436 34 79MB
English Pages 443 Year 1992
I
E(Q)/2E(Q), E(Q)/2E(Q),
E(Q) E(Q) p
L
L L
L
(P P')(QQ')
(PQ)(P'Q')
113
E
E(Q)
L L
L L L L
L L L
L L
L L
L
E) E) E) E) E) L
L
L
A
0(1) 0(1)
a
a a
I
SL(2,
S£(2,
A A
[A: B] Autk(I M > 0 contribute
m
^
\muji +
ncj r" 2
< c~
s
|m|>|n|>0
^2
| m | " = 4c" 5
^
8
|m|>|n|>0
m"
5
+
1
< oo,
m=l
and the t e r m s w i t h \ n \ > \ m \ > 0 s i m i l a r l y m a k e a finite c o n t r i b u t i o n . T h e l e m m a follows. P r o p o s i t i o n 6 . 8 . I f F is a n y finite subset o f A a n d i f the t e r m s corresponding to F are o m i t t e d i n ( 6 . 1 ) , then the r e s u l t i n g series converges absolutely u n i f o r m l y on a n y compact subset of C — ( A — F ) . Consequently p { z ) is m e r o m o r p h i c i n C , its o n l y poles are double poles at the points o f A , a n d p ' { z ) m a y be compute d t e r m by t e r m . P R O O F . W e m a y assume F contains UJ — 0. T h e s u m for A — F is ,2
]L
_ W A z~— w , ,) A 2 2
Z
-
) ~ XI „ OJ(Z — UJ)
,,.2 J UJ 2
2 z -
_
UJ
2
'
wz-w
(z)
fJ(-z) fJ(-z)
fJ(z) fJ(z). fJ(z)
fJ'(Z)
w fJ'(z)
fJ(z
fJ(z
fJ(z)
(z
fJ(z w) w) fJ(z)
fJ(z).
fJ'(z) fJ(z)
fJ(z
fJ'(z
fJ(z).
w) -
fJ(z)
fJ(z)
f(z) f 1 -2
fJ(z). fJ'(z)h(fJ(z))
g(fJ(z))
(f(z)
fe
fo
f( -z))
fe(z)
f 9
h fo(z) =
f( -z)) fo
fo
fo
=
U
z
z
I
art
I
I
I =
I
I g
g
=
=
+
+ p
p
z
(k
P2(C)
E(C),
E
P (C)
:j::. I.
E(C).
:j::.
:j::.
:j::.
E(C)
:j::.
Z
X
1).
4
E
(x,
E(C)
oE
oE =
w
h( x) E(
P2(C) P2 (C)
E(C).
E(C) E(C),
E(C) (x, j j
z
w) z