The Vapor Phase Hydration of Ethylene Oxide

Citation preview

PURDUE UNIVERSITY

TH IS IS TO CERTIFY THAT T H E T H E S IS PR EPA R ED U ND ER MY SU PER V ISIO N

b y ______________________ John

ENTITLED

F ra n cis Horner

THE VAPOR PHASE HYDRATION OP ETHYLENE OXIDE

COM PLIES W ITH T H E UNIVERSITY REGULATIONS O N GRADUATION T H E S E S

AND IS APPROVED BY ME A S F U LFILL IN G TH IS PA RT O F T H E REQUIREM ENTS

FO R THE D EGREE O F

Doctor, o f P hilosoph y

to F B s s o R i n C h a r g e o f T h e s i s

of

S cho ol o r D epa r tm en t

TO T H E LIBRARIAN:----

m

TH IS T H E S IS IS N O T TO B E REGARDED A S CONFIDENTIAL.

THE VAPOR PHASE HYDRATION OF ETHYLENE OXIDE

A T h e s is

S u b m itte d to th e F a c u lty

of

Purdue U n iv e r s ity

by

John F r a n c is H orner

I n P a r t i a l F u l f i ll m e n t o f th e R eq u irem en ts f o r th e Degree

of

D o c to r o f P h ilo so p h y

F e b ru a ry , 1950

ACKNOWLEDGMENT

The a u th o r w ish e s t o e x p re s s h i s a p p r e c i a ti o n to Dr# J . M. S m ith, th e d i r e c t o r o f t h i s r e s e a r c h , f o r h i s i n t e r e s t , encouragem ent, and a d v ic e d u rin g th e c o u rse o f th e s e i n v e s t i g a t i o n s , and to M essrs* C a rtm e ll, G allow ay, O lso n , T r ic e , and L anger f o r t h e i r c o n tr i b u ti o n s to th e p r e lim in a r y p h a se s o f t h i s w ork.

ProQuest Number: 27714099

All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is d e p e n d e n t upon the quality of the copy subm itted. In the unlikely e v e n t that the a u thor did not send a c o m p le te m anuscript and there are missing pages, these will be noted. Also, if m aterial had to be rem oved, a n o te will ind ica te the deletion.

uest ProQuest 27714099 Published by ProQuest LLC (2019). C opyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C o d e M icroform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 - 1346

TABLE OF CONTENTS Page ABSTRACT ...................................................................................................

i

INTRODUCTION ..........................................................................................

1

Uses and P r o p e r tie s o f th e E th y le n e G ly c o ls . . . . . .

1

E th y le n e G ly co l .......................................................... D ie th y le n e G lycol ......................... ................................... T r ie th y le n e G l y c o l ...........................................................

1 2

M anufacture o f E th y le n e G ly co l . . . . . . . . . . . . . . . . . . .

3

C h lo ro h y d rin P ro c e ss .................. ...................... D ic h lo rid e P ro c e ss ........................................................... duPont S y n th e s is ......... ................................... P ro c e s s e s B ased upon E th y le n e Oxide .............. L iq u id Phase H y d ra tio n ......... ...................... Vapor Phase H y d r a t i o n .............. ................. .. P urpose of th e P r o je c t

2

! 6 6

.................................................

7

Review o f P re v io u s E x p e rim e n ta l Work . . . . . . . . . . . . .

8

Thermodynamic C o n s id e ra tio n s ................................ .. Equipment f o r P r e lim in a r y S tu d ie s • • • .............. R e s u lts o f P re lim in a ry Work ................ ..

8 10

DESCRIPTION OF EQUIPMENT ...............................................................

15

* D esig n C o n d itio n s

11

................ ..........................................

15

M e terin g and C o n tro l System f o r E th y le n e Oxide • • •

19

M e terin g and C o n tro l System f o r Steam

................ ..

23

....................................................

25

P re h e a tin g th e R e a c ta n ts

The C a t a l y t i c R e a c t o r ................ ........................................

28

Dowtherm System

31

...............................................................

P ro d u c t S e p a ra tio n and C o l le c t i o n System T em perature R eco rd in g

............

...........................................

33 35

TABLE OF CONTENTS (C o n tin u ed )

PRELIMINARY EXPERIMENTAL WORK.................................................... Development and C a li b r a t i o n o f th e E th y le n e Oxide M etering System ........................................... Development and C a li b r a t i o n o f th e Steam M e te rin g ................ .......................... .. and C o n tro l System P ro d u c t A n a ly sis by D i s t i l l a t i o n

................

A n a ly sis f o r E th y le n e Oxide i n M ix tu re s w ith G ly co ls ................................................. ...................................... A n a ly s is f o r T o ta l C o n v erted O rg an ics by O x id a tio n COMPLETE OPERATING PROCEDURE...................................................... The Warm-up P e rio d

..............................................................

Run O p e ra tio n

.....................................................

S h u t- d o w n ....................................................................................... Mis c e lla n e o u s

.................................................

RESULTS..................................................................................................... Study o f th e V a ria n c e of C a t a l y t i c A c t i v i t y

..........

P h y s ic a l C o n d itio n o f th e C a ta ly s t . . . . . . . . . E f f e c t o f O n-Stream Time on A c t i v i t y . . . . . . . . . S tu d y o f th e E f f e c t o f O p e ra tin g V a r ia b le s on T o ta l C o n v ersio n ............................. ........................ SUMMARY OF RESULTS AND CONCLUSIONS .................................... .... BIBLIOGRAPHY

...................................................................................

APPENDIX A.

COMPLETE RUN DATA..................................................

APPENDIX B.

CALIBRATION OF ETHYLENE OXIDE FLOWRATOR• •

B l. Tempe r a t u r e -D e n s ity P lo t B2 . C a li b r a t i o n D ata B3 * C a li b r a t i o n C urves

........................... ..

................ ................. .. .......................................

TABLE OF CONTENTS (C o n tin u ed ) Page

105

APPENDIX C. CALIBRATION CURVES FOR WATER FLOWRATOR . . APPENDIX D« Dl#

SAMPLE CALCULATIONS .......................... 108 C a lc u la tio n o f Flow m eter S e t ti n g s « .... 109

D2 « C a lc u la tio n o f Y ie ld s and C o n v ersio n s from D i s t i l l a t i o n A n a ly s is D ata ...........

110

D3 « T o ta l C o n v ersio n C a lc u la tio n from O x id a tio n A n a ly sis D ata • .............

112

Dlj-* Sample C a lc u la tio n f o r P r e p a r a tio n o f C a ta ly s t Number 3 ........................................

lli{-

APPENDIX E , REFRACTIVE INDEX - COMPOSITION PLOTS APPENDIX F .

...

Il6

PHYSICAL CONSTANTS FOR THE ETHYLENE GLYCOLS .................................................................... 120

V IT A ...................................................................................................... 122

LISTS OF TABLES AND FIGURES

L i s t o f T ab les T able

Page

1.

T a b u la tio n o f D ata f o r Check Runs on ..................................... C a ta ly t i c A c t i v i t y

70

2.

T a b u la tio n of D ata f o r Check Runs on C a ta ly t i c A c t i v i t y - T o ta l C o n v ersio n . . . .

74

3.

D ata

f o r C onversion S tu d ie s a t l 53 - l 60°C • • • •

79

4*

D ata

f o r C o n v ersio n S tu d ie s a t 129- 132° C . . . .

82

5.

D ata

f o r C o n v ersio n S tu d ie s a t 188- 190°C . . . .

84

6#

D ata

f o r Y ie ld S tu d ie s a t 188- 190° C ...................

86

7.

C o n v ersio n S tu d ie s w ith T em perature and P re s s u re as V a r ia b le s .................................

8.

T able o f Complete Run D ata

9-

E th y le n e Oxide F lo w ra to r C a li b r a t i o n D ata S t e e l F lo a t .......................................................

100

10 .

E th y len e Oxide F lo w ra to r C a li b r a t i o n D ata G lass F l o a t ....................

101

11 .

P h y s ic a l C o n sta n ts f o r t h e E th y le n e G ly c o ls .

120

..........................

86 97

L i s t of F ig u re s F ig u re

Page

1.

P i l o t P la n t Flow S h eet

2.

P a n e l View P hotograph o f Equipm ent

.............

17

3.

R ear View P h otograph of Equipm ent • • • .................

18

4*

E l e c t r i c a l C i r c u i t s D iagram

21

5.

P re h e a te r ..............................

26

6.

R e a c to r

29

...........................

.........................

..............

l6

L is t o f F ig u res (Continued) F igure

7#

Page P hotograph o f New and Used C a ta ly s t P a r t i c l e s .................

66



S e c tio n View o f a P a r t i c l e from C a ta ly s t No . 7

6?

9*

S e c tio n View o f a P a r t i c l e from C a ta ly s t No. 3

68

10 .

E f f e c t o f O n-Stream Time on C o n v ersio n and Y ie ld a t C o n sta n t C o n d itio n s ......................

71

E f f e c t o f O n-Stream Time on T o ta l C o n v ersio n a t C o n sta n t C o n d itio n s .....................

75

12 .

C onversion S tu d ie s a t l 53- l 60°C

.......................

80

13 .

C o n v ersio n S tu d ie s a t 129- 132°C

...........

83

li|..

C o n v ersio n S tu d ie s a t l 88- 190°C

15 .

E f f e c t o f T em perature on T o ta l C o n v ersio n a t C o n sta n t C o n d itio n s ...............

11 .

...............

85 89

16.

T em perature - D e n s ity P lo t f o r E th y le n e Oxide

99

17 .

C a li b r a t i o n Curve f o r the E th y le n e Oxide F lo w ra to r w ith S t e e l F lo a t « ................................

103

18 .

C a li b r a t i o n Curve f o r th e E th y le n e Oxide F lo w ra to r w ith G lass F l o a t ...............

lOij.

1 9.

C a li b r a t i o n Curve f o r th e W ater F lo w ra to r w ith L ig h t F lo a t ......................................

106

20 .

C a li b r a t i o n Curve f o r th e W ater F lo w ra to r w ith Heavy F lo a t ........................

107

21 .

R e f r a c tiv e In d e x - C om position P lo t f o r th e ............. W ater - G lycol System

117

22 .

R e f r a c tiv e In d ex - C om position P lo t f o r th e G lycol - D ie th y le n e G ly co l System . . . . . . . . .

118

23 .

R e f r a c tiv e In d e x - C om position P l o t f o r th e D i- T r ie th y le n e G ly c o l System .............

119

i

ABSTRACT

W ith th e r a p i d in c r e a s e i n th e r a t e o f e th y le n e g ly c o l consum ption in r e c e n t y e a r s and th e c o m m e rc ia liz a tio n o f th e a i r o x id a tio n o f e th y le n e t o e th y le n e o x id e ( 1J?), con­ s i d e r a b l e i n t e r e s t has b e e n shown i n new m ethods o f manu­ f a c t u r e o f g ly c o l b a se d upon e th y le n e o x id e a s a s t a r t i n g m a te r ia l*

I n v e s t ig a ti o n s o f th e l i q u i d p h ase h y d r a tio n have

shown th e r e a c t i o n t o ta k e p la c e slo w ly when th e o x id e i s d is s o lv e d in p u re w a te r, and much more r a p i d l y when a c a t a l y t i c amount o f a c id i s p r e s e n t ( 19 )*

The d i f f i c u l t i e s

in v o lv e d i n p ro d u c t s e p a r a tio n from th e a c id would be a l ­ l e v i a t e d by h y d r a tio n in th e v ap o r ph ase o v e r a s o l i d c a ta ly s t* T herm odynam ically th e r e a c t i o n (CH2)20 (g ) + H20 (g) — i s p rom ising*

( ch2 oh)2 (g)

The ex o th e rm ic h e a t o f r e a c t i o n 3 i s r e ­

p o r te d to be 23,000 c al/g m mol a t 25°C*

W ith a c o r r e s ­

ponding e n tro p y change o f - 2i|.*9 cal/g m mol -°C , th e s ta n d a rd f r e e e n e rg y change a t 25° C i s - 1^,800 c a l/g m m o l.

E q u il i b ­

riu m c o n s ta n ts a r e 4 x 10" a t 25>°C and 3 x 10-* a t 300°C* Almost com plete c o n v e rs io n s can be e x p e c te d up to 300 °C* 1 P re lim in a ry i n v e s t i g a t i o n s o f th e vapor phase h y d ra ­ t i o n r e a c t i o n 3 have shown s i l v e r oxide on an a lu m in a c a r ­ r i e r to be e f f e c t i v e *

A number o f o t h e r m a t e r i a l s t e s t e d

ii

gave n e g a tiv e r e s u l t s # With, s i l v e r o x id e , th e p r i n c i p a l p ro d u c ts w ere e th y le n e g ly c o l and l e s s e r am ounts o f d i — and trie th y le n e g ly c o ls •

C o n v ersio n s (th e c o n v e rte d f r a c t i o n to

g ly c o l o f th e o x id e in tr o d u c e d ) betw een 25 and lj.0 p e r c e n t and y i e l d s (th e f r a c t i o n a l w eight o f g ly c o l i n th e c o n v e rte d p ro d u c ts ) o f

t o 80 p e r c e n t , d ep en d in g on c a t a l y s t a g e ,

were r e p o r t e d a t 170°C, a c o n ta c t tim e o f 1*8 se c o n d s , and m o lal r a t i o n s of steam t o e th y le n e o x id e o f 1 3 .5 to 1 ( 3 ) . C o n v ersio n d e c re a se d and y i e l d in c r e a s e d w ith a g e .

I t was

co n clu d ed t h a t a c c u m u la tio n o f p o ly g ly c o ls on th e s u r f a c e r e ­ s u l t e d i n th e d e c re a s e o f c a t a l y t i c a c t i v i t y .

A ttem p ted r e ­

g e n e r a tio n w ith steam lo w ered th e y i e l d b u t had l i t t l e on c o n v e rs io n .

e ffe c t

A ir r e g e n e r a tio n re d u c e d th e y i e l d to th e

v a lu e e x p e c te d o f f r e s h c a t a l y s t s .

S i l v e r o x id e p re p a re d on

th e c a r r i e r from th e d e c o m p o sitio n of th e n i t r a t e w ith sodium h y d ro x id e was fo u n d t o be p r e f e r a b l e , from th e s ta n d p o in t o f y i e l d s , to th e rm a l d eco m p o sitio n o f s i l v e r o x a l a t e . T h is p a p e r sum m arizes th e i n v e s t i g a t i o n s c a r r i e d o u t to f u r t h e r stu d y th e v a r i a t i o n o f c a t a l y t i c a c t i v i t y , and to d eterm in e th e e f f e c t s o f o p e ra tin g v a r i a b le s on y i e l d and c o n v e rs io n .

T hese v a r i a b le s in c lu d e d te m p e ra tu re , space

v e l o c i t y ( S f ) , s te a m -e th y le n e ox id e r a t i o n (SEE), and p r e s ­ su re . Equipm ent I n v e s t ig a ti o n s o f th e h y d r a tio n r e a c t i o n were c a r r i e d

ill

o u t with, th e c o n tin u o u s flow a p p a ra tu s i l l u s t r a t e d i n F ig ­ u re ! • L iq u id e th y le n e o x id e a t 2$ p s i g . , from a c y lin d e r i n a h e a te d w a ter b a th , was m e te re d th ro u g h a F lo w ra to r and i n ­ tro d u c e d w ith steam in to th e p r e h e a t e r .

C o n tro l o f th e o xide

f lo w r a te was o b ta in e d w ith an e l e c t r i c a l l y h e a te d n e e d le v a lv e , enough power b e in g s u p p lie d t o th e h e a t in g e le m e n ts to m a in ta in th e rm a l e q u ilib r iu m i n th e v a lv e a s t h e o x id e f la s h e d from t a n k t o r e a c t o r p r e s s u r e . T re a te d w a te r from a z e o l i t e s o f t e n e r was m e te re d w ith a F lo w ra to r and d is c h a rg e d i n t o a f l a s h b o i l e r w hich t r a n s ­ form ed i t i n t o ste am a t r e a c t i o n p r e s s u r e .

A n o z z le d i r e c t e d

th e w a ter onto n i chrome sh a v in g s i n th e e l e c t r i c a l l y h e a te d In c o n e l tu b e form in g th e b o i l e r . The te m p e ra tu re o f th e r e a c t a n t s was r a i s e d t o t h e de­ s i r e d l e v e l by c o n tr o l o f th e power to th e e l e c t r i c a l h e a t ­ in g ele m e n ts in th e p r e h e a t e r , a 3 in c h O.D. b r a s s tu b e 21 in c h e s lo n g . The r e a c t o r was c o n s tr u c te d o f b r a s s from a 22 in c h le n g th o f 2 in c h O.D. tu b in g w ith th r e a d e d end c a p s . a v a ila b le volume f o r c a t a l y s t was 809 c c .

The

A 3 in c h O.D.

tu b e , th ro u g h w hich Dowtherm A co u ld be c i r c u l a t e d , ja c k e te d th e r e a c t i o n tu b e .

Therm ocouple w e lls w ere p la c e d i n th e

ja c k e t and tu b e f o r m easurem ent and r e c o r d in g o f Dowtherm and r e a c t i o n te m p e ra tu re s a t 1 /2 , 1 , Ij_, 5 , 9 , 10, and l £ in c h e s from th e b ottom o f th e b ed .

A C a p a c it r o l , c o n n e c te d

MICROMAX

F I GU R E

I

FLOW D I A G R A M

THERM OSTAT i—1(~ >S\ — iSOLONOID 1 IW I 1 VALVE

OF

EQUIPMENT DRAIN

CAPACITROL

WATER

SEC O N D A R Y 8 G O LD CONDENSERS

TO DR A IN

CO NTRO L

PRIMARY CONDENSER WATER OXIDE C O N TR O L VALVES SEPARATOR

^

OXIDE

: 1 ! r i i i '

LIQUID PRODUCTS

i.

J

tr UJ -i

oflD

X CO < -J u. ---- 1 1—

--tn

DOW THERM jV

«STO RAG E o

THERM OSTAT

UJ| X Ui CE CL 1 1 !

PUMP

V A R IA C S

LIQUID

WATER

o

COMPRESSOR

!

CEI UJl H

V

to p a r a l l e l e d c o u p le s , i n d ic a t e d th e a v e ra g e r e a c t i o n tem per­ a t u r e , and c o n tr o l le d th e e l e c t r i c a l power in p u t to a n ex­ t e r n a l w inding w hich c o u ld m a in ta in th e r e a c t o r a t e le v a te d te m p e ra tu re w ith o u t Dowtherm c ir c u l a t i o n #

O ther te m p e ra tu re s

a t th e to p and bottom of th e r e a c t o r , and a t th e ja c k e t i n ­ l e t w ere re c o r d e d by a Micromax# The l i q u i d Dowtherm was c i r c u l a t e d by a g e a r pump th ro u g h th e r e a c t o r j a c k e t , Dowtherm h e a t e r , and s to r a g e and c o o lin g drum#

A th e rm o s ta t in th e l a t t e r c o n t r o l l e d th e

h e a t e r in p u t, and th e o p e r a tio n o f a s o le n o id v a lv e i n th e c o o lin g c o i l lin e #

The f u n c tio n o f t h e c o o lin g w a te r was to

m inim ize te m p e ra tu re c y c lin g and h e lp d i s s i p a t e th e e x o th e r­ mic h e a t o f r e a c t i o n . The p r e s s u r e i n th e r e a c t o r was c o n t r o l l e d b y a n e e d le v a lv e i n th e d is c h a rg e l i n e l e a d in g to th e p rim a ry c o n d en se r a s h e l l and c o i l type#

C o n tro l o f th e w a te r r a t e d e te rm in e d

th e l iq u i d - g a s c o m p o sitio n o f p ro d u c ts e n te r in g th e s e p a r a ­ t o r tube#

L iq u id p ro d u c ts were d is c h a rg e d from the b o tto m ,

and g a se o u s, u n r e a c te d e th y le n e o x id e , a f t e r b e in g s t r i p p e d o f w ater vapor i n th e se c o n d a ry c o n d e n se r, was l i q u i f i e d i n th e tu b e b u n d le o f th e c o ld c o n d e n se r.

E xpanding f r e o n ,

from t h e c o m p re sso r-c o n d en ser u n i t , i n t o a c o i l i n th e g ly co 1-w a te r b a th m a in ta in e d th e te m p e ra tu re a t - 25°C#

vi

P ro c e d u re s and A n a ly s is O p e ra tin g P ro ced u re In th e warm-up p e rio d th e v a rio u s h e a t e r in p u ts and co n d en ser w ater r a t e s were a d ju s te d to g iv e th e d e s i r e d te m p e ra tu re s o f the p re h e a te d r e a c t a n t s , th e r e a c t o r , and th e p ro d u c ts i n th e s e p a r a to r u n d e r th e s p e c i f i e d steam and o x id e flow c o n d it i o n s • The o n -stre a m p e rio d was i n i t i a t e d by d i v e r t i n g th e flow o f r e a c t a n t s from th e r e a c t o r b y -p a s s l i n e th ro u g h th e r e ­ a c to r.

F i n a l a d ju s tm e n t o f th e r e a c t i o n te m p e ra tu re was

made w ith th e Dowtherm th e r m o s ta t, and th e p r e s s u r e s e t w ith th e n e ed le v a lv e .

The d e s i r e d flow r a t e s o f th e r e a c t a n t s

was c a r e f u l l y c o n tr o l le d d u rin g th e o n -s tre a m p e r io d , p a r ­ t i c u l a r l y i n th e 10 t o 1$ m in u te i n t e r v a l p r i o r to c o l l e c ­ t i o n of a ru n sam ple. Sam ples w ere o b ta in e d a t s p e c i f i e d p e rio d s i n w eighed r e c e i v e r s , and were c o l l e c t e d d u rin g an a c c u r a t e l y tim ed in te rv a l.

A ll r e q u ir e d te m p e ra tu re s w ere a u to m a tic a lly r e ­

co rd ed by th e Micromax. A n a ly tic a l P ro c e d u re s The ru n sam ples, c o n ta in in g w a te r, e th y le n e o x id e , th e th r e e g ly c o ls , and o c c a s io n a lly a ld e h y d e s , w ere a n a ly z e d by one o f two m ethods, depending on th e d a ta re q u ir e d * I n th e d i s t i l l a t i o n p ro c e d u re , w a te r and e th y le n e o xide from th e w eighed sam ple were removed i n an a tm o sp h e ric

v il

d is tilla tio n *

An a i r c o o le d packed f r a c t i o n a t i n g column

p re v e n te d g ly c o l c a rry o v e r*

The r e s i d u e was t r a n s f e r r e d to

a s m a lle r vacuum a p p a ra tu s c o n s i s t in g o f a m a n tle h e a te d f l a s k and a d i a b a t i c a l l y ja c k e te d , packed f r a c t i o n a t i n g colum n. T hree b i n a r y f r a c t i o n s , w a te r - g ly c o l, g l y c o l- d ie th y le n e g ly ­ c o l , and d i - t r i e t h y l e n e g ly c o l, were o b ta in e d .

The p o t r e s i ­

due and an assum ed w eig h t f o r column h o ld u p c o n s t i t u t e d th e th ir d fra c tio n .

W eights o f each of th e g ly c o ls were o b ta in e d

from th e w eighed f r a c t i o n s fo llo w in g th e d e te im iin a tio n o f t h e i r c o m p o sitio n from r e f r a c t i v e in d e x data*

A c o rre c tio n

was a p p lie d to th e s e w e ig h ts to a c c o u n t f o r th e h o ld u p on th e w a lls o f th e a tm o sp h e ric a p p a ra tu s f l a s k .

The t o t a l

w e ig h ts o f th e g ly c o ls so o b ta in e d e s t a b l i s h e d t h e i r y i e l d s . C o n v ersio n s were c a l c u l a t e d from th e e q u iv a le n t w e ig h ts o f e th y le n e o x id e and th e w eig h t o f oxide in tro d u c e d d u rin g th e ru n c o l l e c t i o n p e rio d .

About 1,000 ml o f p ro d u c t were

u s u a l ly r e q u ir e d f o r th e d i s t i l l a t i o n m ethod. The second m ethod was em ployed f o r th e d e te r m in a tio n o f t o t a l c o n v e rs io n (th e f r a c t i o n o f e th y le n e o xide in tro d u c e d c o n v e rte d to o th e r com pounds), and was much s h o r t e r th an th e rig o r o u s d i s t i l l a t i o n *

E th y le n e o x id e was rem oved from a

p o r tio n o f th e w eighed ru n sample by b u b b lin g a i r th ro u g h th e s o l u t i o n .

I f any a ce t a l dehyde was p roduced i n th e r e ­

a c t io n , i t was removed w ith th e o x id e .

A m easured q u a n t i t y

o f th e ox id e f r e e s o l u t io n was d i l u t e d so t h a t a 25 ml a l i q u o t c o n ta in e d a p p ro x im a te ly th e e q u iv a le n t o f 0 ,1 grams

v iii

o f g ly c o l•

The o p g a n ic s i n th e a li q u o t w ere th e n o x id iz e d

to c a rb o n d io x id e and w a te r w ith a known number of e q u iv a ­ l e n t s o f dichrom at e from a p o ta ssiu m d ic h r o r n a te - s u lf u r ic a c id s o l u t i o n ( 2£ ml o f 0*8 IT d ichrornate s o lu tio n p lu s 10 ml 98 p e r c e n t s u l f u r i c a c i d ) *

A f te r one h o u r in b o i l i n g

w a te r , t h i s m ix tu re was d i l u t e d t o 300 ml and s o l i d f e r r o u s ammonium s u l f a t e was added i n e x c e ss o f th e amount n e c e s s a r y to re d u c e th e u n re a c te d d i chrom ât e ,

The q u a n t i t y o f e x c e ss

f e r r o u s io n s was d e te rm in e d by p o t e n t i o m e t r i c a l l y t i t r a t i n g th e s o lu tio n w ith s ta n d a rd 0*1 N p o ta ssiu m perm anganate s o lu ­ tio n *

Calom el and p la tin u m e le c t r o d e s were used*

The amount

of f e r r o u s ammonium s u l f a t e employed ( u s u a lly 0 ,0 1 7 6 l m ois) was s u f f i c i e n t t o r e q u i r e 25 to 50 ml of perm anganate f o r th e o x id a tio n o f th e e x c e s s .

The fo llo w in g e q u a tio n was

u se d t o c a l c u l a t e th e g ly c o l e q u iv a le n t o f th e a l i q u o t : gms (CH20E )2 =

I (ml x IT) + (ml x N) - 1000 x m ois Pel 1D ic h r ornate perm anganate x 62 x lO~^*

The e q u iv a le n t amount o f g ly c o l i n th e r u n sample was ob­ ta i n e d by m u l t i p l i c a t i o n o f th e a li q u o t c o n te n t by s u i t ­ a b le d i l u t i o n f a c to r s *

C onversion o f t h i s w e ig h t o f g ly c o l

t o an e th y le n e o x id e e q u iv a le n t, and th e w eig h t o f ox id e i n ­ tro d u c e d e s t a b l i s h e d th e t o t a l co n v ersio n * The w eight of o x id e in tro d u c e d was tak e n from th e m e te re d flow r a t e i n b o th a n a l y t i c a l methods*

B ecause o f

a d s o r p tio n o f p o ly g ly c o ls on th e c a t a l y s t d u rin g r u n o p e ra ­ t i o n , th e e th y le n e o x id e d e te rm in e d from th e p ro d u c t com­ p o s i t i o n was n o t an a c c u r a te o r c o n s i s t e n t m easure o f th e amount f e d t o th e r e a c t o r .

T h e re fo r e , th e o x id e c o n te n t

o f th e l i q u i d p ro d u c ts was n o t d e te rm in e d .

R e s u lts Two m ajor problem s were i n v e s t i g a t e d i n th e c o u rs e o f th e e x p e rim e n ta l r e a c t i o n s t u d i e s . Study o f C a t a l y t i c A c tiv ity V a r ia tio n The p h y s ic a l ap p ea ra n c e of th e c a t a l y s t was fo u n d to have an e f f e c t on i t s a c t i v i t y .

C a ta ly s ts h a v in g p o o r

c o v e rin g s and p e n e t r a t i o n s of s i l v e r o x id e e x h ib ite d a r e ­ duced a b i l i t y to prom ote th e g ly c o l r e a c t i o n , b u t were more a c t iv e to w ard s is o m e r iz a tio n to a ld e h y d e s .

P a r t i c l e s which

were a u n ifo rm grey c o lo r th ro u g h o u t w ere th e m ost s a t i s ­ fa c to ry ,

With a s ta n d a r d iz e d m ethod o f c a t a l y s t p r e p a r a tio n

alum ina p a r t i c l e s i n th e s i z e ran g e 6 to 8 mesh c o n s i s t e n t l y gave s u p e r io r p e n e t r a t i o n and c o a tin g , w h ile r e s u l t s w ith ij. to 6 mesh s i z e s in d ic a t e d good c o v e rin g b u t poor p e n e t r a t i o n Alumina f a i l i n g to p a ss a Ij. mesh gave p o o r r e s u l t s w ith r e s ­ p e c t to b o th c h a r a c t e r i s t i c s .

A ll ru n s were made w ith a

c a t a l y s t c o n ta in in g 8 p e r c e n t s i l v e r o x id e by w e ig h t.

2 and ij. (T able I) a re i l l u s t r a t i v e o f th e d i f f e r e n c e ob­ t a i n e d w ith d i f f e r e n t s iz e ra n g e s o f alu m in a.

Curves C

Runs

•H

r4 •H 0 rd

00 • o

• vO

o

vO •



3

S o

rn #

O 00

TABULATION OF DATA FOR CHECK RUNS ON CATALYTIC ACTIVITY

1 H fl O

S

to s 5 1

o o «

vO rrysO • • * XAOCM

1 1

xO lA G '• • • HCOXA CMH H

lA S -O • » » O CM O CM H H

Se -d -

-d T 'V d " • • • -d v O ISOXO o

1 1

0 x 0 rA • • • CAO CA c^-coco

1ACM O • • ♦ 0x0 O IS-CO O

CA lA Ox

CM # H

IvO 1 1 • 1

I 1

0 s CM CA ♦ • •

i -d" i i ♦ i

1 1



1A • CM

pound s e r v ic e

m ain was in tro d u c e d th ro u g h a n e e d le v a lv e in to th e b ottom o f th e b a th to m a in ta in u n ifo rm te m p e ra tu re by a g i t a t i o n . To p r e v e n t o v e rh e a tin g and p o s s ib l e m e ltin g o f th e c y lin d e r s a f e t y p lu g i n th e case o f th e rm o s ta t f a i l u r e , a s a f e t y mea­ s u re was in tr o d u c e d in th e form of th e Leeds and H o rth ru p Micromax r e c o r d e r - c o n t r o l l e r .

The c o n t r o l l e r was o p e ra te d

from therm ocouple number 1 w hich was p la c e d i n a s e a le d cop p er tu b e in t h e b a th .

At 110°F th e c o n t r o l l e r d is r u p te d

c u r r e n t flo w to th e h e a t e r r e la y c o i l a s shown in F ig u re 1|.. A b y -p a s s sw itc h p e rm itte d h e a t e r o p e ra tio n when th e con­ t r o l l e r was n o t ru n n in g . The e th y le n e oxide c y li n d e r s came equipped w ith a s h u t - o f f v a lv e and e d u c to r tu b e w hich d is c h a rg e d l i q u i d when th e c y lin d e r was p la c e d in an u p r ig h t p o s i t i o n i n th e b a th .

A s t e e l a d a p te r re d u c e d th e v a lv e d is c h a rg e s id e to

th e s ta n d a rd 1 /8 in c h i r o n p ip e from w hich th e o x id e l i n e s were made.

A u n io n was p la c e d i n th e l i n e to f a c i l i t a t e

ta n k rem o v al and a te e and s id e arm w ith an ir o n globe

DIAGRAM BY-PASS

ELECTR IC A L

OF C IR C U ITS

FIGU R E 4 15 AMP

MICROMAX

0 0

CAPACITROL

COMPRESSOR PUMP POWER LINES 15 AMP

S3

L

is AMP

RELAY

y

15 AMP L [RELAY

15 AMP

RELAY

FLASH BLOWER BOILER

2 0 AMP

INTERNAL PREHEATER

PREHEATERS INTERNAL

REACTOR

OXIDE \ / A I X/ CVALVE

@ SWITCHES OXIDE DOWTHERM SOLON01D z-v - mQfq D A T U C AT C D X/ A IX / C VV r U D C O BATH UHEATER VALVE @ PILOT LIGHTS ALL POWER 110 VOLT AC

22

v a lv e s e rv e d as a sam pling t a p .

A s t e e l n e e d le v a lv e was

p la c e d in th e fe e d l i n e to s e p a r a te th e su p p ly system from th e m e te rin g d e v ic e s . Model

k6

These in c lu d e d a 30 pound gauge and a

F is h e r and P o r te r F lo w ra to r. The F lo w r a to r , equipped

w ith a number 07 tu b e , was s u p p lie d w ith g la s s and s t a i n l e s s s t e e l b a l l f l o a t s l / l 6 in c h in d ia m e te r.

A ll f i t t i n g s w ere

s t a i n l e s s s t e e l and Neoprene was used f o r th e tu b e p ack in g rin g s . C o n tro l of th e e th y le n e o x id e flow r a t e was e f f e c t e d by 3 s t e e l n e e d le v a lv e s i n s e r i e s .

The f i r s t o f th e s e v a lv e s

was s p e c i a l l y c o n s tr u c te d , h a v in g a s e a t 3A- in c h lo n g a t a t a p e r of llf. d e g re e s .

The d if f e r e n c e i n ta p e r betw een th e

ground s e a t and n e e d le was 0 .5 d e g re e s .

T h irty -tw o th r e a d s

p e r in c h on t h e stem gave f i n e c o n tr o l over th e flo w .

The

v a lv e and 3 in c h e s o f th e d isc h a rg e l i n e were wrapped w ith N ichrome w ire , i n s u l a t e d from th e s t e e l w ith a s b e s to s p a p e r, and 1 /2 in c h o f m agnesia i n s u l a t i o n was a p p lie d to the assem ­ b ly .

Power t o th e h e a te r w inding was s u p p lie d from a 600

w a tt V a rla c , th e r a t e d c u rr e n t flow c o rre sp o n d in g to ij.0 v o lts .

A sb esto s ro p e was found t o be an e f f e c t i v e v a lv e

packing*

The 2 rem a in in g v a lv e s w ere o f s ta n d a rd d e s ig n ,

se rv in g o n ly as r e s i s t a n c e s f o r re d u c in g c y lin d e r to r e a c t o r p re ssu re .

C o n tro l o f th e flow was e f f e c t e d w ith th e h e a te d

v a lv e , enough power b e in g s u p p lie d to th e h e a te r to c o u n te r ­ a c t th e th e rm a l e f f e c t caused by th e e th y le n e o xide f l a s h i n g w ith th e r e d u c tio n in p r e s s u r e . P r i o r to e n te r in g th e p r e h e a te r , th e m etere d e th y le n e

23

o x id e from th e l a s t v a lv e was in tro d u c e d w ith steam i n to th e m ixing m an ifo ld # W ith th e e x c e p tio n o f th e p r e s s u r e gauge, i r o n o r s t e e l was u se d i n a l l p a r t s o f th e system h a n d lin g d ry e th y le n e o x id e . The m e te rin g and c o n tr o l system i s in c lu d e d i n F ig u re 1#

M e terin g and C o n tro l System f o r Steam R a th e r th a n surm ounting th e d i f f i c u l t i e s in v o lv e d i n m e te rin g and c o n t r o l l i n g l i n e steam , i t was d e c id e d to m eter th e w a te r s u p p lie d to a steam g e n e ra to r# Tap w a te r was in tr o d u c e d th ro u g h 1/% in c h copper tu b in g i n to a n a t u r a l g reen san d s o f te n e r c o n s tr u c te d from 2 in c h p ip e l 6 in c h e s long#

P ip e c a p s, d r i l l e d and th re a d e d to

accommodate th e tu b in g h a l f u n io n s , se rv ed as th e ends, w h ile c h a rg in g and d is c h a rg in g was f a c i l i t a t e d by d iv id in g th e s o f te n e r i n t o 2 s e c tio n s w ith a union#

G lass wool p lu g s

i n each end p re v e n te d th e g reen san d from b e in g c a r r i e d to o th e r p a r t s o f th e system # O n e -fo u rth in c h copper tu b in g c a r r i e d th e t r e a t e d w a te r to th e m e te rin g in s tru m e n t a f t e r p a s s in g th ro u g h a b r a s s Hoke n e e d le v alv e# M e terin g was acco m p lish ed w ith a t^ p e

k5

F is h e r and

P o r te r S tab l e -V is F lo w ra to r w ith a number Oij. tube#

Two

s t a i n l e s s s t e e l f l o a t s were s u p p lie d . C o n tro l o f th e w a te r flow r a t e was e f f e c t e d w ith a

24 second Hoke n e e d le v a lv e and th e w a te r was s u b s e q u e n tly in tr o d u c e d i n t o th e steam g e n e ra to r* The steam g e n e r a to r c o n s is te d o f a 1-1/% in c h O.D* In co n e 1 tu b e 18 in c h e s lo n g .

T hreaded s t e e l caps w ith l / 8

in c h p ip e c o n n e c tio n s and co p p er w ash ers form ed th e e n d s. W ater was in tro d u c e d in to th e g e n e ra to r th ro u g h a mon e l tu b e p r o j e c ti n g 8 in c h e s i n t o th e i n t e r i o r and te r m in a tin g i n an u m b re lla shaped h ead which d i r e c t e d th e w a te r down th ro u g h fo u r l /3 2 in c h h o le s on to th e tu b e w a ll and Hi chrome sh a v in g s w ith w hich th e g e n e r a to r was p a c k e d .

The tu b e and

p a c k in g was m a in ta in e d a t a h ig h te m p e ra tu re b y an e x te r n a l w in d ing o f lip*? f e e t o f 20 B and S gauge Hi chrome w ire* The w ir e , wound i n th e form o f a t i g h t c o i l , was su p p o rte d by v e r t i c a l row s of c eram ic beads w hich p re v e n te d s h o r tin g betw een tu r n s on th e In c o n e l tu b e .

The g e n e ra to r and c o i l

were in c a s e d i n 1 -1 /2 in c h e s o f h ig h te m p e ra tu re diatam acous e a rth in s u la tio n . V-20 V a ria c .

E l e c t r i c a l power was s u p p lie d from a Type

R ated c u r r e n t (8 amps) was drawn a t 8lp v o l t s

and maximum c u r r e n t (10 amps) a t 10? v o l t s . The l / 8 in c h p ip e c o n n e c tin g t h e g e n e r a to r to th e m ix­ in g m a n ifo ld c o n ta in e d a s t e e l n eed le v a lv e and t e e s f o r th e i n s e r t i o n o f a therm ocouple w e ll and a co p p er tu b e u n io n f o r c o n n e c tio n o f a 100 pound p r e s s u r e g au g e.

A chrome1 -

alu m el c o u p le , i n s e r t e d i n th e w e l l, was c o n n e c te d to a 0-50 m il l iv o l t m e t e r th ro u g h a 2-way sw itch*

The low r e ­

s i s t a n c e o f th e m e te r (5 .8 ohms) made i t u s e f u l o n ly a s an

25 i n d i c a t o r , and no c o ld ju n c tio n was in c o rp o ra te d * The p r e h e a te r m ixing m a n ifo ld , c o n s tr u c te d from a 1 x 1 x 3

in c h b r a s s b lo c k , c o n ta in e d h o le s d r i l l e d and

ta p e d f o r l / 8 in c h p ip e f o r th e e th y le n e o x id e and steam l i n e s , a d r a i n co ck , and a l i n e d e li v e r i n g 15 pound a i r from th e m ain th ro u g h a Hoke n e e d le valve*

A 1/lj. in c h

g lo b e v a lv e was i n s e r t e d betw een th e m a n ifo ld and th e to p of th e p re h e a te r*

M agnesia i n s u l a t i o n was a p p lie d to th e

m a n ifo ld and v a lv e to d e c re a se steam c o n d e n sa tio n th ro u g h h e a t lo s s * The w a ter m e te rin g and c o n tr o l system i s in c lu d e d i n th e flow s h e e t. F ig u re 1 .

P re h e a tin g the R e a c ta n ts The te m p e ra tu re o f th e r e a c t a n t s , e th y le n e ox id e and steam , was r a i s e d to th e d e s ir e d v a lu e i n th e p r e h e a te r (F ig u re 5) w hich was c o n s tr u c te d from a 3 in c h 0*D* b r a s s tu b e , 21 in c h e s long*

The tu b e was th re a d e d a t b o th ends

to accommodate b r a s s caps*

The low er cap was d r i l l e d and

th re a d e d to r e c e iv e a 1000 w a tt, double b la d e . Type M Chromalox im m ersion h e a t e r w ith s t a i n l e s s s t e e l s h e a th s f o r th e e lem en ts*

A Fenw ald Humber l6o50 a d ju s ta b le tem p era ­

t u r e l i m i t th e rm o s ta t was i n s e r t e d th ro u g h th e up p er cap so t h a t th e elem ent r e s t e d betw een th e b la d e s o f th e im­ m ersio n h e a te r *

T h is th e r m o s ta t, c o n n ected in s e r i e s w ith

26

THERMOSWITCH

EDUCTOR VALVE

UPPER CAP ASBESTOS PAPER

EXTERNAL HEATER WINDING 1,000 WATTS

EDUCTOR TUBE

LOWER CAP

IMMERSION HEATER 1.000 WATTS FIGURE 5 PREHEATER

27

th e h e a t e r e le m e n ts, p r o t e c te d them from b u rn in g o u t due t o e x c e s s iv e te m p e ra tu re s #

F u r th e r , th e upper cap con­

t a i n e d a c o n n e c tio n th ro u g h w hich a l/h\. in c h copper e d u c to r tu b e , w ith v a lv e , was p la c e d to remove co n d en sa te from th e p r e h e a te r b e fo re o r d u rin g o p e ra tio n # In a d d i t i o n to th e i n t e r n a l h e a t e r s , a 1000 w a tt Chromel c o i l was wound on a s b e s to s p a p e r p la c e d around th e p r e h e a te r tu b e .

The e n t i r e p r e h e a te r was en ca sed i n l / 2

in c h o f m agnesia in s u la tio n # Power to one b la d e o f th e im m ersion h e a t e r was s u p p lie d from a 600 w a tt V a ria c w h ile power to th e re m a in in g b la d e and e x te r n a l w inding was s u p p lie d th ro u g h sw itc h e s from th e 110 v o l t lin e # A second m a n ifo ld was c o n n ec te d to th e bottom o f th e p r e h e a te r f o r d i s t r i b u t i o n o f th e h e a te d r e a c t a n t s th ro u g h globe v a lv e s t o th e r e a c t o r , th e r e a c t o r b y -p a s s l i n e , o r a d r a in cock#

P ro v is io n s w ere made in th e m a n ifo ld f o r th e

1/% in c h co p p er tu b e to w hich was c o n n e c te d th e 60 pound r e ­ a c t o r p r e s s u r e gauge and a therm ocouple w e ll.

The l/l#. in c h

copper tu b e c a r r y in g th e r e a c t a n t s from the m a n ifo ld to th e r e a c t o r was w rapped w ith Chromel w ire on a s b e s to s p a p e r. The w in d in g was c o n n e c te d i n s e r i e s w ith th e e x te r n a l wind­ in g on th e p r e h e a t e r .

M agnesia i n s u l a t i o n was a p p lie d to

th e m a n ifo ld and h e a te d r e a c t o r l i n e .

28

The C a ta ly t i c R e a c to r C o n s tr u c tio n a l f e a t u r e s o f th e r e a c t o r a re shown in F ig u re 6 . The h y d r a tio n r e a c t i o n o c c u rre d on th e c a t a l y s t sup­ p o r te d i n a 2 in c h O.D. b r a s s tu b e 2 2 -1 /8 in c h e s lo n g .

Each

end o f th e tu b e was th re a d e d to accommodate th e r e a c t o r caps made from 2 -^ /^ . in c h b r a s s hex s to c k .

The lo w er c ap , con­

ta i n i n g a l/l|_ in c h h a l f u n io n f l a r e d f i t t i n g f o r c o n n e c tio n to th e r e a c t a n t s l i n e , was th re a d e d f o r th e i n s e r t i o n o f a c a t a l y s t su p p o rt s ta g e w hich p ro tru d e d 1 -5 /8 in c h e s i n to th e tu b e .

A f i n e co p p er sc re e n was s i l v e r s o ld e re d t o th e end

to su p p o rt th e c a t a l y s t .

An a s b e s to s ro p e g a s k e t s e a le d th e

lo w er cap and tu b e . The u p p er cap was d r i l l e d and ta p e d to ta k e a 3 /8 in c h h a l f u n io n f l a r e d f i t t i n g f o r c o n n e c tio n of th e d is c h a rg e lin e .

A f i n e co p p er s c re e n was s i l v e r s o ld e r e d in th e cap

to p re v e n t c a t a l y s t c a r r y o v e r , and a le a d g a sk e t was em­ p lo y ed to s e a l th e cap and tu b e . To b r in g th e c a t a l y s t up to te m p e ra tu re , and to r e ­ move th e ex o th e rm ic h e a t o f r e a c t i o n , Dowtherm A, s u p p lie d by th e Dow C hem ical Company, was c i r c u l a t e d th ro u g h a ja c k e t around th e r e a c t i o n tu b e .

T his j a c k e t , 2 0 -1 /8 in c h e s lo n g ,

was made from 3 in c h O.D. b r a s s tu b in g and was f i x e d t o th e r e a c t i o n tu b e a t to p and bo tto m w ith 3 -1 /2 x 3 -1 /2 x 1/lj. in c h end p l a t e s w hich w ere s i l v e r s o ld e r e d in p l a c e .

H alf

UPPER CAP JACKET REACTION CHAMBER

JO" THERMOCOUPLE ?9 ^ WELLS ASBESTOS PAPER EXTERNAL HEATER WINDING - 1,000 WATTS SUPPORT STAGE LOWER CAP

FIGURE 6 CATALYTIC REACTOR

30

u n io n s w ere ta p e d and s o ld e r e d i n to th e ja c k e t f o r con­ n e c tio n o f the 1 /4 in c h copper tu b in g Dowtherm lin e s # T em peratures i n th e r e a c t i o n zone were o b ta in e d from th erm o co u p le s i n s e r t e d in s e a le d w e lls c o n s i s t in g o f 1- 5 /8 in c h le n g th s o f l / 8 in c h copper tu b in g #

S ix such w e lls were

i n s e r t e d th ro u g h th e ja c k e t and r e a c t o r tu b e w a lls where th e y were s e a le d i n p la c e w ith s i l v e r so ld e r# S im ila r w e lls were p la c e d i n th e to p and bottom o f th e ja c k e t to f a c i l i t a t e Dowtherm te m p e ra tu re measurement#

The lo c a ti o n of th e w e lls

i s shown i n F ig u re 6 # In o rd e r to d e c re a s e h e a t lo s s e s from th e r e a c t o r , and to m a in ta in i t a t o p e ra tin g te m p e ra tu re w ith o u t Dowtherm c i r c u l a t i o n , th e ja c k e t was co v ered w ith a s b e s to s p a p e r over which chrom el w ire was wound.

The r e a c t o r assem bly was th e n

co v ered w ith 3 /4 in c h o f m agnesia in s u la tio n # w inding was s u p p lie d from a 600 w a tt V a ria c .

Power to th e T em perature

was m a in ta in e d a t th e d e s ir e d l e v e l d u rin g n o n -o p e ra tin g p e r io d s by th e a u to m a tic c o n tr o l o f a Wheelco C a p a c itr o l which governed th e c u r r e n t flow to th e c o i l o f th e r e l a y in th e h e a t e r c i r c u i t (F ig u re 4 ) •

The C a p a c itr o l was a c tu a te d

by 2 th erm o co u p les in p a r a l l e l i n th e t h i r d and f i f t h w e lls from th e bottom o f th e r e a c t o r .

The te m p e ra tu re i n d ic a te d

by th e C a p a c itr o l a t any tim e was th e n th e av erag e of th e low er tw o - th ir d s of th e b e d .

31

Dowtherm System The Dowtherm system s e rv e d to b r in g th e c a t a l y s t to r e a c t i o n te m p e ra tu re and to c a r ry away th e h e a t g e n e ra te d due to th e ex o th erm ic n a tu r e o f th e r e a c t i o n . A f te r flo w in g th ro u g h th e r e a c t o r j a c k e t , Dowtherm was d e liv e r e d th ro u g h a I /I 4. in c h b a re copper tu b e to th e Dowtherm h e a t e r . T h is h e a t e r c o n s is te d of a 20 in c h s e c tio n o f 3 in c h 0,D . b r a s s tu b e s e a le d a t b o th ends by th re a d e d c a p s .

The

bo tto m cap was d r i l l e d and th re a d e d to r e c e iv e a 2000 w a tt. Type M0-220 Chromalox s t e e l sh e a th e d im m ersion h e a t e r ,

A

Fenwald number l605>0 te m p e ra tu re l i m i t th e r m o s ta t, to p ro ­ t e c t th e h e a t e r from o v e rh e a t f a i l u r e , was i n s e r t e d th ro u g h th e up p er cap so t h a t i t s elem ent r e s t e d betw een th e 2 b la d e s o f th e h e a t e r ,

A 3- h e a t sw itc h was s u p p lie d on th e h e a te r

b u t was n o t u sed , power b e in g d e liv e r e d th ro u g h a Type 100Q, V a ria c .

The assem bly was covered w ith 3 / k in ch o f mag­

n e s ia i n s u l a t i o n . The h e a te d Dowtherm, upon d is c h a rg e from th e to p o f th e h e a t e r , was d e liv e r e d th ro u g h a s h o r t in s u l a t e d l i n e to th e s to r a g e and c o o lin g drum.

T his drum was c o n s tr u c te d from a

5 in c h O.D. b r a s s tu b e lf> in c h e s lo n g w ith 5 -1 /2 x 5 - 1 /2 x 1 /8 in c h end p l a t e s s i l v e r s o ld e re d in p la c e .

The upper

p l a t e c o n ta in e d a 1 in c h c h arg in g n o z zle w ith cap , a 1/ 4in c h tu b in g h a l f u n io n f o r p r e s s u r iz in g th e system , and a

32

s e a l th ro u g h w hich was i n s e r t e d th e bulb of a Chromalox Type ZG-6l th e r m o s ta t.

W ith in the drum, a 3 -1 /2 in c h d ia m e te r

c o i l c o n s i s t in g o f 10 t u r n s o f l/lj. in c h copper tu b in g was p la c e d so t h a t th e ends p ro tru d e d th ro u g h th e w a ll o f th e drum where a s i l v e r s o ld e r s e a l was made. O p e ra tio n o f th e s to r a g e and c o o lin g drum can be ex­ p la in e d a s f o llo w s .

Upon re a c h in g th e d e s ir e d Dowtherm tem ­

p e r a t u r e , th e th e r m o s ta t d is r u p te d c u r r e n t flow to th e h e a t e r r e l a y and c lo s e d th e c i r c u i t to th e magnet o f a G eneral Con­ t r o l Type K -15-1 s o le n o id v a lv e w hich in tro d u c e d w a te r th ro u g h th e c o i l in th e drum.

The r a t e of w ater flow c o u ld be re g u ­

l a t e d by a l/Lj. in c h n e e d le v a lv e i n s e r te d downstream from th e s o le n o id v a lv e .

By use of the c o o lin g c o i l , tem pera­

tu r e o v e rsh o o t i n th e Dowtherm system was m inim ized and p e r ­ m itte d c o n tr o l to p lu s o r minus 0 .5 ° F •

When th e te m p e ra tu re

f e l l below th e c o n tr o l p o i n t , w ater flow was sto p p e d and power was a g a in s u p p lie d t o th e h e a t e r .

F ig u re I4. shows th e

e l e c t r i c a l c i r c u i t s em ployed. The Dowtherm pump was employed to c i r c u l a t e th e h o t l i q u i d from th e bottom o f th e s to ra g e and c o o lin g drum th ro u g h th e r e a c t o r ja c k e t and h e a te r .

The pump, a sm a ll

g e ar ty p e m an u fa ctu red by the N o rth ern Pump Company, was m o d ifie d to accommodate D u ra m e ta llic Type C packing which p ro v ed s u i t a b l e f o r h a n d lin g h o t Dowtherm.

A s in g le p u lle y

V -b e lt d r iv e was used to power th e pump from a 1 /2 h o r s e ­ power m o to r.

The l i n e s c o n n ec tin g th e drum to th e pump and

33

th e pump to th e r e a c t o r w ere co v ered w ith a s b e s to s p a p e r w hich se rv e d t o i n s u l a t e th e tu b e s from chrom el w ire h e a t e r w indings#

These w in d in g s w ere c o n n ected th ro u g h a double

throw sw itc h which p la c e d them in s e r i e s w ith th e e x te r n a l re a c to r h e a te r .

M agnesia i n s u l a t i o n was a p p lie d to th e

lin e s #

P ro d u ct S e p a ra tio n and C o lle c tio n System The r e a c t i o n p r o d u c ts frcan th e c a t a l y s t chamber were t r a n s f e r r e d to th e p rim a ry co n d en ser th ro u g h an i n s u l a t e d 3 /8 in c h copper tu b e .

A 1/% in c h n e e d le v a lv e i n th e l i n e

se rv e d t o c o n tr o l th e p r e s s u r e in th e r e a c t o r , and a t e e , p la c e d dow nstream from th e v a lv e , p ro v id e d th e c o n n e c tio n f o r th e r e a c t o r b y -p a s s l i n e to th e c o l l e c t i o n sy ste m . The p rim a ry c o n d en se r c o n s is te d of a 10 t u r n c o i l o f l/ij. in c h copper tu b in g wound to a 3 -1 /2 in c h d ia m e te r.

The

c o i l was e n c lo s e d i n a s h e l l made from a 9 in c h s e c t i o n o f 5 in c h O.D. b r a s s tu b in g .

B rass end p l a t e s , th ro u g h w hich

th e ends of t h e c o i l p r o tr u d e d , were s o ld e re d i n p l a c e . Tap w a te r was in tro d u c e d i n t o th e bottom of th e s h e l l th ro u g h a 1 /4 in c h Hoke n e ed le v a lv e , and l/lj. in c h tu b in g h a l f u n io n was f i x e d midway up th e s h e l l f o r rem oval o f th e c o n d enser w a te r to th e d r a in .

A d d itio n a l co n d en ser c a p a c ity

c o u ld be o b ta in e d by rem oving t h e w a ter from th e to p o f th e s h e ll.

3k-

The condensed p ro d u c ts were t r a n s f e r r e d t o th e p ro d u c t s e p a r a to r th ro u g h a 6 in c h le n g th o f 1/1$. in ch tu b in g .

The

s e p a r a to r c o n s is te d o f a 9 in c h le n g th of 1-1/% in c h O.D. b r a s s tu b in g whose u p p er end was o p e n .

A b a se p l a t e , s o l d e r ­

ed to th e lo w er en d , was p ro v id e d w ith a c o n n e c tio n f o r th e l i q u i d p ro d u c ts d is c h a rg e v a lv e .

The liq u i d - g a s m ix tu re

from th e prim ary co n d en se r e n te re d th e s e p a r a to r k- in c h e s from th e bottom and a sm a ll gauge g la s s was p la c e d so t h a t th e l i q u i d l e v e l c o u ld be o b serv ed and c o n t r o l l e d .

A b a re

th erm ocouple was i n s e r t e d i n t o th e l i q u i d th ro u g h th e low er gauge g la s s f i t t i n g so t h a t th e te m p e ra tu re , c o n tr o lle d by th e p rim a ry c o n d en se r w a te r r a t e , co u ld be re c o rd e d by th e Micromax o r o b se rv ed on th e 0-50 m il l i v o l t m e t e r . To s t r i p w a ter vapor from th e gaseous e th y le n e oxide r i s i n g from th e l i q u i d p ro d u c ts , a g la s s co n d en ser was con­ n e c te d t o th e open end of th e s e p a r a to r w ith a ru b b e r s to p p e r . W ater was s u p p lie d to th e condenser th ro u g h a 1/1$. in c h n e e d le v a lv e and copper tu b in g .

The condensed w a ter vapor d rip p e d

back i n t o th e s e p a r a to r w h ile th e gaseo u s e th y le n e oxide was drawn t o th e c o ld c o n d e n se r. The o x id e was l i q u i f i e d i n a tu b e bun d le c o n s i s t in g o f fo u r 3 /8 in c h copper t u b e s , 8 in c h e s lo n g , f ix e d in to m ani­ f o ld s a t to p and bottom w ith f l a r e d f i t t i n g s .

Low tem p era­

t u r e s were a c h ie v e d b y expanding f r e o n 12 th ro u g h a diaphram o p e ra te d e x p a n sio n v a lv e in to a 5 in c h d ia m e te r c o i l made from 16 f e e t o f l / 2 in c h copper t u b in g .

B oth c o i l and

35

b u n d le were p la c e d i n an open ta n k , 6 in c h e s i n d ia m e te r and 10 in c h e s h ig h , f i l l e d w ith a g ly c e r in e - w a te r s o l u t i o n .

By

p ro p e r s e t t i n g o f th e e x p a n sio n v a lv e , a b a th te m p e ra tu re o f -25°C co u ld be m a in ta in e d .

The f r e o n c o i l and a 3 /8 in c h

l i n e f o r l i q u i d ox id e d is c h a rg e were b ro u g h t o u t th ro u g h th e bottom o f th e b a th ta n k w hich was i n s u l a t e d w ith l / 2 in c h o f m ag n e sia. The e th y le n e o x id e was c o ll e c t e d i n a s u i t a b l e c a l i ­ b r a t e d r e c e i v e r su rro u n d e d by d ry ic e i n a Dewar f l a s k . By means o f a re d u c in g u n io n , th e 1 /2 in c h f r e o n l i n e was jo in e d to a 15 fo o t c o i l o f 3 /8 copper tu b in g p la c e d in a second g ly c e r o l- w a te r b a th .

The l a t t e r b a th se rv e d as

c o ld s to r a g e f o r e th y le n e oxide sam ples and gave th e ad­ d i t i o n a l c a p a c ity r e q u ir e d f o r con tin u o u s o p e ra tio n o f th e f r e o n c o m p re sso r. The f r e o n u n i t , c o n s is tin g o f a com pressor d r iv e n by a 1/% horsepow er m otor and a w a te r c o o le d c o n d e n s e r - c o lle c to r , was sa lv a g e d from a C ordley r e f r i g e r a t e d d rin k in g f o u n ta in u n it.

T em perature R ecording To a l l e v i a t e th e n e c e s s i t y o f m anually re c o rd in g tem ­ p e r a tu r e s d u rin g o p e r a tio n , a 6 p o in t Leeds and N orthrup Micromax was i n s t a l l e d to c o n tin u o u s ly re c o rd th e fo llo w in g s t r a t e g i c te m p e r a tu re s : 1,

e th y le n e oxide b a th

36 2.

r e a c t o r te m p e ra tu re , to p

3.

r e a c t o r te m p e ra tu re , bottom

Ij.. i n l e t Dowtherm te m p e ra tu re to th e r e a c t o r ja c k e t 5 * r e a c t a n t s te m p e ra tu re m easured a t

th e e x i t

m a n ifo ld o f th e p r e h e a te r 6 . te m p e ra tu re o f th e l i q u i d p ro d u c ts

in the

s e p a ra to r. The in s tru m e n t was c a l i b r a t e d f o r chrom e1-alum el th erm o co u p les and had a ran g e from 0 to 800 °F .

A 6-m in u te

p e rio d was r e q u i r e d f o r th e com plete cy cle of 6 r e c o r d in g s . A lso in c o r p o r a te d i n th e in stru m e n t was an o n - o ff con­ t r o l , a c tu a te d by couple number 1 , w hich was u sed as a maximum te m p e ra tu re l i m i t s a fe g u a rd f o r th e e th y le n e oxide c y lin d e r b a th .

37

PRELIMINARY EXPERIMENTAL WORK

Developm ent and C a li b r a t i o n o f th e E th y le n e Oxide M e terin g System From th e s ta n d p o in t of ease of m easurement and con­ t r o l , th e h a n d lin g o f gaseous e th y le n e o x id e would seem to have many a d v a n tag e s o v e r th e l i q u i d h a n d lin g system employed i n t h i s w ork.

However, l i q u i d was w ithdraw n from th e ta n k

f o r th e fo llo w in g r e a s o n s . 1.

F o r th e 20 p sig * r u n s , th e o x id e ta n k p r e s s u r e

n e c e s s a ry was 25> p s i g . , w hich c o rre sp o n d e d to a s a t u r a t i o n te m p e ra tu re o f 100°F.

Thus, to p re v e n t c o n d e n s a tio n i n th e

system , a l l l i n e s and v a lv e s would have to be h e a te d . 2.

In o r d e r to su p p ly th e q u a n t i t i e s o f o x id e needed,

th e b a th te m p e ra tu re would have to have b e en m a in ta in e d a t c o n s id e ra b ly above 100°F to t r a n s f e r th e l a t e n t h e a t o f v a p o r iz a tio n r e q u ir e d . T h is would have in v o lv e d a h a z a rd to o p e ra tio n as th e maximum a llo w a b le te m p e ra tu re o f th e c y lin d e r s was s p e c i f i e d a s 120°F . To a l l e v i a t e th e s e d i f f i c u l t i e s , i t was d e c id e d to d i s ­ charge l i q u i d from th e c y li n d e r s , th u s g iv in g abundant flow a t s a fe b a th te m p e ra tu re s , and s im p lif y in g th e p i p in g . The f i r s t a tte m p t a t d e v is in g a m e te rin g a p p a ra tu s f o r th e sm all q u a n t i t i e s o f l i q u i d o x id e r e q u i r e d in v o lv e d th e c o n s tr u c tio n o f a d e v ic e f o r s e a l i n g a s e c t i o n o f c a p i l l a r y tu b in g i n th e l i n e .

The r e a d in g o f a manometer connected

38

a c r o s s th e r e s t r i c t i o n was i n d ic a t i v e o f th e flo w .

D is­

a d v a n ta g e s of t h i s sy ste m p roved to be th e s o l u b i l i t y o f w a te r and o th e r manom eter f l u i d s i n e th y le n e o x id e , and th e p r e s s u r e drop a c r o s s th e r e s t r i c t i o n s u f f i c i e n t to g iv e a c c u ra te r e a d in g s o f a m ercury manometer r e s u l t e d in some o f th e l i q u i d f l a s h i n g .

T his v a p o r iz a tio n , a f u n c tio n o f

th e am bient te m p e ra tu re , r e s u l te d in b o i l i n g and v a r i a t i o n i n o x id e h ead in th e downstream le g of th e m anom eter.

A

n e e d le v a lv e , n o z z le , o r i f i c e , and v e n tu r i were s u b s t i t u t e d f o r th e c a p i l l a r y s e c t i o n , b u t a l l pro v ed t o be u n s a t i s ­ fa c to ry .

The g e n e ra l m ethod was abandoned.

S u c c e s s fu l m easurem ents of th e oxide flow r a t e s were o b ta in e d w ith a F is h e r and P o r te r F lo w ra to r.

T h is i n s t r u ­

m ent, a Model KÔ (number 07 t u b e ) , was s u p p lie d u n c a lib r a te d w ith 2 in te r c h a n g e a b le b a l l ty p e f l o a t s , g la s s and s t a i n l e s s s te e l.

A ll f i t t i n g s were of s t a i n l e s s s t e e l .

A lthough

s p e c i f i e d f o r use w ith e th y le n e o x id e , th e Neoprene tu b e p ack in g s u p p lie d w ith th e in s tru m e n t s w e lle d d u rin g use and was a so u rc e of c o n s id e r a b le d i f f i c u l t y .

No e f f e c t i v e sub­

s t i t u t e was fo u n d , how ever. A number of m ethods were u sed i n a tte m p tin g to c a l i b r a t e th e F lo w ra to r.

D ir e c t c o l l e c t i o n in to a s e a le d bomb and

w eighing was abandoned b eca u se th e in c r e a s in g p r e s s u r e b e ­ low th e c o n tr o l v a lv e made i t e x tre m e ly d i f f i c u l t to m ain­ t a i n c o n s ta n t flow f o r a s u f f i c i e n t l y lo n g tim ed i n t e r v a l . By p la c in g th e bomb i n a c o ld medium, su c h as d ry i c e , th e

39

flow s t a b i l i t y was im proved b u t f r o s t c o l l e c t i o n p re v e n te d im m ediate w eighing*

Upon h e a tin g to a te m p e ra tu re where

f r o s t o r m o is tu re d is s a p p e a r e d , th e oxide p r e s s u r e was g r e a t enough to r e q u ir e m e ta l bombs*

As th ese were n o t im m e d ia te ly

a v a i l a b l e , i t was a tte m p te d to d is s o lv e th e o x id e in s u l f u r i c acid*

T h is m ethod was f a i r l y s a t i s f a c t o r y f o r v e ry low flo w s

b u t was e r r a t i c a t h ig h e r v a lu e s . The m ethod f i n a l l y employed in v o lv e d c o l l e c t i n g th e o x id e i n a c a l i b r a t e d $0 m l. b u r e t t e p la c e d i n a 50 mm. d i ­ am eter tu b e packed w ith d ry i c e . view ing th e l e v e l i n th e b u r e t t e .

A window was p ro v id e d fo r A g la s s tu b e , s e a le d in to

th e top of th e b u r e t t e and e x te n d in g down to th e 25 m l. m ark, was u sed to in tr o d u c e th e o x id e .

A therm ocouple was p la c e d

n e a r th e bottom to i n d i c a t e th e te m p e ra tu re of th e l i q u i d . As th e f l o a t p o s i t i o n in th e F lo w ra to r was m a in ta in e d con­ s t a n t , th e tim e , a s m easured by a sto p w atch , f o r th e c o l ­ l e c t i o n o f a d e f i n i t e volume o f l i q u i d was re c o rd e d alo n g w ith th e therm ocouple EMF n o te d on a p o te n tio m e te r .

The

l i q u i d volum e, c o r r e c te d fo r th e volume o f th e th erm o co u p le, and tim e gave th e v o lu m e tric flo w r a t e w hich was c o n v e rte d to a w eig h t b a s i s by th e d e n s ity ( 11 ) (a f u n c tio n o f tem pera­ tu re ).

T his method p roved to be sim p le , r a p i d , and y ie ld e d

r e p ro d u c ib le r e s u l t s .

Cohn (if), i n c a l i b r a t i n g a s i m ila r

F lo w ra to r f o r e th y le n e o x id e , a p p lie d s t a t i s t i c a l methods to th e p ro c e s s and found i t to be i n s t a t i s t i c a l c o n tr o l .

C a li­

b r a t i o n d a ta and c u rv e s f o r th e f l o a t s can be found in Ap­ p e n d ix B.

4o

I n c o n t r o l l i n g th e flo w o f l i q u i d o x id e u n d er p r e s s u r e , i t was found t h a t a c e r t a i n amount o f f l a s h in g o c c u rre d w ith th e r e d u c t io n in p r e s s u r e in d u ce d by a c o n tr o l v a lv e •

The

l a t e n t h e a t r e q u ir e d f o r th e v a p o riz a tio n a p p r e c ia b ly c o o le d th e v a lv e , th u s d e c re a s in g th e a re a o f passage*

The g r e a t e r

r e s i s t a n c e so in d u ced c au se d a n a d d it i o n a l d e c re a se i n down­ stre am q u a l i t y u n t i l e q u ilib riu m was a c h ie v e d when th e flow became so sm a ll t h a t a d d i t i o n a l c o o lin g o f th e v a lv e c o u ld n o t ta k e p la c e *

Thus, w ith th e u s u a l ty p e s of n e ed le v a lv e s ,

u n s ta b le flow c o n d itio n s r e s u l t e d .

However, i t was found

t h a t i f th e l a t e n t h e a t r e q u ir e d was f u r n is h e d by an e l e c ­ t r i c a l r e s i s t a n c e w inding a ro u n d th e v a lv e , flo w s t a b i l i t y could be g r e a t l y im proved. The f i n a l d e s ig n u t i l i z e d f o r th e c o n tr o l of th e ox id e c o n s is te d o f 3 v a lv e s i n s e r i e s .

The l a t t e r 2 were n o t f o r

c o n tr o l p u rp o se s b u t m erely o f f e r e d r e s i s t a n c e to flo w which h e lp e d t o d e n s e n s i ti z e th e c o n tr o l v a lv e . The c o n tr o l v a lv e was s p e c i a l l y c o n s tr u c te d f o r sm all r a t e s and in c o r p o r a te d a s e a t 3/% in c h lo n g w ith a t a p e r o f llj. d e g re e s .

The a n g u la r d i f f e r e n c e betw een th e s e a t and th e

n e e d le was 0*5 d e g re e s .

The stem c o n ta in e d 32 th r e a d s p e r

in c h f o r f i n e c o n t r o l .

The s t e e l p o r tio n s o f th e v a lv e were

s e p a r a te d from a Ni chrome r e s i s t a n c e w inding by a s b e s to s p a p e r, and th e assem b ly was c o v ered w ith l / 2 in c h o f m agnesia. Power to th e w in d in g was s u p p lie d from a 600 w a tt V a ria c .

u

Developm ent and C a li b r a t i o n o f th e Steam M e te rin g and C o n tro l System In th e i n i t i a l i n s t a l l a t i o n , l i n e steam was t o be u se d as a so u rc e o f w a te r f o r th e h y d r a tio n r e a c tio n #

Steam

from th e 55 pound m ain was t h r o t t l e d to 25 p s i g . th ro u g h a F is h e r p i l o t o p e ra te d p re s s u re red u c in g valve#

A m e te rin g

d e v ic e was c o n s tr u c te d a llo w in g r a p id in te rc h a n g e of c a p i l ­ l a r y tu b in g s e c tio n s and manometer ta p s were p ro v id e d to o b ta in th e drop a c ro s s th e r e s t r i c t i o n # I n a tte m p tin g to c a l i b r a t e th e flow m e te r, how ever, i t was d is c o v e re d t h a t a t th e low r a t e s in v o lv e d , c o n d e n sa tio n i n th e l i n e s made o p e r a tio n im p o s sib le .

H e av ie r la g g in g

was a p p lie d , c o n d en sate in th e m ain was b le d c o n tin u o u s ly , and c o n d en sa te t r a p s were i n s t a l l e d i n th e manometer l e g s , b u t s a t i s f a c t o r y r e s u l t s were n o t obtain ed # Some c o n s id e r a tio n was given to th e p u rc h a se and i n ­ s t a l l a t i o n o f a h e a te d F lo w ra to r f o r steam m easurem ent, b u t t h i s method was abandoned in fa v o r o f a system in which w a te r was m etered in to a f l a s h steam g e n e ra to r# A c a p i l l a r y flow m eter w ith a m ercury manometer was o r i g i n a l l y u se d b u t s u p e r io r r e s u l t s were o b ta in e d w ith a F lo w ra to r.

C a li b r a t i o n c u rv es s u p p lie d by th e m a n u fa c tu re r

f o r th e 2 f l o a t s were found to be i n e r r o r .

New c a l i b r a t i o n s

were made by in tr o d u c in g m etered w ater i n to a c a l i b r a t e d b u r e t t e and n o tin g th e tim e f o r th e d e liv e r y o f a s p e c i f i e d volum e.

C a li b r a t i o n cu rv e s f o r th e w a te r F lo w ra to r can be

4-2

fo u n d i n A ppendix C. A com plete d e s c r i p t i o n of th e steam m e te rin g , c o n tr o l , and g e n e r a tin g a p p a r a tu s was g iv e n i n EQUIPMENT.

P ro d u c t A n a ly s is by D i s t i l l a t i o n B ecause o f th e r a t h e r complex n a tu re of th e p ro d u c ts of th e r e a c t i o n , s e p a r a t io n by d i s t i l l a t i o n and su b seq u en t q u a n t i t a t i v e i d e n t i f i c a t i o n a p p ea re d to be th e o n ly method of d e te rm in in g th e e x a c t p ro d u c t c o m p o sitio n .

O lson (1 2 ),

in d e te rm in in g th e i d e n t i t y o f b y -p r o d u c ts , employed a r ig o r o u s vacuum d i s t i l l a t i o n w hich, a lth o u g h s e rv in g th e purpose w e l l, was f a r to o lo n g to be c o n s id e re d o f v alu e f o r th e a n a ly s is o f a g r e a t number o f r u n s . To a l l e v i a t e t h i s d i f f i c u l t y . Langer (9) u n d e rto o k to d ev elop a s h o r t e r d i s t i l l a t i o n p ro ce d u re w hich was s t i l l a c c u ra te f o r a l l 3 g ly c o ls p r e s e n t .

In g e n e ra l th e method

c o n s is te d o f an a tm o sp h e ric and a vacuum d i s t i l l a t i o n .

In

th e form er th e e th y le n e o x id e and m ajor p o r t io n of th e w a ter were rem oved.

A f te r t r a n s f e r r i n g th e r e s id u e to th e sm a lle r

a p p a r a tu s , 3 f r a c t i o n s , w a te r - g ly c o l, g ly c o l- d ie th y le n e g ly c o l, and d i - t r i e t h y l e n e g ly c o l, were o b ta in e d under r e ­ duced p r e s s u r e and t h e i r c o m p o sitio n d e te rm in e d from r e ­ f r a c t i v e in d ex d a ta . The p rim a ry a p p a ra tu s c o n s is te d o f a 2000 ml 3- n e ok f l a s k , an a i r c o o le d 30 mm d ia m e te r packed column 15 in ch e s

43 h ig h , a sm a ll

w a ter c o o le d condenser f o r th e to p o f th e

colum n, and a therm om eter f o r i n d ic a t i n g tu re •

th e p o t tem pera­

The w eighed sample was p la c e d in th e w eighed assem ­

b ly and h e a t g e n tly a p p lie d d u rin g th e rem oval of th e oxide* The c o m p letio n o f t h i s phase was i n d ic a t e d when a flam e co u ld n o t be su p p o rte d a t th e o u t l e t of th e sm all to p con­ denser*

Rew eighing th e assem bly gave th e w eight o f oxide

removed by d i f f e r e n c e . The to p co n d en ser was th e n removed and r e p la c e d w ith a s to p p e r c o n ta in in g a therm om eter and tu b e co n n ected to 2 w a ter c o o le d A lle n e c o n d en sers in s e r i e s . a p p lie d u n t i l

Heat was

a p o t te m p e ra tu re o f 110°Co r an overhead

te m p e ra tu re g r e a t e r th a n 100°C in d ic a te d th e rem oval o f

th e

maximum amount of w a ter t h a t co u ld be removed w ith o u t lo s s o f g ly c o ls t o th e w a te r f r a c tio n *

A gain, w eighing th e

assem bly e s t a b l i s h e d th e amount o f w a te r removed by d i f f e r ­ ence*

H ere, a w eig h in g o f th e column s e p a r a te ly determ ined

th e h o ld u p , w hich was assum ed to be w a te r . The p o t r e s i d u e , c o n ta in in g w ater and g ly c o ls , was w eighed and t r a n s f e r r e d to th e f l a s k o f th e vacuum column. The vacuum a p p a r a tu s c o n s is te d of a 300 ml 3 -n eck f l a s k f i t t e d w ith a therm om eter and an a d ia b a tic ja c k e te d column f i l l e d w ith g la s s beads*

The im proved model o f t h i s

column was 8 in c h e s lo n g , 1 /2 in c h i n d ia m e te r, and had fem ale ground g l a s s j o i n t s a t to p and b o tto m .

The upper

m ale j o i n t c o n ta in e d a th erm om eter and t a k e - o f f to a w ater

14

c o o le d c o n d en se r w hich c o u ld be f ix e d w ith a s to p p e r to a la r g e f i l t e r i n g f l a s k i n w hich w ere p la c e d t e s t tu b e r e ­ c e iv e rs .

Vacuum was drawn on th e f i l t e r f l a s k by a w a ter

a s p ira to r. m a n tle .

H eat was s u p p lie d to th e f l a s k by a Grlascol

Power to th e m antle and a d ia b a tic ja c k e t w inding

was s u p p lie d from 600 w a tt V a ria c s .

Therm ocouples i n th e

m an tle and ja c k e t i n d ic a t e d t h e i r r e s p e c tiv e te m p e ra tu re s by means o f a p o te n tio m e te r . A fte r p la c in g th e sam ple in th e p o t, a l l j o i n t s and s to p p e r s w ere s e a le d t i g h t l y and a If? to 18 mm. Eg. vacuum was a p p lie d to th e a sse m b ly .

V oltage was slo w ly in c re a s e d

on th e m an tle u n t i l a p o t te m p e ra tu re o f 110°C o r an o v e r­ head te m p e ra tu re o f 9 8 °C s i g n i f i e d com plete rem oval o f th e f i r s t fra c tio n .

In o p e ra tio n of th e column, th e m antle

te m p e ra tu re should be m a in ta in e d 20 to l).0oC above th e p o t te m p e ra tu re , and th e ja c k e t te m p e ra tu re 2 to 10°C low er th a n th e o v e rh e a d .

To p re v e n t b o i li n g i n th e r e c e i v e r , th e f i l t e r

f l a s k was f i l l e d w ith c ra ck e d ic e f o r t h i s f r a c t i o n .

Even

so , some w a te r was l o s t , b u t th e lo s s could be c a lc u la te d by a m a t e r i a l b a la n c e over th e vacuum f r a c t i o n s .

The

vacuum was b ro k en and th e r e c e i v e r removed f o r w e ig h in g . The second f r a c t i o n , c o n ta in in g g ly c o l and d ie th y le n e g ly c o l, was o b ta in e d i n th e same manner as th e f i r s t ex­ c e p t t h a t i c e was n o t r e q u ir e d around the r e c e i v e r .

The

end p o in t te m p e ra tu re s f o r th e second f r a c t i o n were 1I4.O to lf?0°C f o r th e p o t or Ilf? to 125°C f o r th e o v e rh e ad .

F or th e

y

l a t e r s ta g e s o f th e f r a c t i o n a t i o n , th e ja c k e t te m p e ra tu re was som etim es r a i s e d to 120°C#

The vacuum was b ro k en and

th e second f r a c t i o n r e c e i v e r removed and w eighed. The p o t re s id u e was assumed to be d i - and t r i e t h y l e n e g ly c o ls , and was p i p e t t e d o u t of the f l a s k and w eighed. The column h o ld u p , about 1 gram , was assum ed to be o f th e same c o m p o sitio n as th e r e s i d u e . The w eighed f r a c t i o n s w ere th e n a n a ly z e d w ith an Abbey r e f r a c to m e te r to d e te rm in e t h e i r c o m p o s itio n .

P lo ts o f r e ­

f r a c t i v e in d ex v s . c o m p o sitio n f o r the v a rio u s f r a c t i o n s ap p ear i n Appendix E. Sample c a l c u l a t i o n s o f y i e l d and c o n v e rs io n b ased upon d i s t i l l a t i o n a n a l y s i s d a ta can be found in A ppendix D -2. Langer (9) g iv e s th e fo llo w in g com parison betw een a p re p a re d sam ple o f known c o m p o sitio n and th e v a lu e s o b ta in e d by t h i s a n a l y s i s . Component

Known % by W eight

% C om position

by Weight from A n a ly sis

E th y len e oxide

2 .8 6

2.91

W ater

91*90

91+80

G lycol

if-58

if .73

D i-g ly c o l

0.1f6

0 .3 5

T r i- g l y c o l

0 .2 8

0 .2 0

D e sp ite th e good agreem ent i n d ic a te d by th e s e d a ta , i t was l a t e r f e l t , a f t e r a c o n s id e ra b le number of a n a ly s e s , t h a t th e v a lu e s o b ta in e d f o r e th y le n e o x id e co u ld be g r e a t ly

46

in e rro r*

Such e r r o r s were b o th p o s i t i v e and n e g a tiv e i n ­

d i c a t i n g t h a t som etim es a l l th e oxide was n o t removed p r i o r to w e ig h in g , and o th e r tim e s a p p re c ia b le w a te r was removed w ith th e oxide*

T h e re fo re , th e d i s t i l l a t i o n method was

abandoned a s a means o f d e te rm in in g e th y le n e o xide in th e l i q u i d p ro d u c ts* The t h e s i s by L anger (9) p r e s e n ts in g r e a t e r d e t a i l th e a p p a ra tu s and p ro c e d u re s f o r th e d i s t i l l a t i o n a n a ly s is *

A n a ly s is f o r E th y le n e Oxide i n M ix tu res w ith G lycols R ep eated t e s t s o f th e d i s t i l l a t i o n p ro ce d u re h aving in d ic a te d i n c o n s i s t e n t r e s u l t s , a number of m ethods were employed in an a tte m p t t o d e te rm in e q u a n t i t a t i v e l y th e e th y le n e o x id e c o n te n t o f th e p ro d u c t w hich c o n ta in e d , in a d d itio n to th e o x id e , g ly c o ls and some a ld e h y d e s.

In ad­

d i t i o n t o f u r t h e r t r i a l s w ith d i s t i l l a t i o n p ro c e d u re s which in v o lv e d m o d ific a tio n s o f th e f r a c t i o n a t i n g equipm ent, 2 d i f f e r e n t m ethods w ere a tte m p te d . The Lu B a tte p ro c e d u re in v o lv e d e s t e r i f y i n g th e oxide w ith a s tr o n g m in e ra l a c id in th e p re s e n c e o f magnesium c h lo rid e *

The e x c e ss from th e known q u a n ti t y o f a c id was

t i t r a t e d w ith s ta n d a r d base*

The r e a c t i o n s a re MgCl2

e x c e ss H2 S0^

+

NaOH

H0CH2 ■ CH^ — OSOoH NaHSO[|_ +

H20

kl

M o d if ie d m e th y l o r a n g e was u s e d a s t h e i n d i c a t o r f o r t h e n e u tra liz a tio n . The p r o c e d u r e w as, i n g e n e r a l , a s f o l l o w s .

Sam ples

o f known c o m p o s i t i o n w ere c a r e f u l l y p r e p a r e d a p p r o x im a tin g a c tu a l run product c o n siste n c y .

P o r t i o n s o f t h e s e sam p les

w ere d i l u t e d s o t h a t a 10 o r 25 ml a l i q u o t c o n t a i n e d a p ­ p r o x i m a t e l y 0 .0 5 grams o f e t h y l e n e o x i d e .

F o l lo w i n g t h e

a d d i t i o n o f m agnesium c h l o r i d e , 5 ml of a p p r o x i m a te ly 0 . 5 N s t a n d a r d s u l f u r i c a c i d was mixed w i t h th e a l i q u o t .

One

d rop o f m o d i f i e d m e th y l o ra n g e was added and t h e e x c e s s a c i d n e u t r a l i z e d w i t h a p p r o x i m a te ly 0 .1 N s t a n d a r d sodium h y d r o x id e s o l u t i o n .

A g r e a t many t e s t s p ro v e d t h i s p r o ­

c e d u r e gave i n c o n s i s t e n t r e s u l t s . P r o c e s s v a r i a b l e s were th e amount o f magnesium c h l o r i d e and t h e tim e a l l o t t e d f o r e s t e r i f i c a t i o n b e f o r e n e u t r a l i z a ­ tio n of th e excess a c id .

Thorough i n v e s t i g a t i o n o f t h e s e

v a r i a b l e s f a i l e d t o improve t h e a c c u r a c y o f th e m ethod and i t was a b a n d o n e d .

Cohn (!}.), how ever, r e p o r t e d t h e s u c c e s s ­

f u l u se of t h e Lu B a t t e p r o c e d u r e i n a n a l y z i n g f o r e t h y l e n e o x id e i n m i x t u r e s w i t h a i r .

Here t h e s tr e a m was b u b b le d

t h r o u g h th e a c id -m a g n e siu m c h l o r i d e s o l u t i o n . A seco n d g e n e r a l a p p ro a c h i n v o l v e d re m o v in g t h e o x id e from t h e p r o d u c t s o l u t i o n w i t h a n a i r s tr e a m .

A lth o u g h

t h i s p r o c e d u r e e a s i l y and q u i c k l y removed a l l t h e o x i d e , i t p ro v e d to b e o f l i t t l e

v alu e as a n a n a l y t i c a l s o l u t i o n ,

f o r , i n a d d i t i o n t o rem o ving t h e d e s i r e d c o n s t i t u e n t .

48 c o n s id e ra b le w a te r vapor was a l s o c a r r i e d o v e r.

A d iffe r­

ence i n w eig h t co u ld t h e r e f o r e n o t be a t t r i b u t e d to oxide a lo n e .

By m easuring t h e q u a n t i t y of a i r and th e s o l u t io n

te m p e ra tu re , an a tte m p t was made t o c a l c u l a t e th e w a te r vapor rem oved by assum ing a d e g re e o f s a t u r a t i o n f o r th e e x i t s tre a m .

R e s u lts o b ta in e d by a p p li c a t io n o f t h i s c o r r e c ­

t i o n were s t i l l in e r r o r and were n o t r e p r o d u c ib le . A f te r sp en d in g c o n s id e ra b le tim e on th e problem of e th y le n e o xide a n a l y s i s , i t was d e cid ed t h a t th e F lo w ra to r r e a d in g s were a t l e a s t as a c c u ra te as any sim ple a n a l y s i s , and would form a more a c c u r a te and c o n s i s t e n t b a s i s f o r c o n v e rsio n c a l c u l a t i o n and co m p ariso n .

The problem o f e t h y l ­

ene o x id e d e te rm in a tio n was th e n dro p p ed .

A n a ly sis f o r T o ta l C o nverted O rganics by O x id a tio n A lthough th e d i s t i l l a t i o n p ro ce d u re p r e v io u s ly d e s­ c rib e d gave a c c u ra te v a lu e s of b o th y i e l d and c o n v e rsio n , th e p ro c e s s was le n g th y , r e q u i r i n g ab o u t 1 - 1 /2 w orking days per a n a ly s is .

B ecause o f th e number of ru n s to be made in

t e s t i n g th e e f f e c t s of o p e r a tin g v a r i a b l e s , and th e lim ite d tim e a v a i l a b l e , i t was u n d e rta k e n to e s t a b l i s h a more r a p id method o f p ro d u c t a n a l y s i s .

Two p ro c e d u re s m eetin g t h i s

re q u ire m e n t were found to be a v a i l a b l e . The f i r s t o f th e s e (17) in v o lv e d o x id iz in g the g ly c o l to form aldehyde w ith p e r io d ic a c id and s u b s e q u e n tly d e t e r ­ m ining th e amount o f ald eh y d e form ed by p o la ro g ra p h ic m eans.

to

B ecause such equipm ent was n o t r e a d i l y a v a i l a b l e , th e m ethod was n o t c o n s id e re d f u r th e r * The second method was d e s c rib e d in d e t a i l by th e C ar­ b id e and Carbon C hem icals C o rp o ra tio n (1 3 ).

I n g e n e r a l,

th e p ro c e d u re in v o lv e s o x id iz in g th e g ly c o l p r e s e n t to c arb o n d io x id e and w a te r w ith p o ta ssiu m d i chromât e and s u l ­ f u r ic a c id .

The u n r e a c te d dichrornate i s red u ced w ith ex­

c e ss f e r r o u s ammonium s u l f a t e , w hich i s i n tu r n o x id iz e d w ith a s ta n d a r d s o lu tio n o f p o ta ssiu m p erm an g an ate. The v a r i a t i o n of th e m ethod employed i s d e s c r ib e d in d e t a i l a s f o llo w s . A ppro x im ately 100 ml o f ru n p ro d u c t was p la c e d in a 300 ml F lo re n c e f l a s k and a b o u t

$

c u b ic f e e t of a i r , as

m easured by a w et t e s t m e te r, bu b b led th ro u g h th e s o lu tio n from a tu b e e x te n d in g t o th e bottom o f th e f l a s k .

A number

o f l/ij. in c h R ash ig r i n g s in th e f l a s k se rv e d t o improve a g ita tio n .

E xp erim en ts showed t h i s q u a n ti t y of a i r to be

s u f f i c i e n t to remove a l l th e o x id e . F o llo w in g th e rem oval of th e o x id e , 25 ml of th e s o lu ­ t i o n was p i p e t t e d i n to a 500 ml v o lu m e tric f l a s k and d i lu t e d to th e m ark.

The f l a s k was shaken w ell t o in s u r e com plete

m ix in g . The o x id iz in g s o l u t io n was p r e p a re d b y slo w ly adding 10 ml o f 98 p e r c e n t C. P . s u l f u r i c a c id to 25 ml o f 0 .8 N s ta n d a rd p o ta ssiu m d ichrornate s o l u t i o n i n a 125 ml f l a s k . As soon a s th e s o l u t i o n had c o o le d , a 25 ml a li q u o t of th e

50

d i l u t e d sam ple was p i p e t t e d in to th e o x id iz in g m ix tu re and th e f l a s k s to p p e re d w ith a c le a n s l o t t e d c o rk . The f l a s k was p la c e d in b o i l i n g w ater f o r an hour d u r­ in g w hich th e fo llo w in g r e a c t i o n to o k p la c e , 3 (CH2 0H) 2 +

5 K2Cra0 7 + 20 HaSO^

'— > . 5 K2 S0 ^ + 5

+ ^ 002 +

29 h 2 o .

The s o l u t i o n sh o u ld be orange to brown, a g r e e n is h c o lo r in d ic a tin g i n s u f f i c i e n t d i chrom ât e .

A d d itio n of 10 to 20

ml of th e d ich ro m ate s o lu tio n was u s u a lly s u f f i c i e n t to b r in g back th e brown c o lo r .

As a n a l y t i c a l grade p o tassiu m

d ich rom ate i s a p rim a ry s ta n d a rd , d i r e c t w eighing was em­ p lo y e d f o r p r e p a r a tio n o f th e s ta n d a rd s o lu tio n ( 1 9 .6 0 0 grams d i l u t e d to $00 m l) . Upon c o m p letio n o f o x id a tio n , th e c o n te n ts o f th e f l a s k were c a r e f u l l y washed i n t o a c le a n 600 ml b e a k e r. An a c c u r a t e l y w eighed q u a n t i t y o f a n a l y t i c a l g rad e f e r r o u s ammonium s u l f a t e was added and th e s o lu tio n d i l u t e d to 300 m l.

The q u a n ti t y u se d f o r m ost a n a ly s e s was 6 . 9 OO gram s,

c o rre sp o n d in g t o 0 .0 1 7 6 1 m o is. deep g re e n in c o l o r .

The r e s u l t i n g s o l u t io n was

R e d u c tio n of th e e x c e ss d ich ro m ate

p ro ceed ed a c c o rd in g to th e fo llo w in g r e a c t i o n , EgCrgOy + 6 F eS O ^d rat^S O ^

+

8 H2 S0L

— - 2 KHSOJ^ + Cr2 (SO^ ) 3 + 3 Fe 2 (S0i)_)3 + 6 (HH^)2 S0|+ + 7 H2 0 *

The f i n a l s t e p , th e o x id a tio n o f th e e x c e ss f e r r o u s io n s w ith

51

p erm an g an ate, in v o lv e d a p o te n tio m e tr ie t i t r a t i o n .

The

r e a c t i o n f o r t h i s s te p i s 2 KMnO^ + 10 F e S 0^ (N H ^ )2 S0^ + 9 H2 S0^ -----

2 MnSO]^ + 2 KHS0[|_ + 5 Fe 2 ( 3 0 ^ )3 + 10 (NH^)2 S0^ + 8 H2 0 .

A s ta n d a rd 0 .1 N p o ta ssiu m perm anganate s o l u t io n was added from a b u r e t t e to th e 300 ml s o lu tio n w ith a g i t a t i o n from an a i r d riv e n s t i r r e r .

P la tin u m and calom el e le c tr o d e s con­

n e c te d to a 20,000 ohm p e r v o l t D.C. v o ltm e te r se rv e d to in ­ d i c a te t h e end p o in t of th e t i t r a t i o n by a r a p i d change in v o lta g e d u rin g th e a d d it i o n o f 1 drop o r l e s s o f perm anganate. T i t r a t i n g po te n t i orne t r i c a l l y was a d e v ia tio n o f th e C arbide p ro ced u re which c a l l e d f o r a v i s u a l d e te rm in a tio n o f th e end p o i n t .

The perm anganate s o lu tio n was p re p a re d by d i ­

l u t i n g to 250 ml a w eighed sample o f 0 .7 9 0 1 grams of a n a ly ­ t i c a l g rad e p o ta s siu m p e rm an g an ate.

Sm all l o t s were p re p a re d

as d e co m p o sitio n u s u a l ly began w ith in a w eek. The use o f s o l i d f e r r o u s ammonium s u l f a t e i s recommended as th e f e r r o u s s o l u t i o n c a l l e d f o r i n th e C arbide pro ced u re o x id iz e d r a p i d l y . A nother m o d if ic a tio n was a tte m p te d i n w hich sodium t h i o s u l f a t e was s u b s t i t u t e d f o r th e f e r r o u s s a l t .

R e s u lts

were s a t i s f a c t o r y e x c e p t t h a t th e EMF change a t th e end p o in t o f th e perm anganate t i t r a t i o n was much l e s s sh arp th a n w ith th e f e r r o u s compound. The n e c e s s i t y f o r c le a n g la s s w a re , h ig h grade r e a g e n ts .

52

and good d i s t i l l e d w ater i s em phasized f o r t h i s p ro c e d u re . A lthough m eetin g th e re q u ire m e n ts o f speed and s i m p l i c i t y , th e o x id a tio n method p o s s e s s e s one g r e a t d i s ­ a d v an tag e i n t h a t i t i s n o t s e l e c t i v e f o r g ly c o l.

A ll h y d ro ­

carb o n compounds p r e s e n t a re o x id iz e d and are r e p o r te d as e q u iv a le n ts o f 2 carbon compounds.

Thus, di e th y le n e g ly c o l

i s r e p o r te d a s 2 m o le cu le s o f g ly c o l.

Aldehydes and o th e r

r e a c t i o n b y -p ro d u c ts a re s i m i l a r l y t r e a t e d .

However, such

p ro d u c ts r e p r e s e n t a low f r a c t i o n of the e th y le n e oxide c o n v e rte d except in th e case of f r e s h c a t a l y s t s or extrem e r e a c t i o n c o n d itio n s .

D i s t i l l a t i o n a n a ly se s were made from

tim e to tim e to keep check on th e g ly c o l y i e l d . Seven check ru n s were made em ploying the o x id a tio n p ro ­ cedure on sam ples o f known co m positions which v a rie d over th e e x p e c te d range o f g ly c o l c o n c e n tr a tio n s .

The average

e r r o r on th e s e t r i a l s was 2 . 6 l p e r c e n t, w ith a minimum of 0 .2 p e r c e n t and a maximum o f 6 .8 p e r c e n t.

These e r r o r s

a re p ro b a b ly w ith in th e a c c u ra c y of th e e th y le n e oxide flow m easurem ent and c o n t r o l . A sam ple c a l c u l a t i o n o f c o n v e rsio n b a sed upon d a ta from th e o x id a tio n a n a ly s is can be found in Appendix D-3*

COMPLETE OPERATING PROCEDURE

T h is s e c t i o n w i l l d e s c r ib e in c o n s id e ra b le d e t a i l th e p ro c e d u re f o r o p e r a tio n o f th e equipm ent d u rin g (A) th e warm-up p e r io d , (B) ru n o p e ra tio n , and (C) shut-dow n. M isc e lla n e o u s ite m s n o t co n n ec te d w ith any o f th e s e p h ases w i l l a ls o be m entioned i n (D ).

As th e a n a l y t i c a l methods

have p r e v io u s ly b een d e s c r ib e d , no m ention o f them w i l l be made h e r e .

The m a n ip u la tio n s a re l i s t e d i n approxim ate

c h ro n o lo g ic a l se q u en c e.

A - The Warm-up P e rio d 1.

A ir was in tro d u c e d in to th e e th y le n e oxide sto ra g e

b a th by r e g u l a t i o n o f th e v a lv e a t th e b a se o f th e ta n k u n t i l good a g i t a t i o n , w ith o u t v i o le n t b o i l i n g , was o b ta in e d The b a th h e a te r s w itc h was tu rn e d on and th e Micro max by­ p a ss s w itc h p u lle d o u t .

T em perature o f th e b a th was re g u ­

l a t e d by a d ju s tin g th e th e r m o s ta t t o d is r u p t c u r r e n t flow when th e o xide p r e s s u r e , as i n d ic a t e d by th e l in e gauge, ro s e to 25 p s i g .

The th e r m o s ta t would th e n h o ld th e p r e s ­

su re betw een 2 ^ .^ and 25*5 p s i g .

F o r th e gauge to fu n c tio n

th e c y lin d e r and l i n e s h u t - o f f v a lv e s m ust be open.

Ap­

p ro x im a te ly 30 to 4 5 m in u te s were u s u a l ly r e q u ir e d to re a c h th e c o n tr o l p o i n t . 2.

As soon a s a i r and power were p ro v id e d f o r th e

b a th , th e Dowtherm pump and h e a t e r sw itc h e s were tu rn e d on

&

and th e Dowtherm h e a t e r V a ria c s e t a t 110 v o l t s to d e li v e r maximum, power (2,000 w a tts )*

A lso , th e e x te r n a l h e a te r was

e n e rg iz e d by tu r n in g on th e C a p a c itro l and "R e a c to r Heat E x te r n a l 11 sw itch es*

The double p o le sw itc h i n t h i s c i r ­

c u i t was s e t to su p p ly power to th e t o t a l w inding and th e V a ria c advanced to 110 to 120 v o l t s . When th e r e a c t o r te m p e ra tu re ro se to about lt-°C below th e d e s ir e d l e v e l , as in d ic a te d on th e C a p a c itr o l, th e Dowtherm th e rm o s ta t knob was moved b ack u n t i l th e c u t- o u t p o in t was re a c h e d and the e x te r n a l w inding V ariac r e ta r d e d to 0 to 20 v o l t s , depending on the e x p ec te d e x o th e r m itic ity of r e a c t i o n .

The Dowtherm h e a te r V aria c co u ld th e n be r e ­

ta r d e d to a minimum o f Ç0 v o l t s i f d e s ir e d . At t h i s tim e th e two sw itc h e s c o n tr o l li n g th e so le n o id v a lv e su p p ly in g c o o lin g w a te r to th e Dowtherm s to ra g e drum c o u ld be tu rn e d on, and th e n e ed le v a lv e s e t t o d e liv e r th e maximum flow which th e v a lv e would d i s r u p t .

I t was

d e term in ed t h a t o n ly f o r very exotherm ic ru n s was th e use o f th e c o o lin g system n e c e s s a ry , a lth o u g h c y c lin g o f th e Dowtherm te m p e ra tu re was m inim ized a t any tim e by i t s u s e . I f , a t any tim e , power t o th e Dowtherm h e a t e r was d is r u p te d in d e p e n d e n tly o f th e th e r m o s ta tic c o n tr o l , th e s e t t i n g o f th e h e a t e r ’ s te m p e ra tu re l i m i t sw itc h was checked. I f tu r n in g th e a d ju s ti n g screw o n e -h a lf r e v o lu tio n i n a c o u n te r-c lo c k w is e d i r e c t i o n d id n o t r e s t o r e o p e ra tio n , th e 20 amp c i r c u i t b r e a k e r was checked.

Pump f a i l u r e o r too

55 low a s e t t i n g would r e s u l t i n a c tio n by th e l i m i t sw itch* 3*

S im u ltan eo u s w ith th e warm-up o f th e e th y le n e o xide

b a th and r e a c t o r , th e steam g e n e r a to r and p r e h e a te r were p la c e d on th e warm-up c y c le .

P r io r to t h i s o p e ra tio n ,

s e t t i n g s o f th e fo llo w in g v a lv e s w ere checked. G e n era to r s h u t - o f f v a lv e Mixing m a n ifo ld p etco ck P re h e a te r i n l e t v a lv e P r e h e a te r e d u c to r v a lv e R e a c to r m a n ifo ld p e t cock R e a c to r su p p ly lin e v a lv e R e a c to r b y -p a ss v alv e

open open open open open c lo s e d open

Having checked th e s e v a lv e s , th e steam g e n e r a to r power sw itc h was tu r n e d on and i t s V a ria c s e t to d e li v e r maximum c u r r e n t (10 amps a t ab o u t 90 v o l t s ) • A lso , s w itc h e s c o n t r o l l i n g th e e x te r n a l p r e h e a te r w inding and th e i n t e r n a l h e a t e r s were tu rn e d o n .

The i n ­

t e r n a l h e a t e r c o n tr o l le d m an u ally by a p lu g was n o t n e c e s­ s a r y f o r t h i s phase of o p e ra tio n b u t th e V a ria c su p p ly in g power t o th e second i n t e r n a l h e a t e r was s e t a t 110 v o l t s . When th e w in d in g and tu b e of th e steam g e n e r a to r , as viewed th ro u g h a c ra c k i n th e i n s u l a t i o n , re a c h e d a d u ll re d h e a t, th e V a ria c was r e t a r d e d to 65 to 75 v o l ts and w a te r, a t th e d e s ir e d r a t e f o r th e r u n , was in tro d u c e d in to th e sy ste m .

I n i t i a l l y some hammering o c c u rre d b u t a f t e r a

s h o r t p e rio d steam was d is c h a rg e d u n ifo rm ly th ro u g h th e m ixing m an ifo ld stopcock*

The steam te m p e ra tu re therm o­

couple u s u a lly gave a re a d in g betw een 2 . 5 and 5 «5 on th e m illiv o ltm e te r *

56

Upon a t t a i n i n g u n ifo rm steam flo w , th e two m a n ifo ld sto p c o c k s w ere c lo s e d and steam in tro d u c e d in to th e p re ­ h e a te r.

By c lo s in g th e r e a c t o r b y -p a ss v a lv e , th e steam

f o r c e d a l l c o n d e n sa te , w hich may have c o l l e c t e d in th e p re ­ h e a t e r , th ro u g h th e e d u c to r tu b e .

W ith the co m p letio n o f

c o n d en sa te d is c h a r g e , th e e d u c to r v a lv e was c lo s e d and th e r e a c t o r m a n ifo ld p e tc o c k and b y -p a s s v a lv e opened* 1}.*

On th o s e ru n s where e th y le n e oxide was c o ll e c t e d

from th e c o ld c o n d e n se r, th e fr e o n com pressor was s t a r t e d a t th e b e g in n in g of warm-up o p e r a tio n s .

The v a lv e c o n n e c t­

in g th e co n d en se r and c o o lin g w a te r l in e t o th e w a ter main was opened, and w a ter was a d m itte d to th e f re o n condenser th ro u g h th e c o n tr o l n e e d le v a lv e . T em perature i n th e co n d en se r was c o n tr o lle d by a d ju s t ­ ment o f th e e x p a n sio n v a lv e .

C o u n te r-c lo c k w ise r o t a t i o n o f

th e stem c lo s e d th e v a lv e and lo w ered th e te m p e ra tu re which was m a in ta in e d a t -2 5 °C . I n t e r m i t t e n t o p e ra tio n of th e com pressor was u s u a lly n e c e s s a ry and th e power was s h u t o f f when f r o s t began to c o l l e c t on th e s u c tio n s id e v a lv e . I t sh o u ld be n o te d t h a t o p e ra tio n s 1, 2 , 3 , and i|_ were i n i t i a t e d s im u lta n e o u s ly to make th e warm-up p e rio d as s h o rt as p o s s i b l e . 5*

When th e r e a c t o r te m p e ra tu re , in d ic a te d on the

C a p a c itr o l, ro s e to w i t h in 10°C to 1$°C o f th e d e s ire d ru n v a lu e , th e Micromax was p la c e d i n o p e ra tio n by tu rn in g on

57 s w itc h e s on th e p a n e l and on th e in s tru m e n t.

At t h i s tim e

th e in s tru m e n t was s ta n d a rd iz e d by t w i s t in g and h o ld in g f o r 15 to 20 seconds th e s ta n d a rd c e l l s w itc h .

T his p ro c e ss

sh o u ld be r e p e a te d ev ery few h o u rs d u rin g o p e r a tio n . Once t h e Micromax was o p e ra tin g , th e c o n tr o l fu n c tio n of c o u p le number 1 i n th e e th y le n e oxide b a th c o u ld be u t i l i z e d by p u sh in g i n th e Micromax b y -p a ss s w itc h . 6.

When th e te m p e ra tu re from co u p le number 5 in d ic a te d

t h a t th e steam from th e p r e h e a te r was above 206°F (couple number 5 r e a d 6°F lo w ), th e c u r r e n t to th e p r e h e a te r was a d ju s te d to g iv e th e d e s ir e d r e a c t a n t s te m p e ra tu re . H eat frcm one o r b o th o f th e i n t e r n a l h e a t e r s was s u f f i c i e n t t o m a in ta in th e d e s ir e d te m p e ra tu re f o r a l l b u t th e h ig h space v e lo c it y r u n s .

Here th e e x te r n a l w inding

was a ls o employed to red u ce c o n d e n sa tio n on th e w a l ls . Loss of power to th e i n t e r n a l h e a te r s d u rin g o p e ra tio n co u ld be c au sed from fu se f a i l u r e or to o low a s e t t i n g o f th e te m p e ra tu re l i m i t s w itc h .

The l a t t e r co u ld be c o r r e c te d

by c o u n te r-c lo c k w is e r o t a t i o n o f th e s e t screw . 7.

D uring th e f i n a l a d ju stm e n t o f p r e h e a te r tem pera­

t u r e ( u s u a lly a llo w e d to vary c o n s id e r a b ly ) , w ater was in tro d u c e d i n to th e p rim a ry and secondary co n d en sers th ro u g h t h e i r r e s p e c t iv e n e e d le v a lv e s .

The r a t e to th e secondary

co n d enser was m a in ta in e d a t th e maximum allo w ed by th e ru b ­ b e r c o n n e c tio n s . In ru n s where e th y le n e ox id e was n o t c o ll e c t e d , th e

58

p ro d u c t te m p e ra tu re was k e p t a t a minimum by m a in ta in in g th e maximum w ater flow th ro u g h th e prim ary c o n d en se r. I f oxide was to be c o ll e c t e d , th e r e a c t o r m an ifo ld p e tc o c k was c lo s e d , th u s d iv e r tin g a l l steam th ro u g h th e b y - p a s s , and th e p rim a ry condenser w a ter r a t e was c o n tr o lle d so t h a t th e c o n d en sate te m p e ra tu re f e l l betw een 9 0 °F and 100°F. 8.

With th e a tta in m e n t o f th e d e s ir e d p r e h e a te r tem­

p e r a tu r e , th e f i n a l m a n ip u la tio n p r e p a ra to r y to ru n o p e ra ­ t i o n in v o lv e d s e t t i n g th e e th y le n e oxide flow r a t e . The r e a c t o r m an ifo ld sto p co ck was c lo s e d , th e re b y d i ­ v e r t i n g a l l flow th ro u g h th e b y - p a s s .

The oxide c y lin d e r

and l i n e v a lv e s were checked to see t h a t th e y were open and th e second and t h i r d c o n tr o l v a lv e s were c ra c k e d .

The p r i ­

mary c o n tr o l v a lv e was th e n opened u n t i l th e d e s ir e d flo w , as in d ic a t e d on th e F lo w ra to r, was a t t a i n e d . The v a lv e h e a t e r s w itc h was tu rn e d on and th e V ariac was advanced.

I n i t i a l V ariac s e t t i n g s were F lo w ra to r Heading G lass F lo a t - cm.

V oltage

E q u iv a le n t o r h ig h e r flo w s w ith th e s t e e l f l o a t r e q u ir e d as much a s 20 v o l t s .

These v a lu e s r e p r e s e n t i n i t i a l s e t t i n g s

which l a t e r r e q u i r e d r e d u c tio n .

The f i n a l s e t t i n g s r e q u ir e d

c o n s id e ra b le e x p e rie n c e a t judging th e v a lv e te m p e ra tu re .

59

The o n ly t r u e m easure o f th e h e a t re q u ire m e n t was th e b e­ h a v io r o f th e f l o a t .

A f a l l i n g f l o a t o v er a p e rio d o f one

o r two m in u te s i n d ic a t e d i n s u f f i c i e n t h e a t, w hile a r i s i n g f l o a t i n d ic a t e d to o much power and e v e n tu a lly le d to a c o n d itio n where c o n tr o l was im p o ssib le and th e f l o a t behaved e r r a t i c a l l y , r i s i n g and f a l l i n g th e e n t i r e le n g th o f th e tu b e . 9*

C om pletion o f the warm-up p e rio d r e q u ir e d t h a t th e

e th y le n e ox id e b a th , the p r e h e a te r , and th e p rim a ry and c o ld co n d en se rs be a t t h e i r r e s p e c tiv e d e s ire d te m p e ra tu re l e v e l s , and t h a t th e e th y le n e oxide and w a ter were a t th e r e q u ir e d flow r a t e s .

B - Run O p e ratio n 10.

The r e a c t o r was p u t o n -strea m by s im u lta n e o u s ly

c lo s in g th e b y -p a s s valv e and opening th e r e a c t o r v a lv e . The Micromax c h a r t was a p p r o p r ia te ly marked at t h i s tim e . 11.

The r e a c t o r p re s s u r e was s e t a t th e d e s ir e d

l e v e l by a d ju stm e n t o f th e r e a c t o r p re s s u re c o n tr o l v a lv e . 12.

The r e a c t o r te m p e ra tu re was s e t e x a c tly by means

o f th e Dowtherm th e r m o s ta t.

Lag in th e Dowtherm system

made in c re m e n ta l changes in s e t t i n g d e s i r a b l e . 13.

D uring th e r u n , changes were made from tim e to

tim e to m a in ta in th e p ro p e r flow r a t e s , r e a c t o r and p r e ­ h e a t e r te m p e r a tu re s , and p r e s s u r e .

60

llj.*

Samples w ere c o l l e c t e d from th e p ro d u c t s e p a r a to r

i n to w eighed r e c e i v e r s d u rin g a tim ed i n t e r v a l m easured w ith a s to p w atch .

C o lle c tio n p e rio d s were n o te d on th e

Micromax c h a r t .

C - Shut-down 15.

Shut-down o f th e equipm ent in v o lv e d a - C lo sin g th e e th y le n e o x id e c o n tr o l v a lv e s , b - C lo sin g th e w a te r c o n tr o l v a lv e , c - T u rn in g o f f a l l sw itc h e s and r e t a r d i n g a l l V a ria c s to 0 , d - Opening a l l d r a in c o ck s, and e -

C lo sin g a l l w a te r v a lv e s to co n d en sers and c o o le r s and from th e w a te r m ain.

A ir to th e o x id e c y lin d e r b a th was m a in ta in e d u n t i l the w a ter h ad c o o le d enough so t h a t s t r a t i f i c a t i o n would n o t p r e s e n t a h a z a rd . The o x id e c y lin d e r and l i n e v a lv e s were u s u a lly kept open.

D - M isc e lla n e o u s 1. C i r c u l â t ! on.

M a in ta in in g R e a c to r T em perature w ith o u t Dowtherm Where i t was d e s i r a b l e to keep th e c a t a l y s t

h o t i n n o n -o p e r a tin g p e r io d s , th e double throw sw itc h in th e e x te r n a l r e a c t o r h e a t e r c i r c u i t was throw n to th e

61

" r e a c t o r ” p o s i t i o n , th e c o n tr o l in d ic a t o r of th e C a p a c itr o l s e t t o th e d e s i r e d te m p e ra tu re , and th e V ariac s e t f o r 90 v o lts * 2»

Changing E th y len e Oxide C y lin d e r s *

When i t became

im p o s sib le to m a in ta in oxide flo w , i t was assumed t h a t th e c y lin d e r was em pty.

The fo llo w in g p rocedure was used i n

changing c y lin d e rs *

The c y lin d e r and l i n e v a lv e s were

c lo s e d and th e c o n n e c tin g u n io n c ra c k e d u n t i l th e p re s s u re was re d u c e d .

Care sh o u ld be u sed to a v o id open flam es d u r­

in g t h i s o p e r a t io n .

The c y lin d e r was th e n removed from th e

b a th and th e a d a p te r and c o n n e c tin g p ip e t r a n s f e r r e d to a new c y li n d e r .

To p re v e n t e x c e s s iv e p r e s s u r e s due to v o lu ­

m e tric e x p a n sio n of th e l i q u i d o x id e when r a i s e d to b a th te m p e ra tu re , some o x id e was alw ays b le d from th e new su p p ly . The f u l l c y li n d e r was p la c e d i n th e b a th , c o n n e c tio n s made, and th e v a lv e s opened. 3*

Changing E th y le n e Oxide F lo w ra to r F l o a t s *

Extreme

care was u se d i n t h i s o p e r a tio n to p re v e n t lo s s o f th e sm all flo a ts .

The l i n e and c o n tr o l v a lv e s were t i g h t l y shut down,

th u s i s o l a t i n g th e F lo w ra to r*

The u p p e r and low er p lu g s of

th e in s tru m e n t w ere th e n c ra c k e d (n o t removed) u n t i l th e p re s s u r e f e l l to 0 and a l l th e l i q u i d o x id e had v a p o riz e d . The low er p lu g was rem oved and th e f l o a t and f l o a t s t o p allo w ed to f a l l i n t o a l a r g e b e a k e r.

The low er f l o a t s t o p

and p lu g w ere r e p la c e d and th e u p p e r p lu g and s to p removed by means o f a p o in te d wooden m atch .

A sm a ll p ap er c y lin d e r .

62

p la c e d down th ro u g h th e u p p er head and f l u s h on th e g la s s tu b e , a llo w e d th e re p la c e m e n t f l o a t to be in tro d u c e d .

Re­

p la c in g th e u pper s to p and cap com pleted th e o p e ra tio n . ij..

Dowtherm Pump M aintenance and L iq u id L e v e l.

Ex­

c e s s iv e Dowtherm le a k a g e from th e pump c o u ld u s u a lly be sto p p e d by ta k in g a f r a c t i o n a l tu r n on th e p acking g la n d . A b low er was i n s t a l l e d to e lim in a te Dowtherm vapors from th e l a b o r a to r y when th e y became o b n o x io u s.

S u f f i c ie n t Dow­

therm m ust be i n th e system a t a l l tim e s to co v er th e bulb of th e th e r m o s ta t in th e s to ra g e drum.

The le v e l was u s u a lly

m a in ta in e d a t 2 in c h e s from th e to p o f th e drum. 5*

F lu s h in g the Steam G e n e ra to r.

T h e o r e ti c a l ly , th e

use o f s o fte n e d w a te r p re v e n te d c a rb o n a te c r u s t i n th e gen­ e r a t o r , b u t o c c a s io n a l f lu s h in g s w ith w a te r were re q u ir e d to remove s o lu b le s a l t a c c u m u la tio n s.

A lso , f r e s h greensand

was u sed to r e p la c e th e d e a c tiv a te d m a t e r i a l , which was r e ­ g e n e ra te d w ith b r in e and washed w ith d i s t i l l e d w a te r. 6.

Dry C e ll R eplacem ent i n th e Micromax.

E rra tic

b e h a v io r o f th e r e c o r d e r ( c o n tin u a l d r i f t i n g ) u s u a lly i n ­ d ic a te d th e n e c e s s i t y f o r r e p la c in g the dry c e l l .

Care was

tak en to in s u r e good c o n ta c t upon i n s t a l l a t i o n of th e b a t t e r y . The in s tru m e n t was s ta n d a r d iz e d f r e q u e n t ly d u rin g th e f i r s t s e v e r a l h o u rs o f u se w ith a new c e l l .

63 RESULTS

In th e t e x t and t a b l e s in th e fo llo w in g s e c tio n s , r e f e r e n c e w i l l be made to c e r t a i n term s and t h e i r a b b re v ia ­ tio n s •

The m ost common o f th e s e a re d e fin e d .

Space V e lo c ity ( S f )•

A u n i t , e x p re ssed i n r e c i p r o c a l

h o u rs , an alo g o u s w ith c o n ta c t tim e , b u t independent of th e c a t a l y s t volume and c o n d itio n s of th e r e a c t a n t s ,

I t is

d e fin e d as th e r a t i o of the m ois o f r e a c t a n ts in tro d u c e d p e r h o u r t o th e m o la l volume o f th e p o r tio n o f th e r e a c t o r o ccu p ied by c a t a l y s t , S team -E thylene Oxide R a tio (SER),

The m easure of th e

mois o f steam in tro d u c e d p e r mol o f e th y le n e o x id e . On- Stream Time,

The le n g th in h o u rs o f c o n tin u o u s

o p e ra tio n on a g iv en c a t a l y s t , ta k e n from th e tim e r e a c t a n t s were in tro d u c e d i n a ru n o r s e r i e s o f ru n s .

I t is not

synonymous w ith a b s o lu te c a t a l y s t age o r t o t a l tim e th e c a t a l y s t had a c t u a l l y fu n c tio n e d . C o n v e rsio n ,

The f r a c t i o n o f e th y le n e oxide in tro d u c e d

c o n v e rte d to a s p e c i f i c compound.

Thus, c o n v e rsio n to

e th y le n e g ly c o l (mono) i s th e grams of oxide r e q u ir e d p e r gram of o x id e in tro d u c e d .

T o ta l c o n v e rsio n i s th e grams o f

oxide c o n v e rte d t o any compound p er gram o f oxide i n t r o ­ duced. Y ie ld .

The m easure o f th e w eight f r a c t i o n of a

p a r t i c u l a r compound i n th e t o t a l c o n v e rte d p ro d u c ts .

Thus,

64

th e y i e l d of di e th y le n e g ly c o l ( d i) i s th e grams o f d i p e r gram o f a l l g ly c o ls p ro d u ce d .

Study o f th e V arian ce o f C a ta ly t i c A c tiv ity P h y s ic a l C o n d itio n o f th e C a ta ly s t G allow ay (6 ) d e te rm in e d th e s u p e r i o r i t y o f th e b a s ic ty p e c a t a l y s t , hence t h a t ty p e was u se d th ro u g h o u t t h i s w ork.

The c o n c e n tr a tio n of a c t iv e a g e n t on th e c a r r i e r

was s e t a t 8 p e r c en t by w eight a f t e r th e s tu d ie s o f C a rtm e ll ( 2 ) . P r e p a r a tio n o f th e c a t a l y s t was s ta n d a rd iz e d to th e fo llo w in g p ro c e d u re .

The alu m in a o f d e s ir e d s iz e ran g e was

baked i n an oven a t 200°C f o r 2I4. h o u rs to e x p e ll th e absorbed w ater p re s e n t*

S ilv e r n i t r a t e , s u f f ic ie n t fo r 8 per cent

by w eig h t o f s i l v e r oxide on th e c a r r i e r , was d is s o lv e d i n enough d i s t i l l e d w a te r to j u s t c o v e r th e alum ina (u s u a lly 700 m l) w hich was allo w e d t o soak in t h i s s o l u t io n f o r 2l± to 36 h o u rs .

F o llo w in g e v a p o ra tio n to d ry n ess a t 110 to

120°C, th e sodium h y d ro x id e s o l u t io n ( u s u a lly 3*13 p e r cen t by w eig h t NaOH) was added and th e mass allow ed to sta n d f o r 36 h o u r s .

A f te r e v a p o r a tin g to d ry n ess a t 110 to 120°C,

th e c a t a l y s t was washed 1|. tim e s w ith b o ilin g d i s t i l l e d w a te r. Baking a t 200°C f o r 2^. h o u rs com pleted th e p re p a ra tio n * L ig h t, w hich prom oted th e d e co m p o sitio n to s i l v e r , was a v o ided i n h a n d lin g th e c a t a l y s t d u rin g i t s p r o c e s s in g .

The c a t a l y s t sh o u ld be a u n ifo rm g re y c o lo r i n d i c a t i n g even d i s t r i b u t i o n o f th e s i l v e r o x id e o v e r th e s u r f a c e and th ro u g h th e i n t e r i o r . u n ifo rm .

A c tu a lly , no c a t a l y s t was c o m p le te ly

P hotographs were p re p a re d (F ig u re s 7» 8 * and 9)

in d ic a t i n g th e q u a l i t y to be e x p e c te d from th e s iz e d i s t r i b u tio n s te s te d . F ig u re 7 shows sam ples of c a t a l y s t number 1 b e fo re and a fte r use.

T hese p a r t i c l e s , about 7 mesh, d em o n strate good

s u r f a c e c o v e rin g and i n t e r i o r p e n e t r a t i o n , and were t y p i c a l o f a l l p a r t i c l e s in th e s iz e ran g e 6 t o 8 m esh. a f t e r use th e c a t a l y s t was a u niform b la c k .

As shown,

T his was t y p i ­

c a l o f a l l p a r t i c l e s r e g a r d l e s s o f s i z e o r degree o f p é n é tr a tio n . F ig u re 8 shows a 5-m esh p a r t i c l e from f r e s h c a t a l y s t number 7 which h ad good s u r f a c e c o v e rin g b u t poor p e n e tr a ­ tio n .

F a i r r e s u l t s were o b ta in e d w ith alum ina p a r t i c l e s

betw een 4 and 6 m esh. P a r t i c l e s l a r g e r th a n if. mesh were f a u l t y i n b o th c o v e r­ in g and p e n e t r a t i o n .

F ig u re 9 i l l u s t r a t e s th e s e f a i l i n g s

f o r a p lu s 4-mesh p a r t i c l e from f r e s h c a t a l y s t number 3 . The alu m in a u se d f o r t h i s work, w ith th e e x c e p tio n o f number 3 , was A lcoa Grade F - l l , 4 to 8 mesh, as s u p p lie d by th e Aluminum Ore Company of S t . L o u is . A com parison of r e s u l t s from c a t a l y s t number 3 ( Grade F -1 0 , 1 /4 in c h to 8 mesh) and number 4 (Grade F - l l , 4 to 8 mesh) can be o b ta in e d by r e f e r e n c e to th e c u rv e s f o r Runs

F ig . 7*

P a r t i c l e s from C a ta ly s t Number 1 B efore and A f te r Use

F i g . 8 . S e c t i o n View o f a P a r t i c l e from C a t a l y s t Number 7 Showing Good S u r f a c e C o v erin g b u t P o or P e n e t r a t i o n

P ig . 9*

S e c tio n View o f a P a r t i c l e from C a ta ly s t Number 3 Showing Poor S u rfa ce C overing and P e n e tr a tio n

69

2 and 4- on F ig u re 10*

H igher c o n v e rsio n s to g ly c o l and d i ­

g ly c o l w ere o b ta in e d w ith th e f i n e r c a t a l y s t (number if) u n d e r i d e n t i c a l c o n d itio n s o f o p e ra tio n * E f f e c t o f O n-Stream Time on A c tiv ity B efo re p ro c e e d in g to e s t a b l i s h th e e f f e c t o f o p e ra tin g v a r i a b l e s on y i e l d o r c o n v e rsio n , a s e r i e s o f ru n s was made i n a n e f f o r t to d e te rm in e i f a p o in t o f c o n s ta n t c a t a l y t i c a c t i v i t y c o u ld be reached*

D ata f o r a s e r i e s o f such ru n s

i n which r ig o r o u s a n a l y t i c a l d i s t i l l a t i o n s were c a r r i e d o u t on th e p ro d u c ts can be found i n T able 1* Runs 0 and 1 w ere o f an e x p lo r a to r y n a tu r e , u n d e rta k e n to e s t a b l i s h th e o p e r a tin g p ro ce d u re and to t e s t th e new ly c o n s tr u c te d eq u ip m en t• Run 2 , on f r e s h c a t a l y s t number 3 , was th e f i r s t o f a s e r i e s o f r u n s a t c o n s ta n t c o n d itio n s , nam ely space v e l o c i t y l600 l / h r s * , SER 10 m o ls/m o l, p r e s s u r e 1 atm o sp h ere, and te m p e ra tu re a p p ro x im a te ly l60°C*

A g ra d u a l in c r e a s e in b o th

y i e l d and c o n v e rsio n was n o te d f o r 9 *75> h o u rs o f o p e r a tio n . Run 3 se rv e d t o e s t a b l i s h th e f a c t t h a t c o n v e rsio n f o r th e u n c a ta ly z e d r e a c t i o n was v e ry low.

The r e p o r te d 1 .0

p e r c e n t c o n v e rsio n was p ro b ab ly due to c a t a l y s t d u s t t h a t was n o t removed from th e r e a c t o r . Run 4 , a s Run 2 , showed t h a t w ith in c r e a s in g o n -stre a m tim e , th e c o n v e rs io n and y i e l d of mono ro s e w h ile d i dropped. F ig u re 10 shows p l o t s o f th e s e ru n s i l l u s t r a t i n g the a c t i v i t y v a ria tio n .

CO •

O

xt

OX

xO

• Sf SER oc l/H P . Mois •

80

i2ij.-5

1600

10

0 .0

8

81

159- '61 l600

10

0 .0

8

1 .0 0

3 0 .4

82

l6 0

l6 0 0

10

5 *o

8

2 .2 5

3 0 .2

83

l6 0

l600

10

10.0

8

3.50

26.7

%

l6 0

l600

10

1 5 .0

8

5 .0 0

33.8

85

l6 0

1600

10

20.0

8

6.00

2 0 .4

86

130

l600

10

0 .0

8

7.25

6 .1

87

160

l600

10

0 .0

8

8.50

1 5 .1

88

190

l600

10

0 .0

8

9.75

18.3

89

220

l600

10

0 .0

8

11.00

2 1 .0

I n i t i a t i o n Run

88

S f , and SER were h e ld c o n s ta n t a t l 60°C, l 600 l / h r s . , and

10 m ols/m ol r e s p e c t i v e l y .

A 1 h our p e rio d was a l l o t t e d

betw een ru n s f o r th e a tta in m e n t o f e q u ilib r iu m .

I n Run 81 ,

te m p e ra tu re d i s t r i b u t i o n in th e r e a c t o r was bad (a l5°C d i f ­ f e r e n c e betw een to p and b o tto m ), and th e p ro d u c t was y ello w i n c o lo r and sm e lle d s tr o n g ly o f a ld e h y d e s.

The p ro d u c t

from Run 8Ij. (15 p s ig * ) was y e llo w , w h ile i n Run 85 (20 p s i g .) an o range p r e c i p i t a t e and an o i l y to p l a y e r were p r e s e n t i n th e clo u d y y ello w p r o d u c t•

The e r r a t i c v a lu e s of c o n v e rsio n

o b ta in e d f o r th e s e ru n s le a v e s d o u b tfu l th e e f f e c t o f p r e s ­ su re .

I t can be c o n c lu d e d , how ever, t h a t h ig h p r e s s u r e s

(15 and 20 p s i g . ) seemed t o re d u c e c o n v ersio n and r e s u l t e d i n t h e fo rm a tio n of c o n s id e ra b le amounts of u n d e s ir a b le by­ p r o d u c ts . Runs 86 th ro u g h 89, th e d a ta f o r w hich a re summarized in T able 7 , were made t o d e te rm in e th e e f f e c t o f te m p e ra tu re on t o t a l c o n v e rs io n .

Runs were made a t 130 , l 60 , 190, and

220°C w h ile S f , SER, and p r e s s u r e were h e ld c o n s ta n t a t l 600 l / h r s , 10 m o ls/m o l, and 1 atm o sp h ere•

These ru n s were

a c o n tin u a tio n o f th e o p e ra tin g p e r io d f o r Runs 81- 85 * A 1 h o u r p e rio d was a l l o t t e d betw een ru n s f o r th e a tta in m e n t of e q u ilib r iu m a t the new c o n d itio n s .

As e x p e c te d , an i n ­

c re a s e i n t o t a l c o n v e rs io n r e s u l t e d frcm th e in c re a s e i n te m p e ra tu re , a s shown i n F ig u re 15 * I t i s to be co n clu d ed from th e d a ta r e l a t i n g th e e f ­ f e c t s o f o p e r a tin g v a r i a b l e s to c o n v e rsio n t h a t th e r e i s a

89

24

TOTAL

CONVERSION

20 16

12

SPAiCE VELOiCITY-1600 l/HF(S. _ STE AM- 0X1 DE RAT10- 10 MOLS PRE SSURE - 1 ATM. CATALYST NO. 8 RUNS 8 6 - 89

8

9

120

140

160 180 200 TEMPERATURE-° C EFFECT OF TEMPERATURE ON TOTAL CONVERSION AT CONSTANT CONDITIONS FIGURE 15

2 2 0

90

m arked d e c re a s e in c a t a l y t i c a c t i v i t y w ith o n -stre a m tim e , p a r t i c u l a r l y u n d er th e r ig o r o u s c o n d itio n s f a v o rin g p o ly ­ g ly c o l fo rm a tio n (h ig h te m p e r a tu re s , low v a lu e s o f Sf and SEE)*

T h is was e s p e c i a l l y n o tic e a b le i n Runs 71-79 which

p ro d u ced a m a t e r i a l , presum edly p o ly g ly c o ls , w hich c o m p le te ly co v ered th e c a t a l y s t and whose b o i li n g p o in t was above r e ­ a c tio n te m p e ra tu re . I n g e n e r a l, i t was n o ted t h a t h ig h v a lu e s o f steam e th y le n e o x id e r a t i o and low v a lu e s o f space v e lo c ity were f a v o r a b le to t o t a l c o n v e rs io n .

F av o rab le y ie ld c o n d itio n s

f o r e th y le n e o x id e were r e p r e s e n te d by h ig h space v e l o c i t i e s and r a t i o s o f r e a c t a n t s . The e f f e c t of p r e s s u r e on t o t a l c o n v e rsio n was o f d o u b t­ f u l s i g n i f i c a n c e , a lth o u g h th e ten d e n cy a p p ea re d to be a r e ­ d u c tio n i n c o n v e rsio n w ith in c re a s in g p r e s s u r e .

The e f f e c t

o f a te m p e ra tu re in c r e a s e was to m arkedly in c r e a s e t o t a l c o n v e rs io n .

The d e a c tiv a tio n r a t e ap peared to be th e

g r e a t e s t a t e le v a te d te m p e ra tu re s* A com plete t a b u l a t i o n of ru n d a ta , in c lu d in g l a t e r a l r e a c t o r te m p e ra tu re g r a d i e n ts , can be found in Appendix A.

91

SUMMARY OP RESULTS AND CONCLUSIONS

Based upon th e r e s u l t s o f t h i s work and th e p re lim in a r y i n v e s t i g a t i o n s , a number o f c o n c lu sio n s have been drawn r e ­ g a rd in g th e v ap o r phase h y d r a tio n o f e th y le n e o x id e . le

S i l v e r o x id e on an alum ina c a r r i e r e f f e c t i v e l y

c a ta ly z e d th e h y d r a tio n r e a c t i o n .

2*

The p r i n c i p a l p ro d u c ts o b ta in e d w ith the s i l v e r

o x id e c a t a l y s t were e th y le n e g ly c o l, and l e s s e r amounts o f d i - and t r i e t h y l e n e g l y c o l s .

3.

W ith f r e s h c a t a l y s t , some c o n v e rsio n o f e th y le n e

oxide t o a ld e h y d e s , p o ly g ly c o ls , and o th e r p ro d u c ts alw ays o c c u rre d d u rin g th e f i r s t 1 to 2 h o u rs o f o p e r a tio n . I}..

At m ild c o n d itio n s o f o p e ra tio n (below l 60°C, space

v e l o c i t i e s o f l600 o r h ig h e r , and ste a m -e th y le n e oxide r a t i o s o f 10 o r m o re ), c o n v e rsio n to g ly c o l in c r e a s e w ith o n -stre a m tim e .

5 * R ig o ro u s o p e ra tin g c o n d itio n s r e s u l t e d in a d e c re a se in a c t i v i t y w ith o n -stre a m tim e . 6e

No d eg ree of c o n s ta n t c a t a l y t i c a c t i v i t y was

a c h ie v e d u n d er any c o n d itio n s i n th e le n g th o f o n -stre a m p e rio d s t e s t e d .

7.

D e a c tiv a tio n of th e c a t a l y s t i s b e lie v e d to be th e

r e s u l t o f accu m u lated p o ly g ly c o ls which co v ered th e a c t iv e c e n te r s o f th e s u r f a c e . 8.

A ttem pted r e g e n e r a tio n of a d e a c tiv a te d c a t a l y s t

92

w ith steam f a i l e d to g iv e in c re a s e d c o n v e rsio n in th e su b ­ se q u e n t runs*

9 * A ir r e g e n e r a tio n r e s u l t e d in u n c o n tr o lla b ly h ig h te m p e ra tu re s w hich were b e lie v e d to r e s u l t in some decom posi­ t i o n of th e s i l v e r o x id e .

10 .

Alumina p a r t i c l e s i n th e s iz e ra n g e 6 to 8 mesh gave

s u p e r io r c o a tin g s and p e n e tr a tio n s o f s i l v e r o x id e .

P a ir

r e s u l t s were o b ta in e d w ith Ij. to 6 mesh alu m in a, w h ile p a r t i c l e s f a i l i n g to p a ss ij. mesh proved u n s a t i s f a c t o r y a s c a rrie rs *

11 * W ith f r e s h c a t a l y s t , t o t a l c o n v e rsio n s of e th y le n e o x id e o f lj_0 to 50 p e r c e n t were o b ta in e d a t a space v e lo c it y o f 600 l / h r s , a ste a m -e th y le n e o x id e r a t i o o f 15 moIs /m o l, a tm o sp h e ric p r e s s u r e , and te m p e ra tu re s o f l6 o and 190°C* The c o n v e rs io n , how ever, f e l l r a p i d l y w ith o n -stre a m tim e , o and the c o rre sp o n d in g y i e l d o f e th y le n e g ly c o l a t 190 C was o n ly about 60 p e r c e n t ♦

12 * T o ta l c o n v e rs io n , in g e n e r a l, d e c re a se d w ith i n ­ c r e a s in g sp ace v e l o c i t y i n the ra n g e 600 t o 3600 l / h r s *

13 * The y i e l d of e th y le n e g ly c o l in c r e a s e d , i n g e n e r a l, w ith sp ace v e lo c ity * lij.*

T o ta l c o n v e rs io n , in g e n e r a l, in c re a s e d w ith in ­

c r e a s in g s te a m -e th y le n e oxide r a t i o s i n th e ran g e j? to 15> mois p e r mol* l£*

The y i e l d of e th y le n e g ly c o l in c re a s e d , in g e n e r a l,

w ith in c r e a s in g s te a m -e th y le n e o x id e r a t i o s *

Y ie ld s o f 90

93

p e r c e n t o r b e t t e r could be o b ta in e d f o r any te m p e ra tu re i f th e c a t a l y s t was somewhat d e a c tiv a te d and a s u f f i c i e n t l y h ig h r a t i o was em ployed (10 mois p e r mol or h ig h e r ) • l6 •

The e f f e c t o f in c r e a s e d r e a c tio n te m p e ra tu re was t o

in c r e a s e th e t o t a l c o n v e rsio n in th e range 130 to 220°C, b u t w ith a c o rre sp o n d in g d e c re a s e in e th y le n e g ly c o l y i e l d .

17 •

The e f f e c t o f in c r e a s e d r e a c t i o n p re s s u re ap peared

t o be f a v o ra b le t o b y -p ro d u c t f o m a t i o n w ith a p o s s ib le de­ c re a s e in t o t a l c o n v e rs io n .

D e a c tiv a tio n o f th e c a t a l y s t

was more r a p i d a t h ig h e r p re s s u re s (15> to 20 p s i . g a u g e ).

9k BIBLIO OSAPHY

1 * B i chow sk y , F* R* and R o s s in i, F, D*, The T herm ochem istry o f Chem ical S u b s ta n c e s , R e in h o ld P u b lis h in g C o ., H. Y ., 1930.

2.

C a rtm e ll, R. R . , The Vapor Phase H y d ra tio n o f E th y le n e O xide, A t h e s i s s u b m itte d t o Purdue U n iv e rs ity , June 1% D.

3*

C a rtm e ll, R. R ., G allow ay, J . R ., O lson, R. W., Sm ith, J . M., "Vapor Phase H y d ra tio n o f E th y len e O xide," I n d u s t r i a l and E n g in e e rin g C hem istry, V ol. lj-0 , p . 389 , March IÇl^ü.

ij.#

Cohn, L . R ., A b so rp tio n R a te s of E th y len e Oxide in Acqueos M edia, A t h e s i s su b m itte d to P u rd u eU n T v ers i t y , A ug., 19^ 9 #

5 * Dodge, B. F . , Chemical E n g in e e rin g Thermodynamics, McGrawH i l l Book Co. I n c . , N . Y . , 19^ 1 . 6.

G allow ay, J . R ., The Vapor Phase H y d ra tio n o f E th y len e O xide, A t h e s i s su b m itte d to Purdue U n iv e rs ity , Ju n e, iw rr

?•

G ly c o l, B u l le t in o f C arbide and Carbon Chem ical C o rp ., N. Y ., March 31 , 194? .

8#

" I n g r e d ie n ts and R eagents f o r th e M anufacture o f G ly c o l," O i l , P a i n t , and Drug R e p o rte r, 128 Aug. 28 , 1935 *

9 # L an g er, G. A ., A Study o f th e Vapor Phase H y d ra tio n o f

E th y le n e Oxide," A t h e s i s su b m itte d t o Purdue U n iv e rs ity , T u I y T T W ^ ------

10 .

L a u rie , G ly c e ro l and th e G ly c o ls, Chem ical C atalogue Co. I n c . , N. Y ., ig Z d .

11 .

Moss and Boomer, " P r o p e r tie s o f E th y len e O x id e," J o u rn a l o f th e A m erican Chem ical S o c ie ty , v . Ijlj.» PP* 1 ? 09- 28 , I9 2 F :

12 .

O lson, R. W., The Vapor Phase H y d ratio n o f E th y le n e O xide, A t h e s i s su b m itte d to Purdue U n iv e r s ity , F e b ., 194-8*

13 .

S c o f i e l d , G. V ., "D e te ra iin a tio n of E thylene G lycol B ichrom ate O x id a tio n P ro c e d u re ," P r iv a te communica­ t i o n from th e C arbide and Carbon Chem icals C o rp ., D e c ., 1938 *

95

li(.*

T r ic e , V. G. J r $ , The Vapor Phase H y d ra tio n o f E th y le n e O xide, A t h e s i s su b m itte d t o Purcîue U n iv e r­ s i t y , Ju n e , 19W •

15 » U. S# P a te n t 1 , 998 , 878 , "P ro c e ss f o r th e P ro d u c tio n o f E th y le n e O x id e," T. E . L e f o r t to S o c ié té Anonyme, S o c ié té F ra n ç a is e de C a ta ty s e , 1929.

l6 e

Ue Se P a te n t 2 , 255, 4-11, "M anufacture of G ly c o ls ," G. Ce Cohen, E» M. and G* M. Be amer to S ta n d a rd A lco h o l C o., 1937 .

17 .

Warshowsky, B. and E lv in g , P. J . , "S im u ltan eo u s D e te r­ m in a tio n o f E th y le n e and 1 , 2 - P ropylene G ly c o ls ," I n d u s t r i a l and E n g in e e rin g C h em istry , v . 18 , p .

z s y rA p rii if : i# > . —

----------

l8*

W erner, R. R ., Therm ochem ical C a lc u la tio n s , McGraw-Hill Book Co. I n c . , N. Y ., 194^1 *

19 .

W hitmore, F . C. O rganic C hem istry, D. Van N o stran d C o ., N. Y ., 1937 .

96

APPENDIX A

COMPLETE RUN DATA

TABLE

8

COMPUTE RUN DATA

Space Run V elocity l/H re . No.

•Stm-EtQ Mole/mol P eig.

On-Stream Time Hours 0 .0 0 .0 0 .0 4 .5 ' 8.75

1 1 3 3 3

0 .0 6.0 11.5 0 .0 . 2.75 0.0 0.0 1.5 1.75 4.0 6.75 8.25 1.5 4.25 1.5 4.25 7 .0 1.5 4.25 7.0 1.5 4.25 7 .0 1.5 4.25 7 .0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 & 6 6 6 6 6 6 6

163. 163. 163. 163. 163. 163. 163. 163. 163. 162. 163. 132. 162.5 160.5 163. 161. 163. 163. 163.5 163. 163. 163. 163.5 163.5 160.5 163. 162.5 163. 164.5 163. 162.5 163. 162. 163. 135. 135. 135.5 135.5 135.

157.8 157.8 156. 156.5 157. 156.5 157. 157.5 157.7 157. 158. 129. 155.5 154.5 155. 155.5 160. 156. 157. 157. 157. 157. 155. 155. 155. 154.5 155. 159. 159.5 157. 157. 157. 155.5 156. 131.5 131. 132. 132,5 131.5

B !:| 131.1 131. f 330., 130. 130. 131. 132.

H I:' 134.5 135. 134. 135. 134. 135. 135.

111:5 135. 135. 135. 135. 134.5 135. 135.5

131. 130.5 131. 131. 130.5 130.5

83: 130. 130, 130. 125. 190. 190. 188. 190. 190. 190. 190. :

1% : 135. 134.5 135.

m ;: 135. 134. 135.

w 130.5 129.5 130.5

1.25 3.0 4.75 6.5 8.25 10.0 11.75

* 6 6 6 7 7 7 7 7 7 7 7

193. 190. 185. 189. 190.5 190. 192.5

Ï90.5 199. 193,5 193.5 194.5 194.5 193.

181. 185. 186. 188.

17.0 18.75 20.5 22.25 24.0 25.75 27.5 29.25 30.0 31.75

? 7 7 7 7 7 7 7 7 7 7

1 8 :' 190. 190. 190. 190. 190. 190. 190. 190. 190. 190.

193:5 190. 190.5 188.

W 193.5 193.5 193. 193. I fl. 193.5 193.5 193.5 193.5 193.5

;

18:

#

? § 8

18: 1 # := L 160.

8 8 8 8 8

18: 160. 130. 160. 190. 220.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 14.7 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. , 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3 .-4 . 3 . —4 . 3.r*4. 4. 0. 0. oi Oi 0. 0. 0. 0.

48 49 50 51 52 53 54

% 600 600 1600 1600 2600 600 600

£8: 15. 5. 5. 10. 15. 10. 5.

8: 0. 0. 0. 0. 0. 0. 0.

B # 13.75 15.5 17.25 19.0 20.75 22.5 24.25

57 56 59 60 61 62 63 64 65 66 67

8 8 3600 3600 2600 1600 600 1600 2600 3600 1600 2600 600

iS : 5. 10. 5. 10. 15. 15. 15. 15. 10. 10. 10.

t 3. 3.

- M r 29.5 31.25 33.25

888 3600 3600 2600

1l : 5. 10. 15. 10. 5. 5. 10. 5. 10. 5.

8: 0. 0. 0. 0. 0. 2. 2. 2. 2. 2.

3I 00

11 :

8:

B 82

3$» # 8 1600

18: 10.

8: 5.

1.0 2.25

85 86 87 88 89

# 8 1600 1600 1600 1600 1600

18: 10. 10. 10. 10. 10.

18: 20.

3:8° 6.0

ÊI 70 71 72 73 74 75 76 77 78 79 7Ü

n

1600 1600 2600 600 600

I:

3.0 5.25 1.5 4.25 7 .0 1.5 4.25 7 .0 1.5 3.0 4.75 0 .0 0.0 1.0 1.75 3.5 5.0 6.75 8.5 10.25 12.0 13.75 15.5 17.25 19.0 20.75 22.5 24.25 26.0 27.75 29.5 1.5 3.25 5.0 1.5 3.25 5.0 6,75 8 .5

8:

8.

0. 0. 0.

162. 161.5 161. 163. 164, 161. 162. 163. 162.5 162.5 162.5 163. 160.5 160. 161. 162. 161. 160. 159.5 161. 160. 160. 160.5 162, 161.5 160. 157.8 160. 160. 160. 160.5 160. 160. 160.5 159.5 160. 160. 160. 160. 160.5 I # 5 158. 160.5 131. 159.5 160. 159. 3.55.5 157. 157. 159.5 163. 160. 154.5 160. 163. 160.5 159. 159.5 157. 160. 160. 160. 163. 162. 163. 135. 134.5 134.5 134.5 134.5

9 .1 5. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 30. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 15. 15. 15. 15. 10. 10. 10. 15. 15. 5. 5. 10. 10. 5. 10. 5. 5. 5. 15. 10. 5. 15. 15. 15. 15. 10.

0. 0. 0. 0. 0. 0. 0. 0.

160. 160. 160. 160. 160. 160. 160. 160. 160. 160. 160. 160. 160. 160. 160. 160. 160. 160. 159. 159. 159. 159. 159. 159. 159. 159. 159. 159. 159. 159. 159. 159. 160. , 160. 160. 160. 160. 160. 160. 160. 160. 160. 160. 160. 126. 159. 156. 153. 154. 156. 156. 156. 158. 158. 157. 158. 158. 157. 158. 158. 158. 158. 158. 158. 160. 160. 159. 130.5 129.5 129. 130. 130.1

Jack et I n le t 155.5 155.5 154. 166. 159.5 157. 154. 158. 157.5 157. 157. 158. 157. 157. 157. 157. 157. 156.5 157. 157. 156.7 157. 156.7 157. 159. 157. 154.5 156.7 157. 156.7 157.8 157.

1650 1500 1600 1600 1600 1300 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 16QO 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 1600 600 1600 2600 3600 2600 1600 600 1600 3600 1600 600 600 2600 1600 3600 3600 2600 3600 600 600 600 600 1600 2600 3600 1600

0.

Temperaturea-6C. C a o a c itro l1 R eactor Ave. | Bottom | Top 164. 162. 166. 165.5 165.5 164.5 168.5 163. 163. 163, 163.5 163.5 163. 163. 163. 163. 163. 163. 162. 162. 163. 163, 163. 163. 163. 163. 160.5 160. 160. 160. 160. 160.

0 1 2A 2B 2C 3 44 4B 4C 54 5B 5C 6 74 7B 70 7D 7E 84 SB 94 9B 90 104 10B 100 114 11B 110 124 12£ 120 13 144 IAS 154 15B 150 164 16B 160 174 17B 170 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

u

C ataly st No.

7.25 3.5 9.75 11.0

|

Ill:

190. 190.5 190.5 190.5 191.5 :

1 8 :5 160. 163.

M:5 158.5 132. 163. 190.5 220.

IB: 129.

IBS.

190. 185.5 U s: 187-5 188. 186. 187. 185. }S7. 187.5 186. 387.5 187.5

Ml IB: 182, 168.

157. 157.

m

1 8 :5 149. 130.5 160. 185. 215.

160 135. 165.5 193. 223.

Plow Rates Qae./Mln. E t.Oxide I Steam 3.52 5.36 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3-13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13

13

3.13 3.13 3.13 3.13

33

3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13

3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 0.814 2.15 3.50 4.84 5.09 3.13 1.185 2.15 4.84 5.75 2.17 1.185 5.09 5.75 7.05 12.94 9.32

13.1 11.05 12.82 12.82 12.82 12.82 12.82 12.82 12.82 12.82 12.82 12.82 12.82 12.82 1 2 .82

12.82 12.82 12.82 12.82 12.82 12.82 12.82 12.82 12.82 12.82 12.82 12.82 12.82 12.82 12.82 12.82 12.82 1 2 .82

12.82 12.82 12.82

Si S 1

|S:# 12:94 3.13 3.13 3.13 3.13 3.13 3.13

19.9 ' 13.6 !

60

73.0 30.6 83.3 79.5 86.2 90,0 95.3

21.6 ; 18.5 j 15.9 i 20.5 12.7 10.0 ! 4 .7 ;

236.2

129.5 201.6 205.4 2 2 6.2

29.8 11.75 4.44 4.85 20.8 11.75 28.85 26.40 19.10 26.40

224.1 222.5 73.9 70.9 201.4

5.00 13.21 21.47 2 9 .8 2 0 .8

4.85 4.44

g21.47

II

9:8

70.3 80.1 94.4 86.3 9 7.4

216.2

12.82

12:82

%

60 60 60 60 60 60

1 3 .2 1

12.82

12.82

% 5.00 4.44

2.17-

853.4 898.7 806.5 921.6 917.7 897.8 780.1 924.1 914.2 933.2 868.7 898.7 897.0 230.8 197.7 230.5 242.8 243.4 238.5 238.4 239.5 237.3 238.1 232.7 238.9 238.0 241.2 244.0 233.5 237.2 239.1

12.82 4.85

12.82 12.82 12.82 12.82 12.82

%

3#

Run Time Minutes

Ou.

224.6 221.0 222.4 214.1 215.3 258.3 259.8 254.4 266.5 265.3 156.9 181.7 245.4 245. 246.6 259.3 104.5

1 2 .8 2 1 2 .82

5.0 0

1.185 2.17 0.814 2.15 3.50

Sample Weight

2 2 2.2

207.8 215.4 252.0

W 94.8 97.9

Ail %

% 4»44

221.0 51.0 42.5

26.40 28.85

265.7 224.5 197.6

5.00

71.4

m

2 1 0.1

60 60 60 60 60 60 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

IS ­ IS 15 15 10 10

7 10

15 15 15 7 15 15

I8 10 1% 15 15

S' 10

i

I 1 10 15

3 18:1 if 10

228.5

231.0

« ml 228.9

83

1

*

T o tal Conversion

17.2 17.1 16,7 21.1 26.8 13.45 13.60 7.35 7.36 12.38 7.75 7.13 7.19 11.30 6.77 5.95 6.39 8.02 5,02

2 1 2 .2

202.9 213.0 207.8

]

9 .3 i 2 .6 [

9 .8 6 .3 4*4 —

5.4 0 .9 0.8 1 .1 —

9.7 12.5 8.4 10.4 11.3 1.0 9.5 16.4 21.2 10.2 18.1 19.9 8 .1

%

I n it ia t io n

t6 .6i

6 .4 2.9 3.9 5.4 7 .2 8 .4 2.5 3 .4 1.9 3.4 6.1

I n it ia t io n 1

40.3 35.0 13.2 8.2 13.7 7 .0 20.6 19.6 7.5 6.3 7 .5 5.8 15.9 5.5

1:9 4 .1

1

m 167.7

5.6

I n it ia t io n 11.90 12.00 8.13 9.65 7.00 6.77 6.25 8.35 4.99 4.97 5.48 7.99 16.6 48.5 17.1 9.3 9 .2 9 .3 15.5 33.8 13.8 6.0 13.1 26.0 21.1 6 .8 10.1 4.5 4.3 4.5 3 .4 12.4 11.6 13.6 8.8 6.8 5.7 5.9 4.5

3.9 4.3

221.2 215.9

ÿ Conversions

30.4 30.2 %:% 20.4 6.1 15.1 18.3 21.0

35.0] 58.7 98.3 80.4 92.5 I n it ia t io n Run

6.3

•N ote1 A ll Spac e V elo c ities based on a c a ta ly s t vqlume oi 658 ml. a t 0°C. atmosphere

3.3 2.5 0 .6 1.3 0 .4 3 .3 4 .4 4 .7 3 .1 3.1 2 .6 0 .5

1 .7 1 .2 0 .6 0 .9 0 .2 0.3 0 .4 —

98

APPENDIX B

CALIBRATION OP ETHYLENE OXIDE FLOWRATOR

99

0.970 DATA FROM REFERENCE 10

DENSITY- GMS/CC

0.950

0.900

-6 0

”40 ”20 TEMPERATURE-°C

TEMPERATURE- DENSITY PLOT FOR ETHYLENE OXIDE AT ITS VAPOR PRESSURE FIGURE 16

20

100 APPENDIX B2 TABLE 9 ETHYLENE OXIDE FLOWRATOR CALIBRATION DATA M eter Number k 6- 3!|.98 w ith S t a i n l e s s S t e e l F lo a t L iq u id E th y le n e Oxide a t 2l u £ - 2£» 5> p sig » Flow R ate from M eter Av. Flow R eading T r i a l Number T o ta l of R ate - Grams cm. I z-----1 , 2, & 3 P er M inute 1 .0 2 .0

2.99

k .23

%.37 £ .2 9

3.0 1

1:11

5 .7 0 ii-.O

7.23 7 .1 5 7 . XI

k -5

5 .0 6 .0

7.5

8.0 9 .0

8 .3 9 8 .3 9 8 .3 6 1 0 .2 2 1 0 .2 2

12.50 12.50 12.50 i k . 65 l k .79 i ll . 80 16.80

16.77 16.59 10.0

£ .2 9

56.97

5.70

21 .%9

7 .1 6

23.58

7 .8 6

77.72

8 . 6%

5.82

7.82 7 .8 6

10.28 7.0

il

3%.31

19.10 19.08 18.89

Ul

8 .9 1

8 .6 0 8 .0 6 9.95 8 .5 9 10.70 10.60 10.60 10.50 10 .7 1 10.60 10.80 12. 5% 1 2 .9 5 12.75 12.70

1 6 .7 5 16.65 17.15 16.80

16.95 17.25 17.15

105.29

10.53

88.14

12.63

14 . 2%

1%.7%

13.%0

168.86

16.89

57.16

19.05

Voliame C o lle c te d - 5.0 m l. Thermocouple. Wire C o rre c tio n O.062 m l. C o rre c te d Volume of L iq u id ij.,938 ml*

101 TABLE 10 ETHYLENE OXIDE FLOWRATOR CALIBRATION DATA M eter Number K6-3I4.98 w ith C la s s F lo a t L iq u id E th y le n e Oxide a t 2[|.«£-25«5 psig< -Hüürrrz ——'-------------- *--Flow R ate from M etër R eading T r i a l Number T o ta l of cm. ~T 2----1, 2 , & 3

1*5 2.0

3*0

4.0

0 .6 k l 0 .6 5 2 0.677

0 .982

0.945 1 .6 7 1 .7 0 1.73 1.695 1 .6 7

6 .0 7 .0 8 .0

1 0 .0 1 1 .0

3-16 3.18

1.927

0.963

8.465

1.693

7.22

2 .4 1

3.82

9-53

3 .1 8

11.43

3 .8 1

10 . ol^

4 .6 8

3 .8 2 k -70

3.79

III fl 6.31

6.17

7*68 7 *6117 .7 2 7 .9 2 7*68

6 .2 4 6 .2 4 7.07 6 .9 9 7 .0 4 9 .1 1 9 .0 0

6 .2 1 6.23

7*79 7*72

12 .0

0.657

3 .1 9

5 .4o

9 .0

1.970

2.33 l:itl

5*0

Av. Flow R ate - Grams Per M inute

10.00

9*70

5.56 16.69 L im it of U se fu ln e ss

6.15

I

6.92

8.85 8 .9 0

9.93

10.20

10.03

8.49 8.57 8.57 8.54 C o n tin u e d

43.55

6.22

23 . 04- 42.03

7 .6 8 -7 .0 0

3 1 .1 1 -3 5 .8 6

7 .7 7 -8 .9 6

4 9 .8 6 -3 4 .1 7

9 .9 7 - 8 .5 4

102 TABLE 10 *

M eter R eading cm*

Plow R ate from T r i a l Number 1 É 3 10*78

10*70 10.90

10.71 10.71 10.71 10.85 10.79 12.00

11.90

11*82

C ontinued

T o ta l of 1, 2, & 3

Av* Plow R ate - Grams Per M inute

86.15

10*77

35.72

11*91

FLOW

RATE

GMS/MIN.

103

CALIBRATION CURVE for FLOWRATOR K6-3498 Stn. Steel Float Ethylene Oxide at 25psig. FIGURE 17

SCALE READING-CM.

lOlf.

o fl>

\

NIW/SW9 31VW MOId

105

APPENDIX C

CALIBRATION CURVES FOR THE WATER FLOWRATOR

WATER

FLOW RATE- GMS/MIN,

15

10

5

0

SCALE READING-CM. CALIBRATION CURVE FLOWRATOR N0.K5-322I TUBE N0.04-I5B FLOAT NO. FL-0410 FIGURE 19

107

28

20

WATER

FLOW

RATE-

GMS/MIN.

24

SCALE READING-CM. CALIBRATION CURVE FLOWRATOR NO.K5-3221 TUBE NO. 04-I5B FLOAT NO. FL-042 FIGURE 20

108

APPENDIX D

SAMPLE CALCULATIONS

log SAMPLE CALCULATIONS

1*

C a lc u la tio n o f Flow m eter S e t ti n g s Sample f o r Run No* 2$ D e s ire d C o n d itio n s : T em perature - l 60°C Sf» Space V e lo c ity - l 600 l / h r s * SER, S te a n n E th y le n e Oxide R a tio - 10 m ois p e r mol P re s s u re - 1 atm osphere C a lc u la tio n o f t o t a l fe e d r a t e F m ois f e e d / h r _______ S f - Vr m olal c a t a l y s t bed volume R e a c to r d ia m e te r = cm p R e a c to r a re a = (I4..I45)2 = 15*55 cm Bed h e ig h t = ij-2.35 cm. . Bed volume = 15*55 x lj.2.35 = 658 cm^ Vr ss m o la l bed volume a t 0°C and 1 atm . = 658/22,14.00 = O.029I4. mois

th e n

F = fe e d r a t e = S f x Vr = l 600 x 0.0294 = 47*0 m o ls /h r . C a lc u la tio n of E th y le n e Oxide M eter S e ttin g W ith th e d e s i r e d v a lu e of SER = 10 mol s/m ol Oxide flow r a t e =

*

47.0 Ü P l * ™

x 1 ^

60 m in.

= 0.0712 g f i a

= 3.13 S

X

From F ig u re 18 , A ppendix B3 » th e m eter s e t t i n g f o r th e g la s s f l o a t i s 5*05 cm. C a lc u la tio n o f W ater M eter S e ttin g W ith th e d e s ir e d v alu e o f SER = 10 mol s/m ol



.

■s s ; & . » . 7K

*

g 1- """ « S

110 Prom F ig u re 20 , A ppendix C, th e m eter s e t t i n g f o r th e heavy f l o a t i s 7*4^ cm*

2 * C a lc u la tio n of Y ie ld s and C onversions fro m D i s t i l l a t i o n A n a ly sis D ata Sample from Run 1|.0 A tm ospheric D i s t i l l a t i o n W eights o f d i s t i l l a t i o n column components W eight o f d ry f l a s k W eight o f dry column W eight o f assem b ly (column + f l a s k ) 1031.^0 gm.

19W>*65 S01*

Weight o f assem bly + ru n sample W eight o f ru n sample =

- 1031 *50 =

gnu

W eight o f assem bly + r e s id u e fo llo w in g w a te r and o xide rem oval (end p o in t - 110°C p o t tem p .) = 1146*45 gm* W eight w a ter and oxide removed 1945.65 - 1146.45 = 799.20 go. R esidue th e n t r a n s f e r r e d to vacuum a p p a ra tu s W eight f l a s k + r e s id u e - 61j.7 elO gm. W eight wet f l a s k a f t e r t r a n s f e r - 551*30 gm* W eight re s id u e t r a n s f e r r e d - 95*80 gm* W eight h o ld u p = wet f l a s k - d ry f l a s k = 551*30 - 543*95 = 8*35 gm Tot* R esidue Holdup c o r r e c t i o n = R esidue t r a n s f e r r e d = =

1 .088

Vacuum d i s t i l l a t i o n - l6 mm Hg. W eight 1s t f r a c t i o n + r e c e i v e r W eight r e c e i v e r W eight 1 s t f r a c t i o n

108*65 gm* 54*65 gm. 54*00 gm*

R e f r a c tiv e in d e x a t l6*8°C - 1.3777

I ll

From F le u re 21 , A ppendix E, w eig h t % e th y le n e g ly c o l (mono) = W eight mono = $ 4-*00 x O.i 0 = 2lj..30 gm. W eight w a te r = 51|..00 - 2ij.,30 = 29*70 gm. W eight 2nd f r a c t i o n + r e c e i v e r W eight r e c e i v e r W eight 2nd f r a c t i o n

83*35 0%. 5 p »15 gm* 27*20 gm* l.ij .326

R e f r a c tiv e in d e x a t l6 .8 °C

From F ig u re 22 , Appendix E, w eight % mono = 100 . 0% W eight mono = 27*20 gm; w eig h t Di = 0.0 gm. W eight 3r d f r a c t i o n + r e c e i v e r W eight r e c e i v e r

31*05 gm. 21.70 gm.

W eight 3r d f r a c t i o n

9*35 gm.

Column h o ldup

1.00 gm. 10.35 gm.

T o ta l w eig h t f r a c t i o n R e f r a c tiv e in d e x a t l6 .8 °C

l.i|i|ij.8

From F ig u re 23 , Appendix E, w eight % t r i = 5 *0% W eight t r i = 10.35 x .05 = 0.52 gm. W eight d i

= 10.35 - 0.52 = 9*^3 gm*

W eight g ly c o ls c o l l e c t e d = sum o f f r a c t i o n w eight Mono = 2J4..3O + 27.20 = 51*50 gm. Di

=

T ri

=

0.0

+

9 .3 8

= 9*38 gm.

0.52 gm.

A pplying th e holdup c o r r e c tio n T o ta l w eight mono = 51*5 x 1.088 = 58*00 gm. T o ta l w eight Di

=

9*38 x 1.088 = 10.70 gm.

T o ta l w eig h t T r i

=

0.52 x 1.088 = T o ta l

0*58 gm. 87.26 gm.

Y ie ld C a lc u la tio n The y i e l d (w eight p e r c e n t) o f each o f th e g ly c o ls th e n becomes Mono ($ 6 . 00/ 67 . 26 )

x 100 = 83.27

Di

(IO .7 O /6 7 .2 6 )

x 100 = 15.90

T ri

( 0 . 56/ 67 . 26 )

x 100 =

0.83 1 0 0 .0 0

C o n v e rsio n C a lc u la tio n C onversions f o r each g ly c o l a re c a l c u l a t e d from th e w e ig h t o f ox id e r e q u ir e d f o r t h e i r m an u factu re W eight o f o x id e r e q u ir e d f o r Mono = 58.00 x I|4 gm. oxide /6 2 gm. mono = 39*8 gm. Di

= 10.70 x 88/106

=

8 .8 6 gm

T ri

= 0.56 x 132/150

=

0.49 gm

From A ppendix A f o r Run l|C th e o x id e flow r a t e was 3*13 gm/min and t h e c o l l e c t i o n p e rio d 1 h r (60 m in) The e th y le n e oxide in tro d u c e d was th e n 3 .1 3 x 60 = 188 gm. The r e s p e c t iv e c o n v e rsio n s a re Mono ( 39 . 8/ 188 ) x 100 = 21 . 2% Di

( 8 . 86/ 188 ) x 100 =

It-*7%

T ri

(O.it-9/ 188 ) x 100 =

0 . 26%

T o ta l C onversion C a lc u la tio n from O x id a tio n A n a ly sis D ata Sample f o r Run 25 W eight f l a s k + sam ple No. 25 W eight f l a s k W eight sam ple

• 322.2 gm.

82.9 gm. 259*3 gm.

113

P ro ced u re :

1.

150 ml o f sam ple were t r e a t e d w ith 5 f t ^ o f a i r to remove e th y le n e o x id e .

2.

2^ ml o f th e o x id e f r e e sam ple was d i l u t e d to £00 ml w ith d i s t i l l e d w a te r .

3.

A 25*0 ml a liq u o t o f d i l u t e d sample was added to 2 5 .0 ml o f s ta n d a r d 0.8 5 p o ta ssiu m dich ro m ate s o l u t io n and 10 ml o f 98^ O .P. s u l f u r i c a c i d . The m ix tu re was cooked f o r 1 h our i n a b o i li n g w a te r b a th .

ij..

The m ix tu re from 3 was d i l u t e d t o 300 ml and 6.9000 grams o f f e r r o u s ammonium s u l f a t e added (c o rre sp o n d in g to O .O I76I m o is ).

5>.

The s o l u t i o n from ij. was t i t r a t e d w ith 0.1 H p o ta ssiu m perm anganate s o l u t i o n . 53*5 ml were r e q u ir e d to r e a c h th e end p o i n t .

The e q u iv a le n t grams o f g ly c o l i n th e 25«0 ml a liq u o t a re c a l c u l a t e d from gms. g ly c o l ss 62 x 10 ^ 1 (ml x N )dichrom ate + -1

x ^em nang a n ate

- 1000 x mois f e r r o u s I * gms. g ly c o l sr 62 x 10“^- £ (25 x .8 ) + (53*3 x .1 ) - 1 7 * 6 l| ss .Oij.8O gm. The grams o f g ly c o l e q u iv a le n t i n th e ru n sample i s gms. g ly c o l as ® e q u iv a le n t

a li q u o t x d i l u t i o n f a c t o r x

150 ml p o r tio n o f sam ple 25 ml oxide f r e e sam ple w eig h t o f ru n sample 150 ml p o r tio n of sam ple T h is fo rm u la assumes no volume change ( i n th e 150 ml sam ple) d u rin g d i s s o l u t i o n o f e th y le n e oxide w ith a i r .

Ilk-

For Run 2$ gms. g ly c o l e q u iv a le n t = *0i|.80 x

= 9 .95 gm.

x

The e th y le n e o x id e e q u iv a le n t i s th e n gms. ox id e = 9*95 gms. g ly c o l x ^ "^

'j -gYycol = 7#0^

From A ppendix A, th e o x id e flow r a t e was 3*13 gm s/min, and the c o l l e c t i o n p e rio d lf> m in. Then, gms. o x id e in tro d u c e d = 3 .1 3 x If? = lj.7.0 and x 100 = 15*5^

T o ta l c o n v e rsio n =

4.

Sample C a lc u la tio n f o r P r e p a r a tio n o f C a ta ly s t Ho. 3 s i l v e r o x ide on alum ina A r b i t r a r y w eight o f alum ina - 676 .2 gms. W eight of AggO r e q u ir e d f o r 8.0 w eig h t %, W, i s

w

= 0 .0 8 (6 7 6 .2 + W)

W = 5>8.8 gms. AggO W eight o f AgHOj r e q u ir e d = 58.8 gms. Ag20 x

g

= 8 6 a gm-

The t h e o r e t i c a l amount o f HaOH r e q u ir e d by th e e q u a tio n s AgHOj + HaOH

2AgOH -A -^ -A g 20

AgOH + HaHO^ +

H20

i s , a llo w in g 97$ p u r i t y , gms HaOH = 86.1 gms AgHOj x ^ ° 6figmHf ^ o 3 = 2 0 .9 gms

* TW

115 A llow ing 10$ e x c e s s , th e w eight o f UaOH i s 2 0 .9 + 0 .1 0 x 2 0 .9 = 2 3 .0 gms

116

APPENDIX E

REFRACTIVE INDEX - COMPOSITION PLOTS FOR THE GLYCOL SYSTEMS

117

1.45

REFRACTIVE

INDEX

1.43

1.41

1.39

1.37

135

1.33

DATA FROM _ REFERENCE 15 80 20 40 60 WEIGHT % ETHYLENE GLYCOL

100

REFRACTIVE INDEX-COMPOSITION PLOT FOR THE GLYCOL-WATER SYSTEM AT 15.6 8 3 0 ° C FIGURE 21

118

1.450

INDEX

1.446

1.442

REFRACTIVE

30° C 1.438

1.434

I.43Q!

DATA FROM REFERENCE 15 60 80 100 20 40 WEIGHT % DIETHYLENE GLYCOL REFRACTIVE INDEX-COMPOSlTION PLOT FOR THE DIETHYLENE GLYCOL-GLYCOL SYSTEM AT 15.6 8 30°C FIGURE 22

119

1.456

REFRACTIVE

INDEX

1.454

.452

1.450

1.448

1.446

1.444

DATA FROM REFERENCE 15 80 100 60 20 40 WEIGHT % TRIETHYLENE GLYCOL REFRACTIVE INDEX-COMPOSITION PLOT FOR THE Dl-TRIETHYLENE GLYCOL SYSTEM AT 15.6 & 3 0 * C FIGURE 23

APPENDIX F

PHYSICAL CONSTANTS FOR THE ETHYLENE GLYCOLS

120

bO ti •H 43 N fl O fl) «H O © O U PM k >» •P O •HO (O O O Al ° m -p •H cd

>

(A «H 1

rH • O H 1

O

r-

H AI

XA CA

AI

-d # 1

©

m

Tt O P, .H € fl © o

o # A-d*

h

g

H H

PL, PQ Ps g

© > *H 43 O cd fi 4-, © to

O

© • Fj g 0 S ro I » o ©O Fi O PM AI

o ■H 1 ^ 0 >H 4 3 0 •H «H O O > Al © c d \ A Sh o 03 Cb Al g iH 0 O © H O g

© 1h fi 0 O -P •H Cd 43 fi O © © A fi g fi © O Eh O

-P Æ hO *H © ^

cd H 0 S Ph O A

Al H

H O

O

O

52!

rH O $ O

XA XA H H

~d" co i- 1 rH

-d " XA Al rH

H

rH

rH

ro

Al H

ArH

Al vO

vO O rH

O XA rH

w o Al

m

o Al w o o w

©

H P O H

M O Al w o Al w O O AI îxî O Al m o o w

© s © rH rH l>» O rP O 43 h* ©H •H cb A

w O Al w O Al M o o Al M o Al w o o Al to O Al to O Q © to ti © H r^srH 43 O -P O © •H rH P o EH

43 0 od O