Fondamenti e complementi di Analisi matematica 2 [1]

Citation preview

Fondamenti e complementi di Analisi matematica 2 A cura di Carlo Mariconda Corsi di Laurea Triennale in Ingegneria Biomedica ed Elettronica Corso di Laurea Triennale in Ingegneria Informatica Università degli Studi di Padova

Joel Hass Maurice D. Weir George B. Thomas, Jr.

MyLab

Codice per accedere alla piattaforma

PEARSONTEXTBUILDER

FONDAMENTI E COMPLEMENTI DI ANALISI MATEMATICA 2

Fondamenti e complementi di Analisi matematica 2 a cura di Carlo Mariconda Corsi di Laurea Triennale in Ingegneria Biomedica ed Elettronica Corso di Laurea Triennale in Ingegneria Informatica Università degli Studi di Padova

Joel Hass Maurice D. Weir George B. Thomas, Jr.

© 2019 Pearson Italia, Milano – Torino

ESTRATTO DAL VOLUME: Joel Hass, Maurice D. Weir, George B. Thomas Jr., Analisi matematica 2

Authorized translation from the English language edition, entitled UNIVERSITY CALCULUS: EARLY TRASCENDENTALS, MULTIVARIABLE 2nd edition, by J. Hass, M.D. Weir, G.B. Thomas Jr., published by Pearson Education, Inc, publishing as Pearson, Copyright © 2012. All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage retrieval system, without permission from Pearson Education, Inc. Italian language edition published by Pearson Italia S.p.A., Copyright © 2014.

Le informazioni contenute in questo libro sono state verificate e documentate con la massima cura possibile. Nessuna responsabilità derivante dal loro utilizzo potrà venire imputata agli Autori, a Pearson Italia S.p.A. o a ogni persona e società coinvolta nella creazione, produzione e distribuzione di questo libro. Per i passi antologici, per le citazioni, per le riproduzioni grafiche, cartografiche e fotografiche appartenenti alla proprietà di terzi, inseriti in quest’opera, l’editore è a disposizione degli aventi diritto non potuti reperire nonché per eventuali non volute omissioni e/o errori di attribuzione nei riferimenti.

Le fotocopie per uso personale del lettore possono essere effettuate nei limiti del 15% di ciascun volume/fascicolo di periodico dietro pagamento alla SIAE del compenso previsto dall’art. 68, commi 4 e 5, della legge 22 aprile 1941 n. 633. Le fotocopie effettuate per finalità di carattere professionale, economico o commerciale o comunque per uso diverso da quello personale possono essere effettuate a seguito di specifica autorizzazione rilasciata da CLEARedi, Centro Licenze e Autorizzazioni per le Riproduzioni Editoriali, Corso di Porta Romana 108, 20122 Milano, e-mail [email protected] e sito web www.clearedi.org.

Impaginazione: Andrea Astolfi Immagine di copertina: photonic 8 / Alamy Stock Photo Grafica di copertina: Maurizio Garofalo Stampa: Rotomail, Vignate (MI) Tutti i marchi citati nel testo sono di proprietà dei loro detentori.

9788891915085 Printed in Italy 1a edizione: settembre 2019 Ristampa

Anno

00 01 02 03 04

19 20 21 22 23

Sommario

Capitolo 1 Equazioni parametriche e coordinate polari 1.1 1.2 1.3 1.4 1.5

Parametrizzazione delle curve nel piano Analisi matematica con le curve parametriche Coordinate polari Tracciare grafici in coordinate polari Aree e lunghezze in coordinate polari

Capitolo 2 Funzioni a valori vettoriali e moto nello spazio 2.1 2.2 2.3 2.4

Curve nello spazio e loro tangenti Integrali di funzioni vettoriali e moto del proiettile Lunghezza d’arco nello spazio Curvatura e vettori normali a una curva

Capitolo 3 Derivate parziali 3.1 3.2 3.3 3.4 3.5 3.6 3.7

Funzioni di più variabili Limiti e continuità in più dimensioni Derivate parziali La regola della catena Derivate direzionali e vettori gradiente Piani tangenti e differenziali Valori estremi e punti di sella

Capitolo 4 Integrali multipli 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

Integrali doppi e iterati su rettangoli Integrali doppi su regioni arbitrarie Aree calcolate con una doppia integrazione Integrali doppi in coordinate polari Integrali tripli in coordinate rettangolari Momenti e centri di massa Integrali tripli in coordinate cilindriche e sferiche Sostituzione negli integrali multipli

1 1 6 12 15 18

31 31 39 43 48

65 65 72 78 90 95 103 110

135 135 140 147 149 154 162 168 177

]P  :VTTHYPV

Capitolo 5 Integrazione sui campi vettoriali 5.1 Integrali curvilinei 5.2 Campi vettoriali e integrali curvilinei: lavoro, circolazione e flusso 5.3 Indipendenza dai cammini, campi conservativi e potenziali 5.4 Il Teorema di Green nel piano 5.5 Superfici e aree 5.6 Integrali di superficie 5.7 Il Teorema di Stokes 5.8 Il Teorema della divergenza e una teoria unificata

Capitolo 6 Equazioni differenziali del primo ordine 6.1 Equazioni differenziali del primo ordine e problemi ai valori iniziali 6.2 Equazioni differenziali a variabili separabili 6.3 Equazioni lineari del primo ordine 6.4 Equazioni riconducibili a equazioni lineari o a variabili separabili 6.5 Applicazioni 6.7 Soluzioni grafiche di equazioni autonome

189 189 194 205 214 224 232 240 251

267 267 272 280 285 288 297

Complementi al testo Appendice – Formula di Taylor per funzioni di due variabili Risposte agli esercizi dispari

* ( 7 0 ; 6 3 6



Equazioni parametriche e coordinate polari PANORAMICA

Sommario del capitolo  Parametrizzazione delle curve nel piano  Analisi matematica con le curve parametriche  Coordinate polari  Tracciare grafici in coordinate polari  Aree e lunghezze in coordinate polari  Coniche in coordinate polari

In questo capitolo studieremo dei metodi per definire le curve nel piano. Anziché pensare a una curva come il grafico di una funzione, la considereremo più in generale come il percorso di una particella la cui posizione varia nel tempo. Le coordinate x e y della posizione della particella diventano così funzioni di una terza variabile t. Si può anche scegliere di descrivere i punti del piano in un nuovo modo, utilizzando le coordinate polari anziché il sistema di coordinate rettangolari o cartesiane. Questi nuovi strumenti sono utili nella descrizione del moto, come ad esempio nel caso di pianeti, satelliti o proiettili, che si muovono nel piano o nello spazio. Parabole, ellissi e iperboli descrivono le traiettorie di proiettili, pianeti e qualsiasi altro oggetto che si muova soggetto solamente alla forza gravitazionale o elettromagnetica.

 Parametrizzazione delle curve nel piano ÊEHQQRWRFKHQRQWXWWHOHFXUYHGHOSLDQRVRQRJUD¿FLGLIXQ]LRQLRSRVVRQR HVVHUHUDSSUHVHQWDWHGDXQ¶HTXD]LRQHQHOOHYDULDELOL[H\2UDLQWURGXUUHPRXQ PHWRGRSHUGHVFULYHUHXQDFXUYDHVSULPHQGRHQWUDPEHOHFRRUGLQDWHLQIXQ]LRQH GLXQDWHU]DYDULDELOHW

Equazioni parametriche /D )LJXUD  PRVWUD LO SHUFRUVR GL XQD SDUWLFHOOD LQ PRYLPHQWR QHO SLDQR [\ 6L RVVHUYL FKH LO WUDFFLDWR QRQ VRGGLVID LO WHVW GHOOD UHWWD YHUWLFDOH TXLQGL QRQ SXzHVVHUHGHVFULWWRFRPHLOJUD¿FRGLXQDIXQ]LRQHGHOODYDULDELOH[,QDOFXQL FDVLqSRVVLELOHWXWWDYLDGHVFULYHUHLOWUDFFLDWRPHGLDQWHXQDVLVWHPDGLHTXD]LRQL [ = ¦ W H\ = J W GRYH¦HJVRQRIXQ]LRQLFRQWLQXH4XDQGRVLVWXGLDLOPRWR FRQWVLLQGLFDJHQHUDOPHQWHLOWHPSR7DOLHTXD]LRQLGHVFULYRQRFXUYHGLWLSRSL JHQHUDOHULVSHWWRDOOHFXUYH\ = ¦ [ HIRUQLVFRQRQRQVROWDQWRLOJUD¿FRGHOWUDF FLDWRPDDQFKHODSRVL]LRQHGHOODSDUWLFHOOD [\ = ¦ W J W LQRJQLLVWDQWHW Posizione della particella al tempo t

DEFINIZIONE ( f (t), g(t))

6H¦HJVRQRIXQ]LRQLFRQWLQXHGH¿QLWHLQXQLQWHUYDOOR,GHOODUHWWDUHDOHDO ORUDO¶LQVLHPHGHLSXQWL [\ = ¦ W J W DOYDULDUHGLWH,VLFKLDPDFXUYD SDUDPHWULFD/HHTXD]LRQL [ = ¦ W   \ = J W

-PN\YH /DFXUYDRSHUFRUVRWUDFFLDWRGD XQDSDUWLFHOODFKHVLPXRYHQHO SLDQR[\QRQFRUULVSRQGHVHPSUHDO JUDILFRGLXQDIXQ]LRQH

VLFKLDPDQRHTXD]LRQLSDUDPHWULFKHGHOODFXUYD/¶LQWHUYDOOR,GHOSDUDPH WURWHOHHTXD]LRQLSDUDPHWULFKHFRVWLWXLVFRQRXQDSDUDPHWUL]]D]LRQHGHOOD FXUYD /DYDULDELOHWqXQSDUDPHWURSHUODFXUYDHLOVXRGRPLQLR,qO¶LQWHUYDOOR GHLSDUDPHWUL6H,qXQLQWHUYDOORFKLXVRD …W …ELOSXQWR ¦ D J D qLO SXQWRLQL]LDOHGHOODFXUYDH ¦ E J E qLOSXQWR¿QDOH4XDQGRVLGH¿QLVFRQR

  *HWP[VSV¶,X\HaPVUPWHYHTL[YPJOLLJVVYKPUH[LWVSHYP

OHHTXD]LRQLSDUDPHWULFKHHO¶LQWHUYDOORGHLSDUDPHWULGLXQDFXUYDVLGLFHFKH VLSDUDPHWUL]]DODFXUYD8QDGDWDFXUYDSXzHVVHUHUDSSUHVHQWDWDFRQGLYHUVH SDUDPHWUL]]D]LRQL YHGHUHJOL(VHUFL]LH  ESEMPIO 1

;HILSSH Valori di x = t2 e y = t + 1 per particolari valori di t

W

7UDFFLDUHODFXUYDGH¿QLWDGDOOHHTXD]LRQLSDUDPHWULFKH [ = W  \ = W +  

-

[ 

\

-



-    



- 

   

   

Soluzione &RVWUXLDPRXQDWDEHOODFRQDOFXQLYDORUL 7DEHOOD ULSRUWLDPRLSXQWL [\ H TXLQGLOLFRQJLXQJLDPRWUDFFLDQGRXQDFXUYDUHJRODUH )LJXUD $RJQLYDORUH GLWFRUULVSRQGHXQSXQWR [\ VXOODFXUYDDGHVHPSLRW = FRUULVSRQGHDOSXQWR  GHOOD7DEHOOD6HFRQVLGHULDPRODFXUYDFRPHLOSHUFRUVRGLXQDSDUWLFHO ODLQPRYLPHQWRDOORUDODSDUWLFHOODSHUFRUUHODFXUYDQHOODGLUH]LRQHGHOOHIUHFFH PRVWUDWHQHOOD)LJXUD$QFKHVHO¶LQWHUYDOORWHPSRUDOHWUDGXHVXFFHVVLYLSXQWL GHOODWDEHOODqFRVWDQWHODOXQJKH]]DG¶DUFRWUDGXHVXFFHVVLYLSXQWLGHOODFXUYD QRQqFRVWDQWH,OPRWLYRqFKHODSDUWLFHOODUDOOHQWDTXDQGRVLDYYLFLQDDOO¶DVVH\ SHUFRUUHQGRLOUDPRLQIHULRUHGHOODFXUYDDOFUHVFHUHGLWSHUSRLDFFHOHUDUHGRSR DYHUUDJJLXQWRO¶DVVH\LQ  SHUFRUUHQGRLOUDPRVXSHULRUH3RLFKpO¶LQWHUYDO ORGHLYDORULGLWFRLQFLGHFRQO¶LQVLHPHGHLQXPHULUHDOLODFXUYDQRQKDSXQWR LQL]LDOHRSXQWR¿QDOH

-

y t3 t2 (4, 3)

- q 6 W 6 q

(9, 4)

t1 (1, 2) t  0 (0, 1) (1, 0) (4, –1) t  –1 t  –2

x (9, –2) t  –3

ESEMPIO 2

,GHQWL¿FDUHJHRPHWULFDPHQWHODFXUYDGHOO¶(VHPSLR )LJXUD HOLPLQDQGRLO SDUDPHWURWHRWWHQHQGRXQ¶HTXD]LRQHDOJHEULFDLQ[H\ Soluzione 5LVROYLDPRO¶HTXD]LRQH\ = W + ULVSHWWRDOSDUDPHWURWHVRVWLWXLDPRLOULVXOWDWR QHOO¶HTXD]LRQHSDUDPHWULFDGL[&RQTXHVWRSURFHGLPHQWRVLRWWLHQHW = \ - H

-PN\YH /DFXUYDGDWDGDOOHHTXD]LRQL SDUDPHWULFKH[ = WH\ = W +  (VHPSLR 

[ = W = \ -   = \ - \ +  /¶HTXD]LRQH[ = \ - \ + UDSSUHVHQWDXQDSDUDERODFRPHPRVWUDWRQHOOD)LJXUD ,QDOFXQLFDVLqPROWRGLI¿FLOHRDGGLULWWXUDLPSRVVLELOHHOLPLQDUHLOSDUDPHWUR GDXQVLVWHPDGLHTXD]LRQLSDUDPHWULFKHFRPHDEELDPRIDWWRLQTXHVWRHVHPSLR

y t p 2

x2  y2  1 ESEMPIO 3

P(cos t, sin t) t

tp 0

t0 (1, 0)

x

7UDFFLDUHOHVHJXHQWLFXUYHSDUDPHWULFKH D [ = FRVW  \ = VLQW  E [ = DFRVW   \ = DVLQW 

 

 …W …p  …W …p

Soluzione D 3RLFKp[ + \ = FRV W + VLQ W = ODFXUYDSDUDPHWULFDJLDFHVXOODFLUFRQIHUHQ ]DXQLWDULD[ + \ = $OFUHVFHUHGLWGDDpLOSXQWR [\ = FRVWVLQW  -PN\YH SDUWHQGRGD  WUDFFLDO¶LQWHUDFLUFRQIHUHQ]DXQDYROWDLQVHQVRDQWLRUDULR /HHTXD]LRQL[ = FRVWH\ = VLQW )LJXUD  GHVFULYRQRLOPRWROXQJROD E 3HU[ = DFRVW\ = DVLQW …W …pYDOH[ + \ = D FRV W + D VLQ W = D FLUFRQIHUHQ]D[ + \ = /DIUHFFLD /DSDUDPHWUL]]D]LRQHGHVFULYHXQPRWRFKHKDRULJLQHQHOSXQWR D HSHU PRVWUDODGLUH]LRQHLQFXLWqFUHVFHQWH  FRUUHODFLUFRQIHUHQ]D[ + \ = DXQDYROWDLQVHQVRDQWLRUDULRULWRUQDQGRDO (VHPSLR  t  3p 2

 7HYHTL[YPaaHaPVULKLSSLJ\Y]LULSWPHUV  

SXQWR D SHUW = p/DFXUYDqXQDFLUFRQIHUHQ]DFHQWUDWDQHOO¶RULJLQHGL UDJJLRU = DHFRRUGLQDWH DFRVWDVLQW 

ESEMPIO 4

/DSRVL]LRQH3 [\ GLXQDSDUWLFHOODFKHVLPXRYHQHOSLDQR[\qGDWDGDOOHHTXD ]LRQLHGDOO¶LQWHUYDOORGHLSDUDPHWULVHJXHQWL [ = 1W \ = W W Ú  'HWHUPLQDUHLOSHUFRUVRGHOODSDUWLFHOODHGHVFULYHUQHLOPRWR Soluzione 3HUGHWHUPLQDUHLOSHUFRUVRWHQWLDPRGLHOLPLQDUHLOSDUDPHWURWGDOOHHTXD]LRQL [ = 1WH\ = W,QTXHVWRPRGRVLFHUFDGLRWWHQHUHXQDUHOD]LRQHDOJHEULFDIDFLO PHQWHULFRQRVFLELOHWUD[H\7URYLDPRFKH

y

y  x 2, x  0

\ = W = A1WB = [

t  4 (2, 4)

/H FRRUGLQDWH GHOOD SRVL]LRQH GHOOD SDUWLFHOOD VRGGLVIDQR SHUWDQWR O¶HTXD]LRQH \ = [SHUFXLODSDUWLFHOODSHUFRUUHODSDUDEROD\ = [ ,OSHUFRUVRGHOODSDUWLFHOODQRQqGDWRWXWWDYLDGDOO¶LQWHUDSDUDEROD\ = [PDVRO WDQWRGDPHWjGHOODSDUDEROD,QIDWWLODFRRUGLQDWD[GHOODSDUWLFHOODQRQGLYHQWD PDLQHJDWLYD ,OPRWRGHOODSDUWLFHOODKDRULJLQHLQ  SHUW = HSURVHJXHQHOSULPRTXD GUDQWHDOFUHVFHUHGLW )LJXUD /¶LQWHUYDOORGHLSDUDPHWULq>q HQRQHVLVWH -PN\YH SXQWR¿QDOH

P(1t, t)

t1

(1, 1) x

0 Ha origine in t0

/HHTXD]LRQL[ = 1WH\ = WH O LQWHUYDOORW Ú GHVFULYRQRLOSHUFRUVR 3HULOJUD¿FRGLXQDTXDOVLDVLIXQ]LRQH\ = ¦ [ HVLVWHVHPSUHODSDUDPHWUL]]D]LRQH GLXQDSDUWLFHOODFKHWUDFFLDODPHWj GHVWUDGHOODSDUDEROD\ = [ QDWXUDOH[ = WH\ = ¦ W ,OGRPLQLRGHOSDUDPHWURFRLQFLGHLQTXHVWRFDVRFRQLO (VHPSLR 

GRPLQLRGHOODIXQ]LRQH¦ ESEMPIO 5

y

,OJUD¿FRGHOODIXQ]LRQH¦ [ = [ VLSXzSDUDPHWUL]]DUHFRQ [ = W  \ = ¦ W = W   

- q 6 W 6 q

3HUW Ú GDTXHVWDSDUDPHWUL]]D]LRQHVLRWWLHQHLOPHGHVLPRWUDFFLDWRQHOSLDQR [\YLVWRQHOO¶(VHPSLR3RLFKpWXWWDYLDLQTXHVWRFDVRLOSDUDPHWURWSXzDQFKH HVVHUHQHJDWLYRLOWUDFFLDWRFRUULVSRQGHDOO¶LQWHUDFXUYDSDUDEROLFD,QTXHVWDSD UDPHWUL]]D]LRQHQRQHVLVWHQpSXQWRLQL]LDOHQpSXQWR¿QDOH )LJXUD 

6LRVVHUYLFKHODSDUDPHWUL]]D]LRQHVSHFL¿FDDQFKHLQTXDOHLVWDQWH LOYDORUH GHOSDUDPHWUR XQDSDUWLFHOODFKHSHUFRUUHODFXUYDVLWURYDLQXQGDWRSXQWRGL HVVD1HOO¶(VHPSLRLOSXQWR  YLHQHUDJJLXQWRSHUW = PHQWUHQHOO¶(VHP SLRYLHQHUDJJLXQWR³SULPD´SHUW = /HLPSOLFD]LRQLGLTXHVWRDVSHWWRGHOOD SDUDPHWUL]]D]LRQHULVXOWDQRHYLGHQWLVHVLSUHQGHLQFRQVLGHUD]LRQHO¶HYHQWXDOLWj FKHGXHRJJHWWLVLVFRQWULQRSHUFKpFLzDFFDGDGHYRQRWURYDUVLQHOPHGHVLPR SXQWR3 [\ SHUDOFXQL HYHQWXDOPHQWHGLYHUVL YDORULGHLULVSHWWLYLSDUDPHWUL &LRFFXSHUHPRXOWHULRUPHQWHGLTXHVWRDVSHWWRGHOODSDUDPHWUL]]D]LRQHTXDQGR VWXGLHUHPRLOPRWRQHO&DSLWROR

y  x2

(–2, 4)

(2, 4) t2

t  –2

P(t, t 2 ) t1 (1, 1) 0

x

-PN\YH ,OSHUFRUVRGHILQLWRGD[ = W\ = W - q 6 W 6 q qO LQWHUDSDUDEROD\ = [ (VHPSLR 

  *HWP[VSV¶,X\HaPVUPWHYHTL[YPJOLLJVVYKPUH[LWVSHYP

ESEMPIO 6

7URYDUHXQDSDUDPHWUL]]D]LRQHSHUODUHWWDSDVVDQWHSHULOSXQWR DE HDYHQWH SHQGHQ]DP Soluzione /¶HTXD]LRQH FDUWHVLDQD GHOOD UHWWD q \ - E = P [ - D  'H¿QHQGR LO SDUDPHWUR W = [ - DVLWURYDFKH[ = D + WH\ - E = PW4XLQGL [ = D + W  \ = E + PW 

-q6W6q

qXQDSDUDPHWUL]]D]LRQHGHOODUHWWD6LWUDWWDGLXQDSDUDPHWUL]]D]LRQHGLIIHUHQWH ULVSHWWR D TXHOOD FKH VL RWWHUUHEEH FRQ OD WHFQLFD XWLOL]]DWD QHOO¶(VHPSLR  SHU W = [(QWUDPEHOHSDUDPHWUL]]D]LRQLGHVFULYRQRWXWWDYLDODPHGHVLPDUHWWD

ESEMPIO 7

7UDFFLDUHHLGHQWL¿FDUHLOSHUFRUVRGHOSXQWR3 [\ DVVXPHQGR ;HILSSH Valori di x = t + (1/t) e y = t - (1/t) per particolari valori di t

W

>W

[

\

























































Soluzione &RVWUXLDPR XQD WDEHOOD FRQ DOFXQL YDORUL 7DEHOOD   ULSRUWLDPR L SXQWL H OL FRQJLXQJLDPRWUDFFLDQGRXQDFXUYDUHJRODUHFRPHYLVWRQHOO¶(VHPSLR4XLQGL HOLPLQLDPRLOSDUDPHWURWGDOOHHTXD]LRQL,OSURFHGLPHQWRULVXOWDSLFRPSOLFDWR ULVSHWWRDTXDQWRYLVWRQHOO¶(VHPSLR'DOODGLIIHUHQ]DWUDOHHTXD]LRQLSDUDPH WULFKHGL[H\VLRWWLHQH

6RPPDQGROHGXHHTXD]LRQLSDUDPHWULFKHVLRWWLHQHLQYHFH  3RVVLDPRTXLQGLHOLPLQDUHLOSDUDPHWURWHVHJXHQGRLOSURGRWWRGHOOHGXHHTXD ]LRQLWURYDWH

y



t  10

10

(10.1, 9.9) 5

t5 (5.2, 4.8)

t2 t  1 (2.5, 1.5) 5 0 (2, 0) (2.9, –2.1) t  0.4 (5.2, –4.8) –5 t  0.2

RYYHURHVHJXHQGRLOSURGRWWRDSULPRPHPEURRWWHQLDPRO¶HTXD]LRQHVWDQGDUG GLXQ¶LSHUEROH  [- \=  

/HFRRUGLQDWHGLWXWWLLSXQWL3 [\ GH¿QLWLGDOOHHTXD]LRQLSDUDPHWULFKHVRGGL VIDQRSHUWDQWRO¶(TXD]LRQH  /¶(TXD]LRQH  QRQLPSRQHWXWWDYLDFKHODFRRU 10 GLQDWD[VLDSRVLWLYD(VLVWRQRTXLQGLSXQWL [\ DSSDUWHQHQWLDOO¶LSHUEROHFKHQRQ VRGGLVIDQRO¶HTXD]LRQHSDUDPHWULFD[ = W + >W W 7 SHUODTXDOH[qVHPSUH PDJJLRUHGL]HUR,QDOWUHSDUROHGDOOHHTXD]LRQLSDUDPHWULFKHQRQVLRWWHQJRQR (10.1, –9.9) LSXQWLGHOUDPRVLQLVWURGHOO¶LSHUEROHGDWDGDOO¶(TXD]LRQH  SHULTXDOLODFR –10 RUGLQDWD[VDUHEEHQHJDWLYD3HUSLFFROLYDORULSRVLWLYLGLWLOWUDFFLDWRJLDFHQHO t  0.1 TXDUWRTXDGUDQWHHVLDYYLFLQDDOO¶DVVH[DOFUHVFHUHGLW¿QRDLQWHUVHFDUORSHU -PN\YH W =  )LJXUD ,OGRPLQLRGHLSDUDPHWULq q HLOSHUFRUVRQRQKDQpSXQWR /DFXUYDSHU[ = W + >W \ = W - >W  LQL]LDOHQpSXQWR¿QDOH W 7 GHOO (VHPSLR ODSDUWHPRVWUDWD FRUULVSRQGHD …W … 

x

 7HYHTL[YPaaHaPVULKLSSLJ\Y]LULSWPHUV  

*OL(VHPSLHPRVWUDQRFKHXQDGDWDFXUYDRXQDSRU]LRQHGLHVVDSXz HVVHUHUDSSUHVHQWDWDPHGLDQWHSDUDPHWUL]]D]LRQLGLIIHUHQWL1HOFDVRGHOO¶(VHP SLR  q SRVVLELOH UDSSUHVHQWDUH LO UDPR GHVWUR GHOO¶LSHUEROH DQFKH PHGLDQWH OD SDUDPHWUL]]D]LRQH [ = 2 + W

\ = W

- q 6 W 6 q

RWWHQXWDULVROYHQGRO¶(TXD]LRQH  SHU[ Ú HSRQHQGR\FRPHSDUDPHWUR8Q¶DO WUDSRVVLELOHSDUDPHWUL]]D]LRQHGHOUDPRGHVWURGHOO¶LSHUEROHGDWDGDOO¶(TXD]LRQH  q 4XHVWDSDUDPHWUL]]D]LRQHVHJXHGDOO¶LGHQWLWjWULJRQRPHWULFDVHF W - WJ W = SHUFXL [ - \ = VHFW - WJW =  VHFW - WJW =  

$OYDULDUHGLWWUD- p>Hp>[ = VHFWULPDQHSRVLWLYRH\ = WJWYDULDWUD- q H qTXLQGL3SHUFRUUHLOUDPRGHVWURGHOO¶LSHUEROH3HUFRUUHODPHWjLQIHULRUHGHO UDPRSHUW : -UDJJLXQJH  SHUW = HTXLQGLSURVHJXHQHOSULPRTXDGUDQWH DOFUHVFHUHGLW¿QRDp>,OUDPRGLLSHUEROHWUDFFLDWRqLOPHGHVLPRUDSSUHVHQ WDWRSDU]LDOPHQWHQHOOD)LJXUD /H YDULH SDUDPHWUL]]D]LRQL SRVVLELOL SHU XQD GDWD FXUYD GHWHUPLQDQR L YDUL PRGLLQFXLHVVDSXzHVVHUHSHUFRUVD LQXQGHWHUPLQDWRYHUVRRQHOYHUVRRSSRVWR FRQYHORFLWjFRVWDQWHRYDULDELOHSHUFRUUHQGRSLYROWHXQRVWHVVRWUDWWRRSSXUH XQDVRODYROWDHFRVuYLD ÊTXLQGLLPSRUWDQWHGLVWLQJXHUHODFXUYDFRPHRJJHWWR JHRPHWULFR LQVLHPHGLSXQWL GDOOHVXHSRVVLELOLSDUDPHWUL]]D]LRQLOHTXDOLIRUQL VFRQROHLQIRUPD]LRQLUHODWLYHDOPRGRLQFXLVLWUDFFLDODFXUYD 1DWXUDOPHQWHOHSURSULHWjJHRPHWULFKHGHOODFXUYDQRQGRYUHEEHURGLSHQGHUH GDOOD SDUDPHWUL]]D]LRQHVFHOWD PD q DQFKHYHUR FKH QRQ WXWWH OH SDUDPHWUL]]D ]LRQLGLXQDGDWDFXUYDVRQRHTXLYDOHQWLQHOVHQVRFKHGHVFULYRQRODVWHVVDWUD LHWWRULDSHUFKpDGHVHPSLRXQDFXUYDFKLXVDSRWUHEEHHVVHUHSHUFRUVDSLYROWH 5LWRUQHUHPRVXTXHVWRDVSHWWRQHOSURVVLPRFDSLWRORGH¿QHQGRFRVDVLLQWHQGH SHUSDUDPHWUL]]D]LRQLHTXLYDOHQWL

Cicloidi 1HOFDVRGLXQRURORJLRDSHQGRORODFXLPDVVDRVFLOODGHVFULYHQGRXQDUFRFLU FRODUH OD IUHTXHQ]D GHOO¶RVFLOOD]LRQH GLSHQGH GDOOD VXD DPSLH]]D SL DPSLD q O¶RVFLOOD]LRQHPDJJLRUHqLOWHPSRFKHODPDVVDLPSLHJDSHUWRUQDUHDOFHQWUR OD SRVL]LRQHSLEDVVDSRVVLELOH  4XHVWRLQFRQYHQLHQWHQRQVLYHUL¿FDVHRVFLOODQGRODPDVVDGHVFULYHXQDFL FORLGH1HO&KULVWLDQ+X\JHQVSURJHWWzXQRURORJLRDSHQGRORODFXLPDVVD RVFLOODQGR GHVFULYHYD XQD FLFORLGH XQD FXUYD FKH GH¿QLUHPR QHOO¶(VHPSLR  6RVSHVHODPDVVDDXQFDYRVRWWLOHYLQFRODWRGDJXLGHFKHFRVWULQJHYDQRLO¿ORD SLHJDUVLYHUVRO¶DOWRTXDQGRODPDVVDVLDOORQWDQDYDGDOFHQWUR )LJXUD  ESEMPIO 8

8QDUXRWDGLUDJJLRDURWRODSHUFRUUHQGRXQDOLQHDUHWWDRUL]]RQWDOH'HWHUPLQD UH XQ VLVWHPD GL HTXD]LRQL SDUDPHWULFKH FKH GHVFULYD OD WUDLHWWRULD GL XQ SXQWR 3DSSDUWHQHQWHDOODFLUFRQIHUHQ]DGHOODUXRWD7DOHWUDLHWWRULDSUHQGHLOQRPHGL FLFORLGH Soluzione $VVXPLDPRFKHODUHWWDVLDO¶DVVH[PDUFKLDPRXQSXQWR3VXOODUXRWDSRVL]LR QLDPRODUXRWDLQPRGRFKH3VLWURYLQHOO¶RULJLQHHIDFFLDPRURWRODUHODUXRWD

Profilo cicloidale

Profilo cicloidale

Cicloide

-PN\YH 1HOSHQGRORGL+X\JHQVODPDVVD RVFLOODQGRGHVFULYHXQDFLFORLGH TXLQGLODIUHTXHQ]DqLQGLSHQGHQWH GDOO DPSLH]]D

  *HWP[VSV¶,X\HaPVUPWHYHTL[YPJOLLJVVYKPUH[LWVSHYP

y

YHUVRGHVWUD&RPHSDUDPHWURVFHJOLDPRO¶DQJRORWGHVFULWWRGDOODUXRWDPLVXUD WRLQUDGLDQWL/D)LJXUDPRVWUDODUXRWDGRSRXQSLFFRORLQWHUYDOORGLWHPSR TXDQGRODVXDEDVHVLWURYDDXQDGLVWDQ]DSDULDGDWXQLWjGDOO¶RULJLQH,OFHQWUR& GHOODUXRWDVLWURYDQHOSXQWR DWD HOHFRRUGLQDWHGL3VRQR

P(x, y)  (at  a cos , a  a sin )

t

M

at

0

a  C(at, a)

[ = DW + DFRVu  \ = D + DVLQu x

-PN\YH /DSRVL]LRQHGHOSXQWR3 [\ GHOOD UXRWDDOO¶DQJRORW (VHPSLR 

3HUHVSULPHUHuLQWHUPLQLGLWRVVHUYLDPRFKHW + u = p> )LJXUD TXLQGL 'LFRQVHJXHQ]D

y

/HHTXD]LRQLFHUFDWHVRQRTXLQGL [ = DW - DVLQW  \ = D - DFRVW

(x, y) t a O

2a

x

*HQHUDOPHQWHVLSUHIHULVFHUDFFRJOLHUHLOIDWWRUHD [ = D W - VLQW   \ = D  - FRVW 



-PN\YH /DFXUYDFLFORLGHSHUW Ú GDWDGDOOH (T  GHULYDWHQHOO (VHPSLR



/D)LJXUDPRVWUDLOSULPRDUFRGHOODFLFORLGHHSDUWHGHOVXFFHVVLYR

Brachistocrone e tautocrone O

a

2a

a

2a

x

P(at  a sin t, a  a cos t)

a 2a

B(a, 2a)

y

-PN\YH 3HUVWXGLDUHLOPRWRSHUHIIHWWRGHOOD JUDYLWjOXQJRXQDFLFORLGHFDSRYROWD FDSRYROJLDPROD)LJXUD,QTXHVWR PRGRO DVVH\KDODVWHVVDGLUH]LRQH GHOODIRU]DGLJUDYLWjHOHFRRUGLQDWH\ DOGLVRWWRGHOO DVVH[VRQRSRVLWLYH/H HTXD]LRQLHO LQWHUYDOORGHLSDUDPHWUL SHUODFLFORLGHVRQRDQFRUD [ = D W - VLQW  \ = D  - FRVW  W Ú  /DIUHFFLDPRVWUDODGLUH]LRQHLQFXLW DXPHQWD

6HVLFDSRYROJHOD)LJXUDODFXUYDULVXOWDQWH )LJXUD qDQFRUDGHVFULWWD GDOOH(TXD]LRQL  HSUHVHQWDGXHLQWHUHVVDQWLSURSULHWj¿VLFKH/DSULPDULJXDU GDO¶RULJLQH2HLOSXQWR%DOODEDVHGHOSULPRDUFRWUDWXWWHOHFXUYHUHJRODULFKH XQLVFRQRTXHVWLGXHSXQWLODFLFORLGHqTXHOODFKHPLQLPL]]DLOWHPSRGLSHUFRU UHQ]DGD2D%SHUXQDELJOLDFKHQRQVXELVFHDWWULWRHGqVRJJHWWDDOODVRODIRU]D GLJUDYLWj3HUTXHVWRPRWLYRODFLFORLGHqXQDEUDFKLVWRFURQDRFXUYDGLPLQLPR WHPSRSHUWDOLSXQWL/DVHFRQGDSURSULHWjqFKHDQFKHVHVLVFHJOLHFRPHSXQWR GLSDUWHQ]DGHOODELJOLDXQSXQWRLQWHUPHGLRWUDO¶RULJLQHHLOSXQWR%LOWHPSRGD HVVDLPSLHJDWRSHUUDJJLXQJHUH%ULPDQHORVWHVVR3HUTXHVWRPRWLYRODFLFORLGH qXQDWDXWRFURQDRFXUYDGLWHPSRFRVWDQWHSHU2H%6LSXzGLPRVWUDUHFKHOD FLFORLGHWUD2H%qO¶XQLFDEUDFKLVWRFURQDSHU2H%

 Analisi matematica con le curve parametriche ,QTXHVWRSDUDJUDIRDSSOLFKHUHPRO¶DQDOLVLPDWHPDWLFDDOOHFXUYHSDUDPHWULFKH ,QSDUWLFRODUHGHWHUPLQHUHPRSHQGHQ]HOXQJKH]]HHDUHHDVVRFLDWHDFXUYHSD UDPHWUL]]DWH

Tangenti e area DEFINIZIONE

8QDSDUDPHWUL]]D]LRQH[ = ¦ W \ = J W FRQWH,VLGLFHUHJRODUHVH¦HJVRQR GHULYDELOLFRQFRQWLQXLWj FLRqFRQGHULYDWHFRQWLQXH LQ,Hƒ¦¿ W ƒ +ƒJ¿ W ƒZ SHU RJQLWH, FLRqOHGHULYDWHQRQVRQRPDLFRQWHPSRUDQHDPHQWHQXOOH  6L GH¿QLVFH FXUYD UHJRODUH XQD FXUYD FKH DPPHWWH XQD SDUDPHWUL]]D]LRQH UHJRODUH

 (UHSPZPTH[LTH[PJHJVUSLJ\Y]LWHYHTL[YPJOL  

6HXQDFXUYDDPPHWWHXQDSDUDPHWUL]]D]LRQHUHJRODUHDOORUDDPPHWWHUHWWDWDQ JHQWHLQRJQLSXQWR,QIDWWLVHLQXQSXQWRVLKD¦¿ W Z DOORUDSHUODSHUPDQHQ]D GHOVHJQR¦¿VLPDQWLHQHGLYHUVDGDLQWXWWRXQLQWRUQRGLW4XLQGLODIXQ]LRQH ¦qVWUHWWDPHQWHPRQRWRQDHLQYHUWLELOHLQWDOHLQWRUQRFRQW = ¦- [ GHULYDELOHH G¦-   WDOHFKH = = 'LFRQVHJXHQ]DVFULYHQGR\ = J W = J ¦- [  G[ ¦¿ ¦- [ ¦¿ W VLGHGXFHFKH\VLSXzHVSULPHUHFRPHIXQ]LRQHGHULYDELOHGL[FRQ

#

G\ GJ G¦- J¿ W G\>GW  G[ = GW G[ = ¦¿ W = G[>GW FKH FRVWLWXLVFH O¶HVSUHVVLRQH SDUDPHWULFD SHU G\>G[ GDOOD TXDOH VL ULFDYD OD SHQGHQ]D GHOOD WDQJHQWH DOOD FXUYD YLVWD FRPH JUD¿FR GL XQD IXQ]LRQH GHOOD YDULDELOH[ ,QROWUHVHJDPPHWWHGHULYDWDVHFRQGDLQWDOORUDGDOO¶(TXD]LRQH  DSSOLFDWD DOODIXQ]LRQH\¿ = G\>G[VLULFDYDO¶HVSUHVVLRQHGHOODGHULYDWDVHFRQGDGLG\>G[ FRPHIXQ]LRQHGLW 

1DWXUDOPHQWHVHLQXQSXQWRVLKDJ¿ W ZLQYHFHFKH¦¿ W ZDOORUDVLSXz ULSHWHUHWXWWRLOUDJLRQDPHQWRLQYHUWHQGRLUXROLGL[H\LQXQLQWRUQRGHOSXQWR G\ G[>GW ODFXUYDqLOJUD¿FRGLXQDIXQ]LRQHGHULYDELOHGHOODYDULDELOH\FRQ G[ = G\>GW  1HOFDVRGLXQDFXUYDUHJRODUH&QRQSRVVRQRHVLVWHUHQHOO¶LQWHUYDOOR>DE@ LQYHUVLRQLGHOVHQVRGLSHUFRUUHQ]DSHUFKp ¦¿  + J¿  7 QHOO¶LQWHURLQWHUYDOOR 6HHVLVWHVVHXQSXQWRLQFXLVLLQYHUWHLOVHQVRGLSHUFRUUHQ]DODFXUYDQRQVDUHEEH GLIIHUHQ]LDELOHRSSXUHHQWUDPEHOHGHULYDWHVDUHEEHURVLPXOWDQHDPHQWHXJXDOLD ]HURLQWDOHSXQWR(VDPLQHUHPRTXHVWRWLSRGLIHQRPHQRQHO&DSLWROR

y 2

ESEMPIO 1 1

'HWHUPLQDUHODWDQJHQWHDOODFXUYD

0

QHOSXQWR 1 GRYHW = p> )LJXUD  Soluzione /DSHQGHQ]DGHOODFXUYDLQWqGDWDGD (T  

3RQHQGRWXJXDOHDp>VLRWWLHQH

/DUHWWDWDQJHQWHqGDWDGD  RYYHUR

t p 4 (12, 1)

1

x 2 x  sec t, y  tg t, –pt p 2 2

-PN\YH /DFXUYDGHOO (VHPSLRqLOUDPR GHVWURGHOO LSHUEROH[ - \ = 

  *HWP[VSV¶,X\HaPVUPWHYHTL[YPJOLLJVVYKPUH[LWVSHYP

'HWHUPLQDUHG\>G[LQWHUPLQLGLW (VSULPHUH\¿ = G\>G[LQWHUPLQLGLW 'HWHUPLQDUHG\¿>GW 'LYLGHUHG\¿>GWSHUG[>GW

ESEMPIO 2

'HWHUPLQDUHG\>G[FRPHIXQ]LRQHGLWDVVXPHQGR[ = W - W\ = W - W Soluzione  6LHVSULPH\¿ = G\>G[LQWHUPLQLGLW

 6LGLIIHUHQ]LD\¿ULVSHWWRDW 5HJRODSHUODGHULYDWDGHOTXR]LHQWH

y

 6LGLYLGHG\¿>GWSHUG[>GW

1 x  cos3 t y  sin3 t 0  t  2

–1

0

(T  

1

x

ESEMPIO 3

'HWHUPLQDUHO¶DUHDUDFFKLXVDGDOO¶DVWURLGH )LJXUD  [ = FRV W  \ = VLQ W   …W …p –1

-PN\YH / DVWURLGHGHOO (VHPSLR

Soluzione 3HUVLPPHWULDO¶DUHDUDFFKLXVDqYROWHO¶DUHDVRWWHVDDOODFXUYDQHOSULPRTXD GUDQWHGRYH …W …p>3RVVLDPRHVSULPHUHO¶DUHDPHGLDQWHXQLQWHJUDOHGH¿QL WRHIIHWWXDQGROHRSSRUWXQHVRVWLWX]LRQLSHUHVSULPHUHODFXUYDHLOGLIIHUHQ]LDOH G[LQWHUPLQLGHOSDUDPHWURW4XLQGL 6RVWLWX]LRQHGL\HG[

 (UHSPZPTH[LTH[PJHJVUSLJ\Y]LWHYHTL[YPJOL 

y

Lunghezza di una curva parametrica

Pk

6LD&XQDFXUYDUHJRODUHGH¿QLWDGDOODSDUDPHWUL]]D]LRQH [ = ¦ W   H  \ = J W   D …W …E

Pk –1

6L VXGGLYLGD LO SHUFRUVR R DUFR  $% LQ Q WUDWWL LQ FRUULVSRQGHQ]D GHL SXQWL $ = 333 Á3Q = % )LJXUD 7DOLSXQWLFRUULVSRQGRQRDXQDSDUWL]LRQH GHOO¶LQWHUYDOOR>DE@PHGLDQWHLSXQWLD = W 6 W 6 W 6 Á 6 WQ = EGRYH3N = ¦ WN  J WN 6LFRQJLXQJDQRLSXQWLFRQVHFXWLYLGLWDOHVXGGLYLVLRQHPHGLDQWHVHJPHQWL GLUHWWD )LJXUD ODOXQJKH]]DGHOJHQHULFRVHJPHQWRqGDWDGD

B  Pn

C

P2

A  P0 P1

/N = 2 ¢[N  + ¢\N  = 2>¦ WN - ¦ WN -  @ + >J WN - J WN -  @

x

0

YHGHUHOD)LJXUD 3HUSLFFROLYDORULGL¢WNODOXQJKH]]D/NqFLUFDXJXDOH -PN\YH DOODOXQJKH]]DGHOO¶DUFR3N - 3N3HULO7HRUHPDGL/DJUDQJHHVLVWRQRQXPHULWN H /DFXUYDUHJRODUH&GHILQLWD WN

LQ>WN - WN@WDOLFKH SDUDPHWULFDPHQWHGDOOHHTXD]LRQL

[ = ¦ W H\ = J W D …W …E/D OXQJKH]]DGHOODFXUYDWUD$H%q DSSURVVLPDWDGDOODVRPPDGHOOH ¢\N = J WN - J WN -  = J¿ WN

¢WN OXQJKH]]HGHOODSROLJRQDOH LVHJPHQWL  $VVXPHQGRFKHLOWUDFFLDWRWUD$H%YHQJDSHUFRUVRXQDHXQDVRODYROWDDOFUH FKHYDGD$ = 3 D3 HFRVuYLDILQRD   VFHUHGLWGDW = DDW = EXQ¶DSSURVVLPD]LRQHGHOOD³OXQJKH]]D´ TXDQWLWjQRQ % = 3  Q

¢[N = ¦ WN - ¦ WN -  = ¦¿ WN ¢WN

DQFRUDGH¿QLWD GHOODFXUYD$%qGDWDGDOODVRPPDGLWXWWHOHOXQJKH]]H/N

y Pk  ( f (tk), g(tk))

$QFKH VH O¶XOWLPD VRPPD D VHFRQGR PHPEUR QRQ FRLQFLGH HVDWWDPHQWH FRQ OD VRPPDGL5LHPDQQ SHUFKp¦¿HJ¿VRQRFDOFRODWHLQSXQWLGLIIHUHQWL VLSXzGLPR VWUDUHFKHLOVXROLPLWHTXDQGRODQRUPDGHOODSDUWL]LRQHWHQGHD]HURHLOQXPHUR GHLVHJPHQWLQ : qqO¶LQWHJUDOHGH¿QLWR

Lk Δxk Pk –1  ( f (tk –1 ), g(tk –1 ))

x

0

-PN\YH / DUFR3N -  3NqDSSURVVLPDWRGDO VHJPHQWRGLUHWWDTXLPRVWUDWRDYHQWH OXQJKH]]D/N = 2 ¢[N + ¢\N   

ÊSHUWDQWRVHQVDWRGH¿QLUHODOXQJKH]]DGHOODFXUYDWUD$H%FRPHWDOHLQWHJUDOH DEFINIZIONE

6H&qXQDFXUYDUHJRODUHSDUDPHWUL]]DWDGD[ = ¦ W H\ = J W D …W …EHVH &YLHQHSHUFRUVDXQDHXQDVRODYROWDDOFUHVFHUHGLWGDW = DDW = EDOORUDOD OXQJKH]]DGL&qGDWDGDOO¶LQWHJUDOHGH¿QLWR

6H[ = ¦ W H\ = J W DOORUDXWLOL]]DQGRODQRWD]LRQHGL/HLEQL]VLRWWLHQHSHU ODOXQJKH]]DG¶DUFRODVHJXHQWHIRUPXOD 

3HU RJQL FXUYD & HVLVWRQR LQ¿QLWH GLYHUVH SDUDPHWUL]]D]LRQL /D OXQJKH]]D

Δyk

  *HWP[VSV¶,X\HaPVUPWHYHTL[YPJOLLJVVYKPUH[LWVSHYP

GLSHQGHGDOODSDUDPHWUL]]D]LRQH"/DULVSRVWDqQRSXUFKpODSDUDPHWUL]]D]LRQH VFHOWDVRGGLV¿OHFRQGL]LRQLVWDELOLWHQHOODGH¿QL]LRQHGHOODOXQJKH]]DGL& FRPH HVHPSLRYHGHUHO¶(VHUFL]LR 'LPRVWUHUHPRTXHVWRULVXOWDWRQHO&DSLWROR ESEMPIO 4

$SSOLFDUHODGH¿QL]LRQHSHUGHWHUPLQDUHODOXQJKH]]DGHOODFLUFRQIHUHQ]DGLUDJ JLRUGH¿QLWDSDUDPHWULFDPHQWHGD [ = UFRVW

H

\ = UVLQW

 …W …p

Soluzione $OYDULDUHGLWWUDHpODFLUFRQIHUHQ]DYLHQHSHUFRUVDXQDHXQDVRODYROWD TXLQGLODVXDOXQJKH]]DqGDWDGD

6LWURYD

H

4XLQGL 

ESEMPIO 5

'HWHUPLQDUHODOXQJKH]]DGHOO¶DVWURLGH )LJXUD GDWRGD [ = FRV W  \ = VLQ W   …W …p Soluzione $FDXVDGHOODVLPPHWULDGHOODFXUYDULVSHWWRDJOLDVVLFDUWHVLDQLODVXDOXQJKH]]D qXJXDOHDTXDWWURYROWHODOXQJKH]]DGHOODSRU]LRQHDSSDUWHQHQWHDOSULPRTXD GUDQWH6LKDTXLQGL

 (UHSPZPTH[LTH[PJHJVUSLJ\Y]LWHYHTL[YPJOL  

3HUWDQWR

/DOXQJKH]]DGHOO¶DVWURLGHqSDULDTXDWWURYROWHTXHVWDTXDQWLWj > = 

Lunghezza di una curvay = ƒ x 'DWDXQDIXQ]LRQHGHULYDELOHFRQFRQWLQXLWj\ = ¦ [ D …[ …ELOJUD¿FRGHOODIXQ ]LRQH¦qODFXUYD&GH¿QLWDSDUDPHWULFDPHQWHGD [ = W  H  \ = ¦ W   D …W …E XQFDVRSDUWLFRODUHGLTXDQWRSUHFHGHQWHPHQWHWUDWWDWR$OORUD H 'DOO¶(TXD]LRQH  VLKDFKH

SHUFXL

6RVWLWXHQGRQHOO¶(TXD]LRQH  VLRWWLHQHO¶HVSUHVVLRQHGHOODOXQJKH]]DG¶DUFRSHU LOJUD¿FRGL\ = ¦ [ 

Il differenziale della lunghezza d’arco ÊSRVVLELOHGH¿QLUHODIXQ]LRQHOXQJKH]]DG¶DUFRSHUXQDFXUYDSDUDPHWUL]]DWDGD [ = ¦ W H\ = J W D …W …EFRQ  4XLQGLSHULO7HRUHPDIRQGDPHQWDOHGHOFDOFRORLQWHJUDOH  ,OGLIIHUHQ]LDOHGHOODOXQJKH]]DG¶DUFRYLHQHGH¿QLWRGD 



/¶(TXD]LRQH  YLHQHVSHVVRVFULWWDQHOODIRUPDVHPSOL¿FDWD

4XLQGLqSRVVLELOHGHWHUPLQDUHODOXQJKH]]DWRWDOHGHOODFXUYDLQWHJUDQGRLOGLI IHUHQ]LDOHGVWUDHVWUHPLRSSRUWXQL

  *HWP[VSV¶,X\HaPVUPWHYHTL[YPJOLLJVVYKPUH[LWVSHYP

P(r, )

 Coordinate polari

r Origine (polo)

 O

Lato origine

x

-PN\YH 3HUGHILQLUHOHFRRUGLQDWHSRODULQHO SLDQRSHUSULPDFRVDVLGHILQLVFH XQ¶RULJLQHGHWWDSRORHXQODWR RULJLQH

,QTXHVWRSDUDJUDIRVWXGLHUHPROHFRRUGLQDWHSRODULHODORURUHOD]LRQHFRQOHFRRU GLQDWHFDUWHVLDQH&RPHSRWUHPRYHGHUHQHO&DSLWROROHFRRUGLQDWHSRODULVRQR GLJUDQGHXWLOLWjQHOFDOFRODUHPROWLWLSLGLLQWHJUDOLPXOWLSOL

Definizione di coordinate polari 3HUGH¿QLUHOHFRRUGLQDWHSRODULSHUSULPDFRVDVL¿VVDXQ¶RULJLQH2 FKHSUHQGH LOQRPHGLSROR HXQODWRRULJLQHGLHVWUHPR2 )LJXUD 1RUPDOPHQWHVL VFHJOLHFRPHODWRRULJLQHO¶DVVH[SRVLWLYR2JQLSXQWR3 Z 2SXzTXLQGLHVVHUH LGHQWL¿FDWRDVVHJQDQGRXQDFRSSLDGLFRRUGLQDWHSRODUL Uu LQFXLUqODGLVWDQ ]DWUD2H3HuqO¶DQJRORRULHQWDWRWUDLOODWRRULJLQHHLOODWR233HULOSXQWR3 VLXVDSHUWDQWRODQRWD]LRQH

P ⎛2, ⎛  P ⎛2, – 11 ⎛ ⎝ 6⎝ ⎝ 6 ⎝ – 11 6

3 Uu   6 x

O

Lato origine 0

-PN\YH /HFRRUGLQDWHSRODULQRQVRQR XQLYRFKH

y Lato    2 P(x, y)  P(r, ) r

Origine comune 0

 x

'LVWDQ]DWUD2H3

$QJRORRULHQWDWRWUD LOODWRRULJLQHH23

&RPHLQWULJRQRPHWULDuqSRVLWLYRTXDQGRYLHQHPLVXUDWRLQVHQVRDQWLRUDULRH QHJDWLYRTXDQGRYLHQHPLVXUDWRLQVHQVRRUDULR/¶DQJRORDVVRFLDWRDXQGDWRSXQWR QRQqXQLFRPHQWUHDXQSXQWRGHOSLDQRFRUULVSRQGHXQDHXQDVRODFRSSLDGLFR RUGLQDWHFDUWHVLDQHOHFRSSLHGLFRRUGLQDWHSRODULDHVVRDVVRFLDWHVRQRLQ¿QLWH$G HVHPSLRLOSXQWRFKHVLWURYDDGLVWDQ]DGDOO¶RULJLQHHDSSDUWLHQHDOODVHPLUHWWD FKHIRUPDO¶DQJRORu = p>KDFRRUGLQDWHSRODULU = u = p>PDDQFKHFRRUGLQDWH U = u = - p> )LJXUD *HQHUDOPHQWHVLVFHJOLH… u6 p 3HU O¶RULJLQH 2 QRQ q GH¿QLWR O¶DQJROR u SHUFKp LO ODWR 23 GHJHQHUD LQ XQ SXQWR&RPXQTXHO¶RULJLQHVLLGHQWL¿FDFRQODVRODSULPDFRRUGLQDWDUGDWRFKH 2qO¶XQLFRSXQWRFRQU =

Relazione tra coordinate polari e coordinate cartesiane

y   0, r  0 x Lato origine

-PN\YH ,OPRGRXVXDOHGLGHILQLUHODUHOD]LRQH WUDFRRUGLQDWHSRODULHFRRUGLQDWH FDUWHVLDQH

4XDQGRQHOSLDQRVLXWLOL]]DQRVLDOHFRRUGLQDWHSRODULFKHOHFRRUGLQDWHFDUWHVLD QHVLVRYUDSSRQJRQROHGXHRULJLQLHVLSUHQGHO¶DVVH[SRVLWLYRFRPHODWRRULJLQH /DVHPLUHWWDGLHTXD]LRQHSRODUHu = p>GLYHQWDO¶DVVH\SRVLWLYR )LJXUD  /DUHOD]LRQHWUDLGXHVLVWHPLGLFRRUGLQDWHqTXLQGLHVSUHVVDGDOOHHTXD]LRQLUL SRUWDWHQHOVHJXHQWHULTXDGUR Equazioni che mettono in relazione coordinate cartesiane e coordinate polari

[ = UFRVu  \ = UVLQu  U= 1[ + \  

 SHU[ Z

/HSULPHGXHHTXD]LRQLGHWHUPLQDQRLQPRGRXQLYRFROHFRRUGLQDWHFDUWHVLDQH[ H\DSDUWLUHGDOOHFRRUGLQDWHSRODULUHu /D WHU]D HTXD]LRQH GH¿QLVFH HVSOLFLWDPHQWH OD FRRUGLQDWD SRODUH U D SDUWLUH GDOOHFRRUGLQDWHFDUWHVLDQH,QYHFHODTXDUWDHTXD]LRQHGH¿QLVFHLPSOLFLWDPHQWH OD FRRUGLQDWD u DWWUDYHUVR LO YDORUH GHOOD WDQJHQWH 3HU RWWHQHUH XQ¶HVSUHVVLRQH HVSOLFLWDVLSXzRVVHUYDUHFKHVH[ 7DOORUDO¶DQJRORIRUPDWRFRQLOODWRRULJLQH \ qu = DUFWJ [ DSDWWRGLVFHJOLHUHFRPHGHWHUPLQD]LRQHGLuTXHOODFRPSUHVDWUD - pH pFLRq- p 6u 6p6HLQYHFH[ 6DOORUDO¶DUFRWDQJHQWHQRQIRUQLVFHSL     XQDGHWHUPLQD]LRQHGLuGDWRFKHO¶DUFRWDQJHQWHDVVXPHVHPSUHYDORULFRPSUHVL WUD- pH p3HURWWHQHUHXQDGHWHUPLQD]LRQHGLuLQTXHVWRFDVRRFFRUUHDJJLXQ  

 *VVYKPUH[LWVSHYP  

\ JHUHp ODSHULRGLFLWjGHOODIXQ]LRQHWDQJHQWH DOYDORUHDUFWJ [ 2YYHUR \ \ u= DUFWJ [  VH[ 7  u= p + DUFWJ [  VH[ 6 ,OYDORUHGLuGDWRFRQODVHFRQGDHTXD]LRQHqVHPSUHFRPSUHVRWUD pH  p,Q   GH¿QLWLYDOHHTXD]LRQLVRSUDIRUQLVFRQRXQDGHWHUPLQD]LRQHGL uFRPSUHVD WUD - pH pSHURJQL[ Z   ESEMPIO 1

'HWHUPLQDUHOHFRRUGLQDWHSRODULGHOSXQWR3 -1  Soluzione 6LKDU = 1 +  = HGDWRFKH-1 6VLKDu = p + DUFWJ  = p- p=  p   -1 4XLQGLOHFRRUGLQDWHSRODULGL3VRQRa pb 

ra a x

O

Equazioni polari e grafici 6HPDQWHQLDPRU¿VVDWRDXQYDORUHFRVWDQWHU = D 7LOSXQWR3 Uu VLWURYHUj DGDXQLWjGDOO¶RULJLQH2$OYDULDUHGLuLQTXDOVLDVLLQWHUYDOORGLOXQJKH]]Dp3 -PN\YH /¶HTXD]LRQHSRODUHSHUOD GHVFULYHDOORUDXQDFLUFRQIHUHQ]DGLUDJJLRD FHQWUDWDLQ2 )LJXUD  6HVLPDQWLHQHu¿VVDWRDXQYDORUHFRVWDQWHu = uHVLODVFLDYDULDUHUWUD H FLUFRQIHUHQ]DqU = D qLOSXQWR3 Uu GHVFULYHODVHPLUHWWDFRQRULJLQHLQ2FKHIRUPDXQDQJRORGL DPSLH]]DuFRQLOODWRRULJLQH FRPHHVHPSLRYHGHUHOD)LJXUD  ÊSRVVLELOHFRPELQDUHHTXD]LRQLGHOWLSRU = DHu = uSHUGH¿QLUHUHJLRQL VHJPHQWLHUDJJL ESEMPIO 2

y

(a)

7UDFFLDUHLOJUD¿FRGHOO¶LQVLHPHGHLSXQWLOHFXLFRRUGLQDWHSRODULVRGGLVIDQROH VHJXHQWLFRQGL]LRQL D  …U …  H  0

E  …U …  H  F 

p 1  r  2, 0  u  2

2

x

y

(b)

  QHVVXQDUHVWUL]LRQHVXU 

1

2

Soluzione ,JUD¿FLVRQRULSRUWDWLQHOOD)LJXUD

0

u  p, 4 p 0r2 4 x

ESEMPIO 3

/DVHJXHQWHWDEHOODSUHVHQWDDOFXQHFXUYHSLDQHHVSUHVVHPHGLDQWHHTXD]LRQLLQ FRRUGLQDWHSRODULHLQFRRUGLQDWHFDUWHVLDQH (TXD]LRQHSRODUH

(TXD]LRQHFDUWHVLDQDHTXLYDOHQWH

UFRVu = 

[=

U FRVuVLQu = 

[\ = 

U FRV u - U VLQ u = 

[ - \ = 

U =  + UFRVu

1[ + \ =  + [











2p 3

(c)

y

5p 6

2p 5p u 3 6 0

x



-PN\YH ,JUDILFLFRUULVSRQGHQWLDGDOFXQH 3HUDOFXQHFXUYHO¶HVSUHVVLRQHLQFRRUGLQDWHSRODULULVXOWDSLVHPSOLFHSHUDOWUHQR WLSLFKHGLVXJXDJOLDQ]HSHUUHu (VHPSLR 

  *HWP[VSV¶,X\HaPVUPWHYHTL[YPJOLLJVVYKPUH[LWVSHYP

y x 2  ( y  3) 2  9 oppure r  6 sin 

(0, 3)

0

x

-PN\YH /DFLUFRQIHUHQ]DGHOO¶(VHPSLR

ESEMPIO 4

(VSULPHUHPHGLDQWHXQ¶HTXD]LRQHSRODUHODFLUFRQIHUHQ]D[ + \ -   =  )LJXUD   Soluzione $SSOLFKLDPROHHTXD]LRQLFKHPHWWRQRLQUHOD]LRQHOHFRRUGLQDWHSRODULHOHFR RUGLQDWHFDUWHVLDQH 6LHVSDQGH \ -   [+ \ -  =  6LVHPSOL¿FD [+ \- \ +  =  [+ \= U\ = UVLQu [+ \- \ =   U - UVLQu =  U =  RSSXUH U - VLQu =  U = VLQu ,QFOXGHHQWUDPEHOHSRVVLELOLWj 

2VVHUYLDPRFKHGRYHQGRHVVHUHU Ú O¶HTXD]LRQHVRSUDqGH¿QLWDSHU  … u … p

ESEMPIO 5

6RVWLWXLUH OH VHJXHQWL HTXD]LRQL SRODUL FRQ HTXLYDOHQWL HTXD]LRQL FDUWHVLDQH H LGHQWL¿FDUHLJUD¿FLFRUULVSRQGHQWL D UFRVu = -  E U = UFRVu F 



Soluzione (IIHWWXLDPROHVRVWLWX]LRQLUFRVu = [UVLQu = \HU = [ + \ D UFRVu = -   /¶HTXD]LRQHFDUWHVLDQD  UFRVu = -  [ = -  6LVRVWLWXLVFH  ,OJUD¿FR  UHWWDYHUWLFDOHSDVVDQWHSHULOSXQWR[ = - GHOO¶DVVH[ 2VVHUYLDPR FKH GRYHQGR HVVHUH U Ú  O¶HTXD]LRQH SRODUH q GH¿QLWD VROR SHU p 6u 6  pFRQVLVWHQWHFROIDWWRFKHLSXQWLGHOODUHWWD[ = - KDQQRODFRRUGL   QDWDSRODUHuFRPSUHVDWUDp H p    E U= UFRVu  /¶HTXD]LRQHFDUWHVLDQD 6LVRVWLWXLVFH

6LFRPSOHWDLOTXDGUDWR 6LIDWWRUL]]D

 ,OJUD¿FR FLUFRQIHUHQ]DGLUDJJLRHFHQWUR KN =   $QFKH LQ TXHVWR FDVR O¶HTXD]LRQH SRODUH KD VHQVR VROR VH FRV u Ú  FLRq SHU -p …u… p    F 

 ;YHJJPHYLNYHMPJPPUJVVYKPUH[LWVSHYP  

 /¶HTXD]LRQHFDUWHVLDQD 6LPROWLSOLFDSHUU 6LVRVWLWXLVFH 6LULVROYHULVSHWWRD\ y

 ,OJUD¿FR  UHWWDGLSHQGHQ]DP = HLQWHUFHWWDE = - VXOO¶DVVH\ ,QTXHVWRFDVRGRYHQGRHVVHUHU Ú O¶HTXD]LRQHSRODUHqGH¿QLWDSHUuWDOHFKH FRVu 7 VLQuFLRqSHU- p6u6p  

(r, ) x

0

(r, –)

 Tracciare grafici in coordinate polari ,Q PROWL FDVL q XWLOH GLVSRUUH GHO JUD¿FR GL XQ¶HTXD]LRQH LQ FRRUGLQDWH SRODUL 4XHVWRSDUDJUDIRGHVFULYHDOFXQHWHFQLFKHFKHFRQVHQWRQRGLWUDFFLDUHJUD¿FLGL TXHVWRWLSRVIUXWWDQGRVLPPHWULHHWDQJHQWL

(a) Rispetto all'asse x y

(r,   )

(r, )

x

0

Simmetria /D)LJXUDLOOXVWUDJOLXVXDOLFULWHULGLVLPPHWULDLQWHUPLQLGLFRRUGLQDWHSROD UL,OVHJXHQWHULTXDGURULDVVXPHOHUHOD]LRQLWUDSXQWLVLPPHWULFL

(b) Rispetto all'asse y

Criteri di simmetria per grafici in coordinate polari

 6LPPHWULDULVSHWWRDOO¶DVVH[VHLOSXQWR Uu DSSDUWLHQHDOJUD¿FRDOORUD LOSXQWR U- u DSSDUWLHQHDOJUD¿FR )LJXUDD   6LPPHWULDULVSHWWRDOO¶DVVH\VHLOSXQWR Uu DSSDUWLHQHDOJUD¿FRDOORUD LOSXQWR Up - u DSSDUWLHQHDOJUD¿FR )LJXUDE   6LPPHWULDULVSHWWRDOO¶RULJLQHVHLOSXQWR Uu DSSDUWLHQHDOJUD¿FRDOORUD LOSXQWR Uu + p DSSDUWLHQHDOJUD¿FR )LJXUDF 

y (r, )

0

x

(r,   ) (c) Rispetto all'origine

Pendenza

-PN\YH $QFKHLQFRRUGLQDWHSRODULODSHQGHQ]DGLXQDFXUYDU = ¦ u QHOSLDQR[\qGDWD 7UHFULWHULGLVLPPHWULDLQFRRUGLQDWH GDG\>G[FKHQRQFRLQFLGHFRQU¿ = G¦>Gu6LSHQVLLQIDWWLDOJUD¿FRGL¦FRPHDO SRODUL

JUD¿FRGHOOHHTXD]LRQLSDUDPHWULFKH [ = UFRVu = ¦ u FRVu  \ = UVLQu = ¦ u VLQu 6H¦qXQDIXQ]LRQHGHULYDELOHGLuDOORUDORVRQRDQFKH[H\HGqSRVVLELOHSHU G[>Gu ZFDOFRODUHG\>G[DSDUWLUHGDOO¶HVSUHVVLRQHSDUDPHWULFD (T  GHO3D UDJUDIR 

6LYHGHSHUWDQWRFKHG\>G[QRQFRLQFLGHFRQG¦>Gu

  *HWP[VSV¶,X\HaPVUPWHYHTL[YPJOLLJVVYKPUH[LWVSHYP

Pendenza della curva r = ¦(U)

SXUFKpG[>Gu ZLQ Uu  6HODFXUYDU = ¦ u SDVVDSHUO¶RULJLQHSHUu = uDOORUD¦ u = HGDOO¶HTXD]LRQH GHOODSHQGHQ]DVLRWWLHQH

6HTXLQGLLOJUD¿FRGLU = ¦ u SDVVDSHUO¶RULJLQHSHUu = uDOORUDODSHQGHQ]D GHOODFXUYDLQWDOHSXQWRqWJu,OPRWLYRSHUFXLVLGLFH³SHQGHQ]DLQ u ´H QRQVHPSOLFHPHQWH³SHQGHQ]DQHOO¶RULJLQH´qFKHXQDFXUYDHVSUHVVDLQFRRUGL QDWHSRODULSXzSDVVDUHSHUO¶RULJLQH RSHUTXDOVLDVLDOWURSXQWR SLGLXQDYROWD FRQGLIIHUHQWLYDORULGLSHQGHQ]DSHULGLYHUVLYDORULGLu&LzQRQDYYLHQHWXWWDYLD QHOVHJXHQWHHVHPSLR

U 



ESEMPIO 1

7UDFFLDUHLOJUD¿FRGHOODFXUYDU =  - FRVu





p

(a) ⎛3 , 2⎛ y ⎝2 3 ⎝ ⎛1,  ⎛ ⎝ 2⎝ 3 2 (, 2)

2

1

0

⎛1 , ⎛ ⎝2 3 ⎝ x

(b) ⎛3 , 2⎛ y ⎝2 3 ⎝

r  1  cos 

1 (, 2)

2

0

⎛1,  ⎛ ⎝ 2⎝ ⎛ 1 , ⎛ ⎝2 3⎝ x ⎛1 , – ⎛ ⎝2 3⎝

Soluzione /DFXUYDqVLPPHWULFDULVSHWWRDOO¶DVVH[SHUFKp Uu DSSDUWHQHQWHDOJUD¿FR QU =  - FRVu QU =  - FRV - u   FRVu = FRV - u  Q U- u DSSDUWHQHQWHDOJUD¿FR $OFUHVFHUHGLuWUDHpFRVuGHFUHVFHGDD- HU =  - FRVuFUHVFHGDOYDORUH PLQLPRDOYDORUHPDVVLPR$OFUHVFHUHGLuWUDpHp FRV uFUHVFHGD-  ¿QRDUDJJLXQJHUHQXRYDPHQWHHUGHFUHVFHGD¿QRDUDJJLXQJHUHQXRYDPHQWH  3HU u = p O¶DQGDPHQWR GHOOD FXUYD VL ULSHWH SHUFKp OD IXQ]LRQH FRVHQR KD SHULRGRp /DFXUYDVLDOORQWDQDGDOO¶RULJLQHFRQSHQGHQ]DWJ  = HULWRUQDDOO¶RULJLQH FRQSHQGHQ]DWJ p =  &RVWUXLDPRXQDWDEHOODFRQLYDORULGDu = Du = pULSRUWLDPRLSXQWLOL FRQJLXQJLDPRFRQXQDFXUYDUHJRODUHFKHDEELDWDQJHQWHRUL]]RQWDOHQHOO¶RULJLQH HULÀHWWLDPRTXDQWRRWWHQXWRULVSHWWRDOO¶DVVH[SHUFRPSOHWDUHLOJUD¿FR )LJXUD  /DFXUYDRWWHQXWDSUHQGHLOQRPHGLFDUGLRLGHSHUODVXDIRUPDDFXRUH

ESEMPIO 2

7UDFFLDUHLOJUD¿FRGHOODFXUYDU = ƒ FRVuƒ

⎛1, 3 ⎛ ⎝ 2⎝

Soluzione /DFXUYDqVLPPHWULFDULVSHWWRDOO¶DVVH[SHUFKp Uu DSSDUWHQHQWHDOJUD¿FR QU=  ƒ FRVu ƒ QU=  ƒ FRV - u ƒ  FRVu = FRV - u  Q U- u DSSDUWHQHQWHDOJUD¿FR

-PN\YH ,SDVVDJJLVHJXLWLQHOWUDFFLDUHLO JUDILFRGHOODFDUGLRLGHU =  - FRVu (VHPSLR /DIUHFFLDPRVWUDOD GLUH]LRQHLQFXLuqFUHVFHQWH

/DFXUYDqVLPPHWULFDULVSHWWRDOO¶RULJLQHSHUFKpƒ FRV u + p ƒ= ƒ -FRVuƒ= ƒ FRVu ƒ /DFRPELQD]LRQHGHOOHGXHVLPPHWULHLPSOLFDODVLPPHWULDULVSHWWRDOO¶DVVH\ /DFXUYDSDVVDSHUO¶RULJLQHSHUu = - p>Hu = p>,QHQWUDPELLFDVLKD WDQJHQWHYHUWLFDOHSHUFKpWJuWHQGHDLQ¿QLWR

⎛ 3 , 4⎛ ⎝2 3 ⎝

(c)

 ;YHJJPHYLNYHMPJPPUJVVYKPUH[LWVSHYP  

3HURJQLYDORUHGLuO¶HVSUHVVLRQHU = FRVuIRUQLVFHLOYDORUHGLU U =  2ƒ FRVu ƒ  &RVWUXLDPRXQDWDEHOODFRQDOFXQLYDORULULSRUWLDPRLSXQWLFRUULVSRQGHQWLHWH QLDPRFRQWRGHOOHLQIRUPD]LRQLRWWHQXWHULJXDUGRVLPPHWULHHWDQJHQWLSHUFRQ QHWWHUHLSXQWLPHGLDQWHXQDFXUYDUHJRODUH )LJXUD  U

FRVU





\

U ƒ FRV ƒ

 

 





&DSSLRFRUULVSRQGHQWHD U2²FRV        

D

[

&DSSLRFRUULVSRQGHQWHD U1FRV ²        E

-PN\YH ,OJUDILFRGLU = FRVu/HIUHFFH PRVWUDQRODGLUH]LRQHLQFXLuq FUHVFHQWH,YDORULGLUULSRUWDWLQHOOD WDEHOODVRQRVWDWLDUURWRQGDWL (VHPSLR 

(a) r 2 1

 2

Trasportare un grafico dal piano rU al piano xy 8QPRGRSHUUDSSUHVHQWDUHXQ¶HTXD]LRQHSRODUHU = ¦ u QHOSLDQR[\FRQVLVWH QHOFRVWUXLUHXQDWDEHOODGLYDORUL Uu GLVHJQDUHLSXQWLFRUULVSRQGHQWLHFRQ JLXQJHUOLLQRUGLQHGLuFUHVFHQWH4XHVWRSURFHGLPHQWRSXzGDUHEXRQLULVXOWDWL VHLOQXPHURGLSXQWLqVXI¿FLHQWHDHYLGHQ]LDUHWXWWLLFDSSLHOHLQGHQWD]LRQLGHO JUD¿FR8QDOWURPHWRGRSUHYHGHLVHJXHQWLSDVVL

r 2  sin 2

0

3 2

2



 4



–1 Non esistono radici quadrate di numeri negativi (b) r

 SHUSULPDFRVDVLWUDFFLDLOJUD¿FRGHOODIXQ]LRQHU = ¦ u QHOSLDQRFDUWHVLDQRUu  TXLQGLVLXWLOL]]DLOJUD¿FRFDUWHVLDQRFRPH³WDEHOOD´HJXLGDSHUGLVHJQDUHLO JUD¿FRLQFRRUGLQDWHSRODULQHOSLDQR[\

1

r  1sin 2



0

4XHVWRPHWRGRqLQDOFXQLFDVLSLHI¿FDFHULVSHWWRDULSRUWDUHVHPSOLFHPHQ WHLSXQWLSHUFKpLOJUD¿FRFDUWHVLDQRLQL]LDOHDQFKHVHDSSURVVLPDWLYRPRVWUD LPPHGLDWDPHQWHLYDORULSHUFXLUqFUHVFHQWHRGHFUHVFHQWHFRPHYHGUHPRQHO VHJXHQWHHVHPSLR (c)

y

ESEMPIO 3

7UDFFLDUHODFXUYDOHPQLVFDWD

r 2  sin 2

U = VLQu 0

x

Soluzione 3HUSULPDFRVDWUDFFLDPRLOJUD¿FRGLU HQRQGLU LQIXQ]LRQHGLuQHOSLDQR FDUWHVLDQRUuFRPHVLYHGHQHOOD)LJXUDD'DTXHVWRRWWHQLDPRLOJUD¿FR GLU = 2VLQu  QHOSLDQRUu )LJXUDE HTXLQGLWUDFFLDPRLOJUD¿FRSRODUH -PN\YH 3HUUDSSUHVHQWDUHU = ¦ u QHOSLDQR )LJXUDF  FDUWHVLDQRUuLQ E SHUSULPDFRVD UDSSUHVHQWLDPRU = VLQuQHOSLDQR UuLQ D HTXLQGLLJQRULDPRLYDORULGL uSHUFXLVLQuqQHJDWLYR,UDJJLGHO GLVHJQRQHOODILJXUD E FRUULVSRQGRQR DOJUDILFRSRODUHGHOODOHPQLVFDWDGHOOD ILJXUD F  (VHPSLR 

  *HWP[VSV¶,X\HaPVUPWHYHTL[YPJOLLJVVYKPUH[LWVSHYP

STRUMENTI TECNOLOGICI Tracciare grafici di curve polari parametricamente

1HOFDVRGLFXUYHSRODULFRPSOHVVHSRWUHEEHHVVHUHQHFHVVDULRXWLOL]]DUHXQDFDO FRODWULFHJUD¿FDRXQFRPSXWHUSHUWUDFFLDUHLOJUD¿FR6HORVWUXPHQWRXWLOL]]DWR QRQFRQVHQWHGLUDSSUHVHQWDUHLJUD¿FLSRODULGLUHWWDPHQWHqSRVVLELOHFRQYHUWLUH U = ¦ u LQIRUPDSDUDPHWULFDPHGLDQWHOHHTXD]LRQL [ = UFRVu = ¦ u FRVu  \ = UVLQu = ¦ u VLQu HTXLQGLXWLOL]]DUHORVWUXPHQWRSHUGLVHJQDUHXQDFXUYDSDUDPHWUL]]DWDQHOSLDQR [\/RVWUXPHQWRSRWUHEEHULFKLHGHUHO¶LPSLHJRGHOSDUDPHWURWDQ]LFKpu

 Aree e lunghezze in coordinate polari ,QTXHVWRSDUDJUDIRYHGUHPRFRPHFDOFRODUHO¶DUHDGLUHJLRQLSLDQHHODOXQJKH]]D GLFXUYHLQFRRUGLQDWHSRODUL,FRQFHWWLIRQGDPHQWDOLVRQRJOLVWHVVLJLjYLVWLPD OHHVSUHVVLRQLFKHVLRWWHQJRQRLQFRRUGLQDWHSRODULVRQRGLYHUVHULVSHWWRDTXHOOH LQFRRUGLQDWHFDUWHVLDQH

Area nel piano y  S

/D UHJLRQH 276 UDSSUHVHQWDWD QHOOD )LJXUD  q GHOLPLWDWD GDL UDJJL u = a H u = b HGDOODFXUYDU = ¦ u ÊSRVVLELOHDSSURVVLPDUHODUHJLRQHPHGLDQWHQVHWWRUL FLUFRODULGLVSRVWLDYHQWDJOLRVHQ]DVRYUDSSRUVLWUDORURFRVWUXLWLVXOODEDVHGLXQD SDUWL]LRQH 3 GHOO¶DQJROR 726 ,O JHQHULFR VHWWRUH KD UDJJLR UN = ¦ uN  H DQJROR FHQWUDOHSDULD¢uNUDGLDQWL/DFRUULVSRQGHQWHDUHDqSDULD¢uN>p YROWHO¶DUHDGL XQFHUFKLRGLUDJJLRUNFLRq

k rn

( f (k ), k) rk r  f () r2 r1

T

 /¶DUHDGHOODUHJLRQH276qGDWDDOO¶LQFLUFDGD



k

x

O

-PN\YH 6H¦qFRQWLQXDFLVLDWWHQGHFKHLOOLYHOORGLSUHFLVLRQHGHOO¶DSSURVVLPD]LRQH 3HUGHWHUPLQDUHO¶HVSUHVVLRQHGHOO¶DUHD PLJOLRUL TXDQGR OD QRUPD GHOOD SDUWL]LRQH 3 FLRq LO PDVVLPR WUD L YDORUL ¢u  N GHOODUHJLRQH276VLDSSURVVLPDOD WHQGHD]HUR6LRWWLHQHSHUWDQWRSHUO¶DUHDGHOODUHJLRQHODVHJXHQWHHVSUHVVLRQH UHJLRQHPHGLDQWHVHWWRULFLUFRODUL GLVSRVWLDYHQWDJOLR

Area della regione a forma di ventaglio compresa tra l’origine e la curva r = ¦ U ,A … U … B y dA  1 r 2 d 2 d

4XHVWDHVSUHVVLRQHFRUULVSRQGHDOO¶LQWHJUDOHGHOGLIIHUHQ]LDOHG¶DUHD )LJXUD  P(r, )



r ESEMPIO 1

 O

-PN\YH ,OGLIIHUHQ]LDOHG¶DUHDG$ SHUODFXUYDU = ¦ u 

x

'HWHUPLQDUH O¶DUHD GHOOD UHJLRQH GHO SLDQR GHOLPLWDWD GDOOD FDUGLRLGH U =   + FRVu  Soluzione 7UDFFLDPRLOJUD¿FRGHOODFDUGLRLGH )LJXUD HRVVHUYLDPRFKHLOUDJJLR23

 (YLLLS\UNOLaaLPUJVVYKPUH[LWVSHYP  

VSD]]DODUHJLRQHXQDHXQDVRODYROWDDOYDULDUHGLuWUDHp/¶DUHDqGDWD SHUWDQWRGD

y

r  2(1  cos u) P(r, u)

2

r

u  0, 2p

0

x

4

–2

-PN\YH /DFDUGLRLGHGHOO¶(VHPSLR

3HUGHWHUPLQDUHO¶DUHDGLXQDUHJLRQHFRPHTXHOODULSRUWDWDQHOOD)LJXUD FRPSUHVDFLRqWUDGXHFXUYHSRODULU = U u HU = U u WUDu = aHu = bVLVRWWUDH O¶LQWHJUDOHGL > UGuGDOO¶LQWHJUDOHGL > UGu6LRWWLHQHFRVuO¶HVSUHVVLRQH ULSRUWDWDQHOVHJXHQWHULTXDGUR

y

ub r2

Area della regione 0 …r1 U …r …r2 U ,A … U … B r1



ua

ESEMPIO 2

x

0

'HWHUPLQDUHO¶DUHDGHOODUHJLRQHLQWHUQDDOODFLUFRQIHUHQ]DU = HGHVWHUQDDOOD -PN\YH FDUGLRLGHU =  - FRVu /¶DUHDGHOODUHJLRQHRPEUHJJLDWDYLHQH FDOFRODWDVRWWUDHQGRO¶DUHDGHOOD

Soluzione UHJLRQHFRPSUHVDWUDUHO¶RULJLQH 'LVHJQLDPRODUHJLRQHSHUGH¿QLUQHLFRQ¿QLHGHWHUPLQDUHJOLHVWUHPLGLLQWHJUD GDOO¶DUHDGHOODUHJLRQHFRPSUHVDWUDU ]LRQH )LJXUD /DFXUYDHVWHUQDqGDWDGDU = PHQWUHODFXUYDLQWHUQDq HO¶RULJLQH GDWDGDU =  - FRVuFRQuFKHYDULDWUD- p>Hp>$SSOLFDQGRO¶(TXD]LRQH  VLRWWLHQHSHUO¶DUHDO¶HVSUHVVLRQH y r1  1  cos 

Estremo superiore   p2 r2  1

6LPPHWULD



4XDGUDWRGLU

x

0

Estremo inferiore   –p2

-PN\YH /DUHJLRQHGHOO¶(VHPSLRHJOL HVWUHPLGLLQWHJUD]LRQH

  *HWP[VSV¶,X\HaPVUPWHYHTL[YPJOLLJVVYKPUH[LWVSHYP

Lunghezza di una curva polare ÊSRVVLELOHRWWHQHUHXQ¶HVSUHVVLRQHLQFRRUGLQDWHSRODULGHOODOXQJKH]]DGLXQD FXUYDU = ¦ u a … u … bSDUDPHWUL]]DQGRODFXUYDLQTXHVWRPRGR [ = UFRVu = ¦ u FRVu  \ = UVLQu = ¦ u VLQu  a … u … b





'DOO¶HVSUHVVLRQHSDUDPHWULFDGHOODOXQJKH]]DGDWDGDOO¶(TXD]LRQH  GHO3DUD JUDIRVLRWWLHQHDOORUDODVHJXHQWHHVSUHVVLRQHGHOODOXQJKH]]D

 6RVWLWXHQGR[H\QHOOH(TXD]LRQL  O¶HTXD]LRQHGLYHQWD

YHGHUHO¶(VHUFL]LR  Lunghezza di una curva polare

6HU = ¦ u KDGHULYDWDSULPDFRQWLQXDSHUa … u … b HVHLOSXQWR3 Uu SHU FRUUHODFXUYDU = ¦ u XQDHXQDVRODYROWDDOYDULDUHGLuWUDaHbDOORUDOD OXQJKH]]DGHOODFXUYDqGDWDGD 

ESEMPIO 3

'HWHUPLQDUHODOXQJKH]]DGHOODFDUGLRLGHU =  - FRVu

y r  1  cos  P(r, ) r

1 

2

0

x

Soluzione 'LVHJQLDPRODFDUGLRLGHSHUGHWHUPLQDUHJOLHVWUHPLGLLQWHJUD]LRQH )LJXUD  ,OSXQWR3 Uu SHUFRUUHODFXUYDXQDHXQDVRODYROWDLQVHQVRDQWLRUDULRDOYDULDUH GLuWUDHpTXLQGLDVVHJQLDPRWDOLYDORULDGaHb 3RQHQGR  VLKD

-PN\YH &DOFRORGHOODOXQJKH]]DGLXQD FDUGLRLGH (VHPSLR 

 

 *VUPJOLPUJVVYKPUH[LWVSHYP  

TXLQGL

 - FRVu = VLQ u> 

VLQ u> Ú  SHU  … u …p

* ( 7 0 ; 6 3 6



Funzioni a valori vettoriali e moto nello spazio PANORAMICA

Sommario del capitolo

In questo capitolo estenderemo lo studio delle curve piane, introdotte nel capitolo precedente, alle curve nello spazio, riguardandole come funzioni a valori vettoriali. Il dominio di tali funzioni è un intervallo di ℝ mentre il codominio è dato da un insieme di vettori, anziché di scalari. La parte dell’analisi matematica che tratteremo trova applicazione nella descrizione della traiettoria e del moto di oggetti nel piano o nello spazio, la cui velocità e la cui accelerazione lungo la traiettoria percorsa, come vedremo, sono rappresentate da vettori. Presenteremo inoltre la definizione di nuove quantità che descrivono la forma assunta dalla traiettoria di un oggetto nello spazio.

 Curve nello spazio e loro tangenti  Integrali di funzioni vettoriali e moto del proiettile  Lunghezza d’arco nello spazio  Curvatura e vettori normali a una curva  Componente tangenziale e componente normale dell’accelerazione  Velocità e accelerazione in coordinate polari

 Curve nello spazio e loro tangenti 'DWDXQDSDUWLFHOODFKHVLPXRYHQHOORVSD]LRLQXQFHUWRLQWHUYDOORWHPSRUDOH, OHFRRUGLQDWHGHOODSDUWLFHOODSRVVRQRHVVHUHYLVWHFRPHIXQ]LRQLFRQWLQXHGH¿QLWH LQ, [= ¦ W   \ = J W   ] = K W   W H,





,SXQWL [\] = ¦ W J W K W W H,FRVWLWXLVFRQRXQDFXUYDSDUDPHWULFDQHOOR VSD]LR/HHTXD]LRQLHO¶LQWHUYDOORGH¿QLWLQHOO¶(TXD]LRQH  FRVWLWXLVFRQRXQD SDUDPHWUL]]D]LRQHGHOODFXUYD /DSDUDPHWUL]]D]LRQHGLXQDFXUYDQHOORVSD]LRSXzDQFKHHVVHUHHVSUHVVDLQ IRUPDYHWWRULDOH,OYHWWRUH 

U W =

= ¦ W L + J W M + K W N



FKH YD GDOO¶RULJLQH DOOD SRVL]LRQH 3 ¦ W  J W  K W  GHOOD SDUWLFHOOD DO WHPSR W SUHQGHLOQRPHGLYHWWRUHSRVL]LRQHGHOODSDUWLFHOOD )LJXUD  z

-PN\YH ,O YHWWRUH SRVL]LRQH U =  GL XQD SDUWLFHOODFKHVLPXRYHQHOORVSD]LR LQIXQ]LRQHGHOWHPSR

r

P( f (t), g(t), h(t))

O y x

/HIXQ]LRQL¦JHKVRQROHIXQ]LRQLFRPSRQHQWL RFRPSRQHQWL GHOYHWWRUHSR VL]LRQH/DWUDLHWWRULDGHOODSDUWLFHOODSXzHVVHUHYLVWDFRPHODFXUYDWUDFFLDWD GDUQHOO¶LQWHUYDOORGLWHPSR,/D)LJXUDPRVWUDGLYHUVHFXUYHQHOORVSD]LR JHQHUDWHGDXQVRIWZDUHJUD¿FR'LVHJQDUHTXHVWHFXUYHVHQ]DO¶DLXWRGHOFRPSX WHUVDUHEEHPROWRGLI¿FROWRVR

  *HWP[VSV¶-\UaPVUPH]HSVYP]L[[VYPHSPLTV[VULSSVZWHaPV

z

z

-PN\YH /HFXUYHQHOORVSD]LRUDSSUHVHQWDWH VRQRGHILQLWHGDLYHWWRULSRVL]LRQHU W 

z

y

x

x

y

x

y r(t)  (sin3t)(cos t)i  (sin3t)(sin t)j  tk (a)

r(t)  (cos t)i  (sin t)j  (sin 2t)k

(b)

r(t)  (4  sin20t)(cos t)i  (4  sin20t)(sint)j  (cos20t)k (c)

/¶(TXD]LRQH   GH¿QLVFH U FRPH XQD IXQ]LRQH YHWWRULDOH GL YDULDELOH UHDOH WQHOO¶LQWHUYDOOR,3LLQJHQHUDOHXQDIXQ]LRQHDYDORULYHWWRULDOLRIXQ]LRQH YHWWRULDOHLQXQLQVLHPHGRPLQLR'qXQDFRUULVSRQGHQ]DFKHDVVHJQDXQYHWWRUH QHOORVSD]LRDFLDVFXQHOHPHQWRGL'3HULOPRPHQWROLPLWHUHPRODWUDWWD]LRQH DOFDVRLQFXLLOGRPLQLRqXQLQWHUYDOORGLQXPHULUHDOLHLOFRGRPLQLRULVXOWDQWH qXQDFXUYDQHOORVSD]LR6XFFHVVLYDPHQWHQHO&DSLWRORHVWHQGHUHPRODWUDW WD]LRQHDOFDVRLQFXLLOGRPLQLRqXQDUHJLRQHGHOSLDQRLQFXLOHIXQ]LRQLYHW WRULDOLUDSSUHVHQWDQRVXSHU¿FLQHOORVSD]LR/HIXQ]LRQLYHWWRULDOLFRQGRPLQLRH FRGRPLQLRQHOSLDQRRQHOORVSD]LRGDQQRRULJLQHD³FDPSLYHWWRULDOL´GLJUDQGH LPSRUWDQ]DQHOORVWXGLRGHOODÀXLGRGLQDPLFDGHLFDPSLJUDYLWD]LRQDOLHGHLIHQR PHQLHOHWWURPDJQHWLFL$QDOL]]HUHPRLFDPSLYHWWRULDOLHOHORURDSSOLFD]LRQLQHO &DSLWROR /HIXQ]LRQLDYDORULUHDOLSUHQGRQRDQFKHLOQRPHGLIXQ]LRQLVFDODULSHUGL VWLQJXHUOHGDOOHIXQ]LRQLYHWWRULDOL2JQLFRPSRQHQWHGLUFKHFRPSDUHQHOO¶(TXD ]LRQH  qXQDIXQ]LRQHVFDODUHGLW,OGRPLQLRGLXQDIXQ]LRQHDYDORULYHWWRULDOL qLOGRPLQLRFRPXQHDOOHVXHFRPSRQHQWL/HFXUYHSLDQHLQWURGRWWHQHOFDSLWROR SUHFHGHQWHSRVVRQRHVVHUHYLVWHFRPHFDVLSDUWLFRODULGLFXUYHQHOORVSD]LRSHUOH TXDOLODWHU]DFRPSRQHQWHqQXOODFLRqK W =SHURJQLWH, 1DWXUDOPHQWHXQDGDWDWUDLHWWRULDSXzHVVHUHSHUFRUVDLQYDULPRGL LQXQGH WHUPLQDWRYHUVRRQHOYHUVRRSSRVWRFRQYHORFLWjFRVWDQWHRYDULDELOHHFRVuYLD H LOPRGRFRQFXLODSDUWLFHOODSHUFRUUHODWUDLHWWRULDULVXOWDGDOODSDUDPHWUL]]D]LRQH GHOODFXUYDFLRqGDOOHIXQ]LRQLFRPSRQHQWL¦ W J W K W /DUHOD]LRQHFKHLQWHU FRUUHWUDODFXUYDLQWHVDFRPHLQVLHPHGLSXQWLQHOORVSD]LRHXQDVXDSDUDPH WUL]]D]LRQH[=¦ W \=J W ]=K W qFKHODFXUYDqLOFRGRPLQLRGHOODIXQ]LRQH YHWWRULDOHU W =¦ W L + J W M + K W N2YYLDPHQWHHVLVWRQRLQ¿QLWHDOWUHIXQ]LRQL YHWWRULDOLFKHKDQQRORVWHVVRFRGRPLQLRGLURJQXQDGHOOHTXDOLFRVWLWXLVFHXQD SRVVLELOHSDUDPHWUL]]D]LRQHGHOODVWHVVDFXUYDÊTXLQGLLPSRUWDQWHGLVWLQJXHUH ODFXUYDFRPHHQWHJHRPHWULFR LQVLHPHGLSXQWLGHOORVSD]LR GDOOHVXHSRVVLELOL SDUDPHWUL]]D]LRQL FKH VRQR IXQ]LRQL D YDORUL YHWWRULDOL OH TXDOL IRUQLVFRQR OH LQIRUPD]LRQLUHODWLYHDOPRGRLQFXLVLWUDFFLDODFXUYD RVLSHUFRUUHODWUDLHWWRULD 

 *\Y]LULSSVZWHaPVLSVYV[HUNLU[P  

z

ESEMPIO 1

7UDFFLDUHODFXUYDSDUDPHWUL]]DWDGD U W = FRVW L + VLQW M + WN 2

Soluzione /DIXQ]LRQHYHWWRULDOH

t

t  2

U W = FRVW L + VLQW M + WN qGH¿QLWDSHURJQLYDORUHGLW/DFXUYDWUDFFLDWDGDUVLDYYROJHVXOODVXSHU¿FLH GHOFLOLQGURDEDVHFLUFRODUH[ + \ =  )LJXUD /DFXUYDJLDFHVXOODVXSHU¿ FLHGHOFLOLQGURSHUFKpOHFRPSRQHQWLGLUFKHFRLQFLGRQRFRQOHFRRUGLQDWHGHOOD SXQWDGLUVRGGLVIDQRO¶HTXD]LRQHGHOFLOLQGUR [ + \ = FRVW  + VLQW  = 

t (1, 0, 0)

t0

t  2

r

0

P x2  y2  1

y

x

-PN\YH

/DFXUYDVDOHDOFUHVFHUHGHOODFRPSRQHQWHNFKHq] = W3HURJQLLQFUHPHQWRGL /DPHWjVXSHULRUHGHOO¶HOLFD WGLpODFXUYDFRPSLHXQDYYROJLPHQWRLQWRUQRDOODVXSHU¿FLHGHOFLOLQGUR/D U W   FRVW L VLQW MWN (VHPSLR  FXUYDSUHQGHLOQRPHGLHOLFD/HHTXD]LRQL [ = FRVW  \ = VLQW  ] = W HO¶LQWHUYDOOR- q 6 W 6 q VRWWLQWHVRSDUDPHWUL]]DQRO¶HOLFD/D)LJXUDPRVWUD DOWULHVHPSLGLHOLFKH6LRVVHUYLFRPHYDULDLOQXPHURGLDYYROJLPHQWLSHUXQLWj GLWHPSRDOYDULDUHGHOIDWWRUHPROWLSOLFDWLYRGHOSDUDPHWURW z

z

x

z

x y

x y

r(t)  (cos t)i  (sin t)j  tk

r(t)  (cos t)i  (sin t)j  0.3tk

y r(t)  (cos 5t)i  (sin 5t)j  tk

-PN\YH (OLFKHFKHVLDYYROJRQRDVSLUDOHFRPH /DGH¿QL]LRQHGLOLPLWHSHUXQDIXQ]LRQHDYDORULYHWWRULDOLqVLPLOHDTXHOODGL PROOHVXOODVXSHUILFLHGLXQFLOLQGUR

Limiti e continuità

OLPLWHSHUXQDIXQ]LRQHDYDORULUHDOL DEFINIZIONE

6LDU W = ¦ W L + J W M + K W NXQDIXQ]LRQHYHWWRULDOHFRQGRPLQLR'HVLD/XQ YHWWRUH6LGLFHFKHUKDOLPLWH/SHUWFKHWHQGHDWHVLVFULYH OLPU W = / W: W

VHSHURJQLQXPHURP 7 HVLVWHXQFRUULVSRQGHQWHQXPHURd 7 WDOHFKH ƒ U W - / ƒ 6 P SHURJQLW H'WDOHFKH  6 ƒ W - W ƒ 6 d

  *HWP[VSV¶-\UaPVUPH]HSVYP]L[[VYPHSPLTV[VULSSVZWHaPV

6H/ = /L + /M + /NVLSXzGLPRVWUDUHFKHOLPW : W U W = /VHHVROWDQWRVH 

H 7UDODVFLDPRODGLPRVWUD]LRQH/¶HTXD]LRQH 



 

IRUQLVFHXQPHWRGRGLIDFLOHDSSOLFD]LRQHSHULOFDOFRORGHOOLPLWHGLIXQ]LRQLYHW WRULDOL ESEMPIO 2

6HU W = FRVW L + VLQW M + WNDOORUD

/D GH¿QL]LRQH GL FRQWLQXLWj SHU OH IXQ]LRQL YHWWRULDOL q OD VWHVVD FKH SHU OH IXQ]LRQLVFDODUL DEFINIZIONE

6LGLFHFKHXQDIXQ]LRQHYHWWRULDOHU W qFRQWLQXDLQXQSXQWRW =WGHOSUR SULRGRPLQLRVHOLPW:WU W =U W /DIXQ]LRQHVLGLFHFRQWLQXDVHqFRQWLQXD LQRJQLSXQWRGHOSURSULRGRPLQLR

z

P

r(t  t)  r(t) Q

'DOO¶(TXD]LRQH  VLYHGHFKHU W qFRQWLQXDLQW = WVHHVROWDQWRVHFLDVFXQD GHOOHVXHFRPSRQHQWLqFRQWLQXDLQWDOHSXQWR

r(t) r(t  t)

C

ESEMPIO 3 O

y

D /HSDUDPHWUL]]D]LRQLGHOOHFXUYHQHOORVSD]LRGHOOH)LJXUHHVRQRFRQ WLQXH SHUFKp FLDVFXQD GHOOH ORUR IXQ]LRQL FRPSRQHQWL q FRQWLQXD SHU RJQL YDORUHGLWLQ - qq 

(a) x z

r'(t)

E /DIXQ]LRQH

r(t  t)  r(t) t Q

J W = FRVW L + VLQW M + :W;N

P

qGLVFRQWLQXDLQWXWWLLYDORULLQWHULSHULTXDOLODIXQ]LRQHSDUWHLQWHUDLQIHULRUH :W; qGLVFRQWLQXD

r(t) r(t  t) C O

y

Derivate e moto (b) x

-PN\YH 3HU¢W : LOSXQWR4WHQGHDOSXQWR 3OXQJRODFXUYD& $OOLPLWHLOYHWWRUH >¢WGLYHQWDLO YHWWRUHWDQJHQWHU¿ W 

6LDU W = ¦ W L + J W M + K W NLOYHWWRUHSRVL]LRQHGLXQDSDUWLFHOODFKHVLPXRYH OXQJRXQDFXUYDQHOORVSD]LRHVLDQR¦JHKIXQ]LRQLGLIIHUHQ]LDELOLGLW$OORUD ODGLIIHUHQ]DWUDODSRVL]LRQHGHOODSDUWLFHOODDOWHPSRWHDOWHPSRW + ¢WqGDWDGD ¢U = U W + ¢W - U W  )LJXUDD ,QWHUPLQLGLFRPSRQHQWL

 *\Y]LULSSVZWHaPVLSVYV[HUNLU[P  

¢U = U W + ¢W - U W  = >¦ W + ¢W L + J W + ¢W M + K W + ¢W N@ - >¦ W L + J W M + K W N@ = >¦ W + ¢W - ¦ W @L + >J W + ¢W - J W @M + >K W + ¢W - K W @N 3HU¢WFKHWHQGHD]HURVLRVVHUYDQRWUHIHQRPHQLVLPXOWDQHL3ULPR4WHQGHD 3OXQJRODFXUYD6HFRQGRODUHWWDVHFDQWH34VHPEUDWHQGHUHDXQDSRVL]LRQH OLPLWHWDQJHQWHDOODFXUYDQHOSXQWR37HU]RLOTXR]LHQWH¢U>¢W )LJXUD E  WHQGHDOOLPLWH

&LzFRQGXFHDOODVHJXHQWHGH¿QL]LRQH DEFINIZIONE

/DIXQ]LRQHYHWWRULDOHU W = ¦ W L + J W M + K W NqGHULYDELOHLQWVH¦JHK VRQRGHULYDELOLLQW/DGHULYDWDqODIXQ]LRQHYHWWRULDOH

8QDIXQ]LRQHYHWWRULDOHUqGHULYDELOHLQ'VHqGHULYDELOHLQRJQLSXQWRGL' DEFINIZIONE

8QDSDUDPHWUL]]D]LRQHU W = ¦ W L + J W M + K W NWH,VLGLFHUHJRODUHVHUq GHULYDELOHFRQFRQWLQXLWjLQ,HU‫ މ‬W Z SHURJQLWH, 6L GH¿QLVFH FXUYD UHJRODUH XQD FXUYD FKH DPPHWWH XQD SDUDPHWUL]]D]LRQH UHJRODUH /D)LJXUDPRVWUDLOVLJQL¿FDWRJHRPHWULFRGHOODGH¿QL]LRQHGLGHULYDWD ,SXQWL3H4KDQQRYHWWRULSRVL]LRQHU W HU W + ¢W PHQWUHLOYHWWRUH qUDS SUHVHQWDWRGDU W + ¢W - U W 3HU¢W 7 LOPXOWLSORVFDODUH >¢W U W + ¢W - U W  KDODVWHVVDGLUH]LRQHHYHUVRGHOYHWWRUH 3HU¢W : TXHVWRYHWWRUHWHQGHD XQYHWWRUHFKHqWDQJHQWHDOODFXUYDLQ3 )LJXUDE ,OYHWWRUHU¿ W TXDQGRq GLYHUVRGDqGH¿QLWRFRPHLOYHWWRUHWDQJHQWHDOODFXUYDLQ3/DUHWWDWDQJHQ WHDOODFXUYDLQXQSXQWR ¦ W J W K W qGH¿QLWDFRPHODUHWWDSDVVDQWHSHULO SXQWRFKHVLDSDUDOOHODDU¿ W /DULFKLHVWDGU>GW ZSHUODUHJRODULWjGLXQDFXUYD VHUYHDJDUDQWLUHFKHODFXUYDDEELDWDQJHQWHLQRJQLSXQWR 8QDFXUYDUHJRODUHQRQSXzDYHUHSXQWLDQJRORVLRFXVSLGL8QDFXUYDRWWHQX WDXQHQGRXQQXPHUR¿QLWRGLFXUYHUHJRODULFROOHJDWHLQPRGRFRQWLQXRVLGLFH UHJRODUHDWUDWWL )LJXUD  6LRVVHUYLQXRYDPHQWHOD)LJXUD6LqVFHOWRGLUDSSUHVHQWDUHXQYDORUH¢W SRVLWLYRLQPRGRFKHLOYHUVRGL¢UVLDLQDYDQWLQHOODGLUH]LRQHGHOPRWR$Q FKHLOYHUVRGHOYHWWRUH¢U>¢WFKHKDODVWHVVDGLUH]LRQHGL¢UqLQDYDQWL6H¢W IRVVHVWDWRQHJDWLYR¢UDYUHEEHSXQWDWRLQGLHWURLQGLUH]LRQHRSSRVWDDOPRWR ,OUDSSRUWR¢U>¢WWXWWDYLDHVVHQGRXQPXOWLSORVFDODUHQHJDWLYRGL¢UDYUHEEH FRPXQTXHSXQWDWRLQDYDQWL,QGLSHQGHQWHPHQWHGDOYHUVRGL¢ULOYHUVRGL¢U>¢W

C1 C2

C3

C4 C5

-PN\YH 8QDFXUYDUHJRODUHDWUDWWLIRUPDWDGD FLQTXHFXUYHUHJRODULFROOHJDWHDJOL HVWUHPLLQPRGRFRQWLQXR/DFXUYD PRVWUDWDQRQqUHJRODUHQHLSXQWLGL FRQQHVVLRQHWUDOHFLQTXHFXUYH UHJRODUL

  *HWP[VSV¶-\UaPVUPH]HSVYP]L[[VYPHSPLTV[VULSSVZWHaPV

qLQDYDQWLHFLVLDVSHWWDFKHLOYHWWRUHGU>GW = OLP¢W : ¢U>¢WTXDQGRqGLYHUVRGD DEELDORVWHVVRFRPSRUWDPHQWR&LzVLJQL¿FDFKHLOYHUVRGHOODGHULYDWDGU>GW FKHFRUULVSRQGHDOWDVVRGLYDULD]LRQHGHOODSRVL]LRQHULVSHWWRDOWHPSRqVHPSUH QHOODGLUH]LRQHGHOPRWR3HUXQDFXUYDUHJRODUHGU>GWQRQqPDL]HURTXLQGLOD SDUWLFHOODQRQVLIHUPDPDLHQRQLQYHUWHPDLODGLUH]LRQHGHOPRWR DEFINIZIONE

6HUqLOYHWWRUHSRVL]LRQHGLXQDSDUWLFHOODFKHVLPXRYHOXQJRXQDFXUYDUH JRODUHQHOORVSD]LRDOORUD

qLOYHWWRUHYHORFLWjGHOODSDUWLFHOODWDQJHQWHDOODFXUYD$RJQLLVWDQWHWOD GLUH]LRQHGLYqODGLUH]LRQHGHOPRWRLOPRGXORGLYqODYHORFLWjVFDODUH GHOOD SDUWLFHOOD H OD GHULYDWD D = GY>GW VH HVLVWH q LO YHWWRUH DFFHOHUD]LRQH GHOODSDUWLFHOOD5LDVVXPHQGR  ODYHORFLWjqODGHULYDWDGHOODSRVL]LRQH 



 ODYHORFLWjVFDODUHqLOPRGXORGHOODYHORFLWj  9HORFLWjVFDODUH = ƒ Y ƒ  O¶DFFHOHUD]LRQHqODGHULYDWDGHOODYHORFLWj   LOYHUVRUHY> ƒ Y ƒ qODGLUH]LRQHGHOPRWRDOWHPSRW z

7p r' ⎛⎝ ⎛⎝ 4 ESEMPIO 4 y t  7p 4

'HWHUPLQDUHODYHORFLWjODYHORFLWjVFDODUHHO¶DFFHOHUD]LRQHGLXQDSDUWLFHOODLOFXL PRWRQHOORVSD]LRqGDWRGDOYHWWRUHSRVL]LRQHU W = FRVWL + VLQWM + FRVWN 'LVHJQDUHLOYHWWRUHYHORFLWjY p>  Soluzione ,YHWWRULYHORFLWjHDFFHOHUD]LRQHDOWHPSRWVRQRGDWLGD

x

-PN\YH /DFXUYDHLOYHWWRUHYHORFLWjSHU W = p>SHULOPRWRGHOO¶(VHPSLR

PHQWUHODYHORFLWjVFDODUHqGDWDGD

3HUW = p>VLKD

/D)LJXUDPRVWUDXQGLVHJQRGHOODFXUYDGHOPRWRHGHOYHWWRUHYHORFLWjSHU W = p>

 *\Y]LULSSVZWHaPVLSVYV[HUNLU[P  

Regole di derivazione

4XDQGRVLXWLOL]]DODSURSULHWjGHO

3RLFKp OD GHULYDWD GL XQD IXQ]LRQH YHWWRULDOH SXz HVVHUH FDOFRODWD FRPSRQHQWH SURGRWWRYHWWRULDOHRFFRUUHPDQWHQHUH SHUFRPSRQHQWHOHUHJROHGLGHULYD]LRQHSHUOHIXQ]LRQLYHWWRULDOLKDQQRODVWHVVD O¶RUGLQHGHLIDWWRUL6HXFRPSDUHSHU IRUPDGHOOHFRUULVSRQGHQWLUHJROHSHUOHIXQ]LRQLVFDODUL SULPRDSULPRPHPEUR Regole di derivazione per le funzioni vettoriali

6LDQRXHYGXHIXQ]LRQLYHWWRULDOLGHULYDELOLGLWVLD&XQYHWWRUHFRVWDQWHVLDF XQTXDOVLDVLVFDODUHHVLD¦XQDTXDOVLDVLIXQ]LRQHVFDODUHGHULYDELOH  3URSULHWjGHOODIXQ]LRQH FRVWDQWH  3URSULHWjGHOSURGRWWR SHUXQRVFDODUH

 3URSULHWjGLDGGL]LRQH  3URSULHWjGLVRWWUD]LRQH  3URSULHWjGHOSURGRWWR VFDODUH  3URSULHWjGHOSURGRWWR YHWWRULDOH  5HJRODGHOODFDWHQD

'LPRVWULDPRRUDOHSURSULHWjSHULSURGRWWLHODUHJRODGHOODFDWHQDPHQWUHODVFLD PRSHUHVHUFL]LROHGLPRVWUD]LRQLGHOOHDOWUHSURSULHWjHQXQFLDWH DIMOSTRAZIONE DELLA PROPRIETÀ DEL PRODOTTO SCALARE 6LD HVLD $OORUD

X = X W L + X W M + X W N Y = y W L + y W M + y W N

DIMOSTRAZIONE DELLA PROPRIETÀ DEL PRODOTTO VETTORIALE /DGLPRVWUD]LRQHULFDOFDODGLPRVWUD]LRQHGHOODSURSULHWjGLPROWLSOLFD]LRQHSHUOH IXQ]LRQLVFDODUL3HUODGH¿QL]LRQHGLGHULYDWD

3HUPRGL¿FDUHTXHVWRTXR]LHQWHLQPRGRGDRWWHQHUHXQ¶HVSUHVVLRQHFKHFRQWHQJD LUDSSRUWLLQFUHPHQWDOLSHUOHGHULYDWHGLXHGLYVRWWUDLDPRHVRPPLDPRODTXDQ WLWjX W *Y W + K DOQXPHUDWRUH6LKDTXLQGL

GHOO¶XJXDJOLDQ]DGHYHFRPSDULUHSHU SULPRDQFKHDVHFRQGRPHPEUR DOWULPHQWLLVHJQLULVXOWDQRHUUDWL

  *HWP[VSV¶-\UaPVUPH]HSVYP]L[[VYPHSPLTV[VULSSVZWHaPV

/¶XOWLPDXJXDJOLDQ]DYDOHSHUFKpLOOLPLWHGHOSURGRWWRYHWWRULDOHGLGXHIXQ]LRQL YHWWRULDOLqLOSURGRWWRYHWWRULDOHGHLULVSHWWLYLOLPLWLVHTXHVWLHVLVWRQR (VHUFL]LR  3HUKFKHWHQGHD]HURY W + K WHQGHDY W SHUFKpYHVVHQGRGHULYDELOHLQW qFRQWLQXRLQW (VHUFL]LR /HGXHIUD]LRQLWHQGRQRDLYDORULGLGX>GWHGY>GW LQW5LDVVXPHQGR 

3HUFRPRGLWjGLFDOFRORLQDOFXQLFDVL LOSURGRWWRGLXQRVFDODUHFHGLXQ YHWWRUHYVLVFULYHFRPHYFDQ]LFKp FRPHFY&LzFRQVHQWHDHVHPSLRGL HVSULPHUHODUHJRODGHOODFDWHQDLQXQD IRUPDIDPLOLDUH

DIMOSTRAZIONE DELLA REGOLA DELLA CATENA 6LDX V = D V L + E V M + F V NXQDIXQ]LRQHGHULYDELOHGLVHVLDV = ¦ W XQDIXQ ]LRQHVFDODUHGHULYDELOHGLW$OORUDDEHFVRQRIXQ]LRQLGHULYDELOLGLWHSHUOD UHJRODGHOODFDWHQDSHUOHIXQ]LRQLGHULYDELOLDYDORULUHDOLVLKDFKH

GRYHV = ¦ W  z

dr dt P r(t)

y

Funzioni vettoriali a modulo costante

6HVLFRQVLGHUDLOWUDFFLDWRGLXQDSDUWLFHOODFKHVLPXRYHVXOODVXSHU¿FLHGLXQD VIHUDFHQWUDWDQHOO¶RULJLQH )LJXUD VLYHGHFKHLOYHWWRUHSRVL]LRQHKDOXQ x JKH]]D FRVWDQWH SDUL DO UDJJLR GHOOD VIHUD ,O YHWWRUH YHORFLWjGU>GW WDQJHQWH DOODWUDLHWWRULDGHOPRWRqWDQJHQWHDOODVIHUDHTXLQGLSHUSHQGLFRODUHDU4XHVWD SURSULHWj VL RVVHUYD VHPSUH TXDQGR VL KD XQD IXQ]LRQH YHWWRULDOH GHULYDELOH GL -PN\YH PRGXORFRVWDQWHLOYHWWRUHHODVXDGHULYDWDSULPDVRQRRUWRJRQDOL&DOFRODQGRLQ 6HXQDSDUWLFHOODVLPXRYHVXOOD VXSHUILFLHGLXQDVIHUDLQPRGRWDOHFKH PRGRGLUHWWRVLKDFKH ODVXDSRVL]LRQHUVLDXQDIXQ]LRQH GLIIHUHQ]LDELOHGHOWHPSRDOORUD

ƒ U W ƒ = FqFRVWDQWH 6LGLIIHUHQ]LDGDHQWUDPELLODWL 5HJRODFRQU W = X W = Y W 

,YHWWRULUœ W HU W VRQRRUWRJRQDOLSHUFKpLOORURSURGRWWRVFDODUHq5LDVVX PHQGR

 0U[LNYHSPKPM\UaPVUP]L[[VYPHSPLTV[VKLSWYVPL[[PSL  

6HUqXQDIXQ]LRQHYHWWRULDOHGHULYDELOHGLWGLPRGXORFRVWDQWHDOORUD 





1HOSDUDJUDIRIDUHPRSLYROWHULFRUVRDTXHVWDSURSULHWj9DOHDQFKHO¶DIIHU PD]LRQHLQYHUVD YHGHUHO¶(VHUFL]LR 

 Integrali di funzioni vettoriali e moto del proiettile ,QTXHVWRSDUDJUDIRVWXGLHUHPRJOLLQWHJUDOLGHOOHIXQ]LRQLYHWWRULDOLHODORURDS SOLFD]LRQHDOPRWROXQJRXQDWUDLHWWRULDQHOORVSD]LRRQHOSLDQR

Integrali di funzioni vettoriali 6LGLFHFKHXQDIXQ]LRQHYHWWRULDOHGHULYDELOH5 W qXQDSULPLWLYDGLXQDIXQ ]LRQHYHWWRULDOHU W LQXQLQWHUYDOOR,VHG5>GW = ULQRJQLSXQWRGL,6H5qXQD SULPLWLYDGLULQ,VLSXzGLPRVWUDUHFRQVLGHUDQGRVHSDUDWDPHQWHOHFRPSRQHQWL FKHRJQLSULPLWLYDGLULQ,qGHOWLSR5 + &SHUXQTXDOFKHYHWWRUHFRVWDQWH& (VHUFL]LR /¶LQVLHPHGLWXWWHOHSULPLWLYHGLULQ,qO¶LQWHJUDOHLQGH¿QLWRGL ULQ, DEFINIZIONE

/¶LQWHJUDOHLQGH¿QLWRGLUULVSHWWRDWqO¶LQVLHPHGLWXWWHOHSULPLWLYHGLUH YLHQHLQGLFDWRFRQ1U W GW6H5qXQDTXDOVLDVLSULPLWLYDGLUDOORUD

9DOJRQROHXVXDOLSURSULHWjDULWPHWLFKHGHJOLLQWHJUDOLLQGH¿QLWL ESEMPIO 1

3HULQWHJUDUHXQDIXQ]LRQHYHWWRULDOHVLLQWHJUDFLDVFXQDGHOOHVXHFRPSRQHQWL  







 &RPHSHUO¶LQWHJUDOHGLIXQ]LRQLVFDODULVLFRQVLJOLDGLWUDODVFLDUHLSDVVDJJLGHOOH (TXD]LRQL  H  HRWWHQHUHGLUHWWDPHQWHO¶HVSUHVVLRQH¿QDOHVLWURYDODSULPL WLYDGLFLDVFXQDFRPSRQHQWHHTXLQGLVLVRPPDXQYHWWRUHFRVWDQWHDOULVXOWDWR ¿QDOH

,OPRGRSLHI¿FDFHSHUHVSULPHUHJOLLQWHJUDOLGH¿QLWLGLIXQ]LRQLYHWWRULDOL q LQ WHUPLQL GHOOH FRPSRQHQWL /D GH¿QL]LRQH q FRQVLVWHQWH FRQ OD PRGDOLWj GL FDOFRORGLOLPLWLHGHULYDWHGHOOHIXQ]LRQLYHWWRULDOL

  *HWP[VSV¶-\UaPVUPH]HSVYP]L[[VYPHSPLTV[VULSSVZWHaPV

DEFINIZIONE

6HOHFRPSRQHQWLGLU W = ¦ W L + J W M + K W NVRQRLQWHJUDELOLLQ>DE@DOORUD ORqDQFKHUHO¶LQWHJUDOHGH¿QLWRGLUWUDDHEq

ESEMPIO 2

&RPHQHOO¶(VHPSLRLQWHJULDPRFLDVFXQDFRPSRQHQWH

3HU LO WHRUHPD IRQGDPHQWDOH GHO FDOFROR LQWHJUDOH SHU OH IXQ]LRQL YHWWRULDOL FRQWLQXHVLKDFKH

GRYH5qXQDSULPLWLYDGLUFLRqXQDIXQ]LRQHGHULYDELOHFRQ5¿ W = U W  (VHU FL]LR  ESEMPIO 3

6LDQRWRLOYHWWRUHDFFHOHUD]LRQHD W = - FRVW L - VLQW M + NGLXQGHOWDSODQR GLFXLQRQVLFRQRVFHODWUDLHWWRULD6LDLOSXQWRLQL]LDOH DOWHPSRW =  GHOPRWR GHOGHOWDSODQRLOSXQWR  HVLDODYHORFLWjLQL]LDOHY  = M'HWHUPLQDUHOD SRVL]LRQHGHOGHOWDSODQRFRPHIXQ]LRQHGLW Soluzione 6LGHVLGHUDFDOFRODUHODTXDQWLWjU W DSDUWLUHGDOOHVHJXHQWLLQIRUPD]LRQL /¶DFFHOHUD]LRQH /HFRQGL]LRQLLQL]LDOL Y  = M H U  = L + M + N ,QWHJUDQGRDPERLPHPEULULVSHWWRDWVLRWWLHQH Y W = - VLQW L + FRVW M + WN + & 8WLOL]]LDPRY  = MSHUGHWHUPLQDUH& M = - VLQ L + FRV M +  N + & M = M + & & =  /¶HVSUHVVLRQHGHOODYHORFLWjGHOGHOWDSODQRLQIXQ]LRQHGHOWHPSRq

 0U[LNYHSPKPM\UaPVUP]L[[VYPHSPLTV[VKLSWYVPL[[PSL  

,QWHJUDQGRDPERLPHPEULGHOO¶XOWLPDHTXD]LRQHVLRWWLHQH

z

U W = FRVW L + VLQW M + WN + & 8WLOL]]LDPRTXLQGLODFRQGL]LRQHLQL]LDOHU  = LSHUGHWHUPLQDUH& L = FRV L + VLQ M +  N + & L = L +  M +  N + & & = L /DSRVL]LRQHGHOGHOWDSODQRLQIXQ]LRQHGHOWHPSRWqGDWDTXLQGLGD U W =  + FRVW L + VLQW M + WN

(4, 0, 0)

4XHVWDHVSUHVVLRQHFRUULVSRQGHDOODWUDLHWWRULDGHOGHOWDSODQRUDSSUHVHQWDWDQHOOD x )LJXUD/¶DQGDPHQWRDVSLUDOHGHOODWUDLHWWRULDLQWRUQRDOO¶DVVH]ULFKLDPDO¶HOL FDPDLOPRGRLQFXLODWUDLHWWRULDVDOHGHWHUPLQDXQDOWURWLSRGLFXUYD WUDWWHUHPR -PN\YH QXRYDPHQWHTXHVWRDUJRPHQWRQHO3DUDJUDIR  /DWUDLHWWRULDGHOGHOWDSODQR

GHOO¶(VHPSLR$QFKHVHODWUDLHWWRULD FRPSLHXQDVSLUDOHLQWRUQRDOO¶DVVH] QRQVLWUDWWDGLXQ¶HOLFD

Equazione vettoriale ed equazioni parametriche per il moto del proiettile ideale 8QHVHPSLRFODVVLFRGLLQWHJUD]LRQHGLIXQ]LRQHYHWWRULDOHqTXHOORUHODWLYRDOOH HTXD]LRQLGHOPRWRGHOSURLHWWLOH,Q¿VLFDLOPRWRGHOSURLHWWLOHGHVFULYHLOPRGR LQFXLXQRJJHWWRVFDJOLDWRDXQFHUWRDQJRORGDXQDFHUWDSRVL]LRQHLQL]LDOHH VRJJHWWRVROWDQWRDOODIRU]DGLJUDYLWjVLPXRYHLQXQSLDQRFRRUGLQDWRYHUWLFD OH1HOO¶HVHPSLRFODVVLFRVLWUDVFXUDQRJOLHIIHWWLGLTXDOVLDVLWLSRGLDWWULWRFKH SRWUHEEHURYDULDUHDVHFRQGDGHOODYHORFLWjHGHOO¶DOWLWXGLQHHVLWUDVFXUDLOIDWWR FKHODIRU]DGLJUDYLWjYDULDOHJJHUPHQWHDOYDULDUHGHOO¶DOWLWXGLQH6LWUDVFXUDQR LQROWUHJOLHIIHWWLDJUDQGHGLVWDQ]DGRYXWLDOODURWD]LRQHGHOODWHUUDFKHVLKDQQR DGHVHPSLRQHOFDVRGHOODQFLRGLXQUD]]RRTXDQGRVLVSDUDXQSURLHWWLOHGDXQ FDQQRQH$QFKHWUDVFXUDQGRTXHVWLHIIHWWLVLRWWLHQHQHOODPDJJLRUSDUWHGHLFDVL XQDUDJLRQHYROHDSSURVVLPD]LRQHGHOPRWR 3HUGHWHUPLQDUHOHHTXD]LRQLGHOPRWRGHOSURLHWWLOHVLDVVXPHFKHLOSURLHWWLOH VLFRPSRUWLFRPHXQDSDUWLFHOODFKHVLPXRYHLQXQSLDQRFRRUGLQDWRYHUWLFDOHH FKHO¶XQLFDIRU]DDFXLLOSURLHWWLOHqVRJJHWWRGXUDQWHLOPRWRVLDODIRU]DFRVWDQWH GLJUDYLWjVHPSUHGLUHWWDYHUVRLOEDVVR6LDVVXPHFKHLOSURLHWWLOHYHQJDODQFLDWR GDOO¶RULJLQHDOWHPSRW = QHOSULPRTXDGUDQWHFRQYHORFLWjLQL]LDOHY )LJXUD  6HYIRUPDXQDQJRORaFRQO¶RUL]]RQWDOHDOORUD

y

v0

v0  sin  j

 r  0 al tempo t  0

x

v0  cos  i a  –gj (a)

y

Y = ƒ Y ƒ FRVa L + ƒ Y ƒ VLQa M

(x, y)

8WLOL]]DQGRODSLVHPSOLFHQRWD]LRQHySHUODYHORFLWjVFDODUHLQL]LDOHƒ Y ƒVLKD Y = yFRVa L + yVLQa M



v

a  –gj r  x i  yj

/DSRVL]LRQHLQL]LDOHGHOSURLHWWLOHq 

y

U = L + M = 



0

x R

,OVHFRQGRSULQFLSLRGHOODGLQDPLFDGL1HZWRQDIIHUPDFKHODIRU]DFKHDJLVFHVXO Gittata in orizzontale (b) SURLHWWLOHqXJXDOHDOODPDVVDGHOSURLHWWLOHPPROWLSOLFDWDSHUODVXDDFFHOHUD]LR   QHRYYHURP G U>GW GRYHUqLOYHWWRUHSRVL]LRQHGHOODSDUWLFHOODHWqLOWHPSR -PN\YH 6HO¶XQLFDIRU]DSUHVHQWHqODIRU]DGLJUDYLWj- PJMDOORUD D 3RVL]LRQHYHORFLWjDFFHOHUD]LRQHH H



DQJRORGLODQFLRSHUW =  E 3RVL]LRQHYHORFLWjHDFFHOHUD]LRQH LQXQLVWDQWHVXFFHVVLYRW

  *HWP[VSV¶-\UaPVUPH]HSVYP]L[[VYPHSPLTV[VULSSVZWHaPV

GRYHJqO¶DFFHOHUD]LRQHGLJUDYLWj3HUGHWHUPLQDUHULQIXQ]LRQHGLWqVXI¿FLHQWH ULVROYHUHLOVHJXHQWHSUREOHPDDLYDORULLQL]LDOL (TXD]LRQHGLIIHUHQ]LDOH  &RQGL]LRQLLQL]LDOL  U = U H

 SHUW = 

,QWHJUDQGRODSULPDYROWDVLRWWLHQH

,QWHJUDQGRXQDVHFRQGDYROWDVLRWWLHQH

6RVWLWXHQGRYHUFRQLYDORULGDWLGDOOH(TXD]LRQL  H  VLRWWLHQH

 5DFFRJOLHQGRLWHUPLQLVLPLOLVLKDLQ¿QH Equazione del moto del proiettile ideale 

/¶(TXD]LRQH   q O¶HTXD]LRQH YHWWRULDOH SHU LO PRWR GHO SURLHWWLOH LGHDOH /¶DQJRORaqO¶DQJRORGLODQFLR RDQJRORGLVSDURRDQJRORGLHOHYD]LRQH GHO SURLHWWLOH H y FRPH JLj GHWWR q OD YHORFLWj VFDODUH LQL]LDOH GHO SURLHWWLOH /H FRPSRQHQWLGLUIRUQLVFRQROHHTXD]LRQLSDUDPHWULFKH H    GRYH[qODSURLH]LRQHRUL]]RQWDOHGHOODGLVWDQ]DSHUFRUVDH\qO¶DOWH]]DGHSUR LHWWLOHDOWHPSRW Ú ESEMPIO 4

8QSURLHWWLOHYLHQHVSDUDWRGDOO¶RULJLQHVXGLXQWHUUHQRRUL]]RQWDOHFRQXQDYH ORFLWjVFDODUHLQL]LDOHGLP>VHXQDQJRORGLODQFLRGLƒ4XDOHVDUjODSRVL ]LRQHGHOSURLHWWLOHVHFRQGLGRSRLOODQFLR" Soluzione 3HUGHWHUPLQDUHOHFRPSRQHQWLGHOSURLHWWLOHVHFRQGLGRSRLOODQFLRDSSOLFKLD PRO¶(TXD]LRQH  FRQy = a = ƒJ = HW = 

'LHFLVHFRQGLGRSRLOODQFLRLOSURLHWWLOHVLWURYDDXQ¶DOWH]]DGLFLUFDPUL VSHWWRDOVXRORHDXQDGLVWDQ]DOXQJRO¶RUL]]RQWDOHGDOO¶RULJLQHGLP

 3\UNOLaaHK»HYJVULSSVZWHaPV  

,SURLHWWLOLLGHDOLVLPXRYRQROXQJRSDUDEROHFRPHRUDGLPRVWUHUHPRDSDUWLUH GDOOH(TXD]LRQL  6RVWLWXHQGRODTXDQWLWjW = [> y FRV a RWWHQXWDGDOODSULPD HTXD]LRQHQHOODVHFRQGDVLRWWLHQHO¶HTXD]LRQHQHOOHFRRUGLQDWHFDUWHVLDQH

4XHVWDHTXD]LRQHqGHOWLSR\ = D[ + E[TXLQGLKDSHUJUD¿FRXQDSDUDEROD 8QSURLHWWLOHUDJJLXQJHLOSXQWRSLDOWRTXDQGRODFRPSRQHQWHYHUWLFDOHGHOOD VXDYHORFLWjqSDULD]HUR6HLOSXQWRGLODQFLRVLWURYDLQXQWHUUHQRSLDQHJJLDQ WHLOSURLHWWLOHDWWHUUDQHOPRPHQWRLQFXLODFRPSRQHQWHYHUWLFDOHFKHFRPSDUH QHOO¶(TXD]LRQH  qXJXDOHD]HURODJLWWDWD5qODGLVWDQ]DWUDO¶RULJLQHHLOSXQWR GLLPSDWWR,ULVXOWDWLWURYDWLSHUODFXLGLPRVWUD]LRQHVLULPDQGDDOO¶(VHUFL]LR VRQRULDVVXQWLQHOVHJXHQWHULTXDGUR Altitudine, tempo di volo e gittata per il moto di un proiettile ideale

3HULOPRWRGLXQSURLHWWLOHLGHDOHLQFXLXQRJJHWWRYLHQHODQFLDWRGDOO¶RULJLQH DOGLVRSUDGLXQDVXSHU¿FLHRUL]]RQWDOHFRQXQDYHORFLWjVFDODUHLQL]LDOHyH XQDQJRORGLODQFLRaVLKD y

Altitudine massima v0

7HPSRGLYROR

a (x 0 , y0 )

*LWWDWD 6HLOSURLHWWLOHLGHDOHYLHQHODQFLDWRGDOSXQWR [\ DQ]LFKpGDOO¶RULJLQH )LJX UD LOYHWWRUHSRVL]LRQHFKHGHVFULYHODWUDLHWWRULDGHOPRWRq  FRPHORVWXGHQWHSRWUjGLPRVWUDUHQHOO¶(VHUFL]LR



0

x

-PN\YH /DWUDLHWWRULDGLXQSURLHWWLOHODQFLDWR  GD [\ FRQYHORFLWjLQL]LDOHYDXQ DQJRORGLaJUDGLULVSHWWR DOO RUL]]RQWDOH

 Lunghezza d’arco nello spazio ,QTXHVWRHQHLSURVVLPLSDUDJUD¿VWXGLHUHPROHSURSULHWjPDWHPDWLFKHFKHGHVFUL YRQRODIRUPDDVVXQWDGDXQDFXUYDQHOORVSD]LR

Parametrizzazioni equivalenti &RPHDEELDPRYLVWRXQDFXUYDVLSXzSDUDPHWUL]]DUHLQGLYHUVLPRGLDVHFRQGD GHOODPRGDOLWjFRQFXLYLHQHSHUFRUVD1DWXUDOPHQWHOHSURSULHWjJHRPHWULFKHGHO ODFXUYDFKHqLOFRGRPLQLRGHOOHVXHSDUDPHWUL]]D]LRQLQRQSRVVRQRGLSHQGHUH GDOODSDUDPHWUL]]D]LRQHVFHOWD0DqDQFKHYHURFKHQRQWXWWHOHSDUDPHWUL]]D ]LRQLGLXQDGDWDFXUYDVRQRHTXLYDOHQWLQHOVHQVRFKHGHVFULYRQRODVWHVVDWUD LHWWRULDSHUFKpDGHVHPSLRXQDFXUYDFKLXVDSRWUHEEHHVVHUHSHUFRUVDSLYROWH ,QWURGXFLDPRDOORUDODVHJXHQWHGH¿QL]LRQH

  *HWP[VSV¶-\UaPVUPH]HSVYP]L[[VYPHSPLTV[VULSSVZWHaPV

DEFINIZIONE

'XHSDUDPHWUL]]D]LRQLU W WH,HR t tH- FRQ,H-LQWHUYDOOLGLℝ VL GLFRQRHTXLYDOHQWLVHHVLVWHXQDIXQ]LRQHELXQLYRFDX,:-GHULYDELOHFRQ GHULYDWDFRQWLQXDHVHPSUHGLYHUVDGDWDOHFKH 

U W = R X W  SHURJQLWH,



/DIXQ]LRQHXVLGLFHFDPELRDPPLVVLELOHGLSDUDPHWURSHUODFXUYD /DGH¿QL]LRQHGDWDVHPEUDQRQHVVHUHVLPPHWULFDLQUHRPDQRQqFRVu,QIDWWL VHHVLVWHXQDIXQ]LRQHXFRQOHSURSULHWjGLFXLVRSUDDOORUDXƍ W QRQFDPELDPDL VHJQRSHUFKpqFRQWLQXDHVHPSUHGLYHUVDGD]HUR4XLQGLODIXQ]LRQHXqVWUHWWD PHQWHPRQRWRQD FUHVFHQWHRGHFUHVFHQWH HSHUWDQWRqLQYHUWLELOHFLRqHVLVWHOD IXQ]LRQHLQYHUVDX--:,3RLFKpXƍ W Z SHURJQLWH,DQFKHX-qGHULYDELOH FRQGHULYDWD X- ƍ t =>Xƍ X- t HWDOHGHULYDWDqFRQWLQXD SHUFKpXƍHX-VRQR FRQWLQXH HVHPSUHGLYHUVDGD,QROWUHVLKD R t = R X X- t = U X- t  SHURJQLWHFLRqYDOHO¶(TXD]LRQH  FRQORVFDPELRGLUHR ESEMPIO 1

3URYDUHFKHODSDUDPHWUL]]D]LRQHR W = FRV t L + VLQt M + tNqHTXLYDOHQ WHDOODSDUDPHWUL]]D]LRQHU W GDWDQHOO¶(VHPSLRGHO3DUDJUDIR Soluzione (QWUDPEHOHSDUDPHWUL]]D]LRQLVRQRGH¿QLWHLQWXWWRℝTXLQGL, = - = ℝ3RQHQGR X W = W>ODIXQ]LRQHXqXQFDPELRDPPLVVLELOHGLSDUDPHWURHVLKDU W = R X W  SHURJQLWHℝ4XLQGLRHUVRQRSDUDPHWUL]]D]LRQLHTXLYDOHQWL

Lunghezza d’arco lungo una curva nello spazio

Punto di riferimento 3

–2

–1

0 1

2

4 s

-PN\YH ÊSRVVLELOHJUDGXDUHOHFXUYHUHJRODUL FRQORVWHVVRPHWRGRXWLOL]]DWRSHUOH UHWWHDVVHJQDQGRDRJQLSXQWRXQD FRRUGLQDWDGDWDGDOODGLVWDQ]D RULHQWDWDOXQJRODFXUYDULVSHWWRDXQ SXQWRGLULIHULPHQWRILVVDWR

8QDGHOOHFDUDWWHULVWLFKHGHOOHFXUYHUHJRODULQHOSLDQRHQHOORVSD]LRqFKHKDQQR XQDOXQJKH]]DPLVXUDELOH&LzFRQVHQWHGLLQGLYLGXDUHXQSXQWROXQJRODFXUYD DVVHJQDQGRQHODGLVWDQ]DRULHQWDWDVOXQJRODFXUYDULVSHWWRDXQFHUWRSXQWRGL ULIHULPHQWRDQDORJDPHQWHDFRPHVLLQGLYLGXDXQSXQWRVXXQDVVHFRRUGLQDWRDV VHJQDQGRQHODGLVWDQ]DRULHQWDWDULVSHWWRDOO¶RULJLQH )LJXUD 1HO3DUDJUDIR DEELDPRXWLOL]]DWRTXHVWRPHWRGRSHUOHFXUYHQHOSLDQR 3HUPLVXUDUHODGLVWDQ]DOXQJRXQDFXUYDUHJRODUHQHOORVSD]LRqVXI¿FLHQWH DJJLXQJHUHXQWHUPLQHSHUODFRPSRQHQWH]DOO¶HVSUHVVLRQHXVDWDSHUOHFXUYHQHO SLDQR DEFINIZIONE

/DOXQJKH]]DGLXQDFXUYDUHJRODUHU W = [ W L + \ \ M + ] W ND…W…EWUDF FLDWDXQDHXQDVRODYROWDDOFUHVFHUHGLWWUDW = DHW = Eq 





/DUDGLFHTXDGUDWDFKHFRPSDUHQHOO¶(TXD]LRQH  qƒ Y ƒODOXQJKH]]DGHOYHWWRUH YHORFLWjGU>GW6LSXzTXLQGLHVSULPHUHODOXQJKH]]DQHOODVHJXHQWHIRUPDDEEUH YLDWD

 3\UNOLaaHK»HYJVULSSVZWHaPV  

Espressione della lunghezza d’arco 

ESEMPIO 1

8QGHOWDSODQRYRODYHUVRO¶DOWROXQJRO¶HOLFDU W = FRVW L + VLQW M + WN 4XDOqODOXQJKH]]DGHOWUDWWRSHUFRUVRGDOGHOWDSODQRQHOO¶LQWHUYDOORWUDW = H W = p" Soluzione /DSDUWHGLWUDLHWWRULDSHUFRUVDQHOO¶LQWHUYDOORGLWHPSRFRQVLGHUDWRFRUULVSRQGH D XQ JLUR FRPSOHWR GHOO¶HOLFD )LJXUD   /D OXQJKH]]D GL TXHVWR WUDWWR GHO SHUFRUVRqGDWDGD

z

2 t

t  2

XQLWjGLOXQJKH]]D 0

4XHVWDTXDQWLWjFRUULVSRQGHD2YROWHODOXQJKH]]DGHOODFLUFRQIHUHQ]DGHOSLD QR[\VXFXLSRJJLDO¶HOLFD

(1, 0, 0)

r

P

t  2

t0

x

&RPH DEELDPR JLj DQQXQFLDWR DQFKH QHO FDVR GHOOH FXUYH SLDQH OD OXQJKH]]D GL XQD FXUYD QRQ GLSHQGH GDOOD SDUDPHWUL]]D]LRQH VFHOWD 3L SUHFLVDPHQWH OD -PN\YH /¶HOLFDGHOO¶(VHPSLR OXQJKH]]DqLQYDULDQWHSHUSDUDPHWUL]]D]LRQLHTXLYDOHQWLFRPHHQXQFLDWRQHOVH U W = FRVW L + VLQW M + WN JXHQWHWHRUHPD TEOREMA 1

Invarianza della lunghezza di una curva per parametrizzazioni equivalenti.

6HU W WH>DE@HR t tH>FG@VRQRSDUDPHWUL]]D]LRQLHTXLYDOHQWLDOORUD E

G

ƒ Uƍ W ƒ GW = D

ƒ Rƍ t ƒ Gt F

DIMOSTRAZIONE 6HFRQGRODGH¿QL]LRQHGLSDUDPHWUL]]D]LRQLHTXLYDOHQWLHVLVWHXQDIXQ]LRQHELX QLYRFDX>DE@:>FG@GHULYDELOHFRQGHULYDWDFRQWLQXDHVHPSUHGLYHUVDGD ]HURWDOHFKHU W = R X W SHURJQLWH>DE@3HUODUHJRODGHOODFDWHQDVLKD Uƍ W = Rƍ X W  Xƍ W HTXLQGL_Uƍ W _= _Rƍ X W _ _Xƍ W _SHURJQLWH>DE@'DWR FKHXƍ W Z SHURJQLWH>DE@XƍQRQFDPELDPDLVHJQRLQ>DE@ 1HOFDVRLQFXLXƍ W 7 SHURJQLWH>DE@VLKD_Uƍ W _= _Rƍ X W _ Xƍ W HLQWH JUDQGRSHUVRVWLWX]LRQH

#

#

#

E

E

ƒ Uƍ W ƒ GW = D

#

ƒ Rƍ X W _ Xƍ W GW = D

X E X D

G

ƒ Rƍ t ƒ Gt=

ƒ Rƍ t ƒ Gt F

#

$QDORJDPHQWHVHXƍ W 6 SHURJQLWH>DE@VLKDƒ Uƍ W ƒ = - ƒ Rƍ X W _ Xƍ W HLQWH JUDQGRSHUVRVWLWX]LRQHVLRWWLHQHDQFRUD

y

  *HWP[VSV¶-\UaPVUPH]HSVYP]L[[VYPHSPLTV[VULSSVZWHaPV

E

E

ƒ Uƍ W ƒ GW = D

#

ƒ Rƍ X W _ Xƍ W GW = D

X E

F

ƒ Rƍ t ƒ Gt= -

G

ƒ Rƍ t ƒ Gt = G

X D

ƒ Rƍ t ƒ Gt F

TXLQGLODOXQJKH]]DqLQYDULDQWHSHUSDUDPHWUL]]D]LRQLHTXLYDOHQWL 'DWRXQSXQWRGLULIHULPHQWR3 W DSSDUWHQHQWHDXQDFXUYDUHJRODUH&SDUD PHWUL]]DWDGDWRJQLYDORUHGLWLQGLYLGXDXQSXQWR3 W = [ W \ W ] W VX&H XQD³GLVWDQ]DRULHQWDWD´ z

r Punto di riferimento

P(t)

0

s(t)

y

P(t0)

PLVXUDWDOXQJR&ULVSHWWRDOSXQWRGLULIHULPHQWR )LJXUD 7DOHHVSUHVVLRQHq ODIXQ]LRQHOXQJKH]]DG¶DUFRJLjGH¿QLWDQHO3DUDJUDIRSHUOHFXUYHQHOSLDQR 6HW 7 WV W qODGLVWDQ]DOXQJRODFXUYDWUD3 W H3 W 6HW 6 WV W qO¶RSSRVWR GHOODGLVWDQ]D$RJQLYDORUHGLVFRUULVSRQGHXQSXQWRDSSDUWHQHQWHD&HFLzGH WHUPLQDXQDSDUDPHWUL]]D]LRQHGL&ULVSHWWRDVFKHSUHQGHLOQRPHGLSDUDPHWUR OXQJKH]]DG¶DUFRSHUODFXUYD,OYDORUHGHOSDUDPHWURDXPHQWDQHOODGLUH]LRQHGL WFUHVFHQWH&RPHYHGUHPRLOSDUDPHWUROXQJKH]]DG¶DUFRULVXOWDSDUWLFRODUPHQWH HI¿FDFHQHOORVWXGLRGHOODIRUPDDVVXQWDGDXQDFXUYDQHOORVSD]LR

x

Parametro lunghezza d’arco con punto di riferimento P(t0)

-PN\YH /DGLVWDQ]DRULHQWDWDOXQJRODFXUYDWUD 3 W HXQTXDOVLDVLSXQWR3 W qGDWDGD



3RLFKpOHGHULYDWHFKHFRPSDLRQRVRWWRLOVHJQRGLUDGLFHQHOO¶(TXD]LRQH  VRQR FRQWLQXH ODFXUYDqUHJRODUH SHULO7HRUHPDIRQGDPHQWDOHGHOFDOFRORLQWHJUDOH VqXQDIXQ]LRQHGLIIHUHQ]LDELOHGLWFRQGHULYDWD 





/¶(TXD]LRQH  DIIHUPDFKHODYHORFLWjVFDODUHGLXQDSDUWLFHOODFKHSHUFRUUHOD SURSULDWUDLHWWRULDqLOPRGXORGLYLQDFFRUGRFRQTXDQWRJLjQRWR ,OSXQWRGLULIHULPHQWR3 W KDXQUXRORQHOODGH¿QL]LRQHGLVGHOO¶(TXD]LRQH  PDQRQLQWHUYLHQHQHOO¶(TXD]LRQH  /DUDSLGLWjFRQFXLXQDSDUWLFHOODLQ PRYLPHQWRSHUFRUUHXQDFHUWDGLVWDQ]DOXQJRODSURSULDWUDLHWWRULDqLQGLSHQGHQWH GDOODGLVWDQ]DWUDODSDUWLFHOODHLOSXQWRGLULIHULPHQWR 6LRVVHUYLFKHGV>GW 7 SHUFKpSHUGH¿QL]LRQHLQXQDFXUYDUHJRODUHƒ Y ƒ QRQ DVVXPHPDLLOYDORUH]HUR6LYHGHTXLQGLQXRYDPHQWHFKHVqXQDIXQ]LRQHVWUHWWD PHQWHFUHVFHQWHGLW4XLQGLVqLQYHUWLELOHFLRqHVLVWHODIXQ]LRQHLQYHUVDW = W V  6HXQDFXUYDqJLjSDUDPHWUL]]DWDGDU W LQWHUPLQLGLXQSDUDPHWURWHV W q ODIXQ]LRQHOXQJKH]]DG¶DUFRGDWDGDOO¶(TXD]LRQH  DOORUDSRWUHEEHHVVHUHSRV VLELOHGHWHUPLQDUHO¶HVSUHVVLRQHHVSOLFLWDGHOODIXQ]LRQHLQYHUVDW = W V HGH¿QLUH XQDQXRYDSDUDPHWUL]]D]LRQHGHOODFXUYDLQWHUPLQLGLVVRVWLWXHQGRWU = U W V  1HOODQXRYDSDUDPHWUL]]D]LRQHXQSXQWRGHOODFXUYDqLGHQWL¿FDWRGDOODVXDGL VWDQ]DRULHQWDWDOXQJRODFXUYDULVSHWWRDOSXQWRGLULIHULPHQWR ESEMPIO 2

,QTXHVWRHVHPSLRVLULHVFHHIIHWWLYDPHQWHDGHWHUPLQDUHODSDUDPHWUL]]D]LRQHGL XQDFXUYDPHGLDQWHODOXQJKH]]DG¶DUFR6HW = LOSDUDPHWUROXQJKH]]DG¶DUFR OXQJRO¶HOLFD U W = FRVW L + VLQW M + WN WUDWHWqGDWRGD

 3\UNOLaaHK»HYJVULSSVZWHaPV  

VLQW + FRVW + GW 5LVROYHQGRTXHVWDHTXD]LRQHULVSHWWRDWVLRWWLHQHW = V>26RVWLWXHQGRLOUL VXOWDWRWURYDWRQHOYHWWRUHSRVL]LRQHUVLRWWLHQHODVHJXHQWHSDUDPHWUL]]D]LRQH GHOO¶HOLFDPHGLDQWHODOXQJKH]]DG¶DUFR

z v

'LYHUVDPHQWH GD TXDQWR YLVWR QHOO¶(VHPSLR  LQ JHQHUDOH QRQ q SRVVLELOH GHWHUPLQDUHO¶HVSUHVVLRQHDQDOLWLFDGHOODSDUDPHWUL]]D]LRQHPHGLDQWHOXQJKH]]D G¶DUFRSHUXQDFXUYDJLjHVSUHVVDLQWHUPLQLGLXQDOWURSDUDPHWURW)RUWXQDWD PHQWHSHUzLQJHQHUHQRQRFFRUUHGHWHUPLQDUHO¶HVSUHVVLRQHGLV W RGHOODVXD LQYHUVDW V 

T v v

r

0

Versore tangente

y

s

&RPHVDSSLDPRLOYHWWRUHYHORFLWjY = GU>GWqWDQJHQWHDOODFXUYDU W LOYHWWRUH

P(t 0 ) x

-PN\YH

qSHUWDQWRXQYHWWRUHXQLWDULRWDQJHQWHDOODFXUYD UHJRODUH FKHSUHQGHLOQRPHGL 3HUGHWHUPLQDUHLOYHUVRUHWDQJHQWH7VL YHUVRUHWDQJHQWH )LJXUD 6HYqXQDIXQ]LRQHGLIIHUHQ]LDELOHGLWDOORUDLO GLYLGHYSHUƒ Yƒ YHUVRUHWDQJHQWH7qXQDIXQ]LRQHGLIIHUHQ]LDELOHGLW&RPHYHGUHPRQHO3DUD JUDIR7qXQRGHLWUHYHUVRULFKHFRPSRQJRQRXQVLVWHPDGLULIHULPHQWRPR ELOHXWLOL]]DWRSHUGHVFULYHUHLOPRWRGLRJJHWWLFKHVLPXRYRQRLQWUHGLPHQVLRQL ESEMPIO 3

'HWHUPLQDUHLOYHUVRUHWDQJHQWHGHOODFXUYD U W =  + FRVW L + VLQW M + WN FKHUDSSUHVHQWDODWUDLHWWRULDGHOGHOWDSODQRGHOO¶(VHPSLRGHO3DUDJUDIR Soluzione 1HOO¶(VHPSLRDEELDPRGHWHUPLQDWRFKH

H y

3HUWDQWR

Tv

x2  y2  1

P(x, y) r t 0

(1, 0)

x

3HULOPRWRDQWLRUDULR U W = FRVW L + VLQW M OXQJRODFLUFRQIHUHQ]DXQLWDULDVLYHGHFKH Y = - VLQW L + FRVW M

-PN\YH 0RWRLQVHQVRDQWLRUDULROXQJROD qHVVRVWHVVRXQYHWWRUHXQLWDULRTXLQGL7 = YH7qRUWRJRQDOHDU )LJXUD  FLUFRQIHUHQ]DXQLWDULD

  *HWP[VSV¶-\UaPVUPH]HSVYP]L[[VYPHSPLTV[VULSSVZWHaPV

,OYHWWRUHYHORFLWjUDSSUHVHQWDODYDULD]LRQHGHOYHWWRUHSRVL]LRQHUULVSHWWRDO WHPSRWPDFLVLSRWUHEEHFKLHGHUHFRPHYDULDLOYHWWRUHSRVL]LRQHULVSHWWRDOOD OXQJKH]]DG¶DUFRRSLSUHFLVDPHQWHTXDOqODGHULYDWDGU>GV3RLFKpGV>GW 7  SHUOHFXUYHFRQVLGHUDWHVqLQYHUWLELOHHODVXDLQYHUVDqGHULYDELOH/DGHULYDWD GHOO¶LQYHUVDq

4XLQGLUqXQDIXQ]LRQHGLIIHUHQ]LDELOHGLVODFXLGHULYDWDFDOFRODWDPHGLDQWHOD UHJRODGHOODFDWHQDq 

  4XHVWDHTXD]LRQHDIIHUPDFKHGU>GVqLOYHUVRUHWDQJHQWHDYHQWHODGLUH]LRQHGHO YHWWRUHYHORFLWjY )LJXUD  y

 Curvatura e vettori normali a una curva ,QTXHVWRSDUDJUDIRVWXGLHUHPRODIRUPDDVVXQWDGDXQDFXUYD3HUSULPDFRVDFL RFFXSHUHPRDOOHFXUYHQHOSLDQRFDUWHVLDQRSHUSRLSDVVDUHDOOHFXUYHQHOORVSD]LR T

P

Curvatura di una curva nel piano

T

s P0 0

T x

-PN\YH 0HQWUH3SHUFRUUHODFXUYDQHOOD GLUH]LRQHLQFXLODOXQJKH]]DG¶DUFRq FUHVFHQWHLOYHUVRUHWDQJHQWHUXRWD,O YDORUHGLƒ G7>GV ƒ LQ3SUHQGHLOQRPH GLFXUYDWXUDGHOODFXUYDLQ3

'DWDXQDSDUWLFHOODFKHSHUFRUUHXQDFXUYDUHJRODUHQHOSLDQRLOYHWWRUH7 = GU>GV UXRWDVHJXHQGRODIRUPDGHOODFXUYD0HQWUHODSDUWLFHOODSHUFRUUHODFXUYDHVVHQ GR7XQYHUVRUHODVXDOXQJKH]]DULPDQHFRVWDQWHPHQWUHODVXDGLUH]LRQHYDULD ,OWDVVRSHUXQLWjGLOXQJKH]]DOXQJRODFXUYDDVVRFLDWRDOODURWD]LRQHGL7SUHQGH LOQRPHGLFXUYDWXUD )LJXUD ,OVLPERORWUDGL]LRQDOPHQWHXWLOL]]DWRSHUOD IXQ]LRQHFXUYDWXUDqODOHWWHUDJUHFDk DEFINIZIONE

6H7qLOYHUVRUHGLXQDFXUYDUHJRODUHODIXQ]LRQHFXUYDWXUDGHOODFXUYDq

Se il valore di ƒ G7>GV ƒ è grande, T ruota bruscamente quando la particella passa per il punto3e ODFXUYDWXUDLQ3qJUDQGH6HLOYDORUHGLƒ G7>GV ƒ qSURVVLPRD ]HUR7UXRWDSLJUDGXDOPHQWHHODFXUYDWXUDLQ3qPLQRUH 6H XQD FXUYD UHJRODUH U W  q HVSUHVVD LQ WHUPLQL GL XQ TXDOFKH SDUDPHWUR W GLYHUVRGDOSDUDPHWUROXQJKH]]DG¶DUFRVqSRVVLELOHFDOFRODUHODFXUYDWXUDFRPH VHJXH 5HJRODGHOODFDWHQD

 *\Y]H[\YHL]L[[VYPUVYTHSPH\UHJ\Y]H  

Espressione per il calcolo della curvatura

6HU W qXQDFXUYDUHJRODUHDOORUDODFXUYDWXUDq 

 GRYH7 = Y> ƒ Y ƒ qLOYHUVRUHWDQJHQWH



1HJOL(VHPSLHULSRUWDWLGLVHJXLWRYHUL¿FKHUHPRODGH¿QL]LRQHGLPRVWUDQ GRFKHODFXUYDWXUDGLUHWWHHFLUFRQIHUHQ]HqFRVWDQWH ESEMPIO 1

8QDUHWWDqSDUDPHWUL]]DWDGDU W = & + WYGRYH&HYVRQRYHWWRULFRVWDQWL$O ORUDUœ W = YHLOYHUVRUHWDQJHQWH7 = Y> ƒ Y ƒ qXQYHWWRUHFRVWDQWHDYHQWHVHPSUH ODVWHVVDGLUH]LRQHHYHUVRTXLQGLDYHQWHGHULYDWD )LJXUD $OORUDSHURJQL YDORUHGHOSDUDPHWURWODFXUYDWXUDGHOODUHWWDq]HUR

T

-PN\YH 1HOFDVRGLXQDUHWWD7KDVHPSUHOD VWHVVDGLUH]LRQHHYHUVR/DFXUYDWXUD 3HUGHWHUPLQDUHODFXUYDWXUDGHOODFLUFRQIHUHQ]DFRQVLGHULDPRSHUSULPDFRVDOD ƒ G7>GV ƒq]HUR (VHPSLR  ESEMPIO 2

SDUDPHWUL]]D]LRQH

U W = DFRVW L + DVLQW M

GLXQDFLUFRQIHUHQ]DGLUDJJLRD$OORUD

'DFLzVHJXHFKH

4XLQGLSHUTXDOVLDVLYDORUHGHOSDUDPHWURWODFXUYDWXUDGHOODFLUFRQIHUHQ]Dq UDJJLR /¶HVSUHVVLRQHSHULOFDOFRORGLkULSRUWDWDQHOO¶(TXD]LRQH  YDOHDQFKHSHU FXUYHQHOORVSD]LRPDQHOSURVVLPRSDUDJUDIRULFDYHUHPRXQ¶HVSUHVVLRQHFKHq LQJHQHUHGLSLVHPSOLFHDSSOLFD]LRQH 8QRGHLYHWWRULRUWRJRQDOLDOYHUVRUHWDQJHQWH7qSDUWLFRODUPHQWHVLJQL¿FDWL YRSHUFKpSXQWDQHOODGLUH]LRQHLQFXLODWUDLHWWRULDFXUYD3RLFKp7KDOXQJKH]]D FRVWDQWH LQSDUWLFRODUHXJXDOHD ODGHULYDWDG7>GVqRUWRJRQDOHD7 (TXD]LR QHGHO3DUDJUDIR 

  *HWP[VSV¶-\UaPVUPH]HSVYP]L[[VYPHSPLTV[VULSSVZWHaPV

4XLQGLGLYLGHQGRG7>GVSHUODVXDOXQJKH]]DkVLRWWLHQHXQYHWWRUHXQLWDULR1 RUWRJRQDOHD7 )LJXUD 

N  1 dT κ ds

T

DEFINIZIONE

T P2

P1

'DWRXQSXQWRLQFXLk ZLOYHUVRUHQRUPDOHSULQFLSDOHSHUXQDFXUYD UHJRODUHQHOSLDQRq

s 0

N  1 dT κ ds

-PN\YH ,OYHWWRUHG7>GVQRUPDOHDOODFXUYD SXQWDVHPSUHQHOODGLUH]LRQHLQFXL7 UXRWD,OYHUVRUHQRUPDOH1UDSSUHVHQWD ODGLUH]LRQHGLG7>GV

,OYHWWRUHG7>GVSXQWDQHOODGLUH]LRQHLQFXL7UXRWDTXDQGRODWUDLHWWRULDFXUYD 3HUWDQWRSHUXQRVVHUYDWRUHULYROWRQHOODGLUH]LRQHLQFXLODOXQJKH]]DG¶DUFRq FUHVFHQWHLOYHWWRUHG7>GVSXQWDYHUVRGHVWUDVH7UXRWDLQVHQVRRUDULRHYHUVR VLQLVWUDVH7UXRWDLQVHQVRDQWLRUDULR,QDOWUDSDUROHLOYHUVRUHQRUPDOHSULQFLSDOH 1SXQWDYHUVRODSDUWHFRQFDYDGHOODFXUYD )LJXUD  'DWD XQD FXUYD UHJRODUH U W  HVSUHVVD LQ WHUPLQL GL XQ TXDOFKH SDUDPHWUR W GLYHUVRGDOSDUDPHWUROXQJKH]]DG¶DUFRVqSRVVLELOHFDOFRODUH1LQPRGRGLUHWWR DSSOLFDQGRODUHJRODGHOODFDWHQD VLVHPSOL¿FD

4XHVWDHVSUHVVLRQHFRQVHQWHGLGHWHUPLQDUH1VHQ]DGRYHUSULPDGHWHUPLQDUHkHV Espressione per il calcolo di N

'DWDXQDFXUYDUHJRODUHU W LOYHUVRUHQRUPDOHSULQFLSDOHq 





GRYH7 = Y> ƒ Y ƒ qLOYHUVRUHWDQJHQWH ESEMPIO 3

'HWHUPLQDUH7H1SHULOPRWRFLUFRODUH U W = FRVW L + VLQW M Soluzione 3HUSULPDFRVDGHWHUPLQLDPR7

6HJXHFKH

H (T  

 *\Y]H[\YHL]L[[VYPUVYTHSPH\UHJ\Y]H  

6LRVVHUYLFKH7 #1=DFRQIHUPDGHOIDWWRFKH1qRUWRJRQDOHD76LRVVHUYL LQROWUHFKHSHULOPRWRFLUFRODUHTXLFRQVLGHUDWR1SXQWDGDU W YHUVRLOFHQWUR GHOODFLUFRQIHUHQ]DSRVWRQHOO¶RULJLQH

Cerchio di curvatura per curve nel piano Cerchio ,O FHUFKLR GL FXUYDWXUD R FHUFKLR RVFXODWRUH 3 GL XQD FXUYD QHO SLDQR LQ FXL di curvatura k Z  q LO FHUFKLR DSSDUWHQHQWH DO SLDQR GHOOD FXUYD FKH JRGH GHOOH VHJXHQWL SURSULHWj Centro di curvatura  qWDQJHQWHDOODFXUYD FLRqKDODVWHVVDWDQJHQWHGHOODFXUYD LQ3 Curva Raggio di  KDODVWHVVDFXUYDWXUDGHOODFXUYDLQ3 curvatura T  LOVXRFHQWURJLDFHQHOODSDUWHFRQFDYDRLQWHUQDGHOODFXUYD FRPHQHOOD)L N P(x, y) JXUD  ,OUDJJLRGLFXUYDWXUDGHOODFXUYDLQ3qLOUDJJLRGHOFHUFKLRGLFXUYDWXUDFLRq -PN\YH VHFRQGRTXDQWRYLVWRQHOO¶(VHPSLR

5DJJLRGLFXUYDWXUD 3HUGHWHUPLQDUHrVLGHWHUPLQDkHTXLQGLVLFDOFRODO¶LQYHUVR,OFHQWURGLFXU YDWXUDGHOODFXUYDLQ3qLOFHQWURGHOFHUFKLRGLFXUYDWXUD ESEMPIO 4

'HWHUPLQDUHHGLVHJQDUHLOFHUFKLRRVFXODWRUHGHOODSDUDEROD\ = [QHOO¶RULJLQH Soluzione 3DUDPHWUL]]LDPRODSDUDERODPHGLDQWHLOSDUDPHWURW = [ (VHPSLRGHO3DUD JUDIR  U W = WL + WM 3HUSULPDFRVDGHWHUPLQLDPRODFXUYDWXUDGHOODSDUDERODQHOO¶RULJLQHDSSOLFDQGR O¶(TXD]LRQH  

SHUFXL

'DFLzVHJXHFKH  1HOO¶RULJLQHYDOHW = TXLQGLODFXUYDWXUDq

,OUDJJLRGLFXUYDWXUDqSHUWDQWR>k = >1HOO¶RULJLQHVLKDW = H7 = LTXLQGL 1 = M,OFHQWURGHOFHUFKLRqSHUWDQWRLOSXQWR > HO¶HTXD]LRQHGHOFHUFKLR RVFXODWRUHq

,OFHQWURGHOFHUFKLRRVFXODWRUHLQ 3 [\ JLDFHDOO¶LQWHUQRGHOODFXUYD

  *HWP[VSV¶-\UaPVUPH]HSVYP]L[[VYPHSPLTV[VULSSVZWHaPV

y y  x2 Cerchio osculatore

&RPHVLYHGHQHOOD)LJXUDQHOO¶RULJLQHLOFHUFKLRRVFXODWRUHDSSURVVLPDSL HI¿FDFHPHQWHODSDUDERODULVSHWWRDOODUHWWDWDQJHQWH\ = 

1 2

0

x

1

Curvatura e vettori normali per le curve nello spazio -PN\YH 'DWDXQDFXUYDUHJRODUHQHOORVSD]LRGH¿QLWDGDOYHWWRUHSRVL]LRQHU W LQIXQ]LRQH ,OFHUFKLRRVFXODWRUHQHOO¶RULJLQHSHUOD GLXQTXDOFKHSDUDPHWURWHGDWRLOSDUDPHWUROXQJKH]]DG¶DUFRVGHOODFXUYDLO  SDUDEROD\ [  (VHPSLR 

YHUVRUHWDQJHQWH7qGU>GV = Y> ƒ Y ƒ/DFXUYDWXUDQHOORVSD]LRqGH¿QLWDTXLQGL FRPH

z





HVDWWDPHQWHFRPHSHUOHFXUYHQHOSLDQR,OYHWWRUHG7>GVqRUWRJRQDOHD7HVL GH¿QLVFHYHUVRUHQRUPDOHSULQFLSDOHLOYHWWRUH

2b t

t  2









ESEMPIO 5

0 (a, 0, 0)

t0

r

t  2 P

x 2  y 2  a2

'HWHUPLQDUHODFXUYDWXUDGHOO¶HOLFD )LJXUD  y

x

-PN\YH /¶HOLFDU W = DFRVW L + DVLQW M + EWN GLVHJQDWDFRQDHESRVLWLYLHW Ú (VHPSLR 

Soluzione &DOFROLDPR7DSDUWLUHGDOYHWWRUHYHORFLWjY

$SSOLFDQGRO¶(TXD]LRQH  VLRWWLHQHTXLQGL

'DTXHVWDHTXD]LRQHVLYHGHFKHDXPHQWDQGRLOYDORUHGLESHUXQYDORUH¿VVDWR GLDODFXUYDWXUDGLPLQXLVFH/DFXUYDWXUDGLPLQXLVFHDQFKHVHSHUXQYDORUHGL E¿VVDWRVLGLPLQXLVFHVXI¿FLHQWHPHQWHD 6HE = O¶HOLFDVLULGXFHDXQDFLUFRQIHUHQ]DGLUDJJLRDHODVXDFXUYDWXUD GLYHQWD>D6HD = O¶HOLFDVLULGXFHDOO¶DVVH]HODVXDFXUYDWXUDGLYHQWD

 *VTWVULU[L[HUNLUaPHSLLJVTWVULU[LUVYTHSLKLSS»HJJLSLYHaPVUL  

ESEMPIO 6

'HWHUPLQDUH1SHUO¶HOLFDGHOO¶(VHPSLRHGHVFULYHUHGLUH]LRQHHYHUVRGHOYHWWRUH Soluzione $EELDPRFKH

z

4XLQGL1qSDUDOOHORDOSLDQR[\HSXQWDVHPSUHYHUVRO¶DVVH]

BT*N N  1 dT κ ds r

P

T  dr ds y

* ( 7 0 ; 6 3 6



Derivate parziali PANORAMICA

Sommario del capitolo  Funzioni di più variabili  Limiti e continuità in più dimensioni  Derivate parziali  La regola della catena  Derivate direzionali e vettori gradiente  Piani tangenti e differenziali  Valori estremi e punti di sella  Moltiplicatori di Lagrange  Funzioni implicite

Molte funzioni dipendono da più variabili indipendenti. Ad esempio, il volume di un cilindro retto a base circolare V = pr2h è funzione del raggio e dell’altezza, cioè è una funzione V (r, h) delle due variabili r e h. In questo capitolo estenderemo i concetti fondamentali dell’analisi matematica delle funzioni di una variabile alle funzioni di più variabili. Grazie alle interazioni tra le diverse variabili, le derivate di tali funzioni godono di nuove interessanti proprietà e offrono una più ampia possibilità di applicazione rispetto al caso delle funzioni di una sola variabile. Come vedremo nel prossimo capitolo, lo stesso vale per gli integrali di funzioni di più variabili.

 Funzioni di più variabili ,QTXHVWRSDUDJUDIRGDUHPRODGH¿QL]LRQHGLIXQ]LRQLGLSLYDULDELOLLQGLSHQGHQWL HGLVFXWHUHPRFRPHWUDFFLDUQHLOJUD¿FR /HIXQ]LRQLDYDORULUHDOLGLSLYDULDELOLUHDOLLQGLSHQGHQWLVRQRGH¿QLWHDQDOR JDPHQWHDOOHIXQ]LRQLGLXQDYDULDELOH,SXQWLGHOGRPLQLRVRQRFRSSLH RWULSOHW WHRTXDGUXSOHRQXSOH RUGLQDWHGLQXPHULUHDOLPHQWUHLYDORULGHOFRGRPLQLR VRQRQXPHULUHDOL DEFINIZIONI

6LD'XQLQVLHPHGLQXSOHGLQXPHULUHDOL [[ Á[Q  8QDIXQ]LRQHDYDORULUHDOL¦LQ'qXQDFRUULVSRQGHQ]DFKHDVVHJQDXQXQLFR QXPHURUHDOH Z = ¦ [[ Á[Q  DFLDVFXQHOHPHQWRGL'/¶LQVLHPH'qLOGRPLQLRGHOODIXQ]LRQH/¶LQVLHPH GHLYDORULZDVVXQWLGD¦qLOFRGRPLQLRGHOODIXQ]LRQH,OVLPERORZUDSSUHVHQ WDODYDULDELOHGLSHQGHQWHGL¦HVLGLFHFKH¦qXQDIXQ]LRQHGHOOHQYDULDELOL LQGLSHQGHQWL[Á[Q/HYDULDELOL[MSUHQGRQRDQFKHLOQRPHGLYDULDELOLGL LQJUHVVRGHOODIXQ]LRQHPHQWUHZSXzDQFKHHVVHUHLQGLFDWDFRPHODYDULDELOH G¶XVFLWDGHOODIXQ]LRQH 6H¦qXQDIXQ]LRQHGLGXHYDULDELOLLQGLSHQGHQWLJHQHUDOPHQWHVLLQGLFDQR OHYDULDELOLLQGLSHQGHQWLFRQ[H\HODYDULDELOHGLSHQGHQWHFRQ]HVLUDI¿JXUDLO GRPLQLRGL¦FRPHXQDUHJLRQHGHOSLDQR[\ )LJXUD 6H¦qXQDIXQ]LRQHGL WUHYDULDELOLLQGLSHQGHQWLVLLQGLFDQROHYDULDELOLLQGLSHQGHQWLFRQ[\H]HODYD ULDELOHGLSHQGHQWHFRQZHVLUDI¿JXUDLOGRPLQLRFRPHXQDUHJLRQHGHOORVSD]LR 1HOOHDSSOLFD]LRQLVLFHUFDGLXWLOL]]DUHOHWWHUHFKHULFKLDPLQRODQDWXUDGHO OH YDULDELOL 3HU LQGLFDUH DG HVHPSLR FKH LO YROXPH GL XQ FLOLQGUR UHWWR D EDVH FLUFRODUHqXQDIXQ]LRQHGHOUDJJLRHGHOO¶DOWH]]DVLSXzXWLOL]]DUHODQRWD]LRQH 9 = ¦ UK RSSXUHVRVWLWXLUHODQRWD]LRQH¦ UK FRQO¶HVSUHVVLRQHFKHGH¿QLVFHLO

  *HWP[VSV¶+LYP]H[LWHYaPHSP

YDORUHGL9DSDUWLUHGDLYDORULGLUHKRWWHQHQGR9 = pUK,QHQWUDPELLFDVLUHK UDSSUHVHQWDQROHYDULDELOLLQGLSHQGHQWLH9ODYDULDELOHGLSHQGHQWHGHOODIXQ]LRQH y f

-PN\YH 8QGLDJUDPPDDIUHFFHSHUODIXQ]LRQH ] = ¦ [ \ 



f (a, b)

(x, y) D

0

x

0

(a, b)

f (x, y)

z

&RPHYLVWRLQSUHFHGHQ]DSHUGHWHUPLQDUHLOYDORUHGLXQDIXQ]LRQHGH¿QL WDGDXQ¶HVSUHVVLRQHqVXI¿FLHQWHVRVWLWXLUHLYDORULGHOOHYDULDELOLLQGLSHQGHQWL QHOO¶HVSUHVVLRQHHFDOFRODUHLOFRUULVSRQGHQWHYDORUHGHOODYDULDELOHGLSHQGHQWH $GHVHPSLRLOYDORUHGL¦ [\] = 2[ + \ + ] QHOSXQWR  q ¦  = 2   +   +   = 2 = 

Dominio e codominio 1HOGH¿QLUHXQDIXQ]LRQHGLSLYDULDELOLRFFRUUHHVFOXGHUHOHYDULDELOLGLLQJUHV VRSHUOHTXDOLOHRSHUD]LRQLFKHGH¿QLVFRQRODIXQ]LRQHQRQKDQQRVLJQL¿FDWR QHOO¶DPELWRGHLQXPHULUHDOL $GHVHPSLRVH¦ [\ = 2\ - [\QRQSXzHVVHUH PLQRUHGL[VH¦ [\ = > [\ [\QRQSXzHVVHUHXJXDOHD]HUR6HQRQGLYHUVD PHQWHVSHFL¿FDWRLQPRGRHVSOLFLWRVLDVVXPHFKHLOGRPLQLRGLXQDIXQ]LRQHVLD LOSLJUDQGHLQVLHPHSHUFXLODGH¿QL]LRQHGHOODIXQ]LRQHIRUQLVFHYDORULUHDOL,O FRGRPLQLRqFRVWLWXLWRGDOO¶LQVLHPHGHLYDORULGLXVFLWDGHOODYDULDELOHGLSHQGHQWH ESEMPIO 1

D ,VHJXHQWLVRQRHVHPSLGLIXQ]LRQLGLGXHYDULDELOL6LRVVHUYLQROHHYHQWXDOL UHVWUL]LRQLDSSOLFDWHDOGRPLQLRSHURWWHQHUHYDORULUHDOLGHOODYDULDELOHGLSHQ GHQWH] )XQ]LRQH

'RPLQLR

&RGRPLQLR

\Ú[

>q 

[\ Z 

- q ´ q 



/¶LQWHURSLDQR > - @ E ,VHJXHQWLVRQRHVHPSLGLIXQ]LRQLGLWUHYDULDELOLHLQDOFXQLVLKDQQRUHVWUL ]LRQLGHOGRPLQLR )XQ]LRQH

Z = [\OQ]

'RPLQLR /¶LQWHURVSD]LR

&RGRPLQLR

[\] Z 

q 

6HPLVSD]LR] 7 

- qq 

>q 

 -\UaPVUPKPWPƒ]HYPHIPSP  

Funzioni di due variabili $QDORJDPHQWHDTXDQWRDFFDGHSHUJOLLQWHUYDOOLGHOODUHWWDUHDOHOHUHJLRQLGHO SLDQRSRVVRQRDYHUHSXQWLLQWHUQLHFRQ¿QL*OLLQWHUYDOOLFKLXVL>DE@LQFOXGRQRL SXQWLGLIURQWLHUDPHQWUHJOLLQWHUYDOOLDSHUWL DE QRQLQFOXGRQRLSXQWLGLIURQ WLHUDHJOLLQWHUYDOOLGHOWLSR>DE QRQVRQRQpDSHUWLQpFKLXVL

(x0 , y0)

R

DEFINIZIONI

6LGLFHFKHXQSXQWR [\ LQXQDUHJLRQH LQVLHPH 5GHOSLDQR[\qXQSXQWR LQWHUQRGL5VHqLOFHQWURGLXQGLVFRGLUDJJLRSRVLWLYRFKHJLDFHLQWHUDPHQWH LQ5 )LJXUD 8QSXQWR [\ qXQSXQWRGLIURQWLHUDGL5VHRJQLGLVFR FHQWUDWRLQ [\ FRQWLHQHVLDSXQWLGL5FKHSXQWLQRQDSSDUWHQHQWLD5 LO SXQWRGLIURQWLHUDVWHVVRQRQDSSDUWLHQHQHFHVVDULDPHQWHD5  /¶LQVLHPH GHL SXQWL LQWHUQL GL XQD UHJLRQH FRVWLWXLVFH O¶LQWHUQR GHOOD UH JLRQH,SXQWLGLIURQWLHUDGLXQDUHJLRQHQHFRVWLWXLVFRQRODIURQWLHUD8QD UHJLRQHVLGLFHDSHUWDVHqFRVWLWXLWDLQWHUDPHQWHGDSXQWLLQWHUQL8QDUHJLRQH VLGLFHFKLXVDVHFRQWLHQHWXWWLLVXRLSXQWLGLIURQWLHUD )LJXUD  y

y

(a) Punto interno

R

(x0 , y0)

y

(b) Punto di frontiera

0

{(x, y)  x 2  y 2  1} Disco unitario aperto. Ogni punto è un punto interno.

x

0

x

{(x, y)  x 2  y 2  1} Frontiera del disco unitario (la circonferenza unitaria).

0

x

{(x, y)  x 2  y 2  1} Disco unitario chiuso. Contiene tutti i punti di frontiera.

-PN\YH3XQWLLQWHUQLHSXQWLGLIURQWLHUDGHOGLVFRXQLWDULRQHOSLDQR

$QDORJDPHQWHDOFDVRGLXQLQWHUYDOORVHPLDSHUWR>DE GLQXPHULUHDOLDOFXQH UHJLRQLGHOSLDQRQRQVRQRQpDSHUWHQpFKLXVH3UHQGHQGRDGHVHPSLRFRPHSXQ WRGLSDUWHQ]DLOGLVFRXQLWDULRDSHUWRGHOOD)LJXUDHDJJLXQJHQGRVROWDQWRXQD SDUWHGHLVXRLSXQWLGLIURQWLHUDO¶LQVLHPHULVXOWDQWHQRQqQpDSHUWRQpFKLXVR /¶LQVLHPHQRQSXzHVVHUHDSHUWRSHUYLDGHLSXQWLGLIURQWLHUDFRPSUHVLHQRQSXz HVVHUHFKLXVRSHUYLDGHLSXQWLGLIURQWLHUDHVFOXVL DEFINIZIONI

8QDUHJLRQHGHOSLDQRVLGLFHOLPLWDWDVHJLDFHDOO¶LQWHUQRGLXQGLVFRGLUDJJLR ¿VVDWR8QDUHJLRQHVLGLFHLOOLPLWDWDVHQRQqOLPLWDWD 6RQRHVHPSLGLLQVLHPLOLPLWDWLQHOSLDQRLVHJPHQWLLWULDQJROLO¶LQWHUQRGHL WULDQJROLLUHWWDQJROLOHFLUFRQIHUHQ]HHLGLVFKL6RQRHVHPSLGLLQVLHPLLOOLPLWDWL QHO SLDQR OH UHWWH JOL DVVL FRRUGLQDWL L JUD¿FL GL IXQ]LRQL GH¿QLWH VX LQWHUYDOOL LQ¿QLWLLTXDGUDQWLLVHPLSLDQLHLOSLDQRVWHVVR

-PN\YH ,SXQWLLQWHUQLHLSXQWLGLIURQWLHUDGL XQDUHJLRQH5GHOSLDQR8QSXQWR LQWHUQRqQHFHVVDULDPHQWHXQSXQWRGL 5PHQWUHXQSXQWRGHOODIURQWLHUDGL5 SXzDQFKHQRQDSSDUWHQHUHD5

  *HWP[VSV¶+LYP]H[LWHYaPHSP

y

ESEMPIO 2

Punti interni in cui, y  x 2 0

Esterno, y  x2  0

Soluzione 3RLFKp¦qGH¿QLWDVROWDQWRGRYH\ - [ Ú LOGRPLQLRqODUHJLRQHFKLXVDHLO OLPLWDWDPRVWUDWDQHOOD)LJXUD/DSDUDEROD\ = [qODIURQWLHUDGHOGRPLQLR ,SXQWLDOGLVRSUDGHOODSDUDERODFRVWLWXLVFRQRO¶LQWHUQRGHOGRPLQLR

La parabola y  x2  0 è la frontiera.

1

0

–1

'HVFULYHUHLOGRPLQLRGHOODIXQ]LRQH¦ [\ = 2\ - [

x

1

-PN\YH ,OGRPLQLRGL¦ [\ GHOO¶(VHPSLRq FRVWLWXLWRGDOODUHJLRQHRPEUHJJLDWDH GDOODSDUDERODFKHODGHOLPLWD

z

La superficie z  f (x, y)  100  x 2  y 2 è il grafico di f.

100 f (x, y)  75

10 x

ESEMPIO 3

-PN\YH ,OJUDILFRHDOFXQHFXUYHGLOLYHOORSHU ODIXQ]LRQH¦ [\ GHOO (VHPSLR

La curva di contorno f (x, y)  100  x 2  y 2  75 è la circonferenza x 2  y 2  25 nel piano z  75.

Piano z  75

/¶LQVLHPHGHLSXQWLGHOSLDQRLQFXLXQDIXQ]LRQH¦ [\ KDYDORUHFRVWDQWH ¦ [\ = FSUHQGHLOQRPHGLFXUYDGLOLYHOORGL¦ /¶LQVLHPHGLWXWWLLSXQWL [\¦ [\ QHOORVSD]LRFRQ [\ DSSDUWHQHQWHDO GRPLQLRGL¦SUHQGHLOQRPHGLJUD¿FRGL¦,OJUD¿FRGL¦YLHQHDQFKHLQGLFDWR FRPHODVXSHU¿FLH ] = ¦ [\ 

y

f (x, y)  0

z

(VLVWRQR GXH PHWRGL IRQGDPHQWDOL SHU UDSSUHVHQWDUH L YDORUL GL XQD IXQ]LRQH ¦ [\ ,OSULPRFRQVLVWHQHOGLVHJQDUHHLGHQWL¿FDUHOHFXUYHGHOGRPLQLRLQFXL¦ KDYDORUHFRVWDQWH,OVHFRQGRFRQVLVWHQHOGLVHJQDUHODVXSHU¿FLH] = ¦ [\ QHOOR VSD]LR DEFINIZIONI

f (x, y)  51 (una tipica curva di livello nel dominio della funzione)

10

Grafici, curve di livello e contorni di funzioni di due variabili

z  100  x 2  y 2

7UDFFLDUHLOJUD¿FRGL¦ [\ =  - [ - \HTXLQGLWUDFFLDUHOHFXUYHGLOLYHOOR ¦ [\ = ¦ [\ = H¦ [\ = QHOGRPLQLRGL¦QHOSLDQR Soluzione ,OGRPLQLRGL¦qO¶LQWHURSLDQR[\HLOFRGRPLQLRGL¦qO¶LQVLHPHGHLQXPHULUHDOL PLQRULRXJXDOLD,OJUD¿FRqLOSDUDERORLGH] =  - [ - \ODFXLSDUWH SRVLWLYDqUDSSUHVHQWDWDQHOOD)LJXUD /DFXUYDGLOLYHOOR¦ [\ = qO¶LQVLHPHGHLSXQWLGHOSLDQR[\LQFXL ¦ [\ =  - [ - \ =   R  [ + \ =  FLRqODFLUFRQIHUHQ]DGLUDJJLRFHQWUDWDQHOO¶RULJLQH$QDORJDPHQWHOHFXUYHGL OLYHOOR¦ [\ = H¦ [\ =  )LJXUD VRQROHFLUFRQIHUHQ]H

100 75

¦ [\ =  - [ - \ =   R  [ + \ =  ¦ [\ =  - [ - \ =   R  [ + \ = 

0 y x La curva di livello f (x, y)  100  x 2  y 2  75 è la circonferenza x 2  y 2  25 nel piano xy.

-PN\YH 8QSLDQR] = FSDUDOOHORDOSLDQR[\ FKHLQWHUVHFDXQDVXSHUILFLH] = ¦ [\  GHWHUPLQDXQDFXUYDGLFRQWRUQR

/DFXUYDGLOLYHOOR¦ [\ = qFRVWLWXLWDGDOODVRODRULJLQH VLWUDWWDFRPXQTXH GLXQDFXUYDGLOLYHOOR  6H[ + \ 7 DOORUDLYDORULGL¦ [ \ VRQRQHJDWLYL$GHVHPSLRDLSXQWL GHOODFLUFRQIHUHQ]D[ + \ = FLRqGHOODFLUFRQIHUHQ]DFHQWUDWDQHOO¶RULJLQHGL UDJJLRFRUULVSRQGHLOYDORUHFRVWDQWH¦ [ \ = - HODFLUFRQIHUHQ]DqXQD FXUYDGLOLYHOORGL¦





/D FXUYD QHOOR VSD]LR LQ FXL LO SLDQR ] = F LQWHUVHFD OD VXSHU¿FLH ] = ¦ [ \  q FRVWLWXLWDGDLSXQWLFKHUDSSUHVHQWDQRLOYDORUHGHOODIXQ]LRQH¦ [\ = F3UHQGH LOQRPHGLFXUYDGLFRQWRUQR¦ [\ = FSHUGLVWLQJXHUODGDOODFXUYDGLOLYHOOR

 -\UaPVUPKPWPƒ]HYPHIPSP  

¦ [ \ = F QHO GRPLQLR GL ¦ /D )LJXUD  PRVWUD OD FXUYD GL FRQWRUQR ¦ [ \ =  VXOOD VXSHU¿FLH ] =  - [ - \ GH¿QLWD GDOOD IXQ]LRQH ¦ [\ =  - [ - \/DFXUYDGLFRQWRUQRVLWURYDHVDWWDPHQWHDOGLVRSUDGHOOD FLUFRQIHUHQ]D[ + \ = FKHqODFXUYDGLOLYHOOR¦ [\ = QHOGRPLQLRGHOOD IXQ]LRQH /DGLVWLQ]LRQHWUDLGXHWLSLGLFXUYHQRQqXQLYHUVDOHHVLSRWUHEEHXWLOL]]DUH XQ XQLFR WHUPLQH SHU HQWUDPEL L WLSL ODVFLDQGR FKH LO FRQWHVWR LQGLFKL GL TXDOH WLSRGLFXUYDVLWUDWWDHIIHWWLYDPHQWH1HOODPDJJLRUSDUWHGHOOHFDUWHJHRJUD¿FKH DGHVHPSLROHFXUYHFKHFRUULVSRQGRQRDGDOWLWXGLQH DOWH]]DVRSUDLOOLYHOORGHO PDUH FRVWDQWHYHQJRQRFKLDPDWHFRQWRUQLQRQFXUYHGLOLYHOOR )LJXUD 

-PN\YH /LQHHGLFRQWRUQRVXO0RQWH :DVKLQJWRQQHO1HZ+DPSVKLUH SHU JHQWLOHFRQFHVVLRQHGL$SSDODFKLDQ 0RXQWDLQ&OXE 

Funzioni di tre variabili 1HO SLDQR L SXQWL LQ FXL XQD IXQ]LRQH GL GXH YDULDELOL LQGLSHQGHQWL KD YDORUH FRVWDQWH¦ [\ = FIRUPDQRXQDFXUYDQHOGRPLQLRGHOODIXQ]LRQH1HOORVSD]LR DQDORJDPHQWHLSXQWLLQFXLXQDIXQ]LRQHGLWUHYDULDELOLLQGLSHQGHQWLKDYDORUH FRVWDQWH¦ [\] = FIRUPDQRXQDVXSHU¿FLHQHOGRPLQLRGHOODIXQ]LRQH DEFINIZIONE

/¶LQVLHPH GL SXQWL [ \ ]  GHOOR VSD]LR LQ FXL XQD IXQ]LRQH GL WUH YDULDELOL LQGLSHQGHQWLKDYDORUHFRVWDQWH¦ [\] = FSUHQGHLOQRPHGLVXSHU¿FLHGL OLYHOORGL¦ 3RLFKp LO JUD¿FR GL XQD IXQ]LRQH GL WUH YDULDELOL q FRVWLWXLWR GD SXQWL [\]¦ [\] DSSDUWHQHQWLDXQRVSD]LRTXDGULGLPHQVLRQDOHQRQqSRVVLELOH UHQGHUORHI¿FDFHPHQWHQHOQRVWURVLVWHPDGLULIHULPHQWRWULGLPHQVLRQDOHÊWXW WDYLDSRVVLELOHVWXGLDUQHO¶DQGDPHQWRDQDOL]]DQGROHFRUULVSRQGHQWLVXSHU¿FLGL OLYHOORLQWUHGLPHQVLRQL

  *HWP[VSV¶+LYP]H[LWHYaPHSP

1x 2  y 2  z 2  1 z

ESEMPIO 4

1x 2  y 2  z 2  2

'HVFULYHUHOHVXSHU¿FLGLOLYHOORGHOODIXQ]LRQH ¦ [\] = 2[ + \ + ]

1x 2  y 2  z 2  3

1 y

2 3 x

-PN\YH /HVXSHUILFLGLOLYHOORGL ¦ [\] = 2[ + \ + ]VRQRVIHUH FRQFHQWULFKH (VHPSLR 

z

(x 0 , y0 , z 0 )

Soluzione ,OYDORUHGL¦qODGLVWDQ]DWUDO¶RULJLQHHLOSXQWR [\] 2JQLVXSHU¿FLHGLOLYHOOR 2[ + \ + ] = FF 7 qXQDVIHUDGLUDJJLRFFHQWUDWDQHOO¶RULJLQH/D)LJXUD  PRVWUD XQD YLVWD LQ VSDFFDWR GL WUH GL TXHVWH VIHUH /D VXSHU¿FLH GL OLYHOOR 2[ + \ + ] = qFRVWLWXLWDGDOODVRODRULJLQH 1RQVLWUDWWDLQTXHVWRFDVRGLWUDFFLDUHLOJUD¿FRGHOODIXQ]LRQHPDGLDQD OL]]DUHOHVXSHU¿FLGLOLYHOORQHOGRPLQLRGHOODIXQ]LRQH/HVXSHU¿FLGLOLYHOOR PRVWUDQRFRPHYDULDQRLYDORULGHOODIXQ]LRQHVSRVWDQGRVLGDXQSXQWRDOO¶DOWUR GHOGRPLQLR6HFLVLVSRVWDULPDQHQGRVXOODVXSHU¿FLHGLXQDVIHUDGLUDJJLRF FHQWUDWDQHOO¶RULJLQHODIXQ]LRQHPDQWLHQHXQYDORUHFRVWDQWHHSUHFLVDPHQWHLO YDORUHF6HFLVLVSRVWDGDXQSXQWRVXOODVXSHU¿FLHGLXQDVIHUDDXQVHFRQGR SXQWRVXOODVXSHU¿FLHGLXQ¶DOWUDVIHUDLOYDORUHGHOODIXQ]LRQHFDPELDDXPHQWD VHFLVLDOORQWDQDGDOO¶RULJLQHHGLPLQXLVFHVHFLVLDYYLFLQDDOO¶RULJLQH,OPRGRLQ FXLLOYDORUHYDULDGLSHQGHGDOODGLUH]LRQHVFHOWD/DGLSHQGHQ]DGHOODYDULD]LRQH GDOODGLUH]LRQHqXQFRQFHWWRLPSRUWDQWHVXFXLULWRUQHUHPRQHO3DUDJUDIR

R y

/HGH¿QL]LRQLSHUOHUHJLRQLQHOORVSD]LRGLLQWHUQRGLIURQWLHUDHGLUHJLRQH DSHUWDFKLXVDOLPLWDWDHLOOLPLWDWDVRQRDQDORJKHDTXHOOHJLjYLVWHSHUOHUHJLR QLQHOSLDQR3HUWHQHUHFRQWRGHOO¶XOWHULRUHGLPHQVLRQHOHGH¿QL]LRQLXWLOL]]DQR VIHUHSLHQHGLUDJJLRSRVLWLYRDQ]LFKpGLVFKL

x

(a) Punto interno

DEFINIZIONI (x 0 , y0 , z 0 )

z

R y x

(b) Punto di frontiera

-PN\YH ,SXQWLLQWHUQLHLSXQWLGLIURQWLHUDGL XQDUHJLRQHQHOORVSD]LR&RPHQHO FDVRGHOOHUHJLRQLQHOSLDQRXQSXQWR GLIURQWLHUDQRQDSSDUWLHQH QHFHVVDULDPHQWHDOODUHJLRQH5GHOOR VSD]LR

6LGLFHFKHXQSXQWR [\] DSSDUWHQHQWHDXQDUHJLRQH5QHOORVSD]LRq XQSXQWRLQWHUQRGL5VHqLOFHQWURGLXQDVIHUDSLHQDFKHJLDFHLQWHUDPHQWH DOO¶LQWHUQRGL5 )LJXUDD 6LGLFHFKHXQSXQWR [\] qXQSXQWRGL IURQWLHUDGL5VHRJQLVIHUDSLHQDFHQWUDWDLQ [\] FRQWLHQHVLDSXQWLGL 5FKHSXQWLQRQDSSDUWHQHQWLD5 )LJXUDE /¶LQWHUQRGL5qO¶LQVLHPHGHL SXQWLLQWHUQLGL5/DIURQWLHUDGL5qO¶LQVLHPHGHLSXQWLGLIURQWLHUDGL5 8QDUHJLRQHVLGLFHDSHUWDVHqFRVWLWXLWDXQLFDPHQWHGDSXQWLLQWHUQL8QD UHJLRQHVLGLFHFKLXVDVHFRQWLHQHWXWWLLVXRLSXQWLGLIURQWLHUD 6RQRHVHPSLGLLQVLHPLDSHUWLQHOORVSD]LRO¶LQWHUQRGLXQDVIHUDLOVHPLVSD]LR DSHUWR] 7 LOSULPRRWWDQWH GRYH[\H]VRQRWXWWLSRVLWLYL HORVSD]LRVWHVVR 6RQRHVHPSLGLLQVLHPLFKLXVLQHOORVSD]LROHUHWWHLSLDQLHLOVHPLVSD]LRFKLXVR ] Ú 8QDVIHUDSLHQDDFXLVLDVWDWDULPRVVDXQDSDUWHGHOODIURQWLHUDRXQFXER SLHQRDFXLPDQFKLXQDIDFFLDXQRVSLJRORRXQYHUWLFHVRQRUHJLRQLQpDSHUWH QpFKLXVH $QFKH OH IXQ]LRQL GL SL GL WUH YDULDELOL LQGLSHQGHQWL KDQQR JUDQGH LPSRU WDQ]D6HDGHVHPSLRODWHPSHUDWXUDGLXQDVXSHU¿FLHQHOORVSD]LRGLSHQGHQRQ VROWDQWRGDOODSRVL]LRQHGHOSXQWR3 [\] VXOODVXSHU¿FLHPDDQFKHGDOO¶LVWDQWH WLQFXLYLHQHPLVXUDWDVLVFULYH7 = ¦ [\]W 

Impiego di software grafici ,SURJUDPPLGLVRIWZDUHJUD¿FRSHUFRPSXWHUHFDOFRODWULFLSHUPHWWRQRGLWUDF FLDUHLJUD¿FLGLIXQ]LRQLGLGXHYDULDELOLLQPRGRVHPSOLFHHTXDVLLPPHGLDWR,Q

 -\UaPVUPKPWPƒ]HYPHIPSP  

PROWLFDVLVLRWWHQJRQRLQIRUPD]LRQLSLUDSLGDPHQWHGDOJUD¿FRGLXQDIXQ]LRQH FKHGDOODVXDHVSUHVVLRQH ESEMPIO 5

/DWHPSHUDWXUDZDOGLVRWWRGHOODVXSHU¿FLHWHUUHVWUHqXQDIXQ]LRQHGHOODSUR IRQGLWj[PLVXUDWDULVSHWWRDOODVXSHU¿FLHHGHOPRPHQWRGHOO¶DQQRLQGLFDWRFRQ W0LVXUDQGR[LQPHWULHGHQRWDQGRFRQWLOQXPHURGLJLRUQLWUDVFRUVLGDOODGDWD LQFXLVLDWWHQGHODWHPSHUDWXUDVXSHU¿FLDOHSLDOWDGHOO¶DQQRODYDULD]LRQHGHOOD WHPSHUDWXUDSXzHVVHUHGHVFULWWDGDOODIXQ]LRQH

w

Z = FRV  *  - W - [ H - [

8m

/DWHPSHUDWXUDDPHWULYLHQHULVFDODWDLQPRGRGDYDULDUHWUD+ H- SHUFXL ODYDULD]LRQHD[PHWULSXzHVVHUHLQWHUSUHWDWDFRPHXQDIUD]LRQHGHOODYDULD]LRQH DOODVXSHU¿FLH  /D)LJXUDPRVWUDXQJUD¿FRGHOODIXQ]LRQH$OODSURIRQGLWjGLPHWULOD YDULD]LRQH QHOOD¿JXUDODYDULD]LRQHGHOO¶DPSLH]]DYHUWLFDOH qFLUFDLOGHOOD YDULD]LRQHLQVXSHU¿FLH$PHWULQRQVLKDVRVWDQ]LDOPHQWHQHVVXQDYDULD]LRQH QHOFRUVRGHOO¶DQQR ,OJUD¿FRPRVWUDLQROWUHFKHODWHPSHUDWXUDDXQDSURIRQGLWjGLPHWULqVID VDWDGLFLUFDVHLPHVLULVSHWWRDOODWHPSHUDWXUDVXSHU¿FLDOHTXDQGRODWHPSHUDWXUD VXOODVXSHU¿FLHqPLQLPD GLFLDPRYHUVROD¿QHGLJHQQDLR DOODSURIRQGLWjGL PHWULUDJJLXQJHLOYDORUHPDVVLPR&LQTXHPHWULVRWWRODVXSHU¿FLHWHUUHVWUHOH VWDJLRQLVRQRTXLQGLLQYHUWLWH

5m

x

t

-PN\YH 4XHVWRJUDILFRLOOXVWUDODYDULD]LRQH VWDJLRQDOHGHOODWHPSHUDWXUD VRWWHUUDQHDFRPHIUD]LRQHGHOOD YDULD]LRQHGHOODWHPSHUDWXUD VXSHUILFLDOH (VHPSLR 

/D)LJXUDPRVWUDLJUD¿FLJHQHUDWLFRQLOFRPSXWHUGLDOFXQHIXQ]LRQLGL GXHYDULDELOLHOHFRUULVSRQGHQWLFXUYHGLOLYHOOR z

z

z

y x

y

x

y

x

y

y

y

x

x

D ] = VLQ[ + VLQ\

E ] = [ + \ H - [ - \

x

F ] = [\H - \

-PN\YH*UDILFLJHQHUDWLFRQLOFRPSXWHUHFXUYHGLOLYHOORGLWLSLFKHIXQ]LRQLGLGXHYDULDELOL

  *HWP[VSV¶+LYP]H[LWHYaPHSP

 Limiti e continuità in più dimensioni ,QTXHVWRSDUDJUDIRWUDWWHUHPROLPLWLHFRQWLQXLWjSHUOHIXQ]LRQLGLSLYDULDELOL ,FRQFHWWLEDVHVRQRDQDORJKLDTXHOOLGLOLPLWLHFRQWLQXLWjSHUOHIXQ]LRQLGLXQD VRODYDULDELOHPDODSUHVHQ]DGLSLYDULDELOLLQGLSHQGHQWLFRPSRUWDXQDPDJJLR UH FRPSOHVVLWj H DOFXQH LPSRUWDQWL GLIIHUHQ]H FKH ULFKLHGRQR O¶LQWURGX]LRQH GL QXRYLFRQFHWWL

Limiti di funzioni di due variabili 6H LYDORULGL ¦ [\  VL DYYLFLQDQR DUELWUDULDPHQWHDXQQXPHUR UHDOH¿VVDWR / SHURJQLSXQWR [\ FKHVLDVXI¿FLHQWHPHQWHYLFLQRDOSXQWR [\ VLGLFHFKH ¦WHQGHDOOLPLWH/SHU [\ FKHWHQGHD [\ 6LRVVHUYLWXWWDYLDFKHVH [\  VLWURYDDOO¶LQWHUQRGHOGRPLQLRGL¦ [\ SXzDYYLFLQDUVLD [\ GDTXDOVLDVL GLUH]LRQH3HUJDUDQWLUHO¶HVLVWHQ]DGHOOLPLWHRFFRUUHFKHLOOLPLWHRWWHQXWRVLDOR VWHVVR LQGLSHQGHQWHPHQWH GDOOD GLUH]LRQH GL DYYLFLQDPHQWR VFHOWD ,OOXVWUHUHPR TXHVWRWLSRGLSUREOHPDWLFDFRQGLYHUVLHVHPSLGRSRDYHUHQXQFLDWRODGH¿QL]LRQH DEFINIZIONE

6LGLFHFKHXQDIXQ]LRQH¦ [\ WHQGHDOOLPLWH/SHU [\ FKHWHQGHD [\  HVLVFULYH VHSHURJQLQXPHURP 7 HVLVWHXQFRUULVSRQGHQWHQXPHURd 7 WDOHFKHSHU RJQL [\ DSSDUWHQHQWHDOGRPLQLRGL¦ SHU /DGH¿QL]LRQHGLOLPLWHDIIHUPDFKHVHODGLVWDQ]DWUD [\ H [\ qVXI¿ FLHQWHPHQWHSLFFROD PDGLYHUVDGD ODGLVWDQ]DWUD¦ [\ H/GLYHQWDDUELWUD ULDPHQWHSLFFROD,SXQWL [\ FKHWHQGRQRD [\ YHQJRQRVHPSUHSUHVLQHO GRPLQLRGL¦ YHGHUHOD)LJXUD  y

-PN\YH 1HOODGHILQL]LRQHGLOLPLWHdqLO UDJJLRGLXQGLVFRFHQWUDWRLQ [\  3HURJQLSXQWR [\ DSSDUWHQHQWHDO GLVFRLYDORULGHOODIXQ]LRQH¦ [\  DSSDUWHQJRQRDOFRUULVSRQGHQWH LQWHUYDOOR / - P/ + P 

f (x, y)

D

δ (x 0 , y0 ) 0

x

0



LP



L

LP

z

&RPHQHOFDVRGHOOHIXQ]LRQLGLXQDVRODYDULDELOHVLSXzGLPRVWUDUHFKH OLP [ = [ [\ : [\ 

OLP \ = \ [\ : [\ 

OLP N = N  NQXPHURTXDOVLDVL  [\ : [\ 

6HVLFRQVLGHUDDGHVHPSLRLOSULPRGHLOLPLWLVRSUDULSRUWDWL¦ [\ = [H/ = [

 3PTP[PLJVU[PU\P[nPUWPƒKPTLUZPVUP  

$SSOLFDQGRODGH¿QL]LRQHGLOLPLWHVLDP 7 ¿VVDWRSRQHQGRdXJXDOHDPVL YHGHFKH LPSOLFD

4XLQGL SHU 6LqTXLQGLGHWHUPLQDWRXQQXPHURdFKHVRGGLVIDODGH¿QL]LRQHHYDOH

&RPHQHOFDVRGLXQDIXQ]LRQHGLXQDVRODYDULDELOHLOOLPLWHGHOODVRPPDGL GXHIXQ]LRQLqXJXDOHDOODVRPPDGHLULVSHWWLYLOLPLWL VHHVLVWRQRHQWUDPELHVRQR ¿QLWL HYDOJRQRULVXOWDWLDQDORJKLSHULOOLPLWHGHOODGLIIHUHQ]DGHOSURGRWWRSHU XQDFRVWDQWHGHOSURGRWWRGHOTXR]LHQWHGHOODSRWHQ]DHGHOODUDGLFH TEOREMA 1

Proprietà dei limiti di funzioni di due variabili

/HVHJXHQWLSURSULHWjYDOJRQRSHU/0QXPHULUHDOLHSHU H 3URSULHWjGLDGGL]LRQH

3URSULHWjGLVRWWUD]LRQH 3URSULHWjGLOLQHDULWj

NQXPHURTXDOVLDVL

3URSULHWjPROWLSOLFDWLYD 3URSULHWjGHOTXR]LHQWH 3URSULHWjGHOODSRWHQ]D 3URSULHWjGHOODUDGLFH

QLQWHURSRVLWLYR QLQWHURSRVLWLYR

1RQGLPRVWUHUHPRULJRURVDPHQWHLO7HRUHPDPDQHLOOXVWUHUHPRODYDOLGLWjLQ PRGRQRQIRUPDOH 6H [\ qVXI¿FLHQWHPHQWHYLFLQRD [\ DOORUD¦ [\ qSURVVLPRD/HJ [\  qSURVVLPRD0ÊUDJLRQHYROHTXLQGLSHQVDUHFKH¦ [\ + J [\ VLDSURVVLPRD / + 0 ¦ [ \ - J [ \  VLD SURVVLPR D / - 0 N¦ [ \  VLD SURVVLPR D N/¦ [\ J [\ VLDSURVVLPRD/0¦ [\ >J [\ VLDSURVVLPRD/>0SHU0 Z  $SSOLFDQGRLO7HRUHPDDSROLQRPLHIXQ]LRQLUD]LRQDOLVLRWWLHQHO¶LPSRUWDQWH ULVXOWDWRFKHLOLPLWLGLTXHVWHIXQ]LRQLSHU [\ : [\ SRVVRQRHVVHUHGHWHU PLQDQWLFDOFRODQGRLOYDORUHGLWDOLIXQ]LRQLSHU [\ = [\ /¶XQLFDLSRWHVL ULFKLHVWDqFKHODIXQ]LRQHUD]LRQDOHVLDGH¿QLWDLQ [\ 

  *HWP[VSV¶+LYP]H[LWHYaPHSP

ESEMPIO 1

,QTXHVWRHVHPSLRFDOFROHUHPRLOLPLWLGDWLFRPELQDQGRLULVXOWDWLGHO7HRUHPD FRQLWUHVHPSOLFLULVXOWDWLULSRUWDWLGRSRODGH¿QL]LRQHGLOLPLWH3HUGHWHUPLQDUH LOYDORUHOLPLWHqVXI¿FLHQWHVRVWLWXLUHLYDORULGL[H\GHOSXQWRYHUVRFXLWHQGRQR LSXQWLGHOGRPLQLRQHOO¶HVSUHVVLRQHGHOODIXQ]LRQH

ESEMPIO 2

'HWHUPLQDUH

Soluzione 3RLFKpLOGHQRPLQDWRUH WHQGHDSHU [\ :  QRQqSRVVLELOH XWLOL]]DUHOD3URSULHWjGHOTXR]LHQWHGHO7HRUHPD0ROWLSOLFDQGRWXWWDYLDQXPH UDWRUHHGHQRPLQDWRUHSHU VLRWWLHQHXQDIUD]LRQHHTXLYDOHQWHGLFXLq SRVVLELOHGHWHUPLQDUHLOOLPLWH

 6L SXz FDQFHOODUH LO IDWWRUH [ - \  SHUFKp LO FDPPLQR \ = [ OXQJR FXL YDOH [ - \ =  QRQIDSDUWHGHOGRPLQLRGHOODIXQ]LRQH

ESEMPIO 3

'HWHUPLQDUHVHHVLVWH



Soluzione 3HUSULPDFRVDRVVHUYLDPRFKHOXQJRODUHWWD[ = ODIXQ]LRQHKDVHPSUHYDORUH SHU\ Z $QDORJDPHQWHOXQJRODUHWWD\ = ODIXQ]LRQHKDVHPSUHYDORUH SXUFKp[ Z 4XLQGLLOOLPLWHSHU [\ FKHWHQGHD  VHHVLVWHqQHFHVVDULD PHQWH3HUYHUL¿FDUHFKHLQHIIHWWLqFRVuDSSOLFKLDPRODGH¿QL]LRQHGLOLPLWH 'DWRXQQXPHURP7 DUELWUDULRYRJOLDPRGHWHUPLQDUHXQQXPHURd7 WDOHFKH SHU RYYHUR

 3PTP[PLJVU[PU\P[nPUWPƒKPTLUZPVUP  

SHU 3RLFKp\ … [ + \VLKDFKH

6FHJOLHQGRTXLQGLd = P>HSRQHQGR 6 2[ + \ 6 dVLRWWLHQH

'DOODGH¿QL]LRQHVHJXHDOORUDFKH

ESEMPIO 4

6H

HVLVWHLOOLPLWH

"

Soluzione ,O GRPLQLR GL ¦ QRQ LQFOXGH O¶DVVH \ TXLQGL QRQ VL KD QHVVXQ SXQWR [ \  FRQ [ = QHOFDPPLQRGLDYYLFLQDPHQWRDOO¶RULJLQH  /XQJRO¶DVVH[LOYDORUH GHOODIXQ]LRQHq¦ [ = SHURJQL[ Z 6HTXLQGLLOOLPLWHSHU [\ :   HVLVWHLOVXRYDORUHqQHFHVVDULDPHQWH'¶DOWUDSDUWHOXQJRODUHWWD\ = [LOYD ORUHGHOODIXQ]LRQHq¦ [[ = [>[ = SHURJQL[ Z /DIXQ]LRQH¦WHQGHFLRqDO YDORUHOXQJRODUHWWD\ = [&LzVLJQL¿FDFKHRJQLGLVFRGLUDJJLRdFHQWUDWRLQ  FRQWLHQHVLDSXQWL [ DSSDUWHQHQWLDOO¶DVVH[LQFXLLOYDORUHGHOODIXQ]LRQH qVLDSXQWL [[ DSSDUWHQHQWLDOODUHWWD\ = [LQFXLLOYDORUHGHOODIXQ]LRQHq 4XLQGLSHUTXDQWRSLFFRORVLVFHOJDLOUDJJLRdGHOGLVFRGHOOD)LJXUDLOGLVFR FRQWHUUjSXQWLSHULTXDOLLOYDORUHGHOODIXQ]LRQHqGLYHUVRGD'LFRQVHJXHQ]DLO OLPLWHQRQHVLVWHSHUFKpVFHJOLHQGRSHUP QHOODGH¿QL]LRQHGLOLPLWHXQTXDOVLDVL QXPHURPLQRUHGLVLWURYDFKHLOOLPLWHQRQSXzHVVHUH/ = RQpXQTXDOVLDVL DOWURQXPHURUHDOH,OOLPLWHQRQHVLVWHSHUFKpVFHJOLHQGRGLIIHUHQWLFDPPLQLGL DYYLFLQDPHQWRDOSXQWR  VLRWWHQJRQRYDORULOLPLWHGLIIHUHQWL

Continuità &RPHQHOFDVRGHOOHIXQ]LRQLGLXQDVRODYDULDELOHODFRQWLQXLWjqGH¿QLWDLQWHU PLQLGLOLPLWL DEFINIZIONE

8QDIXQ]LRQH¦ [\ qFRQWLQXDQHOSXQWR [\ DSSDUWHQHQWHDOGRPLQLRVH   HVLVWH   8QDIXQ]LRQHVLGLFHFRQWLQXDVHqFRQWLQXDLQRJQLSXQWRGHOSURSULRGRPLQLR 8QD FRQVHJXHQ]D GHO 7HRUHPD  q FKH OH FRPELQD]LRQL DOJHEULFKH GL IXQ]LRQL FRQWLQXHVRQRFRQWLQXHLQRJQLSXQWRLQFXLWXWWHOHIXQ]LRQLFRLQYROWHULVXOWDQR

  *HWP[VSV¶+LYP]H[LWHYaPHSP

GH¿QLWH,QDOWUHSDUROHVRPPHGLIIHUHQ]HSURGRWWLSHUXQDFRVWDQWHSURGRWWL TXR]LHQWLHSRWHQ]HGLIXQ]LRQLFRQWLQXHVRQRGRYHGH¿QLWHIXQ]LRQLFRQWLQXH ,Q SDUWLFRODUH L SROLQRPL H OH IXQ]LRQL UD]LRQDOL GL GXH YDULDELOL VRQR IXQ]LRQL FRQWLQXHLQRJQLSXQWRLQFXLVRQRGH¿QLWH

z

ESEMPIO 5 x

0RVWUDUHFKH

–y

(a)

qXQDIXQ]LRQHFRQWLQXDLQRJQLSXQWRDHFFH]LRQHGHOO¶RULJLQH )LJXUD 

y 0

–0.8 –1

0.8 1 0.8

–0.8

0 x 0.8

– 0.8 –1

1 0.8 0

–0.8

Soluzione /DIXQ]LRQH¦qFRQWLQXDLQRJQLSXQWR [\ Z  SHUFKpLVXRLYDORULVRQRGDWL GDXQDIXQ]LRQHUD]LRQDOHGL[H\HLOYDORUHOLPLWHVLRWWLHQHVRVWLWXHQGRLYDORUL GL[H\QHOO¶HVSUHVVLRQHGHOODIXQ]LRQH ,Q  LOYDORUHGL¦qGH¿QLWRPDFRPHRUDPRVWUHUHPR¦QRQKDOLPLWHSHU [\ :  SHUFKpVFHJOLHQGRGLYHUVLFDPPLQLGLDYYLFLQDPHQWRDOO¶RULJLQHVL RWWHQJRQRULVXOWDWLGLIIHUHQWL 3HURJQLYDORUHGLPODIXQ]LRQH¦DVVXPHYDORUHFRVWDQWHVXOODUHWWD³EXFDWD´ \ = P[[ Z SHUFKp

(b)

-PN\YH D ,OJUDILFRGL

7DOHYDORUHqTXLQGLLOOLPLWHGL¦SHU [\ FKHWHQGHD  OXQJRODUHWWD

OXQJR\= P[

/DIXQ]LRQHqFRQWLQXDLQRJQLSXQWR DHFFH]LRQHGHOO¶RULJLQH E ¦DVVXPHXQYDORUHFRVWDQWH GLIIHUHQWHOXQJRFLDVFXQDUHWWD\ = P[ [ Z  (VHPSLR 

4XHVWRYDORUHYDULDDOYDULDUHGHOODSHQGHQ]DPTXLQGLQRQHVLVWHQHVVXQQXPHUR FKHSRVVDHVVHUHFRQVLGHUDWRLOOLPLWHGL¦SHU [\ FKHWHQGHDOO¶RULJLQH3RLFKp LOOLPLWHQRQHVLVWHODIXQ]LRQHQRQqFRQWLQXD

*OL(VHPSLHLOOXVWUDQRXQLPSRUWDQWHDVSHWWRGHLOLPLWLGLIXQ]LRQLGLGXHR SLYDULDELOL$I¿QFKpHVLVWDLOOLPLWHLQXQSXQWRRFFRUUHFKHLOOLPLWHVLDORVWHV VROXQJRTXDOVLDVLFDPPLQRGLDYYLFLQDPHQWR,QPRGRDQDORJRQHOFDVRGHOOH IXQ]LRQLGLXQDVRODYDULDELOHRFFRUUHYDFKHLOOLPLWHGDGHVWUDHGDVLQLVWUDFRLQ FLGHVVHUR3HUOHIXQ]LRQLGLGXHRSLYDULDELOLqVXI¿FLHQWHWURYDUHGXHFDPPLQL GLDSSURFFLRDXQGDWRSXQWRSHULTXDOLLOLPLWLVLDQRGLIIHUHQWLSHUGLPRVWUDUHFKH ODIXQ]LRQHQRQKDOLPLWHLQWDOHSXQWR Criterio dei due cammini per la non esistenza del limite

6HXQDIXQ]LRQH¦ [\ SUHVHQWDOLPLWLGLIIHUHQWLOXQJRGXHGLIIHUHQWLFDPPLQL GLDYYLFLQDPHQWRGL [\ D [\ QHOGRPLQLRGL¦DOORUDQRQHVLVWHLOOLPLWH OLP [\ : [\ ¦ [\ 

 3PTP[PLJVU[PU\P[nPUWPƒKPTLUZPVUP  

z

ESEMPIO 6

0RVWUDUHFKHODIXQ]LRQH

)LJXUD QRQKDOLPLWHSHU [\ FKHWHQGHD   Soluzione 1RQqSRVVLELOHGHWHUPLQDUHLOOLPLWHSHUVRVWLWX]LRQHGLUHWWDSHUFKpVLRWWLHQHOD IRUPDGLLQGHFLVLRQH>(VDPLQLDPRLYDORULDVVXQWLGD¦OXQJRFXUYHFKHWHQ GRQRD  /XQJRODFXUYD\ = N[[ Z ODIXQ]LRQHDVVXPHLOYDORUHFRVWDQWH GDWRGD

y

x

(a) y 0

3HUWDQWR

1

OXQJR\= N[

,OYDORUHGLTXHVWROLPLWHYDULDDOYDULDUHGHOFDPPLQRGLDYYLFLQDPHQWR6HDG HVHPSLR [\ WHQGHD  OXQJRODSDUDEROD\ = [N = HLOOLPLWHq6HLQYHFH [\ WHQGHD  OXQJRO¶DVVH[N = HLOOLPLWHq3HUWDQWRSHULOFULWHULRGHL GXHFDPPLQL¦QRQKDOLPLWHSHU [\ FKHWHQGHD  

1

0

0

x

–1

–1 0 (b)

6LYHUL¿FDIDFLOPHQWHFKHODIXQ]LRQHGHOO¶(VHPSLRKDOLPLWHOXQJRRJQLFDP PLQR\ = P[&LzFRQVHQWHGLWUDUUHO¶LPSRUWDQWHFRQFOXVLRQHULSRUWDWDQHOVHJXHQ -PN\YH WHULTXDGUR D ,OJUDILFRGL¦ [\ = [\> [ + \  ,O IDWWR FKH XQD IXQ]LRQH DEELD OR VWHVVR OLPLWH SHU [ \  FKH WHQGH D [\ OXQJRTXDOVLDVLUHWWDQRQLPSOLFDO¶HVLVWHQ]DGHOOLPLWHLQ [\  /DGGRYHVLDGH¿QLWDODFRPSRVL]LRQHGLIXQ]LRQLFRQWLQXHqXQDIXQ]LRQHFRQ WLQXD/DGLPRVWUD]LRQHFKHWUDODVFLDPRqVLPLOHDTXHOODSHUOHIXQ]LRQLGLXQD VRODYDULDELOH Continuità delle funzioni composte

6H¦qFRQWLQXDLQ [\ HJqXQDIXQ]LRQHGLXQDVRODYDULDELOHFRQWLQXDLQ ¦ [\ DOORUDODIXQ]LRQHFRPSRVWDK = JଜIGH¿QLWDGDK [\ = J ¦ [\ q FRQWLQXDLQ [\  $GHVHPSLROHIXQ]LRQLFRPSRVWH

VRQRFRQWLQXHLQRJQLSXQWR [\ 

Funzioni di più di due variabili /HGH¿QL]LRQLGLOLPLWHHGLFRQWLQXLWjSHUOHIXQ]LRQLGLGXHYDULDELOLHLULVXOWD WLULJXDUGROLPLWLHFRQWLQXLWjGLVRPPHSURGRWWLTXR]LHQWLSRWHQ]HHIXQ]LRQL FRPSRVWHVLSRVVRQRHVWHQGHUHDOOHIXQ]LRQLGLWUHRSLYDULDELOL

E ,OYDORUHGLIqFRVWDQWHOXQJRRJQL FDPPLQR\ = N[PDYDULDDOYDULDUHGL N (VHPSLR 

  *HWP[VSV¶+LYP]H[LWHYaPHSP

)XQ]LRQLGHOWLSR H VRQRFRQWLQXHLQRJQLSXQWRGHOSURSULRGRPLQLRHOLPLWLGHOWLSR

GRYH3LQGLFDLOSXQWR [\] SRVVRQRHVVHUHGHWHUPLQDWLSHUVRVWLWX]LRQHGLUHWWD

Valori estremi di funzioni continue in insiemi chiusi e limitati ,O7HRUHPDGL:HLHUVWUDVVDIIHUPDFKHXQDIXQ]LRQHGLXQDVRODYDULDELOHFKHVLD FRQWLQXDLQRJQLSXQWRGLXQLQWHUYDOORFKLXVRHOLPLWDWR>DE@DPPHWWHPDVVLPR HPLQLPR/RVWHVVRULVXOWDWRYDOHSHUXQDIXQ]LRQH] = ¦ [\ FKHVLDFRQWLQXDLQ XQLQVLHPHFKLXVRHOLPLWDWR5GHOSLDQR FRPHDGHVHPSLRXQVHJPHQWRXQGLVFR RXQWULDQJRORSLHQR ODIXQ]LRQHDPPHWWHPDVVLPRHPLQLPR DVVROXWL 5LVXOWDWL DQDORJKLYDOJRQRSHUOHIXQ]LRQLGLWUHRSLYDULDELOL 1HO3DUDJUDIRYHGUHPRFRPHGHWHUPLQDUHWDOLYDORULHVWUHPL

 Derivate parziali ,FRQFHWWLHLULVXOWDWLGHOO¶DQDOLVLPDWHPDWLFDSHUOHIXQ]LRQLGLSLYDULDELOLGH ULYDQRGDJOLDQDORJKLFRQFHWWLHULVXOWDWLSHULOFDVRGHOOHIXQ]LRQLDXQDVRODYD ULDELOHDSSOLFDWLVLQJRODUPHQWHDFLDVFXQDYDULDELOH'LIIHUHQ]LDQGRXQDIXQ]LRQH ULVSHWWRDXQDGHOOHYDULDELOLLQGLSHQGHQWLHPDQWHQHQGROHDOWUHYDULDELOLFRVWDQWL VLRWWLHQHXQDGHULYDWD³SDU]LDOH´,QTXHVWRSDUDJUDIRLOOXVWUHUHPRODGH¿QL]LRQH HO¶LQWHUSUHWD]LRQHJHRPHWULFDGHOOHGHULYDWHSDU]LDOLHYHGUHPRFRPHFDOFRODUQH LO YDORUH DSSOLFDQGR OH SURSULHWj SHU OD GHULYD]LRQH GHOOH IXQ]LRQL GL XQD VROD YDULDELOH$QFKHVHLOFRQFHWWRGLGLIIHUHQ]LDELOLWjGLXQDIXQ]LRQHGLSLYDULDELOL ULFKLHGHLSRWHVLSLUHVWULWWLYHULVSHWWRDOODVHPSOLFHHVLVWHQ]DGHOOHGHULYDWHYH GUHPRFKHOHIXQ]LRQLGLIIHUHQ]LDELOLGLSLYDULDELOLVLFRPSRUWDQRHVDWWDPHQWH FRPHOHIXQ]LRQLGLIIHUHQ]LDELOLGLXQDVRODYDULDELOH

Derivate parziali di una funzione di due variabili 6H [\ qXQSXQWRGHOGRPLQLRGLXQDIXQ]LRQH¦ [\ O¶LQWHUVH]LRQHWUDLOSLD QRYHUWLFDOH\ = \HODVXSHU¿FLH] = ¦ [\ qODFXUYD] = ¦ [\  )LJXUD  FKHqLOJUD¿FRGHOODIXQ]LRQH] = ¦ [\ QHOSLDQR\ = \/DFRRUGLQDWDRUL]]RQ WDOHGLTXHVWRSLDQRq[PHQWUHODFRRUGLQDWDYHUWLFDOHq],OYDORUHGL\qFRVWDQWH HXJXDOHD\TXLQGL\QRQqXQDYDULDELOH 6LGH¿QLVFHGHULYDWDSDU]LDOHGL¦ULVSHWWRD[QHOSXQWR [\ ODGHULYDWDRU GLQDULDGL¦ [\ ULVSHWWRD[QHOSXQWR[ = [3HUGLVWLQJXHUHOHGHULYDWHSDU]LDOL GDOOHGHULYDWHRUGLQDULHVLXWLOL]]DLOVLPEROR0DQ]LFKpLOVLPERORGXWLOL]]DWRLQ SUHFHGHQ]D1HOODGH¿QL]LRQHKUDSSUHVHQWDXQQXPHURUHDOHSRVLWLYRRQHJDWLYR

 +LYP]H[LWHYaPHSP  

z Asse verticale nel piano y  y 0 P(x 0 , y 0 , f (x 0, y 0)) z  f (x, y)

La curva z  f (x, y 0 ) nel piano y  y 0

-PN\YH /¶LQWHUVH]LRQHWUDLOSLDQR\ = \HOD VXSHUILFLH] = ¦ [\ O¶RVVHUYDWRUHVL WURYDVRSUDLOSULPRTXDGUDQWHGHO SLDQR[\

Retta tangente 0

x0

y0 x (x 0  h, y 0 )

(x 0, y 0 )

y

Asse orizzontale nel piano y  y 0

DEFINIZIONE

/DGHULYDWDSDU]LDOHGL¦ [\ ULVSHWWRD[QHOSXQWR [\ q

SXUFKpLOOLPLWHHVLVWD¿QLWR 8Q¶HVSUHVVLRQHHTXLYDOHQWHSHUODGHULYDWDSDU]LDOHq

/DSHQGHQ]DGHOODFXUYD ] = ¦ [ \  QHOSXQWR 3 [ \ ¦ [ \  GHOSLDQR \ = \qLOYDORUHGHOODGHULYDWDSDU]LDOHGL¦ULVSHWWRD[LQ [\  QHOOD)LJXUD ODSHQGHQ]DqQHJDWLYD /DUHWWDWDQJHQWHDOODFXUYDQHOSXQWR3qODUHWWD DSSDUWHQHQWHDOSLDQR\ = \FKHSDVVDSHU3HKDSHUSHQGHQ]DWDOHYDORUH/D GHULYDWDSDU]LDOH0¦>0[LQ [\ IRUQLVFHLOWDVVRGLYDULD]LRQHGL¦ULVSHWWRD[SHU \¿VVDWDDOYDORUH\ (VLVWRQRGLYHUVHQRWD]LRQLSHUODGHULYDWDSDU]LDOH RYYHUR

H

RYYHUR

/D GH¿QL]LRQH GHOOD GHULYDWD SDU]LDOH GL ¦ [ \  ULVSHWWR D \ LQ XQ SXQWR [\ qDQDORJDDOODGH¿QL]LRQHGHOODGHULYDWDSDU]LDOHGL¦ULVSHWWRD[VLPDQ WLHQH[¿VVDWRDOYDORUH[HVLSUHQGHODGHULYDWDRUGLQDULDGL¦ [\ ULVSHWWRD\ LQ\ DEFINIZIONE

/DGHULYDWDSDU]LDOHGL¦ [\ ULVSHWWRD\QHOSXQWR [\ q

SXUFKpLOOLPLWHHVLVWD¿QLWR /DSHQGHQ]DGHOODFXUYD] = ¦ [\ QHOSXQWR3 [\¦ [\ QHOSLDQRYHUWLFDOH

  *HWP[VSV¶+LYP]H[LWHYaPHSP

Asse verticale nel piano x  x0

[ = [ )LJXUD qODGHULYDWDSDU]LDOHGL¦ULVSHWWRD\LQ [\ /DUHWWDWDQ JHQWHDOODFXUYDQHOSXQWR3qODUHWWDDSSDUWHQHQWHDOSLDQR[ = [FKHSDVVDSHU3 HKDSHUSHQGHQ]DWDOHYDORUH/DGHULYDWDSDU]LDOHIRUQLVFHLOWDVVRGLYDULD]LRQH GL¦ULVSHWWRD\LQ [\ FRQ[¿VVDWDDOYDORUH[ /DQRWD]LRQHSHUODGHULYDWDSDU]LDOHULVSHWWRD\qDQDORJDDTXHOODGHOODGHUL YDWDSDU]LDOHULVSHWWRD[

z

Retta tangente P(x 0 , y 0 , f (x 0, y 0 )) z  f (x, y) 0 x0

y0

x (x 0 , y 0 )

y

(x 0 , y 0  k) La curva z  f (x 0 , y) nel piano x  x 0

Asse orizzontale nel piano x  x 0

6LRVVHUYLFKHLQTXHVWRFDVRVLKDQQRGXHUHWWHWDQJHQWLDVVRFLDWHDOODVXSHU¿ FLH] = ¦ [\ QHOSXQWR3 [\¦ [\  )LJXUD 5LVXOWDQDWXUDOHFKLHGHUVL VHLOSLDQRGDHVVHGHWHUPLQDWRVLDWDQJHQWHDOODVXSHU¿FLHLQ3&RPHYHGUHPRq FRVuSHUOHIXQ]LRQLGLIIHUHQ]LDELOLGH¿QLWHDOOD¿QHGLTXHVWRSDUDJUDIR'RSRDYHU DSSURIRQGLWR OD FRQRVFHQ]D GHOOH GHULYDWH SDU]LDOL QHO 3DUDJUDIR  YHGUHPR FRPHGHWHUPLQDUHLOSLDQRWDQJHQWH z

-PN\YH /¶LQWHUVH]LRQHWUDLOSLDQR[ = [HOD VXSHUILFLH] = ¦ [\ O¶RVVHUYDWRUHVL WURYDVRSUDLOSULPRTXDGUDQWHGHO SLDQR[\

Questa retta tangente P(x , y , f (x , y )) 0 0 ha pendenza fy(x 0 , y 0 ). 0 0 La curva z  f (x 0, y) nel piano x  x 0

Questa retta tangente ha pendenza fx (x 0 , y 0 ). La curva z  f (x, y0) nel piano y  y0 z  f (x, y)

-PN\YH &RPELQD]LRQHGHOOH)LJXUHH /HUHWWHWDQJHQWLQHOSXQWR [\¦ [\ GHWHUPLQDQRXQSLDQR FKHQHOFDVRGHOODILJXUDDSSDUH WDQJHQWHDOODVXSHUILFLH

x y  y0

(x 0 , y0 )

x  x0

y

Calcoli /HGH¿QL]LRQLGL0¦>0[H0¦>0\GHWHUPLQDQRGXHGLYHUVLPRGLSHUGLIIHUHQ]LDUH¦LQ XQSXQWRGHULYDQGRULVSHWWRD[QHOPRGRXVXDOHWUDWWDQGR\FRPHXQDFRVWDQWH RSSXUH GHULYDQGR ULVSHWWR D \ QHO PRGR XVXDOH WUDWWDQGR [ FRPH XQD FRVWDQWH &RPHLOOXVWUDWRQHLVHJXHQWLHVHPSLLYDORULGHOOHGHULYDWHSDU]LDOLFRVuGH¿QLWHLQ XQFHUWRSXQWR [\ VRQRLQJHQHUDOHGLIIHUHQWL ESEMPIO 1

'HWHUPLQDUHLYDORULGL0¦>0[H0¦>0\QHOSXQWR -  SHU ¦ [\ = [ + [\ + \ -  Soluzione 3HUGHWHUPLQDUH0¦>0[WUDWWLDPR\FRPHXQDFRVWDQWHHGLIIHUHQ]LDPRULVSHWWRD[

#

,OYDORUHGL0¦>0[LQ -  q  +  -  = - 

 +LYP]H[LWHYaPHSP  

3HUGHWHUPLQDUH0¦>0\WUDWWLDPR[FRPHXQDFRVWDQWHHGLIIHUHQ]LDPRULVSHWWRD\

#

,OYDORUHGL0¦>0\LQ -  q  +  = 

ESEMPIO 2

'HWHUPLQDUH0¦>0\FRPHIXQ]LRQHSHU¦ [\ = \VLQ[\ Soluzione 7UDWWLDPR[FRPHXQDFRVWDQWHH¦FRPHLOSURGRWWRGL\HVLQ[\

ESEMPIO 3

'HWHUPLQDUH¦[H¦\FRPHIXQ]LRQLSHU

Soluzione 7UDWWLDPR¦FRPHXQTXR]LHQWH0DQWHQHQGR\FRVWDQWHVLRWWLHQH

0DQWHQHQGRLQYHFH[FRVWDQWHVLRWWLHQH

&RPH YHGUHPR QHO SURVVLPR HVHPSLR q SRVVLELOH XWLOL]]DUH OD GHULYD]LRQH LPSOLFLWDQHOFDVRGHOOHGHULYDWHSDU]LDOLLQPRGRDQDORJRDOFDVRGHOOHGHULYDWH RUGLQDULH

  *HWP[VSV¶+LYP]H[LWHYaPHSP

ESEMPIO 4

'HWHUPLQDUH0]>0[DVVXPHQGRFKHO¶HTXD]LRQH \] - OQ] = [ + \ GH¿QLVFD]FRPHIXQ]LRQHGHOOHGXHYDULDELOLLQGLSHQGHQWL[H\HFKHOHGHULYDWH SDU]LDOLHVLVWDQR Soluzione 'LIIHUHQ]LDPRDPERLPHPEULGHOO¶HTXD]LRQHULVSHWWRD[PDQWHQHQGR\FRVWDQWH HWUDWWDQGR]FRPHXQDIXQ]LRQHGLIIHUHQ]LDELOHGL[ &RQ\FRVWDQWH z

Superficie z  x2  y2 Piano x1

Retta tangente (1, 2, 5)

ESEMPIO 5 2

1

y x

x1

/¶LQWHUVH]LRQHWUDLOSLDQR[ = HLOSDUDERORLGH] = [ + \qXQDSDUDEROD'HWHU PLQDUHODSHQGHQ]DGHOODWDQJHQWHDOODSDUDERODQHOSXQWR   )LJXUD  Soluzione

-PN\YH /DSHQGHQ]DqLOYDORUHGHOODGHULYDWDSDU]LDOH0]>0\LQ   /DWDQJHQWHDOODFXUYDGDWD GDOO LQWHUVH]LRQHWUDLOSLDQR[ = HOD VXSHUILFLH] = [ + \QHOSXQWR   (VHPSLR 

&RPHYHUL¿FDSRVVLDPRFRQVLGHUDUHODSDUDERODFRPHLOJUD¿FRGHOODIXQ]LRQHGL XQDVRODYDULDELOH] =   + \ =  + \QHOSLDQR[ = HGHWHUPLQDUHODSHQGHQ]D SHU\ = /DSHQGHQ]DFDOFRODWDLQTXHVWRFDVRFRPHGHULYDWDRUGLQDULDq

Funzioni di più di due variabili /DGH¿QL]LRQHGHOOHGHULYDWHSDU]LDOLSHUOHIXQ]LRQLGLSLGLGXHYDULDELOLqDQD ORJDDTXHOODSHUOHIXQ]LRQLGLGXHYDULDELOLVLWUDWWDGLGHULYDWHRUGLQDULHULVSHWWR DXQDGHOOHYDULDELOLSUHVHPDQWHQHQGRFRVWDQWLOHDOWUHYDULDELOL

 +LYP]H[LWHYaPHSP  

ESEMPIO 6

'DWHOHYDULDELOLLQGLSHQGHQWL[\H]HGDWDODIXQ]LRQH ¦ [\] = [VLQ \ + ]  DOORUD R1 R2 R3 ESEMPIO 7

'DWLWUHUHVLVWRULGHOYDORUHGL55H5RKPULVSHWWLYDPHQWHFROOHJDWLLQSDUDO OHORLOYDORUHGHOODUHVLVWHQ]DHTXLYDOHQWH5PLVXUDWRLQRKPqGDWRGDOO¶HTXD ]LRQH

 

-PN\YH ,UHVLVWRULGLVSRVWLFRPHQHOODILJXUD VLGLFRQRFROOHJDWLLQSDUDOOHOR )LJXUD 'HWHUPLQDUHLOYDORUHGL05>05SHU5 = RKP5 = RKPH (VHPSLR &LDVFXQUHVLVWRUHYLHQH DWWUDYHUVDWRGDXQDSDUWHGHOODFRUUHQWH 5 = RKP HODUHVLVWHQ]DHTXLYDOHQWH5qGDWD GDOO HVSUHVVLRQH Soluzione

3HUGHWHUPLQDUH05>05WUDWWLDPR5H5FRPHFRVWDQWLHXWLOL]]DQGRODGHULYD ]LRQHLPSOLFLWDGLIIHUHQ]LDPRDPERLPHPEULGHOO¶HTXD]LRQHSHU5

3HU5 = 5 = H5 = 

TXLQGL5 = H

4XLQGLSHULYDORULGDWLODYDULD]LRQHGHOODUHVLVWHQ]D5LQGRWWDGDXQDSLFFROD YDULD]LRQHGHOODUHVLVWHQ]D5qSDULDFLUFD>GLWDOHYDULD]LRQH

Derivate parziali e continuità Ê SRVVLELOH FKH XQD IXQ]LRQH ¦ [ \  DPPHWWD LQ XQ SXQWR GHULYDWH SDU]LDOL VLD ULVSHWWRD[FKHULVSHWWRD\VHQ]DHVVHUHFRQWLQXDLQWDOHSXQWR&LzQRQDFFDGH SHUOHIXQ]LRQLGLXQDVRODYDULDELOHSHUOHTXDOLO¶HVLVWHQ]DGHOODGHULYDWDLPSOLFD ODFRQWLQXLWj6HWXWWDYLDOHGHULYDWHSDU]LDOLGL¦ [\ HVLVWRQRHVRQRFRQWLQXH LQRJQLSXQWRGLXQGLVFRFHQWUDWRLQ [\ DOORUD¦qFRQWLQXDLQ [\ FRPH YHGUHPRDOOD¿QHGLTXHVWRSDUDJUDIR

  *HWP[VSV¶+LYP]H[LWHYaPHSP

z

0, xy Z 0 1, xy  0

ESEMPIO 8 z

6LD

L1 1

0 L2 x

-PN\YH ,OJUDILFRGL

y

)LJXUD  D 'HWHUPLQDUHLOOLPLWHGL¦SHU [\ FKHWHQGHD  OXQJRODUHWWD\ = [ E 'LPRVWUDUHFKH¦QRQqFRQWLQXDQHOO¶RULJLQH F 0RVWUDUHFKHHQWUDPEHOHGHULYDWHSDU]LDOL0¦>0[H0¦>0\HVLVWRQRQHOO¶RULJLQH Soluzione D 3RLFKp¦ [\ qFRVWDQWHHXJXDOHD]HUROXQJRODUHWWD\ = [ DHFFH]LRQHFKH QHOO¶RULJLQH VLKD

 qFRVWLWXLWRGDOOHUHWWH/H/HGDL TXDWWURTXDGUDQWLDSHUWLGHOSLDQR[\ /DIXQ]LRQHDPPHWWHOHGHULYDWH E 3RLFKp¦  = SHULOOLPLWHGHWHUPLQDWRDOSXQWR D VLKDFKH¦QRQq SDU]LDOLQHOO¶RULJLQHPDQRQqFRQWLQXD FRQWLQXDLQ   LQWDOHSXQWR (VHPSLR 

F  3HU GHWHUPLQDUH 0¦>0[ LQ    PDQWHQLDPR \ FRVWDQWH FRQ \ = $OORUD ¦ [\ = SHURJQL[HLOJUD¿FRGL¦qODUHWWD/UDSSUHVHQWDWDQHOOD)LJX UD  /D SHQGHQ]D GL TXHVWD UHWWD SHU RJQL [ q0¦>0[ =  ,Q SDUWLFRODUH 0¦>0[ = LQ  $QDORJDPHQWH0¦>0\qODSHQGHQ]DGHOODUHWWD/SHURJQL \TXLQGL0¦>0\ = LQ  

1RQRVWDQWH TXDQWR YLVWR QHOO¶(VHPSLR  DQFKH QHO FDVR GL SL GLPHQVLRQL ODGLIIHUHQ]LDELOLWjLQXQSXQWRLPSOLFDODFRQWLQXLWj&LzFKHO¶(VHUFL]LRVXJ JHULVFHqFKHODGLIIHUHQ]LDELOLWjGLXQDIXQ]LRQHGLSLYDULDELOLULFKLHGHLSRWHVL SLIRUWLULVSHWWRDOODVHPSOLFHHVLVWHQ]DGHOOHGHULYDWHSDU]LDOL7RUQHUHPRVXOOD UHOD]LRQHWUDGLIIHUHQ]LDELOLWjHFRQWLQXLWjGRSRDYHUIRUPXODWRODGH¿QL]LRQHGL GLIIHUHQ]LDELOLWjSHUOHIXQ]LRQLGLGXHYDULDELOL OHJJHUPHQWHSLFRPSOHVVDUL VSHWWRDTXHOODSHUOHIXQ]LRQLGLXQDVRODYDULDELOH DOOD¿QHGLTXHVWRSDUDJUDIR

Derivate parziali del secondo ordine 'LIIHUHQ]LDQGRGXHYROWHXQDIXQ]LRQH¦ [\ VLRWWHQJRQROHGHULYDWDGHOVHFRQGR RUGLQHGHOODIXQ]LRQHLQGLFDWHFRQ RYYHUR RYYHUR

RYYHUR H

RYYHUR

/HHTXD]LRQLFKHGH¿QLVFRQROHGHULYDWHVRQR

HFRVuYLD6LRVVHUYLO¶RUGLQHLQFXLVLSUHQGRQROHGHULYDWHSDU]LDOLPLVWH  

VLGLIIHUHQ]LDSULPDULVSHWWRD\SRLULVSHWWRD[

 

qXQ¶HVSUHVVLRQHHTXLYDOHQWH

 +LYP]H[LWHYaPHSP  

ESEMPIO 9

'DWD¦ [\ = [FRV\ + \H[GHWHUPLQDUHOHGHULYDWHGHOVHFRQGRRUGLQH H Soluzione 3HUSULPDFRVDRFFRUUHFDOFRODUHHQWUDPEHOHGHULYDWHSDU]LDOLGHOSULPRRUGLQH

4XLQGLSHUFLDVFXQDGHULYDWDSDU]LDOHGHOSULPRRUGLQHVLFDOFRODQRHQWUDPEHOH GHULYDWHGHOVHFRQGRRUGLQH

Il teorema delle derivate seconde miste 1HOO¶(VHPSLRVLSXzRVVHUYDUHFKHOHGHULYDWHSDU]LDOLGHOVHFRQGRRUGLQH³PLVWH´ H

 VRQRXJXDOL1RQVLWUDWWDGLXQDFRLQFLGHQ]DFLzVLYHUL¿FDVHPSUHSHU¦¦[¦\ ¦[\H¦\[FRQWLQXHFRPHHQXQFLDWRQHOVHJXHQWHWHRUHPD TEOREMA 2

Teorema di Schwarz sulle derivate seconde miste

6HXQDIXQ]LRQH¦ [\ HOHVXHGHULYDWHSDU]LDOL¦[¦\¦[\H¦\[VRQRGH¿QLWH LQRJQLSXQWRGLXQDUHJLRQHDSHUWDFRQWHQHQWHLOSXQWR DE HVRQRFRQWLQXH LQ DE DOORUD ¦[\ DE = ¦\[ DE  DIMOSTRAZIONE /¶XJXDJOLDQ]DWUD¦[\ DE H¦\[ DE SXzHVVHUHGLPRVWUDWDGDTXDWWURDSSOLFD]LRQL GHO7HRUHPDGL/DJUDQJH3HULSRWHVLLOSXQWR DE JLDFHDOO¶LQWHUQRGLXQUHW WDQJROR5QHOSLDQR[\VXOTXDOHVRQRGH¿QLWHWXWWHOHIXQ]LRQL¦¦[¦\¦[\H¦\[ 6XSSRQLDPR FKH K H N VLDQR L QXPHUL WDOL FKH LO SXQWR D + K E + N  JLDFFLD DQFK¶HVVRVX5HFRQVLGHULDPRODGLIIHUHQ]D  GRYH 

¢ = ) D + K - ) D 



) [ = ¦ [E + N - ¦ [E 



$SSOLFKLDPRLO7HRUHPDGL/DJUDQJHD)FKHqXQDIXQ]LRQHGHULYDELOH

  *HWP[VSV¶+LYP]H[LWHYaPHSP

/¶(TXD]LRQH  GLYHQWDTXLQGL ¢ = K)¿ F  LQFXLFJLDFHWUDDHD + K'DOO¶(TXD]LRQH   

)¿ [ = ¦[ [E + N - ¦[ [E 



SHUWDQWRO¶(TXD]LRQH  GLYHQWD ¢ = K>¦[ FE + N - ¦[ FE @



$SSOLFKLDPRRUDLO7HRUHPDGL/DJUDQJHDOODIXQ]LRQHJ \ = I[ F\ HRWWHQLDPR RYYHUR

J E + N - J E = NJ¿ G  ¦[ FE + N - ¦[ FE = N¦[\ FG 

SHUXQTXDOFKHYDORUHGFRPSUHVRWUDEHE + N6RVWLWXHQGRQHOO¶(TXD]LRQH   RWWHQLDPR ¢ = KN¦[\ FG   SHUXQTXDOFKHSXQWR FG DOO¶LQWHUQRGHOUHWWDQJROR5¿LFXLYHUWLFLVRQRLTXDW WURSXQWL DE  D + KE  D + KE + N H DE + N  6RVWLWXHQGRGDOO¶(TXD]LRQH  DOO¶(TXD]LRQH  SRVVLDPRXJXDOPHQWHVFUL YHUH ¢ = ¦ D + KE + N - ¦ D + KE - ¦ DE + N + ¦ DE  = >¦ D + KE + N - ¦ DE + N @ - >¦ D + KE - ¦ DE @ = f E + N - f E  GRYH 

f \ = ¦ D + K\ - ¦ D\ 

 

'DO7HRUHPDGL/DJUDQJHDSSOLFDWRDOO¶(TXD]LRQH  VLRWWLHQHRUD 

¢ = Nf¿ G 



SHUXQTXDOFKHYDORUHGFRPSUHVRWUDEHE + N'DOO¶(TXD]LRQH   

f¿ \ = ¦\ D + K\ - ¦\ D\ 

 

6RVWLWXHQGRGDOO¶(TXD]LRQH  DOO¶(TXD]LRQH  VLRWWLHQH ¢ = N>¦\ D + KG - ¦\ DG @ ,Q¿QHDSSOLFKLDPRLO7HRUHPDGL/DJUDQJHDOO¶HVSUHVVLRQHWUDSDUHQWHVLHRWWH QLDPR  ¢ = NK¦\[ FG  SHUXQTXDOFKHYDORUHFFRPSUHVRWUDDHD + K 1HOORURLQVLHPHOH(TXD]LRQL  H  GLPRVWUDQRFKH 

¦[\ FG = ¦\[ FG 



LQFXL FG H FG JLDFFLRQRHQWUDPELDOO¶LQWHUQRGHOUHWWDQJROR5¿GLYHUWLFL DE  D + KE  D + KE + N H DE + N /¶(TXD]LRQH  QRQqHVDWWDPHQWHLOULVXO WDWRGHVLGHUDWRGLFHVRORFKH¦[\KDLQ FG ORVWHVVRYDORUHGL¦\[LQ FG ,QX PHULKHNWXWWDYLDSRVVRQRHVVHUHUHVLWDQWRSLFFROLTXDQWRORVLGHVLGHUD/¶LSRWHVL FKH¦[\H¦\[VLDQRHQWUDPEHFRQWLQXHLQ DE LQGLFDFKH¦[\ FG = ¦[\ DE + PH ¦\[ FG = ¦\[ DE + PLQFXLPP:SRLFKpKN :4XLQGLVHVXSSRQLDPR FKHKHN:RWWHQLDPR¦[\ DE = ¦\[ DE 

 +LYP]H[LWHYaPHSP  

/¶XJXDJOLDQ]D WUD ¦[\ D E  H ¦\[ D E  SXz HVVHUH GLPRVWUDWD FRQ LSRWHVL SL GHEROLGLTXHOOHDVVXQWH3HUHVHPSLRqVXI¿FLHQWHFKH¦¦[H¦\HVLVWDQRLQ5H FKH¦[\VLDFRQWLQXDLQ DE ,QTXHVWRFDVR¦\[HVLVWHUjLQ DE HVDUjXJXDOHD ¦[\LQTXHOSXQWR ESEMPIO 10

'HWHUPLQDUH0]>0[0\SHU ] Soluzione ,OVLPEROR0]>0[0\SUHVFULYHGLGLIIHUHQ]LDUHSULPDULVSHWWRD\HSRLULVSHWWRD [6FDPELDQGRWXWWDYLDO¶RUGLQHHGLIIHUHQ]LDQGRSULPDULVSHWWRD[VLRWWLHQHLO ULVXOWDWRLQPRGRSLUDSLGR%DVWDQRGXHSDVVDJJL ]

H

]

$QFKHGLIIHUHQ]LDQGRSULPDULVSHWWRD\VLRWWLHQH0]>0[0\ = ÊSRVVLELOHVFH JOLHUHO¶RUGLQHGLGHULYD]LRQHSHUFKp]VRGGLVIDOHLSRWHVLGHO7HRUHPDSHUWXWWL LSXQWL [\ 

Derivate parziali di ordine ancora superiore $QFKHVHQHOODPDJJLRUSDUWHGHLFDVLVLKDDFKHIDUHFRQGHULYDWHSDU]LDOLGHOSUL PRHGHOVHFRQGRRUGLQHSHUFKpSLIUHTXHQWHPHQWHXWLOL]]DWHQHOOHDSSOLFD]LRQL QRQ HVLVWH DOFXQ OLPLWH WHRULFR DO QXPHUR GL YROWH FKH q SRVVLELOH GHULYDUH XQD IXQ]LRQH O¶XQLFD FRQGL]LRQH QHFHVVDULD HVVHQGR O¶HVLVWHQ]D GHOOH GHULYDWH FRQ VLGHUDWH6LSRVVRQRDYHUHTXLQGLGHULYDWHGHOWHU]RHGHOTXDUWRRUGLQHLQGLFDWH FRQQRWD]LRQLGHOWLSR

HFRVuYLD&RPHQHOFDVRGHOOHGHULYDWHGHOVHFRQGRRUGLQHO¶RUGLQHGLGHULYD]LR QHqLQGLIIHUHQWHSXUFKpWXWWHOHGHULYDWHQHOO¶RUGLQHFRQVLGHUDWRVLDQRFRQWLQXH ESEMPIO 11

'HWHUPLQDUH¦\[\] SHU¦ [\] =  - [\] + [\ Soluzione 'LIIHUHQ]LDPRSULPDULVSHWWRDOODYDULDELOH\TXLQGLULVSHWWRD[TXLQGLQXRYD PHQWHULVSHWWRD\HLQ¿QHULVSHWWRD]

  *HWP[VSV¶+LYP]H[LWHYaPHSP

Differenziabilità /¶LGHDGLSDUWHQ]DSHUODGH¿QL]LRQHGLGLIIHUHQ]LDELOLWjQRQqFRPHQHOFDVRGHOOH IXQ]LRQLGLXQDVRODYDULDELOHLOUDSSRUWRLQFUHPHQWDOHPDODQR]LRQHGLLQFUH PHQWR1HOFDVRGHOOHIXQ]LRQLGLXQDVRODYDULDELOHVH\ = ¦ [ qGLIIHUHQ]LDELOH LQ[ = [DOORUDODYDULD]LRQHGHOYDORUHGL¦GRYXWDDOODYDULD]LRQHGL[GD[D [ + ¢[qGDWDGDXQ¶HTXD]LRQHGHOWLSR ¢\ = ¦¿ [ ¢[ + P¢[ FRQP :SHU¢[ :1HOFDVRGHOOHIXQ]LRQLGLGXHYDULDELOLO¶DQDORJDSURSULH WjGLYHQWDODGH¿QL]LRQHGLGLIIHUHQ]LDELOLWj,OVHJXHQWHWHRUHPDLQGLFDLQTXDOL FRQGL]LRQLODSURSULHWjqYHUL¿FDWD TEOREMA 3

Teorema del differenziale per le funzioni di due variabili C(x0  x, y0  y)

6LDQROHGHULYDWHSDU]LDOLSULPHGL¦ [\ GH¿QLWHLQRJQLSXQWRGLXQDUHJLRQH DSHUWD5FRQWHQHQWHLOSXQWR [\ HVLDQR¦[H¦\FRQWLQXHLQ [\ $OORUD ODYDULD]LRQH ¢] = ¦ [ + ¢[\ + ¢\ - ¦ [\  GHOYDORUHGL¦GRYXWDDOORVSRVWDPHQWRGD [\ DXQDOWURSXQWR [ + ¢[\ + ¢\  DSSDUWHQHQWHD5VRGGLVIDXQ¶HTXD]LRQHGHOWLSR

A(x0, y0 ) B(x0  x, y0 )

¢] = ¦[ [\ ¢[ + ¦\ [\ ¢\ + P¢[ + P¢\ LQFXLLGXHYDORULPP:SHU¢[¢\ :

DIMOSTRAZIONE /DYRULDPRDOO¶LQWHUQRGHOUHWWDQJROR7DYHQWHFHQWURLQ$ [\ HJLDFHQWHDOO¶LQ WHUQRGL5HVXSSRQLDPRFKH¢[H¢\VLDQRJLjWDOPHQWHSLFFROLFKHLOVHJPHQWR -PN\YH FKHFRQJLXQJH$D% [ + ¢[\ HTXHOORFKHFRQJLXQJH%D& [ + ¢[\ + ¢\  /DUHJLRQHUHWWDQJRODUH7QHOOD JLDFFLDQRDOO¶LQWHUQRGL7 )LJXUD  GLPRVWUD]LRQHGHOWHRUHPD 3RVVLDPRSHQVDUHD¢]FRPHDOODVRPPD¢] = ¢] + ¢] GLGXHLQFUHPHQWLLQFXL GHOO¶LQFUHPHQWR1HOODILJXUDVL ¢] = ¦ [ + ¢[\ - ¦ [\  UDSSUHVHQWDQR¢[H¢\SRVLWLYLWXWWDYLD T

HQWUDPELJOLLQFUHPHQWLSRVVRQRHVVHUH qODYDULD]LRQHQHOYDORUHGL¦GD$D%H SDULD]HURRQHJDWLYL

¢] = ¦ [ + ¢[\ + ¢\ - ¦ [ + ¢[\  qODYDULD]LRQHQHOYDORUHGL¦GD%D& 1HOO¶LQWHUYDOORFKLXVRGHLYDORUL[FKHFRQJLXQJRQR[D[ + ¢[ODIXQ]LRQH ) [ = ¦ [\ qXQDIXQ]LRQHGHULYDELOHGL[FRQGHULYDWD )¿ [ = I[ [\  3HULO7HRUHPDGL/DJUDQJHHVLVWHXQYDORUHFGL[FRPSUHVRWUD[H[ + ¢[QHO TXDOH ) [ + ¢[ - ) [ = )¿ F ¢[ RYYHUR ¦ [ + ¢[\ - ¦ [\ = I[ F\ ¢[ FLRq  ¢] = ¦[ F\ ¢[  ,QPDQLHUDVLPLOH* \ = ¦ [ + ¢[\ qXQDIXQ]LRQHGHULYDELOHGL\QHOO¶LQ WHUYDOORFKLXVRGLYDORUL\FKHFRQJLXQJH\H\ + ¢\FRQGHULYDWD *¿ \ = ¦\ [ + ¢[\ 

 +LYP]H[LWHYaPHSP  

3HUWDQWRHVLVWHXQYDORUHGGL\FRPSUHVRWUD\ H\ + ¢\SHULOTXDOH * \ + ¢\ - * \ = *¿ G ¢\ RYYHUR ¦ [ + ¢[\ + ¢\ - ¦ [ + ¢[\ = ¦\ [ + ¢[G ¢\ FLRq ¢] = ¦\ [ + ¢[G ¢\



2UDSRLFKp¢[:H¢\ :VLKDFKHF :[ HG :\3HUWDQWRGDWRFKHI[ HI\VRQRFRQWLQXHLQ [\ OHTXDQWLWj P = ¦[ F\ - ¦[ [\ 



P = ¦\ [ + ¢[G - ¦\ [\  WHQGRQRHQWUDPEHD]HURGDWRFKH¢[: ,Q¿QH ¢] = ¢] + ¢] = ¦[ F\ ¢[ + ¦\ [ + ¢[G ¢\ = >¦[ [\ + P@¢[ + >¦\ [\ + P@¢\ = ¦[ [\ ¢[ + ¦\ [\ ¢\ + P¢[ + P¢\



'DOOH(T  H   'DOO¶(T  

LQFXLPHP:FKHqODWHVL

DEFINIZIONE

8QDIXQ]LRQH] = ¦ [\ VLGLFHGLIIHUHQ]LDELOHLQ [\ VHHVLVWRQR¦[ [\  H¦\ [\ H¢]VRGGLVIDXQ¶HTXD]LRQHGHOWLSR ¢] = ¦[ [\ ¢[ + ¦\ [\ ¢\ + P¢[ + P¢\ LQFXLLGXHYDORULPP:SHU¢[¢\ :6H¦qGLIIHUHQ]LDELOHLQRJQL SXQWRGHOSURSULRGRPLQLRVLGLFHFKHqGLIIHUHQ]LDELOHHFKHKDSHUJUD¿FR XQDVXSHU¿FLHUHJRODUH 'D TXHVWD GH¿QL]LRQH VHJXH LPPHGLDWDPHQWH FRPH FRUROODULR GHO 7HRUHPD  FKHXQDIXQ]LRQHqGLIIHUHQ]LDELOHLQ [\ VHKDGHULYDWHSDU]LDOLFRQWLQXHLQ WDOHSXQWR Corollario del Teorema 3

6HOHGHULYDWHSDU]LDOL¦[H¦\GLXQDIXQ]LRQH¦ [\ VRQRFRQWLQXHLQRJQL SXQWRGLXQDUHJLRQHDSHUWD5DOORUD¦qGLIIHUHQ]LDELOHLQRJQLSXQWRGL5 6H ] = ¦ [ \  q GLIIHUHQ]LDELOH DOORUD SHU OD GH¿QL]LRQH GL GLIIHUHQ]LDELOLWj ¢] = ¦ [ + ¢[\ + ¢\ - ¦ [\ WHQGHDSHU¢[H¢\FKHWHQGRQRD4XLQGL XQDIXQ]LRQHGLGXHYDULDELOLqFRQWLQXDLQRJQLSXQWRLQFXLqGLIIHUHQ]LDELOH TEOREMA 4

La differenziabilità implica la continuità

6H XQD IXQ]LRQH ¦ [ \  q GLIIHUHQ]LDELOH LQ [ \  DOORUD ¦ q FRQWLQXD LQ [\  &RPHVLSXzYHGHUHGDO&RUROODULRHGDO7HRUHPDXQDIXQ]LRQH¦ [\ SHU FXL¦[H¦\VLDQRFRQWLQXHLQRJQLSXQWRGLXQDUHJLRQHDSHUWDFRQWHQHQWHXQSXQWR

  *HWP[VSV¶+LYP]H[LWHYaPHSP

[\ qQHFHVVDULDPHQWHFRQWLQXDLQ [\ 6LULFRUGLWXWWDYLDFKHFRPHDE ELDPRYLVWRQHOO¶(VHPSLRSXzDFFDGHUHFKHXQDIXQ]LRQHGLGXHYDULDELOLVLD GLVFRQWLQXDLQXQSXQWRDQFKHVHDPPHWWHOHGHULYDWHSDU]LDOLLQWDOHSXQWR/¶HVL VWHQ]D GHOOH GHULYDWH SDU]LDOL LQ XQ GDWR SXQWR QRQ q VXI¿FLHQWH D JDUDQWLUH OD GLIIHUHQ]LDELOLWjPDODORURFRQWLQXLWjORq

 La regola della catena 6HFRQGRODUHJRODGHOODFDWHQDSHUOHIXQ]LRQLGLXQDVRODYDULDELOHVHZ = ¦ [ q XQDIXQ]LRQHGLIIHUHQ]LDELOHGL[H[ = J W qXQDIXQ]LRQHGLIIHUHQ]LDELOHGLWDO ORUDZqXQDIXQ]LRQHGLIIHUHQ]LDELOHGLWHGqSRVVLELOHFDOFRODUHGZ>GWPHGLDQWH O¶HVSUHVVLRQH

1HOFDVRGHOOHIXQ]LRQLGLGXHRSLYDULDELOLODUHJRODGHOODFDWHQDSXzDVVX PHUHGLYHUVHIRUPHDVHFRQGDGHOQXPHURGLYDULDELOLFRLQYROWHPDDSDUWHFLzq GHOWXWWRDQDORJDDOODUHJRODGHOODFDWHQDSHUOHIXQ]LRQLGLXQDYDULDELOH

Funzioni di due variabili ,OVHJXHQWHWHRUHPDIRUQLVFHODUHJRODGHOODFDWHQDSHUXQDIXQ]LRQHGLIIHUHQ]LDEL OHZ = ¦ [\ GRYH[ = [ W H\ = \ W VRQRIXQ]LRQLGLIIHUHQ]LDELOLGLW TEOREMA 5

7XWWHOHQRWD]LRQL

LQGLFDQR

ODGHULYDWDSDU]LDOHGL¦ULVSHWWRD[

Regola della catena per funzioni di una variabile indipendente e due variabili intermedie

6HZ = ¦ [\ qGLIIHUHQ]LDELOHHVH[ = [ W \ = \ W VRQRIXQ]LRQLGLIIHUHQ]LD ELOLGLWDOORUDODIXQ]LRQHFRPSRVWDZ = ¦ [ W \ W qXQDIXQ]LRQHGLIIHUHQ ]LDELOHGLWH

RYYHUR

DIMOSTRAZIONE 2FFRUUHGLPRVWUDUHFKHVH[H\VRQRGLIIHUHQ]LDELOLLQW = WDOORUDZqGLIIHUHQ ]LDELOHLQWHYDOH

GRYH 3 = [ W  \ W  , SHGLFL LQGLFDQR LQ TXDOH SXQWR GHYH HVVHUH FDOFRODWD FLDVFXQDGHULYDWD 6LDQR¢[¢\H¢ZJOLLQFUHPHQWLFRUULVSRQGHQWLDOODYDULD]LRQHGLWGDWDW + ¢W 3RLFKp¦qGLIIHUHQ]LDELOH YHGHUHODGH¿QL]LRQHGHO3DUDJUDIR   GRYHPP:SHU¢[¢\ :3HUGHWHUPLQDUHGZ>GWGLYLGLDPRDPERLPHPEUL GHOO¶HTXD]LRQHSHU¢WHFRQVLGHULDPR¢WFKHWHQGHD]HUR

 3HYLNVSHKLSSHJH[LUH 



'LYLGHQGRVLRWWLHQH

3HU¢WFKHWHQGHD]HURVLKDTXLQGL

6SHVVRVLXWLOL]]DODQRWD]LRQH0Z>0[SHULQGLFDUHODGHULYDWDSDU]LDOH0¦>0[SHU FXLqSRVVLELOHULVFULYHUHODUHJRODGHOODFDWHQDGHO7HRUHPDQHOODIRUPD ,OVHJXHQWHGLDJUDPPDqGLDLXWRQHO PHPRUL]]DUHODUHJRODGHOODFDWHQD 3HUGHWHUPLQDUHGZ>GWFRPLQFLDUHGD ,OVLJQL¿FDWRGHOODYDULDELOHGLSHQGHQWHZQHLGXHPHPEULGHOODSUHFHGHQWHHTXD ZHVHJXLUHWXWWLLSRVVLELOLSHUFRUVL ILQRDWPROWLSOLFDQGRWXWWHOHGHULYDWH ]LRQHQRQqWXWWDYLDLOPHGHVLPRDSULPRPHPEURLQGLFDODIXQ]LRQHFRPSRVWD LQFRQWUDWHOXQJRFLDVFXQSHUFRUVR Z = ¦ [ W \ W FRPHIXQ]LRQHGHOO¶XQLFDYDULDELOHWDVHFRQGRPHPEURLQGLFD TXLQGLVRPPDUHLSURGRWWL

ODIXQ]LRQHZ = ¦ [\ FRPHIXQ]LRQHGHOOHGXHYDULDELOL[H\,QROWUHOHGHULYDWH RUGLQDULHGZ>GWG[>GWHG\>GWVRQRFDOFRODWHLQXQSXQWRWPHQWUHOHGHULYDWH SDU]LDOL0Z>0[H0Z>0\VRQRFDOFRODWHQHOSXQWR [\ FRQ[ = [ W H\ = \ W  $YHQGRVWDELOLWRTXHVWDGLVWLQ]LRQHLQWXWWLLFDVLLQFXLQRQHVLVWHLOULVFKLRGL FRQIXVLRQHXWLOL]]HUHPRLQGLIIHUHQWHPHQWHOHGXHQRWD]LRQL ,OGLDJUDPPDDGDOEHURULSRUWDWRGLODWRSXzHVVHUHGLDLXWRQHOPHPRUL]]DUH ODUHJRODGHOODFDWHQD/DYDULDELOHLQGLSHQGHQWH³YHUD´GHOODIXQ]LRQHFRPSRVWD q W PHQWUH [ H \ VRQR YDULDELOL LQWHUPHGLH FRQWUROODWH GD W  H Z q OD YDULDELOH GLSHQGHQWH 8QDQRWD]LRQHSLULJRURVDSHUODUHJRODGHOODFDWHQDHYLGHQ]LDLSXQWLLQFXL OHGLYHUVHGHULYDWHGHO7HRUHPDVRQRFDOFRODWH

Regola della catena w  f (x, y)

0w 0x

0w 0y y Variabili intermedie

x dx dt

dy dt

t dw 0 w dx 0 w dy   0 x dt 0 y dt dt

ESEMPIO 1

'HWHUPLQDUHODGHULYDWDGL

Z = [\

ULVSHWWRDWOXQJRLOFDPPLQR[ = FRVW\ = VLQWDSSOLFDQGRODUHJRODGHOODFDWHQD 4XDOqLOYDORUHGHOODGHULYDWDLQW = p>" Soluzione 'HWHUPLQLDPRGZ>GWDSSOLFDQGRODUHJRODGHOODFDWHQDFRPHVHJXH

,QTXHVWRHVHPSLRqSRVVLELOHYHUL¿FDUHLOULVXOWDWRFRQXQFDOFRORGLUHWWR&RQVL

Variabile dipendente

Variabile indipendente

  *HWP[VSV¶+LYP]H[LWHYaPHSP

GHUDQGRZFRPHIXQ]LRQHGLWVLKD

TXLQGL

,QHQWUDPELLFDVLSHULOYDORUHGLWGDWRYDOH

Funzioni di tre variabili (VWHQGHUHODUHJRODGHOODFDWHQDDOOHIXQ]LRQLGLWUHYDULDELOLLQWHUPHGLHFRPSRUWD VRODPHQWHDJJLXQJHUHXQWHU]RWHUPLQHDQDORJRDJOLDOWULGXHDOO¶HVSUHVVLRQHSHU OHIXQ]LRQLGLGXHYDULDELOL TEOREMA 6

Regola della catena per funzioni di una variabile indipendente e tre variabili intermedie

6HZ = ¦ [\] qGLIIHUHQ]LDELOHHVH[\H]VRQRIXQ]LRQLGLIIHUHQ]LDELOLGLW DOORUDZqXQDIXQ]LRQHGLIIHUHQ]LDELOHGLWHYDOH

/DGLPRVWUD]LRQHqGHOWXWWRDQDORJDDTXHOODGHO7HRUHPDFRQODVRODGLIIHUHQ]D FKHLQTXHVWRFDVROHYDULDELOLLQWHUPHGLHVRQRWUHDQ]LFKpGXH$QFKHLOGLDJUDP PDDGDOEHURSHUODPHPRUL]]D]LRQHGHOODQXRYDHTXD]LRQHqVLPLOHDTXHOORGHO FDVRSUHFHGHQWHFRQWUHSHUFRUVLFKHFROOHJDQRZHW ,QTXHVWRFDVRVLKDQQRWUHGLIIHUHQWL SHUFRUVLWUDZHWDQ]LFKpGXHPDLO SURFHGLPHQWRSHUGHWHUPLQDUHGZ>GW qLOPHGHVLPRVLVHJXHFLDVFXQ SHUFRUVRPROWLSOLFDQGROHGHULYDWH LQFRQWUDWHYLDYLDTXLQGLVLVRPPDQR LSURGRWWLRWWHQXWL

ESEMPIO 2

'HWHUPLQDUHGZ>GWSHU Z = [\ + ]  [ = FRVW  \ = VLQW  ] = W ,QTXHVWRHVHPSLRLYDORULGLZ W YDULDQRGHVFULYHQGRXQFDPPLQRDHOLFD 3DUD JUDIR DOYDULDUHGLW4XDOqLOYDORUHGHOODGHULYDWDSHUW = "

Regola della catena w  f (x, y, z)

0w 0x

y dx dt

dy dt

Soluzione $SSOLFDQGRODUHJRODGHOODFDWHQDFRQWUHYDULDELOLLQWHUPHGLHVLRWWLHQH

0w 0z

0w 0y

x

Variabile dipendente

z

Variabili intermedie

6LVRVWLWXLVFRQR OHYDULDELOLLQWHU PHGLH

dz dt

Variabile indipendente t dw 0 w dx 0 w dy 0 w dz  0 x dt  0 y dt  0 z dt dt

TXLQGL

 3HYLNVSHKLSSHJH[LUH 

&RPHLQWHUSUHWD]LRQH¿VLFDGHOODYDULD]LRQHOXQJRXQDFXUYDVLSXzSHQVDUH DXQRJJHWWRODFXLSRVL]LRQHYDULDDOYDULDUHGHOWHPSRW6HZ = 7 [\] qOD WHPSHUDWXUDLQRJQLSXQWR [\] DSSDUWHQHQWHDOODFXUYD&GLHTXD]LRQLSDUDPH WULFKH[ = [ W \ = \ W H] = ] W DOORUDODIXQ]LRQHFRPSRVWDZ = 7 [ W \ W ] W  UDSSUHVHQWDODWHPSHUDWXUDFRUULVSRQGHQWHDWOXQJRODFXUYD/DGHULYDWDGZ>GWq DOORUDLOWDVVRGLYDULD]LRQHLVWDQWDQHRGHOODWHPSHUDWXUDGRYXWRDOPRWROXQJROD FXUYDFRPHSUHVFULWWRGDO7HRUHPD

Funzioni definite su superfici 6HVLFRQVLGHUDODWHPSHUDWXUDZ = ¦ [\] QHLSXQWL [\] DSSDUWHQHQWLDOOD VXSHU¿FLHGHOODWHUUDSXzHVVHUHSLFRQYHQLHQWHFRQVLGHUDUH[\H]FRPHIXQ ]LRQLGHOOHYDULDELOLUHVFRUULVSRQGHQWLDOODORQJLWXGLQHHODWLWXGLQHGHLSXQWL6H [ = J UV \ = K UV H] = N UV qSRVVLELOHHVSULPHUHODWHPSHUDWXUDLQIXQ]LRQH GLUHVPHGLDQWHODIXQ]LRQHFRPSRVWD Z = ¦ J UV K UV N UV  6HOHFRQGL]LRQLVRSUDHQXQFLDWHVRQRVRGGLVIDWWHZDPPHWWHOHGHULYDWHSDU]LDOL ULVSHWWR D U H V H TXHVWH SRVVRQR HVVHUH FDOFRODWH FRPH LOOXVWUDWR QHO VHJXHQWH WHRUHPD TEOREMA 7

Regola della catena per funzioni di due variabili indipendenti e tre variabili intermedie

6LDZ = ¦ [\] [ = J UV \ = K UV H] = N UV  6HWXWWHHTXDWWUROHIXQ]LRQLVRQRGLIIHUHQ]LDELOLDOORUDZDPPHWWHOHGHULYDWH SDU]LDOLULVSHWWRDUHVHTXHVWHVRQRGDWHGDOOHHVSUHVVLRQL

/DSULPDHTXD]LRQHVHJXHGDOODUHJRODGHOODFDWHQDGHO7HRUHPDPDQWHQHQGR V¿VVDWRHWUDWWDQGRUFRPHW/DVHFRQGDHTXD]LRQHVLGHULYDLQPRGRDQDORJR PDQWHQHQGRU¿VVDWRHWUDWWDQGRVFRPHW,GLDJUDPPLDGDOEHURGHOOHGXHHTXD ]LRQLVRQRULSRUWDWLGLVHJXLWRQHOOD)LJXUD w  f (x, y, z)

w  f (x, y, z)

Variabile dipendente

w

0w 0x

f Variabili intermedie

x

y g

Variabile indipendente

h

z k

r, s

w  f ( g(r, s), h (r, s), k (r, s)) (a)

x

y

0x 0r

0w 0x

0w 0z

0w 0y 0y 0r

z

0z 0r

r 0w 0w 0x 0w 0y 0w 0z    0r 0x 0r 0y 0r 0z 0r (b)

-PN\YH)XQ]LRQHFRPSRVWDHGLDJUDPPLDGDOEHURSHULO7HRUHPD

x

0x 0s

0w 0y

0w 0z y

0y 0s

z

0z 0s

s 0w 0 w 0x 0w 0y 0w 0z    0s 0x 0s 0y 0s 0z 0s (c)



  *HWP[VSV¶+LYP]H[LWHYaPHSP

ESEMPIO 3

(VSULPHUH0Z>0UH0Z>0VLQWHUPLQLGLUHVSHU

Soluzione $SSOLFDQGRLO7HRUHPDVLRWWLHQH

6LVRVWLWXLVFHODYDULDELOH LQWHUPHGLD]

6H¦qXQDIXQ]LRQHGLGXHYDULDELOLLQWHUPHGLHDQ]LFKpWUHOHHTXD]LRQLGHO 7HRUHPDKDQQRXQWHUPLQHLQPHQR 6HZ = ¦ [\ [ = J UV H\ = K UV DOORUD H /D)LJXUDPRVWUDLOGLDJUDPPDDGDOEHURSHUODSULPDGLTXHVWHHTXD]LRQL,O GLDJUDPPDGHOODVHFRQGDVLRWWLHQHLQPRGRDQDORJRVRVWLWXHQGRUFRQV ESEMPIO 4 Regola della catena

(VSULPHUH0Z>0UH0Z>0VLQWHUPLQLGLUHVSHU

w  f (x, y)

0w 0x

0w 0y

x

Soluzione 3HUODGLVFXVVLRQHSUHFHGHQWHPHQWHULSRUWDWDVLKD y

0x 0r

0y 0r r

6LVRVWLWXLVFRQR OHYDULDELOL LQWHUPHGLH

0w 0w 0x 0w 0y   0r 0 x 0r 0y 0r

-PN\YH 'LDJUDPPDDGDOEHURSHUO¶HTXD]LRQH

6H ¦ q XQD IXQ]LRQH GL XQD VROD YDULDELOH [ OH HTXD]LRQL VRQR DQFRUD SL VHPSOLFL

 +LYP]H[LKPYLaPVUHSPL]L[[VYPNYHKPLU[L 

6HZ = ¦ [ H[ = J UV DOORUD



Regola della catena w  f (x)

H dw dx

,Q TXHVWR FDVR VL XWLOL]]D OD GHULYDWD RUGLQDULD GL XQD VROD YDULDELOH  GZ>G[ ,O GLDJUDPPDDGDOEHURqULSRUWDWRQHOOD)LJXUD

x

0x 0r

Funzioni di molte variabili ,QTXHVWRSDUDJUDIRDEELDPRYLVWRGLYHUVHYHUVLRQLGHOODUHJRODGHOODFDWHQDPD RJQXQDGLHVVHqVROWDQWRXQFDVRSDUWLFRODUHGLXQDIRUPXODSLJHQHUDOH1HO ULVROYHUHXQSDUWLFRODUHSUREOHPDULVXOWDXWLOHGLVHJQDUHXQGLDJUDPPDDGDOEHUR RSSRUWXQRSRQHQGRLQFLPDODYDULDELOHGLSHQGHQWHDOFHQWUROHYDULDELOLLQWHUPH GLHHDOODEDVHODYDULDELOHLQGLSHQGHQWHVFHOWD3HUGHWHUPLQDUHODGHULYDWDGHOOD YDULDELOHGLSHQGHQWHULVSHWWRDOODYDULDELOHLQGLSHQGHQWHVFHOWDFRPLQFLDQGRGDOOD YDULDELOHGLSHQGHQWHVLVHJXRQRWXWWLLSRVVLELOLSHUFRUVLFKHSRUWDQRDOODYDULDELOH LQGLSHQGHQWHFDOFRODQGRHPROWLSOLFDQGRWUDORUROHGHULYDWHLQFRQWUDWHOXQJRFLD VFXQSHUFRUVR,Q¿QHVLVRPPDQRLSURGRWWLFDOFRODWLQHLGLYHUVLSHUFRUVL ,QJHQHUDOHVLDZ = ¦ [\ Áy XQDIXQ]LRQHGLIIHUHQ]LDELOHGHOOHYDULDELOL LQWHUPHGLH[\ Áy XQLQVLHPH¿QLWR HVLDQR[\ ÁyIXQ]LRQLGLIIHUHQ]LD ELOLGHOOHYDULDELOLLQGLSHQGHQWLST ÁW XQDOWURLQVLHPH¿QLWR $OORUDZqXQD IXQ]LRQHGLIIHUHQ]LDELOHGHOOHYDULDELOLS ÁWHOHGHULYDWHSDU]LDOLGLZULVSHWWRD WDOLYDULDELOLVRQRGDWHGDHTXD]LRQLGHOWLSR

/HDOWUHHTXD]LRQLVLRWWHQJRQRVRVWLWXHQGRSFRQT ÁWXQDDOODYROWD 8QPRGRSHUPHPRUL]]DUHTXHVWDHTXD]LRQHFRQVLVWHQHOSHQVDUHDOVHFRQGR PHPEURFRPHDOSURGRWWRVFDODUHGLGXHYHWWRULGLFRPSRQHQWL

H 'HULYDWHGLZ ULVSHWWRDOOH YDULDELOLLQWHUPHGLH

'HULYDWHGHOOHYDULDELOLLQWHUPHGLH ULVSHWWRDOODYDULDELOH LQGLSHQGHQWHVFHOWD

 Derivate direzionali e vettori gradiente 2VVHUYDQGRODFDUWDWRSRJUD¿FDGHOOD)LJXUDFKHPRVWUDOHOLQHHGLFRQWRU QRSHULOGV LQ3 )LJXUD 

u  u1i  u 2 j Direzione di s crescente R

DEFINIZIONE

P0(x 0, y0 ) 0

-PN\YH ,OWDVVRGLYDULD]LRQHGL¦QHOOD GLUH]LRQHGLXLQXQSXQWR3qOD UDSLGLWjFRQFXL¦YDULDLQ3OXQJR TXHVWDUHWWD

x

/DGHULYDWDGL¦LQP [\ QHOODGLUH]LRQHGHOYHUVRUHX = XL+ XMqLO QXPHUR 

 SXUFKpLOOLPLWHHVLVWD¿QLWR



 +LYP]H[LKPYLaPVUHSPL]L[[VYPNYHKPLU[L 



/DGHULYDWDGLUH]LRQDOHGH¿QLWDGDOO¶(TXD]LRQH  YLHQHLQGLFDWDDQFKHPHGLDQ WHODQRWD]LRQH 'X ¦ 3 

³/DGHULYDWDGL¦LQ3QHOOD GLUH]LRQHGLX´

/HGHULYDWHSDU]LDOL¦[ [\ H¦\ [\ VRQROHGHULYDWHGLUH]LRQDOLGL¦LQ3QHOOD GLUH]LRQHGLLHGLMULVSHWWLYDPHQWH&LzqHYLGHQWHGDOFRQIURQWRWUDO¶(TXD]LRQH  HODGH¿QL]LRQHGHOOHGXHGHULYDWHSDU]LDOLGDWDQHO3DUDJUDIR ESEMPIO 1

$SSOLFDUHODGH¿QL]LRQHSHUGHWHUPLQDUHODGHULYDWDGL ¦ [\ = [ + [\ LQ3  QHOODGLUH]LRQHGHOYHUVRUHX = A>2BL + A>2BM Soluzione $SSOLFDQGRODGH¿QL]LRQHHQXQFLDWDQHOO¶(TXD]LRQH  VLRWWLHQH (T  

z Superficie S: f (x 0  su1, y0  su 2 )  f (x 0 , y 0 ) z  f (x, y)

,OWDVVRGLYDULD]LRQHGL¦ [\ = [ + [\LQ3  QHOODGLUH]LRQHGLXq>1

Retta tangente Q ¸ ˝ ˛

P(x 0 , y0 , z 0 )

Interpretazione della derivata direzionale

s y

C /¶HTXD]LRQH ] = ¦ [ \  UDSSUHVHQWD XQD VXSHU¿FLH 6 QHOOR VSD]LR 6H ] = ¦ [\ DOORUDLOSXQWR3 [\] DSSDUWLHQHD6,OSLDQRYHUWLFDOHSDVVDQWHSHU3H x (x 0  su1, y0  su 2 ) u  u 1i  u 2 j P0(x 0 , y0 ) 3 [\ HSDUDOOHORDXLQWHUVHFDODVXSHU¿FLH6LQXQDFXUYD& )LJXUD ,O WDVVRGLYDULD]LRQHGL¦QHOODGLUH]LRQHGLXqODSHQGHQ]DGHOODUHWWDWDQJHQWHD& -PN\YH LQ3QHOVLVWHPDGLULIHULPHQWRGHVWURUVRIRUPDWRGDLYHWWRULXHN 4XDQGR X = L OD GHULYDWD GLUH]LRQDOH LQ 3 q GDWD GD 0¦>0[ FDOFRODWD LQ /DSHQGHQ]DGHOODFXUYD&LQ3qLO GHOODSHQGHQ]D 34 FLRqOD [\ 4XDQGRX = MODGHULYDWDGLUH]LRQDOHLQ3qGDWDGD0¦>0\FDOFRODWDLQ [\ /DGHULYDWDGLUH]LRQDOHqXQDJHQHUDOL]]D]LRQHGHOOHGXHGHULYDWHSDU]LDOL GHULYDWDGLUH]LRQDOH FKHFRQVHQWHGLGHWHUPLQDUHLOWDVVRGLYDULD]LRQHGL¦OXQJRXQDTXDOVLDVLGLUH]LR QHXDQ]LFKpVRODPHQWHOXQJROHGLUH]LRQLLHM 3HU XQ¶LQWHUSUHWD]LRQH ¿VLFD GHOOD GHULYDWD GLUH]LRQDOH VL DVVXPD FKH

  *HWP[VSV¶+LYP]H[LWHYaPHSP

7 = ¦ [\ VLDODWHPSHUDWXUDLQRJQLSXQWR [\ GLXQDUHJLRQHGHOSLDQR$OORUD ¦ [\ qODWHPSHUDWXUDQHOSXQWR3 [\ H 'X ¦ 3qLOWDVVRGLYDULD]LRQHLVWDQ WDQHRGHOODWHPSHUDWXUDQHOSXQWR3VHODGLUH]LRQHFRQVLGHUDWDqGH¿QLWDGDX 

Calcoli e gradienti 'LVHJXLWRIRUPXOHUHPRXQ¶XWLOHHVSUHVVLRQHSHULOFDOFRORGHOODGHULYDWDGLUH]LR QDOHGLXQDIXQ]LRQHGLIIHUHQ]LDELOH¦3HUSULPDFRVDFRQVLGHULDPRODUHWWD [ = [ + VX  \ = \ + VX





SDVVDQWH SHU 3 [ \  SDUDPHWUL]]DWD PHGLDQWH LO SDUDPHWUR OXQJKH]]D G¶DUFR VFUHVFHQWHQHOODGLUH]LRQHGHOYHUVRUHX = X L + X M$SSOLFDQGRODUHJRODGHOOD FDWHQDVLRWWLHQHDOORUD 



5HJRODGHOODFDWHQDSHU¦GLIIHUHQ]LDELOH

'DOOH(T   G[>GV = XHG\>GV = X

 *UDGLHQWHGL¦LQ3

'LUH]LRQHX

/¶(TXD]LRQH  DIIHUPDFKHODGHULYDWDGLXQDIXQ]LRQHGLIIHUHQ]LDELOH¦LQ3 QHOODGLUH]LRQHGLXqXJXDOHDOSURGRWWRVFDODUHWUDXHXQSDUWLFRODUHYHWWRUHFKH SUHQGHLOQRPHGLJUDGLHQWHGL¦LQ3 DEFINIZIONE

6LGLFHYHWWRUHJUDGLHQWH RVHPSOLFHPHQWHJUDGLHQWH GL¦ [\ LQXQSXQWR 3 [\ LOYHWWRUH

RWWHQXWRFDOFRODQGROHGHULYDWHSDU]LDOLGL¦LQ3 /DQRWD]LRQH§¦VLOHJJH³JUDG¦´RSSXUH³JUDGLHQWHGL¦´RSSXUHDQFRUD³QDEOD GL¦´,OVLPEROR§SUHVRGDVRORVLOHJJH³QDEOD´8Q¶DOWUDSRVVLELOHQRWD]LRQH SHULOJUDGLHQWHqJUDG¦ TEOREMA 8

La derivata direzionale è un prodotto scalare

6H¦ [\ qGLIIHUHQ]LDELOHLQXQDUHJLRQHDSHUWDFRQWHQHQWH3 [\ DOORUD 

  FKHqLOSURGRWWRVFDODUHWUDLOJUDGLHQWH§¦LQ3HX

 +LYP]H[LKPYLaPVUHSPL]L[[VYPNYHKPLU[L 

ESEMPIO 8

'HWHUPLQDUHODGHULYDWDGL¦ [\ = [H\ + FRV [\ QHOSXQWR  QHOODGLUH]LRQH GLY = L - M Soluzione /DGLUH]LRQHGLYqLOYHUVRUHFKHVLRWWLHQHGLYLGHQGRYSHUODSURSULDOXQJKH]]D

y

/HGHULYDWHSDU]LDOLGL¦VRQRFRQWLQXHLQRJQLSXQWRHQHOSXQWR  VRQRGDWHGD I[  = H\ - \VLQ [\  = H -  =  I\  = [H\ - [VLQ [\  = H - 

¢f  i  2j

2

1

,OJUDGLHQWHGL¦LQ  q §¦ ƒ  = ¦[  L + ¦\  M = L + M

0

)LJXUD /DGHULYDWDGL¦QHOSXQWR  QHOODGLUH]LRQHGLYqSHUWDQWR (T  

&DOFRODQGRLOSURGRWWRVFDODUHQHOO¶HVSUHVVLRQH

–1

1 P0 (2, 0)

3

Proprietà della derivata direzionale

 /DUDSLGLWjFRQFXL¦DXPHQWDqPDVVLPDSHUFRVu = RVVLDTXDQGRu =  HXqODGLUH]LRQHGL§¦,QDOWUHSDUROHLQRJQLSXQWR3GHOVXRGRPLQLROD UDSLGLWjFRQFXL¦DXPHQWDqPDVVLPDQHOODGLUH]LRQHGHOYHWWRUHJUDGLHQWH §¦LQ3/DGHULYDWDLQTXHVWDGLUH]LRQHqGDWDGD 'X¦ = ƒ §¦ ƒ FRV  = ƒ §¦ ƒ  $QDORJDPHQWHODUDSLGLWjFRQFXL¦GLPLQXLVFHqPDVVLPDQHOODGLUH]LRQHGL - §¦/DGHULYDWDLQTXHVWDGLUH]LRQHqGDWDGD'X¦ = ƒ §¦ ƒ FRV p = - ƒ §¦ ƒ  4XDOVLDVLGLUH]LRQHXFKHVLDRUWRJRQDOHDXQJUDGLHQWH§I Z qXQDGLUH ]LRQHLQFXL¦KDYDULD]LRQHQXOODSHUFKpLQWDOFDVRuqXJXDOHDp>H 'X¦ = ƒ §¦ ƒ FRV p> = ƒ §¦ ƒ  = 

#

&RPHYHGUHPRQHOVHJXLWROHSURSULHWjHQXQFLDWHYDOJRQRDQFKHLQWUHGLPHQ VLRQL ESEMPIO 3

'DWDODIXQ]LRQH¦ [\ = [> + \>  D GHWHUPLQDUHODGLUH]LRQHLQFXLODIXQ]LRQHDXPHQWDSLUDSLGDPHQWHQHOSXQWR   E GHWHUPLQDUHODGLUH]LRQHLQFXLODIXQ]LRQHGLPLQXLVFHSLUDSLGDPHQWHQHO SXQWR   F GHWHUPLQDUHOHGLUH]LRQLOXQJRFXL¦QRQVXELVFHDOFXQDYDULD]LRQHLQ  

x

u  3i  4j 5 5

-PN\YH §¦SXzHVVHUHYLVWRFRPHXQYHWWRUH QHOGRPLQLRGL¦/DILJXUDPRVWUD DOFXQHFXUYHGLOLYHOORGL¦,OWDVVRGL YDULD]LRQHGL¦LQ  QHOODGLUH]LRQH X = > L - > Mq§¦ X = -  (VHPSLR 

#

GRYHuqO¶DQJRORWUDLYHWWRULXH§¦VLHYLGHQ]LDQROHVHJXHQWLSURSULHWj

4

  *HWP[VSV¶+LYP]H[LWHYaPHSP

Soluzione D /DIXQ]LRQHDXPHQWDFRQODPDVVLPDUDSLGLWjQHOODGLUH]LRQHGL§¦LQ   ,OJUDGLHQWHLQWDOHSXQWRqGDWRGD

HKDSHUGLUH]LRQH

z  f (x, y) y2 x2   2 2

z

E /DIXQ]LRQHGLPLQXLVFHFRQODPDVVLPDUDSLGLWjQHOODGLUH]LRQHGL- §¦LQ  FLRq

(1, 1, 1)

F /HGLUH]LRQLLQFXLVLKDYDULD]LRQHQXOOD  VRQROHGLUH]LRQLRUWRJRQDOLD §¦

1 1 ¢f (1, 1) Rapidità massima di diminuzione di f x Rapidità massima di aumento di f

y

H

Variazione di f nulla

¢f  i  j

-PN\YH /DGLUH]LRQHOXQJRODTXDOHO¶DXPHQWR GL¦ [\ LQ  qSLUDSLGRqOD GLUH]LRQHGL§¦ ƒ  = L + MH FRUULVSRQGHDOODGLUH]LRQHGLPDVVLPD ULSLGLWjGLVDOLWDOXQJRODVXSHUILFLHQHO SXQWR   (VHPSLR 

9HGHUHOD)LJXUD

Gradienti e tangenti alle curve di livello 6H XQD IXQ]LRQH GLIIHUHQ]LDELOH ¦ [ \  DVVXPH XQ YDORUH FRVWDQWH F OXQJR XQD FXUYDUHJRODUHU = J W L + K W M VHFLRqODFXUYDqXQDFXUYDGLOLYHOORGL¦ DOORUD YDOH¦ J W K W = F'HULYDQGRDPERLPHPEULGLTXHVWDHTXD]LRQHULVSHWWRDWVL RWWHQJRQROHHTXD]LRQL

5HJRODGHOODFDWHQD 

La curva di livello f (x, y)  f (x 0 , y 0 )

(x 0 , y 0 ) ¢f (x 0 , y 0 )

-PN\YH ,OJUDGLHQWHLQXQSXQWRGLXQD IXQ]LRQHGLIIHUHQ]LDELOHGLGXH YDULDELOLqVHPSUHQRUPDOHDOODFXUYD GLOLYHOORGHOODIXQ]LRQHSDVVDQWHSHU TXHOSXQWR

/¶(TXD]LRQH  DIIHUPDFKH§¦qQRUPDOHDOYHWWRUHWDQJHQWHGU>GWFLRqFKHq QRUPDOHDOODFXUYD ,QRJQLSXQWR [\ DSSDUWHQHQWHDOGRPLQLRGLXQDIXQ]LRQHGLIIHUHQ]LDELOH ¦ [ \  LO JUDGLHQWH GL ¦ q QRUPDOH DOOD FXUYD GL OLYHOOR SDVVDQWH SHU [ \  )LJXUD  /¶(TXD]LRQH   GLPRVWUD OD YDOLGLWj GHOO¶RVVHUYD]LRQH VHFRQGR FXL LQ XQD FDUWDWRSRJUD¿FDLFRUVLG¶DFTXDVRQRSHUSHQGLFRODULDOOHOLQHHGLFRQWRUQR YHGH UHOD)LJXUD 3RLFKpLOFRUVRG¶DFTXDVHJXHODGLUH]LRQHGLGLVFHVDFKHFRQ VHQWHGLUDJJLXQJHUHODEDVHQHOPRGRSLUDSLGRSHUOD3URSULHWjGHOODGHULYDWD GLUH]LRQDOHODGLUH]LRQHqTXHOODGHOO¶RSSRVWRGHOYHWWRUHJUDGLHQWH/¶(TXD]LRQH  DIIHUPDDOORUDFKHWDOHGLUH]LRQHqSHUSHQGLFRODUHDOOHFXUYHGLOLYHOOR 4XHVWDRVVHUYD]LRQHFRQVHQWHGLGHWHUPLQDUHOHHTXD]LRQLGHOOHUHWWHWDQJHQWL

 +LYP]H[LKPYLaPVUHSPL]L[[VYPNYHKPLU[L  

DOOHFXUYHGLOLYHOORFKHVRQROHUHWWHQRUPDOLDLJUDGLHQWL/DUHWWDSDVVDQWHSHUXQ SXQWR3 [\ HQRUPDOHDXQYHWWRUH1 = $L + %MKDHTXD]LRQH $ [ - [ + % \ - \ =  YHGHUH O¶(VHUFL]LR   6H 1 q LO JUDGLHQWH §¦ [ \ = ¦[ [ \ L + ¦\ [ \ M O¶HTXD]LRQHFKHUDSSUHVHQWDODUHWWDWDQJHQWHqGDWDGD ¦[ [\ [ - [ + ¦\ [\ \ - \ = 





ESEMPIO 4

'HWHUPLQDUHO¶HTXD]LRQHGHOODUHWWDWDQJHQWHDOO¶HOOLVVH y x  2y  –4

¢f (–2, 1)  –i  2j

)LJXUD QHOSXQWR -   (–2, 1)

Soluzione /¶HOOLVVHqXQDFXUYDGLOLYHOORGHOODIXQ]LRQH

–2

#

-  [ +  +   \ -  =  [ - \ = - 

(T  

'DWLLJUDGLHQWLGLGXHIXQ]LRQL¦HJqSRVVLELOHGHWHUPLQDUHLQPRGRLPPHGLD WR L JUDGLHQWL GHOOD VRPPD GHOOD GLIIHUHQ]D GHO SURGRWWR SHU XQD FRVWDQWH GHO SURGRWWRHGHOTXR]LHQWHGLWDOLIXQ]LRQLFRPHULDVVXQWRQHOOHVHJXHQWLSURSULHWj SHUODFXLGLPRVWUD]LRQHVLULPDQGDDOO¶(VHUFL]LR6LRVVHUYLFKHOHSURSULHWj HQXQFLDWHSUHVHQWDQRODVWHVVDIRUPDGHOOHDQDORJKHSURSULHWjSHUOHGHULYDWHGHOOH IXQ]LRQLGLXQDVRODYDULDELOH Proprietà algebriche per i gradienti

3URSULHWjGLDGGL]LRQH 3URSULHWjGLVRWWUD]LRQH 3URSULHWjGLOLQHDULWj 3URSULHWjGHOSURGRWWR 3URSULHWjGHOTXR]LHQWH

0

1

2

x 212

-PN\YH ÊSRVVLELOHGHWHUPLQDUHODWDQJHQWH DOO¶HOOLVVH [> + \ = FRQVLGHUDQGR O¶HOOLVVHFRPHXQDFXUYDGLOLYHOOR GHOODIXQ]LRQH¦ [\ = [> + \ (VHPSLR 

,OJUDGLHQWHGL¦LQ -  q

/DWDQJHQWHqODUHWWD

–1

x2 y2 2   4

12 1

NQXPHURTXDOVLDVL

  *HWP[VSV¶+LYP]H[LWHYaPHSP

ESEMPIO 5

,OOXVWULDPRGXHGHOOHSURSULHWjHQXQFLDWHFRQ ¦ [\ = [ - \ §¦ = L - M



J [\ = \ §J = M

6LKDFKH  § ¦ - J = § [ - \ = L - M = §¦ - §J  § ¦J = § [\ - \ = \L + [ - \ M = \ L - M + \M + [ - \ M = \ L - M + [ - \ M = \ L - M + [ - \ M = J§¦ + ¦§J

5HJROD

3URSULHWj

Funzioni di tre variabili 'DWDXQDIXQ]LRQHGLIIHUHQ]LDELOH¦ [\] HXQYHUVRUHX = X L + X M + X NQHOOR VSD]LRVLKDFKH 





H

/DGHULYDWDGLUH]LRQDOHSXzHVVHUHVFULWWDDQFRUDXQDYROWDQHOODIRUPD

TXLQGL OH SURSULHWj HQXQFLDWH SHU OH IXQ]LRQL GL GXH YDULDELOL VL HVWHQGRQR DOOH IXQ]LRQLGLWUHYDULDELOL,QRJQLSXQWRGDWRODGLUH]LRQHLQFXL¦DXPHQWDSLUDSL GDPHQWHqTXHOODGL§¦HODGLUH]LRQHLQFXLGLPLQXLVFHSLUDSLGDPHQWHqTXHOOD GL- §¦/DGHULYDWDqXJXDOHD]HURLQRJQLGLUH]LRQHRUWRJRQDOHD§¦ ESEMPIO 6

D 'HWHUPLQDUHODGHULYDWDGL¦ [\] = [ - [\ - ]LQ3  QHOODGLUH]LRQH GDWDGDY = L - M + N E 4XDOLVRQROHGLUH]LRQLOXQJRFXL¦YDULDSLUDSLGDPHQWHLQ3HTXDOLVRQRL WDVVLGLYDULD]LRQHLQWDOLGLUH]LRQL"

Soluzione D /DGLUH]LRQHGLYVLRWWLHQHGLYLGHQGRYSHUODVXDOXQJKH]]D

 /HGHULYDWHSDU]LDOLGL¦LQ3VRQR

 7PHUP[HUNLU[PLKPMMLYLUaPHSP  

 ,OJUDGLHQWHGL¦LQ3q  /DGHULYDWDGL¦LQ3QHOODGLUH]LRQHGLYqSHUWDQWR

E /DGLUH]LRQHOXQJRFXLODIXQ]LRQHDXPHQWDSLUDSLGDPHQWHqODGLUH]LRQHGL §¦ = L - M - NPHQWUHTXHOODOXQJRFXLGLPLQXLVFHSLUDSLGDPHQWHqODGL UH]LRQHGL- §¦,WDVVLGLYDULD]LRQHQHOOHGXHGLUH]LRQLVRQRULVSHWWLYDPHQWH H

 Piani tangenti e differenziali ,QTXHVWRSDUDJUDIRGDUHPRODGH¿QL]LRQHGLSLDQRWDQJHQWHD XQSXQWRGL XQD VXSHU¿FLHUHJRODUHQHOORVSD]LR0RVWUHUHPRTXLQGLFRPHFDOFRODUHO¶HTXD]LRQH GHO SLDQR WDQJHQWH D SDUWLUH GDOOH GHULYDWH SDU]LDOL GHOOD IXQ]LRQH FKH GH¿QLVFH ODVXSHU¿FLH,OFRQFHWWRqDQDORJRDTXHOORLOOXVWUDWRSHUOHIXQ]LRQLGLXQDVROD YDULDELOHQHOODGH¿QL]LRQHGHOODUHWWDWDQJHQWHDXQSXQWRGLXQDFXUYDQHOSLDQR FRRUGLQDWR&LRFFXSHUHPRTXLQGLGHOGLIIHUHQ]LDOHWRWDOHHGHOODOLQHDUL]]D]LRQH GHOOHIXQ]LRQLGLSLYDULDELOL

Piani tangenti e rette normali 'DWDXQDFXUYDUHJRODUHU = J W L + K W M + N W NDSSDUWHQHQWHDOODVXSHU¿FLHGL OLYHOOR¦ [\] = FGLXQDIXQ]LRQHGLIIHUHQ]LDELOH¦DOORUD¦ J W K W N W = F 'HULYDQGRDPERLPHPEULGLTXHVWDHTXD]LRQHULVSHWWRDWVLRWWLHQH

5HJRODGHOODFDWHQD



,QRJQLSXQWRDSSDUWHQHQWHDOODFXUYD§¦qRUWRJRQDOHDOYHWWRUHYHORFLWjGHOOD FXUYD 6HVLFRQVLGHUDQRVROWDQWROHFXUYHSDVVDQWLSHU3 )LJXUD VLYHGHFKHL YHWWRULYHORFLWjLQ3VRQRRUWRJRQDOLD§¦LQ3SHUFXLWXWWHOHUHWWHWDQJHQWLDOOH FXUYHJLDFFLRQRQHOSLDQRSDVVDQWHSHU3HQRUPDOHD§¦/DGH¿QL]LRQHGLWDOH SLDQRqGDWDGLVHJXLWR DEFINIZIONI

6LGLFHSLDQRWDQJHQWHQHOSXQWR3 [\] DSSDUWHQHQWHDOODVXSHU¿FLHGL OLYHOOR¦ [\] = FGLXQDIXQ]LRQHGLIIHUHQ]LDELOH¦LOSLDQRSDVVDQWHSHU3 qQRUPDOHD§¦ ƒ 3 6LGLFHUHWWDQRUPDOHDOODVXSHU¿FLHLQ3ODUHWWDSDVVDQWHSHU3HSDUDOOHOD D§¦ ƒ 3

¢f v2 P0

v1 f (x, y, z)  c

-PN\YH ,OJUDGLHQWH§¦qRUWRJRQDOHDOYHWWRUH YHORFLWjGLRJQLFXUYDUHJRODUH DSSDUWHQHQWHDOODVXSHUILFLHHSDVVDQWH SHU3 ,YHWWRULYHORFLWjLQ3JLDFFLRQR SHUWDQWRLQXQXQLFRSLDQRFKHYLHQH GHWWRLOSLDQRWDQJHQWHLQ3

  *HWP[VSV¶+LYP]H[LWHYaPHSP

/HHTXD]LRQLGHOSLDQRWDQJHQWHHGHOODUHWWDQRUPDOHVRQRTXLQGLOHVHJXHQWL Piano tangente a ¦ [\] = Fin 3 [\]

¦[ 3 [ - [ + ¦\ 3 \ - \ + ¦] 3 ] - ] = 





Retta normale a ¦ [\] = Fin 3 [\] 

[ = [ + ¦[ 3 W  \ = \ + ¦\ 3 W  ] = ] + ¦] 3 W





ESEMPIO 1

'HWHUPLQDUHLOSLDQRWDQJHQWHHODUHWWDQRUPDOHDOODVXSHU¿FLH

z P0(1, 2, 4)

La superficie x2  y2  z  9  0

¦ [\] = [ + \ + ] -  = 

8QSDUDERORLGHFLUFRODUH

QHOSXQWR3   Retta normale

Piano tangente

y

Soluzione /DVXSHU¿FLHqLOOXVWUDWDQHOOD)LJXUD ,OSLDQRWDQJHQWHqLOSLDQRSDVVDQWHSHU3HSHUSHQGLFRODUHDOJUDGLHQWHGL¦LQ3 ,OJUDGLHQWHq

,OSLDQRWDQJHQWHqSHUWDQWRLOSLDQR

x

 [ -  +  \ -  + ] -  =   R  [ + \ + ] = 

-PN\YH /DUHWWDQRUPDOHDOODVXSHU¿FLHLQ3q ,OSLDQRWDQJHQWHHODUHWWDQRUPDOHDOOD [ =  + W  \ =  + W  ] =  + W VXSHUILFLHLQ3 (VHPSLR 

3HU GHWHUPLQDUH O¶HTXD]LRQH GHO SLDQR WDQJHQWH D XQD VXSHU¿FLH UHJRODUH ] = ¦ [\ LQXQSXQWR3 [\] LQFXL] = ¦ [\ SHUSULPDFRVDVLRVVHUYD FKH] = ¦ [\ qHTXLYDOHQWHD¦ [\ - ] = 3HUWDQWRODVXSHU¿FLH] = ¦ [\ qOD VXSHU¿FLHGLOLYHOOR]HURGHOODIXQ]LRQH) [\] = ¦ [\ - ]/HGHULYDWHSDU]LDOL GL)VRQR

/¶HVSUHVVLRQH )[ 3 [ - [ + )\ 3 \ - \ + )] 3 ] - ] =  SHULOSLDQRWDQJHQWHDOODVXSHU¿FLHGLOLYHOORLQ3GLYHQWDSHUWDQWR ¦[ [\ [ - [ + ¦\ [\ \ - \ - ] - ] =  Piano tangente a una superficie z = ƒ(x, y)in (x0, y0, ƒ(x0, y0))

,OSLDQRWDQJHQWHDOODVXSHU¿FLH] = ¦ [\ GLXQDIXQ]LRQHGLIIHUHQ]LDELOH¦QHO SXQWR3 [\] = [\¦ [\ KDHTXD]LRQH 

¦[ [\ [ - [ + ¦\ [\ \ - \ - ] - ] = 



 7PHUP[HUNLU[PLKPMMLYLUaPHSP  

ESEMPIO 2

'HWHUPLQDUHLOSLDQRWDQJHQWHDOODVXSHU¿FLH] = [FRV\ - \H[LQ   Soluzione &DOFROLDPROHGHULYDWHSDU]LDOLGL¦ [\ = [FRV\ - \H[HDSSOLFKLDPRO¶(TXD]LR QH  

z

,OSLDQRWDQJHQWHqGDWRSHUWDQWRGD

Il piano x  z 4  0 g(x, y, z)

(T  

RYYHUR

¢g

ESEMPIO 3

/¶LQWHUVH]LRQHWUDOHVXSHU¿FL L'ellisse E

8QFLOLQGUR

H 8QSLDQR

¢f ¢g

¢f

(1, 1, 3)

q XQ¶HOOLVVH ( )LJXUD   'HWHUPLQDUH OH HTXD]LRQL SDUDPHWULFKH GHOOD UHWWD WDQJHQWHD(QHOSXQWR3   Soluzione /D UHWWD WDQJHQWH q RUWRJRQDOH VLD D §¦ FKH D §J LQ 3 TXLQGL q SDUDOOHOD D Y = §¦ * §J/HHTXD]LRQLGHOODUHWWDVLGHWHUPLQDQRDSDUWLUHGDOOHFRPSRQHQWL GLYHGDOOHFRRUGLQDWHGL3

/DUHWWDWDQJHQWHqGDWDGD [ =  + W  \ =  - W  ] =  - W

Stima della variazione in una particolare direzione 4XDQGRVLYXROHVWLPDUHODYDULD]LRQHGHOYDORUHGLXQDIXQ]LRQH¦FRUULVSRQGHQWH DXQSLFFRORVSRVWDPHQWRGVGDXQSXQWR3DXQDOWURSXQWRYLFLQRODGHULYDWD GLUH]LRQDOHJLRFDORVWHVVRUXRORGLXQDGHULYDWDRUGLQDULD6H¦IRVVHXQDIXQ]LRQH GLXQDVRODYDULDELOHVLDYUHEEH   'HULYDWDRUGLQDULD* LQFUHPHQWR 1HOFDVRGLXQDIXQ]LRQHGLGXHRSLYDULDELOLVLXWLOL]]DLQYHFHO¶HVSUHVVLRQH   'HULYDWDGLUH]LRQDOH* LQFUHPHQWR GRYHXqODGLUH]LRQHGHOPRWRFKHVLDOORQWDQDGDOSXQWR3

y x

Il cilindro x2  y2  2  0 f (x, y, z)

-PN\YH /¶LQWHUVH]LRQHGHOSLDQRHGHOFLOLQGUR LQILJXUDqXQ¶HOOLVVH( (VHPSLR 

  *HWP[VSV¶+LYP]H[LWHYaPHSP

Stima della variazione di ¦ in una direzione u

3HU VWLPDUH OD YDULD]LRQH GHO YDORUH GL XQD IXQ]LRQH GLIIHUHQ]LDELOH ¦ FRUUL VSRQGHQWHDXQSLFFRORVSRVWDPHQWRGVDSDUWLUHGDXQSXQWR3LQXQDSDUWLFR ODUHGLUH]LRQHXVLXWLOL]]DO¶HVSUHVVLRQH 'HULYDWD ,QFUHPHQWR GLUH]LRQDOH GHOODGLVWDQ]D

ESEMPIO 4

6WLPDUHODYDULD]LRQHGHOYDORUHGL ¦ [\] = \VLQ[ + \] FRUULVSRQGHQWHDXQRVSRVWDPHQWRGLXQLWjGHOSXQWR3 [\] GD3   D3 -   Soluzione 3HU SULPD FRVD GHWHUPLQLDPR OD GHULYDWD GL ¦ LQ 3 QHOOD GLUH]LRQH GHO YHWWRUH 3 31 = L + M - N/DGLUH]LRQHGHOYHWWRUHq 

,OJUDGLHQWHGL¦LQ3q 3HUWDQWR

/DYDULD]LRQHG¦VXELWDGD¦SHUHIIHWWRGHOORVSRVWDPHQWRGLGV = XQLWjGD3 QHOODGLUH]LRQHGLXqGDWDDSSURVVLPDWLYDPHQWHGD XQLWj Un punto (x, y) vicino a (x 0 , y 0 )

Linearizzazione di una funzione di due variabili y  y  y0

/H IXQ]LRQL GL GXH YDULDELOL SRVVRQR HVVHUH PROWR FRPSOLFDWH H LQ DOFXQL FDVL RFFRUUH DSSURVVLPDUOH FRQ IXQ]LRQL FKH SXU JDUDQWHQGR LO OLYHOOR GL SUHFLVLRQH ULFKLHVWRGDXQDGDWDDSSOLFD]LRQHVLDQRSLVHPSOLFLGDWUDWWDUH$WDOHVFRSRVL XWLOL]]DXQSURFHGLPHQWRDQDORJRDTXHOORXWLOL]]DWRSHUGHWHUPLQDUHOHDSSURVVL (x 0 , y0 )  x x x   0 PD]LRQLOLQHDULGLIXQ]LRQLGLXQDVRODYDULDELOH 6LDVVXPDGLYROHUDSSURVVLPDUHODIXQ]LRQH] = ¦ [\ LQSURVVLPLWjGLXQ SXQWR [\ LQFXLVLDQRQRWLLYDORULGL¦¦[H¦\HLQFXL¦VLDGLIIHUHQ]LDELOH -PN\YH 'DWR XQR VSRVWDPHQWR GDO SXQWR [ \  D XQ TXDOVLDVL SXQWR YLFLQR [ \  FRQ 6H¦qGLIIHUHQ]LDELOHLQ [\ DOORUD LQFUHPHQWL¢[ = [ - [ H¢\ = \ - \  YHGHUHOD)LJXUD SHUODGH¿QL]LRQH   LOYDORUHGL¦LQRJQLSXQWR [\ YLFLQR GLGLIIHUHQ]LDELOLWjGDWDQHO3DUDJUDIRODYDULD]LRQHGHOODIXQ]LRQHqGDWDGD Un punto in cui f è differenziabile

qGDWRDSSURVVLPDWLYDPHQWHGD ¦ [\ + ¦[ [\ ¢[ + ¦\ [\ ¢\

¦ [\ - ¦ [\ = I[ [\ ¢[ + ¦\ [\ ¢\ + P¢[ + P¢\

 7PHUP[HUNLU[PLKPMMLYLUaPHSP  

GRYHPP:SHU¢[¢\ :6HJOLLQFUHPHQWL¢[H¢\VRQRSLFFROLLSURGRWWL P¢[HP¢\DVVXPRQRDOOLPLWHYDORULDQFRUDSLSLFFROLHYDOHO¶DSSURVVLPD]LRQH

,QDOWUHSDUROHVH¢[H¢\VRQRSLFFROL¦DVVXPHDSSURVVLPDWLYDPHQWHORVWHVVR YDORUHGHOODIXQ]LRQHOLQHDUH/ DEFINIZIONI

6LGLFHOLQHDUL]]D]LRQHGLXQDIXQ]LRQH¦ [\ LQXQSXQWR [\ LQFXL¦q GLIIHUHQ]LDELOHODIXQ]LRQH 

/ [\ = ¦ [\ + ¦[ [\ [ - [ + ¦\ [\ \ - \ 

/¶DSSURVVLPD]LRQH



¦ [\ L/ [\ 

qGHWWDO¶DSSURVVLPD]LRQHOLQHDUHVWDQGDUGGL¦LQ [\  'DOO¶(TXD]LRQH   VL YHGH FKH LO SLDQR ] = / [ \  q WDQJHQWH DOOD VXSHU¿FLH ] = ¦ [ \  QHO SXQWR [ \  4XLQGL OD OLQHDUL]]D]LRQH GL XQD IXQ]LRQH GL GXH YDULDELOLqXQ¶DSSURVVLPD]LRQHPHGLDQWHSLDQRWDQJHQWHDQDORJDDOODOLQHDUL]]D ]LRQHGLXQDIXQ]LRQHGLXQDVRODYDULDELOHFKHqXQ¶DSSURVVLPD]LRQHPHGLDQWH UHWWDWDQJHQWH YHGHUHO¶(VHUFL]LR  ESEMPIO 5

'HWHUPLQDUHODOLQHDUL]]D]LRQHGL

QHOSXQWR   Soluzione 3HUSULPDFRVDFDOFROLDPRLOYDORUHGL¦¦[H¦\QHOSXQWR [\ =  

 SHUFXL

/DOLQHDUL]]D]LRQHGL¦LQ  q/ [\ = [ - \ -  4XDQGR VL DSSURVVLPD XQD IXQ]LRQH GLIIHUHQ]LDELOH ¦ [ \  PHGLDQWH OD VXD OLQHDUL]]D]LRQH/ [\ LQXQSXQWR [\ VLSRQHO¶LPSRUWDQWHTXHVWLRQHGHOOD SUHFLVLRQHGHOO¶DSSURVVLPD]LRQH

  *HWP[VSV¶+LYP]H[LWHYaPHSP

6H q SRVVLELOH GHWHUPLQDUH XQ PDJJLRUDQWH FRPXQH 0 SHU ƒ ¦[[ ƒ ƒ ¦\\ ƒ H ƒ ¦[\ ƒ LQ XQ UHWWDQJROR 5 FHQWUDWR LQ [ \  )LJXUD   DOORUD q SRVVLEL OH GHWHUPLQDUH XQD VWLPD SHU O¶HUURUH ( LQ RJQL SXQWR GL 5 PHGLDQWH XQD VHP SOLFH HVSUHVVLRQH FKH YHUUj GLPRVWUDWD LQ $SSHQGLFH /¶HUURUH q GH¿QLWR GD ( [\ = ¦ [\ - / [\ 

y

k h (x 0 , y0 )

L’errore per l’approssimazione lineare standard

R

0

-PN\YH /DUHJLRQHUHWWDQJRODUH 5 ƒ [ - [ ƒ … Kƒ \ - \ ƒ … N QHOSLDQR[\

x

'DWDXQDIXQ]LRQH¦FRQGHULYDWHSDU]LDOLSULPHHVHFRQGHFRQWLQXHLQRJQL SXQWRGLXQLQVLHPHDSHUWRFRQWHQHQWHXQUHWWDQJROR5FHQWUDWRLQ [\ HGDWR XQPDJJLRUDQWH0SHULYDORULGLƒ ¦[[ ƒƒ ¦\\ ƒ Hƒ ¦[\ ƒ LQ5O¶HUURUH( [\ FKHVL FRPSLHDSSURVVLPDQGR¦ [\ LQ5PHGLDQWHODVXDOLQHDUL]]D]LRQH / [\ = ¦ [\ + ¦[ [\ [ - [ + ¦\ [\ \ - \  VRGGLVIDODGLVXJXDJOLDQ]D

3HURWWHQHUHXQYDORUHGLƒ ( [\ ƒ SLFFRORSHUXQGDWRYDORUHGL0qVXI¿FLHQWH VFHJOLHUHSLFFROLYDORULGLƒ [ - [ ƒ Hƒ \ - \ ƒ

Differenziali 3HUOHIXQ]LRQLGL XQDVROD YDULDELOH\ = ¦ [  VLGH¿QLVFHODYDULD]LRQHGL ¦DO YDULDUHGL[GDDDD + ¢[FRPH ¢¦ = ¦ D + ¢[ - ¦ D  HLOGLIIHUHQ]LDOHGL¦FRPH G¦ = ¦¿ D ¢[ &RQVLGHULDPRRUDLOGLIIHUHQ]LDOHGLXQDIXQ]LRQHGLGXHYDULDELOL 'DWRXQSXQWR [\ LQFXLHVLVWRQRXQDIXQ]LRQHGLIIHUHQ]LDELOH¦ [\ H OHVXHGHULYDWHSDU]LDOLODYDULD]LRQHGL¦DVVRFLDWDDOORVSRVWDPHQWRDXQSXQWR YLFLQR [ + ¢[\ + ¢\ q ¢¦ = ¦ [ + ¢[\ + ¢\ - ¦ [\  &RQXQVHPSOLFHFDOFRORDSDUWLUHGDOODGH¿QL]LRQH/ [\ XWLOL]]DQGRODQRWD ]LRQH[ - [ = ¢[H\ - \ = ¢\VLYHGHFKHODYDULD]LRQHGL/FRUULVSRQGHQWHq ¢/ = / [ + ¢[\ + ¢\ - / [\  = ¦[ [\ ¢[ + ¦\ [\ ¢\ ,GLIIHUHQ]LDOLG[HG\VRQRYDULDELOLLQGLSHQGHQWLTXLQGLSRVVRQRDVVXPHUHTXDO VLDVLYDORUH6FHJOLHQGRG[ = ¢[ = [ - [HG\ = ¢\ = \ - \VLRWWLHQHODVHJXHQWH GH¿QL]LRQHSHULOGLIIHUHQ]LDOHRGLIIHUHQ]LDOHWRWDOHGL¦ DEFINIZIONE

'DWR XQR VSRVWDPHQWR GD XQ SXQWR [ \  D XQ SXQWR [ + G[ \ + G\  OD FRUULVSRQGHQWHYDULD]LRQH G¦ = ¦[ [\ G[ + ¦\ [\ G\ GHOODOLQHDUL]]D]LRQHGL¦SUHQGHLOQRPHGLGLIIHUHQ]LDOHWRWDOHGL¦

 7PHUP[HUNLU[PLKPMMLYLUaPHSP  

ESEMPIO 6

,OUDJJLRHO¶DOWH]]DGLXQFRQWHQLWRUHFLOLQGULFRFKHVHFRQGRLOSURJHWWRGRYUHE EHURHVVHUHSDULDFPHFPULVSHWWLYDPHQWHKDQQRYDORULFKHGLIIHULVFRQRGL GU = + HGK = - ULVSHWWLYDPHQWH6WLPDUHODFRUULVSRQGHQWHYDULD]LRQH DVVROXWDGHOYROXPHGHOFRQWHQLWRUH Soluzione 3HUVWLPDUHODYDULD]LRQHDVVROXWDGL9 = pUKXWLOL]]LDPRO¶HVSUHVVLRQH ¢9 LG9 = 9U UK GU + 9K UK GK &RQ9U = pUKH9K = pUVLRWWLHQH

# # #

G9 = pUKGU + pUGK = p    + p   -   = p - p = p LFP

ESEMPIO 7

8Q¶D]LHQGDSURGXFHVHUEDWRLSHUODFRQVHUYD]LRQHGHOODPHODVVDDIRUPDGLFLOLQ GULUHWWLDEDVHFLUFRODUHGLPHWULGLDOWH]]DHPHWURGLUDJJLR4XDOqODVHQ VLELOLWjGHOYROXPHGLXQVHUEDWRLRDSLFFROHYDULD]LRQLGHOO¶DOWH]]DHGHOUDJJLR" Soluzione 6H9 = pUKODYDULD]LRQHGHOYROXPHqGDWDDSSURVVLPDWLYDPHQWHGDOGLIIHUHQ ]LDOHWRWDOH G9 = 9U  GU + 9K  GK = pUK  GU + pU  GK =  pGU +  pGK

#

#

4XLQGLXQDYDULD]LRQHGLUGLXQLWjFRPSRUWDXQDYDULD]LRQHGL9GLFLUFDp XQLWjPHQWUHXQDYDULD]LRQHGLKGLXQLWjFRPSRUWDXQDYDULD]LRQHGL9GLFLUFD pXQLWj,OYROXPHGHOVHUEDWRLRqYROWHSLVHQVLELOHDSLFFROHYDULD]LRQLGL U FKH D YDULD]LRQL GL K GHOOD VWHVVD HQWLWj ,O UHVSRQVDELOH GHO FRQWUROOR TXDOLWj GHOO¶D]LHQGDFKHGHYHJDUDQWLUHFKHLVHUEDWRLDEELDQRLOJLXVWRYROXPHSUHVWHUj TXLQGLSDUWLFRODUHDWWHQ]LRQHDOYDORUHGHOUDJJLRGHLVHUEDWRL 6FDPELDQGRLQYHFHLYDORULGLUHKSRQHQGRFLRqU = HK = LOGLIIHUHQ]LDOH WRWDOHGL9GLYHQWD

r1

G9 = pUK  GU + pU  GK = pGU + pGK ,QTXHVWRFDVRLOYROXPHqSLVHQVLELOHDOOHYDULD]LRQLGLKFKHDOOHYDULD]LRQLGL U )LJXUD  /D UHJROD JHQHUDOH q FKH OH IXQ]LRQL VRQR SL VHQVLELOL D SLFFROH YDULD]LRQL GHOOHYDULDELOLFKHFRPSRUWDQROHPDJJLRULGHULYDWHSDU]LDOL

Funzioni di più di due variabili 3HUOHIXQ]LRQLGLSLGLGXHYDULDELOLYDOJRQRULVXOWDWLDQDORJKLDLSUHFHGHQWL  /DOLQHDUL]]D]LRQHGL¦ [\] LQXQSXQWR3 [\] q / [\] = ¦ 3 + ¦[ 3 [ - [ + ¦\ 3 \ - \ + ¦] 3 ] - ]   6L FRQVLGHUL XQ SDUDOOHOHSLSHGR FKLXVR 5 FHQWUDWR LQ 3 H LQWHUDPHQWH FRQ WHQXWRLQXQDUHJLRQHLQFXLOHGHULYDWHSDU]LDOLVHFRQGHGL¦VRQRFRQWLQXH

r5

h5

h1 (a)

(b)

-PN\YH ,OYROXPHGHOFLOLQGURQHOODILJXUD D  HSLVHQVLELOHDSLFFROHYDULD]LRQLVLU FKHDYDULD]LRQLDOWUHWWDQWRSLFFROHGL K,OYROXPHGHOFLOLQGURQHOODILJXUD E qSLVHQVLELOHDSLFFROHYDULD]LRQL GLKFKHDSLFFROHYDULD]LRQLGLU (VHPSLR 

  *HWP[VSV¶+LYP]H[LWHYaPHSP

HVLDVVXPDFKHƒ ¦[[ ƒƒ ¦\\ ƒƒ ¦]] ƒƒ ¦[\ ƒƒ ¦[] ƒ Hƒ ¦\] ƒ VLDQRPLQRULRXJXDOL D 0 LQ RJQL SXQWR GL 5$OORUD SHU RJQL SXQWR DSSDUWHQHQWH D 5 O¶HUURUH ( [\] = ¦ [\] - / [\] DVVRFLDWRDOO¶DSSURVVLPD]LRQHGL¦PHGLDQWH /VRGGLVIDODGLVXJXDJOLDQ]D

 6HOHGHULYDWHSDU]LDOLVHFRQGHGL¦VRQRFRQWLQXHGDWDXQDYDULD]LRQHGHOOH FRRUGLQDWH[\H]DSDUWLUHGD[\H]GLSLFFROHTXDQWLWjG[G\HG]LOGLI IHUHQ]LDOHWRWDOH G¦ = ¦[ 3 G[ + ¦\ 3 G\ + ¦] 3 G]  qXQDEXRQDDSSURVVLPD]LRQHGHOODYDULD]LRQHGL¦FRUULVSRQGHQWH ESEMPIO 8

'HWHUPLQDUHODOLQHDUL]]D]LRQH/ [\] GL QHOSXQWR [\] =  'HWHUPLQDUHXQDVWLPDVXSHULRUHSHUO¶HUURUHFKH VLFRPSLHVRVWLWXHQGR¦FRQ/QHOUHWWDQJROR

x y

-PN\YH /DIXQ]LRQH

Soluzione &RQVHPSOLFLFDOFROLVLRWWLHQH

3HUWDQWR / [\] =  +  [ -  + -  \ -  +  ] -  = [ - \ + ] - 

KDXQPDVVLPRSDULDHXQPLQLPR SDULDFLUFD- QHOODUHJLRQH TXDGUDWDƒ [ ƒ … p>ƒ \ ƒ … p>

3RLFKp ¦[[ =   ¦\\ =   ¦]] = - VLQ]  ¦[\ = -   ¦[] =   ¦\] =  Hƒ - VLQ] ƒ … VLQ LSRVVLDPRSUHQGHUH0 = FRPHPDJJLRUDQWHSHU OHGHULYDWHSDU]LDOLVHFRQGH4XLQGLO¶HUURUHDVVRFLDWRDOODVRVWLWX]LRQHGL¦FRQ/ LQ5VRGGLVIDODGLVXJXDJOLDQ]D

z

 Valori estremi e punti di sella

x y

-PN\YH /D³VXSHUILFLHDWHWWR´

KDXQPDVVLPRSDULDHXQPLQLPR SDULD- DQHOODUHJLRQHTXDGUDWD ƒ [ ƒ … Dƒ \ ƒ … D

8QDIXQ]LRQHFRQWLQXDGLGXHYDULDELOLDVVXPHYDORULHVWUHPLVXXQGRPLQLRFKLX VR H OLPLWDWR YHGHUH OH )LJXUH  H   ,Q TXHVWR SDUDJUDIR YHGUHPR FKH qSRVVLELOHDI¿QDUHODULFHUFDGHLYDORULHVWUHPLHVDPLQDQGROHGHULYDWHSDU]LDOL SULPHGHOODIXQ]LRQH,YDORULHVWUHPLGLXQDIXQ]LRQHGLGXHYDULDELOLSRVVRQR WURYDUVLVROWDQWRQHLSXQWLGLIURQWLHUDGHOGRPLQLRRQHLSXQWLLQWHUQLGHOGRPLQLR LQFXLHQWUDPEHOHGHULYDWHSDU]LDOLVRQRQXOOHRLQFXLXQDRHQWUDPEHOHGHULYDWH SDU]LDOLQRQHVLVWRQR7XWWDYLDO¶DVVHQ]DGHOOHGHULYDWHLQXQSXQWRLQWHUQR DE  QRQLQGLFDQHFHVVDULDPHQWHODSUHVHQ]DGLXQYDORUHHVWUHPR/DVXSHU¿FLHFKH FRVWLWXLVFHLOJUD¿FRGHOODIXQ]LRQHSRWUHEEHSUHVHQWDUHXQDIRUPDDVHOODLQFRUUL VSRQGHQ]DGL DE HLQWHUVHFDUHLQWDOHSXQWRLOSURSULRSLDQRWDQJHQWH

 =HSVYPLZ[YLTPLW\U[PKPZLSSH  

Criteri delle derivate per i valori estremi locali 3HUGHWHUPLQDUHLYDORULHVWUHPLORFDOLGLXQDIXQ]LRQHGLXQDVRODYDULDELOHVL FHUFDQRLSXQWLLQFXLLOJUD¿FRKDWDQJHQWHRUL]]RQWDOHHTXLQGLVLFHUFDGLGH WHUPLQDUHVHWDOLSXQWLVRQRPDVVLPLORFDOLPLQLPLORFDOLRSXQWLGLÀHVVR1HO FDVRGLXQDIXQ]LRQH¦ [\ GLGXHYDULDELOLVLFHUFDQRLSXQWLLQFXLODVXSHU¿FLH ] = ¦ [\ KDSLDQRWDQJHQWHRUL]]RQWDOHHTXLQGLVLFHUFDGLGHWHUPLQDUHVHWDOL SXQWLVRQRPDVVLPLORFDOLPLQLPLORFDOLRSXQWLGLVHOOD3HUSULPDFRVDGLDPROD GH¿QL]LRQHGLPDVVLPLHPLQLPL DEFINIZIONI

6LD¦ [\ GH¿QLWDLQXQDUHJLRQH5FKHFRQWLHQHLOSXQWR DE $OORUD   ¦ DE qXQPDVVLPRORFDOHGL¦VH¦ DE Ú ¦ [\ SHURJQLSXQWR [\  GHOGRPLQLRFKHVLDFRQWHQXWRLQXQGLVFRFHQWUDWRLQ DE   ¦ DE qXQPLQLPRORFDOHGL¦VH¦ DE … ¦ [\ SHURJQLSXQWR [\ GHO GRPLQLRFKHVLDFRQWHQXWRLQXQGLVFRFHQWUDWRLQ DE  ,PDVVLPLORFDOLFRUULVSRQGRQRDOODFLPDGHLULOLHYLGHOODVXSHU¿FLH] = ¦ [\  PHQWUHLPLQLPLORFDOLFRUULVSRQGRQRDLSXQWLSLEDVVLGHOOHYDOOL )LJXUD , SLDQLWDQJHQWLDWDOLSXQWLVHHVLVWRQRVRQRRUL]]RQWDOL*OLHVWUHPLORFDOLYHQJRQR FKLDPDWLDQFKHHVWUHPLUHODWLYL &RPHQHOFDVRGHOOHIXQ]LRQLGLXQDVRODYDULDELOHSHULQGLYLGXDUHJOLHVWUHPL ORFDOLVLXWLOL]]DXQFULWHULREDVDWRVXOOHGHULYDWHSULPH Massimi locali (nessun valore di f maggiore nelle vicinanze)

-PN\YH 8QPDVVLPRORFDOHVLWURYDVXOODFLPD GLXQULOLHYRPHQWUHXQPLQLPRORFDOH VLWURYDQHOSXQWRSLEDVVRGLXQD YDOOH

Minimo locale (nessun valore di f minore nelle vicinanze)

TEOREMA 9

Criterio delle derivate prime per i valori estremi locali

z

6H¦ [\ KDXQPDVVLPRRXQPLQLPRORFDOHLQXQSXQWRLQWHUQR DE GHO VXR GRPLQLR LQ FXL HVLVWRQR OH GHULYDWH SDU]LDOL SULPH DOORUD ¦[ D E =  H ¦\ DE =  DIMOSTRAZIONE 6H¦KDXQHVWUHPRORFDOHLQ DE DOORUDODIXQ]LRQHJ [ = ¦ [E KDXQHVWUHPR ORFDOHLQ[ = D )LJXUD 3HUWDQWRJ¿ D = SHULO7HRUHPDGL)HUPDW3RL FKpJ¿ D = ¦[ DE YDOH¦[ DE = 8QUDJLRQDPHQWRDQDORJRSHUODIXQ]LRQH K \ = ¦ D\ PRVWUDFKH¦\ DE =  6RVWLWXHQGRLYDORUL¦[ DE = H¦\ DE = QHOO¶HTXD]LRQH ¦[ DE [ - D + ¦\ DE \ - E - ] - ¦ DE = 

0f 0 0x z  f (x, y) 0f 0 0y

0 a

g(x)  f (x, b) b

h( y)  f (a, y) y

x

(a, b, 0)

-PN\YH 6HQHOSXQWR[ = D\ = EVLKDXQ PDVVLPRORFDOHGL¦DOORUDOHGHULYDWH SDU]LDOLSULPH¦[ DE H¦\ DE VRQR HQWUDPEHXJXDOLD]HUR

  *HWP[VSV¶+LYP]H[LWHYaPHSP

GHOSLDQRWDQJHQWHDOODVXSHU¿FLH] = ¦ [\ LQ DE O¶HTXD]LRQHGLYHQWDVHP SOLFHPHQWH RYYHUR

] = ¦ DE 

,O7HRUHPDDIIHUPDSHUWDQWRFKHLQXQHVWUHPRORFDOHGHOODVXSHU¿FLHLOSLDQR WDQJHQWHVHHVLVWHqRUL]]RQWDOH DEFINIZIONE

6L GLFH SXQWR FULWLFR GL ¦ XQ SXQWR LQWHUQR GHO GRPLQLR GL XQD IXQ]LRQH ¦ [\ LQFXL¦[H¦\VRQRHQWUDPEHXJXDOLD]HURRSSXUHLQFXLQRQHVLVWRQR ¦[¦\RHQWUDPEH

z

6HFRQGRLO7HRUHPDJOLXQLFLSXQWLLQFXLODIXQ]LRQH¦ [\ SXzDVVXPHUH YDORULHVWUHPLVRQRLSXQWLFULWLFLHLSXQWLGLIURQWLHUD&RPHQHOFDVRGHOOHIXQ ]LRQLGLIIHUHQ]LDELOLGLXQDVRODYDULDELOHQRQWXWWLLSXQWLFULWLFLFRUULVSRQGRQR DHVWUHPLORFDOL1HOFDVRGLXQDIXQ]LRQHGLXQDVRODYDULDELOHVLSRWUHEEHDYHUH XQSXQWRGLÀHVVRQHOFDVRGLXQDIXQ]LRQHGLGXHYDULDELOLVLSRWUHEEHDYHUHXQ SXQWRGLVHOOD

y x

z

xy(x 2  y 2 ) x2  y2

DEFINIZIONE

z

6L GLFH FKH XQD IXQ]LRQH GLIIHUHQ]LDELOH ¦ [ \  KD XQ SXQWR GL VHOOD LQ XQ SXQWR FULWLFR D E  VH RJQL GLVFR DSHUWR FHQWUDWR LQ D E  FRQWLHQH SXQWL [ \  GHO GRPLQLR LQ FXL ¦ [ \ 7 ¦ D E  H SXQWL [ \  GHO GRPLQLR LQ FXL ¦ [ \ 6 ¦ D E  ,O FRUULVSRQGHQWH SXQWR D E ¦ D E  VXOOD VXSHU¿FLH ] = ¦ [\ qGHWWRSXQWRGLVHOODGHOODVXSHU¿FLH )LJXUD 

y

x

ESEMPIO 1

'HWHUPLQDUHLYDORULHVWUHPLORFDOLGL¦ [\ = [ + \ - \ + 

z

y2



y4



Soluzione ,OGRPLQLRGL¦FRLQFLGHFRQO¶LQWHURSLDQR TXLQGLQRQHVLVWRQRSXQWLGLIURQWLHUD  HOHGHULYDWHSDU]LDOL¦[ = [H¦\ = \ - HVLVWRQRLQRJQLSXQWR'LFRQVHJXHQ]D VLSRVVRQRDYHUHYDORULHVWUHPLORFDOLVROWDQWRQHLSXQWLLQFXL

x2

-PN\YH 3XQWLGLVHOODQHOO RULJLQH

¦[ = [ =   H  ¦\ = \ -  =  &LzVLSXzYHUL¿FDUHVROWDQWRQHOSXQWR  LQFXLLOYDORUHGL¦q3RLFKp ¦ [\ = [ + \ -   + QRQDVVXPHPDLYDORULLQIHULRULDVLYHGHFKHDOSXQWR FULWLFR  FRUULVSRQGHXQPLQLPRORFDOH )LJXUD 

z

15 10

ESEMPIO 2

5 x

2

1

1

2

3

4

y

-PN\YH ,OJUDILFRGHOODIXQ]LRQH ¦ [\ = [ + \ - \ + qXQ SDUDERORLGHDYHQWHXQPDVVLPRORFDOH SDULDQHOSXQWR   (VHPSLR 

'HWHUPLQDUHJOLHYHQWXDOLYDORULHVWUHPLORFDOLGL¦ [\ = \ - [ Soluzione ,OGRPLQLRGL¦FRLQFLGHFRQO¶LQWHURSLDQR TXLQGLQRQHVLVWRQRSXQWLGLIURQWLHUD  HOHGHULYDWHSDU]LDOL¦[ = - [H¦\ = \HVLVWRQRLQRJQLSXQWR'LFRQVHJXHQ]DVL SXzDYHUHXQHVWUHPRORFDOHVROWDQWRQHOO¶RULJLQH  LQFXL¦[ = H¦\ = 7XW WDYLDOXQJRO¶DVVH[SRVLWLYR¦DVVXPHLOYDORUH¦ [ = - [ 6 PHQWUHOXQJR O¶DVVH\SRVLWLYR¦DVVXPHLOYDORUH¦ \ = \ 7 'LFRQVHJXHQ]DRJQLGLVFR

 =HSVYPLZ[YLTPLW\U[PKPZLSSH  

DSSDUWHQHQWHDOSLDQR[\FHQWUDWRLQ  FRQWLHQHSXQWLLQFXLODIXQ]LRQHqSRVL WLYDHSXQWLLQFXLODIXQ]LRQHqQHJDWLYD/DIXQ]LRQHSUHVHQWDTXLQGLXQSXQWRGL VHOODQHOO¶RULJLQHHQRQKDQHVVXQYDORUHHVWUHPRORFDOH )LJXUDD /D)LJXUD EUDSSUHVHQWDOHFXUYHGLOLYHOOR VLWUDWWDGLLSHUEROL GL¦HPRVWUDLOPRGR DOWHUQDWRLQFXLODIXQ]LRQHFUHVFHHGHFUHVFHULVSHWWRDLTXDWWURJUXSSLGLLSHUEROL

z z  y2  x2

y

/DFRQGL]LRQH¦[ = ¦\ = LQXQSXQWRLQWHUQR DE GL5QRQJDUDQWLVFHFKH¦ DEELDXQYDORUHHVWUHPRORFDOHLQWDOHSXQWR6HWXWWDYLD¦HOHVXHGHULYDWHSDU]LDOL SULPHHVHFRQGHVRQRFRQWLQXHLQ5LOVHJXHQWHWHRUHPDFKHYHUUjGLPRVWUDWRLQ $SSHQGLFHIRUQLVFHXOWHULRULLQIRUPD]LRQL

x

D y

f cresc

TEOREMA 10 3

Criterio delle derivate seconde per i valori estremi locali

6LDQR¦ [\ HOHVXHGHULYDWHSDU]LDOLSULPHHVHFRQGHFRQWLQXHLQRJQLSXQWR GLXQGLVFRFHQWUDWRLQ DE HVLD¦[ DE = ¦\ DE = $OORUD  L ¦KDXQPDVVLPRORFDOHLQ DE VH¦[[ 6 H¦[[ ¦\\ - ¦[\ 7 LQ DE  LL ¦KDXQPLQLPRORFDOHLQ DE VH¦[[ 7 H¦[[ ¦\\ - ¦[\ 7 LQ DE  LLL ¦KDXQSXQWRGLVHOODLQ DE VH¦[[ ¦\\ - ¦[\ 6 LQ DE  LY LOFULWHULRQRQqFRQFOXVLYRVH¦[[ ¦\\ - ¦[\ = LQ DE ,QTXHVWRFDVR RFFRUUH WURYDUH XQ DOWUR PRGR SHU GHWHUPLQDUH LO FRPSRUWDPHQWR GL ¦ LQ DE  



–3 f decresc

Punto di sella –1

f decresc

1 –1

–3

x

1 3



f cresc



E

-PN\YH D /¶RULJLQHqXQSXQWRGLVHOODGHOOD /¶HVSUHVVLRQH¦[[¦\\ - ¦[\SUHQGHLOQRPHGLGLVFULPLQDQWHRKHVVLDQRGL¦H IXQ]LRQH¦ [\ = \ - [ SXzHVVHUHSLVHPSOLFHGDPHPRUL]]DUHFRPHGHWHUPLQDQWH 1RQVLKDQQRYDORULHVWUHPLORFDOL (VHPSLR  E /HFXUYHGLOLYHOOR GHOODIXQ]LRQH¦GHOO¶(VHPSLR

,O7HRUHPDDIIHUPDFKHVHLOGLVFULPLQDQWHQHOSXQWR DE qSRVLWLYRDOORUDOD VXSHU¿FLHDVVXPHORVWHVVRWLSRGLFXUYDWXUDLQWXWWHOHGLUH]LRQLYHUVRLOEDVVRVH ¦[[ 6 GDQGRRULJLQHDXQPDVVLPRORFDOHYHUVRO¶DOWRVH¦[[ 7 GDQGRRULJLQH DXQPLQLPRORFDOH6HLQYHFHLQYHFHLOGLVFULPLQDQWHLQ DE qQHJDWLYRDOORUD ODVXSHU¿FLHFXUYDYHUVRO¶DOWRLQDOFXQHGLUH]LRQLHYHUVRLOEDVVRLQDOWUHSHUFXL VLKDXQSXQWRGLVHOOD ESEMPIO 3

'HWHUPLQDUHLYDORULHVWUHPLORFDOLGHOODIXQ]LRQH ¦ [\ = [\ - [ - \ - [ - \ +  Soluzione /DIXQ]LRQHqGH¿QLWDHGLIIHUHQ]LDELOHSHURJQL[H\HLOVXRGRPLQLRQRQFRQ WLHQHSXQWLGLIURQWLHUD3HUWDQWRODIXQ]LRQHSXzDYHUHYDORULHVWUHPLVROWDQWRQHL SXQWLLQFXL¦[H¦\VRQRFRQWHPSRUDQHDPHQWHXJXDOLD]HUR6LKDSHUWDQWR ¦[ = \ - [ -  =   ¦\ = [ - \ -  =  RYYHUR

[ = \ = - 

,OSXQWR - -  qSHUWDQWRO¶XQLFRSXQWRLQFXL¦SRWUHEEHDYHUHXQYDORUH HVWUHPR3HUYHUL¿FDUHVHVLKDLQHIIHWWLXQYDORUHHVWUHPRFDOFROLDPR ¦[[ = -   ¦\\ = -   ¦[\ = 

  *HWP[VSV¶+LYP]H[LWHYaPHSP

,OGLVFULPLQDQWHGL¦LQ DE = - -  q ¦[[ ¦\\ - ¦[\ = -  -  -   =  -  =  

3RLFKp ¦[[ 6   H  ¦[[ ¦\\ - ¦[\ 7  

VL KD FKH ¦ KD LQ -  -   XQ PDVVLPR ORFDOH ,O YDORUH GL ¦ LQ WDOH SXQWR q ¦ - -  = 

ESEMPIO 4

'HWHUPLQDUHLYDORULHVWUHPLORFDOLGL¦ [\ = \ - \ - [ + [\ Soluzione /D IXQ]LRQH ¦ HVVHQGR GLIIHUHQ]LDELOH LQ RJQL SXQWR SXz DYHUH YDORUL HVWUHPL VROWDQWRQHLSXQWLLQFXL ¦[ = \ - [ =   H  ¦\ = \ - \ + [ =  'DOODSULPDGLTXHVWHHTXD]LRQLVLWURYD[ = \VRVWLWXHQGRTXLQGL\QHOODVHFRQGD HTXD]LRQHVLWURYD [ - [ + [ =   RYYHUR  [  - [ =  ,GXHSXQWLFULWLFLVRQRTXLQGL  H   3HUFODVVL¿FDUHLSXQWLFULWLFLFDOFROLDPROHGHULYDWHVHFRQGH z

¦[[ = -   ¦\\ =  - \  ¦[\ =  ,OGLVFULPLQDQWHqGDWRGD

10

¦[[¦\\ - ¦[\ = -  + \ -  =  \ -  

5

1

2

3

y

2 3 x

-PN\YH /DVXSHUILFLH] = \ - \ - [ + [\ KDXQSXQWRGLVHOODQHOO¶RULJLQHHXQ PDVVLPRORFDOHQHOSXQWR   (VHPSLR 

1HO SXQWR FULWLFR    LO YDORUH GHO GLVFULPLQDQWH q LO QXPHUR QHJDWLYR -  TXLQGL OD IXQ]LRQH KD XQ SXQWR GL VHOOD QHOO¶RULJLQH 1HO SXQWR FULWL FR    LO GLVFULPLQDQWH KD LO YDORUH SRVLWLYR  &RPELQDQGR TXHVWR UL VXOWDWR FRQ LO YDORUH QHJDWLYR GHOOD GHULYDWD SDU]LDOH VHFRQGD ¦[[ = -  SHU LO 7HRUHPDVLKDFKHLOSXQWRFULWLFR  FRUULVSRQGHDXQPDVVLPRORFDOHSDULD ¦  =  -  -  +  = ,OJUD¿FRGHOODVXSHU¿FLHqULSRUWDWRQHOOD)LJXUD

Massimi e minimi assoluti in regioni chiuse e limitate /DULFHUFDGHJOLHVWUHPLDVVROXWLGLXQDIXQ]LRQHFRQWLQXD¦ [\ LQXQDUHJLRQH5 FKLXVDHOLPLWDWDVLDUWLFRODLQWUHSDVVL  6L HOHQFDQR L SXQWL LQWHUQL GL 5 LQ FXL ¦ SRWUHEEH DYHUH PDVVLPL R PLQLPL ORFDOLHVLFDOFRODLOYDORUHGL¦LQWDOLSXQWL,SXQWLFHUFDWLVRQRLSXQWLFULWLFL GL¦  6LHOHQFDQRLSXQWLGLIURQWLHUDGL5LQFXL¦KDPDVVLPLHPLQLPLHVLFDOFROD LOYDORUHGL¦LQWDOLSXQWL'LVHJXLWRPRVWUHUHPRFRPHSURFHGHUH  6LHVDPLQDQRJOLHOHQFKLSHULQGLYLGXDUHLOYDORUHPDVVLPRHLOYDORUHPLQLPR GL¦ULSRUWDWL,YDORULFRVuWURYDWLVRQRLOPDVVLPRDVVROXWRHLOPLQLPRDVVR OXWRGL¦LQ53RLFKpLQIDWWLLOPDVVLPRDVVROXWRHLOPLQLPRDVVROXWRVRQR DQFKHPDVVLPLHPLQLPLORFDOLLOPDVVLPRDVVROXWRHLOPLQLPRDVVROXWRGL¦ FRPSDLRQRVLFXUDPHQWHQHJOLHOHQFKLFUHDWLQHLSDVVLH

 =HSVYPLZ[YLTPLW\U[PKPZLSSH  

y

ESEMPIO 5

'HWHUPLQDUHLOPDVVLPRDVVROXWRHLOPLQLPRDVVROXWRGL

B(0, 9)

¦ [\ =  + [ + \ - [ - \ 



QHOODUHJLRQHWULDQJRODUHGHOSULPRTXDGUDQWHGHOLPLWDWDGDOOHUHWWH[ = \ =  \ =  - [

y9x

Soluzione 3RLFKp¦qGLIIHUHQ]LDELOHJOLXQLFLSXQWLLQFXL¦SXzDVVXPHUHTXHVWLYDORULVRQR LSXQWLLQWHUQLDOWULDQJROR )LJXUDD LQFXL¦[ = ¦\ = HLSXQWLGHOODIURQWLHUD D 3XQWLLQWHUQL3HUWDOLSXQWLYDOH

(1, 2)

¦  = 

x

y0

O

A(9, 0) (a)

I[ =  - [ =   I\ =  - \ =  GDFXLVLRWWLHQHLOVRORSXQWR [\ =  ,OYDORUHGL¦LQWDOHSXQWRq

(4, 5)

x0

z y 9

(1, 2, 7) 6 3

6

3

E 3XQWLGLIURQWLHUD&RQVLGHULDPRLODWLGHOWULDQJRORXQRDOODYROWD L 1HOVHJPHQWR2$\ = /DIXQ]LRQH

9

x

¦ [\ = ¦ [ =  + [ - [ SXzRUDHVVHUHFRQVLGHUDWDFRPHXQDIXQ]LRQHGL[GH¿QLWDQHOO¶LQWHUYDOORFKLXVR  … [ … ,YDORULHVWUHPLGLTXHVWDIXQ]LRQHSRVVRQRWURYDUVLDJOLHVWUHPL [ =   GRYH  ¦  =  [ =   GRYH  ¦  =  +  -  = -  H QHL SXQWL LQWHUQL LQ FXL ¦¿ [  =  - [ =  /¶XQLFR SXQWR LQWHUQR LQ FXL ¦¿ [ = q[ = GRYH ¦ [ = ¦  =  LL 1HOVHJPHQWR2%[ = H ¦ [\ = ¦ \ =  + \ - \ &RPH QHOOD SDUWH L  FRQVLGHULDPR ¦  \  FRPH IXQ]LRQH GL \ GH¿QLWD QHOO¶LQ WHUYDOORFKLXVR>@,YDORULHVWUDPLGLTXHVWDIXQ]LRQHSRVVRQRWURYDUVLQHJOL HVWUHPLRSSXUHQHLSXQWLLQWHUQLLQFXLI¿ \ = 3RLFKpI¿ \ =  - \O¶XQLFR SXQWRLQWHUQRLQFXLI ¿ \ = q  LQFXLI  = ,SRVVLELOLSXQWLLQ TXHVWRVHJPHQWRVRQRSHUWDQWR ¦  =   ¦  = -   ¦  =  LLL &LVLDPRJLjRFFXSDWLGHOYDORUHGL¦QHJOLHVWUHPLGL$%TXLQGLULPDQJRQRGD DQDOL]]DUHVROWDQWRLSXQWLLQWHUQLGL$%&RQ\ =  - [VLKD ¦ [\ =  + [ +   - [ - [ -  - [  = -  + [ - [ 3RQHQGR¦¿ [ - [ =  - [ = VLRWWLHQH [ =  3HUTXHVWRYDORUHGL[ \ =  -  =   H  ¦ [\ = ¦  = -  5LDVVXPHQGR ,SRVVLELOLSXQWLVRQR- - - ,OPDVVLPRq H¦DVVXPHWDOHYDORUHLQ  ,OPLQLPRq- H¦DVVXPHWDOHYDORUHLQ   9HGHUHOD)LJXUDE

20

40

(9, 0, 61)

60 (b)

-PN\YH D /DUHJLRQHWULDQJRODUH UDSSUHVHQWDWDqLOGRPLQLRGHOOD IXQ]LRQHGHOO¶(VHPSLR E ,OJUDILFR GHOODIXQ]LRQHGHOO¶(VHPSLR ,SXQWLVHJQDWLLQQHURVRQRLSRVVLELOL PDVVLPLHPLQLPL

  *HWP[VSV¶+LYP]H[LWHYaPHSP

/DULFHUFDGHLYDORULHVWUHPLGLXQDIXQ]LRQHFRQOLPLWLDOJHEULFLVXOOHYDULDELOL ULFKLHGHJHQHUDOPHQWHO¶LPSLHJRGHOPHWRGRGHLPROWLSOLFDWRULGL/DJUDQJHLQWUR GRWWRQHOSURVVLPRSDUDJUDIR,QDOFXQLFDVLWXWWDYLDFRPHQHOSURVVLPRHVHPSLR LOSUREOHPDSXzHVVHUHULVROWRLQPRGRGLUHWWR ESEMPIO 6

8QDFRPSDJQLDGLVSHGL]LRQLDFFHWWDVROWDQWRSDFFKLSHULTXDOLODVRPPDGLOXQ JKH]]DH³FLUFRQIHUHQ]D´ LOSHULPHWURGLXQDVH]LRQH QRQVXSHULPHWUL'HWHU PLQDUHOHGLPHQVLRQLGHOSDFFRWUDTXHOOLDFFHWWDELOLFKHKDYROXPHPDVVLPR

"Circonferenza" = lunghezza misurata intorno a questa sezione

Soluzione 6LDQR[\H]ULVSHWWLYDPHQWHODOXQJKH]]DODODUJKH]]DHO¶DOWH]]DGHOSDFFR/D ³FLUFRQIHUHQ]D´q\ + ]6LGHVLGHUDPDVVLPL]]DUHLOYROXPH9 = [\]GHOSDFFR )LJXUD ULVSHWWDQGRODFRQGL]LRQH[ + \ + ] =  ODPDVVLPDGLPHQVLRQH DFFHWWDWDGDOODFRPSDJQLDGLVSHGL]LRQL 3RVVLDPRTXLQGLVFULYHUHLOYROXPHGHO SDFFRFRPHIXQ]LRQHGLGXHYDULDELOL

x

y

-PN\YH ,OSDFFRGHOO¶(VHPSLR

9 = [\]H [ =  - \ - ]

9 \] =  - \ - ] \]

z

= \] - \] - \] 3RQHQGROHGHULYDWHSDU]LDOLSULPHXJXDOLD]HUR 9\ \] = ] - \] - ] =  - \ - ] ] =  9] \] = \ - \ - \] =  - \ - ] \ =  VLRWWHQJRQRLSXQWLVWD]LRQDUL      H    ,OYROXPHqXJXDOHD   ]HURQHLSXQWL      FKHSHUWDQWRQRQVRQRSXQWLGLPDVVLPR1HO SXQWR    DSSOLFKLDPRLO&ULWHULRGHOOHGHULYDWHVHFRQGH 7HRUHPD    9\\ = - ]  9]] = - \  9\] =  - \ - ]





6LKDTXLQGL

9\\ 9]] - 9\] = \] -   - \ - ]  

3HUWDQWR



#

9\\    = -    6    

HSRLFKp

# #

#



 C9\\ 9]] - 9\]D  =       -   -  =  7        VHJXHFKH    FRUULVSRQGHDXQPDVVLPRGHOYROXPH/HGLPHQVLRQLGHOSDFFR   VRQR[ =  -    -    =  M PHWUL\ =  M PHWULH] =  M       PHWUL,OYROXPHPDVVLPRq9 =       =  M P     

#

#

# #

$QFKHVHLO7HRUHPDSXzULVXOWDUHPROWRHI¿FDFHQRQELVRJQDGLPHQWLFDU QHLOLPLWLHVVRQRQVLDSSOLFDDLSXQWLGLIURQWLHUDGHOGRPLQLRGHOODIXQ]LRQH LQFXLqSRVVLELOHFKHODIXQ]LRQHDEELDYDORULHVWUHPLDQFKHVHOHGHULYDWHVRQR GLYHUVHGD]HURQpDLSXQWLLQFXLQRQHVLVWRQR¦[R¦\

 4VS[PWSPJH[VYPKP3HNYHUNL  

Ricapitolazione dei criteri per massimi e minimi

,YDORULHVWUHPLGL¦ [\ SRVVRQRWURYDUVLVROWDQWR L QHLSXQWLGLIURQWLHUDGHOGRPLQLRGL¦ LL QHLSXQWLFULWLFL SXQWLLQWHUQLLQFXL¦[ = ¦\ = RSXQWLLQFXLQRQHVLVWRQR ¦[R¦\  6HOHGHULYDWHSDU]LDOLGHOSULPRHGHOVHFRQGRRUGLQHGL¦VRQRFRQWLQXHLQ RJQLSXQWRGLXQGLVFRFHQWUDWRLQXQSXQWR DE H¦[ DE = ¦\ DE = OD QDWXUDGL¦ DE SXzHVVHUHGHWHUPLQDWDPHGLDQWHLO&ULWHULRGHOOHGHULYDWH VHFRQGH L ¦[[ 6 H¦[[ ¦\\ - ¦[\ 7 LQ DE  Q PDVVLPRORFDOH LL ¦[[ 7 H¦[[ ¦\\ - ¦[\ 7 LQ DE  Q PLQLPRORFDOH LLL ¦[[ ¦\\ - ¦[\ 6 LQ DE  Q SXQWRGLVHOOD LY ¦[[ ¦\\ - ¦[\ = LQ DE  Q LOFULWHULRQRQqFRQFOXVLYR 







* ( 7 0 ; 6 3 6



Integrali multipli PANORAMICA

Sommario del capitolo

In questo capitolo consideriamo l’integrale di una funzione di due variabili ƒ(x, y) su una regione del piano e l’integrale di una funzione di tre variabili ƒ(x, y, z) su una regione dello spazio. Questi integrali multipli sono definiti come limiti di somme approssimanti di Riemann, proprio come gli integrali in una variabile. Mostreremo numerose applicazioni degli integrali multipli, tra cui il calcolo di volumi, aree, momenti e centri di massa.

 Integrali doppi e iterati su rettangoli  Integrali doppi su regioni arbitrarie  Aree calcolate con una doppia integrazione  Integrali doppi in coordinate polari

4.1 Integrali doppi e iterati su rettangoli /DGH¿QL]LRQHGLLQWHJUDOHGH¿QLWRGLXQDIXQ]LRQHOLPLWDWD¦ [ VXXQLQWHUYDOOR >DE@YLHQHGDWDFRPHOLPLWHGLVRPPHGL5LHPDQQ,QTXHVWRSDUDJUDIRHVWHQ GLDPRTXHVWDLGHDHGH¿QLDPRO¶LQWHJUDOHGRSSLRGLXQDIXQ]LRQHOLPLWDWDGLGXH YDULDELOL¦ [\ VXXQUHWWDQJROROLPLWDWR5QHOSLDQR,QHQWUDPELLFDVLJOLLQ WHJUDOLVRQROLPLWLGLVRPPHDSSURVVLPDQWLGL5LHPDQQ/HVRPPHGL5LHPDQQ SHUO¶LQWHJUDOHGLXQDIXQ]LRQHGLXQDYDULDELOH¦ [ VLRWWHQJRQRULSDUWHQGRXQ LQWHUYDOOR¿QLWRLQVRWWRLQWHUYDOOLVHPSUHSLSLFFROLPROWLSOLFDQGRO¶DPSLH]]DGL RJQLVRWWRLQWHUYDOORSHULOYDORUHGL¦LQXQSXQWRFNDOO¶LQWHUQRGHOVRWWRLQWHUYDOOR HSRLVRPPDQGRWXWWLLSURGRWWL8QDQDORJRPHWRGRGLSDUWL]LRQDPHQWRPROWLSOL FD]LRQHHVRPPDVLXVDSHUGH¿QLUHJOLLQWHJUDOLGRSSL

 Integrali tripli in coordinate rettangolari  Momenti e centri di massa  Integrali tripli in coordinate cilindriche e sferiche  Sostituzione negli integrali multipli

Integrali doppi &RPLQFLDPRLOQRVWURVWXGLRGHJOLLQWHJUDOLGRSSLFRQVLGHUDQGRLOWLSRSLVHPSOL FHGLUHJLRQHQHOSLDQRXQUHWWDQJROR&RQVLGHULDPRXQDIXQ]LRQH¦ [\ GH¿QLWD VXXQDUHJLRQHUHWWDQJRODUH5 5 D … [ … E F … \ … G

y d R

Ak yk

(xk , yk ) xk

c 0

a

b

x

-PN\YH *ULJOLDUHWWDQJRODUHFKHULSDUWLVFHOD UHJLRQH5LQUHWWDQJROLQLGLDUHD ¢$N = ¢[N¢\N

6XGGLYLGLDPR5LQSLFFROLUHWWDQJROLFRQXQUHWLFRODWRGLUHWWHSDUDOOHOHDJOLDVVL GHOOH[HGHOOH\ )LJXUD /HUHWWHGLYLGRQR5LQQSDUWLUHWWDQJRODULTXHVWR QXPHUR Q GL SDUWL FUHVFH DO GLPLQXLUH GHOOD ODUJKH]]D H DOWH]]D GL RJQL SDUWH , UHWWDQJROLQLIRUPDQRXQDSDUWL]LRQHGL58QSLFFRORUHWWDQJRORGLODUJKH]]D¢[H DOWH]]D¢\KDDUHD¢$ = ¢[¢\6HQXPHULDPRLQTXDOFKHRUGLQHTXHVWLUHWWDQJR OLQLFKHULSDUWLVFRQR5OHORURDUHHVRQRGDWHGDLQXPHUL¢$¢$ Á¢$QGRYH ¢$NqO¶DUHDGHONHVLPRUHWWDQJROLQR 3HU IRUPDUH XQD VRPPD GL 5LHPDQQ VX 5 VFHJOLDPR XQ SXQWR [N \N  QHO NHVLPRUHWWDQJROLQRPROWLSOLFKLDPRLOYDORUHGL¦LQTXHOSXQWRSHUO¶DHUD¢$N HVRPPLDPRLSURGRWWL

$VHFRQGDGLFRPHDYUHPRVFHOWR [N\N QHONHVLPRUHWWDQJROLQRSRVVLDPRRW WHQHUHYDORULGLYHUVLSHU6Q

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

&LLQWHUHVVDFKHFRVDDFFDGHDTXHVWHVRPPHGL5LHPDQQYLDYLDFKHOHODUJKH] ]HHDOWH]]HGLWXWWLLUHWWDQJROLQLGHOODSDUWL]LRQHGL5WHQGRQRD]HUR/DQRUPDGL XQDSDUWL]LRQH3FKHVLLQGLFDFRQ737VLGH¿QLVFHFRPHLOPDVVLPRGHOOHODUJKH] ]HHGHOOHDOWH]]HGLWXWWLLUHWWDQJROLGHOODSDUWL]LRQH6H737= DOORUDWXWWLLUHW WDQJROLQHOODSDUWL]LRQHGL5KDQQRODUJKH]]DDOSLHDOWH]]DDOSL7DOYRO WDOHVRPPHGL5LHPDQQFRQYHUJRQRDOWHQGHUHD]HURGHOODQRUPDGL3FLRqSHU 737:,OOLPLWHULVXOWDQWHVLLQGLFDDOORUDFRQ

4XDQGR737:HLUHWWDQJROLGLYHQWDQRVHPSUHSLVWUHWWLHFRUWLLOORURQXPHUR QDXPHQWDHTXLQGLSRVVLDPRVFULYHUHORVWHVVROLPLWHFRPH

LQWHQGHQGRFKH737:HTXLQGL¢$N:SHUQ :q 8QOLPLWHFRVuGH¿QLWRFRLQYROJHPROWHVFHOWH/¶LQVLHPHGLUHWWDQJROLQLqGH WHUPLQDWRGDOODJULJOLDGLUHWWHYHUWLFDOLHRUL]]RQWDOLFKHGHWHUPLQDQRXQDSDUWL ]LRQHUHWWDQJRODUHGL 5,QRJQXQRGHLUHWWDQJROLULVXOWDQWLYLHQHVFHOWRDUELWUD ULDPHQWH XQ SXQWR [N \N  LQ FXL FDOFRODUH ¦ 4XHVWH VFHOWH FRPSOHVVLYDPHQWH GHWHUPLQDQRXQDVSHFL¿FDVRPPDGL5LHPDQQ5LSHWLDPRLQ¿QLWHYROWHORVWHVVR SURFHGLPHQWRVFHJOLHQGRSDUWL]LRQLLQUHWWDQJROLOHFXLODUJKH]]HHDOWH]]HWHQGR QRWXWWHD]HURHLOFXLQXPHURWHQGHDLQ¿QLWR 4XDQGROHVRPPH6QDPPHWWRQROLPLWHFKHqVHPSUHORVWHVVRLQGLSHQGHQWH PHQWHGDOOHVFHOWHFRPSLXWHODIXQ]LRQH¦qGHWWDLQWHJUDELOHHLOOLPLWHqGHWWR LQWHJUDOHGRSSLRGL¦VX5HVLVFULYHFRPH R 6LSXzGLPRVWUDUHFKHVH¦ [\ qXQDIXQ]LRQHFRQWLQXDVXWXWWR5DOORUD¦q LQWHJUDELOH FRPH QHO FDVR GL XQD VLQJROD YDULDELOH$QFKH PROWH IXQ]LRQL QRQ FRQWLQXHVRQRLQWHJUDELOLWUDFXLOHIXQ]LRQLGLVFRQWLQXHVRORLQXQQXPHUR¿QLWR GLSXQWL/DVFLDPROHGLPRVWUD]LRQLGLTXHVWLIDWWLDWHVWLSLDYDQ]DWL z z  f(x, y)

Integrali doppi come volumi

f(xk, yk) d y b x

R (xk, yk)

Δ Ak

-PN\YH $SSURVVLPDQGRXQVROLGRFRQ SDUDOOHOHSLSHGLSRVVLDPRGHILQLUHLO YROXPHGLVROLGLJHQHUDOLLQWHUPLQLGL LQWHJUDOLGRSSL,OYROXPHGHOVROLGR PRVWUDWRTXLqO¶LQWHJUDOHGRSSLRGL ¦ [\ VXOODEDVH5

4XDQGR¦ [\ qXQDIXQ]LRQHSRVLWLYDVXXQDUHJLRQHUHWWDQJRODUH5QHOSLDQR [\SRVVLDPRLQWHUSUHWDUHO¶LQWHJUDOHGRSSLRGL¦VX5FRPHLOYROXPHGHOODUH JLRQHVROLGDWULGLPHQVLRQDOHVRSUDLOSLDQR[\GHOLPLWDWDLQEDVVRGD5HLQDOWR GDOODVXSHU¿FLH] = ¦ [\  )LJXUD 2JQLWHUPLQH¦ [N\N ¢$NGHOODVRPPD 6Q = g ¦ [N\N ¢$NqLOYROXPHGLXQSDUDOOHOHSLSHGRFKHDSSURVVLPDLOYROXPH GHOODSDUWHGLVROLGRFKHVLWURYDGLUHWWDPHQWHVRSUDODEDVH¢$N/DVRPPD6Q DSSURVVLPD TXLQGL TXHOOR FKH FRQVLGHUHUHPR FRPH LO YROXPH WRWDOH GHO VROLGR 'H¿QLDPRTXLQGLTXHVWRYROXPHFRPH 9ROXPH GRYH¢$N:SHUQ :q /D)LJXUDPRVWUDFRPHOHDSSURVVLPD]LRQLGDWHGDOOHVRPPHGL5LHPDQQ GLYHQWDQRVHPSUHSLSUHFLVHYLDYLDFKHDXPHQWDLOQXPHURQGLSDUDOOHOHSLSHGL

 0U[LNYHSPKVWWPLP[LYH[PZ\YL[[HUNVSP  

-PN\YH $OFUHVFHUHGLQODVRPPD DSSURVVLPDQWHGL5LHPDQQWHQGHDO YROXPHWRWDOHGHOVROLGRPRVWUDWRQHOOD )LJXUD (a) n  16

(b) n  64

(c) n  256

Il Teorema di Fubini per calcolare gli integrali doppi

6XSSRQLDPRGLYROHUFDOFRODUHLOYROXPHVRWWRLOSLDQR] =  - [ - \DOGLVRSUD GHOODUHJLRQHUHWWDQJRODUH5 … [ …  … \ … QHOSLDQR[\6HVXGGLYLGLDPR LOVROLGRLQ³IHWWH´YHUWLFDOLSHUSHQGLFRODULDOO¶DVVHGHOOH[HGHQRWLDPRFRQ$ [  O¶DUHDGHOODUHJLRQHRWWHQXWDVH]LRQDQGRLOVROLGRFRQLOSLDQRSDVVDQWHSHULOSXQWR [  )LJXUD DOORUDLOYROXPHGHOVROLGRVLRWWLHQH³VRPPDQGR´O¶DUHD$ [  GHOOHIHWWHSHU[H >@FLRqPHGLDQWHO¶LQWHJUDOH

4 z4xy



 

z



3HURJQLYDORUHGL[SRVVLDPRFDOFRODUH$ [ FRQO¶LQWHJUDOH 



1





x

FKHqO¶DUHDUDFFKLXVDVRWWRODFXUYD] =  - [ - \QHOSLDQRGHOODVH]LRQHFRUUL VSRQGHQWHD[3HUFDOFRODUH$ [ [YLHQHPDQWHQXWD¿VVDHO¶LQWHJUD]LRQHYLHQH VYROWDULVSHWWRD\8QHQGROH(TXD]LRQL  H  WURYLDPRFKHLOYROXPHGHOO¶LQ WHURVROLGRq 9ROXPH







6HYRJOLDPRVRORVFULYHUHXQDIRUPXODFKHGLDLOYROXPHVHQ]DVYROJHUHHVSOL FLWDPHQWHOHLQWHJUD]LRQLSRVVLDPRVFULYHUH 9ROXPH /¶HVSUHVVLRQHVXOODGHVWUDGHWWDLQWHJUDOHLWHUDWRRULSHWXWRDIIHUPDFKHLOYROX PHVLRWWLHQHLQWHJUDQGR - [ - \ULVSHWWRD\GD\ = D\ = WHQHQGR¿VVD[H SRLLQWHJUDQGRULVSHWWRD[O¶HVSUHVVLRQHRWWHQXWDGD[ = D[ = *OLHVWUHPLGL LQWHJUD]LRQHHVLULIHULVFRQRD\HTXLQGLDSSDLRQRVXOVHJQRGLLQWHJUDOHSL YLFLQRDG\*OLDOWULHVWUHPLGLLQWHJUD]LRQHHVRQRDVVRFLDWLDOODYDULDELOH[ HTXLQGLDSSDLRQRVXOVHJQRGLLQWHJUDOHHVWHUQRFRUULVSRQGHQWHDG[ &KHFRVDVDUHEEHVXFFHVVRVHDYHVVLPRFDOFRODWRLOYROXPHVH]LRQDQGRFRQ SLDQLSHUSHQGLFRODULDOO¶DVVHGHOOH\ )LJXUD "

y

2 x

A(x) 

y1 y0

(4  x  y) dy

-PN\YH 3HURWWHQHUHO¶DUHD$ [ GHOODVH]LRQH PDQWHQLDPRILVVD[HLQWHJULDPR ULVSHWWRD\

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

&RQVLGHUDWDFRPHIXQ]LRQHGL\O¶DUHDGHOODVH]LRQHWLSLFDq

z

4

 ,OYROXPHGHOO¶LQWHURVROLGRqTXLQGL

z4xy





9ROXPH

y

FRPHQHOFDOFRORSUHFHGHQWH 3RVVLDPRGLQXRYRGDUHXQDIRUPXODSHULOYROXPHLQIRUPDGLLQWHJUDOHLWH UDWRVFULYHQGR 1

9ROXPH

y 2 x2

/¶HVSUHVVLRQH VXOOD GHVWUD GLFH FKH SRVVLDPR WURYDUH LO YROXPH LQWHJUDQGR  - [ - \ULVSHWWRD[GD[ = D[ = FRPHQHOO¶(TXD]LRQH  HLQWHJUDQGRLOULVXO WDWRULVSHWWRD\GD\ = D\ = ,QTXHVWRLQWHJUDOHLWHUDWRO¶RUGLQHGLLQWHJUD]LRQH -PN\YH 3HURWWHQHUHO¶DUHD$ \ GLXQDVH]LRQH qSULPD[HSRL\O¶LQYHUVRULVSHWWRDOO¶(TXD]LRQH   &RVD KDQQR D FKH IDUH TXHVWL GXH PRGL SHU FDOFRODUH LO YROXPH FRQ O¶LQWHJUDOH PDQWHQLDPRILVVD\HLQWHJULDPR ULVSHWWRD[ GRSSLR x

A(y)  (4  x  y) dx Lx  0

VXOUHWWDQJROR5 … [ …  … \ … "/DULVSRVWDqFKHHQWUDPELJOLLQWHJUDOLLWH UDWLGDQQRLOYDORUHGHOO¶LQWHJUDOHGRSSLRÊTXHOORFKHFLDVSHWWHUHPPRGDWRFKH O¶LQWHJUDOHGRSSLRPLVXUDLOYROXPHGHOODVWHVVDUHJLRQHGLVSD]LRGHLGXHLQWHJUDOL LWHUDWL8QWHRUHPDSXEEOLFDWRQHOGD*XLGR)XELQLDIIHUPDFKHO¶LQWHJUDOH GRSSLRGLXQDIXQ]LRQHFRQWLQXDVXXQUHWWDQJRORVLSXzFDOFRODUHFRPHLQWHJUDOH LWHUDWRLQWHJUDQGRLQTXDOXQTXHRUGLQH)XELQLGLPRVWUzLOVXRWHRUHPDLQXQFRQ WHVWRSLJHQHUDOHPDTXHVWRqTXHOORFKHFLLQWHUHVVDQHOQRVWURDPELWR TEOREMA 1

Teorema di Fubini (prima forma)

6H¦ [\ qFRQWLQXDVXWXWWDODUHJLRQHUHWWDQJRODUH5D … [ … EF … \ … G DOORUD

,O7HRUHPDGL)XELQLDIIHUPDFKHJOLLQWHJUDOLGRSSLVXLUHWWDQJROLVLSRVVRQRFDO FRODUHFRPHLQWHJUDOLLWHUDWL4XLQGLSRVVLDPRFDOFRODUHLOYDORUHGLXQLQWHJUDOH GRSSLRLQWHJUDQGRULVSHWWRDXQDYDULDELOHDOODYROWD ,O WHRUHPD DIIHUPD LQROWUH FKH SRVVLDPR FDOFRODUH LQ XQR TXDOVLDVL GHL GXH RUGLQLLOFKHqPROWRFRPRGR4XDQGRFDOFROLDPRXQYROXPHDIHWWHSRVVLDPR XVDUHSLDQLSHUSHQGLFRODULDOO¶DVVHGHOOH[RSSXUHDOO¶DVVHGHOOH\

 0U[LNYHSPKVWWPLP[LYH[PZ\YL[[HUNVSP  

z

z  100  6x 2y

ESEMPIO 1

100

&DOFRODUH4¦ [\ G$SHU 5 H

50

Soluzione /D)LJXUDPRVWUDLOYROXPHUDFFKLXVRVRWWRODVXSHU¿FLH3HULO7HRUHPDGL )XELQL

–1 1 x

,QYHUWHQGRO¶RUGLQHGLLQWHJUD]LRQHRWWHQLDPRORVWHVVRULVXOWDWR

2

1

R

y

-PN\YH /¶LQWHJUDOHGRSSLR45¦ [\ G$GjLO YROXPHUDFFKLXVRWUDTXHVWDVXSHUILFLH HODUHJLRQHUHWWDQJRODUH5 (VHPSLR 

z z  10  x 2  3y 2

ESEMPIO 2 10

7URYDUH LO YROXPH GHOOD UHJLRQH GL VSD]LR OLPLWDWD GDOO¶DOWR GDOOD VXSHU¿FLH ] =  + [ + \HGDOEDVVRGDOUHWWDQJROR5 … [ …  … \ …  Soluzione /DVXSHU¿FLHHLOYROXPHVRQRPRVWUDWLQHOOD)LJXUD,OYROXPHqGDWRGDOO¶LQ WHJUDOHGRSSLR

1

R

2

y

x

-PN\YH /¶LQWHJUDOHGRSSLR45¦ [\ G$GjLO YROXPHUDFFKLXVRWUDTXHVWDVXSHUILFLH HODUHJLRQHUHWWDQJRODUH5 (VHPSLR 

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

4.2 Integrali doppi su regioni arbitrarie ,QTXHVWRSDUDJUDIRGH¿QLDPRHFDOFROLDPRJOLLQWHJUDOLGRSSLVXUHJLRQLOLPLWDWH GHO SLDQR FKH VLDQR SL JHQHUDOL GHL UHWWDQJROL$QFKH TXHVWL LQWHJUDOL GRSSL VL SRVVRQRFDOFRODUHFRPHLQWHJUDOLLWHUDWLFRQLOSUREOHPDSUDWLFRGLGHWHUPLQDUH JOLHVWUHPLGLLQWHJUD]LRQH'DWRFKHODUHJLRQHGLLQWHJUD]LRQHSXzDYHUHIURQWLHUH FKHQRQVRQRVHJPHQWLSDUDOOHOLDJOLDVVLFRRUGLQDWLQHJOLHVWUHPLGLLQWHJUD]LRQH VSHVVRFRPSDLRQRGHOOHYDULDELOLLQYHFHFKHGHOOHFRVWDQWL

Integrali doppi su regioni limitate non rettangolari

Ak

R yk

(xk , yk ) xk

-PN\YH 8QUHWLFRORUHWWDQJRODUHFKHULSDUWLVFH XQDUHJLRQHOLPLWDWDQRQUHWWDQJRODUH LQFHOOHUHWWDQJRODUL

3HUGH¿QLUHO¶LQWHJUDOHGRSSLRGLXQDIXQ]LRQH¦ [\ VXXQDUHJLRQH5FKLXVDH OLPLWDWDQRQUHWWDQJRODUHFRPHTXHOODGHOOD)LJXUDFRPLQFLDPRGLQXRYRFRO ULFRSULUH5FRQXQUHWLFRODWRGLSLFFROHFHOOHUHWWDQJRODULODFXLXQLRQHFRQWHQJD WXWWLLSXQWLGL54XHVWDYROWDSHUzQRQSRVVLDPRULHPSLUH5HVDWWDPHQWHFRQXQ QXPHUR¿QLWRGLUHWWDQJROLWXWWLFRPSUHVLLQ5GDWRFKH5KDXQDIURQWLHUDFXUYDH FKHDOFXQLGHLUHWWDQJROLQLVLWURYDQRLQSDUWHDOGLIXRULGL5)RUPLDPRXQDSDUWL ]LRQHDOO¶LQWHUQRGL5SUHQGHQGRLUHWWDQJROLFKHVLWURYDQRFRPSOHWDPHQWHDOVXR LQWHUQRHVFOXGHQGRTXHOOLFKHVLDQRSDU]LDOPHQWHRFRPSOHWDPHQWHDOGLIXRUL 3HUOHUHJLRQLFKHVLLQFRQWUDQRVROLWDPHQWHYLDYLDFKHODQRUPDGHOODSDUWL]LRQH ODEDVHRDOWH]]DPDVVLPDWUDWXWWLLUHWWDQJROLFRQVLGHUDWL WHQGHD]HURODSDUWH GL5FKHULPDQHHVWHUQDDOODSDUWL]LRQHqVHPSUHSLSLFFROD 8QD YROWD FKH DEELDPR XQD SDUWL]LRQH QXPHULDPR L UHWWDQJROL LQ TXDOVLDVL PRGRGDDQHGHQRWLDPRFRQ¢$NO¶DUHDGHONHVLPRUHWWDQJROR3RLVFHJOLDPR XQSXQWR [N\N QHONHVLPRUHWWDQJRORHFDOFROLDPRODVRPPDGL5LHPDQQ

4XDQGRODQRUPD737GHOODSDUWL]LRQHFKHJHQHUD6QWHQGHD]HURODEDVHHO¶DOWH] ]DGLRJQLUHWWDQJRORFRPSUHVRWHQGHD]HURHLOORURQXPHURWHQGHDLQ¿QLWR6H ¦ [\ qXQDIXQ]LRQHFRQWLQXDTXHVWHVRPPHGL5LHPDQQWHQGRQRDXQYDORUH OLPLWH FKH QRQ GLSHQGH GHOOH VFHOWH SUHFHGHQWL 4XHVWR OLPLWH q GHWWR LQWHJUDOH GRSSLRGL¦ [\ VX5

/DVWUXWWXUDGHOODIURQWLHUDGL5LQWURGXFHSUREOHPLFKHQRQVLSRQJRQRSHUJOL LQWHJUDOLVXXQUHWWDQJROR4XDQGR5KDXQDIURQWLHUDFXUYLOLQHDJOLQUHWWDQJROL GL XQD SDUWL]LRQH VL WURYDQR DOO¶LQWHUQR GL 5 PD QRQ ULFRSURQR WXWWR 5 3HUFKp XQD SDUWL]LRQH SRVVD DSSURVVLPDUH EHQH 5 OH SDUWL GL 5 ULPDVWH VFRSHUWH GDOOD SDUWL]LRQHGHYRQRGLYHQWDUHWUDVFXUDELOLTXDQGRODQRUPDGHOODSDUWL]LRQHWHQGH D]HUR4XHVWDSURSULHWjGL5GLHVVHUHTXDVLULHPSLWRGDXQDSDUWL]LRQHGLQRUPD SLFFRODqVRGGLVIDWWDGDWXWWHOHUHJLRQLFKHLQFRQWUHUHPR1RQFLVRQRSUREOHPL FRQOHIURQWLHUHFRPSRVWHGDSROLJRQLFLUFRQIHUHQ]HHOOLVVLHGDJUD¿FLFRQWLQXL VXXQLQWHUYDOORFRQJLXQWLWUDORUR8QDFXUYDFRQXQDIRUPD³IUDWWDOH´VDUHEEH SUREOHPDWLFDPDQHOODPDJJLRUSDUWHGHOOHDSSOLFD]LRQLVHQHLQFRQWUDQRGLUDGR 8Q¶DQDOLVLSUHFLVDGHOO¶HVDWWRWLSRGLUHJLRQL5FKHVLSRVVRQRXVDUHSHUFDOFRODUH LQWHJUDOLGRSSLqODVFLDWDDWHVWLSLDYDQ]DWL

Volumi 6H¦ [\ qSRVLWLYDHFRQWLQXDVX5GH¿QLDPRLOYROXPHGHOODUHJLRQHGLVSD]LRFRP SUHVDWUD5HODVXSHU¿FLH] = ¦ [\ FRPH45¦ [\ G$FRPHSULPD )LJXUD 

 0U[LNYHSPKVWWPZ\YLNPVUPHYIP[YHYPL  

z  f(x, y)

z

Altezza  f(xk, yk) 0 x y

R (xk, yk)

z

 Ak

z  f (x, y)

Volume  lim f(xk, yk)  Ak   f (x, y) dA

x

0

a

b

R

x

-PN\YH 'HILQLDPRLYROXPLGHLVROLGLFKHKDQQREDVL FXUYLOLQHHFRPHOLPLWLGLSDUDOOHOHSLSHGLDSSURVVLPDQWL

y

y  g1(x) A(x) R

6H5qXQDUHJLRQHQHOSLDQR[\FRPHTXHOODPRVWUDWDQHOOD)LJXUDOLPL y  g2(x) WDWDGD³VRSUD´HGD³VRWWR´GDOOHFXUYH\ = J [ H\ = J [ HGLODWRGDOOHUHWWH [ = D[ = ESRVVLDPRGLQXRYRFDOFRODUHLOYROXPHFRQLOPHWRGRGHOOHIHWWH -PN\YH 'DSSULPDFDOFROLDPRO¶DUHDGHOODVH]LRQH /¶DUHDGHOODIHWWDYHUWLFDOHTXLPRVWUDWD q$ [ 3HUFDOFRODUHLOYROXPHGHO VROLGRLQWHJULDPRTXHVWDDUHDGD[ = D D[ = E

HSRLLQWHJULDPR$ [ GD[ = DD[ = ESHURWWHQHUHLOYROXPHFRQXQLQWHJUDOH LWHUDWR 

 z

6LPLOPHQWHVH5qXQDUHJLRQHFRPHTXHOODPRVWUDWDQHOOD)LJXUDOLPL WDWDGDOOHFXUYH[ = K \ H[ = K \ HGDOOHUHWWH\ = FH\ = GLOYROXPHFDOFRODWR FRQLOPHWRGRGHOOHIHWWHqGDWRGDOO¶LQWHJUDOHLWHUDWR

z  f (x, y)

A(y) c

y d

9ROXPH



y

x x  h1( y)

/HGXHVLWXD]LRQLVRSUDGHVFULWWHHUDSSUHVHQWDWHQHOOH)LJXUHHSRU WDQRDOOHVHJXHQWLGH¿QL]LRQL DEFINIZIONI

8QDUHJLRQH5GHOSLDQRYLHQHGHWWDGRPLQLRQRUPDOHULVSHWWRDOO¶DVVH[VH HVLVWRQRXQLQWHUYDOOR>DE@(ℝHGXHIXQ]LRQLFRQWLQXHJJ>DE@:ℝ WDOLFKH 5 = ^ [\ [H>DE@J [ … \ … J [ ` /DUHJLRQH5YLHQHGHWWDGRPLQLRQRUPDOHULVSHWWRDOO¶DVVH\VHHVLVWRQRXQ LQWHUYDOOR>FG@(ℝHGXHIXQ]LRQLFRQWLQXHKK>FG@:ℝWDOLFKH 5 = ^ [\ \H>FG@K \ … [ … K \ `

x  h 2( y)

-PN\YH ,OYROXPHGHOVROLGRTXLPRVWUDWRq

3HUXQGDWRVROLGRLO7HRUHPD DIIHUPDFKHSRVVLDPRFDOFRODUQHLO YROXPHFRPHQHOOD)LJXUDRSSXUH QHOPRGRPRVWUDWRTXLDVHFRQGDGHOOD IRUPDGL5

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

/DUHJLRQH5GHOOD)LJXUDqXQGRPLQLRQRUPDOHULVSHWWRDOO¶DVVH[PHQWUH ODUHJLRQHUDSSUHVHQWDWDQHOOD)LJXUDqXQGRPLQLRQRUPDOHULVSHWWRDOO¶DVVH\ *OLLQWHJUDOLGRSSLVXGRPLQLQRUPDOLSRVVRQRHVVHUHFDOFRODWLFRPHLQWHJUDOL LWHUDWLJUD]LHDOODVHJXHQWHIRUPDIRUWHGHO7HRUHPDGL)XELQL TEOREMA 2

Teorema di Fubini (forma forte)

6LD¦ [\ FRQWLQXDVXXQDUHJLRQH5  6H 5 q XQ GRPLQLR QRUPDOH ULVSHWWR DOO¶DVVH [ GH¿QLWR GD D … [ … E J [ … \ … J [ FRQJHJFRQWLQXHVX>DE@VLKD

 6H 5 q XQ GRPLQLR QRUPDOH ULVSHWWR DOO¶DVVH \ GH¿QLWR GD F … \ … G K \ … [ … K \ FRQKHKFRQWLQXHVX>FG@VLKD

ESEMPIO 1

7URYDUHLOYROXPHGHOVROLGRSULVPDWLFRFKHKDSHUEDVHLOWULDQJRORQHOSLDQR[\ OLPLWDWRGDOO¶DVVHGHOOH[HGDOOHUHWWH\ = [H[ = HODFXLEDVHVXSHULRUHJLDFH QHOSLDQR ] = ¦ [\ =  - [ - \ Soluzione 6LYHGDOD)LJXUD,QTXHVWRFDVRLOWULDQJROR5qXQGRPLQLRQRUPDOHVLDUL VSHWWRDOO¶DVVH[VLDULVSHWWRDOO¶DVVH\3HURJQL[FRPSUHVDWUDH\SXzYDULDUH GD\ = D\ = [ )LJXUDE 4XLQGL

 3RVVLDPRDQFKHLQYHUWLUHO¶RUGLQHGLLQWHJUD]LRQH )LJXUDF /¶LQWHJUDOHFKH GjLOYROXPHq

 0U[LNYHSPKVWWPZ\YLNPVUPHYIP[YHYPL  

z y

-PN\YH D 5HJLRQHSULVPDWLFDFRQEDVH WULDQJRODUHQHOSLDQR[\,OYROXPHGL TXHVWRSULVPDqGHILQLWRGDXQ LQWHJUDOHGRSSLRVX53HUFDOFRODUOR FRPHLQWHJUDOHLWHUDWRSRVVLDPR LQWHJUDUHSULPDULVSHWWRD\HSRL ULVSHWWRD[RSSXUHQHOO¶RUGLQH RSSRVWR (VHPSLR  E (VWUHPLGL LQWHJUD]LRQHGL

x1 yx

(3, 0, 0) yx

z  f(x, y)  3  x  y

R x

y0 1

0 (1, 0, 2)

(b) y

6HLQWHJULDPRSULPDULVSHWWRD\ LQWHJULDPROXQJRXQDUHWWDYHUWLFDOH FKHDWWUDYHUVD5HSRLGDVLQLVWUDD GHVWUDSHUFRQVLGHUDUHWXWWHOHUHWWH YHUWLFDOLSHU5 F (VWUHPLGL LQWHJUD]LRQHGL

x1 yx

(1, 1, 1) xy

x1

y R

(1, 1, 0)

(1, 0, 0)

x1

R x

yx

0

1

x

(c)

(a)

6HLQWHJULDPRSULPDULVSHWWRD[ LQWHJULDPROXQJRXQDUHWWDRUL]]RQWDOH DWWUDYHUVR5HSRLGDOEDVVRLQDOWRSHU FRQVLGHUDUHWXWWHOHUHWWHRUL]]RQWDOL SHU5

6HLOGRPLQLR5qQRUPDOHULVSHWWRDHQWUDPELJOLDVVLLO7HRUHPDGL)XELQLJDUDQ WLVFHFKHO¶LQWHJUDOHGRSSLRVLSXzFDOFRODUHFRPHLQWHJUDOHLWHUDWRLQXQRTXDOVLDVL GHLGXHRUGLQLGLLQWHJUD]LRQH7XWWDYLDXQRGHLGXHLQWHJUDOLSXzHVVHUHSLIDFLOH GDFDOFRODUHULVSHWWRDOO¶DOWUR/¶HVHPSLRFKHVHJXHPRVWUDFRPHSRVVDDFFDGHUH XQDWDOHHYHQWXDOLWj ESEMPIO 2

y

x1

&DOFRODUH

yx

1

R

GRYH5qLOWULDQJRORFRQWHQXWRQHOSLDQR[\UDFFKLXVRGDOO¶DVVHGHOOH[GDOODUHWWD \ = [HGDOODUHWWD[ = 

0

1

x

-PN\YH Soluzione /DUHJLRQHGLLQWHJUD]LRQHqPRVWUDWDQHOOD)LJXUD6HLQWHJULDPRSULPDUL /DUHJLRQHGLLQWHJUD]LRQH GHOO¶(VHPSLR VSHWWRDOOD\HSRLULVSHWWRDOOD[RWWHQLDPR

6HLQYHUWLDPRO¶RUGLQHGLLQWHJUD]LRQHHFHUFKLDPRGLFDOFRODUH

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

WURYLDPRXQRVWDFRORSHUFKp QRQVLSXzHVSULPHUHLQWHUPLQLGL IXQ]LRQLHOHPHQWDUL QRQKDXQDSULPLWLYDVHPSOLFH  1RQHVLVWHXQDUHJRODJHQHUDOHSHUSUHYHGHUHTXDOHVLDO¶RUGLQHGLLQWHJUD]LRQH PLJOLRUHLQVLWXD]LRQLGHOJHQHUH6HLOSULPRRUGLQHFKHVFHJOLDPRQRQIXQ]LRQD SURYLDPRO¶DOWUR$OFXQHYROWHVLLQFRQWUDQRGLI¿FROWjFRQHQWUDPELJOLRUGLQLH DOORUDGREELDPRXVDUHDSSURVVLPD]LRQLQXPHULFKH

y

Trovare gli estremi di integrazione

x2  y 2  1

1

'HVFULYLDPRRUDXQSURFHGLPHQWRSHUWURYDUHJOLHVWUHPLGLLQWHJUD]LRQHFKHVL SXzDSSOLFDUHDLGRPLQLGHOSLDQRFKHVRQRQRUPDOLULVSHWWRDXQRGHJOLDVVL$OFX QHUHJLRQLSLFRPSOHVVHSHUFXLTXHVWRSURFHGLPHQWRQRQIXQ]LRQDVLSRVVRQR VSHVVRVXGGLYLGHUHLQXQQXPHUR¿QLWRGLSDUWLVXRJQXQDGHOOHTXDOLIXQ]LRQD

R

xy1 0

1

x

(a) y Esce in y  11  x 2

1 R

Entra in y1x L

0

x

1

x

VXXQGR Usare sezioni verticali 4XDQGRGREELDPRFDOFRODUH PLQLR5QRUPDOHULVSHWWRDOO¶DVVH[SRVVLDPRXVDUHVH]LRQLYHUWLFDOLLQWHJUDQGR SULPDULVSHWWRD\HSRLULVSHWWRD[SURFHGHQGRFRQLVHJXHQWLWUHSDVVL  'LVHJQDUH 'LVHJQLDPR OD UHJLRQH GL LQWHJUD]LRQH FRQ OD GHVFUL]LRQH GHOOH FXUYHFKHIRUPDQRODIURQWLHUD )LJXUDD   7URYDUH JOL HVWUHPL GL LQWHJUD]LRQH ULVSHWWR DOOD \ ,PPDJLQLDPR XQD UHWWD YHUWLFDOH/FKHDWWUDYHUVD5QHOODGLUH]LRQHGHOOH\FUHVFHQWL&RQWUDVVHJQLDPR L YDORUL GL \ LQ FXL / HQWUD HG HVFH 4XHVWL VRQR JOL HVWUHPL GL LQWHJUD]LRQH ULVSHWWRD\HVRQRVROLWDPHQWHIXQ]LRQLGL[ DQ]LFKpFRVWDQWL  )LJXUDE   7URYDUHJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDOOD[6FHJOLDPRJOLHVWUHPLSHUOD [FKHFRPSUHQGDQRWXWWHOHUHWWHYHUWLFDOLSDVVDQWLSHU5/¶LQWHJUDOHPRVWUDWR TXL )LJXUDF q

(b)

y

Esce in y  11  x 2

1 R

Usare sezioni orizzontali 6H5qXQGRPLQLRQRUPDOHULVSHWWRDOO¶DVVH\DOORUD XVLDPRUHWWHRUL]]RQWDOLDQ]LFKpYHUWLFDOLQHL3DVVLH )LJXUD /¶LQWHJUDOHq

Entra in y1x

L 0

x

1

x

La x più piccola La x più grande èx0 èx1 (c)

-PN\YH 7URYDUHJOLHVWUHPLGLLQWHJUD]LRQH TXDQGRVLLQWHJUDSULPDULVSHWWRD\H SRLULVSHWWRD[

La y più grande y èy1 1

Entra in x1y R

y La y più piccola èy0 0

1

Esce in x  11  y2 x

-PN\YH 7URYDUHJOLHVWUHPLGLLQWHJUD]LRQHTXDQGRVL LQWHJUDSULPDULVSHWWRD[HSRLULVSHWWRD\

 0U[LNYHSPKVWWPZ\YLNPVUPHYIP[YHYPL  

6H5qXQGRPLQLRQRUPDOHULVSHWWRDHQWUDPELJOLDVVLDOORUDVLSXzVFHJOLHUHO¶RU GLQHGLLQWHJUD]LRQHQHJOLLQWHJUDOLLWHUDWLFRPHQHOSURVVLPRHVHPSLR

y 4

(2, 4)

ESEMPIO 3 y  2x

'LVHJQDUHODUHJLRQHGLLQWHJUD]LRQHSHUO¶LQWHJUDOH

y  x2

HVFULYHUHXQLQWHJUDOHHTXLYDOHQWHFRQO¶RUGLQHGLLQWHJUD]LRQHVFDPELDWR Soluzione /DUHJLRQHGLLQWHJUD]LRQHqGDWDGDOOHGLVXJXDJOLDQ]H[ … \ … [H … [ …  ÊTXLQGLODUHJLRQHGHOSLDQROLPLWDWDGDOOHFXUYH\ = [H\ = [WUD[ = H[ =  )LJXUDD  3HUWURYDUHJOLHVWUHPLGLLQWHJUD]LRQHQHOO¶RUGLQHLQYHUVRLPPDJLQLDPRXQD UHWWDRUL]]RQWDOHFKHDWWUDYHUVLODUHJLRQHGDVLQLVWUDDGHVWUD9LHQWUDLQ[ = \>H QHHVFHLQ[ = 2\3HUFRQVLGHUDUHWXWWHTXHVWHUHWWHIDFFLDPRYDULDUH\GD\ =  D\ =  )LJXUDE /¶LQWHJUDOHq

2

0

x

(a) y 4

(2, 4)

x

y 2

x  1y

,OYDORUHGLHQWUDPELTXHVWLLQWHJUDOLq 0

Proprietà degli integrali doppi -PN\YH

2 (b)

x

&RPHJOLLQWHJUDOLGLIXQ]LRQLGLXQDYDULDELOHJOLLQWHJUDOLGRSSLKDQQRSURSULHWj 5HJLRQHGLLQWHJUD]LRQHSHUO¶(VHPSLR DOJHEULFKHXWLOLSHULFDOFROLHOHDSSOLFD]LRQL 6H¦ [\ HJ [\ VRQROLPLWDWHHLQWHJUDELOLVXOODUHJLRQHOLPLWDWD5YDOJRQR OHVHJXHQWLSURSULHWj TXDOVLDVL QXPHURF

0XOWLSORSHUXQD FRVWDQWH 6RPPDHGLIIHUHQ]D

0RQRWRQLD VH

VX

VH

$GGLWLYLWj VH5qO¶XQLRQHGLGXHUHJLRQLGLVJLXQWH5H5

VX

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

/D3URSULHWjDVVXPHFKHODUHJLRQHGLLQWHJUD]LRQH5VLSRVVDGHFRPSRUUHLQ GXHUHJLRQLGLVJLXQWH5H5OHFXLIURQWLHUHVLDQRFRVWLWXLWHGDXQQXPHUR¿QLWR GLVHJPHQWLRFXUYHUHJRODUL/D)LJXUDPRVWUDXQHVHPSLRGHOO¶DSSOLFD]LRQH GLWDOHSURSULHWj /¶LGHDDOODEDVHGHOOHYDULHSURSULHWjqFKHJOLLQWHJUDOLVLFRPSRUWDQRFRPH VRPPH6HVRVWLWXLDPRXQDIXQ]LRQH¦ [\ FRQXQVXRPXOWLSORPHGLDQWHXQD FRVWDQWHF¦ [\ DOORUDXQDVRPPDGL5LHPDQQSHU¦

y

R1

R  R1 ª R2

R2

x

0 f (x, y) dA 

6R

f(x, y) dA 

6R1

f (x, y) dA

6R2

qVRVWLWXLWDGDXQDVRPPDGL5LHPDQQSHUF¦

-PN\YH /DSURSULHWjGLDGGLWLYLWjSHUOHUHJLRQL UHWWDQJRODULYDOHDQFKHSHUUHJLRQL GHOLPLWDWHGDFXUYHUHJRODUL

3DVVDQGR DO OLPLWH SHU Q:q VL YHGH FKH  H VRQRXJXDOL1HVHJXHFKHODSURSULHWjGHOPXOWLSORSHU XQDFRVWDQWHVLSXzWUDVIHULUHGDOOHVRPPHDJOLLQWHJUDOLGRSSL $QFKHOHDOWUHSURSULHWjVRQRIDFLOLGDYHUL¿FDUHSHUOHVRPPHGL5LHPDQQH VLWUDVIHULVFRQRDJOLLQWHJUDOLGRSSLSHUORVWHVVRPRWLYR$QFKHVHTXHVWRUDJLR QDPHQWRGjO¶LGHDXQDGLPRVWUD]LRQHULJRURVDGHOODYDOLGLWjGLTXHVWHSURSULHWj ULFKLHGHXQ¶DQDOLVLSLDWWHQWDGLFRPHFRQYHUJRQROHVRPPHGL5LHPDQQ

z 16 z  16  x 2  y 2

ESEMPIO 4

2 1

y  4x  2

x

y

y  2x

(a)

y

y  4x  2

2 x

y2 4

y  21x

x

R 0

0.5

(1, 2) y 2 4 1

x

(b)

-PN\YH D ,OVROLGR³DIRUPDGLFXQHR´GLFXL YLHQHFDOFRODWRLOYROXPHQHOO¶(VHPSLR  E /DUHJLRQHGLLQWHJUD]LRQH5LQ FXLYLHQHPRVWUDWRO¶RUGLQHG[G\

7URYDUH LO YROXPH GHO VROLGR D IRUPD GL FXQHR FKH VL WURYD VRWWR OD VXSHU¿FLH ]=  - [ - \HVRSUDODUHJLRQH5GHOLPLWDWDGDOODFXUYD\ = 2[GDOODUHWWD \ = [ - HGDOO¶DVVHGHOOH[ Soluzione /D)LJXUDDPRVWUDODVXSHU¿FLHHLOVROLGRDIRUPDGLFXQHRGLFXLYRJOLDPR FDOFRODUHLOYROXPH/D)LJXUDEPRVWUDODUHJLRQHGLLQWHJUD]LRQHQHOSLDQR [\6HLQWHJULDPRQHOO¶RUGLQHG\G[ SULPDULVSHWWRDOOD\HSRLULVSHWWRDOOD[  VHUYLUDQQRGXHLQWHJUD]LRQLSHUFKp\YDULDGD\ = D\ = 1[SHU … [ … H SRLYDULDGD\ = [ - D\ = 1[SHU … [ … 6FHJOLDPRTXLQGLGLLQWHJUDUH QHOO¶RUGLQHG[G\FKHULFKLHGHVRORXQLQWHJUDOHGRSSLRLFXLHVWUHPLGLLQWHJUD ]LRQHVRQRLQGLFDWLQHOOD)LJXUDE,OYROXPHVLFDOFRODTXLQGLFRQO¶LQWHJUDOH LWHUDWR

 (YLLJHSJVSH[LJVU\UHKVWWPHPU[LNYHaPVUL  

4.3 Aree calcolate con una doppia integrazione ,QTXHVWRSDUDJUDIRPRVWULDPRFRPHXVDUHJOLLQWHJUDOLGRSSLSHUFDOFRODUHOHDUHH GLUHJLRQLOLPLWDWHGHOSLDQRHSHUWURYDUHLOYDORUHPHGLRGLXQDIXQ]LRQHGLGXH YDULDELOL

Aree di regioni limitate del piano 6HSRQLDPR¦ [\ = QHOODGH¿QL]LRQHGLLQWHJUDOHGRSSLRVXXQDUHJLRQH5GDWD QHOSDUDJUDIRSUHFHGHQWHOHVRPPHGL5LHPDQQVLULGXFRQRD 







Ê VHPSOLFHPHQWH OD VRPPD GHOOH DUHH GHL UHWWDQJROLQL GHOOD SDUWL]LRQH GL 5 H DSSURVVLPDTXHOODFKHYRUUHPPRGH¿QLUHFRPHDUHDGL59LDYLDFKHODQRUPDGL XQDSDUWL]LRQHGL5WHQGHD]HURO¶DOWH]]DHODODUJKH]]DGLWXWWLLUHWWDQJROLGHOOD SDUWL]LRQHWHQGRQRD]HURHODFRSHUWXUDGL5GLYHQWDVHPSUHSLFRPSOHWD )LJXUD  'H¿QLDPRFRPHDUHDGL5LOOLPLWH 



 DEFINIZIONE

/¶DUHDGLXQDUHJLRQHFKLXVDHOLPLWDWD5GHOSLDQRq

&RPHSHUOHDOWUHGH¿QL]LRQLGLTXHVWRFDSLWRORTXHVWDGH¿QL]LRQHVLDSSOLFDD UHJLRQLEHQSLJHQHUDOLULVSHWWRDOODSUHFHGHQWHGH¿QL]LRQHGLDUHDLQWHUPLQLGL IXQ]LRQLGLXQDYDULDELOHPDFRLQFLGHFRQODGH¿QL]LRQHSUHFHGHQWHVXOOHUHJLRQL SHUOHTXDOLVLDSSOLFDQRHQWUDPEH3HUFDOFRODUHO¶LQWHJUDOHGHOODGH¿QL]LRQHGL DUHDLQWHJULDPRODIXQ]LRQHFRVWDQWH¦ [\ = VX5 ESEMPIO 1

7URYDUHO¶DUHDGHOODUHJLRQHOLPLWDWDGLSLDQR5UDFFKLXVDGD\ = [H\ = [QHO SULPRTXDGUDQWH Soluzione 'LVHJQLDPRODUHJLRQH )LJXUD RVVHUYDQGRFKHOHGXHFXUYHVLLQWHUVHFDQR QHOO¶RULJLQHHLQ  HFDOFROLDPRO¶DUHDFRPH

y 1

(1, 1)

yx yx

1RWLDPRFKHO¶LQWHJUDOHLQXQDYDULDELOH1  [ - [ G[FKHULPDQHGRSRDYHUFDO FRODWRO¶LQWHJUDOHLQWHUQRqO¶LQWHJUDOHSHUFDOFRODUHO¶DUHDFRPSUHVDWUDLJUD¿FL 0 GHOOHIXQ]LRQL\ = [H\ = [ -PN\YH

y  x2

y  x2 1

/DUHJLRQHGHOO¶(VHPSLR

x

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

ESEMPIO 2 y

7URYDUH O¶DUHD GHOOD UHJLRQH 5 UDFFKLXVD GDOOD SDUDEROD \ = [ H GDOOD UHWWD \ = [ + 

y  x2 (2, 4)

yx2

4 1

1y

dx dy

Soluzione 6HVXGGLYLGLDPR5QHOOHUHJLRQL5H5PRVWUDWHQHOOD)LJXUDDSRVVLDPR FDOFRODUHO¶DUHDFRPHVHJXH

y–2

R2 (–1, 1)

1

R1

1y

dx dy

0 –1y

x

0

'¶DOWURFDQWRLQYHUWHQGRO¶RUGLQHGLLQWHJUD]LRQH )LJXUDE VLRWWLHQH

(a)

y

(2, 4)

yx2

2

(–1, 1)

4XHVWRVHFRQGRSURFHGLPHQWRFKHULFKLHGHXQVRORLQWHJUDOHqSLVHPSOLFHHGq O¶XQLFRFKHVHJXLUHPPRQHOODSUDWLFD/¶DUHDq

y  x2

–1 x

x2 2

dy dx

Valore medio

,OYDORUHPHGLRGLXQDIXQ]LRQHLQWHJUDELOHGLXQDYDULDELOHVXXQLQWHUYDOORFKLXVR qO¶LQWHJUDOHGHOODIXQ]LRQHVXOO¶LQWHUYDOORGLYLVRSHUODOXQJKH]]DGHOO¶LQWHUYDOOR 0 3HUXQDIXQ]LRQHLQWHJUDELOHGLGXHYDULDELOLGH¿QLWDVXXQDUHJLRQHOLPLWDWDGHO (b) SLDQRLOYDORUHPHGLRqO¶LQWHJUDOHVXOODUHJLRQHGLYLVRSHUO¶DUHDGHOODUHJLRQH -PN\YH /RVLSXzYLVXDOL]]DUHSHQVDQGRDOODIXQ]LRQHFRPHDOO¶DOWH]]DSXQWRSHUSXQWR 3HUFDOFRODUHTXHVW¶DUHDVRQRQHFHVVDUL LQXQGDWRLVWDQWHGLXQOLTXLGRLQPRYLPHQWRDOO¶LQWHUQRGLXQVHUEDWRLROHFXL D GXHLQWHJUDOLGRSSLVHODSULPD SDUHWLYHUWLFDOLVHJXDQRODIURQWLHUDGHOODUHJLRQH/¶DOWH]]DPHGLDGHOO¶DFTXDQHO LQWHJUD]LRQHqULVSHWWRD[PD E VROR VHUEDWRLR VL SXz WURYDUH DVSHWWDQGR FKH O¶DFTXD VL IHUPL D XQ¶DOWH]]D FRVWDQWH XQRVHODSULPDLQWHJUD]LRQHqULVSHWWR /¶DOWH]]D q XJXDOH DO YROXPH GHOO¶DFTXD QHO FRQWHQLWRUH GLYLVR SHU O¶DUHD GL5 D\ (VHPSLR  4XLQGLGH¿QLDPRLOYDORUHPHGLRGLXQDIXQ]LRQHLQWHJUDELOH¦VXXQDUHJLRQH5 FRPHVHJXH x

9DORUHPHGLRGL¦VX5 = DUHDGL5



6H¦qODWHPSHUDWXUDGLXQDODVWUDVRWWLOHFKHFRSUH5DOORUDO¶LQWHJUDOHGRSSLR GL¦VX5GLYLVRSHUO¶DUHDGL5qODWHPSHUDWXUDPHGLDGHOODODVWUD6H¦ [\ qOD GLVWDQ]DWUDLOSXQWR [\ HXQSXQWR¿VVR3DOORUDLOYDORUHPHGLRGL¦VX5qOD GLVWDQ]DPHGLDGHLSXQWLGL5GD3

 0U[LNYHSPKVWWPPUJVVYKPUH[LWVSHYP  

ESEMPIO 3

7URYDUHLOYDORUHPHGLRGL¦ [\ = [FRV[\VXOUHWWDQJROR5 … [ … p … \ …  Soluzione ,OYDORUHGHOO¶LQWHJUDOHGL¦VX5q

/¶DUHDGL5qp,OYDORUHPHGLRGL¦VX5q>p

4.4 Integrali doppi in coordinate polari *OLLQWHJUDOLGRSSLVRQRDYROWHSLIDFLOLGDFDOFRODUHVHVLSDVVDDOOHFRRUGLQDWH SRODUL4XHVWRSDUDJUDIRPRVWUDFRPHVYROJHUHLOFDPELDPHQWRGLFRRUGLQDWHH FRPHFDOFRODUHJOLLQWHJUDOLVXUHJLRQLODFXLIURQWLHUDqGDWDGDHTXD]LRQLSRODUL

Integrali in coordinate polari 4XDQGRDEELDPRGH¿QLWRO¶LQWHJUDOHGRSSLRGLXQDIXQ]LRQHVXXQDUHJLRQH5QHO SLDQR[\VLDPRSDUWLWLVXGGLYLGHQGR5LQUHWWDQJROLLFXLODWLHUDQRSDUDOOHOLDJOL DVVLFRRUGLQDWL(UDODIRUPDQDWXUDOHGDXVDUHSRLFKpLORURODWLKDQQRXQYDORUH GHOOD[RGHOOD\FRVWDQWH,QFRRUGLQDWHSRODULODIRUPDQDWXUDOHqXQ³UHWWDQJROR SRODUH´LFXLODWLKDQQRFRVWDQWLLYDORULGLURGLu 6XSSRQLDPRFKHXQDIXQ]LRQH¦ Uu VLDGH¿QLWDVXXQDUHJLRQH5UDFFKLXVD GDLUDJJLu = aHu = bHGDOOHFXUYHFRQWLQXHU = J u HU = J u 6XSSRQLDPR DQFKHFKH … J u … J u … DSHURJQLYDORUHGLuFRPSUHVRWUDaHb$OORUD5 VLWURYDDOO¶LQWHUQRGLXQDUHJLRQHDIRUPDGLYHQWDJOLR4GH¿QLWDGDOOHGLVXJXD JOLDQ]H … U … DHa … u … b )LJXUD  a  2u Ak u b R

(rk , uk)

a  u

r Q

u

r  g2(u)

3r 2r u p

ua ra

r  g1(u)

r 0

u0

5LFRSULDPR 4 FRQ XQ UHWLFROR IRUPDWR GD DUFKL FLUFRODUL H UDJJL *OL DUFKL IDQQRSDUWHGLFLUFRQIHUHQ]HFRQFHQWURQHOO¶RULJLQHGLUDJJLR¢U¢U ÁP¢U GRYH¢U = D>P,UDJJLVRQRGDWLGD u = a  u = a + ¢u  u = a + ¢u  Á  u = a + P¿¢u = b GRYH¢u = b - a >P¿*OLDUFKLHLUDJJLIRUPDQRXQDSDUWL]LRQH4LQSLFFROH]RQH GHWWH³UHWWDQJROLSRODUL´

-PN\YH /DUHJLRQH5J u … U … J u  a … u … bqFRQWHQXWDQHOODUHJLRQHD IRUPDGLYHQWDJOLR4 … U … D a … u … b/DSDUWL]LRQHGL4GDWD GDJOLDUFKLFLUFRODULHGDLUDJJLLQGXFH XQDSDUWL]LRQHGL5

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

1XPHULDPR L UHWWDQJROL SRODUL FKH VL WURYDQR DOO¶LQWHUQR GL 5 O¶RUGLQH QRQ FRQWD GHQRWDQGROHULVSHWWLYHDUHHFRQ¢$¢$ Á¢$Q6LD UNuN XQJHQHULFR SXQWRQHOUHWWDQJRORSRODUHODFXLDUHDq¢$N3RVVLDPRDOORUDVFULYHUHOHVRPPH

6H¦qFRQWLQXDVXWXWWR5TXHVWDVRPPDWHQGHUjDXQOLPLWHYLDYLDFKHUDI¿ QLDPRLOUHWLFRORSHUIDUWHQGHUHD]HUR¢UH¢u4XHVWROLPLWHqGHWWRLQWHJUDOH GRSSLRGL¦VX5,QVLPEROL u r ⎛r  r⎛ ⎝k 2⎝

⎛r  r ⎛ ⎝k 2⎝ rk

Ak

Settore piccolo Settore grande

3HUFDOFRODUHTXHVWROLPLWHGREELDPRGDSSULPDVFULYHUHODVRPPD6QLQXQ PRGRLQFXL¢$NVLDHVSUHVVDLQWHUPLQL¢UDQG¢u3HUFRPRGLWjSUHQGLDPRSHUUN ODPHGLDGHLUDJJLGHJOLDUFKLLQWHUQRHGHVWHUQRFKHGHOLPLWDQRLONHVLPRUHWWDQ JRORSRODUH¢$N,OUDJJLRGHOO¶DUFRLQWHUQRFKHUDFFKLXGH¢$NqTXLQGLUN - ¢U>  )LJXUD ,OUDJJLRGHOO¶DUFRHVWHUQRqUN + ¢U>  /¶DUHDGHOVHWWRUHFLUFRODUHGLUDJJLRUHDQJRORuq

0

-PN\YH /¶RVVHUYD]LRQHFKH DUHDGHO DUHDGHO ¢$N = a VHWWRUH b - a VHWWRUH b SLFFROR JUDQGH SRUWDDOODIRUPXOD¢$N = UN¢U¢u

FRPHVLSXzYHUL¿FDUHPROWLSOLFDQGRpUO¶DUHDGHOFHUFKLRSHUu>pODIUD]LRQH GLDUHDGHOFHUFKLRFRQWHQXWDQHOVHWWRUH4XLQGLOHDUHHGHLVHWWRULFLUFRODULFRUUL VSRQGHQWLDLQRVWULGXHDUFKLVRQR 5DJJLRLQWHUQR 5DJJLRHVWHUQR 3HUWDQWR ¢$N = DUHDGHOVHWWRUHSLJUDQGH - DUHDGHOVHWWRUHSLSLFFROR   ,QVHUHQGRTXHVWRULVXOWDWRQHOODVRPPDFKHGj6QRWWHQLDPR

4XDQGRQ :q HLYDORULGL¢UH¢uWHQGRQRD]HURTXHVWHVRPPHWHQGRQRDOO¶LQ WHJUDOHGRSSLR

8QDYHUVLRQHGHO7HRUHPDGL)XELQLDIIHUPDFKHLOOLPLWHDFXLWHQGRQRTXHVWH VRPPHVLSXzFDOFRODUHPHGLDQWHLQWHJUDOLVLQJROLLWHUDWLULVSHWWRDUHDu

 0U[LNYHSPKVWWPPUJVVYKPUH[LWVSHYP  

Trovare gli estremi di integrazione

y

,OSURFHGLPHQWRSHUGHWHUPLQDUHJOLHVWUHPLGLLQWHJUD]LRQHLQFRRUGLQDWHUHWWDQ JRODULqYDOLGRDQFKHSHUOHFRRUGLQDWHSRODUL3HUFDOFRODUH45¦ UX G$VXXQD UHJLRQH5LQFRRUGLQDWHSRODULLQWHJUDQGRSULPDULVSHWWRDUHSRLULVSHWWRDu VYROJLDPRLVHJXHQWLSDVVL  'LVHJQDUH'LVHJQLDPRODUHJLRQHFRQODGHVFUL]LRQHGHOOHFXUYHFKHIRUPDQR ODIURQWLHUD )LJXUDD   7URYDUH JOL HVWUHPL GL LQWHJUD]LRQH ULVSHWWR D U ,PPDJLQLDPR XQ UDJJLR / XVFHQWHGDOO¶RULJLQHFKHDWWUDYHUVD5QHOODGLUH]LRQHGHOOHUFUHVFHQWL1RWLDPR LYDORULGLULQFXL/HQWUDHGHVFHGD54XHVWLVRQRJOLHVWUHPLGLLQWHJUD]LRQH ULVSHWWRDU,QJHQHUHGLSHQGRQRGDOO¶DQJRORuFKH/IRUPDFRQLOVHPLDVVH GHOOH[SRVLWLYH )LJXUDE   7URYDUHJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDu7URYLDPRLYDORULPLQLPRH PDVVLPRGLuFKHGHOLPLWDQR5  4XHVWLVRQRJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDu )LJXUDF /¶LQWHJUDOH SRODUHLWHUDWRq

x 2  y2  4

2 R

12

y  12

⎛12, 12⎛ ⎝ ⎝

x

0 (a) y Esce in r  2 L 2 R

r sin   y  12 o r  12 cosec 

Entra in r  12 cosec  

x

0 (b) y

ESEMPIO 1 2

La  più grande è  . 2 L yx R

7URYDUHJOLHVWUHPLGLLQWHJUD]LRQHSHULQWHJUDUH¦ Uu VXOODUHJLRQH5FRQWHQXWD 12 DOO¶LQWHUQRGHOODFDUGLRLGHU =  + FRVuHDOO¶HVWHUQRGHOODFLUFRQIHUHQ]DU=  Soluzione La  più piccola è  .  'DSSULPDGLVHJQLDPRODUHJLRQHHFRQWUDVVHJQLDPROHFXUYHFKHODUDFFKLXGR 4 x QR )LJXUD  0  3RL WURYLDPR JOL HVWUHPL GL LQWHJUD]LRQH ULVSHWWR D U 8Q JHQHULFR UDJJLR (c) XVFHQWHGDOO¶RULJLQHHQWUDLQ5SHUU = HQHHVFHSHUU =  + FRVu -PN\YH  ,Q¿QHWURYLDPRJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDu,UDJJLXVFHQWLGDOO¶RUL 7URYDUHJOLHVWUHPLGLLQWHJUD]LRQHLQ JLQHFKHLQWHUVHFDQR5YDQQRGDu = - p>Du = p>/¶LQWHJUDOHq FRRUGLQDWHSRODUL

6H¦ Uu qODIXQ]LRQHFRVWDQWHGLYDORUHO¶LQWHJUDOHGL¦VX5qO¶DUHDGL5



 2

y r  1  cos 

Area in coordinate polari

/¶DUHDGLXQDUHJLRQHFKLXVDHOLPLWDWD5QHOSLDQRGRWDWRGLFRRUGLQDWHSRODULq 

1

2

x

 4XHVWDIRUPXODSHUO¶DUHDqFRHUHQWHFRQWXWWHOHIRUPXOHSUHFHGHQWLPDQRQOR GLPRVWULDPR

  – 2

L Entra in Esce in r  1  cos  r1

-PN\YH 7URYDUHLOLPLWLGLLQWHJUD]LRQHLQ FRRUGLQDWHSRODULSHUODUHJLRQH GHOO¶(VHPSLR

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

ESEMPIO 2

7URYDUHO¶DUHDUDFFKLXVDGDOODOHPQLVFDWDU = FRVu 'LIIHUHQ]LDOHGHOO¶DUHDLQFRRUGLQDWH SRODUL G$ = UGUGu

y  4

Soluzione 7UDFFLDPRODOHPQLVFDWDSHUGHWHUPLQDUHJOLHVWUHPLGLLQWHJUD]LRQH )LJXUD  HRVVHUYLDPRGDOODVLPPHWULDGHOODUHJLRQHFKHO¶DUHDWRWDOHqSDULDYROWHTXHOOD GHOODSDUWHQHOSULPRTXDGUDQWH

Esce in r  14 cos 2

x Entra in r0

– 4

r 2  4 cos 2

Convertire integrali cartesiani in integrali polari

-PN\YH 3HULQWHJUDUHVXOODUHJLRQHFRORUDWD IDFFLDPRYDULDUHUGDD1FRVuH uGDDp> (VHPSLR 

,OSURFHGLPHQWRSHUSDVVDUHGDXQLQWHJUDOHFDUWHVLDQR 45¦ [\ G[G\DXQLQ WHJUDOH SRODUH FRPSUHQGH GXH SDVVL 'DSSULPD HIIHWWXLDPR OH VRVWLWX]LRQL [ = UFRVuH\ = UVLQuHVRVWLWXLDPRG[G\FRQUGUGuQHOO¶LQWHJUDOHFDUWHVLDQR 3RLWURYLDPRJOLHVWUHPLGLLQWHJUD]LRQHSRODULSHUODIURQWLHUDGL5/¶LQWHJUDOH FDUWHVLDQRGLYHQWDDOORUD

GRYH*GHQRWDODVWHVVDUHJLRQHGLLQWHJUD]LRQHGHVFULWWDRUDLQFRRUGLQDWHSRODUL ÊDQDORJRDOPHWRGRGLVRVWLWX]LRQHSHUIXQ]LRQLGLXQDYDULDELOHDSDUWHLOIDWWR FKHTXLDEELDPRGXHYDULDELOLGDVRVWLWXLUHDQ]LFKpXQDVROD2VVHUYLDPRFKHLO GLIIHUHQ]LDOHGHOO¶DUHDG[G\QRQqVRVWLWXLWRGDGUGuPDGDUGUGu8QRVWXGLR SL JHQHUDOH GHO FDPELR GL YDULDELOL VRVWLWX]LRQL  QHJOL LQWHJUDOL PXOWLSOL YHUUj VYROWRQHO3DUDJUDIR ESEMPIO 3

&DOFRODUH

y

1

 –1

y  11  x2 r1

0 0

1

GRYH 5 q OD UHJLRQH VHPLFLUFRODUH GHOLPLWDWD GDOO¶DVVH GHOOH [ H GDOOD FXUYD \ = 2 - [ )LJXUD  x

Soluzione

-PN\YH ,QFRRUGLQDWHFDUWHVLDQHO¶LQWHJUDOHLQTXHVWLRQHqXQLQWHJUDOHQRQHOHPHQWDUHH /DUHJLRQHVHPLFLUFRODUHGHOO¶(VHPSLR QRQHVLVWHXQPRGRGLUHWWRGLLQWHJUDUH QpULVSHWWRD[QpD\4XHVWRLQWHJUD qODUHJLRQH … U …    … u … p OHHDOWULDQDORJKLVRQRSHUzLPSRUWDQWLLQPDWHPDWLFDSHUHVHPSLRLQVWDWLVWLFD

H GREELDPR WURYDUH XQ PRGR SHU FDOFRODUOR /H FRRUGLQDWH SRODUL ULVROYRQR LO SUREOHPD(IIHWWXDQGRODVRVWLWX]LRQH[ = UFRVu\ = UVLQuHXVDQGRDOSRVWRGL G\G[LOGLIIHUHQ]LDOHUGUGuSRVVLDPRFDOFRODUHO¶LQWHJUDOHFRPHVHJXH

 0U[LNYHSPKVWWPPUJVVYKPUH[LWVSHYP  

/DUQHOO¶HVSUHVVLRQHUGUGu KDSHUPHVVRGLLQWHJUDUH 6HQ]DQRQDYUHPPR SRWXWRWURYDUHXQDSULPLWLYDSHULOSULPRLQWHJUDOH TXHOORLQWHUQR 

ESEMPIO 4

&DOFRODUHO¶LQWHJUDOH

Soluzione ,QWHJUDQGRULVSHWWRD\RWWHQLDPR

XQLQWHJUDOHGLI¿FLOHGDFDOFRODUHVHQ]DULFRUUHUHDOOHWDYROH 9D PHJOLR VH SDVVLDPR LQ FRRUGLQDWH SRODUL /D UHJLRQH GL LQWHJUD]LRQH LQ FRRUGLQDWHFDUWHVLDQHqGDWDGDOOHGLVXJXDJOLDQ]H … \ … 2 - [H … [ …  FKHFRUULVSRQGRQRDOO¶LQWHUQRGHOTXDUWRGLFHUFKLRGLUDJJLRXQLWDULR[ + \ =  FRQWHQXWRQHOSULPRTXDGUDQWH )LJXUDLOVRORSULPRTXDGUDQWH (IIHWWXDQGR LOFDPELRGLFRRUGLQDWH[ = UFRVu\ = UVLQu … u … p>H … U … HVRVWL WXHQGRG[G\FRQUGUGuQHOO¶LQWHJUDOHGRSSLRRWWHQLDPR

z z  9  x2  y2 9

&RPHPDLLOSDVVDJJLR DOOHFRRUGLQDWHSRODULTXLqFRVuHI¿FDFH"8QPRWLYRq FKH[ + \VLVHPSOL¿FDGLYHQWDQGRU8QDOWURqFKHJOLHVWUHPLGLLQWHJUD]LRQH GLYHQWDQRFRVWDQWL

ESEMPIO 5

–2

7URYDUHLOYROXPHGHOODUHJLRQHGLVSD]LROLPLWDWDGDOGLVRSUDGDOSDUDERORLGH ] =  - [ - \HGDOGLVRWWRGDOFHUFKLRGLUDJJLRXQRQHOSLDQR[\ 2

x2  y2  1

2

y

Soluzione x /DUHJLRQHGLLQWHJUD]LRQH5qLOFHUFKLRXQLWDULR[ + \ = FKHqGHVFULWWRLQ FRRUGLQDWHSRODULGDU =  … u … p/DUHJLRQHVROLGDqPRVWUDWDQHOOD)LJXUD -PN\YH /DUHJLRQHVROLGDGHOO¶(VHPSLR 

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

,OYROXPHqGDWRGDOO¶LQWHJUDOHGRSSLR

ESEMPIO 6

8VDQGRO¶LQWHJUD]LRQHLQFRRUGLQDWHSRODULWURYDUHO¶DUHDGHOODUHJLRQH5GHOSLD QR[\UDFFKLXVDGDOODFLUFRQIHUHQ]D[ + \ + VRSUDODUHWWD\ = HVRWWRODUHWWD \ = 1[ y

y  13x

2 y  1, o r  cosec u

(1, 13) R

1

0

(13, 1) p 2 p 3 x  y2  4 6 1 2

-PN\YH /DUHJLRQH5GHOO¶(VHPSLR

x

Soluzione /DUHJLRQH5qPRVWUDWDQHOOD)LJXUD1RWLDPRSULPDGLWXWWRFKHODUHWWD \ = 1[KDSHQGHQ]D1 = WJuFRVLFFKpu = p>2VVHUYLDPRSRLFKHODUHWWD \ =  LQWHUVHFD OD FLUFRQIHUHQ]D [ + \ =  TXDQGR [ +  =  FLRq [ = 1 ,QROWUHODUHWWDUDGLDOHSDVVDQWHSHUO¶RULJLQHHSHULOSXQWR 1 KDSHQGHQ]D >1 = WJuHKDFRVuFRPHDQJRORGLLQFOLQD]LRQHu = p>4XHVWLGDWLVRQR PRVWUDWLQHOOD)LJXUD $GHVVRSHUODUHJLRQH5TXDQGRuYDULDGDp>Dp>ODFRRUGLQDWDSRODUH UYDULDGDOODUHWWDRUL]]RQWDOH\ = DOODFLUFRQIHUHQ]D[ + \ = ,QVHUHQGRUVLQ u DOSRVWRGL\QHOO¶HTXD]LRQHGHOODUHWWDRUL]]RQWDOHWURYLDPRUVLQu = FLRq U = FRVHFuFKHqO¶HTXD]LRQHSRODUHGHOODVWHVVDUHWWD/¶HTXD]LRQHSRODUHGHOOD FLUFRQIHUHQ]DqU = 4XLQGLLQFRRUGLQDWHSRODULSHUp> … u … p>UYDULDGD U = FRVHFu DU = 1HVHJXHFKHO¶LQWHJUDOHLWHUDWRSHUO¶DUHDqTXLQGL

4.5 Integrali tripli in coordinate rettangolari &RVuFRPHJOLLQWHJUDOLGRSSLFLSHUPHWWRQRGLDIIURQWDUHVLWXD]LRQLSLJHQHUDOL ULVSHWWRDJOLLQWHJUDOLVLQJROLJOLLQWHJUDOLWULSOLFLSHUPHWWRQRGLULVROYHUHSUREOH PLDQFRUDSLJHQHUDOL8VLDPRJOLLQWHJUDOLWULSOLSHUFDOFRODUHLYROXPLGL¿JXUH WULGLPHQVLRQDOLHLOYDORUHPHGLRGLXQDIXQ]LRQHVXXQDUHJLRQHWULGLPHQVLRQDOH *OLLQWHJUDOLWULSOLHPHUJRQRDQFKHQHOORVWXGLRGHLFDPSLYHWWRULDOLHGHOPRWRGHL ÀXLGLLQWUHGLPHQVLRQLFRPHYHGUHPRQHO&DSLWROR

 0U[LNYHSP[YPWSPPUJVVYKPUH[LYL[[HUNVSHYP  

Integrali tripli

z

6H) [\] qXQDIXQ]LRQHGH¿QLWDVXXQDUHJLRQHFKLXVDHOLPLWDWD'GHOORVSD ]LRFRPHODUHJLRQHRFFXSDWDGDXQDVIHUDVROLGDRGDXQEORFFRGLDUJLOODDOORUD O¶LQWHJUDOH GL ) VX ' VL SXz GH¿QLUH FRPH VHJXH 6XGGLYLGLDPR XQD UHJLRQH D IRUPDGLSDUDOOHOHSLSHGRFRQWHQHQWH'LQFHOOHUHWWDQJRODULXVDQGRSLDQLSDUDOOHOL DJOLDVVLFRRUGLQDWL )LJXUD 1XPHULDPROHFHOOHFRPSOHWDPHQWHFRQWHQXWH LQ'FRQLQXPHULGDDQLQXQRUGLQHTXDOVLDVLODFHOODNHVLPDKDGLPHQVLRQL ¢[N * ¢\N * ¢]N H YROXPH ¢9N = ¢[N¢\N¢]N 6FHJOLDPR XQ SXQWR [N \N ]N  LQ RJQXQDGHOOHFHOOHHIRUPLDPRODVRPPD 



(x k , yk , zk ) zk

D yk

 xk

x

-PN\YH 3DUWL]LRQHGLXQVROLGRLQFHOOH &LLQWHUHVVDFKHFRVDVXFFHGHTXDQGR'qVXGGLYLVDLQFHOOHYLDYLDSLSLF UHWWDQJRODULGLYROXPH¢9N



FROHRYYHURTXDQGR¢[N¢\N¢]NHTXLQGLODQRUPDGHOODSDUWL]LRQH737FLRqLO PDVVLPRWUDLYDORULGL¢[N¢\N¢]NWHQGRQRWXWWLD]HUR4XDQGRVLRWWLHQHXQYD ORUHOLPLWHLQGLSHQGHQWHGDOODVFHOWDGHOOHSDUWL]LRQLHGHLSXQWL [N\N]N GLFLDPR FKH)qLQWHJUDELOHVX'&RPHSULPDqSRVVLELOHGLPRVWUDUHFKHVH)qFRQWLQXD HODVXSHU¿FLHFKHUDFFKLXGH'qIRUPDWDGDXQQXPHUR¿QLWRGLVXSHU¿FLUHJRODUL FKHVLFRQJLXQJRQROXQJRXQQXPHUR¿QLWRGLFXUYHUHJRODULDOORUD)qLQWHJUDEL OH4XDQGR737:HLOQXPHURQGLFHOOHWHQGHDqOHVRPPH6QWHQGRQRDXQ OLPLWH&KLDPLDPRTXHVWROLPLWHLQWHJUDOHWULSORGL)VX'HVFULYLDPR R /HUHJLRQL'VXFXLOHIXQ]LRQLFRQWLQXHVRQRLQWHJUDELOLVRQRTXHOOHFKHKDQQR IURQWLHUH³UDJLRQHYROPHQWHUHJRODUL´

Volume di una regione nello spazio 6H)qODIXQ]LRQHFRVWDQWHGLYDORUHOHVRPPHGHOO¶(TXD]LRQH  VLULGXFRQRD

4XDQGR¢[N¢\NH¢]NWHQGRQRD]HUROHFHOOH¢9NGLYHQWDQRVHPSUHSLSLFFROHH SLQXPHURVHHULHPSLRQRXQDSRU]LRQHVHPSUHPDJJLRUHGL''H¿QLDPRTXLQGL LOYROXPHGL'FRQO¶LQWHJUDOHWULSOR

DEFINIZIONE

,OYROXPHGLXQDUHJLRQHFKLXVDHOLPLWDWD'GHOORVSD]LRq

4XHVWDGH¿QL]LRQHFRLQFLGHFRQOHQRVWUHSUHFHGHQWLGH¿QL]LRQLGLYROXPHDQFKH VH RPHWWLDPR OD YHUL¿FD GL TXHVWR IDWWR &RPH YHGUHPR WUD XQ DWWLPR TXHVWR LQWHJUDOHFLSHUPHWWHGLFDOFRODUHLYROXPLGHLVROLGLUDFFKLXVLGDVXSHU¿FLFXUYH

y

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

Trovare gli estremi di integrazione nell’ordine dz dy dx &DOFROLDPRXQLQWHJUDOHWULSORDSSOLFDQGRXQDYHUVLRQHWULGLPHQVLRQDOHGHO7H RUHPDGL)XELQL 3DUDJUDIR SHUFDOFRODUORFRQWUHVXFFHVVLYLLQWHJUD]LRQLLQ XQDYDULDELOH&RPHSHUJOLLQWHJUDOLGRSSLHVLVWHXQSURFHGLPHQWRJHRPHWULFR SHUWURYDUHJOLHVWUHPLGLLQWHJUD]LRQHSHUTXHVWLLQWHJUDOLVLQJROL 3HUFDOFRODUH

VXXQDUHJLRQH'LQWHJULDPRSULPDULVSHWWRD]SRLULVSHWWRD\HLQ¿QHULVSHWWR D[ 3RVVLDPRVFHJOLHUHXQGLYHUVRRUGLQHGLLQWHJUD]LRQHPDLOSURFHGLPHQWRq VLPLOHFRPHPRVWULDPRQHOO¶(VHPSLR  'LVHJQDUH'LVHJQLDPRODUHJLRQH'QRQFKpODVXD³RPEUD´5 ODSURLH]LRQH YHUWLFDOH VXOSLDQR[\,QGLFKLDPRODGHVFUL]LRQHGHOOHVXSHU¿FLFKHIRUPDQR ODIURQWLHUDVXSHULRUHHLQIHULRUHGL'HGHOOHFXUYHFKHIRUPDQRODIURQWLHUD VXSHULRUHHLQIHULRUHGL5 z z  f2(x, y)

D z  f1(x, y)

y y  g1(x)

a b

R

x

y  g2(x)

 7URYDUHJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDOOD]7UDFFLDPRXQDUHWWD0SDV VDQWHSHUXQJHQHULFRSXQWR [\ GL5HSDUDOOHODDOO¶DVVHGHOOH]$OFUHVFHUH GL]0HQWUDLQ'LQ] = ¦ [\ HQHHVFHLQ] = ¦ [\ 4XHVWLVRQRJOLHVWUHPL GLLQWHJUD]LRQHULVSHWWRD] z

M Esce in z  f2(x, y) D

Entra in z  f1(x, y) y a y  g1(x) b

R

x (x, y)

y  g2(x)

 0U[LNYHSP[YPWSPPUJVVYKPUH[LYL[[HUNVSHYP  

 7URYDUHJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDOOD\7UDFFLDPRXQDUHWWD/SDV VDQWHSHU [\ HSDUDOOHODDOO¶DVVHGHOOH\$OFUHVFHUHGL\/HQWUDLQ5LQ \ = J [ HQHHVFHLQ\ = J [ 4XHVWLVRQRJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWR D\ z M

D

Entra in y  g1(x) a

y

x b x

R (x, y)

L Esce in y  g2(x)

 7URYDUHJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDOOD[6FHJOLDPRLYDORULHVWUH PL GL [ FKH LQFOXGDQR WXWWH OH UHWWH SDVVDQWL SHU 5 H SDUDOOHOH DOO¶DVVH GHOOH \ [ = DH[ = EQHOO¶LOOXVWUD]LRQHFKHSUHFHGH 4XHVWLVRQRJOLHVWUHPLGLLQWH JUD]LRQHULVSHWWRD[/¶LQWHJUDOHq

 6H FDPELDPR O¶RUGLQH GL LQWHJUD]LRQH EDVWD VHJXLUH XQ SURFHGLPHQWR DQD ORJR/¶³RPEUD´GHOODUHJLRQH'VLWURYDQHOSLDQRGHOOHXOWLPHGXHYDULDELOL ULVSHWWRDFXLYLHQHVYROWDO¶LQWHJUD]LRQHLWHUDWD ,OSURFHGLPHQWRFKHSUHFHGHVLDSSOLFDRJQLYROWDFKHXQDUHJLRQHGLVSD]LR 'qOLPLWDWDGDOO¶DOWRHGDOEDVVRGDXQDVXSHU¿FLHHODVXDUHJLRQH³RPEUD´5q XQGRPLQLRQRUPDOHULVSHWWRDOO¶DVVH[6H5qLQYHFHQRUPDOHULVSHWWRDOO¶DVVH\ DOORUDRFFRUUHLQYHUWLUHO¶RUGLQHGLLQWHJUD]LRQHGDG\G[DG[G\ ESEMPIO 1

7URYDUH LO YROXPH GHOOD UHJLRQH ' FRPSUHVD WUD OH VXSHU¿FL ] = [ + \ H ] =  - [ - \ Soluzione ,OYROXPHq

O¶LQWHJUDOHGL) [\] = VX'3HUWURYDUHJOLHVWUHPLGLLQWHJUD]LRQHQHFHV VDULSHUFDOFRODUHO¶LQWHJUDOHSULPDGLVHJQLDPRODUHJLRQH/HVXSHU¿FL )LJXUD  VLLQWHUVHFDQROXQJRLOFLOLQGURDEDVHHOOLWWLFD[ + \ =  - [ - \FLRq [ + \ = ] 7 /DIURQWLHUDGHOODUHJLRQH5ODSURLH]LRQHGL'VXOSLDQR[\q XQ¶HOOLVVHFRQODVWHVVDHTXD]LRQH[ + \ = /DIURQWLHUD³VXSHULRUH´GL5qOD FXUYD\ = 1  - [ >/DIURQWLHUDLQIHULRUHqODFXUYD\ = - 1  - [ >

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

7URYLDP DPRRUDJOLHVWU WUHPLGLLQW QWHJUDD]LRQHULVSHWWRD]/DUHWW WWD0SDVVDQ DQWHSHU XQJHQHULFRSXQW QWR [\ GL5HSDUDOOHODDOO¶DVVHGHOOH]HQWUDLQ'LQ] = [ + \ HQHHVFHLQ] =  - [ - \ M

z

Esce in z  8  x2  y2

z  8  x2  y2 Curv va di intersezione

D

-PN\YH ,OOYROXP OXPHGHOOD G OO UHJLRQH L UDFFKLXVD KL WUD DUDERORLGLFDOFRODWR GXHSDU QHOO¶(VHPSLR

(–2, 0, 4) z  x 2  3y 2

(2, 0, 4 4) Entra in z  x 2  3y 2 Entra in y  –(4  x 2 )/ 2 (2, 0, 0)) x

(–2, – 0, 0)

x

(x, y)

x 2  2y 2  4

R Esce in y  (4  x 2 )/ 2

L

y

&HUFKLDPR SRL JOL HVWUHPL GL LQWHJUD]]LRQH ULVSHWWR DOOD \ /D UHWWD / SDVVDQWH SHU [ \  H SDUDOOHOD DOO¶DVVH GHOOH \ HQQWU WUD LQ 5 LQ \ = - 1  - [ > H QH HVFH LQ  \ = 1  - [ > 7URYLDPRLQ¿QHJOLHVWU WUHPLGLLQWHJUD]LRQHULVSHWWRDOOD[4XDQGR/LQW QWHUVHFD5 LYDORULGL[YDU DULDQRGD[ = - LQ -  D[ = LQ  ,OYROXPHGL'q

'RSRDYHULQWHJUDW DWRFRQLOFDPELRGLYDULDE DELOL[ = VLQX

,O SURFHGLPHQWR DSSHQD LOOXVWU WUDWR VL DSSOLFD D UHJLRQL ' GHOOR VSD]LR FKH VLDQ DQR FRPSUHVH WU WUD GXH VXS XSHU¿FL JUD¿FL GL IX IXQ]LRQL GHOOH YDULDELOL [ \  OD FXL SURLH ]LRQH5VXOSLDQ DQR[\ [\VLDXQGRPLQLRQRUPDOHULVSHWWRDXQRGHJOLDVVLRDOSLVL

 0U[LNYHSP[YPWSPPUJVVYKPUH[LYL[[HUNVSHYP  

SRVVDGHFRPSRUUHLQXQQXPHUR¿QLWRGLGRPLQLQRUPDOL4XHVWDVLWXD]LRQHYLHQH IRUPDOL]]DWDQHOOHVHJXHQWLGH¿QL]LRQL DEFINIZIONI

8QDUHJLRQH'GHOORVSD]LRYLHQHGHWWDGRPLQLRQRUPDOHULVSHWWRDOSLDQR [\VHHVLVWRQRXQGRPLQLR5QHOSLDQR[\QRUPDOHULVSHWWRDXQRGHJOLDVVLH GXHIXQ]LRQLFRQWLQXHKK5: ℝFRQK [\ … K [\ k [\ H 5 WDOLFKH ' = ^ [\]  [\ H5K [\ … ] … K [\ ` $QDORJDPHQWH XQD UHJLRQH ' GHOOR VSD]LR YLHQH GHWWD GRPLQLR QRUPD OH ULVSHWWR DO SLDQR [] VH HVLVWRQR XQ GRPLQLR 5 QHO SLDQR [] QRUPD OH ULVSHWWR D XQR GHJOL DVVL H GXH IXQ]LRQL FRQWLQXH K K 5 : ℝ FRQ K [] … K [] k [] H 5WDOLFKH ' = ^ [\]  [] H5K [] … \ … K [] ` ,Q¿QHXQDUHJLRQH'GHOORVSD]LRYLHQHGHWWDGRPLQLRQRUPDOHULVSHWWRDOSLD QR\]VHHVLVWRQRXQGRPLQLR5QHOSLDQR\]QRUPDOHULVSHWWRDXQRGHJOLDVVLH GXHIXQ]LRQLFRQWLQXHKK5: ℝFRQK \] … K \] k \] H 5 WDOLFKH ' = ^ [\]  \] H5K \] … [ … K \] ` 6HODUHJLRQH'VXFXLRFFRUUHLQWHJUDUHqXQGRPLQLRQRUPDOHULVSHWWRDOSLDQR[\ DOORUDVLSURFHGHFKHQHOO¶(VHPSLRLQWHJUDQGRSULPDULVSHWWRDOODYDULDELOH]H SRLULVSHWWRDXQDGHOODDOWUHGXHDVHFRQGDVHODSURLH]LRQH5GHOODUHJLRQH'QHO SLDQR[\VLDXQGRPLQLRQRUPDOHULVSHWWRDOO¶DVVH[RULVSHWWRDOO¶DVVH\6HLQYHFH 'IRVVHXQGRPLQLRQRUPDOHULVSHWWRDOSLDQR[]DOORUDRFFRUUHLQWHJUDUHSULPD ULVSHWWRDOODYDULDELOH\HSRLULVSHWWRDXQDGHOODDOWUHGXHYDULDELOL[] 6SHVVRDFFDGHFKHODUHJLRQH'SRVVDHVVHUHULJXDUGDWDFRPHGRPLQLRQRUPDOH ULVSHWWRDSLSLDQLFRRUGLQDWLLQWDOFDVRVLSXzVFHJOLHUHO¶RUGLQHGLLQWHJUD]LRQH FRPHQHLSURVVLPLHVHPSL

z

ESEMPIO 2

'HWHUPLQDUHJOLHVWUHPLGLLQWHJUD]LRQHSHUFDOFRODUHO¶LQWHJUDOHWULSORGLXQDIXQ ]LRQH) [\] VXOWHWUDHGUR'GLYHUWLFL      H   8VDUHO¶RUGLQHGLLQWHJUD]LRQHG\G]G[

(0, 1, 1)

1 yxz

L Retta xz1

D R

Soluzione 'LVHJQLDPR'QRQFKpODVXD³RPEUD´5QHOSLDQR[] )LJXUD /DVXSHU¿FLH FKHOLPLWD³GDOO¶DOWR´ DGHVWUD 'VLWURYDQHOSLDQR\ = /DVXSHU¿FLHFKHOD OLPLWD³GDOEDVVR´ DVLQLVWUD qQHOSLDQR\ = [ + ]/DIURQWLHUDVXSHULRUHGL5qOD UHWWD] =  - [/DIURQWLHUDLQIHULRUHqODUHWWD] =  &HUFKLDPRSULPDJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRD\/DUHWWDSDVVDQWHSHU XQJHQHULFRSXQWR [] GL5HSDUDOOHODDOO¶DVVHGHOOH\HQWUDLQ'LQ\ = [ + ]H QHHVFHLQ\ = &HUFKLDPRSRLJOLHVWUHPLULVSHWWRDOOD]/DUHWWD/SDVVDQWHSHU [] HSDUDOOHODDOO¶DVVHGHOO]HQWUDLQ5LQ] = HQHHVFHLQ] =  - [ 7URYLDPRLQ¿QHJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRD[4XDQGR/LQWHUVHFD5 LYDORULGL[YDULDQRGD[ = D[ = /¶LQWHJUDOHq

y1 (0, 1, 0) M

(x, z)

1

x Entra in yxz

Esce in y1 (1, 1, 0)

x

-PN\YH &RPHWURYDUHJOLHVWUHPLGL LQWHJUD]LRQHSHUFDOFRODUHO¶LQWHJUDOH WULSORGLXQDIXQ]LRQHGHILQLWDVXO WHWUDHGUR' (VHPSLH 

y

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

z

ESEMPIO 3

,QWHJUDUH) [\] = VXOWHWUDHGUR'GHOO¶(VHPSLRQHOO¶RUGLQHG]G\G[HSRL QHOO¶RUGLQHG\G]G[

zyx (0, 1, 1)

M

D (0, 1, 0)

0 x

L

(x, y)

y1

yx R 1

(1, 1, 0)

x

-PN\YH ,OWHWUDHGURGHOO¶(VHPSLRLQFXLVL PRVWUDFRPHWURYDUHJOLHVWUHPLGL LQWHJUD]LRQHSHUO¶RUGLQHG]G\G[

y

Soluzione 3HUSULPDFRVDWURYLDPRJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDOOD]8QDUHWWD0 SDUDOOHODDOO¶DVVHGHOOH]HSDVVDQWHSHUXQSXQWRJHQHULFR [\ QHOO¶³RPEUD´VXO SLDQR[\HQWUDQHOWHWUDHGURLQ] = HGHVFHDWWUDYHUVRLOSLDQRVXSHULRUHVXOTXDOH ] = \ - [ )LJXUD  7URYLDPR SRL JOL HVWUHPL GL LQWHJUD]LRQH ULVSHWWR DOOD \ 6XO SLDQR [\ GRYH ] = ODIDFFLDLQFOLQDWDGHOWHWUDHGURDWWUDYHUVDLOSLDQROXQJRODUHWWD\ = [8QD UHWWD/SDVVDQWHSHU [\ HSDUDOOHODDOO¶DVVHGHOOH\HQWUDQHOO¶RPEUDQHOSLDQR[\ LQ\ = [HQHHVFHLQ\ =  )LJXUD  7URYLDPRLQ¿QHJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDOOD[4XDQGRODUHWWD/ SDUDOOHODDOO¶DVVHGHOOH\GHOSDVVRSUHFHGHQWHVSD]]DO¶RPEUDLOYDORUHGL[YDULD GD[ = D[ = QHOSXQWR   )LJXUD /¶LQWHJUDOHq

3HUHVHPSLRVHSRQLDPR) [\] = WURYLDPRLOYROXPHGHOWHWUDHGUR

2WWHQLDPRORVWHVVRULVXOWDWRLQWHJUDQGRQHOO¶RUGLQHG\G]G['DOO¶(VHPSLR

,O7HRUHPDGL)XELQLSHUJOLLQWHJUDOLWULSOLVXGRPLQLQRUPDOLDVVXPHODVHJXHQWH IRUPD FKHHQXQFLDPRVRORSHULGRPLQLQRUPDOLULVSHWWRDOSLDQR[\  TEOREMA 3

Teorema di Fubini per gli integrali tripli

6LD¦': ℝ XQDIXQ]LRQHFRQWLQXDGH¿QLWDVXXQGRPLQLR'QRUPDOHULVSHWWR DOSLDQR[\GH¿QLWRGD ' = ^ [\]  [\ H5K [\ … ] … K [\ ` FRQ5GRPLQLRQRUPDOHQHOSLDQR[\HKKIXQ]LRQLFRQWLQXHGH¿QLWHVX5WDOL FKHK [\ … K [\  k [\ H 5$OORUD K [\

¦ [\] G[G\G] = a ¦ [\] G]bG[G\ 65 3K [\ 9'

 0U[LNYHSP[YPWSPPUJVVYKPUH[LYL[[HUNVSHYP  

4XLQGLXQDSULPDDSSOLFD]LRQHGHO7HRUHPDGL)XELQLULGXFHXQLQWHJUDOHWULSOR D XQ LQWHJUDOH GRSSLR FKH GRYUj VXFFHVVLYDPHQWH HVVHUH FDOFRODWR DSSOLFDQGR DQFRUDLO7HRUHPDGL)XELQLSHUJOLLQWHJUDOLGRSSL

Valore medio di una funzione nello spazio ,OYDORUHPHGLRGLXQDIXQ]LRQH)VXXQDUHJLRQH'QHOORVSD]LRqGH¿QLWRGDOOD IRUPXOD 9DORUHPHGLRGL)VX' = YROXPHGL'





3HU HVHPSLR VH ) [\] = 2[+ \+ ] DOORUD LO YDORUH PHGLR GL ) VX ' q OD GLVWDQ]D PHGLD GHL SXQWL GL ' GDOO¶RULJLQH 6H ) [ \ ]  q OD WHPSHUDWXUD LQ [\] GLXQVROLGRFKHRFFXSDXQDUHJLRQH'GHOORVSD]LRDOORUDLOYDORUHPHGLR GL)VX'qODWHPSHUDWXUDPHGLDGHOVROLGR

z 2

ESEMPIO 4

7URYDUHLOYDORUHPHGLRGL) [\] = [\]VXOODUHJLRQHFXELFD'UDFFKLXVDGDL SLDQLFRRUGLQDWLHGDLSLDQL[ = \ = H] = QHOSULPRRWWDQWH Soluzione 'LVHJQLDPRLOFXERLQVXI¿FLHQWHGHWWDJOLRGDPRVWUDUHJOLHVWUHPLGLLQWHJUD]LRQH )LJXUD 3RLXVLDPRO¶(TXD]LRQH  SHUFDOFRODUHLOYDORUHPHGLRGL)VXO FXER ,OYROXPHGHOODUHJLRQH'q,OYDORUHGHOO¶LQWHJUDOHGL)VXOFXERq

D 2 y 2 x

-PN\YH /DUHJLRQHGLLQWHJUD]LRQH GHOO¶(VHPSLR

&RQTXHVWLYDORULO¶(TXD]LRQH  Gj 9DORUHPHGLRGL [\]VXOFXER

=

YROXPH FXER

3HUYDOXWDUHO¶LQWHJUDOHDEELDPRVFHOWRO¶RUGLQHG[G\G]PDRJQXQRGHJOLDOWUL FLQTXHSRVVLELOLRUGLQLVDUHEEHDQGDWRDOWUHWWDQWREHQH

Proprietà degli integrali tripli *OLLQWHJUDOLWULSOLKDQQROHVWHVVHSURSULHWjDOJHEULFKHGLTXHOOLVLQJROLHGRSSL %DVWDVRVWLWXLUHJOLLQWHJUDOLGRSSLFRQLQWHJUDOLWULSOLQHOOHTXDWWURSURSULHWjGDWH QHO3DUDJUDIR

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

4.6 Momenti e centri di massa ,QTXHVWRSDUDJUDIRGH¿QLDPRODPDVVDHLPRPHQWLGLRJJHWWLLQGXHHWUHGLPHQ VLRQLODYRUDQGRFRQOHFRRUGLQDWHFDUWHVLDQH,O3DUDJUDIRGHVFULYHLFDOFROL FRQFRRUGLQDWHFLOLQGULFKHHVIHULFKH

Masse e momenti statici 6Hd [\] qODGHQVLWj PDVVDSHUXQLWjGLYROXPH GLXQRJJHWWRFKHRFFXSDXQD UHJLRQH'GHOORVSD]LRO¶LQWHJUDOHGLdVX'GjODPDVVDGHOO¶RJJHWWR3HUFDSLUH SHUFKpLPPDJLQLDPRGLULSDUWLUHO¶RJJHWWRLQQHOHPHQWLGLPDVVDFRPHTXHOOR GHOOD)LJXUD z mk  (xk , yk , zk ) Vk

-PN\YH 3HUGHILQLUHODPDVVDGLXQRJJHWWR LPPDJLQLDPRSULPDGLULSDUWLUORLQXQ QXPHURILQLWRGLHOHPHQWLGLPDVVD ¢PN

D (xk , yk , zk )

x

y

/DPDVVDGHOO¶RJJHWWRqLOOLPLWH

,OPRPHQWRVWDWLFR RPRPHQWRGHOSULPRRUGLQH GLXQDUHJLRQHVROLGD'UL VSHWWRDXQRGHLSLDQLFRRUGLQDWLqGH¿QLWRGDOO¶LQWHJUDOHVX'GHOODGLVWDQ]DWUDXQ SXQWR [\] LQ'HLOSLDQRPROWLSOLFDWDSHUODGHQVLWjGHOVROLGRLQTXHOSXQWR 3HUHVHPSLRLOPRPHQWRVWDWLFRULVSHWWRDOSLDQR\]qO¶LQWHJUDOH

,O FHQWUR GL PDVVD VL FDOFROD D SDUWLUH GDL PRPHQWL VWDWLFL 3HU HVHPSLR OD FRRUGLQDWD[GHOFHQWURGLPDVVDq[ = 0\]>0 3HUXQRJJHWWRELGLPHQVLRQDOHFRPHXQDODVWUDSLDWWDVRWWLOLVVLPDFDOFROLDPR LPRPHQWLVWDWLFLULVSHWWRDJOLDVVLFRRUGLQDWLOLPLWDQGRFLDLJQRUDUHODFRRUGLQDWD ] 4XLQGL LO PRPHQWR VWDWLFR ULVSHWWR DOO¶DVVH GHOOH \ q O¶LQWHJUDOH GRSSLR VXOOD UHJLRQH5FRUULVSRQGHQWHDOODODVWUDGHOODGLVWDQ]DGDOO¶DVVHPROWLSOLFDWDSHUOD GHQVLWjFLRq

1HOOD7DEHOODVRQRHOHQFDWHOHYDULHIRUPXOH

 4VTLU[PLJLU[YPKPTHZZH  

;HILSSH Formule per la massa e per i momenti statici

62/,'275,',0(16,21$/( 0DVVD

d = d [\] qODGHQVLWjLQ [\] 

0RPHQWLVWDWLFLULVSHWWRDLSLDQLFRRUGLQDWL

&HQWURGLPDVVD

/$675$%,',0(16,21$/( 0DVVD

d = d [\ qODGHQVLWjLQ [\ 

0RPHQWLVWDWLFL z

&HQWURGLPDVVD z  4  x2  y2

ESEMPIO 1

7URYDUHLOFHQWURGLPDVVDGLXQVROLGRGLGHQVLWjFRVWDQWHdGHOLPLWDWRLQEDVVR GDOGLVFR5[ + \ … QHOSLDQR] = HLQDOWRGDOSDUDERORLGH] =  - [ - \ )LJXUD  Soluzione 3HUVLPPHWULD =

c.m. R 0

= 3HUWURYDUH GREELDPRSULPDFDOFRODUH

y x

x2  y2  4

-PN\YH &RPHWURYDUHLOFHQWURGLPDVVDGLXQ VROLGR (VHPSLR 

8QFDOFRORDQDORJRGjODPDVVD

4XLQGL = 0[\>0 = >HLOFHQWURGLPDVVDq   = > 

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

4XDQGRODGHQVLWjGLXQRJJHWWRVROLGRRGLXQDODVWUDqFRVWDQWH FRPHQHOO¶HVHP SLR LOFHQWURGLPDVVDqGHWWREDULFHQWURGHOO¶RJJHWWR3HUWURYDUHLOEDULFHQWUR SRQLDPRdXJXDOHDHSRLWURYLDPR  H FRPHVRSUDGLYLGHQGRLPRPHQWL VWDWLFLSHUOHPDVVH4XHVWLFDOFROLYDOJRQRDQFKHSHURJJHWWLELGLPHQVLRQDOL ESEMPIO 2

7URYDUH LO EDULFHQWUR GHOOD UHJLRQH QHO SULPR TXDGUDQWHGHOLPLWDWD LQ DOWR GDOOD UHWWD\ = [HLQEDVVRGDOODSDUDEROD\ = [ y 1

Soluzione 'LVHJQLDPRODUHJLRQHDEEDVWDQ]DLQGHWWDJOLRGDGHWHUPLQDUHJOLHVWUHPLGLLQWH JUD]LRQH )LJXUD 3RQLDPRSRLdXJXDOHDHXVLDPROHRSSRUWXQHIRUPXOH GHOOD7DEHOOD

(1, 1) yx y  x2

0

x

1

-PN\YH ,OEDULFHQWURGLTXHVWDUHJLRQHq GHWHUPLQDWRQHOO¶(VHPSLR

'DTXHVWLYDORULGL00[H0\WURYLDPR H ,OEDULFHQWURqLOSXQWR >> 

Δ mk yk

rk 

Momenti di inerzia

rk 

,PRPHQWLVWDWLFLGLXQRJJHWWR 7DEHOOD VHUYRQRSHUVWXGLDUHO¶HTXLOLEULRH LOPRPHQWRWRUFHQWHDSSOLFDWLDXQRJJHWWROXQJRGLYHUVLDVVLLQXQFDPSRJUD Ass e di YLWD]LRQDOH6HO¶RJJHWWRqXQ¶DVWDURWDQWHSHUzqSLSUREDELOHFKHFLLQWHUHVVL rota zion e TXDQWDHQHUJLDUDFFKLXGHO¶DVWDRTXDQWDHQHUJLDYLHQHJHQHUDWDGDXQ¶DVWDFKH L UXRWDDXQDFHUWDYHORFLWjDQJRODUHÊTXLFKHHQWUDLQJLRFRLOPRPHQWRGLLQHU]LD RPRPHQWRGHOVHFRQGRRUGLQH -PN\YH ,PPDJLQLDPRGLVXGGLYLGHUHO¶DVWDLQSLFFROLEORFFKLGLPDVVD¢PNHLQGLFKLD 3HUWURYDUHXQLQWHJUDOHFKHGLDOD PRFRQU ODGLVWDQ]DWUDLOFHQWURGLPDVVDGHONHVLPREORFFRHO¶DVVHGLURWD]LRQH TXDQWLWjGLHQHUJLDFRQWHQXWDLQXQ¶DVWD N FKHUXRWDLPPDJLQLDPRSULPDGL )LJXUD 6HO¶DVWDUXRWDDXQDYHORFLWjDQJRODUHFRVWDQWHGLv = Gu>GWUDGLDQWL VXGGLYLGHUHO¶DVWDLQSLFFROLEORFFKL DOVHFRQGRLOFHQWURGLPDVVDGHOEORFFRSHUFRUUHUjODSURSULDRUELWDDXQYHORFLWj 2JQLEORFFRKDODSURSULDHQHUJLD OLQHDUHSDULD FLQHWLFD6RPPLDPRLFRQWULEXWLGHL VLQJROLEORFFKLSHUWURYDUHO¶HQHUJLD FLQHWLFDGHOO¶DVWD

/¶HQHUJLDFLQHWLFDGHOEORFFRVDUjDSSURVVLPDWLYDPHQWH

/¶HQHUJLDFLQHWLFDGHOO¶DVWDVDUjDSSURVVLPDWLYDPHQWH

 4VTLU[PLJLU[YPKPTHZZH  

 /¶LQWHJUDOHDFXLWHQGRQRTXHVWHVRPPHTXDQGRVXGGLYLGLDPRO¶DVWDLQEORFFKL VHPSUHSLSLFFROLGjO¶HQHUJLDFLQHWLFDGHOO¶DVWD



(&DVWD=





,OIDWWRUH

q LO PRPHQWR GL LQHU]LD GHOO¶DVWD DWWRUQR DO VXR DVVH GL URWD]LRQH H YHGLDPR GDOO¶(TXD]LRQH  FKHO¶HQHUJLDFLQHWLFDGHOO¶DVWDq (&DVWD= ,OPRPHQWRGLLQHU]LDGLXQ¶DVWDVRPLJOLDLQTXDOFKHPRGRDOODPDVVDLQHU ]LDOHGLXQDORFRPRWLYD3HUIDUVuFKHXQDORFRPRWLYDGLPDVVDPUDJJLXQJDXQD YHORFLWjyOHGREELDPRIRUQLUHXQ¶HQHUJLDFLQHWLFD(& = > Py3HUIHUPDUH ODORFRPRWLYDOHGREELDPRWRJOLHUHODVWHVVDTXDQWLWjGLHQHUJLD3HUIDUUXRWDUH XQ¶DVWDGLPRPHQWRGLLQHU]LD,LQPRGRFKHUDJJLXQJDXQDYHORFLWjDQJRODUHv OHGREELDPRIRUQLUHXQ¶HQHUJLDFLQHWLFDSDULD(& = > ,v3HUIHUPDUHO¶DVWD GREELDPRSULYDUODGHOODVWHVVDTXDQWLWjGLHQHUJLD,OPRPHQWRGLLQHU]LDGHOO¶DVWD qDQDORJRDOODPDVVDGHOODORFRPRWLYDFLzFKHUHQGHGLI¿FLOHPHWWHUHLQPRWRR DUUHVWDUHODORFRPRWLYDqODVXDPDVVDFLzFKHUHQGHGLI¿FLOHPHWWHUHLQPRWRR DUUHVWDUHO¶DVWDqLOVXRPRPHQWRGLLQHU]LD ,OPRPHQWRGLLQHU]LDQRQGLSHQGHVRORGDOODPDVVDGHOO¶DVWDPDDQFKHGD FRPHqGLVWULEXLWD/DPDVVDSLORQWDQDGDOO¶DVVHGLURWD]LRQHFRQWULEXLVFHGLSL DOPRPHQWRGLLQHU]LD $GHVVRGHULYLDPRXQDIRUPXODSHULOPRPHQWRGLLQHU]LDGLXQVROLGRQHOOR VSD]LR6HU [\] qODGLVWDQ]DWUDLOSXQWR [\] LQ'HXQDUHWWD/DOORUDLO PRPHQWRGLLQHU]LDGHOODPDVVD¢PN = d [N\N]N ¢9NULVSHWWRDOODUHWWD/ FRPH QHOOD)LJXUD qDSSURVVLPDWLYDPHQWH¢,N = U [N\N]N ¢PN ,OPRPHQWRGL LQHU]LDULVSHWWRD/GHOO¶LQWHURRJJHWWRq

z

x

1x 2  y 2

6H/qO¶DVVHGHOOH[DOORUDU = \ + ] )LJXUD H

y

dV

1x 2  z 2

0 x

x

/D7DEHOODULXQLVFHOHIRUPXOHSHUTXHVWLPRPHQWLGLLQHU]LD GHWWLDQFKHPR PHQWLGHOVHFRQGRRUGLQHSHUFKpYLFRPSDLRQRLTXDGUDWLGHOOHGLVWDQ]H 0RVWUD DQFKHODGH¿QL]LRQHGHOPRPHQWRSRODUHULVSHWWRDOO¶RULJLQH

y

z

$QDORJDPHQWHVH/qO¶DVVHGHOOH\RTXHOORGHOOH]DEELDPR H

1y 2  z 2 y

-PN\YH 'LVWDQ]HWUDG9HLSLDQLHDVVL FRRUGLQDWL

x

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

;HILSSH Formule per i momenti di inerzia (momenti del secondo ordine)

62/,'275,',0(16,21$/( 5LVSHWWRDOO¶DVVH GHOOH[

d = d [\] 

5LVSHWWRDOO¶DVVH GHOOH\ 5LVSHWWRDOO¶DVVH GHOOH] 5LVSHWWRDXQD UHWWD/

U [\] LVWDQ]DWUDLOSXQWR [\] HODUHWWD/

/$675$%,',0(16,21$/( 5LVSHWWRDOO¶DVVH GHOOH[

d = d [\ 

5LVSHWWRDOO¶DVVH GHOOH\ 5LVSHWWRDXQD UHWWD/

U [\ GLVWDQ]DWUD [\ H/

5LVSHWWRDOO¶RULJLQH PRPHQWRSRODUH  z

ESEMPIO 3

7URYDUH,[,\,]SHULOSDUDOOHOHSLSHGRFRQGHQVLWjFRVWDQWHdPRVWUDWRQHOOD)LJXUD Soluzione /DIRUPXODSHU,[Gj

c

y a x

Centro del blocco

b

-PN\YH  &RPHWURYDUH,[,\H,]SHULOEORFFRTXL PRVWUDWR/¶RULJLQHVLWURYDQHOFHQWUR GHOEORFFR (VHPSLR 

3RVVLDPRHYLWDUHXQDSDUWHGHLFDOFROLRVVHUYDQGRFKH \ + ] dqXQDIXQ]LRQH SDULGL[\H]GDWRFKHdqFRVWDQWH,OSDUDOOHOHSLSHGRqFRPSRVWRGDRWWRSH]]L VLPPHWULFLXQRLQRJQLRWWDQWH3RVVLDPRFDOFRODUHO¶LQWHJUDOHVXXQRGLTXHVWL SH]]LHSRLPROWLSOLFDUORSHUSHURWWHQHUHLOYDORUHWRWDOH

0 = DEFd

 4VTLU[PLJLU[YPKPTHZZH  

$QDORJDPHQWH H

ESEMPIO 4

8QDODVWUDVRWWLOHFRSUHODUHJLRQHWULDQJRODUHGHOLPLWDWDGDOO¶DVVHGHOOH[HGDOOH UHWWH[ = H\ = [QHOSULPRTXDGUDQWH/DGHQVLWjGHOODODVWUDQHOSXQWR [\ q d [\ = [ + \ + 7URYDUHLOPRPHQWRGLLQHU]LDGHOODODVWUDULVSHWWRJOLDVVL FRRUGLQDWLHDOO¶RULJLQH

y

(1, 2)

2

Soluzione 'LVHJQLDPRODODVWUDLQVHUHQGRLGDWLUHODWLYLDJOLHVWUHPLGLLQWHJUD]LRQHSHUJOLLQWHJUD OLFKHGRYUHPRFDOFRODUH )LJXUD ,OPRPHQWRGLLQHU]LDULVSHWWRDOO¶DVVHGHOOH[q

y  2x x1

0

1

x

-PN\YH /DUHJLRQHWULDQJRODUHFRSHUWDGDOOD ODVWUDGHOO¶(VHPSLR

$QDORJDPHQWHLOPRPHQWRGLLQHU]LDULVSHWWRDOO¶DVVHGHOOH\q

Trave A

1RWLDPRFKHSHUFDOFRODUH,[LQWHJULDPR\PROWLSOLFDWRSHUODGHQVLWjPHQWUHSHU WURYDUH,\LQWHJULDPR[PROWLSOLFDWRSHUODGHQVLWj &RQRVFHQGR,[H,\QRQVHUYHFDOFRODUHXQLQWHJUDOHSHUWURYDUH,SRVVLDPR XVDUHO¶HTX]LRQH, = ,[ + ,\GDOOD7DEHOOD

Asse

Trave B

,OPRPHQWRGLLQHU]LDVYROJHXQUXRORDQFKHQHOGHWHUPLQDUHTXDQWRVLLQFXUYD XQDWUDYHRUL]]RQWDOHGLPHWDOORVRWWRFDULFR/DULJLGH]]DGHOODWUDYHqGDWDGDXQD FRVWDQWHPROWLSOLFDWDSHU,LOPRPHQWRGLLQHU]LDGLXQDJHQHULFDVH]LRQHGHOOD WUDYHOXQJRLOVXRDVVHORQJLWXGLQDOH0DJJLRUHqLOYDORUHGL,HSLqULJLGDOD WUDYHHPHQRVLÀHWWHVRWWRXQGDWRFDULFR3HUTXHVWRVLXVDQRWUDYL³DG+´DQ]LFKp WUDYLDVH]LRQHTXDGUDWD/HIDFFHHVWHUQHLQDOWRHLQEDVVRFRQWHQJRQRODPDJJLRU SDUWH GHOOD PDVVD GHOOD WUDYH ORQWDQR GDOO¶DVVH ORQJLWXGLQDOH SHU DXPHQWDUH LO YDORUHGL, )LJXUD 

Asse

-PN\YH 0DJJLRUHqLOPRPHQWRGLLQHU]LDGHOOD VH]LRQHGHOODWUDYHULVSHWWRDOVXRDVVH HSLqULJLGDODWUDYH/HWUDYL$H% KDQQRVH]LRQLGHOODVWHVVDDUHDPD$q SLULJLGD

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

4.7 Integrali tripli in coordinate cilindriche e sferiche

z P(r, u, z)

z

0 x

u

r y

4XDQGR LQ DPELWR ¿VLFR DSSOLFDWLYR R JHRPHWULFR RFFRUUH VYROJHUH XQ FDOFROR ULJXDUGDQWHXQFLOLQGURXQFRQRRXQDVIHUDVSHVVRqSRVVLELOHVHPSOL¿FDUHLFRQWL XVDQGROHFRRUGLQDWHFLOLQGULFKHRVIHULFKHFKHYHQJRQRLQWURGRWWHLQTXHVWRSDUD JUDIR/DSURFHGXUDSHUSDVVDUHLQTXHVWHFRRUGLQDWHHFDOFRODUHJOLLQWHJUDOLWULSOL ULVXOWDQWLqVLPLOHDOSDVVDJJLRDOOHFRRUGLQDWHSRODULVWXGLDWRQHO3DUDJUDIR

y

x

-PN\YH /HFRRUGLQDWHFLOLQGULFKHLQXQSXQWR QHOORVSD]LRVRQRUuH] z u  u0 , r e z variano

/HFRRUGLQDWHFLOLQGULFKHQHOORVSD]LRVLRWWHQJRQRFRPELQDQGROHFRRUGLQDWHSR ODULVXOSLDQR[\DOO¶XVXDOHDVVHGHOOH]&RVuVLDVVHJQDDRJQLSXQWRGHOORVSD]LR XQDRSLWHUQHGLFRRUGLQDWHGHOODIRUPD Uu] FRPHPRVWUDWRQHOOD)LJXUD  DEFINIZIONE

z  z 0, r e u variano z0 0 a

u0

y r  a, u e z variano

x

Integrazione in coordinate cilindriche

/H FRRUGLQDWH FLOLQGULFKH UDSSUHVHQWDQR XQ SXQWR 3 QHOOR VSD]LR FRQ XQD WHUQDRUGLQDWD Uu] LQFXL  UHuVRQRFRRUGLQDWHSRODULGHOODSURLH]LRQHYHUWLFDOHGL3VXOSLDQR[\  ]qODFRRUGLQDWDFDUWHVLDQDYHUWLFDOH ,YDORULGL[\UHuLQFRRUGLQDWHFDUWHVLDQHHFLOLQGULFKHVRQRFROOHJDWLGDOOH HTXD]LRQLXVXDOL Equazioni che collegano le coordinate cartesiane (x, y, z) e cilindriche (r, u, z)

[ = UFRVu  \ = UVLQu  ] = ] U = [ + \  WJu = \>[

-PN\YH /HHTXD]LRQLLQFXLLQFRRUGLQDWH FLOLQGULFKHXQDGHOOHFRRUGLQDWHq FRVWDQWHGHVFULYRQRFLOLQGULHSLDQL

'LIIHUHQ]LDOHGHOYROXPHLQ FRRUGLQDWHFLOLQGULFKH G9 = G]UGUGu z r Δu

r Δr Δu

Δz

,QFRRUGLQDWHFLOLQGULFKHO¶HTXD]LRQHU = DGHVFULYHQRQVRORXQDFLUFRQIHUHQ]D QHOSLDQR[\PDXQLQWHURFLOLQGURDWWRUQRDOO¶DVVHGHOOH] )LJXUD /¶DVVH GHOOH]qGDWRGDU = /¶HTXD]LRQHu = uGHVFULYHLOSLDQRFKHFRQWLHQHO¶DVVH GHOOH]HIRUPDXQDQJRORuFRQLOVHPLDVVHSRVLWLYRGHOOH[(SURSULRFRPHSHU OH FRRUGLQDWH UHWWDQJRODUL O¶HTXD]LRQH ] = ] GHVFULYH XQ SLDQR SHUSHQGLFRODUH DOO¶DVVHGHOOH] /HFRRUGLQDWHFLOLQGULFKHVRQRXWLOLSHUGHVFULYHUHFLOLQGULLOFXLDVVHFRLQFLGH FRQO¶DVVHGHOOH]HSLDQLFKHFRQWHQJRQRO¶DVVHGHOOH]RJOLVRQRSHUSHQGLFRODUL 4XHVWHVXSHU¿FLKDQQRHTXD]LRQLGH¿QLWHLQWHUPLQLGLFRVWDQWL U =  u= p  ] = 

&LOLQGURUDJJLRFRPHDVVHO¶DVVHGHOOH] 3LDQRFRQWHQHQWHO¶DVVHGHOOH] 3LDQRSHUSHQGLFRODUHDOO¶DVVHGHOOH]

4XDQGRFDOFROLDPRLQWHJUDOLWULSOLVXXQDUHJLRQH'GDWDLQFRRUGLQDWHFLOLQ GULFKHVXGGLYLGLDPRODUHJLRQHLQQSLFFROL³FXQHL´DQ]LFKpLQSDUDOOHOHSLSHGL 1HONHVLPRFXQHRUuH]YDULDQRGL¢UN¢uNH¢]NHLOPDVVLPRWUDTXHVWLQX Δr r PHULVXWXWWLJOLFXQHLqGHWWRQRUPDGHOODSDUWL]LRQH'H¿QLDPRO¶LQWHJUDOHWULSOR FRPHOLPLWHGHOOHVRPPHGL5LHPDQQFKHXVDQRTXHVWLFXQHL,OYROXPHGLXQFX -PN\YH QHR¢9 VLWURYDFDOFRODQGRQHO¶DUHD¢$NGHOODEDVHQHOSLDQRUuHPROWLSOLFDQGROD N ,QFRRUGLQDWHFLOLQGULFKHLOYROXPHGHO SHUO¶DOWH]]D¢] )LJXUD  FXQHRqDSSURVVLPDWRGDOSURGRWWR 'DWRXQSXQWR UNuN]N QHOFHQWURGHONHVLPRFXQHRDEELDPRFDOFRODWRFKHLQ ¢9 = ¢]U¢U¢u Δu

 0U[LNYHSP[YPWSP [ PUJVVYKPUH[LJPSPUKYPJOLLZMLYPJOL  

FRRUGLQDWHSRODULVLKD¢$ ¢$N = UN¢UUN¢uN4XLQGL¢9 9N = ¢]NUN¢UUN¢uNHXQQDVRPPD GL5LHPDQQ QQSHU¦VX'KDODIR IRUPD

/¶LQWHJUDOH WU WULSOR GL XQD IX IXQ]LRQH ¦ VX ' VL RWWLHQH SUHQGHQGR LO OLPLWHH GL TXHVWH VRPPHGL5LHPDQ DQQSHUSDU DUWL]LRQLOHFXLQRUPHWHQGRQRD]HUR

*OL LQWHJUDOL WU WULSOL LQ FRRUGLQDWH FLOLQGULFKH YHQJRQR TXLQGL FDOFRODWL FRPH F QWH  LQW JUDOLLWHUDWLFRPHQHOO¶HVHPSLRFKHVHJXH ESEMPIO 1

7URYDUHJOLHVWUHPLGLLQWHJUD]LRQHLQFRRUGLQDWHFLOLQGULFKHSHULQWHJUDU DUH U XQDIX IXQ ]LRQH¦ Uu] VXOODUHJLRQH'GHOLPLWDW DWDLQEDVVRGDOSLDQ DQR] = ODW DWHUDOOPHQWHGDO FLOLQGURFLUFRODU DUH[ + \ \ -  = HLQDOWRGDOSDUDE DERORLGH] = [ + \ Soluzione /DEDVHGL'qDQ DQFKHODSURLH]LRQHGHOODUHJLRQH5VXOSLDQ DQR[\ [\/DIU IURQQW QWLHUDGL5 qODFLUFRQIH IHUHQ]D[ + \ \ -  = /DVXDHTXD]LRQHLQFRRUGLQDW DWHSRODDULq

z

In alto Cartesiane: z  x2  y2 Cilindriche: z  r2

M

D

/DUHJLRQHqGLVHJQDW DWDQHOOD)LJXUD y 2 7URYLDPRJOLHVWUHPLGLLQWHJUD]LRQHDSDU DUWLUHGDJOLHVWUHPLULVSHWW WWRD]8QD u L R UHWWD0SDVVDQ DQWHSHUXQSXQW QWRJHQHULFR Uu GL5HSDUDOOHODDOO¶DVVHGHHOOH]HQW QWUD (r, u) LQ'LQ] = HQHHVFHLQ] = [ + \ = U Cartesiane: x2  (y  1)2  1 7URYLDPRSRLJOLHVWUHPLULVSHWW WWRDU8QUDJJLR/SDVVDQ DQWHSHU Uu HXVFHQW QWH x PPolari: r  2 sin l i i u GDOO¶RULJLQHHQWUDLQ5LQU = HQHHVFHLQU = VLQu 7URYLDPR LQ¿QH JOL HVWU WUHPL GL LQW QWHJUD]LRQH ULVSHWWR D u 4XDQGR / LQWHUVHFD -PN\YH 5 O¶DQ DQJROR u FKH IR IRUPD FRQ LO VHPLDVVH SRVLWLYR GHOOH [ YDULD GD u =  D u = p &RPHWURYDUHJOLHVWUHPLGL LQWHJUD]LRQHSHUFDOFRODUHXQLQW QWHJUDOH /¶LQWHJUDOHq DWHFLOLQGU GULFKH (VHPSLR  LQFRRUGLQDW

PL GL LQWH /¶(VHPSLR  PRVWU WUD XQ EXRQ SURFHGLPHQWR SHU WU WURYDU DUH JOL HVWUHP PHUH FRPH JUD]LRQH LQ FRRUGLQDW DWH FLOLQGULFKH TX TXHVWR SURFHGLPHQWR VL SXz ULDVVXP VHJXH

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

Come integrare in coordinate cilindriche 3HUFDOFRODUH

VXXQDUHJLRQH'GHOORVSD]LRLQFRRUGLQDWHFLOLQGULFKHLQWHJUDQGRSULPDULVSHWWR D]SRLULVSHWWRDUHLQ¿QHULVSHWWRDuVYROJLDPRLVHJXHQWLSDVVL  'LVHJQDUH'LVHJQLDPRODUHJLRQH'LQVLHPHDOODVXDSURLH]LRQH5VXOSLDQR [\,QGLFKLDPRODGHVFUL]LRQHGHOOHVXSHU¿FLHFXUYHFKHGHOLPLWDQR'H5 z M

z  g2(r, u)

D r  h1(u)

z  g1(r, u)

y R (r, u)

x

r  h2(u)

 7URYDUHJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRD]7UDFFLDPRXQDUHWWD0SDVVDQ WHSHUXQSXQWRJHQHULFR Uu GL5HSDUDOOHODDOO¶DVVHGHOOH]$OFUHVFHUHGL] 0HQWUDLQ'LQ] = J Uu HQHHVFHLQ] = J Uu 4XHVWLVRQRJOLHVWUHPLGL LQWHJUD]LRQHULVSHWWRD]  z M z  g2(r, u)

D z  g1(r, u)

a

x r  h1(u)

b y

u R (r, u)

ub

ua L

r  h2(u)

 7URYDUHJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDU7UDFFLDPRXQUDJJLR/SDVVDQ WHSHU Uu HXVFHQWHGDOO¶RULJLQH,OUDJJLRHQWUDLQ5LQU = K u HQHHVFHLQ U = K u 4XHVWLVRQRJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDU

 0U[LNYHSP[YPWSPPUJVVYKPUH[LJPSPUKYPJOLLZMLYPJOL  

z M z  g2(r, u)

D z  g1(r, u)

a

x r  h1(u)

b y

u R (r, u)

ub

ua L

r  h2(u)

 7URYDUHJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDu4XDQGR/LQWHUVHFD5O¶DQJR ORuFKHIRUPDFRQLOVHPLDVVHSRVLWLYRGHOOH[YDULDGDu = a Du = b4XHVWL VRQRJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDu/¶LQWHJUDOHq

z

z  x2  y2  r2

ESEMPIO 2

7URYDUHLOEDULFHQWUR d =  GHOVROLGRUDFFKLXVRGDOFLOLQGUR[ + \ = GHOLPL WDWRLQDOWRGDOSDUDERORLGH] = [ + \HLQEDVVRGDOSLDQR[\

4

M

Soluzione 'LVHJQLDPRLOVROLGRGHOLPLWDWRLQDOWRGDOSDUDERORLGH] = UHLQEDVVRGDOSLDQR ] =  )LJXUD /DVXDEDVH5qLOGLVFR … U … QHOSLDQR[\ Baricentro ,OEDULFHQWUR [\] VLWURYDVXOVXRDVVHGLVLPPHWULDLQTXHVWRFDVRO¶DVVH GHOOH]4XLQGL[ = \ = 3HUWURYDUH]GLYLGLDPRLOPRPHQWRVWDWLFR0[\SHUOD x2  y2  4 PDVVD0 r2 3HUWURYDUHJOLHVWUHPLGLLQWHJUD]LRQHSHUJOLLQWHJUDOLFKHGDQQRODPDVVDHLO PRPHQWRSURVHJXLDPRLTXDWWURSDVVLJHQHUDOL&RPSOHWDWRLOGLVHJQRLQL]LDOHL x y (r, u) SDVVLULPDQHQWLGDQQRJOLHVWUHPLGLLQWHJUD]LRQH L *OLHVWUHPLULVSHWWRD]8QDUHWWD0SDVVDQWHSHUXQJHQHULFRSXQWR Uu GHOOD -PN\YH EDVHHSDUDOOHODDOO¶DVVHGHOOH]HQWUDQHOVROLGRLQ] = HQHHVFHLQ] = U *OLHVWUHPLULVSHWWRDU8QUDJJLR/SDVVDQWHSHU Uu HXVFHQWHGDOO¶RULJLQH /¶(VHPSLRPRVWUDFRPHWURYDUHLO EDULFHQWURGLTXHVWRVROLGR HQWUDLQ5LQU = HQHHVFHLQU =  *OLHVWUHPLULVSHWWRDu4XDQGR/VSD]]DODEDVHLQYHUVRRUDULRO¶DQJRORFKH uIRUPDFRQLOVHPLDVVHSRVLWLYRGHOOH[YDULDGDu = Du = p

,OYDORUHGL0[\q

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

z P(r, f, u) f

r z  r cos f

0 x

4XLQGL u

r

y

y x

HLOEDULFHQWURq > 6LQRWLFKHLOEDULFHQWURVLWURYDDOGLIXRULGHOVROLGR

-PN\YH /HFRRUGLQDWHVIHULFKHrfHuHOH ORURUHOD]LRQLFRQ[\]HU

Coordinate sferiche e integrazione /H FRRUGLQDWH VIHULFKH GHWHUPLQDQR OD SRVL]LRQH GL XQ SXQWR QHOOR VSD]LR FRQ GXHDQJROLHXQDGLVWDQ]DFRPHPRVWUDWRQHOOD)LJXUD/DSULPDFRRUGLQDWD r=ƒ ƒqODGLVWDQ]DGHOSXQWRGDOO¶RULJLQH /DVHFRQGDFRRUGLQDWDfqO¶DQJRORFKH IRUPDFRQLOVHPLDVVHSRVLWLYRGHOOH ]'HYHDSSDUWHQHUHDOO¶LQWHUYDOOR>p@/DWHU]DFRRUGLQDWDqO¶DQJRORuFRPH SHUOHFRRUGLQDWHFLOLQGULFKH DEFINIZIONE

z f  f 0, r e u variano

f0

u0

P(a, f0, u0)

y

x r  a, f e u variano

u  u0, r e f variano

-PN\YH /HHTXD]LRQLLQFXLXQDFRRUGLQDWDq PDQWHQXWDFRVWDQWHLQFRRUGLQDWH VIHULFKHGHILQLVFRQRVIHUHFRQLDXQD IDOGDHVHPLSLDQL

/HFRRUGLQDWHVIHULFKHUDSSUHVHQWDQRXQSXQWR3QHOORVSD]LRFRQXQDWHUQD RUGLQDWD rfu LQFXL  rqODGLVWDQ]DWUD3HO¶RULJLQH  fqO¶DQJRORIRUPDWRGD FRQLOVHPLDVVHSRVLWLYRGHOOH]  … f … p   uqORVWHVVRDQJRORGHOOHFRRUGLQDWHFLOLQGULFKH  … u … p  6XOOH FDUWH JHRJUD¿FKH GHOOD 7HUUD u FRUULVSRQGH DOOD ORQJLWXGLQH GL XQ SXQWR VXOOD7HUUDHfDOODVXDODWLWXGLQHPHQWUHrqFRUUHODWRFRQODTXRWDULVSHWWRDOOD VXSHU¿FLHWHUUHVWUH /¶HTXD]LRQHr = DGHVFULYHODVIHUDGLUDJJLRDFHQWUDWDQHOO¶RULJLQH )LJXUD  /¶HTXD]LRQHf = fGHVFULYHXQFRQRDXQDIDOGDFRQLOYHUWLFHQHOO¶RULJLQH HO¶DVVHOXQJRO¶DVVHGHOOH] $PSOLDPRODGH¿QL]LRQHGLFRQRSHUFRPSUHQGHUH LOSLDQR[\FRPHFRQRFRQf = p> 6HfqPDJJLRUHGLp>LOFRQRf = fq DSHUWRYHUVRLOEDVVR/¶HTXD]LRQHu = uGHVFULYHLOVHPLSLDQRFKHFRQWLHQHO¶DVVH GHOOH]HIRUPDXQDQJRORuFRQLOVHPLDVVHSRVLWLYRGHOO[ Equazioni che collegano le coordinate sferiche con quelle cartesiane e cilindriche



 0U[LNYHSP[YPWSPPUJVVYKPUH[LJPSPUKYPJOLLZMLYPJOL  

ESEMPIO 3

7URYDUHXQ¶HTXD]LRQHLQFRRUGLQDWHVIHULFKHSHUODVIHUD[ + \ + ] -   =  Soluzione 8VLDPROH(TXD]LRQL  SHUVRVWLWXLUH[\H] z x 2  y 2  (z  1)2  1 r  2 cos f

2

1

f r

/¶DQJRORfYDULDGDDOSRORQRUGGHOODVIHUD¿QRDp>DOSRORVXGO¶DQJRORu QRQ DSSDUH QHOO¶HVSUHVVLRQH FKH Gj r FRHUHQWHPHQWH FRQ OD VLPPHWULD ULVSHWWR DOO¶DVVHGHOOH] )LJXUD 

y x

-PN\YH /DVIHUDGHOO¶(VHPSLR

ESEMPIO 4

7URYDUHXQ¶HTXD]LRQHLQFRRUGLQDWHVIHULFKHSHULOFRQR] = 2[+ \

z

Soluzione 1 8VLDPRODJHRPHWULD,OFRQRqVLPPHWULFRULVSHWWRDOO¶DVVHGHOOH]HLQWHUVHFDLO SULPRTXDGUDQWHGHOSLDQR\]OXQJRODUHWWD] = \/¶DQJRORWUDLOFRQRHLOVHPL DVVHSRVLWLYRGHOOH]qTXLQGLGLp>UDGLDQWL,OFRQRqFRPSRVWRGDLSXQWLOHFXL FRRUGLQDWHVIHULFKHKDQQRfSDULDp>HFRVuODVXDHTXD]LRQHqf = p> )LJXUD   Soluzione 2 8VLDPRO¶DOJHEUD6HXVLDPROH(TXD]LRQL  SHUVRVWLWXLUH[\H]RWWHQLDPROR VWHVVRULVXOWDWR

  4

z  1x 2  y 2   4

x

-PN\YH ,OFRQRGHOO¶(VHPSLR (VHPSLR VLQf Ú 

…f…p

/HFRRUGLQDWHVIHULFKHVRQRXWLOLSHUGHVFULYHUHVIHUHFHQWUDWHQHOO¶RULJLQHVHPL 'LIIHUHQ]LDOHGHOYROXPH SLDQLODFXLIURQWLHUDFRLQFLGHFRQO¶DVVHGHOOH]HFRQLFRQLOYHUWLFHQHOO¶RULJLQH LQFRRUGLQDWHVIHULFKH G9 = rVLQfGrGfGu HO¶DVVHOXQJRO¶DVVHGHOOH]

y

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

6XSHU¿FLGLTXHVWRWLSRKDQQRHTXD]LRQLRWWHQXWHXJXDJOLDQGRXQDFRRUGLQDWDD XQDFRVWDQWH

z r sin f

6IHUDUDJJLRFHQWURQHOO¶RULJLQH

r sin f Δu

rΔf

&RQRFKHVLDSUHYHUVRO¶DOWRGDOO¶RUL JLQHHFKHIRUPDXQDQJRORGLp> UDGLDQWLFRQLOVHPLDVVHSRVLWLYRGHOOH] 6HPLSLDQRFRQODIURQWLHUDOXQJRO¶DVVH GHOOH]HFKHIRUPDXQDQJRORGLp> UDGLDQWLFRQLOVHPLDVVHSRVLWLYRGHOOH[

Of r Δr u x

u  Δu

-PN\YH ,QFRRUGLQDWHVIHULFKH

y

4XDQGR FDOFROLDPR LQWHJUDOL WULSOL VX XQD UHJLRQH ' LQ FRRUGLQDWH VIHULFKH VXGGLYLGLDPRODUHJLRQHLQQFXQHLVIHULFL/HGLPHQVLRQLGHONHVLPRFXQHRVIHUL FRFKHFRQWLHQHXQSXQWR rNfNuN VRQRGDWHGDOOHYDULD]LRQL¢rN¢fH¢uNGL rfHu8QRGHJOLVSLJROLGLXQFXQHRGLTXHVWRWLSRqXQDUFRGLFLUFRQIHUHQ]DGL OXQJKH]]DrN¢fNXQDOWURqXQDUFRGLOXQJKH]]DrNVLQfN¢uNHKDVSHVVRUH¢rN ,OFXQHRVIHULFRDSSURVVLPDXQFXEHWWRGLTXHVWHGLPHQVLRQLTXDQGR¢rN¢fNH ¢uNVRQRWXWWLSLFFROL )LJXUD 6LSXzGLPRVWUDUHFKHLOYROXPHGLTXHVWR FXQHRVIHULFR¢9Nq¢9N = rNVLQfN¢rN¢fN¢uNGRYH rNfNuN qXQSXQWRVFHOWR DOO¶LQWHUQRGHOFXQHR /DFRUULVSRQGHQWHVRPPDGL5LHPDQQSHUXQDIXQ]LRQH¦ rfu q

$OWHQGHUHD]HURGHOODQRUPDGHOODSDUWL]LRQHTXDQGRLFXQHLGLYHQWDQRVHPSUH SLSLFFROLOHVRPPHGL5LHPDQQDPPHWWRQROLPLWHTXDQGR¦qFRQWLQXD

,QFRRUGLQDWHVIHULFKHDEELDPR

3HU FDOFRODUH JOL LQWHJUDOL LQ FRRUGLQDWH VIHULFKH LQ JHQHUH VL LQWHJUD GDSSULPD ULVSHWWRDr,OSURFHGLPHQWRSHUWURYDUHJOLHVWUHPLGLLQWHJUD]LRQHqLOVHJXHQWH 5HVWULQJLDPRO¶DWWHQ]LRQHDOO¶LQWHJUD]LRQHVXGRPLQLFKHVLDQRVROLGLGLURWD]LRQH DWWRUQRDOO¶DVVHGHOOH] RSDUWHGLHVVL HSHULTXDOLJOLHVWUHPLULVSHWWRDfHu VLDQRFRVWDQWL

Come integrare in coordinate sferiche 3HUFDOFRODUH

VXXQDUHJLRQH'QHOORVSD]LRLQFRRUGLQDWHVIHULFKHLQWHJUDQGRSULPDULVSHWWRD rSRLULVSHWWRDfHLQ¿QHULVSHWWRDuVYROJLDPRLVHJXHQWLSDVVL  'LVHJQDUH 'LVHJQLDPR OD UHJLRQH ' FRQ OD VXD SURLH]LRQH 5 VXO SLDQR [\ ,QVHULDPRODGHVFUL]LRQHGHOOHVXSHU¿FLFKHGHOLPLWDQR'

 0U[LNYHSP[YPWSPPUJVVYKPUH[LJPSPUKYPJOLLZMLYPJOL  

z

r  g2(f, u)

D r  g1(f, u)

R

y

x

7URYDUH JOL HVWUHPL GL LQWHJUD]LRQH ULVSHWWR D r 7UDFFLDPR XQ UDJJLR 0 GDOO¶RULJLQHDWWUDYHUVR'FKHIRUPLXQDQJRORfFRQLOVHPLDVVHSRVLWLYRGHOOH ]7UDFFLDPRDQFKHODSURLH]LRQHGL0VXOSLDQR[\ FKLDPLDPRTXHVWDSUR LH]LRQH/ ,OUDJJLR/IRUPDXQDQJRORuFRQLOVHPLDVVHSRVLWLYRGHOOH[$O FUHVFHUHGLr0HQWUDLQ'LQr = J fu HQHHVFHLQr = J fu 4XHVWL VRQRJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDr z

fmax

fmin

f

M r  g2(f, u)

D r  g1(f, u)

ua

ub y

R θ L

x

7URYDUHJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDf3HURJQLGDWRuO¶DQJRORf IRUPDWRGD0FRQO¶DVVHGHOOH]YDULDGDf = fPLQDf = fPD[4XHVWLVRQRJOL HVWUHPLGLLQWHJUD]LRQHULVSHWWRDf 7URYDUHJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDu,OUDJJLR/LQWHUVHFD5TXDQGRu YDULDGDaDb4XHVWLVRQRJOLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDu/¶LQWHJUDOHq PD[

PLQ

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

ESEMPIO 5 z

7URYDUHLOYROXPHGHO³FRQRJHODWR´'FRPSRVWRGDOODUHJLRQHFRPXQHDOODVIHUD VROLGDr … HDOFRQRf = p>

M Sfera r  1

D

Cono f  p 3 R u x

L

y

-PN\YH ,OFRQRJHODWRGHOO¶(VHPSLR

Soluzione ,OYROXPHq9 = 7'rVLQfGrGfGuO¶LQWHJUDOHGL¦ rfu = VX' 3HUWURYDUHJOLHVWUHPLGLLQWHJUD]LRQHSHUFDOFRODUHO¶LQWHJUDOHFRPLQFLDPR GLVHJQDQGR'HODVXDSURLH]LRQH5VXOSLDQR[\ )LJXUD  *OLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDr7UDFFLDPRXQUDJJLR0GDOO¶RULJLQH SDVVDQWHSHU'FKHIRUPDXQDQJRORfFRQLOVHPLDVVHSRVLWLYRGHOOH]7UDFFLDPR DQFKH/ODSURLH]LRQHGL0VXOSLDQR[\QRQFKpO¶DQJRORuFKH/IRUPDFRQLO VHPLDVVHSRVLWLYRGHOOH[,OUDJJLR0HQWUDLQ'LQr = HQHHVFHLQr =  *OLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDf,OFRQRf = p>IRUPDXQDQJRORGL p>FRQLOVHPLDVVHSRVLWLYRGHOOH]3HURJQLGDWRuO¶DQJRORfSXzYDULDUHGD f = Df = p> *OLHVWUHPLGLLQWHJUD]LRQHULVSHWWRDu,OUDJJLR/VSD]]D5TXDQGRuYDULD GDDp,OYROXPHq

ESEMPIO 6

8QVROLGRGLGHQVLWjFRVWDQWHd = RFFXSDODUHJLRQH'GHOO¶(VHPSLR7URYDUH LOPRPHQWRGLLQHU]LDDWWRUQRDOO¶DVVHGHOOH]GHOVROLGR Soluzione ,QFRRUGLQDWHUHWWDQJRODULLOPRPHQWRq  ,QFRRUGLQDWHVIHULFKH[ + \ = rVLQfFRVu + rVLQfVLQu  = rVLQ f 4XLQGL 



3HUODUHJLRQHGHOO¶(VHPSLRVLRWWLHQH



 :VZ[P[\aPVULULNSPPU[LNYHSPT\S[PWSP  

Formule per la conversione tra coordinate DA CILINDRICHE

DA SFERICHE

DA SFERICHE

A CARTESIANE

A CARTESIANE

A CILINDRICHE



)RUPXOHFRUULVSRQGHQWLSHUG9QHJOLLQWHJUDOLWULSOL

1HOSURVVLPRSDUDJUDIRYHGUHPRXQSURFHGLPHQWRSLJHQHUDOHSHUGHWHUPLQDUH G9LQFRRUGLQDWHFLOLQGULFKHHVIHULFKH2YYLDPHQWHULWURYHUHPRDQFKHTXHVWLUL VXOWDWL v

4.8 Sostituzione negli integrali multipli /¶RELHWWLYRGLTXHVWRSDUDJUDIRqGLPRVWUDUHXQPHWRGRJHQHUDOHSHULFDPELD PHQWLGLFRRUGLQDWH9HGUHPRFRPHFDOFRODUHLQWHJUDOLPXOWLSOLSHUVRVWLWX]LRQH LQPRGRGDWUDVIRUPDUHLQWHJUDOLFRPSOLFDWLLQDOWULSLIDFLOLGDFDOFRODUH8QDVR VWLWX]LRQHSXzSHUPHWWHUHGLVHPSOL¿FDUHO¶LQWHJUDQGRJOLHVWUHPLGLLQWHJUD]LRQH RHQWUDPEL8QRVWXGLRSLDSSURIRQGLWRGHOOHWUDVIRUPD]LRQLHVRVWLWX]LRQLLQSL YDULDELOLHGHOORMDFRELDQRqPDWHULDSHUXQFRUVRSLDYDQ]DWRFKHXVLLPHWRGL GHOO¶DOJHEUDOLQHDUH

(u, v) G

u

0 Piano cartesiano uv

Sostituzione negli integrali doppi /DVRVWLWX]LRQHUHODWLYDDOOHFRRUGLQDWHSRODULPRVWUDWDQHO3DUDJUDIRqXQFDVR SDUWLFRODUHGLXQPHWRGRGLVRVWLWX]LRQHSLJHQHUDOHSHUJOLLQWHJUDOLGRSSLXQ PHWRGRLQFXLDXQFDPELRGLYDULDELOLFRUULVSRQGHXQDWUDVIRUPD]LRQHGLUHJLRQL 6XSSRQLDPRFKHXQDUHJLRQH*GHOSLDQRXyVLWUDVIRUPLELXQLYRFDPHQWHQHO ODUHJLRQH5GHOSLDQR[\PHGLDQWHHTXD]LRQLGHOODIRUPD [ = J Xy   \ = K Xy 

x  g(u, v) y  h(u, v) y

(x, y)

R 0

x

FRPHVXJJHULVFHOD)LJXUD&KLDPLDPR5LPPDJLQHGL*ULVSHWWRDOODWUD VIRUPD]LRQHH*FRQWURLPPDJLQHGL54XDOVLDVLIXQ]LRQH¦ [\ GH¿QLWDVX5 Piano cartesiano xy VLSXzFRQVLGHUDUHDQFKHFRPHXQDIXQ]LRQH¦ J Xy K Xy GH¿QLWDVX*&KH OHJDPHF¶qWUDO¶LQWHJUDOHGL¦ [\ VX5HO¶LQWHJUDOHGL¦ J Xy K Xy VX*" -PN\YH /DULVSRVWDqVHJKH¦KDQQRGHULYDWHSDU]LDOLFRQWLQXHH- Xy  FKHGH¿QL /HHTXD]LRQL[ = J Xy H\ = K Xy  UHPRWUDXQPRPHQWR q]HURDOSLLQSXQWLLVRODWLDOORUD FLSHUPHWWRQRGLWUDVIRUPDUHXQ 

 ,O IDWWRUH - X y  GL FXL FRPSDUH LO YDORUH DVVROXWR QHOO¶(TXD]LRQH   q OR MDFRELDQRGHOODWUDVIRUPD]LRQHGLFRRUGLQDWHFKHSUHQGHLOQRPHGDOPDWHPDWLFR WHGHVFR&DUO-DFREL0LVXUDTXDQWRODWUDVIRUPD]LRQHHVSDQGDRFRQWUDJJDO¶DUHD DWWRUQRDXQSXQWRGL*TXDQGR*VLWUDVIRUPDLQ5 

LQWHJUDOHVXXQDUHJLRQH5QHOSLDQR[\ LQXQLQWHJUDOHVXXQDUHJLRQH*QHO SLDQRXyXVDQGRO¶(TXD]LRQH  

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

DEFINIZIONE

,OGHWHUPLQDQWHMDFRELDQRRVHPSOLFHPHQWHORMDFRELDQRGHOODWUDVIRUPD]LR QHGLFRRUGLQDWH[ = J Xy \ = K Xy q





 /RMDFRELDQRVLSXzLQGLFDUHDQFKHFRQ

SHUULFRUGDUHFRPHFRVWUXLUHLOGHWHUPLQDQWHGHOO¶(TXD]LRQH  FRQOHGHULYDWH SDU]LDOLGL[H\/DGLPRVWUD]LRQHGHOO¶(TXD]LRQH  qFRPSOHVVDHGqPDWHULD SHUXQFRUVRSLDYDQ]DWRGLDQDOLVL ESEMPIO 1



7URYDUH OR MDFRELDQR SHU OD WUDVIRUPD]LRQH UHODWLYD DOOH FRRUGLQDWH SRODUL [ = UFRVu\ = UVLQuHXVDUHO¶(TXD]LRQH  SHUVFULYHUHO¶LQWHJUDOHFDUWHVLDQR FRPHLQWHJUDOHSRODUH

 2 G

0

r

1

Soluzione /D )LJXUD  PRVWUD FRPH OH HTXD]LRQL [ = U FRV u \ = U VLQ u WUDVIRUPDQR LOUHWWDQJROR* … U …  … u … p>QHOTXDUWRGLFHUFKLR5GHOLPLWDWRGD [ + \ = QHOSULPRTXDGUDQWHGHOSLDQR[\ 3HUOHFRRUGLQDWHSRODULDEELDPRUHuDOSRVWRGLXHy&RQ[ = U FRV uH \ = UVLQuORMDFRELDQRq

Piano cartesiano r  x  r cos  y  r sin  y

4XLQGLO¶(TXD]LRQH  Gj   2



1



R

0 0

1

x

Piano cartesiano xy

-PN\YH /HHTXD]LRQL[ = UFRVu\ = UVLQu WUDVIRUPDQR*LQ5



ÊODVWHVVDIRUPXODFKHDYHYDPRWURYDWRSHUDOWUDYLDUDJLRQDQGRJHRPHWULFDPHQ WHSHUXQ¶DUHDSRODUHQHO3DUDJUDIR 2VVHUYLDPRFKHO¶LQWHJUDOHDOVHFRQGRPHPEURGHOO¶(TXD]LRQH  QRQqO¶LQ WHJUDOHGL¦ U FRV uU VLQ u VXXQDUHJLRQHGHOSLDQRGHOOHFRRUGLQDWHSRODULÊ O¶LQWHJUDOHGHOSURGRWWRGL¦ UFRVuUVLQu HUVXXQDUHJLRQH*QHOSLDQRFDUWH VLDQRUu

(FFRRUDXQHVHPSLRGLVRVWLWX]LRQHLQFXLO¶LPPDJLQHGLXQUHWWDQJRORULVSHWWR DOODWUDVIRUPD]LRQHGLFRRUGLQDWHqXQSDUDOOHORJUDPPD7UDVIRUPD]LRQLGLTXHVWR WLSRVRQRGHWWHWUDVIRUPD]LRQLOLQHDUL

 :VZ[P[\aPVULULNSPPU[LNYHSPT\S[PWSP  

ESEMPIO 2

&DOFRODUH

DSSOLFDQGRODWUDVIRUPD]LRQH







HLQWHJUDQGRVXXQ¶RSSRUWXQDUHJLRQHGHOSLDQRXy Soluzione 'LVHJQLDPRODUHJLRQH5GLLQWHJUD]LRQHQHOSLDQR[\HLGHQWL¿FKLDPRQHODIURQ WLHUD )LJXUD  y

v 2

v2

u0

0

1

u

-PN\YH /HHTXD]LRQL[ = X + y H\ = y WUDVIRUPDQR*LQ5,QYHUWHQGROD WUDVIRUPD]LRQHFRQOHHTXD]LRQL X = [ - \ >Hy = \>VLWUDVIRUPD 5LQ* (VHPSLR 

y  2x

xuv y  2v

u1

G

v0

y4

4

R

0

y  2x  2

x

1 y0

3HUDSSOLFDUHO¶(TXD]LRQH  GREELDPRWURYDUHODFRUULVSRQGHQWHUHJLRQH*QHO SLDQRXyHORMDFRELDQRGHOODWUDVIRUPD]LRQH3HUWURYDUOLSULPDULFDYLDPRGDOOH (TXD]LRQL  [H\LQWHUPLQLGLXHy'DTXHVWHHTXD]LRQLqIDFLOHYHGHUHFKH [ = X + y  \ = y





3RLWURYLDPRODIURQWLHUDGL*LQVHUHQGRTXHVWHHVSUHVVLRQLQHOOHHTXD]LRQLSHUOD IURQWLHUDGL5 )LJXUD  (TXD]LRQLLQ[\SHU ODIURQWLHUDGL5

(TXD]LRQLFRUULVSRQGHQWLLQ XYSHUODIURQWLHUDGL*

(TXD]LRQLLQ XYVHPSOL¿FDWH

[ = \>

X + y = y> = y

X=

[ = \> + 

X + y = y> +  = y + 

X=

\=

y = 

y=

\=

y = 

y=

/RMDFRELDQRGHOODWUDVIRUPD]LRQH GLQXRYRGDOOH(TXD]LRQL  q

$GHVVRDEELDPRWXWWRFLzFKHVHUYHSHUDSSOLFDUHO¶(TXD]LRQH  

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

v

1

vu

G 1 u1

0

u

v  –2u

–2

ESEMPIO 3 u v x  3 3 2u v y  3 3

&DOFRODUH

y

Soluzione 'LVHJQLDPR OD UHJLRQH 5 GL LQWHJUD]LRQH QHO SLDQR [\ H LGHQWL¿FKLDPRQH OD IURQWLHUD )LJXUD   /¶LQWHJUDQGR VXJJHULVFH OD WUDVIRUPD]LRQH X = [ + \ H y = \ - [&RQVHPSOLFLFDOFROLDOJHEULFLWURYLDPR[H\LQIXQ]LRQHGLXHy

1 xy1

x0 R 0



y0

1

x

-PN\YH /HHTXD]LRQL[ = X> - y> H \ = X> + y> WUDVIRUPDQR*LQ5 ,QYHUWHQGRODWUDVIRUPD]LRQHFRQOH HTXD]LRQLX = [ + \Hy = \ - [VL WUDVIRUPD5LQ* (VHPSLR 

  'DOOH(TXD]LRQL  SRVVLDPRWURYDUHODIURQWLHUDGHOODUHJLRQH*QHOSLDQRXy )LJXUD  (TXD]LRQLLQ[\SHU ODIURQWLHUDGL5

(TXD]LRQLFRUULVSRQGHQWLLQ XYSHUODIURQWLHUDGL*

(TXD]LRQLLQ XYVHPSOL¿FDWH X=

[+\= [=



\=

y=X y = - X

/RMDFRELDQRGHOODWUDVIRUPD]LRQHGDWDGDOOH(TXD]LRQL  q

&DOFROLDPRO¶LQWHJUDOHDSSOLFDQGRO¶(TXD]LRQH  



1HOSURVVLPRHVHPSLRYHGLDPRXQFDVRGLWUDVIRUPD]LRQHGLFRRUGLQDWHQRQ OLQHDUHRWWHQXWDVHPSOL¿FDQGRODIRUPDGHOO¶LQWHJUDQGR&RPHODWUDVIRUPD]LRQH

 :VZ[P[\aPVULULNSPPU[LNYHSPT\S[PWSP  

GDWD GDOOH FRRUGLQDWH SRODUL OH WUDVIRUPD]LRQL QRQ OLQHDUL SRVVRQR PDQGDUH XQ WUDWWRUHWWLOLQHRGLIURQWLHUDLQXQWUDWWRFXUYR HYLFHYHUVDFRQODWUDVIRUPD]LRQH LQYHUVD ,QJHQHUDOHOHWUDVIRUPD]LRQLQRQOLQHDULVRQRSLFRPSOHVVHGDDQDOL] ]DUHGLTXHOOHOLQHDULHXQRVWXGLRFRPSOHWRqODVFLDWRDXQFRUVRSLDYDQ]DWR ESEMPIO 4

&DOFRODUHO¶LQWHJUDOH

Soluzione /HUDGLFLTXDGUDWHSUHVHQWLQHOO¶LQWHJUDQGRFLIDQQRYHQLUHLQPHQWHGLVHPSOL¿ FDUHO¶LQWHJUD]LRQHFRQODVRVWLWX]LRQHX = 2[\Hy = 2\>[(OHYDQGRDOTXDGUDWR TXHVWHHTXD]LRQLRWWHQLDPRX = [\Hy= \>[GDFXLXy = \HX>y = [2WWH QLDPRFRVuODWUDVIRUPD]LRQH QHOORVWHVVRRUGLQHGHOOHYDULDELOLYLVWRVRSUD  H

y

yx

2

9HGLDPRSULPDFKHFRVDVXFFHGHDOO¶LQWHJUDQGRVWHVVRFRQTXHVWDWUDVIRUPD]LRQH /RMDFRELDQRGHOODWUDVIRUPD]LRQHq

y2

R 1

xy  1

0

1

x

2

6H*qODUHJLRQHGLLQWHJUD]LRQHQHOSLDQRXyDOORUDSHUO¶(TXD]LRQH  ODVRVWL -PN\YH /DUHJLRQHGLLQWHJUD]LRQH5 WX]LRQHGDWDGDOODWUDVIRUPD]LRQHSRUWDDOO¶LQWHJUDOHGRSSLR GHOO¶(VHPSLR y

/DIXQ]LRQHLQWHJUDQGDWUDVIRUPDWDqSLIDFLOHGDLQWHJUDUHGLTXHOODRULJLQDULD HTXLQGLSURFHGLDPRDGHWHUPLQDUHJOLHVWUHPLGLLQWHJUD]LRQHSHUO¶LQWHJUDOHWUD VIRUPDWR /DUHJLRQHGLLQWHJUD]LRQH5GHOO¶LQWHJUDOHGLSDUWHQ]DQHOSLDQR[\qPRVWUDWD QHOOD)LJXUD'DOOHHTXD]LRQLGHOODVRVWLWX]LRQHX = 2[\Hy = 2\>[RVVHU YLDPRFKHO¶LPPDJLQHGHOODSDUWHVLQLVWUDGHOODIURQWLHUD[\ = SHU5qLOVHJPHQ WRYHUWLFDOHX =  Ú y Ú LQ* )LJXUD $QDORJDPHQWHODSDUWHVLQLVWUD GHOODIURQWLHUD\ = [GL5YDQHOVHJPHQWRRUL]]RQWDOHy =  … X … LQ*,Q¿QH LOWUDWWRRUL]]RQWDOHVXSHULRUH\ = GL5YDLQXy =  … y … LQ*4XDQGR FLVSRVWLDPRLQVHQVRDQWLRUDULROXQJRODIURQWLHUDGHOODUHJLRQH5FLVSRVWLDPR LQVHQVRDQWLRUDULRDQFKHOXQJRODIURQWLHUDGL*FRPHVLYHGHQHOOD)LJXUD &RQRVFHQGRODUHJLRQHGLLQWHJUD]LRQH*QHOSLDQRXySRVVLDPRRUDVFULYHUHJOL LQWHJUDOLLWHUDWLHTXLYDOHQWL

&DOFROLDPRRUDO¶LQWHJUDOHDOVHFRQGRPHPEUR

uy  2 ⇔ y  2

2 u  1 ⇔ xy  1

G 1 y1⇔yx

0

1

2

u

-PN\YH /DIURQWLHUDGHOODUHJLRQH* FRUULVSRQGHDTXHOODGHOODUHJLRQH5 GHOOD)LJXUD6LQRWLFKHYLVWRFKH SURFHGHYDPRLQVHQVRDQWLRUDULR DWWRUQRDOODUHJLRQH5ORIDFFLDPR DQFKHSHUODUHJLRQH*/HHTXD]LRQL 6LQRWLO¶RUGLQHGLLQWHJUD]LRQH GHOODWUDVIRUPD]LRQHLQYHUVDX = 1[\ y = 1\>[SURGXFRQRODUHJLRQH*D SDUWLUHGDOODUHJLRQH5

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

Sostituzione negli integrali tripli /H VRVWLWX]LRQL UHODWLYH DOOH FRRUGLQDWH FLOLQGULFKH H VIHULFKH GHO 3DUDJUDIR  VRQRFDVLVSHFLDOLGLXQPHWRGRGLVRVWLWX]LRQHFKHIDFRUULVSRQGHUHLFDPELGLYD ULDELOHQHJOLLQWHJUDOLWULSOLDWUDVIRUPD]LRQLGLUHJLRQLWULGLPHQVLRQDOL,OPHWRGR qDQDORJRDTXHOORSHUJOLLQWHJUDOLGRSSLDSDUWHLOIDWWRFKHDGHVVRODYRULDPRLQ WUHGLPHQVLRQLDQ]LFKpGXH 6XSSRQLDPRFKHXQDUHJLRQH*GHOORVSD]LRXyZVLDWUDVIRUPDWDELXQLYRFD PHQWHQHOODUHJLRQH'GHOORVSD]LR[\]PHGLDWHHTXD]LRQLGHULYDELOLGHOODIRUPD [ = J XyZ   \ = K XyZ   ] = N XyZ  FRPHVXJJHULWRQHOOD)LJXUD$OORUDTXDOVLDVLIXQ]LRQH) [\] GH¿QLWDVX 'VLSXzFRQVLGHUDUHFRPHXQDIXQ]LRQH ) J XyZ K XyZ N XyZ = + XyZ  GH¿QLWDVX*6HJKHNKDQQRGHULYDWHSDU]LDOLSULPHFRQWLQXHDOORUDO¶LQWHJUDOH GL) [\] VX'qOHJDWRDOO¶LQWHJUDOHGL+ XyZ VX*GDOO¶HTXD]LRQH 



 w

z x  g(u, y, w) y  h(u, y, w) z  k(u, y, w)

-PN\YH /HHTXD]LRQL[= J XyZ  \= K XyZ H] = N XyZ FL SHUPHWWRQRGLWUDVIRUPDUHXQLQWHJUDOH VXXQDUHJLRQH'GHOORVSD]LR FDUWHVLDQR[\]LQXQLQWHJUDOHVXXQD UHJLRQH*QHOORVSD]LRFDUWHVLDQRX\Z XVDQGRO¶(TXD]LRQH  

G

D y

u

Spazio cartesiano uyw

y x

Spazio cartesiano xyz

,OIDWWRUH- XyZ LOFXLYDORUHDVVROXWRFRPSDUHLQTXHVWDHTXD]LRQHqLOGHWHU PLQDQWHMDFRELDQR

 :VZ[P[\aPVULULNSPPU[LNYHSPT\S[PWSP  

4XHVWRGHWHUPLQDQWHPLVXUDTXDQWRLOYROXPHYLFLQRDXQSXQWRGL*VLDHVSDQVR RFRQWUDWWRGDOODWUDVIRUPD]LRQHGDOOHFRRUGLQDWH XyZ DOOH [\] &RPHQHO FDVRELGLPHQVLRQDOHRPHWWLDPRODGHULYD]LRQHGHOODIRUPXODGHOO¶(TXD]LRQH   SHULOFDPELRGLYDULDELOL 3HUOHFRRUGLQDWHFLOLQGULFKHUuH]SUHQGRQRLOSRVWRGLXyHZ/DWUD VIRUPD]LRQH GDOOR VSD]LR FDUWHVLDQR Uu] DOOR VSD]LR FDUWHVLDQR [\] q GDWD GDOOH HTXD]LRQL

z

Cubo con spigoli paralleli agli assi coordinati

G

[ = UFRVu  \ = UVLQu  ] = ]

u

)LJXUD /RMDFRELDQRGHOODWUDVIRUPD]LRQHq r

Spazio cartesiano ruz x = r cos u y = r sin u z=z z z = costante D

/DFRUULVSRQGHQWHYHUVLRQHGHOO¶(TXD]LRQH  q u = constante x

r = costante y

Spazio cartesiano xyz

3HUOHFRRUGLQDWHVIHULFKHrfHuSUHQGRQRLOSRVWRGLXyHZ/DWUDVIRUPD]LR -PN\YH QHGDOORVSD]LRFDUWHVLDQRrfuDOORVSD]LRFDUWHVLDQR[\]qGDWDGD /HHTXD]LRQL[ = UFRVu\ = UVLQuH ] = ]WUDVIRUPDQRLOFXER*LQXQ [ = rVLQfFRVu  \ = rVLQfVLQu  ] = rFRVf FXQHRFLOLQGULFR'

)LJXUD /RMDFRELDQRGHOODWUDVIRUPD]LRQH VLYHGDO¶(VHUFL]LR q

/DFRUULVSRQGHQWHYHUVLRQHGHOO¶(TXD]LRQH  q

u

Cubo con spigoli paralleli agli assi coordinati

r = constante

u = constante z

D

(x, y, z) f

x = r sin f cos u y = r sin f sin u z = r cos f

r

f = constante

G f r

Spazio cartesiano rfu

u x

Spazio cartesiano xyz

y

-PN\YH /HHTXD]LRQL[ = rVLQfFRVu\ = r VLQfVLQuH] = rFRVf WUDVIRUPDQRLO FXER*QHOFXQHRVIHULFR'

  *HWP[VSV¶0U[LNYHSPT\S[PWSP

3RVVLDPRHOLPLQDUHLVHJQLGLYDORUHDVVROXWRSHUFKpVLQ f QRQqPDLQHJDWLYR SHU … f … p6LQRWLFKHTXHVWRqORVWHVVRULVXOWDWRFKHDYHYDPRRWWHQXWRQHO 3DUDJUDIR

w 1 G

(FFRXQDOWURHVHPSLRGLVRVWLWX]LRQH3XUHVVHQGRSRVVLELOHFDOFRODUHGLUHWWD PHQWHO¶LQWHJUDOHORDEELDPRVFHOWRSHUHVHPSOL¿FDUHLOPHWRGRGLVRVWLWX]LRQHLQ XQDPELWRVHPSOLFH HDEEDVWDQ]DLQWXLWLYR 

2

1

y

u

ESEMPIO 5

xuy y  2y z  3w

&DOFRODUH

z

DSSOLFDQGRODWUDVIRUPD]LRQH

Piano posteriore: y x  , o y  2x 2

3

X = [ - \ >  y = \>  Z = ]>



D



HLQWHJUDQGRVXXQ¶RSSRUWXQDUHJLRQHGHOORVSD]LRXyZ 1 4 x Piano anteriore: y x   1, o y  2x  2 2

y

Soluzione 'LVHJQLDPRODUHJLRQH'GLLQWHJUD]LRQHQHOORVSD]LR[\]HLGHQWL¿FKLDPRQHOD IURQWLHUD )LJXUD ,QTXHVWRFDVROHVXSHU¿FLGHOODIURQWLHUDVRQRSLDQL 3HUDSSOLFDUHO¶(TXD]LRQH  GREELDPRWURYDUHODFRUULVSRQGHQWHUHJLRQH* QHOOR VSD]LR XyZ H OR MDFRELDQR GHOOD WUDVIRUPD]LRQH 3HU WURYDUOL ULVROYLDPR GDSSULPDOH(TXD]LRQL  SHUWURYDUH[\H]LQWHUPLQLGLXyHZ&DOFROLLP PHGLDWLGDQQR

-PN\YH  [ = X + y  \ = y  ] = Z   /HHTXD]LRQL[ = X + y\ = yH] = Z WUDVIRUPDQR*LQ',QYHUWHQGROD 7URYLDPRSRLODIURQWLHUDGL*LQVHUHQGRTXHVWHHVSUHVVLRQLQHOOHHTXD]LRQLGHOOD WUDVIRUPD]LRQHFRQOHHTXD]LRQL IURQWLHUDGL' X = [ - \ >y = \>HZ = ]>VL WUDVIRUPD'LQ* (VHPSLR 

(TXD]LRQLLQ[\] SHUODIURQWLHUDGL' [ = \>

[ = \> +  \=

(TXD]LRQLFRUULVSRQGHQWLLQ XYZSHUODIURQWLHUDGL*

(TXD]LRQL VHPSOL¿FDWHLQXYZ

X + y = y> = y

X = 

X + y = y> +  = y + 

X = 

y = 

y = 

\=

y = 

y = 

]=

Z = 

Z = 

]=

Z = 

Z = 

/RMDFRELDQRGHOODWUDVIRUPD]LRQHGLQXRYRGDOOH(TXD]LRQL  q

$GHVVRDEELDPRWXWWRTXHOORFKHVHUYHSHUDSSOLFDUHO¶(TXD]LRQH  

 :VZ[P[\aPVULULNSPPU[LNYHSPT\S[PWSP  

* ( 7 0 ; 6 3 6



Integrazione sui campi vettoriali PANORAMICA

Sommario del capitolo  Integrali curvilinei  Campi vettoriali e integrali curvilinei: lavoro, circolazione e flusso  Indipendenza dai cammini, campi conservativi e potenziali  Il Teorema di Green nel piano  Superfici e aree

In questo capitolo estendiamo la teoria dell’integrazione alle curve e superfici nello spazio. La teoria degli integrali curvilinei e di superficie che ne risulta fornisce utilissimi strumenti per le scienze e l’ingegneria. Gli integrali curvilinei si usano per esempio per calcolare il lavoro compiuto da una forza mentre un oggetto si sposta lungo una traiettoria e per trovare la massa di un cavo curvo con densità non omogenea. Gli integrali di superficie si usano per trovare il flusso di un fluido attraverso una superficie. Presentiamo i teoremi fondamentali del calcolo integrale vettoriale e ne studiamo le conseguenze matematiche e le applicazioni fisiche. Per concludere, mostreremo che i teoremi principali sono interpretazioni generalizzate del teorema fondamentale del calcolo integrale.

 Integrali di superficie  Il Teorema di Stokes  Il Teorema della divergenza e una teoria unificata

z tb

5.1 Integrali curvilinei 3HUFDOFRODUHODPDVVDFRPSOHVVLYDGLXQFDYRFKHIRUPDXQDFXUYDQHOORVSD]LR RSHUWURYDUHLOODYRURFRPSLXWRGDXQDIRU]DYDULDELOHFKHDJLVFHOXQJRODVWHVVD FXUYDFLVHUYHXQFRQFHWWRGLLQWHJUDOHGH¿QLWRVXXQDFXUYD&DQ]LFKpVXXQLQ WHUYDOOR>DE@4XHVWLLQWHJUDOLSLJHQHUDOLVRQRGHWWLLQWHJUDOLFXUYLOLQHL'DUHPR OHGH¿QL]LRQLSHUOHFXUYHQHOORVSD]LROHFXUYHQHOSLDQR[\VRQRGDWHGDOFDVR SDUWLFRODUHLQFXLODFRRUGLQDWD]qLGHQWLFDPHQWHXJXDOHD]HUR 6XSSRQLDPRFKH¦ [\] VLDXQDIXQ]LRQHDYDORULUHDOLFKHYRJOLDPRLQWH JUDUHVXOODFXUYD&FKHVLWURYDDOO¶LQWHUQRGHOGRPLQLRGL¦HFKHqSDUDPHWUL]]DWD GDU W = J W L + K W M + N W ND … W … E,YDORULGL¦OXQJRODFXUYDVRQRGDWLGDOOD IXQ]LRQHFRPSRVWD¦ J W K W N W ,QWHJUHUHPRTXHVWDIXQ]LRQHFRPSRVWDUL VSHWWRDOODOXQJKH]]DG¶DUFRGDW = DDW = E &RPLQFLDPRVXGGLYLGHQGRODFXUYD&LQXQQXPHUR¿QLWRQGLVRWWRDUFKL )L JXUD ,OJHQHULFRVRWWRDUFRKDOXQJKH]]D¢VN,QRJQLVRWWRDUFRVFHJOLDPRXQ SXQWR [N\N]N HIRUPLDPRODVRPPD

r(t)

s k

x

ta

(x k , yk , z k )

y

-PN\YH /DFXUYDU W VXGGLYLVDLQSLFFROL DUFKLGDW = DDW = E/D OXQJKH]]DGHOJHQHULFRVRWWRDUFRq ¢VN

FKHVRPLJOLDDXQDVRPPDGL5LHPDQQ$VHFRQGDGLFRPHDEELDPRVXGGLYLVROD FXUYD&HVFHOWR [N\N]N QHONHVLPRVRWWRDUFRSRVVLDPRRWWHQHUHYDORULGLYHUVL SHU6Q6H¦qFRQWLQXDHOHIXQ]LRQLJKHNKDQQRGHULYDWHSULPHFRQWLQXHDOORUD TXHVWHVRPPHWHQGRQRDOORVWHVVROLPLWHDOFUHVFHUHGLQHDOWHQGHUHD]HURGHOOH OXQJKH]]H¢VN4XHVWROLPLWHFLSHUPHWWHGLGDUHODVHJXHQWHGH¿QL]LRQHDQDORJD DTXHOODSHUXQLQWHJUDOHRUGLQDULR1HOODGH¿QL]LRQHDVVXPLDPRFKHODSDUWL]LRQH VLDWDOHFKH¢VN:SHUQ :q

 

*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

DEFINIZIONE

6H ¦ q GH¿QLWD VX XQD FXUYD & GH¿QLWD SDUDPHWULFDPHQWH GD U W = J W L + K W M + N W ND … W … EDOORUDO¶LQWHJUDOHFXUYLOLQHRGL¦VX&q 





VHTXHVWROLPLWHHVLVWH 6HODFXUYD&qUHJRODUHSHUD … W … E HTXLQGLY = GU>GWqFRQWLQXDHPDL HOD IXQ]LRQHIqFRQWLQXDVX&DOORUDVLSXzGLPRVWUDUHFKHLOOLPLWHQHOO¶(TXD]LRQH  HVLVWH3RVVLDPRTXLQGLDSSOLFDUHLOWHRUHPDIRQGDPHQWDOHGHOFDOFRORLQWHJUD OHSHUGLIIHUHQ]LDUHO¶HTXD]LRQHFKHGjODOXQJKH]]DG¶DUFR (T  GHO3DU FRQW = D

SHUHVSULPHUHGVQHOO¶(TXD]LRQH  FRPGV = ƒ Y W ƒ GWHFDOFRODUHO¶LQWHJUDOHGL¦ VX&FRPH 

  6LQRWLFKHO¶LQWHJUDOHDOVHFRQGRPHPEURGHOO¶(TXD]LRQH  qXQLQWHJUDOHRU GLQDULR VLQJROR  LQ FXL LQWHJULDPR ULVSHWWR DO SDUDPHWUR W /D IRUPXOD FDOFROD FRUUHWWDPHQWH O¶LQWHJUDOH FXUYLOLQHR DO SULPR PHPEUR LQGLSHQGHQWHPHQWH GDOOD SDUDPHWUL]]D]LRQH XVDWD SXUFKp OD SDUDPHWUL]]D]LRQH VLD UHJRODUH 2VVHUYLDPR FKHLOSDUDPHWURWGH¿QLVFHXQYHUVROXQJRLOFDPPLQR,OSXQWRGLSDUWHQ]DVX &qODSRVL]LRQHU D HLOYHUVRGHOPRYLPHQWROXQJRLOFDPPLQRqTXHOORLQFXL DXPHQWDW )LJXUD  Come calcolare un integrale curvilineo

3HULQWHJUDUHXQDIXQ]LRQHFRQWLQXD¦ [\] VXXQDFXUYD&  7URYLDPRXQDSDUDPHWUL]]D]LRQHUHJRODUHGL&

 &DOFROLDPRO¶LQWHJUDOH 

6H ¦ KD YDORUH FRVWDQWH  DOORUD O¶LQWHJUDOH GL ¦ VX & Gj OD OXQJKH]]D GL & GD W = DDW = EQHOOD)LJXUD

z (1, 1, 1)

ESEMPIO 1

C y

,QWHJUDUH¦ [\] = [ - \ + ]VXOVHJPHQWR&FKHXQLVFHO¶RULJLQHHLOSXQWR   )LJXUD  Soluzione 6FHJOLDPRODSDUDPHWUL]]D]LRQHSLVHPSOLFHSRVVLELOH

x (1, 1, 0)

-PN\YH ,OFDPPLQRGLLQWHJUD]LRQH GHOO¶(VHPSLR

/HFRPSRQHQWLKDQQRGHULYDWHSULPHFRQWLQXHHƒ Y W ƒ = ƒ L + M + N ƒ = 2 +  +  = 2 QRQVLDQQXOODPDLTXLQGLODSDUDPHWUL]]D]LRQHqUHJRODUH/¶LQWHJUDOHGL ¦VX&q

 0U[LNYHSPJ\Y]PSPULP

 

(T  GV = _Y W _GW = 1GW



Additività *OLLQWHJUDOLFXUYLOLQHLKDQQRO¶XWLOHSURSULHWjFKHVHXQDFXUYDUHJRODUHDWUDWWL& qFRPSRVWDGDOO¶XQLRQHGLXQQXPHUR¿QLWRGLFXUYHUHJRODUL&& Á&Q 3DUD JUDIR DOORUDO¶LQWHJUDOHGLXQDIXQ]LRQHVX&qODVRPPDGHJOLLQWHJUDOLVXOOH FXUYHFKHODFRPSRQJRQR 



 ESEMPIO 2

z

(1, 1, 1)

/D)LJXUDPRVWUDXQDOWURFDPPLQRGDOO¶RULJLQHD  O¶XQLRQHGHLVHJ PHQWL&H&,QWHJUDUH¦ [\] = [ - \ + ]VX&´& Soluzione 6FHJOLDPROHSLVHPSOLFLSDUDPHWUL]]D]LRQLGL&H&FKHFLYHQJRQRLQPHQWH FDOFRODQGRDOFRQWHPSRODOXQJKH]]DGHLYHWWRULYHORFLWj

C2

(0, 0, 0)

C1 x

&RQTXHVWHSDUDPHWUL]]D]LRQLWURYLDPR (T 

(T 

2VVHUYLDPRWUHFRVHVXOOHLQWHJUD]LRQLGHJOL(VHPSLH3ULPRXQDYROWD LQVHULWHQHOODIRUPXODOHFRPSRQHQWLGHOODSDUDPHWUL]]D]LRQHGHOODFXUYDO¶LQWH JUD]LRQHGLYHQWDXQ¶XVXDOHLQWHJUD]LRQHULVSHWWRDW6HFRQGRO¶LQWHJUDOHGL¦VX &´&qVWDWRRWWHQXWRLQWHJUDQGR¦VXRJQLVH]LRQHGHOFDPPLQRHVRPPDQGRL ULVXOWDWL7HU]RJOLLQWHJUDOLGL¦VX&HVX&´&KDQQRYDORULGLYHUVL

(1, 1, 0)

-PN\YH ,OFDPPLQRGLLQWHJUD]LRQH GHOO¶(VHPSLR

y

 

*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

,OYDORUHGLXQLQWHJUDOHFXUYLOLQHROXQJRXQFDPPLQRFKHFRQJLXQJHGXHSXQWL SXzYDULDUHVHVLPRGL¿FDLOFDPPLQRVHJXLWR 1HO3DUDJUDIRDSSURIRQGLUHPRODWHU]DRVVHUYD]LRQH

Calcoli di masse e momenti 7UDWWLDPRPROOHHFDYLFRPHPDVVHGLVWULEXLWHOXQJRFXUYHUHJRODULQHOORVSD]LR /DGLVWULEX]LRQHqGHVFULWWDGDXQDIXQ]LRQHGHQVLWjFRQWLQXDd [\] FKHUDSSUH VHQWDODPDVVDSHUXQLWjGLOXQJKH]]D4XDQGRXQDFXUYD&qSDUDPHWUL]]DWDGD U W = [ W L + \ W M + ] W ND … W … EVLKDFKH[\H]VRQRIXQ]LRQLGHOSDUDPHWURW ODGHQVLWjqODIXQ]LRQHd [ W \ W ] W HLOGLIIHUHQ]LDOHGHOODOXQJKH]]DGHOO¶DUFR qGDWRGD

3DUDJUDIR /DPDVVDLOFHQWURGLPDVVDHLPRPHQWLGHOODPROODRGHOFDYRVL FDOFRODQRTXLQGLFRQOHIRUPXOHGDOOD7DEHOODLQWHJUDQGRULVSHWWRDOSDUDPH WURWVXOO¶LQWHUYDOOR>DE@3HUHVHPSLRODIRUPXODSHUODPDVVDGLYHQWD

6LQRWLTXDQWRVRQRVLPLOLTXHVWHIRUPXOHDTXHOOHQHOOH7DEHOOHHSHUJOL LQWHJUDOLGRSSLHWULSOL*OLLQWHJUDOLGRSSLSHUOHUHJLRQLSODQDULHTXHOOLWULSOLSHU LVROLGLGLYHQWDQRLQWHJUDOLFXUYLOLQHLSHUPROOHFDYLHDVWLFHOOH ;HILSSH Formule per la massa e i momenti per molle, cavi e asticelle che seguono una curva regolare C dello spazio

0DVVD

d = d [\] qODGHQVLWjLQ [\] 

0RPHQWLVWDWLFLULVSHWWRDLSLDQLFRRUGLQDWL

&RRUGLQDWHGHOFHQWURGLPDVVD

0RPHQWLGLLQHU]LDULVSHWWRDJOLDVVLHDGDOWUHUHWWH

U [\] = GLVWDQ]DWUDLOSXQWR [\] HODUHWWD/

1RWLDPRFKHO¶HOHPHQWRGLPDVVDGPLQTXHVWDWDEHOODqXJXDOHDdGVHQRQDdG9 FRPHQHOOD7DEHOODHFKHJOLLQWHJUDOLVRQRFDOFRODWLVXOODFXUYD&

 0U[LNYHSPJ\Y]PSPULP

 

z

ESEMPIO 3 1

8QVRWWLOHDUFRGLPHWDOORSLGHQVRLQEDVVRFKHDOODVRPPLWjVHJXHODVHPLFLU FRQIHUHQ]D\ + ] = ] Ú QHOSLDQR\] )LJXUD 7URYDUHLOFHQWURGLPDVVD GHOO¶DUFRVHODGHQVLWjQHOSXQWR [\] GHOO¶DUFRqd [\] =  - ]

c.m. –1

Soluzione 6DSSLDPRFKH[ = H\ = SHUFKpO¶DUFRVLWURYDQHOSLDQR\]HODVXDPDVVDqGL VWULEXLWDVLPPHWULFDPHQWHDWWRUQRDOO¶DVVHGHOOH]3HUWURYDUH]SDUDPHWUL]]LDPR ODFLUFRQIHUHQ]DFRQ

,QTXHVWDSDUDPHWUL]]D]LRQH

x

1 y y 2  z 2  1, z  0

-PN\YH /¶(VHPSLRPRVWUDFRPHWURYDUHLO FHQWURGLPDVVDGLXQDUFRFLUFRODUH FRQGHQVLWjQRQRPRJHQHD

HFRVu

/HIRUPXOHGHOOD7DEHOODGDQQRTXLQGL

&DOFRODQGR]DPHQRGLXQFHQWHVLPRLOFHQWURGLPDVVDq   z

Integrali curvilinei nel piano &¶qXQ¶LQWHUHVVDQWHLQWHUSUHWD]LRQHJHRPHWULFDGHJOLLQWHJUDOLFXUYLOLQHLQHOSLD QR6H&qXQDFXUYDUHJRODUHQHOSLDQR[\SDUDPHWUL]]DWDGDU W = [ W L + \ W M  D … W … E SRVVLDPR JHQHUDUH XQD VXSHU¿FLH FLOLQGULFD PXRYHQGR XQD OLQHD UHWWDOXQJR&PDQWHQHQGRODRUWRJRQDOHDOSLDQRHSDUDOOHODDOO¶DVVHGHOOH]6H ] = ¦ [\ qXQDIXQ]LRQHFRQWLQXDQRQQHJDWLYDVXXQDUHJLRQHGHOSLDQRFKH FRQWLHQHODFXUYD&DOORUDLOJUD¿FRGL¦qXQDVXSHU¿FLHFKHVLWURYDDOGLVRSUD GHOSLDQR,OFLOLQGURLQWHUVHFDTXHVWDVXSHU¿FLHIRUPDQGRVXHVVDXQDFXUYDFKH VL WURYD DO GL VRSUD GHOOH FXUYD & H QH VHJXH O¶DQGDPHQWR /D SDUWH GL VXSHU ¿FLH FLOLQGULFD FRPSUHVD VRWWR OD VXSHU¿FLH H VRSUD LO SLDQR [\ q XQD VRUWD GL ³SDUHWHRQGXODWD´FKHVLWURYDVRSUD&HGqRUWRJRQDOHDOSLDQR,QRJQLSXQWR [\ OXQJRODFXUYDO¶DOWH]]DGHOODSDUHWHq¦ [\ 4XHVWDSDUHWHVLSXzYHGHUH QHOOD)LJXUDGRYHODVRPPLWjGHOODSDUHWHqODFXUYDFKHJLDFHVXOODVXSHU¿FLH ] = ¦ [\  1RQPRVWULDPRQHOOD¿JXUDODVXSHU¿FLHFKHFRVWLWXLVFHLOJUD¿FRGL ¦PDVRORODFXUYDLQWHUFHWWDWDGDOFLOLQGUR 

Altezza f (x, y)

y ta (x, y)

x

Δsk

Curva piana C

tb

-PN\YH /¶LQWHJUDOHFXUYLOLQHR1&¦GVGjO¶DUHD GHOODSDUWHGLVXSHUILFLHFLOLQGULFDR ³SDUHWH´VRWWRD] = ¦ [\ Ú 

 

*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

'DOODGH¿QL]LRQH

GRYH¢VN:SHUQ :qYHGLDPRFKHO¶LQWHJUDOH1&¦GVqO¶DUHDGHOODSDUHWHPR VWUDWDQHOOD¿JXUD

5.2 Campi vettoriali e integrali curvilinei: lavoro, circolazione e flusso -PN\YH 9HWWRULYHORFLWjGLXQIOXLGRDWWRUQRD XQDVXSHUILFLHDHURGLQDPLFDLQXQD JDOOHULDGHOYHQWR

/HIRU]HFRPHTXHOOHJUDYLWD]LRQDOHHGHOHWWULFDKDQQRXQDGLUH]LRQHHXQPR GXOR,QRJQLSXQWRGHOORURGRPLQLRVRQRUDSSUHVHQWDWHGDXQYHWWRUHHFRVWLWX LVFRQRFRVuXQFDPSRYHWWRULDOH,QTXHVWRSDUDJUDIRPRVWULDPRFRPHFDOFRODUH LOODYRURFRPSLXWRVSRVWDQGRXQRJJHWWRLQXQFDPSRGLTXHVWRWLSRXVDQGRXQ LQWHJUDOH FXUYLOLQHR UHODWLYR DO FDPSR YHWWRULDOH 3DUOHUHPR DQFKH GL FDPSL GL YHORFLWj FRPH LO FDPSR YHWWRULDOH FKH UDSSUHVHQWD OD YHORFLWj GL XQ ÀXLGR QHO SURSULRGRPLQLR6LSXzXVDUHXQLQWHJUDOHFXUYLOLQHRSHUWURYDUHDTXDOHYHORFLWj VFRUUHLOÀXLGROXQJRRDWWUDYHUVRXQDFXUYDQHOGRPLQLR

Campi vettoriali

-PN\YH /LQHHGLIOXVVRLQXQFDQDOHFKHVL UHVWULQJH/¶DFTXDDFFHOHUDGRYHLO FDQDOHqSLVWUHWWRHLYHWWRULYHORFLWj DXPHQWDQRGLOXQJKH]]D

6XSSRQLDPRFKHXQDUHJLRQHQHOSLDQRRQHOORVSD]LRVLDRFFXSDWDGDXQÀXLGRLQ PRYLPHQWRFRPHO¶DULDRO¶DFTXD,OÀXLGRqFRPSRVWRGDXQQXPHURHQRUPHGL SDUWLFHOOHHLQRJQLLVWDQWHXQDSDUWLFHOODKDXQDYHORFLWjY,QSXQWLGLYHUVLGHOOD UHJLRQHLQXQRVWHVVRLVWDQWHTXHVWHYHORFLWjSRVVRQRHVVHUHGLYHUVH,PPDJLQLD PRXQYHWWRUHYHORFLWjDSSOLFDWRDRJQLSXQWRGHOÀXLGRFKHUDSSUHVHQWDODYHOR FLWjGHOODSDUWLFHOODSUHVHQWHLQTXHOSXQWR8QÀXVVRFRVuqXQHVHPSLRGLFDPSR YHWWRULDOH/D)LJXUDPRVWUDXQFDPSRYHWWRULDOHGLYHORFLWjGLXQÀXVVRG¶DULD DWWRUQRDXQDVXSHU¿FLHDHURGLQDPLFDLQXQDJDOOHULDGHOYHQWR/D)LJXUDPR VWUDXQFDPSRYHWWRULDOHGLYHWWRULYHORFLWjOXQJROHOLQHHGLXQDFRUUHQWHG¶DFTXD FKHVFRUUHLQXQFDQDOHFKHVLUHVWULQJH,FDPSLYHWWRULDOLVLXVDQRDQFKHSHUIRU]H FRPHO¶DWWUD]LRQHJUDYLWD]LRQDOH )LJXUD SHULFDPSLPDJQHWLFLHGHOHWWULFLH DQFKHSHUFDPSLSXUDPHQWHPDWHPDWLFL ,QJHQHUDOHXQFDPSRYHWWRULDOHqXQDIXQ]LRQHFKHDVVHJQDXQYHWWRUHDRJQL SXQWRGHOVXRGRPLQLR8QFDPSRYHWWRULDOHVXXQGRPLQLRWULGLPHQVLRQDOHQHOOR VSD]LRVLSXzVFULYHUHFRPH ) [\] = 0 [\] L + 1 [\] M + 3 [\] N

z

,OFDPSRqFRQWLQXRVHOHIXQ]LRQLFRPSRQHQWL01H3VRQRFRQWLQXHqGLIIH UHQ]LDELOHVHRJQXQDGHOOHIXQ]LRQLFRPSRQHQWLqGLIIHUHQ]LDELOH8QFDPSRGL YHWWRULELGLPHQVLRQDOLDYUjXQDIRUPDGHOWLSR ) [\ = 0 [\ L + 1 [\ M y

x

1HO&DSLWRORDEELDPRLQFRQWUDWRXQDOWURWLSRGLFDPSRYHWWRULDOH,YHWWRUL WDQJHQWL7HLYHWWRULQRUPDOL1SHUXQDFXUYDQHOORVSD]LRIRUPDQRHQWUDPELFDP SLYHWWRULDOLOXQJRODFXUYD/XQJRXQDFXUYDU W ODIRUPXODSHUOHFRPSRQHQWL SXzHVVHUHVLPLOHDOO¶HVSUHVVLRQHSHULOFDPSRGLYHORFLWj Y W = ¦ W L + J W M + K W N

-PN\YH ,YHWWRULGLXQFDPSRJUDYLWD]LRQDOH SXQWDQRYHUVRLOFHQWURGHOODPDVVD FKHGjRULJLQHDOFDPSR

6H DVVRFLDPR LO YHWWRUH JUDGLHQWH ¥¦ GL XQD IXQ]LRQH VFDODUH ¦ [ \ ]  D RJQL SXQWRGLXQDVXSHU¿FLHGLOLYHOORGLXQDIXQ]LRQHRWWHQLDPRXQFDPSRWULGLPHQ VLRQDOHVXOODVXSHU¿FLH6HDVVRFLDPRLOYHWWRUHYHORFLWjDRJQLSXQWRGLXQÀXLGR LQPRYLPHQWRDEELDPRXQFDPSRWULGLPHQVLRQDOHGH¿QLWRVXXQDUHJLRQHGHOOR

 *HTWP]L[[VYPHSPLPU[LNYHSPJ\Y]PSPULP!SH]VYVJPYJVSHaPVULLMS\ZZV

 

VSD]LR4XHVWLHDOWULFDPSLVRQRLOOXVWUDWLQHOOH)LJXUH±3HUGLVHJQDUOL DEELDPRVFHOWRDOFXQLSXQWLUDSSUHVHQWDWLYLGHOGRPLQLRHWUDFFLDWRLYHWWRULDV VRFLDWL/HIUHFFHVRQRGLVHJQDWHLQPRGRFKHODFRGDFRUULVSRQGDDOSXQWRLQFXL VRQRFDOFRODWHOHIXQ]LRQLYHWWRULDOL

z

y

x y

f (x, y, z)  c x

-PN\YH  8QDVXSHUILFLHFRPHXQDUHWHRXQ SDUDFDGXWHDOO¶LQWHUQRGLXQFDPSR YHWWRULDOHFKHUDSSUHVHQWDLYHWWRUL YHORFLWjGLXQIOXVVRG¶DFTXDRG¶DULD/H IUHFFHPRVWUDQRODGLUH]LRQHHOHORUR OXQJKH]]HLQGLFDQRODYHORFLWj

-PN\YH ,OFDPSRGHLYHWWRULJUDGLHQWH§¦VX XQDVXSHUILFLH¦ [\] = F

-PN\YH ,OFDPSRUDGLDOH) = [L + \MGHLYHWWRUL SRVL]LRQHGHLSXQWLGHOSLDQR6LQRWLOD FRQYHQ]LRQHSHUFXLXQDIUHFFLDq GLVHJQDWDFRQODFRGDQHOSXQWRLQFXL qFDOFRODWD)

z y y x 2  y 2  a2 z  a2  r 2

x

x

0

0

x

y

-PN\YH 8QFDPSR³URWDQWH´GLYHWWRULXQLWDUL ) = - \L + [M > [ + \ >QHOSLDQR,O FDPSRQRQqGHILQLWRQHOO¶RULJLQH

-PN\YH ,OIOXVVRGLXQIOXLGRLQXQOXQJRWXER FLOLQGULFR,YHWWRULY = D - U N LQWHUQLDOFLOLQGURFKHKDQQROHEDVLVXO SLDQR[\KDQQROHDOWUHHVWUHPLWjVXO SDUDERORLGH] = D - U

-PN\YH ,YHWWRULYHORFLWjY W GHOPRWRGLXQ SURLHWWLOHIRUPDQRXQFDPSRYHWWRULDOH OXQJRODWUDLHWWRULD

 

*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

-PN\YH ,OVDWHOOLWH6HDVDWGHOOD1$6$XVzLO UDGDUSHUFRPSLHUH PLVXUD]LRQLGHOYHQWRVRSUDJOLRFHDQL /HIUHFFHPRVWUDQRODGLUH]LRQHGHO YHQWRODOXQJKH]]DHODJUDGD]LRQHGL JULJLRODYHORFLWj6LQRWLODIRUWH WHPSHVWDDVXGGHOOD*URHQODQGLD

VELOCITÀ DEL VENTO, M/S 0

2

4 6 8 10 12 14 16+

Campi gradiente ,OYHWWRUHJUDGLHQWHGLXQDIXQ]LRQHGLIIHUHQ]LDELOHDYDORULVFDODULLQXQSXQWRGj ODGLUH]LRQHLQFXLVLYHUL¿FDLOPDVVLPRLQFUHPHQWRGHOODIXQ]LRQH 8QWLSRLPSRUWDQWHGLFDPSRYHWWRULDOHqIRUPDWRGDWXWWLLYHWWRULJUDGLHQWHGHOOD IXQ]LRQH 3DUDJUDIR 'H¿QLDPRLOFDPSRJUDGLHQWHGLXQDIXQ]LRQHGLIIH UHQ]LDELOH¦ [\] FRPHLOFDPSRGHLYHWWRULJUDGLHQWH

,QRJQLSXQWR [\] LOFDPSRJUDGLHQWHGjXQYHWWRUHFKHSXQWDQHOODGLUH]LRQH GHOPDVVLPRLQFUHPHQWRGL¦LOFXLPRGXORqLOYDORUHGHOODGHULYDWDGLUH]LRQDOH LQTXHOODGLUH]LRQH,OFDPSRJUDGLHQWHQRQVHPSUHqXQFDPSRGLIRU]HRGLYH ORFLWj ESEMPIO 1

6XSSRQLDPRFKHODWHPSHUDWXUD7LQRJQLSXQWR [\] GLXQDUHJLRQHGLVSD]LR VLDGDWDGD HFKH) [\] VLDGH¿QLWDFRPHLOJUDGLHQWHGL77URYDUHLOFDPSRYHWWRULDOH) Soluzione ,OFDPSRJUDGLHQWH)qLOFDPSR) = ¥7 = - [L - \M - ]N,QRJQLSXQWRGHOOR

 *HTWP]L[[VYPHSPLPU[LNYHSPJ\Y]PSPULP!SH]VYVJPYJVSHaPVULLMS\ZZV

VSD]LR LO FDPSR YHWWRULDOH ) Gj OD GLUH]LRQH LQ FXL q PDVVLPR O¶LQFUHPHQWR GL WHPSHUDWXUD

Integrali curvilinei di campi vettoriali 1HO3DUDJUDIRDEELDPRGH¿QLWRO¶LQWHJUDOHGLXQDIXQ]LRQHVFDODUH¦ [\] VX XQFDPPLQR&$GHVVRFLRFFXSHUHPRLQYHFHGLLQWHJUDOLFXUYLOLQHLGLXQFDPSR YHWWRULDOH ) OXQJR XQD FXUYD & ,QWHJUDOL GL TXHVWR WLSR VRQR PROWR LPSRUWDQWL QHOORVWXGLRGHLÀXLGLHGHLFDPSLHOHWWULFLHJUDYLWD]LRQDOL 6XSSRQLDPRFKHLOFDPSRYHWWRULDOH) = 0 [\] L + 1 [\] M + 3 [\] N  DEELD FRPSRQHQWL FRQWLQXH H FKH OD FXUYD & DEELD XQD SDUDPHWUL]]D]LRQH UH JRODUH U W = J W L + K W M + N W N D … W … E &RPH QHO 3DUDJUDIR  OD SD UDPHWUL]]D]LRQH U W  GH¿QLVFH XQD GLUH]LRQH R RULHQWD]LRQH  OXQJR & FKH FKLD PHUHPR GLUH]LRQH SRVLWLYD ,Q RJQL SXQWR GHO FDPPLQR & LO YHUVRUH WDQJHQWH 7 = GU>GV = Y> ƒ Y ƒ qULYROWRLQTXHVWDGLUH]LRQHSRVLWLYD ,OYHWWRUHY = GU>GWq LOYHWWRUHYHORFLWjWDQJHQWHD&QHOSXQWRFRPHVWXGLDWRQHL3DUDJUD¿H  ,QWXLWLYDPHQWHO¶LQWHJUDOHFXUYLOLQHRGHOFDPSRYHWWRULDOHqO¶LQWHJUDOHFXUYLOLQHR GHOODFRPSRQHQWHVFDODUHWDQJHQ]LDOHGL)OXQJR&4XHVWDFRPSRQHQWHWDQJHQ ]LDOHqGDWDGDOSURGRWWRVFDODUH 











#

HFRVuDEELDPRODVHJXHQWHGH¿QL]LRQHIRUPDOHGRYH¦ = ) 7QHOO¶(TXD]LRQH   GHO3DUDJUDIR DEFINIZIONE

6LD)XQFDPSRYHWWRULDOHFRQFRPSRQHQWLFRQWLQXHGH¿QLWROXQJRXQDFXUYD UHJRODUH&SDUDPHWUL]]DWDGDU W D … W … E$OORUDO¶LQWHJUDOHFXUYLOLQHRGL )OXQJR&q

*OLLQWHJUDOLFXUYLOLQHLGLFDPSLYHWWRULDOLVLFDOFRODQRLQPRGRVLPLOHDTXHOORLQ FXLVLFDOFRODQRJOLLQWHJUDOLFXUYLOLQHLGLIXQ]LRQLVFDODUL 3DUDJUDIR  Calcolare l’integrale curvilineo di F = Mi + Nj + Pk lungo C: r(t) = g(t)i + h(t)j + k(t)k

 (VSULPLDPRLOFDPSRYHWWRULDOH)LQWHUPLQLGHOODFXUYDSDUDPHWUL]]DWD& QHOODIRUPD) U W LQVHUHQGROHFRPSRQHQWL[ = J W \ = K W ] = N W GLU QHOOHFRPSRQHQWLVFDODUL0 [\] 1 [\] 3 [\] GL)  7URYLDPRLOYHWWRUHGHULYDWD YHORFLWj GU>GW  &DOFROLDPRO¶LQWHJUDOHFXUYLOLQHRULVSHWWRDOSDUDPHWURWD … W … ELQPRGR GDRWWHQHUH

 

 

*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

ESEMPIO 2

#

&DOFRODUH 1& )  GU GRYH ) [ \ ] = ]L + [\M - \N OXQJR OD FXUYD & GDWD GD U W = WL + WM + 2WN … W …  Soluzione $EELDPR ] = 1W[\ = W- \ = - W

H

4XLQGL

Integrali curvilinei rispetto a dx, dy o dz 4XDQGRDQDOL]]LDPRIRU]HRFRUUHQWLVSHVVRqXWLOHFRQVLGHUDUHRJQLFRPSRQHQWH VHSDUDWDPHQWH,QTXHVWHVLWXD]LRQLFHUFKLDPRXQLQWHJUDOHFXUYLOLQHRGLXQDIXQ ]LRQHVFDODUHULVSHWWRDXQDGHOOHFRRUGLQDWHGHOODIRUPD1&0G[4XHVWRLQWHJUDOH QRQqORVWHVVRGHOO¶LQWHJUDOHFXUYLOLQHRGHOODOXQJKH]]DG¶DUFR1&0GVGH¿QLWRQHO 3DUDJUDIR3HUGH¿QLUHO¶LQWHJUDOH 1& 0G[SHUODIXQ]LRQHVFDODUH0 [\]  VSHFL¿FKLDPRXQFDPSRYHWWRULDOH) = 0 [\] LFKHKDVRORXQDFRPSRQHQWH QHOODGLUH]LRQH[HGqQXOORQHOOHGLUH]LRQL\H]&RVuOXQJRODFXUYD&SDUDPH WUL]]DWDGDU W = J W L + K W M + N W NSHUD … W … EDEELDPR[ = J W G[ = J¿ W GWH

'DOODGH¿QL]LRQHGLLQWHJUDOHFXUYLOLQHRGL)OXQJR&GH¿QLDPR GRYH $OORVWHVVRPRGRFRQVLGHUDQGR) = 1 [\] MFRQXQDFRPSRQHQWHVRORQHOOD GLUH]LRQH\R) = 3 [\] NFRQXQDFRPSRQHQWHVRORQHOODGLUH]LRQH]SRVVLDPR RWWHQHUHJOLLQWHJUDOLFXUYLOLQHL1&1G\H1&3G](VSULPHQGRWXWWRLQWHUPLQLGHO SDUDPHWURWOXQJRODFXUYD&DEELDPROHVHJXHQWLIRUPXOHSHUTXHVWLWUHLQWHJUDOL 







 *HTWP]L[[VYPHSPLPU[LNYHSPJ\Y]PSPULP!SH]VYVJPYJVSHaPVULLMS\ZZV



6XFFHGH VSHVVR FKH TXHVWL LQWHJUDOL FXUYLOLQHL FRPSDLDQR LQVLHPH DEEUHYLDPR TXLQGLODQRWD]LRQHVFULYHQGR

ESEMPIO 3

&DOFRODUH O¶LQWHJUDOH FXUYLOLQHR 1& - \ G[ + ] G\ + [ G] GRYH & q O¶HOLFD U W = FRVW L + VLQW M + WN … W … p Soluzione (VSULPLDPR WXWWR LQ WHUPLQL GHO SDUDPHWUR W FRVu [ = FRV W \ = VLQ W ] = W H G[ = - VLQWGWG\ = FRVWGWG] = GW4XLQGL

Lavoro compiuto da una forza lungo una curva nello spazio 6XSSRQLDPRFKHLOFDPSRYHWWRULDOH  UDSSUHVHQWLXQDIRU]DFKHDJLVFHVXXQDUHJLRQHGLVSD]LR SRWUHEEHHVVHUHODIRU]D GLJUDYLWjRXQDIRU]DHOHWWURPDJQHWLFDGLTXDOFKHWLSR HFKH

VLDXQDFXUYDUHJRODUHLQTXHOODUHJLRQH 3HUXQDFXUYD&GH¿QLDPRFRPHVHJXHLOODYRURFRPSLXWRGDXQFDPSRGLIRU]H FRQWLQXR)SHUPXRYHUHXQRJJHWWROXQJR&GDXQSXQWR$DXQDOWURSXQWR% 'LYLGLDPR & LQ Q VRWWRDUFKL 3N - 3N GL OXQJKH]]H ¢VN D SDUWLUH GD $ ¿QR D % 6FHJOLDPR XQ SXQWR TXDOVLDVL [N \N ]N  QHO VRWWRDUFR 3N - 3N H LQGLFKLDPR FRQ 7 [N\N]N LOYHUVRUHWDQJHQWHQHOSXQWRVFHOWR,OODYRUR:NFRPSLXWRSHUVSR VWDUHO¶RJJHWWROXQJRLOVRWWRDUFR3N - 3NVLSXzDSSURVVLPDUHFRQODFRPSRQHQWH WDQJHQ]LDOHGHOODIRU]D) [N\N]N PROWLSOLFDWDSHUODOXQJKH]]DGHOO¶DUFR¢VNFKH DSSURVVLPDODGLVWDQ]DGLFXLO¶RJJHWWRVLqPRVVROXQJRLOVRWWRDUFR )LJXUD  ,OODYRURFRPSOHVVLYRFRPSLXWRVSRVWDQGRO¶RJJHWWRGDOSXQWR$DOSXQWR%VLSXz TXLQGLDSSURVVLPDUHVRPPDQGRLOODYRURFRPSLXWRVXWXWWLLVRWWRDUFKL

Fk

Pk

(xk , yk , zk ) Pk1

Tk Fk . Tk

3HURJQLVXGGLYLVLRQHGL&LQQVRWWRDUFKLHSHURJQLVFHOWDGHLSXQWL [N\N]N  -PN\YH DOO¶LQWHUQRGHLVLQJROLVRWWRDUFKLSHUQ :q H¢VN:TXHVWHVRPPHDSSURVVL ,OODYRURFRPSLXWROXQJRLOVRWWRDUFR TXLPRVWUDWRqDSSURVVLPDWLYDPHQWH PDQRO¶LQWHJUDOHFXUYLOLQHR # )N 7N¢VNGRYH)N= ) [N\N]N H 7N= 7 [N\N]N 



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

4XHVWRqVHPSOLFHPHQWHO¶LQWHJUDOHFXUYLOLQHRGL)OXQJR&FKHqSHUGH¿QL]LRQH LOODYRURFRPSOHVVLYRFRPSLXWR DEFINIZIONE

B tb

6LD&XQDFXUYDUHJRODUHSDUDPHWUL]]DWDGDU W D … W … EH)XQFDPSRGL IRU]HFRQWLQXRVXXQDUHJLRQHFRQWHQHQWH&$OORUDLOODYRURFRPSLXWRQHOOR VSRVWDPHQWRGLXQRJJHWWRGDOSXQWR$ = U D DOSXQWR% = U E OXQJR&q 





T

,OVHJQRGHOQXPHURFKHFDOFROLDPRFRQTXHVWRLQWHJUDOHGLSHQGHGDOODGLUH]LRQH LQFXLYLHQHSHUFRUVDODFXUYD6HLQYHUWLDPRODGLUH]LRQHGHOPRYLPHQWRLQYHU WLDPRODGLUH]LRQHGL7QHOOD)LJXUDHFDPELDPRLOVHJQRGL) 7HGHOVXR LQWHJUDOH 8VDQGROHQRWD]LRQLYLVWH¿QRUDSRVVLDPRHVSULPHUHLQYDULPRGLO¶LQWHJUDOH FKHHVSULPHLOODYRURDVHFRQGDGLFLzFKHVLULYHODSLDGDWWRRFRPRGRSHUXQR A ta VSHFL¿FRSUREOHPD/D7DEHOODPRVWUDFLQTXHPRGLLQFXLSRVVLDPRVFULYHUH O¶LQWHJUDOHGHOO¶(TXD]LRQH  1HOODWDEHOODOHFRPSRQHQWL01H3GHOFDPSR -PN\YH VRQRIXQ]LRQLGHOOHYDULDELOLLQWHUPHGLH[\H]FKHDORURYROWDVRQRIXQ]LRQLGHO ,OODYRURFRPSLXWRGDXQDIRU]D)q O¶LQWHJUDOHFXUYLOLQHRGHOODFRPSRQHQWH ODYDULDELOHLQGLSHQGHQWHWOXQJRODFXUYD&QHOFDPSRYHWWRULDOH4XLQGLOXQJR VFDODUH)#7OXQJRODFXUYDUHJRODUHGD ODFXUYD[ = J W \ = K W H] = N W FRQG[ = J¿ W GWG\ = K¿ W GWHG] = N¿ W GW F

#

$D%

;HILSSH Diversi modi per scrivere l’integrale che dà il lavoro per F = Mi + Nj + Pk sulla curva C : r(t) = g(t)i + h(t)j + k(t)k, a … t … b

/DGH¿QL]LRQH )RUPDGLIIHUHQ]YHWWRULDOH )RUPDSDUDPHWULFDYHWWRULDOH )RUPDSDUDPHWULFDVFDODUH

z

)RUPDGLIIHUHQ]LDOHVFDODUH (0, 0, 0)

ESEMPIO 4

(1, 1, 1)

y

x r(t)  ti  t 2j  t 3k

7URYDUHLOODYRURFRPSLXWRGDOFDPSRGLIRU]H) = \ - [ L + ] - \ M+ [ - ] N OXQJRODFXUYDU W = WL + WM + WN … W … GD  D   )LJXUD  Soluzione 3ULPDWURYLDPRLOYDORUHGL)VXOODFXUYDU W 

(1, 1, 0)

-PN\YH /DFXUYDGHOO¶(VHPSLR

,QVHULDPR[ = W\ = W] = W

 *HTWP]L[[VYPHSPLPU[LNYHSPJ\Y]PSPULP!SH]VYVJPYJVSHaPVULLMS\ZZV

3RLGHWHUPLQLDPRGU>GW

#

,Q¿QHWURYLDPR) GU>GWHLQWHJULDPRGDW = DW = 

HFRVu /DYRUR

ESEMPIO 5

7URYDUH LO ODYRUR FRPSLXWR GDO FDPSR GL IRU]H ) = [L + \M + ]N VSRVWDQGR XQ RJJHWWR OXQJR OD FXUYD & SDUDPHWUL]]DWD GD U W = FRV pW  L + WM + VLQ pW  N  … W …  Soluzione &RPLQFLDPRVFULYHQGR)OXQJR&LQIXQ]LRQHGLW  3RLFDOFROLDPRGU>GW

'HWHUPLQLDPRSRLLOSURGRWWRVFDODUH

,OODYRURFRPSLXWRqO¶LQWHJUDOHFXUYLOLQHR

Integrali di flusso e circolazione per campi di velocità 6XSSRQLDPR FKH ) UDSSUHVHQWL LO FDPSR GHOOH YHORFLWj GL XQ ÀXLGR FKH VFRUUH LQXQDUHJLRQHGLVSD]LR SHUHVHPSLRXQEDFLQRGLPDUHDRODFDPHUDGHOODWXU ELQD GL XQ JHQHUDWRUH LGURHOHWWULFR  ,Q TXHVWR WLSR GL VLWXD]LRQH O¶LQWHJUDOH GL ) 7OXQJRXQDFXUYDFRQWHQXWDQHOODUHJLRQHGHVFULYHFRPHVFRUUHLOÀXLGROXQJR ODFXUYDFLRqODVXDFLUFROD]LRQH3HUHVHPSLRLOFDPSRYHWWRULDOHGHOOD)LJXUD GjXQDFLUFROD]LRQHQXOODDWWRUQRDOODFLUFRQIHUHQ]DXQLWDULDQHOSLDQRPHQ WUHLOFDPSRYHWWRULDOHGHOOD)LJXUDGjXQDFLUFROD]LRQHQRQQXOODOXQJROD FLUFRQIHUHQ]DXQLWDULD

#





*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

DEFINIZIONE

6HU W SDUDPHWUL]]DXQDFXUYDUHJRODUH&QHOGRPLQLRGLXQFDPSRGLYHORFLWj FRQWLQXR)O¶LQWHJUDOHOXQJRODFXUYDGD$ = U D D% = U E  

,QWHJUDOHGLÀXVVR





qGHWWRLQWHJUDOHGLÀXVVR6HODFXUYDLQL]LDH¿QLVFHQHOORVWHVVRSXQWRFLRq VH$ = %TXHVWRLQWHJUDOHqGHWWRFLUFROD]LRQHOXQJRODFXUYD /DGLUH]LRQHLQFXLSHUFRUULDPR&qLPSRUWDQWH6HLQYHUWLDPRODGLUH]LRQHDO ORUD7qVRVWLWXLWRGD- 7HLOVHJQRGHOO¶LQWHJUDOHFDPELD&DOFROLDPRJOLLQWHJUDOL GLÀXVVRDOORVWHVVRPRGRGHJOLLQWHJUDOLFKHHVSULPRQRLOODYRUR ESEMPIO 6

,OFDPSRGHOOHYHORFLWjGLXQÀXLGRq) = [L + ]M + \N&DOFRODUHO¶LQWHJUDOHGL ÀXVVROXQJRO¶HOLFDU W = FRVW L + VLQW M + WN … W … p> Soluzione &DOFROLDPR)VXOODFXUYD ) = [L + ]M + \N = FRVW L + WM + VLQW N

,QVHULDPR[ = FRVW] = W\ = VLQW

HSRLWURYLDPRGU>GW

#

$GHVVRLQWHJULDPR)  GU>GW GDW = DW =

TXLQGL ,QWHJUDOHGLÀXVVR

y ESEMPIO 7

x

7URYDUH OD FLUFROD]LRQH GHO FDPSR ) = [ - \ L + [M OXQJR OD FLUFRQIHUHQ]D U W = FRVW L + VLQW M … W … p )LJXUD  Soluzione 6XOODFLUFRQIHUHQ]D) = [ - \ L + [M = FRVW - VLQW L + FRVW MH 4XLQGL

-PN\YH  ,OFDPSRYHWWRULDOH)HODFXUYDU W  QHOO¶(VHPSLR

 *HTWP]L[[VYPHSPLPU[LNYHSPJ\Y]PSPULP!SH]VYVJPYJVSHaPVULLMS\ZZV



FLGj &LUFROD]LRQH

&RPHVXJJHULVFHOD)LJXUDXQÀXLGRFRQTXHVWRFDPSRGLYHORFLWjFLUFRODLQ YHUVRDQWLRUDULRQHOODFLUFRQIHUHQ]DHTXLQGLODFLUFROD]LRQHqSRVLWLYD 

Flusso lungo una curva piana semplice 8QDFXUYDQHOSLDQR[\VLGLFHVHPSOLFHVHQRQSDVVDSLYROWHSHUXQRVWHVVR SXQWRDHFFH]LRQHDOSLGHOSXQWRLQL]LDOHFKHSXzFRLQFLGHUHFROSXQWR¿QDOH )LJXUD 4XDQGRXQDFXUYDLQL]LDH¿QLVFHQHOORVWHVVRSXQWRqGHWWDFXUYD FKLXVDRFLUFXLWR3HUGHWHUPLQDUHDFKHYHORFLWjXQÀXLGRVFRUUHGHQWURRIXRUL GDXQDUHJLRQHGHOLPLWDWDGDXQDFXUYDFKLXVDVHPSOLFHUHJRODUH&QHOSLDQR[\ FDOFROLDPRO¶LQWHJUDOHFXUYLOLQHRVX&GL) QODFRPSRQHQWHVFDODUHGHOFDP SRGHOOHYHORFLWjGHOÀXLGRQHOODGLUH]LRQHGHOYHWWRUHQRUPDOHDOODFXUYDGLUHWWR YHUVR O¶HVWHUQR 8VLDPR VROR OD FRPSRQHQWH QRUPDOH GL ) H LJQRULDPR TXHOOD WDQJHQ]LDOH SHUFKp OD FRPSRQHQWH QRUPDOH GHVFULYH LO SDVVDJJLR DWWUDYHUVR & ,OYDORUHGLTXHVWRLQWHJUDOHqLOÀXVVRGL)DWWUDYHUVR&1RQRVWDQWHLOQRPHLO ÀXVVRQRQULJXDUGDQHFHVVDULDPHQWHRJJHWWLLQPRYLPHQWR3HUHVHPSLRVH)q XQFDPSRHOHWWULFRRPDJQHWLFRO¶LQWHJUDOHGL) QqFKLDPDWRXJXDOPHQWHÀXVVR GHOFDPSRDWWUDYHUVR&

Semplice, non chiusa

Semplice, chiusa

Non semplice, non chiusa

Non semplice, chiusa

#

#

-PN\YH (VHPSLGLFXUYHVHPSOLFLHQRFKLXVH HQR/HFXUYHFKLXVHVRQRGHWWHDQFKH FLUFXLWL

DEFINIZIONE

6H&qXQDFXUYDVHPSOLFHFKLXVDUHJRODUHQHOGRPLQLRGLXQFDPSRYHWWRULDOH FRQWLQXR) = 0 [\ L + 1 [\ MQHOSLDQRHVHQqLOYHUVRUHQRUPDOHGLUHWWR YHUVRO¶HVWHUQRVX&LOÀXVVRGL)DWWUDYHUVR&q 

)OXVVRGL)DWWUDYHUVR&



z

Per un percorso in verso orario, k T punta verso l'esterno



y k

6LQRWLODGLIIHUHQ]DWUDÀXVVRHFLUFROD]LRQH,OÀXVVRGL)DWWUDYHUVR&qO¶LQ WHJUDOHFXUYLOLQHRULVSHWWRDOODOXQJKH]]DG¶DUFRGL) QODFRPSRQHQWHVFDODUHGL )QHOODGLUH]LRQHGHOODQRUPDOHHVWHUQD/DFLUFROD]LRQHGL)OXQJR&qO¶LQWHJUDOH FXUYLOLQHRULVSHWWRDOODOXQJKH]]DG¶DUFRGL) 7ODFRPSRQHQWHVFDODUHGL)QHOOD GLUH]LRQHGHOYHUVRUHWDQJHQWH,OÀXVVRqO¶LQWHJUDOHGHOODFRPSRQHQWHQRUPDOHGL )ODFLUFROD]LRQHTXHOORGHOODFRPSRQHQWHWDQJHQ]LDOHGL) 3HUFDOFRODUHO¶LQWHJUDOHFKHHVSULPHLOÀXVVRQHOO¶(TXD]LRQH  SDUWLDPRGD XQDSDUDPHWUL]]D]LRQHUHJRODUH

#

x

k T

#

[ = J W   \ = K W  D … W … E FKHSHUFRUUHODFXUYD&HVDWWDPHQWHXQDYROWDTXDQGRWDXPHQWDGDDDE3RV VLDPR WURYDUH LO YHUVRUH QRUPDOH HVWHUQR Q FDOFRODQGR LO SURGRWWR YHWWRULDOH GHO YHUVRUH WDQJHQWH 7 FRQ LO YHWWRUH N 0D TXDOH RUGLQH GREELDPR VFHJOLHUH 7 * NRN * 7"4XDOHSXQWDYHUVRO¶HVWHUQR"'LSHQGHGDOYHUVRLQFXLqSHUFRUVD &DOFUHVFHUHGLW6HLOSHUFRUVRqLQVHQVRRUDULRN * 7SXQWDYHUVRO¶HVWHUQRVH qDQWLRUDULRq7 * NDSXQWDUHYHUVRO¶HVWHUQR )LJXUD /DVFHOWDDELWXDOHq Q = 7 * NTXHOODUHODWLYDDOVHQVRDQWLRUDULR4XLQGLDQFKHVHLOYDORUHGHOO¶LQWH

C

T

z Per un percorso in verso antiorario, T k punta verso l'esterno

y k x

C

T k T

-PN\YH 3HUWURYDUHXQYHWWRUHQRUPDOHXQLWDULR HVWHUQRSHUXQDFXUYDVHPSOLFH UHJRODUH&QHOSLDQR[\SHUFRUVDLQ YHUVRDQWLRUDULRDOFUHVFHUHGLW SUHQGLDPRQ = 7 * N3HULOYHUVR RUDULRSUHQGLDPRQ = N * 7



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

JUDOHGHOO¶(TXD]LRQH  QRQGLSHQGHGDFRPHqSHUFRUVD&OHIRUPXOHFKHVWLDPR SHUGHULYDUHSHULOFDOFRORGLQHGHOO¶LQWHJUDOHSUHVXSSRQJRQRXQPRWRLQVHQVR DQWLRUDULR ,QWHUPLQLGLFRPSRQHQWL

6H) = 0 [\ L + 1 [\ MDOORUD 4XLQGL

/¶XOWLPRLQWHJUDOHqFRQWUDVVHJQDWRFRQXQFHUFKLRRULHQWDWR~ SHUULFRUGDUHFKH O¶LQWHJUD]LRQHOXQJR&YDVYROWDLQVHQVRDQWLRUDULR3HUYDOXWDUHTXHVWRLQWHJUDOH HVSULPLDPR0G\1HG[LQWHUPLQLGHOSDUDPHWURWHLQWHJULDPRGDW = DDW = E 1RQqQHFHVVDULRFRQRVFHUHHVSOLFLWDPHQWHQRGVSHUWURYDUHLOÀXVVR Calcolare il flusso attraverso una curva piana chiusa regolare

)OXVVRGL) = 0L + 1MDWWUDYHUVR&    /¶LQWHJUDOHVLSXzFDOFRODUHDSDUWLUHGDTXDOVLDVLSDUDPHWUL]]D]LRQHUHJRODUH [ = J W \ = K W D … W … EFKHSHUFRUUH&LQVHQVRDQWLRUDULRHVDWWDPHQWHXQD YROWD

ESEMPIO 8

7URYDUHLOÀXVVRGL) = [ - \ L + [MDWWUDYHUVRODFLUFRQIHUHQ]D[ + \ = QHO SLDQR[\ ,OFDPSRYHWWRULDOHHODFXUYDVRQRJLjVWDWLPRVWUDWLQHOOD)LJXUD  Soluzione /DSDUDPHWUL]]D]LRQHU W = FRV W L + VLQ W M … W … pSHUFRUUHODFLUFRQIH UHQ]D LQ VHQVR DQWLRUDULR HVDWWDPHQWH XQD YROWD 3RVVLDPR TXLQGL XVDUH TXHVWD SDUDPHWUL]]D]LRQHFRQO¶(TXD]LRQH  &RQ

WURYLDPR )OXVVR

(T  

,OÀXVVRGL)DWWUDYHUVRODFLUFRQIHUHQ]Dqp'DWRFKHLOULVXOWDWRqSRVLWLYRQHO FRPSOHVVRLOÀXLGRVFRUUHYHUVRO¶HVWHUQR8QDFRUUHQWHFRPSOHVVLYDYHUVRO¶LQ WHUQRDYUHEEHGDWRXQÀXVVRQHJDWLYR

 0UKPWLUKLUaHKHPJHTTPUPJHTWPJVUZLY]H[P]PLWV[LUaPHSP

5.3 Indipendenza dai cammini, campi conservativi e potenziali 8QFDPSRJUDYLWD]LRQDOH*qXQFDPSRYHWWRULDOHFKHUDSSUHVHQWDO¶HIIHWWRGHO ODJUDYLWjLQXQSXQWRGHOORVSD]LRGRYXWRDOODSUHVHQ]DGLXQRJJHWWRGRWDWRGL PDVVD/DIRU]DJUDYLWD]LRQDOHVXXQFRUSRGLPDVVDPSRVWRQHOFDPSRqGDWDGD )= P*$QDORJDPHQWHXQFDPSRHOHWWULFR(qXQFDPSRYHWWRULDOHQHOORVSD]LR FKHUDSSUHVHQWDO¶HIIHWWRGHOOHIRU]HHOHWWULFKHVXXQDSDUWLFHOODFDULFDSRVWDDOVXR LQWHUQR/DIRU]DDJHQWHVXXQFRUSRGRWDWRGLFDULFDTSRVWRQHOFDPSRqGDWDGD )= T(1HLFDPSLJUDYLWD]LRQDOLHGHOHWWULFLODTXDQWLWjGLODYRURQHFHVVDULDSHU VSRVWDUHXQDPDVVDRXQDFDULFDGDXQDSXQWRDXQDOWURGLSHQGHGDOOHSRVL]LRQL LQL]LDOHH¿QDOHQRQGDOFDPPLQRSHUFRUVRWUDTXHVWLGXHSXQWL,QTXHVWRSDUD JUDIRVWXGLHUHPRLFDPSLYHWWRULDOLFRQTXHVWDSURSULHWjHLOFDOFRORGHJOLLQWHJUDOL SHULOODYRURUHODWLYLDHVVL

Indipendenza dal cammino 6H$H%VRQRGXHSXQWLLQXQDUHJLRQHDSHUWD'GHOORVSD]LRO¶LQWHJUDOHFXUYLOL QHRGL)OXQJR&GD$D%SHUXQFDPSR)GH¿QLWRVX'VROLWDPHQWHGLSHQGHGDO FDPPLQR&SHUFRUVRFRPHDEELDPRYLVWRQHO3DUDJUDIR 3HUDOFXQLFDPSL VSHFLDOLSHUzLOYDORUHGHOO¶LQWHJUDOHqXJXDOHSHUWXWWLLFDPPLQLGD$D% DEFINIZIONI

6LD)XQFDPSRYHWWRULDOHGH¿QLWRVXXQDUHJLRQH'GHOORVSD]LRHVXSSRQLDPR FKHGDWLFRPXQTXHGXHSXQWL$H%LQ'O¶LQWHJUDOHFXUYLOLQHR 1&) GUOXQJR XQFDPPLQR&GD$D%LQ'VLDXJXDOHVXWXWWLLFDPPLQLGD$D%$OORUD O¶LQWHJUDOH1&) GUqLQGLSHQGHQWHGDOFDPPLQRLQ'HLOFDPSR)qFRQVHU YDWLYRVX'

#

#

/DSDURODFRQVHUYDWLYRYLHQHGDOOD¿VLFDGRYHVLULIHULVFHDLFDPSLLQFXLYDOH LOSULQFLSLRGLFRQVHUYD]LRQHGHOO¶HQHUJLD4XDQGRXQLQWHJUDOHFXUYLOLQHRqLQ GLSHQGHQWHGDOFDPPLQR&VHJXLWRSHUSDVVDUHGDOSXQWR$DOSXQWR%DYROWH UDSSUHVHQWLDPRO¶LQWHJUDOHFRQLOVLPEROR 1  DQ]LFKpFRQTXHOORDELWXDOHSHUJOL LQWHJUDOLFXUYLOLQHL1&4XHVWRFLDLXWDDULFRUGDUHODSURSULHWjGLLQGLSHQGHQ]DGDO FDPPLQR 6RWWRLSRWHVLGLGHULYDELOLWjFKHQHOODSUDWLFDVRQRQRUPDOPHQWHVRGGLVIDWWH PRVWUHUHPRFKHXQFDPSR)qFRQVHUYDWLYRVHHVRORVHqLOFDPSRJUDGLHQWHGL XQDIXQ]LRQHVFDODUH¦FLRqVHHVRORVH) = §¦SHUTXDOFKH¦/DIXQ]LRQH¦KD LQTXHVWRFDVRXQQRPHVSHFLDOH DEFINIZIONE

6H)qXQFDPSRYHWWRULDOHGH¿QLWRVX'H) = §¦SHUTXDOFKHIXQ]LRQHVFDODUH ¦VX'DOORUD¦qGHWWR IXQ]LRQH SRWHQ]LDOHSHU) 8QSRWHQ]LDOHJUDYLWD]LRQDOHqXQDIXQ]LRQHVFDODUHLOFXLJUDGLHQWHqXQFDPSR JUDYLWD]LRQDOHXQSRWHQ]LDOHHOHWWULFRqXQDIXQ]LRQHVFDODUHLOFXLFDPSRJUD GLHQWHqXQFDPSRHOHWWULFRHFRVuYLD&RPHYHGUHPRXQDYROWDWURYDWRXQSR WHQ]LDOH ¦ SHU XQ FDPSR ) SRVVLDPR FDOFRODUH WXWWL JOL LQWHJUDOL FXUYLOLQHL QHO GRPLQLRGL)VXTXDOVLDVLFDPPLQRGD$D%FRQ 









*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

6HSHQVLDPRD§¦SHUIXQ]LRQLGLSLYDULDELOLFRPHDOO¶DQDORJRGHOODGHULYDWD ¦¿SHUIXQ]LRQLGLXQDYDULDELOHFDSLDPRFKHO¶(TXD]LRQH  qLOFRUULVSRQGHQWH QHOFDOFRORYHWWRULDOHGHOODIRUPXODGHOWHRUHPDIRQGDPHQWDOHGHOFDOFRORLQWHJUDOH

\

Semplicemente connessa

,FDPSLFRQVHUYDWLYLKDQQRDOWUHLPSRUWDQWLSURSULHWj3HUHVHPSLRGLUHFKH) qFRQVHUYDWLYRVX'qHTXLYDOHQWHDGLUHFKHO¶LQWHJUDOHGL)VXTXDOVLDVLFDPPLQR FKLXVRLQ'q]HUR/¶(TXD]LRQH  qYDOLGDVHVRQRVRGGLVIDWWHFHUWHFRQGL]LRQL VXOOHFXUYHLFDPSLHLGRPLQLGHOOHTXDOLSDUOHUHPRDGHVVR

[

D

z

Ipotesi sulle curve, i campi vettoriali e i domini

y Semplicemente connessa x (b) \

& Non semplicemente connessa [

F

z

C2 Non semplicemente connessa

y

x (d)

-PN\YH 4XDWWURUHJLRQLFRQQHVVH,Q D H E  OHUHJLRQLVRQRVHPSOLFHPHQWH FRQQHVVH,Q F H G OHUHJLRQLQRQ VRQRVHPSOLFHPHQWHFRQQHVVHSHUFKp OHFXUYH&H&QRQVLSRVVRQR FRQWUDUUHDXQSXQWRDOO¶LQWHUQRGHOOD UHJLRQHFKHOLFRQWLHQH

3HUFKpLFDOFROLHLULVXOWDWLFKHRWWHUUHPRROWUHVLDQRYDOLGLGREELDPRDVVXPHUH FKHYDOJDQRFHUWHSURSULHWjSHUOHFXUYHOHVXSHU¿FLLGRPLQLHLFDPSLYHWWRULDOL FKH FRQVLGHULDPR 'DUHPR TXHVWH LSRWHVL QHOO¶HQXQFLDWR GHL WHRUHPL H TXDQGR QRQGLUHPRGLYHUVDPHQWHYDUUDQQRDQFKHQHJOLHVHPSLHQHJOLHVHUFL]L /H FXUYH FKH FRQVLGHULDPR VRQR UHJRODUL D WUDWWL /H FXUYH GL TXHVWR WLSR VRQRFRPSRVWHGDXQQXPHUR¿QLWRGLVH]LRQLUHJRODULFROOHJDWHWUDORURFRPH VSLHJDWRQHO3DUDJUDIR&RQVLGHUHUHPRFDPSLYHWWRULDOL)OHFXLFRPSRQHQWL KDQQRGHULYDWHSDU]LDOLSULPHFRQWLQXH ,GRPLQL'FKHFRQVLGHULDPRVRQRUHJLRQLDSHUWHGHOORVSD]LRHTXLQGLRJQL SXQWRGL'qLOFHQWURGLXQDSDOODDSHUWDFKHVLWURYDLQWHUDPHQWHLQ' VLYHGD LO3DUDJUDIR $VVXPLDPRDQFKHFKH'VLDFRQQHVVR3HUXQDUHJLRQHDSHUWD FLzVLJQL¿FDFKHGXHSXQWLLQ'SRVVRQRVHPSUHHVVHUHFRQJLXQWLFRQXQDFXU YDUHJRODUHFKHJLDFHQHOODUHJLRQH,Q¿QHDVVXPLDPRFKH'VLDVHPSOLFHPHQWH FRQQHVVR LO FKH VLJQL¿FD FKH RJQL FLUFXLWR FKLXVR LQ ' VL SXz FRQWUDUUH D XQ SXQWRGL'VHQ]DPDLXVFLUHGD',OSLDQRGDFXLVLDVWDWRULPRVVRXQGLVFRqXQD UHJLRQHELGLPHQVLRQDOHFKHQRQqVHPSOLFHPHQWHFRQQHVVDXQFLUFXLWRQHOSLDQR FKHSDVVLDWWRUQRDOGLVFRQRQVLSXzFRQWUDUUHDXQSXQWRVHQ]DFKHSDVVLSHULO ³EXFR´ODVFLDWRGDOGLVFRPDQFDQWH )LJXUDF $QDORJDPHQWHVHHOLPLQLDPR XQD UHWWD GDOOR VSD]LR OD UHJLRQH ' ULPDQHQWH QRQ q VHPSOLFHPHQWH FRQQHVVD XQDFXUYDFKHSDVVDDWWRUQRDOODUHWWDQRQVLSXzUHVWULQJHUH¿QRDIDUQHXQSXQWR ULPDQHQGRDOO¶LQWHUQRGL' (VVHUH FRQQHVVL HG HVVHUH VHPSOLFHPHQWH FRQQHVVL QRQ VRQR OD VWHVVD FRVD HQHVVXQDGHOOHGXHSURSULHWjLPSOLFDO¶DOWUD,PPDJLQLDPROHUHJLRQLFRQQHVVH FRPH³IRUPDWHGDXQVRORSH]]R´HTXHOOHVHPSOLFHPHQWHFRQQHVVHFRPH³SULYH GLIRUL´/RVSD]LRQHOVXRFRPSOHVVRqVLDFRQQHVVRFKHVHPSOLFHPHQWHFRQQHV VR/D)LJXUDPRVWUDTXHVWHSURSULHWj $WWHQ]LRQH $OFXQLGHLULVXOWDWLGLTXHVWRFDSLWRORSRVVRQRQRQYDOHUHVHVLDS SOLFDQRDVLWXD]LRQLLQFXLQRQVLYHUL¿FDQROHFRQGL]LRQLFKHLPSRQLDPR,QSDU WLFRODUHLOWHVWSHUOHFRPSRQHQWLGLXQFDPSRFRQVHUYDWLYRGHVFULWWRSLDYDQWL LQTXHVWRSDUDJUDIRQRQYDOHVXGRPLQLFKHQRQVLDQRVHPSOLFHPHQWHFRQQHVVL (VHPSLR 

Integrali curvilinei in campi conservativi ,FDPSLJUDGLHQWH)VLRWWHQJRQRGHULYDQGRXQDIXQ]LRQHVFDODUH¦8QWHRUHPD DQDORJRDOWHRUHPDIRQGDPHQWDOHGHOFDOFRORLQWHJUDOHFLGjXQPRGRSHUFDOFROD UHJOLLQWHJUDOLFXUYLOLQHLGLFDPSLJUDGLHQWH

 0UKPWLUKLUaHKHPJHTTPUPJHTWPJVUZLY]H[P]PLWV[LUaPHSP

TEOREMA 1

6LD&XQDFXUYDUHJRODUHFKHXQLVFHLOSXQWR$DOSXQWR%QHOSLDQRRQHOORVSD ]LRSDUDPHWUL]]DWDGDU W 6LD¦XQDIXQ]LRQHGLIIHUHQ]LDELOHFRQXQYHWWRUH JUDGLHQWHFRQWLQXR)= ¥¦VXXQGRPLQLR'FRQWHQHQWH&$OORUD

&RPHLOWHRUHPDIRQGDPHQWDOHGHOFDOFRORLO7HRUHPDGjXQPRGRSHUFDOFRODUH JOLLQWHJUDOLFXUYLOLQHLVHQ]DGRYHUWURYDUHOLPLWLGLVRPPHGL5LHPDQQRXVDUH ODSURFHGXUDGDWDQHO3DUDJUDIR3ULPDGLGLPRVWUDUHLO7HRUHPDGLDPRXQ HVHPSLR ESEMPIO 1

6XSSRQLDPRFKHLOFDPSRGLIRU]H) = ¥¦VLDLOJUDGLHQWHGHOODIXQ]LRQH

7URYDUHLOODYRURVYROWRGD)SHUVSRVWDUHXQRJJHWWROXQJRXQDFXUYDUHJRODUH& FKHYDGD  D  HQRQSDVVDSHUO¶RULJLQH Soluzione $SSOLFDQGRLO7HRUHPDYHGLDPRFKHLOODYRURFRPSLXWRGD)OXQJRTXDOVLDVL FXUYDUHJRODUH&FKHXQLVFHLGXHSXQWLHQRQSDVVDSHUO¶RULJLQHq

/DIRU]DJUDYLWD]LRQDOHGRYXWDDXQSLDQHWDHODIRU]DHOHWWULFDDVVRFLDWDDXQD SDUWLFHOODFDULFDVLSRVVRQRGHVFULYHUHHQWUDPEHFRQLOFDPSR)GDWRQHOO¶(VHP SLRDPHQRGLXQDFRVWDQWHFKHGLSHQGHGDOOHXQLWjGLPLVXUD DIMOSTRAZIONE DEL TEOREMA 1 6LDQR$H%GXHSXQWLGHOODUHJLRQH'H&U W = J W L + K W M + N W ND … W … E XQDFXUYDUHJRODUHLQ'FKHXQLVFH$H% 8VLDPRODIRUPDFRPSDWWDU W = [L + \M + ]NSHUODSDUDPHWUL]]D]LRQHGHOOD FXUYD/XQJRODFXUYD¦qXQDIXQ]LRQHGLIIHUHQ]LDELOHGLWHVLKD 'HULYD]GHOODIXQ]LRQH FRPSRVWD 3DU FRQ [ = J W \ = K W ] = N W  3HUFKp) = §¦

3HUWDQWR U D = $U E = %





*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

9HGLDPR TXLQGL GDO7HRUHPD  FKH O¶LQWHJUDOH FXUYLOLQHR GL XQ FDPSR JUD GLHQWH) = ¥¦qLPPHGLDWRGDFDOFRODUHXQDYROWDFKHFRQRVFLDPRODIXQ]LRQH ¦0ROWLFDPSLYHWWRULDOLLPSRUWDQWLXVDWLQHOOHDSSOLFD]LRQLVRQRSURSULRFDPSL JUDGLHQWH,OSURVVLPRULVXOWDWRFKHqXQDFRQVHJXHQ]DGHO7HRUHPDPRVWUDFKH RJQLFDPSRFRQVHUYDWLYRqGLTXHVWRWLSR TEOREMA 2

I campi conservativi sono campi gradiente

6LD) = 0L + 1M + 3NXQFDPSRYHWWRULDOHOHFXLFRPSRQHQWLVRQRFRQWLQXHLQ XQDUHJLRQHDSHUWDFRQQHVVD'GHOORVSD]LR$OORUD)qFRQVHUYDWLYRVHHVROR VH)qXQFDPSRJUDGLHQWH¥¦SHUXQDIXQ]LRQHGLIIHUHQ]LDELOH¦ ,O7HRUHPDDIIHUPDFKH)= ¥¦VHHVRORVHGDWLGXHSXQWLTXDOXQTXH$H%QHOOD UHJLRQH'LOYDORUHGHOO¶LQWHJUDOHFXUYLOLQHR1&) GUqLQGLSHQGHQWHGDOFDPPLQR &FKHFRQJLXQJH$H%LQ'

#

z D

DIMOSTRAZIONE DEL TEOREMA 2 6H)qXQFDPSRJUDGLHQWHVLKD)= ¥¦SHUXQDIXQ]LRQHGLIIHUHQ]LDELOH¦HSHU C0 A LO7HRUHPDVLKD 1&) GU = ¦ % - ¦ $ ,OYDORUHGHOO¶LQWHJUDOHFXUYLOLQHRQRQ (x0, y, z) GLSHQGHGD&PDVRORGDJOLHVWUHPL$H%4XLQGLO¶LQWHJUDOHFXUYLOLQHRqLQGLSHQ L B0 B (x, y, z) GHQWHGDOFDPPLQRH)VRGGLVIDODGH¿QL]LRQHGLFDPSRFRQVHUYDWLYR 6LDYLFHYHUVD)XQFDPSRYHWWRULDOHFRQVHUYDWLYR9RJOLDPRWURYDUHXQDIXQ y ]LRQH¦VX'WDOHFKH§¦ = )&RPLQFLDPRVFHJOLHQGRXQSXQWR$LQ'HSRQLDPR x0 ¦ $ = 3HUWXWWLJOLDOWULSXQWL%LQ'GH¿QLDPR¦ % SDULD 1&) GUGRYH&q x XQTXDOVLDVLFDPPLQRUHJRODUHLQ'GD$D%,OYDORUHGL¦ % QRQGLSHQGHGDOOD x VFHOWDGL&SHUFKp)qFRQVHUYDWLYR3HUPRVWUDUHFKH§¦ = )GREELDPRYHUL¿FDUH FKH0¦>0[ = 00¦>0\ = 1H0¦>0] = 3 -PN\YH /DIXQ]LRQH¦ [\] GHOOD 6XSSRQLDPRFKHOHFRRUGLQDWHGL%VLDQR [\] 3HUGH¿QL]LRQHLOYDORUH GLPRVWUD]LRQHGHO7HRUHPDVLRWWLHQH GHOODIXQ]LRQH¦LQXQYLFLQRSXQWR% GLFRRUGLQDWH [ \] q1 ) GUGRYH& q   &  FRQXQLQWHJUDOHFXUYLOLQHR XQFDPPLQRTXDOVLDVLGD$D%&RQVLGHULDPRXQFDPPLQR& = &h/GD$D% # 1&) GU = ¦ % GD$D%SLXQ IRUPDWRSHUFRUUHQGRSULPD&¿QRDGDUULYDUHD%HSRLVHJXHQGRLOVHJPHQWR/ LQWHJUDOHFXUYLOLQHR1/)#GU OXQJRXQ GD% D% )LJXUD 4XDQGR% qYLFLQRD%LOVHJPHQWR/VLWURYDDOO¶LQWHUQR   VHJPHQWR/SDUDOOHORDOO¶DVVHGHOOH[ GL'HGDWRFKHLOYDORUH¦ % qLQGLSHQGHQWHGDOFDPPLQRGD$D%

#

#

#

FKHFRQJLXQJH%D%GLFRRUGLQDWH [\] ,OYDORUHGL¦LQ$q¦ $ = 

'HULYDQGRRWWHQLDPR

6RORO¶XOWLPRDGGHQGRGLSHQGHGD[HTXLQGL

$GHVVR SDUDPHWUL]]LDPR / FRQ U W = WL + \M + ]N [ … W … [ &RVu GU>GW = L [ ) GU>GW = 0H1/) GU = 1[ W\] GW'HULYDQGRVLRWWLHQH

#

#



JUD]LH DO WHRUHPD IRQGDPHQWDOH GHO FDOFROR LQWHJUDOH /H GHULYDWH SDU]LDOL 0¦>0\ = 1H0¦>0] = 3VLWURYDQRLQPRGRDQDORJRPRVWUDQGRFRVuFKH) = §¦

 0UKPWLUKLUaHKHPJHTTPUPJHTWPJVUZLY]H[P]PLWV[LUaPHSP



ESEMPIO 2

7URYDUHLOODYRURFRPSLXWRGDOFDPSRFRQVHUYDWLYR GRYH OXQJRTXDOVLDVLFXUYDUHJRODUH&FKHFRQJLXQJDLOSXQWR$ -  D% -   Soluzione &RQ¦ [\] = [\]DEELDPR ) = §¦HLQGLSHQGHQ]D GDOFDPPLQR 7HRUHPD

8QDSURSULHWjPROWRXWLOHGHJOLLQWHJUDOLFXUYLOLQHLQHLFDPSLFRQVHUYDWLYLHQWUD LQJLRFRTXDQGRLOFDPPLQRGLLQWHJUD]LRQHqXQDFXUYDFKLXVD8VLDPRVSHVVR ODQRWD]LRQH SHUO¶LQWHJUD]LRQHVXXQFDPPLQRFKLXVR FKHVWXGLHUHPRPHJOLR QHOSURVVLPRSDUDJUDIR  TEOREMA 3

Proprietà degli integrali di campi conservativi lungo circuiti

B

,VHJXHQWLHQXQFLDWLVRQRHTXLYDOHQWL   ) GU = DWWRUQRDRJQLFLUFXLWR FLRqFXUYDFKLXVD& LQ'   ,OFDPSR)qFRQVHUYDWLYRVX'

#

B –C 2

C2

C1

C1

DIMOSTRAZIONE DI 1. Q2. A 9RJOLDPR GLPRVWUDUH FKH GDWL FRPXQTXH GXH SXQWL $ H % LQ ' O¶LQWHJUDOH GL A ) GUKDORVWHVVRYDORUHVXGXHFDPPLQLTXDOXQTXH&H&GD$D%,QYHUWLDPR -PN\YH ODGLUH]LRQHVX&RWWHQHQGRXQFDPPLQR- &GD%D$ )LJXUD 3UHVLLQVLH 6HDEELDPRGXHFDPPLQLGD$D%VH PH&H- &IRUPDQRXQFLUFXLWRFKLXVR&HSHULSRWHVL QHSXzLQYHUWLUHXQRSHUFUHDUHXQ

#

FLUFXLWR B

4XLQGLJOLLQWHJUDOLVX&H&KDQQRORVWHVVRYDORUH6LQRWLFKHODGH¿QL]LRQHGL ) GUPRVWUDFKHLQYHUWLUHODGLUH]LRQHOXQJRXQDFXUYDLQYHUWHLOVHJQRGHOO¶LQ WHJUDOH

#

DIMOSTRAZIONE DI 2. Q 1. 9RJOLDPRPRVWUDUHFKHO¶LQWHJUDOHGL) GUqQXOORVXTXDOVLDVLFLUFXLWRFKLXVR& 6FHJOLDPRGXHSXQWL$H%VX&HOLXVLDPRSHUVXGGLYLGHUH&LQGXHSDUWL&GD $D%VHJXLWRGD&GD%GLQXRYRD$ )LJXUD &RVu

C2

B

–C 2 C1

#

A

C1

A

-PN\YH 6H$H%VLWURYDQRVXXQFLUFXLWR SRVVLDPRLQYHUWLUHSDUWHGHOFLUFXLWR SHUIRUPDUHGXHFDPPLQLGD$D%



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

,OGLDJUDPPDFKHVHJXHVLQWHWL]]DLULVXOWDWLGHL7HRUHPLH 7HRUHPD

VX

7HRUHPD

FRQVHUYDWLYR VX' VXTXDOVLDVLFLUFXLWRLQ'

3RVVLDPRSRUFLGXHGRPDQGH  &RPHIDFFLDPRDVDSHUHVHXQGDWRFDPSRYHWWRULDOH)qFRQVHUYDWLYR"  6H)qHIIHWWLYDPHQWHFRQVHUYDWLYRFRPHWURYLDPRXQSRWHQ]LDOH¦ TXLQGL WDOHFKH) = §¦ "

Trovare potenziali per campi conservativi ,O PHWRGR SHU YHUL¿FDUH FKH XQ FDPSR YHWWRULDOH VLD FRQVHUYDWLYR FRLQYROJH O¶XJXDJOLDQ]DWUDFHUWHGHULYDWHSDU]LDOLGHOOHFRPSRQHQWLGHOFDPSR Test sulle componenti per campi conservativi

6LD) = 0 [\] L + 1 [\] M + 3 [\] NXQFDPSRVXXQGRPLQLRFRQQHVVR H VHPSOLFHPHQWH FRQQHVVR OH FXL FRPSRQHQWL KDQQR GHULYDWH SDU]LDOL SULPH FRQWLQXH$OORUD)qFRQVHUYDWLYRVHHVRORVH



H





DIMOSTRAZIONE CHE LE EQUAZIONI (2) VALGONO SE F È CONSERVATIVO (VLVWHXQSRWHQ]LDOH¦WDOHFKH

4XLQGL

7HRUHPDGL6FKZDU]VXOOH GHULYDWHVHFRQGHPLVWH3DUDJUDIR

/HDOWUHXJXDJOLDQ]HQHOO¶(TXD]LRQH  VLGLPRVWUDQRDQDORJDPHQWH

/DVHFRQGDPHWjGHOODGLPRVWUD]LRQHFKHOH(TXD]LRQL  LPSOLFDQRFKH) qFRQVHUYDWLYRqXQDFRQVHJXHQ]DGHO7HRUHPDGL6WRNHVFKHWUDWWHUHPRQHO3D UDJUDIRHFKHVIUXWWDODQRVWUDLSRWHVLFKHLOGRPLQLRGL)VLDVHPSOLFHPHQWH FRQQHVVR 8QDYROWDFKHVDSSLDPRFKH)qFRQVHUYDWLYRLQJHQHUHFLLQWHUHVVDWURYDUHXQ SRWHQ]LDOHSHU)&LzULFKLHGHULVROYHUHO¶HTXD]LRQH§¦ = )FLRq

 0UKPWLUKLUaHKHPJHTTPUPJHTWPJVUZLY]H[P]PLWV[LUaPHSP

QHOO¶LQFRJQLWD¦/RSRVVLDPRIDUHLQWHJUDQGROHWUHHTXD]LRQL  FRPHQHOO¶HVHPSLRFKHVHJXH ESEMPIO 3

0RVWUDUHFKH) = H[FRV\ + \] L + [] - H[VLQ\ M + [\ + ] NqFRQVHUYDWLYRVXO VXRGRPLQLRQDWXUDOHHWURYDUHXQSRWHQ]LDOH Soluzione ,OGRPLQLRQDWXUDOHGL)qO¶LQWHURVSD]LRFKHqFRQQHVVRHVHPSOLFHPHQWHFRQ QHVVR$SSOLFKLDPRLOWHVWGHOOH(TXD]LRQL  D

HFDOFROLDPR

/HGHULYDWHSDU]LDOLVRQRFRQWLQXHHTXLQGLTXHVWHXJXDJOLDQ]HFLGLFRQRFKH) qFRQVHUYDWLYRFRVuGHYHHVLVWHUHXQDIXQ]LRQH¦WDOHFKH§¦ = ) 7HRUHPD  7URYLDPR¦LQWHJUDQGROHHTXD]LRQL   ,QWHJULDPRODSULPDHTXD]LRQHULVSHWWRD[PDQWHQHQGR¿VVH\H]RWWHQHQGR



6FULYLDPRODFRVWDQWHGLLQWHJUD]LRQHLQIXQ]LRQHGL\H]SHUFKpLOVXRYDORUHSXz GLSHQGHUHGD\H]PDQRQGD[&DOFROLDPRSRL0¦>0\GDTXHVWDHTXD]LRQHHOR XJXDJOLDPRDOO¶HVSUHVVLRQHSHU0¦>0\GDWDQHOOH(TXD]LRQL  $EELDPRFRVu

HTXLQGL0J>0\ = 3HUWDQWRJqXQDIXQ]LRQHGHOODVROD]H &DOFROLDPRRUD0¦>0]DSDUWLUHGDTXHVWDHTXD]LRQHHXJXDJOLDPRORDOODIRUPXOD SHU0¦>0]QHOOH(TXD]LRQL  7URYLDPR FLRq HTXLQGL

4XLQGL

$EELDPRLQ¿QLWLSRWHQ]LDOLSHU)XQRSHURJQLYDORUHGHOODFRVWDQWH&





*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

ESEMPIO 4

0RVWUDUHFKH) = [ -  L - ]M + FRV] NQRQqFRQVHUYDWLYR Soluzione $SSOLFKLDPRLOWHVWVXOOHFRPSRQHQWLGHOOH(TXD]LRQL  HVFRSULDPRLPPHGLD WDPHQWHFKH

7URYLDPR YDORUL GLYHUVL H TXLQGL ) QRQ q FRQVHUYDWLYR 1RQ VHUYRQR XOWHULRUL YHUL¿FKH

ESEMPIO 5

0RVWUDUHFKHLOFDPSRYHWWRULDOH

VRGGLVIDOHHTXD]LRQLGHOWHVWVXOOHFRPSRQHQWLPDQRQqFRQVHUYDWLYRVXOVXR GRPLQLRQDWXUDOH6SLHJDUHFRPHSRVVDHVVHUHSRVVLELOH Soluzione $EELDPR0 = - \> [ + \ 1 = [> [ + \ H3 = 6HDSSOLFKLDPRLOWHVWVXOOH FRPSRQHQWLWURYLDPR H 3XzTXLQGLVHPEUDUHFKHLOFDPSR)VRGGLV¿LOWHVWVXOOHFRPSRQHQWL,OWHVWDV VXPHSHUzFKHLOGRPLQLRGL)VLDVHPSOLFHPHQWHFRQQHVVRLOFKHQRQYDOH'DWR FKH[ + \QRQSXzHVVHUHXJXDOHD]HURLOGRPLQLRQDWXUDOHqORVSD]LRWUDQQH O¶DVVH GHOOH]HFRQWLHQH FLUFXLWLFKHQRQVL SRVVRQR FRQWUDUUH DXQSXQWR8QR GLTXHVWLFLUFXLWLqODFLUFRQIHUHQ]DXQLWDULD&QHOSLDQR[\/DFLUFRQIHUHQ]Dq SDUDPHWUL]]DWDGDU W = FRVW L + VLQW M … W … p4XHVWDFXUYDFKLXVDJLUD DWWRUQRDOO¶DVVHGHOOH]HQRQVLSXzFRQWUDUUHDXQSXQWRVHQ]DXVFLUHGDOGRPLQLR 3HU PRVWUDUH FKH ) QRQ q FRQVHUYDWLYR FDOFROLDPR O¶LQWHJUDOH FXUYLOLQHR ) GU OXQJRODFXUYDFKLXVD&'DSSULPDVFULYLDPRLOFDPSRLQWHUPLQLGHO  SDUDPHWURW

#

7URYLDPRSRLGU>GW = - VLQW L + FRVW MHTXLQGLFDOFROLDPRO¶LQWHJUDOH

'DWRFKHO¶LQWHJUDOHFXUYLOLQHRGL)OXQJRLOFLUFXLWR&QRQqQXOORLOFDPSR)QRQ qFRQVHUYDWLYRSHULO7HRUHPD /¶(VHPSLRPRVWUDFKHLOWHVWVXOOHFRPSRQHQWLQRQVLDSSOLFDTXDQGRLOGR PLQLRGHOFDPSRQRQqVHPSOLFHPHQWHFRQQHVVR6HSHUzQHOO¶HVHPSLRPRGL¿ FKLDPRLOGRPLQLRLQPRGRGDUHVWULQJHUORDOODSDOODGLUDJJLRHFHQWUR   RDTXDOVLDVLDOWUDUHJLRQHVLPLOHFKHQRQLQWHUVHFKLO¶DVVHGHOOH]TXHVWRQXRYR

 0UKPWLUKLUaHKHPJHTTPUPJHTWPJVUZLY]H[P]PLWV[LUaPHSP

GRPLQLR'qVHPSOLFHPHQWHFRQQHVVR$GHVVRVRQRVRGGLVIDWWHVLDOH(TXD]LRQL  FKHOHLSRWHVLGHOWHVW,QTXHVWDQXRYDVLWXD]LRQHLOFDPSR)GHOO¶(VHPSLR qFRQVHUYDWLYRVX' &RPHGREELDPRHVVHUHDWWHQWLTXDQGRYHUL¿FKLDPRVHXQDIXQ]LRQHVRGGLVIDXQD SURSULHWjLQWXWWRLOVXRGRPLQLR FRPHODFRQWLQXLWjRODSURSULHWjGHOYDORUHLQ WHUPHGLR FRVuGREELDPRDQFKHVWDUHDWWHQWLQHOGHWHUPLQDUHOHSRVVLELOLSURSULHWj GLXQFDPSRYHWWRULDOHQHOGRPLQLRVXFXLqGDWR

Forme differenziali esatte 6SHVVRqFRPRGRHVSULPHUHLQWHJUDOLUHODWLYLDOODYRURHDOODFLUFROD]LRQHQHOOD IRUPDGLIIHUHQ]LDOH

GHVFULWWDQHO3DUDJUDIR4XHVWRWLSRGLLQWHJUDOLFXUYLOLQHLqUHODWLYDPHQWHID FLOHGDFDOFRODUHVH0G[ + 1G\ + 3G]qLOGLIIHUHQ]LDOHWRWDOHGLXQDIXQ]LRQH¦H &qXQFDPPLQRTXDOVLDVLFKHFRQJLXQJHGXHSXQWL$H%,QIDWWLLQTXHVWRFDVR

§¦qFRQVHUYDWLYR 7HRUHPD

4XLQGL

SURSULRFRPHSHUOHIXQ]LRQLGLIIHUHQ]LDELOLGLXQDYDULDELOH DEFINIZIONI

8Q¶HVSUHVVLRQHGHOWLSR0 [\] G[ + 1 [\] G\ + 3 [\] G]qXQDIRUPD GLIIHUHQ]LDOH8QDIRUPDGLIIHUHQ]LDOHVLGLFHHVDWWDVXXQGRPLQLR'QHOOR VSD]LRVH

SHUTXDOFKHIXQ]LRQHVFDODUHGLIIHUHQ]LDELOH¦VXWXWWR' 6LQRWLFKHVH0G[ + 1G\ + 3G] = G¦VX'DOORUD) = 0L + 1M + 3NqLOFDPSRJUD GLHQWHGL¦VX'9LFHYHUVDVH) = §¦DOORUDODIRUPD0G[ + 1G\ + 3G]qHVDWWD ,OWHVWSHUYHUL¿FDUHVHXQDIRUPDqHVDWWDqTXLQGLORVWHVVRFKHSHUYHUL¿FDUHVH )qFRQVHUYDWLYR Test sulle componenti per l’esattezza di M dx + N dy + P dz

/DIRUPDGLIIHUHQ]LDOH0G[ + 1G\ + 3G]qHVDWWDVXXQGRPLQLRFRQQHVVRH VHPSOLFHPHQWHFRQQHVVRVHHVRORVH H ÊHTXLYDOHQWHDGLUHFKHLOFDPSR) = 0L + 1M + 3NqFRQVHUYDWLYR





*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

ESEMPIO 6

0RVWUDUHFKH\G[ + [G\ + G]qHVDWWDHFDOFRODUHO¶LQWHJUDOH

VXTXDOVLDVLFDPPLQRGD  D -   Soluzione 3RQLDPR0 = \1 = [3 = HDSSOLFKLDPRLOWHVWSHUO¶HVDWWH]]D

4XHVWHXJXDJOLDQ]HFLGLFRQRFKH\G[ + [G\ + G]qHVDWWDHTXLQGL  SHU TXDOFKH IXQ]LRQH ¦ H LO YDORUH GHOO¶LQWHJUDOH q ¦ -  - ¦   7URYLDPR¦DPHQRGLXQDFRVWDQWHDUELWUDULDLQWHJUDQGROHIXQ]LRQL

 'DOODSULPDHTXD]LRQHULFDYLDPR





/DVHFRQGDHTXD]LRQHFLGLFHFKH FLRq 4XLQGLJqXQDIXQ]LRQHGHOODVROD]H

/DWHU]DGHOOH(TXD]LRQL  FLGLFHFKH HTXLQGL 3HUWDQWR  ,O YDORUH GHOO¶LQWHJUDOH FXUYLOLQHR q LQGLSHQGHQWH GDO FDPPLQR SHUFRUVR GD  D -  HGq

5.4 Il Teorema di Green nel piano 6H)qXQFDPSRFRQVHUYDWLYRVDSSLDPRFKH) = ¥¦SHUXQDIXQ]LRQHGLIIHUHQ ]LDELOH¦HSRVVLDPRFDOFRODUHO¶LQWHJUDOHFXUYLOLQHRGL)VXTXDOVLDVLFDPPLQR& FKHXQLVFHXQSXQWR$D%FRQ1&) GU = ¦ % - ¦ $ ,QTXHVWRSDUDJUDIRULFDYLD PRXQPHWRGRSHUFDOFRODUHXQLQWHJUDOHGLXQODYRURRGLXQÀXVVRVXXQDFXUYD FKLXVD&QHOSLDQRTXDQGRLOFDPSR)QRQqFRQVHUYDWLYR4XHVWRPHWRGRGHWWR 7HRUHPDGL*UHHQFLSHUPHWWHGLFRQYHUWLUHO¶LQWHJUDOHFXUYLOLQHRLQXQLQWHJUDOH GRSSLRVXOODUHJLRQHUDFFKLXVDGD& 7UDWWHUHPRLOWHRUHPDLQWHUPLQLGLFDPSLGLYHORFLWjGLÀXLGL FLRqOLTXLGLRJDV 

#

 0S;LVYLTHKP.YLLUULSWPHUV



FKHVFRUURQR,O7HRUHPDGL*UHHQSHUzVLDSSOLFDDTXDOVLDVLFDPSRYHWWRULDOH LQGLSHQGHQWHPHQWHGDOODVSHFL¿FDLQWHUSUHWD]LRQHGHOFDPSRSXUFKpVLDQRVRG GLVIDWWHOHLSRWHVLGHOWHRUHPD3HULO7HRUHPDGL*UHHQLQWURGXFLDPRGXHQXRYL FRQFHWWLODGLYHUJHQ]DHODGHQVLWjGLFLUFROD]LRQHDWWRUQRDXQDVVHSHUSHQGLFR ODUHDOSLDQR

Divergenza 6XSSRQLDPRFKH) [\ = 0 [\ L + 1 [\ MVLDLOFDPSRGHOOHYHORFLWjGLXQÀXL GRFKHVFRUUHQHOSLDQRHFKHOHGHULYDWHSDU]LDOLSULPHGL0H1VLDQRFRQWLQXHLQ RJQLSXQWRGLXQDUHJLRQH56LD [\ XQSXQWRLQ5HVLD$XQUHWWDQJROLQRFRQXQ DQJRORLQ [\ FKHLQVLHPHDOVXRLQWHUQRqFRQWHQXWRLQ5,ODWLGHOUHWWDQJROR SDUDOOHOLDJOLDVVLFRRUGLQDWLKDQQROXQJKH]]H¢[H¢\6XSSRQLDPRFKH0H1 -PN\YH QRQFDPELQRVHJQRDOO¶LQWHUQRGLXQDUHJLRQHFRQWHQHQWHLOUHWWDQJROR$

/DYHORFLWjDFXLLOIOXLGRHVFHGDOOD UHJLRQHUHWWDQJRODUH$GDOODEDVHLQ GLUH]LRQHGHOODQRUPDOHHVWHUQDq F·j 0 DSSURVVLPDWLYDPHQWH) [\   - M ¢[ FKHqQHJDWLYDSHULOFDPSRYHWWRULDOH F · (–i)  0 )TXLPRVWUDWR3HUDSSURVVLPDUHOD A Δy YHORFLWjGLVFRUULPHQWRQHOSXQWR [\ FDOFROLDPROHYHORFLWj F·i 0 F(x, y) DSSURVVLPDWH DWWUDYHUVRLODWLQHOOH GLUH]LRQLGHOOHIUHFFHFRUWHVRPPLDPR F · (–j)  0 HSRLGLYLGLDPRLOULVXOWDWRSHUO¶DUHDGL (x, y) (x  Δ x, y) $3DVVDQGRDOOLPLWHSHU¢[ :H Δx ¢\ :VLRWWLHQHODYHORFLWjGL /DYHORFLWjFRQFXLLOÀXLGRHVFHGDOUHWWDQJRORGDOODWRGLEDVHqDSSURVVLPDWLYD VFRUULPHQWRSHUXQLWjGLDUHD (x, y  Δy)

(x  Δ x, y  Δy)

#

PHQWH )LJXUD 

ÊODFRPSRQHQWHVFDODUHGHOODYHORFLWjLQ [\ QHOODGLUH]LRQHGHOODQRUPDOHYHUVR O¶HVWHUQRPROWLSOLFDWDSHUODOXQJKH]]DGHOVHJPHQWR6HODYHORFLWjqHVSUHVVDLQ PHWULDOVHFRQGRSHUHVHPSLRODYHORFLWjGLVFRUULPHQWRVDUjLQPHWULDOVHFRQGR SHUPHWULFLRqPHWULTXDGULDOVHFRQGR/DYHORFLWjGLVFRUULPHQWRDWWUDYHUVRJOL DOWULWUHODWLQHOOHGLUH]LRQLGHOOHULVSHWWLYHQRUPDOLHVWHUQHVLSXzVWLPDUHLQPRGR DQDORJR/HYHORFLWjGLVFRUULPHQWRSRVVRQRHVVHUHSRVLWLYHRQHJDWLYHDVHFRQGD GHLVHJQLGHOOHFRPSRQHQWLGL)$SSURVVLPLDPRODYHORFLWjGLVFRUULPHQWRFRP SOHVVLYDDWWUDYHUVRODIURQWLHUDUHWWDQJRODUHGL$VRPPDQGRTXHOOHOXQJRLTXDWWUR ODWLGH¿QLWHGDLVHJXHQWLSURGRWWLVFDODUL 9HORFLWjGLVFRUULPHQWRGHOÀXLGR,QDOWR  ,QEDVVR  $GHVWUD  $VLQLVWUD 6RPPDQGROHFRSSLHRSSRVWHWURYLDPR ,QDOWRHLQEDVVR $GHVWUDHDVLQLVWUD 6RPPDQGRLGXHXOWLPLULVXOWDWLWURYLDPRO¶HIIHWWRFRPSOHVVLYRGHOODFRUUHQWH )OXVVRDWWUDYHUVRODIURQWLHUDGHOUHWWDQJROR



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

'LYLGLDPRDGHVVRSHU¢[¢\SHUGDUHXQDVWLPDGHOÀXVVRWRWDOHSHUXQLWjGLDUHD ODGHQVLWjGLÀXVVRGHOUHWWDQJROR )OXVVRDWWUDYHUVRODIURQWLHUDGHOUHWWDQJROR DUHDGHOUHWWDQJROR

Sorgente: div F (x 0 , y0 ) 0 Un gas che si espande nel punto (x 0 , y0 ).

,Q¿QHIDFFLDPRWHQGHUHD]HUR¢[H¢\SHUGH¿QLUHODGHQVLWjGLÀXVVRGL)QHO SXQWR [\  ,QPDWHPDWLFDODGHQVLWjGLÀXVVRqGHWWDGLYHUJHQ]DGL)/DVLLQGLFDFRQLOVLP ERORGLY)FKHVLOHJJH³GLYHUJHQ]DGL)´R³GLY)´ DEFINIZIONE

Pozzo: div F (x 0 , y0 )  0 Un gas che si comprime nel punto (x 0 , y0 ).

-PN\YH 6HXQJDVVLHVSDQGHLQXQSXQWR [\ OHOLQHHGLIOXVVRKDQQR GLYHUJHQ]DSRVLWLYDVHVLFRPSULPH ODGLYHUJHQ]DqQHJDWLYD

/D GLYHUJHQ]D GHQVLWj GL ÀXVVR  GL XQ FDPSR YHWWRULDOH ) = 0L + 1M QHO SXQWR [\ q 





8Q JDV D GLIIHUHQ]D GL XQ OLTXLGR VL SXz FRPSULPHUH H OD GLYHUJHQ]D GHO VXR FDPSRGLYHORFLWjPLVXUDTXDQWRVLHVSDQGDRFRPSULPDLQRJQLSXQWR,QWXLWLYD PHQWHVHXQJDVVLVWDHVSDQGHQGRQHOSXQWR [\ OHOLQHHGLÀXVVRGLYHUJRQR LQTXHOSXQWR GDFXLLOQRPH HYLVWRFKHLOJDVVFRUUHIXRULGDXQUHWWDQJROLQR DWWRUQRD [\ ODGLYHUJHQ]DGL)LQ [\ qSRVLWLYD6HLOJDVVLFRPSULPHVVH DQ]LFKpHVSDQGHUVLODGLYHUJHQ]DVDUHEEHQHJDWLYD )LJXUD  ESEMPIO 1

,VHJXHQWLFDPSLYHWWRULDOLUDSSUHVHQWDQRODYHORFLWjGLXQJDVFKHVFRUUHQHOSLDQR [\7URYDUHODGLYHUJHQ]DGLRJQLFDPSRYHWWRULDOHHLQWHUSUHWDUQHLOVLJQL¿FDWR ¿VLFR/D)LJXUDPRVWUDLFDPSLYHWWRULDOL y

y

x

-PN\YH &DPSLGLYHORFLWjGLXQJDVFKHVFRUUH LQXQSLDQR (VHPSLR 

x

(a)

(b)

y

y

x

(c)

x

(d)

 0S;LVYLTHKP.YLLUULSWPHUV



D (VSDQVLRQHRFRPSUHVVLRQHXQLIRUPH) [\ = F[L + F\M E 5RWD]LRQHXQLIRUPH) [\ = - F\L + F[M F )OXVVRGLWDJOLR) [\ = \L G 9RUWLFH) [\ = Soluzione VHF 7 LOJDVVLHVSDQGHXQLIRUPHPHQWH

D 

VHF 6 VLFRPSULPHXQLIRUPHPHQWH E 

 LO JDV QRQ VL VWD HVSDQGHQGR Qp FRPSUL

PHQGR F 

LOJDVQRQVLVWDHVSDQGHQGRQpFRPSULPHQGR

G  $QFKHTXLODGLYHUJHQ]DqQXOODLQWXWWLLSXQWLGHOGRPLQLRGHOFDPSRGLYHORFLWj

,FDVL E  F H G GHOOD)LJXUDVRQRPRGHOOLYHURVLPLOLSHULOPRYLPHQWR ELGLPHQVLRQDOHGLXQOLTXLGR1HOODGLQDPLFDGHLÀXLGLTXDQGRLOFDPSRGHOOH YHORFLWjGLXQOLTXLGRLQPRYLPHQWRKDGLYHUJHQ]DRYXQTXHQXOODFRPHLQTXHVWL FDVLLOOLTXLGRqGHWWRLQFRPSUHVVLELOH

Ruotare attorno a un asse: la componente k del rotore ,OVHFRQGRFRQFHWWRGLFXLDEELDPRELVRJQRSHULO7HRUHPDGL*UHHQKDDFKHIDUH FRQODPLVXUD]LRQHGHOPRGRLQFXLXQPXOLQHOORDSDOHFRQO¶DVVHSHUSHQGLFROD UHDOSLDQRUXRWDLQXQSXQWRLQFXLQHOODUHJLRQHSLDQDVFRUUHLOÀXLGR&LzGj XQ¶LGHDGLFRPHLOÀXLGRFLUFRODDWWRUQRDGLYHUVLDVVLSHUSHQGLFRODULDOODUHJLRQH ,¿VLFLORFKLDPDQRGHQVLWjGLFLUFROD]LRQHGLXQFDPSRYHWWRULDOH)LQXQSXQWR 3HUWURYDUODWRUQLDPRDOFDPSRGLYHORFLWj ) [\ = 0 [\ L + 1 [\ M HFRQVLGHULDPRLOUHWWDQJROR$GHOOD)LJXUD LQFXLDVVXPLDPRFKHHQWUDPEH -PN\YH  OHFRPSRQHQWLGL)VLDQRSRVLWLYH 

/DYHORFLWjFRQFXLXQIOXLGRVFRUUH DWWUDYHUVRODEDVHGLXQDUHJLRQH UHWWDQJRODUH$QHOODGLUH]LRQHLq F · (–i)  0 DSSURVVLPDWLYDPHQWH) [\  L¢[FKH qSRVLWLYRSHULOFDPSRYHWWRULDOH)TXL PRVWUDWR3HUDSSURVVLPDUHODYHORFLWj F · (–j)  0 A Δy GLFLUFROD]LRQHQHOSXQWR [\  FDOFROLDPROHYHORFLWjGLVFRUULPHQWR F(x, y) DSSURVVLPDWH DWWUDYHUVRRJQXQRGHL F·j 0 ODWLQHOODGLUH]LRQHGHOOHIUHFFHFRUWH F·i 0 VRPPLDPRTXHVWHYHORFLWjHSRL GLYLGLDPRODVRPPDSHUO¶DUHDGL$ (x, y) (x  Δ x, y) 3DVVDQGRDOOLPLWHSHU¢[ :H Δx ¢\ :VLRWWLHQHODYHORFLWjGL /DYHORFLWjGLFLUFROD]LRQHGL)DWWRUQRDOODIURQWLHUDGL$qODVRPPDGHOOHYHOR FLUFROD]LRQHSHUDUHDXQLWDULD (x, y  Δy)

(x  Δ x, y  Δy)

#

FLWjGLVFRUULPHQWROXQJRLODWLLQGLUH]LRQHWDQJHQ]LDOH



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

3HUODEDVHODYHORFLWjGLVFRUULPHQWRqFLUFD

ÊODFRPSRQHQWHVFDODUHGHOODYHORFLWj) [\ QHOODGLUH]LRQHWDQJHQWHLPROWL SOLFDWDSHUODOXQJKH]]DGHOVHJPHQWR/HYHORFLWjGLVFRUULPHQWRSRVVRQRHVVHUH SRVLWLYHRQHJDWLYHDVHFRQGDGHOOHFRPSRQHQWLGL)$SSURVVLPLDPRODYHORFLWj GLFLUFROD]LRQHFRPSOHVVLYDDWWRUQRDOODIURQWLHUDUHWWDQJRODUHGL$VRPPDQGROH YHORFLWjGLVFRUULPHQWROXQJRLTXDWWURODWLGH¿QLWHGDLVHJXHQWLSURGRWWLVFDODUL    

,QDOWR ,QEDVVR $GHVWUD $VLQLVWUD



6RPPLDPROHFRSSLHRSSRVWHHRWWHQLDPR

Asse verticale



,QDOWRHLQEDVVR



$GHVWUDHDVLQLVWUD

k

/D VRPPD GL TXHVWL GXH XOWLPL WRWDOL Gj OD FLUFROD]LRQH FRPSOHVVLYD ULVSHWWR DOO¶RULHQWDPHQWRDQWLRUDULRHGLYLGHQGRSHU¢[¢\VLRWWLHQHXQDVWLPDGHOODGHQ VLWjGLFLUFROD]LRQHSHULOUHWWDQJROR (x 0 , y 0 )

Rot F (x 0 , y 0 ) . k 0 Circolazione antioraria

Asse verticale k

&LUFROD]LRQHDWWRUQRDOUHWWDQJROR DUHDGHOUHWWDQJROR )DFFLDPRWHQGHUHD]HUR¢[H¢\SHUGH¿QLUHODGHQVLWjGLFLUFROD]LRQHGL)QHO SXQWR [\  6H RVVHUYLDPR XQD URWD]LRQH DQWLRUDULD TXDQGR JXDUGLDPR YHUVR LO EDVVR LO SLDQR [\ GDOOD SXQWD GHO YHWWRUH N DOORUD OD GHQVLWj GL FLUFROD]LRQH q SRVLWLYD )LJXUD ,OYDORUHGHOODGHQVLWjGLFLUFROD]LRQHqODFRPSRQHQWHNGLXQSL JHQHUDOHFDPSRYHWWRULDOHUHODWLYRDOODFLUFROD]LRQHFKHGH¿QLUHPRQHO3DUDJUDIR GHWWRURWRUHGHOFDPSRYHWWRULDOH)3HULO7HRUHPDGL*UHHQFLVHUYHVROR TXHVWDFRPSRQHQWHNRWWHQXWDFRPHSURGRWWRVFDODUHGLURW)HN DEFINIZIONE

(x 0 , y 0 )

Rot F (x 0 , y 0 ) . k  0 Circolazione oraria

-PN\YH ,QXQDFRUUHQWHGLXQIOXLGR LQFRPSUHVVLELOHVXXQDUHJLRQHSLDQD ODFRPSRQHQWHNGHOURWRUHPLVXUDOD YHORFLWjGHOODURWD]LRQHGHOIOXLGRLQ TXHOSXQWR/DFRPSRQHQWHNGHO URWRUHqSRVLWLYDQHLSXQWLLQFXLOD URWD]LRQHqDQWLRUDULDHQHJDWLYDGRYHq RUDULD

/DGHQVLWjGLFLUFROD]LRQHGLXQFDPSRYHWWRULDOH) = 0L + 1MQHOSXQWR [\  qO¶HVSUHVVLRQHVFDODUH  





#

4XHVWDHVSUHVVLRQHqGHWWDDQFKHFRPSRQHQWHNGHOURWRUHLQGLFDWDFRQ URW)  N 6HLQXQDUHJLRQHGHOSLDQR[\F¶qXQVRWWLOHVWUDWRG¶DFTXDLQPRYLPHQWRDOOR UDODFRPSRQHQWHNGHOURWRUHQHOSXQWR [\ GjXQPRGRSHUPLVXUDUHDFKH YHORFLWj H LQ FKH GLUH]LRQH JLUDQR OH SDOH GL XQ PXOLQHOOR VH OR VL LPPHUJH LQ [\ FRQO¶DVVHSHUSHQGLFRODUHDOSLDQRHSDUDOOHORDN )LJXUD *XDUGDQ GRLOSLDQR[\YHUVRLOEDVVRODURWD]LRQHVLYHUL¿FDLQYHUVRDQWLRUDULRTXDQGR URW)  NqSRVLWLYRHRUDULRTXDQGRODFRPSRQHQWHNqQHJDWLYD

#

 0S;LVYLTHKP.YLLUULSWPHUV



ESEMPIO 2

7URYDUHODGHQVLWjGLFLUFROD]LRQHHLQWHUSUHWDUQHLOVLJQL¿FDWRSHURJQXQRGHL FDPSLYHWWRULDOLGHOO¶(VHPSLR Soluzione D (VSDQVLRQHXQLIRUPH URW)  VXVFDOHPROWRSLFFROH E 5RWD]LRQH URW) 

,OJDVQRQUXRWD /DGHQVLWjGLFLUFROD]LRQH

FRVWDQWHLQGLFDURWD]LRQHLQRJQLSXQWR6HF 7 ODURWD]LRQHqLQVHQVRDQWLR UDULRVHF 6 qLQVHQVRRUDULR F 7DJOLR FXUO)  /DGHQVLWjGLFLUFROD]LRQHqFRVWDQWHH QHJDWLYDHTXLQGLXQPXOLQHOORQHOO¶DFTXDVRWWRSRVWDDTXHVWRÀXVVRUXRWHUHE EHLQYHUVRRUDULR/DYHORFLWjGLURWD]LRQHqXJXDOHLQRJQLSXQWR/¶HIIHWWR PHGLRGHOPRWRGHOÀXLGRqGLUXRWDUHLOÀXLGRLQVHQVRRUDULRDWWRUQRDRJQX QRGHLFHUFKLHWWLPRVWUDWLQHOOD)LJXUD G 9RUWLFH  /DGHQVLWjGLFLUFROD]LRQHqLQRJQLSXQWRFKHQRQVLDO¶RULJLQH LQFXLQRQq GH¿QLWRLOFDPSRYHWWRULDOHHKDOXRJRO¶HIIHWWRYRUWLFH LOJDVQRQFLUFRODLQ QHVVXQRGHLSXQWLLQFXLqGH¿QLWRLOFDPSRYHWWRULDOH

Due forme del Teorema di Green ,QXQDGHOOHVXHIRUPHLO7HRUHPDGL*UHHQDIIHUPDFKHVRWWRRSSRUWXQHFRQGL]LR QLLOÀXVVRYHUVRO¶HVWHUQRGLXQFDPSRYHWWRULDOHDWWUDYHUVRXQDFXUYDVHPSOLFH FKLXVDQHOSLDQRqXJXDOHDOO¶LQWHJUDOHGRSSLRGHOODGLYHUJHQ]DGHOFDPSRVXOOD UHJLRQHUDFFKLXVDGDOODFXUYD5LFRUGDWHOHIRUPXOHSHULOÀXVVRGDWHGDOOH(TXD ]LRQL  H  QHO3DUDJUDIRHLOIDWWRFKHXQDFXUYDqVHPSOLFHVHQRQSDVVD GXHYROWHSHUORVWHVVRSXQWR TEOREMA 4

Teorema di Green (forma flusso-divergenza o forma normale)

6LD&XQDFXUYDVHPSOLFHFKLXVDUHJRODUHDWUDWWLFKHUDFFKLXGHXQDUHJLRQH5 GHOSLDQR6LD) = 0L + 1MXQFDPSRYHWWRULDOHWDOHFKH0H1KDQQRGHULYDWH SDU]LDOLSULPHFRQWLQXHLQXQDUHJLRQHDSHUWDFRQWHQHQWH5$OORUDLOÀXVVRGL) DWWUDYHUVR&GLUHWWRYHUVRO¶HVWHUQRqXJXDOHDOO¶LQWHJUDOHGRSSLRGLGLY)VXOOD UHJLRQH5UDFFKLXVDGD&  )OXVVRYHUVRO¶HVWHUQR

y

,QWHJUDOHGHOODGLYHUJHQ]D

1HO3DUDJUDIRDEELDPRLQWURGRWWRODQRWD]LRQHD& SHULQGLFDUHO¶LQWHJUD]LRQH DWWRUQRDXQDFXUYDFKLXVDWRUQLDPRRUDDTXHOODQRWD]LRQH8QDFXUYDVHPSOLFH FKLXVD&VLSXzSHUFRUUHUHLQGXHSRVVLELOLGLUH]LRQL/DFXUYDYLHQHSHUFRUVDLQ VHQVR DQWLRUDULR H VL GLFH RULHQWDWD SRVLWLYDPHQWH VH OD UHJLRQH FKH UDFFKLXGH VL WURYD VHPSUH DOOD VLQLVWUD GL XQ RJJHWWR FKH SHUFRUUH OD FXUYD$OWULPHQWL q SHUFRUVDLQVHQVRRUDULRHGqRULHQWDWDQHJDWLYDPHQWH/¶LQWHJUDOHFXUYLOLQHRGL XQ FDPSR YHWWRULDOH ) OXQJR & FDPELD GL VHJQR VH LQYHUWLDPR O¶RULHQWDPHQWR 8VLDPRODQRWD]LRQH

x

-PN\YH 8QIOXVVRGLWDJOLRVRVSLQJHLOIOXLGRLQ YHUVRRUDULRDWWRUQRDRJQLSXQWR (VHPSLRF 



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

SHUO¶LQWHJUDOHFXUYLOLQHRTXDQGRODFXUYDVHPSOLFHFKLXVD&qSHUFRUVDLQVHQVR DQWLRUDULRFRQO¶RULHQWDPHQWRSRVLWLYR 8QDVHFRQGDIRUPDGHO7HRUHPDGL*UHHQDIIHUPDFKHODFLUFROD]LRQHLQVHQVR DQWLRUDULRGLXQFDPSRYHWWRULDOHOXQJRXQDFXUYDVHPSOLFHFKLXVDqO¶LQWHJUDOH GRSSLR GHOOD FRPSRQHQWH N GHO URWRUH GHO FDPSR VXOOD UHJLRQH UDFFKLXVD GDOOD FXUYD6LULFRUGLO¶(TXD]LRQH  GHO3DUDJUDIRFKHGH¿QLVFHODFLUFROD]LRQH TEOREMA 5

Teorema di Green (forma circolazione-rotore o forma tangenziale)

6LD&XQDFXUYDVHPSOLFHFKLXVDUHJRODUHDWUDWWLFKHUDFFKLXGHXQDUHJLRQH5 QHOSLDQR6LD) = 0L + 1MXQFDPSRYHWWRULDOHLQFXL0H1KDQQRGHULYDWH SDU]LDOLSULPHFRQWLQXHLQXQDUHJLRQHDSHUWDFRQWHQHQWH5$OORUDODFLUFROD ]LRQHDQWLRUDULDGL)DWWRUQR&qXJXDOHDOO¶LQWHJUDOHGRSSLRGL URW)  NVX5

#

 &LUFROD]LRQHDQWLRUDULD

,QWHJUDOHGHOURWRUH

/HGXHIRUPHGHO7HRUHPDGL*UHHQVRQRHTXLYDOHQWL$SSOLFDQGRO¶(TXD]LRQH   DOFDPSR* = 1L - 0MVLRWWLHQHO¶(TXD]LRQH  HDSSOLFDQGRO¶(TXD]LRQH  D * = - 1L + 0MVLRWWLHQHO¶(TXD]LRQH   ,O ÀXVVR YHUVR O¶HVWHUQR GL ) DWWUDYHUVR & GH¿QLWR GDOO¶LQWHJUDOH FXUYLOLQHR GHOSULPRPHPEURGHOO¶(TXD]LRQH  qO¶LQWHJUDOHGHOVXRWDVVRGLYDULD]LRQH GHQVLWjGLÀXVVR VXOODUHJLRQH5UDFFKLXVDGD&FKHqO¶LQWHJUDOHGRSSLRDOO¶XO WLPRPHPEURGHOO¶(TXD]LRQH  $QDORJDPHQWHODFLUFROD]LRQHDQWLRUDULDGL) DWWRUQR D C GH¿QLWD GDOO¶LQWHJUDOH FXUYLOLQHR DO SULPR PHPEUR GHOO¶(TXD]LRQH  qO¶LQWHJUDOHGHOVXRWDVVRGLYDULD]LRQH GHQVLWjGLFLUFROD]LRQH VXOODUHJLRQH 5UDFFKLXVDGD&FKHqO¶LQWHJUDOHGRSSLRDOO¶XOWLPRPHPEURGHOO¶(TXD]LRQH   ESEMPIO 3

9HUL¿FDUHOHGXHIRUPHGHO7HRUHPDGL*UHHQSHULOFDPSRYHWWRULDOH HODUHJLRQH5GHOLPLWDWDGDOODFLUFRQIHUHQ]DXQLWDULD

Soluzione &DOFRODQGR) U W HGLIIHUHQ]LDQGROHFRPSRQHQWLRWWHQLDPR

,GXHPHPEULGHOO¶(TXD]LRQH  VRQR

 0S;LVYLTHKP.YLLUULSWPHUV



DUHDDOO¶LQWHUQRGHOODFLUFRQIHUHQ]DXQLWDULD

,GXHPHPEULGHOO¶(TXD]LRQH  VRQR

y

T x T

/D)LJXUDPRVWUDLOFDPSRYHWWRULDOHHODFLUFROD]LRQHDWWRUQRD&

-PN\YH ,OFDPSRYHWWRULDOHGHOO¶(VHPSLRKD XQDFLUFROD]LRQHDQWLRUDULDGLp 6HFRVWUXLDPRXQDFXUYDFKLXVD&FRQJLXQJHQGRGLYHUVHFXUYHLOFDOFRORGLXQ DWWRUQRDOODFLUFRQIHUHQ]DXQLWDULD

Come usare il Teorema di Green per calcolare integrali curvilinei

LQWHJUDOHFXUYLOLQHRVX&SXzHVVHUHPROWROXQJRSHUFKpFLVRQRQXPHURVLLQWHJUD OLGDFDOFRODUH6H&GHOLPLWDXQDUHJLRQH5DFXLVLDSSOLFDLO7HRUHPDGL*UHHQ SHUzSRVVLDPRXVDUHTXHVWRWHRUHPDSHUWUDVIRUPDUHO¶LQWHJUDOHFXUYLOLQHRDWWRU QRD&LQXQXQLFRLQWHJUDOHGRSSLRVX5 ESEMPIO 4

&DOFRODUHO¶LQWHJUDOHFXUYLOLQHR

GRYH&qLOTXDGUDWRLQGLYLGXDWRQHOSULPRTXDGUDQWHGDOOHUHWWH[ = H\ =  Soluzione 3RVVLDPRXVDUHLQGLIIHUHQWHPHQWHXQDGHOOHGXHIRUPHGHO7HRUHPDGL*UHHQSHU WUDVIRUPDUHO¶LQWHJUDOHFXUYLOLQHRLQXQLQWHJUDOHGRSSLRVXOTXDGUDWR  &RQODIRUPDQRUPDOH(TXD]LRQH  3UHQGHQGR0 = [\1 = \HFRPH&H 5ODIURQWLHUDHO¶LQWHUQRGHOTXDGUDWR



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

 &RQODIRUPDWDQJHQ]LDOH(TXD]LRQH  3UHQGHQGR0 = - \H1 = [\VLRW

WLHQHORVWHVVRULVXOWDWR

ESEMPIO 5

&DOFRODUHLOÀXVVRYHUVRO¶HVWHUQRGHOFDPSRYHWWRULDOH) [\ = [L + \MDWWUDYHUVR LOTXDGUDWRGHOLPLWDWRGDOOHUHWWH[ = ;H\ = ; Soluzione &DOFRODUHLOÀXVVRFRQXQLQWHJUDOHFXUYLOLQHRULFKLHGHUHEEHTXDWWURLQWHJUD]LRQL XQDSHURJQLODWRGHOTXDGUDWR&RQLO7HRUHPDGL*UHHQSRVVLDPRWUDVIRUPDUH O¶LQWHJUDOHFXUYLOLQHRLQXQVLQJRORLQWHJUDOHGRSSLR3UHQGHQGR0 = [1 = \& LOTXDGUDWRH5O¶LQWHUQRGHOTXDGUDWRDEELDPR )OXVVR

7HRUHPDGL*UHHQ

Dimostrazione del Teorema di Green per regioni speciali

y P2 (x, f2 (x))

C 2: y  f2 (x)

6LD&XQDFXUYDVHPSOLFHFKLXVDUHJRODUHQHOSLDQR[\FRQODSURSULHWjFKHRJQL UHWWD SDUDOOHOD DJOL DVVL OD LQWHUVHFKL LQ QRQ SL GL GXH SXQWL 6LD 5 OD UHJLRQH UDFFKLXVD GD & H VXSSRQLDPR FKH 0 1 H OH ORUR GHULYDWH SDU]LDOL SULPH VLDQR FRQWLQXH LQ RJQL SXQWR GL TXDOFKH UHJLRQH DSHUWD FRQWHQHQWH & H 5 9RJOLDPR GLPRVWUDUHODIRUPDFLUFROD]LRQHURWRUHGHO7HRUHPDGL*UHHQ 

R

 P1(x, f1(x))

C1: y  f1(x) 0

a

x

b

x

-PN\YH /DFXUYDIURQWLHUD&qFRPSRVWDGD& LOJUDILFRGL\ = ¦ [ HGD&LO JUDILFRGL\ = ¦ [ 

 /D)LJXUDPRVWUDFKH&qFRPSRVWDGDGXHSDUWLRULHQWDWH

 3HURJQL[FRPSUHVRWUDDHESRVVLDPRLQWHJUDUH00>0\ULVSHWWRD\GD\ = ¦ [  D\ = ¦ [ RWWHQHQGR

$TXHVWRSXQWRLQWHJULDPRULVSHWWRD[GDDDE

 0S;LVYLTHKP.YLLUULSWPHUV



y C '1: x  g1( y)

d y

Q 2(g2( y), y) Q1(g1( y), y) R C '2 : x  g2( y)

c

x

0

-PN\YH /DFXUYDIURQWLHUD&qFRPSRVWDGD&œ LOJUDILFRGL[ = J \ HGD&œLO  JUDILFRGL[ = J \ 

4XLQGL

  /¶(TXD]LRQH  qPHWjGHOULVXOWDWRFKHFLVHUYHSHUO¶(TXD]LRQH  2WWHQLDPR O¶DOWUDPHWjLQWHJUDQGR01>0[SULPDULVSHWWRD[HSRLULVSHWWRD\FRPHVXJJHULVFH OD)LJXUD 4XHVWD¿JXUDPRVWUDODFXUYD&GHOOD)LJXUDGHFRPSRVWDLQGXHSDUWLRULHQ WDWH&œ[ = J \ G Ú \ Ú FH&œ[ = J \ F … \ … G,OULVXOWDWRGLTXHVWDGRSSLD LQWHJUD]LRQHq



  6RPPDQGROH(TXD]LRQL  H  VLRWWLHQHO¶(TXD]LRQH  LOFKHFRQFOXGHOD GLPRVWUD]LRQH

y C R

x

0 (a) y b

C

,O7HRUHPDGL*UHHQYDOHDQFKHSHUUHJLRQLSLJHQHUDOLFRPHTXHOOHPRVWUDWH QHOOH)LJXUHHPDQRQGLPRVWUHUHPRTXLTXHVWRULVXOWDWR6LQRWLFKH a R OD UHJLRQH GHOOD )LJXUD  QRQ q VHPSOLFHPHQWH FRQQHVVD /H FXUYH & H &K VXOODVXDIURQWLHUDVRQRRULHQWDWHLQPRGRFKHODUHJLRQH5VLWURYLVHPSUHVXOOD x VLQLVWUDTXDQGROHFXUYHYHQJRQRSHUFRUVHQHOOHGLUH]LRQLPRVWUDWH&RQTXHVWD 0 a b FRQYHQ]LRQHLO7HRUHPDGL*UHHQqYDOLGRDQFKHSHUUHJLRQLQRQVHPSOLFHPHQWH (b) FRQQHVVH $QFKHVHORDEELDPRHQXQFLDWRQHOSLDQR[\LO7HRUHPDGL*UHHQVLDSSOLFDD -PN\YH TXDOXQTXHUHJLRQHSLDQD5QHOORVSD]LRGHOLPLWDWDGDXQDFXUYD&9HGUHPRFRPH $OWUHUHJLRQLDFXLVLDSSOLFDLO HVSULPHUHO¶LQWHJUDOHGRSSLRVX5SHUTXHVWDIRUPDSLJHQHUDOHGHO7HRUHPDGL 7HRUHPDGL*UHHQ *UHHQQHO3DUDJUDIR y C1 Ch R 0

h

1

x

-PN\YH ,O7HRUHPDGL*UHHQVLSXzDSSOLFDUH DOODUHJLRQHDQXODUH5VRPPDQGRJOL LQWHJUDOLFXUYLOLQHLUHODWLYLDOOHFXUYHGL IURQWLHUD&H&KQHOOHGLUH]LRQL LQGLFDWH



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

5.5 Superfici e aree

u  costante

y

y  costante (u, y) R u

0

Parametrizzazione

z Curva y  costante

S

P Curva u  constante

x

r(u, y)  f (u, y)i  g(u, y)j  h(u, y)k, Vettore posizione del punto sulla superficie y

$EELDPRGH¿QLWROHFXUYHQHOSLDQRLQWUHPRGLGLYHUVL  )RUPDHVSOLFLWD \ = ¦ [   )RUPDLPSOLFLWD ) [\ =   )RUPDYHWWRULDOHSDUDPHWULFDU W = ¦ W L + J W M  D … W … E $EELDPRGH¿QL]LRQLDQDORJKHSHUOHVXSHU¿FLQHOORVSD]LR  )RUPDHVSOLFLWD ] = ¦ [\  )RUPDLPSOLFLWD ) [\] =  (VLVWHDQFKHSHUOHVXSHU¿FLXQDIRUPDSDUDPHWULFDFKHGjODSRVL]LRQHGLXQSXQ WRVXOODVXSHU¿FLHFRPHIXQ]LRQHYHWWRULDOHGLGXHYDULDELOL,QTXHVWRSDUDJUDIR YHGUHPRTXHVWDQXRYDIRUPDHODDSSOLFKHUHPRSHURWWHQHUHO¶DUHDGLXQDVXSHU ¿FLH FRQ XQ LQWHJUDOH GRSSLR /H IRUPXOH FRQ LQWHJUDOL GRSSL SHU OH DUHH GHOOH VXSHU¿FLGDWHLQIRUPDLPSOLFLWDRHVSOLFLWDULVXOWHUDQQRDOORUDFRPHFDVLVSHFLDOL GHOODIRUPXODSDUDPHWULFDSLJHQHUDOH

Parametrizzazioni di superfici 6LD

  U Xy = ¦ Xy L + J Xy M + K Xy N -PN\YH 8QDVXSHUILFLHSDUDPHWUL]]DWD6 XQDIXQ]LRQHYHWWRULDOHFRQWLQXDGH¿QLWDVXXQDUHJLRQH5GHOSLDQRXyHELHWWLYD HVSUHVVDFRPHIXQ]LRQHYHWWRULDOHGL VXOO¶LQWHUQRGL5 )LJXUD 'H¿QLDPRLOFRGRPLQLRGLUFRPHODVXSHU¿FLH6 GXHYDULDELOLGHILQLWDVXXQDUHJLRQH5

GH¿QLWDGDU/¶(TXD]LRQH  LQVLHPHDOGRPLQLR5FRVWLWXLVFRQRXQDSDUDPH WUL]]D]LRQHGHOODVXSHU¿FLH/HYDULDELOLXHyVRQRLSDUDPHWULH5qLOGRPL QLRGHLSDUDPHWUL3HUVHPSOL¿FDUHORVWXGLRSUHQGLDPRFRPH5XQUHWWDQJROR GH¿QLWRGDGLVXJXDJOLDQ]HGHOODIRUPDD … X … EF … y … G,OUHTXLVLWRFKHU VLDELHWWLYDVXOO¶LQWHUQRGL5JDUDQWLVFHFKH6QRQVLDXWRLQWHUVHFKL6LQRWLFKH O¶(TXD]LRQH  qO¶HTXLYDOHQWHYHWWRULDOHGLWUHHTXD]LRQLSDUDPHWULFKH [ = ¦ Xy   \ = J Xy   ] = K Xy 

Cono: z  1x 2  y 2 r

z

ESEMPIO 1

7URYDUHXQDSDUDPHWUL]]D]LRQHGHOFRQR

1

r(r, )  (r cos )i  (r sin ) j  rk

(x, y, z)  (r cos , r sin , r)  r

x

] = 2[ + \    … ] … 

y

-PN\YH ,OFRQRGHOO¶(VHPSLRVLSXz SDUDPHWUL]]DUHLQFRRUGLQDWH FLOLQGULFKH

Soluzione 4XL VRQR OH FRRUGLQDWH FLOLQGULFKH D IRUQLUH XQD SDUDPHWUL]]D]LRQH 3HU XQ JHQHULFR SXQWR [ \ ]  VXO FRQR )LJXUD   VL KD [ = U FRV u \ = U VLQ u H ] = 1[ + \ = UFRQ … U … H … u … p6FHJOLHQGRX = UHy = uQHOO¶(TXD ]LRQH  VLRWWLHQHODSDUDPHWUL]]D]LRQH U Uu = UFRVu L + UVLQu M + UN   … U …    … u … p /DSDUDPHWUL]]D]LRQHqELHWWLYDVXOO¶LQWHUQRGHOGRPLQLR5PDQRQVXOYHUWLFHGHO FRQRGRYHU= 

 :\WLYMPJPLHYLL



z

ESEMPIO 2

7URYDUHXQDSDUDPHWUL]]D]LRQHGHOODVIHUD[ + \ + ] = D

(x, y, z)  (a sin f cos u, a sin f sin u, a cos f)

Soluzione /HFRRUGLQDWHVIHULFKHFLIRUQLVFRQRTXHOORFKHFHUFKLDPR3HUXQJHQHULFRSXQ WR [\] VXOODVIHUD )LJXUD VLKD[ = D VLQ f FRV u\ = D VLQ f VLQ uH ] = DFRVf … f … p … u … p6FHJOLHQGRX = fHy = uQHOO¶(TXD]LRQH   VLWURYDODSDUDPHWUL]]D]LRQH

a

f r(f, u)

u

U fu = DVLQfFRVu L + DVLQfVLQu M + DFRVf N  … f … p   … u … p

a

a y

x

$QFKHTXLODSDUDPHWUL]]D]LRQHqELHWWLYDVXOO¶LQWHUQRGHOGRPLQLR5PDQRQQHL -PN\YH  ³SROL´GRYHf = Rf = p

/DVIHUDGHOO¶(VHPSLRVLSXz SDUDPHWUL]]DUHXVDQGROHFRRUGLQDWH VIHULFKH

ESEMPIO 3

7URYDUHXQDSDUDPHWUL]]D]LRQHGHOFLOLQGUR

z

[ + \ -   =    … ] …  z

Soluzione ,QFRRUGLQDWHFLOLQGULFKHXQSXQWR [\] KD[ = UFRVu\ = UVLQuH] = ]3HU LSXQWLGHOFLOLQGUR[ + \ -   =  )LJXUD O¶HTXD]LRQHqXJXDOHDTXHOOD SRODUHSHUODEDVHGHOFLOLQGURQHOSLDQR[\

U - UVLQu = 

r(, z)

x

[ + \ - \ +  =  [ + \ = U \ = UVLQu

FLRq U = VLQu   … u … p 4XLQGLSHUXQJHQHULFRSXQWRGHOFLOLQGURVLKD [ = UFRVu = VLQuFRVu = VLQu \ = UVLQu = VLQu ] = ] 6FHJOLHQGRX = uHy = ]QHOO¶(TXD]LRQH  VLRWWLHQHODSDUDPHWUL]]D]LRQHELHWWLYD U u] = VLQu L + VLQu M + ]N   … u … p   … ] … 

Area di una superficie ,OQRVWURRELHWWLYRqGLWURYDUHXQLQWHJUDOHGRSSLRSHUFDOFRODUHO¶DUHDGLXQDVX SHU¿FLHFXUYD6XVDQGRODSDUDPHWUL]]D]LRQH U Xy = ¦ Xy L + J Xy M + K Xy N  D … X … E  F … y … G 3HUODFRVWUX]LRQHFKHVWLDPRSHUGHVFULYHUHqQHFHVVDULRFKH6VLDUHJRODUH1HOOD GH¿QL]LRQHGLUHJRODULWjFRPSDLRQROHGHULYDWHSDU]LDOLGLUULVSHWWRDXHy

Cilindro: x 2  ( y  3)2  9 o r  6 sin 



r  6 sin 

(x, y, z) (3 sin 2, 6 sin 2 , z) y

-PN\YH ,OFLOLQGURGHOO¶(VHPSLRVLSXz SDUDPHWUL]]DUHXVDQGROHFRRUGLQDWH FLOLQGULFKH



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

DEFINIZIONE

8QDVXSHU¿FLHSDUDPHWUL]]DWDU Xy = ¦ Xy L + J Xy M + K Xy NqUHJRODUH VHUXHUyVRQRFRQWLQXHHUX * UyQRQqPDLQXOORDOO¶LQWHUQRGHOGRPLQLRGHL SDUDPHWUL /DFRQGL]LRQHGDWDGDOODGH¿QL]LRQHSHUFXLUX * UyQRQqPDLLOYHWWRUHQXOORVL JQL¿FDFKHLGXHYHWWRULUXHUyVRQRHQWUDPELQRQQXOOLHQRQVRQRPDLSDUDOOHOL TXLQGLGHWHUPLQDQRVHPSUHXQSLDQRWDQJHQWHDOODVXSHU¿FLH4XHVWRQRQYLHQH ULFKLHVWRVXOODIURQWLHUDGHOGRPLQLRPDFLzQRQKDHIIHWWRVXLFDOFROLGHOOHDUHH &RQVLGHULDPRDGHVVRXQUHWWDQJROLQR¢$XyLQ5FRQLODWLVXOOHUHWWHX = X X = X + ¢Xy = yHy = y + ¢y )LJXUD 2JQLODWRGL¢$XyqPDQGDWRLQ XQDFXUYDVXOODVXSHU¿FLH6HWXWWHLQVLHPHTXHVWHTXDWWURFXUYHGHOLPLWDQRXQD SLFFROD³WRSSDULFXUYD´¢sXy1HOODQRWD]LRQHGHOOD¿JXUDLOODWRy = yqPDQGDWR QHOODFXUYD&LOODWRX = XLQ&HLOYHUWLFH Xy FRPXQHDLGXHYDLQ3 z

-PN\YH 8QHOHPHQWRGLDUHDUHWWDQJRODUH¢$Xy GHOSLDQRXyYDLQXQHOHPHQWRULFXUYR ¢sXyGL6

C1: y  y0

S Δuy

y0  Δy

Δ A uy

y0 P0

ry

ru

0

u  u 0  Δu x

a

u0

u0  Δu

b

u

Δsuy

y

C1: y  y0 y

x

-PN\YH 8QLQJUDQGLPHQWRGLXQHOHPHQWR ULFXUYRGLVXSHUILFLH¢sX Δyry

P0 z

C1

x

/D)LJXUDPRVWUDXQLQJUDQGLPHQWRGL¢sXy,OYHWWRUHGHOOHGHULYDWHSDU ]LDOL UX X y  q WDQJHQWH D & LQ 3$QDORJDPHQWH Uy X y  q WDQJHQWH D & LQ 3 ,O SURGRWWR YHWWRULDOH UX * Uy q QRUPDOH DOOD VXSHU¿FLH LQ 3 Ê TXL FKH FRPLQFLDPR D IDU XVR GHOO¶LSRWHVL FKH 6 VLD UHJRODUH9RJOLDPR DVVLFXUDUFL FKH UX * Uy Z   $TXHVWRSXQWRDSSURVVLPLDPRO¶HOHPHQWRULFXUYRGLVXSHU¿FLH¢sXyFRQLO SDUDOOHORJUDPPDVXOSLDQRWDQJHQWHLFXLODWLVRQRGHWHUPLQDWLGDLYHWWRUL¢XUXH ¢yUy )LJXUD /¶DUHDGLTXHVWRSDUDOOHORJUDPPDq

C2

Δuru

y  y0  Δy

R

c

C2: u  u0

z

C 2: u  u 0

y d

ru ry

P0

Parametrizzazione

Δsuy

y

-PN\YH /¶DUHDGHOSDUDOOHORJUDPPD GHWHUPLQDWRGDLYHWWRUL¢XUXH¢yUy DSSURVVLPDO¶DUHDGHOO¶HOHPHQWR ULFXUYRGLVXSHUILFLH¢sXy

ƒ ¢XUX * ¢yUy ƒ = ƒ UX * Uy ƒ ¢X¢y



8QDSDUWL]LRQHGHOODUHJLRQH5GHOSLDQRXyLQUHJLRQLUHWWDQJRODUL¢$XyLQGXFH XQDSDUWL]LRQHGHOODVXSHU¿FLH6LQHOHPHQWLULFXUYLGLVXSHU¿FLH¢sXy$SSURVVL PLDPRO¶DUHDGLRJQLHOHPHQWRGLVXSHU¿FLH¢sXyFRQO¶DUHDGHOSDUDOOHORJUDPPD GHOO¶(TXD]LRQH  HVRPPLDPRTXHVWHDUHHLQPRGRGDRWWHQHUHXQ¶DSSURVVLPD ]LRQHGHOO¶DUHDGHOODVXSHU¿FLH6 





 :\WLYMPJPLHYLL

$OWHQGHUHD]HURGL¢XH¢yFRQWHPSRUDQHDPHQWHLOQXPHURQGLHOHPHQWLGLDUHD WHQGHDqHODFRQWLQXLWjGLUXHUyJDUDQWLVFHFKHODVRPPDQHOO¶(TXD]LRQH   WHQGDDOO¶LQWHJUDOHGRSSLR 4XHVWRLQWHJUDOHGRSSLRVXOOD UHJLRQH5GH¿QLVFHO¶DUHDGHOODVXSHU¿FLH6 DEFINIZIONE

/¶DUHDGHOODVXSHU¿FLHUHJRODUH U Xy = ¦ Xy L + J Xy M + K Xy N  D … X … E  F … y … G q 





3RVVLDPRUHQGHUHSLFRQFLVRO¶LQWHJUDOHGHOO¶(TXD]LRQH  VFULYHQGRGsDOSR VWRGLƒ UX * Uy ƒ GXGy,OGLIIHUHQ]LDOHGHOO¶DUHDGsqDQDORJRDOGLIIHUHQ]LDOHGHOOD OXQJKH]]DG¶DUFRGVGHO3DUDJUDIR Differenziale dell’area per una superficie parametrizzata  'LIIHUHQ]LDOH GHOO¶DUHD



)RUPXODGLIIHUHQ]LDOHSHU O¶DUHDGHOODVXSHU¿FLH 

ESEMPIO 4

7URYDUHO¶DUHDGHOODVXSHU¿FLHGHOFRQRGHOO¶(VHPSLR )LJXUD  Soluzione 1HOO¶HVHPSLRDEELDPRWURYDWRODSDUDPHWUL]]D]LRQH U Uu = UFRVu L + UVLQu M + UN   … U …    … u … p 3HUDSSOLFDUHO¶(TXD]LRQH  GDSSULPDWURYLDPRUU * Uu

4XLQGL FRQRq

/¶DUHDGHO

(T  FRQX = Uy = u

XQLWjTXDGUDWH





*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

ESEMPIO 5

7URYDUHO¶DUHDGHOODVXSHU¿FLHVIHULFDGLUDJJLRD Soluzione 8VLDPRODSDUDPHWUL]]D]LRQHGHOO¶(VHPSLR U fu = DVLQfFRVu L + DVLQfVLQu M + DFRVf N  … f … p   … u … p 3HUUf * UuWURYLDPR

4XLQGL

GDWRFKHVLQf Ú SHU … f … p4XLQGLO¶DUHDGHOODVXSHU¿FLHVIHULFDq z p 2 x  cos z , y  0 r  cos z è il raggio della circonferenza all'altezza z

XQLWjTXDGUDWH FKHFRLQFLGHFRQODQRWDIRUPXODSHUO¶DUHDGLXQDVXSHU¿FLHVIHULFD

u (x, y, z) 1

1 y

x

ESEMPIO 6

6LD6ODVXSHU¿FLHGHOOD³SDOODGDUXJE\´RWWHQXWDUXRWDQGRODFXUYD[ = FRV] \ = - p> … ] … p>DWWRUQRDOO¶DVVHGHOOH] )LJXUD 7URYDUHXQDSDUDPH WUL]]D]LRQHSHU6HFDOFRODUHO¶DUHDGHOODVXSHU¿FLH Soluzione /¶(VHPSLRFLGjO¶LGHDGLFHUFDUHXQDSDUDPHWUL]]D]LRQHGL6FKHVLEDVLVXOODUR WD]LRQHLQWRUQRDOO¶DVVHGHOOH]6HIDFFLDPRUXRWDUHXQSXQWR [] GHOODFXUYD -PN\YH [ = FRV]\ = DWWRUQRDOO¶DVVHGHOOH]RWWHQLDPRXQDFLUFRQIHUHQ]DDXQDTXRWD /DVXSHUILFLH³SDOODGDUXJE\´ ]VRSUDLOSLDQR[\FRQFHQWURVXOO¶DVVHGHOOH]HUDJJLRU = FRV] )LJXUD ,O GHOO¶(VHPSLRRWWHQXWDUXRWDQGROD SXQWRSHUFRUUHODFLUFRQIHUHQ]DSHUXQDQJRORu … u … p6LD [\] XQSXQWR FXUYD[ = FRV]DWWRUQRDOO¶DVVHGHOOH] DUELWUDULRVXTXHVWDFLUFRQIHUHQ]DHGH¿QLDPRLSDUDPHWULX = ]Hy = u$EELDPR TXLQGL[ = UFRVu = FRVXFRVy\ = UVLQu = FRVXVLQyH] = XRWWHQHQGRFRVu SHU6ODSDUDPHWUL]]D]LRQH –p 2

8VLDPRSRLO¶(TXD]LRQH  SHUWURYDUHO¶DUHDGHOODVXSHU¿FLH6'HULYDQGROD SDUDPHWUL]]D]LRQHRWWHQLDPR UX = - VLQXFRVyL - VLQXVLQyM + N H

Uy = - FRVXVLQyL + FRVXFRVyM

 :\WLYMPJPLHYLL



,OSURGRWWRYHWWRULDOHGj

3DVVDQGRDOYDORUHDVVROXWRRWWHQLDPR

SHU

,QYLUWGHOO¶(TXD]LRQH  O¶DUHDqGDWDGDOO¶LQWHJUDOH

3HUFDOFRODUHO¶LQWHJUDOHHIIHWWXLDPRODVRVWLWX]LRQHZ = VLQXHGZ = FRVXGX -  … Z … 'DWRFKHODVXSHU¿FLH6qVLPPHWULFDULVSHWWRDOSLDQR[\EDVWDLQ WHJUDUHULVSHWWRDZVRORGDDHPROWLSOLFDUHLOULVXOWDWRSHU5LDVVXPHQGR DEELDPR

)RUPXODGHOOD WDEHOODGHJOLLQWHJUDOL

 Superficie F(x, y, z)  c

Superfici implicite /HVXSHU¿FLYHQJRQRVSHVVRSUHVHQWDWHFRPHLQVLHPLGLOLYHOORGLXQDIXQ]LRQH GHVFULWWHFRQHTXD]LRQLGHOODIRUPD

S p

) [\] = F SHUXQDFRVWDQWHF8QDVXSHU¿FLHGLOLYHOORGLTXHVWRWLSRQRQKDXQDSDUDPHWUL] ]D]LRQHHVSOLFLWDHGqFKLDPDWDVXSHU¿FLHGH¿QLWDLPSOLFLWDPHQWH7UDOHVXSHU¿FL LPSOLFLWHYLVRQROHVXSHU¿FLHTXLSRWHQ]LDOLGHLFDPSLHOHWWULFLHJUDYLWD]LRQDOL /D)LJXUDPRVWUDXQDSDUWHGLXQDVXSHU¿FLHGHOJHQHUH3XzHVVHUHGLI¿FLOH WURYDUHIRUPXOHHVSOLFLWHSHUOHIXQ]LRQL¦JHKFKHGHVFULYRQRODVXSHU¿FLHQHOOD IRUPDU Xy = I Xy L + J Xy M + K Xy N$GHVVRPRVWUHUHPRFRPHFDOFRODUH LOGLIIHUHQ]LDOHGHOO¶DUHDGsSHUOHVXSHU¿FLLPSOLFLWH /D)LJXUDPRVWUDXQDSDUWHGLXQDVXSHU¿FLHLPSOLFLWD6FKHVLWURYDDOGL VRSUDGHOODVXDUHJLRQH³RPEUD´5QHOSLDQRVRWWRVWDQWH/DVXSHU¿FLHqGH¿QLWD GDOO¶HTXD]LRQH) [\] = FHSqXQYHUVRUHQRUPDOHDOODUHJLRQHSLDQD5$VVX PLDPRFKHODVXSHU¿FLHVLDUHJRODUH )qGLIIHUHQ]LDELOHH¥)qQRQQXOORHFRQ WLQXRVX6 HFKH¥) S Z LQPRGRFKHODVXSHU¿FLHQRQVLULSLHJKLVXVHVWHVVD

#

R

La proiezione verticale o “ombra” di S su un piano coordinato

-PN\YH &RPHYHGUHPRWUDSRFRO¶DUHDGLXQD VXSHUILFLH6QHOORVSD]LRVLSXz FDOFRODUHFRQXQLQWHJUDOHGRSSLRVXOOD SURLH]LRQHYHUWLFDOHR³RPEUD´GL6VX XQRGHLSLDQLFRRUGLQDWL,OYHUVRUHSq QRUPDOHDOSLDQR



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

$VVXPLDPR DQFKH FKH LO YHWWRUH QRUPDOH S VLD LO YHUVRUH N H TXLQGL OD UH JLRQH 5 GHOOD )LJXUD  JLDFH QHO SLDQR [\ $EELDPR DOORUD SHU LSRWHVL ¥) S = ¥) N = )] Z VX63HULO7HRUHPDGL'LQLVXOOHIXQ]LRQLLPSOLFLWH 7HRUHPDGHO&DSLWROR 6qDOORUDLOJUD¿FRGLXQDIXQ]LRQHGLIIHUHQ]LDELOH ]= K [\ DQFKHVHODIXQ]LRQHK [\ QRQqQRWDHVSOLFLWDPHQWH'H¿QLDPRL SDUDPHWULXHyFRQX = [Hy = \4XLQGL] = K Xy H

#



#

H Xy = XL + yM + K Xy N



GjXQDSDUDPHWUL]]D]LRQHGHOODVXSHU¿FLH68VLDPRO¶(TXD]LRQH  SHUWURYDUH O¶DUHDGL6 &DOFRODQGROHGHULYDWHSDU]LDOLGLUWURYLDPR H 3HULO7HRUHPDGL'LQLOHGHULYDWHSDU]LDOLGHOODIXQ]LRQHKVRQRGDWHGD H ,QVHUHQGRTXHVWHGHULYDWHQHOOHGHULYDWHGLURWWHQLDPR H &DOFRODQGRHVSOLFLWDPHQWHLOSURGRWWRYHWWRULDOHWURYLDPR )] Z 

S = N

4XLQGLLOGLIIHUHQ]LDOHGHOO¶DUHDqGDWRGD X = [Hy = \

2WWHQLDPRULVXOWDWLVLPLOLVHLQYHFHLOYHWWRUHS= MqQRUPDOHDOSLDQR[]TXDQ GR)\ Z VX6RVHS= LqQRUPDOHDOSLDQR\]TXDQGR)[ Z VX68QHQGRTXHVWL ULVXOWDWLFRQO¶(TXD]LRQH  VLRWWLHQHTXLQGLODVHJXHQWHIRUPXODJHQHUDOH Formula per l’area di una superficie implicita

/¶DUHDGHOODVXSHU¿FLH) [\] = FVRSUDXQDUHJLRQHSLDQDFKLXVDHOLPLWDWD 5q $UHD  GRYHS = LMRNqQRUPDOHD5H§) SZ 

#





/¶DUHD q TXLQGL O¶LQWHJUDOH GRSSLR VX 5 GHO YDORUH DVVROXWR GL §) GLYLVR SHU LO YDORUHDVVROXWRGHOODFRPSRQHQWHGL§)QRUPDOHD5

 :\WLYMPJPLHYLL



z

ESEMPIO 7

7URYDUHO¶DUHDGHOODVXSHU¿FLHGHOSDUDERORLGH[ + \ - ] = GHOLPLWDWDVXSHULRU PHQWHGDOSLDQR] = 

4

Soluzione 'LVHJQLDPRODVXSHU¿FLH6HODUHJLRQH5VRWWRGLHVVDQHOSLDQR[\ )LJXUD  /DVXSHU¿FLH6qXQDSDUWHGHOODVXSHU¿FLHGLOLYHOOR) [\] = [ + \ - ] = H 5qLOGLVFR[ + \ … QHOSLDQR[\3HUDYHUHXQYHUVRUHQRUPDOHDOSLDQRGL5 SRVVLDPRSUHQGHUHS = N ,QTXDOVLDVLSXQWR [\] GHOODVXSHU¿FLHDEELDPR

S z  x2  y2 R 0 x2  y2  4

y

x

-PN\YH /¶DUHDGLTXHVWDVXSHUILFLHSDUDEROLFD YLHQHFDOFRODWDQHOO¶(VHPSLR

1HOODUHJLRQH5G$ = G[G\4XLQGL $UHD

(T  

&RRUGLQDWHSRODUL

/¶(VHPSLRPRVWUDFRPHWURYDUHO¶DUHDSHUXQDIXQ]LRQH] = ¦ [\ VXXQD UHJLRQH5GHOSLDQR[\,QUHDOWjLOGLIIHUHQ]LDOHGHOO¶DUHDVLSXzRWWHQHUHLQGXH PRGLGLYHUVLFRPHPRVWUHUHPRQHOSURVVLPRHVHPSLR ESEMPIO 8

5LFDYDUHLOGLIIHUHQ]LDOHGHOO¶DUHDGsGHOODVXSHU¿FLH] = ¦ [\ VXXQDUHJLRQH5 GHOSLDQR[\ D SDUDPHWULFDPHQWHXVDQGRO¶(TXD]LRQH  H E LPSOLFLWDPHQWH FRPHQHOO¶(TXD]LRQH   Soluzione D 3DUDPHWUL]]LDPRODVXSHU¿FLHSRQHQGR[ = X \ = yH] = ¦ [\ VX52WWHQLD PRFRVuODSDUDPHWUL]]D]LRQH



&DOFRODQGROHGHULYDWHSDU]LDOLWURYLDPRUX + L + ¦XNUy = M + IyNH



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP



4XLQGL PRTXLQGLLOGLIIHUHQ]LDOHGHOO¶DUHD

6RVWLWXHQGRXHy WURYLD

E 'H¿QLDPRODIXQ]LRQHLPSOLFLWD) [\] = ¦ [\ - ]'DWRFKH [\ DS SDUWLHQH DOOD UHJLRQH 5 LO YHUVRUH QRUPDOH DO SLDQR GL 5 q S = N 4XLQGL ¥) = ¦[L + ¦\M - NHFRVu H ,OGLIIHUHQ]LDOHGHOO¶DUHDqGLQXRYR 

,O GLIIHUHQ]LDOH GHOO¶DUHD WURYDWR QHOO¶(VHPSLR  IRUQLVFH OD VHJXHQWH IRU PXOD SHU FDOFRODUH O¶DUHD GHO JUDIR GL XQD IXQ]LRQH GH¿QLWD HVSOLFLWDPHQWH GD ] = ¦ [\  Formula per l’area di un grafico z = ƒ(x, y)

'DWDXQDIXQ]LRQH ¦FRQWLQXDFRQOHVXHGHULYDWHSDU]LDOL¦[¦\GH¿QLWDVXXQD UHJLRQH5GHOSLDQR[\ODIRUPXODSHUO¶DUHDGHOJUD¿FRGL¦q 





5.6 Integrali di superficie 3HU FDOFRODUH JUDQGH]]H FRPH OD TXDQWLWj GHO OLTXLGR FKH VFRUUH DWWUDYHUVR XQD PHPEUDQDULFXUYDRODIRU]DYHUVRO¶DOWRDJHQWHVXXQSDUDFDGXWHGREELDPRLQ WHJUDUHXQDIXQ]LRQHVXXQDVXSHU¿FLHQHOORVSD]LR4XHVWRFRQFHWWRGLLQWHJUDOH GLVXSHU¿FLHqXQ¶HVWHQVLRQHGHOO¶LGHDGLLQWHJUDOHFXUYLOLQHRSHUO¶LQWHJUD]LRQH VXXQDFXUYD

Integrali di superficie Pk

Δyry

z Δuru Δk  Δuy x

(xk , yk , zk )

y

-PN\YH /¶DUHDGHOO¶HOHPHQWR¢sNqO¶DUHDGHO SDUDOOHORJUDPPDWDQJHQWHGHWHUPLQDWR GDLYHWWRUL¢XUXH¢yUy,OSXQWR [N\N]N VLWURYDVXOO¶HOHPHQWRGL VXSHUILFLHDOGLVRWWRGHO SDUDOOHORJUDPPDTXLPRVWUDWR

6XSSRQLDPRGLDYHUHXQDFDULFDHOHWWULFDGLVWULEXLWDVXXQDVXSHU¿FLH6HFKHOD IXQ]LRQH* [\] GLDODGHQVLWjGLFDULFD FDULFDSHUXQLWjGLDUHD LQRJQLSXQWR GL63RVVLDPRDOORUDFDOFRODUHODFDULFDWRWDOHVX6FRQXQLQWHJUDOHFRPHVHJXH $VVXPLDPRFRPHQHO3DUDJUDIRFKHODVXSHU¿FLH6VLDGH¿QLWDSDUDPHWUL FDPHQWHVXXQDUHJLRQH5QHOSLDQRXy 1HOOD )LJXUD  YHGLDPR FRPH XQD VXGGLYLVLRQH GL 5 VXSSRVWD UHWWDQJRODUH SHUVHPSOLFLWj ULSDUWLVFDODVXSHU¿FLH6QHLFRUULVSRQGHQWLHOHPHQWLGLVXSHU¿FLH

&RPHDEELDPRIDWWRSHUOHVXGGLYLVLRQLTXDQGRDEELDPRGH¿QLWRJOLLQWHJUDOL GRSSLQHO3DUDJUDIRQXPHULDPRJOLHOHPHQWLGLVXSHU¿FLHLQXQRUGLQHTXDO VLDVLFKLDPDQGROHULVSHWWLYHDUHH¢s¢s Á¢sQ3HUIRUPDUHXQDVRPPDGL 5LHPDQQVX6VFHJOLDPRXQSXQWR [N\N]N GHONHVLPRHOHPHQWRPROWLSOLFKLD

 0U[LNYHSPKPZ\WLYMPJPL

PRLOYDORUHGHOODIXQ]LRQH*LQTXHOSXQWRSHUO¶DUHD¢sNHVRPPLDPRLSURGRWWL 

$VHFRQGDGLFRPHVFHJOLDPR [N\N]N QHONHVLPRHOHPHQWRSRVVLDPRWURYDUH YDORULGLYHUVLSHUTXHVWDVRPPDGL5LHPDQQ4XDQGRSDVVLDPRDOOLPLWHSHULO QXPHUR GL HOHPHQWL GL VXSHU¿FLH FKH WHQGH DOO¶LQ¿QLWR OH ORUR DUHH WHQGRQR D ]HURHVLKD¢X :H¢y :4XHVWROLPLWHTXDQGRHVLVWHHGqLQGLSHQGHQWHGD WXWWHOHVFHOWHFRPSLXWHGH¿QLVFHO¶LQWHJUDOHGLVXSHU¿FLHGL*VXOODVXSHU¿FLH 6FRPHVHJXH  



6LQRWLO¶DQDORJLDFRQODGH¿QL]LRQHGLLQWHJUDOHGRSSLR 3DUDJUDIR HGLLQWH JUDOHFXUYLOLQHR 3DUDJUDIR 6H6qXQDVXSHU¿FLHUHJRODUHDWUDWWLH*qFRQ WLQXDVX6VLSXzGLPRVWUDUHFKHO¶LQWHJUDOHGLVXSHU¿FLHGH¿QLWRGDOO¶(TXD]LRQH  HVLVWH /DIRUPXODSHUFDOFRODUHXQLQWHJUDOHGLVXSHU¿FLHGLSHQGHGDOPRGRLQFXL qGHVFULWWD6SDUDPHWULFDPHQWHLPSOLFLWDPHQWHRHVSOLFLWDPHQWHFRPHVSLHJDWR QHO3DUDJUDIR Formule per un integrale di superficie  3HU XQD VXSHU¿FLH UHJRODUH 6 GH¿QLWD SDUDPHWULFDPHQWH GD

U Xy = ¦ Xy L + J Xy M + K Xy N Xy H5HXQDIXQ]LRQHFRQWLQXD * [\] GH¿QLWDVX6O¶LQWHJUDOHGLVXSHU¿FLHGL*VX6qGDWRGDOO¶LQWH JUDOHGRSSLRVX5 





 3HUXQDVXSHU¿FLH6GDWDLPSOLFLWDPHQWHGD) [\]  FGRYH)qXQD

IXQ]LRQHFRQWLQXDFRQOHVXHGHULYDWHSDU]LDOLHVH6VLWURYDVRSUDODVXD UHJLRQH³RPEUD´FKLXVDHOLPLWDWD5GHOSLDQRFRRUGLQDWRVRWWRVWDQWHO¶LQ WHJUDOHGLVXSHU¿FLHGHOODIXQ]LRQHFRQWLQXD*VX6qGDWRGDOO¶LQWHJUDOH GRSSLRVX5 

   GRYHSqXQYHUVRUHQRUPDOHD5H¥) SZ   3HUXQDVXSHU¿FLH6GDWDHVSOLFLWDPHQWHFRPHJUD¿FRGL] = ¦ [\ GRYH ¦ q XQD IXQ]LRQH FRQWLQXD FRQ OH VXH GHULYDWH SDU]LDOL VX XQD UHJLRQH 5 QHOSLDQR[\O¶LQWHJUDOHGLVXSHU¿FLHGHOODIXQ]LRQHFRQWLQXD*VX6GDWR GDOO¶LQWHJUDOHGRSSLRVX5

#







/¶LQWHJUDOHGLVXSHU¿FLHGHOO¶(TXD]LRQH  DVVXPHVLJQL¿FDWLGLYHUVLLQDS SOLFD]LRQL GLYHUVH 6H * KD YDORUH FRVWDQWH O¶LQWHJUDOH Gj O¶DUHD GL 6 6H * q ODGHQVLWjGLXQVRWWLOHVWUDWRGLPDWHULDOHFKHKDODIRUPDGL6O¶LQWHJUDOHGjOD PDVVDGHOORVWUDWR6H*GjODGHQVLWjGLFDULFDGLXQRVWUDWRVRWWLOHO¶LQWHJUDOHGj ODFDULFDWRWDOH





*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

ESEMPIO 1

,QWHJUDUH* [\] = [VXOFRQR] = 2[ + \  … ] …  Soluzione 8VDQGR O¶(TXD]LRQH   H L FDOFROL GHOO¶(VHPSLR  GHO 3DUDJUDIR  DEELDPR ƒ UU * Uu ƒ = 1UH

*OLLQWHJUDOLGLVXSHU¿FLHVLFRPSRUWDQRFRPHJOLDOWULLQWHJUDOLGRSSLO¶LQWH JUDOHGHOODVRPPDGLGXHIXQ]LRQLqODVRPPDGHLULVSHWWLYLLQWHJUDOLHFRVuYLD/D SURSULHWjGLDGGLWLYLWjGHLGRPLQLDVVXPHODIRUPD

4XDQGR6qVXGGLYLVRGDFXUYHUHJRODULLQXQQXPHUR¿QLWRGLHOHPHQWLUHJRODULL FXLLQWHUQLQRQKDQQRSXQWLLQFRPXQH FLRq6qUHJRODUHDWUDWWL O¶LQWHJUDOHVX6 qODVRPPDGHJOLLQWHJUDOLVXJOLHOHPHQWL4XLQGLO¶LQWHJUDOHGLXQDIXQ]LRQHVXOOD VXSHU¿FLHGLXQFXERqODVRPPDGHJOLLQWHJUDOLVXOOHIDFFHGHOFXER3RVVLDPR LQWHJUDUHVXXQDVRUWDGLJXVFLRGLWDUWDUXJDIDWWRGLSODFFKHVDOGDWHLQWHJUDQGRVX XQDSODFFDSHUYROWDHVRPPDQGRLULVXOWDWL z

ESEMPIO 2

,QWHJUDUH* [\] = [\]VXOODVXSHU¿FLHGHOFXERGHOLPLWDWRQHOSULPRRWWDQWHGDL SLDQL[ = \ = H] =  )LJXUD 

Faccia A

1

0

Soluzione ,QWHJULDPR [\] VX RJQXQD GHOOH VHL IDFFH H VRPPLDPR L ULVXOWDWL 'DWR FKH [\] = VXOOHIDFFHFKHVLWURYDQRQHLSLDQLFRRUGLQDWLO¶LQWHJUDOHVXOODVXSHU¿FLH GHOFXERVLULGXFHD

1 y

1 Faccia C x

Faccia B

-PN\YH ,OFXERGHOO¶(VHPSLR

6XSHU¿FLHGHO FXER

)DFFLD$

)DFFLD%

)DFFLD&

/DIDFFLD$qODVXSHU¿FLH¦ [\] = ] = VXOODUHJLRQHTXDGUDWD5[\ … [ …   … \ … GHOSLDQR[\3HUTXHVWDUHJLRQHHTXHVWDVXSHU¿FLH

 0U[LNYHSPKPZ\WLYMPJPL



H )DFFLD$

3HUVLPPHWULDDQFKHJOLLQWHJUDOLGL[\]VXOOHIDFFH%H&YDOJRQR>4XLQGL

6XSHU¿FLH GHOFXER

ESEMPIO 3

,QWHJUDUH* [\] = 2 - [ - \ VXOODVXSHU¿FLHGHOOD³SDOODGDUXJE\´6RWWH QXWDUXRWDQGRODFXUYD[ = FRV]\ = - p> … ] … p>DWWRUQRDOO¶DVVHGHOOH] Soluzione /D VXSHU¿FLH q PRVWUDWD QHOOD )LJXUD  H QHOO¶(VHPSLR  GHO 3DUDJUDIR  DEELDPRWURYDWRODSDUDPHWUL]]D]LRQH H GRYH y UDSSUHVHQWD O¶DQJROR GL URWD]LRQH D SDUWLUH GDO SLDQR [] DWWRUQR DOO¶DVVH GHOOH],QVHUHQGRTXHVWDSDUDPHWUL]]D]LRQHQHOO¶HVSUHVVLRQHSHU*VLRWWLHQH  $YHYDPR WURYDWR FKH LO GLIIHUHQ]LDOH GHOO¶DUHD SHU OD SDUDPHWUL]]D]LRQH HUD (VHPSLR3DUDJUDIR 

&RQTXHVWLFDOFROLVLRWWLHQHO¶LQWHJUDOHGLVXSHU¿FLH

Z =  + VLQ X GZ = VLQXFRVXGX 6HX = Z =  6HX = p>Z = 

n

Direzione positiva

Orientazione 'H¿QLDPRXQDVXSHU¿FLHUHJRODUH6RULHQWDELOHR³DGXHIDFFH´VHqSRVVLELOH GH¿QLUHXQFDPSRQGLYHUVRULQRUPDOLVX6FKHYDULDFRQFRQWLQXLWjGDSXQWRD SXQWR4XDOVLDVLUHJLRQHGLXQDVXSHU¿FLHRULHQWDELOHqRULHQWDELOH/HVIHUHHDOWUH VXSHU¿FLFKLXVHUHJRODULQHOORVSD]LR VXSHU¿FLUHJRODULFKHUDFFKLXGRQRVROLGL  VRQRRULHQWDELOL3HUFRQYHQ]LRQHVFHJOLDPRQVXXQDVXSHU¿FLHFKLXVDLQPRGR FKHSXQWLYHUVRO¶HVWHUQR

-PN\YH  /HVXSHUILFLFKLXVHUHJRODULQHOOR VSD]LRVRQRRULHQWDELOL,OYHUVRUH QRUPDOHYHUVRO¶HVWHUQRGHILQLVFHOD GLUH]LRQHSRVLWLYDLQRJQLSXQWR



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

d

c

a

b Partenza Arrivo db ac

-PN\YH 3HUFRVWUXLUHXQQDVWURGL0|ELXV SUHQGLDPRXQDVWULVFLDUHWWDQJRODUHGL FDUWDDEFGGLDPRXQDVLQJRODWRUVLRQH DOO¶HVWUHPLWjEFHLQFROOLDPROH HVWUHPLWjGHOQDVWURLQPRGRFKHD FRPEDFLFRQFHEFRQG,OQDVWURGL 0|ELXVqXQDVXSHUILFLHQRQ RULHQWDELOH

8QDYROWDVFHOWRQVLGLFHFKHODVXSHU¿FLHqVWDWDRULHQWDWDHODVXSHU¿FLH LQVLHPHFRQLOVXRFDPSRQRUPDOHqGHWWDVXSHU¿FLHRULHQWDWD,OYHUVRUHQLQ RJQLSXQWRqGHWWRGLUH]LRQHSRVLWLYDLQTXHOSXQWR )LJXUD  ,OQDVWURGL0|ELXVGHOOD)LJXUDQRQqRULHQWDELOH'RYXQTXHVLFRPLQFL DFRVWUXLUHXQFDPSRQRUPDOHXQLWDULRFRQWLQXR PRVWUDWRFRPHXQDSXQWLQDGD GLVHJQRQHOOD¿JXUD VHORVLVSRVWDFRQFRQWLQXLWjOXQJRODVXSHU¿FLHQHOPRGR PRVWUDWRWRUQHUjDOSXQWRGLSDUWHQ]DFRQXQDGLUH]LRQHRSSRVWDDTXHOODFKHDYH YDDOODSDUWHQ]D,QTXHVWRSXQWRLOYHWWRUHQRQSXzSXQWDUHLQHQWUDPEHOHGLUH]LR QLFRPHGRYUHEEHHVVHUHVHLOFDPSRIRVVHFRQWLQXR&RQFOXGLDPRFKHQRQSRVVD HVLVWHUHLOFDPSRULFKLHVWR

Integrali di superficie per il flusso 6XSSRQLDPR FKH ) VLD XQ FDPSR YHWWRULDOH FRQWLQXR GH¿QLWR VX XQD VXSHU¿FLH RULHQWDWD6HFKHQVLDLOFDPSRXQLWDULRQRUPDOHDOODVXSHU¿FLH&KLDPLDPRO¶LQ WHJUDOHGL) QVX6ÀXVVRGL)DWWUDYHUVR6LQGLUH]LRQHSRVLWLYD4XLQGLLOÀXVVR qO¶LQWHJUDOHVX6GHOODFRPSRQHQWHVFDODUHGL)LQGLUH]LRQHGLQ

#

DEFINIZIONE

,O ÀXVVR GL XQ FDPSR YHWWRULDOH WULGLPHQVLRQDOH ) DWWUDYHUVR XQD VXSHU¿FLH RULHQWDWD6QHOODGLUH]LRQHGLQq )OXVVR 





/DGH¿QL]LRQHqDQDORJDDOÀXVVRGLXQFDPSRELGLPHQVLRQDOH)DWWUDYHUVRXQD FXUYDSLDQD&1HOSLDQR 3DUDJUDIR LOÀXVVRq

O¶LQWHJUDOHGHOODFRPSRQHQWHVFDODUHGL)QRUPDOHDOODFXUYD 6H ) q LO FDPSR GHOOH YHORFLWj GL XQ ÀXLGR WULGLPHQVLRQDOH LQ PRYLPHQWR LOÀXVVRGL)DWWUDYHUVR6qLOWDVVRGLVFRUULPHQWRGHOÀXLGRDWWUDYHUVR6QHOOD GLUH]LRQHSRVLWLYDVFHOWD1HO3DUDJUDIRVWXGLHUHPRSLLQGHWWDJOLRLOPRWR GHLÀXLGL ESEMPIO 4

z

7URYDUH LO ÀXVVR GL ) = \]L + [M - ]N DWWUDYHUVR LO FLOLQGUR SDUDEROLFR \ = [  … [ …  … ] … QHOODGLUH]LRQHQLQGLFDWDQHOOD)LJXUD

4 (1, 0, 4)

y  x2

Soluzione 6XOODVXSHU¿FLHVLKD[ = [\ = [H] = ]HTXLQGLDEELDPRDXWRPDWLFDPHQWHOD SDUDPHWUL]]D]LRQHU [] = [L + [M + ]N … [ …  … ] … ,OSURGRWWRYHWWRULDOH GHLYHWWRULWDQJHQWLq

n 1

y

1 x

-PN\YH 7URYDUHLOIOXVVRDWWUDYHUVROD VXSHUILFLHGLXQFLOLQGURSDUDEROLFR (VHPSLR 

,YHUVRULQRUPDOLFKHSXQWDQRYHUVRO¶HVWHUQRFRPHLQGLFDWRQHOOD)LJXUD VRQR

 0U[LNYHSPKPZ\WLYMPJPL



6XOODVXSHU¿FLH\ = [HTXLQGLOuLOFDPSRYHWWRULDOHq 3HUWDQWR

,OÀXVVR)FKHDWWUDYHUVDODVXSHU¿FLHYHUVRO¶HVWHUQRq

&¶qXQDIRUPXODVHPSOLFHSHULOÀXVVRGL)DWWUDYHUVRXQDVXSHU¿FLHSDUDPH WUL]]DWDU Xy 'DWRFKH H

QHVHJXHFKH

4XHVWRLQWHJUDOHSHULOÀXVVRVHPSOL¿FDLFDOFROLGHOO¶(VHPSLR'DWRFKH Flusso attraverso una superficie parametrizzata

RWWHQLDPRGLUHWWDPHQWH

)OXVVR =

)OXVVR QHOO¶(VHPSLR 6H6qSDUWHGLXQDVXSHU¿FLHGLOLYHOORJ [\] = FDOORUDFRPHQVLSXz SUHQGHUHXQRGHLGXHFDPSL 

  DVHFRQGDGLTXDOHGjODGLUH]LRQHGHVLGHUDWD



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

,OÀXVVRFRUULVSRQGHQWHq )OXVVR

(TQL  H  





 ESEMPIO 5

7URYDUHLOÀXVVRGL) = \]M + ]NULYROWRYHUVRO¶HVWHUQRDWWUDYHUVRODVXSHU¿FLH6 GHOLPLWDWDVXOFLOLQGUR\ + ] = ] Ú GDLSLDQL[ = H[ = 

z 2

2

y z 1 n

Soluzione ,OFDPSRQRUPDOHULYROWRYHUVRO¶HVWHUQRGL6 )LJXUD VLSXzFDOFRODUHDSDU WLUHGDOJUDGLHQWHGLJ [\] = \ + ]

S 1

R xy

y

(1, –1, 0) (1, 1, 0) x

-PN\YH &DOFRORGHOIOXVVRYHUVRO¶HVWHUQRGL XQFDPSRYHWWRULDOHDWWUDYHUVROD VXSHUILFLH6/¶DUHDGHOODUHJLRQH RPEUD5[\q (VHPSLR 

&RQS = NDEELDPRDQFKH

3RVVLDPRHOLPLQDUHLOVHJQRGLYDORUHDVVROXWRSHUFKp] Ú VX6 ,OYDORUHGL) QVXOODVXSHU¿FLHq

#

\ + ] = VX6

/DVXSHU¿FLHVLSURLHWWDVXOODUHJLRQHRPEUD5[\FKHqLOUHWWDQJRORQHOSLDQR[\ PRVWUDWRQHOOD)LJXUD4XLQGLLOÀXVVRGL)DWWUDYHUVR6YHUVRO¶HVWHUQRq DUHD 

Momenti e masse di strati sottili 2JJHWWLFRVWLWXLWLGDVWUDWLVRWWLOLGLPDWHULDOHFRPHVFRGHOOHELGRQLHWHWWLDFXSR ODKDQQRFRPHPRGHOOLVXSHU¿FLPDWHPDWLFKH,ORURPRPHQWLHOHORURPDVVHVL SRVVRQRFDOFRODUHFRQOHIRUPXOHGHOOD7DEHOOD /H IRUPXOH VRQR FRPH TXHOOH SHU JOL LQWHJUDOL FXUYLOLQHL GHOOD 7DEHOOD  GHO 3DUDJUDIR

 0U[LNYHSPKPZ\WLYMPJPL



;HILSSH Formule per le masse e i momenti di strati sottilissimi

0DVVD

d = d [\] = GHQVLWjLQ [\] FRPHPDVVDSHUXQLWjGLDUHD

  0RPHQWLVWDWLFLULVSHWWRDLSLDQLFRRUGLQDWL

 &RRUGLQDWHGHOFHQWURGLPDVVD



0RPHQWLGLLQHU]LDULVSHWWRDJOLDVVLFRRUGLQDWL

U [\] = GLVWDQ]DWUDLOSXQWR [\] HODUHWWD/

ESEMPIO 6

7URYDUHLOFHQWURGLPDVVDGLXQVRWWLOHJXVFLRVHPLVIHULFRGLUDJJLRDHGHQVLWj FRVWDQWHd Soluzione 'HVFULYLDPRLOJXVFLRFRQODVHPLVIHUD

z ⎛0, 0, a ⎛ ⎝ 2⎝

x 2  y 2  z 2  a2

S

)LJXUD   /D VLPPHWULDGHOOD VXSHU¿FLH DWWRUQR DOO¶DVVH GHOOH ] FL GLFH FKH 5LPDQHGDWURYDUHVROR FRQODIRUPXOD = 0[\>0 /DPDVVDGHOJXVFLRq DUHDGL

d = FRVWDQWH

3HUFDOFRODUHO¶LQWHJUDOHFKHGj0[\SRQLDPRS = NHFDOFROLDPR

4XLQGL

,OFHQWURGLPDVVDGHOJXVFLRq D> 

a

R

a x

y

x2  y2  a2

-PN\YH ,OFHQWURGLPDVVDGLXQVRWWLOHJXVFLR VHPLVIHULFRFRQGHQVLWjFRVWDQWHVL WURYDVXOO¶DVVHGLVLPPHWULDDPHWjWUD ODEDVHHODVRPPLWj (VHPSLR 



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

z

ESEMPIO 7

7URYDUHLOFHQWURGLPDVVDGLXQJXVFLRVRWWLOHGLGHQVLWjd = >]GHOLPLWDWRVXO FRQR] = 1[ + \GDLSLDQL] = H] =  )LJXUD 

2

z  1x 2  y 2

Soluzione /DVLPPHWULDGHOODVXSHU¿FLHDWWRUQRDOO¶DVVHGHOOH]FLGLFHFKH &HU FKLDPR = 0[\>03URFHGHQGRFRPHQHOO¶(VHPSLRGHO3DUDJUDIRDEELDPR

y

H

1

x

-PN\YH ,OWURQFRGLFRQRIRUPDWRTXDQGRLO FRQR] = 2[ + \qWDJOLDWRGDLSLDQL ] = H] =  (VHPSLR 

4XLQGL

,OFHQWURGLPDVVDGHOJXVFLRqLOSXQWR >OQ 

Rot F (x, y, z)

-PN\YH ,OYHWWRUHFLUFROD]LRQHQHOSXQWR [\] LQXQSLDQRDOO¶LQWHUQRGLXQ IOXLGRWULGLPHQVLRQDOHLQPRYLPHQWR 6LQRWLODUHOD]LRQHFRQODURWD]LRQH GHOOHSDUWLFHOOHGHOIOXLGRGDWDGDOOD UHJRODGHOODPDQRGHVWUD

5.7 Il Teorema di Stokes &RPHDEELDPRYLVWRQHO3DUDJUDIRODGHQVLWjGLFLUFROD]LRQHRFRPSRQHQWHN GHOURWRUHGLXQFDPSRELGLPHQVLRQDOH) = 0L + 1MLQXQSXQWR [\ qGHVFULWWD GDOODTXDQWLWjVFDODUH 01>0[ - 00>0\ ,QWUHGLPHQVLRQLODFLUFROD]LRQHqGHVFULW WDGDXQYHWWRUH 6LD)LOFDPSRGHOOHYHORFLWjGLXQÀXLGRFKHVFRUUHQHOORVSD]LR/HSDUWLFHOOH YLFLQHDOSXQWR [\] GHOÀXLGRWHQGRQRDUXRWDUHDWWRUQRDXQDVVHSDVVDQWHSHU [\] HSDUDOOHORDXQFHUWRYHWWRUHFKHVWLDPRSHUGH¿QLUH4XHVWRYHWWRUHSXQWD QHOODGLUH]LRQHWDOHFKHODURWD]LRQHqDQWLRUDULDTXDQGRVLJXDUGDGDOO¶DOWRLOSLDQR GHOODFLUFROD]LRQHGDOODSXQWDGHOODIUHFFLDFKHUDSSUHVHQWDLOYHWWRUH4XHVWDqOD GLUH]LRQHLQFXLSXQWDLOSROOLFHGHOODPDQRGHVWUDTXDQGROHGLWDVLDYYROJRQRDW WRUQRDOO¶DVVHGLURWD]LRQHQHOORVWHVVRYHUVRGHOPRWRURWDWRULRGHOOHSDUWLFHOOHGHO ÀXLGR )LJXUD /DOXQJKH]]DGHOYHWWRUHPLVXUDODYHORFLWjGLURWD]LRQH,O YHWWRUHqGHWWRURWRUHHSHULOFDPSRYHWWRULDOH) = 0L + 1M + 3NqGH¿QLWRFRPH

 0S;LVYLTHKP:[VRLZ

 URW)   4XHVWRIDWWRqFRQVHJXHQ]DGHO7HRUHPDGL6WRNHVODJHQHUDOL]]D]LRQHDOORVSD]LR GHOODIRUPDFLUFROD]LRQHURWRUHGHO7HRUHPDGL*UHHQ 6LQRWLFKH URW)  N = 01>0[ - 00>0\ qFRHUHQWHFRQODGH¿QL]LRQHGHO3D UDJUDIRGRYH) = 0 [\ L + 1 [\ M/DIRUPXODSHUURW)GHOO¶(TXD]LRQH   VLVFULYHVSHVVRXVDQGRO¶RSHUDWRUHVLPEROLFR

#







,OURWRUHGL)q§ * )

URW) URW) = § * )





ESEMPIO 1

7URYDUHLOURWRUHGL) = [ - ] L + [H]M + [\N Soluzione 8VLDPRO¶(TXD]LRQH  LQIRUPDGLGHWHUPLQDQWH

URW)

&RPHYHGUHPRO¶RSHUDWRUH§KDQXPHURVHDOWUHDSSOLFD]LRQL3HUHVHPSLR DSSOLFDWRDXQDIXQ]LRQHVFDODUH¦ [\] GjLOJUDGLHQWHGL¦

FKHVLOHJJHDYROWH³JUDG¦´





*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

Teorema di Stokes S

n

C

-PN\YH /¶RULHQWD]LRQHGHOODFXUYDGLIURQWLHUD &qFROOHJDWDDOFDPSRQRUPDOHQ VHFRQGRODUHJRODGHOODPDQRGHVWUD 6HLOSROOLFHGHOODPDQRGHVWUDSXQWD OXQJRQOHGLWDVLSLHJDQRQHOOD GLUH]LRQHGL&

,O7HRUHPDGL6WRNHVJHQHUDOL]]DLO7HRUHPDGL*UHHQDWUHGLPHQVLRQL/DIRUPD FLUFROD]LRQHURWRUHGHO7HRUHPDGL*UHHQFROOHJDODFLUFROD]LRQHDQWLRUDULDGLXQ FDPSRYHWWRULDOHOXQJRXQDFXUYDVHPSOLFHFKLXVD&QHOSLDQR[\DXQLQWHJUDOH GRSSLR VXOOD UHJLRQH SLDQD 5 UDFFKLXVD GD & ,O 7HRUHPD GL 6WRNHV FROOHJD OD FLUFROD]LRQHGLXQFDPSRYHWWRULDOHVXOODIURQWLHUD&GLXQDVXSHU¿FLHRULHQWDWD6 QHOORVSD]LR )LJXUD DXQLQWHJUDOHGLVXSHU¿FLHVXOODVXSHU¿FLH6&KLHGLD PRFKHODVXSHU¿FLHVLDUHJRODUHDWUDWWLFLRqFKHVLDXQ¶XQLRQH¿QLWDGLVXSHU¿FL UHJRODULFRQJLXQWHGDFXUYHUHJRODUL TEOREMA 6

Teorema di Stokes

6LD6XQDVXSHU¿FLHRULHQWDWDUHJRODUHDWUDWWLODFXLIURQWLHUDVLDXQDFXUYD& UHJRODUHDWUDWWL6LD) = 0L + 1M + 3NXQFDPSRYHWWRULDOHOHFXLFRPSRQHQWL KDQQRGHULYDWHSDU]LDOLSULPHFRQWLQXHVXXQDUHJLRQHDSHUWDFRQWHQHQWH6$O ORUDODFLUFROD]LRQHGL)OXQJR&LQVHQVRDQWLRUDULRULVSHWWRDOYHUVRUHQRUPDOH QGHOODVXSHU¿FLHqXJXDOHDOO¶LQWHJUDOHGL§ * ) QVX6

#





&LUFROD]LRQH DQWLRUDULD

,QWHJUDOHGHOURWRUH



6LQRWLGDOO¶(TXD]LRQH  FKHVHGXHGLYHUVHVXSHU¿FLRULHQWDWH6H6KDQQR ODVWHVVDIURQWLHUD&LFRUULVSRQGHQWLLQWHJUDOLGHLURWRULVRQRXJXDOL

(QWUDPELJOLLQWHJUDOLVRQRXJXDOLDOO¶LQWHJUDOHGHOODFLUFROD]LRQHDQWLRUDULDDOSUL PRPHPEURGHOO¶(TXD]LRQH  VHPSUHFKHLYHUVRULQRUPDOLQHQRULHQWLQR FRUUHWWDPHQWHOHVXSHU¿FL 6H&qXQDFXUYDQHOSLDQR[\RULHQWDWDLQVHQVRDQWLRUDULRH5qODUHJLRQH GHOSLDQR[\GHOLPLWDWDGD&DOORUDGs = G[G\H Green: k R

Rotore

,QTXHVWDVLWXD]LRQHO¶XJXDJOLDQ]DGL6WRNHVGLYHQWD

Circolazione

Stokes:

FKHqODIRUPDFLUFROD]LRQHURWRUHGHOO¶XJXDJOLDQ]DGHO7HRUHPDGL*UHHQ9LFH YHUVD LQYHUWHQGR TXHVWL SDVVL SRVVLDPR ULVFULYHUH OD IRUPD FLUFROD]LRQHURWRUH GHO7HRUHPDGL*UHHQSHUFDPSLELGLPHQVLRQDOLFRPH

n Rot

S

ore

C ir c ol

azione

-PN\YH &RQIURQWRWUDL7HRUHPLGL*UHHQH GL6WRNHV



 6LYHGDOD)LJXUD



 0S;LVYLTHKP:[VRLZ



z

ESEMPIO 2

&DOFRODUHLGXHPHPEULGHOO¶(TXD]LRQH  SHUODVHPLVIHUD6[ + \ + ] = ] Ú  ODFLUFRQIHUHQ]D&[ + \ = ] = FKHOHIDGDIURQWLHUDHLOFDPSR) = \L - [M Soluzione /DVHPLVIHUDKDXQDVSHWWRDQDORJRDTXHOORGHOODVXSHU¿FLHGHOOD)LJXUD FRQODIURQWLHUDVXOSLDQR[\ )LJXUD &DOFROLDPRODFLUFROD]LRQHDQWLRUDULD OXQJR& YLVWDGDVRSUD XVDQGRODSDUDPHWUL]]D]LRQHU u = FRVu L+ VLQu M … u … p

x2  y2  z2  9

n

k y C: x 2



y2

9

x

-PN\YH 8QDVHPLVIHUDHXQGLVFRFRQODVWHVVD IURQWLHUD& (VHPSLH 

3HUO¶LQWHJUDOHGHOURWRUHGL)DEELDPR

9HUVRUHQRUPDOHHVWHUQR 3DU(VHPSLRFRQ D = 

H

/DFLUFROD]LRQHOXQJRODFLUFRQIHUHQ]DqXJXDOHDOO¶LQWHJUDOHGHOURWRUHVXOODVH PLVIHUDFRPHGHY¶HVVHUH

/¶LQWHJUDOHGLVXSHU¿FLHGHO7HRUHPDGL6WRNHVVLSXzFDOFRODUHXVDQGRTXDO VLDVLVXSHU¿FLHDYHQWHFRPHIURQWLHUDODFXUYD&SXUFKpODVXSHU¿FLHVLDRULHQWDWD FRUUHWWDPHQWHHVLWURYLDOO¶LQWHUQRGHOGRPLQLRGHOFDPSR)/¶HVHPSLRFKHVHJXH PRVWUDTXHVWRIDWWRSHUODFLUFROD]LRQHOXQJRODFXUYD&GHOO¶(VHPSLR ESEMPIO 3

&DOFRODUH OD FLUFROD]LRQH OXQJR OD FLUFRQIHUHQ]D GL IURQWLHUD & GHOO¶(VHPSLR  XVDQGRLOGLVFRGLUDJJLRFHQWUDWRQHOO¶RULJLQHGHOSLDQR[\FRPHVXSHU¿FLH6 DQ]LFKpODVHPLVIHUD 6LYHGDOD)LJXUD Soluzione &RPHQHOO¶(VHPSLR§ * ) = - N4XDQGRODVXSHU¿FLHqLOGLVFRGDWRQHOSLDQR [\DEELDPRFRPHYHWWRUHQRUPDOHQ = NHTXLQGL



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

H

XQFDOFRORSLVHPSOLFHGLSULPD

ESEMPIO 4 z C:

x2

2

 y  4, z  2

n

7URYLDPRODFLUFROD]LRQHGHOFDPSR) = [ - \ L + ]M + [NOXQJRODFXUYD&LQ FXLLOSLDQR] = LQFRQWUDLOFRQR] = 1[ + \LQVHQVRDQWLRUDULRYLVWDGDOO¶DOWR )LJXUD  Soluzione ,O7HRUHPDGL6WRNHVFLSHUPHWWHGLWURYDUHODFLUFROD]LRQHLQWHJUDQGRVXOODVX SHU¿FLHGHOFRQR3HUFRUUHUH&LQVHQVRDQWLRUDULRYLVWRGDOO¶DOWRFRUULVSRQGHD SUHQGHUHODQRUPDOHLQWHUQDQDOFRQRTXHOODFRQXQDFRPSRQHQWHNSRVLWLYD 3DUDPHWUL]]LDPRLOFRQRFRQ

S: r(t)  (r cos )i  (r sin )j  rk x

y

$EELDPRTXLQGL

-PN\YH  /DFXUYD&HLOFRQR6GHOO¶(VHPSLR

3DU(VHPSLR

3DU(VHPSLR 6HPSOLFHFDOFROR [ = UFRVu

'LFRQVHJXHQ]D

HODFLUFROD]LRQHq 7HRUHPDGL6WRNHV(T  

ESEMPIO 5

,OFRQRXVDWRQHOO¶(VHPSLRQRQqODVXSHU¿FLHSLVHPSOLFHGDXVDUHSHUFDOFR ODUHODFLUFROD]LRQHDWWRUQRDOODFLUFRQIHUHQ]D&DSSDUWHQHQWHDOSLDQR] = 6H XVLDPRLQYHFHLOGLVFRSLDQRGLUDJJLRFRQFHQWURVXOO¶DVVHGHOOH]HJLDFHQWH QHOSLDQR] = LOYHUVRUHQRUPDOHDOODVXSHU¿FLH6qQ = N&RPHQHLFDOFROLSHU O¶(VHPSLRDEELDPRDQFKHTXL§ * ) = - L - [M + N4XHVWDYROWDSHUzRWWH

 0S;L ;LVYLTHKP:[VRLZ



#

QLDPR§ * ) Q= TXLQGL /¶RPE PEUDqLOGLVFRGLUDJJLRQHHOSLDQR[\ [\

,OULVXOWDWRFRLQFLGHFRQLOYDORUHGHOODFLUFROD]LRQHWU WURYDW DWRQHOO¶(VHPSLR

z

ESEMPIO 6

7URYDUH XQD SDUDPHWUL]]D]LRQH SHU OD VXSHU¿FLH 6 IR IRUPDWD GDOOD SDUWH GL G  SDU DUDER ORLGHLSHUEROLFR] = \ - [FKHVLWU WURYDDOO¶LQWHUQRGHOFLOLQGURGLUDJJLRXQRDW DWWRU QRDOO¶DVVHGHOOH]HSHUODFXUYD&FKHID IDGDIU IURQWLHUDD6 )LJXUD 9 9HHUL¿FDUH SRLLO7HRUHPDGL6WRNHVSHU6XVDQ DQGRODQRUP UPDOHFKHKDFRPSRQHQWHNSRVLWLYDH LOFDPSRYHWWRULDOH) = \L - [M + N Soluzione 4XDQ DQGRODFLUFRQIH IHUHQ]DXQLWDULDYLHQHSHUFRUVDLQVHQVRDQWLRUDU DULRQHOOSLDQ DQR[\ [\ ODFRRUGLQDW DWD]GHOODVXS XSHU¿FLHDY DYHQW QWHODFXU XUYD&FRPHIU IURQWLHUDqGDWDGD\ - [ 8QDSDU DUDP DPHWUL]]D]LRQHGL&qGDWDGD

1 S 1 y

1

1

x C

z 1

FRQ

S

/XQJRODFXUYDU W ODIR IRUPXODSHULOFDPSRYHWW WWRULDOH)q

1

x



1

y

C

/DFLUFROD]LRQHDQWLRUDU DULDOXQJR&qLOYDORUHGHOO¶LQWHJUDOHFXUYLOLQHR

-PN\YH /DVXSHUIL ILFLHHLOFDP PSRYHWWRULDOH GHOO¶(VHPSLR

#

 6 $GHVVR FDOFROLDPR OD VWHVVD TXDQWLWj LQWHJUDQ DQGR § * )  Q VXOOD VXS XSHU¿FLH S 8VLDP DPROHFRRUGLQDWHSRODULHSDUDP DPHWUL]]LDP DPR6RVVHUYDQGRFKHDOGLLVRSUDGHO SXQW QWR U u  GHO SLDQR OD FRRUGLQDWD ] GL 6 q \ - [ = U VLQ u - U FRRV u 8QD SDU DUDPHWU WUL]]D]LRQHGL6q

# 

&DOFROLDPRRUD§ * ) Q Gs Gs$EELDPR





*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

H

2WWHQLDPRFRVu



#

4XLQGLO¶LQWHJUDOHGL§ * ) QVX6qXJXDOHDOODFLUFROD]LRQHDQWLRUDULDGL)OXQJR &FRPHSUHYLVWRGDO7HRUHPDGL6WRNHV

L’interpretazione “mulinello” di § * ) 6LD)LOFDPSRGHOOHYHORFLWjGLXQÀXLGRLQPRWRLQXQDUHJLRQH5QHOORVSD]LR FRQWHQHQWHODFXUYDFKLXVD&$OORUD

qODFLUFROD]LRQHGHOÀXLGROXQJR&3HULO7HRUHPDGL6WRNHVODFLUFROD]LRQHq XJXDOHDOÀXVVRGL§ * )DWWUDYHUVRTXDOXQTXHVXSHU¿FLH6RULHQWDWDFRUUHWWDPHQWH HFRQIURQWLHUD&

 )LVVLDPRXQSXQWR4QHOODUHJLRQH5HXQDGLUH]LRQHXLQ46LD&XQDFLUFRQIH UHQ]DGLUDJJLRrFRQFHQWURLQ4VXXQSLDQRQRUPDOHDX6H§ * )qFRQWLQXD LQ4LOYDORUHPHGLRGHOODFRPSRQHQWHXGL§ * )VXOGLVFR6UDFFKLXVRGD&WHQGH DOODFRPSRQHQWHXGL§ * )LQ4TXDQGRLOUDJJLRr :

6HDSSOLFKLDPRLO7HRUHPDGL6WRNHVHVRVWLWXLDPRO¶LQWHJUDOHGLVXSHU¿FLHFRQXQ LQWHJUDOHFXUYLOLQHRVX&RWWHQLDPR 

  ,OSULPRPHPEURGHOO¶(TXD]LRQH  DVVXPHYDORUHPDVVLPRTXDQGRXqODGLUH ]LRQHGL§ * )4XDQGRrqSLFFRORLOOLPLWHDOVHFRQGRPHPEURGHOO¶(TXD]LRQH  qDSSURVVLPDWLYDPHQWH

 0S;LVYLTHKP:[VRLZ



Rot F

FLRqODFLUFROD]LRQHOXQJR&GLYLVDSHUO¶DUHDGHOGLVFR GHQVLWjGLFLUFROD]LRQH  ,PPDJLQLDPRGLLQVHULUHXQSLFFRORPXOLQHOORGLUDJJLRrQHOÀXLGRLQ4FRQO¶DVVH GLUHWWROXQJRX )LJXUD /DFLUFROD]LRQHGHOÀXLGROXQJR&KDXQHIIHWWRVXOOD YHORFLWjGLURWD]LRQHGHOPXOLQHOORFKHUXRWHUjDOODYHORFLWjPDVVLPDTXDQGRO¶LQ WHJUDOHGHOODFLUFROD]LRQHqPDVVLPL]]DWRFLRqTXDQGRO¶DVVHSXQWDQHOODGLUH]LRQH GL§ * ) ESEMPIO 7

Q

-PN\YH

8Q ÀXLGR GL GHQVLWj FRVWDQWH UXRWD DWWRUQR DOO¶DVVH GHOOH ] FRQ YHORFLWj /¶LQWHUSUHWD]LRQH³PXOLQHOOR´GLURW) ) = v - \L + [M GRYHvqXQDFRVWDQWHSRVLWLYDGHWWDYHORFLWjDQJRODUHGHOOD URWD]LRQH )LJXUD 7URYDUH§ * )HODVXDUHOD]LRQHFRQODGHQVLWjGLFLUFR OD]LRQH z

Soluzione &RQ) = - v\L + v[MWURYLDPRLOURWRUH

v

P(x, y, z)

3HULO7HRUHPDGL6WRNHVODFLUFROD]LRQHGL)OXQJRXQDFLUFRQIHUHQ]D&GLUDJJLR rFKHUDFFKLXGHXQGLVFR6LQXQSLDQRQRUPDOHD§ * )SHUHVHPSLRLOSLDQR[\q F  v(–yi  xj)

0

&RVuHVSOLFLWDQGRLQTXHVW¶XOWLPDHTXD]LRQHvWURYLDPR

r y

P(x, y, 0) x

FRHUHQWHPHQWHFRQO¶(TXD]LRQH  TXDQGRX = N

ESEMPIO 8

#

-PN\YH 8QDFRUUHQWHURWD]LRQDOHFRVWDQWH SDUDOOHODDOSLDQR[\FRQYHORFLWj DQJRODUHFRVWDQWHvLQGLUH]LRQH SRVLWLYD DQWLRUDULD  (VHPSLR 

8VDUHLO7HRUHPDGL6WRNHVSHUFDOFRODUH1&) GUVH) = []L + [\M + []NH&q ODIURQWLHUDGHOODSRU]LRQHGHOSLDQR[ + \ + ] = FRQWHQXWDQHOSULPRRWWDQWH SHUFRUVDLQVHQVRDQWLRUDULRYLVWDGDOO¶DOWR )LJXUD 

z

Soluzione ,OSLDQRqODVXSHU¿FLHGLOLYHOOR¦ [\] = GHOODIXQ]LRQH¦ [\] = [ + \ + ] ,OYHUVRUHQRUPDOH

(0, 0, 2) n C 2x  y  z  2

FRUULVSRQGHDOYHUVRDQWLRUDULROXQJR&3HUDSSOLFDUHLO7HRUHPDGL6WRNHVWUR YLDPR

(1, 0, 0)

(0, 2, 0) x

URW)

R y  2  2x

y

-PN\YH /DSRU]LRQHGLSLDQRGHOO¶(VHPSLR



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

6XOSLDQR]qXJXDOHD - [ - \HTXLQGL H

/¶HOHPHQWRGLDUHDq

/DFLUFROD]LRQHq 7HRUGL6WRNHV(T  

z

C: x2  4y2  1

n

z  x2  4y2

x y

-PN\YH /DSRU]LRQHGLSDUDERORLGHHOOLWWLFR GHOO¶(VHPSLRFRQODVXDFXUYDGL LQWHUVH]LRQH&FRQLOSLDQR] = H O¶RULHQWD]LRQHYHUVRO¶LQWHUQRGDWD GDQ

ESEMPIO 9

6LFRQVLGHULFRPHVXSHU¿FLH6ODSRU]LRQHGHOSDUDERORLGHHOOLWWLFR] = [ + \DO GLVRWWRGHOSLDQR] =  )LJXUD 'H¿QLDPRXQ¶RULHQWD]LRQHVX6SUHQGHQGR LOYHUVRUHQRUPDOHLQWHUQRQDOODVXSHU¿FLHFLRqTXHOORFRQXQDFRPSRQHQWHN SRVLWLYD7URYDUHLOÀXVVRGL§ * )DWWUDYHUVR6QHOODGLUH]LRQHQSHULOFDPSR YHWWRULDOH) = \L - []M + []N Soluzione 8VLDPRLO7HRUHPDGL6WRNHVSHUFDOFRODUHO¶LQWHJUDOHGHOURWRUHWURYDQGRODFRUUL VSRQGHQWHFLUFROD]LRQHDQWLRUDULDGL)OXQJRODFXUYD&GDWDGDOO¶LQWHUVH]LRQHWUD LOSDUDERORLGH] = [ + \HLOSLDQR] = FRPHPRVWUDOD)LJXUD6LQRWLFKH O¶RULHQWD]LRQHGL6FRUULVSRQGHDSHUFRUUHUH&LQVHQVRDQWLRUDULRDWWRUQRDOO¶DVVH GHOOH]/DFXUYD&qO¶HOOLVVH[ + \ = QHOSLDQR] = 3RVVLDPRSDUDPHWUL]]DUH  O¶HOOLVVHFRQ[ = FRVW\ = VLQW] = SHU … W … pHTXLQGL&qGDWDGD  3HUFDOFRODUHODFLUFROD]LRQH YHORFLWjGUGW

H 4XLQGL



YDOXWLDPR)OXQJR&HWURYLDPRLOYHWWRUH

 0S;LVYLTHKP:[VRLZ

3HUWDQWRLOÀXVVRGHOURWRUHDWWUDYHUVR6QHOODGLUH]LRQHQSHULOFDPSR)q



E

D

A

Dimostrazione del Teorema di Stokes per superfici poliedriche 6LD6XQDVXSHU¿FLHSROLHGULFDIRUPDWDGDXQQXPHUR¿QLWRGLUHJLRQLSLDQHR IDFFH 1HOOD)LJXUDVRQRPRVWUDWLDOFXQLHVHPSL $SSOLFKLDPRLO7HRUHPD GL*UHHQVHSDUDWDPHQWHDRJQLIDFFLDGL6&LVRQRGXHWLSLGLIDFFH  4XHOOHFRPSOHWDPHQWHFLUFRQGDWHGDDOWUHIDFFH  4XHOOHFRQXQRRSLVSLJROLQRQDGLDFHQWLDGDOWUHIDFFH /DIURQWLHUD¢GL6qFRPSRVWDGDTXHJOLVSLJROLGHOOHIDFFHGLWLSRFKHQRQVRQR DGLDFHQWLDGDOWUHIDFFH1HOOD)LJXUDDLWULDQJROL($%%&(H&'(UDSSUH VHQWDQRXQDSDUWHGL6H$%&'qXQDSDUWHGHOODIURQWLHUD¢$SSOLFKLDPRXQD IRUPDWDQJHQ]LDOHJHQHUDOL]]DWDGHO7HRUHPDGL*UHHQDLWUHWULDQJROLGHOOD)LJXUD DLQVXFFHVVLRQHHVRPPLDPRLULVXOWDWLRWWHQHQGR

B

C (a)

(b)



  1HOODIRUPDJHQHUDOL]]DWDO¶LQWHJUDOHFXUYLOLQHRGL)OXQJRODFXUYDFKHUDFFKLX GHODUHJLRQHSLDQD5QRUPDOHDQqXJXDOHDOO¶LQWHJUDOHGRSSLRGL URW)  QVX5 ,WUHLQWHJUDOLFXUYLOLQHLDOSULPRPHPEURGHOO¶(TXD]LRQH  IRUPDQRXQXQL FRLQWHJUDOHFXUYLOLQHRVXOODIURQWLHUD$%&'(SHUFKpJOLLQWHJUDOLOXQJRLVHJPHQ WLLQWHUQLVLFDQFHOODQRDGXHDGXH3HUHVHPSLRO¶LQWHJUDOHOXQJRLOVHJPHQWR%( QHOWULDQJROR$%(KDVHJQRRSSRVWRULVSHWWRDOO¶LQWHJUDOHOXQJRORVWHVVRVHJPHQ WRQHOWULDQJROR(%&/RVWHVVRYDOHSHULOVHJPHQWR&(&RVuO¶(TXD]LRQH  VL ULGXFHD

#

-PN\YH D 3DUWHGLXQDVXSHUILFLHSROLHGULFD E $OWUHVXSHUILFLSROLHGULFKH

4XDQGRDSSOLFKLDPRODIRUPDJHQHUDOL]]DWDGHO7HRUHPDGL*UHHQDWXWWHOHIDFFH HVRPPLDPRLULVXOWDWLRWWHQLDPR

4XHVWRqLO7HRUHPDGL6WRNHVSHUODVXSHU¿FLHSROLHGULFD6GHOOD)LJXUDD /D)LJXUDEPRVWUDVXSHU¿FLSROLHGULFKHSLJHQHUDOLODGLPRVWUD]LRQHVLSXz HVWHQGHUHDQFKHDHVVH8QDVXSHU¿FLHUHJRODUHDUELWUDULDVLSXzRWWHQHUHFRPH OLPLWHGLVXSHU¿FLSROLHGULFKH

n

Il Teorema di Stokes per superfici con buchi ,O7HRUHPDGL6WRNHVYDOHDQFKHSHUXQDVXSHU¿FLHRULHQWDWD6FKHKDXQRRSL EXFKL )LJXUD  /¶LQWHJUDOHGLVXSHU¿FLHVX6GHOODFRPSRQHQWHQRUPDOHGL§ * )qXJXDOHDOOD S VRPPDGHJOLLQWHJUDOLFXUYLOLQHLOXQJRWXWWHOHFXUYHGLIURQWLHUDGHOODFRPSRQHQWH WDQJHQ]LDOHGL)LQFXLRJQLFXUYDqSHUFRUVDQHOODGLUH]LRQHLQGRWWDGDOO¶RULHQWD -PN\YH ]LRQHGL63HUTXHVWHVXSHU¿FLLO7HRUHPDQRQFDPELDPD&qRUDXQ¶XQLRQHGL ,O7HRUHPDGL6WRNHVYDOHDQFKHSHU VXSHUILFLRULHQWDWHFRQEXFKL FXUYHVHPSOLFLFKLXVH



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

Un’identità importante /¶LGHQWLWjFKHVHJXHFRPSDUHVSHVVRLQPDWHPDWLFDHQHOOHVFLHQ]H¿VLFKH 

URWJUDG¦ =   R  § * §I = 



/HIRU]HVWXGLDWHQHOO¶DPELWRGHOO¶HOHWWURPDJQHWLVPRHGHOODJUDYLWjVRQRVSHVVR DVVRFLDWHDXQDIXQ]LRQHSRWHQ]LDOH¦/¶LGHQWLWj  DIIHUPDFKHTXHVWHIRU]HKDQ QRURWRUHXJXDOHD]HURHVVDYDOHSHUTXDOVLDVLIXQ]LRQH¦ [\] OHFXLGHULYDWH SDU]LDOLVHFRQGHVLDQRFRQWLQXH6LGLPRVWUDFRVu

6HOHGHULYDWHSDU]LDOLVHFRQGHVRQRFRQWLQXHOHGHULYDWHVHFRQGHPLVWHWUDSDUHQ WHVLVRQRXJXDOL 7HRUHPD3DUDJUDIR HLOYHWWRUHqQXOOR C

Campi conservativi e il Teorema di Stokes 1HO3DUDJUDIRDEELDPRYLVWRFKHLOIDWWRFKHXQFDPSR)VLDFRQVHUYDWLYRLQ XQDUHJLRQHDSHUWD'GHOORVSD]LRqHTXLYDOHQWHDOIDWWRFKHO¶LQWHJUDOHGL)OXQJR TXDOVLDVLFXUYDFKLXVDLQ'VLD]HUR&LzDVXDYROWDqHTXLYDOHQWHLQUHJLRQL DSHUWHVHPSOLFHPHQWHFRQQHVVHDGLUHFKH§ * ) =  LOFKHFLGjXQFULWHULRSHU GHWHUPLQDUHVH)qFRQVHUYDWLYRSHUUHJLRQLGLTXHVWRWLSR 

S

(a)

TEOREMA 7

Rot F = 0 e la proprietà delle curve chiuse

6H§ * ) = LQRJQLSXQWRGLXQDUHJLRQHDSHUWDVHPSOLFHPHQWHFRQQHVVD' GHOORVSD]LRDOORUDVXTXDOVLDVLFDPPLQRFKLXVRUHJRODUHDWUDWWL&LQ'

(b)

-PN\YH D ,QXQDUHJLRQHDSHUWD VHPSOLFHPHQWHFRQQHVVDGHOOR VSD]LRXQDFXUYDVHPSOLFHFKLXVD &qODIURQWLHUDGLXQDVXSHUILFLH UHJRODUH6 E /HFXUYHUHJRODULFKHVL DXWRLQWHUVHFDQRVLSRVVRQR VXGGLYLGHUHLQFLUFXLWLDLTXDOLVL DSSOLFDLO7HRUHPDGL6WRNHV

CENNO DI DIMOSTRAZIONE ,O7HRUHPDVLSXzGLPRVWUDUHLQGXHSDUWL/DSULPDSDUWHULJXDUGDOHFXUYHVHP SOLFLFKLXVH FLUFXLWLFKHQRQULSDVVDQRGXHYROWHSHUORVWHVVRSXQWR FRPHTXHOOD GHOOD)LJXUDD8QWHRUHPDGHOODWRSRORJLDXQDVR¿VWLFDWDDUHDGHOODPDWHPD WLFDDIIHUPDFKHTXDOVLDVLFXUYDVHPSOLFHFKLXVDUHJRODUH&LQXQDUHJLRQHDSHUWD VHPSOLFHPHQWHFRQQHVVD'qODIURQWLHUDGLXQDVXSHU¿FLHRULHQWDELOHUHJRODUH6 FKHDVXDYROWDDSSDUWLHQHD'4XLQGLSHULO7HRUHPDGL6WRNHV

/DVHFRQGDSDUWHULJXDUGDOHFXUYHFKHVLDXWRLQWHUVHFDQRFRPHTXHOODGHOOD )LJXUDE/¶LGHDqGLVXGGLYLGHUOHLQFLUFXLWLVHPSOLFLFKHUDFFKLXGDQRVXSHU ¿FLRULHQWDELOLDSSOLFDUHLO7HRUHPDGL6WRNHVDRJQXQDGLHVVHHVRPPDUHLYDORUL GHJOLLQWHJUDOL

 0S;LVYLTHKLSSHKP]LYNLUaHL\UH[LVYPH\UPMPJH[H

,OGLDJUDPPDFKHVHJXHVLQWHWL]]DLULVXOWDWLULJXDUGDQWLLFDPSLFRQVHUYDWLYL GH¿QLWLVXUHJLRQLDSHUWHFRQQHVVHHVHPSOLFHPHQWHFRQQHVVH Teorema 2, Paragrafo 5.3

F = ∇ f su D

F conservativo su D

Uguaglianza vettoriale (Eq. 8) (derivate parz. seconde continue)

Teorema 3, Paragrafo 5.3

∇ * F = 0 su tutto D su qualsiasi cammino chiuso in D

Teorema 7 Dominio semplicemente connesso e Teor. di Stokes

5.8 Il Teorema della divergenza e una teoria unificata /DIRUPDGHO7HRUHPDGL*UHHQQHOSLDQRUHODWLYDDOODGLYHUJHQ]DDIIHUPDFKHLO ÀXVVRQHWWRXVFHQWHDWWUDYHUVRXQDFXUYDVHPSOLFHFKLXVDVLSXzFDOFRODUHLQWH JUDQGRODGLYHUJHQ]DGHOFDPSRVXOODUHJLRQHUDFFKLXVDGDOODFXUYD,OFRUULVSRQ GHQWH7HRUHPDLQWUHGLPHQVLRQLGHWWR7HRUHPDGHOODGLYHUJHQ]DDIIHUPDFKHLO ÀXVVRQHWWRXVFHQWHGLXQFDPSRYHWWRULDOHDWWUDYHUVRXQDVXSHU¿FLHFKLXVDQHOOR VSD]LRVLSXzFDOFRODUHLQWHJUDQGRODGLYHUJHQ]DGHOFDPSRVXOODUHJLRQHUDFFKLX VDGDOODVXSHU¿FLH,QTXHVWRSDUDJUDIRGLPRVWUHUHPRLO7HRUHPDGHOODGLYHUJHQ]D HPRVWUHUHPRFRPHVHPSOL¿FDLOFDOFRORGHOÀXVVR5LFDYHUHPRDQFKHODOHJJHGL *DXVVSHULOÀXVVRLQXQFDPSRHOHWWULFRHO¶HTXD]LRQHGLFRQWLQXLWjGHOO¶LGURGLQD PLFD,Q¿QHXQL¿FKHUHPRLWHRUHPLVXJOLLQWHJUDOLYHWWRULDOLGLTXHVWRFDSLWRORLQ XQVLQJRORWHRUHPDIRQGDPHQWDOH

Divergenza in tre dimensioni /DGLYHUJHQ]DGLXQFDPSRYHWWRULDOH) = 0 [\] L + 1 [\] M + 3 [\] Nq ODIXQ]LRQHVFDODUH 

  ,OVLPEROR³GLY)´VLOHJJH³GLYHUJHQ]DGL)´R³GLY)´ 'LY ) KD LQ WUH GLPHQVLRQL OD VWHVVD LQWHUSUHWD]LRQH ¿VLFD FKH LQ GXH 6H ) qLOFDPSRGHOOHYHORFLWjGLXQJDVLQPRYLPHQWRLOYDORUHGLGLY)LQXQSXQWR [\] qLOWDVVRGLYDULD]LRQHGHOODFRPSUHVVLRQHRHVSDQVLRQHGHOJDVLQ [\]  /DGLYHUJHQ]DqLOÀXVVRSHUXQLWjGLYROXPHFLRqODGHQVLWjGLÀXVVRQHOSXQWR ESEMPIO 1

,FDPSLYHWWRULDOLFKHVHJXRQRUDSSUHVHQWDQRODYHORFLWjGLXQJDVFKHÀXLVFHQHOOR VSD]LR 7URYDUHODGLYHUJHQ]DGLRJQXQRGHLFDPSLHLQWHUSUHWDUQHLOVLJQL¿FDWR¿VLFR/D )LJXUDPRVWUDLFDPSLYHWWRULDOL D (VSDQVLRQH) [\] = [L + \M + ]N E &RPSUHVVLRQH) [\] = - [L - \M - ]N F 5RWD]LRQHDWWRUQRDOO¶DVVHGHOOH]) [\] = - \L + [M G 7DJOLROXQJRSLDQLRUL]]RQWDOL) [\] = ]M





*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

z

z

y

y x

x

-PN\YH &DPSLGLYHORFLWjGLXQJDVFKHVL PXRYHQHOORVSD]LR (VHPSLR 

(a)

(b)

z

z

y

y x

x

(d)

(c)

Soluzione D 

,OJDVVLHVSDQGHXQLIRUPHPHQWHLQWXWWL

LSXQWL E 

,O JDVVL FRPSULPH XQLIRUPH

PHQWHLQWXWWLLSXQWL F 

,OJDVQRQVLHVSDQGHQpVLFRPSULPHLQQHVVXQ SXQWR

G 

$QFKHTXLODGLYHUJHQ]DqQXOODLQWXWWLLSXQWLGHOGRPL

QLRHTXLQGLLOJDVQRQVLHVSDQGHQpVLFRPSULPHLQQHVVXQSXQWR

Teorema della divergenza ,O 7HRUHPD GHOOD GLYHUJHQ]D DIIHUPD FKH VRWWR RSSRUWXQH FRQGL]LRQL LO ÀXVVR HVWHUQRGLXQFDPSRYHWWRULDOHDWWUDYHUVRXQDVXSHU¿FLHFKLXVDqXJXDOHDOO¶LQWH JUDOHWULSORGHOODGLYHUJHQ]DGHOFDPSRVXOODUHJLRQHUDFFKLXVDGDOODVXSHU¿FLH

 0S;LVYLTHKLSSHKP]LYNLUaHL\UH[LVYPH\UPMPJH[H



TEOREMA 8

Teorema della divergenza

6LD ) XQ FDPSR YHWWRULDOH OH FXL FRPSRQHQWL KDQQR GHULYDWH SDU]LDOL SULPH FRQWLQXHHVLD6XQDVXSHU¿FLHFKLXVDRULHQWDWDUHJRODUHDWUDWWL,OÀXVVRGL) DWWUDYHUVR6QHOODGLUH]LRQHGHOFDPSRXQLWDULRQRUPDOHYHUVRO¶HVWHUQRGHOOD VXSHU¿FLHQqXJXDOHDOO¶LQWHJUDOHGL¥ )VXOODUHJLRQH'UDFFKLXVDGDOODVX SHU¿FLH

#





)OXVVRYHUVR O¶HVWHUQR

,QWHJUDOHGHOOD GLYHUJHQ]D



ESEMPIO 2

&DOFRODUHLGXHPHPEULGHOO¶(TXD]LRQH  SHULOFDPSRYHWWRULDOHLQHVSDQVLRQH ) = [L + \M + ]NVXOODVIHUD[ + \ + ] = D )LJXUD 

z

Soluzione ,O YHUVRUH QRUPDOH HVWHUQR D 6 FDOFRODWR D SDUWLUH GDO JUDGLHQWH GL ¦ [\] = [ + \ + ] - Dq [+ \+ ]= DVX6 y

4XLQGL x

3HUWDQWR /¶DUHDGL6 qpD

/DGLYHUJHQ]DGL)q

HFRVu

ESEMPIO 3

7URYDUHLOÀXVVRGL) = [\L + \]M + []NGLUHWWRYHUVRO¶HVWHUQRDWWUDYHUVRODVXSHU ¿FLHGHOFXERUDFFKLXVRQHOSULPRRWWDQWHGDLSLDQL[ = \ = H] =  Soluzione $Q]LFKpFDOFRODUHLOÀXVVRFRPHVRPPDGLVHLLQWHJUDOLGLVWLQWLXQRSHURJQLIDF FLDGHOFXERSRVVLDPRFDOFRODUHLOÀXVVRLQWHJUDQGRODGLYHUJHQ]D

VXOO¶LQWHUQRGHOFXER

-PN\YH  8QFDPSRYHWWRULDOHLQHVSDQVLRQH XQLIRUPHHXQDVIHUD (VHPSLR 



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

)OXVVR

7HRUHPDGHOODGLYHUJHQ]D 6XSHUI GHOFXER

,QWHUQR GHOFXER

,QWHJUDOLVWDQGDUG

ESEMPIO 4

z 1

D &DOFRODUHLOÀXVVRGHOFDPSRYHWWRULDOH ) = [L + [\]M + ]H[N 2

3 x

y





GLUHWWRYHUVRO¶HVWHUQRGHOSDUDOOHOHSLSHGR' … [ …   … \ …   … ] …  )LJXUD  E ,QWHJUDUHGLY)VXTXHVWDUHJLRQHHPRVWUDUHFKHLOULVXOWDWRqXJXDOHDTXHOOR GL D FRPHSUHYHGHLO7HRUHPDGHOODGLYHUJHQ]D 

Soluzione -PN\YH /¶LQWHJUDOHGLGLY)VXTXHVWDUHJLRQHq D /DUHJLRQH'KDVHLIDFFHFDOFROLDPRLOÀXVVRDWWUDYHUVRRJQXQDGLHVVHLQ XJXDOHDOIOXVVRFRPSOHVVLYRDWWUDYHUVR VXFFHVVLRQH&RQVLGHULDPRODIDFFLDVXSHULRUHQHOSLDQR] = FRQQRUPDOH OHVHLIDFFH (VHPSLR  YHUVRO¶HVWHUQRN,OÀXVVRDWWUDYHUVRTXHVWDIDFFLDqGDWRGD) Q = ]H['DWR

#

FKHVXTXHVWDIDFFLD] = LOÀXVVRLQXQSXQWR [\] GHOODIDFFLDVXSHULRUHq H[,OÀXVVRWRWDOHDWWUDYHUVRTXHVWDIDFFLDqGDWRGDOO¶LQWHJUDOH ,QWHJUDOHVWDQGDUG



,OÀXVVRYHUVRO¶HVWHUQRDWWUDYHUVROHDOWUHIDFFHVLFDOFRODLQPRGRDQDORJRH LULVXOWDWLVRQRHOHQFDWLQHOODVHJXHQWHWDEHOOD )DFFLD

9HUVRUHQRUPDOHQ

[=

-L L

[= \= \= ]= ]=

-M M -N N

)#Q - [= 

)OXVVRDWWUDYHUVR ODIDFFLD 

[= 



- [\] = 



[\] = []



- ]H[=  [

[

]H = H

 

H - 

,OÀXVVRWRWDOHYHUVRO¶HVWHUQRVLRWWLHQHVRPPDQGRLFRQWULEXWLGLRJQXQDGHOOH VHLIDFFHFLRq  +  + H -  =  + H E &DOFROLDPRGDSSULPDODGLYHUJHQ]DGL)HRWWHQLDPR

 0S;LVYLTHKLSSHKP]LYNLUaHL\UH[LVYPH\UPMPJH[H





/¶LQWHJUDOHGHOODGLYHUJHQ]DGL)VX'q

&RPHSUHYHGHLO7HRUHPDGHOODGLYHUJHQ]DO¶LQWHJUDOHGHOODGLYHUJHQ]DVX' qXJXDOHDOÀXVVRYHUVRO¶HVWHUQRDWWUDYHUVRODIURQWLHUDGL'

Dimostrazione del Teorema della divergenza per regioni speciali z

3HUGLPRVWUDUHLO7HRUHPDGHOODGLYHUJHQ]DDVVXPLDPRFKHOHFRPSRQHQWLGL) DEELDQRGHULYDWHSDU]LDOLSULPHFRQWLQXH$VVXPLDPRGDSSULPDFKH'VLDXQDUH JLRQHFRQYHVVDVHQ]DEXFKLQp³EROOH´FRPHXQDSDOODVROLGDXQFXERRXQHOOLV VRLGHHFKH6VLDXQDVXSHU¿FLHUHJRODUHDWUDWWL,QROWUHDVVXPLDPRFKHTXDOVLDVL UHWWDSHUSHQGLFRODUHDOSLDQR[\LQXQSXQWRLQWHUQRGHOODUHJLRQH5[\ODSURLH]LRQH GL'VXOSLDQR[\LQWHUVHFKLODVXSHU¿FLH6LQHVDWWDPHQWHGXHSXQWLGDQGROXRJR DOOHVXSHU¿FL

R yz

D

Rx z

S2 S1 y x

Rx y

FRQ¦ … ¦,SRWHVLDQDORJKHYDOJRQRSHUODSURLH]LRQHGL'VXJOLDOWULSLDQLFR RUGLQDWL )LJXUD  /HFRPSRQHQWLGHOYHUVRUHQRUPDOHQ = QL + QM + QNVRQRLFRVHQLGHJOL -PN\YH DQJROLabHgIRUPDWLGDQFRQLMHN )LJXUD GDWRFKHWXWWLLYHWWRULLQ 'LPRVWULDPRLO7HRUHPDGHOOD GLYHUJHQ]DSHUOHUHJLRQL JLRFRVRQRGLOXQJKH]]DXQLWDULD$EELDPR

WULGLPHQVLRQDOLGHOWLSRTXLPRVWUDWR z

n3

4XLQGL

(n1, n 2, n 3)

k 

H



n 

i

6FULWWRULVSHWWRDOOHFRPSRQHQWLLO7HRUHPDGHOODGLYHUJHQ]DDIIHUPDFKH

n1

n2

j

y

x

-PN\YH /HFRPSRQHQWLGLQVRQRLFRVHQLGHJOL DQJROLabHgFKHIRUPDFRQLMHN



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

'LPRVWULDPRLOWHRUHPDGLPRVWUDQGROHVHJXHQWLWUHXJXDJOLDQ]H

z n

z  f2(x, y)

D

 S2

d 

S1 z  f1(x, y)

O

d

n

 y

x

Rxy dA  dx dy

-PN\YH /DUHJLRQH'UDFFKLXVDGDOOHVXSHUILFL 6H6KDFRPHSURLH]LRQHYHUWLFDOH5[\ VXOSLDQR[\ k g

DIMOSTRAZIONE DELL’EQUAZIONE (5) 'LPRVWULDPR O¶(TXD]LRQH   WUDVIRUPDQGR O¶LQWHJUDOH GL VXSHU¿FLH DO SULPR PHPEUR LQ XQ LQWHJUDOH GRSSLR VXOOD SURLH]LRQH 5[\ GL ' VXO SLDQR [\ )LJX UD /DVXSHU¿FLH6qFRPSRVWDGDXQDSDUWHVXSHULRUH6FXLHTXD]LRQHq ] = ¦ [\ HGDXQDSDUWHLQIHULRUH6ODFXLHTXD]LRQHq] = ¦ [\ 6X6LOYHU VRUHQRUPDOHHVWHUQRQKDFRPSRQHQWHNSRVLWLYDH SHUFKp )LJXUD 6X6ODQRUPDOHHVWHUQDQKDFRPSRQHQWHNQHJDWLYDH

n

4XLQGL Qui g è acuto, e quindi ds  dx dy/cos g. k

g

Qui g è ottuso, e quindi so ds  –dx dy/cos g. n

dy

dx

-PN\YH 8QLQJUDQGLPHQWRGHJOLHOHPHQWLGL DUHDGHOOD)LJXUD/HUHOD]LRQL Gs = ; G[G\>FRVgGHULYDQRGDOO¶(T  GHO3DUDJUDIR

$EELDPRFRVuGLPRVWUDWRO¶(TXD]LRQH  /HGLPRVWUD]LRQLGHOOH(TXD]LRQL   H  VHJXRQRORVWHVVRVFKHPDRSSXUHEDVWDSHUPXWDUH[\]013abg QHOO¶RUGLQHHULWURYDUHLULVXOWDWLGDOO¶(TXD]LRQH  $EELDPRFRVuGLPRVWUDWRLO 7HRUHPDGHOODGLYHUJHQ]DSHUTXHVWHUHJLRQLVSHFLDOL

z

Il Teorema della divergenza per altre regioni

k

O y D1

n1

x

-PN\YH /DPHWjLQIHULRUHGHOODUHJLRQHVROLGD WUDGXHVIHUHFRQFHQWULFKH

,O7HRUHPDGHOODGLYHUJHQ]DVLSXzHVWHQGHUHDUHJLRQLFKHVLSRVVDQRVXGGLYLGHUH LQXQQXPHUR¿QLWRGLUHJLRQLVHPSOLFLGHOWLSRRUDYLVWRHDUHJLRQLFKHVLSRV VDQRGH¿QLUHFRPHOLPLWLGLUHJLRQLSLVHPSOLFLLQFHUWLPRGL3HUHVHPSOL¿FD UHXQSDVVRGHOSURFHGLPHQWRGLVXGGLYLVLRQHVXSSRQLDPRFKH'VLDODUHJLRQH FRPSUHVD WUD GXH VIHUH FRQFHQWULFKH H FKH ) DEELD FRPSRQHQWL GLIIHUHQ]LDELOL FRQFRQWLQXLWjLQWXWWR'HVXOOHVXSHU¿FLGLIURQWLHUD'LYLGLDPR'FRQXQSLDQR HTXDWRULDOHHDSSOLFKLDPRLO7HRUHPDGHOODGLYHUJHQ]DVHSDUDWDPHQWHDRJQXQD GHOOHGXHPHWj/DPHWjLQIHULRUH'qPRVWUDWDQHOOD)LJXUD/DVXSHU¿FLH 6FKHUDFFKLXGH'qFRPSRVWDGDXQDVHPLVIHUDHVWHUQDGDXQDEDVHDIRUPDGL

 0S;LVYLTHKLSSHKP]LYNLUaHL\UH[LVYPH\UPMPJH[H

URQGHOODHGDXQDVHPLVIHUDLQWHUQD,O7HRUHPDGHOODGLYHUJHQ]DDIIHUPDFKH



z

 D2





n2

,OYHUVRUHQRUPDOHQFKHSXQWDYHUVRO¶HVWHUQRGD'SXQWDLQGLUH]LRQHRSSRVWD DOO¶RULJLQH OXQJR OD VXSHU¿FLH HVWHUQD FRLQFLGH FRQ N VXOOD EDVH SLDQD H SXQWD YHUVRO¶RULJLQHOXQJRODVXSHU¿FLHLQWHUQD$SSOLFKLDPRSRLLO7HRUHPDGHOODGL YHUJHQ]DD'HDOODVXDVXSHU¿FLH6 )LJXUD 

y –k x







6HJXHQGR Q VX 6 PHQWUH SXQWD YHUVR O¶HVWHUQR ULVSHWWR D ' RVVHUYLDPR FKH QFRLQFLGHFRQ- NVXOODEDVHDURQGHOODQHOSLDQR[\SXQWDGDOODSDUWHRSSRVWD DOO¶RULJLQHVXOODVIHUDHVWHUQDHYHUVRO¶RULJLQHVXTXHOODLQWHUQD4XDQGRVRPPLD PROH(TXD]LRQL  H  JOLLQWHJUDOLVXOODEDVHSLDQDVLFDQFHOODQRSHUYLDGHO VHJQRRSSRVWRGLQHQ$UULYLDPRFRVuDOULVXOWDWR

-PN\YH /DPHWjVXSHULRUHGHOODUHJLRQHVROLGD WUDGXHVIHUHFRQFHQWULFKH

z

Sa

GRYH'qODUHJLRQHWUDOHGXHVIHUH6ODIURQWLHUDGL'FRPSRVWDGDOOHGXHVIHUHH QLOYHUVRUHQRUPDOHD6GLUHWWRYHUVRO¶HVWHUQRGL'

y Sb x

ESEMPIO 5

7URYDUHLOÀXVVRWRWDOHYHUVRO¶HVWHUQRGHOFDPSR

DWWUDYHUVRODIURQWLHUDGHOODUHJLRQH' 6 E … [ + \ + ] … D )LJXUD  Soluzione ,OÀXVVRVLSXzFDOFRODUHLQWHJUDQGR§ )VX'$EELDPR

#

H

$QDORJDPHQWH H 4XLQGL

H

-PN\YH 'XHVIHUHFRQFHQWULFKHLQFDPSR YHWWRULDOHLQHVSDQVLRQH/DVIHUD HVWHUQDq6DHFLUFRQGDODVIHUD LQWHUQD6E



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

#

4XLQGLO¶LQWHJUDOHGL§ )VX'qQXOORHLOÀXVVRWRWDOHYHUVRO¶HVWHUQRDWWUD YHUVRODIURQWLHUDGL'q]HUR4XHVWRHVHPSLRFLLQVHJQDSHUzDQFKHTXDOFRV¶DO WUR,OÀXVVRFKHHVFHGD'DWWUDYHUVRODVIHUDLQWHUQD6EqO¶RSSRVWRGHOÀXVVRFKH HVFHGD'DWWUDYHUVRODVIHUDHVWHUQD6D GDWRFKHODVRPPDGLTXHVWLGXHÀXVVLq ]HUR &RVuLOÀXVVRGL)DWWUDYHUVR6EQHOODGLUH]LRQHFKHVLDOORQWDQDGDOO¶RULJLQH qXJXDOHDOÀXVVRGL)DWWUDYHUVR6DQHOODVWHVVDGLUH]LRQH3HUWDQWRLOÀXVVRGL )DWWUDYHUVRXQDVIHUDFHQWUDWDQHOO¶RULJLQHqLQGLSHQGHQWHGDOUDJJLRGHOODVIHUD 4XDOqTXHVWRÀXVVR" 3HUWURYDUORFDOFROLDPRGLUHWWDPHQWHO¶LQWHJUDOHGHOÀXVVRSHUXQDVIHUDDUEL WUDULD6D,OYHUVRUHQRUPDOHYHUVRO¶HVWHUQRVXXQDVIHUDGLUDJJLRDq

4XLVXOODVIHUD

H

,OÀXVVRGL)YHUVRO¶HVWHUQRDWWUDYHUVRTXDOVLDVLVIHUDFRQFHQWURQHOO¶RULJLQHq p

La legge di Gauss: una delle quattro grandi leggi dell’elettromagnetismo z

/¶(VHPSLRKDDQFRUDDOWURGDLQVHJQDUFL1HOODWHRULDGHOO¶HOHWWURPDJQHWLVPRLO FDPSRHOHWWULFRFUHDWRGDXQDFDULFDSXQWXDOHTFROORFDWDQHOO¶RULJLQHq

S

GRYH P q XQD FRVWDQWH ¿VLFD U q LO YHWWRUH SRVL]LRQH GHO SXQWR [ \ ]  H r = ƒ U ƒ = 1[ + \ + ]1HOODQRWD]LRQHGHOO¶(VHPSLR y x

Sfera Sa

-PN\YH 8QDVIHUD6DFKHFLUFRQGDXQ¶DOWUD VXSHUILFLH6/HVRPPLWjGHOOH VXSHUILFLVRQRVWDWHULPRVVHSHU FKLDUH]]D

, FDOFROL GHOO¶(VHPSLR  PRVWUDQR FKH LO ÀXVVR ULYROWR YHUVR O¶HVWHUQR GL ( DWWUDYHUVRTXDOVLDVLVIHUDFHQWUDWDQHOO¶RULJLQHqT>PPDTXHVWRULVXOWDWRQRQYDOH VRORSHUOHVIHUH$QFKHLOÀXVVRYHUVRO¶HVWHUQRGL(DWWUDYHUVRTXDOVLDVLVXSHU ¿FLHFKLXVD6DOFXLLQWHUQRVLWURYLO¶RULJLQH HDFXLVLDSSOLFKLLO7HRUHPDGHOOD GLYHUJHQ]D qT>P3HUFDSLUHSHUFKpGREELDPRVRORLPPDJLQDUHXQ¶DPSLDVIHUD 6DFHQWUDWDQHOO¶RULJLQHHWDOHFKHODVXSHU¿FLH6VLDDOVXRLQWHUQR )LJXUD  'DWRFKH

#

TXDQGRr 7 O¶LQWHJUDOHGL§ ( VXOODUHJLRQH'WUD6H6Dq]HUR4XLQGLSHULO 7HRUHPDGHOODGLYHUJHQ]D

 0S;LVYLTHKLSSHKP]LYNLUaHL\UH[LVYPH\UPMPJH[H



)URQWLHUD GL'

HLOÀXVVRGL(DWWUDYHUVR6QHOODGLUH]LRQHFKHVLDOORQWDQDGDOO¶RULJLQHGHYHHV VHUHXJXDOHDOÀXVVRGL(DWWUDYHUVR6DQHOODVWHVVDGLUH]LRQHFLRqT>P4XHVWR HQXQFLDWRQRWRFRPHOHJJHGL*DXVVVLDSSOLFDDQFKHDGLVWULEX]LRQLGLFDULFKH SL JHQHUDOL GL TXHOOD FRQVLGHUDWD TXL FRPH YHGUHWH LQ TXDVL TXDOVLDVL WHVWR GL ¿VLFD OHJJHGL*DXVV

L’equazione di continuità dell’idrodinamica 6LD'XQDUHJLRQHGHOORVSD]LRGHOLPLWDWDGDXQDVXSHU¿FLHFKLXVDRULHQWDWD66H Y [\] qLOFDPSRGHOOHYHORFLWjGLXQÀXLGRFKHVFRUUHLQPRGRUHJRODUHLQ' d = d W[\] qODGHQVLWjGHOÀXLGRLQ [\] DOWHPSRWH) = dYDOORUDO¶HTXD ]LRQHGLFRQWLQXLWjGHOO¶LGURGLQDPLFDDIIHUPDFKH n

6HOHIXQ]LRQLKDQQRGHULYDWHSDU]LDOLSULPHFRQWLQXHO¶HTXD]LRQHGLVFHQGHGLUHW WDPHQWHGDO7HRUHPDGHOODGLYHUJHQ]DFRPHRUDYHGUHPR 3HUFRPLQFLDUHO¶LQWHJUDOH

q LO WDVVR D FXL OD PDVVD HVFH GD ' DWWUDYHUVR 6 ³HVFH´ SHUFKp Q q LO YHUVRUH HVWHUQR 3HUFDSLUHSHUFKpFRQVLGHULDPRXQHOHPHQWRGLDUHD¢sVXOODVXSHU¿FLH )LJXUD   ,Q XQ EUHYH LQWHUYDOOR GL WHPSR ¢W LO YROXPH ¢9 GHO ÀXLGR FKH DWWUDYHUVD O¶HOHPHQWR q DOO¶LQFLUFD XJXDOH DO YROXPH GHO FLOLQGUR FRQ DUHD GHOOD EDVH¢sHDOWH]]D Y¢W  QGRYHYqXQYHWWRUHYHORFLWjDSSOLFDWRLQXQSXQWR GHOO¶HOHPHQWR

#

/DPDVVDGLTXHVWRYROXPHGLÀXLGRqDOO¶LQFLUFD

HTXLQGLLOWDVVRDFXLODPDVVDÀXLVFHIXRULGD'DWWUDYHUVRO¶HOHPHQWRqFLUFD

2WWHQLDPRFRVuO¶DSSURVVLPD]LRQH

FRPHVWLPDGHOWDVVRPHGLRDFXLODPDVVDÀXLVFHDWWUDYHUVR6,Q¿QHIDFHQGR WHQGHUH¢s :H¢W :VLKDLOWDVVRLVWDQWDQHRDFXLODPDVVDHVFHGD'DWWUD YHUVR6

v Δt

h  (v Δ t) . n

Δ S

-PN\YH  ,OIOXLGRFKHVFRUUHYHUVRO¶DOWR DWWUDYHUVRO¶HOHPHQWR¢sLQXQEUHYH WHPSR¢WULHPSLHXQ³FLOLQGUR´LOFXL YROXPHqDSSURVVLPDWLYDPHQWH EDVH* DOWH]]D = Y Q¢s¢W

#



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

FKHSHULOQRVWURVSHFL¿FRÀXVVRq

6LD RUD % XQD VIHUD FRQ FHQWUR QHO SXQWR 4 DOO¶LQWHUQR GHO ÀXLGR ,O YDORUH PHGLRGL§ )VX%q

#

YROXPHGL% &RPH FRQVHJXHQ]D GHOOD FRQWLQXLWj GHOOD GLYHUJHQ]D HVLVWH HIIHWWLYDPHQWH XQ SXQWR3LQ%LQFXL§ )DVVXPHTXHVWRYDORUH4XLQGL

#

YROXPHGL%

YROXPHGL%

WDVVRDFXLODPDVVDHVFHGD%DWWUDYODVXDVXS6  YROXPHGL%   /¶XOWLPR WHUPLQH GHOO¶HTXD]LRQH GHVFULYH OD GLPLQX]LRQH GHOOD PDVVD SHU XQLWj GLYROXPH $GHVVRIDFFLDPRWHQGHUHD]HURLOUDJJLRGL%PDQWHQHQGR¿VVRLOFHQWUR4,O SULPRPHPEURGHOO¶(TXD]LRQH  WHQGHD § ) 4 O¶XOWLPRD - 0d>0W 4/¶XJXD JOLDQ]DGLTXHVWLGXHOLPLWLqO¶HTXD]LRQHGLFRQWLQXLWj

#

#

/¶HTXD]LRQHGLFRQWLQXLWj³VSLHJD´§ )/DGLYHUJHQ]DGL)LQXQSXQWRqLO WDVVRDFXLODGHQVLWjGHOÀXLGRGHFUHVFHLQTXHOSXQWR,O7HRUHPDGHOODGLYHU JHQ]D

GLFH DGHVVR FKH LO FDOR PHGLR GHOOD GHQVLWj GHO ÀXLGR QHOOD UHJLRQH ' q FRP SHQVDWRGDOODPDVVDWUDVSRUWDWDDWWUDYHUVRODVXSHU¿FLH6,OWHRUHPDqTXLQGLXQ HQXQFLDWRUHODWLYRDOODFRQVHUYD]LRQHGHOODPDVVD

Unificazione dei teoremi sugli integrali 6HSHQVLDPRDXQFDPSRELGLPHQVLRQDOH) = 0 [\ L + 1 [\ MFRPHDXQFDPSR WULGLPHQVLRQDOHODFXLFRPSRQHQWHNq]HURVLKD§ ) = 00>0[ + 01>0\ HOD IRUPDQRUPDOHGHO7HRUHPDGL*UHHQVLSXzVFULYHUHFRPH

#

#

$OORVWHVVRPRGR§ * ) N = 01>0[ - 00>0\ HTXLQGLODIRUPDWDQJHQ]LDOHGHO 7HRUHPDGL*UHHQVLSXzVFULYHUHFRPH

 0S;LVYLTHKLSSHKP]LYNLUaHL\UH[LVYPH\UPMPJH[H



$GHVVRFKHOHXJXDJOLDQ]HGHO7HRUHPDGL*UHHQVRQRLQQRWD]LRQH³QDEOD´SRV VLDPRQRWDUQHODUHOD]LRQHFRQTXHOOHGHO7HRUHPDGL6WRNHVHGHO7HRUHPDGHOOD GLYHUJHQ]D Il Teorema di Green e le sue generalizzazioni a tre dimensioni

)RUPDQRUPDOHGHO7HRUHPDGL*UHHQ

7HRUHPDGHOODGLYHUJHQ]D )RUPDWDQJHQ]LDOHGHO7HRUHPDGL*UHHQ

7HRUHPDGL6WRNHV

6L QRWL FRPH LO7HRUHPD GL 6WRNHV JHQHUDOL]]D OD IRUPD WDQJHQ]LDOH URWRUH  GL TXHOORGL*UHHQGDXQDVXSHU¿FLHQHOSLDQRDXQDVXSHU¿FLHQHOORVSD]LRWULGLPHQ VLRQDOH,QHQWUDPELLFDVLO¶LQWHJUDOHGHOODFRPSRQHQWHQRUPDOHGLURW)VXOO¶LQ WHUQRGHOODVXSHU¿FLHqXJXDOHDOODFLUFROD]LRQHGL)OXQJRODIURQWLHUD $QDORJDPHQWH LO 7HRUHPD GHOOD GLYHUJHQ]D JHQHUDOL]]D OD IRUPD QRUPDOH ÀXVVR GLTXHOORGL*UHHQGDXQDUHJLRQHELGLPHQVLRQDOHGHOSLDQRDXQDWULGL PHQVLRQDOHGHOORVSD]LR1HLGXHFDVLO¶LQWHJUDOHGL§ )VXOO¶LQWHUQRGHOODUHJLRQH qXJXDOHDOÀXVVRWRWDOHGHOFDPSRDWWUDYHUVRODIURQWLHUD 1RQq¿QLWDTXL7XWWLTXHVWLULVXOWDWLVLSRVVRQRFRQVLGHUDUHFRPHYDULDQWLGL XQXQLFRWHRUHPDIRQGDPHQWDOH5LSHQVLDPRDOWHRUHPDIRQGDPHQWDOHGHOFDOFROR LQWHJUDOHDIIHUPDFKHVH¦ [ qGLIIHUHQ]LDELOHVX DE HFRQWLQXDVX>DE@DOORUD

#

n  –i

ni a

b

x

#

6HSRQLDPR) = ¦ [ LVXWXWWR>DE@DOORUD G¦>G[ = § )6HGH¿QLDPRFRPH -PN\YH ,YHUVRULHVWHUQLQRUPDOLDOODIURQWLHUD YHUVRUHQQRUPDOHDOODIURQWLHUDGL>DE@LLQEH- LLQD )LJXUD DOORUD

GL>DE@QHOORVSD]LRXQLGLPHQVLRQDOH

= ÀXVVRWRWDOHGL)YHUVRO¶HVWHUQRDWWUDYHUVRODIURQWLHUDGL>DE@ ,OWHRUHPDIRQGDPHQWDOHDIIHUPDTXLQGLFKH

,OWHRUHPDIRQGDPHQWDOHGHOFDOFRORLQWHJUDOHODIRUPDQRUPDOHGHO7HRUHPDGL *UHHQHLO7HRUHPDGHOODGLYHUJHQ]DDIIHUPDQRWXWWLFKHO¶LQWHJUDOHGHOO¶RSHUDWRUH GLIIHUHQ]LDOH§ DJHQWHVXXQFDPSR)LQXQDUHJLRQHqXJXDOHDOODVRPPDGHOOH FRPSRQHQWLQRUPDOLGHOFDPSRVXOODIURQWLHUDGHOODUHJLRQH 4XLLQWHUSUHWLDPR O¶LQWHJUDOHFXUYLOLQHRGHO7HRUHPDGL*UHHQHO¶LQWHJUDOHGLVXSHU¿FLHGHO7HRUHPD GHOODGLYHUJHQ]DFRPH³VRPPH´VXOODIURQWLHUD

#



*HWP[VSV¶0U[LNYHaPVULZ\PJHTWP]L[[VYPHSP

,O7HRUHPDGL6WRNHVHODIRUPDWDQJHQ]LDOHGHO7HRUHPDGL*UHHQDIIHUPDQR FKHFRQO¶RSSRUWXQDRULHQWD]LRQHO¶LQWHJUDOHGHOODFRPSRQHQWHQRUPDOHGHOUR WRUHDJHQWHVXXQFDPSRqXJXDOHDOODVRPPDGHOOHFRPSRQHQWLWDQJHQ]LDOLGHO FDPSRVXOODIURQWLHUDGLTXHOODVXSHU¿FLH /DEHOOH]]DGLTXHVWHLQWHUSUHWD]LRQLqFKHVLFRQIRUPDQRWXWWHDXQVLQJROR SULQFLSLRXQL¿FDQWHFKHSRVVLDPRHQXQFLDUHFRPHVHJXH Un teorema fondamentale unificante del calcolo integrale vettoriale

/¶LQWHJUDOHGLXQRSHUDWRUHGLIIHUHQ]LDOHDJHQWHVXXQFDPSRLQXQDUHJLRQH qXJXDOHDOODVRPPDGHOOHFRPSRQHQWLGHOFDPSRDSSURSULDWHSHUO¶RSHUDWRUH VXOODIURQWLHUDGHOODUHJLRQH

* ( 7 0 ; 6 3 6



Equazioni differenziali del primo ordine PANORAMICA

Sommario del capitolo  Equazioni differenziali del primo ordine e problemi ai valori iniziali

In questo capitolo inizieremo lo studio delle equazioni differenziali, uno degli argomenti più importanti dell’analisi matematica, per le numerose applicazioni in vari ambiti scientifici, tecnologici ed economici. Tratteremo ora le equazioni differenziali del primo ordine, quelle cioè in cui compare solo la derivata prima della funzione incognita.

 Equazioni differenziali a variabili separabili  Equazioni lineari del primo ordine  Equazioni riconducibili a equazioni lineari o a variabili separabili  Applicazioni

 Equazioni differenziali del primo ordine e problemi ai valori iniziali ,QL]LDPRFRQODGH¿QL]LRQHGLHTXD]LRQHGLIIHUHQ]LDOHGHOSULPRRUGLQHHFROSUR EOHPD DL YDORUL LQL]LDOL HQXQFLDQGR GHL ULVXOWDWL UHODWLYL DOO¶HVLVWHQ]D H XQLFLWj GHOODVROX]LRQHVLDLQSLFFRORFKHLQJUDQGH

 Metodo di Eulero

Equazioni differenziali generali del primo ordine e soluzioni

 Soluzioni grafiche di equazioni autonome

6LGLFHHTXD]LRQHGLIIHUHQ]LDOHGHOSULPRRUGLQHXQ¶HTXD]LRQH

 Sistemi di equazioni e piano delle fasi



LQFXL¦ [\ qXQDIXQ]LRQHGLGXHYDULDELOLGH¿QLWDLQXQDUHJLRQHGHOSLDQR[\ /¶HTXD]LRQHVLGLFHGHOSULPRRUGLQHSHUFKpFRQWLHQHVROWDQWRODGHULYDWDSULPD G\>G[ HQRQOHGHULYDWHGLRUGLQHVXSHULRUH 6LQRWLFKHOHHTXD]LRQL H VRQRHTXLYDOHQWLDOO¶(TXD]LRQH  HFKHOHWUHIRUPHYHUUDQQRXWLOL]]DWHLQGLIIH UHQWHPHQWHQHOWHVWR 8QDVROX]LRQHGHOO¶(TXD]LRQH  qXQDIXQ]LRQHGHULYDELOH\ = \ [ GH¿QLWD LQXQLQWHUYDOOR, HYHQWXDOPHQWHLOOLPLWDWR GLYDORULGL[WDOHFKH

VXWDOHLQWHUYDOOR2YYHURVRVWLWXHQGR\ [ HODVXDGHULYDWD\¿ [ QHOO¶(TXD]LRQH   O¶HTXD]LRQH ULVXOWDQWH q YDOLGD SHU RJQL [ DSSDUWHQHQWH DOO¶LQWHUYDOOR , /D VROX]LRQHJHQHUDOHGLXQ¶HTXD]LRQHGLIIHUHQ]LDOHGHOSULPRRUGLQHqO¶LQVLHPHGL WXWWHOHSRVVLELOLVROX]LRQLHQHOODVXDHVSUHVVLRQHFRPSDUHVHPSUHXQDFRVWDQWH DUELWUDULD



*HWP[VSV¶,X\HaPVUPKPMMLYLUaPHSPKLSWYPTVVYKPUL

ESEMPIO 1

0RVWUDUHFKHRJQLHOHPHQWRGHOODIDPLJOLDGLIXQ]LRQL

qXQDVROX]LRQHGHOO¶HTXD]LRQHGLIIHUHQ]LDOHGHOSULPRRUGLQH

QHOO¶LQWHUYDOOR q FRQ&FRVWDQWHTXDOVLDVL Soluzione 'HULYDQGR\ = &>[ + VLRWWLHQH

2FFRUUHGLPRVWUDUHFKHVRVWLWXHQGR\FRQ &>[ + HG\>G[FRQ- &>[QHOO¶HVSUHV VLRQHGHOO¶HTXD]LRQHGLIIHUHQ]LDOHTXHVWDqVRGGLVIDWWD,QDOWUHSDUROHRFFRUUH YHUL¿FDUHFKHSHURJQL[ H q 

/D YDOLGLWj GL TXHVW¶XOWLPD HTXD]LRQH VL RWWLHQH LPPHGLDWDPHQWH HVSDQGHQGR O¶HVSUHVVLRQHDVHFRQGRPHPEUR

3HUWDQWRSHURJQLYDORUHGL&ODIXQ]LRQH\ = &>[ + qXQDVROX]LRQHGHOO¶HTXD ]LRQHGLIIHUHQ]LDOH

&RPH QHO FDVR GHOOD ULFHUFD GHOOH SULPLWLYH LQ PROWL FDVL RFFRUUH GHWHUPL QDUH DQ]LFKp OD VROX]LRQH JHQHUDOH XQD VROX]LRQH SDUWLFRODUH GL XQ¶HTXD]LRQH GLIIHUHQ]LDOHGHOSULPRRUGLQH\¿ = ¦ [\ FKHVRGGLV¿XQDFHUWDFRQGL]LRQH$G HVHPSLRODVROX]LRQHSDUWLFRODUHFKHVRGGLVIDODFRQGL]LRQHLQL]LDOH\ [ = \ qODVROX]LRQH\ = \ [ DYHQWHSHU[ = [LOYDORUH\,OJUD¿FRGLWDOHVROX]LRQH SDUWLFRODUHSDVVDSHUWDQWRSHULOSXQWR [\ GHOSLDQR[\ 6LFKLDPDSUREOHPDDLYDORULLQL]LDOLGHOSULPRRUGLQHXQ¶HTXD]LRQHGLIIH UHQ]LDOH\¿ = ¦ [\ DVVRFLDWDDXQDFRQGL]LRQHLQL]LDOH\ [ = \ 6RWWRLSRWHVLSLXWWRVWRJHQHUDOLVXOODIXQ]LRQH¦FKHFRPSDUHQHOO¶HTXD]LRQH GLIIHUHQ]LDOHXQSUREOHPDDLYDORULLQL]LDOLDPPHWWHVHPSUHXQ¶XQLFDVROX]LRQH DOPHQRLQXQLQWRUQRGHOSXQWR [\ FKHGjODFRQGL]LRQHLQL]LDOH,OVHJXHQWH ULVXOWDWRqXQRGHLSLLPSRUWDQWLQHOODWHRULDGHOOHHTXD]LRQLGLIIHUHQ]LDOLODVXD GLPRVWUD]LRQHVLSXzWURYDUHLQWHVWLSLDYDQ]DWLGLDQDOLVLPDWHPDWLFD

 ,X\HaPVUPKPMMLYLUaPHSPKLSWYPTVVYKPULLWYVISLTPHP]HSVYPPUPaPHSP



TEOREMA 1

Teorema di Cauchy di esistenza e unicità locale

6LD¦XQDIXQ]LRQHGH¿QLWDLQXQUHWWDQJROR5 = >DE@*>FG@GHOSLDQRFRQWL QXD5VXLQVLHPHFRQODVXDGHULYDWD¦\HVLD [\ XQSXQWRLQWHUQRD5$OORUD LOSUREOHPDDLYDORULLQL]LDOL \¿ = ¦ [\ \ [ = \

^

DPPHWWHXQ¶XQLFDVROX]LRQHGH¿QLWDLQXQLQWHUYDOORDSHUWRFHQWUDWRLQ[FLRq HVLVWHXQUDJJLRd 7 HXQ¶XQLFDIXQ]LRQH\ [ -d[ +d : ℝGHULYDELOH WDOHFKH\ [ = \H \¿ [ = ¦ [\ [  k[H [ -d[ +d 

ESEMPIO 2

0RVWUDUHFKHODIXQ]LRQH

qODVROX]LRQHGHOSUREOHPDDLYDORULLQL]LDOLGHOSULPRRUGLQH

Soluzione /¶HTXD]LRQH y

qXQ¶HTXD]LRQHGLIIHUHQ]LDOHGHOSULPRRUGLQHFRQ¦ [\ = \ - [ $OSULPRPHPEURGHOO¶HTXD]LRQH

2 ⎛0, 2 ⎛ ⎝ 3⎝ 1 –4

–2

y  (x  1)  1 e x 3

2

4

–1

$OVHFRQGRPHPEURGHOO¶HTXD]LRQH

–2 –3 –4

/DIXQ]LRQHVRGGLVIDOHFRQGL]LRQLLQL]LDOLSHUFKp -PN\YH *UDILFRGHOODVROX]LRQHGHOSUREOHPD DLYDORULLQL]LDOLGHOO¶(VHPSLR

,OJUD¿FRGHOODIXQ]LRQHqULSRUWDWRQHOOD)LJXUD

,O7HRUHPDDVVLFXUDO¶HVLVWHQ]DHO¶XQLFLWjLQSLFFRORFLRqLQXQLQWRUQRGHOSXQ WR[,QYHFHO¶HVLVWHQ]DLQJUDQGHFLRqVXWXWWRO¶LQWHUYDOOR>DE@QRQqJDUDQWLWD FRPHPRVWUDLOVHJXHQWHHVHPSLR

x



*HWP[VSV¶,X\HaPVUPKPMMLYLUaPHSPKLSWYPTVVYKPUL

ESEMPIO 3

,OSUREOHPDDLYDORULLQL]LDOL

^

\¿ = \ \  = 

LQFXLODIXQ]LRQH¦ [\ = \qGH¿QLWDHFRQWLQXDLQVLHPHFRQODVXDGHULYDWD  SDU]LDOH¦\VXWXWWRLOSLDQRℝKDFRPHVROX]LRQHODIXQ]LRQH\ = FKHq -[ GH¿QLWDLQ -q HQRQqSUROXQJDELOHLQWXWWRℝ

3HUJDUDQWLUHO¶HVLVWHQ]DHXQLFLWjLQJUDQGHRFFRUUHLPSRUUHLSRWHVLSLIRUWLGL TXHOOHULFKLHVWHQHO7HRUHPDFRPHTXHOOHULSRUWDWHQHOVHJXHQWHULVXOWDWR TEOREMA 2

Teorema di Cauchy di esistenza e unicità globale

6LD¦XQDIXQ]LRQHGH¿QLWDQHOODVWULVFLD>DE@ * ℝFRQWLQXDLQVLHPHFRQOD VXDGHULYDWD¦\6XSSRQLDPRLQROWUHFKHHVLVWDQRGXHFRQVWDQWL+. Ú WDOLFKH 

ƒ ¦ [\ ƒ … + + .ƒ \ ƒ k[H >DE@

k\H ℝ



$OORUDSHURJQL[LQWHUQRDG>DE@HSHURJQL\ H ℝLOSUREOHPDDLYDORUL LQL]LDOL

^

\¿ = ¦ [\ \ [ = \

DPPHWWHXQ¶XQLFDVROX]LRQHGH¿QLWDVXWXWWRO¶LQWHUYDOOR>DE@ /DFRQGL]LRQH  ULFKLHGHVRVWDQ]LDOPHQWHFKHODIXQ]LRQH¦FUHVFDDOSLOLQHDU PHQWHULVSHWWRDOODYDULDELOH\1RWLDPRFKHODIXQ]LRQHQHOO¶HTXD]LRQHGLIIHUHQ ]LDOHGHOO¶(VHPSLRSXUHVVHQGRGH¿QLWDVXWXWWRℝQRQVRGGLVIDODFRQGL]LRQH   SHUFKp q D FUHVFLWD TXDGUDWLFD ULVSHWWR D \ &RPH YHGUHPR SL DYDQWL QHO 3DUDJUDIRODFRQGL]LRQH  VDUjLQYHFHVRGGLVIDWWDQHOFDVRGHOOHHTXD]LRQL GLIIHUHQ]LDOLOLQHDUL 2VVHUYLDPRLQ¿QHFKHODFRQGL]LRQH  qDXWRPDWLFDPHQWHVRGGLVIDWWDLQXQR GHLVHJXHQWLGXHFDVL  VH¦ [\ qOLPLWDWDVXWXWWDODVWULVFLD>DE@*ℝ LQIDWWLEDVWDSUHQGHUH. =   VHODGHULYDWDSDU]LDOH¦\ [\ qOLPLWDWDVXWXWWDODVWULVFLD>DE@*ℝLQIDWWLVH ƒ ¦\ [\ ƒ … / SHUTXDOFKH/ 7 DOORUDSHURJQL [\ H >DE@*ℝVLKD

ƒ

ƒ ¦ [\ ƒ = ¦ [ +

\

ƒ

¦ [W GW … ƒ ¦ [ ƒ+/ƒ \ƒ … 0+/ƒ \ƒ  2 \  GRYHDEELDPRGHQRWDWRFRQ0LOPDVVLPRGHOODIXQ]LRQHƒ ¦ [ ƒLQ>DE@

Campi direzionali: rappresentazione delle curve soluzione 2JQLYROWDFKHVLVSHFL¿FDXQDFRQGL]LRQHLQL]LDOH\ [ = \ SHUXQ¶HTXD]LRQHGLI IHUHQ]LDOH\¿ = ¦ [\ ODFXUYDVROX]LRQH LOJUD¿FRGHOODVROX]LRQH GHYHSDVVDUH SHULOSXQWR [\ HDYHUHSHQGHQ]D¦ [\ LQWDOHSXQWRÊSRVVLELOHUDSSUHVHQ WDUHJUD¿FDPHQWHWDOLSHQGHQ]HGLVHJQDQGRSLFFROLVHJPHQWLGLSHQGHQ]D¦ [\  LQSDUWLFRODULSXQWL [\ GHOODUHJLRQHGHOSLDQR[\FKHFRVWLWXLVFHLOGRPLQLRGL¦ 2JQLVHJPHQWRKDODVWHVVDSHQGHQ]DGHOODFXUYDVROX]LRQHSDVVDQWHSHU [\ HG qSHUWDQWRWDQJHQWHDOODFXUYDLQWDOHSXQWR/DUDSSUHVHQWD]LRQHULVXOWDQWHSUHQGH LOQRPHGLFDPSRGLUH]LRQDOH RFDPSRGLGLUH]LRQL HFRQVHQWHGLYLVXDOL]]DUH

 ,X\HaPVUPKPMMLYLUaPHSPKLSWYPTVVYKPULLWYVISLTPHP]HSVYPPUPaPHSP



ODIRUPDJHQHUDOHGHOOHFXUYHVROX]LRQH/D)LJXUDDPRVWUDXQFDPSRGLUH]LR QDOHPHQWUHOD)LJXUDEPRVWUDORVWHVVRFDPSRGLUH]LRQDOHHXQDVROX]LRQH SDUWLFRODUH&RPHVLYHGHLVHJPHQWLLQGLFDQRODGLUH]LRQHDVVXQWDGDOODFXUYD VROX]LRQHLQRJQLSXQWRDWWUDYHUVDWR y

–4

–2

y

4

4

2

2

0

2

4

x

–4

–2

0

–2

–2

–4

–4

(a)

⎛ 0, 2 ⎛ ⎝ 3⎝

-PN\YH D &DPSRGLUH]LRQDOHSHU

2

4

x

E /DSDUWLFRODUHFXUYDVROX]LRQH SDVVDQWHSHULOSXQWR (VHPSLR 

(b)

/D)LJXUDPRVWUDWUHFDPSLGLUH]LRQDOLHSRVVLDPRDQDOL]]DUHLOFRPSRUWD PHQWRGHOOHFXUYHVROX]LRQHRVVHUYDQGRLVHJPHQWLWDQJHQWLLQHVVLUDSSUHVHQWDWL ,FDPSLGLUH]LRQDOLVRQRXWLOLSHUFKpUDSSUHVHQWDQRO¶DQGDPHQWRFRPSOHVVLYRGHO ODIDPLJOLDGHOOHFXUYHVROX]LRQHGLXQDGDWDHTXD]LRQHGLIIHUHQ]LDOH$GHVHP SLRLOFDPSRGLUH]LRQDOHGHOOD)LJXUDEPRVWUDFKHSHURJQLVROX]LRQH\ [  GHOO¶HTXD]LRQHGLIIHUHQ]LDOHLQGLFDWDQHOOD¿JXUDYDOHOLP[:q\ [ = &RPHYH GUHPRFRQRVFHUHO¶DQGDPHQWRJHQHUDOHGHOOHFXUYHVROX]LRQHqVSHVVRGLLPSRU WDQ]DIRQGDPHQWDOHSHUFRPSUHQGHUHHSUHYHGHUHLOFRPSRUWDPHQWRGLXQVLVWHPD UHDOHGHVFULWWRGDXQ¶HTXD]LRQHGLIIHUHQ]LDOH

(a) y'  y  x 2

(b) y'  –

2xy 1  x2

(c) y'  (1  x)y  x 2

&RVWUXLUHPDQXDOPHQWHXQFDPSRGLUH]LRQDOHSXzULVXOWDUHPROWRODERULRVRH WXWWLJOLHVHPSLSUHVHQWDWLVRQRVWDWLFUHDWLFRQLOFRPSXWHU

-PN\YH &DPSLGLUH]LRQDOL ULJDVXSHULRUH H FXUYHVROX]LRQHSDUWLFRODUL ULJD LQIHULRUH 1HOOHUDSSUHVHQWD]LRQL FUHDWHFRQLOFRPSXWHULVHJPHQWL GLUH]LRQDOLYHQJRQRDYROWHGLVHJQDWL FRPHIUHFFHFRPHLQTXHVWRFDVR &LzQRQVLJQLILFDWXWWDYLDFKHDOOD SHQGHQ]DGHLVHJPHQWLVLDDVVRFLDWD XQDGLUH]LRQH



*HWP[VSV¶,X\HaPVUPKPMMLYLUaPHSPKLSWYPTVVYKPUL

 Equazioni differenziali a variabili separabili ,QL]LDPRODWUDWWD]LRQHGHLPHWRGLULVROXWLYLSHUOHHTXD]LRQLGLIIHUHQ]LDOLGHOSUL PRRUGLQHFRQOHHTXD]LRQLDYDULDELOLVHSDUDELOLSHUOHTXDOLHVLVWHXQSURFHGL PHQWRFKHSRUWDDOODVROX]LRQHFHUFDWD

Struttura e teoremi di esistenza e unicità 4XDQGRODIXQ]LRQH¦ [\ SXzHVVHUHVFULWWDLQIRUPDGLSURGRWWRGLGXHIXQ]LRQL GLXQDVRODYDULDELOHFLRqVH

#

¦ [\ = J [  K \ DOORUDO¶HTXD]LRQHVLGLFHDYDULDELOLVHSDUDELOL/DYHUL¿FDGHOODYDOLGLWjGHOOH LSRWHVLGHO7HRUHPDRGHO7HRUHPDLQTXHVWRFDVRqPROWRVHPSOLFHHL7HRUHPL GLHVLVWHQ]DHXQLFLWjORFDOHRJOREDOHVLSRVVRQRULVFULYHUHQHOVHJXHQWHPRGR Corollario 1

6HJqXQDIXQ]LRQHFRQWLQXDGH¿QLWDLQXQLQWHUYDOOR>DE@(ℝHKqXQD IXQ]LRQHFRQWLQXDFRQGHULYDWDFRQWLQXDGH¿QLWDVXXQLQWHUYDOOR>FG@(ℝ DOORUDSHURJQL [\ H>DE@*>FG@HVLVWHXQ¶XQLFDVROX]LRQHGHOSUREOHPD DLYDORULLQL]LDOL \¿ = J [  K \    \ [ = \

^

#

GH¿QLWDLQXQLQWRUQRGHOSXQWR[ ,QROWUHVHKqGH¿QLWDLQWXWWRℝHGHVLVWRQRGXHFRVWDQWLSRVLWLYH+.WDOL FKH ƒ K \ ƒ…++.ƒ \ ƒ

k\Hℝ

DOORUDLOSUREOHPDDLYDORULLQL]LDOLDPPHWWHXQ¶XQLFDVROX]LRQHGH¿QLWDVXWXWWR O¶LQWHUYDOOR>DE@ ESEMPIO 4

3URYDUHFKHLOSUREOHPDDLYDORULLQL]LDOL [ \¿ =  + \ \  = 

^

DPPHWWHXQ¶XQLFDVROX]LRQHGH¿QLWDLQWXWWRℝ Soluzione  /¶HTXD]LRQHGLIIHUHQ]LDOHqDYDULDELOLVHSDUDELOLFRQJ [ = [HK \ = /H  + \ IXQ]LRQLJHKVRQRHQWUDPEHGH¿QLWHHFRQWLQXHVXWXWWRℝFRQ \ K¿ \ =  + \  IXQ]LRQHOLPLWDWDVXWXWWRℝ4XLQGLSHURJQLLQWHUYDOOR>DE@FRQWHQHQWHO¶RULJLQH LOSUREOHPDDLYDORULLQL]LDOLDPPHWWHXQ¶XQLFDVROX]LRQHGH¿QLWDLQWXWWR>DE@ $OORUDODVROX]LRQHqGH¿QLWDVXWXWWRℝ

 ,X\HaPVUPKPMMLYLUaPHSPH]HYPHIPSPZLWHYHIPSP

Trovare la soluzione 3HUGHWHUPLQDUHODVROX]LRQHGHOSUREOHPDDLYDORULLQL]LDOL  SHUXQ¶HTXD]LRQH DYDULDELOLVHSDUDELOLVLSURFHGHQHOVHJXHQWHPRGR 6LFDOFRODLOYDORUH K \ 6H K \ = DOORUDqLPPHGLDWRYHUL¿FDUH FKHOD IXQ]LRQHFRVWDQWH\ = \qODVROX]LRQHFHUFDWD 6HK \ Z DOORUDSHULO7HRUHPDGHOODSHUPDQHQ]DGHOVHJQRSHUOHIXQ]LRQL FRQWLQXHGLXQDYDULDELOHHVLVWHXQLQWRUQRGL\LQFXLODIXQ]LRQHKVLPDQWLHQH GLYHUVDGD3RVVLDPRDOORUDGLYLGHUHHQWUDPELLPHPEULGHOO¶HTXD]LRQHGLIIH UHQ]LDOHSHUK \ RWWHQHQGR \¿ = J [  K \ \¿ [ /DVROX]LRQHFHUFDWDVRGGLVIDTXLQGLO¶XJXDJOLDQ]D = J [  K \ [ 'HQRWDQGR FRQ * [  XQD TXDOXQTXH SULPLWLYD GHOOD IXQ]LRQH J H FRQ + \  XQD TXDOXQTXHSULPLWLYDGHOODIXQ]LRQH   FKHqGH¿QLWDHFRQWLQXDDOPHQRLQXQ K \ LQWRUQRGL\ VLRWWLHQHTXLQGL + \ [ = * [ + &





,PSRQHQGRQHOO¶XOWLPDUHOD]LRQHODFRQGL]LRQHLQL]LDOH\ [ = \VLRWWLHQH + \ = * [ + & FKHSHUPHWWHGLULFDYDUHLOYDORUHGHOODFRVWDQWH& = + \ - * [ HVRVWLWXLUOR QHOO¶(T   + \ [ = * [ - * [ + + \ 





/¶(T  GH¿QLVFHLPSOLFLWDPHQWHODVROX]LRQH\ [ LQXQLQWRUQRGL[HODVR OX]LRQH SXz HVVHUH GHWHUPLQDWD LQ PRGR HVSOLFLWR VH q SRVVLELOH GHWHUPLQDUH O¶HVSUHVVLRQHGHOODIXQ]LRQHLQYHUVDGL+ \ [ = + - * [ - * [ + + \  ,O IDWWR FKH O¶(T   GH¿QLVFD LPSOLFLWDPHQWH OD VROX]LRQH \ [  q FRQVHJXHQ]D GHO7HRUHPDGL'LQLVXOOHIXQ]LRQLLPSOLFLWH 7HRUHPDGHO&DSLWROR ,QIDWWL SRVWR ) [\ = + \ - * [ + * [ - + \ ODIXQ]LRQH) [\ qFRQWLQXDLQVLHPHFRQOHVXHGHULYDWHSDU]LDOL)[)\HVLKD  Z  )\ [\ = +¿ \ = K \ 4XLQGLSHULO7HRUHPDGL'LQLO¶HTXD]LRQH) [\ = GH¿QLVFHLPSOLFLWDPHQWH ODVROX]LRQHFHUFDWDLQXQLQWRUQRGHOSXQWR [\ 7XWWDYLDQRQqGHWWRFKHVL ULHVFDHIIHWWLYDPHQWHDHVSOLFLWDUHODYDULDELOH\LQIXQ]LRQHGL[,QTXHVWRFDVROD FXUYDVROX]LRQHULPDUUjGH¿QLWDLQIRUPDLPSOLFLWDGDOO¶HTXD]LRQH + \ - * [ + * [ - + \ = 





FKHqO¶HTXD]LRQHFDUWHVLDQDGHOODFXUYDVROX]LRQH 1HOODSUDWLFDLSDVVLSHUGHWHUPLQDUHODVROX]LRQHGHOO¶HTXD]LRQHGLIIHUHQ]LDOH \¿ = J [  K \ VRQRLVHJXHQWL

#





*HWP[VSV¶,X\HaPVUPKPMMLYLUaPHSPKLSWYPTVVYKPUL

#

G\ G[ = J [  K \ G\ K \ = J [  G[ G\ 2K \ = 2J [ G[ + \ = * [ + &

G\ VLVFULYH\¿QHOODIRUPD  G[

+ \ = * [ - * [ + + \ 

VLLPSRQHODFRQGL]LRQHLQL]LDOH

\ = + - * [ - * [ + + \

VLFHUFDGLHVSOLFLWDUHOD\

#

VLGLYLGHSHUK \ HVLPROWLSOLFDSHUG[ VLSDVVDDJOLLQWHJUDOL VLLQWHJUD

ESEMPIO 1

5LVROYHUHLOSUREOHPDDLYDORULLQL]LDOL \¿ = H[+ \ \  = -  Soluzione Ê XQ¶HTXD]LRQH D YDULDELOL VHSDUDELOL FRQ J [ = H[ H K \ = H\ 3RLFKp  K -  = H Z SRVVLDPRGLYLGHUHSHUK \ HSURFHGHUHQHOPRGRDSSHQDLOOXVWUDWR

^

#

G\ [ \ G[ = H  H 3 3

-\ [ 2H G\ = 2H G[

H-\G\ = H[G[ 3

-H-\= H[ + &

,PSRQHQGRODFRQGL]LRQHLQL]LDOH\  = - VLRWWLHQH -H= H + & FLRq &= -H 6RVWLWXHQGRLOYDORUHWURYDWRSHUODFRVWDQWH&VLRWWLHQH -H-\= H[ -H GDFXLHVSOLFLWDQGRULVSHWWRD\VLWURYD \ = -OQ H -H[ FKH q O¶HVSUHVVLRQH HVSOLFLWD GHOOD VROX]LRQH \ [  2VVHUYLDPR LQ¿QH FKH OD VR OX]LRQHqGH¿QLWDVHH[6 HFLRqVH[6 OQ H = + OQ4XLQGLO¶LQWHUYDOORGL HVLVWHQ]DGHOODVROX]LRQHq -q+ OQ  VLYHGDOD)LJXUD /DVROX]LRQH QRQHVLVWHLQJUDQGHFLRqLQWXWWRℝHLQHIIHWWLODIXQ]LRQHK \ = H\FUHVFHSLFKH OLQHDUPHQWHHQRQVRQRVRGGLVIDWWHOHLSRWHVLGHO7HRUHPDGLHVLVWHQ]DHXQLFLWj JOREDOH y

-PN\YH *UDILFRGHOODVROX]LRQHGHOSUREOHPD DLYDORULLQL]LDOLGHOO¶(VHPSLR/D VROX]LRQHQRQqGHILQLWDLQWXWWRℝPD VRORLQXQDVHPLUHWWDHDPPHWWHXQ DVLQWRWRYHUWLFDOH

x = 1 + ln 2 x

(1, -1)

 ,X\HaPVUPKPMMLYLUaPHSPH]HYPHIPSPZLWHYHIPSP



ESEMPIO 2

5LVROYHUHLOSUREOHPDDLYDORULLQL]LDOL

^

  + H\ \  = 

\¿ =

Soluzione  ÊXQ¶HTXD]LRQHDYDULDELOLVHSDUDELOLFRQJ [ =  FRVWDQWH HK \ = 3RL  + H\  FKpKa- b Z SRVVLDPRGLYLGHUHSHUK \    + H\ G\ = G[

3 2  + H\ G\ = 2G[ 3 \ + H\ = [+ & ,PSRQHQGRODFRQGL]LRQHLQL]LDOHVLWURYD = &HVRVWLWXHQGRLOYDORUHWURYDWR SHU& \+ H\ = [ +  FKHGjODVROX]LRQHLQIRUPDLPSOLFLWD,QTXHVWRFDVRQRQqSRVVLELOHHVSOLFLWDUHOD \LQIXQ]LRQHGL[1HOOD)LJXUDqUDSSUHVHQWDWDODFXUYDVROX]LRQH y

x

,OSUREOHPDDLYDORULLQL]LDOL

SUHVHQWD XQ¶HTXD]LRQH GLIIHUHQ]LDOH D YDULDELOL VHSDUDELOL H KD FRPH VROX]LRQH \ =\ HNW'LVHJXLWRSUHVHQWHUHPRGLYHUVLHVHPSLGLDSSOLFD]LRQHGLWDOHHTXD]LRQH 

Crescita demografica illimitata 6WUHWWDPHQWH SDUODQGR LO QXPHUR GL LQGLYLGXL SUHVHQWL LQ XQD GHWHUPLQDWD SR SROD]LRQH DGHVHPSLRSHUVRQHSLDQWHREDWWHUL qXQDIXQ]LRQHGLVFRQWLQXDGHO WHPSRSHUFKpSXzDVVXPHUHVROWDQWRYDORULLQWHUL4XDQGRSHUzLOQXPHURGLLQ GLYLGXLGLYHQWDVXI¿FLHQWHPHQWHJUDQGHqSRVVLELOHDSSURVVLPDUHODSRSROD]LRQH FRQXQDIXQ]LRQHFRQWLQXD,QPROWHVLWXD]LRQLULVXOWDSRLUDJLRQHYROHLSRWL]]DUH FKHODIXQ]LRQHDSSURVVLPDQWHVLDGLIIHUHQ]LDELOHFRQVHQWHQGRFRVuGLXWLOL]]DUH O¶DQDOLVLPDWHPDWLFDSHUPRGHOOL]]DUHODSRSROD]LRQHHIDUHSUHYLVLRQLULJXDUGROD VXDGLPHQVLRQH $VVXPHQGRFKHODSHUFHQWXDOHGLLQGLYLGXLLQHWjULSURGXWWLYDULPDQJDFRVWDQ WHHFKHODIHUWLOLWjVLDFRVWDQWHLOWDVVRGLQDWDOLWjqSURSRU]LRQDOHLQRJQLLVWDQWH WDOQXPHUR\ W GLLQGLYLGXLSUHVHQWLQHOODSRSROD]LRQH6LDVVXPDLQROWUHFKHLO

-PN\YH &XUYDVROX]LRQHGHOSUREOHPDDLYDORUL LQL]LDOLGHOO¶(VHPSLRGHILQLWDLQ IRUPDLPSOLFLWD6LRVVHUYLFKHSDVVD SHUO¶RULJLQHGDWRFKHODFRQGL]LRQH LQL]LDOHq\  =



*HWP[VSV¶,X\HaPVUPKPMMLYLUaPHSPKLSWYPTVVYKPUL

Biomassa di lievito (mg)

y 500 400 300

WDVVRGLPRUWDOLWjGHOODSRSROD]LRQHVLDVWDELOHHSURSRU]LRQDOHD\ W 6HSRLVLWUD VFXUDQROHSDUWHQ]HRJOLDUULYLGLQXRYLLQGLYLGXLLOWDVVRGLFUHVFLWDG\>GWqGDWR GDOODGLIIHUHQ]DWUDLOWDVVRGLQDWDOLWjHLOWDVVRGLPRUWDOLWjFLRqGDOODGLIIHUHQ]D WUDOHGXHUHOD]LRQLGLSURSRU]LRQDOLWjDVVXQWH,QDOWUHSDUROHG\>GW =N\LQPRGR FKH\ =\ HNWGRYH\qODGLPHQVLRQHGHOODSRSROD]LRQHSHULOWHPSRW =&RPH SHUWXWWLLIHQRPHQLGLFUHVFLWDqSRVVLELOHFKHHVLVWDQRDOFXQHOLPLWD]LRQLLPSRVWH GDOO¶DPELHQWHFLUFRVWDQWHPDQRQHVDPLQHUHPRWDOHDVSHWWRLQTXHVWDVHGH6HNq SRVLWLYRODOHJJHGLSURSRU]LRQDOLWjG\>GW =N\GHVFULYHXQDFUHVFLWDGHPRJUD¿FD LOOLPLWDWD YHGHUHOD)LJXUD  

200 100 0 0

5 Tempo (h)

10

t

-PN\YH *UDILFRGHOODFUHVFLWDGLXQD SRSROD]LRQHGLOLHYLWREDVDWRVXLGDWL GHOOD7DEHOODLQXQSHULRGRGL RUH ;HILSSH Popolazione di lievito

7HPSR RUH           

%LRPDVVDGL OLHYLWR PJ            

ESEMPIO 3

,QXQHVSHULPHQWRODELRPDVVDGLXQDFROWXUDGLOLHYLWRqLQL]LDOPHQWHSDULD JUDPPL'RSRPLQXWLODPDVVDqGLJUDPPL$VVXPHQGRFKHO¶HTXD]LRQH GHOODFUHVFLWDGHPRJUD¿FDLOOLPLWDWDIRUQLVFDXQYDOLGRPRGHOORSHUODFUHVFLWDGHO OLHYLWRSHUPDVVHLQIHULRULDJUDPPLGRSRTXDQWRWHPSRODPDVVDUDJJLXQJH UjXQYDORUHGRSSLRULVSHWWRDOYDORUHLQL]LDOH" Soluzione 6LD\ W ODELRPDVVDGHOOLHYLWRGRSRWPLQXWL$SSOLFKLDPRLOPRGHOORGLFUHVFLWD HVSRQHQ]LDOHG\>GW =N\SHUODFUHVFLWDGHPRJUD¿FDLOOLPLWDWDDYHQWHVROX]LRQH \ =\HNW 6LKD\=\  =6DSSLDPRLQROWUHFKH \  =HN#=

5LVROYHQGRTXHVW¶HTXD]LRQHULVSHWWRDNVLRWWLHQH

/DPDVVDGLOLHYLWRGRSRWPLQXWLHVSUHVVDLQJUDPPLqGDWDDOORUDGDOO¶HTXD]LR QH \ =H  W 3HUULVROYHUHLOSUREOHPDGHWHUPLQLDPRLOWHPSRWSHUFXL\ W =FLRqLOGRSSLR GHOODTXDQWLWjLQL]LDOH

,OWHPSRQHFHVVDULRSHUFKpODSRSROD]LRQHGHOOLHYLWRUDGGRSSLqSHUWDQWRGLFLUFD PLQXWL

1HOSURVVLPRHVHPSLRFRVWUXLUHPRXQPRGHOORFKHGHVFULYHLOQXPHURGLSHU VRQHGLXQDFHUWDSRSROD]LRQHDIIHWWHGDXQDPDODWWLDFKHVWDVFRPSDUHQGRGDOOD SRSROD]LRQH,QTXHVWRFDVRODFRVWDQWHGLSURSRU]LRQDOLWjNqQHJDWLYDHLOPRGHO ORGHVFULYHLOQXPHURHVSRQHQ]LDOPHQWHGHFUHVFHQWHGLLQGLYLGXLDIIHWWL

 ,X\HaPVUPKPMMLYLUaPHSPH]HYPHIPSPZLWHYHIPSP



ESEMPIO 4

,QXQPRGHOORFKHGHVFULYHLOPRGRLQFXLOHPDODWWLHVFRPSDLRQRTXDQGRYHQJR QRWUDWWDWHHI¿FDFHPHQWHVLDVVXPHFKHLOWDVVRGLYDULD]LRQHG\>GWGHOQXPHURGL SHUVRQHDIIHWWHGDOODPDODWWLDVLDSURSRU]LRQDOHDOQXPHUR\,OQXPHURGLSHUVRQH JXDULWHqSURSRU]LRQDOHDOQXPHURGLSHUVRQH\FKHYHQJRQRFRQWDJLDWHGDOODPD ODWWLD6LDVVXPDFKHLOQXPHURGLFDVLGLXQDFHUWDPDODWWLDVLULGXFDRJQLDQQRGHO 6HRJJLVLKDQQRFDVLTXDQWLDQQLFLYRUUDQQRSHUULGXUUHLOQXPHUR GLFDVLD" Soluzione 8WLOL]]LDPRO¶HTXD]LRQH\ =\ HNW/HTXDQWLWjGDGHWHUPLQDUHVRQRWUHLOYDORUHGL \LOYDORUHGLNHLOWHPSRWSHUFXL\ = ,OYDORUHGL\&RPHULIHULPHQWRWHPSRUDOHSRVVLDPRVFHJOLHUHTXDOVLDVLPR PHQWR6HGHFLGLDPRGLFRQWDUHGDRJJLDOORUDVLKD\ =௘SHUW =FLRq \= /¶HTXD]LRQHGLYHQWD 



\ =௘HNW



,OYDORUHGLN3HUW =DQQRLOQXPHURGLFDVLVDUjSDULDOO¶GHOYDORUHDWWXDOH FLRq4XLQGL (T  FRQW =H \ = /RJDULWPRGLDPERLPHPEUL OQ L -

y

3HUTXDOVLDVLWHPSRWVLKD 

10 000

\ =௘H OQ W



,OYDORUHGLWSHUFXL\ =3RQLDPR\XJXDOHDQHOO¶(TXD]LRQH  H ULVROYLDPRULVSHWWRDW

5000

y  10 000e(ln 0.8)t

1000 0

5

10

t

/RJDULWPRGLDPERLPHPEUL

-PN\YH ,OJUDILFRGHOQXPHURGLSHUVRQHDIIHWWH DQQL GDXQDFHUWDPDODWWLDPRVWUD 2FFRUUHUDQQRXQSR¶SLGLDQQLSHUULGXUUHLOQXPHURGLFDVLD 9H O¶DQGDPHQWRGLXQGHFDGLPHQWR GHUHOD)LJXUD  HVSRQHQ]LDOH (VHPSLR 

Radioattività $OFXQLDWRPLVRQRLQVWDELOLHSRVVRQRHPHWWHUHPDVVDRUDGLD]LRQLLQPRGRVSRQ WDQHR4XHVWRSURFHVVRSUHQGHLOQRPHGLGHFDGLPHQWRUDGLRDWWLYRPHQWUHXQ HOHPHQWRLFXLDWRPLPDQLIHVWLQRTXHVWRFRPSRUWDPHQWRLQPRGRVSRQWDQHRVLGL FRQRUDGLRDWWLYL,QDOFXQLFDVLTXDQGRXQDWRPRHPHWWHXQDSDUWHGHOODSURSULD PDVVDPHGLDQWHTXHVWRSURFHVVRGLUDGLRDWWLYLWjODSDUWHUHVWDQWHYDDIRUPDUHXQ DWRPRGLXQQXRYRHOHPHQWR$GHVHPSLRLOFDUERQLRFKHqUDGLRDWWLYRGH FDGHQHOO¶D]RWRPHQWUHLOUDGLRGRSRXQFHUWRQXPHURGLGHFDGLPHQWLUDGLRDWWLYL LQWHUPHGLGHFDGHQHOSLRPER 6LqGLPRVWUDWRVSHULPHQWDOPHQWHFKHLOWDVVRGLGHFDGLPHQWRGLXQHOHPHQWR UDGLRDWWLYR PLVXUDWR FRPH LO QXPHUR GL QXFOHL FKH VL PRGL¿FDQR QHOO¶XQLWj GL

3HULOJDVUDGRQWYLHQHPLVXUDWR LQJLRUQLHVLKDN =3HULO UDGLRXWLOL]]DWRSHUFRORUDUHOH ODQFHWWHGHJOLRURORJLSHUUHQGHUOH OXPLQRVHDOEXLR XQDSUDWLFD SHULFRORVD WYLHQHPLVXUDWRLQDQQLH VLKDN = *-



*HWP[VSV¶,X\HaPVUPKPMMLYLUaPHSPKLSWYPTVVYKPUL

WHPSR qLQRJQLLVWDQWHDSSURVVLPDWLYDPHQWHSURSRU]LRQDOHDOQXPHURGLQXFOHL UDGLRDWWLYLSUHVHQWL,OGHFDGLPHQWRGLXQHOHPHQWRUDGLRDWWLYRqGHVFULWWRSHUWDQWR GDOO¶HTXD]LRQHG\>GW = -N\N 7&RQYHQ]LRQDOPHQWHVLXWLOL]]D-NFRQN 7 SHUVRWWROLQHDUHLOIDWWRFKH\qGHFUHVFHQWH6H\qLOQXPHURGLQXFOHLUDGLRDWWLYL SUHVHQWLDOWHPSR]HURLOQXPHURSUHVHQWHDXQWHPSRVXFFHVVLYRWqGDWRGD \ =\ H-NW  N 7 

'H¿QLDPRO¶HPLYLWDGLXQHOHPHQWRUDGLRDWWLYRFRPHLOWHPSRLQFXLVLKDLO GHFDGLPHQWRGHOODPHWjGHLQXFOHLUDGLRDWWLYLSUHVHQWLQHOFDPSLRQH/¶HPLYLWD IDWWRQRWHYROHqXQDFRVWDQWHFKHQRQGLSHQGHGDOQXPHURGLQXFOHLUDGLRDWWLYL LQL]LDOPHQWHSUHVHQWLQHOFDPSLRQHPDVROWDQWRGDOODVRVWDQ]DUDGLRDWWLYDFRQVL GHUDWD6LWURYDFKHO¶HPLYLWDqGDWDGD 

(PLYLWD=





$GHVHPSLRO¶HPLYLWDGHOUDGRQq HPLYLWD =

L JLRUQL

ESEMPIO 5

,QDOFXQLFDVLqSRVVLELOHXWLOL]]DUHLOGHFDGLPHQWRGLHOHPHQWLUDGLRDWWLYLSHURW WHQHUHXQDGDWD]LRQHGLHYHQWLQDWXUDOLGHOSDVVDWR,QXQRUJDQLVPRYLYHQWHLO UDSSRUWRWUDLOFDUERQLRUDGLRDWWLYRLOFDUERQLRHLOFDUERQLRFRPXQHULPDQH VRVWDQ]LDOPHQWHFRVWDQWHQHOFRUVRGHOODYLWDGHOO¶RUJDQLVPRHVVHQGRDSSURVVL PDWLYDPHQWHXJXDOHDOUDSSRUWRULVFRQWUDELOHQHOO¶DWPRVIHUDUHVSLUDWDGDOO¶RUJD QLVPR'RSRODPRUWHGHOO¶RUJDQLVPRWXWWDYLDQRQVLKDO¶LPPLVVLRQHGLQXRYR FDUERQLRHODSURSRU]LRQHGLFDUERQLRSUHVHQWHQHLUHVWLGHOO¶RUJDQLVPRGLPL QXLVFHSHUHIIHWWRGHOGHFDGLPHQWR *OLVFLHQ]LDWLFKHVLRFFXSDQRGLGDWD]LRQHPHGLDQWHFDUERQLRXWLOL]]DQR FRPHHPLYLWDLOYDORUHDQQL'HWHUPLQDUHO¶HWjGLXQFDPSLRQHLQFXLLO GHLQXFOHLUDGLRDWWLYLLQL]LDOPHQWHSUHVHQWLDEELDQRVXELWRGHFDGLPHQWRUDGLRDW WLYR Soluzione 8WLOL]]LDPR O¶HTXD]LRQH GL GHFDGLPHQWR \ = \ H-NW /H TXDQWLWj GD GHWHUPLQDUH VRQR GXH LO YDORUH GL N H LO YDORUH GL W SHU FXL \ q SDUL D \ q DQFRUD SUH VHQWHLOGHLQXFOHLUDGLRDWWLYL 2FFRUUHFLRqGHWHUPLQDUHLOWHPSRWSHUFXL \ H-NW=\RVVLDH-NW= 



,OYDORUHGLN8WLOL]]LDPRO¶(TXD]LRQH  SHUO¶HPLYLWD HPLYLWD ,OYDORUHGLWSHUFXL

FLUFD

H-NW=



H-NW=



H- OQ> W=



W=OQ



W=

6LSUHQGHLOORJDULWPRGLDPERLPHPEUL

DQQL

/¶HWjGHOFDPSLRQHqDSSURVVLPDWLYDPHQWHGLDQQL

 ,X\HaPVUPKPMMLYLUaPHSPH]HYPHIPSPZLWHYHIPSP

Trasmissione del calore: legge del raffreddamento di Newton 6HVLODVFLDGHOODPLQHVWUDLQXQFRQWHQLWRUHPHWDOOLFRTXHVWDVLUDIIUHGGD¿QRDOOD WHPSHUDWXUDGHOO¶DULDFLUFRVWDQWH6HVLLPPHUJHXQDEDUUDGLDUJHQWRURYHQWHLQ XQDJUDQGHYDVFDG¶DFTXDTXHVWDVLUDIIUHGGD¿QRDOODWHPSHUDWXUDGHOO¶DFTXDLQ FXLqLPPHUVD,QTXHVWRWLSRGLVLWXD]LRQLLOWDVVRGLYDULD]LRQHGHOODWHPSHUDWXUD GHOO¶RJJHWWRFRQVLGHUDWRqDSSURVVLPDWLYDPHQWHSURSRU]LRQDOHDOODGLIIHUHQ]DWUD ODVXDWHPSHUDWXUDHODWHPSHUDWXUDGHOPH]]RLQFXLqLPPHUVR4XHVWDRVVHUYD ]LRQHSUHQGHLOQRPHGL/HJJHGHOUDIIUHGGDPHQWRGL1HZWRQDQFKHVHVLDSSOLFD DQFKHDOULVFDOGDPHQWR 6H+qODWHPSHUDWXUDGHOO¶RJJHWWRDOWHPSRWH+6qODWHPSHUDWXUDFRVWDQWH GHOO¶DPELHQWHFLUFRVWDQWHO¶HTXD]LRQHGLIIHUHQ]LDOHqGDWDGD 





6RVWLWXHQGR + -+6 FRQ\VLRWWLHQH

+6 qXQDFRVWDQWH

(T   + -+6=\

2UDFRPHVDSSLDPRODVROX]LRQHGLG\>GW = -N\q\ =\ H-NWGRYH\  =\6R VWLWXHQGR\FRQ + -+6 VLRWWLHQHTXLQGL 

+ -+6= +-+6 H-NW



 

GRYH+qODWHPSHUDWXUDSHUW =4XHVWDHTXD]LRQHqODVROX]LRQHGHOODOHJJHGHO UDIIUHGGDPHQWRGL1HZWRQ ESEMPIO 6

8QXRYRVRGRODFXLWHPSHUDWXUDqƒ&YLHQHLPPHUVRLQXQODYDQGLQRSLHQRGL DFTXDDƒ&'RSRPLQXWLODWHPSHUDWXUDGHOO¶XRYRqGLƒ&$VVXPHQGRFKH ODWHPSHUDWXUDGHOO¶DFTXDQRQVLDDXPHQWDWDLQPRGRDSSUH]]DELOHTXDQWRWHPSR RFFRUUHUjDQFRUDSHUFKpO¶XRYRUDJJLXQJDODWHPSHUDWXUDGLƒ&" Soluzione 'HWHUPLQLDPRLOWHPSRFKHO¶XRYRLPSLHJDSHUSDVVDUHGDOODWHPSHUDWXUDGLƒ& DOODWHPSHUDWXUDGLƒ&HTXLQGLVRWWUDLDPRGDWDOHYDORUHLPLQXWLJLjWUDVFRU VL8WLOL]]DQGRO¶(TXD]LRQH  FRQ+6=H+=ODWHPSHUDWXUDGHOO¶XRYRW PLQXWLGRSRO¶LPPHUVLRQHQHOO¶DFTXDqGDWDGD + = +  - H-NW= +H-NW 3HUGHWHUPLQDUHNXWLOL]]LDPRO¶LQIRUPD]LRQHFKH+ =SHUW =

FLUFD 





*HWP[VSV¶,X\HaPVUPKPMMLYLUaPHSPKLSWYPTVVYKPUL

/DWHPSHUDWXUDGHOO¶XRYRDOWHPSRWqGDWDGD+ = +H- OQ W2UDGHWHUPL QLDPRLOWHPSRWSHUFXL+ =

PLQXWL /¶XRYRUDJJLXQJHODWHPSHUDWXUDGLƒ&FLUFDPLQXWLGRSRHVVHUHVWDWRLP PHUVRQHOO¶DFTXDGLUDIIUHGGDPHQWR3RLFKpKDLPSLHJDWRPLQXWLDUDJJLXQJHUH OD WHPSHUDWXUD GL ƒ& RFFRUUHUDQQR DQFRUD FLUFD  PLQXWL SHU UDJJLXQJHUH OD WHPSHUDWXUDGLƒ&

 Equazioni lineari del primo ordine 8Q¶HTXD]LRQHGLIIHUHQ]LDOHOLQHDUHGHOSULPRRUGLQHqXQ¶HTXD]LRQHFKHSXzHV VHUHVFULWWDQHOODIRUPD \¿







GRYH3H4VRQRIXQ]LRQLFRQWLQXHGL[/¶(TXD]LRQH  qODIRUPDVWDQGDUG GHOO¶HTXD]LRQHOLQHDUH$GHVHPSLRO¶HTXD]LRQHSHUODFUHVFLWDRLOGHFDGLPHQWR HVSRQHQ]LDOHG\>G[ = N\FKHSXzHVVHUHVFULWWDQHOODIRUPDVWDQGDUG \¿ qXQ¶HTXD]LRQHOLQHDUHFRQ3 [ = - NH4 [ = /¶(TXD]LRQH  VLGLFHOLQHDUH LQ\ SHUFKpGLSHQGHLQPRGROLQHDUHGD\HGDOODVXDGHULYDWD\¿ ESEMPIO 1

5LVFULYHUHODVHJXHQWHHTXD]LRQHQHOODIRUPDVWDQGDUG \¿ Soluzione \¿ \¿ \¿

6LGLYLGHSHU[ )RUPDVWDQGDUGFRQ3 [ = - >[ H4 [ = [

6LRVVHUYLFKH3 [ qXJXDOHD- >[QRQD+ >[/DIRUPDVWDQGDUGq\¿ + 3 [ \ = 4 [  TXLQGLLOVHJQRPHQRIDSDUWHGHOO¶HVSUHVVLRQHGL3 [ 

1RWLDPRFKHSHUOHHTXD]LRQLGLIIHUHQ]LDOLOLQHDULYDOHLO7HRUHPDGLHVLVWHQ]D HXQLFLWjLQJUDQGHLQRJQLLQWHUYDOOR>DE@LQFXLOHIXQ]LRQL3 [ H4 [ HVLVWRQR

 ,X\HaPVUPSPULHYPKLSWYPTVVYKPUL

HVRQRFRQWLQXH,QIDWWLSRQHQGR¦ [\ = - 3 [ \ + 4 [ O¶HTXD]LRQHGLIIHUHQ ]LDOH VL SXz ULVFULYHUH FRPH \¿ = ¦ [ \ FRQ ¦ [ \  H OD VXD GHULYDWD SDU]LDOH ¦\ [\ = - 3 [ FRQWLQXHLQWXWWDODVWULVFLD>DE@* ℝ,QROWUHSRQHQGR + = PD[ƒ 3 [ ƒ H . = PD[ƒ 4 [ ƒ [H >DE@

VLKD

[H >DE@

ƒ ¦ [\ ƒ … + + .ƒ \ƒ k[H >DE@\H ℝ

4XLQGLOHLSRWHVLGHO7HRUHPDVRQRVRGGLVIDWWHHRJQLSUREOHPDDLYDORULLQL ]LDOLSHUO¶HTXD]LRQHGLIIHUHQ]LDOHOLQHDUH  DPPHWWHXQ¶XQLFDVROX]LRQHGH¿QLWD LQWXWWRO¶LQWHUYDOOR>DE@ 1DWXUDOPHQWH VH OH IXQ]LRQL 3 4 VRQR GH¿QLWH H FRQWLQXH VX XQ LQWHUYDOOR LOOLPLWDWR, HYHQWXDOPHQWHWXWWRO¶DVVHUHDOH DOORUDODVROX]LRQHHVLVWHHGqXQLFD LQRJQLLQWHUYDOORFKLXVRHOLPLWDWR>DE@( ,TXLQGLHVLVWHHGqXQLFDLQWXWWR,

Risoluzione di equazioni lineari 3HUULVROYHUHO¶HTXD]LRQH \¿ VL PROWLSOLFDQR DPER L PHPEUL SHU XQD IXQ]LRQH SRVLWLYD y [  FKH WUDVIRUPL LO SULPR PHPEUR QHOOD GHULYDWD GHO SURGRWWR y [  # \ 3ULPD GL PRVWUDUH FRPH VL GHWHUPLQDyGLPRVWULDPRFKHWDOHIXQ]LRQHXQDYROWDWURYDWDSHUPHWWHGLGHWHU PLQDUHODVROX]LRQHFHUFDWD 0ROWLSOLFDQGRSHUy [ VLKDLQIDWWL )RUPDVWDQGDUGGHOO¶HTXD]LRQH GLSDUWHQ]D

\¿ \¿

6LPROWLSOLFDSHUy [ SRVLWLYR 6LVFHJOLHy [ WDOHFKH

6LLQWHJUDULVSHWWRD[



/¶(TXD]LRQH  HVSULPHODVROX]LRQHGHOO¶(TXD]LRQH  LQWHUPLQLGHOOHIXQ]LRQL y [  H 4 [  /D IXQ]LRQH y [  FKH UHQGH O¶(TXD]LRQH   LQWHJUDELOH SUHQGH LO QRPHGLIDWWRUHLQWHJUDQWHSHUO¶HTXD]LRQH /¶HVSUHVVLRQHGL3 [ FRPSDUHQHOODVROX]LRQHVROWDQWRLQPRGRLQGLUHWWRQHO ODFRVWUX]LRQHGHOODIXQ]LRQHSRVLWLYDy [ 6LKDLQIDWWL

\¿

y¿ y¿

\¿

&RQGL]LRQHLPSRVWDVXy

\¿

5HJRODSHUODGHULYDWD GHOSURGRWWR ,WHUPLQL

¿ VLVHPSOL¿FDQR





*HWP[VSV¶,X\HaPVUPKPMMLYLUaPHSPKLSWYPTVVYKPUL

/¶XOWLPDHTXD]LRQHqVRGGLVIDWWDSHU

9DULDELOLVHSDUDWHy 7 

6LLQWHJUDQRDPERLPHPEUL

3RLFKpy 7 QRQRFFRUUHXWLOL]]DUH LOVLPERORGLYDORUHDVVROXWRLQOQy 6LSUHQGHO¶HVSRQHQ]LDOHGLDPERLPHPEUL SHUULVROYHUHULVSHWWRDy 

/¶(TXD]LRQH   IRUQLVFH SHUWDQWR O¶HVSUHVVLRQH GHOOD VROX]LRQH JHQHUDOH GHOO¶(TXD]LRQH  FRQy [ GDWRGDOO¶(TXD]LRQH  7XWWDYLDDQ]LFKpPHPRUL] ]DUHO¶HVSUHVVLRQHqVXI¿FLHQWHULFRUGDUHFRPHGHWHUPLQDUHLOIDWWRUHLQWHJUDQWH XQDYROWDWURYDWDODIRUPDVWDQGDUGFKHFRQVHQWHGLLGHQWL¿FDUH3 [ 1HOO¶(TXD ]LRQH  VLSXzXWLOL]]DUHXQDTXDOVLDVLSULPLWLYDGL3 3HU ULVROYHUH O¶HTXD]LRQH OLQHDUH \¿ + 3 [ \ = 4 [  VL PROWLSOLFDQR DPER L PHPEULSHULOIDWWRUHLQWHJUDQWHy [ = H13 [ G[HVLLQWHJUDQRDPERLPHPEUL 4XDQGRLQTXHVWRSURFHGLPHQWRVLLQWHJUDLOSURGRWWRDSULPRPHPEURSHUYLDGHO PRGRLQFXLyqGH¿QLWRVLRWWLHQHVHPSUHLOSURGRWWRy [ \WUDLOIDWWRUHLQWHJUDQWH HODIXQ]LRQHVROX]LRQH\ ESEMPIO 2

5LVROYHUHO¶HTXD]LRQH \¿ Soluzione 3HUSULPDFRVDVFULYLDPRO¶HTXD]LRQHQHOODIRUPDVWDQGDUG (VHPSLR  \¿ LQPRGRGDLGHQWL¿FDUH3 [ = - >[ ,OIDWWRUHLQWHJUDQWHqGDWRDOORUDGD /DFRVWDQWHGLLQWHJUD]LRQHqTXLQGL yqODIXQ]LRQHSLVHPSOLFHSRVVLELOH [ 7 

4XLQGLPROWLSOLFKLDPRDPERLPHPEULGHOODIRUPDVWDQGDUGSHUy [ HLQWHJULDPR

 ,X\HaPVUPSPULHYPKLSWYPTVVYKPUL

,OSULPRPHPEURq

6LLQWHJUDQRDPERLPHPEUL

5LVROYHQGRO¶XOWLPDHTXD]LRQHULVSHWWRD\VLRWWLHQHODVROX]LRQHJHQHUDOH

ESEMPIO 3

5LVROYHUHLOSUREOHPDDLYDORULLQL]LDOL

^

\  = - 



Soluzione 3HU[ 7 VFULYLDPRO¶HTXD]LRQHQHOODIRUPDVWDQGDUG  ,OIDWWRUHLQWHJUDQWHqGDWRDOORUDGD [7

4XLQGL ,OSULPRPHPEURqy\

,QWHJUDQGRSHUSDUWLVLRWWLHQH

4XLQGL

RYYHURULVROYHQGRULVSHWWRD\

3HU[ = H\ = - O¶XOWLPDHTXD]LRQHGLYHQWD -  = -  +  + & SHUFXL & = 





*HWP[VSV¶,X\HaPVUPKPMMLYLUaPHSPKLSWYPTVVYKPUL

6RVWLWXHQGRLOYDORUHWURYDWRQHOO¶HVSUHVVLRQHGL\VLRWWLHQHODVROX]LRQHGHOSUR EOHPDDLYDORULLQL]LDOL \ = [> - OQ[ - 

1HOOD ULVROX]LRQH GHOO¶HTXD]LRQH OLQHDUH GHOO¶(VHPSLR  DEELDPR LQWHJUD WR HQWUDPEL L PHPEUL GHOO¶HTXD]LRQH GRSR DYHUOL PROWLSOLFDWL SHU LO IDWWRUH LQ WHJUDQWH Ê DQFKH SRVVLELOH VHPSOL¿FDUH L FDOFROL FRPH IDWWR QHOO¶(VHPSLR  RVVHUYDQGR FKH O¶LQWHJUDOH GHO SULPR PHPEUR q VHPSUH GDWR GDO SURGRWWR y [  #\ WUDLOIDWWRUHLQWHJUDQWHHODIXQ]LRQHVROX]LRQH3HUO¶(TXD]LRQH  FLz VLJQL¿FDFKH 

  3HU RWWHQHUH OD VROX]LRQH JHQHUDOH q VXI¿FLHQWH DOORUD LQWHJUDUH LO SURGRWWR WUD LOIDWWRUHLQWHJUDQWHy [ H4 [ DOVHFRQGRPHPEURGHOO¶(TXD]LRQH  HTXLQGL SRUUHLOULVXOWDWRXJXDOHDy [ \,QDOFXQLFDVLWXWWDYLDFRPHQHOO¶(VHPSLRVL DSSOLFDLOSURFHGLPHQWRFRPSOHWRSHUVRWWROLQHDUHLOUXRORGLy [ QHOODULVROX]LRQH GHOO¶HTXD]LRQH 6LRVVHUYLFKHVHQHOODIRUPDVWDQGDUGGDWDGDOO¶(TXD]LRQH  4 [ qLGHQ WLFDPHQWHXJXDOHD]HURO¶HTXD]LRQHOLQHDUHqDYDULDELOLVHSDUDELOLHSXzHVVHUH ULVROWDFRQLOPHWRGRLOOXVWUDWRQHO3DUDJUDIR 3



Circuiti RL V 

 Interruttore a

b

i

R

/R VFKHPD GHOOD )LJXUD  UDSSUHVHQWD XQ FLUFXLWR HOHWWULFR DYHQWH UHVLVWHQ]D FRVWDQWH5HVSUHVVDLQRKPHFRHI¿FLHQWHGLDXWRLQGX]LRQHFRVWDQWH/HVSUHVVR LQKHQU\HUDSSUHVHQWDWRFRPHXQDVSLUD,OFLUFXLWRLQFOXGHXQLQWHUUXWWRUHLFXL WHUPLQDOLQHLSXQWLDHESRVVRQRHVVHUHFKLXVLLQPRGRGDFUHDUHXQFROOHJDPHQWR FRQXQDVRUJHQWHGLDOLPHQWD]LRQHHOHWWULFDFRVWDQWHGL9YROW /DOHJJHGL2KP9 = 5,QRQqVXI¿FLHQWHSHUGHVFULYHUHXQFLUFXLWRGLTXHVWR WLSR/¶HTXD]LRQHFRUUHWWDFKHWLHQHFRQWRVLDGHOODUHVLVWHQ]DFKHGHOO¶LQGXWWDQ]Dq

L

-PN\YH ,OFLUFXLWR5/GHOO¶(VHPSLR







GRYHLqODFRUUHQWHHVSUHVVDLQDPSHUHHWqLOWHPSRHVSUHVVRLQVHFRQGL5LVRO YHQGRTXHVWDHTXD]LRQHqSRVVLELOHGHWHUPLQDUHO¶DQGDPHQWRGHOODFRUUHQWHGRSR ODFKLXVXUDGHOO¶LQWHUUXWWRUH ESEMPIO 4

/¶LQWHUUXWWRUHGHOFLUFXLWR5/GHOOD)LJXUDYLHQHFKLXVRDOWHPSRW = 'HWHU PLQDUHO¶DQGDPHQWRGHOODFRUUHQWHLQIXQ]LRQHGHOWHPSR Soluzione /¶(TXD]LRQH  qXQ¶HTXD]LRQHGLIIHUHQ]LDOHOLQHDUHGHOSULPRRUGLQHULVSHWWRDL FRPHIXQ]LRQHGLW/DIRUPDVWDQGDUGGHOO¶HTXD]LRQHq 





 ,X\HaPVUPYPJVUK\JPIPSPHLX\HaPVUPSPULHYPVH]HYPHIPSPZLWHYHIPSP



HODFRUULVSRQGHQWHVROX]LRQHDVVXPHQGRL = SHUW = q 





SHULOFDOFRORVLULPDQGDDOO¶(VHUFL]LR 3RLFKp5H/VRQRQXPHULSRVLWLYL - 5>/ qXQQXPHURQHJDWLYRHH - 5>/ W:SHUW : q3HUWDQWR 

i

,QRJQLLVWDQWHLOYDORUHGHOODFRUUHQWHqWHRULFDPHQWHLQIHULRUHD9>5PDFRQLO SDVVDUHGHOWHPSRODFRUUHQWHWHQGHDOYDORUHGLVWDWRVWD]LRQDULR9>5,QEDVH DOO¶HTXD]LRQH

I V R

0

I e

i  V (1  eRt/L) R

L R

2

L R

3

L R

4

L R

t

, = 9>5qLOYDORUHGHOODFRUUHQWHFKHVLDYUHEEHQHOFLUFXLWRVHIRVVH/ =  QHV VXQDLQGXWWDQ]D RSSXUHGL>GW =  FRUUHQWHVWD]LRQDULDL = FRVWDQWH  )LJXUD  /¶(TXD]LRQH   HVSULPH OD VROX]LRQH GHOO¶(TXD]LRQH   FRPH VRPPD GL -PN\YH GXHWHUPLQLXQDVROX]LRQHGLVWDWRVWD]LRQDULR9>5HXQDVROX]LRQHWUDQVLWRULD /DFUHVFLWDGHOODFRUUHQWHQHOFLUFXLWR 5/GHOO¶(VHPSLR,qLOYDORUHGLVWDWR - 9>5 H - 5>/ WFKHWHQGHD]HURSHUW : q

 Equazioni riconducibili a equazioni lineari o a variabili separabili 9HGUHPRRUDDOFXQLWLSLGLHTXD]LRQLGLIIHUHQ]LDOLFKHVRQRULFRQGXFLELOLDHTXD ]LRQLGLIIHUHQ]LDOLOLQHDULRDYDULDELOLVHSDUDELOLPHGLDQWHFDPELGLIXQ]LRQHLQ FRJQLWD

Equazioni differenziali di Bernoulli 6LFKLDPDQRHTXD]LRQLGLIIHUHQ]LDOLGL%HUQRXOOLTXHOOHFKHSRVVRQRHVVHUHVFULWWH QHOODIRUPD 

\¿ = J [ \ + K [ \a



FRQJKIXQ]LRQLFRQWLQXHGH¿QLWHVXXQLQWHUYDOOR>DE@HaFRVWDQWHUHDOHGLYHUVD GDH VHa = Ra = O¶(T  qOLQHDUHHVLSXzULVROYHUHFRPHPRVWUDWRQHO 3DUDJUDIR  2VVHUYLDPRLQL]LDOPHQWHFKHVHa 7 DOORUDO¶(T  DPPHWWHODVROX]LRQHLGHQ WLFDPHQWHQXOOD3HUGHWHUPLQDUHODDOWUHVROX]LRQLGLYLGLDPRO¶(T  SHU\aRW WHQHQGR \¿  = J [ \-a + K [   \a 3RQHQGRDOORUD] [ = \ [ -aVLKD \¿ [ ]¿ [ =  - a  \ [ -a\¿ [ =  - a \ [ a HVRVWLWXHQGRWDOHUHOD]LRQHQHOO¶(T  VLRWWLHQH ]¿ -  - a J [ ] =  - a K [  XQ¶HTXD]LRQH GLIIHUHQ]LDOH OLQHDUH QHOOD IXQ]LRQH LQFRJQLWD ] [  FKH SXz HVVHUH ULVROWDFRQLOPHWRGRSUHVHQWDWRQHO3DUDJUDIR8QDYROWDWURYDWDODVROX]LRQH

VWD]LRQDULRGHOODFRUUHQWH,OQXPHUR W = />5qODFRVWDQWHGLWHPSRGHO FLUFXLWR /DFRUUHQWHUDJJLXQJHXQYDORUHFKH GLIIHULVFHGLPHQRGHOGDOVXR YDORUHGLVWDWRVWD]LRQDULRLQFRVWDQWL GLWHPSR (VHUFL]LR 



*HWP[VSV¶,X\HaPVUPKPMMLYLUaPHSPKLSWYPTVVYKPUL 

JHQHUDOH] [ GLWDOHHTXD]LRQHOLQHDUHGDOODUHOD]LRQH\ [ = ] [ - a VLULFDYDOD VROX]LRQHJHQHUDOHGHOO¶(T   ESEMPIO 1

5LVROYHUHO¶HTXD]LRQHGLIIHUHQ]LDOH \ \¿ = + [1\ [ 7  [ Soluzione  6LWUDWWDGLXQ¶HTXD]LRQHGL%HUQRXOOLFRQa = 'LYLGHQGRO¶HTXD]LRQHGLIIHUHQ  ]LDOHSHU1\VLRWWLHQH \¿ 1\ = + [ [ 1\ 3RQHQGRDOORUD] [ = 1\ [ O¶HTXD]LRQHGLYHQWD  ] [ ]¿ =  [  FKHqXQ¶HTXD]LRQHGLIIHUHQ]LDOHOLQHDUHQHOODIXQ]LRQHLQFRJQLWD]3URFHGHQGR FRPHLOOXVWUDWRQHO3DUDJUDIRVLWURYDFKHODVROX]LRQHJHQHUDOHGLWDOHHTXD ]LRQHq  ] [ = &1[+ [ &Hℝ  3HUWDQWRODVROX]LRQHJHQHUDOHGHOO¶HTXD]LRQHGLIIHUHQ]LDOHGL%HUQRXOOLq   \ [ = a&1[ + [b  &Hℝ 

Equazioni omogenee 6LFKLDPDQRRPRJHQHHTXHOOHHTXD]LRQLGLIIHUHQ]LDOLFKHVLSRVVRQRVFULYHUHQHO ODIRUPD \  \¿ = Ja b  [ GRYHJqXQDIXQ]LRQHFRQWLQXDGLXQDVRODYDULDELOH&RQLOFDPELRGLIXQ]LRQH \ [ LQFRJQLWD] [ = GDFXL\ [ = [] [ H\¿ [ = ] [ + []¿ [ VLRWWLHQH [ []¿ + ] = J ] RYYHUR

J ] - ] [ FLRqXQ¶HTXD]LRQHDYDULDELOLVHSDUDELOLQHOODIXQ]LRQHLQFRJQLWD]FKHVLSXzUL VROYHUHFROSURFHGLPHQWRGHVFULWWRQHO3DUDJUDIR5LFRUGDQGRFKH\ [ = [] [  VLWURYDLQ¿QHODVROX]LRQHGHOO¶(TXD]LRQH   ]¿ =

ESEMPIO 2

5LVROYHUHO¶HTXD]LRQHGLIIHUHQ]LDOH \ [  \¿ = -  [ 7   [ \  3RQHQGR J ] = ] - ]  O¶HTXD]LRQH GLIIHUHQ]LDOH VL SXz VFULYHUH FRPH \ \ [ \¿ =Ja bHTXLQGLqRPRJHQHD,OFDPELRGLIXQ]LRQHLQFRJQLWD] [ = SHU [ [ PHWWHGLULVFULYHUHO¶HTXD]LRQHGLIIHUHQ]LDOHFRPH J ] - ]  ]¿ = = - []  [

 ,X\HaPVUPYPJVUK\JPIPSPHLX\HaPVUPSPULHYPVH]HYPHIPSPZLWHYHIPSP

6HSDUDQGROHYDULDELOLVLKD  ]G]= - [ G[ 

 ]G]= - [ G[ 2 2   ]= - OQ[ +& &Hℝ  ]= - OQ[ +& ]= 1&- OQ[

VLSDVVDDJOLLQWHJUDOL VLLQWHJUD VLLQJOREDLOQHOODFRVWDQWHDUELWUDULD& VLULVROYHULVSHWWRD]

'DOO¶XOWLPDUHOD]LRQHVLULFDYDODVROX]LRQHJHQHUDOHGHOO¶HTXD]LRQHGLIIHUHQ]LDOH RPRJHQHD \ [ = [1&- OQ[ &Hℝ 2VVHUYLDPRLQ¿QHFKHO¶HTXD]LRQHGLIIHUHQ]LDOH  qDQFKHXQ¶HTXD]LRQHGL%HU QRXOOLFRQa = - HVLSXzTXLQGLULVROYHUHDQFKHFRQPHWRGRYLVWRSHUWDOLWLSL GLHTXD]LRQL

Equazioni del tipo y¹ = g(ax + by) $QFKHTXHVWRWLSRGLHTXD]LRQLVLSXzULVROYHUHFRQXQFDPELRGLIXQ]LRQHLQFR JQLWDSRQHQGR] [ = D[ + E\ [ ,QIDWWLVLKD]¿ [ = D + E\¿ [ GDFXL ]¿ [ - D \¿ [ = E HVRVWLWXHQGRQHOO¶HTXD]LRQHGLIIHUHQ]LDOHLQ]LDOHVLRWWLHQH ]¿ = D + EJ ] FKH q XQ¶HTXD]LRQH GLIIHUHQ]LDOH D YDULDELOL VHSDUDELOL QHOOD IXQ]LRQH LQFR JQLWD ] 8QD YROWD WURYDWD OD VROX]LRQH JHQHUDOH GL WDOH HTXD]LRQH SRQHQGR ] [ - D[ \ [  = VL GHWHUPLQD OD VROX]LRQH JHQHUDOH GHOO¶HTXD]LRQH GLIIHUHQ]LDOH E LQL]LDOH ESEMPIO 3

5LVROYHUHO¶HTXD]LRQH \¿ = [ + \  Soluzione 3RQHQGR] [ = [ + \ [ O¶HTXD]LRQHGLYHQWD]¿ -  = ]FLRq ]¿ =  + ] FKHqDYDULDELOLVHSDUDELOL5LVROYHQGRVLWURYD G] = G[ 2  + ] 2 DUFWJ]= [ +& &Hℝ ] [ = WJ [ +&  &Hℝ \ [ = WJ [ +& -[ &Hℝ





*HWP[VSV¶,X\HaPVUPKPMMLYLUaPHSPKLSWYPTVVYKPUL

 Applicazioni ,QTXHVWRSDUDJUDIRFLRFFXSHUHPRGLTXDWWURDSSOLFD]LRQLGHOOHHTXD]LRQLGLIIH UHQ]LDOLGHOSULPRRUGLQHODSULPDDSSOLFD]LRQHULJXDUGDORVWXGLRGLXQRJJHWWR FKHVLPXRYHLQOLQHDUHWWDVRJJHWWRDXQDIRU]DDYHQWHGLUH]LRQHRSSRVWDDOPRWR ODVHFRQGDDSSOLFD]LRQHqXQPRGHOORSHUODFUHVFLWDGHPRJUD¿FDODWHU]DDSSOLFD ]LRQHULJXDUGDLOFDVRLQFXLXQDRSLFXUYHLQWHUVHFDQRRJQLFXUYDGLXQDVHFRQGD IDPLJOLDGLFXUYHLQPRGRRUWRJRQDOHLQ¿QHODTXDUWDDSSOLFD]LRQHULJXDUGDOR VWXGLRGHOOHFRQFHQWUD]LRQLGLVRVWDQ]HFKLPLFKHFKHHQWUDQRHIXRULHVFRQRGDXQ FRQWHQLWRUH,GLYHUVLPRGHOOLLPSLHJDWLXWLOL]]DQRHTXD]LRQLGHOSULPRRUGLQHD YDULDELOLVHSDUDELOLROLQHDUL

Moto con resistenza proporzionale alla velocità ,QDOFXQLFDVLVLSXzDVVXPHUHFKHODUHVLVWHQ]DVXELWDGDXQRJJHWWRLQPRYLPHQ WRVLDSURSRU]LRQDOHDOODVXDYHORFLWjFRPHDFFDGHDGHVHPSLRTXDQGRVLODVFLD FKHXQ¶DXWRPRELOHUDOOHQWL¿QRDIHUPDUVL0DJJLRUHqODYHORFLWjGHOO¶RJJHWWR PDJJLRUHqODUHVLVWHQ]DFKHTXHVWRVXELUjQHOODGLUH]LRQHGHOPRWRSHUHIIHWWR GDOO¶DULDFKHHVVRDWWUDYHUVD6HVLUDSSUHVHQWDO¶RJJHWWRFRPHXQDPDVVDPFKHVL PXRYHOXQJRXQDVVHFRRUGLQDWRFRQSRVL]LRQHHYHORFLWjDOWHPSRWGDWHULVSHW WLYDPHQWHGDOOHIXQ]LRQLVHySHUODVHFRQGDOHJJHGL1HZWRQVXOPRWRODIRU]D GLUHVLVWHQ]DFKHVLRSSRQHDOPRWRqGDWDGD )RU]D = PDVVD *DFFHOHUD]LRQH = 6HODIRU]DGLUHVLVWHQ]DqSURSRU]LRQDOHDOODYHORFLWjVLKD RYYHUR 6LWUDWWDGLXQ¶HTXD]LRQHGLIIHUHQ]LDOHOLQHDUHDYDULDELOLVHSDUDELOL/DVROX]LRQH GHOO¶HTXD]LRQHFRQFRQGL]LRQHLQL]LDOHy = y SHUW = q 





4XDOLLQIRUPD]LRQLqSRVVLELOHGHGXUUHGDOO¶(TXD]LRQH  "3HUSULPDFRVDVL YHGHFKHVHPKDXQYDORUHJUDQGHFRPHQHOFDVRGHOOH௘WRQQHOODWHGHOOD QDYHGDFDULFRLQVHUYL]LRVXODJR(ULHQHOO¶$PHULFDVHWWHQWULRQDOHFLYXROHPRO WRWHPSRSHUFKpODYHORFLWjGLYHQWLSURVVLPDD]HUR LOYDORUHGLWQHOO¶HVSRQHQWH GHYHHVVHUHJUDQGHLQPRGRFKHNW>PVLDDEEDVWDQ]DJUDQGHGDGDUHXQYDORUHGL ySLFFROR ÊSRVVLELOHRWWHQHUHXOWHULRULLQIRUPD]LRQLLQWHJUDQGRO¶(TXD]LRQH   SHUGHWHUPLQDUHODSRVL]LRQHVLQIXQ]LRQHGHOWHPSRW 6LFRQVLGHULXQFRUSRFKHVRJJHWWRVROWDQWRDXQDIRU]DGLUHVLVWHQ]DSURSRU ]LRQDOHDOODVXDYHORFLWjUDOOHQWL¿QRDIHUPDUVL4XDOHGLVWDQ]DSHUFRUUHO¶RJJHWWR SULPDGLIHUPDUVL"3HUGHWHUPLQDUORVLFRQVLGHUDSHUSULPDFRVDO¶(TXD]LRQH   HVLULVROYHLOSUREOHPDDLYDORULLQL]LDOL

,QWHJUDQGRULVSHWWRDWVLRWWLHQH

(IIHWWXDQGRODVRVWLWX]LRQHV = SHUW = VLRWWLHQH H

 (WWSPJHaPVUP

/DSRVL]LRQHGHOO¶RJJHWWRDOWHPSRWqGDWDSHUWDQWRGD 





3HUGHWHUPLQDUHODGLVWDQ]DSHUFRUVDGDOO¶RJJHWWRSULPDGLIHUPDUVLVLGHWHUPL QDLOOLPLWHGLV W SHUW : q3RLFKp- N>P 6 YDOHH - N>P W:SHUW : qH TXLQGL

3HUWDQWR 

'LVWDQ]DGLDUUHVWR





6L QRWL FKH LO QXPHUR y P>N q VROWDQWR XQD VWLPD VXSHULRUH PD FRPXQTXH XWLOH 4XHVWRYDORUHOLPLWHULVXOWDYHURVLPLOHDOPHQRLQXQDVSHWWRVHPqJUDQGH ODGLVWDQ]DSHUFRUVDGDOO¶RJJHWWRSULPDGLIHUPDUVLVDUjJUDQGH 

Inaccuratezza del modello per la crescita demografica esponenziale 1HO3DUDJUDIRDEELDPRPRGHOOL]]DWRODFUHVFLWDGHPRJUD¿FDPHGLDQWHODOHJJH

GRYH3UDSSUHVHQWDODSRSROD]LRQHDOWHPSRWN 7 qXQWDVVRGLFUHVFLWDFRVWDQWH H3UDSSUHVHQWDODSRSROD]LRQHDOWHPSRW = $EELDPRWURYDWRSHUTXHVWRPR GHOORODVROX]LRQH3 = 3 HNW 3HUYHUL¿FDUHO¶DWWHQGLELOLWjGHOPRGHOORVLRVVHUYLFKHVHFRQGRO¶HTXD]LRQH GLIIHUHQ]LDOHGHOODFUHVFLWDHVSRQHQ]LDOH 





 ;HILSSH Popolazione mondiale (metà anno)

$QQR

3RSROD]LRQH PLOLRQL

≤3>3





> L





> L





> L





> L





> L





> L





> L





> L





> L





)RQWH86%XUHDXRIWKH&HQVXV 6HSW ZZZFHQVXVJRY>LSF>ZZZ>LGE

qFRVWDQWH4XHVWRWDVVRSUHQGHLOQRPHGLWDVVRGLFUHVFLWDUHODWLYR/D7DEHOOD ULSRUWDODSRSROD]LRQHPRQGLDOHDPHWjDQQRSHUJOLDQQLFRPSUHVLWUDLO HLO3RQHQGRGW = HG3 L¢3GDOODWDEHOODVLGHGXFHFKHLOWDVVRGLFUHVFLWD



 

*HWP[VSV¶,X\HaPVUPKPMMLYLUaPHSPKLSWYPTVVYKPUL

UHODWLYRGH¿QLWRGDOO¶(TXD]LRQH  qDSSURVVLPDWLYDPHQWHODFRVWDQWH3HU WDQWRVXOODEDVHGHLGDWLGHOODWDEHOODFRQW = FKHUDSSUHVHQWDLOW = FKH UDSSUHVHQWDLOHFRVuYLDqSRVVLELOHFRVWUXLUHXQPRGHOORSHUODSRSROD]LRQH PRQGLDOHPHGLDQWHLOVHJXHQWHSUREOHPDDLYDORULLQL]LDOL P

Popolazione mondiale (1980–2008)

7000

/DVROX]LRQHGLTXHVWRSUREOHPDDLYDORULLQL]LDOLIRUQLVFHODIXQ]LRQHSRSROD]LR QH3 = HW3HUO¶DQQR FLRqSHUW =  ODVROX]LRQHSUHYHGHXQD 5000 SRSROD]LRQHGLPLOLRQLRPLOLDUGL )LJXUD XQQXPHURVXSHULRUH ULVSHWWRDOODSRSROD]LRQHHIIHWWLYDGLPLOLRQLUHJLVWUDWDGDOO¶HQWHVWDWXQLWHQVH %XUHDXRIWKH&HQVXV3HUFRVWUXLUHXQPRGHOORSLUHDOLVWLFRRFFRUUHSUHQGHUH t 4000 30 0 10 LQFRQVLGHUD]LRQHIDWWRULDPELHQWDOLHDOWULIDWWRULFKHLQÀXLVFRQRVXOWDVVRGLFUH VFLWDFKHGDOqLQFRQWLQXDGLPLQX]LRQHHKDUDJJLXQWRLOYDORUHGL -PN\YH 6LRVVHUYLFKHLOYDORUHGHOODVROX]LRQH 9HGUHPRXQPRGHOORGLTXHVWRWLSRQHO3DUDJUDIR P  4454e 0.017t

3 = HWSHUW = qFLRq TXDVLLOLQSLULVSHWWRDOOD SRSROD]LRQHHIIHWWLYDGHO

Traiettorie ortogonali 8QDWUDLHWWRULDRUWRJRQDOHSHUXQDIDPLJOLDGLFXUYHqXQDFXUYDFKHLQWHUVHFD RUWRJRQDOPHQWHRJQLFXUYDDSSDUWHQHQWHDOODIDPLJOLD )LJXUD $GHVHPSLR RJQLUHWWDSDVVDQWHSHUO¶RULJLQHqXQDWUDLHWWRULDRUWRJRQDOHSHUODIDPLJOLDGHOOH FLUFRQIHUHQ]H[ + \ = DFHQWUDWHQHOO¶RULJLQH )LJXUD 4XHVWLVLVWHPLGL FXUYHPXWXDPHQWHRUWRJRQDOLVRQRGLJUDQGHLPSRUWDQ]DQHLSUREOHPLGL¿VLFD FKHULJXDUGDQRLOSRWHQ]LDOHHOHWWULFRLQFXLXQDIDPLJOLDGLFXUYHFRUULVSRQGHDOOD IRU]DGLXQFDPSRHOHWWULFRHO¶DOWUDIDPLJOLDqFRPSRVWDGDOOHFXUYHGLSRWHQ]LDOH HOHWWULFRFRVWDQWH4XHVWRWLSRGLVLVWHPDVLRVVHUYDDQFKHLQLGURGLQDPLFDHQHL SUREOHPLGLWUDVSRUWRGHOFDORUH

Traiettoria ortogonale

-PN\YH 8QDWUDLHWWRULDRUWRJRQDOHLQWHUVHFDOD IDPLJOLDGLFXUYHDGDQJRORUHWWR

ESEMPIO 1

'HWHUPLQDUHOHWUDLHWWRULHRUWRJRQDOLSHUODIDPLJOLDGLFXUYH[\ = DLQFXLD Z  qXQDFRVWDQWHDUELWUDULD Soluzione /HFXUYH[\ = DIRUPDQRXQDIDPLJOLDGLLSHUEROLFKHKDQQRSHUDVLQWRWLJOLDVVL FRRUGLQDWL3HUSULPDFRVDGHWHUPLQLDPRODSHQGHQ]DRYYHURLOYDORUHG\>G[SHU RJQLFXUYDGLTXHVWDIDPLJOLD'LIIHUHQ]LDQGR[\ = DLQPRGRLPSOLFLWRVLRWWLHQH

y

RYYHUR x

-PN\YH 2JQLUHWWDSDVVDQWHSHUO¶RULJLQHq RUWRJRQDOHDOODIDPLJOLDGHOOH FLUFRQIHUHQ]HFHQWUDWHQHOO¶RULJLQH

4XLQGLODSHQGHQ]DGHOODUHWWDWDQJHQWHLQRJQLSXQWR [\ GLXQDGHOOHLSHUEROL [\ = Dq\¿ = - \>[3HUXQDWUDLHWWRULDRUWRJRQDOHODSHQGHQ]DGHOODUHWWDWDQJHQWH QHOORVWHVVRSXQWRqO¶RSSRVWRGHOO¶LQYHUVRRVVLD[>\'LFRQVHJXHQ]DOHWUDLHWWR ULHRUWRJRQDOLGHYRQRVRGGLVIDUHO¶HTXD]LRQHGLIIHUHQ]LDOH

4XHVWDHTXD]LRQHGLIIHUHQ]LDOHqDYDULDELOLVHSDUDELOLHSRVVLDPRULVROYHUODFRPH YLVWRQHO3DUDJUDIR

 (WWSPJHaPVUP

 

6LVHSDUDQROHYDULDELOL 6LLQWHJUDQRDPERLPHPEUL y

x2  y2  b bZ0



GRYHE = &qXQDFRVWDQWHDUELWUDULD/HWUDLHWWRULHRUWRJRQDOLFHUFDWHVRQR OD IDPLJOLDGLLSHUEROLGDWHGDOO¶(TXD]LRQH  HGLVHJQDWHQHOOD)LJXUD

0

x xy  a, aZ0

Problemi di miscelazione 6LFRQVLGHULXQDVRVWDQ]DFKLPLFDFKHYLHQHGLVFLROWDLQXQOLTXLGR RSSXUHGL VSHUVDLQXQJDV IDFHQGRODÀXLUHLQXQUHFLSLHQWHFRQWHQHQWHLOOLTXLGR RSSXUHLO JDV HGHYHQWXDOPHQWHXQDFHUWDTXDQWLWjGHOODVRVWDQ]DJLjGLVVROWD/DPLVFHOD YLHQH PDQWHQXWD XQLIRUPH PHGLDQWH PHVFRODPHQWRH IXRULHVFH GDO UHFLSLHQWH D XQWDVVRQRWR,QTXHVWRWLSRGLSURFHVVRqVSHVVRLPSRUWDQWHFRQRVFHUHLQRJQL LVWDQWHODFRQFHQWUD]LRQHGHOODVRVWDQ]DFKLPLFDQHOUHFLSLHQWH/¶HTXD]LRQHGLIIH UHQ]LDOHFKHGHVFULYHLOSURFHVVRVLEDVDVXOO¶HVSUHVVLRQH 7DVVRGLYDULD]LRQH WDVVR WDVVR GHOODTXDQWLWj GLLPPLVVLRQH GLULODVFLR =£ ≥ ≥-£ QHOFRQWHQLWRUH GHOODVRVWDQ]D GHOODVRVWDQ]D



6H\ W qODTXDQWLWjGHOODVRVWDQ]DFKLPLFDFRQWHQXWDQHOUHFLSLHQWHQHOO¶LVWDQWHW H9 W qLOYROXPHWRWDOHGHOOLTXLGRFRQWHQXWRQHOUHFLSLHQWHDOWHPSRWDOORUDLO WDVVRGLULODVFLRGHOODVRVWDQ]DFKLPLFDDOWHPSRWqGDWDGD 7DVVRGLULODVFLR =

WDVVRGLIXRULXVFLWD

FRQFHQWUD]LRQHQHO = aUHFLSLHQWHDOWHPSRWb # WDVVRGLIXRULXVFLWD 



'LFRQVHJXHQ]DO¶(TXD]LRQH  GLYHQWD WDVVRGLLPPLVVLRQHGHOODVRVWDQ]D

WDVVRGLIXRULXVFLWD 



ESEMPIO 2

,QXQDUDI¿QHULDGLSHWUROLRXQVHUEDWRLRGLVWRFFDJJLRFRQWLHQHOLWULGLEHQ ]LQDLQFXLLQL]LDOPHQWHVRQRGLVFLROWLNJGLXQFHUWRDGGLWLYR,QSUHYLVLRQH GHOO¶LQYHUQRVLSRPSDQHOVHUEDWRLRDXQWDVVRGLOLWUL>PLQEHQ]LQDFRQWH QHQWHNJGLDGGLWLYRSHUOLWUR /D VROX]LRQH EHQ PLVFHODWD YLHQH SRPSDWD GDO VHUEDWRLR FRQ XQ WDVVR GL  OLWUL>PLQ4XDOqODTXDQWLWjGLDGGLWLYRSUHVHQWHQHOVHUEDWRLRPLQGRSRO¶LQL]LR GHOSRPSDJJLR )LJXUD "

-PN\YH 2JQLFXUYDqRUWRJRQDOHDWXWWHOH FXUYHGHOO¶DOWUDIDPLJOLDGDHVVD LQWHUVHFDWH (VHPSLR 

 

*HWP[VSV¶,X\HaPVUPKPMMLYLUaPHSPKLSWYPTVVYKPUL

160 litri/min contenenti 0,25 kg/litro

-PN\YH 1HOVHUEDWRLRGLVWRFFDJJLR GHOO¶(VHPSLRVLPLVFHODLOOLTXLGR LPPHVVRFRQLOOLTXLGRJLjSUHVHQWH SHUSURGXUUHXQOLTXLGRLQXVFLWD 180 litri/min contenenti

y kg/litro V

Soluzione 6LD\ODTXDQWLWjGLDGGLWLYR LQFKLORJUDPPL SUHVHQWHQHOVHUEDWRLRDOWHPSRW 6DSSLDPRFKH\ = SHUW = /DTXDQWLWjGLVROX]LRQHGLEHQ]LQDHDGGLWLYRSUH VHQWHQHOVHUEDWRLRLQXQTXDOVLDVLLVWDQWHWHVSUHVVDLQOLWULqGDWDGD OLWUL 

 

OLWUL PLQ



OLWUL PLQ

WPLQ

OLWUL

3HUWDQWR WDVVRIXRULXVFLWD

7DVVRULODVFLR





(T   7DVVRGLIXRULXVFLWD O>PLQ H9 =  - W



 NJ   PLQ ,QROWUH

#

7DVVRLPPLVVLRQH = NJ>O O>PLQ = NJ>PLQ

/¶HTXD]LRQHGLIIHUHQ]LDOHFKHGHVFULYHLOSURFHVVRGLPLVFHOD]LRQHq 



   

(T 

LQFKLORJUDPPLDOPLQXWR 3HUULVROYHUHTXHVWDHTXD]LRQHGLIIHUHQ]LDOHSHUSULPDFRVDODVFULYLDPRQHOOD IRUPDOLQHDUHVWDQGDUG   



4XLQGL3 W = >  - W H4 W = ,OIDWWRUHLQWHJUDQWHq   - W

 - W

 - W 7 

 - W 0ROWLSOLFDQGRHQWUDPELLWHUPLQLGHOO¶HTXD]LRQHVWDQGDUGSHUy W HLQWHJUDQGRVL RWWLHQH  - W

  - W

  - W

 4L[VKVKP,\SLYV  (WWSPJHaPVUP

 - W

  - W

  - W

 - W

  - W

 - W

  - W

 - W



 - W 

/DVROX]LRQHJHQHUDOHq   - W 

 - W

3RLFKp\ = SHUW = SRVVLDPRGHWHUPLQDUHLOYDORUHGL& 

    



/DVROX]LRQHSDUWLFRODUHGHOSUREOHPDDLYDORULLQL]LDOLq   - W 

 

 - W

/DTXDQWLWjGLDGGLWLYRSUHVHQWHPLQXWLGRSRO¶LQL]LRGHOSRPSDJJLRq

#

#

   -     -     -     -    

#

#

NJ

 

 :VS\aPVUPNYHMPJOLKPLX\HaPVUPH\[VUVTL

 Soluzioni grafiche di equazioni autonome ,OVHJQRGHOODGHULYDWDSULPDGLXQDIXQ]LRQHGLXQDYDULDELOHLQGLFDLQTXDOLSXQWL LOJUD¿FRGLXQDIXQ]LRQHqFUHVFHQWHRGHFUHVFHQWHPHQWUHLOVHJQRGHOODGHULYDWD VHFRQGDLQGLFDODFRQFDYLWjGHOJUD¿FR4XHVWHLQIRUPD]LRQLVXOPRGRLQFXLOH GHULYDWHGHWHUPLQDQRODIRUPDGLXQJUD¿FRSRVVRQRHVVHUHXWLOL]]DWHSHUULVROYHUH JUD¿FDPHQWHOHHTXD]LRQLGLIIHUHQ]LDOL&RPHYHGUHPRODFDSDFLWjGLGHWHUPL QDUHLOFRPSRUWDPHQWRGLXQVLVWHPD¿VLFRDSDUWLUHGDJUD¿FLqXQRVWUXPHQWR PROWRHI¿FDFHSHUODFRPSUHQVLRQHGHLVLVWHPLUHDOL,OSXQWRGLSDUWHQ]DSHUOD ULVROX]LRQHJUD¿FDGHOOHHTXD]LRQLGLIIHUHQ]LDOLVRQRLFRQFHWWLGLOLQHDGHOOHIDVL HGLYDORUHGLHTXLOLEULRDFXLVLSHUYLHQHVWXGLDQGRGDXQQXRYRSXQWRGLYLVWD FRVDDFFDGHTXDQGRODGHULYDWDGLXQDIXQ]LRQHGLIIHUHQ]LDELOHqXJXDOHD]HUR

Valori di equilibrio e linea delle fasi 'HULYDQGRLQPRGRLPSOLFLWRO¶HTXD]LRQH

VLRWWLHQH

5LVROYHQGRULVSHWWRD\¿ = G\>G[VLWURYD\¿ = \ -  =  \ -  ,QTXHVWRFDVR ODGHULYDWD\¿ qXQDIXQ]LRQHGHOODVROD\ ODYDULDELOHGLSHQGHQWH HGqXJXDOHD ]HURSHU\ =  8Q¶HTXD]LRQHGLIIHUHQ]LDOHSHUFXLG\>G[qXQDIXQ]LRQHGHOODVROD\SUHQGHLO QRPHGLHTXD]LRQHGLIIHUHQ]LDOHDXWRQRPD'LVHJXLWRDQDOL]]HUHPRFRVDDFFDGH TXDQGR OD GHULYDWD GL XQ¶HTXD]LRQH DXWRQRPD q XJXDOH D ]HUR DVVXPHQGR FKH WXWWHOHGHULYDWHVLDQRFRQWLQXH DEFINIZIONE

6HG\>G[ = J \ qXQ¶HTXD]LRQHGLIIHUHQ]LDOHDXWRQRPDDOORUDLYDORULGL\SHU FXLG\>G[ = SUHQGRQRLOQRPHGLYDORULGLHTXLOLEULRRSXQWLGLHTXLOLEULR ,YDORULGLHTXLOLEULRVRQRSHUWDQWRLYDORULSHULTXDOLQRQVLKDDOFXQDYDULD ]LRQHGHOODYDULDELOHGLSHQGHQWHSHUFXL\VLWURYDDSSXQWRLQHTXLOLEULR,QTXHVWR FDVRFLzFKHLQWHUHVVDqLOYDORUHGL\ HQRQLOYDORUHGL[ SHUFXLG\>G[ = $G HVHPSLRLYDORULGLHTXLOLEULRSHUO¶HTXD]LRQHGLIIHUHQ]LDOHDXWRQRPD

VRQR\ = - H\ =  3HU FRVWUXLUH XQD VROX]LRQH JUD¿FD GHOO¶HTXD]LRQH GLIIHUHQ]LDOH DXWRQRPD SHUSULPDFRVDVLUHDOL]]DXQDOLQHDGHOOHIDVLGHOO¶HTXD]LRQHFLRqXQDUDSSUH VHQWD]LRQHJUD¿FDVXOO¶DVVH\FKHULSRUWDLYDORULGLHTXLOLEULRGHOO¶HTXD]LRQHH JOLLQWHUYDOOLLQFXLG\>G[HG\>G[VRQRSRVLWLYHRQHJDWLYH,QTXHVWRPRGRVL GHWHUPLQDQRLSXQWLLQFXLOHVROX]LRQLVRQRFUHVFHQWLRGHFUHVFHQWLHODFRQFDYLWj GHOOHFXUYHVROX]LRQHFLRqOHFDUDWWHULVWLFKHHVVHQ]LDOLGHOORURJUD¿FRSHUFXL SRVVLDPRGHGXUUHODIRUPDGHOOHFXUYHVROX]LRQHVHQ]DLOELVRJQRGLGHWHUPLQDUQH O¶HVSUHVVLRQH

 

 

*HWP[VSV¶,X\HaPVUPKPMMLYLUaPHSPKLSWYPTVVYKPUL

ESEMPIO 1

'LVHJQDUHODOLQHDGHOOHIDVLSHUO¶HTXD]LRQH

HXWLOL]]DUODSHUGLVHJQDUHOHVROX]LRQLGHOO¶HTXD]LRQH Soluzione  6LGLVHJQDODUHWWDGHOOHIDVLSHU\HVLVHJQDQRLYDORULGLHTXLOLEULR\ = - H \ = SHULTXDOLG\>G[ =  y –1

2

 6LLQGLYLGXDQRHVLVHJQDQRJOLLQWHUYDOOLLQFXL\¿ 7 H\¿ 6  y' 0

y'  0

y' 0

–1

y

2

6LSXzTXLQGLLQWHJUDUHO¶LQIRUPD]LRQHULJXDUGRLOVHJQRGL\¿QHOODOLQHDGHOOH IDVLVWHVVD3RLFKpQHOO¶LQWHUYDOORDVLQLVWUDGL\ = - VLKD\¿ 7 XQDVROX]LRQH GHOO¶HTXD]LRQHGLIIHUHQ]LDOHFRQXQYDORUHGL\LQIHULRUHD- VDUjFUHVFHQWHGD WDOHSXQWRLQGLUH]LRQHGL\ = - 3HUUDSSUHVHQWDUHTXHVWDLQIRUPD]LRQHVLGLVH JQDVXOO¶LQWHUYDOORXQDIUHFFLDFKHSXQWDYHUVR-  y –1



2

$QDORJDPHQWH\¿ 6 WUD\ = - H\ = TXLQGLTXDOVLDVLVROX]LRQHFKHDEELD XQYDORUHLQTXHVWRLQWHUYDOORVDUjGHFUHVFHQWHLQGLUH]LRQHGL\ = -  3HU\ 7 VLKD\¿ 7 TXLQGLXQDVROX]LRQHFRQXQYDORUHGL\PDJJLRUHGL FUHVFHUjDSDUWLUHGDWDOHSXQWR 5LDVVXPHQGROHFXUYHVROX]LRQHFKHVLWURYDQRDOGLVRWWRGHOODUHWWDRUL]]RQ WDOH\ = - QHOSLDQR[\FUHVFRQRDYYLFLQDQGRVLD\ = - /HFXUYHVROX]LRQH FRPSUHVHWUDOHUHWWH\ = - H\ = VLDOORQWDQDQRGD\ = HVLDYYLFLQDQRD \ = - /HFXUYHVROX]LRQHDOGLVRSUDGL\ = FUHVFRQRDOORQWDQDQGRVLGD\ =  HFRQWLQXDQRDFUHVFHUH  6LFDOFROD\–HVLVHJQDQRJOLLQWHUYDOOLLQFXL\– 7 H\– 6 3HUGHWHUPLQDUH \–VLGHULYD\¿ULVSHWWRD[XWLOL]]DQGRODGHULYD]LRQHLPSOLFLWD

'DTXHVWDHVSUHVVLRQHVLYHGHFKHLOVHJQRGL\–YDULDSHU\ = - \ = >H\ =  6LDJJLXQJHTXHVWDLQIRUPD]LRQHDOODOLQHDGHOOHIDVL y' 0 y''  0

y'  0 y'' 0

y'  0 y''  0

y' 0 y'' 0 y

–1

1 2

2

 :VS\aPVUPNYHMPJOLKPLX\HaPVUPH\[VUVTL

 6LGLVHJQDQRYDULHFXUYHVROX]LRQHQHOSLDQR[\/HUHWWHRUL]]RQWDOL\ = -  \ = >H\ = VXGGLYLGRQRLOSLDQRLQIDVFHRUL]]RQWDOLLQFXLLVHJQLGL\¿H GL\–VRQRQRWL4XHVWHLQIRUPD]LRQLFRQVHQWRQRGLGHWHUPLQDUHSHURJQLIDVFLD VHOHFXUYHVROX]LRQHVRQRFUHVFHQWLRGHFUHVFHQWLDOFUHVFHUHGL[ )LJXUD  $QFKHOH³UHWWHGLHTXLOLEULR´\ = - H\ = VRQRFXUYHVROX]LRQH OHIXQ ]LRQLFRVWDQWL\ = - H\ = VRGGLVIDQRO¶HTXD]LRQHGLIIHUHQ]LDOH /HFXUYH VROX]LRQHFKHLQWHUVHFDQRODUHWWD\ = >KDQQRXQSXQWRGLÀHVVRQHOSXQWRGL LQWHUVH]LRQHVRQRFRQFDYHDOGLVRSUDGHOODUHWWDHFRQYHVVHDOGLVRWWR &RPHSUHYLVWRQHOSDVVROHVROX]LRQLFRPSUHVHQHOODIDVFLDFHQWUDOHHQHO ODIDVFLDLQIHULRUHWHQGRQRDOFUHVFHUHGL[DOYDORUH\ = - PHQWUHOHVROX]LRQL FRPSUHVHQHOODIDVFLDVXSHULRUHVLDOORQWDQDQRGDOYDORUH\ = 



y y' 0 y'' 0 2 1 2 0 –1

y'  0 y''  0 y'  0 y'' 0

x

y' 0 y''  0

-PN\YH /HVROX]LRQLJUDILFKHGHOO¶(VHPSLR Equilibrio stabile ed equilibrio instabile LQFOXGRQROHUHWWHRUL]]RQWDOL\ = - H 6LRVVHUYLQXRYDPHQWHOD)LJXUDLQSDUWLFRODUHLOFRPSRUWDPHQWRGHOOHFXUYH \ = SDVVDQWLSHULYDORULGLHTXLOLEULR VROX]LRQHLQSURVVLPLWjGHLYDORULGLHTXLOLEULR4XDQGRXQDVROX]LRQHUDJJLXQJH /HFXUYHVROX]LRQHQRQVLLQWHUVHFDQR HQRQVLWRFFDQRPDL

XQYDORUHYLFLQRD\ = - HVVDWHQGHDVWDELOL]]DUVLVXWDOHYDORUH\ = - qXQ HTXLOLEULRVWDELOH,QSURVVLPLWjGL\ = VLKDLQYHFHLOFRPSRUWDPHQWRRSSRVWR WXWWHOHVROX]LRQLDHFFH]LRQHGHOODVROX]LRQHGLHTXLOLEULR\ = VWHVVDVLDOORQ WDQDQRGDHVVDDOFUHVFHUHGL[6LGLFHFKH\ = qXQHTXLOLEULRLQVWDELOHVHOD VROX]LRQHFRLQFLGHFRQWDOHYDORUHORPDQWLHQHVHGLIIHULVFHGDHVVRSHUXQDFHUWD TXDQWLWjFRPXQTXHSLFFRODVHQHDOORQWDQD,QDOFXQLFDVLXQYDORUHGLHTXLOLEULR q LQVWDELOH SHUFKp XQD VROX]LRQH VL DOORQWDQD GD HVVR VROWDQWR GD XQD SDUWH GHO SXQWRGLHTXLOLEULR 4XHVWRFRPSRUWDPHQWRqJLjYLVLELOHQHOODOLQHDGHOOHIDVLLQL]LDOH LOVHFRQGR JUD¿FRGHOSDVVRGHOO¶(VHPSLR OHIUHFFHVLDOORQWDQDQRGD\ = HTXDQGRFL VLWURYDDVLQLVWUDGL\ = SXQWDQRYHUVR\ = -  1HOVHJXLWRSUHVHQWHUHPRGLYHUVLHVHPSLGLDSSOLFD]LRQHLQFXLqSRVVLELOHGL VHJQDUHXQDIDPLJOLDGLFXUYHVROX]LRQHSHUO¶HTXD]LRQHGLIIHUHQ]LDOHGHOPRGHOOR FRQVLGHUDWRDSSOLFDQGRLOPHWRGRGHOO¶(VHPSLR

Legge di raffreddamento di Newton 1HO3DUDJUDIRDEELDPRULVROWRDQDOLWLFDPHQWHO¶HTXD]LRQHGLIIHUHQ]LDOH

FKHGHVFULYHODOHJJHGLUDIIUHGGDPHQWRGL1HZWRQGRYH+qODWHPSHUDWXUDGLXQ RJJHWWRDOWHPSRWH+6 qODWHPSHUDWXUDFRVWDQWHGHOPH]]RFLUFRVWDQWH 6LDVVXPDFKHLOPH]]RFLUFRVWDQWH DGHVHPSLRXQDVWDQ]DLQXQHGL¿FLR VL WURYLDOODWHPSHUDWXUDFRVWDQWHGLƒ&/DGLIIHUHQ]DGLWHPSHUDWXUDSXzHVVHUH HVSUHVVDDOORUDFRPH+ W - $VVXPHQGRFKH+VLDXQDIXQ]LRQHGLIIHUHQ]LDEL OHGHOWHPSRWVHFRQGRODOHJJHGLUDIIUHGGDPHQWRGL1HZWRQHVLVWHXQDFRVWDQWH GLSURSRU]LRQDOLWjN 7 WDOHFKH 





VLPHWWHLOVHJQRPHQRGDYDQWLDNSHURWWHQHUHXQDGHULYDWDQHJDWLYDTXDQGR + 7   3RLFKpG+>GW = SHU+ = ODWHPSHUDWXUDGLƒ&qXQYDORUHGLHTXLOLEULR 6H+ 7 SHUO¶(TXD]LRQH  VLKDFKH + -  7 HG+>GW 6 VHO¶RJJHWWR



*HWP[VSV¶,X\HaPVUPKPMMLYLUaPHSPKLSWYPTVVYKPUL

dH 0 dt 

dH 0 dt

H 15

-PN\YH 3ULPRSDVVRGHOODFRVWUX]LRQHGHOOD OLQHDGHOOHIDVLSHUODOHJJHGL UDIIUHGGDPHQWRGL1HZWRQ$OXQJR WHUPLQHODWHPSHUDWXUDWHQGHDOYDORUH GLHTXLOLEULR WHPSHUDWXUDGHOPH]]R FLUFRVWDQWH 

dH 0 dt

dH 0 dt 

d2

d2

H 0 dt 2

H 0 dt 2 H

15

-PN\YH /DOLQHDGHOOHIDVLFRPSOHWDSHUOD OHJJHGLUDIIUHGGDPHQWRGL1HZWRQ

H Temperatura iniziale

Temperatura del mezzo circostante

qSLFDOGRULVSHWWRDOODVWDQ]DVLUDIIUHGGHUj$QDORJDPHQWHVH+ 6 DOORUD + -  6  H G+>GW 7  VH O¶RJJHWWR q SL IUHGGR ULVSHWWR DOOD VWDQ]D VL UL VFDOGHUj,OFRPSRUWDPHQWRGHVFULWWRGDOO¶(TXD]LRQH  qTXLQGLLQDFFRUGRFRQ FLzFKHLQWXLWLYDPHQWHFLVLDWWHQGH4XHVWHRVVHUYD]LRQLVRQRUDSSUHVHQWDWHQHOOD OLQHDGHOOHIDVLLQL]LDOHULSRUWDWDQHOOD)LJXUD,OYDORUH+ = qXQHTXLOLEULR VWDELOH 3HUVWXGLDUHODFRQYHVVLWjGHOOHFXUYHVROX]LRQHVLGHULYDQRDPERLPHPEUL GHOO¶(TXD]LRQH  ULVSHWWRDW

3RLFKp- NqQHJDWLYRVLYHGHFKHG+>GWqSRVLWLYRSHUG+>GW 6 HQHJDWLYR SHUG+>GW 7 1HOOD)LJXUDTXHVWDLQIRUPD]LRQHqVWDWDDJJLXQWDDOODOLQHD GHOOHIDVL /DOLQHDGHOOHIDVLFRPSOHWDPRVWUDFKHVHODWHPSHUDWXUDGHOO¶RJJHWWRqDO GL VRSUD GHO YDORUH GL HTXLOLEULR GL ƒ& LO JUD¿FR GL + W  VDUj GHFUHVFHQWH H FRQYHVVR6HLQYHFHODWHPSHUDWXUDqLQIHULRUHDƒ& ODWHPSHUDWXUDGHOPH]]R FLUFRVWDQWH LOJUD¿FRGL+ W VDUjFUHVFHQWHHFRQFDYR4XHVWHLQIRUPD]LRQLFRQ VHQWRQRGLGLVHJQDUHOHFXUYHVROX]LRQHWLSLFKH )LJXUD  1HOOD)LJXUDODFXUYDVROX]LRQHVXSHULRUHPRVWUDFKHPHQWUHO¶RJJHWWR VLUDIIUHGGDLOWDVVRFRQLOTXDOHODVXDWHPSHUDWXUDGLPLQXLVFHUDOOHQWDSHUFKp G+>GWWHQGHD]HUR4XHVWDRVVHUYD]LRQHSRWHYDHVVHUHGHGRWWDDQFKHGDOODOHJJH GLUDIIUHGGDPHQWRGL1HZWRQHGDOO¶HTXD]LRQHGLIIHUHQ]LDOHPDO¶DSSLDWWLUVLGHO JUD¿FRFRQO¶DYDQ]DUHGHOWHPSRSHUPHWWHGLYLVXDOL]]DUHLOIHQRPHQRLQPRGR LPPHGLDWR

Corpo che cade subendo una resistenza

15

1HZWRQRVVHUYzFKHLOWDVVRGLYDULD]LRQHGHOODTXDQWLWjGLPRWRGLXQRJJHWWRLQ PRYLPHQWRqXJXDOHDOODIRU]DULVXOWDQWHDHVVRDSSOLFDWD,QWHUPLQLPDWHPDWLFL VLVFULYH

Temperatura iniziale t

-PN\YH 7HPSHUDWXUDLQIXQ]LRQHGHOWHPSR ,QGLSHQGHQWHPHQWHGDOODWHPSHUDWXUD LQL]LDOHODWHPSHUDWXUD+ W  GHOO¶RJJHWWRWHQGHDƒ&FLRqDOOD WHPSHUDWXUDGHOPH]]RFLUFRVWDQWH







GRYH)qODIRU]DULVXOWDQWHFKHDJLVFHVXOO¶RJJHWWRPHQWUHPHyVRQRODPDVVD HODYHORFLWjGHOO¶RJJHWWR6HPYDULDQHOWHPSRFRPHDGHVHPSLRQHOFDVRLQFXL O¶RJJHWWRqLOFDUEXUDQWHGLXQUD]]RFKHEUXFLDDSSOLFDQGRODUHJRODSHUODGHUL YDWDGHOSURGRWWRLOVHFRQGRPHPEURGHOO¶(TXD]LRQH  GLYHQWD

,QPROWLFDVLWXWWDYLDPqFRVWDQWHGP>GW = HO¶(TXD]LRQH  DVVXPHODIRUPD SLVHPSOLFH  RYYHUR   QRWDFRPHVHFRQGDOHJJHGL1HZWRQVXOPRWR YHGHUHLO3DUDJUDIR  1HOFDVRGHOODFDGXWDOLEHUDO¶DFFHOHUD]LRQHFRVWDQWHGRYXWDDOODJUDYLWjqLQ GLFDWDFRQJHO¶XQLFDIRU]DULYROWDYHUVRLOEDVVRFKHDJLVFHVXOFRUSRLQFDGXWDq

)S = PJ

 :VS\aPVUPNYHMPJOLKPLX\HaPVUPH\[VUVTL

FLRqODIRU]DGRYXWDDOODJUDYLWj6HWXWWDYLDVLFRQVLGHUDXQRJJHWWRUHDOHFKHFDGH QHOO¶DULDFRPHDGHVHPSLRXQDPRQHWDFKHFDGHGDXQDJUDQGHDOWH]]DRXQSDUD FDGXWLVWDFKHVLODQFLDGDXQ¶DOWH]]DDQFRUDPDJJLRUHqQRWRFKHDXQFHUWRSXQWR OD UHVLVWHQ]D GHOO¶DULD GLYHQWD XQ IDWWRUH QRQ WUDVFXUDELOH QHOOD GHWHUPLQD]LRQH GHOODYHORFLWjGLFDGXWD8QPRGHOORSLUHDOLVWLFRGHOODFDGXWDOLEHUDGRYUHEEH LQFOXGHUHODUHVLVWHQ]DGHOO¶DULDUDSSUHVHQWDWDQHOGLDJUDPPDGHOOD)LJXUD FRPHODIRU]D)U 3HUYHORFLWjGHFLVDPHQWHLQIHULRULDOODYHORFLWjGHOVXRQRHVSHULPHQWLKDQQR PRVWUDWRFKH)U qDSSURVVLPDWLYDPHQWHSURSRU]LRQDOHDOODYHORFLWjGHOO¶RJJHWWR /DIRU]DULVXOWDQWHFKHDJLVFHVXOFRUSRLQFDGXWDqSHUWDQWR



Fr  ky

m

y0 y positiva

Fp  mg

-PN\YH 8QRJJHWWRFKHFDGHSHUHIIHWWRGHOOD JUDYLWjHGqVRJJHWWRDXQDIRU]DGL UHVLVWHQ]DFKHVLDVVXPHSURSRU]LRQDOH DOODYHORFLWj

SHUFXL 

Ê SRVVLELOH XWLOL]]DUH XQD OLQHD GHOOH IDVL SHU VWXGLDUH OH IXQ]LRQL YHORFLWj FKH ULVROYRQRTXHVWDHTXD]LRQHGLIIHUHQ]LDOH ,OSXQWRGLHTXLOLEULRFKHVLRWWLHQHSRQHQGRLOVHFRQGRPHPEURGHOO¶(TXD ]LRQH  XJXDOHD]HURq

6HODYHORFLWjLQL]LDOHGHOO¶RJJHWWRqPDJJLRUHGLTXHVWRYDORUHGy>GWqQHJDWLYR HO¶RJJHWWRUDOOHQWDVHODYHORFLWjLQL]LDOHqPLQRUHGLPJ>NDOORUDGy>GW 7 H O¶RJJHWWRDFFHOHUD4XHVWHRVVHUYD]LRQLVRQRUDSSUHVHQWDWHQHOODOLQHDGHOOHIDVL LQL]LDOHULSRUWDWDQHOOD)LJXUD 3HUGHWHUPLQDUHODFRQYHVVLWjRODFRQFDYLWjGHOOHFXUYHVROX]LRQHVLGHULYDQR DPERLPHPEULGHOO¶(TXD]LRQH  ULVSHWWRDW

dy 0 dt 

dy 0 dt

y mg k

-PN\YH /LQHDGHOOHIDVLLQL]LDOHSHUXQRJJHWWR FKHFDGHHGqVRJJHWWRDUHVLVWHQ]D

dy 0 dt

dy 0 dt 

d 2y 0 dt 2

d 2y 0 dt 2

y

mg k

-PN\YH

6LYHGHFKHGy>GW 6 SHUy 6 PJ>NHGy>GW 7 SHUy 7 PJ>N/DOLQHDGHOOH /DOLQHDGHOOHIDVLFRPSOHWDSHU IDVLGHOOD)LJXUDULSRUWDDQFKHTXHVWHLQIRUPD]LRQL6LRVVHUYLODVRPLJOLDQ]D O¶RJJHWWRLQFDGXWD FRQODOHJJHGLUDIIUHGGDPHQWRGL1HZWRQ )LJXUD $QFKHOHFXUYHVROX]LRQL VRQRVLPLOL )LJXUD  y /D )LJXUD  PRVWUD GXH WLSLFKH FXUYH VROX]LRQH 6L YHGH FKH LQGLSHQ Velocità GHQWHPHQWHGDOODYHORFLWjLQL]LDOHODYHORFLWjGHOO¶RJJHWWRWHQGHDOYDORUHOLPLWH iniziale mg y y = PJ>N4XHVWRYDORUHFKHqXQSXQWRGLHTXLOLEULRVWDELOHSUHQGHLOQRPHGL k YHORFLWj WHUPLQDOH GHOO¶RJJHWWR , SDUDFDGXWLVWL VRQR LQ JUDGR GL PRGL¿FDUH OD mg SURSULDYHORFLWjWHUPLQDOHPRGL¿FDQGRODSRU]LRQHGHOODVXSHU¿FLHFRUSRUHDFKH k VLRSSRQHDOODFDGXWDFKHLQÀXLVFHVXOYDORUHGLN

Crescita demografica di tipo logistico

Velocità iniziale

1HO3DUDJUDIRDEELDPRVWXGLDWRODFUHVFLWDGHPRJUD¿FDDSSOLFDQGRLOPRGHOOR GHOODFUHVFLWDHVSRQHQ]LDOHVH3UDSSUHVHQWDLOQXPHURGLLQGLYLGXLHVLWUDVFXUDQR -PN\YH OHSDUWHQ]HHJOLDUULYLGLQXRYLLQGLYLGXLDOORUD &XUYHGLYHORFLWjWLSLFKHSHUXQ RJJHWWRLQFDGXWDVRJJHWWRD





 UHVLVWHQ]D,OYDORUHy = PJ>NqOD

YHORFLWjWHUPLQDOH

t



*HWP[VSV¶,X\HaPVUPKPMMLYLUaPHSPKLSWYPTVVYKPUL

GRYHN 7 qODGLIIHUHQ]DWUDLOWDVVRGLQDWDOLWjHLOWDVVRGLPRUWDOLWjSHULQGLYLGXR SHUXQLWjGLWHPSR 3RLFKpOHULVRUVHYLWDOLQHFHVVDULHSUHVHQWLLQXQGHWHUPLQDWRDPELHQWHQDWXUDOH VRQROLPLWDWHqUDJLRQHYROHDVVXPHUHFKHHVLVWDXQDSRSROD]LRQHVRVWHQLELOHPDV VLPD00DQPDQRFKHODSRSROD]LRQHVLDYYLFLQDDTXHVWDSRSROD]LRQHOLPLWH R FDSDFLWj SRUWDQWH GHOO¶DPELHQWH OH ULVRUVH GLYHQWDQR PHQR DEERQGDQWL H LO WDVVRGLFUHVFLWDNGLPLQXLVFH4XHVWRFRPSRUWDPHQWRqGHVFULWWRGDOODVHPSOLFH UHOD]LRQH N = U 0 - 3  GRYHU 7 qXQDFRVWDQWH6LRVVHUYLFKHNGLPLQXLVFHDOFUHVFHUHGL3¿QRDOYD ORUH0HFKHNGLYHQWDQHJDWLYRSHU3PDJJLRUHGL06RVWLWXHQGRNFRQU 0 - 3  QHOO¶(TXD]LRQH  VLRWWLHQHO¶HTXD]LRQHGLIIHUHQ]LDOH 



dP 0 dt 

dP 0 dt

P 0

M

-PN\YH /DOLQHDGHOOHIDVLLQL]LDOHSHUOD FUHVFLWDGLWLSRORJLVWLFR (TXD]LRQH 



,OPRGHOORUDSSUHVHQWDWRGDOO¶(TXD]LRQH  YLHQHFKLDPDWRFUHVFLWDORJLVWLFD ÊSRVVLELOHSUHYHGHUHO¶DQGDPHQWRGHOODSRSROD]LRQHQHOWHPSRHVDPLQDQGR ODOLQHDGHOOHIDVLGHOO¶(TXD]LRQH  LYDORULGLHTXLOLEULRVRQR3 = 0H3 = H VLYHGHFKHG3>GW 7 SHU 6 3 6 0HG3>GW 6 SHU3 7 04XHVWHRVVHUYD]LRQL VRQRUDSSUHVHQWDWHQHOODOLQHDGHOOHIDVLULSRUWDWDQHOOD)LJXUD 3HU GHWHUPLQDUH OD FRQYHVVLWj R OD FRQFDYLWj GHOOH FXUYH GL SRSROD]LRQH VL GHULYDQRDPERLPHPEULGHOO¶(TXD]LRQH  ULVSHWWRDW



6H3 = 0>DOORUDG3>GW = VH3 6 0>DOORUD 0 - 3 HG3>GWVRQRSRVLWLYL HG3>GW 7 VH0> 6 3 6 0DOORUD 0 - 3 6 G3>GW 7 HG3>GW 6 VH 3 7 0DOORUD 0 - 3 HG3>GWVRQRHQWUDPELQHJDWLYLHG3>GW 7 4XHVWHLQ d 2P d 2P d 2P 0 0 0  IRUPD]LRQLSRVVRQRHVVHUHDJJLXQWHDOODOLQHDGHOOHIDVL )LJXUD  dt 2 dt 2 dt 2 P /HUHWWH3 = 0>H3 = 0GLYLGRQRLOSULPRTXDGUDQWHGHOSLDQRW3LQIDVFH 0 M M RUL]]RQWDOLLQFXLVRQRQRWLLVHJQLGLG3>GWHGLG3>GW3HURJQLIDVFLDqQRWR 2 FRPHFUHVFRQRHGHFUHVFRQROHFXUYHVROX]LRQHHFRPHYDULDQHOWHPSRODORUR -PN\YH FXUYDWXUD/HUHWWHGLHTXLOLEULR3 = H3 = 0VRQRHQWUDPEHFXUYHGLSRSROD]LR /DOLQHDGHOOHIDVLFRPSOHWDSHUOD QH/HFXUYHGLSRSROD]LRQHFKHLQWHUVHFDQRODUHWWD3 = 0>KDQQRXQSXQWRGL FUHVFLWDGLWLSRORJLVWLFR (TXD]LRQH  ÀHVVRQHOSXQWRGLLQWHUVH]LRQHFKHFRQIHULVFHORURXQDIRUPDVLJPRLGDOH FLRq FXUYDWDLQGXHGLUH]LRQLFRPHODOHWWHUD6 /D)LJXUDPRVWUDOHWLSLFKHFXUYH GLSRSROD]LRQH6LQRWLFKHWXWWHOHFXUYHGLSRSROD]LRQHWHQGRQRDOODSRSROD]LRQH OLPLWH0SHUW : q dP 0 dt

dP 0 dt 

-PN\YH &XUYHGLSRSROD]LRQHSHUODFUHVFLWD GLWLSRORJLVWLFR

Popolazione

P

Popolazione limite

M

M 2

Tempo

t

Complementi al testo a cura di Carlo Mariconda

1

Note sul Capitolo 1

Definizione di curva parametrica nel piano (Sez. 1.1) Precisiamo meglio la definizione di curva parametrica. Definizione 1.1 (Curva parametrica) Una curva parametrica in R2 e` una coppia di funzioni continue

(f, g) : I → R2 ,

t → (f (t), g(t))

definite su un intervallo non degenere I di R. Diremo che t → (f (t), g(t)) e` una funzione vettoriale continua a valori in R2 . L’insieme dei punti (x, y) = (f (t), g(t)), al variare di t ∈ I , si chiama sostegno della curva parametrica, di cui (f, g) e` una parametrizzazione. Osservazione 1.2 Una curva parametrica nel piano non e` un insieme ma una coppia di funzioni continue definite su un intervallo. Per capire la differenza tra curva parametrica e il suo sostegno immaginiamo di fotografare al buio un punto luminoso, con l’otturatore aperto. La funzione che al tempo t associa la posizione del punto e` una curva parametrica. La scia luminosa ottenuta in fotografia rappresenta il sostegno della curva parametrica, la traiettoria istante per istante del punto luminoso ci fornisce la parametrizzazione (le componenti in t sono la posizione del punto all’istante t).



In tutto il Libro per curva si intende una curva parametrica: nell’uso comune capita spesso di confondere una curva parametrica con il suo sostegno, a sua volta chiamato spesso semplicemente “curva”. Il problema e` che un dato insieme pu`o essere il sostegni di infinite curve parametriche distinte. Quale curva parametrica si considera? Una parametrizzazione “naturale” o ad essa equivalente (si veda la definizione a pag. 44). Vediamo alcuni esempi al proposito. Esempio 1.3 (Il segmento) Il segmento da un punto P a un punto Q in Rn e` la curva parametrica γ(t) = P + t(Q − P ), t ∈ [0, 1]

4

Note sul Capitolo 1

o una sua parametrizzazione equivalente. Il suo sostegno e` il segmento P Q. Si noti che anche il segmento da Q a P dato da

γ −1 (t) = Q + t(P − Q), t ∈ [0, 1] ha lo stesso sostegno: in tal caso tuttavia esso viene percorso partendo da Q in t = 0 e arrivando a P in t = 1. Quando si parla del segmento P Q si sottointende nel corso di considerare la curva parametrica γ . Esempio 1.4 (Circolo unitario) Per circolo unitario si intende la curva parametrica γ1 (t) = (cos t, sin t), t ∈ [0, 2π], o una parametrizzazione equivalente, come ad esempio (cos(2t), sin(2t)), t ∈ [0, π]. Il sostegno del circolo unitario e` in cerchio unitario {(x, y) ∈ R2 : x2 + y 2 = 1}. Tale insieme e` anche il sostegno della curva che lo percorre 2 volte data da γ2 (t) = (cos t, sin t), t ∈ [0, 4π]. Si noti tuttavia che le curve parametriche γ1 , γ2 non sono equivalenti: infatti se lo fossero esisterebbe φ : [0, 2π] → [0, 4π] continua e crescente tale che γ1 (t) = γ2 (φ(t)) per ogni t ∈ [0, 2π], da cui

cos t = cos(φ(t)),

sin t = sin(φ(t)) ∀t ∈ [0, 2π],

da cui

φ(t) = t + 2k(t)π ∀t ∈ [0, 2π], con k(t) ∈ Z. Necessariamente k(t) e` continua, quindi costante: k(t) ≡ k ∈ Z. Da φ(0) = 2kπ si deduce che k = 0, ma allora φ(2π) = 2π = 4π , contraddicendo il fatto che φ([0, 2π]) = [0, 4π]. Un altro modo per provare l’affermazione consiste nel notare che la lunghezza di γ1 vale 2π , quella di γ2 vale 4π , mentre curve equivalenti hanno la stessa lunghezza. Quando si parla di “cerchio” si intende sempre una curva parametrica con parametrizzazione equivalente a γ1 . Vediamo alcuni esempi fondamentali di curve parametriche. Esempio 1.5 (Il segmento) Il segmento che congiunge due punti nel piano p = (p1 , p2 ) e q = (q1 , q2 ) e` una curva: infatti una sua parametrizzazione e` data da

r(t) = p + t(q − p) : t ∈ [a, b]. In tutto il corso con “segmento [p, q]” intenderemo la curva parametrica r (e non l’insieme di punti del segmento), o una ad essa equivalente. Esempio 1.6 (Il cerchio) Un cerchio di raggio R > 0 e centro p = (p1 , p2 ) e` una curva; una sua parametrizzazione e`

r(t) = (p1 + R cos t, p2 + R sin t),

t ∈ [0, 2π].

Note sul Capitolo 1

5

In tutto il corso con “cerchio di centro p e raggio R” intenderemo non la curva (cio`e l’insieme dei punti di tale cerchio) ma la parametrizzazione data sopra o una qualunque ad essa equivalente. Si noti che il cerchio percorso una volta al doppio della velocit`a, dato da

γ(t) = (p1 + R cos(2t), p2 + R sin(2t)),

t ∈ [0, π]

e` equivalente al cerchio di centro p e raggio R: infatti γ(t) = r(2t) per ogni t ∈ [0, π] e la funzione t → u(t) = 2t e` biiettiva da [0, π] su [0, 2π], derivabile, con derivata continua e diversa da 0. Si pu`o dimostrare che il cerchio di stesso centro e raggio percorso pi`u volte, come ad esempio

(p1 + R cos t, p2 + R sin t),

t ∈ [0, 4π],

non e` equivalente a r. Esempio 1.7 (Il grafico di una funzione) Il grafico C = {(t, h(t)) : t ∈ [a, b]} di una funzione continua h : [a, b] → R e` una curva. Infatti la funzione vettoriale







 Figura 1.1. Il grafico della funzione sin t su [0, 2π]

r : t ∈ [a, b] → (t, h(t)) ne e` una parametrizzazione. Diremo, sfruttando l’abuso di linguaggio descritto sopra, che tale curva parametrica e` la “curva” y = h(x), al variare di x ∈ [a, b]. Si noti che un’altra parametrizzazione di C e` data dalla funzione t ∈ [a−1, b−1] → (t+1, h(t+1)): vi sono infinite parametrizzazioni di C , ognuna di queste e` una diversa curva parametrica con stesso sostegno C .

Somme di Riemann (Sez. 1.2) Le somme di Riemann sono spesso utili in questo corso. Ne richiamiamo qui definizione e propriet`a. Sia g : [a, b] → R una funzione continua e sia a = t0 < t1 < ... < tm+1 = b una suddivisione di [a, b]. Una somma di Riemann di g associata alla suddivisione data e` una somma del tipo

g(t0 )(t1 − t0 ) + ... + g(tm )(tm+1 − tm ),

6

Note sul Capitolo 1

con ti ∈ [ti , ti+1 ] per ogni 0 ≤ i ≤ m. Geometricamente una somma di Riemann e` costituita dalla somma delle aree dei rettangoli di base gli intervalli [ti , ti+1 ] e altezza g(ti ). Quando gli intervalli della suddivisione diventano piccoli, una somma di

Figura 1.2. Significato di una somma di Riemann

Riemann di g si avvicina all’area del trapezoide di g . Pi`u precisamente:  b lim g(t0 )(t1 − t0 ) + ... + g(tm )(tm+1 − tm ) = g(t) dt. max{ti+1 −ti }→0

a

Esempio 1.8 Sia m naturale, m ≥ 2. Allora

1 + e1/m + e2/m + ... + e(m−1)/m = e − 1. m→+∞ m lim

Infatti

1 + e1/m + e2/m + ... + e(m−1)/m 1 1 1 = e0 + e1/m + ... + em/m m m m m e` una somma di Riemann di ex su [0, 1], relativa alla suddivisione m−1 m 1 < ... < < =1: 0< m m m  1 il limite vale quindi et dt = e − 1. 0

Esercizi Esercizio 1.1 Individuare le risposte corrette. Il grafico di una funzione continua h : [a, b] → R e` a) Una curva; b) Una curva parametrica; c) Il sostegno di una curva parametrica. Esercizio 1.2 La cardioide e` la curva di equazione polare r = a(1 + cos θ), θ ∈ [0, 2π], dove a > 0 e` una costante; calcolarne la lunghezza L.

Note sul Capitolo 1

7

Figura 1.3. Cardioide.

Soluzioni degli esercizi Soluzione es. 1.1. a) e c) Si, infatti si tratta del sostegno della curva x ∈ [a, b] → (x, h(x)) ∈ R2 . b) No, una curva parametrica e` una funzione, un insieme non e` mai una curva parametrica. Soluzione es. 1.2.  2  2π  d (a(1 + cos θ)) + (a(1 + cos θ))2 dθ L= dθ 0  2π  =a sin2 θ + 1 + 2 cos θ + cos2 θ dθ = 0  2π  =a 2(1 + cos θ) dθ 0   2π  2π  π 1 + cos θ = 2a dθ = 2a | cos(θ/2)| dθ = 4a cos(θ/2) dθ = 2 0 0 0 π = 8a [sin(θ/2)]0 = 8a.

2

Note sul Capitolo 2

Definizione di curva parametrica nello spazio (Sez. 2.1) Notazione. Nel Libro si indica con |x| la norma euclidea in Rn : se x = (x1 , x2 , ..., xn ) si ha  |x| = x21 + ... + x2n . Analogamente a quanto visto nel Capitolo 1, precisiamo la definizione di curva parametrica. Definizione 2.1 (Curva parametrica) Una curva parametrica in Rn e` una funzione vettoriale continua a valori in Rn r(t) = (f1 , f2 , .., fn ) : I → Rn ,

t → (f1 (t), f2 (t), ..., fn (t))

dove f1 , ..., fn sono funzioni continue definite su un intervallo non degenere I di R. L’insieme dei punti (x1 , ..., xn ) = (f1 (t), ..., fn (t)), al variare di t ∈ I , si chiama sostegno della curva parametrica, o semplicemente curva di cui (f1 , ..., fn ) e` una parametrizzazione.

 Osservazione 2.2 (Una curva parametrica non e` un insieme di punti) Una curva parametrica nello spazio non e` un insieme ma una terna di funzioni continue definite su un intervallo. Una curva parametrica parametrizza una ed una sola curva (l’insieme immagine della curva parametrica). Viceversa, una curva pu`o essere parametrizzata in infiniti modi.

3

Note sul Capitolo 3

Funzioni di piu` variabili (Sez. 3.1) Approfondiamo qui qualche concetto utile di topologia del piano o dello spazio. Se p ∈ Rn e r > 0 indicheremo con B(p, r[ (risp. B(p, r]) la palla aperta (risp. chiusa) definita da B(p, r[:= {x ∈ Rn : |x − p| < r},

B(p, r[:= {x ∈ Rn : |x − p| ≤ r}. Per n = 2 si parla di disco piuttosto che di palla. Definizione 3.1 (Intorno) Sia p ∈ Rn . Un intorno di p e` un insieme che contiene un disco (n = 2) o palla (n > 2) di centro p e raggio r > 0. Rinviamo al testo per la definizione di punto interno e di frontiera. Definizione 3.2 (Insieme aperto) Un insieme si dice aperto se ogni suo punto e` interno.

Limiti di funzioni di piu` variabili (Sez. 3.2 ) Nella definizione del testo e` sottinteso il fatto che la variabile appartiene al dominio della funzione in un punto di accumulazione. Vediamo di precisare meglio i concetti e l’ambito di validit`a di tale definizione. Il limite in un punto ha significato solo se il punto e` sufficientemente “vicino” al dominio della funzione. Definizione 3.3 (Punto di accumulazione) Sia D un sottoinsieme di Rn . p ∈ Rn e` di accumulazione per D se ogni intorno di p contiene punti di D diversi da p. Ecco la definizione precisa di limite per una funzione di pi`u variabili.

12

Note sul Capitolo 3

Definizione 3.4 (Limite) Siano D un sottoinsieme non vuoto di Rn , f : D → R una funzione e p ∈ Rn di accumulazione per D. Si dice che L ∈ R e` il limite di f (x) per x che tende a p, e si scrive x→p lim f (x) = L, se x∈D

∀ε > 0 ∃δ > 0 :

x ∈ D,

0 < |x − p| < δ ⇒ |f (x) − L| < ε.

Il fatto che p sia di accumulazione per D garantisce nella definizione di limite che esista almeno un x ∈ D tale che 0 < |x − p| < δ . Nella definizione di limite abbiamo evidenziato il ruolo del dominio. Negli esempi del Libro si utilizza il fatto che se il limite di f esiste, allora esiste ed e` uguale il limite di f su una qualunque restrizione. La semplice dimostrazione della proposizione che segue e` un utile esercizio sulla definizione di limite e viene lasciata al lettore. Proposizione 3.5 (Limite sulle restrizioni) Siano f : D ⊆ Rn → R e E ⊆ D, con p di accumulazione per E . Si supponga che x→p lim f (x) = L. Allora x∈D

lim f (x) = L. x→p x∈E

Esempio 3.6 (Le coordinate polari nel piano) Nel piano, un metodo alternativo a quello delle restrizioni sulle rette e` quello delle coordinate polari. Siano p ∈ R2 f : B(p, r]\{p} → R una funzione. Nel calcolare il limite di f in p = (p1 , p2 ) ∈ R2 si pu`o porre

x = p1 + ρ cos t, y = p2 + ρ sin t ρ > 0, t ∈ [0, 2π], e studiare, per t fissato, il limite della composta

lim f (p1 + ρ cos t, p2 + ρ sin t).

ρ→0+

Ci`o equivale a studiare il limite di f sulla semiretta per p che fa un angolo t rispetto xy all’asse orientato x. Ad esempio, sia f (x, y) = 2 per (x, y) = (0, 0): studiax + y2 mone il limite in (0, 0). Posto x = ρ cos t, y = ρ sin t, con ρ > 0 e t ∈ [0, 2π] si ha f (ρ cos t, ρ sin t) = cos t sin t −→ρ→0+ cos t sin t. tale limite dipende da t: si conclude che il limite di f in (0, 0) non esiste. Di conseguenza, se su due restrizioni si trovano limiti diversi, il limite non esi-

 ste. Si faccia anche attenzione che il limite di una funzione in p pu`o esistere ed essere uguale su ogni retta per il punto p, senza che il limite della funzione esista. analogamente, pu`o benissimo essere che

∀t ∈ [0, 2π]

lim f (p1 + ρ cos t, p2 + ρ sin t) = L,

ρ→0+

Note sul Capitolo 3

13

ma che il limite di f in p = (p1 , p2 ) non esista.

2x2 y definita per (x, y) = (0, 0) non ha x4 + y 2 limite (si veda l’Esempio 6 del Libro). Tuttavia, Esempio 3.7 La funzione f (x, y) =

∀t ∈ [0, 2π] f (ρ cos t, ρ sin t) = ρ

2 cos2 t sin t →0 ρ2 cos4 t + sin2 t

per ρ → 0+ : verificarlo separatamente per t ∈ {0, π, 2π} (la funzione composta vale 0) e poi per t ∈ / {0, π, 2π} (il denominatore tende a sin2 t = 0). Tuttavia, se il limite di f in p esiste e vale L su un ricoprimento finito del dominio allora il limite di f in p vale L. Proposizione 3.8 Siano D un sottoinsieme non vuoto di Rn , f : D → R una funzione e p ∈ Rn di accumulazione per D. Si supponga che D = D1 ∪ D2 ∪ ... ∪ Dm e che per ogni i = 1, ..., m, x→p lim f (x) = L. Allora x→p lim f (x) = L. x∈Di

x∈D

La dimostrazione della proposizione e` un facile esercizio (consigliato). '๛ '๜

'๟ S

'๝

'๞

Figura 3.1. Un ricoprimento finito del dominio

Esempio 3.9 Sia

x2 y f (x, y) = sin(xy)

x ≤ y ≤ 2x . altrimenti

Per determinare il limite in (0, 0) poniamo D1 := {(x, y) : x ≤ y ≤ 2x}, D2 := R2 \ D1 . Per la continuit`a delle funzioni x2 y e sin(xy) si ha

lim

(x,y)→(0,0) (x,y)∈D1

lim

(x,y)→(0,0) (x,y)∈D2

f (x, y) =

f (x, y) =

lim

(x,y)→(0,0) (x,y)∈D1

lim

(x,y)→(0,0) (x,y)∈D2

x2 y = 02 × 0 = 0,

sin(xy) = sin(0) = 0.

Per la Proposizione 3.8 si conclude che il limite di f in (0, 0) vale 0.

14

Note sul Capitolo 3

3.0.1 Metodi per provare l’esistenza di un limite Provare che un limite di una funzione non esiste in un punto e` spesso pi`u facile che provarne l’esistenza: e` sufficiente trovare due restrizioni per quel punto lungo le quali la funzione ha un limite diverso. Il problema nasce quando, provando su varie restrizioni, il limite di una funzione in un punto e` sempre lo stesso. In tal caso le strade sono due: cercare una restrizione pi`u ingegnosa lungo la quale la funzione ha un comportamento diverso, o provare l’esistenza del limite intuito in precedenza. Usare i limiti notevoli e le asintoticit`a Tutti i risultati visti sulle asintoticit`a e loro uso nei limiti continua a valere per funzioni di pi`u variabili. Ci limitiamo ad un esempio Studiamo l’esistenza del limite

2 sin(x2 y) . (x,y)→(0,0) x4 + y 2 lim

Dato che x2 y tende a 0 per (x, y) → (0, 0) e che sin t ∼ t per t → 0 si ha che il limite cercato vale 2x2 y lim , (x,y)→(0,0) x4 + y 2 che non esiste, come si e` visto nell’Esempio 3.7. Stime uniformi Quando si intuisce il valore del limite (ad esempio scrutando il limite su varie restrizioni) e` spesso utile il seguente criterio di confronto. Proposizione 3.10 (Stima uniforme) Siano D un sottoinsieme non vuoto di Rn , f : D → R una funzione e p ∈ Rn di accumulazione per D. Sia L ∈ R e si supponga

∀x ∈ D \ {p} |f (x) − L| ≤ h(x),

lim h(x) = 0.

x→p

Allora lim f (x) = L. x→p

Dimostrazione. Si ha L − h(x) ≤ f (x) ≤ L + h(x): si conclude per il Teorema dei Carabinieri.  Esempio 3.11 Sia f (x, y) =

x2 y , (x, y) = (0, 0). Si noti che vale la seguente x2 + y 2

Disuguaglianza importante:

1 |xy| ≤ (x2 + y 2 ) 2

che discende semplicemente dal fatto che (|x| − |y|)2 ≥ 0. Pertanto

1 |f (x, y)| ≤ |x| → 0 per (x, y) → (0, 0) : 2 per la Proposizione 3.10 si conclude che il limite cercato vale 0.

Note sul Capitolo 3

15

Nel piano, abbiamo visto nell’Esempio 3.6 che il cambio in polari e` un utile strumento per “indovinare” il limite di una funzione nel centro delle coordinate. Ecco una stima uniforme rispetto agli angoli che permette di provare che il limite e` quello intuito facendo i limiti per il raggio ρ → 0+ per l’angolo t fissato. Esempio 3.12 (Limiti con le coordinate polari) Siano p ∈ R2 f : B(p, r] \ {p} → R una funzione. Esista h :]0, r] → [0, +∞[ tale che

∀ρ ∈]0, r] |f (p1 + ρ cos t, p2 + ρ sin t) − L| ≤ h(ρ), con lim+ h(ρ) = 0. Allora ρ→0

lim

(x,y)→(0,0)

(3.1)

f (x, y) = L. Infatti, si fissi ε > 0, e sia δ > 0

tale che

0 < ρ < δ ⇒ h(ρ) < ε. Allora segue da (3.1) che

0 < |(x, y) − (p1 , p2 )| < δ ⇒ |f (x, y) − L| < ε, da cui la conclusione. Ad esempio, si voglia calcolare il limite visto nell’Esempio 3.11. Per ogni ρ > 0, t ∈ [0, 2π] si ha f (ρ cos t, ρ sin t) = 2ρ cos2 t sin t → 0 per ρ → 0+ . Come abbiamo visto sopra, ci`o non e` sufficiente per concludere sull’esistenza del limite (ma solo che se esso esiste, vale 0). Tuttavia vale la seguente stima uniforme, indipendente da t:

|f (ρ cos t, ρ sin t)| = 2ρ| cos2 t sin t| ≤ h(ρ) := 2ρ ed e` lim+ h(ρ) = 0: per quanto visto sopra ci`o basta per concludere che il limite ρ→0

cercato vale 0.

Derivate parziali (Sez. 3.3) Notazione. La derivata parziale di una funzione f rispetto ad xi verr`a anche indicata  con ∂xi f (x). Indicheremo con la notazione standard Du f (p), al posto che df usata nel Libro, la derivata direzionale di una funzione f nel punto p, con ds u,p rispetto al vettore u.

3.0.2 Derivate parziali Come per le derivate di funzioni di una variabile, non e` detto che le derivate parziali siano continue, cio`e che se f : B(p, r[⊂ R2 → R si abbia

∂xi f (p) = lim ∂xi f (x). x→p

16

Note sul Capitolo 3

Esempio 3.13 Sia

f (x, y) = Si ha

⎧ ⎨

x2

⎩0

xy + y2

se (x, y) = (0, 0) se (x, y) = (0, 0).

f (t, 0) − f (0, 0) 0 = lim = 0. t→0 t→0 t t

∂x f (0, 0) = lim Per (x, y) = (0, 0) si ha

∂x f (x, y) =

y (y 2 − x2 ) 2 . (x2 + y 2 )

Il limite

lim

(x,y)→(0,0)

non esiste dato che

∂x f (x, y)

y (y 2 − x2 ) 2 = 0, (x,y)→(0,0) (x2 + y 2 ) x=y lim

y (y 2 − x2 ) 2 = +∞. (x,y)→(0,0) (x2 + y 2 ) x=0,y>0 lim

3.0.3 Differenziabilita`  Nella definizione di differenziabilit`a data nel Libro, ε1 , ε2 non sono ”valori” bens`ı funzioni. Pi`u precisamente si ha: Definizione 3.14 Se R e` aperto in R2 , f : R → R e (x0 , y0 ) ∈ R, si dice che f e` differenziabile in (x0 , y0 ) se esistono fx (x0 , y0 ) e fy (x0 , y0 ) ed inoltre

f (x0 + Δx, y0 + Δy) − f (x0 , y0 ) = = fx (x0 , y0 )Δx + fy (x0 , y0 )Δy + ε1 (x, y)Δx + ε2 (x, y)Δy, (3.2) con ε1 (x, y), ε2 (x, y) → 0 per (x, y) → (x0 , y0 ). Osservazione 3.15 Un modo equivalente per scrivere (3.2) e`

f (x, y) = f (x0 , y0 ) + ∂x f (x0 , y0 )(x − x0 )+ + ∂y f (x0 , y0 )(y − y0 ) + o(|(x − x0 , y − y0 )|) = f (x0 , y0 ) + ∇f (x0 , y0 ) · (x − x0 , y − y0 ) + o(|(x − x0 , y − y0 )|), (3.3)

Note sul Capitolo 3

17

dove con o(|(x − x0 , y − y0 )|) indichiamo, similmente a quanto visto in Analisi Uno, una funzione R(x, y) tale che

lim

(x,y)→(x0 ,y0 )



R(x, y) = 0. (x − x0 )2 + (y − y0 )2

Il Teorema 8 del Libro mostra che se f e` differenziabile in un punto p allora Du f (p) = ∇f (p) · u. Pertanto, in tal caso la derivata direzionale e` una funzione lineare in u, cio`e del tipo u = (u1 , u2 ) → au1 + bu2 per qualche a, b reali. Esempio 3.16 Sia f : R2 → R definita da ⎧ ⎨

x3 f (x, y) = x2 + y 2 ⎩ 0

se (x, y) = (0, 0) se (x, y) = (0, 0).

1. f e` continua in (0, 0). Infatti |f (x, y)| ≤ |x| x2 /(x2 +y 2 ) ≤ |x| e

0 quindi

lim

(x,y)→(0,0)

f (x, y) = (0, 0) = f (0, 0).

lim

(x,y)→(0,0)

|x| =

u = (0, 0). Si ha 2. Sia u = (u1 , u2 ) ∈ R2 ,  f (tu) − f (0) f (tu1 , tu2 ) = lim t→0 t t t3 u31 u31 . = 2 = lim 3 2 t→0 t (u + u2 ) u1 + u22 1 2

Du f (0, 0) = lim t→0

3. f non e` differenziabile in (0, 0). Infatti l’applicazione u → Du f (0, 0) non e` lineare, ad esempio e` D(1,1) f (0, 0) = 1/2 mentre D(1,0) f (0, 0) + D(0,1) f (0, 0) = 1 + 0 = 1.

Figura 3.2. Una funzione non differenziabile: si vede come il piano tangente non

fornisce una buona approssimazione dei valori della funzione attorno al punto considerato

18

Note sul Capitolo 3

Derivate direzionali e vettori gradiente (Sez. 3.5) Notazione. Indicheremo con ∇f (p) il gradiente di una funzione f in un punto p. La regola della catena vista nella Sezione 3.4 si pu`o sinteticamente enunciare in termini del gradiente. Proposizione 3.17 (Regola della catena) Se f : R ⊂ Rn → R e` differenziabile e r : [a, b] → R e` derivabile allora

d (f ◦ r)(t) = ∇f (r(t)) · r (t). dt E’ spesso utile ricordare il gradiente della norma euclidea.

 Esempio 3.18 (Gradiente della norma) Per ogni x = 0 si ha ∇|x| =

x . |x|

Infatti, per ogni i = 1, ..., n si ha  ∂xi |x| = ∂xi x21 + ... + x2n = 

xi xi . = |x| + ... + x2n √ Si noti che |x| non ha derivate parziali nell’origine, dato che t → t2 = |t| non e` derivabile on 0. x21

Valori estremi e punti di sella (Sez. 3.7) Il criterio delle derivate seconde illustrato nel Libro permette di concludere la natura di un punto critico per una funzione f in dimensione 2 non appena f ha derivate 2 seconde continue (cio`e e` di classe C 2 ) e fxx fyy − fxy = 0. Negli altri casi bisogna procedere diversamente. Infatti quando il determinante della matrice Hessiana e` nullo pu`o accadere di tutto. Esempio 3.19 (Determinante Hessiano nullo) • f (x, y) = x4 +y 4 ha (0, 0) come punto critico, il determinante Hessiano di f in (0, 0) e` nullo. Si vede che (0, 0) e` minimo (globale) dato che f (x, y) ≥ 0 = f (0, 0) per ogni (x, y) ∈ R2 . • f (x, y) = −(x4 + y 4 ) ha (0, 0) come punto critico, il determinante Hessiano di f in (0, 0) e` nullo. Si vede che (0, 0) e` massimo (globale) dato che f (x, y) ≤ 0 = f (0, 0) per ogni (x, y) ∈ R2 . • f (x, y) = x4 − y 4 ha (0, 0) come punto critico, il determinante Hessiano di f in (0, 0) e` nullo. Si vede che (0, 0) e` di sella dato che f (x, 0) > 0 = f (0, 0) e f (0, y) < 0 = f (0, 0) per ogni (x, y) ∈ R2 con x = 0, y = 0.

Note sul Capitolo 3



19

E’ importante notare che la definizione di minimi/massimo locale non coinvolge nessuna derivata della funzione: si tratta di verificare che in un intorno B(p, r[ di un punto p fissato vale una disuguaglianza di questo tipo:

f (x) − f (p) ≥ 0 ∀x ∈ U oppure

f (x) − f (p) ≤ 0 ∀x ∈ U. Esempio 3.20 (Un punto di sella che e` minimo locale su ogni retta che lo contiene) Sia f (x, y) = y 2 − 3x2 y + 2x4 . Studiamone punti critici e natura. Si ha ∇f (x, y) = (−6xy + 8x3 , 2y − 3x2 ). Pertanto (x, y) e` critico se e solo se   −6xy + 8x3 = 0 2x(4x2 − 3y) = 0 ⇔ 2y − 3x2 = 0 2y − 3x2 = 0 da cui segue subito x = y = 0. La matrice Hessiana in (x, y) vale  24x2 − 6y −6x H(x, y) = −6x 2  0 0 , il cui determinante e` nullo: il criterio delIn (0, 0) si ha H(0, 0) = 0 2 l’Hessiano non fornisce informazioni. Studiamo il segno di f (x, y) − f (0, 0) = y 2 −3x2 y +2x4 attorno a (0, 0). Sembra difficile immaginare che l’espressione scritta abbia un segno costante in un disco centrato nell’origine, vediamo di dimostrarlo. Supponiamo ad esempio che sia

∀(x, y) ∈ B((0, 0), r[ y 2 − 3x2 y + 2x4 ≥ 0. Allora y 2 + 2x4 ≥ 3x2 y attorno all’origine. Consideriamo i punti della parabola y = ax2 , con a ∈ R. La disuguaglianza diventa (a2 + 2) ≥ 3a, che e` soddisfatta solo per a ≤ 1 o a ≥ 2. Pertanto essa e` violata ad esempio sui punti del tipo y = 3 2 x . Il ragionamento appena svolto mostra che f (x, y) − f (0, 0) < 0 se e solo se 2 x2 < y ≤ 2x2 , ed e` f (x, y) − f (0, 0) > 0 se e solo se y < x2 o y > 2x2 : si poteva giungere a questa conclusione osservando che f (x, y) = (y − x2 )(y − 2x2 ). Pertanto (0, 0) e` di sella. Si noti che (0, 0) e` minimo locale per f su ogni retta per l’origine. Infatti:

• Sulla retta x = 0 si ha f (x, y) − f (0, 0) = y 2 ≥ 0, • Sulla retta y = 0 si ha f (x, y) − f (0, 0) = 2x4 ≥ 0, • Su una generica altra retta per l’origine y = bx con b ∈ R, b = 0 si ha f (x, y) − f (0, 0) = x2 (b − x)(b − 2x) ≥ 0 |b| per |x| < √ . 2

20

Note sul Capitolo 3

















Figura 3.3. La regione dove f (x, y) − f (0, 0) < 0

Esercizi Esercizio 3.1 Sia f → R2 \ {(0, 0)} → R definita da ⎧ 2 ⎨ xy se (x, y) = (0, 0); f (x, y) = x2 + y 2 ⎩ 0 se (x, y) = (0, 0). (i) Studiare la continuit`a di f in (0, 0). (ii) Dire se f ammette le derivate parziali ∂x f (0, 0) e ∂y f (0, 0) in (0, 0); calcolarle in caso affermativo. (iii) Dire se f e` differenziabile in (0, 0). Determinare df (0, 0) in caso affermativo. Esercizio 3.2 Sia f : R2 → R di classe C 1 . Si supponga che f (et , t) = t2 e che f (t2 + 1, sin t) = t. Determinare ∇f (1, 0).

a)(−1, 1)

b)(1, −2)

c)(2, 1)

d)(1, −1)

e)(−1, −1)

Esercizio 3.3 Trovare massimo e minimo assoluti e i punti di massimo e minimo assoluti della funzione

f (x, y) = x2 − 4x + arctan(4y + y 2 ) ristretta al triangolo T di vertici O = (0, 0), A = (0, −4), B(4, 0).

Soluzioni degli esercizi Soluzione es. 3.1. (i) Ricordando che |xy| ≤ 12 (x2 + y 2 ) si ha 1 (x2 + y 2 ) |xy| 2 ≤ |y| x2 + y 2 x2 + y 2 1 2 1 ≤ |y| ≤ x + y 2 −−−−−−−→ 0 (x,y)→(0,0) 2 2

|f (x, y)| ≤ |y|

Note sul Capitolo 3

da cui

lim

(x,y)→(0,0)

21

f (x, y) = 0 = f (0, 0). Quindi f e` continua nell’origine.

(ii) Per definizione di f , si ha che f e` identicamente nulla sugli assi cartesiani. Quindi le derivate parziali esistono nell’origine e valgono

∂f ∂f (0, 0) = 0 = (0, 0). ∂x ∂y (iii) Per il punto (ii), se f e` differenziabile nell’origine allora il suo differenziale e` la funzione nulla. Si ha

∂f ∂f (0, 0)x − (0, 0)y xy 2 ∂x ∂x √ = 2 . |(x, y)| (x + y 2 ) x2 + y 2

f (x, y) − f (0, 0) −

Posto x = ρ cos t, y = ρ sin t (ρ ≥ 0, t ∈ [0, 2π]) e`

xy 2 √ = cos t sin2 t, (x2 + y 2 ) x2 + y 2

pertanto

xy 2 √ (x,y)→(0,0) (x2 + y 2 ) x2 + y 2 lim

non esiste ed f non e` differenziabile in (0, 0). Soluzione es. 3.2. d) Soluzione es. 3.3. E` 

 1 ∇f (x, y) = 2x − 4, (4 + 2y) . 1 + (4y + y 2 )2 L’unico punto critico e` (2, −2), che non e` interno a T : minimo e massimo assoluti di f vanno cercati sulla frontiera ∂T di T .

y O

2

B x

T −2

A Figura 3.4.

22

Note sul Capitolo 3

0 2 4 x f1(x) − − − − − − − − 0 + + + + + + + 0 f1(x)

0 −4

Figura 3.5.

Su OB e` y = 0, f (x, 0) = x2 − 4x = f1 (x), f1 (x) = 2x − 4 e maxOB f = f1 (0) = 0, minOB f = f1 (2) = −4 (Figura 3.5). Su OA e` x = 0, f (0, y) = f2 (y) = arctan(4y + y 2 ). Posto g(y) = y 2 + 4y e` g  (y) = 2y + 4; arctan e` crescente quindi minOA f = arctan(−4), maxOA f = arctan 0 = 0. 0 −4 −2 y g (y) − − − − − − − − 0 + + + + + + + 0

0 g(y)

−4

Figura 3.6.

Su AB e` y = x − 4 e f (x, x − 4) = x2 − 4x + arctan(x2 − 4x) = u + arctan u = h(u), con u = x2 − 4x. Quando x descrive l’intervallo [0, 4], u varia tra −4 e 0. E` h (u) = 1 + 1/(1 + u2 ) > 0 quindi h e` strettamente crescente e minx∈[0,4] f (x, x − 4) = h(−4) = −4 + arctan(−4) = minAB f = f (2, −2), maxx∈[0,4] f (x, x − 4) = h(0) = 0 = maxAB f . Pertanto minT f = −4 + arctan(−4) = f (2, −2); maxT f = 0 = f (0, 0) = f (A) = f (B).

4

Note sul Capitolo 4

Integrali tripli in coordinate rettangolari (Sez. 4.5) Nel Libro viene illustrato il metodo di integrazione su domini semplici: si fanno variare due coordinate, si integra prima rispetto alla terza. Vediamo qui un metodo di integrazione per “fette parallele agli assi coordinati”: si fa variare una coordinata e si integra prima rispetto a due coordinate. Vediamo il corrispondente matematico di una sottile fetta di polenta sul piatto. La z -sezione di D e` la proiezione sul piano xy della fetta parallela al piano xy , a quota z , dell’insieme D. Definizione 4.1 Sia D ⊆ R3 .

• La z -sezione di D e` il sottoinsieme di R2 definito da D(z) = {(x, y) ∈ R2 : (x, y, z) ∈ D}. • La proiezione πz (D) di D sull’asse z e` l’insieme degli z ∈ R tali che D(z) = ∅. Osservazione 4.2 Sia D = {(x, y, z) : g(x, y, z) ≤ 0}.

• Per z ∈ R la z -sezione di D e` D(z) = {(x, y) ∈ R2 : g(x, y, z) ≤ 0.} • La proiezione di D sull’asse z e` l’insieme {z ∈ R : ∃(x, y) ∈ R2 , g(x, y, z) ≤ 0}. Esempio 4.3 Sia D la palla chiusa di raggio 1,

D = {(x, y, z) : x2 + y 2 + z 2 ≤ 1} La z -sezione di D e` l’insieme

{(x, y) : x2 + y 2 ≤ 1 − z 2 }, questa e` non vuota se e solo se z ∈ [−1, 1]: πz (D) = [−1, 1].

24

Note sul Capitolo 4

Enunciamo la formula di integrazione per fette solo per fette parallele al piano xy , formule simili valgono sugli altri piani coordinati. Proposizione 4.4 (Formula di integrazione per fette) Sia f (x, y, z) funzione continua su una regione chiusa e limitata D di R3 . Allora     f (x, y, z) dx dy dz = f (x, y, z) dx dy dz. D

πz (D)

D(z)

Per quanto ci riguarda la applicazione della formula precedente si lmiter`a ai casi nei quali πz (D) e` unione finita di intervalli o D(z) e` unione di domini semplici. Nel caso di f = 1 la formula dice che il volume di un solido si calcola integrando l’area delle fette parallele ad un piano coordinato. Corollario 4.5 (Principio di Bonaventura-Cavalieri) Sia D chiuso e limitato di R3 . Allora  V ol(D) = Area (D(z)) dz. πz (D)

In particolare solidi con stesse aree delle sezioni hanno uguale volume. Esempio 4.6 (Volume della palla di raggio R) Calcoliamo il volume della palla chiusa BR di raggio R. Si ha che πz (BR ) = [−R, R], mentre per |z| ≤ R,

BR (z) = {(x, y) ∈ R2 : x2 + y 2 ≤ R2 − z 2 } √ e` il disco di raggio R2 − z 2 . La formula di integrazione per fette porge quindi 

V ol(BR ) =

R

−R R



=

−R

Area B(0, 2



R2 − z 2 ] dz

2

π(R − z ) dz = 2π

 0

R

(R2 − z 2 ) dz

  1 3 R 4 3 2 = 2π R z − z = πR . 3 3 0 Esempio 4.7 Si vuole calcolare il volume del solido

D = {(x, y, z) ∈ R3 : x2 + z 2 ≤ 1, y 2 + z 2 ≤ 1}. Si tratta dell’intersezione del cilindro di asse y dato da x2 + z 2 ≤ 1 con il cilindro di asse x definito da y 2 + z 2 ≤ 1. Il dominio e` normale rispetto al piano xy , infatti

D = {(x, y, z) ∈ R3 : −h(x, y) ≤ z ≤ h(x, y)},

Note sul Capitolo 4

25

Figura 4.1. L’insieme D

dove h(x, y) := min{1 − x2 , 1 − y 2 }. La formula compatta di h varia a seconda che sia |x| ≤ |y| o viceversa: e` pi`u agevole integrare per fette parallele al pano xy . Si ha πz (D) = [−1, 1]. Per |z| ≤ 1 si ha

D(z) = {(x, y) ∈ R2 : x2 ≤ 1 − z 2 , y 2 ≤ 1 − z 2 } √ √ √ √ = [− 1 − z 2 , 1 − z 2 ] × [− 1 − z 2 , 1 − z 2 ]. La formula di integrazione per fette parallele al piano yz porge allora  1  1 V ol(D) = Area D(z) dz = 4(1 − z 2 ) dz −1



=8 z−

3

z 3

−1

1 0

=

16 . 3

Cambio di variabili, solidi di rotazione e simmetrie(Sez. 4.8) 4.0.1 Cambio di variabile Il cambio di variabile in coordinate cilindriche e` utile quando la funzione da integrare dipende solo dalla distanza √ 2 del2 punto dall’asse z e dalla quota z . Pi`u precisamente se f (x, y, z) = g( x + y , z) allora il cambiamento di variabili in coordinate cilindriche porge   f (x, y, z) dx dy dz = rg(r, z) dr dt dz D

(r,t,z):(r cos t,r sin t,z)∈D

Una applicazione importante e` rappresentata dai solidi di rotazione.

Note sul Capitolo 4

Vol

z (E2π )

27



=

E2π

1 dx dy dz



= 2π



ρ dρ dz = 2π

(ρ,z): (ρ cos t,ρ sin t,z)∈E2π

ρ dρ dz. (ρ,z)∈E

 L’enunciato del Teorema di Pappo - Guldino per i solidi di rotazione fa intervenire due formule equivalenti: si usa l’una o l’altra a seconda delle simmetrie e facilit`a del calcolo dell’area dell’insieme piano E . Esempio 4.10 (Volume del toro) Un toro (dal latino torus, anello, mentre lanimale e` taurus) e` il solido che si ottiene facendo ruotare (di 2π ) un disco di raggio a > 0 attorno ad una retta che dista R > a dal centro del disco (una ciambella, od una camera daria di pneumatico pensata piena realizzano un toro). Chiaramente il baricentro del disco e` il centro del disco. Ne segue che il volume del toro e` 2πR(πa2 ) = 2π 2 Ra2 . Esempio 4.11 Vogliamo calcolare il volume del solido ottenuto ruotando il rettangolo E = [2, 8] × [6, 8] attorno all’asse z . L’area di E vale 12, l’ascissa del baricentro vale 5: il volume cercato vale quindi 2π × 12 × 5 = 120π . La definizione e il risultato per solidi di rotazione attorno all’asse x o y sono del

 tutto analoghe a quelle date sopra. Ricordarsi che interviene la distanza del baricentro dall’asse di rotazione, indipendentemente dal nome dell’asse. Esempio 4.12 Vogliamo calcolare il volume del solido ottenuto ruotando il rettangolo E = [2, 8] × [6, 8] attorno all’asse x. L’area di E vale 12, l’ordinata del baricentro (che e` la distanza dall’asse di rotazione) vale 7: il volume cercato vale quindi 2π × 12 × 7 = 168π . x ottenuto ruotando di Esempio 4.13 (Metodo dei dischi) Si considera il solido E2π 2π attorno all’asse x l’insieme E del piano xz con z ≥ 0 delimitato dal grafico di due funzioni f e g positive:

E = {(x, z) : x ∈ [a, b], f (x) ≤ z ≤ g(x)}. Si ha Vol

x (E2π )



=

a

b

πg(x)2 − πf (x)2 dx.

Possiamo provarlo in due modi: 1. Utilizzando il metodo di integrazione per fette parallele al piano yz (Proposizione 4.4) si ottiene subito  b  b x x Area (E2π (x)) dx = πg(x)2 − πf (x)2 dx. Vol (E2π ) = a

a

28

Note sul Capitolo 4

2. Utilizzando la formula di Pappo - Guldino si ha  x Vol (E2π ) = 2π z dx dz E b



= 2π

a



= 2π

a



g(x)

z dz dx

f (x)

b



1 (g(x)2 − f (x)2 2





dx =

a

b

πg(x)2 − πf (x)2 dx.

4.0.2 Simmetrie Il calcolo di integrali e` talvolta facilitato dalla presenza di simmetrie. Vediamo un esempio. Esempio 4.14 Sia D ⊂ R2 simmetrico rispetto all’asse y e f : D → R tale che  f (−x, y) = −f (x, y) per ogni (x, y) ∈ D. Allora f (x, y) dx dy = 0. Infatti il D

cambio di variabile u = −x, v = y porge    f (x, y) dx dy = f (−u, v) du dv = − f (u, v) du dv D D D  f (x, y) dx dy, =− D

da cui l’asserto. Cos`ı ad esempio, se D = {(x, y) ∈ R2 : x2 + y 2 ≤ 1}, l’integrale  sin(x3 y 8 ) log(1 + x2 y 2 ) dx dy = 0. D

In modo analogo si possono giustificare varie formule di simmetria; ne citiamo uno tra i vari che si possono presentare. Esempio 4.15 Sia D ⊂ R3 simmetrico rispetto all’origine e f : D → R  tale che f (−x, −y, −z) = −f (x, y, z) per ogni (x, y, z) ∈ D. Allora D

f (x, y, z) dx dy dz = 0.

Esercizi Esercizio 4.1 Determinare il volume del solido compreso tra i piani x = 0 e x = 1, le cui sezioni perpendicolari all’asse√x sono dischi circolari i cui diametri vanno dalla parabola y = x2 alla parabola y = x. Esercizio 4.2 Determinare il volume del solido generato dalla rotazione attorno agli assi dati qui sotto della regione delimitata dall’asse x, dalla curva y = 3x4 e dalle rette x = 1 e x = −1:

Note sul Capitolo 4

29

(a) Rotazione attorno all’asse x; (b) Rotazione attorno all’asse y . Esercizio 4.3 Determinare il volume del solido generato dalla rotazione attorno agli assi dati qui sotto della regione delimitata a sinistra dalla parabola x = y 2 + 1 e a destra dalla retta x = 5: (a) Rotazione attorno all’asse x; (b) Rotazione attorno all’asse y . Esercizio 4.4 Determinare il volume del solido generato dalla rotazione attorno alπ l’asse x della regione delimitata dall’asse x, dalla retta x = e dalla curva 3 y = tan x nel primo quadrante del piano xy . Esercizio 4.5 Determinare il volume del solido generato dalla rotazione attorno al2 l’asse x della regione delimitata dalla curva x = ey e dalle rette y = 0, x = 0 e y = 1.

Soluzioni degli esercizi Soluzione es. 4.1.

9π . 280

Soluzione es. 4.2. (a) 2π

(b) π .

Soluzione es. 4.3. (a) 8π

(b)

1088π . 15

√ π(3 3 − π) Soluzione es. 4.4. . 3 Soluzione es. 4.5. π(e − 1).

5

Note sul Capitolo 5

Definizione di integrali di linea (Sez. 5.1 e Sez. 5.2) Nel Testo, se r(t), t ∈ [a, b] e` una curva parametrica C 1 con sostegno C , e f : C → R e` funzione, si indica con  f (x) ds (x = (x1 , ..., xn )) C

l’integrale curvilineo di f , dato da  a

b

f (r(t))|r |(t) dt.

 La notazione e` vagamente abusiva, dato che tale integrale dipende dalla parametrizzazione della curva: in altri testi esso viene infatti indicato con maggior precisione con  f (x, y, z) ds. r

Esempio 5.1 Si consideri il cerchio unitario C con le due parametrizzazioni: r1 (t) = (cos t, sin t), t ∈ [0, 2π] r2 (t) = (cos t, sin t), t ∈ [0, 4π] Si ha





1 ds = 2π, r1

1 ds = 4π. r2

Analogamente, se F : C → Rn e` un campo vettoriale definito su C preferiamo le notazioni   F · T ds, F · dr r

r

alle notazioni del Testo nella quale compare C . E’ spesso comodo integrare su curve C 1 a tratti.

32

Note sul Capitolo 5

Definizione 5.2 (Integrali su curve C 1 a tratti) Una curva r : [a, b] → Rn e` C 1 a tratti se r e` continua ed esistono t0 = a < t1 < ... < tm = b tali che r e` C 1 su ognuno degli intervalli [ti , ti+1 ]. L’integrale di un campo (scalare o vettoriale) su r e` in tal caso definito come la somma degli integrali del campo sulle curve ottenute restringendo r sugli intervalli [ti , ti+1 ]. Tipicamente si ottiene un cammino C 1 a tratti giustapponendo due cammini C 1 . Esempio 5.3 (Giustapposizione di due cammini) Siano r1 : [a, b] → Rn e r2 : [c, d] → Rn tali che il termine r1 (b) di r coincida con l’inizio r2 (c) di γ . La giustapposizione di r1 con r2 e` il cammino r1 r2 ottenuto percorrendo prima r1 e poi r2 , definito da  r1 (t) se t ∈ [a, b] ∀t ∈ [a, b + (d − c)] r1 r2 (t) = r2 (t + c − b) se t ∈ [b, b + (d − c)]. Se r1 e r2 sono C 1 allora r1 r2 e` C 1 a tratti. Inoltre, se f e` campo scalare definito sul

Figura 5.1. La giustapposizione di r1 , r2 , r3 , r4 .

sostegno di r1 r2 si ha 





f (x) ds = r1 r2

f (x) ds + r1

f (x) ds. r2

Una formula analoga vale per integrali di campi vettoriali.

Note sul Capitolo 5

33

Esempio 5.4 (Cammino inverso) Spesso una curva C 1 a tratti viene detta anche cammino. Sia r : [a, b] → Rn una curva parametrica. Il cammino inverso di r, indicato da r−1 e` definito da r−1 : [a, b] → Rn ,

r−1 (t) := r(b − (t − a)) ∀t ∈ [a, b].

Si noti che b − (t − a) ∈ [a, b] per ogni t ∈ [a, b], che r−1 e r hanno stesso sostegno, percorso in verso opposto: r−1 (a) = r(b), r−1 (b) = r(a). E’ ben noto che la massa di un filo metallico non cambia se si percorre il filo al contrario, mentre il lavoro di una forza diventa opposto svolgendo il percorso all’inverso. Pi`u precisamente, siano f : C → R un campo scalare e F : C → Rn un campo vettoriale continui. Il lettore verifichi usando la definizione che   f (x) ds = f (x) ds 

r−1

r−1

r



F · T ds = −

F · T ds. r

Campi conservativi (Sez. 5.3) Errata corrige: nella Sez. 5.3, prima della definizione di potenziale, sostituire “ipotesi di derivabilit`a” con “ipotesi di continuit`a”. Osservazione 5.5 Nel Libro viene chiamato potenziale di F una funzione scalare f tale che ∇f = F. In matematica si preferisce spesso il termine alternativo di primitiva, dato che per i fisici generalmente un potenziale e` un campo scalare u tale che ∇u = −F. Una classe notevole di campi gradiente (e quindi conservativi sugli aperti connessi) e` rappresentata dai campi radiali, tanto frequenti in Fisica. Definizione 5.6 Sia D ⊂ R3 un aperto del tipo

D = {x ∈ Rn : a < |x| < b ≤ +∞} (anello) o una palla aperta (eventualmente tutto Rn ). Un campo F : D → Rn si dice radiale se esiste una funzione continua di variabile reale ϕ tale che F(x) = ϕ(|x|)

x |x|

∀x ∈ D \ {0}.

Pertanto l’intensit`a ϕ(|x|) del campo e` uguale su ogni sfera contenuta in D, e il campo in un punto x ha la stessa direzione di x (eventualmente verso opposto a seconda del segno di ϕ).

34

Note sul Capitolo 5

Esempio 5.7 Il campo gravitazionale in R3 generato da una massa nell’origine`e del tipo (x1 , x2 , x3 ) K K x  F(x, y, z) = = 2 . 2 2 2 |x| |x| x1 + x2 + x3 x21 + x22 + x23 per qualche costante K . L’intensit`a del campo gravitazionale e` infatti inversamente proporzionale al quadrato della distanza dalla massa che lo genera.

Proposizione 5.8 Ogni campo radiale e` un campo gradiente. Se F(x) = x ϕ(|x|) un potenziale di F e` dato da f (x) = u(|x|), dove u e` una primitiva di |x| ϕ. Dimostrazione. Infatti dalla regola della catena per ogni x = 0 si ha

∇u(|x|) = u (|x|)

x x = ϕ(|x|) = F(x). |x| |x| 

Esempio 5.9 Determiniamo una primitiva del campo gravitazionale dell’Esemx K pio 5.7. Il campo e` dato da F(x, y, z) = ϕ(|x|) con ϕ(x) = , x = 0. |x| |x|2 K K Una primitiva di ϕ(r) = 2 e` data da u(r) = − . Per la Proposizione 5.8 un r r K potenziale di F e` f (x) = − , x = 0. |x| Esempio 5.10 Sia F(x) = |x|8 x per ogni x ∈ R3 . Sicuramente F e` radiale su R3 \ {0} dato che x F(x) = ϕ(|x|) ∀x =  0, |x| con ϕ(r) = r9 . Un potenziale di F su R3 e` quindi f (x) = tratta in realt`a di un potenziale su tutto R3 .

1 10 |x| . Si noti che si 10

Campi conservativi e Test delle derivate (Sez. 5.3)  I campi conservativi continui sono tutti e soli i campi gradiente. Proposizione 5.11 Siano D ⊆ Rn aperto, e F : D → Rn un campo continuo. Allora F e` conservativo se e solo se F e` un campo gradiente. I campi conservativi di classe C 1 sono irrotazionali.

Note sul Capitolo 5

35

Definizione 5.12 (Campo irrotazionale) Sia F : D ⊂ Rn → Rn un campo vettoriale di classe C 1 , cio`e F = (F1 , ..., Fn ) con Fi : D → R di classe C 1 . Il campo F si dice irrotazionale se e solo se, per ogni i, j ∈ {1, ..., n},

∂xj Fi = ∂xi Fj . Esempio 5.13 In R3 il campo F(x) = (F1 , F2 , F3 )(x1 , x2 , x3 ) := (cos(x1 )x22 x3 , 2 sin(x1 )x2 x3 , sin(x1 )x22 ) e` irrotazionale. Il test prevede la verifica di tre uguaglianze:

∂x1 F2 (x) = 2 cos(x1 )x2 x3 = ∂x2 F1 (x), ∂x1 F3 (x) = cos(x1 )x22 = ∂x3 F1 (x), ∂x2 F3 (x) = 2 sin(x1 )x2 = ∂x3 F2 (x). Proposizione 5.14 (Campi conservativi e campi irrotazionali) Siano D ⊆ Rn aperto, e F : D → Rn un campo C 1 . 1. (Test sulle componenti) Se F e` conservativo allora F e` irrotazionale. 2. Se F e` irrotazionale e D e` semplicemente connesso allora F e` conservativo. Dimostrazione. Dimostriamo solo 1. Se il campo F e` conservativo esiste un potenziale f : D → R tale che ∇f = F. Per ogni i, j in 1, ..., n, per il Teorema di Schwarz si ha ∂xi Fj = ∂xi (∂xj f ) = ∂xj (∂xi f ) = ∂xj Fi .  Osservazione 5.15 Una palla e` un insieme stellato rispetto al centro, quindi un insieme semplicemente connesso: segue da 2. della Proposizione 5.14 che, localmente (almeno su una palla centrata in ogni punto del dominio), un campo irrotazionale e` ivi conservativo. Esempio 5.16 (Un campo irrotazionale che non e` conservativo) La conclusione della parte 2 della Proposizione 5.14 non vale in generale se D non e` semplicemente connesso. Si consideri ad esempio il campo definito su R2 \ {(0, 0)} da   x2 x1 , ∀(x1 , x2 ) = (0, 0). F(x1 , x2 ) = − 2 x1 + x22 x21 + x22 Si vede she F e` irrotazionale. Infatti     x1 x2 x22 − x21 ∂x2 − 2 = ∂ = x 1 2. x1 + x22 x21 + x22 (x21 + x22 )

36

Note sul Capitolo 5

Tuttavia F non e` irrotazionale. Infatti indicando con γ(t) = cos t, sin t), t ∈ [0, 2π] il circolo unitario positivamente orientato si ha   2π F · dr = 1 dt = 2π = 0. γ

0

Si noti che F, essendo irrotazionale, ammette primitive locali. Ad esempio si verifichi x1 che su x1 > 0 la funzione f (x1 , x2 ) = arctan e` un potenziale per F: la forma x2 differenziale x2 x1 − 2 dx1 + 2 dx2 2 x1 + x2 x1 + x22 associata al campo F e` quindi, localmente, il differenziale dell’angolo θ(x1 , x2 ) del punto (x1 , x2 ). Si pu`o intuire come non ci sia modo di estendere θ ad una funzione continua su tutto R2 \ {(0, 0)}: ad esempio percorrendo un giro sul circolo unitario π γ da (0, −1) con valore iniziale θ(0, −1) = − si torna al punto considerato con 2 π π lim θ(x1 , x2 ) = 3 = − . (x1 ,x2 )→(0,−1) 2 2 x21 +x22 =1,x1 0 si ottiene 1 f (x, y) = log(x2 + y 2 ) + g(y), 2 con g derivabile su R (attenzione: abbiamo scelto, ad esempio, y > 0 perch´e se y = 0 il campo F(x, 0) e` definito solo per x = 0: una funzione la cui derivata e` nulla su R \ {0} pu`o non essere costante!). La condizione

∂y f (x, y) =

x2

y + y2

porge allora che g e` costante su y > 0. Pertanto una primitiva di F su y > 0 e` 1 f (x, y) = log(x2 + y 2 ). Ora f e` definita su R2 \ {(0, 0)} e le regola della deri2 vazione mostrano che in realt`a ∇f = F su D: f e` quindi primitiva di F su tutto il dominio.

Note sul Capitolo 5

37

Formula di Green (Sez. 5.4) Se D e` una regione del piano per la quale vale la formula di Green, indicheremo con ∂ + D il suo bordo, orientato positivamente (percorso lasciando il braccio sinistro all’interno del dominio). Vediamo alcune applicazioni interessanti della formula do Green. Esempio 5.18 (Area di un dominio con frontiera in coordinate polari) Sia G un aperto regolare limitato, la cui frontiera sia parametrizzata da

γ(t) = ρ(t) (cos t, sin t), Proviamo che

1 Area (G) = 2



t2

t1

t ∈ [t1 , t2 ], ρ2 (t) dt.

La formula di Green porge Area (G) =

1 2

 ∂+G

x dy − y dx;

 x(t) = ρ(t) cos t, y(t) = ρ(t) sin t

e`

da cui Area (G) =

1 2



t2

t1

ρ(t) cos t(ρ (t) sin t + ρ(t) cos t)

− ρ(t) sin t(ρ (t) cos t − ρ(t) sin t) dt   1 t2 2 1 t2 2 = ρ (t)(cos2 t + sin2 t) dt = ρ (t) dt. 2 t1 2 t1 Esempio 5.19 (Area di un poligono) Chiamiamo poligono di R2 ogni sottoinsieme limitato di R2 la cui frontiera sia una poligonale semplice chiusa (una poligonale (a0 , ..., am ) si dice chiusa se a0 = am , semplice chiusa se gli unici lati non consecutivi che si intersecano sono il primo e l’ultimo, che si intersecano esattamente in a0 = am ). Detto ci`o, se ak = (ξk , ηk ) sono vertici successivi di una poligonale semplice chiusa, mostriamo che l’area del poligono racchiuso e` (si intende che sia ξm+1 = ξ1 , ηm+1 = η1 ) m   1   A =  (ξk−1 ηk − ξk ηk−1 )  2 k=1     m m   1  1    =  ηk (ξk+1 − ξk−1 ) =  ξk (ηk+1 − ηk−1 ) .   2 2 k=1

k=1

38

Note sul Capitolo 5

Tali formule di Gauss sono note in topografia. La frontiera del poligono G e` costituita dalla giustapposizione dei segmenti

γk (t) = ak + t(ak+1 − ak ) = (ξk + t(ξk+1 − ξk ), ηk + t(ηk+1 − ηk )), t ∈ [0, 1], k = 0, ..., m − 1. Per la formula di Green si ha      1 m−1  1    x dy − y dx =  x dy − y dx . Area (G) =   2 ∂+G 2 k=0 γk Il modulo qui appare perch´e non sappiamo se la giustapposizione dei cammini data costituisca una orientazione positiva del bordo di G. E`  γk

=

x dy − y dx 

1

[ξk + t(ξk+1 − ξk )](ηk+1 − ηk ) − [ηk + t(ηk+1 − ηk )](ξk+1 − ξk ) dt  1  1 = ξk (ηk+1 − ηk ) − ηk (ξk+1 − ξk ) dt = ξk ηk+1 − ξk+1 ηk dt 0

0

da cui

0

m−1  m     1 1      (ξk ηk+1 − ξk+1 ηk ) =  (ξk−1 ηk − ξk ηk−1 ) . Area (G) =    2  k=0 2 k=1

Ad esempio quanto vale l’area (0, −2), (3, 5), (−4, 8), (−1, −1)?

del

quadrilatero

di

vertici

Superfici e Aree (Sez. 5.5) Precisiamo meglio la definizione di superficie parametrica. Definizione 5.20 (Superficie parametrica) Una superficie parametrica in R3 e` una funzione vettoriale continua r : R → R3 ,

(u, v) → (f (u, v), g(u, v), h(u, v))

definita su una regione chiusa e limitata R del piano. L’insieme dei punti (x, y, z) = r(u, v), al variare di (u, v) ∈ R, si chiama sostegno della superficie parametrica; spesso, similmente a quanto fatto con le curve, nel Libro esso viene chiamato superficie di cui r e` una parametrizzazione.

40

Note sul Capitolo 5

da cui Area (Tf ) =

=

 R  b a



=

a

b

x2 (t) + y 2 (t)dt dz



f (x(t),y(t))

0



x2 (t) + y 2 (t) dz dt

 2 2 f (x(t), y(t)) x (t) + y (t) dt = f ds. γ

Vediamo cos’`e una superficie di rotazione ottenuta ruotando una curva attorno ad un asse coordinato. Proposizione 5.22 (Teorema di Pappo - Guldino per le superficie di rotazione) Sia γ =: [a, b] → [0, +∞[×{0} × R, γ(t) = (γ1 (t), 0, γ2 (t)) una curva di classe C 1 il cui sostegno e` contenuto nel semipiano xz con x ≥ 0. La funzione r(t, θ) = (γ1 (t) cos θ, γ1 (t) sin θ, γ2 (t)),

t ∈ [a, b], θ ∈ [0, 2π]

e` una superficie parametrica: essa viene detta la superficie di rotazione ottenuta ruotando (di 2π ) la curva γ attorno all’asse z . L’area di r vale  2π x ds = 2πxγ Lungh (γ), γ

dove xγ =

γ

x ds

Lungh (γ) Dimostrazione. Si ha

e` la distanza del baricentro di γ dall’asse di rotazione.

rt (t, θ) = (γ1 (t) cos θ, γ1 (t) sin θ, γ2 (t)) rθ (t, θ) = (−γ1 (t) sin θ, γ1 (t) cos θ, 0). Pertanto

|rt × rθ |2 (t, θ) = γ12 (t)γ12 (t) + 0 + γ12 (t)γ12 (t) = γ12 (t)|γ  (t)|2 , 

da cui Area =

[a,b]×[0,2π]



= 2π

a

b

γ1 (t)|γ  (t)| dt dθ

γ1 (t)|γ  (t)| dt = 2π



x ds. γ



Note sul Capitolo 5

41

Figura 5.3. Area di una superficie di rotazione

Osservazione 5.23 Si noti che i punti del sostegno di r si ottengono ruotando quelli del √ sostegno di γ attorno all’asse z . Infatti (x, y, z) sta nel sostegno di r se e solo se ( x2 + y 2 , 0, z) sta sul sostegno di γ . Esempio 5.24 (Toro vuoto) Un toro vuoto e` la superficie che si ottiene facendo ruotare (di 2π ) un circolo (bordo del disco) di raggio a > 0 attorno ad una retta che dista R > a dal centro del disco (una ciambella vuota, od una camera daria di pneumatico). Chiaramente il baricentro del circolo e` il centro del disco. Ne segue che l’area del toro vuoto e` 2πR(2πa) = 4π 2 aR. Formule simili si ottengono ruotando attorno ad un altro asse: ricordarsi, similmente

 al caso dei volumi, che interviene la distanza del baricentro della curva data dall’asse

di rotazione. Abbiamo visto sopra che il volume di un solido di rotazione si pu`o calcolare integrando le aree delle sezioni. Ci`o non accade in genere per le aree. Esempio 5.25 Facciamo ruotare il grafico di una funzione f : [a, b] → [0, +∞[ contenuto nel semipiano xz con z ≥ 0 attorno all’asse x. Il grafico di f e` il sostegno della curva γ(t) = (t, 0, f (t)); per il Teorema di Pappo - Guldino l’area della superficie ottenuta vale (si faccia attenzione che ora la distanza del baricentro di γ dall’asse di rotazione e` l’ordinata, e non l’ascissa, del baricentro di γ )  Area = 2π

γ



z ds = 2π

a

b

f (t) 1 + f  (t)2 dt.

42

Note sul Capitolo 5

Figura 5.4. Una superficie ottenuta ruotando il grafico di una funzione f attorno

all’asse x

Si osservi che le lunghezze delle sezioni sopra t hanno lunghezza 2πf (t), e si ha  Area =

a

b

2πf (t) dt

se e solo se f  ≡ 0 il che accade se e solo se la superficie e` un cilindro.

Esercizi Esercizio 5.1 Determinare l’area della superficie ottenuta ruotando la curva z = √ 2 x, 1 ≤ x ≤ 2 attorno all’asse x. Esercizio 5.2 Determinare l’area del cono ottenuto ruotando attorno all’asse z la curva z = 1 − x, 0 ≤ x ≤ 1. Esercizio 5.3 Determinare l’area della superficie ottenuta ruotando la curva z = x3 , 0 ≤ x ≤ 1/2 attorno all’asse x. Esercizio 5.4 Determinare l’area della superficie ottenuta ruotando la curva x = √ 15 attorno all’asse z . 2 4 − z, 0 ≤ z ≤ 4

Soluzioni degli esercizi Soluzione es. 5.1.

√ 8π √ (3 3 − 2 2). 3

...

(77,5+0*,

Formula di Taylor per funzioni di due variabili ,Q TXHVWR SDUDJUDIR XWLOL]]HUHPR OD IRUPXOD GL7D\ORU SHU ULFDYDUH LO WHVW GHOOD GHULYDWDVHFRQGD 3DUDJUDIR HODIRUPXODGHOO¶HUURUHSHUOHOLQHDUL]]D]LRQLGL IXQ]LRQLGLGXHYDULDELOLLQGLSHQGHQWL 3DUDJUDIR &RQFOXGLDPRFRQXQ¶HVWHQ VLRQHGHOODIRUPXODFKHIRUQLVFHDSSURVVLPD]LRQLSROLQRPLDOLGLWXWWLJOLRUGLQLSHU IXQ]LRQLGLGXHYDULDELOLLQGLSHQGHQWL

Procedura per ricavare il test della derivata seconda 6XSSRQLDPRFKH¦ [\ DEELDOHGHULYDWHSDU]LDOLFRQWLQXHLQXQDUHJLRQHDSHUWD5 FRQWHQHQWHXQSXQWR3 DE LQFXL¦[=¦\= )LJXUD$ 6LDQRKHNLQFUHPHQWL VXI¿FLHQWHPHQWHSLFFROLLQPRGRFKHLOSXQWR6 D +KE +N HLOVHJPHQWRFKHOR FRQJLXQJHD3VLDQRDOO¶LQWHUQRGL53DUDPHWUL]]LDPRLOVHJPHQWR36FRPH [ =D +WK \ =E +WN  …W … 6H) W =¦ D +WKE +WN ODUHJRODGHOODFDWHQDGj

'DWRFKH¦[H¦\VRQRGLIIHUHQ]LDELOL SHUFKpKDQQRGHULYDWHSDU]LDOLFRQWLQXH )¿ qXQDIXQ]LRQHGLIIHUHQ]LDELOHGLWH

t1

'DWRFKH)H)¿VRQRFRQWLQXHLQ>@H)¿qGLIIHUHQ]LDELOHLQ  SRVVLDPR DSSOLFDUHODIRUPXODGL7D\ORUGHOVHFRQGRRUGLQHFHQWUDWDLQ[ =HRWWHQHUH S(a  h, b  k)

Segmento parametrizzato in R (a  th, b  tk), punto generico sul segmento

t0



SHUXQTXDOFKHYDORUHFFRPSUHVRWUDH6FULYHQGRO¶(TXD]LRQH  LQWHUPLQL GL¦VLRWWLHQH

P(a, b) Parte della regione aperta R



-PN\YH( /DGLPRVWUD]LRQHGHOWHVWGHOOD GHULYDWDVHFRQGDLQ3 DE LQL]LD FRQODSDUDPHWUL]]D]LRQHGLXQ WLSLFRVHJPHQWRGD3DXQSXQWR6 DHVVRYLFLQR

'DWRFKH¦[ DE =¦\ DE =FLzVLULGXFHD 

(

(WWLUKPJL¶-VYT\SHKP;H`SVYWLYM\UaPVUPKPK\L]HYPHIPSP

/DSUHVHQ]DGLXQPDVVLPRRXQPLQLPRGL¦LQ DE qGHWHUPLQDWDGDOVHJQR GL¦ D +KE +N -¦ DE 3HUO¶(TXD]LRQH  LOVHJQRqORVWHVVRGL

2UDVH4  ZLOVHJQRGL4 F VDUjORVWHVVRGL4  SHUYDORULVXI¿FLHQWH PHQWHSLFFROLGLKHN3RVVLDPRGHWHUPLQDUHLOVHJQRGL 4  =K¦[[ DE +KN¦[\ DE +N¦\\ DE 





GDLVHJQLGL¦[[H¦[[¦\\-¦[\LQ DE 0ROWLSOLFKLDPRHQWUDPELLODWLGHOO¶(TXD ]LRQH  SHU¦[[HULDUUDQJLDPRLOODWRGHVWURSHURWWHQHUH ¦[[ 4  = K¦[[+N¦[\ + ¦[[ ¦\\-¦[\ N









'DOO¶(TXD]LRQH  VLYHGHFKH  6H¦[[6H¦[[¦\\-¦[\7LQ DE DOORUD4  6SHUWXWWLLYDORULVXI¿FLHQ WHPHQWHSLFFROLGLYHUVLGD]HURGLKHNH¦KDXQPDVVLPRORFDOHLQ DE   6H¦[[7H¦[[¦\\-¦[\7LQ DE DOORUD4  7SHUWXWWLLYDORULVXI¿FLHQ WHPHQWHSLFFROLGLYHUVLGD]HURGLKHNH¦KDXQPLQLPRORFDOHLQ DE   6H¦[[¦\\-¦[\6LQ DE YLVRQRFRPELQD]LRQLGLYDORULDUELWUDULDPHQWH SLFFROLHGLYHUVLGD]HURGLKHNSHULTXDOL4  7HDOWULYDORULSHULTXDOL 4  6,QSRVL]LRQHDUELWUDULDPHQWHYLFLQDDOSXQWR3 DE¦ DE VXOOD VXSHU¿FLH] =¦ [\ YLVRQRSXQWLDOGLVRSUDGL3HSXQWLDOGLVRWWRGL3SHU FXL¦SUHVHQWDXQSXQWRGLVHOODLQ DE   6H¦[[ ¦\\-¦[\=qQHFHVVDULRXWLOL]]DUHXQDOWURWHVW/DSRVVLELOLWjFKH4   VLDXJXDOHD]HURFLLPSHGLVFHGLWUDUUHFRQFOXVLRQLVXOVHJQRGL4 F  

Formula dell’errore per approssimazioni lineari 9RJOLDPR RUD GLPRVWUDUH FKH OD GLIIHUHQ]D ( [ \  WUD L YDORUL GL XQD IXQ]LRQH ¦ [\ HODVXDOLQHDUL]]D]LRQH/ [\ LQ [\ VRGGLVIDODGLVXJXDJOLDQ]D

6LDVVXPHFKH¦DEELDGHOOHGHULYDWHSDU]LDOLVHFRQGHLQXQLQVLHPHDSHUWRFRQ WHQHQWHXQDUHJLRQHUHWWDQJRODUHFKLXVD5FRQFHQWURLQ [\ ,OQXPHUR0qXQ PDJJLRUDQWHSHUƒ ¦[[ ƒƒ ¦\\ ƒ Hƒ ¦[\ ƒ VX5 /DGLVXJXDJOLDQ]DGHVLGHUDWDVLRWWLHQHGDOO¶(TXD]LRQH  6RVWLWXLDPRDHE FRQ[H\HKHNFRQ[ -[H\ -\ULVSHWWLYDPHQWHHULDUUDQJLDPRLOULVXOWDWR FRPH

OLQHDUL]]D]LRQH/ [\ 

HUURUH( [\

7DOHHTXD]LRQHPRVWUDFKH

4XLQGLVH0qXQPDJJLRUDQWHSHULYDORULGLƒ ¦[[ ƒƒ ¦\\ ƒ Hƒ ¦[\ ƒ VX5

(WWLUKPJL¶-VYT\SHKP;H`SVYWLYM\UaPVUPKPK\L]HYPHIPSP

(

Formula di Taylor per funzioni di due variabili /HIRUPXOHGHULYDWHLQSUHFHGHQ]DSHU)¿H)–SRVVRQRHVVHUHRWWHQXWHDSSOLFDQGR D¦ [\ JOLRSHUDWRUL H 4XHVWLUDSSUHVHQWDQRLSULPLGXHFDVLGLXQDIRUPXODSLJHQHUDOH 

FKHGLFHFKHVHVLDSSOLFDGQ>GWQD) W VLRWWLHQHORVWHVVRULVXOWDWRGLTXHOORFKHVL RWWHUUHEEHDSSOLFDQGRO¶RSHUDWRUH

D¦ [\ GRSRDYHUORHVSDQVRFRQLOWHRUHPDELQRPLDOH 6HOHGHULYDWHSDU]LDOLGL¦¿QRDOO¶RUGLQHQ +VRQRFRQWLQXHLQXQDUHJLRQH UHWWDQJRODUHFRQFHQWURLQ DE SRVVLDPRHVWHQGHUHODIRUPXODGL7D\ORUSHU) W D UHVWR HSRUUHW =SHURWWHQHUH 

UHVWR

6H VRVWLWXLDPR OH SULPH Q GHULYDWH VXOOD GHVWUD GL TXHVWD XOWLPD HTXD]LRQH FRQ OHORURHVSUHVVLRQLHTXLYDOHQWLRWWHQXWHGDOO¶(TXD]LRQH  FDOFRODWDSHUW =H DJJLXQJLDPRLOUHVWRDSSURSULDWRDUULYLDPRDOODVHJXHQWHIRUPXOD Formula di Taylor per ƒ(x, y) nel punto (a, b)

6XSSRQLDPRFKH¦ [\ HOHVXHGHULYDWHSDU]LDOL¿QRDOO¶RUGLQHQ +VLDQRFRQWLQXHLQXQDUHJLRQHUHWWDQJRODUH DSHUWD5FRQFHQWURLQ DE $OORUDVX5



,SULPLQWHUPLQLVRQRFDOFRODWLLQ DE /¶XOWLPRWHUPLQHqFDOFRODWRLQXQTXDO FKHSXQWR D +FKE +FN VXOVHJPHQWRFKHFRQJLXQJH DE D D +KE +N  6H DE =  HWUDWWLDPRKHNFRPHYDULDELOLLQGLSHQGHQWL LQGLFDQGROHRUD FRQ[H\ O¶(TXD]LRQH  DVVXPHODIRUPDVHJXHQWH

(

(WWLUKPJL¶-VYT\SHKP;H`SVYWLYM\UaPVUPKPK\L]HYPHIPSP

Formula di Taylor per ƒ(x, y) nell’origine



,SULPLQWHUPLQLVRQRFDOFRODWLLQ  /¶XOWLPRWHUPLQHYLHQHFDOFRODWRLQXQ SXQWRGHOVHJPHQWRFKHFRQJLXQJHO¶RULJLQHD [\  /D IRUPXOD GL 7D\ORU IRUQLVFH GHOOH DSSURVVLPD]LRQL SROLQRPLDOL GHOOH IXQ ]LRQLGLGXHYDULDELOL,SULPLQWHUPLQLSHUPHWWRQRGLRWWHQHUHO¶DSSURVVLPD]LR QHSROLQRPLDOHO¶XOWLPRWHUPLQHO¶HUURUHGLDSSURVVLPD]LRQH,SULPLWUHWHUPLQL GHOODIRUPXODGL7D\ORUSHUPHWWRQRGLRWWHQHUHODOLQHDUL]]D]LRQHGHOODIXQ]LRQH 3HUPLJOLRUDUHODOLQHDUL]]D]LRQHVLSRVVRQRDJJLXQJHUHWHUPLQLGLHVSRQHQWHSL HOHYDWR ESEMPIO 1

7URYDUH XQ¶DSSURVVLPD]LRQH TXDGUDWLFD GL ¦ [ \ = VLQ [ VLQ \ LQ SURVVLPLWj GHOO¶RULJLQH 4XDQWRqDFFXUDWDO¶DSSURVVLPD]LRQHVHƒ [ ƒ …Hƒ \ ƒ …" Soluzione 3RQLDPRQ =QHOO¶(TXD]LRQH  

&DOFRODQGRLYDORULGHOOHGHULYDWHSDU]LDOL ¦  =VLQ[VLQ\ ƒ  = ¦[[  = -VLQ[VLQ\ ƒ  = ¦[  =FRV[VLQ\ ƒ  = ¦[\  =FRV[FRV\ ƒ  = ¦\  =VLQ[FRV\ ƒ  = ¦\\  = -VLQ[VLQ\ ƒ  = RWWHQLDPRLOULVXOWDWR RYYHUR /¶HUURUHGLDSSURVVLPD]LRQHq

,OYDORUHDVVROXWRGHOOHGHULYDWHWHU]HQRQVXSHUDPDLSHUFKpULVXOWDGDOSURGRWWR GLVHQLHFRVHQL,QROWUH ƒ [ ƒ …H\ …4XLQGL

DUURWRQGDWR /¶HUURUHQRQVXSHUHUjVHƒ [ ƒ …Hƒ \ ƒ …

Risposte agli esercizi dispari Capitolo 1 Esercizi di ripasso, pp. 28–30  

y

 

y

y y

y = 2x + 1 1

4y2 – 4x2 = 1 1

t=0 x2 + (y + 2)2 = 4

r = –4 sin  x

1 t=0 2 –1 2

x

0

0

1

x

x

–3 2

(0, –2)

y=– 3 2

y

y

  r = 2√2 cos 

y

r = – 5 sin 

y = x2 ⎛ ⎝√2

t=0

–1

1

0

⎛2 2 ⎛ x + ⎝y + 5 ⎝ = 25 2 4



, 0⎝

x

t=

1

⎛ ⎝x

x

⎛2

x

⎛ 0, ⎝

2

– √2⎝ + y = 2

⎛ – 5⎝ 2

y

y ⎛x ⎝

2 2 – 3⎛ + y = 9 2⎝ 4

0 ≤ r ≤ 6 cos 

r = 3 cos  ⎛3 ⎛ ,0 ⎝2 ⎝

y

x 6

0

x

y x=2 x – √3 y = 4√3

H y

y x 4√3

2

x 3

–4 2 0

r=

(1, 0)

2 1 + cos 

r=

(2, ) x (6, )

0

–2 –3

6 1 – 2 cos  x

9  9PZWVZ[LHNSPLZLYJPaPKPZWHYP

Capitolo 2

Esercizi di ripasso, pp. 61–64

y 2 √2 1

v ⎞⎠ ⎞⎠ 4 a ⎞⎠ ⎞⎠ 4

0

–4

(2√2, 1) v(0)

a(0)

4

x

–1

,Q 



,Q  LQVHQVRRUDULR



,OSHVRqVXOVXRORDFLUFDPHWULGDOODWDYRODGLDUUHVWR /XQJKH]]D

Capitolo 3

Esercizi di ripasso, pp. 130–134

y

 'RPLQLRWXWWLLSXQWLGHOSLDQR[\FRGRPLQLR] Ú/H FXUYHGLOLYHOORVRQRHOOLVVLFRQO¶DVVHPDJJLRUHOXQJRO¶DV VH\HO¶DVVHPLQRUHOXQJRO¶DVVH[

z=1 x

y 3 z=9 –1

1

x

–3

 'RPLQLR WXWWL L SXQWL GHOOR VSD]LR [\] FRGRPLQLR WXWWL L QXPHULUHDOL/HVXSHU¿FLGLOLYHOORVRQRSDUDERORLGLGLUL YROX]LRQHDYHQWLSHUDVVHO¶DVVH] z

 'RPLQLRWXWWHOHFRSSLH [\ WDOLSHUFXL[ ZH\ ZFR GRPLQLR] Z/HFXUYHGLOLYHOORVRQRLSHUEROLDYHQWLSHU DVLQWRWLJOLDVVL[H\

f(x, y, z) = x 2 + y2 – z = –1 o z = x2 + y2 + 1

1 y x

9PZWVZ[LHNSPLZLYJPaPKPZWHYP  9

 'RPLQLRWXWWHOHWHUQH [\] WDOLSHUFXL [\] Z   FRGRPLQLR QXPHUL UHDOL SRVLWLYL /H VXSHU¿FL GL OLYHOOR VRQRVIHUHFRQFHQWURLQ  HDYHQWLUDJJLRU 7 z

h(x, y, z) = 2 12 =1 x + y + z2 o 2 2 2 x +y +z =1



GRYH



 z

x2 + y + z2 = 0

1

∇ f⏐(0, –1, 1) = j + 2k

1 x

1

1

∇ f⏐(0, 0, 0) = j

y

y –1 x

6LD QRQHVLVWH

1RLO

∇ f⏐(0, –1, –1) = j – 2k

7DQJHQWH[ -\ -] =UHWWDQRUPDOH 

[ = +W\ = --W] = -W

\ -] - = 7DQJHQWH[ +\ = p +UHWWDQRUPDOH\ =[ - p + y

y = –x +  + 1 y=x–+1

2 1





0

y = 1 + sin x 1

2

x

[ = -W\ =] => +W /HULVSRVWHGLSHQGRQRGDOPDJJLRUDQWHXVDWRSHUƒ¦[[ƒƒ¦[\ƒ ƒ¦\\ƒ&RQ0 = 2>ƒ (ƒ …&RQ0 =ƒ (ƒ … / [\]) =\ -]/ [\]) =[ +\ -] -

&UHVFHSLUDSLGDPHQWHQHOODGLUH]LRQHX=

  LM 1 1

GHFUHVFHSLUDSLGDPHQWHQHOODGLUH]LRQH   L+ M = 1 = - 1  - X= 1 1  Y   =GRYHX = ƒ Yƒ 1 &UHVFHSLUDSLGDPHQWHQHOODGLUH]LRQHGL

0LVXUDUHLOGLDPHWURFRQPDJJLRUHSUHFLVLRQH G, =YDULD]LRQHGL, =SLVHQVLELOHDOOH YDULD]LRQLGLWHQVLRQH  D 

0LQLPRORFDOHSDULD-LQ --

3XQWRGLVHOODLQ  ¦  =PDVVLPRORFDOHSDULD >LQ ->-> 3XQWRGLVHOODLQ  ¦  =PLQLPRORFDOHSDULD- LQ  PDVVLPRORFDOHSDULDLQ - SXQWRGLVHOOD LQ - ¦ - = 0DVVLPRDVVROXWRLQ  PLQLPRDVVROXWR->LQ > 



 X



GHFUHVFHSLUDSLGDPHQWHQHOODGLUH]LRQH





0DVVLPRDVVROXWRLQ - PLQLPRDVVROXWR->LQ ->





0DVVLPR DVVROXWR  LQ -   PLQLPR DVVROXWR - LQ  

GRYH

0DVVLPR DVVROXWR  LQ    PLQLPR DVVROXWR - LQ -

&UHVFHSLUDSLGDPHQWHQHOODGLUH]LRQH    



GHFUHVFH

SL

UDSLGDPHQWH

QHOOD

GLUH]LRQH

0DVVLPRDVVROXWRLQ ; H  PLQLPRDVVROXWR -LQ - 0DVVLPRLQ  PLQLPR->LQ ->

9  9PZWVZ[LHNSPLZLYJPaPKPZWHYP

0DVVLPR

PLQLPR

LQ



LQ

  /DUJKH]]D

SURIRQGLWj

QXPHURUHDOH

DOWH]]D H

0DVVLPR LQ

H

PLQLPR LQ

Capitolo 4 Esercizi di ripasso, pp. 186–188 >

 H - y

t 10 (1/10, 10)

3 2

y = 1x –3

3 s2 + 4t 2 = 9

(1, 1)

1 0

1

s

x NON IN SCALA

y y 4

E

y = 2x + 4 3 2

x = –√4 – y

2

y r = 1 + cos 

2

x + 4y = 9 r=1

–2

x

–3

0

3

1

x c.m. 1 ≈ 1.18

–1

2

x

9PZWVZ[LHNSPLZLYJPaPKPZWHYP  9

Capitolo 5

Esercizi di ripasso, pp. 263–266 3HUFRUVR

&RQVHUYDWLYR

SHUFRUVR

1RQFRQVHUYDWLYR 3HUFRUVR

SHUFRUVR

)OXVVR

FLUF

Capitolo 6  D 

Esercizi di ripasso, pp. 307–309

[-0,2, 4.5] per [-2,5, 0,5]

E 6LQRWLFKHVLqVFHOWRXQSLFFRORLQWHUYDOORSHULYDORULGL [LQTXDQWRLYDORULGL\GLPLQXLVFRQRLQPDQLHUDPROWR UDSLGDHODFDOFRODWULFHQRQULHVFHDJHVWLUHLFDOFROLSHU [ … - 4XHVWR q GRYXWR DO IDWWR FKH OD VROX]LRQH DQDOLWLFD q \ = - + OQ  - H-[  FKH KD XQ DVLQWRWR LQ [ = -OQ  L - /HDSSURVVLPD]LRQLGL(XOHURVRQR RYYLDPHQWHIXRUYLDQWLSHU[ … -  \ [ =

 &H ℝ &H-[ - [ + 

\ [ = [1OQ[ + &&H ℝ \ [ = ;1[+ &- [&H ℝ 

[-1, 0.2] per [-10, 2]

[

\

[

\

         

          

         

         

\  L

\ HVSUHVVLRQH HVDWWD  HVDWWRq \ HVSUHVVLRQHHVDWWD  ORUHHVDWWRq  qVWDELOHH 









LO YDORUH  LOYD

qLQVWDELOH

9  9PZWVZ[LHNSPLZLYJPaPKPZWHYP



 F





9DULD]LRQLVWDJLRQDOLQRQFRQIRUPLWjGHJOLDPELHQWLHIIHWWL GLDOWUHLQWHUD]LRQLGLVDVWULLPSUHYLVWLHFF