Exerciţii şi probleme de algebră, combinatorică şi teoria numerelor

Table of contents :
0
2017_02_22_10_51_19_001
2017_02_22_10_53_21_001
2017_02_22_10_53_21_002
2017_02_22_10_53_22
2017_02_22_10_53_23
2017_02_22_10_53_24
2017_02_22_10_53_25
2017_02_22_10_53_26_001
2017_02_22_10_53_26_002
2017_02_22_10_53_28_001
2017_02_22_10_53_28_002
2017_02_22_10_53_29
2017_02_22_10_53_30
2017_02_22_10_53_53
2017_02_22_10_53_54
2017_02_22_10_53_55_001
2017_02_22_10_53_55_002
2017_02_22_10_53_57_001
2017_02_22_10_53_57_002
2017_02_22_10_53_58
2017_02_22_10_53_59
2017_02_22_10_54_00
2017_02_22_10_54_01
2017_02_22_10_54_02_001
2017_02_22_10_54_02_002
2017_02_22_10_54_04_001
2017_02_22_10_54_04_002
2017_02_22_10_54_05
2017_02_22_10_54_06
2017_02_22_10_54_07
2017_02_22_10_54_08
2017_02_22_10_54_09
2017_02_22_10_54_10
2017_02_22_10_54_11_001
2017_02_22_10_54_11_002
2017_02_22_10_54_12
2017_02_22_10_54_13
2017_02_22_10_54_14
2017_02_22_10_54_15
2017_02_22_10_54_16
2017_02_22_10_54_17
2017_02_22_10_54_18_001
2017_02_22_10_54_18_002
2017_02_22_10_54_20_001
2017_02_22_10_54_20_002
2017_02_22_10_54_21
2017_02_22_10_54_22
2017_02_22_10_54_23
2017_02_22_10_54_24
2017_02_22_10_54_25_001
2017_02_22_10_54_25_002
2017_02_22_10_54_27_001
2017_02_22_10_54_27_002
2017_02_22_10_54_28
2017_02_22_10_54_29
2017_02_22_10_54_30
2017_02_22_10_54_31
2017_02_22_10_54_32
2017_02_22_10_54_33
2017_02_22_10_54_34_001
2017_02_22_10_54_34_002
2017_02_22_10_54_35
2017_02_22_10_54_36
2017_02_22_10_54_37
2017_02_22_10_54_38
2017_02_22_10_54_39
2017_02_22_10_54_40
2017_02_22_10_54_41_001
2017_02_22_10_54_41_002
2017_02_22_10_54_42
2017_02_22_10_54_43
2017_02_22_10_55_45_001
2017_02_22_10_55_45_002
2017_02_22_10_55_47_001
2017_02_22_10_55_47_002
2017_02_22_10_55_48
2017_02_22_10_55_49
2017_02_22_10_55_50
2017_02_22_10_55_51
2017_02_22_10_55_52
2017_02_22_10_55_53
2017_02_22_10_55_54_001
2017_02_22_10_55_54_002
2017_02_22_10_55_56_001
2017_02_22_10_55_56_002
2017_02_22_10_55_57
2017_02_22_10_55_58
2017_02_22_10_55_59
2017_02_22_10_56_00
2017_02_22_10_56_01_001
2017_02_22_10_56_01_002
2017_02_22_10_56_03_001
2017_02_22_10_56_03_002
2017_02_22_10_56_04
2017_02_22_10_56_05
2017_02_22_10_56_06
2017_02_22_10_56_07
2017_02_22_10_56_08
2017_02_22_10_56_09
2017_02_22_10_56_10_001
2017_02_22_10_56_10_002
2017_02_22_10_56_11
2017_02_22_10_56_12
2017_02_22_10_56_13
2017_02_22_10_56_14
2017_02_22_10_56_15
2017_02_22_10_56_16
2017_02_22_10_56_17_001
2017_02_22_10_56_17_002
2017_02_22_10_56_19_001
2017_02_22_10_56_19_002
2017_02_22_10_56_20
2017_02_22_10_56_21
2017_02_22_10_56_22
2017_02_22_10_56_23
2017_02_22_10_56_24
2017_02_22_10_56_25
2017_02_22_10_56_26_001
2017_02_22_10_56_26_002
2017_02_22_10_56_27
2017_02_22_10_56_28
2017_02_22_10_56_29
2017_02_22_10_56_30
2017_02_22_10_56_31
2017_02_22_10_56_32
2017_02_22_10_56_33_001
2017_02_22_10_56_33_002
2017_02_22_10_56_35_001
2017_02_22_10_56_35_002
2017_02_22_10_56_36
2017_02_22_10_56_38
2017_02_22_10_56_39
2017_02_22_10_56_40_001
2017_02_22_10_56_40_002
2017_02_22_10_56_42_001
2017_02_22_10_56_42_002
2017_02_22_10_56_43
2017_02_22_10_56_44
2017_02_22_10_56_45
2017_02_22_10_56_46
2017_02_22_10_56_47_001
2017_02_22_10_56_47_002
2017_02_22_10_56_49_001
2017_02_22_10_56_49_002
2017_02_22_10_56_50
2017_02_22_10_56_51
2017_02_22_10_56_52
2017_02_22_10_56_53
2017_02_22_10_56_54_001
2017_02_22_10_56_54_002
2017_02_22_10_56_56_001
2017_02_22_10_56_56_002
2017_02_22_10_56_57
2017_02_22_10_56_58
2017_02_22_10_56_59
2017_02_22_10_57_00
2017_02_22_10_57_01_001
2017_02_22_10_57_01_002
2017_02_22_10_57_03_001
2017_02_22_10_57_03_002
2017_02_22_10_57_04
2017_02_22_10_57_05
2017_02_22_10_57_18
2017_02_22_10_57_19
2017_02_22_10_57_20
2017_02_22_10_57_21
2017_02_22_10_57_22_001
2017_02_22_10_57_22_002
2017_02_22_10_57_24_001
2017_02_22_10_57_24_002
2017_02_22_10_57_25
2017_02_22_10_57_26
2017_02_22_10_57_27
2017_02_22_10_57_28
2017_02_22_10_57_29
2017_02_22_10_57_30
2017_02_22_10_57_31_001
2017_02_22_10_57_31_002
2017_02_22_10_57_33_001
2017_02_22_10_57_33_002
2017_02_22_10_57_34
2017_02_22_10_57_35
2017_02_22_10_57_36
2017_02_22_10_57_37
2017_02_22_10_57_38_001
2017_02_22_10_57_38_002
2017_02_22_10_57_40_001
2017_02_22_10_57_40_002
2017_02_22_10_57_41
2017_02_22_10_57_42
2017_02_22_10_57_43
2017_02_22_10_57_44
2017_02_22_10_57_45
2017_02_22_10_57_46
2017_02_22_10_57_47_001
2017_02_22_10_57_47_002
2017_02_22_10_57_48
2017_02_22_10_57_49
2017_02_22_10_57_50
2017_02_22_10_57_51
2017_02_22_10_57_52
2017_02_22_10_57_53
2017_02_22_10_57_54
2017_02_22_10_57_55
2017_02_22_10_57_56_001
2017_02_22_10_57_56_002
2017_02_22_10_57_58_001
2017_02_22_10_57_58_002
2017_02_22_10_57_59
2017_02_22_10_58_00
2017_02_22_10_58_01
2017_02_22_10_58_02
2017_02_22_10_58_03
2017_02_22_10_58_04
2017_02_22_10_58_05_001
2017_02_22_10_58_05_002
2017_02_22_10_58_07_001
2017_02_22_10_58_07_002
2017_02_22_10_58_08
2017_02_22_10_58_09
2017_02_22_10_58_10
2017_02_22_10_58_11
2017_02_22_10_58_12
2017_02_22_10_58_13
2017_02_22_10_58_14_001
2017_02_22_10_58_14_002
2017_02_22_10_58_15
2017_02_22_10_58_16
2017_02_22_10_58_17
2017_02_22_10_58_18
2017_02_22_10_58_19
2017_02_22_10_58_20
2017_02_22_10_58_21_001
2017_02_22_10_58_21_002
2017_02_22_10_58_22
2017_02_22_10_58_23
2017_02_22_10_58_24
2017_02_22_10_58_25
2017_02_22_10_58_26
2017_02_22_10_58_27
2017_02_22_10_58_28_001
2017_02_22_10_58_28_002
2017_02_22_10_58_30_001
2017_02_22_10_58_30_002
2017_02_22_10_58_31
2017_02_22_10_58_32
2017_02_22_10_58_33
2017_02_22_10_58_34
2017_02_22_10_58_35
2017_02_22_10_58_36
2017_02_22_10_58_37_001
2017_02_22_10_58_37_002
2017_02_22_10_58_38
2017_02_22_10_58_39
2017_02_22_10_58_40
2017_02_22_10_58_41

Citation preview

;c>in ·ecuafiile (2) �i ,(i) �i ;poi din ecuatiil� ( 1) �i (3) rezulti!.:

E

I0kci, un numar natural scris în sistemul z�èima'i, �i s(n) suma cifrelbr k=O sale. Avem: n = s(n) (mod 9). Într-adevar: 11.5. Fie n =

n=E p

k=O

107,,k =

p p . . E (9+ I)kc = E 'k = s(n) (mod 9). k=O k

k=O

Deoarece' s(n) �n (egalitate numai în ca�ul în care n are o stngura c,ifra) rezulta ca �rul n, s (n), s(s(n)), .,. este descrescator �i devine stationar de la ·un .am:imit rang încolo, egal fiind eu restul lui. n modulo 9. Réve�nd la problema, observam ca �irul de numere de o cifra construit este compus din repetarea secvenfei 1, 2, ... , 9; cürele 1 �i 2 apar mereu alaturi. Deoarece 1 000 000= 1 (mod !t, rezulta ca numarul 'cifrelor 1 depa�ewte eu o unitate numarul cifrelor 2. ll.6. Fie n = xyz un numar.de tr.ei cifre. Daca el contine cifre nule atunci pri� suma pa­ tratelor cifrelor sale se obtine, de fapt, suma patratelor cifrelor unui numar de doua cifre. Daca l�x. y, z�9 atunci: x2

+ y2 + z2 < 100 x +

10:,, + z.

Într-adevar, tinînd cont ca z(z -1) � 72 �i y{y -10) < 0 pentru I�y. z�9. avem: x2. - 100 x +..y(y - 10)

+ �(z - 1) < x2 -

lOOx

+ 72 < O.

Rezulta a�ar, ca este suficient sa demonstram proptj.etatea din enunt pentru numereie eu doua cüre, fapt care rezulta relativ u�or prin analizarea directa a numerelor deoarece multe cazuri se reduce unele la altele. 11.7. Solu/ia '1. În primele 200 çle num:re naturale 100 sînt pare, 100 impare. Fie a1,a2, ••• .., ai.01 null)erele alese. • Avem 'li = 2111 h1, a2 = 2112 h2, ••.•, a101 = 2cx,., h101 , undè ht sînt impare �i 1Xt;;;,, 0, V i, l�i�·IOL cum' h1 < 200 �i cum au fost alese 101 numere · impare rezulta ca exista o pereche (i, j) as�el încît h, = h1 ·, Daca IX! > a.1 rezulta a1 1 a, iar daca.1Xi > IX! rezuJta a, l a1, q.e.d. Evident, problema :,e poate generaliza pentru �irul' de numere naturale 1, 2, 3, ..., 2n din care se aleg n + I numer·e, _soh\j:ia proble!11ei fiin� a.naloaga. ,1 Solufia 2. În çazul general problema pe;vute o 'solutie prin_inductie: « Fie 1, 2, 3, ..., 2n nuniere naturale. Daca alegem n + I ·dintre ele, atunci în acestea exista o pereche în care. un numar este divizorul c1;luilalt ,,. Pentru n = 1, 2, 3, banal. Sa presuppnem enuntul adevarat pentru n �i sa consideram �irul: 'l, 2, 3, ..., 2n, 2n

+ 1, 2n + 2.

1) Daca ;;irul a1 , ••. , an, an+i este ales din 1, 2; ..., 2n. se .aplica ipoteza ipducfiei: . 2) În'caz ,contrar,' avem an+i = 2n + 1 ;;i an+2 = 2(n + 1). Daca n + le{"a1 , a2, ••• , a.n+2 } atunci n + l l an+2 ·.

.

15 - Exerciîii �i probleme de �lgebra - c. 2580 ·

225

'

+

Daeà n le{a1, a2, •••, a,.+2} adaugàm aeest numar �i formam un sub�ir den+ l numere. al �rului. Conform ipotezei induetiei 3a11:, a1( l :s;; k :s;; l :s;; 2n astfel îneît a1c I ai sau 3a1c(1 :s;; :s;; k :s;;2n) astfel încît a1,; 1 n+ · l; in aeest . din urma. eaz avem a1c I a,.+t deoareee n+ l I a..+2 = = 2(n l).

+

11.8. Presupunem eà àlegem 100 de numere mai mici decît 200 astfel ea nici unul sa nu-1 dividà pe altul. Aràtam ea in aeest eaz nici unul nu poate fi mai mie decît 16. Consideràm cei mai mari divizori impari ai numerelor alese. Aee�tia sînt nunierele impare [x ]eM=>[[AY]eM=> ...

Dar: 1 2

!, ...

[ ¾ ] 2 [ x ] :s;;x 2k --+ Deoarece x li>➔ C:O

rezulta ea exista k0 astfel încît:

¾

1

1

[[ . . [[JJ t J2]

= 1 pentru k;., k0•

k ori

b) Observam acum ca. puterile lui 2 apartïn lui M. Într-adevir: leM=>2 2 eM=:,.2 4eM => .... Deci 2zteM(k = 0, 1,2, ...). Dar atunei [.J2 2"'] = 2"eM (k = o, 1,2, ...) e) .Sa consideram un numar oareeare neZ+ · Pentr.u a demonstra eà ne M este sufi­

cient sa arâtà.m eà 3ke N astfel încît n2 eM. "'

Într-adevàr, daeâ exista un astfel de k atunei:

[V--] k 1 2k = n2 - eJl.f n

� succesiv obtinem ne M. d) Pentru ociœ keN exista P1ceN astfel foeît: ., 2Pt ._;n 2" < 2Pt+1 (unde:

226

p" = [lg2 n2

k

]).