Biotechnology

Пособие предназначено для занятий по курсу профессионально- ориентированного английского языка в области биотехнологий.

1,215 57 2MB

Russian Pages 152

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

Biotechnology

  • Commentary
  • decrypted from 9FBED377D23DB5801B78B64F2CAA2349 source file
Citation preview

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Министерство образования и науки России Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Казанский национальный исследовательский технологический университет»

Кафедра «Иностранные языки в профессиональной коммуникации»

Г.В. Рябкова

BIOTECHNOLOGY (Биотехнология) Учебно-методическое пособие

Казань Издательство КНИТУ 2012 1

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

УДК 802.0 (07) ББК 81.2 Англ я 7 Рябкова Г.В. Biotechnology (Биотехнология) : учебно-методическое пособие / Г.В. Рябкова; М-во образ. и науки России, Казан. нац. исслед. технол. ун-т. – Казань : Изд-во КНИТУ, 2012. – 152 с. ISBN 978-5-7882-1327-9 Пособие предназначено для занятий по курсу профессиональноориентированного английского языка в области биотехнологий. Содержит практические задания, тексты для домашнего чтения и глоссарий. Направлено на формирование умений и навыков чтения научно-технических текстов по специальности с целью извлечения нужной информации, аннотирования и реферирования изучаемой литературы, а также развития навыков устной речи по данной специальности. Предназначено для магистрантов и бакалавров, обучающихся по направлению 240700 «Биотехнология», студентов, получающих дополнительную квалификацию «Переводчик в сфере профессиональной коммуникации», аспирантов, а также для широкого круга лиц, изучающий английский язык. Подготовлено на кафедре «Иностранные языки в профессиональной коммуникации». Печатается по решению редакционно-издательского совета Казанского национального исследовательского технологического университета. Рецензенты:

доц. каф. иностранных языков КНИТУ им. А.Н. Туполева Н.С. Аристова доц. каф. контрастивной лингвистики и лингводидактики К(П)ФУ (Институт филологии и искусств) О.В. Хасанова

ISBN 978-5-7882-1327-9

© Рябкова Г.В., 2012 © Казанский национальный исследовательский технологический университет, 2012

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

СОДЕРЖАНИЕ стр Введение ................................................................................................. 5 Part 1. Introduction to biotechnology ........................................................ 6 Unit 1. What is biotechnology .............................................................. 6 Unit 2. A long history of biotechnology ............................................. 12 Unit 3. How did the process of cheese-making start............................ 17 Unit 4. Did people first bake bread by accident .................................. 21 Unit 5. How was penicillin’s special property discovered ................... 24 Unit 6. Selective breeding as a form of biotechnology ........................ 28 Part 2. Biochemistry as a basis of biotechnology ..................................... 32 Unit 7. The science behind biotechnology .......................................... 32 Unit 8. Biochemistry .......................................................................... 36 Unit 9. Biochemical reactions ............................................................ 39 Unit 10. The cell ................................................................................ 42 Unit 11. The chemical elements essential to life ................................. 44 Unit 12. Fats ...................................................................................... 51 Unit 13. Properties of proteins and their transformations in the organism............................................................................................ 54 Unit 14. Enzymes .............................................................................. 57 Unit 15. Microbial enzymes: new industrial applications from traditional screening methods ............................................................. 60 Part 3. Biotechnology in the environment................................................ 63 Unit 16. Can ethanol and e85 reduce our use of fossil fuels? .............. 63 Unit 17. How does bioremediation work? .......................................... 67 Unit 18. Why is composting a beneficial process? .............................. 71 Part 4. Biotech trends and european policy in the 21st century ................. 75 Unit 19. Advances in microbiological processing of petroleum .......... 75 Unit 20. Nutritive value of biomass .................................................... 78 Unit 21. Certain specifics of microbiological production of protein biomass ............................................................................................. 82 Unit 22. Safety of protein biomass ..................................................... 85 Unit 23. Principles of control of microbiological breakdown of hydrocarbons ..................................................................................... 89 Unit 24. Oxidation of n-alkane molecule ............................................ 92 Unit 25. Biotech trends and european policy in the 21st century .......... 95 Part 5. From biotechnology to bionanotechnology................................. 100 Unit 26. Nanotechnology ................................................................. 100 Unit 27. The atom: old idea and the new reality................................ 104 3

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 28. Exploring the limits of nature ............................................. 109 Unit 29. Bionanotechnology ............................................................ 112 Part 6. Supplementary reading .............................................................. 115 Text 1. Biotechnology and the two -week revolution ........................ 117 Text 2. What is bionanotechnology? ................................................ 118 Text 3. Biomolecular design and biotechnology ............................... 120 Text 4. Principles of biotechnology .................................................. 122 Text 5. Can roses be mated with pigs?.............................................. 125 Text 6. Biotechnology and genetic diversity experts say risks and benefits of biotechnology must be weighed on a case-by-case basis.. 127 Text 7. The nucleus, genetic information and its transmission .......... 133 Text 8. Principles of metabolic control ............................................. 135 Text 9. Essential fatty acids.............................................................. 137 Part 7. Практикум письменного перевода .......................................... 138 Glossary ............................................................................................... 141 Библиография ..................................................................................... 144 Приложения ........................................................................................ 146

4

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

ВВЕДЕНИЕ Учебно-методическое пособие предназначено для магистрантов и бакалавров, обучающихся по направлению 240700 «Биотехнология», а также для студентов, получающих дополнительную квалификацию «Переводчик в сфере профессиональной коммуникации», аспирантов и широкого круга лиц, интересующихся английским языком. Основная цель пособия – познакомить с лексическим материалом технических текстов, связанным с биотехнологиями. Пособие состоит из 29 уроков, каждый из которых содержит комплекс заданий по работе с терминологией, устному и письменному переводу, устному изложению содержания текстов на русском и английском языках. Кроме того, пособие содержит тексты для самостоятельного изучения. В начале каждого урока даны задания по переводу слов, употребляемых в научно-популярных текстах широкого профиля. Проведение учащимися сопоставительного анализа интернациональных слов и их русских эквивалентов, включая синонимы, способствует расширенному усвоению знания общетехнической лексики. Другая форма пополнения лексической базы – задания по подбору эквивалентного перевода слов и выражений по теме урока. Задания по переводу текста с пересказом на русском языке рассчитаны на понимание учащимися смысла и содержания текста, раскрыть который помогают вопросы, следующие за текстом. Для развития навыков письменного перевода предложены задания по письменному переводу текстов на русский или английский язык со словарем. Задания по устному изложению на английском языке, а также задания по переводу на русский и английский языки дополнительных текстов дают возможность апробировать и закрепить новый лексический материал. Таким образом, данное пособие способствует развитию навыков письменного и устного перевода и предназначено как для аудиторной, так и для самостоятельной работы.

5

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

PART 1. INTRODUCTION TO BIOTECHNOLOGY Unit 1. WHAT IS BIOTECHNOLOGY 1. Давайте вспомним все, что мы уже знаем или слышали о биотехнологии. Допишите по одному слову к каждой букве слова “biotechnology”. Примером может служить следующий вариант.

2. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: biotechnology, fruit, fermented, physical, manipulations, type, therapeutic, population, organism, product, history, to control, gene, genetic, technique, recombinant, bacterial, molecule, to synthesize

3. Прочитайте и переведите следующие глаголы: to flourish, to realize, to plant, to breed, to learn, to ferment, to be converted, to be made, to find, to magnify, to engage, to bring, to develop, to refer, to modify, to understand, to increase, to control, to combine, to cause

6

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

4. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23)

А human being to breed animals to ferment into to be converted into malt hop spongy firm fledgling physical trait to mate unlimited source to envision pest-resistant to elicit pure form living organism yeast cell alcoholic beverages productive offspring ancestor splicing recombinant DNA

из

колонки

B a) подвергаться брожению b) представлять себе c) разводить скот d) твердый, жесткий e) физическое свойство f) невосприимчивый к паразитам g) человек h) солод i) предок j) чистая форма k) живой организм l) дрожжевая клетка m) недавно созданный, только что оперившийся n) превращаться в o) плодовитое потомство p) рыхлый, пористый, воздушный q) вызывать r) рекомбинантная ДНК s) алкогольсодержащие напитки t) хмель u) сплайсинг (вырезание интронов из пре-мРНК с последующим лигированием экзонов и образованием зрелой мРНК в ходе процессинга) v) спаривать w) неограниченный источник

7

А

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

5. Прочитайте и переведите текст What Is Biotechnology Biotechnology in one form or another has flourished since prehistoric times. When the first human beings realized that they could plant their own crops and breed their own animals, they learned to use biotechnology. The discovery that fruit juices fermented into wine, or that milk could be converted into cheese or yogurt, or that beer could be made by fermenting solutions of malt and hops began the study of biotechnology. When the first bakers found that they could make a soft, spongy bread rather than a firm, thin cracker, they were acting as fledgling biotechnologists. The first animal breeders, realizing that different physical traits could be either magnified or lost by mating appropriate pairs of animals, engaged in the manipulations of biotechnology. What then is biotechnology? The term brings to mind many different things. Some think of developing new types of animals. Others dream of almost unlimited sources of human therapeutic drugs. Still others envision the possibility of growing crops that are more nutritious and naturally pest-resistant to feed a rapidly growing world population. This question elicits almost as many first-thought responses as there are people to whom the question can be posed. In its purest form, the term "biotechnology" refers to the use of living organisms or their products to modify human health and the human environment. Prehistoric biotechnologists did this as they used yeast cells to raise bread dough and to ferment alcoholic beverages, and bacterial cells to make cheeses and yogurts and as they bred their strong, productive animals to make even stronger and more productive offspring. Throughout human history, we have learned a great deal about the different organisms that our ancestors used so effectively. The marked increase in our understanding of these organisms and their cell products gains us the ability to control the many functions of various cells and organisms. Using the techniques of gene splicing and recombinant DNA technology, we can now actually combine the genetic elements of two or more living cells. Functioning lengths of DNA can be taken from one organism and placed into the cells of another organism. 8

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

As a result, for example, we can cause bacterial cells to produce human molecules. Cows can produce more milk for the same amount of feed. And we can synthesize therapeutic molecules that have never before existed1. 6. Определите, являются ли следующие утверждения верными в соответствии с текстом упражнения 5 1) Biotechnology is a modern science. 2) Biotechnology means using or changing organisms to help make people’s lives better. 3) In the word “biotechnology,” the prefix bio- means life or living things. 4) The word biotechnology has been around for thousands of years. 5) Using the techniques of gene splicing and recombinant DNA technology, we can’t cause bacterial cells to produce human molecules. 7. Ответьте на вопросы: a. What is biotechnology and why is it important? b. What are some of the first ways that people used living things to improve their lives? c. What is the term for word parts such as “bio” and “micro”? d. Define “biotechnology” using the word organism in your answer. e. What are some of the developments in biotechnology that have been made in the past 25 years? 8. Прочитайте, переведите и озаглавьте текст Biotechnology is the science for this century. With its advances, we are on the first part of a great journey. Humans have expanded their understanding of the biosphere by journeying into space and exploring the depths of the ocean. We have not only been able to look at the surrounding universe and the depths below with the advancement of tools and techniques, but we also have been able to live there. Advanced tools and techniques are now allowing us to look at the universe of atoms. Biotechnology is utilizing the sciences of biology, chemistry, physics, engineering, computers, and information technology to develop tools and 1

Pamela Peters, from Biotechnology: A Guide To Genetic Engineering. Wm. C. Brown Publishers, Inc., 1993. 9

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

products that hold great promise. Humans have spent thousands of years selecting for and cultivating the best traits nature has to offer. Now with the help of biotechnology, nanotechnology and a host of other sciences, we are able to harness these traits at the atomic level to develop safe and beneficial crops, medical treatments, biofuels and household products2. 9. Переведите текст письменно Биотехноло́ гия — дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии. Биотехнологией часто называют применение генной инженерии в XX–XXI веках, но термин относится и к более широкому комплексу процессов модификации биологических организмов для обеспечения потребностей человека, начиная с модификации растений и одомашненных животных путем искусственного отбора и гибридизации. С помощью современных методов традиционные биотехнологические производства получили возможность улучшить качество пищевых продуктов и увеличить продуктивность живых организмов. До 1971 года термин «биотехнология» использовался, большей частью, в пищевой промышленности и сельском хозяйстве. С 1970 года учёные используют термин в применении к лабораторным методам, таким, как использование рекомбинантной ДНК и культур клеток, выращиваемых in vitro3.

10. Перескажите текст упражнения 5, используя следующие фразы   2 3

The object of this paper is to present (to discuss, to describe, to show) … The paper (article, topic) begins with … http://www.biotechinstitute.org/what-is-biotechnology http://ru.wikipedia.org/wiki/Биотехнология

10

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

   

The first paragraph deals with … First the author points out (notes that, describes) … Then follows a discussion on … Finally the author admits that …

11. Определите, согласны Вы или не согласны со следующими высказываниями   

Biotechnology is rapidly spreading all over the world. The development of science brings only progress. Science and technology should be used only in peaceful.

12. Выразите свое отношение к следующим цитатам: 

"Science is wonderfully equipped to answer the question "how?" but it gets terribly confused when you ask the question "why?". Erwin Chardaff.  "Science has radically changed the conditions of human life on earth. It has expanded our knowledge and our power but not our capacity to use them with wisdom.” J. William Fulbright.  "The work of science is to substitute facts for appear ances, and demonstrations for impressions." John Ruskin.

11

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 2. A LONG HISTORY OF BIOTECHNOLOGY 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: control, function, history, ferment, structure, genetics, transgenic, technique, complex, insecticide, polymerase, fragment, reaction, therapy, immune, tomato, to clone, group, progressive, insulin 2. Прочитайте и переведите следующие глаголы: to domesticate, to leaven, to ferment, to insecticide, to discover, to describe, to prove, to develop, to approve, to suffer from, to create, to claim, to allow, to complete, to prevent, to undernourish, to detect, to carry

3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12)

A milestone livestock crossbreeding pea trait offspring double-helical structure PCR fingerprinting disorder FDA major tool

a) b) c) d) e) f) g) h) i) j) k) l)

из

колонки

B полимеразная цепная реакция снятие отпечатков пальцев этап, веха горох скрещивание потомство домашний скот расстройство, заболевание двуспиральная структура черта главный инструмент управление по контролю за продуктами и лекарствами

12

А

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

4. Переведите текст A Long History of Biotechnology The long history of biotechnology includes many exciting discoveries. The following timeline outlines just some of the numerous milestones in the field of biotechnology4: B.C.E. (Before Common Era)  8000 Humans domesticate crops and livestock.  4000–2000 Biotechnology first is used to leaven bread and to ferment beer, using yeast. C.E. (Common Era)  100 First insecticide is developed.  1761 Joseph Koelreuter reports successful crossbreeding of crop plants in different species.  1830 Proteins are discovered.  1865 Science of genetics begins when Austrian monk Gregor Mendel studies garden peas and discovers genetic traits are passed from parents to offspring in a predictable fashion.  1919 Biotechnology first is used in print.  1944 DNA is proven to carry genetic information.  1953 Scientific journal Nature publishes James Watson and Francis Crick’s manuscript describing the double-helical structure of DNA, which marks the beginning of the modern era of genetics.  1975 United States government first is urged to develop guidelines for regulating experiments in recombinant DNA.  1981 Scientists at Ohio University produce the first transgenic animals by transferring genes from other animals into mice.  1982 First biotech drug — human insulin produced in genetically modified bacteria — is approved by the Food and Drug Administration (FDA).  1983 Polymerase chain reaction technique is conceived. PCR, which uses heat and enzymes to make unlimited copies of genes and gene fragments, later becomes a major tool in biotechnology research and product development worldwide.  1984 DNA fingerprinting technique is developed.  1989 Plant Genome Project begins. 4

http://www.aboutbioscience.org 13

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»



 







1990 Human Genome Project, an international effort to map all the genes in the human body, is launched. First experimental gene therapy treatment is performed successfully, on a 4-year-old girl suffering from an immune disorder. First transgenic dairy cow used to produce human milk proteins for infant formula is created. 1994 First whole food produced through biotechnology, the Flavr Savr tomato, is approved by the FDA. 1997 First animal is cloned from an adult cell (a sheep named Dolly, in Scotland). First weed- and insect-resistant biotech crops are commercialized. Group of Oregon researchers claims to have cloned two Rhesus monkeys. 2000 First complete map of a plant genome is developed. “Golden rice” announcement allows the technology to be available to developing countries in hopes of improving the health of undernourished people and preventing some forms of blindness. 2002 Draft version of the complete map of the human genome is published. Biotech crops are grown on 145 million acres in 16 countries. 2003 GloFish, the first biotech pet, hits the North American market. The fish is bred specially to be able to detect water pollutants and glows red under black light because of the addition of a natural fluorescence gene. Dolly, the cloned sheep that made headlines in 1997, is euthanized after developing progressive lung disease5.

5. Определите, являются ли следующие утверждения верными в соответствии с текстом упражнения 4:    

Biotechnology has a long history. Biotechnology is really a new technology. Biotechnology was being used in agriculture and food production. In 1980s, man was able to take pieces of human DNA and isolate a gene for insulin using biotechnology.

6. Ответьте на вопросы по тексту   5

What are the main milestones in the field of biotechnology? What is the major milestone from your point of view? The Biotech Industry Organizations website Bio.org 14

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»



What happened in 1997? What is your attitude to cloning/human cloning?

7. Переведите предложения на русский язык письменно 1). Today, pioneers of biotechnology are discovering new solutions for better feed, food and consumer products. They are building on the knowledge we gained through the scientific innovations of earlier pioneers such as the Egyptians, Christopher Columbus, Louis Pasteur, Gregor Mendel and others6. 2). Expanding on their understanding of scientific processes, ancient Egyptians innovated with their use of advanced fermentation and breeding practices. The ancient Egyptians made wine using fermentation techniques based on an understanding of the microbiological processes that occur in the absence of oxygen. Egyptians also applied fermentation technologies to make dough rise during breadmaking. Due in part to this application, there were more than 50 varieties of bread in Egypt more than 4,000 years ago. 8. Переведите следующий текст на английский язык письменно: Биотехнология (гр. bios - живой, teken – искусство, logos наука) – наука об использовании биологических процессов в технике и промышленном производстве. Под биологическими процессами понимают такие процессы, в которых применяются биологические агенты - организмы, их клетки и ткани, а также биополимеры, в первую очередь, нуклеиновые кислоты, ферменты. Биотехнология является междисциплинарной областью знаний, базирующейся на общей биологии и микробиологии, экологии, биохимии, молекулярной биологии, биоорганической химии, биофизике, вирусологии, иммунологии, генетике, инженерных науках и электронике. Разнообразные биотехнологические исследования ведутся в таких приоритетных направлениях развития промышленного производства и сельского хозяйства, как здравоохранение, растениеводство и животноводство, технологии окружающей среды и биоконверсия отходов, технологии возобновляемых ресурсов,

6

http://www2.dupont.com/Biotechnology/en_US/intro/history.html 15

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

ферментативный катализ, получение новых перспективных продуктов биотехнологии (тароупаковочные материалы, электроника) и др.7. 9. Определите, согласны Вы или не согласны со следующими высказываниями 

    

The oportunities of getting education in foreign countries and in Russia are quite different. Point out the advantages and disadvantages of our educational system. Science is a productive force in our country. Science and technology should be used only in peaceful. Post-graduate courses give science students all the possibilities for research work. The role of a teacher (or research supervisor) is developing a person’s talent. Only geniuses have the right to work in science.

10. Выразите свое отношение к следующим цитатам8:   







7

"The only good is knowledge, and the only evil is ignorance". Diogenes. "If we widh to reach the highest begin at the lowest.” "We judge ourselves by what we feel capable of doing, while others judge us by what we have already done." Longfellon. "The old believe everything, the middle-aged suspect everything, the young know everything." Oscar Wilde. "Curiosity is one of the permanent and certain characteristics of a vigorous intellect." Dr.Johnson. "Self-education is fine when the pupil is a born educator." John A. Shedd.

Основы биотехнологии: учебно-методическое пособие / А.С. Сироткин [и др.]. – Казань: Изд-во Казан. гос. технол. ун-та, 2006. – С. 3. 8 http://sammysplace.org/sammy/quoteseduc.html 16

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 3. HOW DID THE PROCESS OF CHEESE-MAKING START 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: archaeologist, civilization, object, artifact, resource, microorganism, pasteurization, enzyme, rennin, protein, separate, bacteria 2. Прочитайте и переведите следующие глаголы: to be sure, to occur, to transport, to make from, to notice, to turn into, to kill, to be stored, to separate from, to add, to stick 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13)

А belongings sack stomach edible lump curd rennin rennet liquid whey flavor bubble domesticated nutritional value

a) b) c) d) e) f) g) h) i) j) k) l) m)

17

из

колонки

B вкус желудок реннин питательная ценность одомашненный имущество сычужный фермент сыворотка свернувшееся молоко пузырек съедобный комок мешок жидкость

А

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

4. Переведите текст How Did the Process of Cheese-Making Start? One of the earliest examples of how people used a living thing to help them was in the process of making cheese. Since the development of cheese happened so long ago, no one is really sure how it came to be. However, some scientists, called archaeologists, who study past civilizations by looking at the remains of their objects, or artifacts, think that it was probably discovered by accident about 6000 years ago. This most likely occurred in the Middle East, when people did not have many of the materials that we have today. They used the resources available to them, most of which came from animals. So, when traveling, people would sometimes carry their belongings in sacks made from animal stomachs. Archaeologists think that cheese was discovered in ancient times when people, who transported their milk in sacks made from young animals’ stomachs, noticed that the milk was forming small edible lumps. These lumps, called curds, are the substances that turn into cheese. The curds were formed due to an enzyme that lined the sacks. An enzyme is a protein found in organisms that can have an effect on chemical reactions. The enzyme from the lining of the stomachs that was turning the milk into cheese is called rennin, which is extracted from a substance called rennet. Rennet is found in the stomachs of young calves and other milk-drinking domestic animals. While cheese-making is a similar process today, there are two main differences. First, the milk is now heated to kill harmful microorganisms before it is turned into cheese (a process called pasteurization). Second, the enzyme rennin is still used in cheese-making, but it must be intentionally added to the milk. In most places nowadays, milk is stored in huge tanks (rather than in small stomach sacks), so the enzyme that makes cheese from milk has to be added. When the rennin is added, it makes the proteins in the liquidmilk stick together and form clumps called curds. These curds are then separated from the rest of the liquid, which is called whey. After that, various salts and bacteria are added to create the many different types and flavors of cheese. Bacteria are microorganisms that have only one cell. Different bacteria will produce different types of cheese. For example, to create Swiss cheese, a type of bacterium called P. shermanii is added, which creates gas bubbles in the cheese. These gas bubbles then leave the holes in the cheese, giving Swiss cheese its distinct appearance. 18

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Cheese-making is an example of biotechnology because people used a substance from a living thing (rennin from the lining of an animal’s stomach) to help them make another product; that is, to make cheese from the milk of domesticated animals. Making cheese was a great advantage to people when it was first discovered thousands of years ago; the cheese stayed fresh longer, and was easier to transport, than milk. (Remember, they did not have refrigerators to help preserve food in those days.) Cheese is still important today for its nutritional value and its many uses in our foods9. 5. Определите, являются ли следующие утверждения верными в соответствии с текстом упражнения 4 a. A substance called rennet contains the enzyme that turns the milk into cheese. b. Rennet is a substance found in the stomachs of milk drinking animals. c. Rennin is not still used today to turn milk into cheese. d. Milk is now heated before it is turned into cheese, in order to kill harmful bacteria. e. Enzymes are used to create the different types and flavors of cheese. 6. Ответьте на вопросы (множественный выбор) 1). How many years ago did the cheese-making process start? a. 60 b. 100 c. 600 d. 6000 2). In ancient times, sacks for carrying milk were made from a. canvas b. animal stomachs c. nylon d. plastic 3). Adding a certain enzyme to milk makes clumps called a. curds b. proteins c. whey d. butter 4). The name of the enzyme that turns the milk into cheese is a. P. shermanii b. rennet c. rennin d. milk

9

Biotechnology: with student activities. Laura M. Johnson, 2011. 19

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

7. Ответьте на вопросы a. Give an educated guess as to why no one is exactly sure how cheese was first developed. b. How do scientists think cheese was developed thousands of years ago? c. Explain how bacteria are involved in the creation of Swiss cheese. d. Explain why cheese-making is an example of biotechnology. e. Give two reasons why turning milk into cheese was helpful for people living thousands of years ago. 8. Переведите текст письменно Известно, что сыр начали изготавливать еще в древности. Вероятнее всего, рецепт сыра не придумали, а открыли во время наблюдения за молоком, точнее за тем, как оно сворачивается. По мнению археологов, люди изготавливали сыр еще в неолите, т. е. приблизительно за 5000 лет до н. э. Таким образом человечество знает о сыре более 7000 лет. Многие исследователи предполагают, что место, где изобрели сыр, — Ближний Восток. Кочевники створаживали молоко кобыл и высушивали его на солнце. Таким способом они сохраняли молоко во время продолжительных поисков пастбищ10. 9. Перескажите текст из упражнения 4.

10

http://www.oliveoil.su/istoriya-sira/istoriya-sira/all-pages 20

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 4. DID PEOPLE FIRST BAKE BREAD BY ACCIDENT 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: process, organism, dioxide, gas, fermentation, microorganism, dessert, toast, salad 2. Прочитайте и переведите следующие глаголы: to be crushed into, to make, to develop, to be mixed with, to be baked into, to look like, to cause, to get, to produce 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В А 1) 2) 3) 4) 5) 6) 7) 8)

bread grain flour dough flatbread yeast fungus croutons

из

колонки

А

B a) b) c) d) e) f) g) h)

лаваш дрожжи хлеб зерно тесто мука гренки гриб

4. Переведите текст Did People First Bake Bread by Accident? Another example of an early type of biotechnology is the process of breadmaking. As with the development of cheese, no one is exactly sure how bread was first made. It is known that bread has been around for thousands of years, so its introduction happened long before events were written down. Archaeologists have had to make an educated guess as to how ancient peoples came to make bread. It is thought that, like cheese, early bread was developed by accident, and that this may have happened in the Middle East (Mesopotamia and Egypt) about 6000 years ago. Archaeologists think that before bread was developed, wild grains were crushed into a substance called flour, which was mixed with water to 21

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

create a type of dough. This dough was baked into flatbreads over fires or hot stones. These flatbreads did not look like most of the bread we eat today. The wheat in the bread also changed over time; as ancient people grew it, the wheat became less like the original wild grain and more like the grain we now have. Bread, as we now know it, results from the effect that a tiny organism has on the dough. This microorganism is a type of fungus (which is neither a plant nor an animal) and it is called yeast. This fungus is found naturally in the air and in the ground. Archaeologists propose that when the dough was left outside long enough, some yeast that was in the air accidentally landed on the dough, which caused the dough to rise and form bread. Since then, yeast has been used by people all over the world to make breads rise. Like all other living things, yeast needs nutrients and produces a waste product. In this case, the yeast gets its nutrients when it eats the sugars in the flour; and it produces carbon- dioxide gas as a waste. This process is called fermentation. When gas bubbles form throughout the dough, the whole dough rises, producing the bread that we are familiar with today. Although there are many species of yeast, the specific kind of yeast that is used today is S. cerevisiae, commonly referred to as baker’s yeast. Bread-making is an example of biotechnology because a living thing (the microorganism yeast) is used to help humans by turning flour and water into bread. Clearly, bread is an important part of our lives. We may use different types of bread to make toast, sandwiches, dessert breads, bread crumbs for stuffing, and even croutons for salads. Just as people have been doing for thousands of years, bakers also experiment with creating different types of breads by adding various ingredients such as fruit, honey, spices, and nuts. Had ancient people not discovered how yeast could make their bread rise thousands of years ago, we may never have developed such an important part of our lives11. 5. Определите, являются ли следующие утверждения верными в соответствии с текстом упражнения 4. a. Bread was probably developed on purpose. b. Before bread was developed, ground grains and water were baked over fires to produce flatbreads. c. Yeast is found only in ground. 11

Biotechnology: with student activities. Laura M. Johnson, 2011. 22

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

d. The process that makes bread rise is called fermentation. e. The substance that causes bubbles to form in the dough is hydrogen gas. 6. Ответьте на вопросы (множественный выбор) 1). Where was bread-making probably developed in a. Egypt and Mesopotamia b. South Africa c. China d. Australia 2). How many years ago did the discovery of bread probably occur? a. 2000 b. 4000 c. 6000 d. 10,000 3). The substance that makes bread dough rise is called a. bacteria b. grains c. yeast d. flour 4). The species of yeast that is commonly referred to as baker’s yeast is named a. S. cerevisiae b. E. coli c. P. shermanii d. B. yeastisiae 7. Ответьте на вопросы a. b. c.

Describe how archaeologists think bread was developed. Explain how the activity of yeast causes dough to rise. Explain why bread-making is an example of biotechnology.

8. Переведите текст письменно Хлеб — один из старейших приготавливаемых продуктов, появившийся ещё в неолите. Первый хлеб представлял собой подобие запечённой кашицы, приготовленной из крупы и воды, а также мог стать результатом случайного приготовления или намеренных экспериментов с водой и мукой 12. 9. Перескажите текст из упражнения 4.

12

http://ru.wikipedia.org/wiki/Хлеб 23

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 5. HOW WAS PENICILLIN’S SPECIAL PROPERTY DISCOVERED 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: respiratory, infection, doctor, antibiotic, laboratory, bacteria, experiment, penicillin, practice, medicine, extract, test 2. Прочитайте и переведите следующие глаголы: to prescribe, to get better, to kill, to make sick, to take something for granted, to occur, to examine, to observe, to grow, to absorb, to move on, to extract from, to treat, to cure, to contribute 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 9) 10)

А substance discovery petri dish sample peculiar mold (mould) alive to survive scratch drug

a) b) c) d) e) f) g) h) i) j)

из

колонки

А

B лекарство плесень выжить открытие вещество царапина, рана образец живой чашка Петри особенный

4. Переведите текст How Was Penicillin’s Special Property Discovered? If you have ever been sick with an ear or respiratory infection, a doctor may have prescribed an antibiotic to help you get better. An antibiotic is a substance that kills the bacteria that can make people sick. (The prefix anti means “against”; you have already learned that bio- means “living things.”) While you might take this medicine for granted, there was a time when a simple infection could kill a person because doctors had no 24

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

treatment for it. That is, until a discovery occurred one summer day at a laboratory in England. In 1928, a British scientist named Dr. Alexander Fleming made a very important, yet accidental, discovery that forever changed our lives. Fleming had been studying bacteria. That summer, before he left for a vacation, Fleming left some petri dishes filled with samples of bacteria out on his workbench. When he returned, Fleming observed that a type of mold called Penicillium notatum had landed in the dish and that there were no bacteria growing around it. A mold is a microorganism that, like yeast, is a type of fungus. The mold gets its nutrients by absorbing them from other organisms. The mold may have come in through an open window or through air vents. Fleming realized the great potential of a substance that could prevent the growth of bacteria, but he could not extract enough of it from the mold to use in his own experiments. It was not until 1939 that two scientists, Dr. Howard Florey and Dr. Ernst Chain, working together in England were able to extract the bacteriakilling substance from the mold. They called that substance with medicinal properties penicillin. Once they had a big enough sample of the penicillin, Florey and Chain needed to test it on mice before they could consider giving it to people. To do their experiment, the doctors injected eight mice with a type of bacteria called Streptococcus. Then they injected four of the eight mice with penicillin and left the other four untreated. The following day, the four mice treated with penicillin were alive and no longer had a bacterial infection. However, the four mice that did not get the penicillin did not survive. This experiment demonstrated the potential medicinal value of penicillin. Penicillin was used in World War II for people fighting in the war. It saved the lives of many who would have otherwise died from infections. All three scientists who contributed to the discovery of penicillin (Dr. Fleming, Dr. Florey, and Dr. Chain) were awarded the Nobel Prize in Medicine in 1945. The development of penicillin is considered an example of biotechnology because part of a living thing (an extract from a mold) was used to help cure people of their bacterial infections. Penicillin has saved the lives of many people (and animals), and because of this it is sometimes referred to as a “wonder drug”13.

13

Biotechnology: with student activities. Laura M. Johnson, 2011. 25

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

5. Определите, являются ли следующие утверждения верными в соответствии с текстом упражнения 4 a. In the word antibiotic, the prefix “anti-” means for. b. Before penicillin, bacterial infections were never deadly. c. The medicine penicillin is made from a substance extracted from yeast. a. Dr. Fleming’s discovery was an accident. b. In Florey’s and Chain’s experiment on mice, none of the mice that were given penicillin lived. c. For their work, all three scientists involved in the discovery of penicillin were awarded the Nobel Prize in Medicine. 6. Ответьте на вопросы (множественный выбор) 1). Dr. Fleming discovered penicillin in the year a. 1928 b. 1939 c. 1941 d. 1945 2). The species of microorganism that landed in Dr. Fleming’s petri dish was a. Streptococcus b. Penicillium notatum c. P. shermanii d. S. cerevisiae 3). Penicillin comes from the type of organism that is called a a. plant b. mold c. mammal d. bacterium 7. Ответьте на вопросы 1) Why did Dr. Fleming suspect that there was something about the mold Penicillium notatum that could kill bacteria? 2) Briefly describe how Dr. Florey and Dr. Chain tested penicillin on mice. 3) In the experiment on mice, why did the researchers give only half of the mice injections of penicillin and leave the other half untreated? 4) What were the results of the experiment on the mice? 5) Why is the development of penicillin an example of biotechnology? 8. Переведите текст письменно В 1928 году Александр Флеминг проводил рядовой эксперимент в ходе многолетнего исследования, посвященного изучению борьбы человеческого организма с бактериальными инфекциями. Вырастив колонии культуры Staphylococcus, он обнаружил, что некоторые из чашек для культивирования заражены обыкновенной 26

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

плесенью Penicillium — веществом, из-за которого хлеб при долгом лежании становится зеленым. Вокруг каждого пятна плесени Флеминг заметил область, в которой бактерий не было. Из этого он сделал вывод, что плесень вырабатывает вещество, убивающее бактерии. Впоследствии он выделил молекулу, ныне известную как «пенициллин». Это и был первый современный антибиотик14. 9. Перескажите текст из упражнения 4.

14

http://elementy.ru/trefil/21188 27

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 6. SELECTIVE BREEDING AS A FORM OF BIOTECHNOLOGY 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: selective, type, gene, physical, energy, organism, result, to effect, to select, ideal 2. Прочитайте и переведите следующие глаголы: to produce, to create, to resemble, to change, to benefit, to look at, to hunt for, to run down, to breed, to ensure, to be crossed 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)

А selective breeding mammal breed trait to mate offspring reproduction seeds inbreeding to resemble drawback

a) b) c) d) e) f) g) h) i) j) k)

из

колонки

А

B размножение порода недостаток походить на черта, особенность семена млекопитающее селекция потомство межродственное скрещивание спаривать

4. Переведите текст Selective Breeding as a Form of Biotechnology Dogs are one of the most varied mammal species, with at least 400 different types, or breeds. From Poodles to Chihuahuas to Great Danes, all these types of dogs are very different, yet they are all the same species. How did we get so many varieties? The answer is selective breeding. Selective breeding is the process by which two organisms with desirable traits are mated, or bred, to produce offspring with those same desired 28

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

traits. Offspring is a word that refers to the one or more organisms that are produced by reproduction. In humans, the offspring are babies. The offspring of two dogs are puppies. The offspring of two plants would be the seeds that can grow into new plants. Selective breeding is nothing new. This technique of creating an ideal organism has been around for thousands of years; it started when farmers tried to grow the biggest and best types of plants and animals. For example, farmers noticed that if they used the seeds (kernels) from only the biggest corn plants, the corn produced from those seeds generally would also be big. Over time, when this process was repeated, larger varieties of corn were developed. People noticed the same process with animals. If shepherds bred together two animals that were the biggest of their kind, their offspring would usually be big, too. However, people also realized that if they bred animals that were too closely related (a process called inbreeding), they could obtain offspring that had severe health problems and/or deformities. Early farmers and shepherds realized that plants and animals passed on some sort of information to their offspring that made the offspring resemble their parents. Although these people did not know it, what these organisms were passing on to their offspring were their genes (the instructions for all traits). In animals, these genes control both the physical and behavioral traits. Physical traits are how an organism looks (such as its size, shape, color of fur, and so on). Behavioral traits are how an organism acts (such as its aggressiveness, level of energy, hunting ability, type of movement, and so on). Selective breeding is an example of biotechnology because people change an organism, over time, in order to benefit their own needs in some way. For example, let us look at dogs. Thousands of years ago, people hunted for their food. They needed a dog that was very fast so that it could help them run down the animal they were trying to hunt. To create a type of dog that was very fast, those people chose to breed only the fastest dogs that they had with other fast dogs. This would help to ensure that the dogs’ traits (that is, genes) that made them fast would be passed on to their offspring. One of the oldest and fastest dog breeds, the Saluki, is an example of a breed that was created by people (in the Middle East) who selectively bred very fast dogs together over a long period of time. You can see the effects of selective breeding in many other common organisms, for example, apples, potatoes, cows, and sheep. All of these life-forms now look very different from how they used to look thousands of years ago, as people actively selected for different traits, such 29

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

as size, color, and taste. As a result, we now have many different varieties of plants and animals. As useful as selective breeding has been to creating ideal organisms for people, there are also some drawbacks. It takes a very long time to create a new type/breed of an organism. Only organisms of the same species may be crossed. Crossing closely related organisms in the hope of passing on a desirable trait may pass on undesirable traits as well15. 5. Определите, являются ли следующие утверждения верными в соответствии с текстом упражнения 4 a. The Poodle, Chihuahua, and Great Dane are not in the same species. b. Selective breeding has been around for thousands of years. c. When selective breeding was first started, it was used to develop smaller plants and animals. d. Breeding closely related animals can create offspring with no health problems. e. The Saluki was selectively bred to be a very slow dog. f. It usually takes a very short time to create a new breed of organism. g. Selective breeding is a process that is very recent. h. A type of behavioral trait is an animal’s ability to pick up scents and follow them. i. Selective breeding takes only a short amount of time. 6. Ответьте на вопросы (множественный выбор) 1). The offspring of a plant would be its a. puppies b. seeds c. babies d. mold 2). The first people to use selective breeding of plants and animals were a. scientists b. doctors c. farmers d. teachers 3). Which of these organisms has changed in appearance over time because of selective breeding? a. apples b. corn c. dogs d. all of these

15

Biotechnology: with student activities. Laura M. Johnson, 2011. 30

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

7. Ответьте на вопросы 1. Describe how farmers would use selective breeding to create bigger plants. 2. Explain why selective breeding is an example of biotechnology. 3. How could a person use selective breeding to create a very fast breed of dog? 4. What are the three drawbacks to the practice of selective breeding? 8. Переведите текст письменно Для получения наиболее продуктивных форм микроорганизмов широко применяют методы селекции. Путем отбора выделяют расы микроорганизмов, наиболее активно синтезирующие тот или иной используемый человеком продукт (антибиотик, витамин и др.). Микроорганизмам свойственна изменчивость (мутации). Путем их отбора получают наиболее активные расы. Селекция находит широкое применение и в отношении микроорганизмов, используемых в пищевой промышленности. Например, путем селекции выделяют наиболее продуктивные формы дрожжей, повышающие качество хлеба 16. 9. Перескажите текст из упражнения 4.

16

http://bio.1september.ru/article.php?ID=200601204 31

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

PART 2. BIOCHEMISTRY AS A BASIS OF BIOTECHNOLOGY Unit 7. THE SCIENCE BEHIND BIOTECHNOLOGY 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: organism, chromosome, structure, gene, genome, type, engineering, cloning, splicing, donor, recipient, protein, popularity 2. Прочитайте и переведите следующие выражения: to be composed of, to determine, to be derived from, to contain, to be transferred into, to be introduced into, to improve, to serve, to inactivate 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5)

А makeup the greatest discovery genetic trait sexual reproduction individuals of the species

a) b) c) d) same e)

из

колонки

А

B особи одного вида важнейшее открытие половое размножение состав наследственная черта, признак

4. Прочитайте и переведите цитату. Выучите высказывание наизусть “It is a capital mistake to theorize before one has data.” Conan Doyle. 5. Переведите текст The Science behind Biotechnology All biotechnology is based on the science, or biological functioning, of organisms17.

17

http://www.aboutbioscience.org/ 32

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Organisms are composed of cells that contain DNA in their chromosomes. The structure of DNA molecules holds information that is used by cells as a formula for the organism, determining the characteristics of an organism. That information is encoded on the DNA’s genes, which are derived from a four-letter alphabet (A, C, G and T) and usually contain between 1,000 and 100,000 letters. The entire makeup of an organism’s genes is called the genome and can contain between four million letters (for a simple bacteria) and three billion letters or more (for a human being). DNA is the same chemically and physically for all organisms. This fact made possible perhaps the greatest scientific discovery in the field of biotechnology: learning that DNA from any organism will function if it is transferred into another organism.

Diverse Fields Contribute to Molecular Biotechnology

Input

Output

Combining DNA from different organisms in the same species results in modified organisms with a combination of the parents’ traits. This sharing has been used since prehistoric times and occurs naturally through sexual reproduction. However, this type of DNA combination based on sexual reproduction can occur only between individuals of the same species. A Holstein cow can be mated with a Hereford bull because the two animals are different breeds of the same species: cattle. Modern biotechnology in use today is based on the science of genetic engineering. Under the umbrella of genetic engineering exists other technologies, such as transgenics, cloning and many others18.

18

http://www.bic.searca.org/resources/biotechnology.html 33

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Cloning Into Bacterial Cells

Restriction Endonuclease DNA Ligase

transformation

6. Ответьте на вопросы 1. What sciences are connected with biotechnology? 2. What is the purpose, structure and function of DNA? 3. What connections between biotechnolgy and genetic engineering can you name? 7. Переведите текст на английский язык Результаты биотехнологических исследований могут быть использованы и внедряются: - в здравоохранении, где продуктами биотехнологии являются антибиотики, вакцины, ферменты, гормоны, средства доставки медицинских препаратов к месту локализации болезни; - в растениеводстве и животноводстве, где успешно применяются биопестициды, биогумус, кормовые антибиотики, белково-витаминные концентраты (БВК), исследуются процессы силосования и сенажирования кормов, создания трансгенных растений19. 19

Основы биотехнологии: учебно-методическое пособие / А.С. Сироткин, [и др.]. – Казань: Изд-во Казан. гос. технол. ун-та, 2006. 34

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

8. Пересказать текст из упражнения 5. 9. Выразите свое отношение к следующим цитатам. 1. "Science is organized knowledge". 2. "Science, at bottom, is really anti-intellectual. It always distrusts the pure reason, and demands the production of objective facts” H.L. Mencken 3. "Progress is the mother of problems". 4. "Half a truth is often a great lie". B.Franklin. 5. "Truth is seldom pure and never simple". Oscar Wilde. 6. "Nothing is ever all wrong. Even a clock the stops is right twice a day".

35

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 8. BIOCHEMISTRY 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: biochemistry, metabolize, genetic, nature, conservation, energy, mass, thermodynamics, system, entropy, basis, dynamic, material, concentration, isolated, structure, organic, configuration, formula, reactivity, organelles, orientation, reaction 2. Прочитайте и переведите следующие глаголы: to be described, to differ from, to represent, to communicate with, to be characterized as, to receive from, to remain, to proceed in, to differ in, to be composed of, to possess, to be visualized, to bear, to evolve into, to be based on 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В А 1) 2) 3) 4) 5) 6) 7) 8)

inanimate integral surroundings to mediate result in visualize milieu to underlie

a. b. c. d. e. f. g.

из

колонки

А

B неделимый, неотъемлемый лежать в основе, определять окружающая среда (2 раза) приводить к осуществлять, быть посредником отчетливо представлять себе неживой, неодушевленный

4. Прочитайте и переведите текст: Biochemistry Biochemistry can be described as chemistry of living objects (cells and organisms). Living objects differ from inanimate ones basically in their ability (a) to metabolize, (b) to reproduce (transmit genetic information). Still, they are an integral part of nature and, therefore, governed by all the principal laws of nature, such as the law of conservation of mass and energy and the laws of thermodynamics. 36

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Living objects represent open systems (thermodynamically speaking) or relatively isolated systems (cybernetically speaking), both of which means that they can communicate with the surroundings. Such communication is mediated by substrates (sources of free energy) and by information (resulting in decreased entropy and increased structuredness of living systems). This is mainly achieved on the basis of Le Chatelier's principle and results in a steady state that can be characterized as a dynamic state of a system which, in a given time interval, receives from the surroundings the same amount of material and energy as it returns to it so that concentrations inside the system remain unchanged. This is one of the features in which living objects differ from inanimate isolated systems where a time-independent, equilibrium, state obtains. In such systems all quantities remain constant and all processes come to a stop. Reactions in living systems are thus seen to proceed in time and space. According to the degree of their development they differ in the complexity of their structures. Living structures are usually composed of simple inorganic and organic compounds, which possess a certain configuration in space that cannot be visualized from a structural formula at first sight This is important to bear in mind, especially in connection with the reactivity of some compounds in situations where others are nonreactive. The relatively simple compounds evolved into macromolecules and ultimately into supramolecular structures which form the basis for the construction of the fundamental building block of living systems - the cell and its organelles. The molecules have their definite dimensions and relative orientation which underlies their function. The function of living systems is based on biochemical reactions which take place on the cellular and sub-cellular structure mentioned above as well as in the soluble milieu of the cytoplasm or of extracellular fluids20. 5. Просмотрите текст, найдите в нем следующие слова и словосочетания, дайте их русские эквиваленты и запомните их: To describe, cell, to differ from, ability, to reproduce, to transmit, the principal law of nature, the law of conservation of mass and energy, to 20

Мельникова В.А., Барановская М.Е., Халикова Д.Г. Microbiology and Biotechnology: учебно-методическое пособие. Уфа: Изд-во Уфимского гос. нефтяного техн. ун-та, 2005. 37

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

represent, this is mainly achieved, a steady state, the same amount, inside the system, equilibrium, to come to a stop, to proceed, the complexity of the structure, at first sight, to bear in mind, in connection with, relatively simple, definite dimensions, to evolve, cellular 6. Дайте английские словосочетаний

эквиваленты

следующих

слов

и

Биохимия, химия живых организмов, способность размножаться, биохимические реакции, внеклеточная жидкость, ориентация в пространстве, устойчивое состояние, во времени и в пространстве, атом – молекула – клетка – ткань – орган - система органов – организм, закон природы, закон сохранения массы и энергии, открытые системы, сложность структуры 7. Ответьте на вопросы: a. What is the difference between living objects and inanimate ones? b. How can a steady state be characterized? c. What are living structures composed of? 8. Переведите текст на английский язык. Биохимия – это наука, которая описывает на языке химии строение и функции живых организмов. Биохимические концепции находят применение в медицине, пищевой, фармацевтической и микробиологической промышленности, сельском хозяйстве, а также в перерабатывающей промышленности, использующей отходы и побочные продукты сельского хозяйства21. 9. Перескажите текст из упражнения 4.

21

http://krugosvet.ru/enc/nauka_i_tehnika/himiya/BIOHIMIYA.html 38

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 9. BIOCHEMICAL REACTIONS 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: physical, chemical, parameter, temperature, concentration, ion, buffer, dissociation, protein, reactivity, optimum, osmotic, ionic, factor, energy, radiation, aerobic, process, mediator, enzyme 2. Прочитайте и переведите следующие глаголы: to take place, to consider, to maintain at, to result in, to proceed at, to receive from, to affect, to distinguish, to derive from, to be markedly altered, to interfere, to achieve 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В А constancy to meet the reqirements noxious effects buffer system energy requirement oxidation-reduction processes 7) exergonic 8) endergonic 9) spatial orientation 10) osmotic pressure 11) ATP 1) 2) 3) 4) 5) 6)

из

колонки

А

B пространственная ориентация потребность в энергии вредное воздействие постоянство экзотермический АТФ эндотермический осмотическое давление отвечать требованиям окислительно-восстановительные процессы k. буферная система

a. b. c. d. e. f. g. h. i. j.

4. Скажите, о чем, судя по заголовку, может идти речь в данном тексте. Читая текст, найдите подтверждение вашему предположению. Biochemical Reactions Biochemical reactions take place within a relatively narrow range of physical and chemical parameters. Beside the limited range of 39

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

temperatures and pressures we must consider the concentration or activity of hydrogen ions (pH). This concentration is maintained at the required level by buffer systems obeying the Henderson-Hasselbalch equation, the relative constancy of pH being important for preventing dissociation of biologically active compounds which may result in changes of protein shape and reactivity (structural stability or enzyme activity). Some biochemical reactions proceed at the optimum rate only at a given osmotic pressure and ionic strength in a medium where ions are present at fairly constant ratios. All these factors affect the properties and possibly the function of dispersed molecules and, depending on the nature of the solvent and of the size of solute particles. We can distinguish between true solutions, colloid solutions, and suspensions. Biochemical reactions can proceed only if certain energy requirements are met. The primary source of energy on our planet has been solar radiation. A part of this energy is now stored as chemical energy in the bonds of various compounds. Under the present conditions which are highly aerobic most of (he energy required for maintaining the structure of living systems derives from oxidation-reduction processes (in particular from the oxidation of hydrogen by nlinospheric oxygen). The individual partial reactions are either exergonic (they lake place spontaneously) or endergonic (they require a supply of energy). Many reactions can proceed because they are coupled with exergonic reactions. The must common mediator of such energy transfer is the molecule of adenosine triphosphate (ATP). Biochemical reactions proceed at a rate that depends on the concentration of the reacting molecules and on the rate constants characterizing the given type of reaction. This rate can be markedly altered (usually increased) in living systems by the presence of catalysts (enzymes). Noxious effects of the environment usually interfere at the level of enzymecatalyzed reactions by inhibiting their progress. The individual reactions taking place in living objects must be controlled in a very definite way. This is achieved partly by their spatial orientation (changes in entropy of living systems), partly by alterations in the rates of reactions22.

22

Мельникова В.А., Барановская М.Е., Халикова Д.Г. Microbiology and Biotechnology. Указ. соч. 40

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

5. Определите, какой характер носит текст; представляет ли он собой описание, объяснение, повествование, рассуждение. 6. Просмотрите текст, найдите в нем следующие слова и словосочетания, дайте их русские эквиваленты и запомните их: Within a relatively narrow range, activity of hydrogen ions, at the required level, systems obeying the equation, to prevent dissociation, enzyme, to proceed, medium, to affect the properties, solvent, solute particles, the primary source of energy, solar radiation, to store, the bonds of various compounds, to maintain, to derive from, in particular, to couple, the most common mediator, markedly, to alter, to inhibit 7. Дайте английские словосочетаний:

эквиваленты

следующих

слов

и

Биохимические реакции, физические и химические параметры, диссоциация, ионная сила, осмотическое давление, эндо- и экзогенные реакции, катализатор, фермент, источник энергии, солнечная радиация, свойство, частица, раствор 8. Скажите, в словосочетания:

связи

с

чем

употреблены

a) Osmotic pressure and ionic strength b) Energy requirements 9. Объясните значение слов exergonic и endergonic 10. Ответьте на вопрос: What does the rate of biochemical reactions depend on? 11. Перескажите текст из упражнения 4.

41

следующие

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 10. THE CELL 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: object, metabolism, virus, organelles, mechanism, mitochondria, endoplasmic reticulum, ribosomes, lysosomes, membrane, colloid, protein, glycogen, lipid, proenzymes, differentiation, glycocalyx, antigen, cycle, metabolic 2. Прочитайте и переведите следующие глаголы: to include, to be classified, to require, to possess, to contain, to be based on, to observe, to serve, to behave, to induce, to designate, to be unlimited with, to undergo, to divide, to restore 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В А 1) perpetuation 2) unicellular 3) cell 4) contractile 5) cilia 6) nucleous 7) fragella 8) reproduction 9) differentiated 10) cardiac muscle 11) with respect to 12) untenable

a. b. c. d. e. f. g. h. i. j. k. l.

из

колонки

А

B сжимающийся, сокращающийся реснички сохранение несостоятельный одноклеточный сердечная мышца жгутики ядро размножение видоизмененный относительно клетка

4. Прочитайте и переведите текст The Cell The cell is the principal unit of living objects. The term living objects includes generally all objects that are capable of metabolism and 42

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

reproduction. (Thus, viruses cannot be classified as living objects as they alone, without participation of living cells, are not capable of reproduction). To support these two basic functions, certain structures designated as cell organelles were formed in the cell during evolution. They maintain a coordinated and regulated performance of the partial mechanisms (reaction processes) required for the perpetuation of basic life functions.

Prokaryote vs. Eukaryote

The following cell organelles are essential for the existence of living objects: nucleus, mitochondria, endoplasmic reticulum, ribosomes, lysosomes, and microbodies. Cell membranes, involved not only in the separation of the living system (cell) from the environment but also forming defined spaces inside the cell (functional compartments), are the main supporting structure of all these organelles and participate in the formation and function of most of them. They often represent up to 80% of the cell mass. The structureless, colloid system filling the cell space is designated as cytosol. Independently living cells (unicellular organisms) usually contain all the above structures and, in addition, they possess a cell wall and possibly some contractile structures (cilia and flagella). The outer part of the plasma membrane binds complex chemical structures (proteins, glycoproteins), also designated as glycocalyx. They serve to discriminate between the species' own cells and those of other species. If these structures enter parenterally higher organisms they behave as antigens and induce the formation of different specific antibodies in specially differentiated cells. 43

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Starting at its origin from another cell, every all undergoes the socalled life cycle, at the end of which either it divides to give rise to a new individual or it dies. The duration of this cycle is species-specific and ranges, according to the present knowledge, from hours to tens of years23. 5. Выразите свое согласие или несогласие с данными ниже утверждениями, основываясь на информации, полученной из текста. a) The cell is the principal unit of animate objects. b) Cell organelles maintain a coordinated and regulated performance of the partial mechanisms. c) Cell membranes are the main supporting structure of all the organelles. d) Cell membranes participate in the formation of the inanimate objects. e) A differentiation of functions based on differentiation of structures is found in multicellular organisms. f) Every living object is ultimited with respect to the length of its existence. 6. Ответьте на следующие вопросы: a) b) c) d) e)

What does the term “living objects” include? Can viruses be classified as living objects? What are functional compartments? What is cytosol? What serves to discriminate between the species own cells and those of other species? f) What can you say about the length of the existence of a living object? g) What cell organelles do you know? What are their functions? 7. Расскажите, что из себя представляет клетка. 8. Расскажите, объекта.

23

как

происходит

жизненный

цикл

Мельникова В.А., Барановская М.Е., Халикова Д.Г. Указ. соч. 44

живого

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 11. THE CHEMICAL ELEMENTS ESSENTIAL TO LIFE 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: nickel, atmosphere, helium, generalization, nucleotides, combination, anion, metal

purines,

pyrimidines,

2. Прочитайте и переведите следующие глаголы: to occur, to add, to remain, to surprise, to select, to constitute, to gain, to lead, to explain, to note, to form, to charge, to provide, to require, to diminish 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В 1) 2) 3) 4) 5)

А Building-block To set a limit To be responsible for Living matter In no way

a. b. c. d. e.

из

колонки

А

B обусловливать, быть причиной живая материя зд. основа никоим образом установить предел

4. Переведите текст The Chemical Elements Essential to Life How many of the naturally occurring elements are essential to life? After more than a century of investigation the question still cannot be answered with certainty. Only some time ago the best answer would have been twenty. Since then four more elements have been shown to be essential for life, for example, for the growth of animals, such as fluorine, silicon, tin, and vanadium. Nickel is thought by the scientists soon to be added to the list. In many cases the exact role played by these elements would remain unknown or unclear. Both chemists and biologists have long been surprised by the way the evolution has selected certain elements as the building-blocks of living organisms. Thus the composition of the earth and its atmosphere obviously sets a limit on what elements are available. 45

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

The solar system, like the universe, seems to be 99 per cent hydrogen and helium. In the earth's crust helium appears to be essentially non-existent, except in a few rare deposits, hydrogen atoms constituting only 22 per cent of the total. Eight elements provide more than 98 per cent of the atoms in the earth's crust, namely oxygen 47 per cent, silicon 28 per cent, aluminium 7.9 per cent, iron 4.5 per cent, calcium 3.5 per cent, sodium 2.5 per cent, potassium 2.5 per cent, magnesium 2.2 per cent. Of these eight elements only five are among the eleven that account for more than 99.9 per cent of the atoms in the human body. Two elements, hydrogen and oxygen, account for 88.5 per cent of the atoms in the human body, hydrogen supplying 63 per cent of the total and oxygen 25.5 per cent. Carbon accounts for another 9.5 per cent and nitrogen 1.4 per cent. The remaining 20 elements now thought to be essential for life account for less than 7 per cent of the body's atoms. Silicon is known to be 146 times more plentiful than carbon in the earth's crust. Silicon like carbon has the capacity to gain four electrons and form four covalent bonds. Carbon was selected over silicon as the central building-block. The difference that led to the preference for carbon compounds over silicon compounds can be explained: 1) by the unusual stability of carbon dioxide, and 2) by almost unique ability of carbon to form long chains and stable rings with five or six members. The versatility of the carbon atom is responsible for the millions of organic compounds found on the earth. If some generalization were made about the role of various elements it would be interesting to note that six elements carbon, nitrogen, hydrogen, oxygen, phosphorus and sulphur make up the molecular building-blocks of living matter: amino acids, sugars, fatty acids, purines, pyrimidines and nucleotides. These molecules not only have independent biochemical roles but also are the constituents of the following large molecules: proteins, glycogen, starch, lipids, and nucleic acids. This is the first essential group. The electrochemical properties of living matter depend on elements or combination of elements that either gain or lose electrons when they are dissolved in water, thus forming ions. The principal positively charged ions are provided by four metals: sodium, potassium, calcium and magnesium. The principal anions (ions with negative charge) are provided by the chloride ion, sulphur, and phosphorus. These seven ions maintain the electrical neutrality of a body 46

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

fluid and cells. This is considered to be the second essential group. The third group of essential elements consists of the trace elements. The fact that they are required in extremely minute quantities in no way diminishes their great importance24. 5. Выпишите названия всех химических элементов, встречающиеся в тексте; вспомните, как они звучат поанглийски, проверив правильность произношения по транскрипции, приведенной в прил. 1. 6. Найдите в тексте упражнения 4 следующие слова и словосочетания, дайте их русские эквиваленты и запомните их: naturally occurring elements, to answer with certainty, in many cases, exact, obviously, available, the solar system, the universe, except, the earth's crust, covalent bonds, long chains, stable rings, versatility, amino acid, fatty acids, protein, starch, trace elements, in extremely minute quantities. 7. Найдите пары синонимов и запомните их: lately, to account for, recently, essential, to provide, to explain, to supply, amount, important, quantity 8.

Найдите пары антонимов и запомните их:

existent, clear, disappear, negative, unlike, charge, appear, like, stable, to gain, artificial, unclear, unstable, to lose, discharge, positive, non-existent, natural

24

Мифтахова Н. Х., Английский язык для химико-технологических вузов: учебник для I-II курсов. Ч.1.- Казань, 2001. - 79 с. 47

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

9. Ответьте на следующие вопросы: a) Is it possible to answer the question about the number of naturally occurring elements with certainty? b) What have the chemists and biologists long been surprised by? c) What does the solar system consist of? d) Is there much helium in the Earth crust? e) What eight elements can provide more than 98 per cent of the atoms in the Earth’s crust? f) What two elements account for 88.5 per cent of the atoms in the human body? g) What element is more plentiful, silicon or carbon? h) What elements make up the molecular building-blocks of living matter? i) What do the electrochemical properties of living matter depend on? j) What ions maintain the electrical neutrality of a body? 10. Прочитайте текст. Подготовьте рассказ о периодической таблице Менделеева. Dmitri Mendeleev was the first scientist to create a periodic table of the elements similar to the one we use today. The most important difference between Mendeleev's table and today's table is the modern table is organized by increasing atomic number, not increasing atomic weight. Elements in the periodic table are arranged in periods (rows) and groups (columns). Atomic number increases as you move across a row or period. Rows of elements are called periods. The period number of an element signifies the highest unexcited energy level for an electron in that element. The number of elements in a period increases as you move down the periodic table because there are more sublevels per level as the energy level of the atom increases Columns of elements help define element groups. Elements within a group share several common properties. Groups are elements have the same outer electron arrangement. The outer electrons are called valence electrons. Because they have the same number of valence electrons, elements in a group share similar chemical properties. The Roman numerals listed above each group are the usual number of valence electrons. For example, a group VA element will have 5 valence electrons. 48

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

The periodic table helps predict some properties of the elements compared to each other. Atom size decreases as you move from left to right across the table and increases as you move down a column. Energy required to remove an electron from an atom increases as you move from left to right and decreases as you move down a column. The ability to form a chemical bond increases as you move from left to right and decreases as you move down a column25.

11. Выберите правильный ответ на вопрос: “What elements make up molecular building-blocks of living matter?” 25

http://chemistry.about.com/library/blperiodictable.htm 49

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

a) Sulphur and phosphorous make up the molecular building-blocks of living matter. b) Carbon and nitrogen make up the molecular building-blocks of living matter. c) Six elements, namely carbon, nitrogen, oxygen, phosphorus and sulphur, make up the molecular building-blocks of living matter.

50

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 12. FATS 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: protein, organism, component, organ, organic, structure, reaction, hydrolysis, thynthesis, to absorb 2. Прочитайте и переведите следующие глаголы: to distinguish, to be deposited in, to dissolve, to be established by, to heat, to add, to draw a conclusion, to carry out, to contain, to be stored for, to be assimilated by, to break down 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 9)

А subcutaneous tissue mammals linseed oil rancid digestive tract pancreatic juice intestinal small intestine nutrient

a. b. c. d. e. f. g. h. i.

из

колонки

А

B пищеварительный тракт подкожная ткань млекопитающие льняное масло прогорклый желудочный сок тонкая кишка питательное вещество кишечный

4. Прочтите текст и укажите, на сколько частей можно его разделить, и чему посвящена каждая из них. Fats Fats occur extensively in nature. Like the carbohydrates and proteins, they are constituents of all plant and animal organisms; they are one of the main components of our food. It is customary to distinguish fats of animal and plant origin. In animals fatty substances are deposited mainly on the internal organs and in the subcutaneous tissue (hypodermic tissue); considerable amounts of fats are contained in the milk of mammals. In plants they accumulate mostly in 51

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

the seed and the fruit. In sunflower seeds, for example, the fat content reaches 45%; in linseed oil, 47%. Animal fats are, as a rule, solids. Vegetable fats are mostly liquid and are called oils. There are, however, some liquid fats of animal origin (such as cod-liver oil), just as there are some solid fats of plant origin (such as coconut oil). All the fats are lighter than water. They are also insoluble in water. This property is familiar to everyone who has tried to wash greasy dishes with cold water or to wash greasy hands without soap. Fats dissolve well in many organic solvents: dichloroethane, petrol, etc. The fact that they dissolve in organic substances is utilized in removing grease stains from garments and in extracting the oil from plant seeds. The structure of fats was established by the work of the French chemists Chevreul and Berthelot. By heating fats with water (in the presence of an alkali), Chevreul in the early 19th century found that they add water and undergo decomposition into glycerol and carboxylic acids: stearic, oleic, and others. Berthelot (1854) brought about the reverse reaction. He heated a mixture of glycerol with acids and in this way prepared substances analogous to fats. From these facts it is not difficult to draw a conclusion about the structure of fats. Evidently, Chevreul carried out the reaction of the hydrolysis of an ester, whereas Berthelot effected the reaction of esterification, i. e., the synthesis of an ester. Fats are mostly formed by the higher saturated and unsaturated carboxylic acids, mainly by stearic acid C17H36COOH, palmitic acid C15H31COOH, and oleic acid C17H33COOH. The lower acids play a lesser part in forming fats. Fats do, however, contain butyric acid C3H7COOH (a constituent of butter), caproic acid C5H11COOH, and others. Fats are an important part of our food. Their oxidation in the organism generates much more heat than does the oxidation of equal amounts of proteins or carbohydrates26. 5. Найдите в тексте абзацы, в которых говорится о строении жиров, и ответьте на вопрос: “How was the structure of fats established?”.

26

Мельникова В.А., Барановская М.Е., Халикова Д.Г. Указ. соч. 52

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

6. Найдите в тексте абзац, в котором говорится о кислотах, образующих жиры. Выпишите их названия и выучите наизусть. 7. Найдите в тексте абзацы, в которых говорится о твердых и жидких жирах и ответьте на вопрос: “What is the difference between solid and liquid fats?” 8. Найдите в тексте английские эквиваленты следующих слов и словосочетаний и запомните их: Жиры животного и растительного происхождения, внутренние органы, семена подсолнуха, печень трески, кокос, растительные жиры, знакомо (известно) каждому, удаление жирных пятен, в присутствии щелочи, вещества, подобные жирам, в начале девятнадцатого столетия, сделать вывод, очевидно, эфир, насыщенные и ненасыщенные кислоты, говяжий и бараний жир, свиное сало, пролить свет, под влиянием энзимов, необратимый 9. Опишите химические и физические свойства жиров. 10. Ответьте на вопрос: What is the importance of fats from the biological point of view?

53

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 13. PROPERTIES OF PROTEINS AND THEIR TRANSFORMATIONS IN THE ORGANISM 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: protein, albumin, alkali, coagulate, denaturation, hydrolysis, dioxide, synthesize, ammonia 2. Прочитайте и переведите следующие глаголы: to dissolve, to add, to precipitate, to be transferred back into, to coagulate, to decompose, to heat, to distinguish, to undergo, to cause, to build, to remember, to hydrolyze

3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 4.

А to dissolve in water colloidal solution in the presence of upon heating nitric acid digestive tract liver amino acid

a. b. c. d. e. f. g. h.

из

колонки

А

B пищеварительный тракт азотная кислота печень аминокислота в присутствии коллоидный раствор растворяться в воде при нагревании

Прочитайте и переведите текст

Properties of Proteins and Their Transformation in the Organism Some proteins dissolve in water (for example, egg albumin ("egg white"), forming colloidal solutions, while others dissolve only in the presence of an acid or alkali. If some concentrated salt solution, such as (NH4)2SO4 is added to a colloidal protein solution, the protein is precipitated. Such a protein can, however, be transferred back into the solution. 54

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

A protein can be precipitated irreversibly by heating. Upon heating, a protein "coagulates" (this is called denaturation of proteins) and can no longer be dissolved in water. A boiled egg and the flakes in meat broth are instances of denatured proteins. More intense heating causes proteins to decompose with the evolution of volatile substances that have the odour of burned feathers. This is a characteristic that makes it possible to distinguish, say, woollen textiles from cotton, or natural silk from the artificial product. The property of proteins to undergo hydrolysis has already been discussed. There are several colour tests for detecting proteins among other substances. When, for example, concentrated nitric acid is added to a protein solution, a yellow coloration appears. It is this reaction that causes yellow stains to form on the skin of the hands when nitric acid is handled carelessly in the laboratory. Animal organisms can build up their proteins only from the proteins they get in their food. These proteins are first decomposed in the digestive tract under the influence of enzymes; the products of this decomposition are amino acids. The amino acids are then absorbed by the walls of the intestines, enter the blood, and are carried to all the cells of the organism. The cells synthesize proteins specific for that particular organism. These proteins are used primarily to build the organism's cells and tissues. Fats and carbohydrates, it will be remembered, serve mainly as the organism's source of energy. Parallel with this process of synthesis in the cells, in the course of the organism's life activity, there is constant decomposition of proteins. In this case they are again hydrolyzed to amino acids, and the amino acids are ultimately broken down to carbon dioxide, water, and ammonia. Ammonia is converted in the liver to urea and is discharged from the organism with urine27.

5. Найдите в тексте английские эквиваленты следующих слов и словосочетаний и запомните их: Яичный белок, в присутствии кислоты или щелочи, осаждаться, необратимо, при нагревании, больше не, вареное яйцо, хлопья, мясной 27

Мельникова В.А., Барановская М.Е., Халикова Д.Г. Указ. соч. 55

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

бульон, с выделением летучих веществ, запах горелых перьев, щерстяная ткань, шелк, искусственный, среди других веществ, управление, желтые пятна, небрежно, пищеварительный тракт, стенки кишечника, печень, аммиак, мочевина 6. Переведите следующие предложения на английский язык: 1) Растворимые в воде белки образуют коллоидные растворы. 2) При нагревании белок коагулирует и не может больше растворяться в воде. 3) Образованные летучие вещества имеют запах горелых листьев. 4) Это дает возможность отличить шерсть от хлопка, натуральный шелк от искусственного. 5) Уравнение такой реакции дано несколькими абзацами ниже. 6) Стенки кишечника всасывают аминокислоты. 7) Кровь доставляет аминокислоты во все клетки организма. 8) Эти белки используются главным образом для строительства клеток и тканей организма. 7. Ответьте на вопросы: 1) 2) 3) 4) 5) 6)

Do proteins dissolve in water? What is meant by the word "coagulate"? Can you give the examples of denatured proteins? What happens upon more intense heating? How is it possible to detect proteins among other substances? What are the products of the protein decomposition in the digestive tract? 7) What serves as the organism's source of energy? 8. Расскажите о свойствах белков. Опишите последовательно все этапы преобразования белков в организме.

56

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 14. ENZYMES 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: enzyme, coenzyme, methyl, vitamin, component, organ, mechanism, complex, reaction, centre, histidine, inhibitor

energy,

2. Прочитайте и переведите следующие глаголы: to represent, to accelerate, to decrease, to increase, to consist, to undergo, to find, to occur, to exist, to estimate, to measure, to isolate, to define, to indicate 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В А the transfer of electrons the activation energy equillibrium enzyme-substrate complex 5) active site 6) composition of the solution 1) 2) 3) 4)

a. b. c. d. e. f.

из

колонки

А

B активный центр передача электронов точка равновесия энергия активации фермент-субстратный комплекс состав раствора

4. Прочитайте и переведите текст Enzymes Enzymes are biocatalysts formed in cells either as simple or as conjugated proteins with a non-amino acid component. Coenzymes often function in the transfer of electrons or of functional groups (hydrogen atom, acetyl, methyl, amino groups, etc.). The coenzymes are generally identical with vitamins which, at least in higher organisms, represent essential components of their food that cannot be synthesized in their organs. The enzymes accelerate biological reactions by decreasing the activation energy of a given reaction without altering its equilibrium. The mechanism of their action consists in the formation of a complex between enzyme and substrate 57

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

(ES) which undergoes the chemical reaction proper whereupon the enzymeproduct complex (EP) is split to the original enzyme and the product. The existence of some enzyme-substrate complexes has now been proved both indirectly (spectrophotometry) and directly (chemical isolation). The substrate is bound to the enzyme in the active site or centre which may be visualized as a spatial arrangement of certain amino acids of the protein moiety of the enzyme as well as of the prosthetic group or the coenzyme. Amino acids frequently found to play a role in the active site are serine (through its OH group) and histidine (through the nitrogen of its imidazole). Some enzymes occur in the active form directly upon their synthesis while others are synthesized as inactive proenzymes (pepsinogen, trypsinogen) or exist a part of their life-time in an inactive conformation (allosteric enzymes). They must then be activated by a special process to become functional. Enzyme-catalyzed reactions proceed at different rates, depending on: a) the amount or activity of the enzyme, b) the concentration of substrate, c) the pH and composition of the solution, d) temperature, e) the presence of activators and inhibitors. Since the enzyme concentrations in living cells are difficult to estimate we often speak about their activities. Enzyme activity is measured in international units (U), corresponding to an activity converting 1 μmol substrate per min, or, more recently, in katals (kat), corresponding to an activity converting 1 mol substrate per s28. 5. Ответьте на следующие вопросы: 1) 2) 3) 4) 5)

What is the function of the enzymes? What does the mechanism of their action consist in? What does the rate of enzyme – catalysed reactions depend on? What is enzyme activity measured in? What is meant by zero order?

6. Прочтите 4-й абзац текста из упражнения 4 и скажите, в связи с чем употреблен термин first-order kinetics.

7. Перескажите текст, используя опорные слова и словосочетания:

28

Мельникова В.А., Барановская М.Е., Халикова Д.Г. Указ. соч. 58

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

biocatalysts, coenzymes, to accelerate, the activation energy, a complex between enzyme and substrate, active site, the protein moiety, inactive proenzymes, the presence of activators and inhibitors, international units, specificity, law and high concentrations of substrate, Michaelis constant. 8. Переведите текст с русского языка на английский. Ферменты – органические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом химическим превращениям. Вещества, оказывающие подобное действие, существуют и в неживой природе и называются катализаторами. Ферменты (от лат. fermentum – брожение, закваска) иногда называют энзимами (от греч. en – внутри, zyme – закваска). Все живые клетки содержат очень большой набор ферментов, от каталитической активности которых зависит функционирование клеток. Практически каждая из множества разнообразных реакций, протекающих в клетке, требует участия специфического фермента. Изучением химических свойств ферментов и катализируемых ими реакций занимается особая, очень важная область биохимии – энзимология. Многие ферменты находятся в клетке в свободном состоянии, будучи просто растворены в цитоплазме; другие связаны со сложными высокоорганизованными структурами. Есть и ферменты, в норме находящиеся вне клетки. Так, ферменты, катализирующие расщепление крахмала и белков, секретируются поджелудочной железой в кишечник. Секретируют ферменты и многие микроорганизмы29.

29

http://krugosvet.ru/enc/nauka_i_tehnika/biologiya/FERMENTI.html 59

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 15. MICROBIAL ENZYMES: NEW INDUSTRIAL APPLICATIONS FROM TRADITIONAL SCREENING METHODS 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: method, thynsesis, analysis, microbial, problem, candidate, role, decade, function, process, microorganism 2. Прочитайте и переведите следующие глаголы: to include, to attract, to design, to develop, to increase, to solve, to provide, to propose, to decide, to allow, to observe, to obtain 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 9) 4.

А detergents currently persistent screeining particularly diversity and versatility clue assay strain

a. b. c. d. e. f. g. h. i.

из

колонки

А

B в особенности разнообразие моющие средства штамм отсев, отбор ключ к решению проблемы в настоящее время испытание, опробование устойчивый, постоянный

Прочитайте и переведите текст

Microbial Enzymes: Eew Industrial Applications from Traditional Screening Methods Enzymes have applications in many fields, including organic synthesis, clinical analysis, pharmaceuticals, detergents, food production and fermentation. The application of enzymes to organic synthesis is currently attracting more and more attention. The discovery of new microbial enzymes through extensive and persistent screening will open 60

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

new, simple routes for synthetic processes and, consequently, new ways to solve environmental problems. When designing a new synthetic process, a suitable catalyst for the reaction must be found, and enzymes are ideal candidates for this role. Over the past decade, the industrial use of enzymes has developed rapidly because of their unique functions, and is gathering increasing attention, particularly their use in solving environmental problems. However, in many cases, the substrates in industrial processes are artificial compounds, and enzymes known to catalyze suitable reactions for such processes are still unknown. Therefore, screening for novel enzymes that are capable of catalyzing new reactions is constantly needed. In addition, the discovery of new enzymes will provide clues for designing new enzymatic processes. One of the most efficient and successful means of finding new enzymes is to screen a large number of microorganisms, because of their characteristic diversity and versatility. Such enzymes are useful catalysts for the synthesis of many biologically and chemically useful compounds. Enzyme screening is very important in the diverse microbial world. Screening is a key step in process development, but it is obviously very difficult to propose a rational method of screening for novel enzymes. However, there are three important stages in a general strategy: (1) designing the process and deciding the type of enzymatic activity desired; (2) deciding which groups of microorganisms are to be selected and screened; and (3) designing an appropriate, convenient and sensitive assay that will allow as many microorganisms as possible to be screened. It is also important, during the course of screening, to observe the functions of microorganisms carefully in order to obtain the desired (but random) result30.

5. Ответьте на следующие вопросы:

1) Where do enzymes have applications? 2) What will open new routes for synthetic processes? 3) What are ideal candidates for the role of a suitable catalyst for the reaction in a new synthetic process?

30

Мельникова В.А., Барановская М.Е., Халикова Д.Г. Указ. соч. 61

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

4) Why has the industrial use of enzymes developed rapidly over the past decade? 5) Why is screening for novel enzymes that are capable of catalyzing new reactions constantly needed? 6) What is the most efficient and successful means of finding new enzymes? 7) What are the important stages in a general strategy of screening? 6.

Укажите, какие одинаковые сведения (факты, содержатся в предыдущем и данном текстах.

7.

Перескажите текст из упражнения 4.

8.

Переведите текст.

мысли)

1) The conventional process for the synthesis of acryl-amide involves copper-catalyzed hydration of the nitrile. However, there are various problems with this process, including the formation of many different byproducts. To avoid this, an enzymatic process has been designed, with the key enzyme in this process being a nitrile-hydrating enzyme (nitrile hydratase, orNHase). 2) After the enzymatic process has been designed and the target reaction set up, the next step is to search for the required activity by screening the microorganisms. Ideally, all existing microorganisms should be screened but, as this is impossible, it is necessary to concentrate on potential strains. An enrichment-culture technique based on the ability to assimilate the reaction substrate is an efficient method to concentrate on the potential strains in natural samples31.

31

http://en.wikipedia.org/wiki/Enzyme 62

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Part 3. BIOTECHNOLOGY IN THE ENVIRONMENT Unit 16. CAN ETHANOL AND E85 REDUCE OUR USE OF FOSSIL FUELS? 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: ethanol, gas, gasoline, natural, resource, energy, alternative, fermentation, process, combination 2. Прочитайте и переведите следующие глаголы: to ride, to need, to pull into, to fill, to produce, to damage, to increase, to renew, to run out, to grow, to gasoline, to improve, to run on, to power 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)

А fossil fuel gas station a major source air pollution alternative source carbon dioxide to reduce the amount of biofuel to release pollutants sugar cane fuel mileage

a) b) c) d) e) f) g) h) i) j) k)

из

колонки

А

B сократить количество пробег на единицу израсходованного топлива альтернативный источник ископаемое топливо биотопливо главный источник бензозаправочная станция сахарный тростник загрязнение воздуха выделять загрязняющие вещества углекислый газ

4. Переведите текст Can Ethanol and E85 Reduce Our Use of Fossil Fuels? The last time you were riding in a car and it needed gasoline, you probably did not think much about the driver pulling into the nearest gas station to fill the tank. Gasoline is the main fuel for the approximately 135 million cars that are on the road in the United States. However, it is also a 63

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

major source of pollution, which hurts our environment. Gasoline is an example of a fossil fuel, made from the fossilized remains of plants and animals from millions of years ago. Other examples of fossil fuels are coal, oil, and natural gas. When burned, fossil fuels produce carbon dioxide, which can damage Earth’s atmosphere. Some scientists think that the increase in carbon dioxide from human activities in the past 50 years is likely a major cause of the reported global warming. In the past few decades, there has been greater interest in the search for an alternative (renewable resources) to regular gasoline for our vehicles in an attempt to reduce the amount of pollution. One alternative to gasoline that is becoming increasingly popular is ethanol. Ethanol is a clear, colorless, non-toxic liquid fuel made from the sugars found in plants. In the United States, ethanol is made mostly from corn; however, in other countries (like Brazil, the country with the largest ethanol production) sugar cane is the primary source of ethanol. Ethanol is mainly made as a result of the fermentation process. Fermentation is the process by which yeast cells eat the sugars in plants, producing the liquid ethanol (and also the waste gas carbon dioxide). Biotechnology is the process of using living things to improve our lives. In fermentation, the living thing that we use is the yeast fungus; it helps us by making a fuel that can be used as an alternative to gasoline. Ethanol was used as a fuel as far back as the 1800s. All gasolinepowered cars can run on a type of fuel called E10, which is made of 10 percent ethanol and 90 percent gasoline. Another alternative fuel that is growing in popularity in the United States is called E85; it is an ethanol– gasoline fuel mixture that consists of 85 percent ethanol and 15 percent gasoline. Unlike E10, the fuel E85 is not available everywhere and cannot be used to power all cars. The type of car that can use E85 is called a Flexible Fuel Vehicle. Flexible Fuel Vehicles (FFVs) can run on regular gasoline or on a combination of ethanol and gasoline, up to 85 percent ethanol. Only some car models are FFV versions. Aside from E85 fuel not being widely available yet, another drawback is that it reduces the fuel mileage—the distance the car can travel on a gallon of fuel. FFV typically get from 20 to 30 percent fewer miles for each gallon of fuel. So even if E85 is priced lower than gasoline, it might cost more to use the combination fuel because you would have to fill the tank more often. Despite these problems, the process of using yeast to make ethanol as an alternative to gasoline is growing in popularity. In the future, scientists hope to see this use of biotechnology lead to a decrease in the 64

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

pollution caused by vehicles. Only time will tell if ethanol really is the “fuel of the future”32. 5. Определите, являются ли следующие утверждения верными в соответствии с текстом упражнения 5 a) When burned, fossil fuels produce oxygen gas, which in large amounts can damage Earth’s atmosphere. b) In the United States, sugar cane is the primary source of ethanol. c) The country with the largest amount of ethanol production is Brazil. d) Ethanol is made by a process called fermentation. e) Ethanol was first used as a fuel for vehicles in the early 1900s. f) E85 fuel has less ethanol in it than E10 fuel has. g) All types of cars can run on E85 fuel. h) Regular cars can travel more miles on one gallon of gasoline than FFVs can travel on one gallon of E85. 6. Ответьте на вопросы (множественный выбор) 1). How many cars are there in the United States? a. 13 million b. 35 million c. 135 million d. 153 million 2). Gasoline is an example of a(n) a. biofuel b. renewable resource c. ethanol d. fossil fuel 3). Which of the following is not an example of a renewable resource? a. gasoline b. plants c. wind energy d. solar energy 4). Which of the following is responsible for turning the sugar in plants into ethanol? a. bacteria b. mold c. yeast d. wind energy 5). In which part of the United States is E85 mostly sold? a. Midwest b. Southwest c. Northeast d. South 6). Flexible Fuel Vehicles get which percent lower gas mileage than regular vehicles? a. 0 to 20 b. 20 to 30 c. 30 to 40 d. 40 to 50 7. Ответьте на вопросы a) Predict what will happen if we continue to burn fossil fuels as a fuel source. 32

Biotechnology: with student activities. 65

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

b) Give two reasons that explain why people are interested in using renewable resources rather than fossil fuels as an energy source. c) Explain why making ethanol is an example of biotechnology. d) Compare E85 with E10 (give two to three ways in which they are different). e) Evaluate the difficulties about using E85 to fuel a car (give two reasons). 8. Переведите текст письменно E85 содержит до 85% этаноловой смеси с добавлением 15% бензина. Это топливо предназначено только для транспортных средств с двигателями FlexiFuel, заправлять которые можно и обычным бензином. Но если двигатель вашего автомобиля предназначен для заправки обычным бензином, вы не можете использовать E85. В летний период данный вид топлива содержит 85% этанола – так возникло название E85. А в зимний период содержание этанола в топливе уменьшается до 75%, чтобы вы могли без проблем завести свой автомобиль даже с наступлением холодов 33. 9. Перескажите текст из упражнения 4.

33

http://www.statoil.lv/ru/toplivo/produktsiya/bioetanol-e85/ 66

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 17. HOW DOES BIOREMEDIATION WORK? 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: tragedy, barrel, ecosystem, effect, hypothermia, microorganism, microbe, method, separate, bacteria 2. Прочитайте и переведите следующие глаголы: to clean up, to keep free of, to drill for, to be capped and sealed, to affect, to be saved, to be sickened and killed, to escape from, to occur, to consume, to clean up, to involve, to break down, to fix, to ingest, to digest, to convert into 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15)

А bioremediation free of pollutants oil-drilling rig oil spill marine life damage environment endangered species crude oil invertebrates mammals devastating contamination to ingest fertilizer

из

колонки

А

B проглатывать, съедать морская жизнь сырая нефть биологическая очистка вред виды, находящиеся под угрозой исчезновения g) позвоночные h) без загрязнителей i) разрушительный j) загрязнение k) нефтяная вышка l) окружающая среда m) разлив нефти n) удобрение o) млекопитающие a) b) c) d) e) f)

67

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

4. Переведите текст How Does Bioremediation Work? As you learned before, biotechnology can be helpful in our attempts to keep the environment free of pollutants. Unfortunately, our need for biotechnology to help clean up an area sometimes comes after a tragedy. In the morning hours of April 20, 2010, an explosion happened at an oildrilling rig (a large machine used to drill for oil) in the Gulf of Mexico. About 64 kilometers (40 miles) off the coast of Louisiana, the Deepwater Horizon oil rig exploded, killing 11 workers. The incident, now called the Deepwater Horizon oil spill, was the world’s largest accidental ocean oil spill to date. By early August 2010, the well had finally been capped and sealed. Hundreds of seabirds (such as pelicans), marine mammals (such as dolphins), and endangered sea turtles have been sickened and killed by the crude oil both underneath and on the surface of the Gulf’s waters. This loss is in addition to the thousands of fish and millions of invertebrates that cannot escape from the effects of the oil. It can take many years and thousands of workers to clean up an oil spill. There are many ways an oil spill can be cleaned up, and the time it takes depends on the severity of the oil contamination. Among the many methods of cleaning up after a spill is one that involves using helpful bacteria to break the oil down into water and carbon dioxide. This method is called bioremediation and it works best in areas where the oil is not too thick. As you learned, the prefix bio means “living things.” The root word, remediation, refers to the process of fixing a problem. The two terms together form the word bioremediation, which means using living things such as bacteria to help fix an environmental problem such as an oil spill. Bioremediation can be used to clean up both soil and water. First, the microorganisms (that is, bacteria) in the area of the oil contamination ingest or “eat” the oil. Second, the bacteria digest the oil and convert it into water (H2O) and carbon dioxide (CO2) gas. The third step involves the bacteria releasing these substances into the atmosphere. Using bioremediation to clean up an oil spill has many advantages over manual methods. First, it is a relatively safe method for cleaning up oil because it uses bacteria that are already in the area and no toxic chemicals need to be added. Second, it is relatively easy to carry out because the polluted soil or water can be treated at the site without having to transport the contaminated materials to another location. Third, it is not a costly 68

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

method for cleaning up oil, compared to other methods, because very little equipment or labor is needed34. 5. Определите, являются ли следующие утверждения верными в соответствии с текстом упражнения 5 1) The Exxon Valdez oil spill was the largest accidental ocean oil spill to date. 2) Bioremediation works best in areas where the oil is not too thick. 3) When bacteria “eat” the oil from a spill, they produce water and oxygen gas. 4) Scientists add bacteria at an oil spill site for bioremediation to work faster. 5) The fertilizer that the scientists added to the oil spills was full of nitrogen and phosphorus. 6) The fewer bacteria at an oil-spill site, the faster the oil clean-up can happen. 7) There are many advantages to using bioremediation to clean up an oil spill. 8) Bioremediation is a very expensive method of cleaning up oil spills. 6. Ответьте на вопросы (множественный выбор) a) In what year did the Deepwater Horizon oil spill occur? a. 1980 b. 1990 c. 2000 d. 2010 b) How many gallons of oil were leaked into the ocean from the Deepwater Horizon accident? a. 206 million b. 4,900,000 c. 11 million d. 125 million c) How many steps are involved in the bioremediation process? a. one b. two c. three d. four d) What is the microorganism responsible for cleanup in bioremediation? a. yeast b. bacteria c. mold d. algae e) To help the bioremediation process, what do scientists add to an oilspill site? a. water b. oil c. fertilizer d. bacteria

34

Biotechnology: with student activities. Laura M. Johnson, 2011. 69

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

7. Ответьте на вопросы Why is an oil spill so deadly for animals? Give two reasons. Explain the two parts of the word “bioremediation.” Describe the three steps of bioremediation. What facts can make the territory an ideal place for bioremediation to happen? 5) Evaluate if using bioremediation as a method for cleaning up oil spills is beneficial. Give three reasons to support your evaluation. 1) 2) 3) 4)

8. Переведите текст письменно Использование природных микроорганизмов для биоремедиации было продемонстрировано при ликвидации загрязнения нефтью берегов Аляски после печально известной катастрофы там танкера, в результате чего одиннадцать миллионов галлонов нефти вылилось в море. Около полутора тысяч километров береговой линии оказалось загрязнено нефтью. Было привлечено около 11 тысяч рабочих, разнообразное оборудование и техника, затрачивалось по 1 млн. долл. в день. Процедура биоремедиации береговой линии состояла во внесении в почву азотсодержащего удобрения, стимулирующего метаболизм природных микроорганизмов, способных к деградации содержащихся в нефти углеводородов. Оказалось, что этот метод в 3–5 раз ускоряет процесс деградации нефти. В результате проведенной биоремедиации отрицательный эффект от загрязнения нефтью, который, по расчетам, продлился бы 10 лет, был сокращен до 2 лет. Что касается затрат на биоремедиацию, то они составили менее 1 млн. долларов35. 9. Перескажите текст из упражнения 4.

35

http://www.nauka.kz/biol_med/razd4/bioremeditacia_neftanih_zagraznenii.php 70

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 18. WHY IS COMPOSTING A BENEFICIAL PROCESS? 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: organic, banana, composting, microscopic, humus, metal, plastic, natural, container, protein 2. Прочитайте и переведите следующие глаголы: to turn into, to compose, to decompose, to speed up, to break down, to grow, to be recycled, to be thrown into, to give off, to accept, to smell, to be poked 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 9) 10)

А crumpled paper to have smth in common garbage can yeast food scraps to enrich the soil pile benefit inconvenience odor

a) b) c) d) e) f) g) h) i) j)

из

колонки

А

B куча, яма иметь что-то общее дрожжи неудобство мусорное ведро польза обогащать почву скомканная бумага кормоотходы запах

4. Переведите текст Why Is Сomposting a Beneficial Process? Egg shells, onion skins, banana peels, grass clippings, and crumpled paper. What do these things have in common? With the help of biotechnology, these items can be turned into a nutrient-rich soil that can be used to help plants grow, so it is good for the environment. Everything organic will eventually decompose. Composting is a process that speeds up the decomposition of organic matter by providing the ideal conditions. Living things decompose when microscopic organisms 71

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

break down the organic matter into simpler forms of matter. Most of the decomposition, about 80 to 90 percent, in a compost pile is done by the bacteria. Other microorganisms, such as yeast and some fungi, also help. There are bacteria already living on most things; so when a piece of food or other organic matter is left alone long enough, the bacteria on it will make it start to decompose. Composting takes advantage of this naturally occurring process by giving the bacteria the things it needs to grow. The more bacteria there are, the faster the organic matter breaks down. Compost piles need four things to work well: nutrients, water, oxygen, and decomposing microorganisms, called decomposers. The nutrients come from the organic material that is put in the pile. The types of things that can be put into a compost pile fall into two main categories: “browns” and “greens.” The browns are organic materials that are high in carbohydrates and provide the element carbon; they include such things as autumn leaves, straw, and paper products (napkins, paper towels, paper bags, coffee filters, newspaper, and so on). The greens are organic materials that are high in protein and provide the element nitrogen; they include such things as grass clippings and food scraps (egg shells, coffee grounds, tea bags, apple cores, and so on). A compost pile works best when the brown items and green items are placed in alternating layers. The water is provided either naturally, from the rain, or when someone waters the pile if it has dried out. The compost pile gets oxygen by being turned every now and then, and also by being exposed to the air. After the bacteria go to work, they start to break down the organic material. The resulting product of the decomposition of organic material is called humus, or compost. Humus is a dark brown, nutrient-rich material; it can be used to enrich the soil where plants are grown to give them a boost of nutrients to help them grow well. Items that are not organic cannot be put into a compost pile because inorganic materials will not decompose (metal, glass, plastic etc.). Meat, bones, foods covered in oils, and dairy products are also not good for a compost pile because they can attract animals (who may try to eat the compost) and they can make the compost pile smell worse. Composting is an example of biotechnology because people are using decomposer microbes to help make nutrient-rich soil for plants36.

36

Biotechnology: with student activities. Laura M. Johnson, 2011. 72

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

5. Определите, являются ли следующие утверждения верными, в соответствии с текстом упражнения 5 1) 2) 3) 4) 5) 6) 7) 8)

“Green” ingredients provide the carbon in a compost pile. A compost pile works best when the “brown” and “green” ingredients are placed in alternating layers. Bacteria and other decomposing microorganisms are added to the compost pile. The product of a compost pile is called humus. Banana peels and crumpled paper are just garbage. Fungi do most of the decomposition in a compost pile. Organic things will never decompose. A compost pile gets nutrients from the organic material that is put in the pile.

6. Ответьте на вопросы (множественный выбор) 1). What percent of the decomposition of a compost pile is due to bacteria? a. 100 percent b. 90 to 100 percent c. 80 to 90 percent d. 70 to 80 percent 2). Which of these are decomposing microbes that are involved in composting? a. fungi b. yeast c. bacteria d. all of the above 3). Which of the following substances does a compost pile not need? a. metal b. nutrients (nitrogen and carbon) c. oxygen d. water 4). Which of the following is considered a “brown” ingredient in a compost pile? a. paper bags b. egg shells c. tea bags d. banana peels 5). Which of the following is considered a “green” ingredient in a compost pile? a. coffee filter b. apple core c. autumn leaves d. straw 6). Which of the following items is the only one that can be put into compost? a. glass b. plastics c. inorganic items d. organic items 7. Ответьте на вопросы 1. Explain how composting takes advantage of a natural process. 2. Imagine that organic things did not decompose. What would our Earth be like? 3. List at least five items that are considered either “brown” ingredients or “green” ingredients in a compost pile. 73

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

4. (a) Why does a compost pile need oxygen and water? (b) Explain how the compost pile gets the oxygen and water it needs. 5. (a) How long does it take a compost pile to turn into humus/compost? (b) What can be done with the humus once it is formed? 6. (a) Explain why things that are not organic cannot be put into a compost pile. (b) List at least five substances that cannot be put into a compost pile. 7. Explain why composting is an example of how biotechnology can help the environment. 8.

Переведите текст письменно

Компосты - это удобрения, получаемые в результате разложения смеси различных органических веществ естественными микроорганизмами. Практика компостирования свидетельствует о существенном резерве санитарной эффективности компостирования (ферментации) отходов, обработанных специально подобранными композициями естественных аэробных микроорганизмов. Внесение в готовое к компостированию органическое сырьё богатого термофильными аэробными микроорганизмами микробного биопрепарата, обеспечивает более динамичное и интенсивное протекание процесса компостирования, существенно повышает санитарно-бактериологические показатели продукции компостирования – гумуса 37. 9. Перескажите текст из упражнения 4. 10. Представьте себя в роли журналиста местной газеты. Ваш редактор хочет, чтобы вы написали статью на тему: “Роль биотехнологии в защите окружающей среды”. • Why people are concerned about the environment? • What biotechnology is? • How people are using biotechnology to help the environment?

37

http://www.aveal.com.ua/docs/view/35/ 74

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Part 4. BIOTECH TRENDS AND EUROPEAN POLICY IN THE 21ST CENTURY Unit 19. ADVANCES IN MICROBIOLOGICAL PROCESSING OF PETROLEUM 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: argument, biomass, epoch, biosynthesis, protein, technology, distillate, corrosion 2. Прочитайте и переведите следующие глаголы: to present, to deal with, to obtain, to discuss, to direct, to analyze, to purify, to enter, to provide 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 9) 10)

А fodder yeast beyond argument derivatives nutritious value harmlessness lubricants petroleum microbiological processing purified deparaffmization

a) b) c) d) e) f) g) h) i) j)

из

колонки

А

B очищенный смазочные масла нефть бесспорно микробиологическая переработка питательность производные депарафинизация кормовые дрожжи полезность

4. Прочтите текст. Скажите, соответствует ли данный заголовок содержанию текста. Обоснуйте свой ответ. Advances of Microbiological Processing of Petroleum A number of reports presented at the 8th World Petroleum Congress dealt with microbiological processing of petroleum for the purpose of obtaining protein-rich microbial biomass. Since then significant 75

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

advances have been made in this field. Industrial production of fodder yeasts from purified liquid n-paraffins has been started in a number of countries. The importance of this development lies in the expansion of protein resources for humanity. But more important yet is the practical realization of the first step to the production of principally new fodder product hydrocarbon yeasts. It seems beyond argument that humanity enters a new epoch of various usage of microorganisms, first of all, in fodder and food production. Petrol hydrocarbons — as a new source of energy for biosynthesis — make a turning point of tremendous importance in the life of humanity. Microbiological processing of oil products and their derivatives into single-cell protein is discussed. Special attention is directed both to the principles of technology providing the high nutritious value and harmlessness of the product and to the definition of their fields of application (technical, feed, food). The microorganism applications of deparaffmization of gas oils, oil-distillates, lubricants and for the production of pharmaceutical and other preparations from hydrocarbons are analyzed. The problem of oil-products protection against microbiological corrosion and investigations of microbiological protection of the environment against pollution by oil products are discussed in the below articles38.

5. Найдите в тексте английские эквиваленты следующих слов и словосочетаний: ряд докладов, микробиологическая переработка, с целью получения, значительные успехи, очищенные жидкие н-парафины, углеводородные дрожжи, одноклеточный белок, особое внимание, область применения, защита окружающей среды от загрязнения

38

Мельникова В.А., Барановская М.Е., Халикова Д.Г. Указ. соч. 76

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

6. Переведите следующие предложения на английский язык: 1) 3а последние годы достигнуты значительные успехи в области микробиологической переработки нефти с целью получения микробиологической биомассы, богатой белком. 2) В ряде стран началось промышленное производство кормовых дрожжей из очищенных жидких н-парафинов. 3) Человечество вступает в новую эпоху различного использования микроорганизмов. 4) Нефтяные углеводороды - это новые источники для биосинтеза. 5) В данной статье будет рассматриваться микробиологическая переработка нефтяных продуктов и их производных в одноклеточный белок. 6) Особое внимание было уделено принципам технологии, обеспечивающим высокую питательность продукта. 7. Ответьте на следующие вопросы: l) Did reports presented at the World Petroleum Congress deal with microbiological processing of petroleum? 2) What has been started in a number of countries? 3) Does humanity enter a new epoch of various usage of microorganisms? 4) Is microbiological processing of oil products and their derivatives into single-cell protein discussed here? 5) Why must you pay attention to the principles of technology? 6) Microbiologists will discuss the problem of oil-products protection against microbiological corrosion, won't they? 8.

Перескажите текст из упражнения 4 по плану:

1) The purpose of microbiological processing of petroleum. 2) The importance of industrial production of fodder yeasts from purified liquid n-paraffins. 3) Petrol hydrocarbons. 4) The problems discussed in the article.

77

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 20. NUTRITIVE VALUE OF BIOMASS 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: lysine, treonine, biomass, microorganism, content, product, technology, nicrobiology, progressive 2. Прочитайте и переведите следующие глаголы: to suffer from, to possess, to contain, to select, to increase, to compensate, to allow, to regard, to involve, to produce, to utilize 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)

А deficiency cereals on the other hand excess meat showings cattle-breeding tempting sufficient inferior to complement unicellular

a) b) c) d) e) f) g) h) i) j) k)

из

колонки

А

B достаточный избыток, излишек дополнять с другой стороны заманчивый, соблазнительный показатели мяса недостаток, дефицит животноводство хлебные злаки одноклеточный худший по качеству

4. Прочитайте и переведите текст. Nutritive Value of Biomass It is well known that a great part of humanity suffers from deficiency of high-quality proteins. Such proteins of animal origin, as in eggs and milk, possess the most favourable combination of amino-acids. The nutritive value of meat and fish proteins is somewhat lower. The amino-acid composition of vegetable proteins is significantly less favourable. Thus, cereals have only few of deficient essential amino acids. Single-cell microorganisms contain much protein (40-70% of dry wt). The amino acid composition of unicellular proteins is close to that of 78

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

animal proteins. Moreover, it is often possible to select those strains of which the proteins contain much of those particular amino-acids which are deficient in cereals. Thus, the lysine content of some yeast proteins is 5 times higher than that of wheat proteins and the treonine content is 2 times higher. By mixing vegetable products with a small quantity of unicellular biomass it is possible not only to increase the total protein content of the mixture but also to raise substantially the nutritive value of the aggregate protein. On the other hand, a certain excess of sulphur-containing amino acids in wheat proteins compensates for their lack in yeast proteins. It allows one to obtain a product with a protein component of such a high nutritive value that it may equal the most valuable proteins (egg, milk) and exceed the corresponding meat showings. Theoretically cattle-breeding may be regarded as processing of vegetable products with deficient nutritive protein component into more valuable animal proteins. Protein losses involved in processing vegetable proteins into animal proteins amount to about 3/4 of the volume. One may ask whether it is reasonable to use such valuable products only as feed in cattle-breeding. The oil-processing and microbiological industries are capable of organizing production of unicellular biomass in a volume sufficient at the present level of vegetable protein production to satisfy completely the population of our planet with highly valuable protein. It is possible to produce some millions tons of yeasts and add them to wheat and other cereals to eliminate the protein deficiency in peoples' nourishment. So, it is the question of complementing vegetable products with products of microbiological industry, by using the achievements of microbiology and technology in order to eliminate the protein deficiency. Even if there were no protein deficiency in the world, it would be still necessary to develop production of microbial proteins as something progressive and in keeping with the present level of science and technology39.

39

Мельникова В.А., Барановская М.Е., Халикова Д.Г. Microbiology and Biotechnology: Указ. соч. 79

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

5. Ответьте на следующие вопросы: l) Do you agree with the statement that a great part of humanity suffers from deficiency of proteins? 2) Can you compare the nutritive value of products of different origins? 3) How is it possible to increase the total protein content of a mixture? 4) Is it possible to raise the nutritive value of the aggregate protein? 5) What are the protein losses involved in processing vegetable proteins into animal proteins? 6) Are oil refinery and micro-biological industries capable of producing unicellular biomass in a volume sufficient to satisfy completely the population of our planet with highly valuable protein? 7) What do you think of the possibility to use such products for the nourishment of people? 6. Перегруппируйте предложенные пункты плана в последовательности, соответствующей содержанию прочитанного: 1) 2) 3) 4) 5)

Protein losses. Nourishment of people. Nutritive value of proteins of different origins. Oil processing and microbiological industries. Mixtures of wheat and yeast biomass.

7. Перескажите текст из упражнения 4 8. Прочитайте следующий отрывок текста и скажите, какую информацию относительно предшествующего контекста он содержит: поясняющую, уточняющую или дополнительную: The total biomass of the Earth's microorganisms is considerably greater than the biomass of all farm crops and animals taken together. Yeasts, bacteria and algae comprise a practically inexhaustible source of protein which is essential for any living organism. Microorganisms grow with truly cosmic speed. If a newborn calf could synthesize protein in its organism as quickly as it is done by microbial cells, it would grow into a bull weighing 500 kg in one day. In

80

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

twenty four hours a microbial cell processes a mass of nutritive substances exceeding its own weight 30 or 40 times40. 9. Переведите следующий отрывок текста: Среди биотехнологических штаммов водорослей, широко используемых во всем мире для получения ценных медицинских препаратов, пищевых и кормовых добавок, наибольший интерес представляют 3 вида — спирулина, дюналиелла и хлорелла. Изучение питательной ценности биомассы спирулины, проводившееся во многих странах, показало ее полезность и целесообразность использования в рационах детского и диетического питания здоровых и больных людей и для кормления животных41.

40 41

http://www-fa.upc.es/personals/fluids/oriol/ale/eolss.pdf http://innosfera.org/node/381 81

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 21. CERTAIN SPECIFICS OF MICROBIOLOGICAL PRODUCTION OF PROTEIN BIOMASS 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: substrate, organic, biomass, microorganism, method, separation, culture, product, protein, process, cultivation, synthetic, climate, evolution 2. Прочитайте и переведите следующие глаголы: to be carried out, to be supplied, to be provided with, to be segregated from, to obtain, to dry, to require, to depend on, to use 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14)

А coil to omit distinctive features in its essence in conformity with conjecture a sizable part fertilizer poisonous chemicals unlike waste water incentive fermenter aqueous solution

a) b) c) d) e) f) g) h) i) j) k) l) m) n)

82

из

колонки

B огромная часть отличительные черты кольцо, спираль догадка, предположение в отличие от пропускать, не включать ядовитые химикаты в соответствии с водный раствор побудительный мотив по своей сути, по существу удобрение биореактор, ферментер сточная вода

А

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

4. Прочитайте и переведите текст. Certain Specifics of Microbiological Production of Protein Biomass Modern production of single cell protein (SCP) is carried out in fermenters with capacities of several hundred m3. Aqueous solution of mineral salts and organic substrate are supplied continuously to the medium where microorganisms are reproducing. It is essential that the growing microorganism culture is intensively provided with oxygen and that the heat generated in the process of biological oxidation be removed. Grown up cells are segregated from the liquid phase by separation, though other methods are also possible, for example, flotation for small bacterial coils. Besides, properly selected conditions permit one to obtain cultures containing a greater volume of wet cells than that of water in the intercellular space. It is advisable to dry such dense cultures omitting the stage of the biomass separation from the aqueous medium. Before drying the biomass is usually subjected to plasmolysis. A powdery or granulated resulting product, rich in protein, is obtained after drying. The technology of petroleum hydrocarbon processing into a microorganism biomass is similar to chemical technology in the intensity of the process and equipment. However, cultivation of microorganisms is a purely biological process in its essence. Therefore it would be incorrect to call the obtained products of microbiological origin synthetic and even artificial. Such microbiological production is basically similar to agricultural production. At the same time microbiological production has a number of distinctive features. It is often emphasized that microbiological production is industrial and does not require land for cultivation, does not depend on the climate and weather conditions and may be planned exactly. Moreover, a countless variety of microorganisms, and types of their nutrition and a high growth rate of unicellulars allow both a rapid evolution of microorganisms strains with valuable properties, and easy manoeuvring in the utilization of suitable kinds of raw materials in conformity with the conjecture established for a given period of time. Great achievements of the human society in plant-growing have led to the fact that a sizeable part of dry land on our planet is cultivated. The recent decades are characterized by intensification of plantgrowing which involves extensive use of fertilizers and pesticides. Further expansion of pesticide usage may cause additional harmful influence on the environment Besides, increasing doses of pesticides get into the food of a 83

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

huge part of population. Unlike agriculture, microbiological industry does not use pesticides, and its products do not contain any poisonous chemicals. The waste water of microbiological industry can be easily purified. These distinctive features of microbiological ways of food and feed production will be an incentive to their broad practical application42. 5. Найдите в тексте ответы на следующие вопросы: a. What is supplied to the medium where microorganisms are reproducing? b. What product is obtained after drying? c. What distinctive features does microbiological production have? 6. Перескажите текст из упражнения 4 по следующему плану. a) Modern production of single cell protein. b) The difference between microbiological industry and agriculture. c) Their influence on the environment. 7. Переведите отрывок текста с русского на английский язык: Микробные клетки сами по себе могут служить конечным продуктом производственного процесса. В промышленном масштабе получают два основных типа микроорганизмов: дрожжи, необходимые для хлебопечения, и одноклеточные микроорганизмы, используемые как источник белков, которые можно добавлять в пищу человека и животных. Пекарские дрожжи выращивали в больших количествах с начала 20 в. и использовали в качестве пищевого продукта в Германии во время Первой мировой войны43.

42

Мельникова В.А., Барановская М.Е., Халикова Д.Г. Microbiology and Biotechnology. Указ. соч. 43

Лысак, В.В. Микробиология: учеб. пособие. – Минск : Изд-во БГУ, 2007. 84

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 22. SAFETY OF PROTEIN BIOMASS 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: reality, component, accumulation, selection, method, enzyme, psychological, product, protein, structure, cultivation, utilization, paraffin, bacteria, alkanes, glucose 2. Прочитайте и переведите следующие глаголы: to be free from, to represent, to turn into, to lead to, to isolate, to add, to involve, to increase, to be removed, to consider 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14)

А inordinate consumption partial lost prior to excretion daily consumption well-grounded staple products groat to do away with residual hydrocarbons labeled glucose cabbage leaves foreign nucleic acid additional costs

a) b) c) d) e) f) g) h) i) j) k) l) m)

из

колонки

А

B обоснованный крупа частичная потеря до выделения чрезмерное употребление меченая глюкоза ежедневное потребление зд. инородный, чужой главные продукты покончить остаточные углеводороды капустные листья дополнительные затраты нуклеиновые кислоты

4. Прочитайте и переведите текст. Safety of Protein Biomass Protein containing products of microbiological industry must be free from harmful nonprotein components. Nucleic acids represent an undesirable component of unicellulars in case of their inordinate 85

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

consumption in food. The high growth rate of unicellulars is accounted for by a higher, compared to meat and fish, content of nucleic acids. The organism of an animal turns the purine bases that are present in nucleic acids into uric acid, then into urea and ammonia prior to excretion. But in a human being the process of purine breakdown stops at the stage of uric acid production. An increase of the uric acid content in plasma may lead to an accumulation of urates in the individuals predisposed to that. Therefore, according to nutritionists, daily consumption of nucleic acids with food by a human being must not exceed 2 g. Some methods for nucleic acids removal have been worked out in the USA. Nucleic acid content may be lowered to some extent by selection of proper conditions for yeast cultivation. Finally, it is also possible to isolate proteins from the cells and then add them to food. Naturally, it would involve a further complication of production and thus, additional costs and a partial loss of protein. The nutritionists need lengthy investigations to establish the safety of adopting the biomass of various bacteria for food. It is only natural, because until now humanity has never used in food such bacteria, as Pseudomonas, E. coli, Bacillius, Hydrogenomonas, etc. It is absolutely safe for people's health to add biomass of nonpathogenic bacteria even to the feed of livestock whose meat or dairy products will be used for food. Bacteria contain much protein (up to 10% of dry wt), and their mass cultivation may prove to be extremely promising. But, undoubtedly, the mass cultivation of yeasts (their utilization for food has a history of many centuries) stays in the first place in the space of time. The supposed carcinogenity of hydrocarbon yeasts is not wellgrounded. The 3,4-benzopirene content of the yeasts grown on gas oils or nparaffins is the same or even lower than that of the conventional foodstuffs for nourishment. The yeasts grown on n-alkanes contain residual n-alkanes. Inconsiderable quantities of n-alkanes are contained in a great variety of products of vegetable and animal origin. Plants synthesize n-alkanes and cabbage leaves represent a classical object for revealing the metabolism of n-alkanes. That is why it is not true to consider n-alkanes to be foreign to living nature. It has been shown by special investigations on animals that nalkanes are metabolized by the animal organism. And yet their content in conventional foodstuffs is usually lower than that in "paraffin" yeast. Therefore technological processing has been worked out which makes it

86

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

possible to decrease n-alkane content in yeast to efficiently low values (tenth parts of percent of dry wt)44. 5. Найдите в тексте английские эквиваленты следующих слов и словосочетаний: нежелательный компонент одноклеточных, высокий темп роста, по сравнению с мясом и рыбой, содержание мочевой кислоты в плазме, у людей, предрасположенных к этому, по мнению диетологов, дальнейшее увеличение, полное или частичное удаление нуклеиновых кислот, значительно ниже, привлекательность, принятие, до сих пор, в области питания, мясные или молочные продукты, предполагаемая канцерогенность углеводородных дрожжей, незначительные количества н-алканов. 6. Переведите следующие предложения на английский язык: 1) Было бы желательно добавить 10-20 граммов (сухого веса) в основные продукты. 2) Дальнейшее увеличение содержания дрожжей в диете было бы возможно после полного или частичного удаления нуклеиновых кислот. 3) Выделение белков из клеток и добавление их в пищу повлекло бы дальнейшее усложнение производства, дополнительные затраты и частичную потерю белка. 4) Было бы важно преодолеть психологическую неподготовленность потребителя к новому виду жизни. 5) Это покончило бы с ограничениями, связанными с присутствием нуклеиновых кислот в продукте. 7. Найдите в тексте ответы на следующие вопросы: 1) What stands in the way of making protein biomass safe? 2) At what stage does the process of purine breakdown stop in a human being? 3) How may nucleic acid content be lowered? 44

Мельникова В.А., Барановская М.Е., Халикова Д.Г. Microbiology and Biotechnology. Указ. соч. 87

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

4) What would involve a further complication of production? 5) Would digestibility of protein by digestive enzymes increase? 6) What would it be essential to overcome? 7) What do you think of adding biomass of some nonpathogenic bacteria to the feed of livestock? Is it absolutely safe for people's health or not? 8) What do you know of the yeasts grown on n-alkanes? 8. Перескажите текст из упражнения 4, используя следующие выражения: 1) 2) 3) 4) 5)

The article is devoted to the problem of... It deals with ... It is of great interest for ... The author stresses ... He draws the reader's attention to...

88

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 23. PRINCIPLES OF CONTROL OF MICROBIOLOGICAL BREAKDOWN OF HYDROCARBONS 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: microbiological, microorganism, dioxide, fraction, planet, reservoir, microflora, product, recommend, emulgator, stimulate, utilization, control, bacteria, alkanes, nickel, zink 2. Прочитайте и переведите следующие глаголы: to lead, to concern, to estimate, to emulgate, to penetrate, to treat, to recommend, to be oxidized up, to affect, to add, to suggest 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 9) 10)

А self-purification to concern to penetrate mould fungi prevention pipeline carcinogen excess of oxygen oil products admixture

a) b) c) d) e) f) g) h) i) j)

из

колонки

А

B проникать самоочищение канцероген избыток кислорода касаться, относиться к чемулибо плесневые грибы профилактика, предотвращение нефтепродукты трубопровод примесь

4. Прочитайте и переведите текст. Principles of Control of Microbiological Breakdown of Hydrocarbons Microorganisms are a powerful natural force of the self-purification leading to the hydrocarbon oxidation to water and carbon dioxide on the surface of our planet. All petroleum fractions and its individual compounds are oxidized by different microorganisms. It concerns the asphalted cover of 89

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

roads, fuels, lubricants and even the most powerful carcinogen, 3,4benzopiren. Microorganisms "work" intensively when there is an excess of oxygen, hydrocarbon is emulgated and the medium has the temperature suitable for their vital activity. Zobell estimates that the petroleum oxidation in the sea occurs at the rate of 36-350 g/m3 annually. In nature there are many hydrocarbon oxidizing microorganisms in the places where hydrocarbons can easily penetrate. However, if hydrocarbons do not get early and regularly to any reservoir or district, it may be useful to treat this district with the "ferment" of bact-preparation of hydrocarbon oxidizing microorganisms in order to accelerate the development of hydrocarbon oxidizing microflora of this district. The "ferments" containing lyophilized living microorganism cells may be in the form of powders, pastes, liquids. Some inventions recommend the use of such alive preparations for the purification of different capacities from residual oil-products. Mineral salts and emulgators can be added to the "ferments" in order to stimulate the vital activity of microorganisms. In a number of cases it is necessary to control the activity of microorganisms which may affect a wide spectrum of oil-products in the process of their storage and utilization. These are such oil-products as different fuels, lubricating oils and lubricating-cooling liquids in particular. Microorganisms (bacteria, mycobactуria, yeasts and mould fungi) usually "eat away" the N-alkane fraction first of all. Hydrocarbons are oxidized up to carbon dioxide and water, the latter in its turn being used for the new cell construction. Complex oxygen-containing organic compounds affecting the oil-product quality can accumulate in the medium. The practical troubles are often connected with the overgrowing of petrol-pipelines with microorganisms and the mechanical admixture. A wide variety of measures for the prevention of microbiological corrosion of oil-products have been worked out. The express-methods of the rapid detection of microorganisms in hydrocarbons have been suggested. Hydrocarbons are kept hermetically, and biocide additives containing tin, silver, mercury, nickel, copper, lead and zinc compounds, which are toxic for microorganisms, or organic biocides, e.g. 8-hydrooxinoline derivatives, are added to them45. 5. Ответьте на следующие вопросы:

45

Мельникова В.А., Барановская М.Е., Халикова Д.Г. Microbiology and Biotechnology. Указ. соч. 90

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

a. Why do we say that microorganisms are a powerful natural force of self-purification? b. What are the conditions for their vital activity? c. Why is it necessary to control the activity of microorganisms? d. What microorganisms are mentioned in the text? e. What are hydrocarbons oxidized up to? f. What are the practical troubles connected with? g. What is meant by the word “biocide”? 6. Найдите в тексте английские эквиваленты следующих слов и словосочетаний. мощная природная сила, на поверхности нашей планеты, асфальтовое покрытие наших дорог, смазочные масла, избыток кислорода, в виде порошков и паст, для очистки различных емкостей, остаточные нефтепродукты, в ряде случаев, в процессе их хранения и использования, механические примеси, широкий ряд мер, быстрое обнаружение микроорганизмов, герметично, ртуть, производные. 7. Скажите, отражает ли заголовок главный смысл текста. Если вы не согласны, дайте свой вариант заголовка. 8. Сократите текст, сохранив его Используйте следующие выражения:

основное

содержание.

1) The object of this paper is to discuss . . . 2) The paper deals with . . . 3) It begins with ... 4) It deals firstly with ... 5) Then the author goes on to the problem of ... 6) It should be noted that . . . 7) It is interesting to note . . . 8) The conclusion is that . . . 9) In my opinion (I think) the paper is valuable (invaluable), up-to-date (out-of-date), useful (useless)...

91

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 24. OXIDATION OF N-ALKANE MOLECULE 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: molecule, atom, to synthesize, mixture, product, absolute, fraction, material, methyl, ethyl, glucose, energy, substrate, to transform 2. Прочитайте и переведите следующие глаголы: to lead to, to synthesize, to present in, to show, to stimulate, to confront, to differ from, to carry out, to turn out 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)

А initial alkane fatty acids consumption odd and even numbers the marked increase oxy-hydrocarbon derivatives acetic acid on the contrary view point store oxidation

a) b) c) d) e) f) g) h) i) j) k)

из

колонки

А

B производные окисленных углеводородов исходный алкан нечетные и четные числа точка зрения заметное увеличение уксусная кислота запас потребление окисление наоборот жирные кислоты

4. Прочитайте и переведите текст. Oxidation of N-Alkane Molecule Oxidation of n-alkane molecule by yeasts leads to the formation of the fatty acids containing as much carbon atoms as initial alkane. When growing on the mixture of n-alkanes with odd and even numbers of carbon atoms the yeasts synthesize the mixture of odd and even fatty acids. It is well known that odd fatty acids are present in very different products of the vegetable and animal origin. It has been shown that they are rather 92

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

intensively metabolized. The harmfulness of the small quantities of the mentioned lipid fractions has not been established by the very careful experiments on animals. However, this is not an absolute proof of the harmlessness of such products when utilizing them systematically directly for human nourishment. Because of this, in Russia, "paraffin" yeasts are allowed to be utilized in animal feed only. The marked increase in attention to the utilizing of the products of hydrocarbon oxidation is a tendency of the research work in the field of the single cell protein production in the last few years. Methyl and ethyl alcohols, lower acids and other oxy-hydrocarbon derivatives are investigated from the view point of their practical utilization as the raw material for the microbiological production of yeasts. Investigations carried out at our Institute discovered that yeasts grown on acetic acid and ethyl alcohol contain much less "odd" fatty acids in synthesized hydrocarbons than the yeasts grown on glucose. On the contrary, tri-carbon compounds, propionic acid especially, stimulate the increased synthesis of fatty acids with an odd number of carbon atoms. The lipid composition of the yeasts grown on methyl alcohol is similar to that of the yeasts grown on glucose. Yeasts grown on some oxy-hydrocarbon derivatives possess rather favourable chemical composition and meet the requirements of food quality. The special investigations demonstrated that the process of growth requires the least expenditure when the larger part of the chemical energy of the utilized substrate transforms to the chemical energy enclosed in the biomass. In other words, the expenditure in the fermentation decreases with increasing energy efficiency of the fermentation process. It is known that the prices of one and the same raw material are different in different countries. The energetic yields of microorganisms growing on one and the same substrate also differ according to the strains used and the cultivation conditions. Investigations carried out in different countries show that methyl alcohol is rather promising as a substrate for biosynthesis. Ethyl alcohol, acetic acid and some other products of hydrocarbon oxidation turn out to be of great economic utility in the food yeast production under some conditions46.

46

Мельникова В.А., Барановская М.Е., Халикова Д.Г. Microbiology and Biotechnology. Указ. соч. 93

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

5. Какое из следующих утверждений не соответствует тексту: 1 ) Odd fatty acids are rather intensively metabolized. 2) Attention to the utilizing of hydrocarbons as the raw material for the yeast growing is increasing. 3) Yeasts grown on some oxy-hydrocarbon derivatives meet the requirements of food quality. 4) The prices of one and the same raw material are different in different countries. 6. Ответьте на следующие вопросы: 1) What does oxidation of n-alkane molecule by yeasts lead to? 2) When does yeast synthesize the mixture of odd and even fatty acids? 3) What is well known about odd fatty acids? 4) Are they intensively metabolized? 5) What has not been established by the very careful experiments on animals? 6) What recommendations have been devised? 7) What do they guarantee? 8) What is a tendency of the research work in the field of the single cell protein production in the last few years? 9) What did investigation carried out discover? 10) The lipid composition of the yeasts grown on the methyl alcohol is similar to that of the yeasts grown on glucose, isn't it? 11) What substrate is better for the yeast growing? 12) What products of hydrocarbon oxidation are of great economic utility in the food yeast production? 7. Определите количество смысловых частей в тексте из упражнения 4, озаглавьте каждый из них. Передайте содержание каждой смысловой части на английском языке.

94

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 25. BIOTECH TRENDS AND EUROPEAN POLICY IN THE 21ST CENTURY 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: insulin, diabetic, molecular, genetics, genome, process, transplantation, company, project, component 2. Прочитайте и переведите следующие глаголы: to produce, to create, to acquire, to impact on, to attract, to take off, to compete, to expect 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14)

А in vitro fertilized embryo non-fertile couples to benefit from cutting edge stem cell-mediated organ transplantation to take bold steps unprecedented investments to take off into its full growth to unravel crucial target identification virtually efficacy breakthrough

a) b) c) d) e) f) g) h) i) j) k) l) 95

из

колонки

А

B войти в полный рост, начать полностью расти искусственно оплодотворенный эмбрион то, что находится на продвинутой ступени развития небывалые, беспрецедентные инвестиции клеточно-опосредованная пересадка органов решающий, критичный бесплодные пары (семьи) разгадать, объяснить извлекать пользу, выгоду и чего-либо крупное научно-техническое достижение; прорыв (в науке) делать смелые шаги, активно принимать меры фактически, в сущности

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

m) определение цели n) эффективность, сила; действенность 4. Прочитайте и переведите текст. Biotech Trends and Earopean Policy in the 21st Century In the late seventies/early eighties, it was biotechnology, which made it possible to produce recombinant insulin in large quantities to meet the high market demand from the millions of diabetics worldwide, and create in vitro fertilized (IVF) embryos for non-fertile couples who otherwise would not have been able to acquire children. Since then, an explosive development in Life Sciences and in particular in Molecular Genetics-deciphering of the human genome led to newly acquired molecular knowledge, which when fully converted to application using biotechnology will revolutionize our life. Nowadays, biotechnology impacts on almost every human activity including health care (drug discovery process, possibility to benefit in the future from stem cell-mediated organ transplantation); food industry (genetically engineered food); and security (biodefence/anti bioterrorism). As a result, Genetics and Biotechnology attracts the attention of an increasing number of scientists as well as the mass media and the general public. On the other hand, international organizations, governmental agencies, large pharmaceutical corporations, and small/medium biotechnology companies (Biotech SMEs) take bold steps aimed to increase their participation in the world hiomarkel with parallel unprecedented investments in bio-related projects across the globe. It is estimated that bioeconomy will take off into its full growth during the end of tho second decade of the 21st century. For over two decades researchers have been trying to study the molecular origin of a large number of human diseases. However, it is only within the last few years that genetic discoveries have significantly advanced our understanding of the molecular pathogenesis of major illnesses such as cancer, diabetes, AIDS, arthritis, osteoporosis, etc. The fact that virtually every human disorder has an inherited (genetic) component is now widely accepted among members of the scientific community. Unravelling the underlying molecular mechanisms responsible for the development of a disease is the first crucial step towards the production of novel drugs, with the following steps being: target identification, lead generation, drug development, and drug marketing. 96

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Pharmaceutical companies, Biotech SMEs, and cutting edge University research groups compete in the race for the most rapid production of high efficacy drugs with less adverse effects using the power of molecular genetics. Pharmacogenetics is expected to have an unprecedented impact on the practice of medicine in the years to come. Molecular Medicine born from the breakthrough discoveries in molecular genetics, and individual-based therapeutic treatment, will be the biotrends in the 21st century47. 5. Найдите в тексте английские эквиваленты к следующим словам и словосочетаниям: отвечать высоким рыночным требованиям, человеческий эмбрион, молекулярная генетика, преобразованный, человеческая деятельность, генетически созданная пища, биозащита, растущее число, средства массовой информации, с другой стороны, фармацевтические корпорации, участие в мировом биорынке, подсчитывать, за последние два десятилетия, значительно продвинуться (преуспеть), унаследованный элемент, широко принят среди, члены научного сообщества, решающий шаг, небывалое влияние, участвовать в гонке (конкурировать в состязании), высокоэффективные лекарства, неблагоприятные воздействия, в последующие года. 6. Объясните значение следующих слов и словосочетаний: to revolutionize out life, biodefence, human disorder, IDS 7. Задайте вопросы предложениях:

к

выделенным

словам

в

следующих

1) Biotechnology made it possible to produce recombinant insulin in large quantities. 2) An explosive development in Life Sciences and in particular in Molecular Genetics-deciphering of the human genome led to newly acquired molecular knowledge. 3) Biotechnology impacts on almost every human activity including health care, food industry and security. 47

http://www.oecd.org/science/innovationinsciencetechnologyandindustry/3493560 5.pdf 97

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

4) For over two decades researchers have been trying to study the molecular origin of a large number of human diseases. 5) Genetic discoveries have significantly advanced our understanding of major illnesses such as cancer, diabetes, AIDS, arthritis, osteoporosis. 6) Virtually every human disorder has an inherited (genetic) component. 7) The underlying molecular mechanisms are responsible for the development of a disease. 8) Pharmaceutical companies, Biotech SMEs, and cutting edge University research groups compete in the race for the most rapid production of high efficacy drugs with less adverse effects. 8. Переведите следующие предложения на английский язык: 1) Производство новых высокоэффективных лекарств должно отвечать высоким требованиям рынка. 2) Достижения в области биотехнологии и молекулярной генетики помогли бесплодным семьям иметь детей. 3) Биотехнология оказывает влияние на многие сферы человеческой деятельности: здравоохранение, производство пищи, безопасность. 4) Крупные научные достижения привлекают внимание растущего числа ученых, средств массовой информации, общественности. 5) Используя новейшие знания в области происхождения болезней, возможности биотехнологии и молекулярной генетики, ученые могут помочь миллионам больных людей во всем мире. 9. Ответьте на следующие вопросы: 1) What were the main achievements in the field of biotechnology in the early eighties? 2) In what fields of science and spheres of human life can newly acquired molecular knowledge be applied? 3) Why does the development of biotechnology attract to the attention of an increasing number of scientists? 4) Why are unprecedented investments made in bio-related projects? 5) What information about biotechnological developments do you know from mass media and other sources? 5) What knowledge do recent genetic discoveries bring us? How are they interconnected with advances in the field of biotechnology? 98

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

6) What are the crucial steps towards the production of novel drugs? How do you understand them? 10. Назовите смежные биотехнологии науки. Что вы о них знаете? 11. Расскажите о развитии достижений в области биотехнологии и смежных наук, используя данные ниже указатели времени. Переведите, запомните их и составьте с ними свои предложения, используя лексику текста: in the late seventies/early eighties, since then, nowadays, during the end of the second decade, for over two decades, within the last few years, in the years to come, in the 21st century.

99

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Part 5. FROM BIOTECHNOLOGY TO BIONANOTECHNOLOGY Unit 26. NANOTECHNOLOGY

1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: nanotechnology, laboratory, nanomachines, synthesize, atom, molecule, sensor, metal, reality, problem, engineering, product, transmutation, combination, reaction, characterization, mechanics, macroscopic, technology, instruction, object, assembler 2. Прочитайте и переведите следующие глаголы: to create, to design, to build, to construct, to seek out, to detect, to shape, to present, to unveil, to spawn, to approach, to transform, to invent, to pound, to develop, to understand 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17)

А to synthesize molecules to seek out cancer cells acidity trace amounts poisonous metals modest resources ability to build at a time ordinary matter to make one’s dream a reality useless at best misleading at worst atomic scale from the bottom up a top down approach plant fiber raw materials

из

колонки

А

B a) токсичные металлы b) скромные денежные средства c) интригующий, очень интересный d) способность строить e) ничтожное количество f) кислотность g) сразу h) сырье i) искать раковые клетки j) простое вещество k) обманчива в худшем случае l) сознательная комбинация m) нисходящий подход или сверху вниз n) синтезировать молекулы o) атомная шкала 100

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

18) willful combination 19) compelling 20) evocative

p) q) r) s) t)

бесполезна в лучшем случае с самого начала, заново вызывающий воспоминания превратить мечту в реальность растительное волокно

4. Прочитайте и переведите текст Nanotechnology Nanotechnology is available, today, to anyone with a laboratory and imagination. You can create custom nanomachines with commercially available kits and reagents. You can design and build nanoscale assemblers that synthesize interesting molecules. You can construct tiny machines that seek out cancer cells and kill them. You can build molecule-size sensors for detecting light, acidity, or trace amounts of poisonous metals. Nanotechnology is a reality today, and nanotechnology is accessible with remarkably modest resources. Nanotechnology is the ability to build and shape matter one atom at a time. The idea of nanotechnology was first presented by physicist Richard Feynman. In a lecture entitled “Room at the Bottom,” he unveiled the possibilities available in the molecular world48. Because ordinary matter is built of so many atoms, he showed that there is a remarkable amount of space within which to build. Feynman’s vision spawned the discipline of nanotechnology, and we are now amassing the tools to make his dream a reality. We are now in the midst of the second major revolution of nanotechnology. Now, scientists are attempting modify matter one atom at a time. Some envision a nanotechnology closely modeled after our own macroscopic technology. This new field has been dubbed molecular nanotechnology for its focus on creating molecules individually atom-byatom. 48

All opening quotes are taken from Richard P. Feynman’s 1959 talk at the California Institute of Technology, as published in the February 1960 issue of CalTech’s Engineering and Science. 101

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

K. Eric Drexler has proposed methods of constructing molecules by forcibly pressing atoms together into the desired molecular shapes, in a process dubbed “mechanosynthesis” for its parallels with macroscopic machinery and engineering. With simple raw materials, he envisions building objects in an assembly- line manner by directly bonding individual atoms. The idea is compelling. The engineer retains direct control over the synthesis, through a physical connection between the atomic realm and our macroscopic world49. 5. Определите, являются ли следующие утверждения верными в соответствии с текстом упражнения 4: 1) Nanotechnology is the ability to destroy matter at a time. 2) The idea of nanotechnology was first presented by physicist K. Eric Drexler. 3) Feynman’s vision spawned the discipline of nanotechnology, and we are now amassing the tools to make his dream a reality. 4) Atoms are almost unbelievably small; but a million times bigger than objects in our familiar world. 5) When men and women first restructured matter to fit their needs, an approach opposite from nanotechnology was taken. 6) Today, chemists build molecules of defined shape and specified properties. 6. Прочитайте, переведите и озаглавьте текст Nanotechnology is a new approach that refers to understanding and mastering the properties of matter at the nano-scale: one nano-meter (one billionth of meter) is the length of a small molecule. At this level, matter exhibits different and often amazing properties and the borders between established scientific and technical disciplines fade. Hence the strong interdisciplinary character that is associated with nanotechnology. Nanotechnology is often described as having a “disruptive” or “revolutionary” potential in terms of its possible impact on industrial 49

EUR 21151. Nanotechnology. Innovation for tomorrow’s world. Luxembourg: Office for Official Publications of the European Communities. 2004 . 56 pp. 102

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

production routes. Nanotechnology offers possible solutions to many current problems by means of smaller, lighter, faster and better performing materials, components and systems. This opens up new opportunities for wealth creation and employment. Nanotechnology is also expected to make some essential contributions to solving global and environmental challenges by realising more specific-to-use products and processes, save resources and lower waste and emissions50. 7. Переведите предложения письменно

1. В настоящее время был достигнут огромный прогресс в мировых нанотехнологических гонках.

2. Нанотехнологии откроют пути к созданию новых продуктов со значительно усовершенствованными, а иногда и абсолютно новыми свойствами. Нанотехнологии сыграют решающую роль в решении проблем 21 века. 3. В равной степени нанотехнологии важны и в обеспечении и в упрочении позиции наших стран как центров исследований и инноваций, тем самым способствуя созданию новых рабочих мест. 4. Будущая конкурентоспособность продукции многих важных промышленных секторов в значительной степени зависит от исследований и открытий в наномире.

8. Перескажите текст упражнения 4, используя следующие фразы:      

50

The object of this paper is to present (to discuss, to describe) … The paper (article, topic) begins with … The first paragraph deals with … First the author points out (notes that, describes) … Then follows a discussion on … Finally the author admits that …

http://www.entrancei.com/career-option/nanotechnology 103

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 27. THE ATOM: OLD IDEA AND THE NEW REALITY 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: material, philosopher, nanometer, millimeter, mineral, popularity, crystal, sulphate, structure, complex, microscope 2. Прочитайте и переведите следующие глаголы: to contain, to consist, to devote, to publish, to attract, to obtain, to split up, to arrange, to shake, to visualise, to consider, to develop, to poke, to prod 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В A 1) a wide circulation 2) a single raindrop 3) a regular shape 4) size 5) weight 6) due to 7) snowflake 8) modern analytical devices 9) to attract popularity 10) to obtain direct proof 11) to split up 12) x-ray light 13) living matter 14) an ordered structure 15) to arrange regularly 16) regular patterns 17) a hoax 18) forces of self arrangement 19) to visualize, poke and prod around 20) the scanning tunnel microscope

из

колонки

А

B с помощью правильная форма располагаться упорядоченно широкое хождение живая материя получить прямое доказательство современные аналитические приборы h) рентгеновский свет i) правильный рисунок j) простая капля дождя k) размер l) вес m) силы самосборки n) сканирующий туннельный микроскоп o) завоевывать популярность p) упорядоченная структура q) рассеивать r) снежинка s) подделка a) b) c) d) e) f) g)

t) 104

показать, нащупать, подвигать

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

4. Переведите текст The Atom: Old Idea and New Reality Our material world is made up of atoms. This was the claim made over 2 400 years ago by the Greek philosopher Democratus. The modern Greeks expressed their thanks by stamping his effigy on their 10-Drachma coin. This was in wide circulation, although not in the same numbers as atoms. A single raindrop contains about 1000000000000000000000 of them, for atoms are miniscule - only one tenth of a nanometer in size, and a nanometer measures a mere one-millionth of a millimeter. A few centuries later, Lucretius, a Roman writer, wrote a poem about atoms: “The Universe consists of infinite space and an infinite number of irreducible particles, atoms, whose variety is equally infinite. ... Atoms vary only in shape, size and weight; they are impenetrably hard, unchanging, the limit of physical divisibility…” This was all very well, although it was at that point nothing more than pure speculation. For a long time, no more thought was given to such matters. In the 17th century, Johannes Kepler, the famous astronomer, devoted thought to snowflakes, and published his ideas in 1611: the regular shape could only be due to simple, uniform building blocks. The idea of the atom again began to attract popularity. Scientists who worked with minerals and crystals took the existence of atoms as granted. In 1912 however, direct proof was obtained at the University of Munich: a copper sulphate crystal split up x-ray light in the same way that the material of an umbrella splits up the light from a lantern the crystal had to consist of atoms, arranged in an ordered structure, like the yarn in umbrella material, or a pile of oranges in a market. The reason why the atoms in the crystal arrange themselves so regularly is simple. The matter makes itself as comfortable as possible, and the most comfortable way is a regular, ordered structure. Even nuts shaken in a bowl form regular patterns, and this process is even easier for atoms. Simple patterns are however not always the ones that are most easily reproducible. Driven by forces of self-arrangement, the matter of the Earth has over billions of years taken on a fantastically complex and, in some cases, even living form. Modern analytical devices can now visualise such highly complex components of living matter down to a scale of nanometers. 105

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Finally, in the 1980s, an instrument was developed, known as the scanning tunnel microscope, that can not only visualise the individual atoms within a crystal - many people considered the first images to be a hoax - but can also poke and prod them around. The stage was now set for a radical new departure: nanotechnology51. 5. Определите, являются ли следующие утверждения верными в соответствии с текстом упражнения 5: 

 

 

A single raindrop contains about 1000000000000000000000 of them, for atoms are miniscule - only one eleventh of a nanometer in size, and a nanometer measures a mere one-millionth of a millimeter. Our material world is made up of atoms. In the 17th century, Johannes Kepler, the famous chemist, devoted thought to snowflakes, and published his ideas in 1611: the regular shape could only be due to simple, uniform building blocks. Scientists who worked with minerals and crystals took the existence of atoms as granted. Modern analytical devices can’t still visualise such highly complex components of living matter down to a scale of nanometers.

6. Ответьте на вопросы к тексту a. What is an atom? b. Why do the atoms in the crystal arrange themselves so regularly? c. What happened in 1980s? 7. Переведите предложения 1. The ratio of the diameter of a magnesium atom to a tennis ball is the same as that of a tennis ball to the Earth. Just think of that when you next take a magnesium tablet! 2. Atoms are not generally loved. When we hear about them, we tend to think of terrible explosions or dangerous radiation. But this only refers to technologies involving the atomic nucleus. Nanotechnology is concerned with the shell of the atom, this is the scale at which nanotechnology comes into play. 51

EUR 21151. Nanotechnology. Innovation for tomorrow’s world. Luxembourg: Office for Official Publications of the European Communities. 2004 . 56 pp. 106

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

3. One of the most refined technology on an atomic scale is the photosynthesis process, which collects the energy for life on Earth. This is a matter for every individual atom. Whoever can copy it using nanotechnology will have unlimited energy for all time. 8. Прочитайте и переведите следующие размерности физических параметров52: m – meter s – second kg – kilogram N – Newton Pa – Pascal [m/s] – meter to second [N s/m2] – Newton multiplied by square meter [Pa s] – Pascal multiplied by second [m2/s] – square meter to second [kg/m3] – kilogram to cubic meter

9. Подберите к физическим параметрам соответствующие размерности из колонки В

1) 2) 3) 4) 5)

52

А mean fluid velocity characteristic length dynamic fluid viscosity kinematic fluid viscosity fluid density

a) b) c) d) e)

из

колонки

А

В [Pa s] [m] [m/s] [kg/m3] [m2/s]

См. Зиятдинова Ю.Н., Валеева Э.Э., Безруков А.Н. The Basics of Process Technology (Основы технологических процессов): учебное пособие. – Казань: Изд-во Казан. гос. технол. ун-та, 2008. – С. 10-12. 107

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

10. Прочитайте и переведите предложения      

15 plus 30 is 45 90 minus 45 is 45 9 divided by 3 is 3 22 times 2 is 44 Multiply 8 by 6 and divide the answer by 12. Add 100 to 50, and subtract the answer from 200.

11. Переведите предложения с помощью примеров, приведенных выше. Составьте свои математические операции и переведите их на английский язык     

18 ÷ 9 = ? 16.55 - 14 = ? 20 х 4 = ? Разделите 150 на 3 и умножьте ответ на 10. Прибавьте 70 к 65 и отнимите ответ от 135.

12. Переведите предложение, используя пример Eight is the third power of two. –

a) b) c) d) e)

Восемь представляет собой два в третьей степени. (power – степень) Шестнадцать представляет собой четыре во второй степени. Тридцать шесть представляет собой шесть во второй степени. Сто двадцать пять представляет собой пять в третьей степени. Восемьдесят один представляет собой три в четвертой степени. Сто тысяч представляют собой десять в пятой степени.

13. Перескажите текст упражнения 4.

108

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 28. EXPLORING THE LIMITS OF NATURE 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: nature, temperature, metallic, ceramics, vacuum, quantum effects, nanocosmos, nanometre, nanoscopically, catalyst, oxide, ribosome, popularity 2. Прочитайте и переведите следующие глаголы: to be based upon, to restrict, to include, to pass through, to acquire, to convert, to increase, to be coated with, to reduce, to intimidate 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В А 1) to convert light into 2) extreme purity 3) fuel cells 4) to be shaped magnetically 5) laws of day-to-date world 6) wave-like properties 7) semiconductors and isolators 8) surprising properties 9) to be prone to react 10) to be based upon 11) surface tension of water 12) to fluoresce 13) metallic conductor 14) artificial conditions 15) to be in stark contradiction 16) to be coated with other substances 17) the capabilities of living nature

a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q)

109

из

колонки

А

B основываться на металлический проводник возможности живой природы быть готовыми к реакции удивительные свойства противоречить флюоресцировать полупроводники и изоляторы законы повседневного мира превращать свет в волновые свойства топливные батареи искусственные условия наносить на другие вещества абсолютная чистота изменять форму с помощью магнита поверхностное натяжение воды

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

4. Переведите текст Exploring the Limits of Nature Nanotechnology is based upon pure nature: yet the capabilities of living nature are restricted, it cannot work at either high temperatures, such as those needed for ceramics, or with metallic conductors. Modern technology on the other hand has a wide range of artificial conditions available - extreme purity, cold, vacuum – under which matter reveals some surprising properties. These include, in particular, quantum effects, which sometimes appear to be in stark contradiction to the laws of our day-to-day world. In this way, particles of the nanocosmos can sometimes take on wave-like properties: an atom, which is apparently a “solid” entity, can pass through two small gaps at the same time, like a wave, subsequently emerging again whole on the other side. Particles acquire completely new properties when their size approaches a nanometre. Metals become semiconductors or insulators. Some substances, such as cadmium telluride (CdTe), fluoresce in the nanocosmos in all the colours of the rainbow, while others convert light into electricity. When particles become nanoscopically small, the proportion of atoms on the surface increase greatly in proportion to those inside. Surface atoms, however, frequently have different properties to those in the centre of the particle, and usually become much more ready and prone to react. Gold for instance becomes a good catalyst for fuel cells at nanoscopic sizes. Nanoparticles can also be coated with other substances, allowing materials of such composite particles to combine several properties. One example: ceramic nanoparticles with organic shells, which reduce the surface tension of water, for the coating of non-misting bathroom mirrors. Specially-coated nanoparticles of magnetite, an iron oxide, in oil create a ferro-fluid, a liquid that can be shaped magnetically. Ferro-fluids are being used in an increasing number of applications, such as sealing agents in rotary seals for vacuum containers and hard disk housings, or in adjustable vibration dampers for machines and cars. Yet nobody should be intimidated by the complexity of nanotechnology. Even an apple is complicated - cells, ribosomes, DNA which has in no way impaired the popularity of this fruit53.

53

EUR 21151. Nanotechnology. Innovation for tomorrow’s world. Luxembourg: Office for Official Publications of the European Communities. 2004 . 56 pp. 110

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

5. Прочитайте и переведите цитату. Выучите высказывание наизусть “The problems of chemistry and biology can be greatly helped if our ability to see what we are doing, and to do things on an atomic level, is ultimately developed—a development which I think cannot be avoided.” Richard Feynman 6. Переведите текст Физики, химики и другие представители естественных наук могут с полным правом заявить, что всегда так или иначе были связаны с нанотехнологиями. Предметы изучения классической физики атома, изучаемые химиками молекулы – все являются обитателями нано- космоса. Имеющиеся на сегодняшний день экспериментальные возможности, такие как тщательное атомное структурирование скоплений, слоев, микросхем, а также наличие веществ очень высокой степени очистки и исследования мельчайших биологических структур открывают новые горизонты возможностей, в том числе и для инженерного дела54. 7. Составьте рассказ о нанотехнологиях.

54

http://stereoshnur.ru/transport/nanotekhnologii_novinki_zavtrashnego_dnja__m_ __2006__60_s_8.html 111

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Unit 29. BIONANOTECHNOLOGY 1. Прочитайте следующие интернациональные слова вслух и, основываясь на значениях соответствующих русских слов, определите их значение: genetic, code, enzyme, natural, organism, biological, atom, molecular, model, motor, medicine, reality, hormone, sensor, hybrid 2. Прочитайте и переведите следующие глаголы: to be poised to, to share, to define, to modify, to combine, to design, to perform, to biuld, to treat, to provide, to flex, to venture into 3. Подберите словам и словосочетаниям эквивалентный перевод в колонке В

1) 2) 3) 4)

А end gole tools replacement therapy biodegradable

a) b) c) d)

из

колонки

А

B разлагаемые микроорганизмами замещающая терапия конечная цель инструменты

4. Переведите текст Bionanotechnology We are now poised to extend biotechnology into bionanotechnology. I will define bionanotechnology here as applications that require human design and construction at the nanoscale level and will label projects as biotechnology when nanoscale understanding and design are not necessary. Biotechnology grew from the use of natural enzymes to manipulate the genetic code, which was then used to modify entire organisms. The atomic details were not really important—existing functionalities were combined to achieve the end goal. Bionanotechnology has many different faces, but all share a central concept: the ability to design molecular machinery to atomic specifications. Today, individual bionanomachines are being designed and created to perform specific nanoscale tasks, such as the targeting of a cancer cell or the solution of a simple computational task. Many are toy problems, 112

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

designed to test our understanding and control of these tiny machines. As bionanotechnology matures, we will redesign the biomolecular machinery of the cell to perform large-scale tasks for human health and technology. Macroscopic structures will be built to atomic precision with existing biomolecular assemblers or by using biological models for assembly. Looking to cells, we can find atomically precise molecule-sized motors, girders, random-access memory, sensors, and a host of other useful mechanisms, all ready to be harnessed by bionanotechnology. And the technology for designing and constructing these machines in bulk scale is well worked out and ready for application today. Nanomedicine will be the biggest winner. Bionanomachines work best in the environment of a living cell and so are tailored for medical applications. Complex molecules that seek out diseased or cancerous cells are already a reality. Sensors for diagnosing diseased states are under development. Replacement therapy, with custom-constructed molecules, is used today to treat diabetes and growth hormone deficiencies, with many other applications on the horizon. Biomaterials are another major application of bionanotechnology. We already use biomaterials extensively. Biomaterials address our growing ecological sensitivity—biomaterials are strong but biodegradable. Biomaterials also integrate perfectly with living tissue, so they are ideal for medical applications. The production of hybrid machines, part biological and part inorganic, is another active area of research in bionanotechnology that promises to yield great fruits. Finally, Drexler and others have seen biological molecules as an avenue to reach their own goal of mechanosynthesis using nanorobots. Working nanomachines provide important lessons for the construction of our own nanotechnology, whether based directly on biology or constructed completely from our own imagination55. 5. Ответьте на вопросы 1) 2) 3) 4) 55

Explain why ethanol/E85 is a product of biotechnology. How bioremediation is a type of biotechnology? How composting is a form of biotechnology? Give two reasons why people are looking for alternatives to fossil fuels.

EUR 21151. Nanotechnology. Innovation for tomorrow’s world. Luxembourg: Office for Official Publications of the European Communities. 2004 . 56 pp. 113

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

5) Explain why an oil spill at sea is harmful for animals that live in or near the ocean. 6) What do soil fertilizers have to do with bioremediation? 6. Обсудите следующие вопросы: 1) Should a scientist gather as much existing information on his subject as he can before doing his own research? Why? 2) Are there any cases when people devote years investigating a phenomenon of nature which has already been explained to someone else? What is it necessary to do to avoid such sad things? 3) Many scientists state that it is important to formulate a possible solution to the problem before starting experiments? What is your opinion? 4) Is it possible to teach a person how to develop hypotheses? 5) In what way do you design your experiments? 6) How many stages does an experiment consist of? 7) Are you an experimentalist or a theoretician? 8) What attitudes are necessary for successful work in experimentation and theoretical research? 9) What is the interrelation between theory and experiment? 10) A theory is a probable explanation for observed phenomenon, supported by numerous data, isn’t it? What theories do you use in your research? 11) Are you inclined to question theories or do you take all of them for granted? 7. Составьте диалог на тему: “Биотехнологии в нашей жизни”. Включите в диалог следующие выражения: Agreeing (согласие) I agree up to a point, but … I agree with that point of view on the whole. I completely/totally agree with that point of view. I couldn’t agree more! Disagreeing (несогласие) I’m not really sure about that … I don’t really agree with that point of view, because … I completely/totally disagree with that point of view. I think it’s ridiculous to say … 114

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

8. Решите биотехнологический кроссворд56.

Down 1. A very small living thing. 2. The organism that is produced through reproduction. 3. A living thing. 4. The use of living things to help us improve our lives. 6. A tiny, fungus microorganism that exists in the air and in the ground. 7. Organisms that have only one cell; can be helpful and/or harmful. 8. A substance that kills the bacteria that can make people sick. 56

Biotechnology: with student activities. Laura M. Johnson, 2011.115

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

11. How an organism looks (such as shape, size, fur color, and so on). 12. A natural substance found in an organism that can affect chemical reactions. 16. An enzyme from the lining of a mammal’s stomach that can turn milk into cheese. Across 5. How an organism acts (such as level of energy, aggressiveness, hunting ability, and so on). 9. Instructions for certail traits. 10. An educated prediction that can be tested in an experiment. 13. A mictoorganism that is a type of fungus, which is neither plant nor animal; usually black, green, or blue; gets its nutrients by absorbing them from other organisms. 14. When yest eats sugars and produces carbon dioxide gas. 15. The process by which two organisms with desirable traits are mated together to produce offspring with those desired traits.

116

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Part 6. SUPPLEMENTARY READING Text 1. Biotechnology and the Two -Week Revolution The Two-Week Revolution has already occurred, although it has lasted for decades instead of weeks. Biotechnology uses the ready-made assemblers available in living cells to build thousands of custom-designed molecules to atomic specifications, including the construction of new assemblers. This has lead to myriad applications, including commercial production of hormones and drugs, elegant methods for diagnosing and curing infectious and genetic diseases, and engineering of organisms for specialized tasks such as bioremediation and disease resistance. Biotechnology took several decades to gather momentum. The primary impediment has been the lack of basic knowledge of biomolecular processes and mechanisms. We have been given an incredible toolbox of molecular machinery, and we are only now beginning to learn how to use it. The key enabling technology, recombinant DNA, made the natural protein assembler of the cell available for use. The subsequent years have yielded numerous refinements on the technology, and numerous ideas on how it might be exploited. Biotechnology has grown, and is still growing, with each new discovery in molecular biology. Further research into viral biology has led to improved vectors for delivering new genetic material. An explosion of enzymes for clipping, editing, ligating, and copying DNA, as well as efficient techniques for the chemical synthesis of DNA, has allowed the creation of complicated new genetic constructs. Engineered bacteria now create large quantities of natural proteins for medicinal use, mutated proteins for research, hybrid chimeric proteins for specialized applications, and entirely new proteins, if a researcher is bold enough to design a protein from scratch57.

57

Мельникова В.А., Барановская М.Е., Халикова Д.Г. Microbiology and Biotechnology. Указ. соч. 117

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Text 2. What Is Bionanotechnology? Nanotechnology and bionanotechnology are entirely new concepts, invented late in the twentieth century, and biotechnology has only been around for a few decades, so the scope of these fields is still being defined. With so many clever researchers working on all aspects of nanoscale structure, construction, and function, new examples that cross existing conceptual boundaries are appearing daily. Before getting started, it is worth spending a moment to compare the many technologies working at small scales and try todefine the current scope of bionanotechnology. Chemistry was the first science to manipulate molecules, starting when the first human beings cooked their food. Today, chemists design molecules and perform extensive, controlled syntheses to create them. Chemistry differs from bionanotechnology because it does not work at the level of individual molecules. There is no localization at the atomic level and no ability to address individual molecules. As a consequence of the bulk nature of chemistry, the molecules produced are generally limited to under a hundred atoms or so—syntheses of larger molecules are plagued by too many side reactions that form competing impurities. Photolithography is widely used for the creation of computer hardware, and the growing field of MEMS is applying these technologies to the creation of microscale machines. Our entire information and communication technology relies on these methods. It relies on photographic techniques for reduction of scale and random deposition of atoms within the mask. Thus it is a macroscale technique scaled down to its finest limits. Biotechnology harnesses biological processes and uses them for our own applications. In this book, I will limit the scope of biotechnology to applications that do not require atomic specification of biomolecules. For instance, researchers routinely use purified enzymes to cut and paste genetic instructions and add these back into cells. Knowledge of the atomic details are unimportant, just as knowledge of the type of ink used to print this page is not important for understanding of the words printed here. Nanotechnology has been defined as engineering and manufacturing at nanometer scales, with atomic precision. The theoretical constructions popularized by K. Eric Drexler and the Foresight Institute are perhaps the most visible examples, and these are often further classified as “molecular nanotechnology.” The positioning of individual argon atoms on a crystal surface by researchers at IBM is a successful example of nanotechnology. 118

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Bionanotechnology is a subset of nanotechnology: atom-level engineering and manufacturing using biological precedents for guidance. It is also closely married to biotechnology but adds the ability to design and modify the atomic-level details of the objects created. Bionanomachines are designed to atomic specifications, they perform a well-defined threedimensional molecular task, and, in the best applications, they contain mechanisms for individual control embedded in their structure58.

58

Мельникова, В.А., Барановская М.Е., Халикова Д.Г. Microbiology and Biotechnology. Указ. соч.

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Text 3. Biomolecular Design and Biotechnology Today, we have an abundant variety of methods for doing things on an atomic level. Chemists were already constructing molecules atom-byatom at the time that Richard Feynman gave his visionary talk, and today, chemistry is a powerful method for constructing molecules with several dozen atoms. In the time since Feynman’s talk, the fields of physics and biology have yielded additional methods for working at the atomic scale. Physicists are pushing atoms around with atomic force microscopes and trapping them with optical tweezers, and biologists have harnessed the rich collection of natural bionanomachinery to perform our own custom molecular tasks. Bionanotechnology is widely accessible, more so than any other cutting- edge application of nanotechnology. Silicon-based fabrication techniques, to reach the nanometer scale, must push the resolution of fabrication machinery to their limits, making the process expensive and available only to large corporations and laboratories with extensive resources. The diamondoid models of molecular nanotechnology are purely theoretical. But powerful tools for designing bionanomachines are available to anyone with a computer and imagination, and effective tools for producing these custom bionanomachines are accessible to any moderatelysized biotech start-up company. Current methods of biotechnology excel at modification. This is a powerful capability that leverages the extensive body of working nanomachinery that is available from natural sources. We can introduce specific changes into the plans for a given protein, or we can splice together the plans for several different proteins, creating a hybrid molecule with combined function. Using these modified plans, we can then engineer bacteria to produce large quantities of the mutant or chimeric protein. Thousands of academic and industrial laboratories are using these methods for medicine, bioremediation, and countless other applications. And several exciting new techniques based on biological evolution, allow thousands of modifications to be tested simultaneously, greatly speeding the discovery of biomolecules with new functions. Design of entirely new bionanomachines, on the other hand, is currently more difficult than modification of natural bionanomachines. Evolution has designed complex machines with subtle mechanisms, incorporating flexibility and self-assembly in ways that are difficult to predict and design. 120

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Designing bionanomachines from scratch is currently a great challenge that is under intensive study in many laboratories. Ideally, we want total control. For instance, we might want to build a “nanotube synthase” that constructs carbon nanotubes of defined size and geometry. We would like to be able to go to our computer and design a protein that would fold into a stable structure, creating an active site that performs this chemical reaction. Unfortunately, there are gaps in our knowledge that must be filled before this capability is possible. Today, we cannot reliably predict the folded structure of a protein from its chemical sequence, and, given a folded structure, we cannot consistently predict its chemical activity. But these two steps are currently under scrutiny by scientists, with the firm expectation that they will be solved in the foreseeable future. Then, true biomolecular design will be a reality. This chapter presents an overview of the many techniques that are available for the design, synthesis, and analysis of biomolecules. This information is by no means comprehensive and provides only an introduction to these powerful methods. Many excellent workbooks and recipes are available for each of these methods59.

59

Мельникова, В.А., Барановская М.Е., Халикова Д.Г. Microbiology and Biotechnology. Указ. соч. 121

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Text 4. Principles of Biotechnology Biotechnology Defined Biotechnology can be broadly defined as "using living organisms or their products for commercial purposes." As such, biotechnology has been practiced by human society since the beginning of recorded history in such activities as baking bread, brewing alcoholic beverages, or breeding food crops or domestic animals. A narrower and more specific definition of biotechnology is "the commercial application of living organisms or their products, which involves the deliberate manipulation of their DNA molecules" (see glossary for definitions of bold-print words). This definition implies a set of laboratory techniques developed within the last 20 years that have been responsible for the tremendous scientific and commercial interest in biotechnology, the founding of many new companies, and the redirection of research efforts and financial resources among established companies and universities. These laboratory techniques provide scientists with a spectacular vision of the design and function of living organisms, and provide technologists in many fields with the tools to implement exciting commercial applications. Principles of Biology All living organisms are composed of cells that contain a substance called DNA (deoxyribonucleic acid) in the chromosomes. The structure of DNA molecules contains information that is used by cells as a "recipe" for the organism; that is, the characteristics of any living thing essentially are determined by the information in DNA. The "words" for the DNA recipe, called genes, are derived from a 4-letter alphabet (A, C, G, T) and usually contain between 1,000 and 100,000 letters. The entire recipe, called the genome, may contain between 4 million (simple bacteria) and 3 billion (human) letters or more. Except for the sequence and number of letters in each recipe, DNA from any organism is chemically and physically the same. One of the great scientific discoveries of biotechnology is that DNA from any organism will function if it is transferred into any other organism! Using Biotechnology to Modify Plants and Animals Combining DNA from different existing organisms (plants, animals, insects, bacteria, etc.) results in modified organisms with a combination of traits from the parents. The sharing of DNA information takes place naturally through sexual reproduction and has been exploited in plant and animal breeding programs for many >ears. 122

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

However, sexual reproduction can occur only between individuals of the same species. A Holstein cow can be mated with a Hereford bull because the two animals are different breeds of the same species, cattle. But trying to mate a cow with a horse, i different species of animal, would not be successful. What's new since 1972 is that scientists have been able to identify the specific DNA genes for many desirable traits and transfer only those genes, usually carried on a plasmid or virus, into another organism. This process is called genetic engineering and the transfer of DNA is accomplished using either direct injection or the Agrobacterium, electroporation, or particle gun transformation techniques. It provides a method to transfer DNA between any living cells (plant, animal, insect, bacterial, etc.). Virtually any desirable trait found in nature can, in principle, be transferred into any chosen organism. An organism modified by genetic engineering is called transgenic. Products of Genetic Engineering Specific applications of genetic engineering are abundant and increasing rapidly in number. Genetic engineering is being used in the production of pharmaceuticals, gene therapy, and the development of transgenic plants and animals. 1. Pharmaceuticals. Human drugs such as insulin for diabetics, growth hormone for individuals with pituitary dwarfism, and tissue plasminogen activator for heart attack victims, as well as animal drugs like the growth hormones, bovine or porcine somatotropin, are being produced by the fermentation of transgenic bacteria that have received the appropriate human, cow, or pig gene. 2. Gene Therapy. The first clinical gene therapy is underway to correct an enzyme deficiency called ADA in children. Bone marrow cells are removed, defective DNA in bone marrow cells is supplemented with a copy of normal DNA, and the repaired cells are then returned to the patient's body. 3. Transgenic Plants. Transgenic plants that are more tolerant of herbicides, resistant to insect or viral pests, or express modified versions of fruit or flowers have been grown and tested in outdoor test plots since 1987. The genes for these traits have been delivered to the plants from other unrelated plants, bacteria, or viruses by genetic engineering techniques. 4. Transgenic Animals, Presently, most transgenic animals are designed to assist researchers in the diagnosis and treatment of human diseases. Several companies have designed and are testing transgenic mammals that produce important pharmaceuticals in the animal's milk. 123

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Products such as insulin, growth hormone, and tissue plasminogen activator that are currently produced by fermentation of transgenic bacteria may soon be obtained by milking transgenic cows, sheep, or goats. Using Biotechnology in Diagnostic Applications Since each living creature is unique, each has a unique DNA recipe. Individuals within any given species, breed, or hybrid line can usually be identified by minor differences in their DNA sequences - as few as one difference in a million letters can be detected! Using the techniques of DNA fingerprinting and PCR (polymerase chain reaction) scientists can diagnose viral, bacterial, or fungal infections, distinguish between closely related individuals, or map the locations of specific genes along the vast length of the DNA molecules in the cells. Identifying Organisms By using RFLP technology (restriction fragment length polymorphism), DNA fingerprints can be generated. Any individual organism can be uniquely identified by its DNA fingerprint. Consequently, this fingerprint can be used to determine family relationships in paternity litigation, match organ donors with recipients in transplant programs, connect suspects with DNA evidence left at the scene of a crime (in the form of hair or body fluids), or serve as a pedigree for seed or livestock breeds. Identifying Genes One important aspect of genetic engineering projects is to identify the DNA gene that controls a particular trait. In the same way that a visitor might use the state, city, street, and house number to locate a friend's house, genetic engineers use genetic "maps" to locate genes. The genetic maps are generated by statistical analyses, PCR, RFLP, and DNA sequencing. Maps are being developed for humans, mice, swine, cattle, com, wheat, and other plants or animals with commercial or research importance. Diagnosing Infectious Diseases and Genetic Disorders Diagnosis of infectious diseases is a profound application of the new DNA technology. Tuberculosis, AIDS, papillomavirus, and many other infectious diseases, in addition to the inherited disorders like cystic fibrosis or sickle cell anemia, are diagnosed within hours by the PCR technique rather than days or weeks by traditional methods60.

60

Мельникова В.А., Барановская М.Е., Халикова Д.Г. Microbiology and Biotechnology. Указ. соч. 124

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Text 5. Can Roses Be Mated with Pigs? In response to the article on Biotechnology (PDI, 6/19/04), Dr. Benigno Peczon, president of the Biotechnology Coalition of the Philippines said that roses can't mate with pigs because "the sexual mode of reproduction is limited by the compatibility in the number of chromosomes (where the DNA is located). Thousands of genes are necessary from both parents to form the DNA of offspring. Biotechnology identifies one or two genes which encode some useful trait then adds the genes to another organism's DNA so that the transfer of a few genes won't turn the pig into a rose." Returning to the subject of bio-engineering (if you prefer the more proper term is "recombinant DNA technology," a mite too difficult to pronounce), what it really means is that a foreign gene is spliced in the DNA of an organism "so that when the organism grows, the new trait encoded by the inserted gene is expressed." Insulin, for instance, is the result of the splicing of a human gene, responsible for producing human insulin, into the DNA of E. coli, a bacterium which produces insulin identical to human insulin. As you can see there are benefits to be derived that no one can argue. We are also told that biotechnology can improve the safety of foods by taking out some harmful substances or adding beneficial ones. Thus the GM peanut is being developed so that people who are allergic to it may enjoy eating peanut spread or peanuts, period. Genetically altered tomatoes would contain more lycopene which is believed to delay the onset of cancer. Dr. Peczon explains that GM foods "are only as safe as their conventional counterparts." And that GM foods currently in the market contain no antibiotics. This same technique is being used to produce modified food that promises to increase production and to resist pests, disease, droughts; and contains vitamins and nutrients severely lacking in the diets of the poor. If this is the case, why aren't Third World countries embracing GM foods without protest? One of the things opponents of GM technology are asking is that imported, genetically modified food items should be identified. According to Dr. Peczon labeling GM foods would increase their price by around 10 percent, and their manufacturing costs by 11-12 percent. He asks "will the price increase justify the fact that the labeling is not related to safety?" Some people also ask: Is it safe to combine genes that have not previously been combined, thus creating new traits-and do we know the long-term impact on our biodiversity? 125

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Dr. Peczon cites figures showing "more than 3,500 scientists are convinced of its safety as listed in the AgbioWorld website," Several prestigious institutions, such as the World Health Organization and the National Academy of Science, are convinced about the safety of GM foods. European Commission-sponsored research studies, conducted by over 400 research teams, also attest that the GM products pose no threat to human health or environment. Another concern is: Genetic engineering is under the control of the private sector; it is being developed almost solely by that sector. Since a company's objective is to make money, one cannot expect them to be concerned with the welfare of poor Third World countries more than making a profit. The other question we have to ask is whether the transgenic crops will tie the fanner to specific chemicals and a specific company such as Monsanto? Genetically modified seeds cannot reproduce, cannot be saved for the next year's crop. Moreover, the technology is controlled by another country. What happens if you become dependent on some crop or rice variety and the controlling country refuse to send the seeds? In effect, there is no local control and therefore no food security. There are people who are genuinely worried that these genetically modified foods will contaminate and destroy local varieties, including the wild species of local crop. We don't know. What tickles our curiosity is that IRRI's miracle rice was supposed to increase production and make selfsufficient way back when. The hybrid rice is also heavily dependent on fertilizers which has to be imported. The question is why are we still importing rice? Two issues/questions have also been brought up at protocol negotiations and at World Trade Organization meetings. One is the right of a country to know what it is importing and whether a government has the right to refuse an import it considers unsafe for its population. On the other hand, you should know that bio-engineering was introduced in 1996 and as of 2003, GM crops have already been planted to 67.7 million hectares across 18 countries. The Philippines started planting GM crops in 2002, with only 126 hectares. But as of last year, the total land area planted to such crops has gone up to 11,000 hectares; by the end of this year, it is expected to reach 30,000 hectares. In case you wish to learn more about GM crops, you can access Biotechnology Coalition's website at www.bcp.org.ph61.

61

www.bcp.org.ph 126

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Text 6. Biotechnology and Genetic Diversity Experts Say Risks and Benefits of Biotechnology Must Be Weighed on a Case-By-Case Basis Could plant biotechnology affect wild ecosystems? Critics fear a genetically enhanced gene could "escape" from a farmer's field and breed with a wild relative to create a "superweed" that could overwhelm the natural environment and curtail genetic diversity. Proponents, on the other hand, say the productivity gains of genetically enhanced ' crops allow more food to grow on existing farmland, which preserves natural areas from being plowed under to feed a growing population. This, supporters say, promotes genetic diversity. Researchers increasingly say the question is no longer whether a genetically enhanced gene, or transgene, will "escape." Pollen flow between plants is a natural phenomenon that has been occurring for thousands of years. Indeed, a 1999 study found that 12 of the world's 13 most important food crops hybridized with at least one of their wild relatives. As Klaus Ammann, director of the botanical garden at the University of Bern in Switzerland puts it, "I can assure you that pollen did not learn to fly with the transgenes." So release of genetically enhanced genes is as likely to occur as with conventional varieties. But the better question to be asked is what could happen when specific genetically enhanced genes do enter the natural environment, says John Burke, a biology professor at Vanderbilt University in Nashville, Tenn. "Our work ... indicates a clear need to assess the relative risks and benefits of genetic modification on a case-by-case basis," he wrote in a paper titled, "Assessing the Risks of Transgene Escape: A Case Study in Sunflowers." While there is much to study, most experts have concluded that the process of genetic engineering does not pose any unique risks to the environment. "So far, most scientific inquiry into the subject has failed to support the notion that there is something about the genetic engineering process itself that intensifies any threats from gene flow," states an August 2003 report titled "Have Transgenes, Will Travel," issued by the Pew Initiative on Food and Biotechnology. A panel of experts assembled by the National Academy of Sciences reached a similar conclusion. 127

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

"The genetic engineering process, per se, presents no new categories of risk" to the environment compared to conventional breeding, said the August 2002 report titled, "The Environmental Effects of Transgenic Plants." Background Although there is no question that the natural process of gene flow via pollination does occur, a number of conditions must be met: First, there must be sexual compatibility between a domesticated crop and its wild relative for gene flow to occur -just as a bird cannot successfully mate with a frog. Second, the plants need to be close enough so the pollen can move from plant to plant (pollen from canola, for example, can travel farther than pollen from corn). Third, the plants need to flower at the same time. In general, biotech crops that can easily hybridize with their wild relatives could theoretically pose greater risks than those that don't, explained Burke. Because there are no wild relatives of corn or soybean in the United States, for example, researchers say there is no chance for genetically enhanced genes from either crop to breed with a wild relative. So the risk of any ecological problems from these crops in the United States is very low. But "there are wild relatives of corn in Mexico and wild relatives of soybean in Korea and China. So the same crops can potentially pose different risks of breeding with their wild relatives depending on where they are grown. That's why experts like Burke say genetically enhanced crops must be studied on a case-by-case basis. Similarly, different genetically enhanced traits pose varying degrees of risk. A gene for herbicide tolerance, for example, isn't likely to confer an advantage to a plant in the wild because herbicides won't be encountered there. But other traits — such as resistance to pests, disease or hostile growing conditions such as drought — could theoretically give a weedy relative an upper hand, says Burke. Burke studied sunflowers (which have been developed but not approved for market) that have been genetically enhanced to resist white mold, one of the most widespread diseases that can cause yield losses of up to 70 percent. Because cultivated sunflowers are grown in regions where wild sunflowers are common, Burke says "crop-wild gene flow is a virtual certainty." 128

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

But what he concluded was that although the transgene for mold resistance was transferred to wild sunflowers, it "will have little effect on the evolutionary dynamics of wild sunflower populations." It appears that wild sunflowers already have resistance to white mold, so the additional white mold resistance gene didn't allow them to survive any better. Environmental safeguards Before any biotech product reaches the market, the possible risks to the environment are carefully analyzed, and safeguards — such as buffer zones around the perimeter of fields planted with biotech varieties - are required. A buffer zone is planted with traditional crop varieties to minimize any possible effects of pollen flow to a neighboring farmer's field or to a wild plant relative. Farmers have long learned to keep different varieties of the same crop separate. For example, rapeseed was originally grown in Canada to be used as a lubricant because it has high levels of erucic acid, which can be harmful when eaten. Conventional plant breeders developed improved varieties of rapeseed - now called canola - with low levels of this harmful acid. Canola is now a widely used cooking oil. Both types of rapeseed are still grown in Canada. "Canadian farmers and processors easily and routinely" keep these two varieties separate, said Henry Miller, a fellow at the Hoover Institution and founding director of the Office of Biotechnology at the U.S. Food and Drug Administration. Similarly, experts say new varieties of biotech corn could exist side-by-side with their wild relatives in Mexico without posing a threat to genetic diversity. Corn in Mexico Corn, or maize, is a cornerstone of society in Mexico, widely considered the birthplace of corn. So news in a September 2001 issue of Nature, a respected science journal, that traces of biotech corn had been discovered in farms field in Oaxaca created widespread concern. Nature later disavowed its original article, and several researchers say biotech corn will not have a negative impact on traditional varieties. "There is no scientific basis for believing that out-crossing from biotech crops could endanger maize biodiversity," said Luis HerreraEstrella, director of the Mexico-based Center for Research and Advanced Studies, which is known by its Mexican acronym, CINVESTAV. "Gene flow between commercial and natural varieties is a natural process that has been occurring for many decades." 129

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Some genetically engineered traits, such as built-in pest resistance, could fold into traditional crop varieties and may help them survive better, he said. Others will die out if they don't provide a recognizable benefit to farmers or consumers. The real threat to genetic diversity in Mexico, say many researchers, is the exodus of small fanners who are leaving their small plots in Mexico for more lucrative jobs in the cities of Mexico and the United States. Since corn requires human intervention to thrive, unique varieties are being lost when the plots are abandoned. "The most important consideration in the loss of diversity has to do with the fact that farmers are simply abandoning farming," Mauricio Bellon, of the International Center for the Improvement of Wheat and Maize (CIMMYT), told National Public Radio in December 2001. Increasing genetic diversity The exodus of rural farmers to cities is occurring at a rapid pace around the world — not just in Mexico. So the genetic diversity of more crops than corn is at stake. At the same time, a growing world population, coupled with increased urbanization and higher incomes, is creating a greater demand for food. The United Nations predicts that the global population will increase to 8.9 billion by 2050 - a 40 percent increase over the 6.3 billion people on Earth today. By helping farmers produce greater yields, biotechnology can play a part in making farms of all sizes more viable, which in turn could help reduce the pressure on remaining wilderness areas. Currently, about 38 percent of the Earth's land area is cropland or pasture. To keep pace with growing food demand, the increase in natural land converted to cropland or pasture has been about 0.3 percent — about the size of Greece or Nicaragua — every year. By one estimate, an additional 4 billion acres of arable land will need to come under the plow by 2050 if there are no increases in farm productivity. That's more than twice the size of the continental United States (about 3 million square miles). Experts fear that in the coming decades, half of the world's remaining 6 billion acres of forests will be lost to agricultural expansion. If forests continue to disappear at the current rate, as many as 20 percent of all tropical forest species of plants and animals could become extinct in 30 years. An August 2002 United Nations report predicted that agricultural and urban expansion will threaten biodiversity on 72 percent of the global 130

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

land area by 2032. The "World Atlas of Biodiversity: Earth's Living Resources for the 21st Century" report said that as much as 48 percent of these areas will become converted to agricultural land, plantations and urban areas, compared with 22 percent today. "By slowing the rate at which natural habitats are destroyed, GM crops and other technologies that increase agricultural productivity can help to preserve natural biodiversity," said Ammann of the University of Bern. Bioethics: the future from a test-tube More than forty years have elapsed since the discovery by James Watson and Francis Crick of a "double spiral" — the DNA molecule. Considerable headway has been made in the field of biology and gene engineering since then, but there are a number of reasons holding back the advance of these research studies. "Today we are in a position to cure Alzheimer disease, but just one injection from a course costs about a million French francs. Methods do exist, but all of them are linked to either economic or ethical problems," admitted one participant in the session, the Secretary-General of the Stockholm International Research Organization. Laws on bioethics have been passed recently in several countries to somehow adjust the problems that keep arising and to fix the framework which research and practice must not transcend. But these laws vary from country to country. For example, while laboratory tests on the human embryo have been banned with rare exceptions in Germany, such operations can be carried out in Britain but on the condition that the embryo's age does not exceed two weeks. It is obvious that the research studies being carried out in the field of genetics cannot be halted - for their results will enable mankind to rid itself of such diseases as haemophilia or inherited infantile paralysis. In the view of Prof. Osuntokun of the University of Ibadan, Nigeria, the methods of gene engineering will make it possible to wage an effective struggle against tropical diseases which now plague the population of Third World countries. But, on the other hand, there is quite a number of warranted and unwarranted apprehensions and questions. How should the law treat the creation of chimeras and cloning? If impregnation "in vitro" exists, is there moral justification for the bearing of the human foetus not by its natural mother and even not by a human? Can use be made for such impregnation of the frozen gene material of a deceased person? Is it possible to demand and issue a patent for the human gene? This is a far from complete list of questions now facing medics and biologists, sociologists and jurists, philosophers and theologians. The 131

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

International Committee on Bioethics, whose first session took place in Paris, was created under UNESCO's aegis precisely for the purpose of elaborating a universal approach for different cultures and peoples towards the problem of the human genome. The list of participants in this committee is too long. Suffice to say that it includes three Nobel laureates (Sydney Altaian, Christian de Duve and Jean Dausset), also represented on it, besides biologists and medics, are jurists, economists, sociologists, writers and even a spokesman for the Vatican. The principles on which it is going to build its activities were expressed most aptly, perhaps, by Dr. Michel Renel of the world-famous Weizmann Institute of Science in Israel which uses genetic means to combat cancer: "Man is not a creature which is determined merely by a collection of genes, it is impossible to see this alone and forget that first and foremost he is determined by culture"62.

62

http://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.30.1.539 132

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Text 7. The Nucleus, Genetic Information and Its Transmission Genetic information is the set of data determining the structural and functional properties of cells. Genetic information is stored in the cell nucleus, in molecules of DNA (or, more accurately, in the sequence of nucleotides in these DNA molecules) and it serves the cell as a guide to act in different situation. After cell division it controls the synthesis of structural proteins and enzymes required for cell function; it takes part in growth and cell differentiation. In differentiated cells it participates in the regulation of metabolic processes (induction and repression). The site of genetic information in a cell is the nucleus or, in prokaryotic cells and autonomous cell organelles, the circular chromosome. The nucleus is a morphologically distinct organelle separated from the cytoplasm by the nuclear membrane. It is in fact a double membrane involuted so as to form pores with apparent diameter of 3C to 100 mm through which macromolecules can pass when necessary. In addition to this unique structure, the nuclear membrane participates directly in the replication of DNA and may communicate with the extracellular medium. Much of the nuclear material is in fact deoxyribonucleic acid (DNA) which, in an interphase nucleus, forms filaments of variable thickness (10 mm on the average but occasionally only 2 mm). The thickness of these filaments depends on the presence or absence of proteins surrounding the double helix of DNA. The length of these filaments depends on the molecular weight of DNA, one chromosome (about 1010 molecular weight) containing DNA several cm long. The DNA content of the nucleus depends on the animal species (about 6 pg per mammalian cell) and is rather constant in different cells, of a given species. Ribonucleic acids (RNA) accumulate mainly in the nucleolus, enclosed in the nuclear membrane. Their size and function will be described in the following chapter. Nuclear proteins can be divided into histones and nonhistone proteins. Histones are classified into five groups differing by size, charge (always positive) and amino acid composition. Their function consists in organizing the long filaments of DNA into more compact forms (superhelix). This is accomplished by electrostatic interaction of histones with the negatively charged phosphate groups of DNA. The composition of non-histonc proteins is not fully known hut they appear to be phosphorelated, acidic proteins. They are responsible for a selective and transient inhibition of RNA transcription through binding to certain segments of DNA and for regulating the transcription of histone genes. 133

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Besides the macro molecules, the nucleus contains low-molecular weight compounds and ions, especially Mg2+ and K+. DNA molecules are polynucleotides, i.e. chains composed of mononucleotides. The principal backbone of DNA molecules is formed by a sequence of deoxyribose molecules alternating with phosphate residues, linked by diester bonds in such a way that the 5'-OH group of deoxyribose molecules is esterified by phosphoric acid which is attached to the 3'-OH group of deoxyribose of the neighboring nucleotide. DNA molecules contain pyrimidine bases thymine T, cytosine C) and purine bases (adenine A, guanine G). These bases are attached to the C1 of deoxyribose by a Nglycosidic bond to N3 of pyrimidines and to N9 of purines. The base sequence is highly specific for every DNA molecule. In solution, DNA molecules assume the structure of a double helix (Watson and Crick). The strands are connected with each other through hydrogen bonds formed between juxtaposed bases A-T (two hydrogen bonds) and C-G (3 hydrogen bonds); they are stabilized by hydrophobic interactions between neighboring bases of the same strand; the double-helix structure is supported longitudinally by molecules of basic proteins which are localized in the groove of the double helix. In addition to the double-stranded form there, exist DNA's in the form of a closed circle, either one or several arranged like links in a chain (in mitochondria, bacteria, viruses). In a chromosome, a supercoil (a coiled double helix) is formed to achieve maximum condensation of material. DNA molecules are synthesized from deoxyribonucleotides in the presence of a template (i.e., one of the DNA strands whose nucleotide sequence will be exactly reproduced step by step) and of enzymes. DNA biosynthesis requires sufficient supply of all the deoxyribonucleotides (dTTP, dATP, dGTP, dCTP)63.

63

Мельникова В.А., Барановская М.Е., Халикова Д.Г. Microbiology and Biotechnology. Указ. соч. 134

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Text 8. Principles of Metabolic Control Cells and organisms are relatively isolated systems in a quasisteady state. The functions of living organisms as a whole as well as of their parts are regulated with the objective of attaining maximum survival. Since the living system reacts in space and time, both spatial and temporal regulation may be employed. Space comes into play mainly in the higher degree of organization of structures; maintenance of structural stability of proteins, association of cooperating enzymes into multienzyme complexes, their localization in definite compartments (mitochondria, endoplasmic reticulum) and specialization of cells and tissues by differentiation processes. Time is involved in regulation mainly in terms of modification if reaction rates (metabolic, transport, and others). In practice, both dimensions are utilized simultaneously. Regulatory mechanisms become effective at very different levels of organization but their basis is always molecular. Functions of an organism can be regulated through reactions taking place in cells (metabolic regulation) and at the level of the whole organism (hormonal, nervous controls). Within a cell, metabolic "processes are controlled mainly by regulating the activity of individual enzymes. Enzymes can be regulated in several ways: 1. By changing the concentration of substrates or coenzymes (a metabolic signal) that result in changes of enzyme activity, the amount of the enzyme involved remaining constant. Changes in the concentration of a signal compound are mostly achieved through compartmentation, i.e. by forming membranes separating the cell from the extracellular milieu and smaller compartments within the cell, these being separated spatially (by membranes) or functionally (carriers). 2. By changing the concentration of effectors (activators and inhibitors) in allosteric enzymes. By interacting with the allosteric site of the enzyme, such effectors can increase or decrease the enzyme activity on the basis of cooperative changes of conformation of the subunits, from which the enzyme is composed. The amount of the allosteric enzyme is not changed during the process. 3. By induction or repression when, in contrast with the two preceding mechanisms, the amount of enzyme and hence its total activity in the system is changed. The enzyme quantity per cell depends on presence of a represser protein which is coded by a regulator gene and which, in its active form, inhibits the synthesis of some enzymes 135

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

(repression). Some low-molecular weight compounds (inducers) can interact with the represser and change it to an inactive form which cannot inhibit the synthesis of the given enzyme — this is the induction of their synthesis (derepression). Multi-enzyme systems are those in which the individual enzymes are organized in such a way that the product of one enzyme reaction serves as substrate for the next. Here again, feedback regulation plays an important role, a product of a reaction sequence controlling the activity of one of the preceding enzymes, usually the first of the sequence. Regulation at the level of an organism requires the existence of special differentiated cells and structures with control function (nerve cells, endocrine glands). These cells are known to produce certain compounds that can be considered as material carriers of information, signals that are transported from one part of the organism to another. Nervous regulation is mediated by a system of glial cells mutually interconnected through hollow and very long projections, ll addresses itself to a special receptor, it is very rapid but it cannot embrace all cells of the organism. The molecular basis of this type of regulation are changes in ion concentrations inside and outside the nerve cells which initiate and propagate the transmission of nerve impulses. The impulse is transmitted to another cell at the end plate through molecular mediators. The molecular basis of hormonal regulation are hormones which can reach all cells of the organism and affect their function but only some cells (those of the target tissues) are receptive to the hormonal stimulus specifically. To increase the efficiency of regulation, hormones are often transported from the cell of origin to the target tissue in association with a specific protein. Such regulation is slower than the nervous one but it may affect any cell in the organism provided it has the proper receptor. It is assumed that the basic process of hormonal regulation is the binding of the hormone to a surface receptor protein or to a component of the cytoplasm. The central nervous system is superior to the other parts of nervous communications as well as to hormonal regulation because it can store information transmitted by the signals into a memory, into specific structures of glial cells, and to use this information whenever necessary64.

64

Мельникова В.А., Барановская М.Е., Халикова Д.Г. Microbiology and Biotechnology. Указ. соч. 136

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Text 9. Essential Fatty Acids Polyunsaturated fatty acids with 20 carbon atoms exhibit unique physiological activities in the human body, for example lowering of cholesterol and triacylglycerols in plasma, prevention of atherosclerosis and other cardiovascular diseases and reduction of collagen-induced thrombocyte aggregation. Moreover, these fatty acids are of great value in the nutrition of edible marine animals reared in man-culture, and as precursors of eicosanoid hormones. Potential sources of such fatty acids include fungi, mainly lower Phyco-mycetes, microalgae, viz. dinoflagellates, diatoms and unicellular red algae, marine macroalgae, particularly Phaeophyta and Rhodophyta, and mosses. The biomass may be enriched with Cao-polyunsaturated fatty acids by chilling, nitrogen starvation, controlled illumination and incubation with lipophilic compounds. Polyunsaturated fatty acids, especially those with 20 carbon atoms, are currently receiving attention in view of their physiological, industrial and pharmaceutical value. So far, these fatty acids are obtained from animals, e.g. fish oil, which makes their large-scale preparation rather uneconomical. Within the past decade much work has been done on polyunsaturated fatty acids in a variety of microorganisms and lower plants. The major objectives of the present article are to review these studies and discuss the biotechnological potential for providing an economical source of these valuable compounds. The designation "essential" is related to mammals and, more precisely, to man. The mammalian route of fatty acid biosynthesis is more limited than that of plants and microorganisms. This is true as far as polymerization and desaturation reactions are concerned. Thus, it is known that condensation of C2-units in mammals occurs only up to the C18-stage. Furthermore, double bonds can be subsequently introduced at only four positions, ∆4, ∆5, ∆6 and ∆9. Mammals lack the ability to introduce any double bonds at carbon atoms between C-9 and the terminal methyl group. This implies that such living systems cannot synthesize linoleic (18:2 ∆9, ∆12 or ω6; ω designates counting from the methyl group) and linolenic (18:3 ∆9, ∆12, ∆15 or ω3) acids. These two fatty acids are however, needed by mammals, and must be supplied in their diet, hence the term "essential"65. 65

Мельникова В.А., Барановская М.Е., Халикова Д.Г. Microbiology and Biotechnology. Указ. соч. 137

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Part 7. ПРАКТИКУМ ПИСЬМЕННОГО ПЕРЕВОДА История биотехнологии Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 году. Случаи использования в промышленном производстве микроорганизмов или их ферментов, обеспечивающих технологический процесс, известны издревле, однако систематизированные научные исследования позволили существенно расширить арсенал методов и средств биотехнологии. Так, в 1814 году петербургский академик К. С. Кирхгоф (биография) открыл явление биологического катализа и пытался биокаталитическим путём получить сахар из доступного отечественного сырья (до середины XIX века сахар получали только из сахарного тростника). В 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов. В начале XX века активно развивалась бродильная и микробиологическая промышленность. В эти же годы были предприняты первые попытки наладить производство антибиотиков, пищевых концентратов, полученных из дрожжей, осуществить контроль ферментации продуктов растительного и животного происхождения. Первый антибиотик — пенициллин — удалось выделить и очистить до приемлемого уровня в 1940 году, что поставило новые задачи: поиск и налаживание промышленного производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня биобезопасности новых лекарственных препаратов66.

66

http://www.biofit.ru/biotehnologii/Page-11.html 138

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Биотехнология Термин «биотехнология» был введен в 1917 г. венгерским инженером Карлом Эреки и характеризовал все виды работ, при которых из сырьевых материалов с помощью живых организмов производятся те или иные продукты. По определению академика А.А. Баева (1984), биотехнология – это использование живых организмов и их систем в промышленных целях. Поэтому несмотря на то, что большие материальные затраты и длительное время уходит на фундаментальные исследования, основной целью биотехнологии является получение коммерческого продукта, рентабельного производства и, следовательно, того, что необходимо людям в большей или меньшей степени. Биотехнология формировалась как междисциплинарная наука и является на сегодняшний день самостоятельной, интенсивно развивающейся отраслью. Ее биологическая составляющая относится к сфере промышленной микробиологии и биохимии, а молекулярная – к областям молекулярной биологии, молекулярной генетики и энзимологии нуклеиновых кислот. Благодаря этому сочетанию сталовозможным более детальное изучение внутриклеточных процессовклетки, систем наследования и экспрессии генов. Усовершенствование методов клеточной и молекулярной биотехнологии позволило управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов, создавать организмы с новыми полезными для человека свойствами, ранее не наблюдавшимися в природе. На сегодняшний день выделяют три основных направления биотехнологии: промышленная биотехнология (промышленная микробиология), культура растительных и животных клеток и тканей и генная инженерия. Отдельные биотехнологические процессы, используемые в различных сферах практической деятельности человека, известны с древних времен. К ним относятся хлебопечение, виноделие, приготовление кисломолочных продуктов и т. д. В большинстве этих процессов используются микроорганизмы. Быстрый рост и огромное генетическое разнообразие микроорганизмов позволяют за короткий промежуток времени осуществить синтез больших количеств требуемого продукта в строго контролируемых условиях67.

67

http://www.biosoil.ru/files/00006056.pdf 139

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Достижения биотехнологии С помощью методов генной инженерии (перенос чужеродных генов, придающих новые полезные свойства организму хозяина) удалось видоизменить структуру и содержание современной промышленной микробиологии. Во-первых, существенно повысилась продуктивность промышленных микроорганизмов – продуцентов классических продуктов путем введения дополнительных генов, увеличения их количества или активности. Во-вторых, вводя в микробную клетку новые гены, удалось изменить питательные потребности микроорганизма. При стимулировании микроорганизмов к синтезированию несвойственных им веществ увеличили разнообразие биотехнологической продукции – некоторые белки человека, клонированные в микробной клетке, интерфероны, интерлейкины а также инсулин находят в настоящее время терапевтическое применение. Аналогичными методами стало возможным преобразование клеток бактерий, дрожжей и млекопитающих в «фабрики» для масштабного производства антибиотиков, белков, жиров, аминокислот, а также для получения безопасных и дешевых вакцин. Уже 2002 г. в мире получено разрешение на применение более 30 лекарственных препаратов, созданных методами генной инженерии. В стадии клинического изучения находится более 100 биопрепаратов, еще более 500 – на стадии разработки, причем большинство из них предназначены для лечения болезней, которые до настоящего времени считались неизлечимыми. По подсчетам специалистов, ежегодный объем мирового фармацевтического рынка составляет около 402 млрд долларов (2000 г.) и постоянно растет. Большая часть коммерческих разработок в области молекулярной биотехнологии приходится на США (French Biotechnology Industry Association, 2002). Единственным конкурентом США в этой области сегодня можно считать Китай. Это связано с тем, что правительство Китая объявило биотехнологию «стратеги- ческой индустрией» и национальным приоритетом. Интенсивное развитие биотехнологических компаний в Китае сохраняется и к настоящему моменту (SciDev.Net, 20 декабря 2004 г.)68.

68

http://www.biosoil.ru/files/00006056.pdf 140

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

GLOSSARY Adult stem cells: Undifferentiated cells in a tissue. These cells can grow into any of the types of specialized cells in that tissue. Amino acid: The basic building block of a protein. There are about 20 different amino acids. Long chains of amino acids make up a protein. Antibodies: Proteins produced by the immune system of humans and other vertebrates in response to the presence of a specific antigen. Antigen: A substance that stimulates the production of antibodies. Examples include pollen grains, dust, bacteria or viruses and most proteins. Bacillus thuringiensis (Bt): A species of soil bacterium that possesses genes for a group of insecticides, the Bt toxins. Different strains of the bacterium produce different Bt toxins. Some organic farmers use this bacterium as an alternative to using chemicals to control pest insects. The genes for Bt toxins have been genetically engineered into cotton plants so the plants produce the insecticides. Base: Part of four types of simple molecules or nucleotides (adenine, cytosine, thymine and guanine) that are the subunits (building blocks) of DNA and RNA. Bioremediation: 1. The use of plants and microorganisms to consume or otherwise help remove materials (such as toxic chemical wastes and metals) from contaminated sites (especially from soil and water). 2. A natural process in which environmental problems are treated by the use of bacteria or other microorganisms that break down a problem substance, such as oil, into less harmful molecules. Biotechnology: 1. A broad term generally used to describe the use of biology in industrial processes such as agriculture, brewing and drug development. The term also refers to the production of genetically modified organisms or the manufacture of products from genetically modified organisms. 2. The use of plants, animals and microorganisms to create products or processes. Traditional applications include animal breeding, brewing beer with yeast, and cheese making with bacteria. Recent developments include the use of enzymes or bacteria in a wide range of applications, including waste management, industrial production, food production and remediation of contaminated land. Modern biotechnology also includes the use of gene technology, which allows us to move genetic material from one species to another. Bt crops: Crop plants that contain genes for Bt toxins. Bt toxins: Insecticidal proteins produced by the soil microorganism Bacillus thuringiensis. 141

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Cell: The smallest functional unit of a living organism. Chromosome: A threadlike component in cells that consists of a single long molecule of DNA coated with proteins. Genes are carried on the chromosomes. Clone: A group of genes, cells or organisms derived from a common ancestor. Each clone is genetically identical. Cloning: The process of production of a group of genes, cells or organisms that are genetically identical from a common ancestor. DNA (deoxyribonucleic acid): A molecule of DNA consists of a long chain of nucleotides that are composed of deoxyribose, a five-carbon sugar (a phosphate group linked to the bases (nucleotides) adenine, thymine, cytosine and guanine). DNA contains the genetic code that controls the production of proteins in living organisms. Embryonic stem cells: Undifferentiated cells in an embryo that are able to multiply and become differentiated into any type of cell in the body. Fertilizer: Any of a large number of natural and synthetic materials, including manure, nitrogen, phosphorus and potassium compounds, that are spread on or worked into soil to increase its capacity to support plant growth. Gene: A sequence of DNA, located on a chromosome, that codes for the synthesis of a specific protein or has a specific regulatory function. Gene therapy: The addition of a functional gene or groups of genes to a cell using recombinant DNA techniques to correct a hereditary disease. Genetic engineering: A term used to cover all laboratory or industrial techniques used to alter the genetic material of organisms. These techniques assist organisms to produce new substances or to perform new functions. For example, they can increase yields of compounds already produced by the organism, form new compounds or allow organisms to adapt to drastically altered environments. Genetic modification (GM): Any process that alters the genetic material of living organism. Genetically modified organism (GMO): An organism (plant, animal, bacteria or virus) that has had its genetic material altered, either by the duplication, insertion or deletion of one or more new genes or by changing the activities of an existing gene. Genome: The total genetic material of an individual or species. Herbicide: A substance that kills plants. Insecticide: A substance that kills insects.

142

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Mutation: The process by which a gene undergoes a change in the base sequence. Some mutations result in the gene no longer coding for the correct protein or producing a reduced amount of the protein. Nuclear transfer technology (cloning): The process that involves the removal of the nucleus of a cell followed by the transfer of a nucleus from another cell into it. Nuclei: The structure within the cell that contains the chromosomes. Nucleotide: The subunit of DNA and RNA. Organism: A living thing that contains DNA and is capable of cell replication by itself, from bacteria to mammals. Pesticide: A chemical that kills pests. Pharming: The process of farming genetically engineered plants or animals to be used as living pharmaceutical factories. The practice has used cows, sheep, pigs, goats, rabbits and mice to produce large amounts of human proteins in their milk. Plants are being used to produce vaccines and diagnostic reagents. Plasmid: A small circular form of DNA that carries certain genes and is capable of replicating independently in a host cell. Protein: A long-chain molecule consisting of amino acids. The type and order of the amino acids in a protein is specified by the DNA in the cell that produces them. Recombinant DNA: The DNA formed by combining segments of DNA from different genes or different types of organisms. RNA (ribonucleic acid): A single-stranded nucleic acid that transmits genetic information from DNA to the cytoplasm and controls certain chemical processes in the cell, such as the synthesis of proteins. Doublestranded RNA forms the genetic material in some viruses. Transgenic: Refers to an organism with one or more genes that have been transferred to it from another organism using recombinant DNA techniques. Virus: A group of particles that do not have a cellular structure and therefore cannot replicate outside of a living, host cell. They consist of a molecule of DNA or RNA surrounded by a protein coat. Xenotransplantation: Any procedure that involves the transplantation of live cells, tissues or organs from one species to another, including animal-to-human transplantation.

143

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

ПРИЛОЖЕНИЯ Приложение 1 List of Chemical Elements with Transcription Ac Ag Al Am Ar As At Au B Ba Be Bi Bk Br C Ca Cd Ce Cf Cl Cm Co Cr Cs Cu Dy Er Es Eu F Fe Fm Fr Ga Gd Ge

H He Hf Hg

actinium silver aluminium americium argon arsenic astatine gold boron barium beryllium bismuth berkelium bromine carbon calcium cadmium cerium californium chlorine curium cobalt chromium c(a)esium copper dysprosium erbium einsteinium europium fluorine iron fermium francium gallium gadolinium germanium hydrogen helium hafnium mercury

[æk'tiniəm] ['silvə] [‘æljə'miniəm] [‘æmə'risiəm] ['ɑ:gɔn] ['ɑ:s(ə)nik] ['æstəti:n] [gəuld] ['bɔ:rɔn] ['bɛəriəm] [be'riliəm] ['bizməθ] [bɜ:'ki:liəm] ['brəumi:n] ['kɑ:b(ə)n] ['kælsiəm] ['kædmiəm] ['siəriəm] [‘kæli'fɔ:niəm] ['klɔ:ri:n] ['kjuəriəm] ['kəubɔ:lt] ['krəumiəm] ['si:ziəm] ['kɔpə] [dis'prəuziəm] ['ɜ:biəm] [‘ain'stainiəm] [juə'rəupiəm] ['flɔ:ri:n ], ['fluə-] ['aiən] ['fɜ:miəm] ['fræn(t)siəm] ['gæliəm] [‘gædə'liniəm] [ʤɜ:'meiniəm] ['haidrəʤən] ['hi:liəm] ['hæfniəm] ['mɜ:kjəri; 'mɜ:kjuri]

144

актиний серебро алюминий америций аргон мышьяк астат золото бор барий бериллий висмут берклий бром углерод кальций кадмий церий калифорний хлор кюрий кобальт хром цезий медб диспрозий эрбий эйнштейний европий фтор железо фермий франций галлий гадолиний германий водород гелий гафний ртуть

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Ho I In Ir K Kr Ku La Li Ln Lu Md Mg Mn Mo N Na Nb Nd Ne Ni No Np Ns O Os P Pa Pb Pd Pm Po Pr

holmium iodine indium iridium potassium krypton kurchatovium lanthanum lithium lawrencium lutecium mendelevium magnesium manganese molybdenum nitrogen sodium niobium neodymium neon nickel nobelium neptunium nielsbohrium oxygen osmium phosphorus protactinium lead palladium promethium polonium praseodymium

Pt Pu Ra Rb

platinum plutonium radium

Re Rh Rn Ru S Sb Sc Se Si

rubidium rhenium rhodium radon ruthenium sulphur antimony scandium selenium silicon

['həulmiəm ], ['hɔl-] ['aiədi:n] ['indiəm] [i'ridɪəm ], [ai-] [pə'tæsiəm] ['kriptɔn] [‘kərchə'tōvēəm] ['lænθənəm] ['liθiəm] [lə'ren(t)siəm] [lju:'ti:ʃiəm] [‘mend(ə)l'i:viəm] [mæg'ni:ziəm] ['mæŋgəni:z] [mə'libdənəm] ['naitrəʤən] ['səudiəm] [nai'əubiəm] [‘ni:əu'dimiəm] ['ni:ɔn] ['nikl] [nəu'bi:liəm] [nep'tju:niəm] [‘nēlz'bôrēəm] ['ɔksiʤən] ['ɔzmiəm] ['fɔsf(ə)rəs] [‘prəutæk'tiniəm] [led] [pə'leidiəm] [prəu'mi: θiəm] [pə'ləuniəm] [‘preiziə'dimiəm] ['plætinəm] [plu:'təuniəm] ['reidiəm] [ru:'bidiəm] [‘ri:niəm] [‘rəudiəm] [‘reidɔn] [ru'θi:niəm] ['sʌlfə] ['æntiməni] ['skændiəm] [sə'li:niəm] [‘silikən]

145

гольмий йод индий иридий калий криптон курчатовий лантан литий лоуренсий лютеций менделевий магний марганец молибден азот натрий ниобий несдим неон низель нобалий негтуний нильсборий кислород осмий фосфор протактиний свинец палладий прометий полоний празеодим платина плутоний радий рубидий рений родий радон рутений сера суотма скандий селен кремний

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Sm Sn Sr Ta Tb Tc Te Th Ti Tl Tm U V W Xe Y Yb Zn Zr

samarium tin strontium tantalum terbium technetium tellurium thorium titanium thallium thulium uranium vanadium tungsten xenon yttrium ytterbium zinc zirconium

[sə’meəriəm] [tin] ['strɔntiəm] ['tænt(ə)ləm] ['tɜ:biəm] [tek'ni:ʃiəm] [te'luəriəm] ['θɔ:riəm] [ti'teiniəm; tai'teiniəm] ['θæliəm] ['θu:liəm] [juə'reiniəm] [və'neidiəm] ['tʌŋstən] ['zi:nɔn] ['itriəm] [i'tɜ:biəm] [ziŋk] [zɜ:'kəuniəm]

146

самарий олово стронций тантал тербий технеций теллур торий титан таллий тулий уран ванадий вольфрам ксенон иттрий иттербий цинк цирконий

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Приложение 2 How to Read Chemical Formulas and Equations При чтении химических формул буквы латинского алфавита, обозначающие название элементов, читаются согласно английским названиям букв алфавита. Знак – обозначает одну связь или единицу родства и не читается. Знак = читается: give, form, produce. Знак → читается: give, pass over, lead to. Знак ↔ читается: forms and is formed from. Цифра (внизу) после названия элемента обозначает число атамов в молекуле. Цифра перед названием элемента обозначает число молекул. Примеры: H2O [‘ei ti ‘tu: ‘ou]. HNO3 [‘eit∫ ‘en ‘ou ‘өri:]. C + O2 → CO2: C plus O two give CO two or one atom of carbon reacted with one two-atom moleculs of oxygen and produces one molecule of carbon dioxide. 2H2 + O2 → 2H2O: two molecules of H two plus O two give two molecules of H two O [‘tu: 'mɔlikju:lz əv ‘eit∫ ‘tu: plʌs ‘ou ‘tu: giv ‘tu: 'mɔlikju:lz əv ‘eit∫ ‘tu: ‘ou] H │ H ─ C ─ H: │ H H H │ │ H ─ C ─ C ─ H: │ │ H H

CH four [‘si: ‘eit∫ ‘fɔ:]

C two H six [‘si: ‘tu: ‘eit∫ ‘siks:]

Reading of an equation: Zn + H2SO4 → ZnSO4 + H2 The “plus” sign on the left of the arrow means “reacts with”; the arrow means “forming” or “producing”; and the “plus” sign on the right of the arrow means “and”.

147

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

So this equation is read: “One atom of zinc reacts with one molecule of sulphuric acid producing one molecule of zinc sulphate and one molecule of hudrogene”. CH4 + 2O2 → CO = 2H2O [“si: ‘eit∫ ‘fɔ: plʌs ‘tu: 'mɔlikju:lz əv ‘ou ‘tu: ‘givz ‘si: ‘ou plʌs ‘tu: 'mɔlikju:lz əv ‘eit∫ ‘tu: ‘ou]. AcO- - acyloxy ion. H+ + NaHCO3 → Na+ + H2CO4 → Na+ + H2O + CO2 ['haidrəʤən ‘aiən plʌs ’en ‘ei ‘eit∫ ‘tu: ‘si: ‘ou θri: ‘givz 'neitriəm ‘aiən plʌs ‘eit∫ ‘tu: ‘si: ‘ou θri: ‘givz 'neitriəm ‘aiən plʌs ‘eit∫ ‘tu: ‘ou ‘plʌs ‘tu: ‘si: ‘tu:].

148

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

БИБЛИОГРАФИЯ 1. Бонами, Д. Английский язык для будущих инженеров: уч. пособие / Д. Бонами. – М.: ООО «Изд-во Астрель»: ООО «Изд-во АСТ», 2003. – 320 с. 2. Зиятдинова, Ю.Н. The Basics of Process Technology (Основы технологических процессов): учебное пособие / Ю.Н. Зиятдинова, Э.Э. Валеева, А.Н. Безруков. – Казань: Изд-во Казан. гос. технол. ун-та, 2008. 3. Лысак, В.В. Микробиология: учеб. пособие / В.В. Лысак. – Минск: Изд-во БГУ, 2007. 4. Мельникова, В.А. Microbiology and Biotechnology: учебно-методическое пособие / В.А. Мельникова, М.Е. Барановская, Д.Г. Халикова. – Уфа: Изд-во Уфимского гос. нефтяного техн. ун-та, 2005. 5. Минакова, Т.В. Английский язык для аспирантов и соискателей: учебное пособие / Т.В. Минакова. – Оренбург: Изд-во ГОУ ОГУ, 2005. 6. Миньяр-Белоручева, А.П. Англо-русские обороты научной речи / А.П. Миньяр-Белоручева. – М.: Изд. дом «Проспект – АП», 2005. 7. Мифтахова, Н.Х. Английский язык для химико-технологических вузов: учебник для I-II курсов. Ч. 1 / Н.Х. Мифтахова. – Казань, 2001. – 79 с. 8. Основы биотехнологии: учебно-методическое пособие / А.С. Сироткин [и др.]. – Казань: Изд-во Казан. гос. технол. ун-та, 2006. – 100 с. 9. http://bio.1september.ru/article.php?ID=200601204 10. http://chemistry.about.com/library/blperiodictable.htm 11. http://krugosvet.ru/enc/nauka_i_tehnika/biologiya/FERMENTI.html 12. http://elementy.ru/trefil/21188 13. http://en.wikipedia.org/wiki/Enzyme 14. http://innosfera.org/node/381 15. http://stereoshnur.ru/transport/nanotekhnologii_novinki_zavtrashnego_d nja__m___2006__60_s_8.html 16. http://ru.wikipedia.org/wiki/Хлеб 17. http://ru.wikipedia.org/wiki/Биотехнология 18. http://sammysplace.org/sammy/quoteseduc.html 19. http://www2.dupont.com/Biotechnology/en_US/intro/history.htm 20. http://www.aboutbioscience.org 149

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

21. http://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.30.1.53 9 22. http://www.aveal.com.ua/docs/view/35/ 23. http://www.bic.searca.org/resources/biotechnology.html 24. http://www.biofit.ru/biotehnologii/Page-11.html 25. http://www.biosoil.ru/files/00006056.pdf 26. http://www.biotechinstitute.org/what-is-biotechnology 27. http://www.book-encyclopedia.ru 28. http://www.en.wikipedia.org 29. http://www.entrancei.com/career-option/nanotechnology 30. http://www-fa.upc.es/personals/fluids/oriol/ale/eolss.pdf 31. http://www.nauka.kz/biol_med/razd4/bioremeditacia_neftanih_zagrazne nii.php 32. http://www.oecd.org/science/innovationinsciencetechnologyandindustry/ 34935605.pdf 33. http://www.oliveoil.su/istoriya-sira/istoriya-sira/all-pages 34. http://www.statoil.lv/ru/toplivo/produktsiya/bioetanol-e85/ 35. http://www.xumuk.ru 36. Applied Microbiology and Biotechnology. Springer-Verlag, 1996. 37. A Working Paper for a Strategic Partnership with Canadian Biotechnology. December, 2003. 38. Biotechnology Information Series. Worth Central Regional Extension Publication Iowa State University. March, 2001. 39. Biotechnology: with student activities. Laura M. Johnson, 2011. 40. The Biotech Industry Organizations website Bio.org 41. EUR 21151. Nanotechnology. Innovation for tomorrow’s world. Luxembourg: Office for Official Publications of the European Communities. 2004 . 56 pp. 42. Pamela Peters, from Biotechnology: A Guide To Genetic Engineering. Wm. C. Brown Publishers, Inc., 1993. 43. Philippine Daily Inquirer. August, 2004. 44. TIBTECH January, 1999. Vol.17. 45. www.bcp.org.ph

150

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

УЧЕБНОЕ ИЗДАНИЕ

Г.В. Рябкова

BIOTECHNOLOGY (Биотехнология)

151

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис»

Редактор Л.Г. Шевчук

Лицензия № 020404 от 6.03.97 г. Подписано в печать 3.12.12 Бумага офсетная 9,5 уч.-изд. л.

Печать Riso Тираж 100 экз.

Формат 60×84/16 8,83 усл. печ. л. Заказ «С» 192

Издательство Казанского национального исследовательского технологического университета Офсетная лаборатория Казанского национального исследовательского технологического университета 420015, Казань, К.Маркса, 68 152