., s e e Norman, M.R. 7, 55, 64 Koestler, C. 150, 151 Kofoed, J., s e e Chorkendorff, I. 116 Kohgi, M., s e e Takahashi, M. 70, 392 Kohn, W. 12, 14 Kohn, W., s e e Hohenberg, E 14 Kohori, Y., s e e Nakamura, H. 319 Kojima, T. 169 Kolaczkiewicz J. 122 Kolaczkiewicz J., s e e Bauer, E. 128 Kolar, D., s e e Holc, J. 150 Komatsu, H., s e e Goto, T. 300, 301,306 Komatsubara T. 31 Komatsubara T., s e e Asano, H. 91 Komatsubara T., s e e Endoh, D. 92, 93 Komatsubara T., s e e Fukuma, H. 394 Komatsubara T., s e e Ishii, T. 3 Komatsubara T., s e e Maezawa, K. 90 Komatsubara T., s e e Mitsuda, S. 389

AUTHOR INDEX Komatsubara, T., s e e Satoh, K. 5, 94 Komatsubara, T., s e e Sumiyama, A. 4 Komatsubara, T., s e e Suzuki; T. 91 Komatsubara, T., s e e Takayanagi, S. 90, 94, 363, 364, 389, 390 Komatsubara, T., s e e Takeda, N. 65, 67 Komatsubara, T., s e e Tanaka, K. 65, 66 Komatsubara, T., s e e 0nuki, Y. 33-37, 87-93, 95, 390 Komura, Y. 173, 174 Komura, Y., s e e Horikoshi, H. 173 Komura, Y., s e e Kamimura, H. 324 Komura, Y., s e e Nakamura, H. 319 Komura, Y., s e e Takeda, S. 173 Konc, M., s e e Dudfis, J. 120 Kondo, J. 4 Korringa, J. 12 Korty, EW., s e e Brun, T.O. 394 Kosak, M.M. 118, 120 Kosevich, R.M., s e e Lifshitz, I.M. 27 Koshizuka, N., s e e Suzuki, Y. 162 Kost, M.E., s e e Bashldn, I.O. 225, 231 Kost, M.E., s e e Fedotov, V.K. 225 Kost, M.E., s e e Parshin, EE 243 Kost, M.E., s e e Volkenshtein, N.V. 271 Kostygov, A.N. 134 Kostygov, A.N., s e e Chizhov, EE. 134 Kostygov, A.N., s e e Morozov, Yu.G. 134 K6tzler, J., s e e Raffius, G. 355 Kou, X.C., s e e Gr6ssinger, R. 153 Kouvel, J.S., s e e Brun, T.O. 394 Kovanagi, T., s e e Koyama, M. 165 Kowalczyk, A., s e e Ratajczak, H. 157 Kowalewski, J., s e e Czopnik, A. 47 Kowalsky, W., s e e Kunze, U. 133 Koyama, M. 165 Koyoshi, Y., s e e Sugiyama, K. 365 Kozlovskii, L.V. 134, I36 Kozlowski, G., s e e Huang, C.Y. 185 Krause, L.J., s e e Carlin, R.L. 271,275, 277, 282, 284, 285 Krewenka, R., s e e Gr6ssinger, R. 153 Krexner, G., s e e Blaschko, O. 215, 219, 220, 234 Krill, G., s e e Brouder, C. 159, 165 Krill, G., s e e Guilmin, R 165 Krill, G., s e e Malterre, D. 182 Krishna, E, s e e Verma, A.R. 172 Krishnan, R. 166 Kristensson, D.K., s e e F~ldt, A. 115 Krizek, J. 126, 127 Kronmiiller, H., s e e Fidler, J. 152, 153 Kronmfiller, H., s e e Herbst, G. 233 Kronmfiller, H., s e e Knoch, K.G. 152 Kronmiiller, K., s e e Knoch, K.G. 152, 153

439

Krop, K., s e e Pszczola, J. 329 Krost, A. 188, 189 Krotenko, V.T., s e e Goremyehkin, E.A. 339, 342 Kiibler, J., s e e Niksch, M. 38, 39 Kfibler, J., s e e Sficht, J. 81 K~ibler, J., s e e Uhl, M. 326 Kubo, Y. 14, 36, 37 Kuboth, M. 185 Kuentgens, U., s e e Blancard, C. 112, 114 Kuentgens, U., s e e Sarpal, B.K. 112 Kuji, T., s e e Sakamoto, Y. 182 Kulikov, N.J. 243 Kulikova, I.N., s e e Smirnov, I.A. 251,264 Kumar, R. 136, 137 Kunii, S., s e e Effantin, J.M. 31,359, 397 Kunii, S., s e e Galera, R.M. 33 Kunii, S., s e e Goto, T. 33, 34 Kunii, S., s e e Komatsubara, T. 31 Kunii, S., s e e Morin, P. 397 Kunii, S., s e e Suglyama, K. 365 Kunii, S., s e e Suzuki, 1". 31, 33, 34 Kunz, C., s e e Gerken, E 115, 131 Kunze, U. 133 Kurisu, M., s e e Liu, W.L. 366 Kurisu, M., s e e Yamashita, M. 388 Kurosawa, Y. 42, 44, 51 Kurosawa, Y., s e e Maezawa, K. 83, 84, 86 Kurosawa, Y., s e e Satoh, K. 89, 90 Kurosawa, Y., s e e Umehara, I. 53-58 Kurosawa, Y . , s e e ()nuki, Y. 83, 84, 86-89, 91-93, 95 Kuruzar, D.L., s e e Allen, C.W. 174 Kusuda, T., s e e Honda, S. 164 Kusuya, T., s e e Komatsubara, T. 31 Kuwano, N. 182, 184 Kuzmenko, V.M. 118, 121, 122 Kwo, J. 119 Kwok, W.K., s e e C)nuki, Y. 33-37, 91-93, 95 Kwon, Y.S. 65, 67 Kwon, Y.S., s e e Kitazawa, H. 65 Kwon, Y.S., s e e Ozeki, S. 65, 66 Kwon, Y.S., s e e Settai, R. 60, 61, 65 Kwon, Y.S., s e e Takeda, N. 65, 67 Kwon, Y.S., s e e Tanaka, K. 65, 66 Labarta, A., s e e Badia, E 157 Labarta, A., s e e Martinez, B. 146 Lacerda, A., s e e van der Meulen, H.E 81 Lacroix, C., s e e Ballou, R. 325-327 Lacroix, C., s e e Due, N.H. 307, 308 Lacroix, C., s e e Lavagna, M. 308 Lacroix, C., s e e Nunez-Regueiro, M.D. 325 Lacroix, C., s e e Pinettes, C. 313-315, 326 Lacy, S.E., s e e Amato, A. 94, 95

440 Laesser, R., s e e Bracconi, R 137 Laforest, J., s e e Givord, D. 301,302 LaGraffe, D. 124 LaGraffe, D., s e e Dowben, RA. 124 Lambert, R.M., s e e Bryan, S.I. 179 Lambert, R.M., s e e Hay, C.M. 179 Lambert, R.M., s e e Jaffey, D.M. 116, 179 Lambert, R.M., s e e Jennings, J.R. 179 Lambert, R.M., s e e Nix, R.M. 179 Lambert, R.M., s e e Owen, G. 179 Lambrecht, A., s e e Carlin, R.L. 271,277 L a n , J., s e e Fang, R.Y. 157 Landau, L. 327 Landolt, M. 124 Landolt, M., s e e Cerri, A. 125, 140 Landolt, M., s e e Mauri, D. 122 LandoR, M., s e e Taborelli, M. 124 Lang, J.K. 115 Langell, M.A., s e e Jaswal, S.S. 151 Langford, H.D. 33 Lapertot, G., s e e Jerjini, M. 70, 392 Lapierre, E, s e e Amato, A. 94, 95 Larsen, J.W. 169, 171 Larson, A.C. 87 Larson, A.C., s e e Cromer, D.T. 174 LSsser, R. 265 L~ser, R., s e e Jung, E 220, 221,244, 245 Latka, K., s e e Czjzek, G. 366 Laubschat, C., s e e Domke, M. 114, 115 Lanbschat, C., s e e Kaindl, G. 115, 117 Laubschat, C., s e e Schneider, W.D. 118 Laughlin, D.E., s e e Cheng, S.E 155 Laughlin, D.E., s e e Shen, Y. 175 Lavagna, M. 308 Lavagna, M., s e e Cyrot, M. 297, 301 Lawrence, J.M. 40 Lawrence, J.M., s e e B6al-Monod, M.T. 304 Lazarev, B.G., s e e Kuzmenko, VM. 118 Lazarides, B., s e e Ahmed-Mokhtar, N. 127 Le Corre, A. 187, 188 Le Corre, A., s e e Caulet, J. 187 Le Corre, A., s e e Guivarc'h, A. 187 Le Corre, Y., s e e Krishnan, R. 166 Lea, K.R. 273 Leask, M.J.M., s e e Lea, K.R. 273 Lebech, B. 373 Lecrosnier, D., s e e Le Corre, A. 187 Lee, E.W. 303 Lee, R.W., s e e Herbst, J.H. 312 Lee, S.T., s e e Mason, M.G. 114 Legeler, B., s e e Seitz, E. 67~59 Legvold, S., s e e Ito, T. 268, 269 Lehmann, P., s e e Besnus, M.J. 74 Leiberich, A., s e e Lu, E 181

AUTHOR INDEX Leisure, R.G. 232, 236 Lejay, P., s e e Fillion, G. 393 Lejay, P., s e e Rossat-Mignod, J. 81 Lejay, E, s e e van der Meulen, H.R 81 Leli~vre-Bema, E., s e e Fisher, R.A. 324 Leli~vre-Berna, E., s e e Nunez-Regueiro, M.D. 325 Leli~vre-Berna, E., s e e Voiron, J. 321 Lemaire, R. 299, 301,311,417 Lemaire, R., s e e Alameda, J.M. 311,312 Lemaire, R., s e e Ballou, R. 310, 313, 317, 319, 320, 322, 324, 336 Lemaire, R., s e e Burzo, E. 306 Lemaire, R., s e e B&le, C. 367 Lemaire, R., s e e D~portes, J. 321,322 Lemaire, R., s e e Gignoux, D. 83, 85, 299, 300, 302, 303, 308-310, 313, 362 Lemaire, R., s e e Givord, D. 301,302 Lemonnier, J.C., s e e Quemerais, A. 127, 129 Lengeler, B., s e e Hisser, R. 265 LePage, J.G. 159 Lethuillier, R 48 Lethuillier, P., s e e Bouvier, M. 365, 405 Levitin, R.Z., s e e Borombaev, M.K. 364 Levy, EM., s e e Fischer, E 394, 411 Levy, EM., s e e Kim, D. 394 Leyarovski, E., s e e Mrachkov, J. 352 UH&itier, R, s e e Zogal, O.J. 221,225 Li, D. 123 Li, D.X., s e e Nimori, S. 350 Li, E, s e e Li, L. 152 Li, H. 185 Li, H.D., s e e Ma, E. 143 Li, H.S. 328 Li, H.S., s e e Belorizky, E. 328-330, 337, 343-345 Li, L. 152 Li, Z. 110 Lian, K.C., s e e Allen, C.W. 174 Liberman, D. 9, 21 Libowitz, G.G. 210, 212, 214, 229, 240, 251, 255, 256 Libowitz, G.G., s e e Glinka, C.J. 243 Lichty, L.R. 232, 233, 244 Lichty, L.R., s e e Torgeson, D.R. 233 Lieder, M., s e e Forker, M. 231 Lieke, W., s e e Franse, J.J.M. 325 Lieke, W., s e e Gratz, E. 87 Lieke, W., s e e Steglich, F. 6 Li~nard, A., s e e Alameda, J.M. 145 Lifshitz, E., s e e Landau, L. 327 Lifshitz, I.M. 27 Ligeon, E., s e e Danielou, R. 216 Lii, Z.Y. 156

AUTHOR INDEX Lilienfeld, D.A., s e e Borgensen, P. 180 Lin, H. 379 Lin, Z., s e e Li, L. 152 Lindau, I., s e e Allen, J.W. 115 Lindau, I., s e e EgelhoffJr, W.E 131 Lindau, I., s e e Hecht, M.H. 131 Lindau, I., s e e Johansson, L.I. 115, 131 Lindau, I., s e e Rossi, G. 130 Lindau, I., s e e Yeh, J.J. 130 Linetski, Ya.L. 153, 174 Lippold, B., s e e Alekseev, RA. 339, 341 Lippold, B., s e e Goremychkin, E.A. 339, 342 Lippold, B., s e e Moth, Th. 178 Liu, B., s e e Ebihara, T. 48, 49, 51 Liu, B.X., s e e Ma, E. 143 Liu, N.C. 155 Liu, N.C., s e e Kamprath, N. 155 Liu, N.C., s e e Stadelmaier, H.H. 155 Liu, W.L. 366 Liu, Z.X., s e e Fang, R.Y. 157 Livesay, B.R., s e e Larsen, J.W. 169, 171 Lloyd, D., s e e Owen, G. 179 Loboda, VB. 120, 134, 137 Lochoshvili, T.S., s e e Dadiani, T.O. 188 Lochoshvili, T.S., s e e Glurdzhidze, L.N. 188 Loebich Jr, O. 182 Loebich Jr, O., s e e Jordan, R.G. 182 Loier, C., s e e Dexpert-Ghys, J. 137 Loisel, B., s e e Quemerais, A. t27, 129 Longuet-Higgins, H.C. 32 Lonzarich, G.G. 69, 70, 76-78 Lonzarich, G.G., s e e King, C.A. 76, 78 Lonzarich, G.G., s e e Taillefer, L. 26 Lord, D.G., s e e Parker, S.EH. 153 Loretto, M.H., s e e Brooks, J.W. 182 Loucks, T.L. 12, 20 Lousa, A., s e e Badia, E 157 Lousa, A., s e e Ferrater, C. 158 Lowe, W.R 125 Lozovyi, Ya.B. 119 Lozovyi, Ya.B., s e e Gonchar, EM. 118 Lu, E 181 Lu, E, s e e Croft, M. 181 Lu, Q., s e e Alameda, J.M. 311, 312 Lu, Q., s e e Givord, D. 302 Lu, Q.Z., s e e Huang, G.X. 150 Lfibcke, M. 114 Lfibcke, M., s e e Niemann, W. 114 Lubitz, R, s e e Forester, D.W. 168 Lubitz, E, s e e Schelleng, J.H. 167 Lubitz, R, s e e Vittoria, C. 168 Lucasson, A. 241,243,251,252 Lucasson, A., s e e Burger, J.E 243, 251,252, 271, 275, 285

441

Lucasson, A., s e e Daou, J.N. 213, 219, 220, 229, 233, 238, 239, 241,243-245, 247, 248, 251, 252, 268, 269 Lucasson, A., s e e Vajda, P. 213,220, 227, 233, 244-246 Lucasson, E, s e e Daou, J.N. 219, 220, 233,234, 244, 245, 247, 268, 269 Lucifiski, T., s e e Ratajczak, H. 157 Lundqvist, B.I., s e e Gunnarsson, O. 15 Luong, N.H. 90, 365 Ltithi, B. 357, 358 Ltithi, B., s e e Niksch, M. 38, 39 Luttinger, J.M. 11 Lynch, D.W., s e e Weaver, J.H. 127 Lysenko, A.B., s e e Tkach, VI. 110 Ma, E. 143 Ma, R.Z., s e e Pan, S.M. 175 Ma, R.Z., s e e Zhao, Z.B. 152 Ma, S.K., s e e B~al-Monod, M.T. 305 Machii, Y., s e e ()nuki, Y. 87 MacKenzie, I.S., s e e Waind, RR. 338 Mackintosh, A.R. 390 Mackintosh, A.R., s e e Jensen, J. 266, 379, 390, 391,412, 413, 416, 417 Mackintosh, A.R., s e e McEwen, K.A. 350, 351 Mgdge, H., s e e Czopnik, A. 398 Maeland, A., s e e Glinka, C.J. 243 Maeland, A., s e e Libowitz, G.G. 210, 214, 240 Maeland, A.J. 243 Maeno, Y., s e e Satoh, K. 5, 94 Maezawa, K. 83, 84, 86, 90 Maezawa, K., s e e Fukuhara, T. 74-76 Maezawa, K., s e e 0nuki, Y. 83, 84, 86, 91-93, 95 Mahmoud, S. 118, 127 Maienschein, J.L. 140 Maier-Komor, E 125 Maines, R.G., s e e Jayaraman, A. 7 Maita, J.R, s e e Fawcett, E. 26 Malinowski, M.E. 141 Malozemoff, A.R, s e e De Luca, J.C. 180 Malterre, D. 182 Malzfeldt, W . , s e e Niemann, W. 114 Manchester, ED., s e e Khatamian, D. 215, 216 Mancini, E 184 Mancini, E, s e e Huang, C.Y. 185 Mandel, T., s e e Dornke, M. 114, 115 Manedov, A.I., s e e Efendiev, E.G. 187 Mangin, Ph., s e e Cherifi, K. 160 Manoubi, T. 132 Manoubi, T., s e e Coltiex, C. 132 Mansmann, W. 231 Maple, M.B., s e e Falicov, L.M. 4 Maple, M.B., s e e Huang, C.Y. 185

442

AUTHOR INDEX

Maranzana, EE., s e e Buschow, K.H.J. 4 Marazza, R., s e e Rossi, D. 184 March, N.H., s e e Callaway, J. 9 Marchal, G., s e e Baczewski, L.T. 159, 161 Marchal, G., s e e Brouder, C. 159, 165 Marchal, G., s e e Cherifl, K. 160 Marchal, G., s e e Guilmin, P. 165 Marchal, G., s e e Malterre, D. 182 Marchal, G., s e e Piecuch, M. 159, 161 Mariko, H., s e e Nakamura, T. 162 Marinero, E.E. 166 Markandeylu, G., s e e Annapoorni, S. 168 Markin, P.E., s e e Svoboda, R 387 Markosyan, A.S., s e e Borombaev, M.K. 364 Markosyan, A.S., s e e Brown, P.J. 321 Markova, I.A., s e e Alekseev, P.A. 339, 341 Marshall, A.N. 164 Marshall, A.N., s e e Webb, D.J. 163 Mfirtensson, N., s e e Andersen, J.N. 116 Mfirtensson, N., s e e Hillebrecht, EU. 63 M~rtensson, N., s e e Kaindl, G. 115, 117 Mfirtensson, N., s e e Nilsson, A. 116 ML,'tensson, N., s e e Stenborg, A. 117 Martin, M. 177 Martin, M., s e e Frigerio, J.M. 177 Martinez, B. 146 Martinez, B., s e e Badia, E 157 Martinez, B., s e e Ferrater, C. 158 Martynyuk, A.V., s e e Gorodetskii, D.A. 119 Maruno, S., s e e Sakamoto, I. 73, 74 Mason, M.G. 114 Massov, A., s e e Br&hignac, C. 114 Masuda, H., s e e Suzuki, Y. 162 Materlik, G. 112 Mathevet, J.R 180 Matsubara, K., s e e Koyama, M. 165 Matsuda, R., s e e Suzuki, A. 166, 168 Matsui, H., s e e Goto, T. 65, 66 Matsumoto, H., s e e Huang, C.Y. 185 Matsuttra, S., s e e Ishida, A. 188, 189 Mattheiss, L.E 21, 22 Matthew, J.A.D. 132 Matthew, J.A.D., s e e Netzer, EE 108 Matz, W., s e e Alekseev, RA. 339, 341 Mauri, D. 122 Mauri, D., s e e Cerri, A. 125, 140 Maurice, V . , s e e Melmed, A.J. 118, 119 Mayer, H.M., s e e Franse, J.J.M. 325 MeAlister, S.R 366 McCausland, M.A.H., s e e Waind, ER. 338 McEwen, K.A. 350, 351,391 McGuiness, RJ. 148 McGuire, T.R., s e e Coey, J.M.D. 178 MeGuire, T.R., s e e Gambino, R.J. 180

McGuire, T.R., s e e Hartmann, M. 180 McGuire, T.R., s e e Pickart, S.J. 178 McGuire, T.R., s e e von Molnar, S. 178, 180 Mclntyre, GJ., s e e Jehan, D.A. 379 McMasters, O.D., s e e Gschneidner Jr, K.A. 6, 52 McMasters, O.D., s e e Ikeda, K. 305 McMasters, O.D., s e e Johanson, W.R. 52, 53 McMirm, R. 134 McMorrow, D.E, s e e Jehan, D.A. 379 McWhan, D.B., s e e Lowe, W.P. 125 Medveded, V.K., s e e Gonchar, EM. 118 Medveded, V.K., s e e Lozovyi, Ya.B. 119 Meeson, P., s e e Chapman, S.B. 92, 94, 95 Meeson, P., s e e Hunt, M. 81, 82 Meeson, P., s e e Satoh, K. 42, 44, 48, 51 Megtert, S., s e e Mathevet, J.R 180 Mehrhoff, T.K. 144 Mekata, M., s e e Wada, H. 303, 304 Mekata, M., s e e Yoshimura, K. 301 Melczer, M.E., s e e Croft, M. 181 M~linon, D., s e e Rayane, D. 114 Melmed, A.J. 118, 119 Melmed, A.J., s e e Ciszewski, A. 118 Melnikov, V.I., s e e Kuzmenko, V.M. 118, 121, 122 Melton, K.N. 174 Mendes, P.J., s e e Ferreira, R 260 Mendia-Monterroso, R., s e e Ballou, R. 310 Mendia-Monterroso, R., s e e Gignoux, D. 309, 310 Menovsky, A.A., s e e Franse, J.J.M. 325, 336 Menovsky, A.A., s e e Sinnema, S. 336, 337 Menth, A., s e e Klein, H.P. 311 Meschede, D., s e e Steglich, E 6 Messer, C.E. 240 Methfessel, S., s e e Gu, B.X. 145 Methfessel, S., s e e Homburg, H. 145 Metzger, T.H. 236 Meyer, A., s e e Besnus, M.J. 74 Meyer, E., s e e Grtitter, P. 148 Meyer, E., s e e Heirlzelmann, H. 148 Meyer, R.T.W. 51 Mibu, K. 158 Mibu, K., s e e Hosoito, N. 158 Mibu, K., s e e Shinjo, T. 158 Mibu, K., s e e Yoden, K. 158 Mieeli, RE, s e e Palmstrom, C.J. 186, 187 Michelutti, B., s e e Aubert, G. 339 Miedema, A.B., s e e Buschow, K.H.J. 108 Migliori, A., s e e Leisure, R.G. 232, 236 Mihalisin, T., s e e Parks, R.D. 181 Mikhailova, N.R, s e e Savrin, V.D. 109 Miles, M.H., s e e Chen, D.Y. 132 Miller, A.E., s e e Allen, C.W. 174

AUTHOR INDEX Miller, R.E 118, 126, 127 Miller, R.E, s e e Rahman Khan, M.S. 127, 135 Miller, S.A. 132 Min, B.I. 36 Minakata, R. 303 Minc, K., s e e Sakamoto, Y. 182 Ming Lei, s e e Leisure, R.G. 236 Minier, M., s e e Le Corre, A. 187 Mintz, M.H. 213, 240 Mintz, M.H., s e e Jacob, I. 241 Mintz, M.H., s e e Kumar, R. 136, 137 Mirabal-Garcia, M., s e e Salas, EH. 123 Miroshnichenko, I.S., s e e Tkach, V.I. 110 Misawa, S. 305 Mitchell, DJ. 141, 142 Mitsuda, S. 389 Mittsev, M.A. 119 Mittsev, M.A., s e e Burmistrova, O.R 119 Miura, T., s e e Sakamoto, I. 70, 72-74 Miura, T., s e e Takahashi, M. 70, 392 Miyahara, S., s e e Harima, H. 89 Miyahara, T. 129, 130 Miyahara, T., s e e Ishii, T. 3 Miyarna, T., s e e Inoue, A. 166 Miyamoto, K. 157 Miyamoto, T., s e e Sakamoto, I. 73, 74 Miyatake, H., s e e Tsunashima, S. 168 Miyazaki, T. 162 Miyoshi, K., s e e Sakamoto, I. 70, 72-74 Mizoguchi, T., s e e Sahashi, M. 156, 174 Mizuno, H., s e e Ishida, A. 188, 189 Mizushima, T., s e e Isikawa, Y. 85 Mizutani, S., s e e Suzuki, A. t66, 168 Moch, Th. 178 Mokeda, M., s e e Yamashita, S. 155 Moldovan, A . G . , s e e Smith, H.K. 137 Molho, R, s e e Ballou, R. 308 Molho, P., s e e Gignoux, D. 303, 308, 309 Moncton, D.E., s e e Bohr, L 417 Moncton, D.E., s e e Gibbs, D. 268, 378, 417 Mondal, S. 320 Montenegro, J.ED., s e e del Moral, A. 355 Morfin-L6pez, J.L., s e e Aguilera-Granja, E 122 Moreau, J.M. 182 Moreau, J.M., s e e Gignoux, D. 309, 310 Moreau, LM., s e e Parth~, E. 174 Moreira, J.M., s e e Freitas, P.P. 185 Moreu, M.A., s e e Martinez, B. 146 Morgen, E, s e e Onsgaard, J. 111, 126, 128-131 Moil, K., s e e Isikaw~, Y. 85 Moil, K., s e e Sato, K. 362, 363 Mori, T., s e e Ishii, T. 3 Morin, R 338, 353, 355-360, 394, 396-399, 408, 414, 417

443

Morin, P., s e e Al~onard, R. 355, 357, 394, 395, 397 Mofin, P., s e e Amara, M. 398 Morin, P., s e e Galera, R.M. 33 Morin, E, s e e Gignoux, D. 366, 389, 406 Morin, P., s e e Jaussaud, C. 355, 356 Morin, E, s e e Ltithi, B. 357, 358 Morishita, T. 157, 159 Morishita, T., s e e Kajiura, M. 157 Morishita, T., s e e Sato, R. 166 Moriya, T. 305 Moriya, T., s e e Ueda, K. 324 Morozov, Yu.G. 134 Morozov, Yu.G., s e e Kostygov, A.N. 134 Morozova, L.V, s e e Varkanova, R.G. 136, !42 Morrison, G.R., s e e Chapman, J.W. 126 Moser, H.R. 130--132 Moser, E, s e e Vajda, E 219, 232, 233 Moshchalkov, V.V., s e e Brandt, N.B. 5 M6ssbauer, R.L., s e e Petrich, G. 301 Motokawa, M. 380 Motokawa, M., s e e Nojiri, H. 381 Motoya, K. 323 Motoya, K., s e e Freltoft, T. 323 Motoya, K., s e e Shigeoka, T. 383 Mounier, S., s e e Palmstram, C.J. 186, 187 Mounier, S., s e e Zhu, J.G. 186 Mowry, G.S., s e e Thome, D.K. 236, 241, 246, 247, 252 Mrachkov, J. 352 Miieller, EM., s e e Arko, A.J. 31, 33 Mueller, M.H., s e e Shaked, H. 27t, 275, 281-284 Mtihle, E., s e e Goremychkin, E.A. 339, 342 Mukhuchev, A.M., s e e Burmistrova, O.R 119 Mukhuchev, A.M., s e e Mittsev, M.A. 119 Mulford, R.N.R., s e e Sturdy, G.E. 231 Muller, EA., s e e Franse, J.J.M. 336 Mfiller, H. 225 Mtiller, H., s e e Greis, O. 221,225, 231 M/iller, H., s e e Knappe, R 225 Mtiller, J. 140 Muller, J., s e e Kuboth, M. 185 M~iller, J.E., s e e Materlik, G. 112 M~ller, T. 35, 36 Murakami, M., s e e Uchida, K. 178 Murani, A.P., s e e Ball, A.R. 403-405 Murao, T., s e e Tsuneto, T. 353 Muraoka, Y. 303 Murata, K., s e e Goto, T. 300, 301,306 Murata, K.K. 327 Murgai, V. 129, 130 Murgai, V, s e e Huang, Y.S. 179 Murgai, V., s e e Parks, R.D. 181 Murgai, V, s e e den Boer, M.L. 115, 130

444

AUTHOR1NDEX

Mustaehi, A. 279 Mutka, H., s e e Arons, R.R. 273 Myers, H.P., s e e Fgldt, ,~,. 115, 116 Naberhuis, S., s e e Anthony, T.C. 168 Nabli, H,, s e e Pieeueh, M. 159, 161 Naris, S., s e e Shan, Z.S. 158 Nagahama, K., s e e lwamura, E. 150 Nagai, H., s e e Adachi, G. 170-172 Nagai, H., s e e Sakaguchi, H. 169-172 Nagai, N., s e e Adaehi, G. 170, 172 Nagai, N., s e e Kurosawa, Y. 42, 44, 51 Nagai, N., s e e Satoh, K. 42, 44, 48, 51 Nagai, N., s e e Umehara, I. 29, 30, 41, 42, 47-58, 70-73 Nagai, N., s e e Onuki, Y. 91-93 Nagano, H., s e e Sttmiyama, A. 4 Nagao, K., s e e Adaehi, G. 140 Nagaoka, Y., s e e Sakamoto, Y. 182 Nagasawa, S., s e e Shimizu, M. 297 Nagata, H., s e e Yamamoto, H. 151, 152 Nagel, H., s e e MeGuiness, RJ. 148 Nagel, H., s e e Melton, K.N. 174 Nagel, H., s e e Perkins, R.S. 311, 312 Naidyuk, Y.G., s e e Reiffers, M. 339-341,351 Nait-Saada, A., s e e Aubert, G. 339 Nait-Saada, A., s e e Barthem, V.M.T.S. 339-341, 343, 344 Nait-Saada, A., s e e Gignoux, D. 339, 342 Naito, K., s e e Ishii, T. 3 Nakagawa, Y., s e e Abe, S. 388 Nakagawa, Y., s e e Kaneko, T. 388, 397 Nakagawa, Y., s e e Kitai, T. 388 Nakahara, J., s e e Goltros, W. 188 Nakahara, N., s e e Ishida, A. 188, 189 Nakahara, S., s e e Kwo, J. 119 Nakajima, K. 178 Nakajima, T., s e e Ishizawa, Y. 31, 33, 35 Nakamura, H. 319 Nakamura, H., s e e Kamimura, H. 324 Nakamura, H., s e e Shiga, M. 323, 324 Nakamura, H., s e e Wada, H. 317-319, 323-325 Nakamura, O. 118, 125 Nakamura, O., s e e Baba, K. 188 Nakamura, O., s e e Takeda, K. 133 Nakamura, T. 162 Nakamura, Y. 304, 320 Nakamura, Y., s e e Ballou, R. 319, 320, 322 Nakamura, Y., s e e Hirosawa, S. 313 Nakamura, Y., s e e Kamimura, H. 324 Nakamura, Y., s e e Minakata, R. 303 Nakamura, Y., s e e Mttraoka, Y. 303 Nakamura, Y., s e e Nakamura, H. 319 Nakamura, Y., s e e Oomi, G. 321

Nakamura, Y., s e e Sakakibara, T. 300, 301 Nakamura, Y., s e e Shiga, M. 323, 324 Nakamura, Y., s e e Tanaka, Y. 303 Nakamura, Y., s e e Wada, H. 303, 304, 317-319, 323-325 Nakamura, Y., s e e Yoshie, H. 311 Nakamura, Y., s e e Yoshimura, K. 306, 321,323 Nakao, T., s e e GondS, Y. 167 Nakao, T., s e e Suezawa, Y. 167 Namoradze, N.Z., s e e Ratishvili, I.G. 227 Naoe, M. 168 Naoe, M., s e e Hoshi, Y. 168 Narayanamurti, V., s e e Jayaraman, A. 7 Nasu, S. 40 Natkaniec, I., s e e Goremyehkin, E.A. 339 Natsui, H., s e e Settai, R. 87-89 Nawate, M., s e e Tsunashima, S. 163 Nawate, N., s e e Honda, S. 164 Nazareth, A., s e e Strzeszewski, J. 151 Nazarov, A.S., s e e Varkanova, R.G. 142 Ndjaka, J.M.B., s e e Dieny, B. 165 Needham, D., s e e Eley, D.D. 136, 140 Neifield, R., s e e Croft, M. 181 Netzer, EP. 108, 111, 143, 144 Netzer, ER, s e e Matthew, J.A.D. 132 Neumann, H.H., s e e Nasu, S. 40 N6vot, L., s e e Gasgnier, M. 109 Newns, D.M., s e e Strange, D. 14, 55 Nieki, K., s e e Adachi, G. 170, 172 Nieklow, R.M., s e e Arons, R.R. 273, 277 Niemann, W. 114 Niemann, W., s e e LiJbcke, M. 114 Niihara, T. 168 Niki, K., s e e Adaehi, G. 170, 172 Niki, K., s e e Sakaguehi, H. 169, 170 Nikseh, M. 38, 39 Nilsson, A. 116 Nilsson, A., s e e Andersen, J.N. 116 Nilsson, A., s e e Stenborg, A. 117 Nilsson, P.O., s e e Kanski, J. 131 Nimori, S. 350 Ninomiya, N., s e e Kawahata, T. 136 Nishi, M, s e e Shigeoka, T. 383 Nishiguehi, I., s e e Hosoda, N. 136 Nishihara, M., s e e 0nuki, Y. 33-37, 90-93, 390 Nishihara, Y., s e e Katayama, T. 166 Nishikawa, M., s e e Iwata, N. 401 Nix, R.M. 179 Nix, R.M., s e e Bryan, S.I. 179 Nix, R.M., s e e Hay, C.M. 179 Nix, R.M., s e e Jennings, J.R. 179 Nix, R.M., s e e Owen, G. 179 Noce, C., s e e Maneini, E 184 Nogami, J., s e e Rossi, G. 130

AUTHOR INDEX Nogami, J., s e e Yeh, J.J. 130 Nojiri, H. 381 Nojiri, H., s e e Motokawa, M. 380 Nordstr6m, L. 313, 314 Norman, M., s e e Chapman, S.B. 92, 95 Norman, M.R. 7, 55, 64 Notarys, H., s e e Marinero, E.E. 166 Nozaki, H. 365 Nozaki, H., s e e Ishizawa, Y. 31, 33, 35 Nozi6res, E, s e e Pines, D. 327 Numata, T. 156 Numata, T., s e e Lii, Z.Y. 156 Nunez-Regueiro, M.D. 325 Ntmez-Regueiro, M.D., s e e Ballou, R. 325-327 Nurmiko, A.V, s e e Goltros, W. 188 Nuttall, R.H.D., s e e Shin, S.C. 160 Nyholm, R. 116 Nyholm, R., s e e Chorkendorff, I. 116 Obradors, X., s e e Martinez, B. 146 Ochiai, Y., s e e Hashimoto, S. 168 Oda, Y., s e e Sumiyama, A. 4 Oddou, J.L. 321 Oesterreicher, H. 137 Oestreieh, V., s e e Czjzek, G. 366 Ogawa, S., s e e Shinjo, T. 158 Oguro, I., s e e Kitazawa, H. 60, 63 Oguro, I., s e e Komatsubara, T. 31 O g u r o , I., s e e Sakamoto, I. 73, 74 Oguro, I., s e e Shigeoka, T. 383 O g u r o , I., s e e Yamashita, M. 388 O'Handley, R.C., s e e Li, H. 185 Ohashi, M., s e e Abe, S. 388 Ohashi, M., s e e Kaneko, T. 388 Ohe, Y., s e e Goto, T. 33, 34 Ohe, Y., s e e Settai, R. 87-89 Ohe, Y., s e e Suzuki, T. 31, 33 Ohkawa, EJ. 308 Ohki, C. 239, 240 Ohkoshi, M. 311 Ohkoshi, M., s e e Honda, S. 164 Ohkuma, H., s e e Miyahara, T. 129, 130 Ohmaki, M., s e e Sakamoto, Y. 182, 184 Ohtani, Y., s e e Hosoda, N. 136 Ohtani, Y., s e e Kawahata, T. 136 Ohyama, R., s e e Koyama, M. 165 Okamoto, T. 360, 361 Okamoto, T., s e e Hashimoto, Y. 387 Okamoto, T., s e e Shigeoka, T. 380, 401 Okamura, T., s e e Ishida, A. 188, 189 Okazaki, M., s e e Onodera, Y. 12 O l d , K . , s e e Kuwano, N. 182, 184 Okuda, H., s e e Muraoka, Y. 303 Okuno, H. 163

445

Okuno, H., s e e Lii, Z.Y. 156 Olsen, C.E., s e e Huang, C.Y. 185 Olsen, J.A., s e e Amato, A. 94, 95 Olson, C.G., s e e Weaver, J.H. 126-129 Olson, C.G., s e e Wieliczka, D.M. 115, 116 Omi, T., s e e 0nuki, Y. 33-37, 87-89, 91-93, 95 Onaya, T., s e e Sato, N. !60, 164 Onellion, M., s e e Dowben, P.A. 124 Onellion, M., s e e LaGraffe, D. 124 Onellion, M., s e e Li, D. 123 Ono, M., s e e Tomiyama, E 336 Onodera, Y. 12 Onsgaard, J. 111, 116, 117, 126-131 Onsgaard, J., s e e Andersen, J.N. 115, 116 Onsgaard, J., s e e Chorkendorff, I. 114, 116 Onsgaard, J., s e e Nilsson, A. 116 0nuki, Y. 7, 33-37, 74-78, 80, 83, 84, 86-93, 95, 390 0nuki, Y., s e e Aoki, H. 76-78 O n u k i , Y . , s e e Asano, H. 91 0nuki, Y., s e e Ebihara, T. 42, 44-46, 48, 49, 51 Onuki, Y., s e e Endoh, D. 92, 93 Onuki, Y., s e e Ishii, T. 3 Onuki, Y., s e e Komatsubara, T. 31 0nuki, Y., s e e Kurosawa, Y. 42, 44, 51 0nuki, Y., s e e Maezawa, K. 83, 84, 86, 90 0nuki, Y., s e e Mitsuda, S. 389 0nuki, Y., s e e Satoh, K. 5, 42, 44, 48, 51, 89, 90, 94 0nuki, Y., s e e Settai, R. 52, 53, 87-89 0nuki, Y., s e e Sumiyama, A. 4 0nuki, Y., s e e Suzuki, T. 91 0nuki, Y., s e e Takayanagi, S. 90, 94, 363, 364, 389, 390 0nuki, Y., s e e Umehara, I. 29, 30, 41, 42, 47-58, 70-73 Oomi, G. 321 Opyrchal, J. 278 Opyrchal, J., s e e Bieganski, Z. 282 Opyrchal, J., s e e Drulis, M. 282 Ormerod, J., s e e McGuiness, RJ. 148 Osborn, R., s e e Bennington, S.M. 234, 269 Oskotski, V.S., s e e Smirnov, I.A. 251,264 Osterwalder, J., s e e Schefer, J. 225, 273, 277 Otaki, K., s e e Sakai, O. 60, 61, 63, 64 Ott, H.R., s e e Andres, K. 339, 341 Ott, H.R., s e e Schlapbach, L. 252, 257 Ouladdiaf, B. 317, 318 Ouladdiaf, B., s e e Ballou, R. 317, 319, 320, 322, 325, 327 Ouladdiaf, B., s e e Brown, P.J. 321 Ouladdiaf, B., s e e D6portes, J. 321-323 Ouladdiaf, B., s e e Oddou, J.L. 321 Ousset, J.C., s e e Ballou, R. 336

446

AUTHOR INDEX

Owen, G. 179 Owen, G., s e e Bryan, S.I. 179 Owen, G., s e e Hay, C.M. 179 Owen, G., s e e Jennings, J.R. 179 Owen, G., s e e Nix, R.M. 179 Oyamada, A., s e e Kitazawa, H. 65 Oyamada, A . , s e e Takeda, N. 67 Ozeki, S. 65, 66 Paccard, D., s e e B~cle, C. 367 Pack, J.G., s e e Libowitz, G.G. 251,256 Pa'idassi, S., s e e Cochet-Muchy, D. 151 Palenzona, A. 182 Palmer, P., s e e L/isser, R. 265 Palmstrom, C.J., s e e Allen Jr, S.J. 186, 187 Palmstrom, C.J. 186, 187 Palmstrom, C.J., s e e Zhu, J.G. 186 Palyukh, B.M., s e e Lozovyi, Ya.B. 119 Pan, S.M. 175 Pan, S.M., s e e Zhao, Z.B. 152 Pan6i~in, R.S., s e e Kosak, M.M. 118, 120 Parfen'eva, L.S., s e e Smirnov, I.A. 251,264 Park, M.K., s e e Messer, C.E. 240 Parker, D.G., s e e Jennings, J.R. 179 Parker, S.EH. 153 Parks, R.D. 4, 181 Parks, R.D., s e e Croft, M. 181 Parmigiani, E 134 Parshin, P.P. 243 Parth~, E. 174 Parth~, E., s e e Moreau, J.M. 182 Partin, D.L. 188-190 Partin, D.L., s e e Goltros, W. 188 Partin, D.L., s e e Salamanca-Young, L. 189 Parvin, K., s e e Webb, D.J. 162 Pasechnik, M.V., s e e Goremychkin, E.A. 339, 342 Patrick, R.C., s e e Mitchell, D.J. 141, 142 Pebler, A. 225, 231 Pecharsky, V.K. 379 Peuncey, T., s e e Kaindl, G. 117 Perenboom, J.A.A.J., s e e van der Meulen, H.P. 81 Perkins, R.S. 311,312 Perkins, R.S., s e e Klein, H.P. 311 Perkins, R.S., s e e Melton, K.N. 174 Perrier de la Bathie, R., s e e Gignoux, D. 339, 342 Peshkov, A.V, s e e Zhavoronkova, K.N. 136 Peterman, D.J., s e e Franciosi, A. 132 Peterman, D.J., s e e Raisanen, A. 132 Peterman, D.J., s e e Wall, A. 132 Peterson, D.T., s e e Kai, K. 229, 241,252, 256 Peterson, D.T., s e e Phua, T.T. 237 Peterson, D.T., s e e Shinar, J. 251,255 Peterson, D.T., s e e Weaver, J.H. 265

Peterson, D.T., s e e Zamir, D. 256 Petinov, V.I., s e e Chizhov, RE. 134 Pefinov, VI., s e e Kostygov, A.N. 134 Petinov, VI., s e e Morozov, Yu.G. 134 P&rakian, J.P., s e e Ahmed-Mokhtar, N. 127 Petdch, G. 301 Petroff, Y., s e e Schlapbach, L. 252, 257, 265, 266 Petrov, A.E., s e e Morozov, Yu.G. 134 Petzow, G., s e e Grieb, B. 152 Petzow, G., s e e Knoch, K.G. 152, 153 Philip, P., s e e Franciosi, A. 132 Philip, P., s e e Raisanen, A. 132 Philip, E, s e e Wall, A. 132 Philip, R., s e e Ahmed-Mokhtar, N. 127 Phillips, N.E., s e e Amato, A. 94, 95 Phillips, N.E., s e e Fisher, R.A. 324 Phua, T.T. 237 Phua, T.T., s e e Zamir, D. 256 Piacentini, M., s e e Sigrist, M. 126, 128 Pickart, S.J. 178 Piecuch, M. 159, 161 Piecuch, M., s e e Baczewski, L.T. 159, 161 Piecueh, M., s e e Brouder, C. 159, 165 Pientka, Z., s e e CereS,, S. 143 Pierre, J., s e e Lethuillier, P. 48 Pierre, J., s e e Morin, E 397 Pillmayr, N., s e e Daou, J.N. 248, 251,269 Pillmayr, N., s e e Vajda, P. 245, 269, 270 Pines, D. 327 Pinettes, C. 313-315, 326 Pinettes, C., s e e Due, N.H. 307, 308 Ping, J., s e e Zhao, Z.B. 152 Pintschovius, L., s e e Blaschko, O. 234 Plaskett, T.S., s e e Freitas, ER 185 Plaskett, T.S., s e e Kaindl, G. 117 Pleschiutschnig, J. 234 Pleschiutschnig, J., s e e Blaschko, O. 219, 220, 234 Poate, J.M. 167 Poldy, C.A., s e e Klrchmayr, H.R. 295, 296, 328, 369 Pollack, R.A., s e e Kaindl, G. 117 Pollard, R.J., s e e Parker, S.EH. 153 Pols, R.E., s e e van Deursen, A.J.R 33, 34, 36 Ponyatovskii, E.G., s e e Bashkin, I.O. 225, 231 Ponyatovskii, E.G., s e e Fedotov, VK. 225 Popeseu, M., s e e Goremychkin, E.A. 339 P6rschke, E., s e e Bracconi, R 137 Porte, M., s e e Krishnan, R. 166 Port, R., s e e Czopnik, A. 398 Potzel, W., s e e Waibel, E 285 Pourarian, E, s e e Lee, E.W. 303 Pradal, E, s e e Frandon, J. 128-130 Prietsch, M., s e e Domke, M. 114, 115

AUTHOR INDEX Probst, P.-A., s e e Hunt, M. 81, 82 Probst, P.-A., s e e Satoh, K. 42, 44, 48, 51 Protsenko, I.E. 120 Protsenko, I.E., s e e Loboda, V.B. 120, 134, 137 Provo, J.L. 141 Provo, J.L., s e e Harris, J.M. 177 Provo, J.L., s e e Mitchell, D.J. 142 Pszczola, J. 329 Pulham, R.J., s e e Hubberstey, R 140 Purwins, H.G. 360

Qian, X.R., s e e Kamprath, N. 155 Qiu, M., s e e Li, H. 185 Quang, RH., s e e Radwanski, R.J. 334, 335 Quang, EH., s e e Verhoef, R. 333 Quemerais, A. 127, 129 Quezel, S., s e e Rossat-Mignod, J. 401

Raaen, S. 180 Raaen, S., s e e Braaten, N.A. 178 Raaen, S., s e e Croft, M. 181 Raaen, S., s e e Parks, R.D. 181 Rabalais, J.W., s e e Kumar, R. 136, 137 Rabe, R, s e e Lfibcke, M. 114 Rabe, E, s e e Niemann, W. 114 Radhakrishna, R, s e e Daou, J.N. 216, 268, 269 Radhakrishna, R, s e e Vajda, E 268, 269 Radwanski, R.J. 331,334-336, 339, 342 Radwanski, R.J., s e e Franse, J.J.M. 328, 336, 350, 417 Radwanski, R.J., s e e Sinnema, S. 329, 336, 337 Radwanski, R.J., s e e Szytuta, A. 384 Radwanski, RJ., s e e Verhoef, R. 331-333 Radwanski, R.J., s e e Zhang, EY. 339, 340, 342, 343, 361 Raffius, G. 355 Rahman Khan, M.S. 127, 135, 137 Raigorodskii, R.M., s e e Linetski, Ya.L. 153 Rainford, B.D., s e e Mondal, S. 320 Raisanen, A. 132 Raisanen, A., s e e Franciosi, A. 132 Raisanen, A., s e e Wall, A. 132 Rajora, O.S. 133 Rakhubovskii, V.A., s e e Kuzmenko, V.M. 118, 122 Rakoto, H., s e e Ballou, R. 336 Rama Ran, K.MS., s e e Annapoorni, S. 168 Ramakrisna, K. 171 Ramesh, R. 150, 151 Ramesh, R., s e e Koestler, C. 150, 151 Ran, X.L., s e e Fang, R.Y. 157 Ratajczak, H. 157

447

Ratajczak, H., s e e Dud~s, J. 120 Rath, J. 22 Ratishvili, I.G. 227 Rather, E.R., s e e Johnson, R.W. 178 Rau, C. 123, 124 Raub, E., s e e Loebich Jr, O. 182 Rauchschwalbe, U., s e e Franse, J.J.M. 325 Ravot, D., s e e Rossat-Mignod, J. 62, 401 Rayane, D. 114 Rayment, T., s e e Hay, CM. 179 Rayment, T., s e e Nix, R.M. 179 Reehuis, M., s e e Ball, A.R. 375, 386 Regnault, L.P., s e e Rossat-Mignod, J. 62, 81 Reichelt, J. 67, 68 Reichl, R. 111,131 Reiffers, M. 339-341,351 Reihl, B., s e e Kaindl, G. 1t 5, 117 Reihl, B., s e e Schneider, W.D. 118 Reihl, R. 122 Reikhrudel, E.M., s e e Kozlovskii, L.V i34 Reimer, V.A., s e e Borombaev, M.K. 364 Reinders, EH.P. 30, 69, 70 Reinders, P.H.R, s e e Chapman, S.B. 92, 95 Reinders, P.H.E, s e e Hunt, M. 81, 82 Reinders, PH.P., s e e Springford, M. 92 Reinders, P.H.R, s e e ()unki, Y. 33-36 Remy, E, s e e Vajda, R 219, 232, 233 Ren, Y.G., s e e Jaswal, S.S. 151 Reshentnikova, L.V. 118 Ressouche, E., s e e Fillion, G. 393 Rez, P., s e e Manoubi, T. 132 Rhodes, E, s e e Wohlfarth, E.R 298, 306 Rhyne, J.J., s e e Gignoux, D. 342 Ribas, R., s e e Ferrater, C. 158 Richter, HJ. 187 Riedel, A.A., s e e Bacon, EM. 141 Ritter, C. 321 Ritter, C., s e e Arons, R.R. 271,273 Ritter, C., s e e Mondal, S. 320 Rivory, J., s e e Frigerio, J.M. 177 Rivory, J., s e e Martin, M. 177 Roberts, M. de V., s e e Longuet-Higgins, H.C. 32 Rochow, R., s e e Carbone, C. 124, 158 Rodewald, W. 152, 153, 155 Rodriguez Fernandez, J., s e e Ball, A.R. 392 Rodriguez Fernandez, J., s e e Barandiaran, J.M. 366 Roeland, L.W., s e e McEwen, K.A. 350, 351 Roeland, L.W., s e e Meyer, R.T.W. 51 Rojek, A., s e e Cendtewska, B. 184 Ronay, M. 185 Ropars, G., s e e Caulet, J. 187 Ropars, G., s e e Le Corre, A. 187 Rosei, R., s e e Weaver, J.H. 265

448

AUTHOR INDEX

Rosenberg, M., s e e Homburg, H. 145 Rosengren, A. 111 Rosenthaler, L., s e e Griitter, P. 148 Rosenthaler, L., s e e Heinzelmann, H. 148 Ross, D.K., s e e Anderson, I.S. 216, 233 Ross, D.K., s e e Beunington, S.M. 234, 269 Ross, D.K., s e e Fairclough, J.P.A. 219 Ross, D.K., s e e Hunt, D.G. 243 Rossat-Mignod, J. 62, 81,401,413 Rossat-Mignod, J., s e e Chattopadhyay, T. 401 Rossat-Mignod, J., s e e Effantin, J.M. 31,359, 397 Rossat-Mignod, J., s e e Jerjini, M. 70, 392 Rossi, D. 184 Rossi, G. 130 Rossi, G., s e e Yeh, J.J. 130 Rossignol, M., s e e Barbara, B. 360 Rossignol, M., s e e Purwins, H.G. 360 Rossignol, M.E, s e e Barbara, B. 67 Rostoker, R., s e e Kohn, W. 12 Rouault, R, s e e Ballou, R. 324 Rouault, P., s e e Berthier, Y. 313 Rouchon, C., s e e Gignoux, D. 371,385, 387 Rouchy, J., s e e Al6onard, R. 394, 395 Rouehy, J., s e e Morin, R 353, 355-357, 394, 396, 397 Roudaut, E., s e e D~portes, J. 321, 322 Roudaut, E., s e e Gignoux, D. 371,385, 387 Roux, J.-Ph., s e e Br~chignac, C. 114 Rowe, J.M., s e e Anderson, I.S. 234 Rowe, J.M., s e e Glinka, C.J. 243 Rowell, J.M., s e e Lowe, W.E 125 Rozendaal, E., s e e McGuiness, P.J. 148 Ruderman, M.A. 3, 415 Rudigier, H., s e e Schlapbach, L. 252, 257 Ruiz, A., s e e Martinez, B. 146 Rumyantsev, A.Yu., s e e Parshin, P.R 243 Runge, E., s e e Zwicknagl, G. 14, 77, 78 Rush, J.J. 243 Rush, J.J., s e e Anderson, I.S. 234 Rush, J.J., s e e Berk, N.E 232 Rush, J.J., s e e Cannelli, G. 232 Rush, J.J., s e e Glinka, C.J. 243 Rush, J.J., s e e Gygax, EN. 232 Rush, J.L, s e e Udovic, T.J. 234, 235, 243 Rustamov, P.G., s e e Efendiev, E.G. 187 Rustamov, R.G., s e e Efendiev, E.G. 187 Ryborg, E, s e e Onsgaard, J. 126, 128-131 Saad, EM., s e e Comer, W.D. 126 Sadikov, I.P., s e e Alekseev, P.A. 339, 341 Saeki, M., s e e Shigeoka, T. 384, 385 Sagasaki, M. 166 Sagawa, M., s e e Yamamoto, H. 151, 152

Sahashi, M. 156, 174 Sahni, VC. 18 Saito, N., s e e Sato, R. 166 Sakaguchi, H. 169-172 Sakaguchi, H., s e e Adachi, G. 140, 170-172 Sakaguchi, H., s e e Shirai, H. 172 Sakai, O. 60, 61, 63, 64 Sakai, O., s e e Harima, H. 32, 33 Sakai, O., s e e Kasuya, T. 13, 59, 60, 6345 Sakaki, Y., s e e Okuno, H. 163 Sakakibara, T. 300, 301 Sakakibara, T., s e e Goto, T. 300, 301,306 Sakakibara, T . , s e e Takayanagi, S. 363, 364 Sakakibara, T., s e e Yoshimura, K. 301 Sakamoto, I. 70, 72-74 Sakamoto, I., s e e Satoh, K. 42, 44, 48, 51 Sakamoto, Y. 182, 184 Sakamoto, Y., s e e Takao, K. 182 Sakatsume, S., s e e Goto, T. 33, 34, 65, 66 Sakatsume, S., s e e Kitazawa, H. 65 Sakatsume, S., s e e Settai, R. 60, 61, 65 Sakatsume, S., s e e Suzuki, T. 33, 34 Sakatsume, S., s e e Takeda, N. 67 Sakurada, S., s e e Kaneko, T. 397 Sakurai, J., s e e Benoit, A. 52 Sakurai, J., s e e Fukuhara, T. 74-76 Sakurai, J., s e e Kamimura, H. 324 Sakurai, J., s e e Nakamura, H. 319 Sakurai, Y., s e e Lii, Z.Y. 156 Sakurai, Y., s e e Okuno, H. 163 Salamanca-Young, L. 189 Salas, EH. 123 Salas, F.H., s e e Alameda, J.M. 145 Salibi, N., s e e Zamir, D. 256 Salo, I.P., s e e Linetski, Ya.L. 174 Sanadze, V.V., s e e Dadiani, T.O. 188 Sanadze, V.V., s e e Dzhabua, Z.U. 188 Sanchez, J.P., s e e Shinjo, T. 158 Sandratskii, L., s e e Uhl, M. 326 Sands, T., s e e Allen Jr, S.J. 186, 187 Sands, T., s e e Palmstrom, C.J. 186 Sankar, S.G., s e e Cheng, S.E 155 Sankar, S.G., s e e Smith, H.K. 137 Sarma, D.D., s e e Hillebrecht, EU. 63 Sarma, D.D., s e e Weller, D. 122 Sarpal, B.K. 112 Sarpal, B.K., s e e Blancard, C. 112, 114 Sase, Y., s e e Ishida, A. 188, 189 Sato, H., s e e Sakamoto, I. 70, 72-74 Sato, K. 362, 363 Sato, K., s e e Isikawa, Y. 85 Sato, K., s e e Maezawa, K. 83, 84, 86, 90 Sato, K., s e e 0nuki, Y. 83, 84, 86 Sato, K . , s e e Umehara, I. 53-58

AUTHOR INDEX Sato, M., s e e 0nuki, Y. 33, 34 Sato, N. 160, 164 Sato, N., s e e Komatsubara, T. 31 Sato, N., s e e Takeda, N. 65, 67 Sato, N., s e e Tanaka, K. 65, 66 Sato, N., s e e Yarnauchi, K. 160 Sato, R. 166 Sato, S., s e e Ishii, T. 3 Sato, T., s e e Nakajima, K. 178 Satoh, H., s e e Sakamoto, I. 73, 74 Satoh, K. 5, 42, 44, 48, 51, 89, 90, 94 Satoh, K., s e e Ebihara, T. 42, 44-46, 48, 49, 51 Satoh, K., s e e Kurosawa, Y. 42, 44, 51 Satoh, K . , s e e Umehara, I. 47-51, 70-72 Satoh, K., s e e Onuki, Y. 74-78, 80, 87-89, 91-93 Satoh, T., s e e Kitazawa, H. 65 Satoh, T., s e e Takahashi, M. 70, 392 Savitskii, E.M., s e e Alekseev, P.A. 339, 341 Savitskii, E.M., s e e Goremychldn, E.A. 339, 342 Savrin, V.D. 109 Saw, C.K. 216, 219 Sawatsky, G.A., s e e Thole, B.T. 114 Sawatzky, G.A., s e e Esteva, J.M. 131, 132 Sayetat, E, s e e D~portes, J. 321,322 Schaefer, W . , s e e Arons, R.R. 281 Schafer, H., s e e Steglich, E 6 Schaudy, G., s e e Gignoux, D. 375, 377, 415 Schefer, J. 225, 273, 277 Schellenberg, L., s e e Kuboth, M. 185 Schelleng, J.H. 167 Schelleng, J.H., s e e Forester, D.W. 168 Schelleng, J.H., s e e Vittoria, C. 168 Schenk, A., s e e Gygax, F.N. 232 Schiffmacher, G. 177 Schiffmacher, G., s e e Gasgnier, M. 132 Sehinkel, C. 300 Schlapbach, L. 210, 252, 257, 265, 266 Schlapbach, L., s e e Fujimori, A. 265 Schlapbach, L., s e e Schefer, J. 225, 273, 277 SchlegeI, H., s e e Krost, A. 188, 189 Schmidt, H., s e e Czjzek, G. 366 Schmidt-May, J., s e e Chorkendorff, I. 116 Schmidt-May, J., s e e Nyholm, R. 116 Schmitt, D. 414 Schmitt, D., s e e Al6onard, R. 355 Schmitt, D., s e e Ball, A.R. 342, 351-353, 375, 377, 378, 380, 386, 391,392, 402-406, 417 Schmitt, D., s e e Barandiaran, J.M. 366 Schmitt, D., s e e Barthem, V.M.T.S. 339-341, 343, 344 Schmitt, D., s e e Blanco, J.A. 365, 370-373, 382, 383, 401-406 Schmitt, D., s e e Bouvier, M. 365, 405 Schmitt, D., s e e Fr6my, M.A. 392

449

Schmitt, D., s e e Gignoux, D. 297, 300, 345, 366, 369, 371,373, 375-377, 385, 387, 392, 393, 409, 415 Schmitt, D., s e e Jaussaud, C. 355, 356 Schmitt, D., s e e Morin, P. 338, 353, 355-357, 359, 360, 394, 396, 397, 408, 414, 417 Schmitt, D., s e e Radwanski, R.J. 339, 342 Schmitt, D., s e e Reiffers, M. 339-341,351 Schmitt, D., s e e Shigeoka, T. 368 Schrnitt, D., s e e Zhang, EY. 339, 340, 342, 343, 361 Schmitzer, C. 236, 248, 268 Schmitzer, C., s e e Vajda, P. 245, 246, 268 Schnabel, B., s e e Zogal, O.J. 237 Schneider, G. 152 Schneider, G., s e e Fidler, L 152, 153 Schneider, G., s e e Knoch, K.G. 152 Schneider, W.D. 118 Schneider, W.D., s e e Domke, M. 114, 115 Schneider, W.D., s e e Kaindl, G. 115, 117 Schneider, W.D., s e e Moser, H.R. 130-132 Schoenberger, R.J., s e e Belhoul, M. 277 Schoenberger, R.J., s e e Lichty, L.R. 233 Schokawa, J., s e e Sakaguchi, H. 172 Scholz, U.D., s e e McGuiness, P.J. 148 Schotte, K.D., s e e Bred1, C.D. 70 Schreiber, D.S. 236, 237 Schrey, E, s e e Rodewald, W. 155 Schrieffer, J.R., s e e Berk, N. 304 Schr6der, K., s e e W e l l e r , D. 122, 124 Schuller, I.K., s e e Homma, H. 119 Schuller, I.K, s e e Yang, K.A. 119 Schuurmans, M.EH., s e e Daalderop, G.H.O. 313-315 Schwartz, C.L., s e e Palmstrom, C.J. 186 Schwarz, R.B. 180 Schwarz, R.B., s e e Leisure, R.G. 232, 236 Schwarz, W., s e e Andr6, G. 227, 230, 281 Schwarz, W., s e e Pleschiutschnig, J. 234 Schweizer, J. 311 Schweizer, J., s e e Arons, R.R. 271,278, 279, 281 Schweizer, J., s e e Ballou, R. 310 Schweizer, J, s e e Barandiaran, LM. 366 Schweizer, J., s e e Barbara, B. 67 Schweizer, J., s e e Benoit, A. 52 Schweizer, J., s e e Fillion, G. 393 Schweizer, J., s e e Gignottx, D. 309, 310 Scott, C.A., s e e Chowdhury, M.R. 229, 237 Seehman-Eggebert, M., s e e Richter, H.J. 187 Segre, C.U., s e e Croft, M. 181 Seitz, E. 67-69 Selke, W. 399 Sellmyer, D.J. 40, 151, 158, 159, 164

450

AUTHOR INDEX

Sellmyer, D.J., s e e Aylesworth, K.D. 146, 150, 151 Sellmyer, D.J., s e e Jaswal, S.S. 151, 152 Sellmyer, D.J., s e e Shan, Z.S. 158-161, 164, 165 Sellmyer, D.J., s e e Strzeszewski, J. 151 Sellmyer, D.J., s e e Tiwald, T.E. 158 Senoussi, S. 271,273, 277, 279 Sera, M., s e e Kitazawa, H. 60, 63 Serano, C.M., s e e Ronay, M. 185 Seri, H., s e e Sakaguchi, H. 169, 170 Settai, R. 52, 53, 60, 61, 65, 87-89 Settai, R., s e e Goto, T. 65, 66 Seymour, E.EW., s e e Barnes, R.G. 216 Seymour, E.EW., s e e Bamfather, K.J. 237 Seymour, E.EW., s e e Chowdhury, M.R. 229, 237 Seymour, E.EW., s e e Hart, J.W. 233 Seymour, E.EW., s e e Lichty, L.R. 232, 244 Seymour, E.EW., s e e Phua, T.T. 237 Seymour, E.EW., s e e Torgeson, D.R. 233 Shaburov, V.A., s e e Smimov, I.A. 251,264 Shah, J.S., s e e Givord, E 301 Shaked, H. 271,275, 281-284 Shaltiel, D. 285 Shaltiel, D., s e e Daou, J.N. 213, 217, 251,264, 271 Sham, L.J., s e e Kohn, W. 14 Shamir, N., s e e Venkert, A. 179 Shah, Z.S. 158-161, 164, 165 Shah, Z.S., s e e Sellmyer, D.J. 158, 159, 164 Shah, Z.S., s e e Tiwald, T.E. 158 Shapiro, S.M., s e e Lawrence, J.M. 40 Sharnonja, V.G., s e e Loboda, V.B. 120, 134 Shelton, R.N., s e e Klavins, P. 215, 221,225, 226, 229 Shelton, R.N., s e e Xu, Y. 185 Shen, J.X., s e e Shah, Z.S. 164 Shen, 3(. 175 Shenoy, G.K., s e e Carlin, R.L. 275, 281 Shenoy, G.K., s e e Friedt, J.M. 282 Shevlyakov, S.A., s e e Gorodetskii, D.A. 118 Shi, S.Y., s e e Huang, G.X. 150 Shibata, T., s e e Suzuki, Y. 162 Shibutani, K., s e e Sumiyama, A. 4 Shida, H., s e e Kitazawa, H. 41-43 Shiga, M. 323, 324 Shiga, M., s e e Kamimura, H. 324 Shiga, M., s e e Minakata, R. 303 Shiga, M., s e e Muraoka, Y. 303 Shiga, M., s e e Nakamura, H. 319 Shiga, M., s e e Nakamura, Y. 320 Shiga, M., s e e Oomi, G. 321 Shiga, M., s e e Sakakibara, T. 300, 301 Shiga, M., s e e Wada, H. 303, 304, 317-319, 323-325

Shiga, M., s e e Yoshie, H. 311 Shiga, M., s e e Yoshimura, K. 321,323 Shigeoka, T. 368, 380, 382-385, 401 Shigeoka, T., s e e Fujii, H. 380, 381,384 Shigeoka, T., s e e Iwata, N. 368, 374, 375, 401 Shigeoka, T., s e e Nojiri, H. 381 Shigeoka, T., s e e Sugiyama, K. 371 Shijo, T., s e e Hosoito, N. 158 Shikhmanter, L. 179, 181 Shimamori, T., s e e Miyazaki, T. 162 Shimizu, K. 317 Shimizu, M. 297 Shimizu, M., s e e Bloch, D. 300, 301 Shimizu, M., s e e Yamada, H. 301,306, 325 Shimizu, T., s e e Yoshimura, K. 306 Shimizu, Y., s e e ()nuki, Y. 87 Shimoghori, T., s e e Adachi, G. 171 Shimohara, K., s e e Ishida, A. 188 Shin, S.C. 160 Shinar, J. 251,253, 255, 257 Shinjo, T. 158 Shinjo, T . , s e e Hosoito, N. 158 Shinjo, T., s e e Mibu, K. 158 Shinjo, T., s e e Yoden, K. 158 Shinoda, T., s e e Tsunashima, S. 168 Shiokawa, J., s e e Adachi, G. 170-172 Shiokawa, J., s e e Arakawa, T. 144 Shiokawa, J., s e e Sakaguchi, H. 169-172 Shiozaki, I., s e e Sakamoto, I. 73, 74 Shirai, H. 172 Shirane, G., s e e Freltoft, T. 323 Shirane, G., s e e Motoya, K. 323 Shirley, D.A., s e e Mason, M.G. 114 Shivaprasad, S.M., s e e Ashrit, P.V. 133 Shiwaku, T., s e e Kuwano, N. 182 Shoenberg, D. 11, 27 Shohata, N. 361,362 Sholl, C.A., s e e Lichty, L.R. 232, 244 Shopov, V.S., s e e Apostolov, A.V. 127 Shubina, T.S., s e e Volkenshtein, N.V. 271 Shuler, K., s e e Oesterreicher, H. 137 Siari, A., s e e Malterre, D. 182 Siconolfi, D.J., s e e Frankenthal, R.P. 168 Siconolfi, D.J., s e e van Dover, R.B. 168 Siegel, R.W., s e e Li, Z. 110 Sigrist, M. 126, 128 Sima, V., s e e Lebech, B. 373 Singh, A.K. 177 Singh, A.K., s e e Singh, S.K. 169-172 Singh, O. 134 Singh, O., s e e Curzon, A.E. 120, 135, 137 Singh, S.K. 169-172 Singleton, J.H. 141 Sinha, V.L., s e e Cheng, S.E 155

AUTHOR INDEX Sinitsyn, E.V., s e e Borombaev, M.K. 364 Sinnema, S. 329, 336, 337 Sinnema, S., s e e Franse, J.J.M. 336 Sinnema, S., s e e Radwanski, R.J. 336 Sinnema, S., s e e Verhoef, R. 333 Sinnemann, Th., s e e Homburg, H. 145 Skalicky, R, s e e Fidler, J. 174 Skillman, S., s e e Herman, E 9 Skriver, H.L., s e e Boulet, R.M. 52 Slater, J.C. 12 Slisenko, V.V., s e e Goremychkin, E.A. 339, 342 Smereka, T.P., s e e Gonchar, EM. 118 Smereka, T.P., s e e Lozovyi, Ya.B. 119 Smetana, Z . , s e e Borombaev, M.K. 364 Smetana, Z., s e e Lebech, B. 373 Smirnitskaya, G.V., s e e Kozlovskii, L.V. 134 Smimov, I.A. 25 I, 264 Smith, D.A. 182 Smith, H.K. 137 Smith, J.E, s e e Subramanian, RR. 217 Smith, J.E, s e e Thome, D.K. 236, 241,246, 247, 252 Smith, M.E., s e e Barnes, R.G. 216 Smith, R.L. 126 Smith, R.L., s e e Comer, W.D. 126 Smith, R.S., s e e Richter, H.J. 187 Smutek, M. 136 Smutek, M., s e e Boeva, O.A. 136, 143, 240 Smutek, M., s e e CereS,, S. 143 Soda, K., s e e Ishii, T. 3 Sommer, R., s e e Lfithi, B. 357, 358 Sonntag, B., s e e Ltibcke, M. 114 Sonntag, B., s e e Materlik, G. 112 Sorensen, O., s e e Onsgaard, J. 116, 127, 129, 131 Soubeyroux, J.L, s e e BaIlou, R. 324 Southall, J., s e e Jones, P.M.S. 217 Sov~k, P., s e e Ratajczak, H. 157 Spain, G., s e e Franse, J.J.M. 325 Spedding, EH., s e e Beaudry, B.J. 217, 219, 234, 245 Spencer, E.G., s e e Croft, M. 181 Spencer, E.G., s e e Lu, E 181 Springford, M. 81, 92 Springford, M., s e e Chapman, S.B. 92, 94, 95 Springford, M., s e e Hunt, M. 81, 82 Springford, M., s e e Reinders, P.H.R 30, 69, 70 Springford, M., s e e Satoh, K. 42, 44, 48, 51 Springford, M., s e e Wasserman, A. 35 Springfurd, M., s e e 0nuki, Y. 33-36 Sprokel, G.S., s e e Marinero, E.E. 166 Spruijt, A.M.J., s e e Heitmann, H. 168 Srivastava, O.N., s e e Ramak.risna, K. 171 Srivastava, O.N., s e e Singh, A.K. 177 Srivastava, O.N., s e e Singh, S.K. 169-172

451

Stadelmaier, H.H. 155 Stalinski, B., s e e Bieganski, Z. 283, 284 Stalinski, B., s e e Czopnik, A. 398 Stalinski, B., s e e Drulis, M. 241, 252, 258, 263, 273, 275, 278, 279, 285 Stalinski, B., s e e Kletowski, Z. 52 Stamateli, M.Yu., s e e Glurdzhidze, L.N. 188 Stassis, C., s e e Khatamian, D. 216, 219 Stassis, C., s e e Saw, C.K. 216, 219 Stasfik, Z . V . , s e e Kosak, M.M. l 18, 120 Steglich, E 6 Steglich, E, s e e Bredl, C.D. 70 Steglich, E, s e e Franse, J.J.M. 325 Steglich, E, s e e Gratz, E. 87 Steinbinder, D., s e e Stuhr, U. 237 Stenborg, A. 116, 117 Sticht, J. 81 Stierman, R.J. 246, 271 Stierman, R.J., s e e Gschneidner Jr, K.A. 6, 52 Stierman, R.J., s e e Ikeda, K. 305 Strange, D. 14, 55 Strange, P., s e e Taillefer, L. 26 Strasser, G. 115 Strasser, G., s e e Matthew, J.A.D. 132 StrSssler, S., s e e Perkins, R.S. 312 Strauss, A., s e e Waibel, E 285 Streit, P., s e e Everett, G.E. 394, 411 Strnat, K.J. 328 Stryjewski, E. 345-347 Strzeszewski, J. 144, 151 Stuhr, U. 237 Stunault, A., s e e Fillion, G. 393 Sturdy, G.E. 231 Styles, G.A., s e e Bamfather, K.J. 237 Styles, G.A., s e e Chowdhury, M.R. 229, 237 Styles, G.A., s e e Phua, T.T. 237 Subia Jr, S.R., s e e Bacon, FM. 141 Subramanian, RR. 217 Sudovtsov, A.I., s e e Kuzmenko, V.M. 118, 121, 122 Suezawa, N., s e e Arakawa, T. 144 Suezawa, Y. 167 Suezawa, Y., s e e Gond6, Y. 167 Sugita, Y., s e e Niihara, T. 168 Sugiura, E. 401 Sugiyama, K. 7, 365, 371 Sugiyama, K., s e e Shigeoka, T. 401 Sugiyama, K., s e e Sugiura, E. 401 Sumiyama, A. 4 Sun, W., s e e Hunt, M. 81, 82 Sun, Z., s e e Webb, D.J. 163 Surplice, N.A. 135, 137, 139, 143 Surplice, N.A., s e e Kandasamy, K. 137, 140 Surplice, N.A., s e e Mfiller, J. 140

452

AUTHOR INDEX

Sttryanarayanan, R. 189 Suryanarayanan, R., s e e Das, S.K. 190 Suzuki, A. 166, 168 Suzuki, H., s e e Kitazawa, H. 65 Suzuki, T. 31, 33, 34, 67, 91 Suzuki, T., s e e Endoh, D. 92, 93 S u z u k i , T . , s e e Fukuma, H. 394 Suzuki, T., s e e Goto, T. 33, 34 S u z u k i , T . , s e e Iwamura, E. 150 S u z u k i , T . , s e e Kasuya, T. 13, 59, 60, 63~i5 Suzuki, T., s e e Kitazawa, H. 41-43, 60, 63, 65 Suzuki, T., s e e Kwon, Y.S. 65, 67 Suzuki, T., s e e Nirnori, S. 350 Suzuki, T., s e e Ozeki, S. 65, 66 S u z u k i , T . , s e e Settai, R. 60, 61, 65 Suzuki, T., s e e Takeda, N. 65, 67 S u z u k i , T., s e e Tanaka, K. 65, 66 Suzuki, Y. 162 Svare, I., s e e Leisure, R.G. 232 Svoboda, P. 387 Swartz Jr, W.E., s e e Holloway, D.M. 142 Switendick, A.C. 243 Switendick, A.C., s e e Mattheiss, L.E 22 Syms, M., s e e Miller, R.E 118, 126, 127 Szofran, ER., s e e Sellmyer, D.J. 40 Szymazek, J., s e e Bohdziewicz, A. 184 Szytula, A. 384 Szytuta, A., s e e Ivanov, V. 384, 385 Szytuta, A . , s e e Vinokurova, L. 382 Tabatabaie, N., s e e Allen Jr, S.J. 186, 187 Tabatabaie, N., s e e Palmstrom, C.J. 186 Taborelli, M. 124 Taborelli, M., s e e LandoR, M. 124 Tada, M., s e e Ohki, C. 240 Tada, M., s e e Toguchi, K. 240 Taillefer, L. 26 Tajika, H., s e e Umemura, S. 159 Takabatake, T., s e e Shigeoka, T. 383-385 Takabatake, T., s e e Sugiura, E. 401 Takada, S. 12 Takahashi, H. 62 Takahashi, M. 70, 162, 392 Takahashi, T., s e e Hosoda, N. 136 Takahashi, T., s e e Kawahata, T. 136 Takahashi, Y., s e e Moriya, T. 305 Takao, K. 182 Takao, K., s e e Sakamoto, Y. 182, 184 Takayama, S., s e e Niihara, T. 168 Takayanagi, S. 90, 94, 363, 364, 389, 390 Takayanagi, S., s e e 0nuki, Y. 90-93, 390 Takeda, H., s e e Isikawa, Y. 85 Takeda, K. 133 Takeda, N. 65, 67

Takeda, N., s e e Kitazawa, H. 65 Takeda, N., s e e Tanaka, K. 65, 66 Takeda, S. 173, 174 Takeda, S., s e e Horikoshi, H. 173 Takeda, S., s e e Komura, Y. 174 Takeda, T., s e e Baba, K. 188 Takeda, T., s e e Nakamura, O. 118, 125 Takeda, T., s e e Takahashi, M. 162 Takei, H., s e e Takahashi, M. 70, 392 Takeshige, M., s e e Sakai, O. 60, 61, 63, 64 Takeshita, T., s e e Ito, T. 229 Takeuchi, A., s e e Barthem, V.M.T.S. 339, 343, 344 Takeuchi, A., s e e Fr6my, M.A. 392 Takeuchi, A., s e e Gignoux, D. 392, 393 Takeuchi, T., s e e Gignoux, D. 371,385, 387 T a l d , K . , s e e Suzuki, A. 166, 168 Takigawa, M., s e e Yoshimura, K. 306, 323 Talianker, M., s e e Shikhmanter, L. 179, 181 Talianker, M., s e e Venkert, A. 179 T a m a k i , A . , s e e Suzuki, T. 33, 34, 91 Tanaka, H., s e e Takahashi, M. 70, 392 Tanaka, J., s e e Kasuya, T. 13, 59, 60, 63-65 Tanaka, K. 65, 66 Tanaka, K., s e e Takeda, N. 67 Tanaka, M. 160, 161 Tanaka, T., s e e Ishizawa, Y. 31-33, 35 Tanaka, T., s e e Nozaki, H. 365 Tanaka, Y. 303 Tang, J. 70, 72 Tang, J., s e e Gschneidner Jr, K.A. 264 Tang, W. 150 Taniguehi, M., s e e Ishii, T. 3 Taniguchi, N., s e e Sakaguchi, H. 169, 170, 172 Tanner, B.K., s e e Smith, R.L. 126 Tanoue, H., s e e Tsukahara, S. 167 Tarascon, J.M., s e e Kasaya, M. 6 Tasaki, A., s e e Umemura, S. 159 Tasset, F., s e e Gignoux, D. 83, 85, 299, 300, 302, 308, 309 Tasset, F., s e e Schweizer, J. 311 Tauner, B.K., s e e Corner, W.D. 126 Taush, M., s e e Materlik, G. 112 Tawara, Y., s e e Fidler, J. 150 Taylor, K.N.R., s e e Krizek, J. 126, 127 Tazaki, A., s e e Miyamoto, K. 157 Teisseron, G., s e e Ferreira, P. 260 Tejada, J., s e e Badia, F. 157 Tejada, J., s e e Ferrater, C. 158 Tejada, J., s e e Martinez, B. 146 Tellefsen, M., s e e Bischof, R. 214, 217 Tellefsen, M., s e e Kaldis, E. 225 Temmerman, W.M., s e e Langford, H.D. 33 Terada, T., s e e Oomi, G. 321

AUTHOR INDEX Terao, K., s e e Uchida, H. t69 Terao, K., s e e Yamada, H. 306 Tessier, M., s e e Krishnan, R. 166 Thaper, C.L., s e e Rush, J.J. 243 Thiry, E, s e e Schlapbach, L. 252, 257, 265, 266 Thole, B.T. 114 Tholence, J.L., s e e Amato, A. 94, 95 Tholence, J.L., s e e Joss, W. 33, 34, 36 Thomas, G., s e e Koestler, C. 150, 151 Thomas, G., s e e Ramesh, R. 150, 151 Thomas, J., s e e Quemerais, A. 127, 129 Thome, D.K. 236, 241,246, 247, 252 Thrush, C.M., s e e Partin, D.L. 188 Thuy, N.R 311,312 Thuy, N.R, s e e Franse, JJ.M. 336 Tian, E, s e e Pan, S.M. 175 Tian, J., s e e Li, L. 152 Tibbetts, G.G. 116 Tibbetts, G.G., s e e Egelhoff Jr, W.E 116, 131 Tilley, D.R., s e e Camley, R.E. 159 Tillman, D., s e e Carbone, C. 124, 158 Tissier, B., s e e Coey, J.M.D. 178 Titcomb, C.G. 225 Tiwald, T.E. 158 Tkach, VI. 110 Tlianker, M., s e e Shikhmanter, L. 179 Togami, Y., s e e Kajiura, M. 157 Togami, Y., s e e Morishita, T. 157, 159 Toguchi, K. 240 Tohyama, T., s e e Yamada, H. 301,306 Toki, K. 178 Tokita, T., s e e Tanaka, M. 160, 161 Tokuhara, K., s e e Yamamoto, H. 151, 152 Toktmaga, M., s e e Fidler, J. 153 Tokunaga, M., s e e Gr6ssinger, R. 153 Tomala, K., s e e Czjzek, G. 366 Tomiyama, R 336 Tomiyoshi, S., s e e Kitai, T. 388 Tomokiyo, Y., s e e Kuwano, N. 182 Torgeson, D.R. 233 Torgeson, D.R., s e e Barnes, R.G. 216 Torgeson, D.R., s e e Bamfather, K.J. 237 Torgeson, D.R., s e e Belhoul, M. 277 Torgeson, D.R., s e e Borsa, F. 237 Torgeson, D.R., s e e Han, J.W. 233 Torgeson, D.R., s e e Leisure, R.G. 232 Torgeson, D.R., s e e Lichty, L.R. 232, 233, 244 Torgeson, D.R., s e e Phua, T.T. 237 Torgeson, D.R., s e e Zamir, D. 256 Torikaehvili, M.S., s e e Huang, C.Y. 185 Tougaard, S. 111, 126, 128 Tougaard, S., s e e Onsgaard, J. 111, 126, 128-131 Tourillon, G., s e e Brouder, C. 159, 165 Tourillon, G., s e e Guilmin, R 165

453

Toxen, A.M. 163 Toxen, A.M., s e e Webb, D.J. 163 Tran Minh Duc, s e e Frigerio, LM. 177 Tran Mirth Duc, s e e Martin, M. 177 Traverse, A., s e e Mathevet, J.R 180 Trebbia, R, s e e Bmusseau-Lahaye, B. 128, 129 Trebbia, R, s e e Colliex, C. 117, 128-130, 137 Trequattrini, F., s e e Cannelli, G. 232 Tribollet, H., s e e Rayane, D. 114 Trouiller, N., s e e Franciosi, A. 132 Trouiller, N., s e e Raisanen, A. 132 Trouiller, N., s e e Wall, A. 132 Truong, V.V., s e e Ashrit, RV. 133 Truong, V . V . , s e e Chee, K.T. 128, 129 Tsang, T.-W.E., s e e Gschneidner Jr, K.A. 6, 52 Tsang, T.-W.E., s e e Ikeda, K. 305 Tsoukatos, T., s e e Strzeszewski, J. 144 Tsuchida, T., s e e Tanaka, Y. 303 Tsuchiya, R., s e e Gond6, Y. 167 Tsuchiya, R., s e e Suezawa, Y. 167 Tsukahara, S. 167 Tsunashima~ S. 163, 168 Tsunashima, S., s e e Sagasaki, M. 166 Tsuneto, T. 353 Tsushima, K., s e e Kajiura, M. 157 Tsushima, K., s e e Morishita, T. 157, 159 Tsushima, T., s e e Ohkoshi, M. 311 Tsuzuki, S., s e e Uchida, H. 169, 170 Tsvetkov, V.Yu., s e e Linetski, Ya.L. 153 Tukahashi, M., s e e Miyazaki, T. 162 T u r , R . , s e e Daou, J.N. 269 Turek, K., s e e Kakol, Z. 311

Uchi, M., s e e Nojiri, H. 381 Uchida, H. 169, 170 Uchida, H., s e e Hosoda, N. 136 Uchida, H., s e e Kawahata, T. 136 Uchida, H., s e e Kojima, T. 169 Uchida, H., s e e Ohki, C. 239, 240 Uehida, H., s e e Uchida, H. 169 Uchida, H.H., s e e Ohki, C. 240 Uehida, K. 178 Uchiyama, S., s e e Sagasaki, M. 166 Uchiyama, S., s e e Tsun~shima, S. 163, 168 Udovic, T.J. 234, 235, 243 Udovic, T.J., s e e Anderson, I.S. 234 Udovic, T.J., s e e Berk, N.E 232 Ueda, K. 324 Uhl, M. 326 Uji, S., s e e Aoki, H. 76-78 Ukon, I., s e e 0nuki, Y. 87 Umeda, T., s e e Iwamura, E. 150 Umehara, I. 29, 30, 41, 42, 47-58, 70-73

454

AUTHOR INDEX

Umehara, I., s e e Ebihara, T. 42, 44-46, 48, 49, 51 Umehara, I., s e e Kurosawa, Y. 42, 44, 51 Umehara, I., s e e Maezawa, K. 83, 84, 86 Umehara, I., s e e Satoh, K. 42, 44, 48, 51, 89, 90 Umehara, I., s e e ()nuki, ¥. 74-78, 80, 83, 84, 86, 87, 91-93 Umemura, S. 159 Umezawa, A., s e e Onuki, Y. 33-37, 91-93, 95 Umezawa, H., s e e Huang, C.Y. 185 Umino, M., s e e Asano, H. 91 Urbaniak-Kucharczyk, A. 125 Uwatoko, Y., s e e Shigeoka, T. 383 Vajda, E 210, 213, 219, 220, 227, 229, 230, 232, 233, 236-238, 243-246, 251,253-260, 262, 263, 265, 267-271,273, 275, 277-285 Vajda, R, s e e Andr6, G. 227, 230, 281 Vajda, R, s e e Blaschko, O. 215, 219, 220, 234 Vajda, E, s e e Boukraa, A. 275, 282-285 Vajda, R, s e e Burger, J.E 229, 238, 243, 251, 252, 257-261,268, 271,273, 275-277, 283, 285 Vajda, E, s e e Chiheb, M. 221,225, 227 Vajda, P., s e e Danielou, R. 216 Vajda, P., s e e Daou, J.N. 213, 216, 217, 219-221, 225, 229, 233, 238, 239, 241,243-246, 248, 251-253, 255, 258, 261,262, 264, 267-269, 271,273, 275, 277-279, 283, 284 Vajda, R, s e e Lucasson, A. 241,243, 251,252 Vajda, R, s e e Metzger, T.H. 236 Vajda, R, s e e Plesehiutschnig, J. 234 Vajda, R, s e e Ratishvili, I.G. 227 Vajda, R, s e e Schmitzer, C. 236, 248, 268 Vajda, R, s e e Senoussi, S. 271,273, 277, 279 Vajda, R, s e e Shaltiel, D. 285 Vajda, R, s e e Udovic, T.J. 234, 235 van Aken, EB., s e e Buschow, K.H.J. 4 van Alphen, EM., s e e de Haas, WJ. 27 van Daal, H.J., s e e Buschow, K.HJ. 4 Van der Goot, A.S. 301 Van der Kraan, A.M., s e e Gubbens, EC.M. 339 van der Laan, G., s e e Thole, B.T. 114 van der Meulen, H.E 81 van Deursen, A.J.R 33, 34, 36 van Deursen, A.J.E, s e e Joss, W. 33, 34, 36 Van Diepen, A.M., s e e Nasu, S. 40 van Dover, R.B. 168 van Dover, R.B., s e e Frankenthal, R.E 168 van Dover, R.B., s e e Hellman, E 165 van Kempen, H., s e e van der Meulen, H.E 81 van Ruitenbeek, J.M., s e e Joss, W. 33, 34, 36 van Ruitenbeek, J.M., s e e Mtiller, T. 35, 36 van Stapele, R.R, s e e Busehow, K.H.J. 329 van Vucht, J.H.N., s e e Busehow, K.HJ. 177

Varkanova, R.G. 136, 142 Vasilkevich, A.A., s e e Goremychkin, E.A. 339, 342 Velichkov, I.V., s e e Apostolov, A.V. 126, 127 Venkataraman, G.,see Sahni, V.C. 18 Venkert, A. 179 Veres, T., s e e Amara, M. 398 Verhoef, R. 331-333 Verhoef, R., s e e Franse, J.J.M. 350 Verhoef, R., s e e Radwanski, RJ. 331 Verhoef, R., s e e Tomiyama, E 336 Verma, A.R. 172 Vettier, C., s e e Barbara, B. 299 Vettier, C., s e e Blanco, J.A. 370, 371,382, 383 Vettier, C., s e e Rossat-Mignod, J. 62, 81 Vettier, C., s e e Voiron, J. 303 Viallard, R. 240 Viallard, R., s e e Daou, J.N. 212 Victor, Y., s e e Bosca, G. 132 Viescas, A.J., s e e Heeht, M.H. 131 Vinokurova, L. 382 Vinokurova, L., s e e Ivanov, V 384, 385 Vitton, J.P., s e e Krishnan, R. 166 Vittoria, C. 168 Vittoria, C., s e e Forester, D.W. 168 Vittoria, C., s e e Sehelleng, J.H. 167 Vladychkin, A.N., s e e Kuzmenko, V.M. 118, 121, 122 Vogt, O., s e e Rossat-Mignod, J. 62, 401 Voiron, J. 303, 321 Voiron, J., s e e Bloch, D. 300, 301,303 Voiron, J., s e e Gignoux, D. 375, 377, 389, 406, 415 Volkenshtein, N.V 271 V61kl, J. 233 von Boehm, J., s e e Bak, P. 399 yon Molnar, S. 178, 180 Vorderwisch, R 243 Vorderwisch, E, s e e Wegener, W. 234 Vuillet, E, s e e Ferreira, E 260 Waber, J.T., s e e Liberman, D. 9, 21 Wachter, R, s e e Bischof, R. 271,273, 279 Wada, H. 303, 304, 317-319, 323-325 Wada, H., s e e Nakamura, H. 319 Wada, H., s e e Shiga, M. 323,324 Wada, N., s e e Mitsuda, S. 389 Wada, N., s e e 0nuki, Y. 90-93, 390 Wada, N., s e e Takayanagi, S. 90, 94, 363,364, 389, 390 Wadas, A., s e e Griitter, P. 148 Wagner, EE., s e e Waibel, E 285 Waibel, E 285 Waind, P.R. 338

AUTHOR INDEX

455

Wakabayashi, S., s e e Maezawa, K. 90 Wakabayashi, S., s e e ()nuki, Y. 91-93, 95 Waldyama, T., s e e Miyazaki, T. 162 Wakiyama, T., s e e Takahashi, M. 162 Walco, R.J., s e e Bacon, EM. 141 Waldrop, J.R. 186 Walker, E., s e e Purwins, H.G. 360 Walker, E., s e e Rossat-Mignod, J. 81 Wall, A. 132 Wall, A., s e e Franciosi, A. 132 Wall, A., s e e Raisanen, A. 132 Wallace, WE., s e e Cheng, S.E 155 Wallace, W.E., s e e Ganapathy, E.V. 301 Wallace, W.E., s e e Mansmann, W. 231 Wallace, WE., s e e Pebler, A. 225, 231 Wallace, W.E., s e e Smith, H.K. 137 Walmsley, R.G., s e e Webb, D.J. 162 Walser, R.M., s e e Choe, G. 163 Wan, H., s e e Fang, R.Y. 157 Wang, C.R., s e e Zhao, Z.B. 152 Wang, E E . , s e e Huang, C.Y. 185 Wang, G.A., s e e Huang, G.X. 150 Wang, R., s e e Tang, W. 150 Wang, Y.J., s e e Shah, Z.S. 164 Wang, Y.Z., s e e Jaswal, S.S. 152 Ward, M., s e e McGuiness, P.J. I48 Wasserman, A. 35 Watamura, S., s e e Nojiri, H. 381 Watanabe, H., s e e Takahashi, M. 162 Watanabe, K., s e e Hashimoto, S. 168 Watanabe, N., s e e Asano, H. 91 Watanabe, T., s e e Takayanagi, S. 90, 94, 363, 364 Watanabe, Y., s e e Koyama, M. 165 Watanabe, Y., s e e Suzuki, A. 166, 168 Waters, K., s e e Rau, C. 123 Watson, L.M., s e e Gimzewski, J.K. 137 Weaver, J.H. 126-129, 265 Weaver, J.H., s e e Mason, M.G. 114 Webb, DJ. 162, 163 Weber, K. 369 Wecker, J., s e e Koestler, C. 150, 151 Wegener, W. 234 Wegener, W., s e e Vorderwisch, R 243 Wehenkel, C., s e e Cukier, M. 128, 129, 131 Wei, W., s e e Lin, H. 379 Weinert, M. 309, 314

Westlake, D.G., s e e Carlin, R.L. 275, 281 Westlake, D.G., s e e Friedt, J.M. 282 Westlake, D.G., s e e Shaked, H. 271, 275, 281-284 Weymouth, J.W., s e e Sellmyer, D.J. 40 White, R.L. 158, 159 White, R.M., s e e Toxen, A.M. 163 White, R.M., s e e Webb, D.J. 162, 163 Whitehead, J.R, s e e Huang, C.Y. 185 Wickersham, C.E., s e e Frausto, RR. 168 Wickramasekara, L., s e e Kamprath, N. 155 Wickramasekara, L., s e e Liu, N.C. 155 Wieliczka, D.M. 115, 116 Wiesinger, G. 210 Wilkins, J.W., s e e Materlik, G. 112 Williams, A.R., s e e Janak, J.E 303 Williams, G.E, s e e Parks, R.D. 181 Williams, W.E., s e e Cheng, S.E 155 Willich, E, s e e Heitmann, H. 168 Wilson, K.G. 4 Wilting, H., s e e Heitmann, H. 168 Windmiller, L.R. 30 Windmiller, L.R., s e e Arko, A.J. 31, 33 Winter, H., s e e Shaltiel, D. 285 Winzer, K., s e e Reichelt, J. 67, 68 Wipf, H., s e e Stuhr, U. 237 Wipf, H., s e e V61kl, J. 233 Wise, M.L.H., s e e Hirst, J.R. 182 Wnuk, J.J., s e e Bohdziewicz, A. 184 Wohlfarth, E.P. 298, 306, 308 Wolf, A . , s e e Jacob, I. 241 Wolf, WP., s e e Lea, K.R. 273 Wood, J.H., s e e Mattheiss, L.E 22 Woods, S.B., s e e Kadowaki, K. 5 Woollam, J.A., s e e Tiwald, T.E. 158 Wortmann, G., s e e Waibel, E 285 Wu, L.H., s e e Huang, G.X. 150 Wu, R. 122 Wu, R.T., s e e Li, D. 123 Wulz, H.G. 136, 169 Wyder, R, s e e Mtiller, T. 35, 36 Wyder, R, s e e Reiffers, M. 339-341,351

Weller, D. 122-124 Welp, U., s e e Mtiller, T. 35, 36 Wendin, G., s e e Kanski, J. 131 Wennekers, E, s e e Richter, H.J. 187 Wemick, J.H., s e e Fawcett, E. 26 Wertheim, G.K. 115 West, G.W., s e e Barnes, R.G. 216 West, G.W., s e e Torgeson, D.R. 233

Yagi, Y., s e e Sakaguchi, H. 171, 172 Yamada, H. 301,306, 325 Yamada, K. 5 Yamagami, H. 13, 75, 77-79, 84-86 Yamagami, H., s e e Hasegawa, A. 22, 52-58 Yamagishi, A., s e e Morin, E 396, 397 Yamagishi, A., s e e Tomiyama, E 336 Yamaguchi, I., s e e Baba, K. 188

Xia, S.K., s e e Zhao, Z.B. Xu, Y. 185 Xu, Y., s e e Cheng, S.E

152 155

456

AUTHOR INDEX

Yamaguchi, S. 133 Yamaguchi, S., s e e Miyahara, T. 129, 130 Yamamoto, H. 151, 152 Yamamoto, H., s e e Nakamura, T. 162 Yamamoto, K . , s e e Kuwano, N. 182, 184 Yamanaka, S., s e e Hoshi, Y. 168 Yamanaka, S., s e e Naoe, M. 168 Yamashita, M. 388 Yamashita, S. 155 Yamashita, S., s e e Harada, T. 157 Yamauchi, K. 160 Yamazaki, T., s e e 0nuki, Y. 33-37, 91-93 Yanase, A . , s e e Harima, H. 14, 32, 33, 72, 73, 81, 82, 89, 92, 94 Yanase, A., s e e Hasegawa, A. 32, 39, 40, 67-69 Yanase, A., s e e Kitazawa, H. 60, 63 Yanase, A., s e e Kubo, ¥. 14, 36, 37 Yang, D., s e e Li, L. 152 Yang, K.A. 119 Yang, K.Y., s e e Homma, H. 119 Yannopoulos, L.N., s e e Singleton, J.H. 141 Yanson, I.K., s e e Reiffers, M. 339-341,351 Yaremenko, A.V., s e e Loboda, V.B. 120, 134, 137 Yashiyama, M., s e e Honda, S. 164 Yasuoka, H., s e e Yoshimura, K. 323 Yeh, J.J. 130 Yeh, J.L, s e e Rossi, G. 130 Yelon, W.B., s e e Herbst, J.H. 312 Yelon, W.B., s e e Jaswal, S.S. 152 Yin, X.J., s e e McGuiness, P.J. 148 Yoden, K. 158 Yoden, K., s e e Hosoito, N. 158 Yoden, K., s e e Shinjo, T. 158 Yonenobu, K., s e e Morin, P. 396, 397 Yonenobu, K., s e e Shigeoka, T. 401 ¥onenobu, K., s e e Sugiyama, K. 371 Yoshida, H., s e e Kaneko, T. 397 Yoshida, M., s e e Sakamoto, ¥. 182 ¥oshida, M., s e e Takao, K. 182 Yoshie, H. 311 Yoshimoto, Y., s e e Yoshimura, K. 301 Yoshimura, K. 301,306, 321,323 Yoshimura, K., s e e Nakamura, H. 319 Yoshimura, K., s e e Sakakibara, T. 300, 301 Yoshimura, K., s e e Shiga, M. 323, 324 Yoshimura, K., s e e Wada, H. 303, 304, 317-319, 323-325 Yoshizaki, R., s e e 0nuki, Y. 95 Yoshizawa, H., s e e Mitsuda, S. 389 Yoshizawa, M., s e e Ikeda, K. 305

Yosida, K. 3, 415 Yosida, K., s e e Yamada, K. 5 Yosida, Y., s e e Sato, K. 362, 363 Yosuoka, H., s e e Yoshimura, K. 306 Yu, S.E, s e e Huang, G.X. 150 Yuldasheva, M.Kh., s e e Reshentnikova, L.V. 118 Yurasova, V.E., s e e Bachurin, V.I. 125 Yuzurihara, H., s e e Tanaka, M. 160, 161 Zachariasen, W.H., s e e Ellinger, EH. 110 Zajac, S. 125 Zalesky, M.P., s e e Jensen, C.L. 245 Zamir, D. 256 Zdansky, E., s e e Andersen, J.N. 116 Zema, N., s e e Sigrist, M. 126, 128 Zemirli, S., s e e Gratz, E. 87 Zemlyanov, M.G., s e e Parshin, P.R 243 Zerguine, M., s e e Gignoux, D. 369, 375, 376 Zhai, H.R., s e e Gu, B.X. 145 Zhang, EY. 339, 340, 342, 343, 361,403, 404 Zhang, EY., s e e Ball, A.R. 375, 377, 378, 380, 386, 404, 417 Zhang, EY., s e e Gignoux, D. 371,375, 377, 385, 387, 392, 393, 415 Zhang, EY., s e e Radwanski, R.J. 339, 342 Zhang, EY., s e e Shigeoka, T. 368 Zhang, X.J., s e e McGuiness, P.J. 148 Zhao, K.L., s e e Takao, K. 182 Zhao, Z.B. 152 Zhao, Z.B., s e e Pan, S.M. 175 Zhao, Z.R., s e e Aylesworth, K.D. 146, 150, 151 Zhao, Z.R., s e e Strzeszewski, J. 151 Zhavoronkova, K.N. 136 Zhavoronkova, K.N., s e e Boeva, O.A. 136, 143, 240 Zheng, C.H., s e e Huang, G.X. 150 Zhong, X.P., s e e Tomiyama, E 336 Zhou, S., s e e Tang, W. 150 Zhu, J.G. 186 Zhukova, T.B., s e e Smimov, I.A. 251,264 Zhuravski, V.E., s e e Bachurin, V.I. 125 Ziebeck, K.R.A., s e e D6portes, J. 323 Zochowski, S.W., s e e MeEwen, K.A. 391 Zogal, O.J. 221,225, 231,237 Zolandz, A., s e e Croft, M. 181 Zomack, M., s e e Baberschke, K. 122 Zomaek, M., s e e Farle, M. 123 Zukowska, K., s e e Idczak, E. 128 Zwicknagl, G. 14, 77, 78 Zygmunt, A., s e e Ivanov, V. 384, 385

SUBJECT INDEX B-TbH(D)2+x 227 B/(13 +'~) phase boundary 263 B ---+ -~ transformation 214

acoustic lattice vibrations 239 • zoustic phonons 248 activation energy 232 - for diffusion 232, 233 c~-ErHx 248 c~*-ErHx 268 «-ErH(D)x 236 «*-ErH(D)x 219 c~*-HOHx 267 ~-LuDx 216 c~*-LuDx 219 c~*-LuHx 219, 246, 271 c~-LuH(D)x 235 c~*-LuH(D, T)x 244 c~-phase 208 c~*-phase 211 c~-RHx 215, 244 cd-RH(D)x 219, 232 «*-RH(D, T)x 220 c~-ScDx 216 cd-ScDx 219 c~-ScHx 232 c~*-SCHx 271 e~*-ScH(D)x 219 c~-TmDx 216 cx-TmHx 248 c~-YDx 216 (x*-YDx 219 ~x-YHx 215 (x*-YH(D)x 244 « --+ ~ transformation 212, 214 anionic model 243 ANNNI model 399 anomaly temperature 219 anticrossing 351,360 antiferromagnetic (AF) interactions 257 antiferroquadrupolar ordering 359, 394, 408 antiphase structure 373, 385, 409 band structure calculations, calculations B-phase 208 ~3-RH2_ 6 213 -RH2 244 ~-RH2+x 212, 244

see

Ce-H 214 CeAI2 68-70 CeAs 60, 65, 67 CeB6 31, 34-36 CeBi 60 CeCu2 88, 90 CeCu6 91, 92, 95 CeCu2Si2 82 CeD2+x 225 CeGa2 71-73 CeH2+x 209, 212, 221,256 CeH3_x 209 CeH(D)2+x 229 CeIn3 41, 44-46, 48 CeNi 83-86 CeRu2Ge2 75, 76, 78 CeRu2Si2 75, 76, 78-80 CeSb 60, 62, 64, 65 CeSn3 52, 54, 56, 58 (Co/(Pr, Nd))n films 162 (Co/Dy)n films 164 (Co/Gd)n films 162 (Co/R)n films 162 Co-Er quasicrystals 185 colleetive electron metamagnetism 298-308 commensurate structure 409 compensated metal 26 critical field 300, 332, 349 critical point 346 critical temperature 212 cross-sectional area of Fermi surfaee 28 crossing 350, 351,353, 360 crystalline electric field (CEF) 209, 267, 338, 350, 367, 373 crystalline state of R films on substrates 122 crystallographic parameters 218 crystallographic properties of R-Pd alloys 182 cyclotron mass 28

energy band

de Haas-van Alphen (dHvA) effect 27 - CeA12 8, 67-70 457

458

SUBJECT INDEX

de Haas-van Alphen (dHvA) effect (cont'd) - CeAs 8, 60, 65, 67 CeB 6 8, 31, 33-35 Ceßi 8, 60, 62, 65 CeCu2 8, 87-90 - CeCu6 8, 90-95 CeCu2Si2 8, 81, 82 - CeGa 2 8, 70-73 - Celn 3 8, 40-46, 48 CeNi 8, 82-87 CeRu2Ge2 8, 75, 76 CeRu2Si2 8, 75-81 - CeSb 8, 60, 62-65 - CeSn 3 8, 52-59 frequency 28 Gdln 3 8, 41, 48, 50, 51 - GdSb 8, 60, 65, 66 - LaAg 8, 38, 39 - LaA12 8, 67-69 Laß6 8, 30-35 LaBi 8, 60, 61 - LaCu 6 8, 91-95 - LaCu2Si 2 82 - LaGa2 8, 70-73 - Laln3 8, 41-43, 48 LaNi 8, 82-87 - LaRu2Ge2 8, 74-76 - LaRu2Si 2 8, 74-76, 81 - LaSb 8, 60, 61, 65 - LaSn3 8, 29, 52-54, 56-59 NdB6 8 , 3 1 , 3 5 - 3 7 NdCu6 8, 90-93, 95 - Ndln 3 8, 41, 47-49 PrB 6 8, 31, 33-35 - PrCu 6 8, 90-92, 95 Prln 3 8, 41, 47, 48 PrNi 8, 82, 83, 86 PrSb 8, 60, 65, 66 - SmCu2 8, 87, 88, 90 - SmCu6 8, 90-93, 95 SmGa2 8, 71, 73, 74 Smln 3 8, 41, 48-50 SmSb 8, 60, 65, 66 - YA12 8, 68, 69 - YCu2 8, 87-89 - YZn 8, 38-40 - YbAs 8, 60, 65, 67 demagnetizing field 347 deuterides 140, 141,216-265, 272, 274-277, 280-283 devil's staircase 62, 400 dHvA, see de Haas-van Alphen effect Dingle temperature 28 DyH2+x 230, 260 -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

easy-axis anisotropy 367, 401 easy-plane anisotropy 335, 390 eleetric resistivity in LaNi 5 170 electrical properties of RH 2 137-139 electrieal properties of R metal films 120 electronic configurations gaseous atom (vapor) 112 metallic 112 neutral atom 10 - trivalent ion 10 electronic specific-heat coefficient 6, 31, 38, 41, 52, 60, 68, 71, 75, 83, 88, 91,236, 244 endpoint 346, 376 energy band calculations - CeA12 8, 67-70 - CeAs 8, 60, 65, 67 - Ceß6 8, 31, 33-35 CeBi 8, 60, 62, 65 - CeCu 2 8, 87-90 - CeCu6 8, 90-95 - CeCu2Si2 8, 81, 82 - CeGa z 8, 70-73 - CeIn 3 8, 40-46, 48 - CeNi 8, 82-87 CeRu2Ge2 8, 75, 76 - CeRu2Si2 8, 75-81 - CeSb 8, 60, 62-65 - CeSn 3 8, 52-59 - Gdln 3 8, 41, 48, 50, 51 - GdSb 8, 60, 65, 66 - LaAg 8, 38, 39 - LaA12 8, 67-69 LaB 6 8, 30-35 LaBi 8, 60, 61 - LaCu 6 8, 91-95 - LaCu2Si2 82 - LaGa2 8, 70-73 - LaIn3 8, 41-43, 48 LaNi 8, 82-87 - LaRu2Ge2 8, 74-76 - LaRu2Si 2 8, 74-76, 81 - LaSb 8, 60, 61, 65 - LaSn 3 8, 29, 52-54, 56-59 - NdB6 8, 31, 35-37 - NdCu6 8, 90-93, 95 - Ndln 3 8, 41, 47-49 - PrB6 8, 31, 33-35 - PrCu6 8, 90-92, 95 PrIn 3 8, 41, 47, 48 PrNi 8, 82, 83, 86 - PrSb 8, 60, 65, 66 SmCu2 8, 87, 88, 90 - SmCu 6 8, 90-93, 95 SmGa2 8, 71, 73, 74 -

-

-

-

-

-

-

-

-

-

-

-

SUBJECT INDEX

-

-

energy band calculations (cont'd) SmIn 3 8, 41, 48-50 SmSb 8, 60, 65, 66 - YA12 8, 68, 69 - YCuz 8, 87-89 - YZn 8, 38~40 YbAs 8, 60, 65, 67 energy gap 251 epitaxial crystal growth 118 ErHz+x 239, 2 5 1 , 2 6 1 , 2 6 3 Er0.sHo0.5 Rb.4B4 184 ErRh4B4 184 exchange interaction 330, 334, 414 external field 347

- carrier hopping 264 - characteristic magnetic temperatures 272, 274, 275 charge transfer 265 eoherent-incoherent transformation 275 eommensurate components 284 commensurate phase 268, 281 complex antiferromagnetic (AF) structures 277, 284 - Compton profiles 265 critical concentrations 211 - crystal field (CF) 209, 267 - - splitting 277 - cubic-to-tetragonal deformation 214 - de Germes faetor 273, 286 "defect" migration 236 - "defect"-recovery 237 deloealized band 251 density of stares 248 - differential thermal analysis (DTA) 227 dihydrides (f3-phase) 208-214, 221-232, 236-244, 248-267, 271-285 - EPR 256 effective gap 263 - electrical properties of RH2 137-139 electron-phonon coupling 239 - electronic properties 243-265 - enthalpy for dihydride formation 239 - f-electmn spins 273 - ferromagnetie (FM) interactions 257 fluctuating valence 263 formation enthalpy 241 5-phase 208, 214, 231 gap 251 - Gorsky effect 232 - ground state 277 - grormd-state magnetic moments 273 ground-state resistivities 273 Gffmeisen law 239 - Grüneisen temperamre 239 heat capaeity 282 - heavy fermions 209 hydrogen sublattice 209 - hydrogen trapping 227 - hydroxides 213 - incommensuracy 273, 279 incommensurate - components 284 - - magnetic structure 277 - phase 281 - intermediate structure 282 ionicity 236 isothermal plateau 213 kinetie properties 232-243 -

-

-

-

-

-

fan structure 410 fcc phase of R metals 133 (Fe/Gd)n films 159 (Fe/R)n films 157 (Fe/Tb)ù films 160 (FeFFm)n films 161 Fermi surface intermetallie compounds 1-98 metals with dissolved H 243 ferromagnetic films 125 ferromagnetism 338, 359 ferroquadrupolar ordering 356, 357, 408 first-order magnetie transition 356 first-order transition 345, 347 flopside strueture 394, 411 frustration 310, 316, 411

-

-

-

-

-

-

-

-

gadolinium compounds 363 GdH2+x 221,230, 251,259 GdH(D)2+x 230, 237 GdIn 3 41, 48, 51 GdSb 60, 65, 66

-

-

-

-

-

heat capacity, see also electronic specific-heat eoefficient 282 helical structure 364, 412 HoA1Ga 385, 403 HoD x 246 HoD 3 231 Hort x 246 HoH2+x 239, 251,261 hydrides 135-140, 208-215, 221-231,236-243, 248-265, 271-286 see also ~3-XX a n d the specific rare-earth hydride atomic configuration 248 atomic volume 235 CF-excitations 273

-

-

-

-

-

-

-

459

460

SUBJECT INDEX

hydrides (cont'd) Kondo - - effect 210, 273, 276 lattice 209 - - m a x i m a 276 - - m i n i m a 276 - - transition 275 - X-type peaks 278 lattice expansions 221 lattice parameters - - 13-RH2 222-225 - "/-RH2+x 231 liquid phase 213 - localized states 251 localized vibrational modes 241 magnetic anomalies 276 - magnetie configuration 273 magnetic fluctuations 283 - magnetic ground stare 277 magnetie ordering 260 - magnetic phase diagram 257, 273 magnetie properties 271-285 - magnetic transformation 273 metal-insulator ( M - I ) transition 209, 239 metal-semiconductor (M-S) transition 244, 251 mixed valence 264 - modulation 275 - l~+-diffusion 236 muons 232 - neutron scattering 273 - nonmagnetic first excited stare 277 O sites 214 octahedral H atoms 209 octahedral site 208 optical phonons 248 - optieal spectroscopy 265 - optical vibrations 243 - order--disorder transformation 209 - ordering temperatures 227 - orthorhombic CF distortion 277 - orthorhombie dihydrides 231 orthorhombic structure 208 overlap region 284 paramagnetism 209 percolation 264 - perturbed angular correlation 261 - phase diagram 209, 214, 215 - phonon scattering 277 - photoelectron spectroseopy 265 - potential barrier 237 preparation 2 1 0 - 2 1 4 - propagation vector 275 - proton N M R 277 -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

quench-induced disorder 261 quenching effects 281 - R K K Y exchartge interaction 209, 277 - resistivity isothermals 247 semiconduetor-metal (S-M) transition 254 - short-range ordered spin fluctuations 273 single erystals 212 sinusoidal incommensurate magnetic structure 281 solubility limit 213 solution enthalpy 239 - solution entropy 239 - spin axis 283 spin disorder 248 spin-disorder resistivity 271 - spin glass 264, 277 - spin wave 257 - stoichiometric composition 227 stoichiometrie defieit 212 structural disorder 278 structural transformations 239 - structure 216-231 - sublatfice ordering 214 - superconductivity 256 - superstoichiometric dihydrides RH2 +x 209 T sites 214 tetragonal distortion 221 tetrahedral H atoms 209 - tetrahedral site 208 - thermal conduetivity 264 - thermodynamie properties 236-243 - thermoelectric power 264 - trihydride (',(-phase) 208, 214, 231 - uniaxial anisotropy energy 277 - Van Vleck compound 285 - Van Vleck paramagnet 285 variable-range hopping 251 - weak localization 254 x-atoms 214 x-sublattice 221 hydrogen absorption in LaNi5 169 hydrogen dissolved in R (a-phase) 208-221, 232-236, 244-248, 2 6 7 - 2 7 1 , 2 8 6 see also (x-XX and the speeific rare-earth metal (e.g. La-H) - b-axis 219 basal plane 219 - binding energy 219, 221 - blocking effects 232 c-axis 219 - c-axis modulated (CAM) structure 268 c/a-ratio 217 - earrier density 243 - chain ordering 235 -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

SUBJECT INDEX hydrogen dissolved in R (a-phase) (cont'd) chains 219 - conduetion-electron density 243 eritieal temperature for phase transitions 211 erystallographic parameters 218 D - D pairs 219 - Debye temperature 232 - deuterium 221 diffuslon process 234 effective magnetie moments 267 Einstein temperature 232 eleetron density 266 electron irradiation 232 electron-phonon coupling 244 electronie density 244 electronic properties 244-248 electronie speeifie-heat coeffieient 236, 244 electronic structure 265 - energy for "defect" formation 234 expansivity 216 - Fermi surface 243 - ferrimagnetie ordering 270 ferrimagnetic-ferromagnetie transition 269 - ferrimagnetism 269 ferromagnetic eone 268 Gorsky effect 232 H - H pairs 215 H-eonfigurations 220 - H-"defeet" reeovery 232 heat ofsolution 235 helieoidal strueture 268 - "hydridie" model 243 - hydrogen "defects" 232 hydrogen isotope 244 - hydrogen loeal mode energies 242 - hydrogen ordering 209 - hydrogen solubility 211 - hydrogen ttmneling 271 - hydrogenation 211,213 - inelastie energy loss 235 inelastic relaxation 232 interatomie potential 219 intermediate phase 268 - internal frietion 210 isothermals 244 isotope effect 219 - kinetic properties 232-236 lanthanide contraction 211 - local mode energy 235 - Iocalized motion 232 lock-in transitions 268 long-range-ordered (LRO) struetures 219 - magnetic anomaly 267, 268 - magnetic properties 267-271 -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

461

- magnetic structures 267 - magnetic superzone 270 - magnetic susceptibility 247, 267 magnetic transitions 267 magnetization 268 magnetoelastic interactions 267, 268 magnon 268 magnon excitation 271 - migration energy 233 Néel temperature 246 - nesting 243 neutron seattering 209 order~tisorder process 234 - pair-binding energy 232 - paramagnetic Curie temperature 267 paramagnetism 269, 271 peak temperature 232 phase diagram 209, 214, 215 photoelectron spectra 266 - preparation 210-212 - protonic model 243 - quenehing 232 RKKY exchange interaction 209, 266 - recovery stage 232 relaxation times 232 residual resistivity 245 resistivity anomaly 219 - short-range order (SRO) 219 solid solution 208 solubility limit 211 - spectroseopy 244 spin fluctuations 271 spin-slip structure 268 spin-wave exeitation gap 271 - structure 216-22t - superconductivity 244 superstructure 219 - thermodynamic properties 232-236 - tritium 221 - tunneling 232 hydrogen gaseous contarninants in R - T M films 167 hydrogen separation and permeation in LaNi 5 171 hysteresis 349, 389, 406 -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

incommensurate magnetic structure 370, 399-406, 409 internal field 347 ion implantation 167 itinerant ferromagnetism 308

277, 365,

-

-

Kondo - effect 4 ~ , 210, 273, 275, 276, 285 - lattice 6, 209, 285

462

SUBJECT INDEX

Kondo (contä) - maxima 276 minima 276 regime 4-6 transition 275 Kondo lattice compounds - CeA12 6, 69, 70 - Ceß6 6, 30, 31, 33-35 - CeCu2 6, 34, 87, 89, 90 - CeCu6 6, 90-95 - CeCu2Si 2 6, 81 Celn3 6, 40-46, 48 CeNi 6, 83-86 CeRu2Si 2 6, 75-81 - CeSb 6, 59-65 - CeSn 3 6, 52-59 -

-

-

-

-

-

La-H 214 LaAg 38, 39 LaAlz 68, 69 Laß 6 31, 32, 34, 35 Laßi 60 LaCo 1_ ~ 309 LaCu 6 91, 94, 95 LaCu2 Si2 82 LAD2+ x 255 LaGa2 71-73 LaH2_x 256 LaH 2 256 LaH2+ x 2 2 1 , 2 5 1 , 2 5 6 LaH3 - x 209 LaH(D)2+x 229 Laln3 41-43, 48 LaNi 83-86 LaNi5 169 - electric resistivity 170 - hydrogen absorption 169 hydrogen separation and permeation 171 LaRu2Ge2 75, 76 LaRu2Si2 75-77 LaSb 60, 61, 65, 67 LaSn 3 29, 52, 53, 56, 58 lead-europium films 188 lead-ytterbium films 190 long-period commensurate structure 370 Lu-H 214 Lu2Fe 3Si 5 185 LuH2+x 264 LuRhl.2Sm4 184

-

magnetic magnetic magnetic magnetic

anisotropy 310-316, 322, 331-337 domain structure 126, 147 instability 297, 317, 318 phase diagram 257, 273, 345-398, 401

magnetic properties see also specific topic - of H in R 267-271 - of HoA1Ga 385, 403 - of incommensurate magnetic systems 277, 399-406 ofintermetallic compounds 6, 31, 38, 41, 52, 60, 68, 71, 75, 83, 88, 91,293-417 - of LaCol_e 309 ofmetamagnets 298-308, 336, 345-398 of PrCo2Si2 380, 401 - of PrGa2 377, 380, 391 - ofPrNi 5 351 - of PrNi2Si 2 373, 403 o f R alloys 145 - o f R C o 2 299, 303, 304 - of RCo5 311 o f R H 2 140, 271-285 of RMn2 316 o f R N i 5 338 - of TbNi2Si 2 403 - of ThCo5 301 of thin films alloys 144-167 - metals 122-126 - of TmGa3 397 - of TmSb 350 - o f Y N i 3 308 magnetic state 298, 319, 325 magnetic structures 267, 345-398 - amplitude-modulated 370, 373, 386, 408 - specific heat 405 - anisotropy 269 magnetlc transitions, see also metamagnetic transition and metamagnetism 267 magnetocrystalline anisotropy 310-316, 322-337 magnetoelastic effects 303, 317 magnetostriction 303 mass enhancement factors 24 metallic R alloys 144 metalloid R-compounds 186 metamagnetic transitlon 298, 300, 306, 336 metamagnetism 345-398 collective electron 298-308 - multistep 380, 392, 401,413 mixed structure 320, 326 modulated and multilayered films 157 multi-Q structure 413 multiaxial structure 394, 413 multilayer (Er, Tm/Lu)n films 125 multilayer systems, other 165 -

-

-

-

-

-

-

-

-

-

-

-

-

NdB6 31, 35-37 NdCu6 91-93, 95

SUBJECT INDEX NdFeB crystallographic properties 150 hydrogen treatment 148 NdklFe4B4 150 Nd2Fe14B 145 NdI-I2+x 229, 239, 258 NdIn3 41, 48-50 nesting conditions 279 neutron diffraction 273 (Ni/Ce)n layers 165 (Ni/Dy)n layers 165 (Ni/R), films 165 Ni3Mo-type structure 209, 227 noncollinear structure 336, 362, 365, 391,395, 409 noncompensated antiphase structure 375, 377 nonmagnetic state 298, 317, 319, 325 -

-

optical properties of R metal films optieal spectra (0-t200eV) 126 periodic field model 402 permanent magnets 144 phase diagram 208, 210 magnetic 346 piezoresistance of foils 132 polytypic structures 172 Pr-H 214 PrB6 31, 34, 35 PrCo2Si 2 380, 401 PrCu6 91, 92, 95 PrGa2 377, 380, 391 PrH2+x 239, 258 PrIn3 41, 47, 48 PrNi 83, 86 PrNi 5 351 PrNi2Si 2 373, 403 PrSb 60, 65, 66 -

quadrupolar interactions 355 quadrupolar moment 413 quasicrystal Co Er 185 R-H 207-286 R-hoble metal alloys (Cu, Au) 177 R-Pd alloys 181 - crystallographic properties 182 valence change in 181 RA12 68 RAs films 186 RBi films 188 R clusters 114 RCo2 299, 303, 304 RCo5 144,311 - hydrogen storage films 169

126

R2Co17 333 RCo(B) amorphous films 156 R crystallographic properties 118 RH(D)0.2 235 RKKY exchange interaction 209, 266, 277 R layers on crystals 115 RMn2 316 RNi5 144, 338 - hydrogen storage films 169 RsOs4Si15 185 R/Re systems 119 RSb films 188 RTiFe(Co) alloys 155 R/V systems 119 R/W systems 118 rare earth metal films 111 reactivity with CO, CO2 and CnHn 143 rare earth nitrides 142 rare earth trialuminides 177 -

samarium-cobalt polytypes 174 samarium-nickel polytypes 173 ScH(DL 245 scattering lifetime 28 second-order transition 346 singlet ground stare 350, 373 Sm2(Co, Fe, Zr)17 145 SmCu2 88 SmCu6 91-93, 95 SmGa2 71, 73 SmH2+x 221,258 SmIn3 41, 48, 51 SmSb 60, 65, 66 spin-flip transition 367, 373, 380, 415 spin-flop transition 363, 416 spin fluctuations 304, 323 spin-slip transition 379, 380, 417 Stoner factor 298 structural properties 210 superconducting materials 184 TbD2 213 TbD2+x 230 TbH2 +x 259 TbNi2Si2 403 ThCo5 301 thin films 105-190 - addition effects of elements 152-155 - amorphous 121, 122, 125, I26, 156, 157 - hydrides 135-140, 169-172 metallic alloys - n o b l e metal 177-181 palladium 181-184 - permanent magnet 144-157 -

ù

-

463

464

SUBJECT INDEX

thin films (cont'd) metalloid 143, 144, 186-190 metals - - crystallography 118, 119 - - electrical properties 120-122 - - magnetic properties 122-126 - - optical properties 126-132 - - reactivity 133, 134 third-order magnetic suseeptibility 353, 355 TmGa3 397 TmSb 350 transverse magnetoresistance 26 triangular structure 309 tritides 140, 141,221 -

-

U-R films 185 uncompensated metal

26

valence change in R-Pd alloys 181 valence-fluctuation regime 6 valence in vapor and solid stare 111 very weak itinerant ferromagnetism 308

Y, La-Pb multilayers 185 Y-H 214 YA12 68 YCu2 88, 89 YH2+ x 209, 221,251 YH(D)x 246 YNi 3 308 Y4Os4SiI3 185 YZn 38, 40 YbAs 60, 65, 67 YbH2+x 263