Clinical Atlas of 3D Printing Bone Reconstruction [1st ed.] 9811620423, 9789811620423, 9789811620430

Clearly describes all stages in the application of 3D printing technology in the surgical treatment of bone tumors Cover

263 22 68MB

English Pages 433 Year 2021

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

Clinical Atlas of 3D Printing Bone Reconstruction [1st ed.]
 9811620423, 9789811620423, 9789811620430

Table of contents :
Part 1 Pelvis 1 Patient Case 1 Unique iliac plate and combined with total hip arthroplasty 2 Patient Case 2 Unique acetabulum for easy assembly of total hip cup 3 Patient Case 3 Mesh-style body without ischium 4 Patient Case 4 Omitting pubis and ischium 5 Patient Case 5 Iliac wing 6 Patient Case 6 Iliac spacer with cavitary resection 7 Patient Case 7 Acetabular subchondral block 8 Patient Case 8 Iliac acetabular block and plate 9 Patient Case 9 Allograft bone shaping guide 10 Patient Case 10 Pubis preventing genital deformity and hernia 11 Patient Case 11 Pubis with acetabular preservation 12 Patient Case 12 Acetabular reinforcement cage 13 Patient Case 13 Revision – failed allograft bone reconstruction 14 Patient Case 14 Revision – failed total hip arthroplasty 15 Patient Case 15 Revision – complicated Saddle prosthesis Part 2 Femur 16 Patient Case 16 Allograft bone shaping guide in the cortical resection 17 Patient Case 17 Plate with reinforcement ridge 18 Patient Case 18 Posterior intercondylar Y plate 19 Patient Case 19 Segmental distal femur combined with IM nail 20 Patient Case 20 Cortical mesh covering IM nail and cement 21 Patient Case 21 Deformity correction – Open wedge spacer and supporting plate 22 Patient Case 22 Segmental femur and Implant-Bone connector Part 3 Tibia 23 Patient Case 23 Targeting guide for small lesion 24 Patient Case 24 Segmental tibia diaphysis 25 Patient Case 25 Proximal tibia for knee joint preserving 26 Patient Case 26 Tibia assembled with knee artificial joint surface Part 4 Calcaneus 27 Patient Case 27 Calcaneus considering possible factors Part 5 Scapula 28 Patient Case 28 Scapula combined with revere shoulder arthroplasty 29 Patient Case 29 Scapula combined with glenoid of conventional shoulder system Part 6 Humerus 30 Patient Case 30 Distal humerus for assembly with tumor prosthesis 31 Patient Case 31 Partial elbow joint Part 7 Radius and Ulna 32 Patient Case 32 Radius & Ulna and Implant-Bone connector Part 8 High grade Bone Sarcoma 33 Patient Case 33 Disseminated metastases after 3D printing pelvic reconstruction Part 9 Perioperative Times 34 Preparations and postoperative cares of 3D printing bone reconstruction

Citation preview

Clinical Atlas of 3D Printing Bone Reconstruction Hyun-Guy Kang

123

Clinical Atlas of 3D Printing Bone Reconstruction

Hyun-Guy Kang

Clinical Atlas of 3D Printing Bone Reconstruction

Hyun-Guy Kang Orthopaedic Oncology Clinic National Cancer Center Goyang Republic of Korea

ISBN 978-981-16-2042-3    ISBN 978-981-16-2043-0 (eBook) https://doi.org/10.1007/978-981-16-2043-0 © Springer Nature Singapore Pte Ltd. 2021 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

The medical use of advanced 3D printing technology is being tried in various fields. Printing the desired model using the desired material in a short period of time is very attractive. The 3D printing technology that enables patient-­ specific bone reconstruction is now becoming the key in musculoskeletal tumor surgery. Current bone reconstruction surgery involves a ready-made artificial joint forcibly inserted into the body. On the contrary, the use of 3D printing technology enables customized artificial joint to be perfectly fitted in the patient’s body. Using the 3D printing technology requires a lot of time and effort before the surgery, and collaboration with multiple engineering teams is required. One must design optimal reconstruction that allows strength and function, beyond designing structural similarity. While it is complex, I have found out that 3D printing design has infinite possibilities, like the art of painting. This book is composed of photos with minimum descriptions so that the readers can develop their imaginative view. Express your freedom in the limitless 3D printing design. I hope this book will give you courage in your new challenges.

Hyun-Guy Kang, MD, PhD, National Cancer Center

Goyang-si, Republic of Korea

Hyun-Guy Kang, MD, PhD

v

Acknowledgment

My teacher and mentor who guided me to walk on this path Han-Soo Kim, MD, PhD Professor, Seoul National University College of Medicine & Hospital My beloved Orthopaedic colleagues Jong-Woong Park, MD and June-Hyuk Kim, MD Staff Surgeon, Orthopedic Oncology Clinic, National Cancer Center

Dr. HG Kang, HS Kim, JW Park

Orthopaedic Department, National Cancer Center Sung-Keun Kim, Ju-Yeon Han: Registered Nurse Sung-Eun Oh, Tae-Il Um and Se-Bin Kim: Researcher MEDYSSEY Company Hyo-Bok Jeong and Hyun-Woo Jung: 3D printing engineer Springer Nature Korea Limited Jenny Chun: Editor of medicine and life sciences books Government, Republic of Korea The Ministry of Health and Welfare The Ministry of Trade, Industry and Energy Lastly, I would like to express my deepest love and gratitude to dentist Eun-Ha Kim for giving me a lot of ideas and courage in every moment.

vii

Contents

Part I Pelvis 1 Patient Case 1: Unique Iliac Plate, Combined with Total Hip Arthroplasty��������������������������������������������������������������������   3 1.1 Patient Case 1����������������������������������������������������������������������������   3 1.2 Preoperative Images������������������������������������������������������������������   3 1.3 Planning of Surgery������������������������������������������������������������������   6 1.4 Design and Fabrication ������������������������������������������������������������   7 1.5 Fixation with Iliac Bone������������������������������������������������������������   8 1.6 Operation����������������������������������������������������������������������������������  12 1.7 Postoperative Images����������������������������������������������������������������  15 2 Patient Case 2: Unique Acetabulum for Easy Assembly of Total Hip Cup������������������������������������������������������������������������������  17 2.1 Patient Case 2����������������������������������������������������������������������������   17 2.2 Preoperative Images������������������������������������������������������������������  17 2.3 Planning of Surgery������������������������������������������������������������������  21 2.4 Design and Fabrication ������������������������������������������������������������  21 2.5 Operation����������������������������������������������������������������������������������  28 2.6 Postoperative Images����������������������������������������������������������������  30 3 Patient Case 3: Mesh-Style Body Without Ischium����������������������  31 3.1 Patient Case 3����������������������������������������������������������������������������   31 3.2 Preoperative Images������������������������������������������������������������������  31 3.3 Planning of Surgery������������������������������������������������������������������  35 3.4 Design and Fabrication ������������������������������������������������������������  36 3.5 Operation����������������������������������������������������������������������������������  39 3.6 Postoperative Images����������������������������������������������������������������  41 4 Patient Case 4: Omitting Pubis and Ischium��������������������������������  43 4.1 Patient Case 4����������������������������������������������������������������������������   43 4.2 Preoperative Images������������������������������������������������������������������  44 4.3 Planning of Surgery������������������������������������������������������������������  48 4.4 Design and Fabrication ������������������������������������������������������������  49 4.5 Operation����������������������������������������������������������������������������������  54 4.6 Postoperative Images����������������������������������������������������������������  56 5 Patient Case 5: Iliac Wing ��������������������������������������������������������������  59 5.1 Patient Case 5����������������������������������������������������������������������������   59 ix

Contents

x

5.2 Preoperative Images������������������������������������������������������������������  59 5.3 Planning of Surgery������������������������������������������������������������������  63 5.4 Design and Fabrication ������������������������������������������������������������  63 5.5 Operation����������������������������������������������������������������������������������  65 5.6 Postoperative Images����������������������������������������������������������������  66 6 Patient Case 6: Iliac Spacer with Cavitary Resection������������������  69 6.1 Patient Case 6����������������������������������������������������������������������������   69 6.2 Preoperative Images������������������������������������������������������������������  70 6.3 Planning of Surgery������������������������������������������������������������������  74 6.4 Design and Fabrication ������������������������������������������������������������  74 6.5 Operation����������������������������������������������������������������������������������  76 6.6 Postoperative Images����������������������������������������������������������������  78 7 Patient Case 7: Acetabular Subchondral Block����������������������������  81 7.1 Patient Case 7����������������������������������������������������������������������������   81 7.2 Preoperative Images������������������������������������������������������������������  82 7.3 Planning of Surgery������������������������������������������������������������������  86 7.4 Design and Fabrication ������������������������������������������������������������  86 7.5 Operation����������������������������������������������������������������������������������  89 7.6 Postoperative Images����������������������������������������������������������������  92 8 Patient Case 8: Iliac Acetabular Block and Plate��������������������������  95 8.1 Patient Case 8����������������������������������������������������������������������������   95 8.2 Preoperative Images������������������������������������������������������������������  95 8.3 Planning of Surgery������������������������������������������������������������������  99 8.4 Design and Fabrication ������������������������������������������������������������ 100 8.5 Operation���������������������������������������������������������������������������������� 104 8.6 Postoperative Images���������������������������������������������������������������� 106 9 Patient Case 9: Allograft Bone Shaping Guide ���������������������������� 109 9.1 Patient Case 9���������������������������������������������������������������������������� 109 9.2 Preoperative Images������������������������������������������������������������������ 109 9.3 Planning of Surgery������������������������������������������������������������������ 112 9.4 Design and Fabrication ������������������������������������������������������������ 112 9.5 Operation���������������������������������������������������������������������������������� 114 9.6 Postoperative Images���������������������������������������������������������������� 115 10 Patient Case 10: Pubis Preventing Genital Deformity and Hernia���������������������������������������������������������������������������������������� 117 10.1 Patient Case 10������������������������������������������������������������������������ 117 10.2 Preoperative Images���������������������������������������������������������������� 117 10.3 Planning of Surgery���������������������������������������������������������������� 123 10.4 Design and Fabrication ���������������������������������������������������������� 124 10.5 Operation�������������������������������������������������������������������������������� 126 10.6 Postoperative Images�������������������������������������������������������������� 128 11 Patient Case 11: Pubis with Acetabular Preservation������������������ 133 11.1 Patient Case 11������������������������������������������������������������������������ 133 11.2 Preoperative Images���������������������������������������������������������������� 133 11.3 Planning of Surgery���������������������������������������������������������������� 138

Contents

xi

11.4 Design and Fabrication ���������������������������������������������������������� 138 11.5 Operation�������������������������������������������������������������������������������� 144 11.6 Postoperative Images�������������������������������������������������������������� 146 12 Patient Case 12: Acetabular Reinforcement Cage������������������������ 149 12.1 Patient Case 12������������������������������������������������������������������������ 149 12.2 Preoperative Images���������������������������������������������������������������� 150 12.3 Planning of Surgery���������������������������������������������������������������� 153 12.4 Design and Fabrication ���������������������������������������������������������� 153 12.5 Operation�������������������������������������������������������������������������������� 156 12.6 Postoperative Images�������������������������������������������������������������� 157 13 Patient Case 13: Revision: Failed Allograft Bone Reconstruction������������������������������������������������������������������������ 159 13.1 Patient Case 13������������������������������������������������������������������������ 159 13.2 Preoperative Images���������������������������������������������������������������� 160 13.3 Planning of Surgery���������������������������������������������������������������� 162 13.4 Design and Fabrication ���������������������������������������������������������� 162 13.5 Operation�������������������������������������������������������������������������������� 166 13.6 Postoperative Images�������������������������������������������������������������� 167 14 Patient Case 14: Revision: Failed Total Hip Arthroplasty ���������� 169 14.1 Patient Case 14������������������������������������������������������������������������ 169 14.2 Preoperative Images���������������������������������������������������������������� 170 14.3 Planning of Surgery���������������������������������������������������������������� 171 14.4 Design and Fabrication ���������������������������������������������������������� 172 14.5 Operation�������������������������������������������������������������������������������� 177 14.6 Postoperative Images�������������������������������������������������������������� 181 15 Patient Case 15: Revision: Complicated Saddle Prosthesis �������� 183 15.1 Patient Case 15������������������������������������������������������������������������ 183 15.2 Preoperative Images���������������������������������������������������������������� 183 15.3 Planning of Surgery���������������������������������������������������������������� 184 15.4 Design and Fabrication ���������������������������������������������������������� 184 15.5 Operation�������������������������������������������������������������������������������� 194 15.6 Postoperative Images�������������������������������������������������������������� 196 Part II Femur 16 Patient Case 16: Allograft Bone Shaping Guide in the Cortical Resection���������������������������������������������������������������������� 199 16.1 Patient 16�������������������������������������������������������������������������������� 199 16.2 Preoperative Images���������������������������������������������������������������� 200 16.3 Planning of Surgery���������������������������������������������������������������� 203 16.4 Design and Fabrication ���������������������������������������������������������� 203 16.5 Operation�������������������������������������������������������������������������������� 205 16.6 Postoperative Images�������������������������������������������������������������� 207 17 Patient Case 17: Plate with Reinforcement Ridge������������������������ 209 17.1 Patient 17�������������������������������������������������������������������������������� 209 17.2 Preoperative Images���������������������������������������������������������������� 210

Contents

xii

17.3 Planning of Surgery���������������������������������������������������������������� 212 17.4 Design and Fabrication ���������������������������������������������������������� 212 17.5 Operation�������������������������������������������������������������������������������� 215 17.6 Postoperative Images�������������������������������������������������������������� 217 18 Patient Case 18: Posterior Intercondylar Y Plate ������������������������ 219 18.1 Patient Case 18������������������������������������������������������������������������ 219 18.2 Preoperative Images���������������������������������������������������������������� 220 18.3 Planning of Surgery���������������������������������������������������������������� 224 18.4 Design and Fabrication ���������������������������������������������������������� 224 18.5 Operation�������������������������������������������������������������������������������� 228 18.6 Postoperative Images�������������������������������������������������������������� 228 19 Patient Case 19: Segmental Distal Femur Combined with IM Nail�������������������������������������������������������������������������������������� 231 19.1 Patient Case 19������������������������������������������������������������������������ 231 19.2 Preoperative Images���������������������������������������������������������������� 232 19.3 Planning of Surgery���������������������������������������������������������������� 234 19.4 Design and Fabrication ���������������������������������������������������������� 234 19.5 Operation�������������������������������������������������������������������������������� 240 19.6 Postoperative Images�������������������������������������������������������������� 242 20 Patient Case 20: Cortical Mesh Covering IM Nail and Cement������������������������������������������������������������������������������ 245 20.1 Patient Case 20������������������������������������������������������������������������ 245 20.2 Preoperative Images���������������������������������������������������������������� 246 20.3 Planning of Surgery���������������������������������������������������������������� 248 20.4 Design and Fabrication ���������������������������������������������������������� 249 20.5 Operation�������������������������������������������������������������������������������� 252 20.6 Postoperative Images�������������������������������������������������������������� 254 21 Patient Case 21: Deformity Correction: Open Wedge Spacer and Supporting Plate������������������������������������ 257 21.1 Patient Case 21������������������������������������������������������������������������ 257 21.2 Preoperative Images���������������������������������������������������������������� 258 21.3 Planning of Surgery���������������������������������������������������������������� 261 21.4 Design and Fabrication ���������������������������������������������������������� 261 21.5 Implant design������������������������������������������������������������������������ 263 21.6 Operation�������������������������������������������������������������������������������� 267 21.7 Postoperative Images ������������������������������������������������������������ 269 22 Patient Case 22: Segmental Femur and Implant-Bone Connector���������������������������������������������������������������� 271 22.1 Patient Case 22������������������������������������������������������������������������ 271 22.2 Preoperative Images���������������������������������������������������������������� 272 22.3 Planning of Surgery���������������������������������������������������������������� 273 22.4 Design and Fabrication ���������������������������������������������������������� 274 22.5 Operation�������������������������������������������������������������������������������� 277 22.6 Postoperative Images�������������������������������������������������������������� 279 22.7 Planning of Third Operation �������������������������������������������������� 282

Contents

xiii

22.8 Design and Fabrication for Revision Surgery������������������������ 282 22.9 Operation (Revision Surgery) ������������������������������������������������ 284 22.10 Postoperative Images�������������������������������������������������������������� 285 Part III Tibia 23 Patient Case 23: Targeting Guide for Small Lesion���������������������� 289 23.1 Patient Case 23������������������������������������������������������������������������ 289 23.2 Preoperative Images���������������������������������������������������������������� 290 23.3 Planning of Surgery���������������������������������������������������������������� 292 23.4 Design and Fabrication ���������������������������������������������������������� 292 23.5 Operation�������������������������������������������������������������������������������� 294 23.6 Postoperative Images�������������������������������������������������������������� 297 24 Patient Case 24: Segmental Tibia Diaphysis �������������������������������� 299 24.1 Patient Case 24������������������������������������������������������������������������ 299 24.2 Preoperative Images���������������������������������������������������������������� 300 24.3 Planning of Surgery���������������������������������������������������������������� 303 24.4 Design and Fabrication ���������������������������������������������������������� 303 24.5 Operation�������������������������������������������������������������������������������� 307 24.6 Postoperative Images�������������������������������������������������������������� 309 25 Patient Case 25: Proximal Tibia for Knee Joint Preserving�������� 311 25.1 Patient Case 25������������������������������������������������������������������������ 311 25.2 Preoperative Images���������������������������������������������������������������� 311 25.3 Planning of Surgery���������������������������������������������������������������� 315 25.4 Design and Fabrication ���������������������������������������������������������� 315 25.4.1 Bone Cutting Guide �������������������������������������������������� 315 25.4.2 Implant ���������������������������������������������������������������������� 317 25.5 Operation�������������������������������������������������������������������������������� 321 25.6 Postoperative Images�������������������������������������������������������������� 324 26 Patient Case 26: Tibia Assembled with Knee Artificial Joint Surface������������������������������������������������������������������������������������ 327 26.1 Patient Case 26������������������������������������������������������������������������ 327 26.2 Preoperative Images���������������������������������������������������������������� 328 26.3 Planning of Surgery���������������������������������������������������������������� 331 26.4 Design and Fabrication ���������������������������������������������������������� 332 26.4.1 Bone Cutting�������������������������������������������������������������� 332 26.4.2 Implant ���������������������������������������������������������������������� 332 26.5 Operation�������������������������������������������������������������������������������� 338 26.6 Postoperative Images�������������������������������������������������������������� 341 Part IV Calcaneus 27 Patient Case 27: Calcaneus Considering Possible Factors���������� 347 27.1 Patient Case 27������������������������������������������������������������������������ 347 27.2 Preoperative Images���������������������������������������������������������������� 347 27.3 Planning of Surgery���������������������������������������������������������������� 350

Contents

xiv

27.4 Design and Fabrication ���������������������������������������������������������� 350 27.5 Operation�������������������������������������������������������������������������������� 355 27.6 Postoperative Images�������������������������������������������������������������� 357 Part V Scapula 28 Patient Case 28: Scapula Combined with Reverse Shoulder Arthroplasty������������������������������������������������������ 361 28.1 Patient Case 28������������������������������������������������������������������������ 361 28.2 Preoperative Images���������������������������������������������������������������� 362 28.3 Planning of Surgery���������������������������������������������������������������� 364 28.4 Design and Fabrication ���������������������������������������������������������� 364 28.4.1 Resection�������������������������������������������������������������������� 364 28.4.2 Guide�������������������������������������������������������������������������� 365 28.4.3 3D-Printed Implant���������������������������������������������������� 365 28.5 Operation�������������������������������������������������������������������������������� 370 28.6 Postoperative Images�������������������������������������������������������������� 371 29 Patient Case 29: Scapula Combined with Glenoid of Conventional Shoulder System������������������������������������ 373 29.1 Patient Case 29������������������������������������������������������������������������ 373 29.2 Preoperative Images���������������������������������������������������������������� 374 29.3 Planning of Surgery���������������������������������������������������������������� 376 29.4 Design and Fabrication ���������������������������������������������������������� 376 29.5 Operation�������������������������������������������������������������������������������� 378 29.6 Postoperative Images�������������������������������������������������������������� 379 Part VI Humerus 30 Patient Case 30: Distal Humerus for Assembly with Tumor Prosthesis������������������������������������������������������������������������������ 383 30.1 Patient Case 30������������������������������������������������������������������������ 383 30.2 Preoperative Images���������������������������������������������������������������� 384 30.3 Planning of Surgery���������������������������������������������������������������� 388 30.4 Design and Fabrication ���������������������������������������������������������� 388 30.5 Operation�������������������������������������������������������������������������������� 394 30.6 Postoperative Images�������������������������������������������������������������� 395 31 Patient Case 31: Partial Elbow Joint���������������������������������������������� 397 31.1 Patient Case 31������������������������������������������������������������������������ 397 31.2 Preoperative Images���������������������������������������������������������������� 398 31.3 Planning of Surgery���������������������������������������������������������������� 400 31.4 Design and Fabrication ���������������������������������������������������������� 400 31.5 Operation�������������������������������������������������������������������������������� 403 31.6 Postoperative Images�������������������������������������������������������������� 405

Contents

xv

Part VII Radius and Ulna 32 Patient Case 32: Radius & Ulna and Implant-Bone Connector���������������������������������������������������������������� 409 32.1 Patient Case 32������������������������������������������������������������������������ 409 32.2 Preoperative Images���������������������������������������������������������������� 409 32.3 Planning of Surgery���������������������������������������������������������������� 410 32.4 Design and Fabrication ���������������������������������������������������������� 410 32.5 Operation�������������������������������������������������������������������������������� 412 32.6 Postoperative Images�������������������������������������������������������������� 413 32.7 Planning of 3rd Surgery���������������������������������������������������������� 416 32.8 Operation�������������������������������������������������������������������������������� 418 32.9 Postoperative Images�������������������������������������������������������������� 419 Part VIII High Grade Bone Sarcoma 33 Patient Case 33: Disseminated Metastases after 3D Printing Pelvic Reconstruction ������������������������������������������������ 423 33.1 Patient Case 33������������������������������������������������������������������������ 423 33.2 Preoperative Images���������������������������������������������������������������� 424 33.3 Design and Fabrication ���������������������������������������������������������� 428 33.4 Operation�������������������������������������������������������������������������������� 432 33.5 Postoperative Images�������������������������������������������������������������� 434 Part IX Perioperative Times 34 Preparations and Postoperative Cares of 3D Printing Bone Reconstruction���������������������������������������������������������������������������������� 439 34.1 Process of 3D Printing Implant���������������������������������������������� 439 34.1.1 IRB Consent Sign������������������������������������������������������ 439 34.1.2 Dicom Files Send to Engineering Team�������������������� 439 34.1.3 Engineering Team of Company �������������������������������� 439 34.1.4 Delivery to the Hospital �������������������������������������������� 441 34.2 Postoperative Cares���������������������������������������������������������������� 442

Part I Pelvis

1

Patient Case 1: Unique Iliac Plate, Combined with Total Hip Arthroplasty

1.1

Patient Case 1

Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history

Present illness

1.2

54/female Pelvis, femur/left Undifferentiated spindle cell sarcoma of bone Wheelchair ambulation Resting 5/activity 7 20.8 (155.5/50.3) 32 years old: Lt breast cancer, mastectomy and chemotherapy 47 years old: Lt femur neck pathologic fracture, malignant fibrous histiocytoma of bone, radiation therapy 49 years old: Rt breast cancer, mastectomy and chemotherapy 54 years old: incisional biopsy pelvis, sarcoma Visit after refusing amputation at several other hospitals

Preoperative Images

Fig. 1.1  Preoperative X-ray image and photograph: The range of motion restricted hip, knee, and ankle

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_1

3

4

Fig. 1.2  Preoperative CT images

Fig. 1.3  Preoperative MRI images

1  Patient Case 1: Unique Iliac Plate, Combined with Total Hip Arthroplasty

1.2  Preoperative Images Fig. 1.4 Preoperative bone scan images

Fig. 1.5  Preoperative PET-CT images

5

1  Patient Case 1: Unique Iliac Plate, Combined with Total Hip Arthroplasty

6

1.3

Planning of Surgery

3D printed pelvis + Total hip arthroplasty + Allograft femur 3D printed pelvis Implant: • Reverse V-shaped iliac bone cut • Inter-bridging plate for fixation with iliac bone • Lateral side screw fixation

• Bigger acetabulum • Acetabular rim prominent • Multiple suture holes Total hip cup conjugation: • MDM Stryker Acetabular cup (Fig. 1.6) • Acetabular metal shell: 50 mm diameter • 3D printed pelvic acetabular diameter: 54 mm

Two Points of Articulation External (large) Internal (small)

Fig. 1.6  Select Modular Dual Mobility (MDM®) Stryker MedEd

1.4  Design and Fabrication

1.4

Design and Fabrication

Use mirror image of normal right pelvis Iliac bone cutting—Both medial and lateral cutting guides makes more accurate cortical cut

Fig. 1.7  Cutting guide design

7

Iliac crest and greater sciatic notch are reference points of guide Pubic ramus cutting—flat bone contoured itself can be touching reference points (Fig. 1.7)

1  Patient Case 1: Unique Iliac Plate, Combined with Total Hip Arthroplasty

8

1.5

Fixation with Iliac Bone

• Implant measurement • Implant weight (g): 573 • Size (mm): 126

Fig. 1.8  Initial implant design: difficult insert bone between the medial and lateral plate wing and difficult screwing on the medial wing

a

4.9 kN

b

4.9 kN

a

b

Ilium

Fix

Fix

0 Pubic ramus Ischium

50

100 mm

Fig. 1.9  Simulation study: (a) three independent plate wings, (b) inter-bridging horseshoe-shaped plate wing

1.5  Fixation with Iliac Bone

Fig. 1.10  Final implant design

9

10

Fig. 1.11  Printed implant

1  Patient Case 1: Unique Iliac Plate, Combined with Total Hip Arthroplasty

1.5  Fixation with Iliac Bone

Fig. 1.11 (continued)

11

1  Patient Case 1: Unique Iliac Plate, Combined with Total Hip Arthroplasty

12

1.6

Operation

Fig. 1.12  Intraoperative photographs

1.6 Operation

Fig. 1.12 (continued)

13

14

Fig. 1.13  Resected tumor

1  Patient Case 1: Unique Iliac Plate, Combined with Total Hip Arthroplasty

1.7  Postoperative Images

1.7

Postoperative Images

Since metal artifacts are present in the MRI, it is better to take a bone scan, PET-CT before surgery

Fig. 1.14  Postoperative X-ray images

Fig. 1.15  Postoperative CT images

15

The recurrence of tumor in the metal artifacts can be diagnosed with comparing several images

16

1  Patient Case 1: Unique Iliac Plate, Combined with Total Hip Arthroplasty

Fig. 1.16  Postoperative MRI image

Fig. 1.17  Difficult acetabular metal shell combination at a small intraoperative field, difficult long screw fixation from acetabular cup to iliac bone through hollow holes of 3D printed implant body

2

Patient Case 2: Unique Acetabulum for Easy Assembly of Total Hip Cup

2.1

Patient Case 2

Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

2.2

45/male Pelvis/left Chondrosarcoma, grade 2 Sciatica and radiating pain with limping gait Resting 2/activity 6 21.98 (172.1/65.1) Pain clinic treatment for 1 year Several lumbar spinal root block Visit after refusing allograft reconstruction at another hospital

Preoperative Images

Fig. 2.1  Preoperative X-ray images

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_2

17

18

Fig. 2.2  Preoperative CT images

Fig. 2.3  Preoperative MRI images

2  Patient Case 2: Unique Acetabulum for Easy Assembly of Total Hip Cup

2.2  Preoperative Images

Fig. 2.3 (continued)

19

20

Fig. 2.4  Preoperative PET-CT images

2  Patient Case 2: Unique Acetabulum for Easy Assembly of Total Hip Cup

2.4  Design and Fabrication

2.3

Planning of Surgery

21

The saw capture wing for iliac bone cutting Guide designed to orient the saw blade

3D printed pelvis + Total hip arthroplasty

2.4

Design and Fabrication

Fig. 2.5  Cutting guide design of ilium

• Implant measurement • Implant weight (g): 649 • Size (mm): 178

22

2  Patient Case 2: Unique Acetabulum for Easy Assembly of Total Hip Cup

Fig. 2.6  Cutting guide design of pubis

Fig. 2.7  Cutting guide design of ischium

Fig. 2.8  Printed cutting guide

2.4  Design and Fabrication

Fig. 2.8 (continued)

Fig. 2.9  New acetabular design (right) has 5 matching cup screw holes comparing previous (left)

23

24

Fig. 2.9 (continued)

Fig. 2.10  Implant design

2  Patient Case 2: Unique Acetabulum for Easy Assembly of Total Hip Cup

2.4  Design and Fabrication

Fig. 2.11  Printed implant, light is transmitted through mesh style body

25

26

Fig. 2.11 (continued)

2  Patient Case 2: Unique Acetabulum for Easy Assembly of Total Hip Cup

2.4  Design and Fabrication

Fig. 2.12  Printed implant combined with total hip joint acetabular metal cup

27

2  Patient Case 2: Unique Acetabulum for Easy Assembly of Total Hip Cup

28

2.5

Operation

Fig. 2.13  Intraoperative photograph: acetabular cup conjugate with bone cement and original cup screws at the extra-­ operative field during the operative approach

Fig. 2.14  Intraoperative photographs

2.5 Operation

Fig. 2.15  Resected tumor

29

2  Patient Case 2: Unique Acetabulum for Easy Assembly of Total Hip Cup

30

2.6

Postoperative Images

Fig. 2.16  Postoperative X-ray images: asymptomatic ossification around the hip joint at follow-up

Fig. 2.17  Postoperative CT images

3

Patient Case 3: Mesh-Style Body Without Ischium

3.1

Patient Case 3

Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

3.2

51/male Pelvis/right Osteosarcoma Limping gait with cane Resting 3/Activity 6 27.02 (172.6/80.5) Visit after incisional biopsy Preoperative two times chemotherapy

Preoperative Images

Fig. 3.1  Preoperative X-ray images

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_3

31

32

Fig. 3.2  Preoperative CT images

3  Patient Case 3: Mesh-Style Body Without Ischium

3.2  Preoperative Images

Fig. 3.3  Preoperative MRI images

33

34

Fig. 3.4  Preoperative bone scan images

Fig. 3.5  Preoperative PET-CT images

3  Patient Case 3: Mesh-Style Body Without Ischium

3.3  Planning of Surgery

Fig. 3.6  CT guided needle biopsy

3.3

Planning of Surgery

3D printed pelvis, Mesh body • Pubic ramus is reconstruction • No ischium

35

3  Patient Case 3: Mesh-Style Body Without Ischium

36

3.4

Design and Fabrication

• Implant measurement • Implant weight (g): 352 size (mm): 194

Fig. 3.7  Cutting guide design

3.4  Design and Fabrication

Fig. 3.8  Implant design

Fig. 3.9  Printed cutting guide

37

38

Fig. 3.10  Printed implant

3  Patient Case 3: Mesh-Style Body Without Ischium

3.5 Operation

3.5

Operation

Fig. 3.11  Intraoperative photographs

39

40

Fig. 3.12  Resected tumor

3  Patient Case 3: Mesh-Style Body Without Ischium

3.6  Postoperative Images

3.6

Postoperative Images

Fig. 3.13  Postoperative X-ray images

41

42

Fig. 3.14  Postoperative CT images

3  Patient Case 3: Mesh-Style Body Without Ischium

4

Patient Case 4: Omitting Pubis and Ischium

4.1

Patient Case 4

Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

35/female Pelvis/left Ewing sarcoma Antalgic gait Resting 2/activity 6 21.96 (170.2/63.6) Hip pain management at local clinic for a month Tumor progression after preoperative one-time chemotherapy

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_4

43

4  Patient Case 4 Omitting Pubis and Ischium

44

4.2

Preoperative Images

a

b

Fig. 4.1 (a) Initial X-ray images: pre-chemotherapy, (b) preoperative X-ray images: post-chemotherapy

4.2  Preoperative Images

Fig. 4.2  Preoperative CT images

45

46

Fig. 4.3  Preoperative MRI images

4  Patient Case 4 Omitting Pubis and Ischium

4.2  Preoperative Images

Fig. 4.4  Preoperative bone scan images

47

4  Patient Case 4 Omitting Pubis and Ischium

48

Fig. 4.5  Preoperative PET-CT images

4.3 • • • •

Planning of Surgery

Resection at symphysis pubis Bone cutting at iliac bone 3D printed pelvis No pubic and ischium

4.4  Design and Fabrication

4.4

Design and Fabrication

• Implant measurement • Implant weight (g): 462 • Size (mm): 136

Fig. 4.6  Cutting guide design

49

50

Fig. 4.7  Implant design

Fig. 4.8  Printed cutting guide

4  Patient Case 4 Omitting Pubis and Ischium

4.4  Design and Fabrication

Fig. 4.9  3D printed pelvis implant

51

52

4  Patient Case 4 Omitting Pubis and Ischium

Fig. 4.10  Acetabular cup screw holes deepening with ridges for easy combination of total hip cup without screw cut trimming

Fig. 4.11  Omitting the pubis and ischium

4.4  Design and Fabrication

Fig. 4.12  Measurement of 3D printed implant

Fig. 4.13  Output error may occur

53

4  Patient Case 4 Omitting Pubis and Ischium

54

4.5

Operation

Fig. 4.14  Intraoperative photographs

4.5 Operation

Fig. 4.14 (continued)

Fig. 4.15  Resected tumor

55

4  Patient Case 4 Omitting Pubis and Ischium

56

4.6

Postoperative Images

Fig. 4.16  Postoperative X-ray images

4.6  Postoperative Images

Fig. 4.17  Postoperative CT images

57

5

Patient Case 5: Iliac Wing

5.1

Patient Case 5

Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

5.2

26/female Pelvis/right Chondrosarcoma, grade 2 Right buttock pain Resting 2/activity 5 20.84 (156.5/60.4) Hip pain for 6 months Found at a health checkup for her first job as a nurse

Preoperative Images

Fig. 5.1  Preoperative X-ray images

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_5

59

60

Fig. 5.2  Preoperative CT images

5  Patient Case 5 Iliac Wing

5.2  Preoperative Images

Fig. 5.3  Preoperative MRI images

61

62

Fig. 5.4  Preoperative bone scan images

Fig. 5.5  Preoperative PET-CT images

5  Patient Case 5 Iliac Wing

5.4  Design and Fabrication

5.3

Planning of Surgery

Iliac bone resection 3D printed iliac wing implant

Fig. 5.6  Cutting guide design

Fig. 5.7  Implant design

Fig. 5.8  Printed cutting guide

63

5.4

Design and Fabrication

• Implant measurement • Implant weight (g): 40 • Size (mm): 89

64

Fig. 5.9  Printed implant: reduce iliac crest bump to prevent skin irritation

5  Patient Case 5 Iliac Wing

5.5 Operation

5.5

Operation

Fig. 5.10  Intraoperative photographs

Fig. 5.11  Resected tumor

65

5  Patient Case 5 Iliac Wing

66

5.6

Postoperative Images

Fig. 5.12  Postoperative X-ray images

5.6  Postoperative Images

Fig. 5.13  Postoperative CT images

67

6

Patient Case 6: Iliac Spacer with Cavitary Resection

6.1

Patient Case 6

Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

56/male Pelvis/right Gastrointestinal stromal tumor (GIST) Solitary bone metastasis Antalgic gait Resting 2/activity 5 20.55 (169.3/58.9) GIST in the liver diagnosed 5 years ago Partial hepatectomy and Gleevec medication for 3 years Accidentally found on abdominal CT follow-up

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_6

69

6  Patient Case 6: Iliac Spacer with Cavitary Resection

70

6.2

Preoperative Images

Fig. 6.1  Preoperative X-ray images

6.2  Preoperative Images

Fig. 6.2  Preoperative CT images

71

72

Fig. 6.3  Preoperative MRI images

Fig. 6.4 Preoperative bone scan images

6  Patient Case 6: Iliac Spacer with Cavitary Resection

6.2  Preoperative Images Fig. 6.5 Preoperative PET-CT images

73

6  Patient Case 6: Iliac Spacer with Cavitary Resection

74

6.3

Planning of Surgery

• Cavitary tumor resection of ilium • 3D printed iliac spacer implant

Fig. 6.6  Cutting guide design

Fig. 6.7  Implant design

6.4

Design and Fabrication

• Implant measurement • Implant weight (g): 19.22 • Size (mm): 70

6.4  Design and Fabrication

Fig. 6.8  Printed cutting guide

Fig. 6.9  Printed Implant: whole mesh style without connecting plate

75

6  Patient Case 6: Iliac Spacer with Cavitary Resection

76

6.5

Operation

Fig. 6.10  Intraoperative photographs: demineralized bone matrix (DBM) attaching to the bone contact surface and connecting to the surrounding bone using calcium bone substitutes

6.5 Operation

Fig. 6.11  Resected tumor

77

6  Patient Case 6: Iliac Spacer with Cavitary Resection

78

6.6

Postoperative Images

Fig. 6.12  Postoperative X-ray images

Fig. 6.13  Postoperative CT images

6.6  Postoperative Images

Fig. 6.14  Postoperative MRI images

79

7

Patient Case 7: Acetabular Subchondral Block

7.1

Patient Case 7

Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history

Present illness

37/female Pelvis/right Osteosarcoma Solitary bone metastasis Right hip pain Resting 0/activity 4 18.83 (159.0/47.6) Osteosarcoma, T11 Total spondylectomy and reconstruction at 13 months ago Postoperative radiation therapy and chemotherapy Abnormal finding on the follow-up PET-CT Incisional biopsy and confirmed osteosarcoma before patient refer

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_7

81

7  Patient Case 7: Acetabular Subchondral Block

82

7.2

Preoperative Images

Fig. 7.1  Preoperative X-ray images

7.2  Preoperative Images

Fig. 7.2  Preoperative CT images

83

84

7  Patient Case 7: Acetabular Subchondral Block

Fig. 7.3  Preoperative MRI images: a transmuscular small incisional biopsy tract was observed

7.2  Preoperative Images

Fig. 7.4  Preoperative Bone scan images

Fig. 7.5  Preoperative PET-CT images

85

7  Patient Case 7: Acetabular Subchondral Block

86

7.3

Planning of Surgery

Hip joint saving resection at subchondral of acetabulum 3D printed acetabular dome spacer implant No interconnecting plates

7.4

Design and Fabrication

Closed-type guide • Implant measurement • Implant weight (g): 7.53 • Size (mm): 55

Fig. 7.6  Cutting guide design: tumors can be displayed on the surface of the close-type cutting guide design

7.4  Design and Fabrication

Fig. 7.7  Cutting guide design: open-type cutting design

Fig. 7.8  Implant design

87

88

7  Patient Case 7: Acetabular Subchondral Block

Fig. 7.9  Printed cutting guide: tumor marked on the close-type surface

Fig. 7.10  Printed cutting guide: open type

Fig. 7.11  Printed implant

7.5 Operation

7.5

89

Operation

Fig. 7.12  Intraoperative photographs: after marking the biopsy track with a needle, inserting a liquid nitrogen gun nozzle and cryotherapy

90

Fig. 7.12 (continued)

7  Patient Case 7: Acetabular Subchondral Block

7.5 Operation

Fig. 7.13  Intraoperative photographs: fixation with a cannulated screw and PMMA bone cement

Fig. 7.14  Resected tumor

91

7  Patient Case 7: Acetabular Subchondral Block

92

7.6

Postoperative Images

Fig. 7.15  Postoperative X-ray images

Fig. 7.16  Postoperative CT images

7.6  Postoperative Images

Fig. 7.16 (continued)

Fig. 7.17  Postoperative MRI images

93

8

Patient Case 8: Iliac Acetabular Block and Plate

8.1

Patient Case 8

Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

8.2

48/female Pelvis/left Osteosarcoma, osteoblastic type Antalgic gait Resting: 2/activity: 5 23.55 (152.4/54.7) Preoperative diagnosed high grade pleomorphic sarcoma on the sono-guided biopsy Aggravated left hip pain during a month

Preoperative Images

Fig. 8.1  Preoperative X-ray image

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_8

95

96

Fig. 8.2  Preoperative CT images

8  Patient Case 8: Iliac Acetabular Block and Plate

8.2  Preoperative Images

Fig. 8.3  Preoperative MRI images

97

98

Fig. 8.4  Preoperative bone scan images

8  Patient Case 8: Iliac Acetabular Block and Plate

8.3  Planning of Surgery

99

Fig. 8.5  Preoperative PET-CT images

8.3

Planning of Surgery

Hip joint saving resection at subchondral of acetabulum

Intraoperative adjuvant surgery with argon laser and liquid nitrogen gun 3D printed periacetabular iliac spacer implant Interconnecting plate

8  Patient Case 8: Iliac Acetabular Block and Plate

100

8.4

Design and Fabrication

• Implant measurement • Implant weight (g): 92 • Size (mm): 88

Fig. 8.6  Cutting guide design

Fig. 8.7 Implant design: space for acetabular cup in future total hip joint arthroplasty

8.4  Design and Fabrication

Fig. 8.8  Printed cutting guide

101

102

Fig. 8.9  Printed implant

8  Patient Case 8: Iliac Acetabular Block and Plate

8.4  Design and Fabrication

Fig. 8.9 (continued)

103

8  Patient Case 8: Iliac Acetabular Block and Plate

104

8.5

Operation

Fig. 8.10  Intraoperative photographs

8.5 Operation

Fig. 8.11  Reinforced with PMMA bone cement of acetabular subchondral space

Fig. 8.12  Resected tumor

105

8  Patient Case 8: Iliac Acetabular Block and Plate

106

8.6

Postoperative Images

Fig. 8.13  Postoperative X-ray images

8.6  Postoperative Images

Fig. 8.14  Postoperative CT images

107

108

Fig. 8.15  Postoperative MRI images

8  Patient Case 8: Iliac Acetabular Block and Plate

9

Patient Case 9: Allograft Bone Shaping Guide

9.1

Patient Case 9

Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history

Present illness

9.2

57/male Pelvis/right Myxoid liposarcoma Solitary bone metastasis No Resting: 0/activity: 0 29.16 (163.7/78.15) Wide excision sarcoma of left thigh 5 years ago Chemotherapy and radiation therapy of left thigh Segmental resection of jejunum due to metastasis 2 years ago Right iliac bone lesion found accidentally on abdominal MRI

Preoperative Images

Fig. 9.2  Preoperative CT image: no observation of tumor Fig. 9.1  Preoperative X-ray image no observation of tumor

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_9

109

110

Fig. 9.3  Preoperative MRI images

9  Patient Case 9: Allograft Bone Shaping Guide

9.2  Preoperative Images

Fig. 9.4  Preoperative bone scan image: no observation of tumor Fig. 9.5 Preoperative PET-CT image

111

9  Patient Case 9: Allograft Bone Shaping Guide

112

9.4

Design and Fabrication

Fig. 9.6 CT guided biopsy under the MRI image reference

9.3

Planning of Surgery

3D-printed iliac tumor resection guide Cavitary resection 3D-printed allograft bone shaping guide Allograft bone reconstruction

Fig. 9.7 Cutting guide design: MRI and CT fusion modeling

9.4  Design and Fabrication

Fig. 9.8  Printed Cutting guide: It is difficult to saw if you make a lot of cutting angles

Fig. 9.9  3D-printed allograft bone shaping guide

113

9  Patient Case 9: Allograft Bone Shaping Guide

114

9.5

Operation

Fig. 9.10  Intraoperative photographs

Fig. 9.11  Resected tumor

9.6  Postoperative Images

9.6

Postoperative Images

Fig. 9.12  Postoperative X-ray images

115

116

Fig. 9.13  Postoperative CT images

Fig. 9.14  Postoperative MRI image

9  Patient Case 9: Allograft Bone Shaping Guide

Patient Case 10: Pubis Preventing Genital Deformity and Hernia

10

10.1 Patient Case 10 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

56/male Pelvis/right Chondrosarcoma, grade 2 Palpable mass right inguinal area Resting pain 0/Ambulation pain 3 22.30 (180.7/72.8) Taking prostatitis medication Bone tumor found accidentally during examination

10.2 Preoperative Images

Fig. 10.1  Preoperative X-ray images

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_10

117

118

Fig. 10.2  Preoperative CT images

10  Patient Case 10: Pubis Preventing Genital Deformity and Hernia

10.2  Preoperative Images

Fig. 10.2 (continued)

119

120

Fig. 10.2 (continued)

10  Patient Case 10: Pubis Preventing Genital Deformity and Hernia

10.2  Preoperative Images

Fig. 10.3  Preoperative MRI images

121

122

Fig. 10.3 (continued)

Fig. 10.4  Preoperative bone scan images

10  Patient Case 10: Pubis Preventing Genital Deformity and Hernia

10.3  Planning of Surgery

Fig. 10.5  Preoperative PET-CT images

10.3 Planning of Surgery Hip joint preserving Pubis resection with 3D printing guide Ischium resection at ischial tuberosity-free hand cutting 3D printed pubic implant

123

124

10.4 Design and Fabrication • Implant measurement • Implant weight (g): 153.71 • Size (mm): 113

Fig. 10.6  Cutting guide design

Fig. 10.7  Implant design

10  Patient Case 10: Pubis Preventing Genital Deformity and Hernia

10.4  Design and Fabrication

Fig. 10.8  Printed cutting guide

Fig. 10.9  Printed implant

125

126

10.5 Operation Fig. 10.10 Intra­ operative photograph: if the size of the cutting guide is difficult to bone attach, cut it partially

Fig. 10.11  Intraoperative photographs

10  Patient Case 10: Pubis Preventing Genital Deformity and Hernia

10.5 Operation

Fig. 10.11 (continued)

Fig. 10.12  Resected tumor

127

128

10.6 Postoperative Images

Fig. 10.13  Postoperative X-ray images

10  Patient Case 10: Pubis Preventing Genital Deformity and Hernia

10.6  Postoperative Images

Fig. 10.14  Postoperative CT images

129

130

Fig. 10.14 (continued)

10  Patient Case 10: Pubis Preventing Genital Deformity and Hernia

10.6  Postoperative Images

Fig. 10.15  Postoperative MRI images

Fig. 10.16  Active sports life

131

Patient Case 11: Pubis with Acetabular Preservation

11

11.1 Patient Case 11 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history

Present illness

22/male Pelvis, pubis/left Ewing sarcoma Left inguinal pain Resting 2/Activity 5 13.94 (163.6/37.3) Ewing sarcoma on right radius 13 years ago Skull bone metastasis 10 years ago Chemotherapy and radiation therapy end 8 years ago Metastasis confirmed by sono-­guided biopsy of left pubic tumor Preoperative two times chemotherapy

11.2 Preoperative Images

Fig. 11.1  Preoperative X-ray image

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_11

133

134

Fig. 11.2  Preoperative CT images

11  Patient Case 11: Pubis with Acetabular Preservation

11.2 Preoperative Images

Fig. 11.3  Preoperative MRI images

135

136 Fig. 11.4  Preoperative bone scan image

Fig. 11.5  Preoperative PET-CT images: Pre-chemotherapy

11  Patient Case 11: Pubis with Acetabular Preservation

11.2 Preoperative Images

Fig. 11.5 (continued)

137

138

11  Patient Case 11: Pubis with Acetabular Preservation

Fig. 11.6  Preoperative PET-CT images: preoperative chemotherapy was effective

11.3 Planning of Surgery

11.4 Design and Fabrication

Hip joint saving resection at subchondral of acetabulum Symphysis pubis cutting Intraoperative adjuvant surgery with argon laser and liquid nitrogen gun 3D printed pubis implant

• Implant measurement • Implant weight (g): 84.82 • Size (mm): 89.21

11.4 Design and Fabrication

Fig. 11.7  Cutting guide design: modeling is designed with pre-chemotherapy images

139

140

11  Patient Case 11: Pubis with Acetabular Preservation

Fig. 11.8  Implant design: make one 6.5 cancellous screw hole, create mesh projection to fix PMMA cement

11.4 Design and Fabrication

Fig. 11.8 (continued)

Fig. 11.9  Printed cutting guide

141

142

Fig. 11.10  Printed implant

11  Patient Case 11: Pubis with Acetabular Preservation

11.4 Design and Fabrication

Fig. 11.10 (continued)

143

144

11.5 Operation

Fig. 11.11  Intraoperative photographs

11  Patient Case 11: Pubis with Acetabular Preservation

11.5 Operation

Fig. 11.12  Resected tumor

145

146

11.6 Postoperative Images

Fig. 11.13  Postoperative X-ray images

11  Patient Case 11: Pubis with Acetabular Preservation

11.6 Postoperative Images

Fig. 11.14  Postoperative CT images

147

148

Fig. 11.15  Postoperative MRI images

Fig. 11.16  Postoperative walking pictures: normal walking early after surgery

11  Patient Case 11: Pubis with Acetabular Preservation

Patient Case 12: Acetabular Reinforcement Cage

12

12.1 Patient Case 12 Age/sex Location/site Diagnosis

Preoperative symptom Preoperative pain score Past history

BMI (height/weight) Present illness

50/female Pelvis/right Acetabular fracture Chronic abscess Sciatic nerve irritation by metal Bed ridden Resting 5/Activity 8 Breast cancer diagnosed 5 years ago Total hip arthroplasty due to bone metastasis 3 years ago Revision surgery due to acetabular loosening 1 year ago Abscess drainage several times 19.34 (151.5/44.38) Referred for chronic inflammation and pain caused by the acetabular reinforcement cup problem

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_12

149

150

12.2 Preoperative Images

Fig. 12.1  Preoperative X-ray images

12  Patient Case 12: Acetabular Reinforcement Cage

12.2 Preoperative Images

Fig. 12.2  Preoperative CT images

151

152

Fig. 12.3  Preoperative MRI images

Fig. 12.4  Preoperative bone scan images

12  Patient Case 12: Acetabular Reinforcement Cage

12.4 Design and Fabrication

153

12.3 Planning of Surgery

12.4 Design and Fabrication

In advanced cancer patients, there is no time for sequential surgery to remove all existing artificial joints to control the infection first, and then rebuild the bone. Minimal additional metal entry 3D-printed acetabular reinforcement cup Antibiotic mixed PMMA bone cementing

• 3D-printed implant fixed to the acetabular with the antibiotic mixed PMMA cement • The screw fixing area to the ilium is crown shaped and thin. • Acetabular part is designed with whole mesh. • Implant measurement • Implant weight (g): 20.70 • Size (mm): 56.80

Fig. 12.5  Implant design using a mirror image of the opposite pelvic bone

154

Fig. 12.5 (continued)

Fig. 12.6  Printed bone model: opposite pelvic bone

12  Patient Case 12: Acetabular Reinforcement Cage

12.4 Design and Fabrication

Fig. 12.7  Printed implant

155

156

12.5 Operation

Fig. 12.8  Intraoperative photographs

12  Patient Case 12: Acetabular Reinforcement Cage

12.6  Postoperative Images

12.6 Postoperative Images

Fig. 12.9  Removed artificial joint components

Fig. 12.10  Postoperative X-ray image

Fig. 12.11  Postoperative CT images

157

158

Fig. 12.12  Postoperative MRI images

12  Patient Case 12: Acetabular Reinforcement Cage

Patient Case 13: Revision: Failed Allograft Bone Reconstruction

13

13.1 Patient Case 13 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history

Present illness

47/female Pelvis/right Mechanical failure of pelvic reconstruction Wheelchair ambulation Resting 3/activity 8 27.07 (157.8/67.4) Chondrosarcoma diagnosis 9 years ago Three times operation at another hospital Allograft reconstruction 4 years ago Deep vein thrombosis femoral vein Common peroneal nerve palsy Progressive allograft destruction and difficulty walking

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_13

159

160

13.2 Preoperative Images

Fig. 13.1  Preoperative X-ray images

13  Patient Case 13 Revision: Failed Allograft Bone Reconstruction

13.2 Preoperative Images

Fig. 13.2  Preoperative CT images

161

162

13  Patient Case 13 Revision: Failed Allograft Bone Reconstruction

13.3 Planning of Surgery

13.4 Design and Fabrication

3D-printed pelvic implant Modular pubic implant Preserve femoral stem

• Implant measurement • Implant weight (g): pelvic acetabulum 480, pubis 108 • Size (mm): pelvic acetabulum 161, pubis 112

Fig. 13.3  Cutting guide design

13.4 Design and Fabrication

Fig. 13.4  Implant design: make the greater sciatic notch more concave and the iliac crest smaller

163

164

Fig. 13.4 (continued)

Fig. 13.5  Printed cutting guide

13  Patient Case 13 Revision: Failed Allograft Bone Reconstruction

13.4 Design and Fabrication

165

Fig. 13.6  Printed implant: designed supporting plate under the sacroiliac joint for stable fixation through a small ilium

166

13  Patient Case 13 Revision: Failed Allograft Bone Reconstruction

13.5 Operation

Fig. 13.7  Intraoperative photographs: during the surgical approach, attach the acetabular cup outside the surgical field using PMMA cement and trimmed screws

Fig. 13.8  Intraoperative photographs: the prepared pubic implant was not assembled

13.6 Postoperative Images

13.6 Postoperative Images

Fig. 13.9  Removed allograft and acetabular cup

Fig. 13.10  Postoperative X-ray images

167

168

13  Patient Case 13 Revision: Failed Allograft Bone Reconstruction

Fig. 13.11  Postoperative CT images: greater sciatic notch widening design restores common peroneal nerve paralysis

Patient Case 14: Revision: Failed Total Hip Arthroplasty

14

14.1 Patient Case 14 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score Past history

BMI (height/weight) Present illness

42/female Pelvis/left Loosening of pelvic artificial joint Wheelchair ambulation Resting 2/activity 5 Driver traffic accident 2 years ago Hospitalized 20 times and had 11 surgeries Left hip joint surgery 5 times 21.83 (163/58) Visited for 3D printing customized pelvic reconstruction

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_14

169

170

14.2 Preoperative Images

Fig. 14.1  Radiologic images of past traffic accident

Fig. 14.2 Preoperative X-ray images

14  Patient Case 14 Revision: Failed Total Hip Arthroplasty

14.3  Planning of Surgery

Fig. 14.3  Preoperative CT images

14.3 Planning of Surgery Preserves the bones around the acetabular cup as much as possible Thick solid iliac plate The body is mesh style Omit pubis and ischium Maintained femoral stem

171

172

14.4 Design and Fabrication • Implant measurement • Implant weight (g): 198 • Size (mm): 131

Fig. 14.4  Cutting guide design

14  Patient Case 14 Revision: Failed Total Hip Arthroplasty

14.4 Design and Fabrication

Fig. 14.4 (continued)

173

174

Fig. 14.5  Implant design

14  Patient Case 14 Revision: Failed Total Hip Arthroplasty

14.4 Design and Fabrication

Fig. 14.5 (continued)

Fig. 14.6  Printed cutting guide

175

176

Fig. 14.7  Printed trial block

Fig. 14.8  Printed Implant

14  Patient Case 14 Revision: Failed Total Hip Arthroplasty

14.5 Operation

Fig. 14.9  Printed Implant: Mesh style enough to transmit light

14.5 Operation

Fig. 14.10  Intraoperative photographs: attach a calcium-based bone substitute to the medial wall

177

178

14  Patient Case 14 Revision: Failed Total Hip Arthroplasty

Fig. 14.11  Intraoperative photographs: after fixing the metal shell with PMMA cement and cup screws, connect the metal liner

14.5 Operation

Fig. 14.12  Intraoperative photographs

179

180

Fig. 14.12 (continued)

14  Patient Case 14 Revision: Failed Total Hip Arthroplasty

14.6 Postoperative Images

14.6 Postoperative Images

Fig. 14.13  Postoperative X-ray images

Fig. 14.14  Postoperative CT images

181

Patient Case 15: Revision: Complicated Saddle Prosthesis

15

15.1 Patient Case 15 Age/sex Location/site Diagnosis Preoperative symptom BMI (height/weight) Past history Present illness

56/male Pelvis/right Periprosthetic bone destruction Limping gate 24.22 (160/62) Osteosarcoma pelvis at 20 years ago Saddle prosthesis bone reconstruction Increasing limping gait and difficult sitting posture

15.2 Preoperative Images

Fig. 15.1  Saddle prosthesis reconstruction of pelvic osteosarcoma at 20 years ago

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_15

183

184

15  Patient Case 15 Revision: Complicated Saddle Prosthesis

Fig. 15.2  Preoperative X-ray images

15.3 Planning of Surgery

15.4 Design and Fabrication

Preserve bone around the acetabular cup as much as possible Iliac fixation plate is a thick solid The body is mesh style Omit pubis and ischium Femoral stem is maintained Saddle stem femoral neck cone taper 14/16 • 3D printed pelvis • Acetabular metal shell, metal liner, poly cup (Stryker, MDM® system) + • 28 mm Femoral head, neck cone taper 14/16 (DePuy Synthes, BIOLOX® delta) Prepare screwdriver of Saddle prosthesis

• Implant measurement • Implant weight (g): 245 • Size (mm): 121

15.4 Design and Fabrication

Fig. 15.3  Cutting guide design

185

186

Fig. 15.3 (continued)

15  Patient Case 15 Revision: Complicated Saddle Prosthesis

15.4 Design and Fabrication

Fig. 15.3 (continued)

187

188

Fig. 15.4  Implant design

15  Patient Case 15 Revision: Complicated Saddle Prosthesis

15.4 Design and Fabrication

Fig. 15.4 (continued)

189

190

Fig. 15.4 (continued)

15  Patient Case 15 Revision: Complicated Saddle Prosthesis

15.4 Design and Fabrication

Fig. 15.5  Implant design: overlapping simulation before and after surgery

191

192

Fig. 15.6  Printed cutting guide

15  Patient Case 15 Revision: Complicated Saddle Prosthesis

15.4 Design and Fabrication

Fig. 15.7  Printed implant

193

194

15  Patient Case 15 Revision: Complicated Saddle Prosthesis

15.5 Operation

Fig. 15.8  Intraoperative photographs: combining with the acetabular cup

15.5 Operation

Fig. 15.9  Intraoperative photographs

Fig. 15.10  Removed Saddle prosthesis

195

196

15.6 Postoperative Images

Fig. 15.11  Postoperative X-ray images

15  Patient Case 15 Revision: Complicated Saddle Prosthesis

Part II Femur

Patient Case 16: Allograft Bone Shaping Guide in the Cortical Resection

16

16.1 Patient 16 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

24/female Femur/left Parosteal osteosarcoma Pain on full flexion of the knee Resting 2/activity 2 24.23 (172.5/72.1) Posterior knee pain aggravation Visits for save the joint

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_16

199

200

16  Patient Case 16 Allograft Bone Shaping Guide in the Cortical Resection

16.2 Preoperative Images

Fig. 16.1  Preoperative X-ray images: Tumor on the left distal femur

Fig. 16.2  Preoperative CT images

16.2 Preoperative Images

Fig. 16.3  Preoperative MRI images

201

202

16  Patient Case 16 Allograft Bone Shaping Guide in the Cortical Resection

Fig. 16.4  Preoperative bone scan images

Fig. 16.5  Preoperative PET-CT images

16.4 Design and Fabrication

203

16.3 Planning of Surgery

16.4 Design and Fabrication

3D printed bone tumor resection guide 3D Printed allograft bone shaping guide

A closed-type cutting guide is advantageous when there is no cortical breakage, no soft tissue tumor extension, no cartilaginous tumor, and there is limited soft tissue dissection.

Fig. 16.6  Close-type cutting guide design

204

16  Patient Case 16 Allograft Bone Shaping Guide in the Cortical Resection

Fig. 16.7  Open-type cutting guide design

Fig. 16.8  Printed Cutting guide in pairs, one for allograft bone shaping

16.5 Operation

16.5 Operation

Fig. 16.9  Intraoperative photographs

205

206

16  Patient Case 16 Allograft Bone Shaping Guide in the Cortical Resection

Fig. 16.10  Allograft bone shaping guide

Fig. 16.11  Resected tumor

16.6 Postoperative Images

16.6 Postoperative Images

Fig. 16.12  Postoperative X-ray images

Fig. 16.13  Postoperative CT images

207

Patient Case 17: Plate with Reinforcement Ridge

17

17.1 Patient 17 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

68/male Femur/right Melorheostosis Restricted knee flexion Resting 1/activity 1 22.56 (165.9/62.1) Discomfort for over 10 years Palpable mass with progressive nerve compression symptom Surgery planning under the possibility of malignant bone tumor such as parosteal osteosarcoma

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_17

209

210

17  Patient Case 17: Plate with Reinforcement Ridge

17.2 Preoperative Images

Fig. 17.1  Preoperative X-ray images: tumor elongated to the diaphysis

Fig. 17.2  Preoperative CT images

17.2 Preoperative Images

Fig. 17.3  Preoperative MRI images: partial enhancement area of contrast on the metaphysis

Fig. 17.4  Preoperative bone scan images

211

212

17  Patient Case 17: Plate with Reinforcement Ridge

17.3 Planning of Surgery

17.4 Design and Fabrication

Surgery only for tumors in the popliteal region due to the symptomatic. Possibility of parosteal osteosarcoma on the findings of MRI and bone scan. 3D printed condylar plate of distal femur.

• Implant measurement • Implant weight (g): 82 • Size (mm): 110

Fig. 17.5  Cutting guide design

17.4 Design and Fabrication

Fig. 17.6  Implant design

213

214

Fig. 17.7  Printed cutting guide and bone tumor model

Fig. 17.8  3D printed condyle plate of distal femur

17  Patient Case 17: Plate with Reinforcement Ridge

17.5 Operation

17.5 Operation

Fig. 17.9  Intraoperative photographs: using artificial bone graft between bone and implant

215

216

Fig. 17.10  Resected tumor

17  Patient Case 17: Plate with Reinforcement Ridge

17.6 Postoperative Images

17.6 Postoperative Images

Fig. 17.11  Postoperative X-ray images

Fig. 17.12  Postoperative CT images

217

Patient Case 18: Posterior Intercondylar Y Plate

18

18.1 Patient Case 18 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

27/male Femur distal/right Recurred giant cell tumor of the bone Antalgic gait Resting 0/activity 5 26.01 (172.6/77.5) Operated at another hospital 1 year ago Visit due to persistent knee pain after surgery

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_18

219

220

18.2 Preoperative Images

Fig. 18.1  Preoperative X-ray images

18  Patient Case 18: Posterior Intercondylar Y Plate

18.2 Preoperative Images

Fig. 18.2  Preoperative CT images

221

222

18  Patient Case 18: Posterior Intercondylar Y Plate

Fig. 18.3  Preoperative MRI images: anterior and posterior recurred tumor observed

18.2 Preoperative Images

Fig. 18.3 (continued)

Fig. 18.4  Preoperative bone scan images

223

224

18  Patient Case 18: Posterior Intercondylar Y Plate

Fig. 18.5  Preoperative PET-CT images

18.3 Planning of Surgery

18.4 Design and Fabrication

Resection and 3D-printed intercondylar plate for popliteal tumor Extended curettage and PMMA cementing for anterior knee tumor

• Implant measurement • Implant weight (g): 82 • Size (mm): 129

Fig. 18.6  Cutting guide design for posterior tumor

18.4 Design and Fabrication

Fig. 18.6 (continued)

225

226

Fig. 18.7  Implant design

Fig. 18.8  Printed cutting guide

18  Patient Case 18: Posterior Intercondylar Y Plate

18.4 Design and Fabrication

Fig. 18.9  3D-printed intercondylar plate of distal femur

227

228

18  Patient Case 18: Posterior Intercondylar Y Plate

18.5 Operation

Fig. 18.10  Intraoperative photographs of popliteal tumor: resection and argon laser ablation, PMMA bone cement augmentation

18.6 Postoperative Images

Fig. 18.11  Postoperative X-ray images

18.6 Postoperative Images

Fig. 18.12  Postoperative CT images

229

230

Fig. 18.13  Postoperative MRI images

18  Patient Case 18: Posterior Intercondylar Y Plate

Patient Case 19: Segmental Distal Femur Combined with IM Nail

19

19.1 Patient Case 19 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Present illness

54/female Femur distal/right High-grade undifferentiated spindle cell sarcoma of bone Limping gate with cane Resting 2/activity 7 18.29 (161/47.4) Visited after hearing surgical methods at several hospitals

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_19

231

232

19.2 Preoperative Images

Fig. 19.1  Preoperative X-ray images

Fig. 19.2  Preoperative CT images

19  Patient Case 19: Segmental Distal Femur Combined with IM Nail

19.2  Preoperative Images

Fig. 19.3  Preoperative MRI images

233

234

19  Patient Case 19: Segmental Distal Femur Combined with IM Nail

Fig. 19.4  Preoperative bone scan images

19.3 Planning of Surgery

19.4 Design and Fabrication

Segmental resection (9.5  cm) and intercalary reconstruction 3D-printed segmental femur prosthesis Retrograde IM nailing

Circular wrapped for each side bone end Polishing posteromedial neuro-vascular contact area The central canal is straight of a 3D-printed implant. • Implant measurement • Implant weight (g): 350 • Size (mm): 157

19.4  Design and Fabrication

Fig. 19.5  Cutting guide for segmental bone cut

Fig. 19.6  Center pin guide for retrograde IM nailing

235

236

Fig. 19.7  Implant design

19  Patient Case 19: Segmental Distal Femur Combined with IM Nail

19.4  Design and Fabrication

Fig. 19.7 (continued)

237

238

19  Patient Case 19: Segmental Distal Femur Combined with IM Nail

Fig. 19.8  Printed cutting guide and center pin guide

Fig. 19.9  3D-printed segmental femur prosthesis: lateral two perforated holes connected central canal for cement injection to the peri-IM nail

19.4  Design and Fabrication

Fig. 19.10  The length and direction of the retrograde

Fig. 19.11  Measurement of 3D-printed implant

239

240

19  Patient Case 19: Segmental Distal Femur Combined with IM Nail

19.5 Operation

Fig. 19.12  Intraoperative photographs: low viscosity PMMA bone cement injection into the peri-nail canal of 3D printed implant

19.5 Operation

Fig. 19.12 (continued)

Fig. 19.13  Resected bone tumor

241

242

19.6 Postoperative Images

Fig. 19.14  Postoperative X-ray images

19  Patient Case 19: Segmental Distal Femur Combined with IM Nail

19.6  Postoperative Images

Fig. 19.15  Postoperative CT images

243

244

Fig. 19.16  Postoperative MRI images

19  Patient Case 19: Segmental Distal Femur Combined with IM Nail

Patient Case 20: Cortical Mesh Covering IM Nail and Cement

20

20.1 Patient Case 20 Age/sex Location Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

68/female Femur diaphysis/left Metastatic bone cancer (solitary) Renal cell carcinoma (RCC) left Wheelchair ambulation Resting 4/activity 8 20.17 (154.6/48.2) RCC clear cell type, left Total nephrectomy at 3 years ago Requested complete resection from the urology department

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_20

245

246

20.2 Preoperative Images Fig. 20.1 Preoperative X-ray images

Fig. 20.2  Preoperative CT images

20  Patient Case 20: Cortical Mesh Covering IM Nail and Cement

20.2  Preoperative Images

Fig. 20.3  Preoperative MRI images

247

248

20  Patient Case 20: Cortical Mesh Covering IM Nail and Cement

Fig. 20.4  Preoperative bone scan images

Fig. 20.5  Preoperative PET-CT images

20.3 Planning of Surgery Segmental resection left femur diaphysis Long gamma nail fixation Bone cement augmentation around nail 3D printed cortical mesh implant • Divided into anterior and posterior blocks for easy attachment

• 3D-printed segmental prosthesis may be difficult to adjust the length if there is an intraoperative change • There is also a difficulty in matching the ante-­ bowing of the nail if it is used with an intramedullary nail • Sometimes, there are patients who need to easily and simply prepare 3D-printed implants • Stability can be obtained by mixing various methods

20.4  Design and Fabrication

20.4 Design and Fabrication Whole mesh style Longer than Segmental defect to cover the upper and lower normal bones sufficiently Cutting guide

249

Insufficient reference point to attach guide to femur diaphysis • Implant measurement • Implant weight (g): 56 • Size (mm): 164

Fig. 20.6  Cutting guide: segmental bone resection using a combination of intraoperative fluoroscopy and length measurement

Fig. 20.7  Implant design: longer than bone defect space

250

Fig. 20.8  3D-printed cutting guide

Fig. 20.9  Printed implant

20  Patient Case 20: Cortical Mesh Covering IM Nail and Cement

20.4 Design and Fabrication

Fig. 20.9 (continued)

251

252

20  Patient Case 20: Cortical Mesh Covering IM Nail and Cement

20.5 Operation

Fig. 20.10  Intraoperative photographs: cortical mesh implant attached before the PMMA bone cement hardening

20.5 Operation

Fig. 20.11  Resected bone tumor: additional distal resection due to margin tumor positive

253

254

20  Patient Case 20: Cortical Mesh Covering IM Nail and Cement

20.6 Postoperative Images

Fig. 20.12  Postoperative X-ray images: cortical bony bridging showing between the implant and bone

Fig. 20.13  Postoperative MRI images: much reduced metal artifact by mesh style implant

20.6  Postoperative Images

Fig. 20.14  Postoperative CT images

255

256

Fig. 20.15  Postoperative bone scan images

20  Patient Case 20: Cortical Mesh Covering IM Nail and Cement

Patient Case 21: Deformity Correction: Open Wedge Spacer and Supporting Plate

21

21.1 Patient Case 21 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

42/female Femur/left Fibrous dysplasia Linear pathologic fracture Limping gait Resting pain 0/activity 5 26.68 (155.6/64.6) Femoral tumor accidentally discovered as a pathological fracture No fracture healing of subtrochanteric until 6 months’ observation

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_21

257

258

21  Patient Case 21: Deformity Correction: Open Wedge Spacer and Supporting Plate

21.2 Preoperative Images

Fig. 21.1  Preoperative X-ray images: linear pathologic fracture with Varus angulation, leg shortening 2.5 cm

Fig. 21.2  Preoperative CT images

21.2  Preoperative Images

Fig. 21.2 (continued)

259

260

21  Patient Case 21: Deformity Correction: Open Wedge Spacer and Supporting Plate

Fig. 21.3  Preoperative MRI images: tumor extended to the femoral head and neck

Fig. 21.4  Preoperative bone scan images

21.4  Design and Fabrication

21.3 Planning of Surgery Open wedge osteotomy 3D-printed plate + 3D-printed open wedge spacer implant Femoral head and neck preservation Tumor removal Deformity correction at the subtrochanteric area • Bone cutting and curettage of tumor • Varus deformity correction with open wedge

261

• Femur neck retroversion and rotational deformity correction • Two pieces 3D-printed implant—open wedge spacer (medial side) and plate (lateral side) • PMMA bone cement augmentation femoral head and neck • Allograft bone chip for medullary cavity • Muscle reattachment of vastus lateralis and gluteus maximus

21.4 Design and Fabrication

Fig. 21.5  Preoperative 3D modeling: varus angulation and retroversion deformity, leg shortening

262

21  Patient Case 21: Deformity Correction: Open Wedge Spacer and Supporting Plate

Fig. 21.6  Cutting guide for open wedge osteotomy

21.5  Implant design

263

Fig. 21.7  Proximal pin guides for screw direction to the femur head and neck

Fig. 21.8  Distal pin guides for correction of rotational deformity. Distal femur should be lateral rotation for the insertion of the screws on the guide pin holes

21.5 Implant design Two 3D implant designs—buttress plate and open wedge spacer • Open wedge osteotomy for 2.5 cm shorten leg length correction • Cortical bone expansion and thinning by tumor • No metal filling of medullary cavity for revision stem insertion of hip arthroplasty in the future 1. Open wedge spacer block (medial) • Cortical bone contact only and empty of medullary cavity • Short plate wing for screw fixation

• Screw holes—Like a volcanic uplift: increase screw and plate contact, screw head deepening • PMMA bone cementing in the screw fixation—like locking plate • Whole meshed wedge implant—cortical bone contact area 2. Buttress plate (lateral) • Multiple suture holes on the trochanteric end • Reinforcement of subtrochanteric area • Meshed inner surface for limited periosteal contact • Implant measurement • Implant weight (g): 159/64 • Size (mm): 172/84

264

21  Patient Case 21: Deformity Correction: Open Wedge Spacer and Supporting Plate

Fig. 21.9  Implant design: open wedge spacer block (medial)

Fig. 21.10  Buttress plate (lateral): the distal femur should be lateral rotation to fit with screw’s guide pin holes(arrows)

21.5  Implant design

265

Fig. 21.11  Simulation of postoperative 3D modeling: correction of all the deformity including shortening, varus, and rotation

266

Fig. 21.12  Printed implant

21  Patient Case 21: Deformity Correction: Open Wedge Spacer and Supporting Plate

21.6 Operation

21.6 Operation

Fig. 21.13  Intraoperative photographs

267

268

21  Patient Case 21: Deformity Correction: Open Wedge Spacer and Supporting Plate

Fig. 21.13 (continued)

Fig. 21.14  Fibrous dysplasia curettage

21.7 Postoperative Images

21.7 Postoperative Images

Fig. 21.15  Postoperative X-ray images

269

270

21  Patient Case 21: Deformity Correction: Open Wedge Spacer and Supporting Plate

Fig. 21.16  Postoperative CT images

Patient Case 22: Segmental Femur and Implant-Bone Connector

22

22.1 Patient Case 22 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (weight/height) Past history Present illness

67/female Femur/right Chondrosarcoma, grade 2 Limping gate Resting 2/Activity 5 26.17(144.7/54.8) Left leg growth disorder after injury at her middle school period Left heel does not touch the ground Wants to save the patient’s own knee joint

Leg length discrepancy: 10 cm longer right leg (femur 7 cm longer + tibia 3 cm longer) due to adolescence trauma left leg

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_22

271

272

22  Patient Case 22: Segmental Femur and Implant-Bone Connector

22.2 Preoperative Images

Fig. 22.1  Preoperative X-ray images and photographs

Fig. 22.2  Preoperative CT images

22.3  Planning of Surgery

273

Fig. 22.3  Preoperative MRI images

22.3 Planning of Surgery • 3D-printed segmental femur implant • Approved 3D metal printing machine has a limitation of its product length less than 20 cm length

• Too much one-stage shortening of the femur makes the knee extension power weak • Painful symptomatic knee arthritis in the future: designed to enable total knee arthroplasty combination

274

22  Patient Case 22: Segmental Femur and Implant-Bone Connector

22.4 Design and Fabrication • Segmental femur cut: 23 cm • Femur segmental reconstruction 15 cm: 8 cm shortening of femur length • Only 5 cm left for the proximal fixation portion of implant due to the 20 cm printing limitation • Distal bone cutting guide –– Joint open and intra-articular V-shaped bone cut –– Bone cut through four directions—anterior and poster, medial and lateral saw cutting –– Wing of each saw direction Knee condylar area • • • •

Mesh style of square pyramid Thin metal plate wrapping the joint condyle Multiple screw holes and suture holes Polishing the Patella-femoral surface area

Fig. 22.4  Cutting guide design

Femur prosthesis body • Solid core and mesh surface • Three transverse screw holes in case of additional plate Proximal osteosynthesis • Circular bone wrapping 1 cm • C-shaped plate to wrap half-diameter the femur • Multiple screw holes • Intramedullary inserted small peg at bone cut area • Mesh style bone cut contact surface • Implant measurement • Implant weight (g): 346 • Size (mm): 198

22.4  Design and Fabrication

Fig. 22.5  Implant design

Fig. 22.6  Printed cutting guide

275

276

Fig. 22.7  Printed implant

22  Patient Case 22: Segmental Femur and Implant-Bone Connector

22.5 Operation

22.5 Operation

Fig. 22.8  Intraoperative photograph

277

278

Fig. 22.8 (continued)

Fig. 22.9  Resected tumor

22  Patient Case 22: Segmental Femur and Implant-Bone Connector

22.6  Postoperative Images

22.6 Postoperative Images

279

• 3D-printed femur implant breakage at the junction of body to plate transition zone

• Emergency operation –– Removal of 3D-printed implant (plate part) –– Fixation with two plates and five cable wires

The transition site is the biggest stressful area in the simulation research

Titanium melting is not uniform at the transition site between the solid body and plate

280

22  Patient Case 22: Segmental Femur and Implant-Bone Connector

Fig. 22.10  Postoperative X-ray images

Fig. 22.11  Metal breakage occurs 7 months after surgery due to slip down

Fig. 22.12  Emergency operation with plates and cable wires

22.7 Planning of Third Operation

Fig. 22.13  Removed broken piece of 3D implant Fig. 22.14 Follow-up X-ray images of second operation: Cable wires breakage and progressive varus angular deformity

281

282

22  Patient Case 22: Segmental Femur and Implant-Bone Connector

22.7 Planning of Third Operation • Knee joint preservation • 3D-printed connector between the bone and previous 3D-printed implant • Valgus angulation implant to prevent knee medial arthritis

22.8 Design and Fabrication for Revision Surgery 3D-printed connector • Hollow cylinder to insert broken 3D implant • Valgus angulation at the junction of bone and implant

Fig. 22.15  Implant design

• The valgus angulation area is reinforced thicker • Bone end wrapped 1  cm height and wider plate • 6.5 cancellous screw holes toward femur neck: prepared screw direction • Mesh style periosteal contact surface of plate • Implant measurement • Implant weight (g): 164 • Size (mm): 171

22.9  Operation (Revision Surgery)

Fig. 22.16  Printed implant

283

284

22  Patient Case 22: Segmental Femur and Implant-Bone Connector

22.9 Operation (Revision Surgery) Low viscosity PMMA cement is used to c­ onnect the broken implant into the 3D printed connector.

Fig. 22.17  Intraoperative photographs

Femur shortening 1.5  cm: leg length almost equalized (10 cm longer initially → 0.5 cm longer now)

22.10  Postoperative Images

22.10 Postoperative Images

Fig. 22.18  Postoperative X-ray images

285

286

Fig. 22.19  Postoperative CT images

22  Patient Case 22: Segmental Femur and Implant-Bone Connector

Part III Tibia

Patient Case 23: Targeting Guide for Small Lesion

23

23.1 Patient Case 23 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

70/male Tibia/right Fibrosarcoma of bone/secondary sarcoma from fibrous dysplasia Normal gait Resting 0/activity 3 25.29 (156.7/62.1) No X-ray checked tibia in his life Malignant bone tumor confirmed by incisional biopsy

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_23

289

290

23.2 Preoperative Images Fig. 23.1  Preoperative X-ray images

Fig. 23.2 Preoperative CT images

23  Patient Case 23: Targeting Guide for Small Lesion

23.2  Preoperative Images

Fig. 23.3  Preoperative MRI images

Fig. 23.4  Preoperative bone scan image

291

292

23.3 Planning of Surgery Segmental resection of the main tumor Save patellar tendon attachment area Save the knee joint

23  Patient Case 23: Targeting Guide for Small Lesion

Extended curettage of subchondral skip lesion 3D-printed targeting guide of tumor

23.4 Design and Fabrication

Fig. 23.5  Cutting guide design: segmental tumor resection guide

23.4  Design and Fabrication

Fig. 23.6  Targeting guide design: target of skip lesion

Fig. 23.7  Printed cutting guide

293

294

23  Patient Case 23: Targeting Guide for Small Lesion

23.5 Operation

Fig. 23.8  Intraoperative photographs: segmental tibia resection guide

23.5 Operation

Fig. 23.9  Intraoperative photographs: target pinning guide

Fig. 23.10  Intraoperative photograph: reconstruction using an allograft bone

295

296

23  Patient Case 23: Targeting Guide for Small Lesion

Fig. 23.10 (continued)

Fig. 23.11  Resected tumor pathology segmental resected tumor: Fibrosarcoma targeting two small lesion: Fibrous dysplasia

23.6  Postoperative Images

23.6 Postoperative Images

Fig. 23.12  Postoperative X-ray images: secondary operation for plate adding and PMMA cemmenting

Fig. 23.13  Postoperative CT images

297

Patient Case 24: Segmental Tibia Diaphysis

24

24.1 Patient Case 24 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

13/male Tibia/left Adamantinoma Pathologic fracture Wheelchair ambulation Resting 2/Activity 8 15.43 (180/50) Tibia diaphysis pathologic fractured 2 weeks ago Adamantinoma confirmed by incisional biopsy Patient’s father wants 3D-printed customized bone reconstruction

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_24

299

300

24.2 Preoperative Images • Cortical thinning at pathologic fracture area • Distal tibia intramedullary sclerotic lesion: need to distinguish whether it is the same lesion • Growth plate open Fig. 24.1 Preoperative X-ray images

Fig. 24.2  Preoperative CT images

24  Patient Case 24: Segmental Tibia Diaphysis

24.2  Preoperative Images

Fig. 24.3  Preoperative MRI images

301

302

24  Patient Case 24: Segmental Tibia Diaphysis

Fig. 24.4  Preoperative MRI images: distal intramedullary lesion also observed

Fig. 24.5  Preoperative bone scan images

24.4  Design and Fabrication

24.3 Planning of Surgery • 10 cm segmental resection of pathologic fracture area • Distal tibia intramedullary lesion –– Intramedullary curettage for permanent biopsy –– Intraoperative adjuvant with argon laser and liquid nitrogen gun • 3D-printed tibia prosthesis –– 10 cm implant body –– 5-cm-long metal plate in each upper and lower parts

24.4 Design and Fabrication Cutting guide • There is no protruding part as a reference –– Using C-arm fluoroscopy and measuring the distance from the knee joint line • Proximal and distal two parts –– Proximal: tibial tuberosity and tibial angled border fitting –– Distal: tibial border fitting

303

Implant • Mesh style bone contact end: 2 cm in length each proximal and distal end • Tibial anterior crest-size reduction and slightly concave • Tibia cross-section is a slightly rounded body rather than triangular • Tibial posterior surface-thicker reinforcement • For stable fixation with 5 cm plate each upper and lower –– Almost half surrounding plate posterior and lateral located –– Multiple 4.5 mm screw holes. • Thicker plate and prominent screw area like volcano uplift for screw head seating. • The inner screw hole wider to make the screw direction flexible. • Screw insertion avoids the fibula in the anterolateral area. • Implant measurement. • Implant weight (g): 359 • Size (mm): 195

304

Fig. 24.6  Cutting guide design

24  Patient Case 24: Segmental Tibia Diaphysis

24.4  Design and Fabrication

Fig. 24.7  Implant design

305

306

Fig. 24.8  Printed cutting guide

Fig. 24.9  Printed implant

24  Patient Case 24: Segmental Tibia Diaphysis

24.5 Operation

307

24.5 Operation Pathology: Segmental Adamantinoma.

Curettage of distal medullary cavity: No tumor resected

tumor:

Fig. 24.10  Intraoperative photographs: 3D printing implant reconstruction within 1 week of patient visit

308

Fig. 24.11  Resected tumor

24  Patient Case 24: Segmental Tibia Diaphysis

24.6  Postoperative Images

24.6 Postoperative Images Fig. 24.12 Post­ operative X-ray images

Fig. 24.13  Postoperative CT images

309

310 Fig. 24.13 (continued)

24  Patient Case 24: Segmental Tibia Diaphysis

Patient Case 25: Proximal Tibia for Knee Joint Preserving

25

25.1 Patient Case 25 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

12/female Tibia proximal/left Osteosarcoma Antalgic gait Resting 0/Activity 4 18.53 (151.8/42.7) Diagnosed by incisional biopsy Two times preoperative chemotherapy Reluctance to artificial joint and osteoarticular allograft

25.2 Preoperative Images

Fig. 25.1  Preoperative X-ray images

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_25

311

312 Fig. 25.2 Preoperative CT images

Fig. 25.3  Preoperative MRI images

25  Patient Case 25: Proximal Tibia for Knee Joint Preserving

25.2  Preoperative Images

Fig. 25.3 (continued)

313

314

Fig. 25.4  Preoperative bone scan images

Fig. 25.5  Preoperative PET-CT images

25  Patient Case 25: Proximal Tibia for Knee Joint Preserving

25.4  Design and Fabrication

25.3 Planning of Surgery Knee joint save epiphyseal resection 3D-printed proximal tibia implant

25.4 Design and Fabrication

315

• The patellar tendon area of tibial tuberosity cutting • Since the growth plate is not parallel, saw cutting the three sides of medial, lateral, patellar tendon attachment tuberosity • The V-shape bone cutting of the distal tibia

25.4.1 Bone Cutting Guide • Proximal tibia epiphyseal cutting

Fig. 25.6  Bone cutting guides: medial, lateral, and posterior application

316

Fig. 25.6 (continued)

25  Patient Case 25: Proximal Tibia for Knee Joint Preserving

25.4  Design and Fabrication

25.4.2 Implant • Mesh style body • Many suture holes for tendon and joint capsule • Many screw holes for tibial tuberosity and epiphysis fixation

Fig. 25.7  Implant design

317

• Mesh style of inner surface of plate • The V-shaped mesh implant connect to the distal tibia. • Implant measurement • Implant weight (g): 285 • Size (mm): 199

318

Fig. 25.7 (continued)

25  Patient Case 25: Proximal Tibia for Knee Joint Preserving

25.4  Design and Fabrication

Fig. 25.8  Printed implant

319

320

Fig. 25.8 (continued)

25  Patient Case 25: Proximal Tibia for Knee Joint Preserving

25.5 Operation

321

25.5 Operation

Fig. 25.9  Intraoperative photographs: medial, lateral, and anterior bone cutting of epiphysis proximally, V-shaped bone cutting diaphysis distally

322

Fig. 25.10  Intraoperative photographs

25  Patient Case 25: Proximal Tibia for Knee Joint Preserving

25.5 Operation

Fig. 25.11  Resected bone tumor: surgeon cuts the resected tumor directly in the pathology room after surgery

323

324

25.6 Postoperative Images

Fig. 25.12  Postoperative X-ray images

25  Patient Case 25: Proximal Tibia for Knee Joint Preserving

25.6  Postoperative Images

Fig. 25.13  Postoperative CT images

325

326

Fig. 25.14  Postoperative MRI image Fig. 25.15 Post­ operative bone scan images

25  Patient Case 25: Proximal Tibia for Knee Joint Preserving

Patient Case 26: Tibia Assembled with Knee Artificial Joint Surface

26

26.1 Patient Case 26 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

14/female Tibia proximal/left Osteosarcoma Antalgic gait Resting 2/Activity 5 17 (154.7/40.7) Diagnosed by incisional biopsy Two times preoperative chemotherapy Want to save femur side knee joint

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_26

327

328

26.2 Preoperative Images

Fig. 26.1  Preoperative X-ray images

Fig. 26.2  Preoperative CT images

26  Patient Case 26: Tibia Assembled with Knee Artificial Joint Surface

26.2  Preoperative Images

Fig. 26.3  Preoperative MRI images

329

330

Fig. 26.4  Preoperative bone scan image

Fig. 26.5  Preoperative PET-CT images

26  Patient Case 26: Tibia Assembled with Knee Artificial Joint Surface

26.3  Planning of Surgery

26.3 Planning of Surgery Wide resection including tibial joint Hemiarthroplasty tibial side of knee

331

3D-printed proximal tibia implant + Total knee arthroplasty system The ATTUNE® DePuy Synthes

Fig. 26.6  The selected total knee system and its tibial trial for 3D printing design

332

26  Patient Case 26: Tibia Assembled with Knee Artificial Joint Surface

26.4 Design and Fabrication 26.4.1 Bone Cutting • Saw cut of tibial tuberosity of the patella tendon attachment part • Distal tibial bone cutting is transverse • Transverse bone cutting is easier than V-shape cutting • 3D-printed instrument for conical medullary reaming

Fig. 26.7 Transverse bone cutting is easier than V-shaped bone cutting

26.4.2 Implant ATTUNE artificial joint of DePuy was selected for tibia joint hemiarthroplasty. Proximal surface is designed to be combined with tibial metal plate of ATTUNE.

• Implant measurement • Implant weight (g): 153 • Size (mm): 196

26.4  Design and Fabrication

Fig. 26.8  Cutting guide design

333

334 Fig. 26.9  Implant design

26  Patient Case 26: Tibia Assembled with Knee Artificial Joint Surface

26.4  Design and Fabrication

Fig. 26.10  Printed implant

335

336

26  Patient Case 26: Tibia Assembled with Knee Artificial Joint Surface

Fig. 26.10 (continued)

Fig. 26.11  3D-printed implant and tibia plate of arthroplasty combination and modeling

26.4  Design and Fabrication

337

Fig. 26.12  3D-printed conical reamer instrument for deep seating implant at the junction of bone

Fig. 26.13  Titanium alloy metal is applied to the patient’s forearm the day before surgery to determine the metal allergic reaction

338

26.5 Operation

Fig. 26.14  Intraoperative photographs

26  Patient Case 26: Tibia Assembled with Knee Artificial Joint Surface

26.5 Operation

Fig. 26.14 (continued)

339

340

Fig. 26.14 (continued)

Fig. 26.15  Resected bone tumor

26  Patient Case 26: Tibia Assembled with Knee Artificial Joint Surface

26.6  Postoperative Images

26.6 Postoperative Images

Fig. 26.16  Postoperative X-ray images

341

342

Fig. 26.17  Postoperative CT images

26  Patient Case 26: Tibia Assembled with Knee Artificial Joint Surface

26.6  Postoperative Images

Fig. 26.18  Postoperative MRI image

343

Part IV Calcaneus

Patient Case 27: Calcaneus Considering Possible Factors

27

27.1 Patient Case 27 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

24/male Calcaneus/left Desmoid tumor of bone Difficult walking with heel strike Resting 2/Working 7 21.18 (175.2/65) Physical therapy at a local clinic at 15 months ago No trauma history Visited after radiologic examination due to worsening foot pain while on military duty in the Air Force Diagnosed by incisional biopsy

27.2 Preoperative Images

Fig. 27.1  Preoperative X-ray images © Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_27

347

348

Fig. 27.2  Preoperative CT images

Fig. 27.3  Preoperative MRI images

27  Patient Case 27: Calcaneus Considering Possible Factors

27.2  Preoperative Images

Fig. 27.4  Preoperative bone scan images

Fig. 27.5  Preoperative PET-CT image

Fig. 27.6  PMMA cementing for sealing of bone biopsy track

349

350

27  Patient Case 27: Calcaneus Considering Possible Factors

27.3 Planning of Surgery Total excision except Achilles’ tendon attachment area 3D-printed calcaneus implant

27.4 Design and Fabrication • Using the normal side calcaneus (mirror images) • Save the Achilles’ tendon attachment bone

Fig. 27.7  Cutting guide design

• Slightly reducing the anteroposterior length • Mesh shape enough to pass the suture needle for soft tissue attachment • Screw fixation holes in preparation for subtalar arthritis • Flatten the sole of the calcaneus to reduce the arch angle. • Reduced front-to-back length to avoid heel injury • Implant measurement • Implant weight (g): 104 • Size (mm): 63

27.4  Design and Fabrication

Fig. 27.8  Implant design

351

352

Fig. 27.9  Printed cutting guide and models

Fig. 27.10  Printed implant

27  Patient Case 27: Calcaneus Considering Possible Factors

27.4  Design and Fabrication

Fig. 27.10 (continued)

353

354

Fig. 27.10 (continued)

27  Patient Case 27: Calcaneus Considering Possible Factors

27.5 Operation

27.5 Operation

Fig. 27.11  Intraoperative photographs

355

356

Fig. 27.12  Resected tumor

Fig. 27.13  Postoperative care photographs

27  Patient Case 27: Calcaneus Considering Possible Factors

27.6  Postoperative Images

27.6 Postoperative Images

Fig. 27.14  Postoperative X-ray images

Fig. 27.15  Postoperative CT images

357

358

27  Patient Case 27: Calcaneus Considering Possible Factors

Fig. 27.15 (continued)

Fig. 27.16  Postoperative MRI image: walking well even though it has been more than 5 years after surgery

Part V Scapula

Patient Case 28: Scapula Combined with Reverse Shoulder Arthroplasty

28

28.1 Patient Case 28 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

61/female Scapular/right Chondrosarcoma, grade 2 Palpable mass Resting 0/Working 6 18.18 (154.7/43.5) Considered a frozen shoulder Treated with oriental medicine for 6 months Planning surgery with radiological diagnosis

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_28

361

362

28  Patient Case 28: Scapula Combined with Reverse Shoulder Arthroplasty

28.2 Preoperative Images

Fig. 28.1  Preoperative X-ray images

Fig. 28.2  Preoperative CT images

28.2 Preoperative Images

Fig. 28.3  Preoperative MRI images

363

364

28  Patient Case 28: Scapula Combined with Reverse Shoulder Arthroplasty

Fig. 28.4  Preoperative bone scan images

28.3 Planning of Surgery

28.4 Design and Fabrication

3D printed scapular implant + reverse shoulder arthroplasty

28.4.1 Resection • Preserve medial border of scapular with levator and rhomboid muscle attachments • Preserve acromial end with deltoid muscle partially

28.4 Design and Fabrication

28.4.2 Guide 28.4.3 3D-Printed Implant Glenoid: • Reverse arthroplasty • The SMR® Shoulder System of Lima Corporate • Metal plate of SMR® glenoid component attached 3D-printed scapular with PMMA bone cement

Fig. 28.5 Modeling

365

Acromion: • Size reduction of acromion and scapular spine not to skin irritation • Acromial end cortical bone preserve to easily connect 3D-printed acromion • Multiple suture holes • Thin and smooth polishing of subacromial surface • Meshed upper surface and clavicular border for easy soft tissue adhesion • Blunt angle of acromial end

366

28  Patient Case 28: Scapula Combined with Reverse Shoulder Arthroplasty

Fig. 28.6  Bone cutting guide: the reference points are scapular back and acromion

metal glenoid component

polyethylene liner

humeral head

stem

Fig. 28.7  The SMR® Shoulder System of Lima Corporate

SMR L2 metal back glenoid component

28.4 Design and Fabrication

367

Fig. 28.8  The modeling of 3D-printed implant

Coracoid process: • Size reduction • Multiple suture holes • Meshed surface for soft tissue adhesion

Scapular spine: • Size reduction • Wider scapular notch space • Multiple suture holes

368

Fig. 28.9  The 3D-printed implant

28  Patient Case 28: Scapula Combined with Reverse Shoulder Arthroplasty

28.4 Design and Fabrication

369

Fig. 28.9 (continued)

Anterior and posterior surface: thin separator border with partial meshed surface Medial border: • Groove for insert of medial cut border • Multiple suture holes

• Implant measurement • Implant weight (g): 326 • Size (mm): 132

370

28  Patient Case 28: Scapula Combined with Reverse Shoulder Arthroplasty

28.5 Operation

Fig. 28.10  Intraoperative photographs

Fig. 28.11  The resected tumor

28.6 Postoperative Images

28.6 Postoperative Images

Fig. 28.12  Postoperative X-ray images

Fig. 28.13  Postoperative CT images

371

Patient Case 29: Scapula Combined with Glenoid of Conventional Shoulder System

29

29.1 Patient Case 29 Age/Sex Location/site Diagnosis Preoperative symptom Preoperative pain score Past history Present illness

14/male Scapular/right Ewing sarcoma Swelling of right scapular back Resting 2/Activity 4 Preoperative chemotherapy 3 times Chemotherapy was less effective

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_29

373

374

29  Patient Case 29: Scapula Combined with Glenoid of Conventional Shoulder System

29.2 Preoperative Images

Fig. 29.1  Preoperative X-ray image

Fig. 29.2  Preoperative CT images

29.2  Preoperative Images

Fig. 29.3  Preoperative MRI images

375

376

29  Patient Case 29: Scapula Combined with Glenoid of Conventional Shoulder System

29.3 Planning of Surgery

29.4 Design and Fabrication

3D-printed scapular implant + conventional shoulder glenoid Preserve humeral head The SMR® Shoulder System of Lima Corporate

• Implant measurement • Implant weight (g): 245 • Size (mm): 155

• can easily change conventional and reverse shoulder arthroplasty

Fig. 29.4  Implant design

29.4 Design and Fabrication

377

Fig. 29.5  Printed implant: The 3D-printed scapular implant and assembly with glenoid system to conventional total shoulder

378

29  Patient Case 29: Scapula Combined with Glenoid of Conventional Shoulder System

29.5 Operation

Fig. 29.6  Intraoperative photographs

Fig. 29.7  Resected tumor

29.6 Postoperative Images

29.6 Postoperative Images

Fig. 29.8  Postoperative X-ray images

379

380

29  Patient Case 29: Scapula Combined with Glenoid of Conventional Shoulder System

Fig. 29.9  Postoperative CT images

Part VI Humerus

Patient Case 30: Distal Humerus for Assembly with Tumor Prosthesis

30

30.1 Patient Case 30 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

20/male Humerus/right Osteosarcoma Pathologic fracture Fractured without external force Resting 6/Activity 9 26.99(169/77.1) Preoperative chemotherapy 2 times Motor weakness of radial nerve Wants limb salvage surgery and customized reconstruction

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_30

383

384

30.2 Preoperative Images

Fig. 30.1  Preoperative X-ray images

Fig. 30.2  Preoperative CT images

30  Patient Case 30: Distal Humerus for Assembly with Tumor Prosthesis

30.2 Preoperative Images

Fig. 30.3  Preoperative MRI images

385

386

Fig. 30.4  Preoperative bone scan image

30  Patient Case 30: Distal Humerus for Assembly with Tumor Prosthesis

30.2 Preoperative Images

Fig. 30.5  Preoperative PET-CT images

387

30  Patient Case 30: Distal Humerus for Assembly with Tumor Prosthesis

388

30.3 Planning of Surgery

30.4 Design and Fabrication

3D printed humerus + Tumor prosthesis MUTARS® Proximal humeral replacement

1-mm cement mantle space than stem thickness: 12 mm, solid canal Wrap the stem base Distal humeral condyle plate in a wing shape Mesh body Solid surface and polishing for radial nerve driving area • Implant measurement • Implant weight (g): 215 • Size (mm): 200

Fig. 30.6 Modular MUTARS®

proximal

humeral

system

of

30.4 Design and Fabrication

Fig. 30.7  Cutting guide design

389

390

Fig. 30.7 (continued)

30  Patient Case 30: Distal Humerus for Assembly with Tumor Prosthesis

30.4 Design and Fabrication

Fig. 30.8  Implant design

391

392

Fig. 30.8 (continued)

30  Patient Case 30: Distal Humerus for Assembly with Tumor Prosthesis

30.4 Design and Fabrication

Fig. 30.9  Printed cutting guide

Fig. 30.10  Printed implant

393

394

30.5 Operation

Fig. 30.11  Intraoperative photographs

Fig. 30.12  Resected tumor

30  Patient Case 30: Distal Humerus for Assembly with Tumor Prosthesis

30.6 Postoperative Images

30.6 Postoperative Images

Fig. 30.13  Postoperative X-ray images

Fig. 30.14  Postoperative CT images

395

396

Fig. 30.15  Postoperative MRI images

30  Patient Case 30: Distal Humerus for Assembly with Tumor Prosthesis

Patient Case 31: Partial Elbow Joint

31

31.1 Patient Case 31 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

55/male Humerus, distal/left Allograft failure Elbow joint instability Resting 0/Activity 4 22.64 (167.4/63.45) Giant cell tumor of bone diagnosed at 4 years ago Medial osteoarticular allograft reconstruction of distal humerus The osteoarticular allograft bone is gradually destroyed

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_31

397

398

31  Patient Case 31: Partial Elbow Joint

31.2 Preoperative Images

Fig. 31.1  Preoperative X-ray images: medial joint collapse of osteoarticular allograft Fig. 31.2 Preoperative CT images

31.3 Planning of Surgery

Fig. 31.3  Preoperative MRI image

399

400

31  Patient Case 31: Partial Elbow Joint

31.3 Planning of Surgery

31.4 Design and Fabrication

3D-printed medial condylar implant of distal humerus Using the mirror images of contralateral elbow

• Implant measurement • Implant weight (g): 90 • Size (mm): 126

Fig. 31.4  Cutting guide design

31.4 Design and Fabrication

Fig. 31.5  Implant design

401

402

Fig. 31.6  Printed cutting guide

Fig. 31.7  Printed implant

31  Patient Case 31: Partial Elbow Joint

31.5 Operation

31.5 Operation

Fig. 31.8  Intraoperative photographs

403

404

Fig. 31.9  Resected osteoarticular allograft

31  Patient Case 31: Partial Elbow Joint

31.6 Postoperative Images

31.6 Postoperative Images

Fig. 31.10  Postoperative X-ray images

Fig. 31.11  Postoperative CT images

405

Part VII Radius and Ulna

Patient Case 32: Radius & Ulna and Implant-Bone Connector

32

32.1 Patient Case 32 Age/sex Location/site Diagnosis Preoperative motion Preoperative pain score BMI (height/weight) Past history Present illness

40/male Radius and ulnar forearm/right Aggressive fibromatosis Bone involvement No specific restriction Resting 2/activity 5 23.73 (174.9/72.6) Radial head dislocation since childhood Colles fracture on right wrist at 5 years ago Operated with pinning and external fixator The patient wants to preserve the right-hand function

32.2 Preoperative Images

Fig. 32.1  Preoperative X-ray and MRI images bone-destructive tumor develops at the pin site © Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_32

409

410

32  Patient Case 32: Radius & Ulna and Implant-Bone Connector

32.3 Planning of Surgery

32.4 Design and Fabrication

Patient refuses forearm one bone reconstruction and wants to reconstruct both radius and ulna Preserve wrist joint 3D-printed radius and ulna

• Implant measurement • Implant weight (g): radius 117, ulna 79 • Size (mm): radius 138, ulna 136

Fig. 32.2  Cutting guide design

Fig. 32.3  Implant design. All bone contact surfaces were fabricated in a mesh structure

Fig. 32.4  Printed cutting guide

32.4 Design and Fabrication

Fig. 32.5  Printed implant

411

412

32.5 Operation

Fig. 32.6  Intraoperative photographs

32  Patient Case 32: Radius & Ulna and Implant-Bone Connector

32.6 Postoperative Images

413

The demineralized bone matrix (DBM) was attached to the mesh structure part on contact with the bone.

Fig. 32.7  Resected tumor Fig. 32.8 Postoperative X-ray and CT images

32.6 Postoperative Images

414

32  Patient Case 32: Radius & Ulna and Implant-Bone Connector

Fig. 32.9  Local recurrent and removal of ulnar implant at one year after

32.6 Postoperative Images

Fig. 32.10  Failure of radius-ulnar fixation at postoperative 4 months

415

416

32  Patient Case 32: Radius & Ulna and Implant-Bone Connector

32.7 Planning of 3rd Surgery 3D-printed connecting implant for reconstruction between the previous radial implant distally and the ulnar bone proximally

• Implant measurement • Implant weight (g): 170 • Size (mm): 146

Fig. 32.11  Implant design of 3D-printed connecting implant

32.7 Planning of 3rd Surgery

Fig. 32.12  Printed connecting implant

417

418

Fig. 32.12 (continued)

32.8 Operation

Fig. 32.13  Intraoperative photographs

32  Patient Case 32: Radius & Ulna and Implant-Bone Connector

32.9 Postoperative Images

32.9 Postoperative Images

Fig. 32.14  Postoperative X-ray images

Fig. 32.15  Preserved writing function

419

Part VIII High Grade Bone Sarcoma

Patient Case 33: Disseminated Metastases after 3D Printing Pelvic Reconstruction

33

33.1 Patient Case 33 Age/sex Location/site Diagnosis Preoperative symptom Preoperative pain score BMI (height/weight) Past history Present illness

27/male Pelvis/left Ewing sarcoma Limping gate Resting 3/Activity 6 21.5 (172/63.6) Preoperative chemotherapy 2 times Less effective preoperative chemotherapy

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_33

423

424

33  Patient Case 33: Disseminated Metastases after 3D Printing Pelvic Reconstruction

33.2 Preoperative Images a

Fig. 33.1 (a) Initial images (pre-chemotherapy). (b) X-ray images after preoperative chemotherapy

33.2 Preoperative Images

b

Fig. 33.1 (continued)

425

426

33  Patient Case 33: Disseminated Metastases after 3D Printing Pelvic Reconstruction

Fig. 33.2  MRI images after preoperative chemotherapy: observation of suspicious lesion on right ischial tuberosity in images taken one day before surgery

33.2 Preoperative Images

Fig. 33.3  PET-CT taken the day before surgery after chemotherapy: new suspicious right ischial lesion

427

428

33  Patient Case 33: Disseminated Metastases after 3D Printing Pelvic Reconstruction

33.3 Design and Fabrication • Implant measurement • Implant weight (g): 462 • Size (mm): 190

Fig. 33.4  Cutting guide design

33.3 Design and Fabrication

Fig. 33.5  Implant design

429

430

33  Patient Case 33: Disseminated Metastases after 3D Printing Pelvic Reconstruction

Fig. 33.6  Printed cutting guide

33.3 Design and Fabrication

Fig. 33.7  Printed implant

431

432

33  Patient Case 33: Disseminated Metastases after 3D Printing Pelvic Reconstruction

33.4 Operation

Fig. 33.8  Intraoperative photographs

33.4 Operation

Fig. 33.9  Resected left pelvic tumor and right ischium. The right ischium is also confirmed as an Ewing sarcoma

433

434

33  Patient Case 33: Disseminated Metastases after 3D Printing Pelvic Reconstruction

33.5 Postoperative Images

Fig. 33.10  Postoperative X-ray images: right ischial lesion was also excised

Fig. 33.11  Postoperative CT images

33.5 Postoperative Images Fig. 33.12 Disseminated metastases at two months follow-up after surgery

435

436 Fig. 33.13  The patient tried to walk with bone reconstruction, but unfortunately, he could not overcome the oncological problem

33  Patient Case 33: Disseminated Metastases after 3D Printing Pelvic Reconstruction

Part IX Perioperative Times

Preparations and Postoperative Cares of 3D Printing Bone Reconstruction

34.1 P  rocess of 3D Printing Implant 34.1.1 IRB Consent Sign 34.1.1.1 Preoperative Radiology CT: less than 1-mm thin section as possible MRI: less than 3 mm thin section as possible PET-CT check: tumor margin check, recurrence surveillance after surgery Bone scan: recurrence surveillance after surgery

34

Communication can use the Cell Phone—3D PDF Reader (App, https://play.google.com) 3D printing bone model, cutting guide, and implant • EBM (Electron Beam Melting) machine: ARCAM A1 • Ti6Al4V ELI (Extra Low Interstitials) Implant printing time: 12–48 h • Depending on the size and direction of output Post printed processing

34.1.2 Dicom Files Send to Engineering Team CT, MRI, and/or PET-CT: axial images

34.1.3 Engineering Team of Company

• Cooling (700 °C ➔ 40 °C, 4 h) • Blow out the titanium powder (Powder recovery system) • Supporter removal • Inspection • Polishing • Product marking with laser • Cleaning and Packaging

3D rendering Design as Surgeon’s plan of implant and cutting guide

© Springer Nature Singapore Pte Ltd. 2021 H.-G. Kang, Clinical Atlas of 3D Printing Bone Reconstruction, https://doi.org/10.1007/978-981-16-2043-0_34

439

34  Preparations and Postoperative Cares of 3D Printing Bone Reconstruction

440

Electron Beam Column Filament

Astigmatism lens Focus lens Camera glass Deflection lens Heat shield Vacuum chamber

Powder hopper

Powder hopper

Electron Beam

Heat shield

Rake

Rake Build tank Build platform

Powder

Build tank

Start plate

Fig. 34.1  EBM (electron beam melting) machine and Titanium alloy powder

Powder hopper

34.1  Process of 3D Printing Implant

34.1.4 Delivery to the Hospital Measurement of weight and size of printed implant

Fig. 34.2  Post-printed processing

Fig. 34.3  Intraoperative trimming unsuitable areas using high-speed metal or stone burr

441

Surgical simulation with printed implant and guide • Sterilization: Implant—Autoclave • Guide, Bone model—Ion gas or Plasma gas

442

34  Preparations and Postoperative Cares of 3D Printing Bone Reconstruction

34.2 Postoperative Cares Wound bag or Hemovac drainage: Maintain for 7–21 days Antibiotic use period: Usually 1–3 weeks until close to normal CRP

Fig. 34.4  Art of 3D printing design

Exercise: Started earlier than other bone reconstruction methods • Consideration of postoperative chemotherapy Follow-up surveillance for recurrence