2,854 668 132MB
English Pages 1071 [1072] Year 2023
Handbook of Generation IV Nuclear Reactors
Woodhead Publishing Series in Energy
Handbook of Generation IV Nuclear Reactors A Guidebook Second Edition Edited by
IGOR L. PIORO
Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
An imprint of Elsevier
Woodhead Publishing is an imprint of Elsevier 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, OX5 1GB, United Kingdom Copyright © 2023 Elsevier Ltd. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. ISBN: 978-0-12-820588-4 (print) ISBN: 978-0-12-822653-7 (online) For information on all Woodhead publications visit our website at https://www.elsevier.com/books-and-journals
Publisher: Joe Hayton Editorial Project Manager: Tim Eslava Production Project Manager: Erragounta Saibabu Rao Cover Designer: Matthew Limbert Typeset by STRAIVE, India
Contributors
Michel Allibert LPSC/IN2P3/CNRS—Grenoble Alpes University—Grenoble Institute of Technology, Grenoble, France
Romney B. Duffey Indravadan Dulera
Idaho Falls, ID, United States BARC, Mumbai, India
Fatih Aydogan Jacksonville University, Jacksonville, FL, United States
Rami S. El-Emam Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON, Canada
Janos Bodi Paul Switzerland
Villigen,
Seyun Eom Canadian Nuclear Safety Commission, Ottawa, ON, Canada
Shridhar K. Chande Atomic Energy Regulatory Board, Mumbai, India
Natalia M. Fialko Institute of Engineering Thermal Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Scherrer
Perumal Chellapandi India
Institut,
BHAVINI, Kalpakkam,
Kamiel S. Gabriel Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON, Canada
Lin Chen Institute of Engineering Thermophysics, Chinese Academy of Sciences & University of CAS, Beijing, People’s Republic of China
Arnold A. Gad-Briggs EGB Engineering UK LTD, Southwell, United Kingdom
Yoshitaka Chikazawa Japan Atomic Energy Agency (JAEA), Ibaraki, Japan Luciano Cinotti Kingdom
Delphine Gerardin LPSC/IN2P3/CNRS— Grenoble Alpes University—Grenoble Institute of Technology, Grenoble, France
Newcleo Ltd, London, United
Enrico Girardi France
Michel Claessens European Commission and Free University of Brussels, Brussels, Belgium
EDF Lab Paris-Saclay, Palaiseau,
United Kingdom
Filip Grochowina EGB Engineering UK LTD, Southwell, United Kingdom
Dahvien Dean Department of Nuclear Engineering, Texas A&M University, College Station, TX, United States
Joel Guidez CEA, CEN SACLAY, Gif-surYvette, France
Gerald Clark
Sylvie Delpech France
Dohee Hahn Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
IJC Lab/IN2P3/CNRS, Orsay,
Daniel Heuer LPSC/IN2P3/CNRS—Grenoble Alpes University—Grenoble Institute of Technology, Grenoble, France
Nikita Dort-Goltz Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
Mohammad Hosseiny Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
Alexey Dragunov Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
xi
xii
Contributors
Dan Hughes Hughes and Associates, Perth, NY, United States
Hiroyuki Ohshima Japan Atomic Energy Agency (JAEA), Ibaraki, Japan
Brian Ikeda Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
Emmanuel O. Osigwe EGB Engineering UK LTD, Southwell, United Kingdom
Hideki Kamide Japan Atomic Energy Agency (JAEA), Ibaraki, Japan Pavel L. Kirillov State Scientific Centre of the Russian Federation—Institute of Physics and Power Engineering (IPPE) named after A.I. Leipunsky, Obninsk, Russia Ken Kirkhope Canadian Nuclear Safety Commission, Ottawa, ON, Canada
Wargha Peiman Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, Oshawa, ON, Canada Pericles Pilidis Gas Turbine Engineering Group, Cranfield University, Cranfield, United Kingdom Igor L. Pioro Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
AETC Inc., Toronto, ON,
Roman M. Pioro Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
Shigenobu Kubo Japan Atomic Energy Agency (JAEA), Ibaraki, Japan
Evgen N. Pismennyi National Technical University of Ukraine “Igor Sikorsky Kiev Polytechnic Institute”, Kyiv, Ukraine
Natalia P. Kozioura Canada
Axel Laureau IN2P3/CNRS - IMT Atlantique, Nantes, France Laurence K.H. Leung Canadian Nuclear Laboratories, Chalk River, ON, Canada Mohammed Mahdi Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, Oshawa, ON, Canada Jennifer McKellar Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
Roman Popov Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, Oshawa, ON, Canada Victor G. Razumovskiy National Technical University of Ukraine “Igor Sikorsky Kiev Polytechnic Institute”, Kyiv, Ukraine Jovica Riznic Canadian Nuclear Safety Commission, Ottawa, ON, Canada Gilles H. Rodriguez Technical Director of the Generation IV International Forum, France
Elsa Merle LPSC/IN2P3/CNRS—Grenoble Alpes University—Grenoble Institute of Technology, Grenoble, France
Eugene Saltanov Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
Paul Scherrer Institut,
Suresh Sampath Gas Turbine Engineering Group, Cranfield University, Cranfield, United Kingdom
Konstantin Mikityuk Villigen, Switzerland
Sarah J. Mokry Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, Oshawa, ON, Canada Theoklis Nikolaidis Gas Turbine Engineering Group, Cranfield University, Cranfield, United Kingdom Thambiayah Nitheanandan Canadian Nuclear Safety Commission, Ottawa, ON, Canada
Thomas Schulenberg Karlsruhe Technology, Karlsruhe, Germany Ratan K. Sinha Mumbai, India
Institute
of
Department of Atomic Energy,
Anton D. Smirnov National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
xiii
Contributors
Craig F. Smith Naval Postgraduate School, Monterey, CA, United States Gopala I. Srinivasan
IGCAR, Kalpakkam, India
Research and Innovation, Dir. Energy, Unit Euratom—Fission, Brussels, Belgium Pallippattu K. Vijayan
BARC, Mumbai, India
Joao Amaral Teixeira Gas Turbine Engineering Group, Cranfield University, Cranfield, United Kingdom
Hanqing Xie Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
Georgy V. Tikhomirov National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
Xing L. Yan Japan Atomic Energy Agency, Oarai-Machi, Ibaraki-ken, Japan
Mark Tsai Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, Oshawa, ON, Canada Pavel Tsvetkov Department of Nuclear Engineering, Texas A&M University, College Station, TX, United States Georges Van Goethem Former Principal Scientific Officer at the European Commission, DG
Calin Zamfirescu Canada
Durham College, Oshawa, ON,
Dalin Zhang Xi'an Jiaotong University, Xi'an, People's Republic of China Constantin O. Zvorykin National Technical University of Ukraine “Igor Sikorsky Kiev Polytechnic Institute”, Kyiv, Ukraine
Foreword Dear Readers: Handbook of Generation IV Nuclear Reactors, Second Edition has been written by recognized nuclearenergy system experts from around the world. The need for this new edition is based on the success of the first edition, published in 2016 and, until now, the only book in the world dedicated solely to Generation IV nuclear-power reactors and related topics. Of course, within the last 6 years, many new developments in nuclear power and engineering have taken place, especially in relation to Generation IV nuclear-power reactors. Thus a major purpose of this edition is to summarize the latest achievements, developments, and trends within these areas. Currently, 443 nuclear-power reactorsa generate about 10.4% of electricity worldwide. Global demand is and will be growing for this essential and reliable energy source, almost free from greenhouse gases (if the whole nuclear cycle is considered, i.e., from extraction of uranium ore to demolition of old Nuclear Power Plants (NPPs)). Interest in the use of nuclear energy for electricity generation has led to nuclear reactors being currently built in 33 countries, and 3 countries without reactors are currently working on adding new builds. The safe and efficient operation of the current fleet of nuclear-power reactors is essential, as is their life extension for global sustainability and human well-being. This current generation of reactors/NPPs, most being light- and heavy-water cooled, has served and is serving the world well. The remaining challenges include advances in thermal efficiency, managing rare-event safety, fuel-cycle enhancements, improved economic competitiveness, ensuring that nuclear-weapon-proliferation concerns are addressed, and managing radioactive waste with full public and political participation. These topics are indeed the Generation-IV goals and encompass so-called reactor systems. These needed technical developments are set against the global backdrop of concerns and issues over climate change, economic growth, sustainable and renewable energy use, optimal resource development, political stability, international security, and environmental conservation. The future, therefore, also lies in the development of the next generation of nuclear-energy systems: Generation-IV nuclear-power reactors and other advanced-reactor concepts/designs, which offer potential solutions to many of these problems, including advances in the use of risk-informed decision making and safety regulations. New reactor/NPP designs, including small-modular-reactors (SMRs), and regulations will incorporate the latest developments and understanding in this important engineering/scientific discipline. Therefore, to place the latest developments in context and elaborate on the global technical and social issues, this new second edition of the Handbook contains the following sections: 1. Introduction, in which all industrial methods of electricity generation worldwide are listed, including nonrenewable and renewable sources, with the emphasis on nuclear energy and its role in future electricity generation. 2. Part I, which is completely dedicated to six Generation-IV concepts: (1) Very high-temperature-reactor (VHTR); (2) Gas-cooled Fast Reactor (GFR) or just High Temperature Reactor (HTR); (3) Sodium-cooled Fast Reactor (SFR); (4) Lead-cooled Fast Reactor (LFR); (5) Molten Salt Reactor (MSR); and (6) SuperCritical Watercooled Reactor (SCWR); and which begins with official information from the Generation IV International Forum (GIF). a
Refers to reactors connected to electrical grids. This number includes 33 reactors left in Japan of which only 6 Pressurized Water Reactors (PWRs) are currently in operation as of November 3, 2022; however, more reactors are planned to be put into operation soon.
xv
xvi
Foreword
3. Part II, which is a summary of Generation-IV activities in the following countries: (1) United States; (2) European Union; (3) Japan; (4) South Korea; (5) China; and (6) India. (For developments in Russia, please refer to Chapter 12 of the first edition and also the latest developments presented in various chapters and Appendix A1 of this new edition.) 4. Part III, which is dedicated to related topics for Generation-IV reactors, including: Safety and risk assessment of advanced reactors; Nonproliferation for advanced reactors—political and social aspects; Thermal aspects of conventional and alternative fuels; Hydrogen production pathways for Generation-IV reactor technologies; Systems of advanced Small Modular Reactors (SMRs); Alternative power cycles for selected Generation-IV reactors; and Regulatory and licensing challenges with Generation-IV nuclear-energy systems. 5. Part IV, which is dedicated to nuclear-power technologies beyond Generation-IV concepts, i.e., the ITER fusion energy megaproject, the way to fusion energy. 6. Technical Appendices, which provide readers with additional information and data on current nuclear-power reactors and NPPs; thermophysical properties of reactor coolants; thermophysical properties of fluids at subcritical and critical/supercritical pressures; heat transfer and pressure drop in forced convection to fluids at supercritical pressures; world experience in nuclear steam reheat; and other topics.
In general, it should be noted that the first edition of Handbook of Generation IV Nuclear Reactors is also still quite a valuable source of previous years statistics, older designs of nuclear-power reactors and NPPs, and other important subjects. Our editorial and author team contains top international experts in the corresponding nuclearengineering areas from the following countries: 1. Belgium (2); 2. Canada (20); 3. China (2); 4. France (9); 5. Germany (2); 6. India (5); 7. Japan (5); 8. Russia (4); 9. South Korea (1); 10. Ukraine (6); 11. Switzerland (2); 12. United Kingdom (9); and 13. United States (5) (72 experts in total). Members of the editorial team are from academia, industry including nuclear vendors and NPPs, international organizations, government and research agencies, and scientific establishments. We welcome you to the Handbook of Generation IV Nuclear Reactors, Second Edition, and we are looking forward to seeing your comments, suggestions, and criticisms to improve our future editions. Also, please enjoy reading the chapters and Appendices that follow. This new edition of a unique international Handbook combines the history of development, research, industrial-operating experience, new designs, systems and safety analysis, and applications of nuclear energy, and includes many other related topics that help change the world and our lives for the better! It is recommended for a wide range of specialists within the areas of nuclear engineering, power engineering, mechanical engineering, environmental studies, and for undergraduate and graduate students of the corresponding faculties/departments as a textbook. SUPPLEMENTARY DATA Please find the supplementary appendices at the companion site: https://www.elsevier.com/books-and-journals/ book-companion/9780128205884
Foreword
xvii
Igor L. Piorob, Ph.D., Dr. Tech. Sc., P.Eng. (Ont.), Fellow ASME, CSME & EIC Foreign Fellow of National Academy of Sciences of Ukraine Professor, Editor-in-Chief of ASME Journal of Nuclear Engineering and Radiation Science Department of Energy and Nuclear Engineering, Faculty of Engineering and Applied Science Ontario Tech University (University of Ontario Institute of Technology); Oshawa, Ontario, Canada
Romney B. Duffeyc, BSc., PhD., FASME, member INEA, ANS, SRE Scientist and Author Idaho Falls, Idaho, United States
b
https://engineering.ontariotechu.ca/people/ene/dr-igor-pioro.php and https://asmedigitalcollection.asme.org/ nuclearengineering/article/8/1/010304/1122288 c https://asmedigitalcollection.asme.org/nuclearengineering/article/8/3/030201/1140193
Preface
The inspiration for creating a forum for international collaboration on advanced reactor research came out of a meeting in Washington, DC, in 2000. The nine founding members of the Generation IV International Forum (GIF) carefully set about establishing system performance goals, identifying six major development tracks from more than 100 competing concepts using a screening methodology along with four goal areas (sustainability, economics, safety and reliability, and proliferation resistance and physical protection), 15 criteria, and 24 metrics. Chartered in 2001, GIF formally began collaborative research in 2006 after a legal framework, a technology road map, and detailed initial project plans were completed. The 2015 United Nations Climate Change Conference (COP21) helped highlight the essential role of nuclear energy in climate-friendly electricity production. The International Energy Agency (IEA) estimated that current global use of nuclear energy avoids 1.7 Gt of CO2 emissions annually at that time. Going forward, in order for nuclear energy to meet its potential in abating climate change, new plants will employ advanced technology. Notably, the next generation of nuclear power systems will produce electricity at competitive prices and heat for industry use, e.g., hydrogen production, process heat, and seawater desalination, while assuring a concerned public that the issues of safety, waste management, proliferation resistance, and resource optimization have been satisfactorily addressed. These concerns are the very issues that guide Generation IV research and development. When successfully deployed, the robust safety of Generation IV systems will assuage public anxiety and assure protection of capital investment. Coupled with an advanced fuel cycle, Generation IV reactors will reduce the volume of nuclear waste and improve uranium resource utilization by two orders of magnitude, without increasing proliferation risk. This Handbook of Generation IV Nuclear Reactors is organized along the lines of the six systems originally selected by GIF in 2002 (and reaffirmed in 2022). It summarizes the collective progress made under the GIF banner as well as the status of development in countries with substantial advanced reactor and fuel cycle research and development programs. Both are important. The bulk of the global funding and effort goes into national programs, which ultimately produce costly prototypes and demonstrations that will lead to the commercialization of these systems. On the other hand, GIF fosters collaboration in the earlier stages of research and technology development by arranging joint projects and sharing key research facilities. GIF also takes the lead on developing criteria and guidelines for Generation IV designs and supports regulatory bodies in developing rational strategies for licensing advanced reactors. Collaboration with private sectors is also the current concern for early deployments of Generation IV systems. GIF welcomes Elsevier’s publication of this Handbook of Generation IV Nuclear Reactors, which is a significant addition to the growing body of literature on advanced nuclear power systems. A convenient overview of all Generation IV systems, it will meet the information needs of those who seek a basic familiarization as well as those who want a solid basis for further study. GIF congratulates the editor and Elsevier for undertaking this ambitious project. Generation IV International Forum (GIF)
xix
C H A P T E R
1 Introduction S U B C H A P T E R
1.1 Current status of electricity generation in the world Igor L. Pioroa, Romney B. Duffeyb, Pavel L. Kirillovc,∗, Lin Chend, Constantin O. Zvorykine, Mark Tsaia, and Hanqing Xiea a Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, Oshawa, ON, Canada bIdaho Falls, ID, United States cState Scientific Centre of the Russian Federation—Institute of Physics and Power Engineering (IPPE) named after A.I. Leipunsky, Obninsk, Russia dInstitute of Engineering Thermophysics, Chinese Academy of Sciences & University of CAS, Beijing, People’s Republic of China eNational Technical University of Ukraine “Igor Sikorsky Kiev Polytechnic Institute”, Kyiv, Ukraine
Nomenclature P Pressure, MPa T Temperature, °C Greek letters η Thermal efficiency, % Subscripts cr el f gr in out sat
critical electrical force gross inlet outlet saturation
∗
Professor P.L. Kirillov has participated in preparation of this Chapter, unfortunately, he has passed away on October 10, 2021 (for details, see https://asmedigitalcollection.asme.org/nuclearengineering/issue/8/2).
Handbook of Generation IV Nuclear Reactors https://doi.org/10.1016/B978-0-12-820588-4.00001-3
1
Copyright © 2023 Elsevier Ltd. All rights reserved.
2
1. Introduction
Abbreviations AC BWR CANDU CAR CCGT CCUS CPV DOE EEC EI El EPR EU HDI hp IEA II LCOE LED LEI LNG Ltd LTO LWR M MHI NASA NEA NOAA NPP NY O&M OECD OPG PHES PHWR PSH PSHEPP PV PWR Q REG Rep. S. SAR SCR SFR SMR UAE UK US USA USSR VVER
Alternative Current Boiling Water Reactor CANada Deuterium Uranium Central African Republic Combined Cycle Gas Turbine Carbon Capture, Utilization and Storage Concentrated PhotoVoltaic Department Of Energy (USA) Electrical Energy Consumption Education Index Electricity European Power Reactor European Union Human Development Index horse power International Energy Agency Income Index Levelized Cost Of Energy Light Emitting Diode Life Expectancy Index Liquefied Natural Gas Limited Long-Term Operation Light-Water Reactor Million or Mega Mitsubishi Heavy Industries National Aeronautics and Space Administration (USA) Nuclear Energy Agency National Oceanic and Atmospheric Administration Nuclear Power Plant New York Operation & Maintenance Organization for Economic Co-operation and Development Ontario Power Generation (Canada) Pumped Hydro-electric Energy Storage Pressurized Heavy-Water Reactor Pumped-Storage Hydro-electricity Pumped-Storage Hydro-Electric Power Plant PhotoVoltaic Pressurized Water Reactor Quarter Recovered Energy Generation Republic South Syrian Arabic Republic Selective Catalytic Reduction Sodium Fast Reactor Small Modular Reactor United Arab Emirates United Kingdom United States United States of America Union of Soviet Socialists Republics Water-Water Power Reactor (in Russian abbreviation)
3
1.1.1 Electricity generation in the world
1.1.1 Electricity generation in the world This chapter is a logical continuation of our previous publications on this topic (Pioro et al., 2016, 2020, 2022; Pioro and Duffey, 2015, 2019; Pioro, 2012). It is well known that electricity generation and consumption are the key factors for advances in industry, agriculture, technology, and the standard of living (see Table 1.1.1, Figure 1.1.1, and Appendix A8, Tables A8.1.1–A8.1.3). Also, a strong power industry with diverse energy sources is very important for a country’s independence. Table 1.1.1 lists selected countries in all four categories of Human Development Index (HDI), i.e., (1) very high HDI (65 countries); (2) high HDI (54 countries); (3) medium HDI (36 countries); and (4) low HDI (33 Table 1.1.1.
HDIa Rank (2019)
Population (https://www.worldometers.info/world-population/population-by-country/), Electrical Energy Consumption (EEC) (https://en.wikipedia.org/wiki/List_of_countries_ by_electricity_consumption), and Human Development Index (HDI) (http://hdr.undp. org/en/content/latest-human-development-index-ranking) in the world and selected countries (for exact details on years, see original sources) HDIa (2019)
Country
EECb (2018–2019) W/Capita
GWh
Population in millions (2019)
Very high HDI (65 countries) 1
Norway
0.957
2648
124,130
5.35
2
Switzerland
0.955
750
56,350
8.57
4
Iceland
0.949
5898
18,680
0.36
6
Germany
0.947
719
524,270
83.20
7
Sweden
0.945
1462
131,800
10.29
8
Australia
0.944
1084
241,020
25.36
13
United Kingdom (UK)
0.932
513
300,520
66.80
16
Canada
0.929
1706
549,260
37.53
17
United States of America (USA)
0.926
1387
3,989,570
328.20
19
Japan
0.919
816
902,840
126.86
23
South Korea
0.916
1163
527,040
51.71
26
France
0.901
765
449,420
66.98
31
United Arab Emirates (UAE)
0.890
1395
119,460
9.77
40
Saudi Arabia
0.854
1073
322,370
33.41
52
Russia
0.824
763
965,160
146.70
64
Kuwait
0.806
1607
59,280
4.21 Continued
4
Table 1.1.1.
HDI Rank (2019)
1. Introduction
Population (https://www.worldometers.info/world-population/population-by-country/), Electrical Energy Consumption (EEC) (https://en.wikipedia.org/wiki/List_of_countries_ by_electricity_consumption), and Human Development Index (HDI) (http://hdr.undp. org/en/content/latest-human-development-index-ranking) in the world and selected countries (for exact details on years, see original sources)—cont’d Country
HDI (2019)
EEC (2018–2019) W/Capita
Population in millions (2019)
GWh
High HDI (54 countries) 74
Ukraine
0.779
331
128,810
44.39
84
Brazil
0.765
323
597
210.00
85
China
0.761
527
7,225,500
1427.65
99
World
0.737
350
23,398,000
7800.00
1,547,000
1384.66
Medium HDI (36 countries) 131
India
0.645
107
Low HDI (33 countries) 160
Rwanda
0.543
7
760
12.63
175
Guinea-Bissau
0.480
2
40
1.92
180
Eritrea
0.459
14
410
3.21
182
Sierra Leone
0.452
4
240
7.81
185
Burundi
0.433
3
340
11.53
185
South Sudan
0.433
5
530
11.06
187
Chad
0.398
2
210
15.95
188
Central African Rep. (CAR)
0.397
3
140
4.75
189
Niger
0.394
8
1590
22.31
a
HDI—Human Development Index by United Nations (UN); HDI is a comparative measure of life expectancy, literacy, education and standards of living for countries worldwide. HDI is calculated by the following formula: HDI ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3 LEI EI II , where LEI—Life Expectancy Index, EI—Education Index, and II—Income Index. It is used to distinguish whether the country is a developed, a developing or an underdeveloped country, and also to measure the impact of economic policies on quality of life. Countries fall into four broad human-development categories: (1) very high, 65 countries; (2) high, 53; (3) medium, 36; and (4) low, 33 (Wikipedia, 2019). 1012 EEC, TWh year W 365 days 24 h b EEC, . ¼ Capita ðPopulation, MillionsÞ 106 Data for all countries in the world are listed in Appendix A8, Tables A8.1.1–A8.1.3. In bold—highest values for countries; world data—in Italic.
countries), in total, 188 countries of the world plus average data for the whole world. Together with HDI, Table 1.1.1. contains data on Electrical Energy Consumption (EEC) in W/Capita and in GWh, and Population in millions. The corresponding formulas for HDI and EEC are provided right below Table 1.1.1. It should be noted that such data are usually related to 2 to 3 years prior to the current year.
1.1.1 Electricity generation in the world
5
Figure 1.1.1. Electrical-Energy Consumption (EEC) (W/Capita) vs Human Development Index (HDI) for all countries of the world (based on data from Appendix A8, Table A8.1.1.): (a) graph with selected countries shown and (b) HDI correlation (in general, the HDI correlation might be an exponential rise to maximum (1), but based on the current data it is a straight line in regular–logarithmic coordinates) In Appendix A8.1, Tables A8.1.1–A8.1.3 list HDI, EEC, and Population data for all countries in the world and the world average. To emphasize their importance, Table A8.1.1 is ranked based on decreasing HDI values; Table A8.1.2 based on decreasing EEC (TWh) values; and Table A8.1.3 based on decreasing EEC (W/Capita) values. It was found that HDI has strong dependence on EEC (W/Capita) (see Figure 1.1.1). In Figure 1.1.1: HDI has a linear scale, and EEC is a logarithmic with base 10. In Figure 1.1.1b: The corresponding correlation is provided, which fits all data with the uncertainty of 20%. Based on this correlation it is clear that to be in the group of countries with: (a) very high HDI the minimum HDI value should be 400 W/Capita (however, in reality, we have the range of 227–5900 W/Capita); (b) for high HDI should be 100 W/Capita (actual range is 56–674 W/Capita); (c) for medium HDI should be 20 W/Capita (actual range is 9–207 W/Capita); and (d) for low HDI the actual range is 2–50 W/Capita. More or less everybody knows the standards or level of living we have within very high HDI 65 countries. To understand what 2 W per person means in a country, we can make a comparison that this power equals approximately only one mini or small LED (Light Emitting Diode) bulb, implying that there is absolutely no possibility for modern education, agriculture, industry, and level of living conditions! Of course, while government buildings; embassies; wealthy people; diamond, gold, and platinum mines; property owners; etc. have electricity, but, actually, the rest of the population is living without it! And vast majority of Low HDI countries are located in Africa (see Table A8.1.1), but “energy poverty” also occurs among minority populations, refugees, and resource-deprived communities in many countries and regions of social disparity. In support of our statements above, Figure 1.1.2 shows a composite image of a global view of our planet Earth at night, which was compiled from over 400 satellite images (Image Credit: NASA/NOAA). In general, more lights at night means higher EEC values (W/Capita) and corresponding to that higher HDI values. However, we have to take into consideration also the density of population (see Table 1.1.2) and its
6
1. Introduction
Figure 1.1.2. This composite image shows a global view of Earth at night, which was compiled from over 400 satellite images. (For selected general data on world population, see Table 1.1.2 and for detailed data by countries of the world—see Appendix A8, Table A8.1.1.) Image Credit: NASA/NOAA. Last Updated: Aug. 4, 2017. Editor: NASA Content Administrator: https://www.nasa.gov/topics/earth/ earthday/gall_earth_night.html
Table 1.1.2. No.
World population and other related data
Region
Population (urban, %) Millions
% of world population % 100
Area Million km2
Population density People/ km2
Median age Years
148.940
52
31
0
World
7890 (56%)
1
Africa
1378 (44%)
16.7
29.648
45
20
2
America Latin + Caribbean
661 (83%)
8.4
20.139
32
31
3
America Northern
372 (83%)
4.7
18.652
20
39
4
Asia
4687 (51%)
59.8
31.033
150
32
5
Europe
748 (75%)
9.8
22.135
34
43
6
Oceania (Australia, New Zeeland, etc.)
43 (68%)
0.5
8.486
5
33
(Based on data from August 30, 2021) by regions (https://www.worldometers.info/population/).
1.1.1 Electricity generation in the world
7
non-homogeneous distribution inside a country. As an example, Canada despite being an “industrially developed” country with high EEC and HDI values (1706 W/Capita and Rank 16), has the vast majority of population concentrated along the busy trading boarder with the Unites States. Therefore, the Canadian North is dark in this figure. In the same way, Australia is one of the top countries in the world by HDI value (Rank 8 and 1084 W/Capita); however, the vast majority of population is located on the East coast of the continent. Therefore, all the central part of this huge island continent is completely dark! At the opposite extreme, the continent of Africa consists of many countries within a population of about 1378 million people (16.7% of the world), but only in a limited number of regions and cities we can see lights mainly located in the coastal areas of this continent. The rest of the continent with many people living there is almost completely without electricity and the transport, facilities, and industrial development that it enables. In general, electricity (see Figure 1.1.3) can be mainly generated from: (1) non-renewable energy sources such as coal, natural gas, oil, and nuclear; and (2) renewable energy sources such as hydro, biomass, wind, geothermal, solar, and marine power. Today, the main sources for global electrical-energy generation (see Figure 1.1.3a) are: (1) Thermal power—primarily using coal (36.7%) and secondarily using natural gas (23.5%); (2) “Large” hydroelectric power plants (15.8%); and (3) Nuclear power (10.4%). The last 13.6% of the electrical energy is generated using oil (3.1%), and the remainder (10.5%)—from intermittent wind (5.3%), solar (2.7%), and from biomass, geothermal, and marine energy (2.5%). Main sources for electrical-energy generation in selected countries are also shown in Figures 1.1.3b–y. Figures 1.1.3b–v show sector diagrams for the largest countries by population in the world located by the decreasing population. Figures 1.1.3w–y show sector diagrams of countries with quite unusual combination of electrical-energy sources. In addition to Figures 1.1.3a–y with the sector diagrams, Table 1.1.3 lists electricity generation in the world and selected countries by source (data on the world and 13 countries with the largest installed capacities of nuclear-power reactors). Analysis of the data shown in these sector diagrams (see Figure 1.1.3) shows that the world (37%) (Figure 1.1.3a) and, especially, countries with the largest population, i.e., China (62%) (Figure 1.1.3b), and India (71%) (Figure 1.1.3c), as well as Indonesia (59%) (Figure 1.1.3e), Turkey (Figure 1.1.3j), Germany (30%) (Figure 1.1.3l), South Korea (40%) (see Figure 1.1.3p), and Poland (74%) (Figure 1.1.3t) rely heavily on coal for electricity generation! The USA (37%) (Figure 1.1.3d), Russia (46%) (Figure 1.1.3g), Mexico (60%) (Figure 1.1.3h), Japan (34%) (Figure 1.1.3i), Iran (73%) (Figure 1.1.3k), UK (41%) (see Figure 1.1.3m), Italy (49%) (Figure 1.1.3o), Spain (31%) (Figure 1.1.3q), Saudi Arabia (58%) (Figure 1.1.3v), and UAE (98%) (Figure 1.1.3x) use mainly natural gas or Liquefied Natural Gas (LNG) (Japan) for electricity generation, which is better than to use coal, but still for now we cannot avoid emission of carbon dioxide. On opposite, France (70%) (Figure 1.1.3n), Ukraine (55%) (Figure 1.1.3s), and Sweden (40%) (Figure 1.1.3w) heavily rely on nuclear power, which is, in general, the lowest emitter of carbon dioxide compared to all other electricity-generating sources including renewables (for details, see Section 1.1.2 of this chapter). Brazil (64%) (Figure 1.1.3f), Canada (58%) (Figure 1.1.3u), and Iceland (71%) heavily rely on hydro electricity generation due to their unique geographical location. Four European countries: Germany (20%) (Figure 1.1.3l), UK (20%) (Figure 1.1.3m), Spain (20%) (Figure 1.1.3q), and Italy (16%) (Figure 1.1.3o) quite substantially rely of wind power. Solar energy is quite popular in Japan (7%) (Figure 1.1.3i), in Germany (8%) (Figure 1.1.3l), in Italy (8%) (Figure 1.1.3o), and in Spain (6%) (Figure 1.1.3q). It is interesting to note that among all these countries shown in Figure 1.1.3, Iceland is the leader in using geothermal energy for electricity generation (29%) (Figure 1.1.3y). In addition, Iceland is the only one country from all mentioned above, actually, 100% rely on renewable energy sources such as hydro (71%) and geothermal (29%)! And again, this is only due to absolutely unique location with rivers, many volcanoes and very active geothermal sources. That is why Iceland is the world leader in the EEC value (5900 W/Capita and HDI Rank 4), which
(a) World: Population 7,871 millions; EEC 350 W/Capita; and HDI Rank 99.
(b) China: Population 1,439 millions; EEC 527 W/Capita; and HDI Rank 85; 13.1% of world coal reserves and 2.7% - of gas.
(c) India: Population 1,380 millions; EEC 107 W/Capita; and HDI Rank 131; 9.5% of world coal reserves.
(d) USA: Population 331 millions; EEC 1,387 W/Capita; and HDI Rank 17; 22.3% of world coal reserves and 7.6% - of gas.
Figure 1.1.3. Electricity generation by source in the world and selected countries (data on the world and 23 countries are located by decreasing population). Population from https://www.worldometers.info/world-pop ulation/population-by-country/ (June 2021); EEC from https://en.wikipedia.org/wiki/List_of_countries_by_ electricity_consumption (2018–2019); HDI from http://hdr.undp.org/en/content/latest-human-developmentindex-ranking (2019); and the rest of the data (2019) are from: https://www.iea.org/data-and-statistics/databrowser/?country¼WORLD&fuel¼Energy%20supply&indicator¼TPESbySource. (a) World: Population 7871 million; EEC 350 W/Capita; and HDI Rank 99. (b) China: Population 1439 million; EEC 527 W/Capita; and HDI Rank 85; 13.1% of world coal reserves and 2.7% of gas. (c) India: Population 1380 million; EEC 107 W/Capita; and HDI Rank 131; 9.5% of world coal reserves. (d) USA: Population 331 million; EEC 1387 W/Capita; and HDI Rank 17; 22.3% of world coal reserves and 7.6% of gas. (Continued)
9
1.1.1 Electricity generation in the world
(e) Indonesia: Populat ion 274 millions; EEC 111 W/Capita, and HDI Rank 107; 2.2% of world coal reserves.
(f) Brazil: Population 213 millions; EEC 323 W/Capita; and HDI Rank 84; 0.6% of world coal reserves.
(g) Russia: Population 146 millions; 763 W/Capita; and HDI Rank 52; 15.5% of world coal reserves and 23.4% - of gas.
(h) Mexico: Population 129 millions; 240 W/Capita; and HDI Rank 74.
Figure 1.1.3, Cont’d (e) Indonesia: Population 274 million; EEC 111 W/Capita, and HDI Rank 107; 2.2% of world coal reserves. (f) Brazil: Population 213 million; EEC 323 W/Capita; and HDI Rank 84; 0.6% of world coal reserves. (g) Russia: Population 146 million; 763 W/Capita; and HDI Rank 52; 15.5% of world coal reserves and 23.4% of gas. (h) Mexico: Population 129 million; 240 W/Capita; and HDI Rank 74. (Continued)
10
1. Introduction
(i) Japan: Population 126 millions; 816 W/Capita; and HDI Rank 19.
(j) Turkey: Population 84 millions; 344 W/Capita; and HDI Rank 54; 1.1% of world coal reserves.
(k) Iran: Population 84 millions; EEC 350 W/Capita; and HDI Rank 70; 16.5% of world gas reserves.
(l) Germany: Population 84 millions; 719 W/Capita; and HDI Rank 6; 3.5% of world coal reserves.
Figure 1.1.3, Cont’d (i) Japan: Population 126 million; 816 W/Capita; and HDI Rank 19. (j) Turkey: Population 84 million; 344 W/Capita; and HDI Rank 54; 1.1% of world coal reserves. (k) Iran: Population 84 million; EEC 350 W/Capita; and HDI Rank 70; 16.5% of world gas reserves. (l) Germany: Population 84 million; 719 W/Capita; and HDI Rank 6; 3.5% of world coal reserves. (Continued)
11
1.1.1 Electricity generation in the world
(m) UK: Population 68 millions; 513 W/Capita; and HDI Rank 13.
(n) France: Population 65 millions; 765 W/Capita; and HDI Rank 26.
(o) Italy: Population 60 millions; 562 W/Capita; and HDI Rank 29.
(p) S. Korea: Population 51 millions; 1163 W/Capita; and HDI Rank 23.
Figure 1.1.3, Cont’d (m) UK: Population 68 million; 513 W/Capita; and HDI Rank 13. (n) France: Population 65 million; 765 W/Capita; and HDI Rank 26. (o) Italy: Population 60 million; 562 W/Capita; and HDI Rank 29. (p) S. Korea: Population 51 million; 1163 W/Capita; and HDI Rank 23. (Continued)
12
1. Introduction
(q) Spain: Population 47 millions; 585 W/Capita; and HDI Rank 25.
(s) Ukraine: Population 44 millions; 331 W/Capita; and HDI Rank 74; 3.3% of world coal reserves.
(t) Poland: Population 38 millions; 458 W/Capita; and HDI Rank 35; 2.5% of world coal reserves.
(u) Canada: Populatin 38 millions; EEC 1706 W/Capita; and HDI Rank 16; 0.6% of world coal reserves and 1.0% - of gas.
Figure 1.1.3, Cont’d (q) Spain: Population 47 million; 585 W/Capita; and HDI Rank 25. (s) Ukraine: Population 44 million; 331 W/Capita; and HDI Rank 74; 3.3% of world coal reserves. (t) Poland: Population 38 million; 458 W/Capita; and HDI Rank 35; 2.5% of world coal reserves. (u) Canada: Population 38 million; EEC 1706 W/Capita; and HDI Rank 16; 0.6% of world coal reserves and 1.0% of gas. (Continued)
1.1.1 Electricity generation in the world
(v) Saudi Arabia: Population 35 millions; EEC 1073 W/Capita; and HDI Rank 40; 4.5% of world gas reserves.
(w) S weden: Population 10 millions; EEC 1462 W/Capita; and HDI Rank 7.
(x) UAE: Population 10 millions; EEC 1395 W/Capita; and HDI Rank 31; 3.0% of world gas reserves.
(y) Iceland: Population 0.34 millions; EEC 5898 W/Capita; and HDI Rank 4.
13
Figure 1.1.3, Cont’d (v) Saudi Arabia: Population 35 million; EEC 1073 W/Capita; and HDI Rank 40; 4.5% of world gas reserves. (w) Sweden: Population 10 million; EEC 1462 W/Capita; and HDI Rank 7. (x) UAE: Population 10 million; EEC 1395 W/Capita; and HDI Rank 31; 3.0% of world gas reserves. (y) Iceland: Population 0.34 million; EEC 5898 W/Capita; and HDI Rank 4
Table 1.1.3.
No
Electricity generation in the world and selected countries by source (data on the world and 13 countries with largest installed capacities of nuclear-power reactors are located by decreasing population) (in bold—highest values for countries; in Italic— lowest values) (data from 2018 to 2019)
Country
–
World China India USA Russia Japan Germany UK 0
1
2
3
–
4
5
6
France S. Korea Spain Ukraine Canada Sweden
7
8
9
10
11
12
13
Population, EEC, and HDI per country
1
Population, M
2
EEC TWh/year 23,398
3
W/Capita
7871 350
1439 1380
331
146
126
84
68
65
51
47
44
38
10
7226 1547 3990
965
903
524
301
449
527
242
129
549
132
763
816
719
513
765
1163
585
331
1706
1462
0.947 0.932
0.901
0.916 0.904
0.779
0.929
0.945
13
26
23
25
74
16
7
527
107 1387
4
HDI Total
0.737 0.761 0.645 0.926
5
Rank
–
El.-Gen. Sources
1
Coal
36.7
62.2
2
Gas
23.5
3.2
4.5
3
Nuclear
10.4
4.8
4
Oil
3.1
–
–
–
1
Hydro
15.8
17.7
10.9
6.8
17.5
8.8
3.8
2
Wind
5.3
5.5
4.1
6.9
–
0.8
3
Solar
2.7
3.1
3.2
2.2
–
4
Geothermal
2.5
–
–
0.4
5
Biomass
–
2.8
1.3
–
–
1
Other
99
85
131
17
0.824 0.919 52
19
6
Non-renewable 71.0 24.2
15.8
31.6
29.3
2.4
1.1
39.6
5.2
30.8
7.5
0.8
37.4
46.4
33.9
10.5
40.9
6.7
27.3
30.8
6.6
10.1
0.5
2.9
19.3
18.7
6.4
13.7
17.3
70.0
24.7
21.3
54.9
15.5
39.6
0.5
0.8
1.1
4.8
–
0.3
1.1
2.4
4.6
0.8
0.9
0.2
2.4
10.9
1.1
9.8
5.1
58.4
38.7
24.5
19.8
6.1
0.5
20.3
1.0
5.2
11.8
7.4
9.1
3.9
2.0
2.2
5.5
0.7
0.6
0.4
–
0.3
–
–
–
–
–
–
–
–
–
1.8
8.6
10.2
1.1
1.5
1.8
0.1
1.6
5.0
1.0
0.7
0.7
–
0.2
3.0
Renewable
Other –
3.5
0.1
0.7
0.5
4.2
0.5
2.8
Population from https://www.worldometers.info/world-population/population-by-country/ (June 2021); EEC from https://en.wikipedia.org/wiki/List_of_countries_by_ electricity_consumption (2018–2019); HDI from http://hdr.undp.org/en/content/latest-human-development-index-ranking (2019); and the rest of the data (2019) are from: https://www.iea.org/data-and-statistics/data-browser/?country¼WORLD&fuel¼Energy%20supply&indicator¼TPESbySource.
1.1.1 Electricity generation in the world
15
is way above the closest competitor—Norway with EEC value of 2650 W/Capita and HDI Rank 1 (see Tables 1.1.1 and A8.13). And in the case of Norway, which also has a unique location, due to that heavily rely on hydro power (92%)! A selected comparison of the data presented in Figure 1.1.3 with those data presented in our previous publication—Handbook (Edition 1) (Pioro, 2016) (Figure 1.1.2) (data on population from 2015; electrical-energy generation and EEC—from 2012 to 2014; and HDI from 2014) shows that: 1. World usage of coal and oil for electricity generation has slightly decreased, i.e., coal from 39.9% to 36.7% (# by 3.2%) and oil from 4.2% to 3.1% (# by 1.1%), respectively, on opposite usage of gas, wind and solar energy has slightly increased by 1% to 3%, which are in general good trends (see Figure 1.1.3a and Figure 1.2a in Pioro (2016)). However, it is definitely not enough to prevent quite fast climate change! In addition, and unfortunately, usage of nuclear and hydro power has decreased by 0.8% and 1.4%, respectively, which is a detrimental trend. 2. China has significantly decreased usage of coal for electricity generation from 80% to 62% and increased usage of hydro power from 15% to 18%, gas from 1% to 3%, nuclear from 2% to 5%, wind from 0% to 5.5%, and solar from 0% to 3%, which is a very good trend, i.e., decreasing usage of “dirty” coal for electricity generation (Figure 1.1.3b and Figure 1.2b in Pioro (2016)). 3. India has just slightly decreased usage of coal for electricity generation from 72% to 71% within last years; at the time, usage of gas is also decreased from 11% to 4.5%, nuclear from 3.2% to 2.9%, and hydro power from 12.2% to 10.9%, which is a detrimental trend. However, usage of wind energy increased from 0% to 4.1%, and solar from 0% to 3.2%, which is a good trend (Figure 1.1.3c and Figure 1.2c in Pioro (2016)). 4. United States have decreased usage of coal quite visibly, i.e., from 39% to 24%; increased usage of gas from 28% to 37%; and nuclear, hydro power, and other renewables are approximately on the same level, i.e., 19%; 7%, and 7%, respectively, which is a good trend (Figure 1.1.3d and Figure 1.2d in Pioro (2016)). 5. Brazil: As it was mentioned above, this country heavily relies on hydro power, and this is understandable, because it has the largest river in the world by water flow. Amazon river is located in Brazil plus a number of other large rivers. However, possibly due to climate change hydro electricity generation has decreased quite substantially from 77% to 64%! To compensate these losses, mainly usage of gas, biomass, and wind has increased (Figure 1.1.3f) and Figure 1.2i in Pioro (2016). 6. Russia has not significantly changed their usage of gas, nuclear, hydro, and coal within last years (Figure 1.1.3g and Figure 1.2g in Pioro (2016)). 7. Germany has decreased quite substantially usage of coal for electricity generation from 47% to 30%; but, at the same time, the usage of nuclear power was also decreased from 16% to 12% (as per December of 2021) (Figure 1.1.3l and Figure 1.2e in Pioro (2016)). However, in January of 2022, 3 of 6 large nuclear-power reactors have been shut down forever, and the decision was made to shut down the rest of 3 reactors before the end of 2022! Due to this it is understandable why Germany is desperate for much more natural-gas supply than before, because they must cover lost nuclear capacities and decrease the use of “dirty” coal! Also, it should be admitted that Germany has impressive portfolio and experience in using renewables for electricity generation. As such, Germany generates electricity from wind resources (20.4%), from solar (7.7%), from biomass (7.2%), and from hydro (4.2%), i.e., in total 40%! 8. The United Kingdom (UK) has decreased very significantly their usage of coal for electricity generation from 34% to 2.4%, and, instead, more electricity is generated from gas (increased from 27% to 41%), from wind (increased from 4% to 20%), and the use of solar and hydro power is also slightly increased (Figure 1.1.3m and Figure 1.2f in Pioro (2016)). However, in January of 2017, quite
16
1. Introduction
unusual events have happened, which affected significantly the electricity generation from various sources (Figure 1.1.4d). At that time, the UK grid faced a “perfect storm,” which coincide with a shutdown of a number of Nuclear Power Plants (NPPs) in France, nuclear trips in the UK, and a broken interconnector with France (UK also imports electrical energy from French NPPs). On the top of that, on January 16th of 2017, wind has diminished for the whole week. These special and unexpected conditions could definitely lead to a complete blackout. However, gas- and coal-fired power plants have saved the grid (usage of gas for electricity generation has increased by 11% and (a) Q3 2015
(c) Q3 2017 (30% renewables: wind + solar 19%)
(b) Q3 2016
(d) Jan. 16-22, 2017 (11% renewables: wind + solar 4%)
Figure 1.1.4. Changes in electricity generation in UK by source within Q3 2015–2017 including 1 week of 2017, when almost no winds across the UK. (a) Q3 2015, (b) Q3 2016, (c) Q3 2017 (30% renewables: wind + solar 19%), (d) January 16–22, 2017 (11% renewables: wind + solar 4%). Based on data from: http:// euanmearns.com/uk-grid-january-2017-and-the-perfect-storm/; https://www.ofgem.gov.uk/data-portal/elec tricity-generation-mix-quarter-and-fuel-source-gb; https://utilityweek.co.uk/low-carbon-generation-sup plies-half-britains-power/
17
1.1.1 Electricity generation in the world
of coal by 15%). This is the very good (actually, very bad) example what might happen if unreliable renewable sources such wind and solar have large share in the electrical grid (in the particular case up to 30%) 9. France has not significantly changed their usage of various sources for electricity generation (Figure 1.1.3n and Figure 1.2l in Pioro (2016)) over the same period, they are still No. 1 country in the world for generating electricity mainly at NPPs (70% of the total generation). 10. Now several words about Middle East countries (see below), which moved recently to top EEC (W/Capita) values (for full details, see Table A8.1.3, also, see Figure 1.1.1a), but still have a room for HDI ranks improvements:
Country
EEC (2018–2019) W/Capita
HDI (2019) Rank
Year average temperature, °C
Bahrain
1908
42
28
Qatar
1747
45
29
Kuwait
1607
64
27
UAE
1395
31
27
Saudi Arabia
1073
40
29
These countries are very rich with oil and gas reserves (see Tables A8.2.3 and A8.2.5), and to be efficient in oil and gas extraction and transportation they need to have modern power industry. However, the main sources for electricity generation are gas and oil (Figures 1.1.3v and x). Also, these countries are located in a very hot climate (see data above). Therefore, to work and to live in comfortable conditions you need quite sophisticated air-conditioning systems. On the top, nowadays, these countries became world resorts, therefore, they need even more air-conditioning. Nevertheless, the UAE is the first among these countries, which put into operation three large nuclear-power reactors in 2021–2022 and finalizing construction of 1 more to be put into operation in 2024. Table 1.1.4 lists data on CO2 emissions in the world & selected countries from coal- and gas-fired thermal power plants, which are the most significant emitters of carbon dioxide in power industry. Analysis of the data for coal electricity generation shows that China generates 31% of the world coal-based electricity; the US - 17%; and India 7%. Therefore, only these three countries cover 55% of the world coalbased electricity generation. If we add another two countries: Russia and Japan, a share of these five countries will reach 63% of the world coal-based electricity generation. If we assume that firing coal produces 800 g of CO2/kWh of electricity (see Figure 1.1.5), we can estimate that China share of the CO2 emissions, from coal-fired power plants can be 52% of the world coal-based emissions, and if we add the USA and India to that, we can reach about 76%. All five countries shown in this Table can be responsible for 81% of world share. In the same way, if we look at the data for gas-fired CO2 emissions (400 g of CO2/kWh), the USA is responsible for 27% of the world gas-fired emission of CO2. All five countries listed in Table 1.1.4 can be responsible for 46% of the world share! Therefore, China and the USA should do everything possible to get rid primarily of coal-fired electricity generation and secondary of gas-fired one! Question No. 1 is that if China and the USA as well as other large countries can replace coal and gas with other less CO2-emitting sources for electricity generation? Theoretically yes, but practically, each country always tries to use their own reserves of fossil fuels. As such, data below provide explanations why these countries rely quite significantly on coal-based electricity generation (for data on other countries with largest coal reserves, see Table A8.2.1, and for coal consumption—Table A8.2.2).
18
Country
1. Introduction
Coal reserves (million tonnes)
World percentage (%)
% of coal used for electricity generation*
USA
254,197
22.3
24.2
Russia
176,771
15.5
15.8
China
149,818
13.1
62.2
India
107,727
9.5
71.0
Germany
39,802
3.5
30.0
Ukraine
37,892
3.3
30.8
Poland
28,451
2.5
74.0
Indonesia
24,910
2.2
59.1
Turkey
12,515
1.1
37.3
For completeness, countries with the largest oil reserves and consumption are listed in Tables A8.2.5 and A8.2.6. In the same way, if we look on the countries with the largest natural-gas reserves (see Table A8.2.3; and consumption A8.2.4), we will understand, why these countries rely quite significantly on gas-fired power plants.
Volume of natural gas reserves (km3)
World percentage (%)
% of gas used for electricity generation
Russia
47,805
23.4
46.4
Iran
33,721
16.5
72.7
Qatar
24,072
11.8
–
USA
15,484
7.6
37.4
Saudi Arabia
9,200
4.5
57.8
UAE
6,091
3.0
98.3
Country
It should be mentioned that, currently, China is No. 1 country in the world for construction and putting into operation of nuclear-power reactors/plants on their soil. However, in spite of all these quite substantial achievements, China has about 52 of 56 large nuclear-power reactors connected to grid as of today, which generate about 5% of the total electricity in the country. Therefore, based on simple mathematics: 10% of electricity generation—100 reactors; 20%—200 reactors; 40%—400 reactors, and currently in the world we have about 443 reactors connected to grid!
Table 1.1.4.
Electrical Energy Consumption (EEC) in the world and selected countries (HDI Rank—from 2019; EEC and other data—2018–2019; population in millions from June 2021)
No. Country Population in EEC (2018–2019) millions June 2021
Coal
Gas
Hydro Nuclear Wind Solar Biomass Other %
%
%
%
%
%
100
15.8
10.4
5.3
2.7
̶
5.6
TWh Country % TWh CO2, Country % TWh CO2, Country , , , Mt World Mt World World % % %
World
7871
23,398
100
37 8587 6870
100
24 5499 2199
1
China
1439
7226
31
62 4494 3595
52
2
USA
331
3990
17
24
3
India
1380
1547
7
–
Sum of 1–3
3150
12,763
55
4
Russia
146
965
4
16
153
122
2
46
5
Japan
126
903
4
32
285
228
3
34
–
Sum of 1–5
3422
14,631
63
– 6996 5596
81
231
93
4
17.7
4.8
5.5
3.1
̶
3.5
37 1492
597
27
6.8
19.3
6.9
2.2
1.3
1.9
2.9
4.1
3.2
2.8
0.6 –
3
966
772
11
71 1098
879
13
5
70
28
1
10.9
– 6558 5246
76
– 1793
718
33
–
–
–
–
–
448
179
8
17.5
18.7
̶
̶
̶
1.6
306
122
6
8.8
6.4
0.8
7.4
1.8
9.3
– 2547 1019
46
–
–
–
–
–
–
Sources for all data are the same as in Table. M—means Million. Carbon footprint used: (a) for coal—800 g of CO2 per 1 kWh and (b) for gas—400 g of CO2 per 1 kWh.
20
1. Introduction
Figure 1.1.5. Carbon footprint of various energy sources. Courtesy of Dr. J. Roberts, University of Manchester, UK: http://research brief ings.files.parliament.uk/documents/POST-PN-268/POST-PN268.pdf
1.1.2 Largest power plants of the world, industrial electricity-generating sources, and their pros and cons 1.1.2.1 Largest power plants of the world Next step in our overview of the power industry of the world will be to present the most significant achievements of the mankind within this area. As such, Table 1.1.5 lists the largest in the world power plants and their classification by installed capacities. It was decided to list power plants with installed capacities of 6000 MWel and up. Analysis of the data in Table 1.1.5 shows that 12 from 22 largest power plants in the world are hydroelectric power plants. And within these 12 hydro plants, Three Gorges Dam power plant (China) is the largest power plant in the world with 22,500-MWel installed capacity (see Figures 1.1.16b and 1.1.16c)! It should be admitted that China has eight largest power plants of the world: five hydro-power plants, one wind-power plant (see Figure 1.1.21), one coal-fired power plant, and one NPP. No doubt that these plants are great achievements of Chinese people. In terms of hydro-power plants, there should be very unique geographical locations, i.e., large rivers (large flow rates) and a possibility to have a high hydrostatic pressure (difference in heights between upper lake (water reservoir) and lower lake (water-discharged level)). Due to this super- and very-large hydro-power plants have been built in Brazil, China, Paraguay, Russia, USA, and Venezuela. All these countries have large rivers and unique locations, where large artificial lakes can be created upstream of dams. In terms of wind-power plants, it should be also very special geographical locations, i.e., with year around strong winds from 22 to 90 km/h and away from populated areas. Within the very-large power plants (range of installed capacities (5000–