Handbook of Imaging in Pulmonary Disease 3030681645, 9783030681647

This book is a comprehensive and easy-to-read guide to pulmonary imaging. Medical Imaging is one of the cornerstones of

466 66 21MB

English Pages 247 [231] Year 2021

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

Handbook of Imaging in Pulmonary Disease
 3030681645, 9783030681647

Table of contents :
Preface
Contents
Part I: Neoplastic Disease
Chapter 1: Adenocarcinoma
Imaging Pearls (Figs. 1.1, 1.2, 1.3, 1.4, 1.5, and 1.6)
Suggested Reading
Chapter 2: Squamous Cell Carcinoma
Suggested Reading
Chapter 3: Large-Cell Carcinoma
Suggested Reading
Chapter 4: Adenosquamous Cell Carcioma
Suggested Reading
Chapter 5: Small-Cell Carcinoma
Suggested Reading
Chapter 6: Large-Cell Neuroendocrine Carcinoma
Suggested Reading
Chapter 7: Carcinoid Tumor
Atypical Carcinoid Tumor (Figs. 7.4 and 7.5)
Diffuse Idiopathic Pulmonary Neuroendocrine Cell Hyperplasia (DIPNECH) (Fig. 7.6)
Suggested Reading
Chapter 8: Sarcomatoid Carcinoma
Carcinosarcoma (Fig. 8.1)
Pleuropulmonary Blastoma (Fig. 8.2)
Suggested Reading
Chapter 9: Salivary Gland–Type Tumors
Adenoid Cystic Carcinoma (Fig. 9.1)
Mucoepidermoid Carcinoma (Fig. 9.2)
Epithelial-Myoepithelial Tumor (Fig. 9.3)
Imaging Differential of Endoluminal Mass in the Airways
Suggested Reading
Chapter 10: Papillomatosis
Suggested Reading
Chapter 11: Adenomas
Sclerosing Pneumocytoma (Sclerosing Hemangioma) (Fig. 11.1)
Alveolar Adenoma (Fig. 11.2)
Suggested Reading
Chapter 12: Mesenchymal Tumors
Angiosarcoma (Fig. 12.1)
Epithelioid Hemangioendothelioma (Intravascular Sclerosing Bronchioloalveolar Tumor) (Figs. 12.2 and 12.3)
Kaposi Sarcoma (Figs. 12.4 and 12.5)
Pulmonary Artery Intimal Sarcoma (Figs. 12.6 and 12.7)
Schwannoma (Neurilemmoma) (Figs. 12.8, 12.9, and 12.10)
Pulmonary Hamartoma (Figs. 12.11 and 12.12)
Chondroma/Hamartoma (Figs. 12.13 and 12.14)
Lipoma (Figs. 12.15 and 12.16)
PEComatous Tumors: Lymphangioleiomyomatosis (LAM) (Fig. 12.17)
Inflammatory Pseudotumor (Fig. 12.18)
Suggested Reading
Chapter 13: Lymphohistiocytic Tumors
Extra-Nodal Marginal Zone Lymphoma of Mucosal Origin (MALT Lymphoma) (Fig. 13.1)
Lymphomatoid Granulomatosis (Fig. 13.2)
Diffuse Large B-Cell Lymphoma (Fig. 13.3)
Castleman Disease (Angiofollicular Lymphnode Hyperplasia/Giant Lymphnode Hyperplasia) (Figs. 13.4, 13.5, and 13.6)
Erdheim-Chester Disease (Fig. 13.7)
Suggested Reading
Chapter 14: Tumors of the Pleura
Malignant Pleural Mesothelioma (MPM) (Figs. 14.1 and 14.2)
Solitary Fibrous Tumor of the Pleura (Figs. 14.3, 14.4, and 14.5)
Suggested Reading
Part II: Non-neoplastic Disease
Chapter 15: Congenital Anomalies and Pediatric Lesions
Congenital Pulmonary Airway Malformation (CPAM)
Broncho-Pulmonary Sequestration
Bronchogenic Cyst
Swyer-James Syndrome (Swyer-Macleod-James Syndrome or Bret Syndrome)
Congenital Lobar Emphysema
Suggested Reading
Chapter 16: Chronic Obstructive Pulmonary Disease
Emphysema (Figs. 16.1, 16.2, 16.3, 16.4, and 16.5)
Bronchial Asthma/Chronic Bronchitis
Bronchiectasis
Cystic Fibrosis (Figs. 16.9 and 16.10)
Allergic Bronchopulmonary Aspergillosis (Figs. 16.11 and 16.12)
Rare Congenital Entities (Figs. 16.13 and 16.14)
Suggested Reading
Chapter 17: Small Airway Disease
Respiratory Bronchiolitis (Fig. 17.1)
Follicular Bronchiolitis (Fig. 17.2)
Obliterative Bronchiolitis/Bronchiolitis Obliterans Syndrome (Figs. 17.3, 17.4, and 17.5)
Suggested Reading
Chapter 18: Acute Lung Injury
Diffuse Alveolar Damage
Organizing Pneumonia
Acute Fibrinous and Organizing Pneumonia (AFOP) and Acute Eosinophilic Pneumonia (AEP)
Suggested Reading
Chapter 19: Idiopathic Interstitial Pneumonias
Revised ATS/ERS Classification of IIP: Multidisciplinary Approach
Usual Interstitial Pneumonia (UIP)/Idiopathic Pulmonary Fibrosis (IPF)
High-Resolution Computed Tomography Criteria for UIP Pattern (Figs. 19.1, 19.2, 19.3, and 19.4)
Nonspecific Interstitial Pneumonia (NSIP) (Fig. 19.5)
Respiratory Bronchiolitis – Interstitial Lung Disease (RBILD) Desquamative Interstitial Pneumonia (DIP) (Figs. 19.6 and 19.7)
Lymphoid Interstitial Pneumonia (LIP) (Fig. 19.8)
Pleuroparenchymal Fibroelastosis (Fig. 19.9)
Interstitial Pneumonia with Autoimmune Features (IPAF) (Fig. 19.10)
Suggested Reading
Chapter 20: Other Interstitial Lung Diseases
Hypersensitivity Pneumonitis (HP)
Sarcoidosis
Radiographic Stages of Sarcoidosis (Figs. 20.3, 20.4, 20.5, 20.6, 20.7, 20.8, and 20.9)
HRCT Features of Sarcoidosis
Pulmonary Langerhans Cell Histiocytosis (PLCH)
Relevant Imaging-Pathology Correlation (Figs. 20.10 and 20.11)
Eosinophilic Lung Disease
Simple Pulmonary Eosinophilia (Loeffler Syndrome)
Acute Eosinophilic Pneumonia
Chronic Eosinophilic Pneumonia
Idiopathic Hypereosionophilic Syndrome (Figs. 20.12, 20.13, and 20.14)
Pulmonary Alveolar Proteinosis (Fig. 20.15)
Suggested Reading
Chapter 21: Pneumoconiosis
Silicosis
Role of MRI and PET in Distinguishing PMF from Cancer (Figs. 21.1, 21.2, and 21.3)
Coal-Workers Pneumoconiosis (CWP) (Figs. 21.4 and 21.5)
Asbestos-Related Reactions (Figs. 21.6 and 21.7)
Berylliosis (Fig. 21.8)
Hard-Metal Pneumoconiosis and Hard-Metal Lung Disease (Figs. 21.9 and 21.10)
Talcosis (Figs. 21.11 and 21.12)
Suggested Reading
Chapter 22: Drug Reactions and Therapy Effects
Pulmonary Toxicity from Therapeutic Use (Fig. 22.1)
Amiodarone Toxicity (Fig. 22.2)
Lung Injury from Recreational Drug Abuse
Crack Lung (Fig. 22.3)
Heroin-Induced Acute Pulmonary Edema (Fig. 22.4)
Intravascular Talcosis (Fig. 22.5)
Injection Methylphenidate (Ritalin) (Fig. 22.6)
Suggested Reading
Chapter 23: Vasculitis and Other Causes of Pulmonary Hemorrhage
Diffuse Alveolar Hemorrhage (DAH) (Fig. 23.1)
ANCA Associated Pulmonary Vasculitis (Figs. 23.2, 23.3, 23.4, 23.5, 23.6)
Hypocomplementemic Urticarial Vasculitis (Anti-C1q Vasculitis) (Fig. 23.7)
Suggested Reading
Chapter 24: Pulmonary Hypertension
Chronic Thromboembolic Pulmonary Hypertension (Figs. 24.3 and 24.4)
Plexiform Pulmonary Hypertension (Fig. 24.5)
Pulmonary Veno-Occlusive Disease (PVOD) (Fig. 24.6)
Pulmonary Capillary Hemangiomatosis (PCH) (Fig. 24.7)
Intravascular Talcosis (Fig. 24.8)
Injection Methylphenidate (Ritalin) (Fig. 24.9)
Suggested Reading
Chapter 25: Bacterial Infections and Aspiration
Routes of Infection
Role of Computed Tomography in Lung Infections
Common Imaging Patterns of Pulmonary Infection with emphasis on Bacterial Infection
Increased Lung Attenuation Pattern (Airspace Consolidations and Ground-Glass Opacities) (Figs. 25.1, 25.2, and 25.3)
Nodular Pattern (Figs. 25.4, 25.5, 25.6, and 25.7)
Imaging of Complications (Figs. 25.8, 25.9, 25.10, and 25.11)
Imaging of Associated Abnormalities (Figs. 25.12 and 25.13)
Specific Pneumonias
Pseudomonas aeruginosa (Fig. 25.14)
Staphylococcus aureus (Fig. 25.15)
Actinomycosis (Figs. 25.16, 25.17, 25.18, and 25.19)
Nocardiosis
Malakoplakia – Rhodococcus
Aspiration Pneumonia (Figs. 25.22, 25.23, 25.24, and 25.25)
Suggested Reading
Chapter 26: Mycobacterial Infections
Mycobacterial Tuberculosis Infection of the Lungs
Non-tuberculous Mycobacterial Infection
Suggested Reading
Chapter 27: Fungal Infections
Histoplasmosis
Primary Histoplasmosis or Acute Pulmonary Histoplasmosis
Chronic Pulmonary Histoplasmosis
Progressive Disseminated Histoplasmosis
Fibrosing Mediastinitis
Coccidiodomycosis
Blastomycosis
Aspergillosis
Aspergilloma
Allergic Bronchopulmonary Aspergillosis
Semi-invasive Aspergillosis
Airway Invasive Aspergillosis
Angioinvasive Aspergillosis
Cryptococcosis
Mucormycosis
Pneumocystis pneumonia
Candidiasis
Suggested Reading
Chapter 28: Viral Infections
Selected Viruses Causing Respiratory Symptoms (Figs. 28.1, 28.2, 28.3, 28.4, 28.5, and 28.6)
Imaging Findings in COVID-19 (Figs. 28.7, 28.8, 28.9, 28.10, and 28.11)
Suggested Reading
Chapter 29: Parasitic Infections
Strongyloides (Figs. 29.1 and 29.2)
Dirofilariasis (Fig. 29.3)
Echinococcosis (Fig. 29.4)
Toxoplasmosis (Fig. 29.5)
Suggested Reading
Chapter 30: Miscellaneous, Mass-like, and Cystic Lesions
Nodular Lymphoid Hyperplasia (Fig. 30.1)
Amyloidosis (Figs. 30.2, 30.3, 30.4, 30.4, and 30.5)
Calcifications and Ossifications (Fig. 30.7)
Light-Chain Deposition Disease (Figs. 30.10 and 30.11)
IgG4-Related Lung Disease (Fig. 30.12)
Pulmonary Hyalinizing Granuloma (Fig. 30.13)
Emphysema with Placental Transmogrification and Lipomatous Change (Fig. 30.14)
Exogenous Lipoid Pneumonia (Fig. 30.15)
Benign Metastasizing Leiomyoma (Fig. 30.16)
Suggested Reading
Chapter 31: Lung Manifestations of Collagen Vascular Diseases
Rheumatoid Arthritis (Figs. 31.1, 31.2, 31.3, 31.4, and 31.5)
Scleroderma (Figs. 31.6 and 31.7)
Mixed Connective Tissue Disease (MCTD) (Fig. 31.8)
Dermatomyositis and Polymyositis (Fig. 31.9)
Systemic Lupus Erythematosus (Figs. 31.10, 31.11, 31.12, and 31.13)
Sjogren’s Syndrome (Figs. 31.14 and 31.15)
IPAF: Interstitial Pneumonitis with Autoimmune Features (Undifferentiated Connective Tissue Disease) (Fig. 31.16)
Suggested Reading
Chapter 32: Lung Involvement by Other Systemic Diseases
Birt-Hogg-Dubé Syndrome (Fig. 32.1)
Common Variable Immunodeficiency and Granulomatous-Lymphocytic Interstitial Lung Disease (GLILD) (Figs. 32.2 and 32.3)
Niemann-Pick Disease (Fig. 32.4)
Lung Manifestations of Inflammatory Bowel Disease (IBD) with emphasis on Necrobiotic Nodules (Figs. 32.5 and 32.6)
Suggested Reading
Index

Citation preview

Handbook of Imaging in Pulmonary Disease Subha Ghosh

123

Handbook of Imaging in Pulmonary Disease

Subha Ghosh

Handbook of Imaging in Pulmonary Disease

Subha Ghosh Department of Diagnostic Radiology Cleveland Clinic Cleveland, OH, USA

ISBN 978-3-030-68164-7    ISBN 978-3-030-68165-4 (eBook) https://doi.org/10.1007/978-3-030-68165-4 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Medical imaging is one of the cornerstones of modern medicine, and nowhere is this more apparent than pulmonary disease. We have come a long way from the days of chest radiography, though the chest radiograph still remains the single most common imaging test ordered worldwide. Pulmonary disease is now routinely evaluated with ultra-modern computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) scanners, while ultrasonography plays a limited role in critical care and pleural/chest wall diseases. Advancement in imaging and computer technology has enabled human anatomy to be precisely mapped, physiologic processes to be depicted with “functional” imaging techniques, and pathologic disease processes to be visualized with high sensitivity and specificity. Indeed, in many instances, it is possible to predict underlying histopathology of the lungs using high-resolution CT! It is no surprise therefore that physicians have increasingly relied on medical imaging to provide timely and accurate diagnoses for their patients. Rapid advancements in the sub-specialty of chest imaging and an exponential increase in the knowledge of pulmonary disease have led to an increasing demand for a comprehensive yet easily digestible handbook of pulmonary imaging, which would prepackage knowledge in a form that can be easily understood and readily visualized with high-quality representative images. This book serves as a manual that has been condensed from multiple refernce texts and research studies. It is likely to benefit trainees (residents and fellows), particularly in chest radiology, as well as general radiologists, and thoracic radiologists, who could use it as a desk reference and teaching/learning tool while reporting cases. It would also be of interest to practitioners and trainees in pulmonary medicine, thoracic surgery, and other specialties with an interest in chest diseases. The readers may wish to see what the radiology of a particular disease entity looks like, or what are the differential diagnoses for a particular imaging abnormality, and explore if the bullet review points associated with an image fit with their particular case. Unfortunately, the growth in the subspecialty of chest radiology (training programs and number of fellowship trainees) has not been able to the keep pace with an increasing market demand for high-quality and accurate subspecialty reporting. v

vi

Preface

That unmet need can be met with a book such as this, which can empower every practice with an image-rich atlas of pulmonary diseases that provides the most important relevant medical knowledge related to a case at their disposal. Cleveland, OH, USA

Subha Ghosh

Contents

Part I Neoplastic Disease 1 Adenocarcinoma������������������������������������������������������������������������������������     3 2

Squamous Cell Carcinoma��������������������������������������������������������������������     9

3 Large-Cell Carcinoma ��������������������������������������������������������������������������    13 4 Adenosquamous Cell Carcioma������������������������������������������������������������    15 5 Small-Cell Carcinoma���������������������������������������������������������������������������    17 6 Large-Cell Neuroendocrine Carcinoma����������������������������������������������    19 7 Carcinoid Tumor������������������������������������������������������������������������������������    21 Atypical Carcinoid Tumor ����������������������������������������������������������������������    23 Diffuse Idiopathic Pulmonary Neuroendocrine Cell Hyperplasia (DIPNECH) ������������������������������������������������������������������������    23 8 Sarcomatoid Carcinoma������������������������������������������������������������������������    27 Carcinosarcoma����������������������������������������������������������������������������������������    28 Pleuropulmonary Blastoma����������������������������������������������������������������������    29 9 Salivary Gland–Type Tumors ��������������������������������������������������������������    31 Adenoid Cystic Carcinoma����������������������������������������������������������������������    31 Mucoepidermoid Carcinoma ������������������������������������������������������������������    32 Epithelial-Myoepithelial Tumor��������������������������������������������������������������    32 Imaging Differential of Endoluminal Mass in the Airways��������������������    33 10 Papillomatosis����������������������������������������������������������������������������������������    35

vii

viii

Contents

11 Adenomas������������������������������������������������������������������������������������������������    37 Sclerosing Pneumocytoma (Sclerosing Hemangioma)����������������������������    37 Alveolar Adenoma ����������������������������������������������������������������������������������    38 12 Mesenchymal Tumors����������������������������������������������������������������������������    41 Angiosarcoma������������������������������������������������������������������������������������������    42 Epithelioid Hemangioendothelioma (Intravascular Sclerosing Bronchioloalveolar Tumor)����������������������������������������������������������    43 Kaposi Sarcoma ��������������������������������������������������������������������������������������    44 Pulmonary Artery Intimal Sarcoma ��������������������������������������������������������    45 Schwannoma (Neurilemmoma) ��������������������������������������������������������������    46 Pulmonary Hamartoma����������������������������������������������������������������������������    48 Chondroma/Hamartoma��������������������������������������������������������������������������    49 Lipoma ����������������������������������������������������������������������������������������������������    50 PEComatous Tumors: Lymphangioleiomyomatosis (LAM) ������������������    51 Inflammatory Pseudotumor����������������������������������������������������������������������    51 13 Lymphohistiocytic Tumors��������������������������������������������������������������������    53 Extra-Nodal Marginal Zone Lymphoma of Mucosal Origin (MALT Lymphoma) ����������������������������������������������������������������������������������    53 Lymphomatoid Granulomatosis��������������������������������������������������������������    54 Diffuse Large B-Cell Lymphoma������������������������������������������������������������    55 Castleman Disease (Angiofollicular Lymphnode Hyperplasia/Giant Lymphnode Hyperplasia)��������������������������������������������������������������    55 Erdheim-Chester Disease������������������������������������������������������������������������    57 14 Tumors of the Pleura ����������������������������������������������������������������������������    59 Malignant Pleural Mesothelioma (MPM)������������������������������������������������    59 Solitary Fibrous Tumor of the Pleura������������������������������������������������������    61 Part II Non-neoplastic Disease 15 Congenital Anomalies and Pediatric Lesions��������������������������������������    67 Congenital Pulmonary Airway Malformation (CPAM)��������������������������    67 Broncho-Pulmonary Sequestration����������������������������������������������������������    68 Bronchogenic Cyst����������������������������������������������������������������������������������    69 Swyer-James Syndrome (Swyer-Macleod-­James Syndrome or Bret Syndrome) ������������������������������������������������������    71 Congenital Lobar Emphysema����������������������������������������������������������������    72 16 Chronic Obstructive Pulmonary Disease��������������������������������������������    75 Emphysema����������������������������������������������������������������������������������������������    75 Bronchial Asthma/Chronic Bronchitis����������������������������������������������������    78 Bronchiectasis������������������������������������������������������������������������������������������    80 Cystic Fibrosis ������������������������������������������������������������������������������������    80

Contents

ix

Allergic Bronchopulmonary Aspergillosis������������������������������������������    81 Rare Congenital Entities����������������������������������������������������������������������    81 17 Small Airway Disease����������������������������������������������������������������������������    85 Respiratory Bronchiolitis ������������������������������������������������������������������������    85 Follicular Bronchiolitis����������������������������������������������������������������������������    85 Obliterative Bronchiolitis/Bronchiolitis Obliterans Syndrome����������������    86 18 Acute Lung Injury ��������������������������������������������������������������������������������    89 Diffuse Alveolar Damage������������������������������������������������������������������������    89 Organizing Pneumonia����������������������������������������������������������������������������    90 Acute Fibrinous and Organizing Pneumonia (AFOP) and Acute Eosinophilic Pneumonia (AEP)����������������������������������������������������    92 19 Idiopathic Interstitial Pneumonias������������������������������������������������������    95 Revised ATS/ERS Classification of IIP: Multidisciplinary Approach ����    96 Usual Interstitial Pneumonia (UIP)/Idiopathic Pulmonary Fibrosis (IPF)��������������������������������������������������������������������������������    96 Nonspecific Interstitial Pneumonia (NSIP)����������������������������������������������    99 Respiratory Bronchiolitis – Interstitial Lung Disease (RBILD) Desquamative Interstitial Pneumonia (DIP) ��������������������������������   100 Lymphoid Interstitial Pneumonia (LIP) ��������������������������������������������������   101 Pleuroparenchymal Fibroelastosis ����������������������������������������������������������   102 Interstitial Pneumonia with Autoimmune Features (IPAF)����������������������   103 20 Other Interstitial Lung Diseases����������������������������������������������������������   105 Hypersensitivity Pneumonitis (HP) ��������������������������������������������������������   105 Sarcoidosis ����������������������������������������������������������������������������������������������   107 Pulmonary Langerhans Cell Histiocytosis (PLCH)��������������������������������   112 Eosinophilic Lung Disease����������������������������������������������������������������������   113 Pulmonary Alveolar Proteinosis��������������������������������������������������������������   116 21 Pneumoconiosis��������������������������������������������������������������������������������������   117 Silicosis����������������������������������������������������������������������������������������������������   118 Coal-Workers Pneumoconiosis (CWP)����������������������������������������������������   118 Asbestos-Related Reactions��������������������������������������������������������������������   120 Berylliosis������������������������������������������������������������������������������������������������   122 Hard-Metal Pneumoconiosis and Hard-Metal Lung Disease������������������   123 Talcosis����������������������������������������������������������������������������������������������������   123 22 Drug Reactions and Therapy Effects ��������������������������������������������������   127 Pulmonary Toxicity from Therapeutic Use����������������������������������������������   128 Amiodarone Toxicity ������������������������������������������������������������������������������   129 Lung Injury from Recreational Drug Abuse��������������������������������������������   130 Crack Lung����������������������������������������������������������������������������������������������   130

x

Contents

Heroin-Induced Acute Pulmonary Edema ����������������������������������������������   130 Intravascular Talcosis������������������������������������������������������������������������������   131 Injection Methylphenidate (Ritalin)��������������������������������������������������������   132 23 Vasculitis and Other Causes of Pulmonary Hemorrhage������������������   133 Diffuse Alveolar Hemorrhage (DAH)������������������������������������������������������   134 ANCA Associated Pulmonary Vasculitis ������������������������������������������������   135 Hypocomplementemic Urticarial Vasculitis (Anti-C1q Vasculitis) ��������   137 24 Pulmonary Hypertension����������������������������������������������������������������������   139 Chronic Thromboembolic Pulmonary Hypertension������������������������������   141 Plexiform Pulmonary Hypertension��������������������������������������������������������   142 Pulmonary Veno-Occlusive Disease (PVOD)������������������������������������������   142 Pulmonary Capillary Hemangiomatosis (PCH)��������������������������������������   144 Intravascular Talcosis������������������������������������������������������������������������������   144 Injection Methylphenidate (Ritalin)��������������������������������������������������������   145 25 Bacterial Infections and Aspiration������������������������������������������������������   147 Common Imaging Patterns of Pulmonary Infection with emphasis on Bacterial Infection��������������������������������������������������������������������   148 Specific Pneumonias��������������������������������������������������������������������������������   155 Pseudomonas aeruginosa������������������������������������������������������������������������   156 Staphylococcus aureus����������������������������������������������������������������������������   156 Actinomycosis������������������������������������������������������������������������������������������   159 Nocardiosis����������������������������������������������������������������������������������������������   160 Malakoplakia – Rhodococcus������������������������������������������������������������������   160 Aspiration Pneumonia������������������������������������������������������������������������������   161 26 Mycobacterial Infections ����������������������������������������������������������������������   167 Mycobacterial Tuberculosis Infection of the Lungs��������������������������������   167 Non-tuberculous Mycobacterial Infection ����������������������������������������������   170 27 Fungal Infections������������������������������������������������������������������������������������   175 Histoplasmosis ����������������������������������������������������������������������������������������   176 Primary Histoplasmosis or Acute Pulmonary Histoplasmosis������������   176 Chronic Pulmonary Histoplasmosis����������������������������������������������������   177 Progressive Disseminated Histoplasmosis������������������������������������������   178 Fibrosing Mediastinitis������������������������������������������������������������������������   178 Coccidiodomycosis����������������������������������������������������������������������������������   178 Blastomycosis������������������������������������������������������������������������������������������   179 Aspergillosis��������������������������������������������������������������������������������������������   179 Aspergilloma��������������������������������������������������������������������������������������������   180

Contents

xi

Allergic Bronchopulmonary Aspergillosis������������������������������������������   181 Semi-invasive Aspergillosis ����������������������������������������������������������������   183 Airway Invasive Aspergillosis��������������������������������������������������������������   183 Angioinvasive Aspergillosis����������������������������������������������������������������   184 Cryptococcosis����������������������������������������������������������������������������������������   184 Mucormycosis������������������������������������������������������������������������������������������   185 Pneumocystis pneumonia������������������������������������������������������������������������   186 Candidiasis����������������������������������������������������������������������������������������������   186 28 Viral Infections��������������������������������������������������������������������������������������   189 Selected Viruses Causing Respiratory Symptoms ����������������������������������   190 Imaging Findings in COVID-19��������������������������������������������������������������   190 29 Parasitic Infections��������������������������������������������������������������������������������   197 Strongyloides ������������������������������������������������������������������������������������������   197 Dirofilariasis��������������������������������������������������������������������������������������������   198 Echinococcosis����������������������������������������������������������������������������������������   198 Toxoplasmosis������������������������������������������������������������������������������������������   200 30 Miscellaneous, Mass-like, and Cystic Lesions ������������������������������������   201 Nodular Lymphoid Hyperplasia��������������������������������������������������������������   201 Amyloidosis ��������������������������������������������������������������������������������������������   202 Calcifications and Ossifications ��������������������������������������������������������������   205 Light-Chain Deposition Disease��������������������������������������������������������������   207 IgG4-Related Lung Disease��������������������������������������������������������������������   208 Pulmonary Hyalinizing Granuloma ��������������������������������������������������������   209 Emphysema with Placental Transmogrification and Lipomatous Change����������������������������������������������������������������������   210 Exogenous Lipoid Pneumonia ����������������������������������������������������������������   210 Benign Metastasizing Leiomyoma����������������������������������������������������������   211 31 Lung Manifestations of Collagen Vascular Diseases��������������������������   213 Rheumatoid Arthritis��������������������������������������������������������������������������������   214 Scleroderma ��������������������������������������������������������������������������������������������   215 Mixed Connective Tissue Disease (MCTD)��������������������������������������������   216 Dermatomyositis and Polymyositis ��������������������������������������������������������   216 Systemic Lupus Erythematosus ��������������������������������������������������������������   218 Sjogren’s Syndrome ��������������������������������������������������������������������������������   219 IPAF: Interstitial Pneumonitis with Autoimmune Features (Undifferentiated Connective Tissue Disease)������������������������������   220

xii

Contents

32 Lung Involvement by Other Systemic Diseases����������������������������������   223 Birt-Hogg-Dubé Syndrome����������������������������������������������������������������������   223 Common Variable Immunodeficiency and Granulomatous-­Lymphocytic Interstitial Lung Disease (GLILD)��������������������������������������������������  224 Niemann-Pick Disease ����������������������������������������������������������������������������   226 Lung Manifestations of Inflammatory Bowel Disease (IBD) with emphasis on Necrobiotic Nodules������������������������������������������������   227 Index����������������������������������������������������������������������������������������������������������������   229

Part I

Neoplastic Disease

Chapter 1

Adenocarcinoma

Contents Imaging Pearls Suggested Reading

 4  7

• International Association for the Study of Lung Cancer (IASLC)/the American Thoracic Society (ATS)/the European Respiratory Society (ERS) classification followed despite lack of definitive CT correlation. • Atypical adenomatous hyperplasia (AAH): focal subcentimeter groundglass opacity (GGO) (usually ≤ 5 mm), which remain unchanged over months and considered benign. Premalignant and malignant forms including adenocarcinoma in-situ, minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma are distinguished based on increasing overall size of the tumor, presence or absence of any associated solid component, and size of the solid (stromal) component. • Adenocarcinoma in situ (AIS): ≤ 3 cm GGO without any invasive component • Minimally invasive adenocarcinoma: ≤ 3 cm predominant GGO lesion with ≤ 5 mm invasive component • Invasive adenocarcinoma: . Lepidic predominant, acinar, solid, papillary, micro-papillary types A B. Invasive mucinous adenocarcinoma The lepidic subtype invasive adenocarcinoma (formerly non-mucinous BAC) is characterized by predominant lepidic pattern with >5 mm invasive component, or gross tumor size > 3 cm. The invasive mucinous adenocarcinoma subtype (formerly mucinous BAC, associated with KRAS mutation) may present as low-density consolidation (air bronchogram sign, CT angiogram sign), multifocal nodules and masses, or rarely as “crazy-paving pattern.” © The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 S. Ghosh, Handbook of Imaging in Pulmonary Disease, https://doi.org/10.1007/978-3-030-68165-4_1

3

4

1 Adenocarcinoma

Imaging Pearls (Figs. 1.1, 1.2, 1.3, 1.4, 1.5, and 1.6) • Imaging signs depend on histologic growth pattern. • Single nodule or mass, consolidation or GGO, or multi-centric disease (nodules or masses). • Nodules can be solid, part-solid (ground-glass with solid components), or ground-glass attenuation. • Spiculated margins, pleural tags, “bubble lucencies or pseudo-cavitations,” “cheerio sign,” air bronchograms and CT angiogram signs, and “crazy-paving pattern” may be observed. • Percentage of solid component increases with more aggressive adenocarcinoma subtypes, and GGO usually correlates with predominant or purely lepidic pattern of histologic growth. Thus, AIS, minimally invasive adenocarcinoma, and a

b

c

Fig. 1.1  Axial CT chest (lung windows). (a) Small GGO in the left upper lobe (LUL) which could represent AAH or AIS (thick arrow). (b) Follow-up CT after 5 years demonstrates a endobronchial; commonly occurs in elderly male smokers. • Heterogeneous contrast enhancement of mural/solid component; intense PET+.

Fig. 8.1  Carcinosarcoma presenting as a large peripheral RUL posterior segment mass in an elderly male smoker. Unenhanced CT chest images (top panel) reveal a predominantly solid mass with central low attenuation (left image – mediastinal window) and mild spiculated margins with peripheral wispy GGO (right image – lung window). Fused PET-CT (bottom image) shows intense FDG avidity in the mass

Pleuropulmonary Blastoma

29

Pleuropulmonary Blastoma (Fig. 8.2) • Rare, aggressive primary tumor in children; mesenchymal and epithelial components of fetal lung. • Unilateral (more common right-sided), large, pleural-based, mixed heterogeneous solid and cystic lung mass (rarely solid or cystic) with no calcification, bone destruction, or chest wall invasion. • Three types: . Type I – cystic mass A B. Type II – mixed cystic and solid mass C. Type III – solid mass

Fig. 8.2  CT chest axial (top left), sagittal (top right), and coronal (bottom) reformatted images in lung window settings in a 2-year-old male, demonstrate a large, pleural-based, cystic mass in the right lower chest. The mass causes atelectasis of the adjacent RLL and RML lung parenchyma without bone erosion

30

8  Sarcomatoid Carcinoma

• Type I in children 2-year-olds, can metastasize to CNS and chest wall

Suggested Reading https://www.oncotarget.com/article/23468/text/.

Chapter 9

Salivary Gland–Type Tumors

Contents  denoid Cystic Carcinoma A Mucoepidermoid Carcinoma Epithelial-Myoepithelial Tumor Imaging Differential of Endoluminal Mass in the Airways Suggested Reading

 31  32  32  33  33

Primary salivary gland–type tumors of the lung are rare neoplasms that arise from the submucosal glands of central airways. Four types include the following: • • • •

Adenoid cystic carcinoma (most common – proximal airways) Mucoepidermoid carcinoma (less common – distal airways) Epithelial-myoepithelial carcinoma (very rare) Clear cell carcinoma of salivary gland type (few case reports)

Adenoid Cystic Carcinoma (Fig. 9.1) • Polypoidal or lobulated mass arising from the trachea or main bronchi with luminal encroachment and focal nodular wall thickening (common presentation). May present with post-obstructive pneumonitis or wheezing (misdiagnosed as asthma). • Circumferential and/or longitudinal mural thickening and tracheal stenosis (rare presentation).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 S. Ghosh, Handbook of Imaging in Pulmonary Disease, https://doi.org/10.1007/978-3-030-68165-4_9

31

32

a

9  Salivary Gland–Type Tumors

b

Fig. 9.1  Contrast-enhanced CT chest (a) axial mediastinal window and (b) coronal lung window images demonstrate a smoothly marginated, polypoidal mass growing into the tracheal lumen with semi-circumferential, focal mural thickening along the left lateral tracheal wall (arrows)

a

b

Fig. 9.2  Unenhanced CT chest axial images in mediastinal (a) and lung (b) windows demonstrate a large, well-circumscribed mass arising from/in close proximity to a segmental bronchus in the LLL. Note punctate eccentric calcification in the tumor (arrow) and mild distal linear atelectasis

Mucoepidermoid Carcinoma (Fig. 9.2) • Smoothly marginated nodule or mass, which more commonly arises from a distal bronchus (segmental > lobar/main bronchus or trachea) • Punctate calcifications fairly common • Mucoid impaction in distal obstructed bronchi or distal atelectasis

Epithelial-Myoepithelial Tumor (Fig. 9.3) • Rare low-grade tumor with epithelial and myoepithelial components and frequent local recurrence ( distal airways, usually fourth to fifth decade of life, intra-tumoral calcification rare) • MEC (younger age lobar/main bronchi, punctate calcification) • Metastasis (direct invasion from lung, thyroid; distant metastasis from melanoma, renal, etc.) • Papilloma (HPV infection, nasopharyngeal involvement)

Suggested Reading https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767141/. https://www.ajronline.org/doi/10.2214/AJR.07.2652.

Chapter 10

Papillomatosis

Content Suggested Reading

 36

• Association with human papilloma virus 6/11 and 16/18. • Multiple small, polypoidal nodules (rarely single) in the trachea/tracheobronchial lumen, and/or • Diffuse nodular thickening of the trachea or tracheobronchial walls. • Rarely infection may spread to distal small bronchi and lungs with development of multiple lung nodules which cavitate to form thin walled cystic lesions. • Involvement of the nasopharynx or larynx is fairly common, particularly in children, as infection is presumed to be transmitted from infected mother to child at the time of birth. • Recurrence is common after removal; rarely undergoes malignant transformation to SCC (Figs. 10.1 and 10.2).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 S. Ghosh, Handbook of Imaging in Pulmonary Disease, https://doi.org/10.1007/978-3-030-68165-4_10

35

36

a

10 Papillomatosis

b

Fig. 10.1  Chest CT axial (a) and coronal reformatted (b) images reveal diffuse nodular tracheal wall thickening with multiple small nodules projecting within the tracheal lumen (arrows)

Fig. 10.2  Chest CT (lung windows) demonstrates solid mass consistent with SCC in the RUL posterior segment (star), with multiple thin-walled cavitary lesions in RUL, RML, and LLL (arrows)

Suggested Reading https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5687961/.

Chapter 11

Adenomas

Contents  clerosing Pneumocytoma (Sclerosing Hemangioma) S Alveolar Adenoma Suggested Reading

 37  38  39

Benign tumors of the lung which arise from the bronchial mucous glands and usually present as a solitary lung nodule. The following pathologic types may be seen: • • • • •

Sclerosing pneumocytoma Alveolar adenoma Papillary adenoma Mucinous cystadenoma Mucous gland adenoma

 clerosing Pneumocytoma (Sclerosing Hemangioma) S (Fig. 11.1) • Marked female predominance • Most present as well-circumscribed solitary lung nodule or mass with similar imaging features as alveolar adenoma (often juxta-pleural; endobronchial location considered extremely rare).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 S. Ghosh, Handbook of Imaging in Pulmonary Disease, https://doi.org/10.1007/978-3-030-68165-4_11

37

38

11 Adenomas

Fig. 11.1  Contrast-enhanced chest CT shows a 3-cm, well-circumscribed, soft-tissue attenuation mass in the medial left lower lobe, with uniform and modest FDG uptake on the PET scan

• CT imaging features include homogeneous enhancement and surrounding ground-glass opacities. • Usually hypo-metabolic on FDG-PET.

Alveolar Adenoma (Fig. 11.2) • Usually reported as solitary peripheral or sub-pleural, round or ovoid nodule with smooth margins and homogeneous attenuation, which are imaging features shared by other benign lesions (sclerosing hemangioma, papillary adenoma, hamartoma, granuloma, and leiomyoma). • Spotty contrast enhancement has been shown, in a pattern similar to but less than sclerosing pneumocytoma (sclerosing hemangioma). • Exceedingly rare (isolated case reports).

Suggested Reading

a

39

b

Fig. 11.2  Contrast-enhanced axial CT chest images (a – mediastinal; b – lung windows) show a subpleural, well-circumscribed, homogeneously hypodense lung nodule in the RML with minimal to no peripheral enhancement (dome of right hemi-diaphragm highlighted by asterisk)

Suggested Reading https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485897/. https://cardiothoracicsurgery.biomedcentral.com/articles/10.1186/1749-­8090-­7-­1.

Chapter 12

Mesenchymal Tumors

Contents Angiosarcoma Epithelioid Hemangioendothelioma (Intravascular Sclerosing Bronchioloalveolar Tumor)  Kaposi Sarcoma Pulmonary Artery Intimal Sarcoma Schwannoma (Neurilemmoma) Pulmonary Hamartoma Chondroma/Hamartoma Lipoma PEComatous Tumors: Lymphangioleiomyomatosis (LAM) Inflammatory Pseudotumor Suggested Reading

 42  43  44  45  46  48  49  50  51  51  52

• Primary mesenchymal tumors of the lung are rare. • Arise from cells of mesodermal origin in the lungs that develop into bone, cartilage, or other connective tissues, such as blood vessels, adipose tissue, smooth muscle, or fibroblasts. • Spectrum includes benign (such as chondroma and hamartoma) and malignant entities (sarcomas). • Pathologic diagnosis is key as clinicoradiologic features may mimic bronchogenic carcinoma. Primary mesenchymal tumors of the lung include the following: • Angiosarcoma • Epithelioid hemangioendothelioma • Kaposi sarcoma © The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 S. Ghosh, Handbook of Imaging in Pulmonary Disease, https://doi.org/10.1007/978-3-030-68165-4_12

41

42

• • • • • • •

12  Mesenchymal Tumors

Pulmonary artery intimal sarcoma Schwannoma Pulmonary hamartoma Chondroma/hamartoma Lipoma PEComatous tumors: Lymphangioleiomyomatosis (LAM) Inflammatory myofibroblastic tumor

Angiosarcoma (Fig. 12.1) • Pulmonary angiosarcoma is a rare tumor and largely metastatic (cardiovascular source, breast most common). Thorium dioxide (Thorotrast) was used as a radiocontrast agent in the 1930s and 1940s (since discontinued) and heavily linked to hepatic angiosarcomas. Polyvinyl chloride also a risk factor. • Primary pulmonary angiosarcomas considered exceedingly rare, and only a handful of cases reported worldwide. • Most common presentation is multiple lung nodules or masses associated with alveolar hemorrhage, pleural effusions, and disseminated disease. a

c

b

d

e

Fig. 12.1  Contrast-enhanced chest CT: axial mediastinal (a) and lung window (b–d) images and coronal reformatted image (e) in a 74-year-old male demonstrate multiple bilateral lung nodules and masses of varying sizes randomly distributed in both lungs (similar to several other metastatic disease). Interestingly, most of the nodules show subtle central vascular enhancement on mediastinal windows (blue arrow), with distinct ground glass halo surrounding the central enhancing solid component (yellow arrow), felt to represent perilesional hemorrhage. Note that GGO in the RML (star) is suggestive of alveolar hemorrhage. There are small bilateral pleural effusions (a)

Epithelioid Hemangioendothelioma (Intravascular Sclerosing Bronchioloalveolar…

43

 pithelioid Hemangioendothelioma (Intravascular Sclerosing E Bronchioloalveolar Tumor) (Figs. 12.2 and 12.3) • Rare tumor mostly seen in young women. • Multiple bilateral perivascular lung nodules (most common presentation) which do not change over a period of time. Calcifications or septal thickening may be seen. • Mediastinal or hilar mass with lymphadenopathy (rare presentation).

a

b

Fig. 12.2  Axial (a) and coronal reformatted (b) chest CT images in lung and mediastinal windows, respectively, demonstrate innumerable bilateral perivascular lung nodules and multiple hepatic low-density lesions, the largest with nodular peripheral enhancement suggesting hemangioma (arrow)

a

b

Fig. 12.3  Axial (a) and coronal reformatted (b) contrast-enhanced chest CT images in a 56-year-­ old male show an ill-defined upper right para tracheal soft tissue mass encasing the SVC (bold arrow) and abutting half the mural circumference of the innominate artery (thin arrow)

44

12  Mesenchymal Tumors

Kaposi Sarcoma (Figs. 12.4 and 12.5) • Four variants, of which AIDS-related form (AIDS defining disease with CD4  CT) when present are pathognomonic. a

b

Fig. 12.11  Contrast-enhaced chest CT (a – mediastinal, b – lung window) reveals an endobronchial low-attenuation nodule which demonstrates no contrast enhacement

Coned axial view

Fig. 12.12  Unenhanced chest CT images show two well-circumscribed peripheral nodules, one with “popcorn” calcifications (top panel) and the other with coarse central calcifications (bottom panel) in two different patients suggestive of hamartoma

Chondroma/Hamartoma

49

Chondroma/Hamartoma (Figs. 12.13 and 12.14) • Imaging features similar to hamartoma; most often presents as SPN. • Sporadic or as part of Carney triad, which is pulmonary chondroma(s), gastrointestinal stromal tumors, and extra-adrenal paraganglioma.

a

b

c

e

d

Coned view of fused PET-CT (axial)

Coronal reformatted CT image

Fig. 12.13  Chest CT (axial – a, b; coronal – e) images reveal a peripheral SPN with subtle intrinsic high attenuation/calcification and no FDG avidity on fused PET-CT (c, d)

Fig. 12.14 Contrast-­ enhanced chest CT with low-density mass with central fat attenuation mostly in the anterior mediastinum and abutting the left upper mediastinal pleura (arrow)

50

12  Mesenchymal Tumors

Lipoma (Figs. 12.15 and 12.16) • Most common intra-thoracic locations are chest wall and mediastinal pleura. It is the most common benign tumor of the chest wall and pleura. Rarely endobronchial in location. • Smooth margins, homogeneous fat signal (bright on T1W MRI) and attenuation (−40 to −120 Hounsfield units on CT), no contrast enhancement. • CXR findings for chest wall lipoma include smooth tapered margins with obtuse angles to the chest wall. Margins may appear to fade into the surroundings when seen enface.

a

b

c

Fig. 12.15  Contrast-enhanced chest CT: axial lung (a) and mediastinal (b) window images show a 5 mm RLL unenhancing nodule. Central fat attenuation is appreciated on the magnified coned view (c)

a

b

Fig. 12.16  Contrast-enhanced chest CT: axial (a) and coronal reformatted (b) images demonstrate a smoothly marginated, right paratracheal mediastinal mass with central fat attenuation (star) which has similar density to subcutaneous chest wall fat (−40 to −120 HU). The linear vascular structure along the right lateral margin of the mass is the azygos vein (blue arrow), which is splayed across the surface of the mass. The mass insinuates (rather than invades) into the adjacent mediastinal compartment (tracheo-esophageal groove) and shows no vascular contrast enhancement

Inflammatory Pseudotumor

51

 EComatous Tumors: Lymphangioleiomyomatosis (LAM) P (Fig. 12.17) • Uniform, thin-walled lung cysts distributed throughout both lungs without zonal predominance. • Affects women of child-bearing age. • May present with recurrent pneumothorax and chylothorax.

Inflammatory Pseudotumor (Fig. 12.18) • Usually presents as SPN with nonspecific imaging features on CT.  Rarely endobronchial. • PET + • Most common primary lung mass in a child. • Margins may be smooth (children) or spiculated (adults). • Also called plasma cell granuloma and fibrous histiocytoma based on cellular predominance. Fig. 12.17  Chest CT axial lung window images with innumerable, fairly uniform, small, thin-walled lung cysts throughout both lungs in a young female non-smoker

a

b

Fig. 12.18  Unenhanced chest CT: mediastinal (a) and lung (b) window images demonstrate a well-circumscribed SPN in the RUL

52

12  Mesenchymal Tumors

Suggested Reading https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353741/. https://pubs.rsna.org/doi/full/10.1148/radiographics.22.3.g02ma25601.

Chapter 13

Lymphohistiocytic Tumors

Contents  xtra-Nodal Marginal Zone Lymphoma of Mucosal Origin (MALT Lymphoma)  E Lymphomatoid Granulomatosis Diffuse Large B-Cell Lymphoma Castleman Disease (Angiofollicular Lymphnode Hyperplasia/Giant Lymphnode Hyperplasia) Erdheim-Chester Disease Suggested Reading

 53  54  55  55  57  58

MALT lymphoma, lymphomatoid granulomatosis, and DLBCL are classified as malignant primary pulmonary lymphoproliferative disorders. Castleman disease (angiofollicular or giant lymph node hyperplasia) is an uncommon benign B-cell lymphoproliferative condition. Erdheim-Chester disease is a xanthogranulomatous histiocytosis characterized by infiltration of the skeleton and viscera by lipid-laden histiocytes and was newly added to the classification of lymphoproliferative disorders (WHO 2015).

 xtra-Nodal Marginal Zone Lymphoma of Mucosal Origin E (MALT Lymphoma) (Fig. 13.1) • Nodules or masses versus consolidation • Multiple (>70%), usually bilateral • Peribronchial, or associated air-bronchogram with bronchial distension © The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 S. Ghosh, Handbook of Imaging in Pulmonary Disease, https://doi.org/10.1007/978-3-030-68165-4_13

53

54

13  Lymphohistiocytic Tumors

a

b

Fig. 13.1 (a) Contrast-enhanced chest CT reveals multiple, bilateral nodules and mass-like consolidations. Top panel (at the carinal bifurcation level) – lung window (left) and mediastinal window (right) images show mass-like consolidation in the LUL perihilar region with air-bronchograms (arrows), hilar lymphadenopathy (yellow arrow), smaller adjacent nodule (arrow head), and local lympangitic spread. (b) Bottom panel (above the carina)  – mediastinal window (left) and lung window (middle) images show a solid nodule with irregular margins and surrounding GGO (arrow) in the medial RUL suggestive of lymphangitic spread. Bottom right image, coned down view of the left lung base shows focal nodular pleural thickening along the chest wall (arrow) and nodularity along the pericardium (arrow head)

• Lymphangitic spread into the surrounding parenchyma • Hilar and mediastinal lymphadenopathy (30%) • Pleural reaction and/or invasion depending on location

Lymphomatoid Granulomatosis (Fig. 13.2) • • • • • •

Lung is the most common primary site (followed by CNS, skin); EB virus induced Multiple nodules (80%), mostly in the lower lobes Angiocentric nodules; peri-bronchovascular distribution Progress rapidly, coalesce and commonly cavitate. Migratory, “waxing-waning” course May demonstrate “reverse halo”

Castleman Disease (Angiofollicular Lymphnode Hyperplasia/Giant Lymphnode…

55

Fig. 13.2  Chest CT lung windows settings at and below the carinal bifurcation level demonstrate multiple bilateral angiocentric and peri-bronchovascular lung nodules

Fig. 13.3  Noncontrast chest CT images in lung (left), mediastinal (middle), and liver (right) ­window settings show a solid mass with central areas of necrosis and cavitation in the right suprahilar region with RUL atelectasis

Diffuse Large B-Cell Lymphoma (Fig. 13.3) • Single or multiple solid nodule(s) or mass. • Commonly cavitate. • Thoracic lymphadenopathy may be present.

 astleman Disease (Angiofollicular Lymphnode Hyperplasia/ C Giant Lymphnode Hyperplasia) (Figs. 13.4, 13.5, and 13.6) • Most common sites are thoracic (75%), abdomen/pelvis (10–15%), and neck (10–15%). • Morphological classification into unicentric (common) and multicentric (uncommon) types.

56

13  Lymphohistiocytic Tumors

Fig. 13.4  Hyaline vascular CD in an asymptomatic 34-year-old female. CXR (top panel) shows a right suprahilar mass on CXR (arrows). Non-contrast CT of the chest (bottom panel) shows a unilateral, right suprahilar mass with smooth margins (arrow)

• Histopathologic classification into hyaline vascular type (unicentric), plasma cell type (multicentric), HHV-8-associated type, and multicentric type not otherwise specified. • Hyaline vascular type: A. Commonly unicentric, with localized disease and absence of symptoms, presents in 3rd–4th decade. B. Usually presents as avidly enhancing lymph node or mass (90%). C. Typical arborizing calcification in mass (15%). • Plasma cell type: A. Commonly multicentric with diffuse cervical, thoracic, and abdominal lymphadenopathy, hepatosplenomegaly, anemia, and systemic signs/symptoms, presents in 5th–6th decade. B. Lymph nodes are less enhancing. C. HHV-8-associated disease in HIV patients resembles plasma cell-type disease but with more disseminated systemic involvement.

Erdheim-Chester Disease

a

57

b

Fig. 13.5 (a) (Left) and (b) (right): hyaline vascular-type Castleman disease in two different patients. Contrast-enhanced CT chest images in mediastinal window setting demonstrate smoothly marginated, circumscribed, posterior mediastinal (a) and left infra-hilar (b) masses. The masses enhance slightly greater than chest-wall skeletal muscles. Note central calcification (arrow) in one of the masses

a

b

Fig. 13.6 (a) (Left) and (b) (right): contrast-enhanced CT chest images obtained 3 years apart demonstrate no change in the size and morphology of relatively well-circumscribed, smoothly marginated, right hilar and subcarinal lymphadenopathy for over 3 years. Differences in contrast bolus timing account for differences in attenuation of the aorta and MPA in the two images. Note that in Fig.  13.6b, enhancement/attenuation of the hilar and subcarinal nodes (two arrows) is slightly less than the MPA (three arrows) and greater than the chest-wall musculature (one arrow)

Erdheim-Chester Disease (Fig. 13.7) • Mimics pulmonary edema on imaging • CXR: reticulations+ pleural effusion+ cardiomegaly • Interlobular septal thickening, fissural thickening, GGO, centrilobular nodules, and pleural effusions on HRCT. • Abnormal soft tissues around the cardiovascular or retroperitoneal structures (abdominal aorta, kidneys) without encasement or displacement of IVC and ureters (unlike retroperitoneal fibrosis).

58

13  Lymphohistiocytic Tumors

Fig. 13.7  Erdheim-Chester disease. Non-contrast CT chest in lung window (top panel) and mediastinal window (bottom image) settings show diffuse smooth interlobular septal thickening in both lungs with small pleural effusions

Suggested Reading https://www.jto.org/article/S1556-­0864(15)33571-­1/fulltext. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474050/. https://pubs.rsna.org/doi/full/10.1148/rg.2016160076. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440277/.

Chapter 14

Tumors of the Pleura

Contents  alignant Pleural Mesothelioma (MPM) M Solitary Fibrous Tumor of the Pleura Suggested Reading

 59  61  63

• Most common pleural tumors are metastatic from the thorax or elsewhere (often adenocarcinomas). • Primary pleural tumors are rare – two most common are malignant mesothelioma (almost uniformly fatal) and solitary fibrous tumors of the pleura (mostly curable with resection).

Malignant Pleural Mesothelioma (MPM) (Figs. 14.1 and 14.2) • Strong association with asbestos exposure; arise in parietal pleura after latency of 20–50 years. • Unilateral pleural effusion most common and often the initial imaging presentation. • Nodular (>1  cm), mass-like, circumferential pleural thickening (particularly involvement of the mediastinal pleura), as well as nodular thickening of the inter-­ lobar fissures are suggestive. • Chest-wall, diaphragm, and mediastinal invasion as well as lymphadenopathy can occur.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 S. Ghosh, Handbook of Imaging in Pulmonary Disease, https://doi.org/10.1007/978-3-030-68165-4_14

59

60

14  Tumors of the Pleura

a

b

Fig. 14.1 (a, b) Contrast-enhanced CT chest in two different patients with malignant mesothelioma. (a) (left) shows unilateral moderate-sized left pleural effusion with atelectasis of the adjacent left lung base (arrow). Note subtle volume loss of the left hemithorax. (b) (right) demonstrates a partly loculated right pleural effusion enclosed within nodular, circumferential, right-sided pleural thickening. Note multiple nodular deposits along the mediastinal pleura and pericardium (arrow) Fig. 14.2 Chest radiograph PA view (top image) demonstrates unilateral right pleural effusion with apparent elevation of the right hemidiaphragm. Note median sternotomy wires. Post-contrast CT chest mediastinal window setting (bottom image) shows nodular and mass-like thickening of the right diaphragmatic pleura (arrow) with central necrosis and peripheral enhancement. Diaphragmatic invasion was suspected. The patient had prior resection of thymic mass with pleural metastases. It may be difficult to distinguish MPM (less common) from metastatic disease to pleura (more common) based on imaging. Detailed clinical history and, ultimately, pathology are often required to make the final diagnosis

a

b

Solitary Fibrous Tumor of the Pleura

61

• Volume loss of the affected hemithorax and/or engulfed calcified pleural plaques may help differentiate from more common pleural metastatic disease, which has similar imaging features. • Imaging modality of choice for evaluating MPM is CT. MRI is complementary and depicts chest-wall, diaphragmatic, and mediastinal invasion. FDG-PET identifies nodal and distant metastasis. • Surgical staging considered superior to image-guided staging, when feasible. • Seeding of biopsy track is known to occur after image-guided needle or thoracoscopic biopsy.

 olitary Fibrous Tumor of the Pleura (Figs. 14.3, 14.4, S and 14.5) • Solitary, well-defined, pleural-based mass with smooth or lobulated margins. • Most arise from the visceral pleura in the chest wall or fissures in the lower hemithorax. • Forms obtuse angle with pleural surface (“incomplete border sign” en-face on CXR). • Can be pedunculated and change position with posture/respiration. • Can calcify (25%) and grow to relatively large size with solid and cystic attenuation. • Contrast enhancement (homogeneous if solid, heterogeneous if cystic/myxoid components). • Hypertrophic osteoarthropathy and hypoglycemia may be associated in minority of patients. • No direct link with asbestos exposure. a

b

Fig. 14.3  Solitary fibrous tumor of the pleura (SFTP) in two different patients. (a) Non-contrast CT chest (top left) shows a smoothly marginated, pleural-based mass along the left lateral chest wall. (b) Contrast-enhanced CT chest (top right) shows an enhancing pleural-based mass along the left posterior chest wall. Note obtuse angles between the masses and the chest wall

62

14  Tumors of the Pleura

Fig. 14.4  SFTP arising from the fissural pleural lining. Contrast-enhanced CT of the chest in lung window (left) and mediastinal window (right) settings show a lobulated, homogeneous, well-­ circumscribed right mid-lung nodule, which arises from the right major fissure

Fig. 14.5  Contrast-enhanced CT chest axial (top left) and coronal reformatted (top right) images, contrast-enhaced MRI chest axial image (bottom left), and fused PET-CT axial image (bottom right) reveal a large, pleural-based mass in the right cardiophrenic recess. Note, heterogeneous enhancement on CT and particularly on MRI. MRI is better in depicting internal tissue characteristics, such as nonenhancing areas of cystic or myxoid change in the tumor (arrow) as well as any possible chest-wall or mediastinal invasion (none seen). Some areas within the mass are mildly FDG avid on PET-CT (arrow-head); no FDG-avid thoracic lymphadenopathy is identified

Suggested Reading

Suggested Reading https://pubs.rsna.org/doi/10.1148/rg.241035058. https://www.ajronline.org/doi/10.2214/AJR.11.7626. https://www.ajronline.org/doi/10.2214/ajr.174.1.1740042.

63

Part II

Non-neoplastic Disease

Chapter 15

Congenital Anomalies and Pediatric Lesions

Contents  ongenital Pulmonary Airway Malformation (CPAM) C Broncho-Pulmonary Sequestration Bronchogenic Cyst Swyer-James Syndrome (Swyer-Macleod-James Syndrome or Bret Syndrome) Congenital Lobar Emphysema Suggested Reading

 67  68  69  71  72  73

Congenital Pulmonary Airway Malformation (CPAM) Rare hamartomatous pulmonary malformation or arrested development of bronchi which results in unilocular or multi-loculated cystic lung mass, most of which present in neonates with respiratory distress (formerly called CCAM). Rare malignant transformation described. Five types (Stocker et al.) (Fig. 15.1): (A) Type 0: Very rare, acinar dysplasia/agenesis incompatible with life. (B) Type 1: Most common (65%), large cyst (2–10 cm) with smaller sattelite cysts, good prognosis after surgical removal. May be incidentally detected or due to infection/pneumothorax in adults. (C) Type 2: Less common (10–15%), multiple small cysts (0.5–2 cm), poor prognosis, other associated anomalies. First year of life. (D) Type 3: Less common (5%), innumerable microcysts in an entire lobe or lung ( RLL). Two types (Figs. 15.2, 15.3, and 15.4): (A) Intralobar  – more common, no separate pleural lining, often acquired after infection, variable venous drainage (pulmonary or systemic venous drainage) (B) Extralobar – Usually along or below the left hemi-diaphragm, separate pleural lining, always congenital (may be associated with other anomalies), almost always systemic venous drainage Imaging features • Homogeneous solid mass or mixed solid and cystic mass in the lung base (LLL > RLL). Presence of air lucencies may indicate infection, associated dysplastic lung, or hybrid lesion with CPAM. • CT angiography demonstrates aberrant systemic vascular supply.

Bronchogenic Cyst

69

Fig. 15.3  CT angiogram coronal maximum intensity projection reformatted image (10 mm thick) shows an abnormal vessel that arises from the thoraco-abdominal aorta and supplies the RLL cystic lesion (arrow), confirming intralobar sequestration

Fig. 15.4  Contrast-enhanced CT chest images in mediastinal (left) and lung (right) window settings show a homogeneous solid lesion in the posteromedial left lung base (intralobar sequestration) with eccentric small nodular focus of enhancement (arrow-head) abutting the descending thoracic aorta, which represents the systemic feeding artery. Lucent lung surrounding the lesion (arrows) suggests possible dysplastic lung, hybrid lesion (with CPAM), or air-trapping due to mucoid imapction

Bronchogenic Cyst Commonest foregut duplication cyst, which is usually mediastinal (subcarinal, right paratracheal, hilar), less commonly intra-pulmonary, and very rarely along the pericardium, diaphragm, lower neck, etc. Key imaging features (Figs. 15.5 and 15.6): • Smoothly marginated, well-circumscribed spherical or ovoid mass in a characteristic location.

70

15  Congenital Anomalies and Pediatric Lesions

• May present when infected, by causing mass-effect on adjacent structures or incidentally. • CT/MRI shows homogeneous or heterogeneous fluid within the cyst (calcium oxalate and proteinaceous or hemorrhagic contents) usually without gas (presence of gas suggests infection).

a

c

b

d

Fig. 15.5  Smoothly marginated posterior mediastinal bronchogenic cyst (arrow) abutting the descending thoracic aorta and left hemidiaphragm. The cyst demonstrates higher attenuation than simple fluid on axial (a) and coronal reformatted (b) Contrast-enhanced CT (CECT) chest images, suggestive of proteinaceous content. Axial (c) and coronal (d) Half-Fourier-Acquired Single-shot Turbo spin Echo (HASTE) MRI images demonstrate intermediate signal in the cyst. The cyst is uniformly hyperintense on T2-weigted axial MR Steady-state free precession MRI (SSFP) (e) and Short-TI inversion recovery (STIR) (f) images confirming fluid content. Gadolinium-enhanced axial volumetric interpolated breath-hold examination (VIBE) MR image (g) and prior CECT images (a & b) demonstrate no contrast enhancement

Swyer-James Syndrome (Swyer-Macleod-James Syndrome or Bret…

e

71

f

g

Fig. 15.5 (continued)

Fig. 15.6  Axial and coronal images from a contrast-enhanced CT chest show a smoothly marginated, well-circumscribed, homogeneous, low-attenuation mass in the right paratracheal region without contrast enhancement

 wyer-James Syndrome (Swyer-Macleod-­James Syndrome or S Bret Syndrome) Infection (adenovirus, mycoplasma, etc.) in infancy and early childhood leads to obstructive bronchiolitis (Fig. 15.7). Key imaging features • Unilateral hyperlucent lung without antero-posterior gradient • Affected lung/hemithorax usually smaller (some are similar in size to normal lung) • Smaller central and peripheral pulmonary arteries

72

a

15  Congenital Anomalies and Pediatric Lesions

b

c

d

Fig. 15.7 (a, b) Swyer-James syndrome. Chest CT scout view (left) and lung image (right) demonstrate an asymmetric hyperlucent right lung. (c, d) Swyer-James syndrome. Note difference in quality of chest CT between 5 mm axial thickness “routine” (left) and 1.5 mm “high-resolution (HRCT)” (right) lung images through the lung bases. HRCT image better demonstrates a hyperlucent right lung with decreased number and caliber of peripheral pulmonary arteries

Congenital Lobar Emphysema Progressive lobar overexpansion thought to be due to bronchial “check-valve” mechanism (no alveolar destruction) Results in compression of ipsilateral normal lung and contralateral mediastinal shift Usually present in neonates and infants   RML  >  RUL; rare in LLs) Key imaging features Ipsilateral opaque hemithorax at birth (fetal lung filled with fluid) followed by reticular opacities (fluid absorbed by pulmonary lymphatics) and unilateral lucent hemithorax (hyperinflation) in days/weeks Unilateral lucent hemithorax with atelectasis of ipsilateral normal lung and contralateral mediastinal shift. CT may help to identify associated bronchial, pulmonary arterial, or congenital cardiac abnormalities (Fig. 15.8).

Suggested Reading

73

Fig. 15.8  A 9-year-old girl with congenital lobar emphysema. Chest radiograph and chest CT axial and coronal reformatted images (obtained a few days after chest radiograph (CXR)) show hyper-inflated RUL and RML (thick arrows), compressed/atelectatic RLL (star), and cardio-mediastinal shift to the left (double arrows). A right pneumothorax developed due to alveolar rupture (thin arrow). Note normal left lung attenuation with vascularity, and widely spaced-out pulmonary vascular markings in an abnormal lucent right lung

Suggested Reading https://doi.org/10.1148/radiographics.22.suppl_1.g02oc26s25.

Chapter 16

Chronic Obstructive Pulmonary Disease

Contents Emphysema Bronchial Asthma/Chronic Bronchitis Bronchiectasis Cystic Fibrosis Allergic Bronchopulmonary Aspergillosis Rare Congenital Entities Suggested Reading

 75  78  80  80  81  81  83

Emphysema (Figs. 16.1, 16.2, 16.3, 16.4, and 16.5) Abnormal, permanent enlargement of airspaces distal to the terminal bronchiole, with destruction of alveolar walls and without obvious fibrosis. HRCT with minimum intensity projection highly sensitive. Three morphologic types, each with low attenuation areas in the lungs with imperceptible or no walls.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 S. Ghosh, Handbook of Imaging in Pulmonary Disease, https://doi.org/10.1007/978-3-030-68165-4_16

75

76

16  Chronic Obstructive Pulmonary Disease

Fig. 16.1  CT chest axial lung window images in mild, upper lobe predominant emphysema (left) and severe, diffuse emphysema (right). In the left image, a well-defined RUL lucency with “peripheral dot” suggestive of centrilobular artery (arrow) is surrounded by normal lung architecture. The right image shows diffuse “holes” with no walls, surrounding small vessels and minimal preserved peripheral normal lung. Note “saber-sheath” morphology of the trachea (star), often associated with severe COPD

Fig. 16.2  HRCT axial (left) and coronal reformatted (right) images demonstrate multiple bullae (>1 cm) and small blebs in bilateral lung apices. Note, tiny pneumothorax along the left major fissure (arrow)

Fig. 16.3  Lung CT axial image (left) demonstrates panlobular emphysema. There is complete replacement of normal lung architecture in both lower lobes with lucent lung parenchyma. Coronal-reformatted minimum intensity projection image (right) clearly reveals lower-lobe predominance of panlobular emphysema with subtle emphysematous changes detected in the bilateral upper lobes

Emphysema

a

77

b

c

Fig. 16.4  Lung volume reduction (LVR) for severe upper lobe predominant bullous emphysema. (a) (Left): Endobronchial LVR with bronchial valves in the native LUL (arrows) in a patient with unilateral right lung transplant. (b, c) (Center, right): Surgical lung volume reduction (symmetrical bilateral upper lobe surgical scars highlighted by arrows) with removal of 20–35% of the bilateral upper lobes (arrows)

Fig. 16.5  Spiculated, peripheral RUL subsolid nodule (NSCLC) associated with emphysematous changes in a 50-year-old male with 60 pack-year smoking history

(A) Centrilobular

Most common, strongly associated with smoking. Upper lung zone predominant. Multiple, round, lucencies (destroyed lung, dilated respiratory bronchiole) at the center of the secondary pulmonary lobule, surrounding a preserved centrilobular artery, which often presents as a “dot”; without any walls. Can have normal peripheral and basilar lung parenchyma (in mild to moderate cases).

(B) Paraseptal

Also associated with smoking, may be associated with the other two types. Usually peripheral, apical, or dorsal. Sub-pleural and/or peri-fissural blebs or bullae (>10 mm) due to destruction of the peripheral portions of the secondary pulmonary lobule; can cause pneumothorax in young adults. Adjacent centrilobular lung often normal.

78

(C) Panlobular

16  Chronic Obstructive Pulmonary Disease

Associated with alpha 1 antitrypsin deficiency (rarely other causes such as familial, injection abuse of methylphenidate, hypocomplementemic urticarial vasculitis, smoking, etc.). Usually basilar predominant (or diffuse, but most pronounced in lower lobes). Uniform low attenuation of the entire secondary pulmonary lobule (destruction of the entire lobule distal to the respiratory bronchiole), without normal lung.

Bronchial Asthma/Chronic Bronchitis Bronchial Asthma  Chronic inflammation of medium-sized and small airways leads to bronchial wall thickening and luminal effacement, without significant bronchiectasis (bronchoarterial [BA] ratio 1.5 times larger than the accompanying pulmonary artery (yellow arrows) in cross-section (“signet ring” appearance). Note, thick-walled, cystic bronchiectasis (star) in the right lung base (right)

a

b

Fig. 16.10 (a) (Left): Cystic fibrosis. Thick-walled, cystic bronchiectasis in bilateral upper lobes. Note intracavitary debris (star) in a large right upper lobe cavity (mycetoma). (b) (Right): Note fat replacement of the pancreas (arrow)

Allergic Bronchopulmonary Aspergillosis (Figs. 16.11 and 16.12) Almost exclusively in asthmatics and cystic fibrosis patients with increased reactivity to aspergillus antigen, peripheral eosinophilia, elevated IgE levels, and key imaging findings: • Central bronchiectasis, varicose or cystic, usually upper lobe predominant. • Mucoid impaction with high attenuation (20–30%) of desiccated mucous (“gloved finger” sign). • Surrounding centrilobular (“tree-in-bud”) nodules and fleeting opacities may be present.

Rare Congenital Entities (Figs. 16.13 and 16.14)

82

16  Chronic Obstructive Pulmonary Disease

Fig. 16.11  History of worsening “asthma” symptoms of increasing cough, wheezing, and expectoration. Contrast-enhanced CT chest sagittal reformatted images in lung (left) and mediastinal (right) window settings show dilated bronchi with mucoid impaction presenting as a branching tubular mass in the left lower lobe (“finger-in glove” sign)

Fig. 16.12  Patient with allergic symptoms. Non-contrast chest CT images demonstrate a nodular density (arrow) in the lingula (left image) with intrinsic high attenuation on mediastinal window settings suggestive of allergic mucin. Lung window images in the same patient reveal varicose bronchiectasis in the left upper lobe (center image) and a branching Y-shaped nodule suggestive of mucoid impaction (arrow) in the right upper lobe (right image). Imaging findings are suggestive of ABPA

Suggested Reading

a

83

b

Fig. 16.13 (a) (Left) & (b) (Right): CXR PA view and HRCT chest in Mounier-Kuhn syndrome with marked tracheobronchomegaly and central bronchiectasis. In contrast, the 4th - 6th order bronchi are dilated in Williams-Campbell syndrome though the trachea and major bronchi are unaffected Fig. 16.14  Primary ciliary dyskinesia can result in situs inversus, chronic sinusitis, and bronchiectasis (Kartagener syndrome). Note rightsided cardiac apex, right stomach bubble, and extensive “tram-tracking” suggestive of bronchiectasis at the lung bases.

Suggested Reading https://pubs.rsna.org/doi/10.1148/radiol.2015141579.

Chapter 17

Small Airway Disease

Contents Respiratory Bronchiolitis Follicular Bronchiolitis Obliterative Bronchiolitis/Bronchiolitis Obliterans Syndrom Suggested Reading

 85  85  86  88

Respiratory Bronchiolitis (Fig. 17.1) • Ill-defined centrilobular nodules or GGO (3–10 mm). • Upper lobe predominant or may be diffuse (smoking-related spectrum of respiratory bronchiolitis-desquamative interstitial pneumonia (RB-DIP)). • Seen in smokers, often associated with centrilobular emphysema, bronchial wall thickening. • RB-associated interstitial lung disease (ILD) (when patient is symptomatic), is similar to RB on imaging parameters. • Imaging differential: hypersensitivity pneumonitis (usually not seen in smokers, associated with lobular air-trapping) and infectious bronchiolitis (well defined, “tree in bud”).

Follicular Bronchiolitis (Fig. 17.2) • Ill-defined centrilobular or peribronchial lung nodules (usually 25% lung volume) is a more sensitive, earlier abnormality. • Associated bronchial dilatation and bronchial wall thickening may develop at a later stage. • Various causes (infection, inhalation, connective tissue disease, post-transplant, drug reaction). • Usually irreversible; imaging differentials include asthma and reactive airways (both reversible).

88

17  Small Airway Disease

Fig. 17.5  Bilateral bronchiectasis, bronchial wall thickening, and hyperlucent peripheral lung parenchyma alternating with areas of normal/mild increased attenuation surrounding the bronchi (subtle mosaic attenuation) in a patient with rheumatoid arthritis

Suggested Reading https://pubmed.ncbi.nlm.nih.gov/19188782/.

Chapter 18

Acute Lung Injury

Contents Diffuse Alveolar Damage Organizing Pneumonia Acute Fibrinous and Organizing Pneumonia (AFOP) and Acute Eosinophilic Pneumonia (AEP) Suggested Reading

 89  90  92  93

Diffuse Alveolar Damage Acute onset bilateral lung infiltrates on CXR without clinical evidence of left atrial (LA) hypertension (or pulmonary capillary wedge pressure (PCWP)  25%, hyaline membranes, intralveolar fibrin)

Suggested Reading

93

Fig. 18.7  OP in amiodarone toxicity with high attenuation of peripheral RUL lung consolidation and increased attenuation of the hepatic parenchyma

• AFOP – similar to OP on imaging parameters with peripheral and peribronchial foci of GGO and consolidations, with extent greater than OP and with basilar predominance, simulating AIP/DAD. • AEP – Imaging shows extensive airspace opacities (GGO/consolidations), with interlobular septal thickening, bronchovascular thickening, and small pleural effusions (d/d pulmonary edema and AIP).

Suggested Reading https://pubmed.ncbi.nlm.nih.gov/27719979/.

Chapter 19

Idiopathic Interstitial Pneumonias

Contents  evised ATS/ERS Classification of IIP: Multidisciplinary Approach R Usual Interstitial Pneumonia (UIP)/Idiopathic Pulmonary Fibrosis (IPF) High-Resolution Computed Tomography Criteria for UIP Pattern Nonspecific Interstitial Pneumonia (NSIP) Respiratory Bronchiolitis – Interstitial Lung Disease (RBILD) Desquamative Interstitial Pneumonia (DIP) Lymphoid Interstitial Pneumonia (LIP) Pleuroparenchymal Fibroelastosis Interstitial Pneumonia with Autoimmune Features (IPAF) Suggested Reading

 96  96  97  99  100  101  102  103  104

Heterogeneous group of diseases of unknown etiology which cause lung fibrosis (interstitial lung disease). In 2002, the ATS/ERS classification recognized seven clinico-pathologic entities. The 2013 updated version emphasizes the need for multidisciplinary team approach comprising clinician, radiologist, and pathologist.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 S. Ghosh, Handbook of Imaging in Pulmonary Disease, https://doi.org/10.1007/978-3-030-68165-4_19

95

96

19  Idiopathic Interstitial Pneumonias

 evised ATS/ERS Classification of IIP: R Multidisciplinary Approach Major idiopathic interstitial pneumonias Idiopathic pulmonary fibrosis Idiopathic nonspecific interstitial pneumonia Respiratory bronchiolitis–interstitial lung disease Desquamative interstitial pneumonia Cryptogenic organizing pneumonia Acute interstitial pneumonia Rare idiopathic interstitial pneumonias Idiopathic lymphoid interstitial pneumonia Idiopathic pleuroparenchymal fibroelastosis Unclassifiable idiopathic interstitial pneumonias

 sual Interstitial Pneumonia (UIP)/Idiopathic Pulmonary U Fibrosis (IPF) • UIP is the name of a specific histopathological and imaging pattern associated with IPF. • UIP imaging pattern may be idiopathic (most common, associated with IPF), or associated with several diseases (collagen vascular disease (CVD), drugs, HP, asbestosis, familial, Hermansky-­Pudlak syndrome). • IPF is a chronic progressive fibrotic lung disease occurring mainly in older adults. • IPF is the commonest IIP and carries the worst prognosis of all the IIP. Key Imaging Points • Definitive diagnosis of UIP on HRCT is “honeycombing” (bilateral subpleural and basilar reticulations in the absence of other inconsistent signs suggest probable UIP). • “Honeycomb” cysts are usually 2–10 mm, with thick walls, and clustered in the subpleural regions. • Honeycombing in characteristic distribution has positive predictive value of 90–100% for histologic pattern of UIP. ATS/ERS/JRS/ALAT 2018 official guidelines highlight the key role of HRCT in distinguishing four distinct patterns of “UIP,” “probable UIP,” and “indeterminate for UIP” or an “alternative diagnosis” (­https://www.thoracic.org/statements/ resources/interstitial-­lung-­disease/diagnosis-­IPF-­full-­length.pdf).

Usual Interstitial Pneumonia (UIP)/Idiopathic Pulmonary Fibrosis (IPF)

97

 igh-Resolution Computed Tomography Criteria for UIP H Pattern (Figs. 19.1, 19.2, 19.3, and 19.4) UIP Subpleural and basal predominance

Honeycombing with or without peripheral traction bronchiectasis

Probable UIP Subpleural and basal predominance

Indeterminate for UIP Alternate diagnosis Subpleural and basal CT features: predominance  Cysts  Marked mosaic attenuation  Predominant GGO  Profuse micronodules  Centrilobular nodules  Nodules  Consolidation Predominant Reticular pattern Subtle reticulation with or without mild distribution: with or  Peribronchovascular without peripheral ground-glass or  Perilymphatic architectural traction  Upper or mid-lung distortion bronchiectasis Other: May have mild CT features or ground glass distribution does not  Pleural plaques (consider asbestosis) suggest alternate  Dilated esophagus diagnosis (consider CTD)  Distal clavicular erosions (consider RA)  Extensive lymph node enlargement (consider other etiologies)  Pleural effusions, pleural thickening (consider CTD/drugs)

98

a

19  Idiopathic Interstitial Pneumonias

b

Fig. 19.1 (a) (Left panel): UIP pattern with classic, multi-layered, honeycomb cysts in the subpleural and basilar portions of both lungs with traction bronchiectasis. (b) (Right panel): probable UIP pattern with subpleural and basilar predominant reticular opacities with traction bronchiectasis/bronchiolectasis and minimal or no honeycombing. Note, no features to suggest alternate diagnoses in either set of figures Fig. 19.2  Left: UIP with lung carcinoma (10% increased risk). Note spiculated RUL solid nodule (star) and basilar mild honeycombing (arrow)

Nonspecific Interstitial Pneumonia (NSIP)

99

Fig. 19.3 Center: Combined pulmonary fibrosis and emphysema. Emphysematous changes are upper lobe predominant; reticular opacities and honeycombing are along the subpleural regions (and bases)

Fig. 19.4  Right: Status post-unilateral left lung transplant for UIP. Basilar predominant coarse reticular opacities with traction bronchiectasis in the native right lung (star). Note two left chest tubes (arrows)

Nonspecific Interstitial Pneumonia (NSIP) (Fig. 19.5) • Form of IIP seen in younger individuals (40–50  years), with better prognosis than UIP. • May be idiopathic or associated with diseases such as connective tissue disease and drug toxicity. • Two distinct subtypes on histopathology based on variable amounts of interstitial inflammation and fibrosis (may or may not be distinguished on imaging). Cellular type: Characterized by interstitial inflammation on pathology (mainly GGO on HRCT). Fibrotic type: Characterized by fibrosis on pathology (reticular opacities, traction bronchiectasis on CT).

100

a

19  Idiopathic Interstitial Pneumonias

b

Fig. 19.5 (a) (Left panel): Lower-lobe predominant, patchy, and confluent GGO in cellular-type NSIP. (b) (Right panel): Lower-lobe predominant, peribronchial reticular opacities, GGO, and traction bronchiectasis in fibrotic NSIP. Note, subpleural sparing is evident in both patterns of NSIP

Key Imaging Features • Bilateral, symmetrical, lower-lobe predominant, ground-glass opacities (most common pattern). • Lower-lobe, predominant, irregular, reticular opacities with traction bronchiectasis (75% cases). • Subpleural sparing, considered characteristic, may distinguish NSIP from UIP. • Peribronchial consolidation if present may represent OP pattern and suggest possible CVD. • Honeycombing is minimal or absent initially but may develop with fibrotic disease progression.

 espiratory Bronchiolitis – Interstitial Lung Disease (RBILD) R Desquamative Interstitial Pneumonia (DIP) (Figs. 19.6 and 19.7) Spectrum of smoking-related IIP characterized histologically by extent of macrophage accumulation. • RB-ILD: Ill-defined centrilobular nodules and GGO (diffuse or upper-lobe predominant). • DIP: Bilateral and symmetrical GGO (diffuse or peripheral and basilar predominant).

Lymphoid Interstitial Pneumonia (LIP)

a

101

b

Fig. 19.6 (a) (Left): RB with ill-defined centrilobular ground-glass nodules (arrows) in both upper lobes. (b) (Right): DIP with diffuse, mild GGO mostly in the peripheral basilar portions of both lungs

Fig. 19.7  Imaging spectrum of smoking-related ILD with RB-ILD and/or DIP (left, center) and PLCH (right). GGO and mild reticular changes (left, center) to bizarre-shaped thin-walled cysts and increasing architectural distortion (right) reflect increasing reticulation and fibrosis, suggesting these entities represent a continuum of progressive fibrosis, all related to smoking

RB and RB-ILD similar on HRCT  – distinguished based on the presence or absence of symptoms (RB = asymptomatic; RB-ILD = + symptoms). DIP has somewhat distinct imaging features (misnomer, no desquamation of cells as name suggests). Pulmonary Langerhans cell histiocytosis (PLCH), also falls in the smokingrelated ILD category (discussed later). Cryptogenic Organizing Pneumonia: Please see Chap. 18 Acute Interstitial Pneumonia: Please see Chap. 18

Lymphoid Interstitial Pneumonia (LIP) (Fig. 19.8) Rare IIP – also part of spectrum of benign pulmonary lymphoproliferative disorders with extensive lymphoid infiltration of the interstitium resulting in thickening of the septae. Strong female predominance in their fifth decade and associated with autoimmune diseases like Sjogren’s syndrome (also autoimmune thyroid disease, SLE,

102

19  Idiopathic Interstitial Pneumonias

Fig. 19.8 Axial and coronal HRCT lung images in Lymphoid Interstitial Pneumonia (LIP). Combination of thin-walled perivascular cysts and ground-glass opacities with lower lobe predominance

rheumatoid arthritis, and Castleman disease). Lymphoid Interstitial Pneumonia (LIP) in children can be a sign of immunodeficiency like AIDS. Key Imaging Features • Distribution – usually bilateral diffuse, or lower-lobe predominant • Interstitial inflammation with bronchovascular and interlobular septal thickening • Ground-glass opacities and centrilobular nodules • Perivascular cysts (80%)  – thin walled, 5 mm, coalescing) Fibrosis

Airspace disease

Fibrotic changes – reticular opacities, architectural distortion, traction bronchiectasis, volume loss Uncommon

Fungal Uncommon colonization

Atypical features Unilateral, anterior, and posterior mediastinal

Reversibility

Unilateral; lower lobe disease Miliary spread

Solitary nodule, mass-like opacity, conglomerate masses, “sarcoid galaxy,” “alveolar sarcoid” Fibrocystic changes – cysts, bullae, emphysema, honeycombing in upper and mid lung zones Consolidations, ground-­ glass opacities, linear opacities (interlobular septal thickening, intralobular lines), “crazy-paving” pattern Mycetoma/aspergilloma (10% patients with end-stage sarcoid and preexisting cavity)

Reversible

Irreversible

Reversible

Irreversible

112

20  Other Interstitial Lung Diseases

Thoracic involvement Typical features Airway Airway Uncommon Involvement

Pleura

Pleural Disease

Uncommon

Atypical features Mosaic attenuation, tracheobronchial wall thickening or stenosis, atelectasis Effusion, thickening, plaques, calcification, hemothorax, chylothorax, pneumothorax

Reversibility Reversibility

Pulmonary Langerhans Cell Histiocytosis (PLCH) Smoking related interstitial lung disease of young adults (20–40  years, M & F), mostly Caucasians.

Relevant Imaging-Pathology Correlation (Figs. 20.10 and 20.11) Langerhans and other inflammatory cells accumulate in the small airways leading to formation of small nodular inflammatory lesions (granulomas). Progression of inflammation results in fibrotic changes. Cystic changes are thought to be due to dilatation of bronchiolar walls from inflammation, coalescence of adjacent affected airways, and paracicatricial enlargement of the airspaces. HRCT features can be pathognomonic (in appropriate clinical settings) and reflect underlying pathology. • Combination of nodules (early) and cysts (later) in the upper and mid lung zones. • Nodules – centrilobular/peribronchial, irregular margins can cavitate or undergo cystic change. • Cysts – initially thick-walled 1 cm with irregular margins ± calcifications, in upper lung zones in the cranio-caudal plane, and middle or peripheral lung parenchyma in the axial plane. • Over time, it tends to migrate toward the hilum causing severe architectural distortion. • Hilar migration of masses results in pericicatricial emphysema between the mass and the pleura. –– Hilar and mediastinal lymph-node calcifications (egg-shell type) may precede lung nodules. –– Increased incidence of pulmonary tuberculosis (25%; central necrosis) and carcinoma (growth).

 ole of MRI and PET in Distinguishing PMF from Cancer R (Figs. 21.1, 21.2, and 21.3) T2W MRI has a role in distinguishing PMF from cancer; contrast enhancement and PET can be confusing. PMF is isointense on T1, hypointense on T2-weighted images (to muscles); carcinoma is hyper-intense on T2. PMF demonstrates peripheral gadolinium enhancement and may be FDG avid on PET (similar to cancer).

Coal-Workers Pneumoconiosis (CWP) (Figs. 21.4 and 21.5) Exposure to washed coal, often indistinguishable from silicosis on imaging, but with distinct pathology. • Simple – nodules (1–5 mm) centrilobular or perilymphatic (described as more granular and ill-defined than silicosis, although most often indistinguishable), ± calcifications (30%). • Complicated – progressive massive fibrosis (similar to silicosis). • Thoracic lymph-node enlargement may be seen although egg-shell-type calcifications very rare.

Coal-Workers Pneumoconiosis (CWP)

119

a

b

Fig. 21.1 (a) Unenhanced CT chest in a 59 y/M with silicosis. Axial and coronal reformatted images in lung window settings (top panel) demonstrate large conglomerate masses with multiple tiny dense perilymphatic satellite nodules in the posterior upper lobes. (b) Axial images in mediastinal window settings (bottom panel) show mediastinal and hilar lymphadenopathy with mild calcifications

Fig. 21.2  HRCT chest images in lung window setting (top left, bottom left) and PA chest radiograph (right) show large perihilar lung masses consistent with PMF with development of pericicatricial emphysematous changes between the masses and the adjacent chest wall pleura

120

21 Pneumoconiosis

Fig. 21.3  PA chest radiograph (left) and non-contrast CT chest with mediastinal (top right) and lung (bottom right) window images, in a patient with unilateral right lung transplant for silicosis and PMF. Note, irregularly marginated mass with intrinsic high attenuation in the dorsal LUL suggestive of PMF, emphysematous changes in the surrounding native left lung and mediastinal lymph nodes with egg-shell calcifications

Fig. 21.4  Non-contrast chest CT images in lung window settings in two different patients with CWP. Innumerable bilateral tiny centrilobular nodules with upper lobe predominance in a 77 y/M coal-miner is consistent with simple CWP (left). Complicated CWP with large, irregular fibrotic masses in both upper lobes in a 62y/M is consistent with progressive massive fibrosis (right)

Asbestos-Related Reactions (Figs. 21.6 and 21.7) Asbestosis (interstitial fibrosis) is not the same as asbestos-related pleural disease. Asbestos-related pleural disease includes pleural effusion, pleural plaque, diffuse pleural thickening, and rounded atelectasis. Asbestosis refers to diffuse interstitial fibrosis from inhaled asbestos fibers (construction, mining, ship/automotive industries) which develops at least 10–15 years after exposure and is dose related. Pleuropulmonary malignancy due to asbestos exposure develops at least 20 years after exposure.

Asbestos-Related Reactions

121

Fig. 21.5  Non-contrast CT chest in lung (top left) and mediastinal (bottom left) window settings as well as PA chest radiograph (right) in a patient with coal-workers pneumoconiosis complicated by PMF. Note, irregularly marginated large masses with intrinsic high attenuation suggestive of PMF in the dorsal aspect of bilateral upper lobes with emphysematous changes in the rest of the lungs (right)

Key Imaging Features on HRCT • Early – dorsal lung parenchyma affected with fine reticulation, pleura-based tiny nodules, subpleural curvilinear lines, increased attenuation, etc., which may mimic dependent atelectasis. Supine and prone HRCT images may thus be helpful in distinguishing early fibrosis and atelectasis. • Advanced – peripheral and posterior lung honeycomb-like changes, coarse reticulations, traction bronchiectasis, parenchymal bands, etc., which mimic idiopathic pulmonary fibrosis (UIP pattern). Presence of parietal pleural thickening with fibrosis on HRCT can differentiate asbestosis from IPF.

Berylliosis (Fig. 21.8) Exposure to beryllium dust/fumes (ceramics, aerospace, nuclear weapon industries) may lead to beryllium sensitization and immune-mediated chronic granulomatous disease in genetically predisposed people. Blood or BAL  +  beryllium lymphocyte transformation or proliferation test (BeLPT) aids in early diagnosis.

122

21 Pneumoconiosis

Fig. 21.6  A 69y/M with past history of occupational exposure to asbestos >30 years ago presented with progressive shortness of breath. Supine HRCT image (top left) shows reticular and groundglass changes in the lung bases which can mimic gravity-dependent atelectasis. Prone image (bottom left) confirms subpleural reticulations associated with mild traction bronchiectasis in the dorsal lower lungs. Apical-to-­basilar gradient is demonstrated on the coronal reformatted image (right). CT findings are similar to UIP/IPF

Fig. 21.7  CXR PA view and contrast-enhanced chest CT demonstrate large right pleural effusion and calcified pleural plaques (arrows) consistent with asbestos-related pleural disease. This should not be confused with asbestosis (lung fibrosis)

• Key imaging features mimic sarcoidosis. • Small peribronchovascular or interlobular septal nodules in upper and mid-lung zones (50–60%). • Interlobular septal and bronchial wall thickening (40–50%), and GGO (30%), also common. • Hilar or mediastinal lymphadenopathy (40%) seen although moderate compared to sarcoidosis. • Honeycombing and conglomerate masses are rare although may occur in advanced cases.

Talcosis

123

Fig. 21.8  CT chest images with mediastinal (left) and lung (right) window settings in a 60y/M with berylliosis demonstrate changes similar to sarcoidosis with calcified, moderately enlarged bilateral hilar nodes and advanced fibro-cystic changes in the upper lobe perihilar regions

 ard-Metal Pneumoconiosis and Hard-Metal Lung Disease H (Figs. 21.9 and 21.10) Criteria needed to establish diagnosis include occupational exposure history (cobalt and tungsten carbide or a mixture), clinical features and imaging signs suggestive of interstitial lung disease, characteristic histology, and presence of metal in lung tissue on histopathology. Hard metal lung disease can progress through three stages: • Bronchitis or obliterative bronchiolitis (earliest stage) • Subacute fibrosing alveolitis (characteristic giant cell interstitial pneumonia on pathology) • Interstitial fibrosis with honeycombing (advanced, can be rapidly progressive) HRCT features are similar to other idiopathic interstitial pneumonias and include GGO ± consolidations, subpleural cysts, reticulations, traction bronchiectasis, architectural distortion, and honeycombing (late).

Talcosis (Figs. 21.11 and 21.12) Talc is hydrated magnesium silicate, used in several industries; may be associated with other particles. Pulmonary talcosis can be the result of: (a) Inhalation  – pure talc, or with silica (talcosilicosis) or asbestos (talcoasbestosis). (b) Injection – recreational intravenous abuse of drugs (which contain talc) meant for oral use.

124

21 Pneumoconiosis

Fig. 21.9  Hard metal lung disease in a young adult male. Initial CT chest (top panel, patient age 23y) shows ill-defined GGO in the upper (top left) and mid-lung (top middle) zones with early reticular changes in the lung bases (top right). Follow-up CT after 7 years (bottom panel, patient age 30y) shows progressive fibrotic changes in bilateral upper (bottom left), mid (bottom middle), and lower (bottom right) lung zones with coarse reticulations, new traction bronchiectasis, and subpleural cystic changes. Note, new nodular consolidation (arrow) in the posterior RUL (biopsy-­ proven granuloma)

Fig. 21.10  Hard metal pneumoconiosis in a 42-year-old male. Initial CT chest images (top panel) reveal asymmetric reticular opacities with traction bronchiectasis in the right upper and mid-lung zones with GGO and mild reticular changes in the left lung. Patient subsequently underwent unilateral right lung transplant as seen on follow-up CT obtained 3 years later without disease progression in the left lung

Talcosis

125

Key CT Features • Small nodules, centrilobular, and subpleural (inhaled) or diffuse (injected) • Perihilar conglomerate masses with intrinsic high attenuation (advanced stage) and GGOs • Emphysema (mostly basilar), most commonly seen with intravenous abuse of methylphenidate

Fig. 21.11  Chest radiograph PA view (left) and non-contrast CT chest in lung window (middle column) and mediastinal window (right column) settings in a 30 y/M demonstrate innumerable small nodules throughout both lungs with hilar and mediastinal lymphadenopathy. Note intrinsic high attenuation of the lung nodules and thoracic lymph nodes. Abnormalities are consistent with inhalational talcosis

Fig. 21.12  HRCT images through the upper (left), mid (middle), and lower (right) lung zones in a 32-year-old intravenous drug abuser show diffuse bilateral small nodules of injection talc granulomatosis

126

Suggested Reading https://pubs.rsna.org/doi/10.1148/rg.261055070.

21 Pneumoconiosis

Chapter 22

Drug Reactions and Therapy Effects

Contents  ulmonary Toxicity from Therapeutic Use P Amiodarone Toxicity Lung Injury from Recreational Drug Abuse Crack Lung Heroin-Induced Acute Pulmonary Edema Intravascular Talcosis Injection Methylphenidate (Ritalin)  Suggested Reading

 128  129  130  130  130  131  131  132

• Pulmonary toxicity from therapeutic drugs – common imaging patterns of lung injury secondary to therapeutic agents and specifically amiodarone, a drug with characteristic imaging signs of toxicity, are described. • Lung injury due to recreational drug abuse  – imaging patterns resulting from inhalational (crack cocaine) and intravenous (heroin, talc, Ritalin) recreational drug abuse are discussed

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 S. Ghosh, Handbook of Imaging in Pulmonary Disease, https://doi.org/10.1007/978-3-030-68165-4_22

127

128

22  Drug Reactions and Therapy Effects

Pulmonary Toxicity from Therapeutic Use (Fig. 22.1) • Numerous drugs have the potential to cause pulmonary toxicity. These can be broadly classified into cytotoxic (example, cancer chemotherapeutic agents) and non-cytotoxic (for example, amiodarone, nitrofurantoin, sulfasalazine). • Imaging patterns of drug toxicity depend on pathologic mechanism of lung injury. The most common patterns of injury with offending drugs are listed in the table below. • Similar imaging patterns may be caused by several other insults or injury to the lungs and are not specific to drug (for instance, NSIP may be due to drugs or collagen vascular disease). • Medication history, temporal correlation of lung abnormalities with usage of incriminating drugs, pathology findings and improvement after discontinuing of offending agents may help in making a diagnosis. Common imaging patterns of lung injury are highlighted in the table. Mechanism of injury Drugs Diffuse alveolar damage Bleomycin, busulfan, carmustine, cyclophosphamide, mitomycin, melphalan, gold salts Non-specific interstitial Amiodarone, methotrexate, carmustine, chlorambucil pneumonia Organizing pneumonia Bleomycin, gold salts, methotrexate, amiodarone, nitrofurantoin, penicillamine, sulfasalazine, cyclophosphamide Eosinophilic pneumonia Penicillamine, sulfasalazine, nitrofurantoin, nonsteroidal anti-­ inflammatory drugs, para-aminosalicylic acid Pulmonary hemorrhage Anticoagulants, amphotericin B, cytarabine (ara-C), penicillamine, cyclophosphamide

Fig. 22.1  HRCT lung images of patterns of lung injury. Diffuse alveolar damage (Bleomycin, top left), NSIP (top right), eosinophilic pneumonia (bottom left), organizing pneumonia (bottom center), and pulmonary hemorrhage (bottom right)

Amiodarone Toxicity

129

Amiodarone Toxicity (Fig. 22.2) Amiodarone used for refractory ventricular tachyarrhythmia is associated with lung toxicity in 5–10%. Risk of toxicity increases with daily maintenance dose >400  mg and in the elderly, and not on duration. Toxicity begins within months of usage and can resolve after discontinuing the drug (good prognosis). Key Imaging Signs • NSIP is the most common imaging pattern and may be associated with pleural reaction and OP. • Development of peripheral pulmonary opacities with intrinsic high attenuation (due to accumulation of iodine containing amiodarone in type II pneumocytes) is distinctive. • High attenuations of liver ± spleen also seen, and together with lung changes are characteristic.

Fig. 22.2  Unenhanced CT images of a 56-year-old man with right ventricular dysplasia on long-­ term maintenance of amiodarone therapy. Lung window image through the lower chest (top left) shows right pleural effusion and consolidative opacity in the posterior left lung base. Mediastinal window image through the lower chest (bottom left) and upper abdomen (top right) reveals high attenuation within the left basilar pulmonary opacity, abnormal high attenuation of the hepatic parenchyma, and ascites. Mean CT attenuation values for the lung opacity and liver measure 81.5 and 94.2 Hounsfield units, respectively (bottom right). Constellation of imaging findings is distinctive for amiodarone toxicity

130

22  Drug Reactions and Therapy Effects

Fig. 22.3  Young adult without significant past medical history presented with sudden shortness of breath. Further questioning revealed episode of crack-cocaine inhalation. HRCT images in lung window setting demonstrate bilateral upper and mid-zone predominant geographic areas of ground-glass opacities interspersed with mild smooth interlobular septal thickening. Subsequent chest radiographs (not shown) demonstrated bilateral diffuse alveolar and interstitial opacities with small pleural effusions. Imaging findings in the given clinical setting were compatible with crack lung

Lung Injury from Recreational Drug Abuse Several recreational drugs of abuse may cause lung injury. Crack lung and heroininduced edema are described in this section. A few specific patterns of lung injury caused by injection talcosis and injection Ritalin are also discussed.

Crack Lung (Fig. 22.3) Acute respiratory syndrome caused by inhalation of freebase cocaine. Lung injury to diffuse alveolar damage, pulmonary hemorrhage, and interstitial eosinophilic infiltration. Key Imaging Signs Sudden diffuse alveolar and interstitial opacities ± small pleural effusions Additional direct lung toxicity due to cocaine (and heroin abuse) include cardiogenic and non-cardiogenic (permeability type) pulmonary edema (indirect injury to lungs can be from aspiration ± infection)

Heroin-Induced Acute Pulmonary Edema (Fig. 22.4) Acute non-cardiogenic pulmonary edema precipitated  25 mm Hg at rest or > 35 mm Hg with exercise; high pulmonary vascular resistance. Updated WHO classification of Pulmonary Hypertension (Figs. 24.1 and 24.2) Group 1 Pulmonary arterial hypertension 1′ Pulmonary veno-occlusive disease (PVOD), pulmonary capillary hemangiomatosis (PCH) Group 2 Pulmonary hypertension due to left heart disease Group 3 Pulmonary hypertension due to lung diseases and/or hypoxia Group 4 Chronic thromboembolic pulmonary hypertension Group 5 Pulmonary hypertension with unclear multifactorial mechanisms

Imaging Features Common to all Groups of Pulmonary Hypertension • Dilated main and central pulmonary arteries (MPA >= 30 mm and larger than the thoracic aorta) • Abrupt tapering tortuous peripheral pulmonary vessels • RV hypertrophy (>4  mm) and enlargement (RV-to-LV diameter  >  1:1), septal bowing toward LV © The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 S. Ghosh, Handbook of Imaging in Pulmonary Disease, https://doi.org/10.1007/978-3-030-68165-4_24

139

140

24  Pulmonary Hypertension

• Tricuspid regurgitation, dilated RA, IVC and hepatic veins, ascites, pericardial effusion • Mosaic perfusion pattern in the lungs (alternating normal and lucent lung parenchyma)

Fig. 24.1  A 23-year-old female with primary pulmonary hypertension. PA chest radiograph shows dilated main and central pulmonary arteries (arrows) with a normal-sized heart. Contrast-enhanced CT chest images (right panel) in mediastinal window setting (lower) show markedly dilated 4 cm MPA > ascending aorta (bottom left) and enlarged right heart chambers (RV > LV) with straightening of the interventricular septum (bottom right). Lung window images (top left and right) show mosaic perfusion abnormality with lobular and perihilar distribution in the upper and lower lobes, respectively

Fig. 24.2  A 45-year-old male with severe pulmonary hypertension secondary to shunt pathology with Eisenmenger’s syndrome. PA chest radiograph shows cardiomegaly with dilated main and central pulmonary arteries (arrows). Contrast-enhanced CT chest images (right panel) in mediastinal window setting (upper) show dilated main and central PA (MPA  >  ascending aorta). Bone window images (bottom right) highlight atherosclerosis with mural calcifications in the MPA, RPA, and LPA (arrows)

Chronic Thromboembolic Pulmonary Hypertension

141

 hronic Thromboembolic Pulmonary Hypertension C (Figs. 24.3 and 24.4) • VQ scan good screening test (high sensitivity, low specificity) – 1 or more mismatched defect(s). • Catheter pulmonary angiography (less used due to CTPA)  – “pouch defect”; other abnormalities. • CT pulmonary angiogram is the modality of choice to select proximal and accessible disease for thromboendarterectomy. Key CT Imaging Features 1. Direct visualization of occluded vessels, eccentric mural thrombi, thickening +/− calcifications of the vessel wall, irregularity of the intimal lining adjacent to luminal contrast column, and intraluminal bands/webs. 2. Combination of marked variation in size of small vessels and mosaic lung attenuation characterizes CTEPH.  Segmental and subsegmental vessels are abnormally narrowed in the lucent lung in comparison to accompanying bronchi, or abruptly cut-off in the hypo-perfused regions. Mosaic attenuation in segmental and subsegmental distributions (as opposed to perihilar or lobular mosaic in ­idiopathic PAH) is attributed to poor perfusion in the affected vessels with increased shunting of flow to adjacent unaffected regions. 3. Presence of systemic artery collaterals, usually bronchial. 4. Peripheral lung opacities caused by remote infarction and bronchial dilatation in under perfused regions. 5. Usual CT manifestations of pulmonary hypertension.

Fig. 24.3  CT pulmonary angiogram in CTEPH (top panel). Mediastinal window image (top left) shows eccentric mural thrombus with thickening of the wall of the LPA (star). Intra-luminal contrast and a linear band are noted along the anterior wall of the LPA (blue arrow), anterior segmental artery LUL and RUL branches. Note dilated distal MPA and LPA and bronchial arterial collaterals (red arrow). Corresponding lung window image (top right) shows segmental and subsegmental pattern of mosaic perfusion abnormality in both lungs with attenuation of pulmonary vessels in the lucent lung regions. Note, peripheral opacities in the dorsal regions of both lungs, likely sequela of prior infarcts (2 arrows)

142

24  Pulmonary Hypertension

Fig. 24.4  CT pulmonary angiograms in two different patients show differences in imaging appearances between chronic and acute PE. Partly endothelialized wall thrombus with eccentric mural thickening of the LPA represents chronic PE (left). Acute PE appears as central filling defects in the left and right pulmonary arteries (right)

Plexiform Pulmonary Hypertension (Fig. 24.5) Although more common in idiopathic pulmonary arterial hypertension, it can be seen with other causes of pulmonary hypertension such as congenital shunt pathology and CTEPH. Key Imaging Features • Small, tortuous peripheral arteries without connection to pulmonary veins (seen with arteriovenous shunt). • GGO closely associated with abnormal tortuous peripheral pulmonary arteries. • Usual imaging findings of pulmonary hypertension.

Pulmonary Veno-Occlusive Disease (PVOD) (Fig. 24.6) Idiopathic – can be associated with viral infections, drug toxicity (chemotherapy, OCP), pregnancy, and bone-marrow transplantation. Usually affects children (M = F) or young adults (M > F). Rapidly progressive. Combination of usual manifestations of pulmonary arterial hypertension with radiographic evidence of pulmonary edema and normal pulmonary artery occlusion pressure is considered virtually diagnostic. Distinction from PAH is important for clinicians as administration of vasodilator drugs for presumed PAH may precipitate life-threatening pulmonary edema in PVOD patients. Key Imaging Features on CT • Extensive smooth interlobular septal thickening • Diffuse or centrilobular and somewhat nodular GGO • Normal size or small left atrium, normal caliber central pulmonary veins • Usual manifestations of pulmonary hypertension • Pleural effusions may be present

P ulmonary Veno-Occlusive Disease (PVOD)

143

Fig. 24.5  CT features of plexiform arteriopathy in three different patients. A 22-year-old female with idiopathic pulmonary hypertension (top panel). CTA images in mediastinal (left), lung (center), and bone (right) window settings reveal dilated MPA with abnormal tortuous, peripheral arteries (arrows). Note dilated RA and RV with reverse bowing of the interventricular septum (right). Multiple coronal reformatted images in lung window settings (middle panel) also highlight abnormal tortuous small peripheral pulmonary arteries without any connection to veins. Axial lung window images (lower panel) show abnormal lobular GGO closely associated with tiny tortuous small peripheral arteries

Fig. 24.6  CT pulmonary angiogram in PVOD.  Note dilated MPA (left). Lung window images show widespread smooth interlobular septal thickening with mild bilateral symmetrical peripheral ground glass opacities (right)

144

24  Pulmonary Hypertension

Fig. 24.7  23 y/F with PCH. HRCT lungs show diffuse bilateral centrilobular and vaguely nodular GGO with smooth interlobular septal thickening (left, center). Note dilated MPA and RV > LV (right)

Pulmonary Capillary Hemangiomatosis (PCH) (Fig. 24.7) Very similar to PVOD in clinical manifestations and most often indistinguishable from PVOD on imaging. PCH reportedly may show more circumscribed nodular GGO, and relatively scarce smooth septal thickening in comparison to PVOD, which shows widespread interlobular septal lines and diffuse GGO.

Intravascular Talcosis (Fig. 24.8) Associated with intravenous abuse of drugs meant for oral consumption. Insoluble fillers of talc material (magnesium silicate) used in oral tablets become trapped in small vessels and cause vascular occlusion. Key Imaging Features • Diffuse micronodular pattern throughout both lungs • Perihilar conglomerate masses with intrinsic high attenuation, fibrosis. and honeycombing • Enlarged main pulmonary artery • Lower-lobe predominant panacinar emphysema in intravenous methylphenidate (Ritalin) abuse

Suggested Reading

145

Fig. 24.8  HRCT images through the upper (left), mid (middle), and lower (right) lung zones in a 32-year-old intravenous drug abuser show diffuse bilateral small nodules of injection talc granulomatosis

Fig. 24.9  PA CXR and chest CT in intravenous Ritalin abuse show panlobular emphysema with symmetrical bilateral lower-lobe predominance

Injection Methylphenidate (Ritalin) (Fig. 24.9) Intravenous abuse of Ritalin, which is meant of oral use, results in panlobular emphysema similar to A1AT deficiency. Mechanism of injury is unknown, likely elastolytic property of Ritalin and not its talc excipient. Key Imaging Sign Lower-lobe predominant panlobular emphysema (D/D  – alpha 1 antitrypsin deficiency).

Suggested Reading https://pubs.rsna.org/doi/full/10.1148/rg.321105232. https://journal.chestnet.org/article/S0012-­3692(19)30826-­8/fulltext.

Chapter 25

Bacterial Infections and Aspiration

Contents Routes of Infection Role of Computed Tomography in Lung Infections Common Imaging Patterns of Pulmonary Infection with emphasis on Bacterial Infection Increased Lung Attenuation Pattern (Airspace Consolidations and Ground-Glass Opacities) Nodular Pattern Imaging of Complications Imaging of Associated Abnormalities Specific Pneumonias Pseudomonas aeruginosa  Staphylococcus aureus Actinomycosis Nocardiosis Malakoplakia – Rhodococcus Aspiration Pneumonia Suggested Reading

 147  148  148  148  150  152  154  155  156  156  159  160  160  161  165

Routes of Infection 1. Inhalation of airborne infections or nasopharyngeal pathogens (examples – CAP, MTB, influenza) 2. Blood-borne infections (examples – septic emboli from infective endocarditis, bacteremia) 3. Locoregional spread (examples – from diskitis/osteomyelitis, mediastinitis, and hepatic abscess) 4. Direct contamination due to penetrating trauma © The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 S. Ghosh, Handbook of Imaging in Pulmonary Disease, https://doi.org/10.1007/978-3-030-68165-4_25

147

148

25  Bacterial Infections and Aspiration

Patterns of lung involvement can vary, depending on the virulence of the organism and immune status of the host. The same organism can have different presentations in different hosts (for instance, MTB in immunocompetent patients and AIDS can have dissimilar imaging signs), whereas multiple different organisms may have similar imaging appearances depending on mechanism of injury and host response (for example, lobar consolidations commonly due to community-acquired Streptococcus pneumoniae, as well as from organisms such as Legionella and gram-­ negative bacteria such as Klebsiella). Imaging plays a vital role in diagnosis and management of pulmonary infections. Chest radiographs are the first imaging modality to be used and routine use of CT is not recommended.

Role of Computed Tomography in Lung Infections • Normal, ambiguous, or nonspecific CXR with index of suspicion, particularly in immunosuppressed • Complications (necrosis with lung abscess, pleural effusions, empyema, pneumatocele, etc.) • Guide intervention (BAL, biopsy, drainage procedures, etc.) • Non-resolving pneumonia and associated abnormalities (endobronchial nodule, bronchiectasis)

 ommon Imaging Patterns of Pulmonary Infection C with emphasis on Bacterial Infection I ncreased Lung Attenuation Pattern (Airspace Consolidations and Ground-Glass Opacities) (Figs. 25.1, 25.2, and 25.3) A. Lobar pneumonia  – Infection usually begins adjacent to visceral pleura and spreads to involve the entire lobe through pores of Kohn. Pathology  – alveolar spaces rapidly filled with inflammatory exudate with little or no tissue damage. Variation in children is “round pneumonia” as inflammation tends to be more localized due to inadequate development of intercommunicating channels between airspaces such as pores of Kohn and canals of Lambert. Imaging hallmark is dense airspace opacification of multiple contiguous segments or the entire lobe often with “air bronchogram sign” (bronchial lumen outlined by air lucencies within opacity). Classic example – community-acquired pneumonia due to S. pneumoniae. Other examples – Legionella pneumonia in elderly, Klebsiella pneumonia with lobar expansion due to edema in certain groups such as alcoholics

Common Imaging Patterns of Pulmonary Infection with Emphasis on Bacterial Infection

149

Fig. 25.1  Lobar pneumonia in two different patients with consolidations and air bronchograms

Fig. 25.2  Bronchopneumonia in two different patients. Unilateral (right) and bilateral (left) peribronchial, segmental/sub-segmental consolidations with patchy ground-glass opacities

Fig. 25.3  Interstitial pneumonia with diffuse, bilateral, perihilar, reticular pattern on CXR, and ground-glass opacities on CT chest. Note small consolidation in the LUL (star)

(“bulging fissure sign”), Pseudomonas infection often associated with cavitation and bronchiectasis in cystic fibrosis, Staphylococcus aureus superinfection in influenza epidemics (usually S. aureus causes bronchopneumonia pattern).

150

25  Bacterial Infections and Aspiration

B. Bronchopneumonia – infection is centered along the walls of the small airways and spreads to the adjacent lobule, sub segment, or lung segments in a patchy distribution. Pathology – bronchial inflammation and epithelial tissue damage, usually by virulent organisms, leading to endoluminal and peribronchial exudate, with less profuse edema. Imaging signs include thickening of bronchial walls, centrilobular nodules and “tree-in-bud” opacities (bronchiolitis) followed by segmental or sub-­ segmental atelectasis, patchy peribronchial consolidations and ground-glass opacities in a lobular, sub-segmental, or segmental distribution. Typical examples – nosocomial infections (gram negatives, Staphylococcus aureus, etc.). C. Interstitial pneumonia – infection centered on the pulmonary interstitium. Pathology – inflammation of the interlobular septae and distal peribronchovascular interstitium. Imaging signs include reticular or reticulo-nodular pattern on radiography and ground-glass opacities alone or in combination with signs of cellular bronchiolitis, bronchopneumonia, and/or septal thickening on CT. Typical examples  – atypical pneumonia due to mycoplasma, chlamydia; viral pneumonia; PJP.

Nodular Pattern (Figs. 25.4, 25.5, 25.6, and 25.7) • Centrilobular nodules are most often spread via the centrilobular bronchiole located along the center of the secondary pulmonary lobule and spare the pleural surfaces. These are usually associated with nonspecific infectious or inflammatory bronchiolitis and/or bronchopneumonia. Tree-in-bud opacities, which repre-

Fig. 25.4  Bilateral lower-lobe predominant centrilobular nodules in aspiration (left). Note, 6 mm cavitary nodule in the RLL (arrow). Coned view of the LLL in another patient with bronchiolitis demonstrates typical branching V or Y shaped (tree-in-bud) opacities (right)

Nodular Pattern

151

Fig. 25.5  Innumerable 1–3 mm nodules randomly distributed throughout both lungs in military TB

Fig. 25.6  A 40-year-old male with septic emboli from S. aureus leg abscess. A small intramuscular abscess with central necrosis and wall enhancement (thin blue arrows) is noted on CT of the lower extremities. Initial chest radiograph shows subtle peripheral nodular opacities in the LUL (thick arrows). CT chest images at two different levels (bottom panel) reveal multiple peripheral lung nodules (thick arrows) mostly in the LUL, one of which has central cavitation (red arrow)

152

25  Bacterial Infections and Aspiration

Fig. 25.7  Nodules with surrounding ground-glass halo in AML with invasive aspergillosis (left). Nodule in the LUL with ground-glass halo in another patient (right)

sent a subtype of centrilobular nodules are small, clustered, and branching nodular opacities caused by mucoid impaction of the terminal bronchiole with peribronchial inflammation. These can be seen with infection, aspiration, and several inflammatory conditions. Common infections include tuberculous and nontuberculous mycobacterial infections, as well as other bacterial causes of bronchopneumonia, viral bronchiolitis, and some fungal infections such as aspergillosis. • Random nodules are usually a result of hematogenous spread and may be seen with multiple infectious and non-infectious conditions (example metastases). Miliary pattern describes multiple 1–3 mm nodules randomly distributed in all lung lobes. This may be a feature of miliary TB, as well as several fungal diseases such as disseminated histoplasmosis, blastomycosis, candidiasis, and viral infections such as CMV, herpes, varicella in immunosuppressed individuals (also see Fig. 3B, 6). • Nodules with cavitation may be a feature of vasculitis, metastases, and infections such as TB, nocardia, fungi such as cryptococcus, coccidiodes, blastomyces, and aspergillus. Cavitary nodules often with peripheral and basilar predominance are a feature of septic emboli which is most commonly due to infective endocarditis and right-heart vegetation from intravenous drug abuse. • Nodules with peripheral ground-glass halo (perilesional hemorrhage) are commonly seen in angio-invasive fungal infection such as aspergillosis, particularly in neutropenic patients (such as AML), but may also be seen with other fungal (mucormycosis, candidiasis) and viral (herpes, cytomegalovirus) infections and non-infectious conditions (vasculitis, hemorrhagic metastasis).

Imaging of Complications (Figs. 25.8, 25.9, 25.10, and 25.11) • Abscess formation results in lung masses with central cavitation, hypo attenuation (purulent liquefaction necrosis) or air-fluid levels, and thickened enhancing walls with smooth inner margins. Peripheral abscesses may rupture into the pleu-

Imaging of Complications

153

Fig. 25.8  Lung abscess with air-fluid levels noted within a large area of consolidation in the middle lobe both on CXR and CT

Fig. 25.9  Necrotizing pneumonia and pulmonary gangrene. Areas of non-enhancement in the left lung on contrast-enhanced CT (left). A different patient with right lung liquefaction necrosis and air-lucencies on unenhanced axial CT (right)

Fig. 25.10  Pneumatoceles. A 41-year-old female with HIV, history of PJP, with multiple thinwalled lung cysts

ral space resulting in bronchopleural fistula. Anaerobic bacteria are prone to abscess formation. Location in gravity-dependent regions of the lungs, such as the lower lobes or posterior segment RUL, may suggest aspiration. • Necrotizing pneumonia and pulmonary gangrene formation have high mortality. Imaging signs include inhomogeneous areas of non-enhancement within a

154

25  Bacterial Infections and Aspiration

Fig. 25.11  Empyema. CXR and contrast-enhanced CT chest show a loculated, moderate-sized, right-sided empyema with intra-pleural gas due to gas-forming bacteria (blue arrows). Note split pleura sign with right-sided thickened pleural lining (red arrow) and a simple left pleural effusion without any appreciable left-sided pleural thickening (star)

consolidation which rapidly progress to liquefaction necrosis with air-lucencies. Virulent organisms (gram-negative bacteria, such as Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus, pulmonary tuberculosis, and angioinvasive fungi may also result in this complication. Noninfectious etiologies such as pulmonary infarctions and malignancy are in the differential. • Pneumatocele formation results in single or multiple thin-walled air-filled lucencies at the site of previous infection, after drainage of necrotic contents and development of bronchial obstruction due to check-valve mechanism. S. aureus and P. jirovecii are two common causes. • Pleural effusions and empyema formation. A simple parapneumonic effusion may be associated with infection in the ipsilateral lobe/lung and usually improves with medical treatment of infection. Loculated empyema usually needs some form of drainage (image-guided or surgical) and can be diagnosed on CT by the presence of “split-pleura sign” with or without intra-pleural gas. Split-pleura sign is a feature of exudative effusion (not specific for empyema) and refers to thickening of visceral and parietal pleural linings, which are normally indistinguishable, due to infection, inflammation, or malignancy.

Imaging of Associated Abnormalities (Figs. 25.12 and 25.13) • Lymphadenopathy – most often reactive, may suggest clue to diagnosis in certain cases. For instance, lymph nodes with necrotic centers and peripheral enhancement seen in TB. • Mediastinitis – can be a result of infection spreading from the neck, hollow viscus rupture such as esophageal rupture/perforation, complication of thoracic sur-

Specific Pneumonias

155

Fig. 25.12  Contrast-enhanced CT chest images in mediastinal (left) and bone window (right) settings demonstrate multiple reactive mediastinal lymph nodes which measure 10 million new cases/year). Poor cell-mediated immunity, such as HIV, strongest risk factor (responsible for resurgence in the West). Primary TB (Figs. 26.1 and 26.2)  Develops after initial exposure to TB (common in children living in endemic area or adult contacts of TB). Key Imaging Features • Initial focus in the lungs may be too small to be recognized or develop patchy or lobar consolidation – predominantly seen in adults. • Unilateral hilar or mediastinal lymphadenopathy – hallmark of primary TB in children. Characteristic sign of low-density centers within the node with peripheral contrast enhancement. • Pleural effusions – more common in adults.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 S. Ghosh, Handbook of Imaging in Pulmonary Disease, https://doi.org/10.1007/978-3-030-68165-4_26

167

168

26  Mycobacterial Infections

Fig. 26.1  Primary TB: left upper lobe consolidation

Fig. 26.2  Primary TB: thoracic adenopathy

Natural progression of primary TB depends on host immunity: • Intact cell-mediated immunity – initial infection gets localized = caseating granuloma formation. A. Tuberculoma  - lung mass with central hypodensity (caseation) and wall enhancement. B. Ghon focus  – with healing the granuloma undergoes dense or central calcification. C. Ranke complex – the corresponding lymph nodes also calcify (Ranke = Ghon + calcified nodes). • Poor cell-mediated immunity  – develops progressive primary infection (seen in HIV). Post-Primary TB (Figs.  26.3 and 26.4)  Refers to reactivation of previous dormant/latent infection or reinfection.

Mycobacterial Tuberculosis Infection of the Lungs

169

Fig. 26.3  Re-infection post-primary TB. Lingular consolidation and cavitation with multiple centrilobular nodules (tree-in-bud) in the left upper and lower lobes

a

b

Fig. 26.4  Reactivation post-primary TB with RUL consolidation progressing to cavity formation. Note worsening reticular and tiny nodular opacities in the LUL suggestive of active bronchogenic spread. (a) (Left): June 2008. (b) (Right): July 2008

Key Imaging Features • Distribution of disease – apical, posterior segments of upper lobes; superior segment lower lobes. • Consolidation with cavity formation. Cavity typically thick walled (without treatment). • Nodules – centrilobular nodules and tree-in-bud opacities (sign of endobronchial spread). • Interlobular septal thickening and linear opacities. • Lymphadenopathy is rare in post-primary TB. Miliary TB (Fig. 26.5)  Refers to hematogenous spread of TB in the lungs; can be a feature of primary or post-primary.

170

26  Mycobacterial Infections

Fig. 26.5  A 48-year-old male with AIDS. Innumerable 1–3 mm nodules disseminated throughout both lungs consistent with miliary TB

• Key imaging feature is innumerable 1–3 mm nodules disseminated throughout all lung lobes. Imaging of Complications of Pulmonary TB (Fig. 26.6) • Lung parenchymal architectural distortion, fibrosis, cyst/cavity formation (secondary mycetoma). • Bronchiectases ± tracheo-bronchial stenosis ± broncholith (calcified node eroding bronchus). • Chronic pleural effusions, thickening and calcifications (fibrothorax); empyema necessitans. • Constrictive pericarditis ± pericardial calcifications. • Rasmussen aneurysm - TB cavity may erode into a pulmonary artery branch (can be fatal). • TB spondylitis/osteomyelitis of the spine (Pott’s spine) with paraspinal “cold” abscesses.

Non-tuberculous Mycobacterial Infection Most commonly caused by M. avium-intracellulare and M. kansasii (rare M. chelonae, M. fortuitum, M. xenopi). Often refered as MAC (mycobacterial avium complex). Organism is ubiquitous in environment, although clinical infection and person-­ person transmission is rare. Main patterns of involvement of the lungs in immunocompetent patients: • Fibrocavitary form  – infection in middle aged, elderly males who are heavy smokers or alcoholics. • Nodular bronchiectatic form – infection in elderly females with no prior structural lung disease.

Non-tuberculous Mycobacterial Infection

171

Fig. 26.6  Imaging of complications of TB. Chronic empyema necessitans, with pleural thickening, calcifications, and fibrothorax (left). Broncholithiasis with calcified left hilar lymph nodes eroding into the LUL bronchus (middle). TB osteomyelitis with destruction of dorsal vertebral body and formation of paravertebral “cold abscess” (right)

Fig. 26.7  Non-tuberculos mycobacterial infection (NTM) in a 56-year-old smoker with emphysema. Note thin-walled cavity, architectural distortion, and pleural thickening in the right upper lobe and a nodule in the left lung

• Hot tub lung – granulomatous hypersensitivity reaction (rather than true infection) to aerosolized MAC in healthy users of hot tubs. Fibrocavitary form – key imaging features on CT (Fig. 26.7): • Thin, smooth-walled cavity formation in the upper lobes (less commonly associated with consolidations), with fibrosis and associated pleural reaction or thickening (pleural effusions rare). Nodular bronchiectatic form – key imaging features on CT (Figs. 26.8 and 26.9): • Cylindrical bronchiectasis and scattered small nodules ( 2.7 million deaths worldwide) reported to WHO as of March 20, 2021.

Imaging Findings in COVID-19

191

a

b

Fig. 28.1 (a) RSV pneumonia in a 68-year-old immunocompetent male smoker. CT chest lung window images at the time as symptom development (top panel) show patchy ground-glass opacities in both upper lobes. CT chest (for unrelated indication) obtained several months after patient recovery shows complete resolution of GGO without any residual scarring (lower panel). (b) RSV pneumonia with bilateral lung transplant. Scattered small centrilobular nodules (blue arrows), patchy ground-glass opacities, and a small, peribronchial middle lobe consolidation (red arrow)

• RT-PCR (reverse transcriptase-polymerase chain reaction) test to detect viral RNA remains the most accurate diagnostic test and the initial screening test of choice at this time. • Limited role of CT chest in diagnosis or screening (not routinely recommended except in certain special circumstances); CXR is a reasonable initial imaging modality in suspected patients with pending RT-PCR.

192

28  Viral Infections

COVID-19 pneumonia on computed tomography (CT) of the chest Diverse pattern of lung disease on CT with some key imaging features Distribution Bilateral, multilobar, subpleural, peripheral, and basilar predominant Pattern Rounded morphology, ground-glass opacities (GGO), and multilobar consolidations Uncommon Mediastinal lymphadenopathy, pleural effusions, cavitations, and pulmonary findings nodules Initial findings Typical pattern Normal in up to 25% patients (CT abnormal in >95% after 5–6 days) Progression Lobar consolidations, pleural effusions, subpleural blebs, and bullae may develop in severe illness Organization Early fibrosis and traction bronchiectasis may develop in severe ARDS in 2–4 weeks

Fig. 28.2  HMPV infection in unilateral lung transplant (right) for severe emphysema (left). GGO, consolidation, and a small hydro-pneumothorax in the transplanted right lung

Fig. 28.3  EBV infection with pleural-based consolidation and small nodules (arrows) in the left lower lobe

Imaging Findings in COVID-19

193

Fig. 28.4  Adenovirus infection. Mosaic lung attenuation from air-trapping, bronchial wall thickening (red arrows), and tiny branching lung nodules (blue arrows)

a

b

Fig. 28.5 (a) CMV pneumonia. Diffuse ground-glass opacities, smooth interlobular septal thickening, and bilateral small lung nodules (arrows). (b) A 35-year-old female status-post renal transplant with CMV pneumonia. Bilateral lower-lobe predominant ill-defined 1–5  mm nodules and GGOs

194

28  Viral Infections

Fig. 28.6  Sequela of old Varicella pneumonia with innumerable small calcified nodules scattered throughout both lungs

Fig. 28.7  Imaging findings in COVID-19: Distribution. CXR shows basilar predominant airspace opacities. Chest CT reveals peripheral/sub-pleural, ground glass opacities in the bilateral mid- and lower-lung zones

Fig. 28.8  Imaging findings in COVID-19: Pattern. Chest CT shows multi-lobar, peripheral, or sub-pleural ground-glass opacities in both lungs with mid- and lower-zone predominance. Some of the opacities are vaguely ovoid in morphology. Note mildly prominent pulmonary vessels within these opacities, which have been described in some studies

Imaging Findings in COVID-19

195

Fig. 28.9  Imaging findings in COVID-19: Pattern. Chest CT shows multi-lobar, peripheral, and patchy consolidative opacities in both lungs with mid- and lower-zone predominance. Some of the consolidative opacities have a rounded morphology

Fig. 28.10  Imaging findings in COVID-19: Chest CT shows bilateral lower lobe predominant, peripheral, and peribronchial consolidative and ground-glass opacities in both lungs. Note rounded morphology as well as presence of peripheral rim of consolidation and central clearing (reverse halo sign) in few of the opacities

196

a

28  Viral Infections

b

c

Fig. 28.11 (a–c) Imaging findings in COVID-19: progression and organization. Chest CT in three different patients with ARDS. (a) (Left) – Dense lobar consolidations have developed in the dependent dorsal portions of both lower lobes along with diffuse ground-glass opacities throughout much of the remaining lungs. (b) (Middle) – Early fibrosis and traction bronchiectasis have developed within areas of consolidation in the right middle and lower lobes. (c) (Right) – Dense bilateral lower lobe consolidations with subpleural bullae have developed in a patient with severe COVID-19 pneumonia

Suggested Reading https://pubs.rsna.org/doi/10.1148/rg.2018170048. https://www.clinicalimaging.org/article/S0899-­7071(20)30453-­8/fulltext.

Chapter 29

Parasitic Infections

Contents Strongyloides Dirofilariasis Echinococcosis Toxoplasmosis Suggested Reading

 197  198  198  200  200

Strongyloides (Figs. 29.1 and 29.2) Strongyloides stercoralis is a microscopic nematode. Infective larvae invade the lungs and small intestine through the skin from the soil. Humans are primary hosts. Continuous autoinfection in patients with AIDS, chronic steroids, etc., can result in massive and life-threatening infestation (superinfection). Key Imaging Features • Eosinophilia  – patchy fleeting airspace opacities which usually resolve in 1–2 weeks. • Hyperinfection syndrome – pneumonia, alveolar hemorrhage, acute respiratory distress syndrome (ARDS), or rarely miliary pattern. • Superimposed bacterial infection – cavitation and abscess formation +/− pleural effusions.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 S. Ghosh, Handbook of Imaging in Pulmonary Disease, https://doi.org/10.1007/978-3-030-68165-4_29

197

198

29  Parasitic Infections

Fig. 29.1 Pulmonary strongyloides presenting as migratory, subtle ground-glass opacities (arrows) in the left upper lobe, right middle lobe, and dependent portions of both lower lobes (associated with minimal reticulations in the bases)

Fig. 29.2  Strongyloides superinfection (confirmed on BAL) in a 70-year-old patient with unilateral left lung transplant and native right lung UIP.  Note extensive bilateral consolidations and pleural effusions

Dirofilariasis (Fig. 29.3) Dirofilaria immitis is a filarial nematode. Transmitted by mosquitoes from dogs to humans (accidental hosts). Immature adult worm transported via the peripheral veins into the pulmonary veins. Key Imaging Features • Solitary lung nodule (usually  NSIP > OP) Airways disease (bronchiolitis > bronchiectasis) Pulmonary vascular disease Lymphadenopathy Drug-induced lung disease – methotrexate, gold, penicillamine, infliximab, other TNF antagonists

Fig. 31.1  Rheumatoid arthritis with small bilateral pleural effusion and mild bilateral axillary lymphadenopathy

Fig. 31.2  Rheumatoid arthritis with solid and sterile cavitary nodules in both lungs

Scleroderma

a

215

b

Fig. 31.3 (a) (left). Rheumatoid arthritis with interstitial pneumonia. Chest CT shows sub-pleural, reticular opacities with minimal traction bronchiolectasis in the bilateral posterior lung bases. (b) (right). Rheumatoid arthritis on penicillamine. Chest CT shows patchy peribronchial ground-glass opacities in the bilateral lung bases suggestive of NSIP Fig. 31.4 Rheumatoid arthritis with organizing pneumonia (OP). Chest CT shows patchy peribronchial ground-glass opacities in both upper lobes with sharp curvilinear margins, which resolved on steroids

a

b

c

Fig. 31.5 (a–c) Airway abnormalities in rheumatoid arthritis in three different patients. (a) (left). HRCT chest shows mosaicism of the lung parenchyma suggestive of air-trapping and obliterative small airway disease. (b) (middle). Chest CT shows clustered centrilobular nodules in the middle lobe, suggestive of follicular bronchiolitis. (c) (right). HRCT chest shows bilateral bronchiectasis and bronchial wall thickening with mild hyperinflation of the lung parenchyma

Scleroderma (Figs. 31.6 and 31.7) • • • • •

Lung fibrosis (NSIP >> UIP) Pulmonary hypertension Esophageal dysmotility Anti-centromere or anti Scl-70 Limited scleroderma is CREST syndrome (calcinosis, Raynaud’s syndrome, esophageal dysmotility, sclerodactyly, and telangiectasia)

216

31  Lung Manifestations of Collagen Vascular Diseases

Fig. 31.6  Scleroderma. HRCT chest shows basilar predominant reticular and ground-glass opacities in both lungs suggestive of NSIP pattern with a patulous esophagus and dilated transverse colon loops Fig. 31.7 CREST syndrome. Chest CTA shows a dilated main pulmonary artery which measures 35 mm in diameter and is larger than the ascending aorta, suggestive of pulmonary hypertension

Mixed Connective Tissue Disease (MCTD) (Fig. 31.8) • Features of Sjogren’s syndrome, polymyositis, scleroderma, systemic lupus erythematosus • Anti-ribonucleoprotein (RNP) antibody • Pleural effusion • Pulmonary hypertension • Lung fibrosis

Dermatomyositis and Polymyositis (Fig. 31.9) • Basal predominant, confluent (OP) commonest, may evolve to NSIP pattern (acute interstitial pneumonia (AIP), UIP may occur). • Lung disease is quite often the presenting feature. • Features of aspiration or muscle weakness. • Similar features seen with anti-synthetase syndrome.

Dermatomyositis and Polymyositis

217

a

b

c

d

Fig. 31.8 (a–d) MCTD. Chest radiographs (a, b) show peripheral and basilar predominant reticular opacities in both lungs. HRCT lung (c) shows peripheral ground-glass opacities in the middle lobe and lingula with coarse, subpleural reticular opacities and honeycombing in the bilateral posterior lung bases. Chest CTA (d) shows a dilated main pulmonary artery suggestive of pulmonary hypertension

Fig. 31.9  Polymyositis. Chest CT shows basal predominant, confluent peribronchial airspace opacities suggestive of organizing pneumonia with evolution to NSIP pattern

218

31  Lung Manifestations of Collagen Vascular Diseases

 ystemic Lupus Erythematosus (Figs. 31.10, 31.11, 31.12, S and 31.13) • Serositis – pleural and/or pericardial effusion or thickening • Shrinking lungs (rare)  – unexplained dyspnea, restrictive PFT, and elevated hemi-diaphragm • Pulmonary hemorrhage • Opportunistic infection • Pulmonary infarction – may be due to antiphospholipid antibody syndrome with deep vein thrombosis (DVT) and pulmonary embolism (PE) • Pulmonary hypertension • Anti-ds DNA Fig. 31.10  SLE with serositis. Chest CTA shows a moderate circumferential pericardial effusion and right pleural effusion

Fig. 31.11  SLE with alveolar hemorrhage. Chest CT shows fleeting ground-glass opacities interspersed with smooth interlobular septal thickening in the right lung. Patient presented with hemoptysis

Sjogren’s Syndrome

219

Fig. 31.12  SLE with “shrinking lung.” Patient presented with unexplained dyspnea and restrictive pulmonary function tests. Chest radiograph shows an elevated right hemi-diaphragm

Fig. 31.13  SLE associated with anti-phospholipid or anti-cardiolipin antibody and bilateral popliteal vein thrombosis (DVT). Chest CTA shows hypodense filling defect in the right atrium suggestive of thrombus (left, star). A filling defect is also seen in the left lower pulmonary artery suggestive of pulmonary embolism (right, arrow) with evolving pulmonary infarction in the left lower lobe (arrows)

Sjogren’s Syndrome (Figs. 31.14 and 31.15) • Lymphoid interstitial pneumonia (LIP) with perivascular cysts and GGO >> NSIP, UIP patterns • Follicular bronchiolitis • Desiccation of bronchi leading to large and small airways disease • Rarely lymphoma

220

31  Lung Manifestations of Collagen Vascular Diseases

Fig. 31.14  Sjogren’s syndrome with Lymphoid Interstitial Pneumonia (LIP). HRCT lungs with coronal reformatted image and axial image show multiple bilateral lung nodules and thin-walled cysts in both lungs with lower lobe predominance. Note, some nodules are calcified. The differential diagnosis includes light chain deposition disease, pulmonary amyloid, and transformation to pulmonary lymphoma (rare). There is mild focal bronchiectasis in the right lower lobe (left)

Fig. 31.15  Sjogren’s syndrome with Lymphoid Interstitial Pneumonia (LIP).  Chest CT shows relatively large areas of confluent ground-glass opacities in the nondependent portions of bilateral mid- and lower lung zones. Tiny nodules were also seen (not shown), though no definite cystic lesions were identified

I PAF: Interstitial Pneumonitis with Autoimmune Features (Undifferentiated Connective Tissue Disease) (Fig. 31.16) • At least one clinical manifestation though not meeting American College of Rheumatology criteria for a connective tissue disease • Serologic markers of systemic inflammation • Many of the cases previously called “lung-dominant” connective tissue disease with HRCT showing “idiopathic nonspecific interstitial pneumonia (NSIP)” or “indeterminate for usual interstitial pneumonia (UIP)” type pattern

Suggested Reading

221

Fig. 31.16  Patient with systemic inflammatory markers (+ds DNA) in the absence of infection, not meeting specific criteria for any CTD such as SLE. HRCT shows subpleural reticular opacities in both lungs

Suggested Reading https://pubs.rsna.org/doi/10.1148/rg.321105058.

Chapter 32

Lung Involvement by Other Systemic Diseases

Contents Birt-Hogg-Dubé Syndrome   ommon Variable Immunodeficiency and Granulomatous-­Lymphocytic Interstitial C Lung Disease (GLILD)  Niemann-Pick Disease Lung Manifestations of Inflammatory Bowel Disease (IBD) with emphasis on Necrobiotic Nodules Suggested Reading

 223  224  226  227  228

Birt-Hogg-Dubé Syndrome (Fig. 32.1) Autosomal dominant disorder (FLCN gene mutation -17p 11.2) characterized by cutaneous lesions, renal tumors, and cystic lung disease. • Skin lesions – fibrofolliculoma (hamartoma of hair follicles), trichodiscoma, and acrochordons (>5 with at least 1 histologically proven). • Renal tumors – chromophobe renal cell cancers and oncocytoma (MRI screening should be done every 3 years). • Lung cysts and secondary spontaneous pneumothoraces (pleurodesis should be performed after first episode of pneumothorax due to recurrence). Key Imaging Features Cysts – often multiple, large, lower-lobe predominant; variable shaped, oval, lentiform, and septated if large.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 S. Ghosh, Handbook of Imaging in Pulmonary Disease, https://doi.org/10.1007/978-3-030-68165-4_32

223

224

32  Lung Involvement by Other Systemic Diseases

a

b

c

Fig. 32.1 (a) Multiple variable shaped cysts in both lungs. (b) Fibrofolliculomas. (c) Multiple, variable shaped, septated cysts in both lungs (arrow) with a right renal mass (star)

Common Variable Immunodeficiency and Granulomatous-­Lymphocytic Interstitial Lung Disease (GLILD) (Figs. 32.2 and 32.3) CVID  – commonest of the primary immunodeficiencies, characterized by hypogammaglobulinemia (IgG, IgA, and/or IgM) and impaired antibody response, which result in recurrent sinopulmonary infections. GLILD – non-infectious manifestation of CVID in about 10% of CVID patients, with distinctive granulomatous and lymphocytic interstitial features, likely due to autoimmunity and lymphoproliferation. Key Imaging Features • CVID – bronchiectasis with interstitial lung disease (features of repeated infection may be seen).

Common Variable Immunodeficiency and Granulomatous-­Lymphocytic Interstitial…

225

Fig. 32.2  Bilateral bronchiectasis with bronchial dilatation and wall thickening in a 21-year-old male with CVID. Note tram-tracking opacities on CXR (arrow) and indwelling chest port (star). Bronchiectasis in CVID is possibly a result of recurrent lung infections

Fig. 32.3  Non-infectious manifestation of GLILD in a 44-year-old male with CVID. CT chest shows multiple bilateral solid lung nodules and ground-glass opacities (axial and coronal reformatted lung window images, top panel) with splenomegaly and mild thoracic lymphadenopathy (soft-­ tissue window images, bottom panel)

226

32  Lung Involvement by Other Systemic Diseases

• GLILD – multiple lung nodules (mid and LL > UL), airspace consolidations, and ground-glass opacities. • GLILD – lymphadenopathy (thoracic or abdominal) and splenomegaly (extra-­ pulmonary features).

Niemann-Pick Disease (Fig. 32.4) Autosomal recessive lysosomal storage disease due to deficiency of acid sphingomyelinase and accumulation of sphingomyelin in lysosomes of monocytes-­ macrophages. Two major forms: types A and B. Type A – fatal neurodegenerative disease in Ashkenazi Jews and leads to death by age 2–3 years. Type B – visceral form and pan-ethnic, presenting in adults with interstitial lung disease, hepatosplenomegaly, thrombocytopenia (due to hypersplenism), hyperlipidemia, and skeletal immaturity. Key Imaging Features • Reticulonodular pattern on radiographs; starts in the lung bases and progresses cranially. • Smooth interlobular septal thickening with ground-glass opacities (crazy-paving pattern). • Small lung nodules which may sometimes calcify. • Extra-pulmonary features – spleno-hepatomegaly, early atherosclerosis, skeletal immaturity.

Fig. 32.4  Niemann-Pick disease type B in a 44-year-old male with interstitial lung disease and splenomegaly. CT chest lung window images demonstrate diffuse ground-glass opacities traversed by smooth interlobular septal thickening and intra-lobular lines (crazy-paving). Coronal reformatted image shows splenomegaly with central low-attenuation lesion, which is often visualized (arrow)

Lung Manifestations of Inflammatory Bowel Disease (IBD) with emphasis…

227

 ung Manifestations of Inflammatory Bowel Disease (IBD) L with emphasis on Necrobiotic Nodules (Figs. 32.5 and 32.6) Sterile cavitating lung nodules found in cases of inflammatory bowel disease (ulcerative colitis (UC) > Crohn’s) and rheumatoid arthritis (rare =1%), which mimic metastases, GPA, and septic emboli on imaging. Necrobiotic nodules may or may not mirror the course of colitis/arthritis and may regress spontaneously. Key Imaging Features • Multiple, rounded, peripheral/sub-pleural and usually upper/mid-zone predominant. • Frequently cavitate with thick walls and smooth margins; rarely calcify. Lung manifestations of IBD are commonly due to infections or drug-related toxicity. IBD itself rarely causes: • Airway involvement (intermediate bronchi  – bronchiectasis > small bronchioles – BOS > large airways – subglottic stenosis). • Parenchymal involvement (organizing pneumonia pattern > eosinophilic pneumonia pattern).

Fig. 32.5  Several multiple, peripheral, bilateral necrobiotic nodules in a 16-year-old female with ulcerative colitis, some of which have cavitated (blue arrows). The non-cavitary nodules demonstrate central low attenuation with mild peripheral enhancement (red arrows)

228

32  Lung Involvement by Other Systemic Diseases

Fig. 32.6  Rheumatoid nodules in a 56-year-old male. CT chest shows multiple, bilateral upper and lower lobe nodules with central cavitation and thick walls. These are rare (1% of RA, M > F) and histologically indistinguishable from necrobiotic nodules due to (UC)

Suggested Reading https://www.ajronline.org/doi/pdf/10.2214/AJR.10.4757. https://pubmed.ncbi.nlm.nih.gov/18728542/. https://www.ajronline.org/doi/10.2214/AJR.09.2871. http://rc.rcjournal.com/content/59/12/e190.

Index

A Actinomycosis, 159 Acute eosinophilic pneumonia (AEP), 92–93, 113 Acute fibrinous and organizing pneumonia (AFOP), 92–93 Acute interstitial pneumonia, 89 Acute lung injury AEP, 92–93 AFOP, 92–93 diffuse alveolar damage, 89–90 organizing pneumonia, 90–93 Adenocarcinoma AAH, 3 AIS, 3 IASLC/ATS/ERS classification, 3 imaging, 4–7 invasive adenocarcinoma, 3 minimally invasive adenocarcinoma, 3 Adenocarcinoma in situ (AIS), 3 Adenoid cystic carcinoma, 31, 32 Adenomas alveolar adenoma, 38, 39 pathologic types, 37 sclerosing pneumocytoma/sclerosing hemangioma, 37–38 Adenosquamous cell carcioma, 15 Adenovirus infection, 193 Airway invasive aspergillosis, 183–185 Allergic bronchopulmonary aspergillosis, 81, 82 Alveolar adenoma, 38, 39 Amiodarone toxicity, 129 Amyloidosis

amyloid light chain, 204 cardiac amyloidosis, 205 cardiac MRI of, 204 diffuse alveolar septal amyloidosis, 204–205 hereditary form, 204 mediastinal amyloidosis, 205 nodular parenchymal amyloidosis, 204 with plasma cell dyscrasia and alveolar septal amyloidosis, 203 primary amyloidosis, 202 secondary amyloidosis, 202 serum amyloid A type, 204 with Sjogren’s syndrome, 203 tracheobronchial amyloidosis, 203, 205 ANCA associated pulmonary vasculitis EGPA, 135, 137 granulomatosis with polyangiitis, 135–137 microscopic polynagiitis, 135, 137 Angiofollicular lymphnode hyperplasia, see Castleman disease Angioinvasive aspergillosis, 183, 184 Asbestos-related reactions, 120–122 Aspergilloma, 181 Aspergillosis infection airway invasive aspergillosis, 183 allergic bronchopulmonary aspergillosis, 181, 182 angioinvasive aspergillosis, 183, 184 aspergilloma, 181 Aspergillus fumigatus, 179 semi-invasive aspergillosis, 181, 182 Aspiration bronchiolitis, 163, 164

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 S. Ghosh, Handbook of Imaging in Pulmonary Disease, https://doi.org/10.1007/978-3-030-68165-4

229

Index

230 Aspiration pneumonia aspiration bronchiolitis, 163, 164 aspiration of solid foreign bodies, 164 definition, 161 imaging patterns, 163 imaging signs, 163–164 in LLL, elderly patient, 162 with tracheo-esophageal fistula, 163 tree-in-bud and patchy peribronchial ground-glass opacities, 163 Atypical adenomatous hyperplasia (AAH), 3 Atypical carcinoid tumor, 23, 24 Atypical pneumonia, 189 B Bacterial infections abscess formation, 152, 153 actinomycosis, 159 aspiration pneumonia, 161–164 bronchopleural fistula, 153 chest-wall involvement, 155 computed tomography in lung infections, 148 diagnosis and management, 148 lymphadenopathy, 154 malakoplakia, 160–161 mediastinitis, 154 necrotizing pneumonia and pulmonary gangrene formation, 153–154 nocardiosis, 160, 161 nodular pattern, 150–152 pleural effusions and empyema formation, 154 pneumatocele formation, 154 pseudomonas aeruginosa, 156 pulmonary infection bronchopneumonia, 149, 150 interstitial pneumonia, 149, 150 Klebsiella pneumonia, 149 Legionella pneumonia, 149 lobar pneumonia, 148, 149 routes of infection, 147–148 staphylococcus aureus pneumonia, 156–159 sub-diaphragmatic abscesses, 155 vertebral diskitis and/or osteomyelitis, 155 Basaloid-type squamous cell carcinoma, 9, 11 Benign metastasizing leiomyoma, 211–212 Berylliosis, 122–123 Birt-Hogg-Dubé syndrome, 223, 224 Blastomycosis, 179, 180 Bret syndrome, see Swyer-James syndrome

Bronchial asthma, 78 Bronchial obstruction, 21–23 Bronchiectasis allergic bronchopulmonary aspergillosis, 81, 82 causes, 80 cystic fibrosis, 80, 81 morphologic patterns, 80 rare congenital, 81, 83 traction bronchiectasis, 80 Bronchiolitis obliterans syndrome, 86–88 Bronchogenic cyst, 69–71 Bronchopneumonia, 149, 150 Broncho-pulmonary sequestration contrast-enhanced CT chest images, 68, 69 CT angiogram, 68, 69 extralobar, 68 imaging features, 68 intralobar, 68 C Calcifications and ossifications metastatic pulmonary calcification, 205–206 pulmonary ossification, 206, 207 Candidiasis, 187 Carcinoid tumor atypical carcinoid tumor, 23, 24 bronchial obstruction, 21–23 DIPNECH, 23, 25 Carcinosarcoma, 28 Cardiac amyloidosis, 205 Castleman disease, 53 common sites, 55 histopathologic classification, 56 morphological classification, 55 Chemical pneumonitis, 161, 162 Chondroma/hamartoma, 49 Chronic bronchitis, 78–80 Chronic eosinophilic pneumonia, 114 Chronic obstructive pulmonary disease bronchial asthma, 78 bronchiectasis allergic bronchopulmonary aspergillosis, 81, 82 causes, 80 cystic fibrosis, 80, 81 morphologic patterns, 80 rare congenital, 81, 83 traction bronchiectasis, 80 chronic bronchitis, 78–80 emphysema

Index bilateral lung apices, 76 centrilobular, 77 diffuse emphysema, 76 lung volume reduction (LVR), 77 panlobular, 78 panlobular emphysema, 76 paraseptal, 77 peripheral RUL subsolid nodule, 77 “saber-sheath” morphology of trachea, 76 upper lobe predominant emphysema, 76 Chronic pulmonary histoplasmosis, 176–177 Chronic thromboembolic pulmonary hypertension, 141–142 Churg-Strauss vasculitis, see Eosinophilic granulomatosis with polyangiitis (EGPA) Coal-workers pneumoconiosis (CWP), 118, 120, 121 Coccidiodomycosis infection blastomycosis, 179, 180 C. immitis and C. posadasi, 178 imaging features, 179, 180 Collagen vascular diseases (CVD) dermatomyositis and polymyositis, 216, 217 features of, 213 IPAF, 220, 221 MCTD, 216, 217 rheumatoid arthritis, 214–215 scleroderma, 215–216 Sjogren’s syndrome, 219, 220 systemic lupus erythematosus, 218–219 Common variable immunodeficiency, 224–226 Congenital lobar emphysema, 72, 73 Congenital pulmonary airway malformation (CPAM), 67, 68 COVID-19, 190–192, 194–196 Crack lung, 130 Cryptococcosis infection, 183–185 Cryptogenic organizing pneumonia (COP), 91, 92 CVD, see Collagen vascular diseases (CVD) Cytomegalovirus (CMV) pneumonia, 193 D DAH, see Diffuse alveolar hemorrhage (DAH) Dermatomyositis, 216, 217 Desquamative interstitial pneumonia (DIP), 100–101 Diffuse alveolar damage, 89–90

231 Diffuse alveolar hemorrhage (DAH) causes, 133 cessation of alveolar hemorrhage, 134 chronic recurrence of bleeding, 134 initial phase of active bleeding, 134 severe repeat hemorrhage, 134 Diffuse alveolar septal amyloidosis, 204–205 Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH), 23, 25 Diffuse large B-Cell lymphoma, 55 Dirofilaria immitis, 198 Dirofilariasis, 198, 199 E Echinococcosis, 198–199 Echinococcosis granulosus, 198 Echinococcosis multilocularis, 198 Echinococcosis vogeli, 198 Emphysema bilateral lung apices, 76 centrilobular, 77 diffuse emphysema, 76 lung volume reduction, 77 panlobular emphysema, 76, 78 paraseptal, 77 peripheral RUL subsolid nodule, 77 “saber-sheath” morphology of trachea, 76 upper lobe predominant emphysema, 76 Endemic fungal infections, 175 Eosinophilic granulomatosis with polyangiitis (EGPA), 135, 137 Eosinophilic lung disease acute eosinophilic pneumonia, 113 causes, 113 chronic eosinophilic pneumonia, 114 idiopathic hypereosionophilic syndrome, 114–115 Loeffler syndrome, 113 Epithelial-myoepithelial tumor, 32–33 Epithelioid hemangioendothelioma, 43 Epstein-Barr virus (EBV) infection, 192 Erdheim-Chester disease, 53, 57, 58 Exogenous lipoid pneumonia, 210–211 Extra-nodal marginal zone lymphoma of mucosal origin (MALT) lymphoma, 53–54 F Fibrosing mediastinitis, 177–178 Follicular bronchiolitis, 85–86

232 Fungal infections aspergillosis infection airway invasive aspergillosis, 183 allergic bronchopulmonary aspergillosis, 181, 182 angioinvasive aspergillosis, 183, 184 aspergilloma, 181 Aspergillus fumigatus, 179 semi-invasive aspergillosis, 181, 182 candidiasis, 187 coccidiodomycosis infection blastomycosis, 179, 180 C. immitis and C. posadasi, 178 imaging features, 179, 180 cryptococcosis infection, 183–185 endemic fungal infections, 175 histoplasmosis chronic pulmonary histoplasmosis, 176–177 fibrosing mediastinitis, 177–178 Histoplasma capsulatum, 176 pathogenesis and imaging features, 176 primary histoplasmosis/acute pulmonary histoplasmosis, 176, 177 progressive disseminated histoplasmosis, 177, 178 imaging features, 175 mucormycosis infection, 184–186 opportunistic fungi, 175 pneumocystis pneumonia infection, 185–187 G Giant lymphnode hyperplasia, see Castleman disease Granulomatosis with polyangiitis (GPA), 135–137 Granulomatous-lymphocytic interstitial lung disease (GLILD), 224–226 H Hard-metal pneumoconiosis, 123, 124 Heroin-induced acute pulmonary edema, 130–131 Histoplasma capsulatum, 176 Histoplasmosis chronic pulmonary histoplasmosis, 176–177 fibrosing mediastinitis, 177–178 Histoplasma capsulatum, 176 pathogenesis and imaging features, 176 primary histoplasmosis/acute pulmonary histoplasmosis, 176, 177

Index progressive disseminated histoplasmosis, 177, 178 HP, see Hypersensitivity pneumonitis (HP) Human metapneumovirus (HMPV) infection, 192 Hypersensitive aspergillosis (allergic bronchopulmonary aspergillosis), 181, 182 Hypersensitivity pneumonitis (HP) acute HP, 105, 106 chronic HP, 105, 107 subacute HP, 105 Hypocomplementemic urticarial vasculitis, 137, 138 I Iceberg sign, 21 Idiopathic hypereosionophilic syndrome, 114–115 Idiopathic interstitial pneumonias (IIP) ATS/ERS classification, 95, 96 DIP, 100–101 IPAF, 103, 104 IPF, 96 lymphoid interstitial pneumonia, 101–102 NSIP, 99–100 pleuropulmonary elastosis, 102–103 RBILD, 100–101 UIP ATS/ERS/JRS/ALAT 2018 official guidelines, 96 definitive diagnosis, 96 high-resolution computed tomography criteria, 97–99 “Honeycomb” cysts, 96 imaging pattern, 96 Idiopathic pleuroparenchymal fibroelastosis, 102–103 Idiopathic pulmonary fibrosis (IPF), 96 IgG4-related lung disease, 208–209 IIP, see Idiopathic interstitial pneumonias (IIP) Inflammatory bowel disease (IBD), 227, 228 Inflammatory pseudotumor, 51 Injection methylphenidate (Ritalin), 132, 145 Intact cell-mediated immunity, 168 Interstitial lung diseases eosinophilic lung disease acute eosinophilic pneumonia, 113 causes, 113 chronic eosinophilic pneumonia, 114 idiopathic hypereosionophilic syndrome, 114–115 Loeffler syndrome, 113 hypersensitivity pneumonitis, 105–107

Index PLCH, 112–113 pulmonary alveolar proteinosis, 116 sarcoidosis common presentation, 107 HRCT features, 111–112 radiographic stages, 107–111 Interstitial pneumonia, 149, 150 Interstitial pneumonia with autoimmune features (IPAF), 103, 104, 220, 221 Intravascular sclerosing bronchioloalveolar tumor, 43 Intravascular talcosis pulmonary hypertension, 144, 145 recreational drug abuse, 131, 132 K Kaposi sarcoma, 44 L Large-cell carcinoma, 13–14, 19 Light-chain deposition disease, 207, 208 Lipoid pneumonia, 161 Lipoma, 50 Lobar pneumonia, 148, 149 Loeffler syndrome, 113 Lymphangioleiomyomatosis (LAM), 51 Lymphohistiocytic tumors Castleman disease, 53, 55–57 diffuse large B-Cell lymphoma, 55 Erdheim-Chester disease, 53, 57, 58 lymphomatoid granulomatosis, 54, 55 MALT lymphoma, 53–54 Lymphoid interstitial pneumonia (LIP), 101–102 Lymphomatoid granulomatosis, 54, 55 M Malakoplakia, 160–161 Malignant pleural mesothelioma (MPM), 59–61 Mediastinal amyloidosis, 205 Mendelson syndrome, 161, 162 Mesenchymal tumors chondroma/hamartoma, 49 epithelioid hemangioendothelioma/ intravascular sclerosing bronchioloalveolar tumor, 43 inflammatory pseudotumor, 51 Kaposi sarcoma, 44 lipoma, 50

233 lymphangioleiomyomatosis, 51 pathologic diagnosis, 41 pulmonary angiosarcoma, 42 pulmonary artery intimal sarcoma, 45 pulmonary hamartoma, 48 schwannoma (neurilemmoma), 46–47 Metastatic pulmonary calcification, 205–206 Michaelis-Guttman bodies, 160 Microscopic polynagiitis (MPA), 135, 137 Mixed connective tissue disease (MCTD), 216, 217 Mucoepidermoid carcinoma, 32 Mucormycosis infection, 184–186 Mycobacterial tuberculosis infection imaging of complications, 170, 171 miliary TB, 169–170 post-primary TB, 168–169 primary TB, 167–168 N Niemann-Pick disease, 226 Nocardiosis, 160, 161 Nodular lymphoid hyperplasia, 201, 202 Nodular parenchymal amyloidosis, 204 Nonspecific interstitial pneumonia (NSIP), 99–100 Non-tuberculous mycobacterial infection causes, 170 cylindrical bronchiectasis, 171 fibrocavitary form, 170 hot tub lung, 171, 172 Ill-defined centrilobular ground-glass nodules, 171 nodular bronchiectatic form, 170, 171, 172 O Obliterative bronchiolitis, 86–88 Opportunistic fungi, 175 Organizing pneumonia (OP), 90–93 P Pancoast tumor/superior sulcus tumor, 9 Papillomatosis, 35–36 Parasitic infections dirofilariasis, 198, 199 echinococcosis, 198–199 strongyloides, 197, 198 toxoplasmosis, 200 PEComatous tumors, 51

234 Placental transmogrification with lipomatous change, 210 Pleural effusions, 167 Pleura tumors malignant pleural mesothelioma, 59–61 solitary fibrous tumor, 61–62 Pleuropulmonary blastoma, 29–30 Pleuropulmonary elastosis, 102–103 Plexiform pulmonary hypertension, 142 Pneumoconiosis asbestos-related reactions, 120–122 berylliosis, 122–123 classification of radiographic abnormalities, 117 coal-workers pneumoconiosis, 118, 120, 121 hard-metal pneumoconiosis, 123, 124 silicosis, 118–120 talcosis, 123, 125, 126 Pneumocystis pneumonia infection, 185–187 Polymyositis, 216, 217 Poor cell-mediated immunity, 168 Primary histoplasmosis/acute pulmonary histoplasmosis, 176, 177 Progressive disseminated histoplasmosis, 177, 178 Progressive massive fibrosis (PMF), 118, 120 Pseudomonas aeruginosa, 156 Pulmonary alveolar proteinosis, 116 Pulmonary angiosarcoma, 42 Pulmonary artery intimal sarcoma, 45 Pulmonary capillary hemangiomatosis (PCH), 144 Pulmonary hamartoma, 48 Pulmonary hyalinizing granuloma, 209 Pulmonary hypertension chronic thromboembolic pulmonary hypertension, 141–142 imaging features, 139–140 injection methylphenidate (Ritalin), 145 intravascular talcosis, 144, 145 plexiform pulmonary hypertension, 142 pulmonary capillary hemangiomatosis, 144 PVOD, 142–144 WHO classification, 139 Pulmonary Langerhans cell histiocytosis (PLCH), 112–113 Pulmonary ossification, 206, 207 Pulmonary toxicity, 128 Pulmonary vasculitis, 133 ANCA associated pulmonary vasculitis, 135–137 hypocomplementemic urticarial vasculitis, 137, 138 Pulmonary veno-occlusive disease (PVOD), 142–144

Index R Recreational drug abuse, lung injury, 130, 131 Respiratory bronchiolitis, 85, 86 Respiratory bronchiolitis–interstitial lung disease (RBILD), 100–101 Respiratory syncytial virus (RSV) pneumonia, 191 Rheumatoid arthritis, 214–215 Rhodococcus equi, 161 S Salivary gland–type tumors adenoid cystic carcinoma, 31, 32 differential of endoluminal mass imaging, 33 epithelial-myoepithelial tumor, 32–33 mucoepidermoid carcinoma, 32 types, 31 Saprophytic aspergillosis (aspergilloma), 181 Sarcoidosis common presentation, 107 HRCT features, 111–112 radiographic stages, 107–111 Sarcomatoid carcinoma carcinosarcoma, 28 classification, 27 pleuropulmonary blastoma, 29–30 SCC, see Squamous cell carcinoma Schwannoma (neurilemmoma), 46–47 Scleroderma, 215–216 Sclerosing pneumocytoma/sclerosing hemangioma, 37–38 Semi-invasive (chronic necrotizing) aspergillosis, 181, 182 Silicoproteinosis, 118 Silicosis, 118–120 Simple pulmonary eosinophilia, 113 Sjogren’s syndrome, 219, 220 Small airway disease follicular bronchiolitis, 85–86 obliterative bronchiolitis/bronchiolitis obliterans syndrome, 86–88 respiratory bronchiolitis, 85, 86 Small-cell carcinoma cause of, 17 contrast-enhanced chest CT, 17, 18 degree of lymphadenopathy, 17 multi-system metastasis, 17 Solitary fibrous tumor, 61–62 Squamous cell carcinoma (SCC) basaloid-type squamous cell carcinoma, 9, 11 central necrosis, 9, 10 central right hilar tumor, 9, 11

Index endobronchial nodule, 9, 10 Golden S sign, 9 malignant left pleural effusion, 9, 10 pancoast tumor/superior sulcus tumor, 9 Staphylococcus aureus pneumonia, 156–159 Streptococcus pneumoniae, 148 Strongyloides, 197, 198 Strongyloides stercoralis, 197 Swyer-James syndrome, 71, 72 Swyer-Macleod-James syndrome, see Swyer-James syndrome Systemic lupus erythematosus (SLE), 218–219 T Talcosis, 123, 125, 126 Toxoplasma gondii, 200 Toxoplasmosis, 200 Tracheobronchial amyloidosis, 203, 205 Traction bronchiectasis, 80 Tubercular (TB) and non-tubercular mycobacterial (MAC) infections, 173 U UIP, see Usual interstitial pneumonia (UIP) Undifferentiated connective tissue disease, 220, 221 Unilateral hilar/mediastinal lymphadenopathy, 167

235 Usual interstitial pneumonia (UIP) ATS/ERS/JRS/ALAT 2018 official guidelines, 96 definitive diagnosis, 96 high-resolution computed tomography criteria, 97–99 “Honeycomb” cysts, 96 imaging pattern, 96 V Viral infections adenovirus infection, 193 atypical pneumonia in immunocompetent hosts, 189 CMV pneumonia, 193 COVID-19, 190–192, 194–196 EBV infection, 192 histopathologic patterns, 189–190 HMPV infection, 192 imaging features, 190 imaging findings, 189 in immune-compromised hosts, 189 RSV pneumonia, 191 sequela of old Varicella pneumonia, 194 Von Hansemann histiocytes, 160 W Wegener’s granulomatosis, see Granulomatosis with polyangiitis (GPA)