Biomedical Materials [2 ed.] 9783030492052, 3030492052

443 91 23MB

English Pages [720] Year 2020

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

Biomedical Materials [2 ed.]
 9783030492052, 3030492052

Table of contents :
Contents
Chapter 1: Metallic Biomaterials
1.1 Introduction – Why Metals?
1.2 Metallic Interatomic Bonding
1.3 Crystal Structures – Atom Packing in Metals
1.4 Phase Transformations – Diffusive and Displacive
1.5 Diffusion in Metals
1.6 Interatomic Forces and Elastic Moduli (Structure-Insensitive Properties)
1.7 Plastic Deformation and Structure-Sensitive Properties
1.8 Corrosion Resistance
1.9 Metals and Processes for Implant Fabrication
1.9.1 Austenitic Stainless Steel (ASTM F 138/139, F 1314, F 1586, F 2229)
1.9.2 Co-Based Alloys
1.9.2.1 Cast CoCrMo (ASTM F 75)
1.9.2.2 Wrought CoCrMo (Low- and High-Carbon) (ASTM F 799, F 1537)
1.9.2.3 Other Co-Containing Implant Alloys (ASTM F 562, F 90, F 563, F 1058)
1.9.3 Titanium-Based Alloys
1.9.3.1 Commercial Purity Ti
1.9.3.2 (α + β) Ti Alloys
1.9.3.3 β-Ti and Near β-Ti Alloys
1.9.4 Zr-Nb Alloy
1.9.5 Ni-Ti Alloys (Nitinol)
1.9.6 Tantalum
1.9.7 Platinum, Platinum-Iridium
1.9.8 Magnesium Alloys
1.9.9 Dental Alloys
1.9.9.1 Dental Amalgams
1.9.9.2 Dental Casting Alloys – (Au-Based, Co-Based, Ni-Based, Ti-Based)
1.9.9.3 Wrought Dental Alloys
1.10 New Directions
References
Chapter 2: Polymeric Biomaterials
2.1 Introduction
2.2 Nomenclature
2.3 Biopolymer in Medical Applications
2.4 Inert Polymers
2.4.1 Silicones
2.4.2 Polyacrylates
2.4.3 Polyethylene and Related Polymers
2.4.3.1 Poly(Vinyl Alcohol)
2.4.4 Polyamides
2.4.5 Polyurethane and Polyurea
2.4.6 Polyesters
2.4.7 Polyethers
2.5 Natural Biopolymer
2.5.1 Collagen and Gelatins
2.5.2 Fibrin
2.5.3 Polysaccharide Hydrogels
2.5.3.1 Cotton Cellulose Fiber Composites
2.5.4 Glycosaminoglycans
2.5.5 Alginates
2.5.6 Chitin and Chitosan
2.5.7 Dextran
2.6 Bioactive Polymers
2.6.1 Polymeric Drugs
2.6.1.1 Polycationic Polymers
2.6.1.2 Polyanionic Polymers
2.6.1.3 Polynucleotides/Polypeptides
2.6.1.4 Polysaccharides
2.6.1.5 Starch
2.6.2 Polymeric Drug Conjugates/Polymeric Protein Conjugates
2.6.3 Polymeric Prodrugs
2.6.4 Targeted Polymeric Drug
2.7 Biodegradable Synthetic Polymers
2.7.1 Polyesters
2.7.1.1 Polyhydroxyalkanoates as Coatings
2.7.2 Poly(Ortho Esters)
2.7.3 Polycarbonates
2.7.4 Polyanhydrides
2.7.5 Poly(Phosphate Ester)
2.7.6 Poly(Phosphazenes)
2.8 Characterization of Biomaterials
2.8.1 Chemical Properties on the Surfaces
2.8.2 Physical Properties of the Surfaces
2.8.3 Adsorbed and Immobilized Protein Determination
2.8.4 In Vitro Cell Growth
2.8.5 Blood Compatibility
2.9 Fabrication Technology
2.9.1 Extrusion
2.9.2 Injection Molding
2.9.3 Electrospinning
2.9.4 Calendering
2.10 Future Trends in Biomedical Uses of Biopolymers
References
Chapter 3: Ceramics and Glasses
3.1 Introduction
3.2 What Is a Ceramic?
3.3 Ceramic Processing
3.4 Powder Processing
3.5 Deformation and Fracture
3.6 Transformation Toughening
3.7 Pressureless Sintering
3.8 Isostatic Pressing
3.9 Liquid Phase Sintering
3.10 Tape Casting
3.11 Costs of Powder Processing
3.12 Porous Ceramics
3.12.1 BurPS
3.12.2 Foamed Slips
3.12.3 Reticulated Foams
3.13 Measurement of Porosity in Porous Ceramics
3.14 Surface Engineering
3.14.1 Ion Implantation
3.14.2 Thermal Spray Coatings
3.15 Glasses and Glass Ceramics
3.15.1 Glasses
3.15.2 Glass Ceramics
3.15.3 Bioceramics
3.15.4 Bone
3.15.5 Medical Ceramics
3.15.6 Biomedical Use of Bioceramics
3.15.7 Alumina
3.15.8 Zirconia
3.15.9 Hydroxyapatite
3.15.10 Porous Bioceramics
3.16 Functional Gradient Materials
3.17 Bone Morphogenetic Proteins
3.18 Hydroxyapatite Coatings
3.19 Bioactive Glasses
3.20 Conclusion
References
Chapter 4: Biobased Materials for Medical Applications
4.1 Biobased Materials: An Introduction
4.1.1 Definitions
4.1.2 Scope
4.1.2.1 Biological Origin
4.1.2.2 Derived from Biological Sources
4.1.2.3 Biomimetics and Bioinspiration
4.1.2.4 Required for Life
4.1.3 Interpretation
4.2 Classes of Biobased Materials
4.2.1 Biobased Elements
4.2.1.1 Organic Elements (C, H, O, N, S)
Let There Be Light
The Cauldron of Chemical Creation for Biobased Elements
4.2.1.2 Biobased Inorganic Elements (Ca and Fe)
4.2.2 Biobased Minerals
4.2.2.1 Hydroxyapatite
Silica (SiO2)
Iron Oxide
Clays
4.2.3 Biobased Polymers (Collagen, Cellulose, Chitin/Chitosan)
4.2.3.1 Collagen
4.2.3.2 Cellulose
4.2.3.3 Chitin/Chitosan
4.2.4 Biobased Composites and Bone Inspiration
4.2.4.1 Bone
Questions at the Interface of Biobased Bone Implants
Nacre
Crab Shell
4.2.5 Biobased Liquids
4.2.5.1 Water
4.2.5.2 Milk
4.2.5.3 Blood
4.2.5.4 Urine
4.2.6 Cells as Biobased Materials
4.2.6.1 Cell and Tissue Reactors for the Production, Modification, and Storage of Biobased Materials
Pirated Cell Bioreactors: COVID-19
4.2.6.2 Plant-Based Reactors
Cannabis and Cannabis Oil
Apples
Dandelions: The Tooth of the Lion
Spices
4.2.6.3 Tissue Origami Engineering
4.3 Biobased Materials Come Full Circle: Medical Treatment Treasure from Biobased Waste
4.3.1 Gut Microbiome (Influence on Overall Health)
4.3.1.1 Nonconventional Transplants Yielding Extraordinary Results
Stool/Feces
4.4 Future Possibilities for Biobased Materials
References
Chapter 5: Shape Memory Biomaterials and Their Clinical Applications
5.1 Introduction
5.2 Shape Memory Alloys (SMAs) and Their Clinical Applications
5.2.1 Fundamental Features of SMAs
5.2.2 TiNi SMAs and Their Clinical Applications
5.2.2.1 Application of TiNi SMAs in Dentistry
5.2.2.2 Application of TiNi SMAs in Orthopedics
5.2.2.3 Application of TiNi SMAs in Interventional Therapy
5.2.2.4 Additive Manufacturing TiNi SMAs
5.2.3 Nickel-Free Ti-Based Shape Memory Alloy
5.3 Shape Memory Polymers
5.3.1 General Mechanism of Shape Memory Polymers
5.3.2 Shape Memory Functions
5.3.2.1 One-Way Shape Memory Effect
5.3.2.2 Two-Way Shape Memory Effect
5.3.2.3 Triple Shape Memory Effect
5.3.2.4 Multiple Shape Memory Effect
5.3.3 Other Stimuli-Responsive SMPs
5.3.3.1 Electric-Induced Shape Memory Polymers
5.3.3.2 Magnetic-Induced Shape Memory Polymers
5.3.3.3 Light-Induced Shape Memory Polymers
5.3.3.4 Water-/Solvent-Induced Shape Memory Polymers
5.3.4 Clinical Applications of Shape Memory Polymers
5.3.4.1 Applications in Endovascular Tissue Engineering
5.3.4.2 Applications in Tissue Engineering
5.3.4.3 Applications in Surgical Suture
5.3.4.4 Applications in Pharmaceutical Controlled Release System
5.3.4.5 Applications in Hemostatic Agent
5.3.4.6 Other Biomedical Applications
5.4 Concluding Remarks
5.4.1 R&D on New SMBs
5.4.2 Shape Memory Hybrids (SMHs)
5.4.3 New Technology Applied to SMBs
5.4.3.1 4D Printing
5.4.3.2 Thin Film
5.4.4 Shape Memory Ceramics
References
Chapter 6: Natural and Synthetic Polymeric Scaffolds
6.1 Introduction
6.2 Natural Polymers for Scaffold Fabrication
6.2.1 Polysaccharides
6.2.1.1 Agarose
6.2.1.2 Alginate
6.2.1.3 Hyaluronic Acid
6.2.1.4 Chitosan
6.3 Polypeptides
6.3.1 Collagen
6.3.1.1 Gelatin
6.3.1.2 Silk
6.4 Synthetic Polymers for Scaffold Fabrication
6.4.1 Polyesters
6.4.1.1 Poly(Glycolic Acid)
6.4.1.2 Poly(L-Lactic Acid)
6.4.1.3 Poly(D,L-Lactic Acid-Co-Glycolic Acid)
6.4.1.4 Poly(ɛ-Caprolactone)
6.4.1.5 Poly(Propylene Fumarate)
6.4.1.6 Polyorthoester
6.4.2 Other Synthetic Polymers
6.4.2.1 Polyanhydride
6.4.2.2 Polyphosphazene
6.4.2.3 Polycarbonate
6.4.2.4 Poly(Ethylene Glycol)
6.4.2.5 Polyurethane
6.5 Fabrication Techniques
6.5.1 Conventional Techniques
6.5.1.1 Fiber Bonding
6.5.1.2 Solvent-Casting Particulate Leaching
6.5.1.3 Phase Separation
6.5.1.4 Melt Molding
6.5.1.5 Freeze-Drying
6.5.1.6 Gas Foaming
6.5.2 Rapid Prototyping or Solid Freeform Fabrication Techniques
6.6 Properties for Scaffold Design
6.6.1 Polymer Assembly
6.6.2 Surface Properties
6.6.3 Macrostructure
6.6.4 Biocompatibility
6.6.5 Biodegradability
6.6.6 Mechanical Properties
6.7 Summary
References
Chapter 7: Magnetic Nanomaterials
7.1 Introduction
7.1.1 Magnetism and Magnetic Materials
7.2 Categories of Magnetic Materials
7.3 The Influence of Temperature
7.4 Magnetization Processes in Ferromagnetic and Ferrimagnetic Materials
7.5 Factors Affecting Magnetic Properties
7.6 Physical Principles
7.7 Examples and Property Requirements of Magnetic Biomaterials
7.8 Applications
7.8.1 Magnetic Separation
7.8.2 Drug Delivery
7.8.3 Radionuclide Delivery
7.8.4 Gene Delivery
7.8.5 Hyperthermia
7.8.6 Magnetic Resonance Imaging Contrast Agent
7.8.7 Artificial Muscle
7.9 Summary
General Reading List
Chapter 8: Mechanical Properties
8.1 Introduction
8.2 Bone Biomechanics
8.2.1 Bone Composition and Structure
8.2.1.1 Composition
8.2.1.2 Bone Structure
8.2.1.3 Bone Physical Properties
8.2.2 Biomechanical Properties of the Bone
8.2.2.1 Cortical Bone
8.2.2.2 Trabecular Bone
8.2.3 Bone Remodeling
8.3 Cartilage Biomechanics
8.3.1 Cartilage Composition and Structure
8.3.1.1 Structure
8.3.1.2 Composition
8.3.2 Biomechanical Properties of Cartilage
8.3.2.1 Permeability
8.3.2.2 Viscoelastic Properties
8.3.2.3 Cartilage Swelling
8.3.3 Cartilage Degeneration
8.4 Skin Biomechanics
8.4.1 Skin Composition and Structure
8.4.2 Biomechanical Properties of Skin
8.5 Tendon and Ligament Biomechanics
8.5.1 Structure and Composition
8.5.2 Biomechanical Properties of Tendons and Ligaments
8.6 Muscle Biomechanics
8.6.1 Muscle Structure and Composition
8.6.2 Biomechanical Properties of Muscles
8.7 Blood Vessel and Arterial Biomechanics
8.7.1 Composition and Structure of Blood Vessels and Arteries
8.7.2 Biomechanical Properties
8.7.3 Critical Closing Pressure
8.8 Joint Biomechanics
8.8.1 Description of Joint Biomechanics
8.8.2 Function of Joint Biomechanics
8.8.3 Mechanical Stresses of Joints
8.9 Conclusion
Bibliography
Books
Bone
Cartilage
Skin
Tendon and Ligament
Muscle
Blood Vessel and Artery
Chapter 9: Metal Corrosion
9.1 Interaction of Metallic Biomaterials with the Human Body Environment
9.2 Electrochemical Reactions on Metallic Biomaterials
9.3 Forms of Corrosion of Metallic Biomaterials
9.3.1 Uniform Dissolution
9.3.2 Galvanic Corrosion
9.3.3 Concentration Cell Corrosion
9.3.4 Pitting and Crevice Corrosion
9.3.5 Environment-Induced Cracking
9.3.6 Intergranular Corrosion
9.3.7 Wear-Corrosion, Abrasion-Corrosion, Erosion-Corrosion, and Fretting
9.4 Corrosion Testing of Metallic Biomaterials
References
Chapter 10: Wear
10.1 Introduction
10.2 Friction, Lubrication, and Wear
10.3 Wear Classifications and Fundamental Wear Mechanisms
10.3.1 Adhesive Wear
10.3.2 Fatigue Wear
10.3.3 Abrasive Wear and Third-body Wear
10.3.4 Chemical (Corrosive) Wear
10.4 Wear in Biomedical Devices and Biomaterials
10.4.1 Wear in Prostheses and Biomedical Devices
10.4.2 Wear Resistance of Biomedical Materials
10.5 Summary
References
Chapter 11: Inflammation, Carcinogenicity, and Hypersensitivity
11.1 Introduction
11.2 Granulation Tissue
11.3 Foreign Body Response
11.4 Repair
11.5 Acute and Chronic Inflammation
11.6 Infection
11.7 Local and Systemic Responses
11.8 Soft and Hard Tissue Responses
11.9 Blood-Material Interactions
11.10 Biocompatibility
11.11 Carcinogenicity
11.12 Hypersensitivity
References
Chapter 12: Protein Interactions at Material Surfaces
12.1 Introduction
12.2 Protein Properties
12.2.1 Structure
12.2.1.1 Primary Structure
12.2.1.2 Secondary Structure
12.2.1.3 Tertiary Structure
12.2.1.4 Quaternary Structure
12.2.2 Isoelectric Point and Solubility
12.2.3 Hydrophobic Composition
12.3 Material Surface Properties
12.3.1 Surface Topography
12.3.2 Surface Energy
12.3.3 Surface Chemistry
12.4 Protein Adsorption on Surfaces
12.4.1 Kinetics and Thermodynamics
12.4.2 Density
12.4.3 Conformation
12.4.4 Extracellular Matrix Proteins
12.4.5 Cell-Adhesive Amino Acid Sequences
12.5 Nanoscale Biomaterials
12.6 Conclusions
References
Chapter 13: Biocompatibility Testing
13.1 Introduction
13.2 Sample Preparation
13.3 Mammalian Cell Culture
13.3.1 Cytotoxicity Testing
13.3.2 Hemocompatibility
13.3.3 Hypersensitivity/Allergic Responses
13.3.4 Genotoxicity
13.3.5 Tissue-Specific Aspects of Biocompatibility Testing
13.4 Animal Experimentation
13.5 Alternatives to Animal Experimentation
References
Chapter 14: Biomaterials for Dental Applications
14.1 Introduction
14.2 Historical Perspectives
14.3 Metals for Dental Application
14.3.1 Amalgams
14.3.2 Biocompatibility of Dental Amalgams
14.3.3 Casting Alloys
14.3.3.1 Titanium and Related Alloys
14.3.3.2 Casting and Soldering
14.3.4 Wrought Alloys as Orthodontic Wire
14.3.5 Dental Implants
14.3.5.1 Endosseous Implants
14.3.5.2 Subperiosteal Implants
14.3.5.3 Transosseous Implants
14.3.5.4 The Phenomenon of Osseointegration
14.3.5.5 Materials Issues in Dental Implants
14.3.5.6 Surface Issues
14.3.5.7 Problems with Dental Implants
14.4 Ceramics for Dental Applications
14.4.1 Metal-Ceramic Restorations
14.4.2 All-Ceramic Restorations
14.4.3 Processing of All-Ceramic Restorations
14.4.4 Selection Guide for All-Ceramic Restorations
14.4.5 Clinical Failure of All-Ceramic Crowns
14.4.6 Bioactive Glasses
14.5 Polymers for Dental Applications
14.5.1 Dentures
14.5.2 Dental Cements
14.5.3 Composite Dental Materials
14.5.4 PEEK (Polyetheretherketone) as a Dental Material
14.6 Closure
References
Chapter 15: Ophthalmic Biomaterials
15.1 Introduction
15.2 Oxygen Delivery
15.3 Refraction
15.4 Tissue Protection
15.5 Tissue Integration
15.5.1 Artificial Cornea Transplants
15.5.2 Artificial Eye
15.5.3 Retinal Implants
15.6 Modulation of Wound Healing
15.7 Interfacial Tension and Tamponade
15.8 Concluding Remarks
References
Chapter 16: Hip Prostheses
16.1 Introduction
16.2 History of Total Hip Replacement
16.3 Various Components and Design of THR
16.3.1 Socket or Acetabular Cup
16.3.2 The Ball
16.3.3 Stem
16.3.4 Fixation of THR
16.4 Various Materials for THR
16.4.1 Alumina
16.4.2 Yttria-Stabilized Zirconia
16.4.3 Polyethylene
16.4.4 Cobalt-Based Alloys
16.4.5 Titanium-Based Alloys
16.4.6 Coatings
16.5 Design Variation of THR
References
Chapter 17: Burn Dressing Biomaterials and Tissue Engineering
17.1 Introduction
17.2 Physiology of the Skin
17.2.1 Basic Organization and Cellular Composition
17.2.1.1 Keratinocytes
17.2.1.2 Melanocytes
17.2.1.3 Merkel Cells
17.2.1.4 Langerhans Cells
17.2.1.5 Fibroblasts
17.2.2 The Epidermis
17.2.2.1 Stratum Germinativum
17.2.2.2 Stratum Spinosum
17.2.2.3 Stratum Granulosum
17.2.2.4 Stratum Lucidum
17.2.2.5 Stratum Corneum
17.2.3 The Dermis
17.2.3.1 Papillary Dermis
17.2.3.2 Reticular Dermis
17.2.4 The Dermal-Epidermal Junction Zone
17.2.5 The Hypodermis
17.2.6 The Appendages
17.2.6.1 Sweat Glands
17.2.6.2 Sebaceous Glands
17.2.6.3 Hair Follicles
17.2.6.4 Nails
17.2.7 Functions of the Skin
17.3 Development of the Integumentary System
17.3.1 The Epidermis
17.3.2 The Dermis
17.3.3 The Appendages
17.4 Burns
17.4.1 Burn Classification
17.4.2 Principles of Burn Wound Healing
17.4.3 Immune System Response to Burn Injury
17.4.4 Complications
17.5 Conventional Treatment of Burns
17.5.1 Treatment of Minor Burns
17.5.2 Primary Treatment of Severe Burns
17.5.3 Autografting: The Current Gold Standard
17.5.4 Biological Alternatives for Temporary Wound Coverage
17.5.4.1 Allografts
Cadaver Skin
Amnion
17.5.4.2 Xenografts
17.6 Burn Dressing Biomaterials and Tissue Engineering
17.6.1 Design Criteria
17.6.1.1 Adherence
17.6.1.2 Barrier Properties
17.6.1.3 Mechanical Properties
17.6.1.4 Biodegradability and Immune Response
17.6.1.5 Surgical Handleability
17.6.1.6 Expense
17.6.2 Skin Substitutes
17.6.2.1 Epidermal Substitutes
Occlusive and Semi-occlusive Dressings
Cultured Autologous Keratinocytes
Cultured Allogenic Keratinocytes
Laserskin™
17.6.2.2 Dermal Substitutes
Dermagraft™
AlloDerm™
17.6.2.3 Composite Substitutes
Integra™
Apligraf™
Biobrane™
Transcyte™
17.6.3 Growth Factor Incorporation
17.6.4 Epidermal Stem Cells
17.7 Future Outlook
References
Chapter 18: BioMEMS
18.1 MEMS General Introduction
18.2 BioMEMS General Presentation
18.2.1 BioMEMS as Transducers
18.2.2 Why Building BioMEMS?
18.2.2.1 Exploiting Scaling of Laws and Forces
18.2.2.2 Large-Scale Fabrication of Small Systems
18.2.3 Risks and Drawback Associated with BioMEMS
18.2.3.1 In Vitro BioMEMS Reliability
18.2.3.2 In Vivo Reliability
18.2.3.3 Cyber Security for In Vivo BioMEMS
18.3 BioMEMS Design, Materials, and Fabrication
18.3.1 Designing a BIOMEMS
18.3.2 BioMEMS: Importance of Materials and Materials Characterization
18.3.3 Material for BioMEMS
18.3.3.1 Single Crystal Silicon
18.3.3.2 Electroplated Metals
18.3.3.3 Thin-Film Metals
18.3.3.4 Ceramics for MEMS Microfabrication
18.3.3.5 Polymers
18.3.3.6 Flexible/Stretchable Materials for BioMEMS
18.3.3.7 Biodegradable Materials, Biomaterials, and Nanomaterials for BioMEMS
18.3.4 Biocompatibility of MEMS Materials
18.3.5 BioMEMS Fabrication Techniques
18.3.5.1 Photolithography
18.3.5.2 Molding and Electroplating
18.3.5.3 Surface vs Bulk Micromachining
Wet Bulk Micromachining of Single Crystal Silicon
Electric Discharge Machining
Dry Bulk Micromachining
18.3.5.4 Sacrificial Layers
18.3.5.5 Micro-embossing and Injection Molding Techniques
18.3.5.6 Stereo-Photolithography and 3D Printing
18.3.5.7 Bonding, Hermetic Sealing, and Packaging
18.3.5.8 Top-Down and Bottom-Up
18.3.5.9 Aut inveniam viam aut faciam
18.4 BioMEMS Application Review
18.4.1 BioMEMS Classification
18.4.2 BioMEMS for Cell Culturing
18.4.3 BioMEMS for DNA, Proteins, and Chemical Analysis
18.4.4 BioMEMS for In Vivo Applications
18.4.4.1 Interfacing with the Nervous System
18.4.4.2 Glucose Sensor and Miniature Pumps
18.4.4.3 Implantable Pressure Sensors
18.4.5 Microsurgical Tools
18.5 Conclusions
References
Chapter 19: Additive Manufacturing and 3D Printing
19.1 Introduction
19.2 Biomedical Applications of AM-Tissue Engineering Scaffolds
19.3 Roles and Prerequisites for Tissue Engineering Scaffolds
19.4 Conventional Manual-Based Scaffold Fabrication Techniques
19.5 Computer-Controlled AM Techniques for Tissue Engineering Scaffolds
19.5.1 Solid-Based Techniques
19.5.1.1 Fused Deposition Modeling (FDM)
19.5.2 Powder-Based Techniques
19.5.2.1 Color Jet Printing (CJP)
19.5.2.2 Selective Laser Sintering (SLS)
19.5.2.3 Selective Laser Melting (SLM)
19.5.3 Liquid-Based Techniques
19.5.3.1 Stereolithography Apparatus (SLA)
19.5.3.2 Bioprinting
19.6 Development of CAD Strategies and Solutions for Automated Scaffolds Fabrication
19.7 Prostheses
19.7.1 Integrated Approach to Prostheses Production
19.7.1.1 Data Acquisition
19.7.1.2 CAD Remodeling
19.7.1.3 Fabrication of Prosthesis Via AM
19.7.1.4 Casting of Actual Prosthesis
19.8 Case Studies
19.8.1 Case Study 1: Prosthetic Ear
19.8.2 Case Study 2: Prosthetic Forehead
19.9 Conclusion
References
Chapter 20: Sterility and Infection
20.1 Sterilization
20.1.1 Steam Autoclaves
20.1.2 Dry Heat
20.1.3 Radiation
20.1.4 Ethylene Oxide
20.1.5 New Technologies
20.2 Biomaterial-Associated Infections
20.2.1 Biofilms
20.2.2 Types of Medical-Related Biofilms
20.2.3 Infections Associated with Implantable Devices
20.2.3.1 Central Venus Catheters
20.2.3.2 Urinary Catheters
20.2.3.3 Prosthetic Heart Valves
20.2.3.4 Orthopedic Prosthetic Infections
20.3 The Use of Antibiotics in the Treatment of Biomaterial-Associated Infections
20.3.1 Systemic Antibiotic Prophylaxis
20.3.2 Local Delivery of Antibiotics and Antimicrobial Agents
20.3.2.1 Antimicrobial Irrigation of a Surgical Field
20.3.2.2 Dipping of Biomaterials in Antimicrobial Solutions
20.3.2.3 The Antimicrobial Coating of Biomaterials
20.3.2.4 Placement of an Antimicrobial Carrier
20.4 Developing Infection-Preventing Biomaterials
20.5 Case Study: Oral Infections and Biomaterials
20.5.1 Dental Caries and Periapical Disease
20.5.2 Periodontal Disease
References
Chapter 21: Manufacturing Issues
21.1 Patents
21.1.1 EPC Contracting Countries
21.1.2 PCT Contracting Countries
21.1.3 Copyright
21.1.4 Trademarks
21.1.5 Registered Design
21.1.6 Finally Litigation
21.2 Liability
21.3 Quality, Standards, Specifications
21.4 Audit
21.4.1 Design Dossier
21.5 FMEA
21.5.1 Standards
21.5.2 Specification
21.5.3 Manufacturing
Index

Citation preview

Roger Narayan  Editor

Biomedical Materials Second Edition

Biomedical Materials

Roger Narayan Editor

Biomedical Materials Second Edition

Editor Roger Narayan Chapel Hill, NC, USA

ISBN 978-3-030-49205-2    ISBN 978-3-030-49206-9 (eBook) https://doi.org/10.1007/978-3-030-49206-9 © Springer Nature Switzerland AG 2009, 2021 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

1 Metallic Biomaterials������������������������������������������������������������������������������    1 Robert M. Pilliar 2 Polymeric Biomaterials���������������������������������������������������������������������������   49 Sreenu Madhumanchi, Teerapol Srichana, and Abraham J. Domb 3 Ceramics and Glasses������������������������������������������������������������������������������  101 Irene G. Turner 4 Biobased Materials for Medical Applications���������������������������������������  139 Otto C. Wilson, Jr. 5 Shape Memory Biomaterials and Their Clinical Applications������������  195 Yufeng Zheng, Jianing Liu, Xili Lu, and Yibo Li 6 Natural and Synthetic Polymeric Scaffolds ������������������������������������������  257 Diana M. Yoon and John P. Fisher 7 Magnetic Nanomaterials ������������������������������������������������������������������������  285 R. V. Ramanujan 8 Mechanical Properties ����������������������������������������������������������������������������  303 Damien Lacroix and Josep A. Planell 9 Metal Corrosion ��������������������������������������������������������������������������������������  337 Miroslav Marek 10 Wear����������������������������������������������������������������������������������������������������������  365 Chunming Jin and Wei Wei 11 Inflammation, Carcinogenicity, and Hypersensitivity��������������������������  383 Patrick Doherty 12 Protein Interactions at Material Surfaces ��������������������������������������������  399 Janice L. McKenzie and Thomas J. Webster

v

vi

Contents

13 Biocompatibility Testing��������������������������������������������������������������������������  423 Kirsten Peters, Ronald E. Unger, and C. James Kirkpatrick 14 Biomaterials for Dental Applications ����������������������������������������������������  455 Sarit B. Bhaduri and Prabaha Sikder 15 Ophthalmic Biomaterials������������������������������������������������������������������������  495 Rachel L. Williams and David Wong 16 Hip Prostheses������������������������������������������������������������������������������������������  517 Afsaneh Rabiei 17 Burn Dressing Biomaterials and Tissue Engineering ��������������������������  537 Lauren E. Flynn and Kimberly A. Woodhouse 18 BioMEMS ������������������������������������������������������������������������������������������������  581 Florent Cros 19 Additive Manufacturing and 3D Printing ��������������������������������������������  621 C. K. Chua, K. F. Leong, and J. An 20 Sterility and Infection������������������������������������������������������������������������������  653 Showan N. Nazhat, Anne M. Young, and Jonathan Pratten 21 Manufacturing Issues������������������������������������������������������������������������������  675 David Hill Index������������������������������������������������������������������������������������������������������������������  697

Chapter 1

Metallic Biomaterials Robert M. Pilliar

1.1  Introduction – Why Metals? Metallic biomaterials continue to be used extensively for the fabrication of surgical implants primarily for the same reason that led to their initial selection many decades ago. The high strength and resistance to fracture that this class of material can provide, assuming proper processing, gives reliable long-term implant performance in major load-bearing situations such as those experienced in certain orthopedic and dental implant applications. In addition, the good electrical conductivity of metals makes them a good material for making neuromuscular stimulation devices (e.g. cardiac pacers). These characteristics, coupled with relative ease of fabrication using well-established and widely available techniques (e.g. casting, forging, machining), as well as more recently developed manufacturing methods (i.e. additive manufacturing using selected laser melting or sintering) has promoted and continues to favor metal use in the fields of orthopedics, dentistry, and cardiovascular surgery, in particular. The favorable properties (good fracture resistance, electrical conductivity, formability) are related to the interatomic bonding and atomic arrangements that characterize metals. While the purpose of this chapter is to focus on the important issues pertaining to the processing and performance of metallic biomaterials and to review the metals that are currently used for implant fabrication, a brief review of fundamental issues related to the structure–property relations of metals, in general, follows. Metal processing procedures determine metal microstructures that in turn determine material properties (elastic constants being an exception since these are structure-­insensitive parameters dependent only on interatomic bond type and equilibrium atom packing as noted below) [1, 2]. An understanding of material properties and processes used to achieve these properties during fabrication of metallic R. M. Pilliar (*) University of Toronto, Toronto, ON, Canada e-mail: [email protected] © Springer Nature Switzerland AG 2021 R. Narayan (ed.), Biomedical Materials, https://doi.org/10.1007/978-3-030-49206-9_1

1

2

R. M. Pilliar

components is critical for achieving desired performance of implants. While mechanical failure is unacceptable for most engineered structures, it is particularly so for surgical implants where failure can result in patient pain, the need for complicated and life-threatening revision surgery and, in certain cases, death (e.g. heart valve component fracture).

1.2  Metallic Interatomic Bonding Interatomic bonding in solids occurs by strong primary (ionic, covalent, and/or metallic) and weaker secondary interatomic bonding (van der Waals and hydrogen bonding). Metals are characterized by metallic interatomic bonding with valence shell electrons forming a “cloud” of electrons around individual atoms/ions. This is a consequence of the high coordination number, N, (i.e. number of nearest neighboring atoms) that characterize metals (N = 12 or 8 for many metals). As a result of this close positioning of neighboring atoms and the shared valence electrons, the interatomic bonds are nondirectional and electron movement within metal crystal lattices is easier than in ionic or covalently bonded materials. This fundamental distinguishing characteristic of metals results in the relative ease of plastic deformation (i.e. permanent deformation on loading above a yield stress) as well as the high electrical and thermal conductivities of metals. Most metals used for implant fabrication have either close-packed atomic structures with N = 12 with face-centered cubic (fcc) or hexagonal close-packed (hcp) unit cells, or nearly close-packed structures with N  =  8 forming body-centered cubic (bcc) structures. Less commonly, tetragonal and orthorhombic as well as other unit cells do occur with some metallic biomaterials. The equilibrium distance between atoms defining the unit cells of these crystals and the strength of their interatomic bonding are determined by intrinsic factors such as atom size and valency as well as extrinsic factors (temperature, pressure). In addition to ease of deformation to desired shapes, the ability to deform plastically at high loads results in another very important feature namely the ability of most metals to blunt sharp discontinuities (through plastic deformation) thereby reducing local stress concentrations thereby resulting in relatively high fracture toughness that most metals display. As noted below, these desirable characteristics are dependent on proper selection of processing conditions during material and part preparation.

1.3  Crystal Structures – Atom Packing in Metals The most common metallic biomaterials (i.e. stainless steel, Co-based alloys, and Ti and its alloys) form either face-centered cubic, hexagonal close-packed, or body-­ centered cubic unit cells at body temperature and during different stages of their thermal treatment with ideal crystal lattice structures such as those shown in

1  Metallic Biomaterials

3

Fig. 1.1  Unit cells for face-centered cubic (fcc), hexagonal close-packed (HCP), and body-­ centered cubic (bcc) crystal structures. (Illustration courtesy of Dr Scott Ramsay, University of Toronto)

(Fig. 1.1). Real metal crystals, in contrast to these ideal atomic arrangements, contain lattice defects throughout (vacancies, dislocations, grain boundaries – Fig. 1.2). The presence of these defects (point, line, and planar defects) has a strong effect on mechanical, physical, and chemical properties. Using a simple solid sphere model to represent atom packing, arrangement of spheres in the closest packed arrangement shown in Fig. 1.3. results in either a face-­ centered cubic structure (2-D planar layer stacking sequence as ABCABC…  – Fig.  1.3a) or a hexagonal close-packed structure (ABABAB… stacking sequence – Fig. 1.3b). The selection of the preferred arrangement for a close-packed metal depends on the lowest free energy form under given extrinsic conditions (temperature and pressure). Regions of substitution of one stacking sequence for the other can occur locally and these represent another type of lattice defect (a stacking fault with its borders defined by partial dislocations [3]). While many metals used for implant applications form close-packed structures over a certain temperature range (e.g. Ti and its alloys are hcp below about 900 °C, Co-based alloys form fcc crystalline structures above approximately 850 °C, 316L stainless steel is fcc from its forging temperature ~ 1050  °C down to room temperature), others form less

4

R. M. Pilliar

Fig. 1.2  Crystal structures showing point defects (substitutional or interstitial elements, vacancies), line defects (dislocations), planar defects (grain boundaries, twin boundaries)

closely packed structures (Ti and Ti-based alloys form bcc structures at elevated temperatures). Lowest free energy determines which crystallographic arrangement will exist under given conditions of temperature and pressure. Understanding the nature of the transformations that may occur during metal processing is important for achieving desired properties, but may also result in secondary phases with undesirable properties leading to unacceptable properties. A good understanding of constitutional (equilibrium) phase diagrams is important for the design of processing methods for forming metal implants. It should be appreciated, however, that these often, oversimplified equilibrium phase diagrams (i.e. limited to two- or three-­ element alloys rather than the multielemental compositions of most practical alloys) indicate, even for these simple compositions, equilibrium structures that may not be achieved during processing because of kinetic considerations as discussed below. In view of current growing interest in nanocrystalline metals (crystal/grain size 2000 HV

Zirconia 97% ZrO2, 3%Y2O3 ≥6.08 g/cm3 0.1% 500–1000 MPa 2000 MPa 210 GPa 0.3 11 × 10−6 K−1 2 W/mK 1200 HV

3  Ceramics and Glasses Table 3.3  Relative wear rates of different bearing combinations

127 Combination CoCr/HDPE Metal/metal Al2O3/HDPE Al2O3/Al2O3

Wear rate/annum in microns 20–200