A handbook of lattice spacings and structures of metals and alloys [2]

275 39 457MB

English Pages 1446 [736] Year 1967

Report DMCA / Copyright

DOWNLOAD FILE

Polecaj historie

A handbook of lattice spacings and structures of metals and alloys [2]

Table of contents :
IMG_20200822_0001
IMG_20200822_0002
IMG_20200822_0003
IMG_20200822_0004
IMG_20200822_0005
IMG_20200822_0006
IMG_20200822_0007
IMG_20200822_0008
IMG_20200822_0009
IMG_20200822_0010
IMG_20200822_0011
IMG_20200822_0012
IMG_20200822_0013
IMG_20200822_0014
IMG_20200823_0001
IMG_20200823_0002
IMG_20200823_0003
IMG_20200823_0004
IMG_20200823_0005
IMG_20200823_0006
IMG_20200823_0007
IMG_20200823_0008
IMG_20200823_0009
IMG_20200823_0009bis
IMG_20200823_0010
IMG_20200823_0011
IMG_20200823_0012
IMG_20200823_0013
IMG_20200827_0001
IMG_20200827_0002
IMG_20200827_0003
IMG_20200827_0004
IMG_20200827_0005
IMG_20200828_0001
IMG_20200828_0002
IMG_20200828_0003
IMG_20200828_0004
IMG_20200828_0005
IMG_20200828_0006
IMG_20200828_0007
IMG_20200829_0001
IMG_20200829_0002
IMG_20200829_0003
IMG_20200829_0004
IMG_20200829_0005
IMG_20200829_0006
IMG_20200829_0007
IMG_20200829_0008
IMG_20200829_0009
IMG_20200830_0001
IMG_20200830_0002
IMG_20200830_0003
IMG_20200830_0004
IMG_20200830_0005
IMG_20200830_0006
IMG_20200830_0007
IMG_20200830_0008
IMG_20200830_0009
IMG_20200830_0010
IMG_20200830_0011
IMG_20200830_0012
IMG_20200830_0013
IMG_20200830_0014
IMG_20200830_0015
IMG_20200831_0001
IMG_20200831_0002
IMG_20200831_0003
IMG_20200901_0001
IMG_20200901_0002
IMG_20200901_0003
IMG_20200901_0004
IMG_20200901_0005
IMG_20200901_0006
IMG_20200901_0007
IMG_20200901_0008
IMG_20200901_0009
IMG_20200901_0009bis
IMG_20200901_0010
IMG_20200901_0011
IMG_20200903_0001
IMG_20200903_0002
IMG_20200903_0003
IMG_20200903_0004
IMG_20200903_0005
IMG_20200903_0006
IMG_20200903_0007
IMG_20200904_0001
IMG_20200904_0002
IMG_20200904_0003
IMG_20200904_0004
IMG_20200904_0005
IMG_20200904_0005bis
IMG_20200904_0005bisbis
IMG_20200904_0006
IMG_20200904_0007
IMG_20200904_0008
IMG_20200905_0001
IMG_20200905_0002
IMG_20200905_0003
IMG_20200905_0004
IMG_20200916_0001
IMG_20200917_0001
IMG_20200917_0002
IMG_20200917_0003
IMG_20200917_0004
IMG_20200917_0005
IMG_20200917_0006
IMG_20200918_0001
IMG_20200918_0002
IMG_20200918_0003
IMG_20200918_0004
IMG_20200918_0005
IMG_20200922_0001
IMG_20200923_0001
IMG_20200923_0002
IMG_20200923_0003
IMG_20200923_0004
IMG_20200926_0001
IMG_20200926_0002
IMG_20200926_0003
IMG_20200926_0004
IMG_20200926_0005
IMG_20200926_0006
IMG_20200926_0007
IMG_20200926_0008
IMG_20200927_0001
IMG_20200927_0002
IMG_20200927_0003
IMG_20200930_0001
IMG_20200930_0002
IMG_20200930_0003
IMG_20200930_0004
IMG_20200930_0005
IMG_20200930_0006
IMG_20200930_0007
IMG_20200930_0008
IMG_20200930_0009
IMG_20200930_0010
IMG_20200930_0011
IMG_20200930_0012
IMG_20200930_0013
IMG_20200930_0014
IMG_20201001_0001
IMG_20201001_0002
IMG_20201001_0003
IMG_20201001_0004
IMG_20201001_0005
IMG_20201001_0006
IMG_20201001_0007
IMG_20201001_0008
IMG_20201001_0009
IMG_20201001_0010
IMG_20201001_0011
IMG_20201001_0012
IMG_20201001_0013
IMG_20201001_0014
IMG_20201001_0015
IMG_20201001_0016
IMG_20210418_0001
IMG_20210418_0002
IMG_20210419_0001
IMG_20210419_0002
IMG_20210419_0003
IMG_20210419_0004
IMG_20210419_0005
IMG_20210419_0006
IMG_20210419_0007
IMG_20211006_0001
IMG_20211006_0002
IMG_20211006_0003
IMG_20211006_0004
IMG_20211006_0005
IMG_20211006_0006
IMG_20211006_0007
IMG_20211006_0008
IMG_20211006_0009
IMG_20211006_0010
IMG_20211006_0011
IMG_20211006_0012
IMG_20211007_0001
IMG_20211007_0002
IMG_20211007_0003
IMG_20211007_0004
IMG_20211007_0005
IMG_20211007_0006
IMG_20211007_0007
IMG_20211007_0008
IMG_20211007_0009
IMG_20211008_0001
IMG_20211008_0002
IMG_20211008_0003
IMG_20211008_0004
IMG_20211008_0005
IMG_20211008_0006
IMG_20211008_0007
IMG_20211008_0008
IMG_20211011_0001
IMG_20211012_0001
IMG_20211012_0002
IMG_20211012_0003
IMG_20211012_0004
IMG_20211012_0005
IMG_20211012_0006
IMG_20211012_0007
IMG_20211012_0008
IMG_20211012_0009
IMG_20211012_0010
IMG_20211013_0001
IMG_20211013_0002
IMG_20211013_0003
IMG_20211013_0004
IMG_20211013_0005
IMG_20211013_0006
IMG_20211013_0006bis
IMG_20211013_0007
IMG_20211013_0008
IMG_20211013_0009
IMG_20211013_0010
IMG_20211014_0001
IMG_20211014_0002
IMG_20211014_0003
IMG_20211014_0004
IMG_20211014_0005
IMG_20211014_0006
IMG_20211015_0001
IMG_20211015_0002
IMG_20211015_0003
IMG_20211015_0004
IMG_20211015_0005
IMG_20211015_0006
IMG_20211015_0007
IMG_20211015_0008
IMG_20211015_0009
IMG_20211015_0010
IMG_20211020_0001
IMG_20211020_0002
IMG_20211020_0003
IMG_20211020_0004
IMG_20211021_0001
IMG_20211021_0002
IMG_20211021_0003
IMG_20211021_0004
IMG_20211021_0005
IMG_20211021_0006
IMG_20211021_0007
IMG_20211021_0008
IMG_20211022_0001
IMG_20211022_0002
IMG_20211022_0003
IMG_20211023_0001
IMG_20211023_0002
IMG_20211023_0003
IMG_20211023_0004
IMG_20211023_0005
IMG_20211023_0006
IMG_20211023_0007
IMG_20211128_0001
IMG_20211128_0002
IMG_20211128_0003
IMG_20211129_0001
IMG_20211129_0002
IMG_20211129_0003
IMG_20211129_0004
IMG_20211130_0001
IMG_20211130_0002
IMG_20211130_0003
IMG_20220104_0001
IMG_20220104_0002
IMG_20220104_0003
IMG_20220104_0004
IMG_20220105_0001
IMG_20220105_0002
IMG_20220105_0003
IMG_20220105_0004
IMG_20220105_0005
IMG_20220105_0006
IMG_20220105_0007
IMG_20220105_0008
IMG_20220105_0009
IMG_20220105_0010
IMG_20220106_0001
IMG_20220106_0002
IMG_20220106_0003
IMG_20220106_0004
IMG_20220106_0005
IMG_20220107_0001
IMG_20220107_0002
IMG_20220107_0003
IMG_20220107_0004
IMG_20220107_0005
IMG_20220107_0006
IMG_20220107_0007
IMG_20220107_0008
IMG_20220107_0009
IMG_20220107_0010
IMG_20220110_0001
IMG_20220110_0002
IMG_20220110_0003
IMG_20220110_0004
IMG_20220110_0005
IMG_20220110_0006
IMG_20220110_0007
IMG_20220110_0008
IMG_20220110_0009
IMG_20220110_0010
IMG_20220111_0001
IMG_20220111_0002
IMG_20220111_0003
IMG_20220111_0004
IMG_20220111_0005
IMG_20220111_0006
IMG_20220111_0007
IMG_20220111_0008
IMG_20220111_0009
IMG_20220111_0010
IMG_20220112_0001
IMG_20220112_0002
IMG_20220112_0003
IMG_20220112_0004
IMG_20220112_0005
IMG_20220113_0001
IMG_20220113_0002
IMG_20220113_0003
IMG_20220113_0004
IMG_20220113_0005
IMG_20220113_0006
IMG_20220113_0007
IMG_20220113_0008
IMG_20220113_0009
IMG_20220113_0010
IMG_20220113_0011
IMG_20220113_0012
IMG_20220113_0013
IMG_20220113_0014
IMG_20220113_0015
IMG_20220118_0001
IMG_20220118_0002
IMG_20220118_0003
IMG_20220118_0004
IMG_20220118_0005
IMG_20220118_0006
IMG_20220118_0007
IMG_20220118_0008
IMG_20220118_0009
IMG_20220118_0010
IMG_20220119_0001
IMG_20220119_0002
IMG_20220119_0003
IMG_20220120_0001
IMG_20220120_0002
IMG_20220120_0003
IMG_20220120_0004
IMG_20220120_0005
IMG_20220120_0006
IMG_20220120_0007
IMG_20220120_0008
IMG_20220120_0009
IMG_20220120_0010
IMG_20220328_0001
IMG_20220328_0002
IMG_20220328_0003
IMG_20220328_0004
IMG_20220328_0005
IMG_20220328_0006
IMG_20220328_0007
IMG_20220328_0008
IMG_20220328_0009
IMG_20220328_0010
IMG_20220329_0001
IMG_20220329_0002
IMG_20220329_0003
IMG_20220329_0004
IMG_20220329_0005
IMG_20220329_0006
IMG_20220329_0007
IMG_20220330_0001
IMG_20220330_0002
IMG_20220330_0003
IMG_20220330_0004
IMG_20220330_0005
IMG_20220330_0006
IMG_20220330_0007
IMG_20220330_0008
IMG_20220331_0001
IMG_20220331_0002
IMG_20220331_0003
IMG_20220331_0004
IMG_20220331_0005
IMG_20220331_0006
IMG_20220331_0007
IMG_20220401_0001
IMG_20220401_0002
IMG_20220401_0003
IMG_20220401_0004
IMG_20220401_0005
IMG_20220401_0006
IMG_20220401_0007
IMG_20220402_0001
IMG_20220402_0002
IMG_20220402_0003
IMG_20220402_0004
IMG_20220404_0001
IMG_20220404_0002
IMG_20220404_0003
IMG_20220404_0004
IMG_20220404_0005
IMG_20220404_0006
IMG_20220404_0007
IMG_20220406_0001
IMG_20220406_0002
IMG_20220406_0003
IMG_20220406_0004
IMG_20220406_0005
IMG_20220406_0006
IMG_20220406_0007
IMG_20220406_0008
IMG_20220406_0009
IMG_20220406_0010
IMG_20220406_0011
IMG_20220406_0012
IMG_20220406_0013
IMG_20220407_0001
IMG_20220407_0002
IMG_20220407_0003
IMG_20220407_0004
IMG_20220407_0005
IMG_20220407_0006
IMG_20220407_0007
IMG_20220407_0008
IMG_20220407_0009
IMG_20220408_0001
IMG_20220408_0002
IMG_20220408_0003
IMG_20220408_0004
IMG_20220408_0005
IMG_20220408_0006
IMG_20220408_0007
IMG_20220408_0008
IMG_20220412_0001
IMG_20220412_0002
IMG_20220412_0003
IMG_20220412_0004
IMG_20220412_0005
IMG_20220412_0006
IMG_20220504_0001
IMG_20220504_0002
IMG_20220504_0003
IMG_20220504_0004
IMG_20220504_0005
IMG_20220504_0006
IMG_20220504_0007
IMG_20220505_0001
IMG_20220505_0002
IMG_20220505_0003
IMG_20220505_0004
IMG_20220506_0001
IMG_20220506_0002
IMG_20220506_0003
IMG_20220506_0004
IMG_20220506_0005
IMG_20220506_0006
IMG_20220506_0007
IMG_20220506_0008
IMG_20220506_0009
IMG_20220518_0001
IMG_20220518_0002
IMG_20220518_0003
IMG_20220518_0004
IMG_20220518_0005
IMG_20220520_0001
IMG_20220520_0002
IMG_20220520_0003
IMG_20220520_0004
IMG_20220521_0001
IMG_20220521_0002
IMG_20230102_0001
IMG_20230102_0002
IMG_20230102_0003
IMG_20230102_0004
IMG_20230102_0005
IMG_20230102_0006
IMG_20230102_0007
IMG_20230102_0008
IMG_20230102_0009
IMG_20230102_0010
IMG_20230102_0011
IMG_20230103_0001
IMG_20230103_0002
IMG_20230103_0003
IMG_20230103_0004
IMG_20230103_0005
IMG_20230103_0006
IMG_20230103_0007
IMG_20230103_0008
IMG_20230103_0009
IMG_20230103_0010
IMG_20230104_0001
IMG_20230104_0002
IMG_20230104_0003
IMG_20230104_0004
IMG_20230104_0005
IMG_20230104_0006
IMG_20230104_0007
IMG_20230104_0008
IMG_20230104_0009
IMG_20230104_0010
IMG_20230104_0011
IMG_20230105_0001
IMG_20230105_0002
IMG_20230105_0003
IMG_20230105_0004
IMG_20230105_0005
IMG_20230105_0006
IMG_20230105_0007
IMG_20230105_0008
IMG_20230105_0009
IMG_20230105_0010
IMG_20230106_0001
IMG_20230106_0002
IMG_20230106_0003
IMG_20230106_0004
IMG_20230106_0005
IMG_20230106_0006
IMG_20230106_0007
IMG_20230106_0008
IMG_20230106_0009
IMG_20230106_0010
IMG_20230110_0001
IMG_20230110_0002
IMG_20230110_0003
IMG_20230110_0004
IMG_20230110_0005
IMG_20230110_0006
IMG_20230110_0007
IMG_20230110_0008
IMG_20230110_0009
IMG_20230110_0010
IMG_20230110_0011
IMG_20230110_0012
IMG_20230110_0013
IMG_20230110_0014
IMG_20230110_0015
IMG_20230110_0016
IMG_20230110_0017
IMG_20230110_0018
IMG_20230110_0019
IMG_20230110_0020
IMG_20230111_0001
IMG_20230111_0002
IMG_20230111_0003
IMG_20230111_0004
IMG_20230111_0005
IMG_20230111_0006
IMG_20230111_0007
IMG_20230111_0008
IMG_20230111_0009
IMG_20230111_0010
IMG_20230112_0001
IMG_20230112_0002
IMG_20230116_0001
IMG_20230116_0002
IMG_20230117_0001
IMG_20230117_0002
IMG_20230117_0003
IMG_20230117_0004
IMG_20230117_0005
IMG_20230117_0006
IMG_20230117_0007
IMG_20230117_0008
IMG_20230117_0009
IMG_20230117_0010
IMG_20230118_0001
IMG_20230118_0002
IMG_20230118_0003
IMG_20230118_0004
IMG_20230118_0005
IMG_20230118_0006
IMG_20230118_0007
IMG_20230118_0008
IMG_20230118_0009
IMG_20230118_0010
IMG_20230119_0001
IMG_20230119_0002
IMG_20230119_0003
IMG_20230119_0004
IMG_20230119_0005
IMG_20230119_0006
IMG_20230119_0007
IMG_20230119_0008
IMG_20230119_0009
IMG_20230119_0010
IMG_20230121_0001
IMG_20230121_0002
IMG_20230121_0003
IMG_20230121_0004
IMG_20230121_0005
IMG_20230121_0006
IMG_20230121_0007
IMG_20230121_0008
IMG_20230121_0009
IMG_20230121_0010
IMG_20230123_0001
IMG_20230123_0002
IMG_20230123_0003
IMG_20230123_0004
IMG_20230123_0005
IMG_20230123_0006
IMG_20230123_0007
IMG_20230123_0008
IMG_20230123_0009
IMG_20230123_0010
IMG_20230124_0001
IMG_20230124_0002
IMG_20230124_0003
IMG_20230124_0004
IMG_20230124_0005
IMG_20230124_0006
IMG_20230124_0007
IMG_20230124_0008
IMG_20230124_0009
IMG_20230124_0010
IMG_20230125_0001
IMG_20230125_0002
IMG_20230125_0003
IMG_20230125_0004
IMG_20230125_0005
IMG_20230125_0006
IMG_20230125_0007
IMG_20230125_0008
IMG_20230125_0009
IMG_20230125_0010
IMG_20230126_0001
IMG_20230126_0002
IMG_20230126_0003
IMG_20230126_0004
IMG_20230126_0005
IMG_20230126_0006
IMG_20230126_0007
IMG_20230126_0008
IMG_20230126_0009
IMG_20230126_0010
IMG_20230127_0001
IMG_20230127_0002
IMG_20230127_0003
IMG_20230127_0004
IMG_20230127_0005
IMG_20230127_0006
IMG_20230127_0007
IMG_20230127_0008
IMG_20230127_0009
IMG_20230127_0010
IMG_20230130_0001
IMG_20230130_0002
IMG_20230130_0003
IMG_20230130_0004
IMG_20230130_0005
IMG_20230130_0006
IMG_20230130_0007
IMG_20230130_0008
IMG_20230130_0009
IMG_20230130_0010
IMG_20230131_0001
IMG_20230131_0002
IMG_20230131_0003
IMG_20230131_0004
IMG_20230131_0005
IMG_20230131_0006
IMG_20230131_0007
IMG_20230131_0008
IMG_20230131_0009
IMG_20230131_0010
IMG_20230201_0001
IMG_20230201_0002
IMG_20230202_0001
IMG_20230202_0002
IMG_20230202_0003
IMG_20230202_0004
IMG_20230202_0005
IMG_20230202_0006
IMG_20230202_0007
IMG_20230202_0008
IMG_20230202_0009
IMG_20230202_0010
IMG_20230202_0011
IMG_20230202_0012
IMG_20230202_0013
IMG_20230202_0014
IMG_20230202_0015
IMG_20230202_0016
IMG_20230202_0017
IMG_20230202_0018
IMG_20230202_0019
IMG_20230202_0020
IMG_20230203_0001
IMG_20230203_0002
IMG_20230203_0003
IMG_20230203_0004
IMG_20230203_0005
IMG_20230203_0006
IMG_20230203_0007
IMG_20230203_0008
IMG_20230203_0009
IMG_20230203_0010
IMG_20230207_0001
IMG_20230207_0002
IMG_20230207_0003
IMG_20230207_0004
IMG_20230207_0005
IMG_20230207_0006
IMG_20230207_0007
IMG_20230207_0008
IMG_20230207_0009
IMG_20230207_0010
IMG_20230207_0011
IMG_20230207_0012
IMG_20230207_0013
IMG_20230207_0014
IMG_20230207_0015
IMG_20230207_0016
IMG_20230207_0017
IMG_20230207_0018
IMG_20230207_0019
IMG_20230207_0020
IMG_20230207_0021
IMG_20230207_0022
IMG_20230207_0023
IMG_20230207_0024
IMG_20230207_0025
IMG_20230207_0026
IMG_20230207_0027
IMG_20230207_0028
IMG_20230207_0029
IMG_20230207_0030
IMG_20230207_0031
IMG_20230207_0032
IMG_20230207_0033

Citation preview

C1_ LLl;o /~

A

z_

/-f

f/

--

INTERNATIONAL SERIES OF MONOGRAPHS IN

METAL PHYSICS AND PHYSICAL METALLURGY E DITOR:

G.

v.

RAYNOR

VOLUMES

A HANDBOOK OF LATTICE SPACINGS AND STRUCTURES OF METALS AND ALLOYS - 2 /

Other titles in the series in Metal Physics and Physical Metallurgy

Vol. 1. Metallurgical Thermochemistry by 0. Kubaschewski and E . LI. Evans

Vol. 2. The Theory of Cohesion by M. A. Jawson

Vol. 3. Thermochemical Data of Alloys by 0. Kubaschewski and J. A. Catterall

., ( Vol. 4. A Handbook of Lattice Spacings and )( Structures of Metals and Alloys by W. B. Pearson

Vol. 5. Physical Metallurgy of Magnesium and its Alloys ' by G. V. Raynor

Vol. 6. Solid State Physics for Metallurgists by R. J. Weiss

Vol. 7. The Theory of Transformations in M etals and Alloys by J . W. Christian

LPERf OJ A Handbook of LATTICE SPACINGS AND STRUCTURES OF METALS AND ALLOYS - .i VOLUME 12

B III W. B. PEAR

f) :-~ ' .,. _. ' '" " I' )N O v,.J;..',l..:J.''JT]i,T'ION ~

.- - - - - - _ J

D.F.C., M.A. , o:>.i.PPh htl. i

Issued as N.R.C. No. 8752

PERGAMON PRESS OXFORD • LONDON · EDINBURGH · N EW YORK • TORONTO• SYDNEY · PARIS· BRAUNSCHWEIG

Perga mon Press Ltd. , Headington Hill Hall, Oxford 4 & 5 Fitzroy Square, London W.l

CONTENTS

Pergamon Press (Scotland) Ltd., 2 & 3 Teviot Place, Edinburgh 1 Pe rgamon Press Inc., 44- 01 21st Street, Long Island City, New York 11101

Preface

Pergamon of Canada, Ltd., 6 Adelaide Street East, Toronto, Ontario Pergamon Press (Aust.) Pty. Ltd., 20-22 Margaret Street, Sydney, N.S.W.

Chapter

Pergamon Press S.A.R.L., 24 rue des Ecoles, Paris Se Vieweg & Sohn GmbH, Burgplatz 1, Braunschweig

Copyright © 1967 Pergamon Press Ltd.

First edit}on 1967

Library of Congress Catalog Card No. 57-14965

C

vi

I Classification of the structures of metals and alloys 1 II Tabulated lattice parameters and data on elemental metals and metalloids . . . . . . . . . . . . . . . . . . . . . . 79 III Tabulated lattice parameters and data of intermediate phases in alloy systems . . . . . . . . . . . . . . . . . . . . . . 93 IV Tabulated lattice parameters and data of borides, carbides, hydrides, nitrides and binary oxides . . . . . . . . . . . . 403 V An alphabetical index of work on metals and alloys . . . . . 495 VI An alphabetical index of work on borides, carbides, hydrides and nitrides . . . . . . . . . . . . . , . . . . . . . . . 1290

PREFACE

PREFACE THIS second volume of Lattice Spacings and Structures of Metals and Alloys follows very much the same pattern as the first volume and the objectives remain the same. Thus we present in a single volume, much more briefly than the various volumes of Structure Reports, an up-to-date summary of knowledge on the structures of metals and alloys. Yet the condensation of information has not been carried beyond the limits where variations of lattice parameters and structure with composition, temperature and pressure can be presented insofar as the data have been determined experimentally. In addition, brief preparative details and notes on the method of X-ray examination accompany descriptions of X-ray data on alloy phases. Since the first edition was published, a second edition of Hansen's Der Aufbau der Zweistofflegierungen* has appeared and a further addendum is now in press, so that it is no longer considered necessary to include brief statements concerning phase equilibria in the various alloy systems. This, like the first volume, is not a historical catalogue of structural work on metals; it seeks only to present the best data having regard for X-ray methods, alloy purity and exact knowledge of composition. Thus many papers which have been read are not reported here because better data are available elsewhere. Sometimes data are neglected, because better results are already recorded in Volume 1, but we have sought to make Volume 2 relatively complete in itself, so that data published in the interval from 1955 to 1965 may be included although they are no more precise than those given in Volume 1. When there are data on an alloy system from the work of several authors who are in agreement, we generally record data from two sources to indicate that the structural determinations and parameters have been confirmed. On some occasions, however, we include lattice parameters from numerous sources with the intention of indicating, through the extent of the divergence of the various results, a range of composition for the homogeneous phase. When the results of several authors on the structure of a phase have an equally high standard, the choice of including or omitting a description of some of their work is rather arbitrary, and authors may well wond er why their work is omitted when the work of others is included in the report. Nevertheless, I trust that I may not be criticized (as with Volume 1) for omitting mention of work which was only published after the manuscript went to press! In reviewing the writings of many authors in a few thousand papers it seems proba ble that I may occasionally have ascribed to them statements which they did not make. If this is the case, I trust they will accept my humble apology. Every effort has been made to eliminate errors in the transcription of data, and most of the typed manuscript has been checked against the original publications. The present volume should cover the literature up to the end of 1963 fairly completely, and include also most of the work published in 1964; some easily accessible data for 1965 have also been included in the manuscript, which was completed in June of that year. With the exception of compounds of B, C, H, N and 0, the arra ngement of data throughout the volume is alphabetical by chemical symbols of the component atoms, according to accepted methods. Thus Mn-Ni precedes MnNi-Ti an d Be2V appears as "Be2V", not "VBe2 ". When a solid solution range is ind icated as in (Al, SihNi3 and the second (or third) element in parenthesis cannot be indexed in order, it is ignored. Thus (Al, SihNi3 would follow AlNd and precede A 11 Np. In Chapters IV and VI, borides, carbides, hydrides, nitrides and oxide r grouped together severally and are indexed with the symbol for the nonmetallic I ment occurring last in the formula; thus we have Ni 6 Si 2 B rather than BNi 0 Si2 . * !Jo
12 (?)

AsCoS (?) As 1.1FeSo.g As 1.1FeS 0. 9 AsOsS AsOsSe AsOsTe AsRhSb AsRuS AsRuSe AsR uTe

.

P21/c P21 /c P21/c P21 /c OsPS OsPSe OsSbS PRuS PRuSe RuSbS RuSbSe RuSbTe

AM, 46 , 1448

6

7nP12

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

P21/c

CoSb2

K, 6,872

mP48

Origin at 1. Equivalent Positions Co: 4 e 1 ±(x,y,z; x,½ +Y,½-z). Sb(l): 4 e 1 Sb(2): 4 e 1 As 2Co As2Ir AslrSb AsRh a-Bi 2 Rh (L.T.)

V0 2

C0Sb 2 IrP2 IrSb 2 P 2 Rh RhSb 2

P21fc

s ACS, 10,623

Origin at I. Equivalent Positions V: 4 e 1 ±(x,y,z; .x,} + Y,½-z). 0(1): 4 e 1 0(2): 4 e 1

mP56

Ag 3S 3Sb

mP~78

Li 2 C 2

mC6

AuTe 2

mC8 :mCl2

MoO 2 O 2Re O2TC

o.v

O 2W

mP16

P21 or Plifm Plifm P21/c

Se 3Ta a-Pu AsLi

Origin at 1. Equivalent Positions As(l): 4 e 1 ±(x,y,z; x,½+Y,½-z). As(2): 4 e 1 Li(l): 4 e 1 Li(2): 4 e 1

mP18

(

Pc or P2/c P2/m

Pt 5Se 4 a 5 Nb-Rh

mP20

AC, 12, 36

mC14

AsLi KSb NaSb

P2i/c

As2S3

As 2Se 3

mP22

Pt 6Si 5 Al 9Co 2

:mP24

AgAsPbS 3 AgPbS 3 Sb As 2Zn

1nP24

P 2Zn (black)

P21/m P21fc P21/a P21/a P21/c P2ifc

mP32

AsS AsS 2TI GeNa {3-Se a-Se

P21 /c P21/a P21fc P2ifa P2i/c

/3-NbPt 3 Origin at 1. Equivalent Positions 2 e m 12 Nb: 12 Pt(l): 2 e m 24 Pt(2): 4 f 1 fi-NbPt 3 Pt 3Ta

1nCl6

'l'I"&

19

P21/m ±(x,¼,z).

± (x,y ,z; x,t - y,z).

P21fa P21/c P2/m, etc. C34

C2/m

C2/c CrS C2 As 2Nb Origin on 2. Equivalent Positions (0,0,0; ½,½,0) + As(l): 4 C x,y,z; .x,y,z. As(2): 4 C Nb: 4 C As 2 Mo As 2 Nb As 2Ta [Ge2 Os] ? NbSb 2 Sb 2Ta C2/m a-Bi 2Pd (L.T.) C2/c P 2Pd AsPPd (?) NiP2 P 2Pd C2/c C2Th C2 Au 5Mn 2 C2/m Cr 3S 4 Origin at centre (2/m). • Equivalent Positions (0,0,0; },½,0) + Cr(l): 2 ·a 2/m 0,0,0. m ±(x,0,z). Cr(2): 4 m S(l): 4 m S(2): 4 Cr2Se4 V C0Cr 2Se 4 Cr3Te 4 Cr 2FeSe4 (?) Fe 3 Se 4 Cr2 MnSe4 Ni 3 Se 4 Cr2 NiS 4 Se,Ti3 Cr 2 NiSe4 (?) Se4 V3 Cr 3 S4 Te4Ti 3 ( ?) Cr 3 Se4 Cr2Se 4Ti d-Ni 3Sn 4

C2/m

CoGe Pt 3 Si (L.T.) FeKS 2

C2/m C2/m C2/c C2/m

B1-:lGlr (H.T. ?)

AC, 17, 615

AC, 18,320

AC, 16, 1253

AC, 10,620

7

8 mC20 mC22 niC24

Cc C2/m C2/m . C2/m C2/m

a-Ga 2 S 3 As 2Te 3 AlsMo 3 LisPb 3 AsGe

GaTe

AsPd 5

C2/m, etc. C2/m

S7Y5 CdS 7 Y 4 CrS 7 Y 4 Dy 4 MnS 7 Dy5S1 Er 4 FeS 7 Er 4 MnS 7 Er 5 S 7 FeHo 4 S 7 FeS 7Tm 4 FeS 7Y 4 mC26

CLASSIFICATION OF THE STRUCTURES OF METALS AN D ALLOYS

CLASSIFI€ATION OF THE STRUCTURES OF META LS AND ALLOYS

niC34

,6-Pu

C2/m

niC36

,6-Te 4V 5

Cc or C2/c

mC38

Fe17Th 2

niC40

CRASP, 258, 4773

FeS 7Yb 4 Ho 4 MnS 7 Ho 5 S 7 MgS 7 Y 4 MnS 7 Tm 4 MnS 7 Y 4 MnS 7Yb 4 S 7 Tm 5 S1Ys

t

Cd 4 GeSe 5

S 4V

niC48 niC60 mC93

Fe7Ss AI 1 3 Co 4

niC96

AgAsS 2

Cc or C2/c C2/m, etc. C2/c Cm C2/c

niClOl

0-AI;3Fe

C2/m

niC104

a'-Al 45V 7

,6-Bi 2Rh (H.T.)

AC, 15,608

8 f 8 f

I I

±(x,y,z; x,y,½ -z).

4

2

± (0,y,¼).

C:

8 f

e

Cm

C2/m _Cr 7Te 8

n-1.C32

~~~ Pc Bl 9

mmn Pmma

S, II, 11

ACS, 15,861

MoPt (H.T.) NbPt NbRh PbTi PtTi PtV (L.T.)

Pnnm

Chem. & Ind., 46, 1004

Origin at centre (2/m) Equivalent Positions Co: 4 g m ±(x,y,0; J+x,½-y,½). C: 2 a 2/m 0,0,0; ½,½,½CC02 Co 2 N

FeS 2 Cl 8 Pnnm S, I, 495 Origin at cent1:e (2/m). Equivalent Positions Fe: 2 a 2/m 0,0,0; -L½,1-. . S: 4 g m x,y,0; x,y,0; ½+x,½-y,½; ½-x,½+Y,½-

Al 4 Mo (H.T.) Al 4 W

Cr 7Se8

CuTe Au Cd

oP6

I

Al 4 W

oP4

/3"-AgCd (disordered) /3'-AuCd AuTi (H.T.) CdMg IrMo IrW

B 2Pd 5 C 2 Fe 5 C 2 Mn 5

niC30

AC, 12,995

Origin at centre (2/m) Equivalent Positions Au: 2 f mm ¼,t,z; ¾,½,z. Cd: 2 e mm ¾,O,z; ¾,O,z.

Origin at I on glide plane c Equivalent Positions (0,0,0; ½,½,O) + Mn(!): Mn(2): Mn(3):

C2/m 0-Al 7Cr °''-Al4sY1

Se8Ti 5 (L.T.) CoZn13 C2/m Origin at centre (2/m) Equivalent Positions (0,0,0; ½,½,o)+ Co or Zn(l) : 2 a 2/m 0,0,0. Co or Zn(2): 2 c 2/m 0,0,½. Zn(!): 4 m ± x,0,z. Zn(2): 4 i m ± x,0,z. Zn(3): 8 j I ±(x,y,z;x,_y,z). Zn(4): 8 j l CoZn 13 CrZn 13 FeZn 13 MnZn 13 C2/c C2/c

Cc

Cd 4 GeS 5

SsVs

niC28

AC, 9,367

Co 11Th2 Fe 17Th 2

C2/m

SesVs

C2 /m

Ni4PU

C2/m

AgS 2 Sb (SeN)x Na i

Cc Cc or C2/c C2/c

9

AC, 11,231

As4 CrFe As 2 Fe As 2 Ni As 2 Os AsOsP AsPRu As 2 Ru AsRuSb C0Sb~ 1- ss oTe 2 (L.T.) r 2

FeP2 FeS 2 FeSb 2 FeSe 2 FeTe 2 NiSb 2 OsP 2 OsSb 2 T-OsSbo-1Te1·0 P~Ru Ru, b2

CLASSIFICATION OF THE STRUCTURES OF METALS AND A LLOYS

Pmmn

oP6

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

o P8

B,Os oP8

Pmm2 Pmna Pbam Pnnm Pmmn

SiTi Sb 2Se 4Tl 2 T-Au 2 CuZn InS ,8-Cu 3Ti

B31 MnP Origin at 1. Equivalent Positions Mn:

P:

AsCo (L.T.) AsCr AsFe AsMn (40 -

JIM, 79, 391

S, III, 12 Pnma B27 BFe Origin at l . Equivalent Positions Fe: 4 c m x,¼,z ; .i,¾,i; ½-x,¾,½, + z; ¼+ x,¼,½ -z, B: 4 c m as above. BCo BFe BMn B1.1Ti CeCu DyNi DyPt ErNi (?) ErPt GdNi GdPt GeHf HfSi (?) HoNi HoPt LuNi

GeS

B16

LuPt NdPt NiTm NiY PdTh PrPt PtSm PtTb PtTm PtY PuSi SiTh SiTi SiU SiZr

Pnma

oP12

S,IIl,17

GePd GePt GeRh IrSi MnP NiSi PRu PW PdSi PdSn PtSi RhSb RhSi (H.T.)

Pnma Pnma

a-Np So,ssV (sub cell) Se0 :95Ti

Pnma

Pmma Origin at centre (2/m). Equivalent Positions Rh(l) : 2 / mm ±(¼,½,z). Rh(2): 4 j m ±(x,½,z; ½+x,½,i). Ta(l): 2 e mm ± (¼,0,z). Ta(2): 4 i m ±(x,0,z; t + x,0,i).

a:1 -RhTa

Ir-Nb Ir-Ta

AC, 17, 615

Nb-Rh Tao, 79 Pmmn (?)

Rh1 •21

Pbcn Pbca

AC, 10,329

Origin at f. Equivalent Positions Pd: 4 a I 0,0,0; t ,½,00. Se : 8 c 1 ±(x,y,z; ½+ x,1"- y,i; .i,½+Y,½ - z; ½-x,y,½+ z). S, II, 8

Origin at 1. Equivalent Positions Ge: 4 c m x,¼,z; .i,¾,z; ½-x,¾,½+z; ½+x,¼,t-z. S: 4 c m x,¼,z ; .i,¾,i; ½-x,¾,½+z; ½+x,¼,½-z. GeS GeSe PbS II (H.P.) PbS 2Sn (?) PbSe II (H.P.) PbTe II (H.P.) SSn SeSn SnTe II (H.P.)

1250C)

AsRh AsRu AsV AuGa CoP CrP FeP Gelr GeNi

17-Cu 3Sb (H.T.) ,8-Cu3Ti (L.T.) MoNi 3 NbNi 3 Ni 3 Sb (L.T.) Ni 3Ta (L.T.) Pt 3Ta

11

4 c m x,¼,z; .i,¾,i; ½- x,U+ z; ½+ x,¼,½- z. 4 c m as above.

Origin at mmn, at ¼,¼,0, from 1. Equivalent Positions Cu(l): 2 b mm 0,½,z; ½,0,.z. x,0,z; x,0,z; ½- x,½,i; ½+ x,½,z. Cu(2): 4 f m Ti: 2 a mm 0,0,z; ½,½,i. Ag15AU2Sb3 Ag 14AuSn 5 Ag3Sb (?) Au 3 Hf Au3ln Au 74 •5 ln 25P to, 5 ('/ ) Au 3Zr Cu 3Ge (L.T.) (?)

Pnma

/

PdS 2 PdSSe PdSe 2

C23

Pnma Pnma

S, II, 16 AC, 8, 83

Origin at 1. Equivalent Positions Pb: 4 c m x,¼,z; x,¾,z; ½-x,¾,½+z; ½+ x,¼,½-z. Cl(l): 4 c m as above. Cl(2): 4 c m as above. AIPd 2 Ca2 Ge As 2 Hf CaH! AsRh 2 (H.T.) As 2 Zr BaH2 (H.T.)

Ca 2P b Ca 2Si £-CoM oSi

12

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

Ca 2Sn Co 2 P Co 2 Si

oP12

EuD 2

GaPd 2 GdSe 2 GeRh 2 H 2 Sr H 2Yb InPd 2 (L.T.) Ir 2Si Mg 2 Pb (H.T.) (?) Ni 2 Si (L.T.)

oP16

E-NiSiTi PRe. PRu: Pd 2S"iJ Pd.Zn Rh-2 Si R h 2Sn Rh 2Ta Ru 2 Si S 2Th /3-S 2 U Se 2Th /3-Se 2 U

oP16

BaS 3 AsCu 3 S 4 BeN 2 Si AIEr

H2 5

Sb:

r

as above.

c

Al 3Ni BiCuS 2 Bi 3Ni

D020

Pnma Pnma Pnma

S, V, 8

Pnma

MC, 89,692

Bi 3Rh

C2 CrU

Origin at 1. Equivalent Positions Cr: 4 c m ±(x,¼,z; ½- x,¾,½+ z).

U:

4

C(l): C(2):

4 4

c c

m m m

C

C 2 CrU C 2 MoU C 2 UW

D011

Pnma

AC, 17, 1331

Origin at I. Equivalent Positions Fe(l): 4 c m x,¼,z; x,¾,i; ½- x,¾,½ + z; ½+ x,¼,½ - z. Fe(2): 8 d l x,y,z; ½+ x,t - y,t-z; .x,½+y,z; t - x,Ji,½+z;

C:

AC, 8, 15

4

C

m

x,ji,i; ½- x,½ + Y,½ + z; x,½-y,z; ½+x,y,½-z. as above.

BCo 3 BNi 3 BPd 3 CCo 3 CFe 3

JLCM, 8,209

C 2MoU CuS 2 Sb

Origin at centre (3/m). Equivalent Positions o,o,o; ½,;.,o. Ge(l): 2 a 2/m Ge(2) : 4 h m ± (x,y ,½; •} +x,½-y,½)Rh(l): 2 c 2/m 0,½,0; ½,0,0. Rh(2): 4 g m ±(x,y,0; ½+ x,½-y,0). Rh(3): 4 h m Al 3 Pd 5 Al 3 Pt 5 Ga 3 Pd 5 Ge 3 Rh5 ln 3 Pd 6 R.h~ i,1

8

CdSb SbZn

AlDy AlEr AlGd AlHo A!Nd A!Pr AJSm AJTb

Pbam

ACS, 2,400

½+x,½ - y,i; x,½+Y,½ - z; ½-x,y,½+ z. x,ji,i; ½-x,½+y,z; x,-!--Y,½ + z; ½+ x,y,½- z.

FeSiTa FeSiZr GeNbNi GeN iTi . GeNiV GeNiZr NbNiSi NiSiTa NiSiV NiSiZr

P21 21 2 Pmn21 Pna21 Pmma

Pmmn Pbca

Origin at 1. Equivalent Positions Cd: 8 c 1 x,y,z;

The following compounds are said to be isostructural with E-NiSiTi which has since been shown to have the C23 type structure: in the original work by Spiegel et al. (1963) neither NiSiTi nor these compounds were found to have the C23 type structure. CoGeNb CoGeTa CoGeV CoGeZr CoNbSi CoSiTa CoSiTi CoSiV CoSiZr FeGeTa FeNbSi

AsMn 3 CdSb

13

CMn 3 CNi3 CoLa 3 PPd 3 Pd 3 Si

Pnma Pnma

F5 6 CuSbSe 2

NiTh oP20

Pnma

C2 Cr 3 Au 4Zr

Pnma Pnma

D 510

S, III, 53

Au 4 Hf

CuS 3Ta S 3Sb 2

Pnma Pnma

D5 8

S, III, 49 AC, 10, 99

Origin at l. Equivalent Positions

Sb(l): Sb(2) : S(l): S(2) : (3):

4 c 4 c 4 c 4 c 4 c

m m m m

x,¼,z; x,¾,z; ½- x,¾,½ + z; ½+ x,¼,½- z.

as as as m as

above. above. a bove. abo ve.

14

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLO YS

Bi 2S3 Bi 2(S,Se) 3 Bi 2Se 3 II (H.P.) Dy 2 Se 3 Gd 2Sea Gd 2Te3 (?) Nd 2Te3 (?)

ol'20

CLASSIFIC ATION OF THE STRUCT URES OF METALS AND ALLOYS 0

4

o C8

Cmc21 Cmcm Cmcm

BCr

Cmcm

SsSb 2 (L.T.) S 3Th 2 S3 U 2 Sb2 Se 3 Se3 ThiO) Se3 U 2 Sm 2Te3

[either the axial ratios vary considerably such that a can b eith r greater or smaller than c or a number of the compound Jrnv wrongly oriented ce11s for setting Cmcm. Proof note: ee A 19, 214].

Pnma

AgCa A!Hf T-(Al,Si)Hf AlTh AIY A!Zr AuGd BCr /J-BMo (I-I.T.) BNb BNi BTa ~BTi 0 •5 W

AsCuPbS 3 AuTe? As 2 fJ-NbPd 3 AuSn 2 (Cl 3 CuK2) Ba 2S 3Zn CuFe 2 S 3 IrSe 2 SrZn 5

Ge

CuPbS 3 Sb C46

A S, 3, 59

Origin at centre (2/m). Equivalent Positions (0,0,0; h ½,0) + Cr: 4 c mm 0,y,¾; 0,y,¾B: 4 c mm 0,y,¼; 0,y,¾-

Np2Sa

oP24

fJ'-Cu 3Ti (I-LT.) Ga (metastable) 0(-U A 20

Pma2 Pbam Pmmn Pbca Pnma Pnma Pnma Pnma

BV

Ga

All

BW (H.T.) BaPb (L.T.) CaGe CaSi CaSn CeNi CePt

CeRh CoGd (?) CoTh DyGa DyGe ErNi G~Gd

GaPr GdGe GdNi GePr HfNi HfPt HoNi IrTh LaNi LaPt LaRh LuNi NdNi NdRh

Cmca

Sb 5Tl 2 (red) B 3Ni 4 Bi 2PbS 4 FeS 4 Sb2 P 3Rh 4

P212i21 ·Pnma Pnma Pnma Pnma

Origin at centre (2/m). Equivalent Positions (0,0,0; ½,½,0) + Ga: 8 f m 0,y,z; 0,y,z ; ½,Y,½ - z; ½,y,½+z.

oP30

AgCuSe

·Pmmm

P(black)

Cmca

oP32

K3S4,V

AgTe

Pmma Pmmn, etc.

Cmc21 Amm2

B8Ru11

Pbam

MoP 2 Au 2V (Pt2Ta type?) Pt2 U

oP28

oP38 oP48

Hg7K 5

Pbcm

oP56

P-Cr18Mo 42 Ni40

Pnma Pna2 1 or Pnma

oP64 HgPuPb P 14PbZn oP68

Ni19Zr1s

Pbca

oP72

Bi 2Pb 2S 5

Pbam

oP84

S 5Tl 2 (black)

Pbcn

oP112

d-MoNi

oP160

Al3Mn

P212i21 Pnma (?)

01>280

BsSi

Pnnm or Pnn2

oP377

y-AIB12

P212121

oC12

S, II, 1

A ma2 Cmcm Cmcm Cmcm

Ag 0 . 93Cu1.07S

BCU Pt 2Ta (Au 2V type?) Si 2Zr

iP r Ni Pu Nim NiTb NiTm Ni Zr PrRh PtTh Pt r Rh h Rll )1 i r

C49

Cmcm

Origin at centre (2/m). Equivalent Positions (0,0,0; ½,½,0) + Zr: 4 c mm 0,y,¼; 0,y,¾Si(l): 4 c mm as above. Si(2): 4 c mm as above. T-(Al,Si) 2Ti Ge 2 Hf Ge2Th Ge 2 U

Ge 2Zr HfSi 2 Si 2Ti Si 2Zr

Cmmm Cmmm

S, V, 5

16

oC16

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

Cmc21 or Cmcm

AICe

JLCM, 8,209

CLASSIFICATION OF THE STRUCTURES OF METALS AND AL

oC32

BiPd Ga 5Zr 3 GaU Au 3Zn (R2) PdSn 3

Cmc21 Cmcm Cmcm Cmca Cmca

A!Ce AlGd (?) AlLa Cmc21 /3'-Cu 3Ti (1-I.T.) Cmcm S-AJ 2 CuMg Cmcm BCMo 2 Cmcm BRe 3 Origin at centre (2/m). Equivalent Positions (0,0,0; ½,½,0) + Re(l): 4 c mm ±(0,y,¼). Re(2): 8 / m ±(0,y,z; 0,y,½ - z). B: 4 c mm ± (0,y,¼). BRe 3 · BTC3 Cmcm CoPu 3

oC~19 oC20

oC23

ACS, 14, 1001

Cmcm HgNa Cmcm a-IrV Cmmm Ga 3Pt 5 H~ 2 . 7NiZr Cmcm PtSn 4 Dl . Aba2 ZM, 41, 298 Origin on 2. Equivalent Positions (0,0,0; 0,½,½,)+ Pt: 4 a 2 0,0,z; ½,½,z; (z = 0). Sn(l): 8 b 1 x,y,z; x,y,z; ½-x,½+y,z; ½+x,½-y,z. Sn(2): 8 b 1 as above. PtSn 4 AuSn 4 PdSn 4 Cmcm Ge 2Pt 3 ZM, 41,433 Aba2 CoGe 2 Ce Origin on 2. Equivalent Positions (0,0,0; 0,½,½) + Co(!): 4 a 2 0,0,z; ½,½,z. Co(2): 4 a 2 as above. 7 Co are randomly distributed on these 8 positions. Ge(!): 8 b 1 x,y,z; x,y,z; ½-x,½+y,z; ½+x,½-y,z. Ge(2): 8 · b 1 as above. C0Ge2

oC44

NioS 5 (?)

Cmcm, etc.

oC~58

AIB24C4 (AIB10 ?)

Cmcm

oC68

Ni10Zr1

oC28

Cmc21 a-Al 23 CuFe 4 AC, 6,285 Cmcm AJ 6Mn D2h Origin at centre (2/m). Equivalent Positions (0,0,0; ½,-},0) + Mn: 4 c mm 0,y,¼; 0,y,¾. A l(! ): 8 e 2 x,0,0; x,0,0; x,0,½; x,0,½. A1(2): 8 g m x,y,¼; x,y,¼; x,y,¾; x,P,¾Al(3): 8 / m 0,y,z ; 0,y,z; 0,y,½- z; 0,y,½+z.

Aba2

oC80

Ni 3Si 2

oC96

S 3Ta

oC152

T3-Al 4MnZn

Cmc2i C2221 Cmcm Al 20 Cu 2 Mn 3 (approximately isotypic)

Al,, 0 Mn 11 Ni 4

(approximately isotypic)

oF7

F222

oF8

y-Pu

oF24

Si 2Ti C54 Fddd S, VII, 12 ' Origin at 222, at ¼.¼-.½ from L Equivalent Positions (0,0,0; 0,½,½; ½,0,½; ½,½,0)+ Ti: 8 a 222 0,0,0; -¼,¼,¼Si: 16 e 2 x,0,0; x,0,0; ¼-x,¼,¼; ¼+x,¾,¼-

Fddd

(Al1.3Si0.,)Mo T-(Al,Si) 2 Nb

Al 2Ru Ga 2Ru oF40

Ge 2Ti Si 2Ti Sn 2Zr

Fdd2 Al 3 Hf2

BMn 4 Dt1 Fddd ACS, 4, 146 Origin at 222, at ¼.¼.i from f. Equivalent Positions (0,0,0; 0,½,½; ½,0,½; ½,½,0) + Mn(]) : 16 e 2 x,0,0; x,0,0; ¼-x,¼,¼; ¼+x,¼,¼Mn(2) : 16 f 2 0,y,0; 0,y,0; ¼,¼-y,¼; ¼,¼+Y,¾B: 16 e 2 at random in above positions.

Cmcm Cmcm

BaZn 5 Re:P (L.T.)

17

Hf7 Ni 10

PdSn 2

oC24

VS

BCr 4 B 0 . 9 Cr 0 . 9 Fe1 • 1 BMn 4

oF48

Fddd

CuMg 2 NbSn 2

o.F 72

S,IV , 11 GeS 2 C44 Fdd2 Origin on 2. Equivalent Positions (0,0,0; 0,½,½,; ½,0,½; ½,½,0) + (1): 8 a 2 0,0,z; J, ,¼ + z. (2): 16 b l x,y, z ; x ,y ,z ; - x ,t + Y, +z ; .l + ·,t - y,¼ -1 z. , (1 : 16 h I ·1. a bove.

18

CLASSIFICATION OF THE STRUCTURES OF M.llTALS AND ALLOYS

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

S(2): S(3):

16 b 16 b

ol12

1 as above. 1 as above.

GeS 2 GeSe 2 (?) olr80

Fddd AC, 16, A24 Origin at 222, at¼,¼,¼ from i. Equivalent Positions (0,0,0; 0,½,½0)+ S(l): 16 f ±(0,y,O); ¼,¼-y,¼; ¼,¼+Y,¼, S(2): 32 h x,y,z; x,y,z; x,y,z; x,y,z; ¼-x,¼-Y,t-z; ¼+x,¼-Y,¼+z; ¼-x,¼+Y,¼ + z; ¼+x,¼+Y,¼-z, Sc(I): 16 g Sc(2): 16 g ±(0,0,z); ¼,¼,¼ - z; ¼,¼,¼+z.

S 3 Sc 2

CeGe 2 DySi 1 •4 (L.T.) GdSi 1 •4 Ge 2La HoSi 2

lmmm

0114

Origin at centre (mmm). Equivalent Positions (0,0,0; ½,½,~-) + Ta(l): 2 c mmm ½,½,O. Ta(2): 4 g mm 0,y,0 ; 0,y,0. B(l): 4 g mm 0,y,0; 0,ji,0. B(2): 4 h mm 0,y,:t..; O,.Ji,½-

oF128

s

ol6

MoPt 2 Immm Origin at centre (mmm). Equivalent Positions (0,0,0; ½,½,½) ± Mo: 2 a mmm 0,0,0. Pt: 4 g mm ± (0,y,0).

B4CoM02 B4 Cr3 B 4 Cr2 Ni B4 FeMo 2 B4 Mn 3 B 4 Mo 2 Ni B4Nb 3 • B4Ta3 B 4V3

Fddd

JLCM, 8, 114

0120

CrNi 2 (?) Ni 2V (L.T.) MoPd 2 (L.T.) (?) Pd 2Ta MoPt2 Pd 2 V (L.T.) NbPd 2 Pt 2 V NbPt 2

S 2Si C42 Ibam Origin at centre (2/m). Equivalent positions (0,0,0; ½,½,½)+ S: 8 j m ±(x,y,0; x,y,½) Si: 4 a 222 ± (0,0,¼)

Imma

AC, 14, 73

0128 0144 0196

Cu 2Nd Cu 2Pr Cu 2 Sm Cu 2Tb Cu 2Tm Cu 2 Y Cu 2Yb Hg2 K SrZn2

Imma

Imma

AJ 4 Np Al4PU AJ 4 U

Origin at centre (2/m21 1). Equivalent Positions (0,0,0; ½.-h½) + Ce: 4 e mm ± (O,¼,z). Cu: 8 h m ±(0,y,z; 0,½+y,z). Ag2Ca CaZn2 CeCu2 CeZn 2 ( ?) Cu 2Dy Cu 2 Er Cu 2Eu Cu 2Gd Cu 2 Ho Cu 2 Lu a-GdSi 2 (ijdSi 1 . 4 )

Dlb

oI~ 206

Ga 2Mg 5

Nb6Sn 5 AIAs 2Li 3

lbam In 2 Mg5

Immm P-Sn5 Ti,

Ibca A!Li 3 P 2

Imma

{,B-AIB12 Al 3B 48 C 2

Orthorhombic , NbRu, M = 2

JPC, 63, 616, 2073

JM, 3,800 CJC, 34, 133

Origin at centre (2/m21 1). Equivalent Positions (0,0,0 ; ·MA·)+ U: 4 e mm , O,¼,z; 0,¾,.z. Al(]): 4 b 2/m 0,0,½; O,½,½, Al(2): 4 e mm as above. A 1(3): . 8 h m 0,y,z; o,y,z; 0,½+y,z; O,½-y,z.

S, III, 37

Se 2 Si

CeCu 2

ACS, 3,603 ;

4,209

Dy 2 Se 3 Dy2 Te 3 Er2Sea Er 2Te 3 Lu2Se 3 S3SC2 Sc 2Se 3 Se 3 Y 2 Se 3 Yb 2 Te 3Y 2

oll2

Origin at centre (2/m21 1). Equivalent Positions (0,0,0; ½,½,½) + Gd: 4 e mm ±(0,¼,z). Si(l): 4 e mm Si(2): 4 e mm

Hflr1 +, Hf42Rh 58 (H.T.) frT i

Nb 3 Pd 2 (H.T.) R.h~6Ti 45 RuTa

19

20

LASSIFI CATION OF TJ-Jll STRUCTUR

( TETRAG~~AL

P4 /mmm

q,Cu-Ga

P4mm P4/mmm P4/mmm P421 2 P4/mmm

FeNNi FeSi 2

J\gZr Au Hf (L.T.) A uTi ( L.T.) Cd Ti ( ?) JI- uT i BlO

/1'4

Ru 2Ta 3

,8-Np AuCu L1 0 Origin at centre (4/mmm). Equivalent Positions Au(l): I a 4/mmm 0,0,0. Au(2): l c 4/mmm ½,½,O. Cu: 2 e mmm O,½,½; ½,O,½. AgTi IrNb lr 7 Ti 3 Al 0 . 89 Mn 1 .11 A!Ti Ir 55 Ti 45 Ir 4 .,Ti 55 AuCu I BiLi (L.T.) IrV BiNa Mgo.9Pd1·1 0-CdPd MnNi 0-CdPt Mn 2 Pd 3 MnPt (L.T.) CoPt MnRh (L.T.) o-CuTi FePd NbRh (?) FePt NiPt I PdZn (?) GaTi PtV (H.T.) Hf2Rha PtZn . HgPd HgPt Rh 57 Ti 43 HgTi RhTi HgZr InPu IrMn CuTi 3 L60 P4/mmm Origin at centre (4/mmm). Equivalent Positions Cu: I a 4/mmm 0,0,0. Ti(l): 1 c 4/mmm ½,½,O. Ti(2): 2 e mmm O,½,½; t,O,½. AgZr3 A!Pt 3 (?) AJPu 3 BaBi 3 C,GaPt 3 CuZr 3 Dyln 3 InPt 3 Mg 3 Pt (?) Pb 3 Sr Pd 3 Tl PbTb P4/mmm PbU y-CuTi Bl I P4/nmm Origin at 4m2, at ¾,¼,O form centre (2/m) . Equivalent Positions Pb : 2 c 4mm O,½,z; ½,O,z. 0 : 2 c 4mm O,½,z; ½,O,z.

ErHf4 lr 5 Hfir, Lu Hf4 5 Sc PdTa SZr

Ir

PbO P4/nmm Origin at 4-111 , a t ¾,¾-,0 from centre (2/m). Equi valent Positions 0: 2 a 42m 0,0,0; ½,½,O. Pb: 2 4mm O,½,z; ½,O,z. DiIn

S, I, 484

-es " FeSe" FeTe 0 . 9 OPb OSn Bl?

Pt

Orig in a t entre (mmm) on 42 • Equlval 111 Positions Pt : 2 c mmm O,½,O; ½,O,½. 2 e 42m 0,0,¼; 0,0,¾. tPS

tP6

o2Mn 2

, Il, 9

I

y-H ~o-5Zr P4 2 /n AJ eMn (L.T.) P4/nmm JfPb ~01 P4/nmm rl in at 4m2, at ¼,¼,O from centre (2/m). .Equivalent Positions Pb: 2 c 4mm O,½,z; ½,O,z. l : 2 c 4mm as above. 2 a 42m 0,0,0; ½,½,O.

11 2 b P4/nmm Ori in at 4m2, a,t ¼,¼,O from centre (2/m). Equivalent Positions u(I): 2 a 42m 0,0,0; ½,½,O. u(2): 2 c 4mm O,½,z; ½,0,z. Sb : 2 c 4mm as above.

JIM, 79,391

S, I, 89

P4/mmm

DyTe~Ms (?) GdTe1-7 5 (?) GeSZr GeSeZr GeTeZr NdTe~ 1 • 85 (?) PrTe~ 1 . 85 (?) SSiZr SeSiZr SiTeZr SmTe~ 1 • 85 (?) C38

(pseudo-cell?)

21

CLASSIFICATION O F THC! STRUCTURES OF METAL. AND ALLOYS

OF MET LS AN O ALLOYS

AINaSi 4 AsCr, AsCuMg AsFe 2 AsMn 2 As2Th As 2 U Bi 2Th Bi.,U CeTe 2

II, 45

, Ill, 33

22

tPlO

I

Cu 2Sb Cu 4 _xTe2 LaTe 2 Mn 2Sb

tP6

tP7

C LASSIFIC ATlON Of THE STR UCTURES OF METALS AND ALLOYS

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

0 2Ti C4 Origin at centre (mmm). Equivalent Positions Ti: 2 a mmm 0,0,0; ½,½,½0: 4 f mm x,x,0; x,x,0; ½+ x,½-x,½; CrO 2 O 2Pb GeO 2 O2Ru H 2 Mg O2Sn IrO 2 O 2Ta MnO 2 O2Te MoO 2 O 2Ti e:-NTi 2 O 2V (H.T.) NbO 2 (?) O 2W O2OS P42m Cdln 2Se 4 Ga 3Ti 2 P4/m P4cc NbTe 4

'

,r-14

C0Ga3 P4n2 ZM, 50, 534 Origin at 4. Equivalent Positions Co: 4. f 2 x,t-x,t; x,½+x,¼; ½+x,x,¾; ½-x,x,¾. Ga(l): 4 e 2 ±(0,0,z; ½,½,½+z). Ga(2): 8 1 x,y,z; .x,y,z; y,x,z; y,x,z;

s. 1, 155 ½- x,½+x,½.

½-x,½+Y,½+z; ½+x,½-Y,½+z; ½+Y,½+x,½-z; ½-y,½-x,½-z. CoGa3 FeGa 3 Ga 3lr (H.T.) Ga3 0s Ga3Rh Ga 3Ru ln 3lr ln 3Rh

PdS B34 P4 2 /m S, V, 3 Origin at centre (2/m) on 42 • Equivalent Positions Pd(l): 2 c 2/m 0,½,0; ½,0,½. Pd(2): 2 e 4 0,0,¼; 0,0,¾. Pd(3): 4 j m x,y,0; x,ji,0; y,x,½; y,x,½. S: 8 k 1 x,y,:~ ~,~•::0,½+z'. y,~,½+z;

(sub-cell) TaTe 4

P421C

Pd 4 Se Pd 4 S

BBe 4 _

P4/nmm P4/nbm P4/mbm

5

Pb 4Pt

Si 2U 3 D5a Origin at centre (4/m). Equivalent Positions Si: 4 g mm ±(x,½+x,0; ½+ x,x,0). U: 2 a 4/m 0,0,0; ½,½,0. U: 4 h mm ±(x,½+x,½; ½+x,x,½). A1 2 Th 3 B2 Mo3 B 2Nb3 B 2Ta3 B 2V 3 Be 2Nb 3 Be 2Ta 3 Ga2 Nb 3

x,y,z, x,{,i; £,.t,½-z, y,x,½-z.

AC, 1,265; 2, 94

Ga2Ta 3 Ga 2Zr 3 Ge 2Th 3 Hf3 Si, Si 2 Th 3 Si2Ua Si2Zr 3

P¾2i2 P432i2 P41212 P4/nmm

tP12

Li 3 MnP2

P42 /n or P4 2 /nmc

tP14 ID4Ti 3 Hg5MD2

P4bm, etc. P4/mbm

Ga5 Mn 2 Ga 5 V2 Hg 5 Mn 2

AC, 14,733 Origin at centre (4/m). Equivalent Positions Hg(l): 2 d mmm 0,½,0; ½,0,0. ±(x,y,0; ½+x,½ -y,0; ji,x,0; ½+Y,½+x,0). Hg(2): 8 i m ±(x,½+x,½; ½+x,x,½). Mn: 4 h mm

PdS PdSe

tP20

~

a :'-Cu 4 Pd Al 2 G.d 3

Zn 2 Zr 3

B 4 Th Die P4/mbm AC, 6,269 Origin at centre (4/m). Equivalent Positions Th: 4 g mm x,½ + x,0; x,½-x,0; ½+x,x,0; ½-x,x,0. B(l): 4 e 4 0,0,z; 0,0,z; ½,½,z; ½,½,z. B(2): 4 h mm x,½+x,½; .:i,½-x,½; ½+x,x,½; ½-x,x,½. B(3): 8 j m x,y,½; .:i,ji,½; ½+x,½-y,½; ½-x,½+y,½;

ji,x,t; y,x,½; ½+Y,½+x,½; ½-y,½-x,½.

B 4 Ce B 4 Dy B 4Er B 4Gd B 4 Ho B 4 La B4LU B 4 Nd B 4Pr B 4 Pu B 4 Sm B 4Tb B 4Th B 4 Tm

B,U

B4 Y B,Yb

23

24

CLASSI FICATION OF T HE STRUCTURES O

METALS AND ALLOYS

t P40

C, 13,358 , 17, 620

P4 2 /mnm P42nm

tP20

CLASS IFICATION OF THE STRUCTURES OF METALS AND ALLOYS

Cu: Fe:

Origin at centre (mmm). Equivalent Positions Al: 8 j m ±(x,x,z; x ,x,z ; ½+ x,t

- x,t z ; ½-x,½ + x, ½+z). ± (0,½,¾; ½,0,¾). Zr(l): 4 d 4 Zr(2): 4 g mm ± (x,x,0; ½+ x,½ + x,½). Z r(3): 4 f mm ±(x,x,0; ½+ x,½ - x,½). Al 2 D ya Al 2E r 3 Al 2Gda Al 2Hfa

tP24

P~n (red)

tP30

SeT1 2 u -CrFe

Al 2Y 3

Al 2 Zr 3

P4/n P42 /mnm

AC, 7,857

AITa~ 2 AuTa 2 Co-Cr Co 3 Cr5 Si2 Co 2 Mo 3 CoV Co-W (H.T.) CrFe CrMn 3 T-Cr 6 0 Nia 5 Ps T-Cr 6 •5 Ni 2 • 5Si Cr 8 Ni 5W Cr. Os ~CrRe 2 Cr 2 Ru ~CrTc 3 FeMo

,, •. 2 ,,. 0

Nb 3Pcl 2 (fI.T.) Nb 3 Pt 2 Nb, ,,. 0 Re 11,. 5 Nb 2Rh

Fe21 Nb 19 Fe 3 Re2 Fe-Tc FeV lr 8 • 5 Mo 21 . 5

~

Ni 3 ,Si 8V58 Ni 2 V3 Os-Ta Os-W ~PdTa 3 ~PLTa 2 Re 3Ta 2 (H.T.) Re3 V Re-W RhTa2 ~Ru 2 W 3 TaV Tc3 W

Ir-Nb

Ir-Ta ~ IrW 2 (H.T.) lrZr 3 Mn-Mo Mn 3 R e~ MnTc Mn a+xY Mo 2 0s Mo, 5 Re55 Mo 5 Ru 3 MoTc 3

tP44

Mn 4Si 7

tPSO

B

P4 2 /mnm

/3-SV 3 (L.T.)

P42 /nbc

tP'74

Pt7Si 3 As 8Ni11

P41 2i2 or P43 21 2

tP120

y-Cd 3CU 4

P4 2 /ncm

NbTe 4 See tPl0

{

i II

tP ~ 190 B 0 Be

tl2

I

In A6 /4/mmm S, I, 23 It is conventional to use the f.c. cell; the true unit cell is, however, b.c. tetragonal, A =2, 14/mmm. 14/mmm Origin at centre (4 /mmm). Equivalent Positions (0,0,0; ½,½,½) + In: 2 a 4 /mmm 0,0,0. F4/mmm Equivalent Positions In: 4 a 4/mmm 0,0,0; O,½,½; ½,0,½; ½,½,0. a-GaNi. GeMn 3 .~ 5 (L.T.) In lnPd 3

Pa

14/mmm Hg II (H.P.)

AC, 9,911

P4 /mnc Origin a t cent re (4/m). Eq uivn/ent Posilio11s /\1(1) : 4 s /m

ZM, 49, 165

45

46

CLASSI FICATION OF THE STRUCTURES OF METALS AND ALLOYS

hP20

CL ASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

P3lc

hP24

Cr 2Te 3

Fe 3Th7

Dl02

P63 or P63 /m

AILaS 3

AC, 9,367

x,x,½+ z; x,2.x,½+ z; 2x,x,½+ z. Th(3): Fe:

6 6

C

m

C

m

B3 Re 7 B3 Rh 7 B3 Tc 7 C 3 Fe 7 Ce 7 Ni 3 Co 3 Th 7

hP22

Cr 5 S 6 CoN2 . 5Ta 2 · Origin at 62m.

P3lc P62m

Equivalent Positions Co: 4 h 3 Ta(l ) : 2 e 3m Ta(2): 3 f mm Ta(3): 3 g mm

x,x,z; x,2x,z; 2.x,x,z.

Co(4): V(l): V(2): V(3): V(4) :

ACS, 8,213

X,X,½.

a-Sn 5 Ti 6 Cu 3P D021 Origin at centre (3).

P63 /mmc P3cl

a-FeS (L.T.) Al 3Pu CeNi 3 MgNi 2

S, VI, 7

Ni(3) :

4

DyH3 ErH 3 GdH3 H 3 Ho H 3 Lu H,1 Pll (?)

I.ct.Phys., 25, 454

± (x,O,¾; O,x,¼; .x,.x,¾). ± (0,0,¾).

H 3 Sm H 3 Tb

H 3Tm

H3 Y

3m

as above. T-(Fe,Ni) 2 U Fe"Sc Fe; .10zro- s1 ( ?) HfMn 2 (H.T.)(?)

HfM0 2 (H.T.) MgNi2 Mg 2Th (L.T.) Cr 2 Hf Cu 3 Mg 2 Si (H.T.) (Mn,Ni) 2 U NbZn 2 CuMg 2 Zn 3 Pt 2 U (?) CuMg 3 Zn 4 Fe 2 Hf (?)

,-.

,,- I

±(t,f,z; ·ht,½ + z).

±(x,y,z; y,x-y,z; y-x,.x,z; y,x,½+z; x,x-y,½ + z; y - x,y,½ + z).

f

AICuMg (H.T.) CdCu" Co 3Nb T-(Co,Ni) 2U y-Co 2 .2Ta 0 • s /3-Co 2 Ti

AsCu 3 Cu 3 P

P3cl

C36

x,x,¾.

x,y,z; y,y-x,z; x-y,x,z; y,x,½ + z; x,x-y,½+z; y - x,y,½ + z; y,x,½-z; x,y-x,½-z; x-y,y,½-z. 2 x,O,¾; O,x,¾; x,x,¾; .x,O,¾; O,.x,¾; x,x,¾.

HoD 3 Origin at centre (3). Equivalent Positions Ho: 6 f 2 D(l): 2 a 32 D(2): 4 d 3 D(3): 12 g l

P62c P63 /mmc P63 /mmc P63 /mmc

S, Ill, 31

Origin at centre (3ml). Equivalent Positions 0,0,z; 0,0,z; 0,0,½ + z; 0,0,-!,;- z. Mg(l): 4 e 3m ½,-j-,z; f,j-,Z; J,½,½ + z; ½,-½,½ - z. Mg(2): 4 f 3m Ni(l): 6 g 2/m ½,0,0; O,½,O; ½,½,O; ½,O,½; O,½,½·; ½,½,1 Ni(2) : 6 h mm x,2x,¾; 2.X,X,¼; x,X,-¼ ; X,2X,¾; 2x,x,¾;

Equivalent Positions Cu(l): 2 b 3 0,0,0; 0,0,½. Cu(2): 4 d 3 ·U ,z; ¾d·,z; t,t,½ + z; t,½,½- z. Cu(3): 12 g 1 x,y,z; y,x-y,z; y - x,x,z;

6 f

m

1 a 6m2 0,0,0. 1 b 6m2 0,0,½. 2 h 3m -},l,z; t,t,z. 3m j",t,z ; J,-},Z. 2

x,0,0; 0,x,0; x,x,0.

CoN2-5Ta 2 FeN 2 • 60Ta 2 N2-4 5 NiTa 2

P:

n

Co 3 V NbRh 3 (Pd 0 • 5Rh 0 • 5 )a Ta (Pd 0 • 75Ru 0 • 25) 3Ta

N:

hP24

6

± (t,t,z; t,t,z) . ± (0,0,z). x,0,J; O,x,½;

AC, 12, 500

Origin at 6m2. Equivalent Positions Co(l): 3 j mm x,x,0; x,2x,0; 2.x,x,0. Co(2): 3 k mm x,X,½; x,2x,-½-; 2.X,X,½. x,x,z; x,2x,z; 2.x,x,z; Co(3): 6 n m

Fe 3 Th 7 Ir3 Th 7 Ni 3Th 7 Os 3 Th 7 Pt 3 Th 7 Rh 3 Th 7 Ru 3 Th 7

B 3 Ru 7

P6m2

Co 3V

as above. as above.

BSCFr, 1960, 229

A1PrS 3 A1S 3Sm A1S 3 Y GaLaS 3 GaS 3 Y

A!CeSa AIErS 3 AlGdS 3 AlLaS 3 AlNdS 3

Origin on 6i3m). Equivalent Positions Th(l): 2 b 3m ½,f,z; t,t,½+z. Th(2): 6 c m x,x,z; x,2x,z; 2.x,x,z;

d'-Cu 3 . 3Sb(H.T.) (;-Cu 20Sn 6 (H.T.) Al7C 3N 3

'1'>-AI 10Mn 3

/.;l-AloMn 3Si

Na oPb 4

(1 ud

c II ?)

P3 P31m P63 mc P63 /mm c P63 /mmc P6 3 /mmc

47

48

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

liP21

T 4 AI-Mn-Si-Zn

hP28

a-N 4 Si 3

P63 /mmc P31c (P31c?)

j

rt-Ge 3N 4

AI 5 Co 2 y-Mg 2 .7Pd hP30

D8 11

/3-In 2 Se 3 (H.T.)

P63 /mmc P63 /mmc, etc. P65 (?)

,8-Ga2S 3 (?)

BaLi 4 hP32

C 4 Co 3W9 Origin at centre (3ml). Equivalent Positions Co + W(l): 6 h mm Co +W(2): 6 h mm W: 12 k m C(l): C(2):

2 C 6 g

P63 /mmc P63 /mmc

CLASSIFICATION Of THE STRUCTURES OF METALS AND ALLOYS

i'.I,

hP10

Ce 24 Co11

hPSO

Cr7C 3

Mn 7C 3 liP90

Mg 4Sr

P63 /mmc

hP~111

B 2Be

P6/mmm

hP114

U 2Zn1i (H.T. ?)

-

,l ± (x,2x,¾; 2x,x,¾; x,x,t ). ±(x,2x,z ; 2x,x,z; x,x,z; x,2.x,½+z; 2x,x,½+z ; x,x,½+ z).

f II '

hP156

CuSe

P63 /m (?)

hP160

a-ln 2 Se 3 (L.T.)

P63

hP ~ 162

Cu 2 _xTe (?)

hP~555

d1 -FeZn 10 (L.T.)

hRl

Hg

P6 /mmm P63 mc or P63 /mmc R'Jm

C 4CoaW9 X C-Mn-W CGNi3W1G

P6a/mmc P63 /mmc P63 /mmc

hP36

Ce 2Ni7 Na13Pb 5

ltP38

Ni17Th 2 _ P6a /mmc AC, 9,367 Origin at centre (3ml). Equivalent Positions Ni(l): 4 f 3m ± (U -,z; t.-L½+z). Ni(2): 6 g 2/m ½,O,O; o,t,O; ½.-½-,½; ½,t ,or •. Ni(3) : 12 .i m ± (x,y,¾; y,x - y,¾; y-x,x,t; y,x,¾; x,x-y,¾; y-x,y,t) . Ni(4): 12 k m ±(x,2x,z; 2x,x,z; x ,x,z; x,2.x,½+z; 2x,x,½+z; x,x,½ + z) . Th(l): 2 b om2 ± (0,0,¾)Th(2): 2 d om2 ± (H -,¾),8-Be17H f 2 ,8-Be11Ti 2 Ce2Co11 Ce 2Mg 17 Co 11 Gd 2 (?) Fe11 Gd2

(Gd 2Ni 17 ?) La 2Mg 17 Mg11 Sr2 Ni17PU2 Ni 17Th 2 N i11Y2

U 2Zn17 (H.T. ?)

P63 /mmc

h.P ~ 40

Al 4B1-3C 4

/1.P40

y-(Pdo•67Rho -aa) 3Ta

P63/ mcm, etc. P63 /mmc

ltP42

As 2Ni5 Ni 5Si 2

P63 22 P3ml, etc.

hl'48

Ca 5Pb 3

P63 mc

hP54

,8-Al23V 4

P63 /mmc

hl'56

Ag 5Te 3

i,,1'64

Ag 3P u

P6 /mmm P63 , etc.

Pom2

K , 1, 634

y-Be 17 Hf2 Pu 2 Zn11 U2Zll17

AMt, 2,837

om2 ± (t,t,t ). 2/m -t,0,0; O,½,O; ~-.½,½; ½,½,Of\ .

/3'-NiSe (H.T.)

Dl01

P6amc P31c

Al0 Origin at centre (3m). Equivalent Positions Hg: 1 a 3m 0,0,0. Hexagonal axes, A = 3. Origin at centre (3m). Equivalent Positions (0,0,0; t,t,t ; t.-!-,t)+ Hg: 3 a 3m 0,0,0.

S, I, 737

Hg ,8-Po fiRl

A7 R3m Origin at centre (3m). Equivalent Positions As: 2 c 3m x,x,x; x,x,x. Hexagonal axes, A = 6. Origin at centre (3m). Equivalent Positions (0,0,0; t ,t ,t; -} ,t,t ) + As: 6 c 3m 0,0,z; 0,0,z. As

As

S, I, 25

Sb Te II (H.P.)

Bi

R3m

hR3

IS-246 USAEC CdCl 2

NbS 2 (L.T.) NbSe 2 S 2Ta

S 2W Se 2Ta

C19

R'Jm

S, I, 742

Origin at centre (3m). Rhombohedral axes, Equivalent Positions : Nb : 1 a 3m 0,0,0. S: 2 C 3m X,X,X; X,X,X. Hexagonal axes, Equivalent Positions: (0,0,0; t,t,t ; ¾,½,¼) + Nb : 3 a 3m 0,0,0. 6 C 3m 0,0,z; 0,0,z.

20

,

0

2Ta

49

50 hB3

CLASSIFICATION OF THE STRU CT URES OF METALS AND ALLOYS

o1N2W

R3m R3m

Sm

CLASSIFICATION OF THE STRUCTURES OF METALS AN D ALLOYS

hRS

Te:

2

c

AC, 7 , 532

Origin at centre (3m) Equivalent Positions Sm(l): 1 a 3m 0,0,0. Sm(2): 2 C 3m X,X,X; X,X,X.

o Ce-Y Gd II (H.P.) o-GdLa (L.T.) o La-Y o Nd-Tm o Nd-Y (Pd 0 • 72 Rh 0 • 28 )sTa o Pr-Y Sm

hR6

R3m hll4

CrCuS 2

R3m

ZAC, 290, 68

Origin on 3m. Equivalent Positions Cr: 1 a 3m x,x,x. Cu: 1 a 3m S(l): 1 a 3m S(2): 1 a 3m

C12 R3m Origin at centre 3m. Equivalent Positions Ca: 2 c 3m x,x,x; :x,x,:x. Si(l): 2 c 3m x,x,x; :x,x,:x. Si(2): 2 c 3m x ,x ,x; x,x,x. Hexagonal axes, M = 6. Origin at centre (3m). Equivalent Positions (0,0,0; -U -,} ; -s-,t,}) + Ca : 6 c 3m 0,0,z; 0,0,z. Si(!): 6 c 3m 0,0,z; 0,0,z. Si(2): 6 c 3m 0,0,z; 0,0,z.

I)

R3m R3m R3m or R32

S, I, 271

Origin at centre (3m). Equivalent Positions

S:

2

C

3m

0,0,0.

3m ½,½,-½-. 3m ± (x,x,x). AgBiSe 2 AgBiTe 2 (L.T.) BiSe 2TI BiTe 2Tl CrNaS 2 CrNaSe 2

S, II, 6

S, l, 175

CaGe 2 CaS i2 [S 2Ta1-1-u ?]

CrRbS 2 (?) CrSbSe2 (?) InNaS 2 InNaSe. SbTe 2Tl

o;?NW1-17

R3m R3m

a-Ni 3 S 2 (L.T.)

R32

Ni 3 Se 2 Cu 5FeS 4 Bi 2 STe 2 C33 Origin a t centre (3m).

R3m R3m

/3-NiTe hHS

s R3 S 2Ta R3m STi (H.T.) R3m NiS (millerite) B13 R3m Origin on 3m. Equivalent Positions Ni: 3 b m x,x,z; x,z,x ; z ,x ,x. S: 3 b m x,x,z; x,z,x; z,x,x. Hexagonal axes, M = 9. Equivalent Positions (0,0,0; -¼-,-¼,}; },-¼,½) + Ni: 9 b m x,:x,z; x,2x ,z; 2:x,x,z. S: 9 b m x,:x,z ; x,2x ,z; 2x,x,z.

CaSi 2

CrK0 . 5Se GaSe CrNaS 2 (HNaF 2)

1 a 1 b

x,x,x; x,:x,x.

NiS (L.T.) NiSe (L.T.)

AgCrS 2 AgCrSe 2 CrCuS 2 CrCuSe 2

Cr : Na :

3m

BiCuTe 2 (?) Bi 2 STe 2 Bi 2Se 3 Bi 2 SeTe 2 Bi 2 Te 3 CuSbTe 2 In 2 Te 3 II (H.P.) Sb 2 Te 3

Equivalent Positions J Cl 3m 0,0,0. Bi : 2 c 3m x,x ,x ; :x,:x,:x.

S, III, 28

S 2 Tal+ y ( 6s) (like CaSi2) STio.9

R 3m

hR6·1

Sc 2Te 3

hR1

In 2 S 4Zn Al 4 C 3 As 3 Sn 4

R3m R3m R3m R3m

B 5Mo 2 Bi 4 (S,Te) 3

R3m R3m

R3m

Bi 1 SSe2 Bi,Se 3 Bi3 Se"

Rm

S, III, 56

51

52 hR7

hR8

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

Na 5Pbi?) (H.T.) Sb 2 SnTe 4

R3m R3m

CNi 3 CuFeS 2

R3c R3m

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

Fe(]): Fe(2): W(l): W(2): W(3):

or .Cr 2 S 3 a-AI 20

D51

3

' R3 R3c

1 6

2 2 2

4 6

c 3 e 2

12 18

hR~12 hR12

x,x,x; x,x,x; ½+ x,½ + x,-H-x ; 1-- x,½ - x,t - x. x,½-x,-¼; ½- x,-¼,x; ¼,x,½-x; x,½ + x,¾; ½+x,¾,x; ¾,x,½ + x.

T-Fe5 • 7 Re 6 Si 1 . 3 Fe 7 W 6 NbNi NiTa

R3c

ltR14 Ag 3 S3 Sb

hR15 hR~15

'B 4 C' As 2 B 13 oc-B

B 4 +xC B 130 2 B1aP2 B 12 S B 31Si11 (SiB 4 )

I

I

,I

hR16 hR19

R3m R32, etc.

a-B BaPb 3 Be 3Nb

R3m R3m R3m

~

3m 0,0,½. C 3m ±(0,0,z). h m ± (x,x,z; x,2x,z; 2.x,x,z). a 3m 0,0,0. C 3m ±(0,0,z). Be3 Nb Be 3 Ta Be3Ti Co 3Pu Ni 3Pu

R3m, etc.

Ga 3Pu (H.T.) Be17Nb 2

R3m R3m

AC, 12, 7 13

Origin at centre (3m). Equivalent Positions ± (x,x ,x). Be(l): 2 c 3m Be(2): 3 e 2/m 0,½,½0Be(3): 6 g 2 x,.x,½0± (x,x, z; x,z,x; z,x,x) . Be(4): 6 h m ± (x ,x,x). Nb: 2 c 3m

AC, 12,461

Origin at centre (3m). Equivalent Positions; hexagonal axes (0,0,0; -¼,¾,}; ¾,½,½) + b

R3m (?) R3m R3m

Cu9S 5 (L.T.) AlsC 3N4

c 3 0,0,z; 0,0,z; 0,0,½+z; 0,0,½-z. e 2 x,0,-¼; 0,x,-¼; x,x,¼; x,0,¾; 0,x,¾; x,x,¾.

3 6 18 3 6

c

(Cu 0 •5 Ni 0 •5)Ta Fe,Mo 6

Al5C3N2 T1 -Al 7Cu 4Ni

Be(l): Be(2): Be(3): Nb(l): Nb(2):

c

·co,w.

oc-Al 2 0 3 y-Al 2 S3 Co 20 3 (?) Cr 2 0 3 Fe 20 3 Ga 2 0 3 Lu2S 3 0 3 Rh 2 O 3Ti 2 OaV2 S 3Yb 2 hR11

3m 0,0,0. m x,x,z; x,z,x; z,x, x ; x ,x,z; ,i:,z,x; z,x, x . 3m x,x,x; x,x,x. 3m as above. 3m as above. (Al 0 . 5 Cu 0 . 5)Ta Co,Mo 6 Co 5. 7Re 6 Si1·a

Hexagonal axes Origin at centre (3). Equivalent Positions (0,0,0; -!A-,} ;¾.-¼.-¼) + Al: 0:

a h c

S, I, 240

Rhombohedral axes Origin at centre (3). Equivalent ·Positions Al: 0:

S, III, 61

Origin at centre (3m). Equivalent Positions

R3m hRlO

R3m

hR13

oc-Be1 7Hf2 Be17 Nb 2 Be 1 ,Ta 2 oc-Be1 ,Ti 2 Be 1 ,Zr 2

R3m Th 2Znn Origin at centre (3m). Equivalent Positions Th(l): 2 c 3m ± (x,x,x). Th(2): 2 c 3m Zn(l) : 3 d 2/m ½,0,0r). Zn(2): 6 f 2 · x,x,0r). Zn(3): 6 h m ± (x,x,zr)) . AI/Ce 2 Co 15 Co 17 Gd2 (?) Al 10 • 5 Ce 2 Cu 6 . 5 Fe1 ,Gd2 Al 10 Ce 2 Mn, Fe1 ,Nd2 Ba 2 _Mg1, Th 2Zn1, e2 L7 U 2Zn1 , ( .T. ?)

K, 1, 634

53

54

D810

hR26

Origin on (3m). Equi valent Positions Cr(l): 1 a 3m Cr(2): 3 b m Cr(3): 3 b m Cr(4): 3 b m Al(l): 1 a 3m Al(2): 3 b m Al(3): 3 b m Al(4): 3 b m Al(5): 6 c 1

R3m

S, V, 11

(for rhombohedral axes) x,x,x. x,x,z; x,z,x; z,x,x. as a bove. a s abo ve. x ,x,x. as a bove. as above. as above. x,y,z; z,x,y; y,z,x; y,x,z; z ,y,x; x ,z,y.

Al 8 Cr 5 (LT.) Fe11 G a 9 (H.T.) ~ G aMn (H.T.)

R3 R3m

hR27 TaTe 2

h R 32

CuPt

R3m

hR40

Bi 8S 5Te7

R 3m

hll4S

ln 21 Mg 79

R3

hR53

R Co-Cr-Mo

R3

AC, 13,575

Origin a t centre (3). Equivalent Positions One set of T wo sets of Eight sets of

I b 2 C 6 f

½,½,½-

3 3

± (x,x,x).

I

±(x,y,z; z,x,y; y,z,x).

Co-Cr-Mo Co 3 Cr 3 Si 2 Co-Mn-Mo Co-Mn-Si Co 3 Si2V 5 F e52 Mn1GM032 F e 2 SiV 2

hR108

M n 78 M o 3 Si19 M n, 9 N b 5 Si1G (Mn, N i) 7 Si 3 M n 6 Si M n 7 9Si19Ti 2 Mn 0 ,s3Tio,17 Ni3SiVG

R3m(?)

B

(~ ---) cPl

-- --·-·----.___.'pm3m

a-Po

Ag-Te (metastable) Au-Te (metastable) Sb II (H.P.) cP2

CLASSIFICAT ON O F THE STRUCTURES OF METALS AND ALLOYS

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

Pm3rn

B2

CsCl

Orig in at centre (m3 m). Equivalent Positions I:

a b

m3m rn3m

0,0,0. 1,½,' .

S, I, 74

c P2

AgCd /J'-AgCd (LT.) AgCe AgDy AgEr AgGd AgHo (?) /1-Agal°n (H.T.) AgLa /J-AgLi AgLu AgMg AgNd AgPr (?) AgSc AgSm ( ?) AgTb ( ?) AgTrn AgY (?) P'-AgZn Al Ce /1-AlCo x Al-Co-Mn x-Al 50 (Cu, Mn).50 T(Al, Sn)Cu 3 (H.T.) A1Cu 2Ti T-A1Cu 2Zn AlCu 2Zr (?) A!Dy AIFe x Al-Fe-Mn "Al Gd" Allr AlMn (?) A l- M n-Ni A lMoTi2 A lN d A lN i A!N i2Ti (?) A!N i2Zr (?) Al Os A!Pd (H .T.) A!R e A!R h AIR u Au Cd (I-LT.) AuCs AuDy AuEr (?) AuGd AuHo Au 2lnMn /J' Au-Li AuLu AuMg AuMn (H.T.) Au.MnZn AuNd (H.T.) (?) AuPr AuRb AuSc A u m (?)

AuTb AuTm AuY /J' -Au Zn Ba Cd BaHg y-BeCu BeNi BePd BiT l CaCd CaHg Caln CaTl CdCe CdGd CdLa CdPr CdSc CdSm CdSr CdY CeHg CeMg CeZn CoFe CoGa CoHf Co 2MnSi (?) Cose Co"Si2. 5 V1, 5 CoTi CoZr CuDy CuEr CuGd CuH o C u2 1nTi ( ?) C uLu /J C u-Pd C uSc C uSm C u 2SnTi C uTb C u2Ti Zn C uTm C uY /J' C u-Zn t5-CuZn 3 (I-1.T.) Cu ?ZnZr Dyi n DyMg DyRh (?) DyTl DyZn Erlr (?) ErMg Er 2PdRu ErRh (?) ErZn FeRh FeTi FeV air

GaNi Ga Rh G aR u Gd Hg Gdin G !M g G dRh G dTJ dZ n (H f0 . 0Lu 0 . 6)N i HfOs (?) HfRh 1 +x

1-J fR u

HfTc H gLa HgL i HgLi 2TJ (?) HgMg H gMn H gNd (?) H gPr HgSc HgSm (?) HgSr HgY Holr HoMg HoRh H oZn InNi InNi 2Ti ( ?) InPd lrLu (?) IrMn IrSc lr 3 5Ti "5 IrTrn ( ?) LaMg LaTJ ( ?) LaZn LiP b (H.T.) LiTI LuMg LuPd LuRh MgNd MgPd MgPr MgRh MgSm MgSr (?) MgTb MgTI MgTm MgY /J-MnPd MnPt (H.T.) (?) MnRh MnV MnZn (L.T.) ( ?) NdTJ NdZn N iSc Ni 2 nT i (?)

55

56 c P2

cP4

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

NiTi Ni 2TiZn NiZn (H.T.) OsSi (0, AI) OsTi OsV OsZr PdRuY 2 PdSc PdTm Pd 2 Zn (H.T.)

PrZn PtSc Pti+ xZr (H.T.) PuRu ReTi RhSc RhSi (AI, 0) RhSm RhTb Rh 3 5 Ti 6 5 RhTm

RuSc RuSi RuTi RuTm Ru-V RuZr ScZn SmTI (?) SmZn SrTI TaTc

AuCu 3

S, I, 486

oc"-Ag3 Pt y-AgPt 3 AI-Be-Cu AICe 3 (H.T.) oc'-AICo 3 AI 3 Er AILa 3 oc'-AlNi 3 AI 3 Np AIPr3 AIPt 3 (?) A!Sm 3 AI 3 Tm Al 3U AIZr 3 Au 3 Cu AuCu 3 I oc'-Au 3 Li oc'-Au 3 Pt AuTi 3 (0 or N) AuV3 (0 or N) Bi 3 Sr Ca 3Pb CaPb 3 CaSn 3 CaT1 3 CdPt 3 (?) Cein 3 (?) "CePb/' CePd 3 CeSn 3 CoPt 3 oc-Co 3 Ta Crlr3 Cr3 Pt CrPt 3 Dyln 3 DyPt 3 DyTia (?) - rG a 3

Pt 3V (H.T. ) PtV3 (O) Pt:iY Pt 3 Zn PuSn3 Rh 3 Sc Rh 3 Ta Rh 3 Th Rh 3Ti Rh 3U Rh3 V Rh 3 Zr Ru 3 U Sn 3 Th Sn 3 U ThT1 3 TiZn 3 Tl 3 U Tl3 Y Tl 3 Yb VZn3 (O ?)

- rln 3

rPd,,

ln 3 Y

In 3 Yb ln:iZr ( ?) 1rMn 3

Ir3Nb Ir3 Ta (?) Ir 3 Ti Ir3 U Ir3 V Ir3 Zr LaPb 3 LaPd 3 LaSn 3 LuPd 3 MgPt 3 MnNi 3 Mn 3 Pt MnPt 3 Mn 3 Rh MnZn 3 NaPb 3 NbRh 3 (?) Nb 3 Si NbZn 3 NdPb 3 NdPd 3 NdSn 3 Ni 3 Pt Ni 3 Si PbPd 3 Pb 3 Pr PbPt 3 Pb3PU Pb 3 Th (?) Pb 3 U (?) Pb 3 Y (Pd 0 •5 Ru 0 •5)aTa Pd3SC Pd 3 Sn (?) Pd 4Th Pd 4U Pd 3 Y PrSn 3 Pt 3 Sc Pt 3 Sn P t 3Ti

·P4

0 3Re

D09 Pm3m Origin at centre (m3m) . Equivalent Positions Re: 1 a m3m 0,0,0. 0: 3 d 4/mmm ½,0,0; 0,½,0; 0,0,½.

S, II, 31

Cu 3 N O 3Re

,·;>5

Pm3m Ll2 Origin at centre (m3m). Equivalent Positions Au: 1 a m3m 0,0,0. Cu: 3 C 4/mmm 0,½,½; ½,0,1-; ½,-½-,0.

Fe 3 Ga Fe 3 Ge (H.T.) FeNi 3 FePd 3 Fe3 Pt FePt 3 Ga 3 Ho Ga 3 Lu GaNi 3 GaPt 3 Ga 3 Tm Ga 3 U Gdln 3 GdPb 3 GdPd 3 GdT1 3 ( ?) GeNi 3 Ge 3U Hf3 Ir (?) HfRh 3 HgTi 3 (H.T.) Hg3 Zr Holn 3 HoPd 3 HoPt 3 In 3 La (?) InLa 3 ln3LU In2-sMg InMg 3 (H.T.) ln 3 Pr (?) ln3PU InPu 3 In 3 Tb ln 3Th lnTi 3 In 3 Tm In 3 U

C LASSIFICATION OF THE STRUCTURES OF META LS AND ALLOYS

T bZn TcTi TcV TeTh TiZn TlY TmZn YZn

Fe 4 C

P43m Origin at 43m. Equivalent Positions Fe: 4 e 3m x,x,x; x,X,X,).. C: 1 a 43m 0,0,0.

K, I , 66

CFe 4 Co 4 N Fe 4 N Mn 4N

CaTi0 3

E21 Pm3m Origin at centre (m3m). Equivalent Positions Ca: 1 a m3m 0,0,0. Ti: . 1 b m3m -},½,½. 0: 3 C 4/mmm 0,½,½; ½,0,½; ½d-,0. AgMo 3 N AJ CFe 3 A ICMn 3 Al , P t 3 (?) A l T i3 A l Ya Al-N -Ni (?) B 0 . 6 InNi,i BaH 3 Li Co- 25CoaGe Co -15Coaln C 0 • 7 Co 3 So C 1.0 Co 3 Zn C 0 . 45 Fe 3 Ge C. Fe3In CFe 3 Sn C. Fe 3 Zr CGaMn 3 CGeMn 3 C 0 • 1 5 GeNi 3 Co. 5 InNi 3 C.InPt 3

, I

)

;;-

cP~6

y-Mo 3N 2

cP6

Cu 2 0

S, I, 300

CinTi 3 CMg 6 Pt1 8 CMna•15Sno•s5 CMn 3 Z n o-7 Ni 3 Zn , PbPt 3 -P t-Sn CTi 3 Tl Co. 2.5N 15Zn,2. 5 Cr 3 G a N CuMn 3 N Fe 3 NNi Fe 3 NPd Fe 3 NPt Fe3 NSn GaMn 3 N H 3 LiSr In21-9N12-4Ni6s·1 InNTi 3 TN-Ni-Zn NTi 3 TI

Pm3m C3

Pn3m from centre (3m).

Origin at 43m at ¾,¼,¼ Equivalent Positions Cu: 4 b 3m ¼,¼,¼; ¼,¾,¾; ¾,¼,¾ ; ¾,¾,¼0: 2 a 43m 0,0,0; ½,½,½-

??

S, I, 153

57

58

CLASSIFICATION O F THE · STRU CTURES OF METALS AND ALL OYS CLASSI FICATION O F THE STRUCTURES O F METALS AND ALLOYS

cP7

CaB 6 D21 Pm3m S, II, 37 Origin at centre (m3m). Equivalent Positions C a : 1 a m3m 0,0,0. _ _ B: 6 f 4mm x,½,½; ½,x,½; ½,½,x; x,½,½; ½,x,½; ½,½,x. B 6Ba B 6 Tm B 6 Ca BGY B 6Ce B 6Yb BGD y

cP8

W 3 O({3-W)

Pm3n S, II, 6 Originally attributed to {J-W. This h a s since been shown to be the oxide, W3 0, h a ving a random distribution of atoms. Origin a t centre (m3). Equivalent Positions Atom I : 2 a m3 Atom II: 6 C 42m

B 6E r

AIMo 3 AlN b 3 "AIV,1 AsV3 A uN b3 AuNb (\Os AuTa 3 AuTi3 AL1V3

B 6 Eu B 6 Gd B6H o B 6 La B 6 Lu B 6 Na B 6 Nd B 6 Pr B 6P u B 6 Sc B 6Si (?) B 6 Sm B 6 Sr BG Tb B 6Th

cP8

FeSi

B20

Au

.I

4 4

a a

3 3

Ni: Sb: S:

GaPt GeRu HfSn HgPd MgPt MnSi NiSi (?) OsSi ReSi RhSi RhSn RuSi

Cu 3 NbS4 Cu 3 NbSe• Cu 3 NbTe, Cu 3 S4Ta Cu 3 Se4Ta Cu 3 Se 4V Cu 3TaTe 4 Cu 3Te 4V

I !

I

( 1

S, ID, 94

F01

ow.

PtTi 3 PtV3 RhV 3 SbTa 3 a -SbTi 3 SbV3 SiV3 SiW3 SnTa 3 SnV3 SnZr3

PbV3 Pd V3

P21 3 1

Equivalent Positions

a s above.

P43m AsCu 3S 4 P43m Cu 3S 4V Origin a t 43m. Equivalent Positions V: I a 43m 0,0,0. Cu: 3 c 42m 0,½,½("). s: 4 e 3m x,x,x; x,x,xft .

NiSSb

Mo-Tc Nb3 Os Nb 3 Pb Nb 6 PdPt Nb 6 PdRh Nb 3 P t Nb 3 Rh Nb 6 R hRu Nb3 Sb Nb3 Sn NiV3

a xes.

x,x,x; ½+ x,½- x,x; x,½ +x,t-x; ½- x,x,½+x.

~Al 4 GePd 5 Al 0 •5 NiS 0 • 5 Al 3 Pd 4 Si A!Pt AuBe Co 4Ga 3Ge CoSi CrGe CrSi FeSi Ga 6 GeNi 7 ~GaGe 4 Rhs GaPd

cl-'12

GeNb3 GeV3 HgTi 3 H gZr 3 InNb3 IrMo 3 I rNb3 IrTi 3 IrV3 Mo3 O M o 3 Os bo-5 M o 3 Pt Mo 3 Si M o 3Sn

Origin on 3, h a lfwa y betwee n thr ee p a ir of n o n- in tersecting 2

Origin o n 3, halfwa y between three p a irs of non-intersecting 21-axes . Equivalent Positions Fe: Si :

r3

BiNb,i dV 3 CoV 3

AC, 1, 212

0,0,0; ½,½,½¾,0,½; ½,¼,0; 0,½,¼; ¾,0,½; ½,¾,0; 0,½,¾-

Cr3 Ga Cr3 Ge C r3 Ir Cr 3 O r3 Os Cr 3 Pt r3Rh r 3R u

BM a

P21 3

59

AI5

4

4 4

a 3 x,x,x ; ½+x,½-x,x ; x,½+x,t - x; t - x,x,½+x.

a a

3 as a bove. 3 as above. AsNiS IrSbTe (stoichi ometric) NiSSb AsPd S NiSbSe AsPdSe PRhSe BiirS PdSSb Bil rSe PdSbSe BiNiSe PtSSb BiPdSe PtSbSe BiPtSe RhSSb BiP tTe RhSbSe BiRhS BiRhSe IrPSe IrSSb IrSbSe

FeS 2 C2 Pa3 S, I, I 50 Origin at centre (3). Equivalent Positions Fe: 4 a 3 0,0,0; 0,½,½; ½,O,.½; ½,½,0. S: 8 c 3 x,x,x ; ½+x,½-x,x; x,½+x,½- x; t - x,x,½+x ;

x,x,x; ½-x,½+x,x; x,½- x,½+ x; ½+x,x,t - x. AsCoS (H.T.) AsCoSe AslrS AsirSe ( ?) AsirTe (A , ) 2Ni A Ni e

AsPPt As 2 Pd AsPdSb As 2Pt AsPtS A Rh A R h e (?)

AsRhTe AuSb 2 BiirTe B.iPdTe a-B i,Pt ( .T. DiPt b Ullll)T

-

,, 60

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

C 2 Ca IV (?) OsTe 2 C 2La (H.T.) (?) P 2 Pt CoPS PRhS (?) CoS. PdSb 2 CoSe 2 PdSbTe (?) FeS 2 PtSb 2 IrPS (?) PtSbTe (?) MnS 2 RhS 2 MnSe2 RhSbTe (?) MnTe 2 RhSc NiPS RhTe 2 (L.T.) NiS 2 +x RuS 2 Ni Se. RuSe 2 OsS 2RuSeTe OsSe 2 RuSn 2

cP12

cP20

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

RuTe 2

cP36

d

cP52

Al(l): Al(2):

AI 2CM0 3 AI 2CNb 3

c l'64

c P36

x,x,x; x,X,X; .i,x,.i; X,X,x.

as above. as above. x,x,z; z,x,x; x,z,x; X,x,Z; z,x,X; X,z,..i; x,X,Z; z,.i,.i; x,i,X; X,.i,z; Z,.i,x; x,z,x.

as above. as .above.

GeK P43n Origin at 23. Equivalent Positions Ge(l): 8 e 3 x,x,x; x,.i,X,);

Ge(2):

24

K(l): K(2):

8 24

I

i

3 1 CsGe CsSi e

+x,½+x, + x; ½+ x,-l- x,-} -x!) . x,y,z; z,x,y; y,z,x; x,y,z; z,x,y; y,z,.x; x,y,z; z,x,y; y,z,x; x,y,z; z,,i,y; y,z,x; ½+x,½+z,1"+Y; ½+Y,½+x,½+z; ½+z,½+Y,½+x; ½+x,½-z,½ -y; ½+Y,½-x,½-z; ½+z,-}-y,-}-x; ½-x,½+z,½-y; ½-Y,½+x,½-z; ½- z,½+Y,½- x; ½-x,½-z,½+y; ½-y,½-x,½+z; ½-z,½-Y,½+x.

i

pd17Se15

l

ZAC, 313, 90

GeK GeRb KSi RbSi

Al 2CTa 3

AuZn 3 (L.T.) Pm3n Pm3n ,8-H 3U BaHg11 Pm3 m GCI, 82,679 Origin at centre (m3m). Equivalent Positions Ba : 3 d 4/mmm ½,0,0,). Hg(l): 1 b m3m ½,½,½Hg(2): 8 g 3m ± (x,x,x); ± (x,x,x!)). . I-lg(3): 12 mm ± (0,x,x!)); ± (0,x,x; x,0,x; x,.x,0). H (4): 1 j mm ± ( ,x,xr\); ±(½,x,x; x,½,x; x,x, ).

3m m

I

CRe2W 1

cP32

e

i

x,0,0; 0,x,0; 0,0,x; x,0,0; 0,x,0; 0,0,x.

x,½,½; ½,x,½; ½,½,x; .i,½,½; ½,.i,½; ½,½,.i.

Al4CU9

MC, 94,247 Al 2 CMo 3 Origin on 3. Equivalent Positions Al: 8 c 3 x,x,x; ¾- x,¾ - x,¾ - x; ½+x,½-x,x;

C:

4 12

S, HI, 57

Co 5 Zn 21 Y1Cu-Ga Li10Pb 3 (?)

BiCoZn (L.T.) T C-Cr-Fe-W Cu 65 Ge2,Ni1s y-Cu 5 Si ,8-Mn

Mo:

P43m

Al4CU9

Origin at 43m. Equivalent Positions Cu(l): 6 f mm Cu(2): 6 ~ g mm Cu(3): 4 e 3m Cu(4): 4 e 3m Cu(5): 4 e 3m Cu(6): 12 i m

¾-x,¾+x,¾+x; x,½+x,½-x ; ¼+x,¼ - x, ¾+x ; ½-x,x,½+x; ¾+x,¼+x,¾-x. 2 ¼,x,¼+ x; ¾,x,¾+x ; t,½+x,¾ - x; -i,½-x, ¾-x ; ¼+x,t,x; ¾+ x,J,x; ¼-x,t,½+x; ¾-x,t,½-x; x,¾+x,J; x,¾+x,¾; ½+x,¾-x, f; ½-x,¾-x,j.

x,½+x,½-x; ½-x,x,½+x; ¾- x,¾+x,¼ + x· ¼+x,¾-x,¾+x; ¾+x,¾+x,-¼-x. 12 d 2 t,x,t+x; t+x,t,x; x,¾+x,¼; ¾;x,¾+x; ¾+x,},x; .x,¾+x,¾; -M+x,¾ - x; ¾-x,t, ½+x; ½+x,¼-x,¾; -i,½-x,¾ - x; ¾-x,-~-, ½-x; ½-x,¾-x,f. 4 a 3? ¾,¾,¾; ¾,½,¾; -i-.i,¼; -A-,¾,l

Pm3

AlsCu 6Mg ( ordered)

,8-Ag3 Al (L.T.) ,8-A1Au 4 (L.T.) Au 9 Nbu

cP24

Cd 11 Pu Cd11Sm Hg11 K Hg11 Rb Hg11 Sr

cP39

,B-Mn Al3 P41 32 S, II, 3 Origin on 3, at ¼translation from each of three non-intersecting 41 axes and three nonintersecting 21 axes. Equivalent Positions Mn(l): 8 c 3 x,x,x; ¾-x,¾ -x,¾- x; ½+x,½- x,x; Mn(2): 12

BaHg11 Cd 11Ce Cd 11 La Cd 11 Nd Cd 11Pr

Origin at centre (m3m). Equivalent Positions Pd(l): 1 b m3m Pd(2): 3 d 4/mmm Pd(3): 6 e 4mm Pd(4): 24 m m Se(l): Se(2): Se( ):

6

I

4mm mm

j

mm

12 '12

Pm3m (P43m AC, 15, 713 or P432m)

½,½,½-

½,0,0,). ± (x,0,0),).

±(x,x,z)!); ±(x,x, z)!); ± (z,.x,,i)ft; ± (x, z,x) ± (x,~-.t )n. ± (0 ,x,x)!); ± . ( .,

61

62

AgRh 8S 8 PdRh 8 S 8 Pd 17 Se15 Rh11S1s

cP64

cP96

, ~F8

P43n

Li 7MnN 4 Li 7VN4

V

cF4

Fm3m Al Cu Origin at centre (m3m). Equivalent Positions (0,0,0 ; 0,½,½; ½,0,½; ½,½,0) + Cu : 4 a m3m 0,0,0. Ac Ag Ag3 Pt (H.T.) Al Am (H.T.) Au a Bi-Tl a -Ca y-CdLi 3 y-Ce oc-Ce (L.T.)

X

cF8

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

SZn

B3

{3-Co Cu y-Fe Ir /3-La (H.T.) La (H.P.) Li (L.T. strain induced) MgPd 3 y-Mn (H.T.) N d (H.P.)

S, I, 13

NdT13 Ni Pb Pd Pr (H.P.) Pt cl-Pu (H.T.) Rh a -Sr a -Th Yb

S, I , 76

F43m

Origin at 43m. Equivalent Positions (0,0,0; 0,½,½; ½,0,½; ½,½,0) + Zn: 4 a 43m 0,0,0. 4 C 43m .Ll..l. 4,4,4 • S: A!As AIP A!Sb AsB AsGa Asln As2S4 Sr As 2SnZn (H.T.) BN BP (L.T.) BePo BeS BeSe BeTe /3-CSi CdPo CdS CdSe CdTe CuFeS 2 (H.T .)

X Origin NaCl

Bl

CuGe 2P 3 Cu 2G eS3 (H.T.) CuP3 Si2 Cu 3S 4Sb Cu 3 SbSe4 Cu2Se4 Sn D y 2Se 3 Dy 2Te 3 E r 2Sea Er2Te3 GaP GaSb Ga2Se 3 Ga2 Te3 GeMgP2 GeS 4 Zn 2 GeSe4 Zn2 HgS HgSe HgTe



InP In 2Sa (L.T.) (?) InS b In 2Te 3 (H.P.) Lu 2 Sea /3-MnS {3-MnSe OZn PoZn SSn SZn Sc 2Se 3 Sc 2Te 3 Se3 Y2 Se 3Yb 2 SeZn Te 3Y 2 TeZn

S, I, 72

Fm3m

Equivalent Positions (0,0,0 ; 0,½,½; ½,0,½ ; ½,½,0)+ N a: 4 a m3m 0,0,0. Cl: 4 b m3m ½,½,½AmO AsCe AsD y AsEr AsG d AsHo Asln II (H.P.)

)

I

a t centre (m3m).

AgBiS 2 (H.T.) AgBiSe2 (H .T.) AgBiTe 2 (H.T.) AgS 2Sb (H.T.) AgSbSe 2 Agl0Sb 29Te 5 , (H.T.)

I

AsLa AsNd AsP r AsPu AsSc AsSm AsSn

· LaSb CaS AsTb CaSe LaSe 0 •96 AsTh CaTe LaTe AsTm LuN CdO AsU CdS II (H.P.) LuS AsY CdSe II (H.P.) LuSb AsYb CdTe II (H.P.) MgO Bo,1C1.9Moo,a CeH 0. 7 (?) MgS (H.T.) MgSe BHf CeH 0.2 0Sb CeN MnO BPu a -MnS BTi (?) CeP BZr (H.T.) CeS a -MnSe CeSb MnTe (H.T.) BaO CeSe BaPo N 1±xNb CeTe N 0.9N bO 0.1 BaS CoO NNd BaSe NNp CrN BaTe DyN NPr BiCe DyP BiDy NPu DyS NSc BiEr DySb NSm BiHo DySe BiKS 2 NTb N 1 _,Tc DyTe BiKSe 2 BiLa ErN NTh N 1 _,Ti ErP BiLiS 2 ErS NTm BiNaS 2 NiNaSe 2 ErSb NU N 1_,V ErSe BiNd ErTe BiPr (No·62Oo·as)W N 1 _,W BiPu EuN EuO NY BiSc BiSe 2TI EuS NYb EuSe BiSm NZr BiTb EuTe NbO BiTe (?) FeO (H.T.) NdP BiTm GdN NdS BiU GdP NdSb GdS BiY NdSe CDy 3 GdSb NdTe NiO (H.T.) GdSe 0.95 CEr 3 GdTe NpO CGd 3 CHf GeTe (H.T.) · 0Pa GeTh CHo 3 OPu HK(?) OSm CLu 3 oc-C 2 Mo 3 (H.T.) HLi OSr C 1_, N b HNa OTa CNp OTi' )( H Pd CPu HRb OU C 2ReW (H.T.) HTh (?) ov CSc HfN OZr HgPo PPr C(Sco-2sTio. 75) HoN CSm 3 PPu CTa HoP PSc HoS PSm CT b3 CTh HoSb PTb C 1 _,Ti HoSe PTh PTm CTm 3 HoTe InP II (H.P.) PU cu C 1 _,V InSb II (H.P.)? PY CY3 ln 4SbTe 3 PYb CYb 3 InTe II (H.P.) PZr (H.T .) CZr LaN PbPo CaO LaP Pb p aP a

63

;,1/

64

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

C LASSIFICATION OF THE STRUCTURES OF METALS AN D ALLOYS

PbTe PoSr PrS PrSb PrSe PrTe (?) PuS PuTe S 2SbTl SSm SSr STb STh (0) (?) SU SY SYb SZr SbSc SbSn SbTb SbTh SbTm

cFS

SbU SbY SbYb SeGd SeSm Se 1.0 5Sm SeSn SeSr SeTb SeTh (0) SeTm SeU SeY SeYb SeZn SmTe SmTm Sn 1 _,Te SrTe TbTe TeTm TeU

Fd3m

A4

C (diamond)

TeY TeYb

a 43m

8

cF12

;:, 0

r

0,0,0; ¼,¼,¼-

Ceo;

CmO 2 CoMnSb C0Si 2 CrLi9 N 5 C u 9S5 (H.T.) DyH 2 ErH 2 (?) Ga 2 Pt (H.T.) GdH 2

Ge Si o:-Sn

cFlO ch'12

t3-Ni 3 S 2 (H.T.) (?) Cu 5FeS 4 (H.T.) Clb AgAsMg

F43m Fm3m F43m

Origin at 43m. Equivalent Positions (0,0,0; 0,t,½; ½,0,½; ½,½,0) +

As : Ag: Mg:

4 4 4

a 43m 43m C d 43m

0,0,0.

¼,¼,. ¾,¾,¾ ♦

AgAsMg AIBBe AsLiMg BiCuMg BiLiMg BiMgNi BiPdTe CdCuSb CoMnSn (?) CoSbTi CoSbV CuMgSb C uMgSn uMnSb

H . .)

FeSbTi FeSbV LiMgSb LiNZn LiPZn MgNiSb MnNiSb MnPdSb (?) NiSbTi NiSbV

m

,, ZM, 33,391

Fm3m Cl Origin at centre (m3m). Equivalent Positions (0,0,0; 0,½,½; ½,0,½; -t,½,0) + Ca: 4 a m3m 0,0,0. F: 8 c 43m ¼,¼,¼; ¾,¾,¾• CaF 2

AcH 2 ( ?) AgAsZn Al 2 Au Al,.5CU4Li A!GeLi AI 2 Pt AmO 2 As 3 GeLi 5 AsKZn As,Li 7 • 33 Mn 0 • 6 7 As3 Li 5Si As 3 Li 5Ti As 4 Li 7 V AsLiZn AsMgNa (?) AsNaZn AsRh 2 (L.T.) AuGa 2 Auln. BBe 2 Be.C o-Bi20a C 2 U (H.T.) CeH.

S, I, 19

Origin at 43m, at ½,¼,¼ from centre (3m). Equivalent Positions (0,0,0; 0,½,½; ½,0,½; ½,½,0) +

C:

I;

i cF16

GeLi 9 N 3 O 2 GeLi 5P 3 GeMg 2 Hl•64Hf (?) H 2 Ho (?) H 2 La H 2 Lu (?) H 2 Nb H 2 Nd H 2 Pr H 2Pu H 2 Sc H 2 Sm H 2 Tb H 2Th H 2 Tm H 2 V (?) H 2Y H 2 Yb (?) H 3 Zr 2 (L.T.) (?) Hf0 2 ( ?) In2Pt (H.T.) Ir.P IrSn 2 lr 3Te 8 K 20 K.S K ;se K 2 Te LiMgN LiMgP (?) Li 7 MnP 4 Li 9 N 3 O 2Si Li 9 N 3 O 2 Ti

Li 2O Li 5 P3 Si Li 5 P3 Ti Li 7 P 4 V Li.S Li;se Li 2Te Mg 2 Pb MgPu 2 Mg 2Si Mg 2 Sr N 2 Pa N 2U Na 20 Na 2S Na 2 Se Na 2 Te NiSi 2 NpO 2 0 2Pa 0 2 Po OuPr 6 O 2 Pr O2PU ORb 2 O1•s1Tb 0 2Tb O,,Th

o;u

0 2 Zr (H.T.) PRh 2 PtSn 2 RbS 2

L21 Fm3m Origin at centre (m3m). Equivalent Positions (0,0,0; 0,½,½; ½,0,½; ½,½,0) + Al: 4 a m3m 0,0,0. Mn: 4 b m3m ½,½,½Cu: 8 C 43m ·¼,¼,¼; ¾,¾,¾. AgAuCd 2 AgAuZn 2 .• A!Ag 2 Mn A!Co 2 Hf A!Co 2 Nb A!Co 2 Ta A!Co 2Ti A!Co 2Zr AJCu 2 Hf A!Cu 2 Mn A!Cu 2 Zr AIHfNi 2 A!NbNi 2 A!Ni.,Ta AINi ;Ti (?) A1Ni 2Zr ( ?)

S, I, 148

S, I, 488

{3' -AuCuZn 2 (?) C0Cu 2 Sn Co 2 GaMn (?) Co 2 GaNb Co 2 GaTa Co 2 GaTi Co 2 GaV Co 2Gej\fo Co 2GeTi Co 2 MnSi (?) Co 2 MnSn Co 2 SiV Co 2 SnTi Co.S nV ( ,~0 • 6:iNi0 •37 )Cu 2 Zn (H.T .) K. b

65

66

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

Cu 2 FeSn (H.T.) Cu 2 GaMn (H.T.) Cu. InMn eu;1nTi (?) Cu 2 MnSb Cu 2 MnSn (H.T.) (Cu, Ni)aSb (?) Cu 2 NiSn (Cu, Ni)aSn (?) Fe 2 GaTi Fe 2 GaV Fe. SnTi GaHfNi 2 GaMnNi 2 GaNbNi 2 GaNi 2Ta GaNi 2Ti GaNi 2 V GeMnNi 2 lnMgNi 2 InMnNi 2 InNi 2Ti (?) KNa 2Sb LiMg2Tl MgNi 2Sb MgNi 2 Sn MnNi 2 Sb

cF16

MnNi 2 Sn MnPd 2 Sb (?) Ni 2SnTi (?) Ni 2SnV

cF16

cJ,'24

NaTI

B32

InLi InNa Li 2 MgZn cl" -LiZn NaTl Rb 3 Sb

AlLi A!Li 2 Mg BiCs 3 (?) y-CdLi CeMg 3 (?) Cs 3 Sb (?) GaLi

AC, 3, 34 F43m or F23 Positions in F43m. Origin at 43m. Equivalent Positions (0,0,0; 0,½,-½-; ½,0,½; ½,½,0) + Au: 4 a 43m 0,0,0. Be(l): 4 c 43111 ¼,¾,¼Be(2): 16 e 3m x,x,x; x,x,.i; x,x,x; x,x,x.

x =-iAuBe5 · Au 5 Ca Be 5C o (?) Be 5 Pd . Cu 5 U HfNi5 Ni -U N i;zr

F43m

S, II, 22 Fm3m D03 BiF 3 Origin at centre (rn3rn). Equivalent Positions (0,0,0; 0,½,½; ½,0,½; ½,½,0) + Bi: 4 a m3m 0,0,0. F(l): 4 b m3m ½,½,½F(2): 8 c 43m ¼,¼,¼; ¾,¾,¾A1Fe 3 ,B'-AuCuZn 2(?) AuLi 3 (?) BiCs 3 (?) ,8-BiK 3 (H.T.) BiLi 3 BiRb 3 (?) Ca 31n (?) Cd 3Ce Cd 3 Nd Cd 3 Pr Cd 3Sm CeHa-r CeMg 3 (?) Cs 3 Sb (H.T.) (?) (Cu, Ni)aSb (?) (Cu, Ni)aSn (?) ,8-Cu 3 Sb (H.T.) y-Cu 3 Sn (H.T.) Fe 3Si GdMg 3

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

H 3La H 2 • 75Pu H2-ssYb HgLi 3 LaMg 3 Li 2 MgPb Li 3 Pb Li 3 Sb Mg 3 Nd (?) Mg 3 Pr (?) Mg 3 Sm Mn 3 Si Ni3 Sb (H.T.) Ni 3Sn (H.T .)

Fd3m

Origin at 43m at t,'t,t from centre (3m). Equivalent Positions (0,0,0; 0,½,½; ½,0,½; ½,½,0) + Na: 8 a 43m 0,0,0 ; ¼,¼,¼Tl: 8 b 43m ½,U·; ¾,ii:,¾-

S, III, 19

Cu 4InMg Cu 4 MnSn

Cu 2Mg Cl5 Fd3m S, I, 490 Origin at 43m, at ¼,t,t, from centre (3m). Equivalent Positions (0,0,0; 0,½,½; ½,0,½; ½,½,0) + Mg: 8 a 43m 0,0,0; ¼,¼,¼Cu: 16 d 3m ¾.-U; ¾.-a·,¾;¾.¾,¾;¾,¾,¾cl-AgBe 2 Ag 2 Na ~A1Be4 Fe A1Be 4 Mn ~ A1Be4 Ni (?) Al. Ca A1;ce A!Cu 3 Mn 2 Al 2Dy Al 2 Er Al 2 E u Al 2 Gd Al 2Ho Al 2La Al 2 Lu T-(Al,Mn) 2Th Al 2Nb Al 2 Nd Al 2 Pr Al 2 Pu Al2SC Al 2 Sm Al 2Tb Al. Tm A(U Al.,Y Al;Yb Au;T3i

Au 2Na Au 2Pb BaPd 2 BaPt 2 BaTh. Be1.z(:00 • 8Mn Be 2Cu Be 5 Fe Be 3 _ 13 Mn Be 2Nb Be 2Ta Be. Ti Bi;cs Bi 2K Bi 2Rb

Calr 2

CaPd. CaPt; CaRh 2 CdCu 1 •5 Ga 0 .s CdCu 1 . 5 Geo·s CdCuln CdCuZn CeC0 2 CeFe.

eir 2oM • N, 2 -

CeOs 2 CePt 2 CeRh 2 CeRu 2 Co 2Dy Co 2Er Co 2 Gd Co 2 Hf Co 2 Ho Co;Lu co;Nb Co 2Nd Co 2 Pr Co 2 Pu Co 2 Sc Co 2 Sm ,8-Co 2Ta (H.T.) Co 2Tb a-Co 2Ti Co 2Tm Co 2 U Co 2 Y

Co.,Zr Cr.-Hf ei-;Nb (L.T.) r 2Ta (L.T.) r 2T i ( .T .) r2Zr

67



'7 CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

68

CLASSIFICATION OF THE STRUCTURES OF METALS AND ALLOYS

c1,24

Cu 1 . 5 Ga 0 • 5 Mn Cu 6 ln 3 Mn Cu 2Mg CuMnZn CuTaV DyFe 2 Dylr 2 DyMn 2 DyNi 2 DyPt 2 DyRh 2 ErFe 2 Erlr 2 ErNi 2 ErRh 2 E ulr 2 Fe.Gd Fe;Hf (L.T.) Fe 2H o Fe 2 Lu FeNiTa Fe. Pu Fe;sm Fe 2Tm Fe 2 U Fe 2 Y Fe. Zr Ga0 • 4 MgNi 1. 6 Gdlr 2 GdMg 2 GdMn 2 GdNi 2 GdPt 2 GdRhzGdRu 2. Ge 0 •• MgNi 1 • 6 Ge 0 •44 MnN i1 •55 Hf2MO {L.T.) HfV2 HfW2 Holr 2 HoMn 2 H0Ni 2 HoPt 2 HoRh 2 In 2 Th (?)

Ir 2 La Ir 2 Lu Ir 2 Nd Ir. Pr Ir;sc Ir. Sr Ir;Tb Ir 2Th Ir. Tm

rr;u

Ir2 Y Ir 2Zr LaMg 2 LaNi 2 LaOs 2 LaPt 2 LaRh 2 LaR u 2 LuNi 2 LuRh 2 Mg 2 Nd MgNiZn Mg 2Pr Mg 2 Sm Mg 2Th {H.T.) MnNi 1 •55Si 0 • 46 Mn.,Pu M n~.5 TaV1 • 5 Mn 2Tb Mn 2U Mn 2 Y Mo.Zr NdNi2 NdPt 2 NdRh 2 NdRu 2 Ni 2Pa Ni 2Pr Ni2SC Ni.Sm Ni:Tb Ni:Tm Ni;Y Ni.,Yb os;Pr Os 2Th

cll32

Ca 7Ge

Fm3m

cJl34

Ca 33 Ge

Fd3m

cl149

S 4 Zrs(?)

Fd3m

cF52

B 12 U

D21

Fm3m

cF52

Os 2 U Pd.Sr PrPt 2 PrRh 2 PrRu 2 Pt 2Sm Pt 2Sr Pt 2 Tb Pt 2 Y PuRu 2 PuZn 2 Rh 2 Sr Rh 2Tb Rh 2Tm Rh 2 Y Ru 2 Sm Ru 2 Th V2Zr W 2Zr Zn 2 Zr

cF53

Al 2 S 3

cF56

Al 2 MgO 4 H1 1 Fd3m S, I, 350 Origin at 43m, at ¼, ½,¼, from centre (3m) . Equivalent Positions (0,0,0; 0,½,-½; ½,0,½ ; ½,½,0) + Mg: 8 a 43m 0,0,0; ¼,¼,¼Al: 16 d 3m i,i,i; i,i,i; i ,i,i ; i,i,i0: 32 e 3m x,x,x; (x,x,x!)); t - x,t-x,¼-x ; (¾-x,

Fd3m

¼+ x,t+x!)). Al 2CrS 4 Al 2S4 Zn (L.T.) Caln 2 S4 CdCr 2Se, Cdln 2 S4 C0Cr 2 S4 Coln 2 S 4 Co 2NiS 4 Co 3 O 4 C0Rh 2S4 Co 3 S4 Co 3 Se 4 Cr 2Cus. Cr 2CuSe 4 Cr 2CuTe 4 Cr 2FeS 1 cF64

cF68

f-

--i /

CRASP, 229,

666

½,X,.i ; .i,½,X ; .i,.i,½; ½,X,x ; x,½,.i, ; .i,x,t .

CrGa 2S4 Cr 2HgS 4 Crln 2 S4 Cr 2 MnS 4 Cr 2S 4 Zn Cr 2Se 4 Zn CuRh 2S4 CuS 4 Ti 2 CuS 4 V2 Feln 2S4 FeLu 2 S4 FeNi 2S4 Fe 3 O4 FeRh 2 S4 Fe 3 S4 FeS 4 Sc2

FeS 4 Yb 2 Hgln 2 S4 In 2MgS 4 In 2MnS 4 In 2 NiS 4 Lu 2 MgS 4 Lu 2MnS 4 MgS4SC2 MgS 4Yb 2 MnS 4Sc 2 MnS 4 Yb 2 NiRh 2 S4 (?) Ni 3 S4 (L.T.)

Fm3m

C113S4Sb

D8 9

Fm3m Co9Ss Origin at centre (m3m). Equivalent Positions (0,0,0; 0,½,½ ; ½,0,-½-; ½,½,0) + Co(l): 4 b m3m ½,½,½ Co(2): 32 I 3m ±(x,x,x); ± (x,x,x1\) S(1): 8 C 43m ± (¼,¼,-¼) S(2): 24 e 4mm ±(x,0,0,))

AC, 15, 1195

Co 8 FeS 8 Co 8 NiS 8 Co 8 PdS 8 Co 8RhS 8 Co 8RuS 8 Co 0S 8 Co 0 Se 8 Fe 4 Ni 4 PdS 8 Fe4 Ni 4 RhS 8 Fe 4 Ni 4RuS 8 (Fe, Ni) 9 S 8

l

Origin at centre (m3m) . Equivalent Positions (0,0,0; 0,½,½; ½,0,½; ½,½,0) + U: 4 a m3m 0,0,0. B: 48 i mm ½,x,x; x,j'",x; x,x,½; ½,x,X; .i,½,x; x,.i,½; B12D Y B 12Er B12Lu B 12Sc fl, 1 T b

B12 Tm B12U B 12 Y B12 Yb B12Zr

c l

lm3m

r

lm3m

:,:

"'

'

-Gd

Density in g/cm 3

A2

i Ga metastable

6 6

N

1·5904

6 6

2 4 2

2·4823 2·5786 2·5393

~

lm3m Fm3m Im3m

r

"'

'0z s:.

2 P63 /mmc

m

~ r



2·484 2·691 2·730 2·788 2·68 2·87 2-90 3·17

3·5730 3·6360

0

0

"' 6·23

6·20

8

Cmca

8 Ga

8(f)

4

Cmcm

4Ga

4(c)

1549 0810 ±6 ±8 133

i I

7·884

2 P63 /mmc

I

~4·06

:-1.T.) :1262°C rd rhomboSm R.T. 8·92 fLP.) hedral 3-61 26·03 hex. cell (40 kb at 400°C & pressure rem oved) le cubic A4 25 5·6575 le tetragoAS R.T. 4· 884 2·692 nal ?kb ,e III tetragoR.T. 5·93 6·98 nal (formed >120kb ; retained when pressure removed)

1,

-Hf

/3 -Hf

"LT.) lg

hexagonal cubic rhombohedral

A3

24

3·1946

I

5·0511

R.T. ~3·50 (extrapolated) 2000 ~3-61 AlO 227°K 3·005 5°K 2·9863

CG=23 ·3°

R3m

~

8·00 4

2·4497 5·3267

0·551

"'

C

8 4

Fd3m 14 1 /amd

12

P4 3 21 2 P41 21 2

r >

-l

"'0 0

1-18

1·5811

A2

227°K 3·467 hex. cell lg II 77°K 3·995 tetragonal 2·825 (formed at high pressure; retained when pressure removed) -Ho hexagoR.T. 3·5773 5·6158 A3 nal cubic A2 /3 -Ho 'I.T.)

3

CG=70°32' CG= 70°44·6' 1·937 0·707 1·5698

~2·45

5·88

6 6 8

3·1273 13·28 3·1946

6

3·005

5-91

2 P63 /mmc

14·24

2

Im3m

1

R3m

14·492

4 Ge

4(a)

8 Ge

8(b)

0912 ±60 1730 ±37

> ...,

> 3784 ±51

2486 ±48

C

z

m

r

w :,:

"'z -l

> r :,:

..., > r ~

CA

14·70 · 14·77 6 6 8

3-4857 3·5773

2 14 /mmm 2 P6 3 /mmc 2

lm3m

>

z

;:;

:,:

~ > r

5 0

"'

00

'-'

...

TABLE 5 (co ntinued)

:x,

..

Element

in [r

K z-La

System

In A

StrucTemp. ture type

c/a rx or /3

oc

tetragonal

A6

cubic cubic

q-La I • "'300°C v-La cubic · ~ 870°C La(H.P .) 1bove D kb

I

b

I

C

R. T .

4.5979

4·9467

1·07586

4,2°K R .T. 78°K 5°K R. T.

4·5557 3·8389 5·247 5·225 3·770

4·9342

1·0831

Al

R.T.

A2

887

Al A2

double hexagonal c.p . cubic

a

Al

Li cubic A2 'Li Li Li hexagoA3 '. L.T.) nal Li cubic Al (strain induced pnase) t•L u hexagoA3 nal 1-Lu cubic A2 H .T.) Mg hexagoA3 nal

Interatomic CN distances in A 4 8

Density in g / cm 3

Mn

cu bic

A12

3'2512 3-3730

4 F41mmm :,.

Fm3m

-· z

4·26

8

2

l m3m

>

4

Fm3m

3·5031

2 2

5·98

5·093

J.637

5·5509

8

3·0397

6 6 12

3-111 3·11 6

6 6

3-4344 3·503 1

1-5846

0·533

3·20941

5·2105

1 ·6235

4

6 6

9·740

3·1970 3·2094

6·154

1·634

3·3066 3·6579

11 ·7992

3·2257

868°C

ab ,ve 50 kb rt. •

\Tp

lm3m

2 P68 /mmc

~

I 143m I

A2 La

25 R.T.

2·7311 2·6679 2·7252 3·71 58

6 6 8 6 6

3·767 3·768 2·8636 3·6279 3·6579

0·96601

20

P 4 132

4 2 2 2

Fm3m Im3m lm3m Im3m

2(a) 2Mn 8 Mn 8(c) 24Mn 24(g) 24Mn 24(g) 8(c) 8 Mn 12Mn 12(d)

I

317 356 089 061 206

I

I

042 278

> a: C

> ..,..

2 P63 /mmc s -5 33 6·999

I

~

2 Im3m 2 P63 / mmc

;

r.:

A2

883

4 ·1 3

8

Al

R .T. 50 k b

4·80

12

3·5238 6- 663

12 1 1 2 . 1 4 4 8 6 6

6·80

t"'

2

Im3m

4

Fm3m

4 8

Fm3m Pnma I 4 Np 4Np

"',: r.'

N l(H.P.)

N

Fm3m

12 8 8 8

->

2 P6 3 /mmc

58

A3


-,

1095 1134 20

-rd

lm3m Im 3m

,:

12

Al A2 A2 A2

N

-

4

cubic cu bic cubic cubic

rt. ·

->

6·155

y - Mn

(L .T.)

z

3·745

R.T .

5°K 5°K

I

12

6·3145

l

y

5·296

R .T.

N

I

4 P6 3 /mmc

4·41

20

X

6·18

3·2252

A13

l

I

3·739 3·770

12·159

cubic

N

Atoms p~!~t

6 6

20°K

R .T .

I

Dx

2·7145 4 ·524

R .T. 5·17 23 kb R .T. 5·29 atmos. press. 25 3·5100 20 3·5107 20 3·5092 78°K 3·111

25

Space group

12 8

/3- Mn 6- Mn M0

I

D .,

,"rt. -

Atomic positions

A

cubic orthorhombic

Al 20

/3- srp

tetragonal y - srp cubic o hexagon al w :1.ite P cubic Bl tck P orthorhombic

31 3

A2 A3

p H.P.) ,hombo- A7 hedral simple cubic 1

4·723

4·897

4·887

3·388

3·52 2·7353

4·319 1

238°K 22

7-18 3·3136 10·478

4·3763

R.T .

3·524

600 20

50-83kb

2-377 R. T. 120kb

0·6919 1·5790

rt.=

57·25 °

2 I 3 3 6

2·4919 19· 5 2-60 2·63 2·64 3·06 2·76 3·24 . 3·05 2·6754 2·7353 2'224 2·244

2· 70

120·45

...,

> ,:

4(c) · 1 036 4(c) 319

I

I

208 842

3 >

:t:

>

19·36 18.0 22·6

4 1 P 42 1 2

2Np 2 Np

2(a) 2(c)

2 Im3m 2 P63 /mmc

I 2·69

8

3·56

2

Cmca

I R3m

8P 2 P

~

I 375

,:

,,. >

8(/) 1101 68 108056 ±9 ± 28 2(c) 21

3·83

.:;,_.,,

00 O'I

TABLE 5 (continued)

Element

RedP Pa

)(_

Pb Pd Pm rx.-Po

/3-Po

System

Struc- Temp. ture oc type

a

b

I

I

3·238

cubic cubic

25 22 4°K

3-932 4·9502 3·8907 3·884

~10

3·345

~ 75

3·359 3·6725

La

R.T.

cubic /3-Pr above 798 °c cubic Pr (H .P.) >-40 kb cubic Pt monoclirx.-Pu nic

A2

821

I

At oms Point set

Dx

I

2·35 15·37

2· 38 3·238

. simple cubic rhombohedral

Dm

Space group

I

X

I

I

y

z

~

ti,

ll-3i

Al

Atomic positions

A I

3·925 Al

CN

C

cubic tetragonal

double hexagonal c.p.

et-Pr

c/a rx. or /3

Density in g/cm 3

Interatomic distances in A

A

In

8 3·212 2 3·238 (more accurately) 12 3·5003 12 2·7510

0·825

ti

3·2227

4·13

0

9·32

1 Pm3m

9·51

1 R3m

i ~

t'"

4 P63 /mmc

3·6401 3·6725 3·58

6 6 8

~

z

rx.=98 °13' 11 ·8354

)>

4 Fm3m 4 Fm3m

3·345

6

i

66 2 14 /mmm

6·64

i::

~

2 lm3m

)>

AI

R.T. 40kb

Al

20 21

3·9239 6·183

4·822 10·963

4 Fm3m

3·45

12

4·88

8

12 2·7746 4 within 19·77 /3=101 ·79° except range 1=5 2·57 to VIIl= 3 2·78

19·86

4 Fm 3m 16 P2 1 /m

I

~ ~

all atoms in 2(e) 345±4 767 ± 4 II 128±4 III 657±5 IV 025 ±5 V 473 ± 4 VI 328 ±4 VII 869 ± 4 VIII

162 ± 2 168 ± 2 340 ±3 457±3 618±3 653 ± 2 926±2 894 ± 2

I

i "'

'\

/3-Pu

s s s Sb

4 2 4 12

4·6370 3·33 4·701 3·638

cubic

A2

hexagonal cubic hexagonal orthorhombic

A3

20 5°K R.T.

5·70 5·585 2·760

4·458

1-615

Al A3

20 25

3·8044 2·7058

4·2816

l ·5824

monoclinic rhombohedral · rhombohedral hex. cell

24·8

A7

17·70

/3=92·13 ° /3=92·54° van- 2·79upwards ous except VIIVII= 2·59

320 470 465 500

cubic tetragonal cubic

Rh

7·859 7·824

Al b.c. f.c. A2

c5-Pu c5'-Pu

Ru

10·463 10·449

3·1587 5·7682 10· 162

orthorhombic

Re

9·284 9·227

235

y-Pu

c-Pu Ra Rb

190 93

monoclinic

8

10·4646 12·8660 24·4860

10·98

11·04

6 6 12 6 6 2

III IV V VI

VII

3·206 17·0 3·159 3·288 3·2788

10·92

R.T.

6·46

« =115°18'

25

4·5067

r.t. =57°6'27"

25

4·3084

11·247

4·2°K

4·3007

11 ·222

17·13

8 Fddd

15·92

4 Fm3m 2

15·99 16·48

3·151

4·94 4·837 2·741 21·03 21·04 2·760 2·6901 2·6502 2·7058 2·069 mean 2·037 1 ·96

/3=83 °16'

R .T.

34 12/m I II

4·46 4·489 8

~

8 Pu

2(a) 4(i) 4(i) 4(i) 4(h) 8(j) 8(j) 8(a)

387± 5 146 ± 4 337±4 082± 5 434±4 672± 5 500 220±3 145 ±3 268±2 108± 3 167± 3 150 ± 2 753 ± 4 origin at 2 2 2,_at -f,- , from 1

I

2 Pu

0,0,0;

2·906 3·351 2·902 3·343

ti ti

½.-½.½

)>

~

2 lm3m

~

2 lm3m

"'t;;

2 P63 /mmc

z

~

~

4 Fm3m 2 P6 3 /mmc 128 Fddd

t'"

i::

32 S 32 S 32S 32 S

32(h) 32(h) 32(h) 32(h)

8559 7844 7072 7862

48 P2 1 /a

6·688

0:,

?> ;;j

9528 0302 9799 9077

951E 0763 003 9 1293

"'~ f;;

z> ti

~

>

t"' t"'

6 R3 3 3 3 3 3 3

~

2 R 3m

2 Sb

2(c)

23 349

6

6 Sb

6(c)

23349

6

6 Sb

6(c)

23362

@ "'

00

-.J

:x: :x:

TABLE 5 (continued)

-

~

System

Element

I l-I.P .)

t~ 50 b b III

I

/J -Sc

se -Se

A c/a r1. or

a

R .T. 70 kb

2·986

I

b

I

/3

C

In teratomic CN d istances in A 6

R .T. 90 kb

3·369

5·33

1-58

6 6

3·299 3·369

hexagonal cubic >- 1334°C hexagonal monoclinic

A3

R .T.

3·3090

5·2733

1·5936

6 6

3·2560 3·3090

Dm_ \

D. 7· 6

7-7

25 R .T.

4·3656 9·05

4·9590 9·07

11 ·61

1-1 354 /3=90°46'

2 4 2

I

monoclinic

R .T.

1

Atoms

Ipornt. set

Pm3 m

12· 85

9·31

8·07

/3=93 °8'

2 P63 /mmc

~

4·8043

2·321 3·464 at values from 2·31 to 237

2

Im3 m

3

P3 1 21 P3 221 P2 1 /n

32

32

2 a t va lues from 2-30 to 2· 37

P2 1 /a

I 3 Se · 3(a)

217

all atoms in 4(e)

321 427 317 134 919 844 916 13 1 584 477 328 352 410 590 660 710

all atoms in 4(e)

--.... s s

cubic tetrago-

(H

s

( a 200 men

A4 AS

nal cubicb.c.

25 R .T. ?kb R .T.

=

y

X

I

2 P6 3 /mmc

A2 AS

Atomic positio:5 Space group

A

I

A3

/J -Se

D ensity in g/cm 3

2·986

hexagonal

l-I.P.)

t ~85 b C( -Sc

In

i

simple cubic

b ll

C(

StrucTemp. ture oc type

5-4307 4·686

2·58 5

0·554

4 4 2

6·636

2·3516 2·37 2·38

8 4 2·55

2·55

16

6 6

3·587* 7·53 3·629*

7·54

3

4 2 4

3·022 3·1 81 2·8099

7·28

>.)

~

237 357 535

486 664 637 820 686 733 520 597 315 227 398 580 831

556

'":

521 318 229 134

~37 2~ 240 050

157 1-tl 368

840

754 479

334

-

Fd3m l 4ifamd Ia3

16 Si

16(c) 1003±8

R 3m

2Sm

2(c)

I

ss.

released

s /J Cl

s (H 2

rhombo hedral hex . cell tetragonal cubic tetragonal b, b.c.

8·996

AS A4

25

C(

3·621 5·83 15

26·25 3·181 4

6·4892 20 314 3-81 39 kb

= 23 °13' 0·5456

3·48

5·765

0·91

8 2

s

?)

cubic b. c.

a -

cubi c

Al

/3

bexa gonal cubic cubic

A3

s (H a 3 T,

a

/3

A2 A2

I

I

I

9 4 14 1 /amd Fd3m

2 Sn

3

(H

2/9

0,0,0 ;

½,½,½

I

R .T, 110kb 6·0849 25 6·076 25 4·32 248

12 7·06,,

I ·635

4·85 614 R .T. 4·434 42 kb

6 6 8 8

4·3027

2·5 8

4·32 4·324 4·19 3·840

4

Fm3m

I

2 P6 3 /m mc 2 2

Im3m Im 3m

I

,:

...

I

cubic hexagonal cubic

A2 A3

R.T. 20 R .T .

3·298 3·303(? ) 3·6010

5·6936

1 ·5811

8 8 6 6

2·856 2·860 3·5252 3-6010

2

*for a= 8·982

I

A, a.=23·3 1°

I

,-

16·6

Z!

2 P 63 /mmc 2

A2

(H

Im 3m

>

Im 3m I

I

-



TABLE 5 (continued)

Element

System

Struc- Temp. ture oc type

I

A3

R.T.

AS

25

A7

R.T. 30 kb

D"'

I

Dx

Atoms

IP~~~t I

X

I

y

I

z -i

I

0

I

c; r

4·388

1·604

4·4566

5·9268

1 ·3298

a= 53 °18'

4·69

~

2 P6 3 /mmc

1 l ·497

2·703 2·735 2·864 3-468 2·87 3-48

6 6 2 4 3 3

6·2372

"'

3

P3 121 P3 221

3 Te

3(a)

269

2

R3m

2 Te

2(c)

230

6

12·036

Al AZ

R.T. 1450

5·0845 4·11

A3

25

2·9511

AZ

900

3·3065

1·5873

4·6843

3·5950 3·56

4 2

6 6 8

2·8963 2·9511 2· 8635

2 P6i /mmc

I I I

3·3149

A3

hexagonal

I cubic

I A2

I ortho-

I

I tetrago-

I

R.T.

A20 1 25

3·5375

I

2 2 4 4

4 ·2°K I 2·844415·86891 4·9316 1 I 720 10·759 5·656 0·5257

cubic A2 805 V cubic AZ R .T. w cubic AZ 25 y hexagoA3 R .T. nal Yb Al R .T. I cubic Zn hexagoA3 25 nal a-Zr hexagoA3 25 nal {]-Zr cubic A2 862 Zr(H.P.) hexagow nal phase (at high pressure and then released)

3·524 3·0231 3·1652 3-6474

5·7306

l ·5712

5·4862 2·6649

4·9468

1 ·85 63

3·2312

5·1477

l ·5931

3·6090 5·036

6 6

l ·5702

5·5546

3·109

I

3-~6. 6 3-45£i6 8: 3-362

I

8 8 8 6 6 12 6 6 6 6 8

0·61 7

3·052 2·6181 2·7411 3·5508 3-6474 3·8793 2·6649 2·9129 3· 1789 3·2312 3· 1255

;::

...""z ~

;::

,...>

I

"' ~

I

/m3m

0

I

;:: I

I I

-l

> r Q

I

C"

0

I

CJ>

lm3m

2 P6i/mmc

I

I com-

plex

z

"' 1;;

2 P6i1 mmc

2

3-4473 3·5375

2-1539 2·8537 3·2632 3·3427

0

I

!m3m

I

[ 4·581

6

l ·5984

5·5248

I 2·8537 5·8695 4·9548 1 1

I

0·608

2·813

> -l >

II

Fm3m \

2

0

I

I

12 8

or

rhombic

y-U

fJ

Atomic positions Space group

A

I

(H.T .)

nal

I

or

C

2·735

4·208

1000

{3-U

b

Density in g/cm 3

Interatomic CN distances in A

see Fig. 161, p. 1266

hexago- w phase R.T. 4·625 Ti nal (H.P.) (at high pressure and then released) 3·4566 18 A3 hexagoa:-TI nal 3·882 262 A2 cubic /J-Tl

{3-Tm (H.T.) a -U

c/a (f.

a

I

Tb(L.T.) orthorhombic < 220°K 99Tc hexagonal hexagoTe I nal ,:~ --· rhomboTell hedral above 15 kb hex. cell TeIII above 45 kb cubic CI.-Tb cubic {]-Th (H.T.) hexagoa -Ti nal cubic {]-Ti (H.T.)

a.-Tm

A

In

0

I Cmcm I 4U I 4(c) I

I

I

118·11

I 30 IP4 2 /mnnzl

I

4

i8 SU SU SU

18·06

4 Fm3m 2 P63 /mmc

6·50

6·565

2 P63 /mmc 2

3967 5383 0608 3183

1024

;;l C:

C

1333 2646

r

>

-l

2300

origin at centre (mmm)

2 lm3m 2 Im3m 2 Im3m 2 P63 /mmc

7·1 30

7·03

2(a) 4(g) 8(i) 8(i) 8(j)

I

"'

0 0

> -l >

0

z

"'~ ;::

"'z-l ,...> ;::

"':;2

,... "'>

Im3m

6·657

z

0

;::

"'>-i r r

0

a

"'

I

__ I '

-

. ......-- .. - -

'D

CHAPTER III

TABULATED LATTICE PARAMETERS AND DATA OF INTERMEDIATE PHASES IN ALLOY SYSTEMS THE following table lists information about crystal structures and densities of intermediate phases in alloy systems. The list is arranged in alphabetical order of chemical symbols. Information on alloys containing B, C, H and N is given in Chapter IV an d not in this table. Representative lattice parameters taken from actual determinations have been listed, and chemical compositions are usually stated when they differ from the listed "formula" for the phase. The information has been presented in this fashion to indicate immediately the approximate precision of the measurements on any particular phase, rather than give the parameters to three significant figures only, which is the general limit of their validity unless the exact details of their determination (e.g. composition, temperature, etc.) are known. These exact details can be obtained by consulting the alphabetical compilation of X-ray work on metals which comprises ChapterV. Th is table represents the sum total of our .information on alloy phases. That is to say it combines all of the information in Volumes 1 and 2, revising the former where necessary. It attributes, by Strukturbericht type and/or structure name, the structural type where this is recognized, and it gives the parameters for the atomic positions in the three final columns when these are applicable and known. The two preceding columns give the number and kind of atoms and the point set in Wyckoff notation. Therefore by reference to the International Tables, Volume 1 (1952) for the appropriate space group, the positions of the atoms in any particular struct ure can be determined from data given in this table. For recognized structure types reference to the International Tables is, however, unnecessary and the coordinates of atoms in each point set are listed in Chapter I under the appropriate structure type.* Thus, from the data presented in this book, only in the case of the rare structure types is it actually necessary to refer to the International Tables to find the coordinates of all of the atoms in the unit cell of a particular structure. In Volume 1 the settings of orthorhombic and monoclinic structures were converted to the standard settings of the International Tables; however, the acceptance and use of these tables has now become so widespread, that this is deemed no longer necessary, and the crystal setting which is listed is indicated by the space group symbol. Tables showing the transformations to the standard settings will be found in the International Tables, Volume 1, pp. 543 to 549 and these have been reproduced with permission in our Volume 1 on pp. 80 to 84. In presenting the fractional atomic coordinates x, y, z in the last three columns of the table, the preceding zero and decimal point have been omitted in order to save space. Thus an x value of 0·3946 is presented in the table as 3946, and a value of 0·50 appears as 50.

,I

international Tables for X-ray Crys,t allography, Volume 1 (1952), N. F. M. HENRY and K. International Union of Crystallography, Kynoch Press, Birmingham, England. '' In this case only the atom ic positions involving parameters are indicated in Table 6 ; the others can be obtained from Chapter I.

LONSDALE,

93

,c

TABLE 6 In Phase

A

Structure type

System

b

a

I

I

C

c/a, ,x or f3

cubic

Ce 2 S3

8·99

l'/-Ag 3 Al (H.T.) l'/-Ag 3 Al (L.T.) ( -Ag 2 AI

cubic

A2

3·302

cubic

A13

6·934

A3

2·885-

4·582

1·588

A3

2·94

4·72

1·61

5·707

10·28

hexagonal ('-Ag 5AIMn hexagonal AgA!S 2 tetragonal AgAlSe 2 tetragonal AgAlTe 2 tetrago- . nal ( -Ag-As hexagonal ~(Ag 8 CuJ.As 3 tetrago-

Density in g/cm 3 I

Dm

I

at 100°c

Atomic positions Space group

M

Dx 6·75

Ac2 S3

~

(8 wt%Al)

Atoms 16/ 3

143d

A=2

Im3m

AgAsS 2

Ag 3 AsS 3

AgAsZn AgAuCd 2 Ag 15 Au 2 Sb 3

12(a) 16(c)

I

y

X

I

I

z

...,

>

"'c::r

randomly ~083

> -l ~

>

8(c) 12(d)

061} 206

-l

>

disordered

.,,

0

A=2 P6 3 /mmc

z

-l

CuFeS 2 (El 1 )

l ·802

cubic

3·93

3·94

4

10·77

1·805

5·968

Eli

6·309

11-85

1·878

A3

2·8990

4·7329

1·6326

9·99

14·03

1·405

monoclinic

4·99

5·07

6·15

6·18

4

orthorhombic

8Se

142d

6·7

8Te

142d

4

6·75

8(d)

...-,

27

8(d)

r-, "'

26

z >

s

12

-

"' m "'

z

> ~

0

-

4·820

at -1%°C

b.c.

8Ag 4Ca 4Ca 4Ag (probabJy) 4Ag 8Ag 4Ca 16Ca

8(i) 4(e) 4(a) 4(a)

080 ± 25 200 ±3 645 ± 5 165 0 425 0

1

lm3m

1

Pm3m

2

Cmcm

v

>

~

.,, z-j ;::,

s:

4(a) 8(h) 4(c) 16(e)

"'v

>

. ~

378±5 164±5

150 ±5

::1:: ►

"' "'

"'z >

r

4(c)

'< ~· < ~

195±5

I

I

6· 110 4·870

1·6133

A=2 P6 3 /mmc

A=52 l43m

1·572

1

lm3m

3

R3m

a=28·4° 20·52

21 ·22

8(c) 12(e) 8(c) 24(g)

825 358 105 310

038

;;

o:i

;:l ► -I

cl C

5·01

IY.=28·9°

8Ag 12Ag 8Cd 24Cd

A=2 P6 3 /mmc 7·62

3·691

f.c.

14 /mcm

"'v

A=12 P6 3 /mmc

,.

7·392

H.T. 0012°C) Ag,. 55 Cu 0.4 5S III

4

4

at SS0 °C

3·487

H.T.>00°C) Ag,. 55 Cu 0.., S II

Im3m Imma

I

-

2·9904

cubic

4 4

X

er.,

A3

rhombohedral hex. cell

P6 3 22

I Point I set

"'s:

hexagonal

hexagonal cubic rhombohedral hex. cell

2

Pna2 1

I

( -AgCd

Atoms

--l

6·9 6·1

8·039

...

Space group

Dz

7·44

9·81

tetragonal Cr 5B3 (D8 1)

... ---..

Atomic positions

M

C

14·1

co

5·16

3Ag 3S 3S 3Cr

3(a) 3(a) 3(a) 3(a)

0 142 26 858

' 6·28

6·33

at

3

4

300°c

R3m

3Se 3Se 3Ag 3Cr

3(a) 3(a) 3(a) 3(a)

0 14 27 73

> >

-I

,.,,0

z-I

"'"':s: .

>

-j

"' :.: ""

>

V,

"'

V,

at

2

3oo•c

z

> r

s< V,

b.c.

8·673

l 1·756

l ·35 5

6·9

6·8

16

~

"'s: "'

IO IO

-

TABLE 6 (continued)

8

-

In

System

Phase

Density in g/cm 3

A

Structure type

c/a a or f3 a

b

I I

I

M

Space group Ato ms

D ,. I DX

i

C

Atomic positions -

I

I Point set I

y

X

I

I

z

~

0

C.

yAg 0 _ssCu 1 • 07 S I

cubic

5·961

f.c.

yAg 0 • 93 C u 1 • 07 S II

(H.T. 90-180°C) yAg 0 • 93 Cu 1 • 07 S III

(L.T.) (stromeyerite) AgCuSe (Eucairite) Ag 2Dy AgDy AgEr AgFeS 2 AgFe 2S3 AgFe2 S3 _ 4• AgFeSe 2

,-j

hexagonal

"'0 7-105

4·138

1·98 3

(;'Ag-Ga (72 at. % Ga) AgGaS 2 AgGaSe 2 AgGaTe 2 Ag 2Gd AgGd Ag 3 Ge (metastable) AgGe 2 P 3 f;Ag-Hg y AgzHgs

AgHo /3Ag3In (H.T.) f;Ag 3In (L.T.) eAg 2In ,pAgin 2 Ag 2InMn

0

2

(at

.J

100°ci

4·066

orthorhombic

6·628

7·972

6·25

4

Cmcm

4Ag 4Cu 4S

4(a) 4(c) 4(c)

46 80

.,, z ,-j

"';:, i!:.

4·105 20·35 orthorhombic 3·6957 tetragonal MoSi 2 (Cllb) CsCl (B2) 3·608 cubic CsCl (B2) 3·574 cubic 5·66 tetragoCuFeS 2 (Eli) nal 6·64 11-47 orthorhombic 6·61 11 ·66 orthorhombic 6·5 8 tetragonal

10

Pmmm

2·493

2

1·820

1 1 4

14 / mmm Pm3m Pm3m 142d

6·31 9·213

10·30

4·53



trigonal

(atom positions given for tetragonal subcell see text, p. 516)

"'0 ~ "'.,, ~

"'pl 8S

(8d)

~25

z ~

6·45

Pmmn

5

12·67

Ccmm

,.,,"'-< --l "'~,

8·96

-
450°c) f;Ag3Ga

r· >

4

(at

196°C)

(H.T.> 180°C)

-c,......,.,.,..;

7·60

5·69

0·749

7·89

3

P3ml

probably hexagonal hexagonal

A3 2·8869 (at 75 at. %Ag) 7·7677

4·6753

1·6195

A=2 P6 3 /mmc

2·8778

(for atom positions see text, p. 518)

~

d

d

tetragonal tetragonal tetragonal tetragonal cubic hexagonal

CuFeS 2 5·755 (Eli) CuFeS 2 5·985 (El 1) CuFeS 2 6·301 (El 1 ) MoSi 2 3·728 (Cllb) CsCl (B2) 3·6476 A3 2·987

cubic hexagonal cubic

A3

10·26 2·970

D8 1 _ 3

10·046

cubic cubic

CsCI? CsCl (B2)

hexagonal cubic tetragonal hexagonal

A3 2·9563 (at 75 at. % Ag) D8 1 _ 3 9·905 Al 2Cu 6·883 (C16) A3

3·592 3·368

r

10·28

1·786

4·58

4·72

4

142d

8S

8(d)

28

10·90

1·823

5·71

5·84

4

142d

8Se

8(d)

27

11 ·96

1·897

5·96

6·05

4

142d

8Te

8(d)

26

2

14/mmm

9·296

2·494

4·716

1·628

,

4·841

1·631

(25 ·7 at. % Ge)

I

(Ag-rich boundary)

>

~

0

> "'i >

.,,

0

... z..,

"'

~ "'

Pm3m .1 A=2 P63 /mmc

0

> @ lm3m, /43 or /4 m A=2 P6 3 /mmc

"O

~

"'Cl

z

1 A=2

at

684°C

4·7857 5-615

1·6188 0·816

>

~

lm3m

~ V,

,..,-
I

I

~

i

e

ic::.

2

boundary)

I % L1). I . (91 ·6 a t. % L1)

>

~

I

~

:>

I I

;;o

(see text , p. 522) CsCI (B2)

L12VW

1

3·541 4·112

z

Pm3m

~ 0

type CsCI (B2) 3·313 6 4·8840 10·29

7·7865 8·05

6·61

1 2

l ·5943

/3=

i

Pm3m

!i

2 6·49

6·42

8

~

i

92°02'

7·923

Cu 2 Mg (C15)

~

'= I C

>

9·70 (79·5 at. 9·82

I

I""'

4 ·83

4 ·129

3·768 _3·169 9·51 (Ag-rich

Density in g/cm 3

Dm

C

0

Fd3m

i

,.

-----~ Ag 0 • 7 N b~ 2 AgNd AgPbS 3 Sb

hexagoCu 0 • 65 N bS 2 nal cubic B2 monoclinic

AgPr

cubic

A2 (or

3·739

cubic

B2 ?) Al

3·35

14·46

2

P6 3 /mmc

1 4

Pm3m P2i/n

1

Im3m

3·9 10

1

Fm3m

3·895

1

Pm3m

3·715 7·53 12·79

5-88

/3=

7·99 6·20

8·14

92°14'

x' A g 3 Pt (H .T.) x" Ag 3Pt (L. T.) -p'AgPt 3 (H. T.) vAgPt 3 Ag3P U AgRh 8 S 8 ( ?) Ag 2S I (H.T. ) Ag 2S II (H.T.) A.g 2S III (L.T.) Ag 2S (L. T.) acanthite A.gS 2 Sb (H.T.)

cubic cubic cubic

AuCu 8 (L1 2) f .c. AuCu 3 (Ll 2)

hexagonal

7·73

. >

""....C

;> ·-3

7·84

8

"'0

3-90

1

?i>

12·730

9·402

0·739

11 ·16

11 ·33

16

0

Pm3m P6 3

'Z

P6 3 /m

-i

"" ;:J

P6 3 22

cubic

Pdi 7 Se15

cu bic

f.c .

6·34 at 650°C

cubic

b .c.

4·890 at 300°c

9·9115

2 6·42

~

Pm3m

"'IO

~

4

(/-:

monoclinic monoclinic cubic

9·531

6·925

8·278

t;::,

/3=

8

/3 =

4

P2i /n

2

Fm3m

"'

123·85 °

4·23

6·91

7·87

99°35'

NaCl (Bl) 5·647

5"42

4Ag 4Ag 4S

4(e) 4(e) 4(e)

758 285 359

015 320 239

305 435 134

>

' "' ~ ,-,I

:,:: 0

.. I

I

C

,_

TABLE 6 (continued)

C

~

In P hase

System

A

Structure type

c/a, (f. or fJ b

a

I AgS 2Sb M ia rgyrite

Ag 3S3 Sb

monocliicn

Density in g/cm3

12·862

Atomic positions

M Dm

C

I

I

Space group Atom

D,

4·411 13·220 fl= 98 °38'

8

Cc

I

Point set

Ag Ag Sb Sb

s s s s

rhombobedral

hexagonal cell Ag 3S 3 Sb monoclinic Ag 2 S 2Ta hexagonal : Ag- Sb hexagonal Ag 3S b orthorhombic orthorhombic Ag 2S b (mi- orthonera l) rhombic AgS bSe 2 cubic " AgS bTes''> cubic

2 11 ·0

---

12·17

15·84

8·7

6

6·24

8

MoS 2-iike 3·34 14·4 2·95 53 A3 4· 7973 1 ·6233 (at 14 at.% Sb) 5·99 fl-Cu 3 Ti5·24 4·85 like 2· 993 5·249 4·847 (at 24·7 at % Sb)

I

7·77

12 ·34

8·44

NaCl (Bl) 5·786 NaCl (Bl) 6·078

R3c

6Ag 2Sb 6S

6(b) 2(a) 6(b)

I

y

X

I 0 0091 ±4 2585 ±2 7486±4 1457 ±8 8612±9 1161±8 8966 ± 10 633 09 17 795

z

....:_:

I 0 5173 ± 23 9568 ± 16 0526 ± 17 3754 ± 46 6709 ±52 1815 ± 46 8399 ± 55

0

:';

0

""· z

C

½

~ ~

§

205

;>:

P2ifc

'> ~ z

A=2 P6 3 /mmc 2 Pmnm

z >

t"

~

J

6-83

6·92

10

6·69 7·12

6·60 7·12

2 2

Fm3m Fm3m

8·00

1 4

Pm3m

7·96

'"
-

A.gTb

cubic

A.g 2T e I '. FLT.) A.g 2Te II :H.T.) A.g 2Te III [L.T.)

cubic cubic

f.c.

A.g5Te3 [stuetzite) A.gTe (empres,ite) A.gTe 2T l

AgT i

--------

---- ---'\·-

1

2·9436 2·995

-

4·98 or 4·67

7·06

CaZn 5 5·675 (D2d) (at 13-7% Sr) CsCl (?) 3·625 (B2) b.c. 5·29

Ag2 Th AgT h 2

,..__,..;..~-·- ~ - - · -~

4·619

~

P6/mmm

Ii 0 > I-"! 00

(at 250°C)

monoclinic

8·09

4·48

hexagonal orthorhombic

13·38

hexagonal A1BlC32) tetragoAl2CU (C16) nal tetragoAuCuI nal Ll 0

1 1

6·585

tetragonal

0·814

8·96

4

fl= 123°20'

8·35

8·40

4

P2ifc

8·45

8·00

8·18

7

P6 /mmm

4·62

7·61

7·61

16

Pmnm Pmn

4Ag 4Ag 4Te

4(e) 4(e) 4(e)

018 332 272

3 71 995 243

152 837 159

i:

~

co

.,,~ ~

8·90 3·92

20·07

2

15·22

4·837 7·56

3·353 5·84

0·693 0·77

4·104

4·077

0·993

10·76

10·95

1 4 2

I4m2 P6/mmm 14/mcm P4/mmm

,

c:, C

Fm3m Im3m

A=20 P21 3

16·38

4·566

z

A = 2 P6 3 /mmc

0·873

11 ·865 11 ·981 12· 114

Heusler (L2 1) Dl3

y

X

>

D8 2

cubic

p~~t I

A=4

. U2 AU :AJAu ,1 H.T.) :A1Au 4 L.T.)

I

I

0·9435

cubic

B3

Atomic positions

M

fJ

I

I

(B2) A2 above 280°C B2

or

C

4·187 1 3·950 (at 28· 6 % Ag) CsCl (B2) 3·562 CsCI? 3-617

o rtho rhombic

!JASzLis

c/a, a

Density in g/cm3

A

Structure type

4

Fm3m

2

14 /mmm

r >

-l

4Al 4Au 12 Au

4(a) 4(a) 12(b)

4Al

4(e)

054 690 785

"'0 0 ►

385

950

P63 /mmc ~

~

3·33 11 ·09

3·43

2·542

8 8 8 2

Fd3m Fd3m Fd3m 14/mmm

>

"' "'z C,

4 Al

4(e)

38

8·038 5·564

10·32

1 ·82 0

2· 35 3·04

2·395 3·062

8 2

/4

8S

8(g)

26

25

13

5·747

10·68

1 ·859

4·5 0

4·542

2

14

8 Se

8(g)

27

27

135

6·011

12·21

2·03 0

5·1 0

5·099

2

/4 ( ?)

8 Se

8(g)

25

25

125

4·374

10·12

2·314

~ 4

4·25

2

l4 /mmm

4Al

4(e)

4·97

Fd3m

,;c_,

"'~ :;::

"'

376 I

8

> r

r

Fd3m

8·059

>

380

5·764 (10 wt% Al, 1 wt % Be) 6·06 6· 11 6·01 4·362

-l

I

-__, 0

TABLE 6 (continued)

I Phase

I

C

System

Structure type

a

I Al Ce

2

(

1Ce3 T .


"'

~

z > r r

1850 ±4 3205 ± 4 1880 ± 5 3155 ±5 1955 ± 5 3070 ± 4 3145 ±5

-< _,"' ':I:!

c,l

4




-i

"'0 t1

> -i >

1407 ± 6 0666 ± 3

2998 ±4

":l

~ "'

"' 24(g)

184

309

,:

"" ►..,

~

6·066

4·874

4·04

5·8

4·015 12·02

8·652

0·8034

4·34

4

F43m

4(a) 24(!) 24(g) 16(e) 16(e) 8(h)

... 315 565 342 125 160

> ~

z > r

5 -


C,

Cmcm

C14

5·72 5·07

7· 96 8·29

1·3 9 l ·64

4

P6 3 /mmc

C36

5·090

16·60

3·262

8

P6 3 /mmc

8 Al 4 Cu 4 Mg

8(f) 4(c) 4(c)

356 778 072

05 6

~

-l

"'0 Ci

> -l >

.,, z ;;l ;>

12·97 9 layer polytype 5· 14 5·14 5 layer polytype 12·087 ordered Mg2Zn11

b.c.

"'0 > -l

22°50' 37· 89 21 ·05

,,,

3·022

8·311

12·8 10·32

:s:

Cl=

4·94

4·05

6 4·90

3

/1113 or Im3m Pm3

~

ro "'

1 Al 6 Al 8 Al 6 Cu 12 Cu 6 Mg

l (b) 6(g) 8(i) 6(e) 12(k) 6(!)

"'z 16 21 5 225

> r r

~ 243

336

32

0·392

I

"'-< "'-l "'~

TABLE 6 (continued) .;:.

A

In Phase

System

Structure type

c/a , rx or /3

a

b

M...OJ,1"ln 3

(1 9 % Cu,

orthorhombic

T 3 Al 4 MnZn

24·11

C

12·51

I M

I

Dm

I

I

D ensitv in g/ci-{1 3

Atomic positions Space group

Dx

7·71

Atoms

I

p~~~t

I

y

X

I

z

I

6

>

-l

"'0

24 % Mn) y AJ. Cu-l\1n

(5·9 % Cu , 32·5% Mn)

orthorhombic

AJCu 2 Mn

cubic cubic

JIAl(Cu, Mn) 3

cubic

K-Al50 (Cu,Mn) 5

~

"'

14·82

12·63

0

12·45

)>

-l

CsCI (B2) Heusler (£21) A2

2·984 5·949

A=2 4

Pm3m Fm3m

"'z

2·945

A= 2

Im3m



6·94

4

Fd3m

"'

~

"' 0 ►-l

(H.T.)

(10·15 wt% Al, 14·25 wt% Mn) Cu 2 Mg cubic A1 Cu 3 Mn2 (Cl5) MgZn 2 (Al,Cu) 2Nb hexago(C14) (40 at.% nal Al,20% Cu)

5·028

8·300

1·650

""

:!:

8(Al +Cu)

>

2(a)} randomly

"' ~

6(h)

z r► r 0 -< er.

-
:,

>

Pm3m

A=2

K -Al-Fe-Mn

I

Atomic positions Space group

M D .,

C

I cubic CsCI (B2) 2·97 (45 at.% Al, 15 % Fe) -Al(Fe,Mn)Si I cubic 12·65 (15·7 wt % Mn , 16· 1 % Fe, 6- 8 % Si) (AIFeMnSiZn) I hexagoI f/(A IMnSi ) I 7·47 7·72 nal (17"9 at. % Mn, 3·9% Zn, 4·1 % Fe, 3·1 % Si, 71-0 % Al) 12·09 12 FeS 4 rhombohedral cubic 12·548 Ct Al 12 Fe3 Si (31 ·9 % Fe, 5·6 % Si) 26·2 12·3 Al-Fe-Si hexagonal (32·1 at. % Fe, 8·4-10·3 % Si) 7·07 4·95 Ct 1Al-Fe-Si hexago nal (29 ·2 % Fe, 11 ·3 % Si) 16·00 Ct 1A l-F e-Si I cubic (35·3 % Fe, 12·8 % Si) 6·12 6·12 41 ·5 -Al 9 F e 2 Si2 I monoclinic (27·2 wt% Fe, 13·5 % Si 9·49 6·16 \..I-Fe-Si I tetragonal I (27·04 at.% Fe, 25·01 % Si)

Density in g /cm 3

;;l 0

3·8, Ct = 17°18'

2·96

Cl > -;

A= 25·4

2-88

>

z"

l

;;:J

;::,

:;::

"'2

I

2·13

I

J ·43

> ...;

P63 /mmc

,:,

} V,

"'

V,

z

f3 = 91 °

> ,· S -



-!

>

0

"' 3·23

2

lm3

2Mo 24Al

z

2(a) 24(g)

1854±2 3083 ± 3

{]=95 °

-! m ;o

:;::

m

0

4·89 5·255 17·768

8·80 l ·80 5·225 fJ= 100°53'

6·297 10·000 1·588 9·208 3·6378 10·065 fJ= 100°47'

4·35

5·28

4·26

5·04

2 6

2

> -!

P63

Cm

C2 /m

2Mo 4Mo 2AI 2Al 4 Al 4Al 4 Al 4Al 4Al 2Mo 4Mo 4AI 4Al 4Al 4Al

2(a) 4(b)

2(a) 2(a) 4(b) 4(b) 4(b)

4(b) 4(b)

2(a) 4(i) 4(i) 4(i) 4(i) 4(i)

0 351 4 ± 2 1611 ± 12 5117±15 6753 ± 13 8322±13 2067 ± 16 7087 ±15 5414 ± 13

0 1368 ± 1 0 0 0767 ±4 1180±4 1218 ±4 2351 ±4 2497 ± 4

0 3452±3 5103 ±1 8 1481 ±2 o 6951 ±1 8 2246±1 8 8267 ±2 0 6057 ±1 0818 ± 1

m 'ti

:r ~

Cl

z >

~

0

-< "'-


d

4·46

11 ·07

15·8 3·842

8·553

9·825

5·232

2·482

2·98

2

8·255

7·568

Al 12W

7·5255

Al 0 Mn (D21,)

6·58

0·532

Pm3m

0

l4 /mm m 4 Al

4(e)

► -l

380



z-l

"';,,

~

10

P4 2 /mnm

8

Fd3m

>

8

Pmma, Pmc2 1 , or Pma2

""~

P4 2nm

"'z

0·92 3·25

7·63

.,

a

A=116 2 l4/mmm

2·226

7·8 67

Al 2Zr 3

,~ .

10 1

5·834 11 ·370

3·27

2

lm3

~

24 Al 2 Tc

24(g) 2(a)

1877 ±2

3083 ±3

>

~

~

Cmcm

9 ·00



randomly ~083

--l

"'0

Am 4

4(a ) 4 Cd 0·588 14122 tetrago7·953 4 ·675 8(f) 8 As nal see ; n 3P 2 12 -68 6·35 A=40 P4 2 /nmc 8·963 l ·418 6·25 tetragoZn 3P 2 (D5 9) nal or 14 1 /acd 12·654 25 ·458 2·012 tetragoAs 2Z n 3 (L.T.) nal 8(d) 142d 8 As 1 ·8875 5·57 2 5·9427 11 ·2172 tetragoCuFeS 2 (£1 1) nal 5·72 142d 1 ·957 5·71 2 ll ·922 tetragoCuFeS 2 6·092 (£1 1 ) nal 2·799 (at 60 mo!.% As 2 Zn 3 ) 24· 10 8·61 tetragosuperstructure of Zn 3 P, type nal Fm3m 4 NaCl (Bl) 6·072 cubic 24(a) Im3 24 As 6·8 8 8·2056 cubic D0 2 4 P21/C 5·898 5·872 5·977 /3= monocliC0Sb 2 116·4 ° nic 4(c) Pnma 4 As 4 MnP 5·292 3·458 5·869 ortho4(c) 4Co (B31) rhombic P6 3 /mmc 2 5·22 (at 960°C) 3·56 hexagoNiAs (BS) nal

0

>

~

x not given

.,, z--l

0

,,

m

,:

tn

0

285±5

> --l "' 'v

:r >

"'

z

350

150

>

r'

5 -


-!

33403 31309 04294 09012 42345 28845

"'0 0

>: ►

.,, z ➔

"'

;,

225 122 08 1

841 541 148

I

~ 2

iI

"'

I



-l

":>

:Ill

11 6 2. ►

I

"' -i

I cubic (D0 2)

m~nocli-

me

As 3 Co

8-4691

C0Sb 2

6·060

9·03 6·071

6·158

fJ =

8

l m3

4

P21 /c

24 As

24(g)

350±2 1 146 ± 2

~

113°16'

I I

I

.;,.

,.,.

TABLE 6 (continued) In A Phase

Structure type

System

a

b

I AslrS AslrSb AslrSe AslrTe AsK 3 AsKZn AsLa

cubic monoclinic cubic cubic hexagonal cubic cubic

FeS 2 (C2) C0Sb 2

5·791 6·35

FeS 2 (C2) (?) FeS 2 (C2) AsNa 3 (D01s) CaF 2 (Cl) NaCl

5·940

c/a, rt. or f3

6·30

6·41

Atomic positions Space group

M Dm

C

I

Density in g/cm 3

I

Atoms

Dx

/3 =

4 4

Pa3 P21/c

4

Pa3

114·2°

6·164 5·794

10·243

l ·768

2·14

6·137

4 2

Pa3 P6 3 /mmc

4 4

Fm3m Fm3m

8

P2 1/c

I Poi~t II se

X

y

I

I

I

z

E r >

-! 0 0

>

-l

> 0

4(!)

4K

583

monocli nic

5·79

As Na 3 (D01 s)

AsLiMg

c,.

6·22

As ,Li7•33Mn o·67

cubic

CaF 2 (Cl)

6· 152

As 4 Li 7 Mn

tetragona l

As4 Li 6 Mn2

tetragon al

10·70

/3=

117·4°

hexagonal . cubic

AsLi 3

5·24

7-801

4·377

2·31

2·46

6·052

6·049

6·169

9143 ±2 1626 ± 2 402 ± 6 669 ± 5

3042 ± 2 2891 ±2 235 ± 5 232 ± 5

4

4(a) 4 As 4 Li 4(c) 4(d) 4 Mg 8(c) Fm3m randomly 8(Li+ Mn) P4 2 /mcm !Li+] 2(c) 1 Mn 2(a) 2 Li 4(e) 4 Li 4(i) 4 As 253 4(c) P4 /nmm 4 As Mn replaces Li in cation plane with z=½

2992 ±• 1011 ± 329 ± 3 045 ± 3 597

F43m

I

1·020

4(e) 4(e) 4(e) 4(e) 4(f)

4 As 4 As 4 Li 4 Li 4 Li

P6 3 /mmc

1

0·982

z

"' :~ "' g

4

1

2·75

6·16 6

Li ~1'fo 2 P 4

l ·782

~

-l

(Bl)

AsLi

:j

I

>;

tca "'"'

z > r r - r

409 091 1935 8065 5655 3065 6935 9345

"'-l

(origin at mmn) 2 As 2As 2Mn 2Mn 2Mn 2Mn 2Mn 2Mn

2(a) 2(b) 2(a) 2(a) 2(a) 2(b) 2(b) 2(b)

""


~

z r

-


co

4

6·16

(As 1 • 1 FeS 0 . 9 )

z

7·93

5·845 5-40

C0Sb 2

I

4

FeS 2 (C2) FeS 2 (Cl8)

C0Sb 2

y

~

~

AsNiSe As 2Os

I

7·41

4

5·79

X

P6a /mmc Fm3m C2

119·46°

5·970 4·79

\

C

119·36° 9·000 l ·765 3·3823

P~~~t

4 18

Pa3

>

;! 8 As

8(c)

382±4

"'z -l

;"'

0·5388

10·33

10·44

3

P62m P3ml, P3ml or P321 P6 3 22

10·72

10·64

12

10·88 10·91

8

P3rn l etc. Pj;n J etc.

0·4834

14

m 0

> -l "'-,; J; ,,,> m ,.,, >

>< >
-

Density in g/cm 3

Atomic positions Space group

M Dm

I

11 ·33

D. 11·37

Atoms 4

5·949

4

6·265

4

p~~t

I

X

I

y

I

z

-l

>

"'

C2 /m Cm or C2 P21 3

~

"' 0 ► -I ►

4

P 213 ( ?) P213

z

6·00g

4

Fm3m

,,,~

5·9665 5·929 5·85 5

10·39

4 4 4

Pa3 Pa3 Fm3m

3·23

2

P6 3 /mmc

~ "' "' "'► "'

6·092

-

10·73

6·052

1·771

3·21

8-453 6·041

6·082

6·126

fJ =

8

lm3

4

P2ifc

..,,

4Rb

4(!)

7 /12

!

5·62

3·58

5·780 6· 36

3·89

7·32

6·28

6·41

z: ►

-< ~

Pnma

.- i

"' ~

3·67

9·32 5·678 5·89

4

6·00

C=ll

~

114°20'

fJ=

4

Fm3m

4

Pnma

4 4

Pa3 P21 /C Pa3 (?) Pa3 Pnnm Pnma

115-4°

5·934 6·165 5·41

6·1 7

2·96

4 4 2

5·70

3·25

6·27

4

5·95

5·92

6·02

fJ =

4

c:, !"·

>

P21/C

-l

113·1°

5·76

6·48

3·10

6·08

6·06

6· 14

fJ=

2

Pnnm

4

P21 /c

11 2·7°

6·36

6·3 0

6-40

fJ =

9·29

13-53

6·57

fJ =

0

0

► -l

> 0

4

P 21 /C

16

P2 1 /n

~

~

113·6° 3·56

3·59

106°33'

11 ·49

9·59

4· 25

fJ=

3·49

3-48

4

5·404 12·27 11 ·33

· 3·715 6·11

fJ=

3-85

4 As 4 As 4As 4As 4S 4S 4S 4S

4(e) 4(e) 4(e) 4(e) 4(e) 4(e) 4(e) 4(e)

118 425 318 038 346 213 245 115

024 860 873 839 008 024 775 785

759 858 181 710 705 120 637 048

P 21 /n

90°27'

ZnS (B3)

I

1 8

F43m P2 1 /a

104·2°

I

"' ~

~

a:; -l

~

:;

"" ro "'

z

r► r

4As 4As 4 Tl 4 Tl 4S 4S 4S 4S

4(g) 4(g) 4(g) 4(g) 4(g) 4(g) 4(g) 4(g)

190 151 051 101 125 150 125 200

820 585 313 056 320 580 790 030

237 554 160 732 750 200 510 200

0

-


;:

4

Fm3m

4

P2 1 /n

>,j

4

142d

~

0

f3 = 90 °28' 1 ·943

Pmna

I

4·69

4·720

6·845 6·69

4 6·845 4 A=7

2·000

z

-I

.:: ~

Fm3m Fm3m

>

--1

"'-;;

4

F43m

4

142d

~ ~

8 As

8(d)

"' z

239

>

3·388

7·760 /3= 119°45' 11 ·656 . 3·391

9·21

10·29

4

C2

12·25

12·35

4

I4 1 md

4

Fm3m

r

C'"

4 As 4 Ta

5/12 0

4(a) 4(a)

~

"'-< ~

"'.::

"'

~Tea

monoclinic

As 2Th

tetragonal cubic

As4T b 3

14·339

Cu 2Sb (C38) P 4 Th 3

4·006

4·086

9·873

f3 = 95·0°

6·25

8·575 2·0985

8·84_3

6·26

4

8·85

2

9·56

4

4 As 4 As 4 Te 4Te 4 Te P4/nmm 2As 2 Th 143d 16 As

C2/m

4(i) 4(i) 4(i) 4(i) 4(i) 2(c) 2(c) 16(c)

115 205 032 280 375

5 0 0 5 0

445 145 282 33 7 034 64 28

084

AsTh As 2Ti

~-AsTi r AsTi AsTm As 2U As 4 U 3

cubic

NaCl (Bl)

5·972 13·27

orthorhombic

hexagonal

B;

hexagonal cubic tetragonal cubic

AsNi (B8 1) NaCl (Bl} Cu 2 Sb (C38) P 4Th 3

9·57 8·96

3-65

3·50

12·30

3·64

6·15

5·711 3·962

8·132

6·30

6·31

4

8

4

3-38

Pnnm

P63 /mmc

1-69

2

P6a/mmc

2·052

4 2

Fm3m P4/nmm

9·8

4

143d

6·317

4 4

Fm3m Pnma

8·03 /3=102°19'

2 4 4 8

Pm3n Fm3m Fm3m P2ifc

8·524

C'"

>

Fm3m

-I

4 As 4As 4 As 4 As 4Ti 4Ti 2As 2 As 4Ti

4(g)

4(g) 4(g) 4(g) 4(g) 4(g) 2(a) 2(d) 4(!)

060 337 200 400 255 007

8

113 336 225 011 017 331

c:; ► --1

>

.,,0 z

~ ;,,

.::

125

AsV3 AsY AsYb As 2 Zn

cubic orthorhombic cubic cubic cubic monoclinic

NaCl (Bl) MnP (B31) {3-W (A15) NaCl (Bl) NaCl (Bl)

5·778 5·879 4·75 5·786 5·698 9·28

10·77 3·334

7·68

~5

"' 0 ►--1

"'.,, z

2As 2U 16 As

2(c) 2(c) 16(c)

635 280

4 As 4V

4(c) 4(c)



"' "'"'

084

(D7a)

AsU AsV

:;: "'

C

(D7a)

20 01

58 19

r► r -


0·6170

Au 4 Zr

Au10Zr 7 y-CuTi (Ell) MoSi,

,.,

D8 1 _ ., CsCl (B2) A3

9·9 3·541 2·917

4·798

1·645

A302 superstructure of A3

2·922

4·777

l ·635

►-j

"' "' z

. °">:. r,. =90 ·54° /3=90·00° y= 90·17°

3·56

10·59

-
-'

16 Au

1 ·6550 (at 23·6 a t. % Mn)

I

"'

"'"'

z

Pm3m Pm3m P63 /mmc

4·03

4·7297

i>

5/24

!4/mmm

0·625 2 /4/m 8 Au 4·0814 4·0599 4·0377 (at 21 at.% Mn) (phase has also been called A u 3 Mn) 2·8578

cri

16(c)

> r

5-< 8(h)

2

4

"'-< :'.l

m

,:

"'

A=2 P6a fmmc V, V,

TABLE 6 (continued)

In A Phase

System

Structure type

c/a, et or f3 a

I

b

Atomic positions

M Dm

C

I

Density in g /cm 3

Space group At oms

Dx

I

I

Point set

I

X

I

y

I

z

--!

>

0

C.

r

Au 3 M n I (metastable) Au 3 Mn II (stable) Au·5 Mn 2 (at 28·7 at. % Mn) Au 2 Mn

f3 AuMn

orthorhombic (subcell) tetragonal (subcell) monoclinic

tetragonal cubic

4·107

4·051

AuMn 240°C)

AuMn 2 AuMn, Au..MnZn At½Na

AuNa 2 Au 2 N b Au 9 Nb 11 Au 2Nb3

4·041 8 9·188

4·0645

1·0055

3·954 6·479 /3=97 ·56°

I

2

15·33

Pm3m

Al 2Cu (C16) AIB~ (C32) /3-Mn

3·291

I

3·346

8· 57 9

2·564

3·317

2·846

0·858

CsCl (B2) Cu 2 Mg 7·8031 (Cl5)

11 ·57

7·417

5·522 0·745

4·61

2·72

11 ·66

5·03

0 ·59

7·05 3·38

Au 2Pb

cubic

AuPb 2

Cu 2Mg (C15) Al2CU (C16)

tetragonal tetragonal cubic CsCI (B2) cubic AuCu 3 (£1 2) hexagoCaCu 5 nal (D2d) CsCl (B2) cubic FeS 2 (C2) cubic cubic

(CsCl ?)

15· 18 0

5·21 5·165 3·659

AuRb AuSb 2 AuSb 3 (metastable) AuSc cubic AuSm cubic Au 10 Sn hexago(H .T.) nal ( Au-Sn hexagonal AuSn hexagonal AuSn 2 • orthorhombic

CsCI (B2) (CsCl ?) D0 24 A3

AsNi (B8 1)

7·927 7·325 11 ·958 3-68 3·9261 5·760

I

2(a) 4(e)



0 2/7 3/7 0 2 /7 6 /7 6/7, 0, 4/ ; 5/14, 1/2, 4/7

o

I

1/7, 0, 3/7; 9/14, 1/2, 3/7 35 ±1

15·68 5·655

0·772

5·878 0·492

4·448

12-8

12·93

0·772

4·105 6·6589 ~ 5·9

9·98

6·77 9·907

3·370 3·621

"' z

--!

"';o,: 5 ► --! -0

~

ta

"'"' z r►r

I

(A 13)

tetrago-; nal

4(c) 4(c)

(47 at. % Au, anneal at 500°C)

(H.T. ?)

Au 5Rb

1

4Au 4Au 2Au 2Mn 2Mn 4Au

--!

I

tetragonal hexagonal cubic

MoSi 2 (Cll b) b.c.

/3-W (Al5) /3-W (Al5)

AuPb 3 AuPr x' Au 3 Pt

14 /mmm

(c/a";; l according to temperature and composition, see text, p. 673)

3·182

C2

2

tetragonal an orthorhombic cell has also been reported tetragonal tetragonal pseudo cell cubic cubic

3·146



(,t 25·0 st.% Mn; sepmtroctuco pcob.ty ortbocho~ bic)

M0Si 2 3·363 8·592 2·555 15· 1 (Cllb) CsCl (B2) 3·256 (at 820 C; 50·3 at. % Mn)

cubic cubic cubic

AuN b3 AuN b 60s AuNd

;;l 0

(H.T.) (L.T.
--!

m

~ >

8 Sb 2Au 6 Sb

8(c)

"'"' "'

386 0,0,0 ;

½,½,½ ½,½,Or) ½,O,Or)

z

>

s -


3·375 10·06

-l

3·044 0·902 5·23 1 0·520

>

P4 2 /mnm

"'z

(D 8b)

/3-W (A15) CsCI (B2) IX-Po

5·223 (at 76·6 at.% Ta) 3· 576 I (15-40 at. % Au)

2 1

Pm3n Pm3m

7·19

4-41

5·08

2

16·54

8·82

4·46

C2 /m (or C2) Pma2

12·10

triclinic

Au 2Te 3

A

Structure type

System

Phase

I

Density in g/cm 3

13-47

/3= 90° ±30'

8

-l

"';o,: "'0 2 Au 4 Te 2Au 2Au 4 Au 2 Te 2 Te 4 Te 4Te 4 Te

2(a) 4(i) 2(a) 2(c) 4(d) 2(c) 2(c) 4(d) 4(d) 4(d)

>

29 0 01

69 12 0 13

12

32 67 03 63 30 37 97

50

04 04 04 50 50

12

10·80 "- = 104°30·5 ' /3=97°34·5' y = 107°53·5'

AlB 2

hexagonal tetragonal

Au 2Th AuTh 2

(C32) Al2CU (C16)

4·740

3·402 0·718

7·42

5-95

>-!

"' ~

>

"' "' ~

z

> r

r

0

-
-l "'.,,

;

V>

m

"' z >

r r

A =96 16

8

Pnmm See text, 141 /acd 16 Au 16 Au 16 Au 16 Zn Abam [Bbcm?] 8 Au 8 Au 8 Au 8 Zn

p. 688, for ideal positions 16(!) 190 16(e) 250 16(d) 16(d) 8(J) 8(e) 8(d) 8(d)

190 250

0

-


382

§ >(

4·97

8·917

5·09

"'

~

(D7a)

P 4 Th 3 (D7 3 )

.,, )-j

4·432

(Dl 3 )

CsCI (B2)

7-95

wi

0

ti

(D73)

NaZn 13 (D2 3) AlB. (C32) Al 4 Ba

>-l

9·258 11 ·026

8·89 1

1-75

1-77

6

P63 /mmc

6(h) 2(a) 4(!) 6(h) 12(k)

~

v.,

5808±76 1027 ±57 1621 ±87

5615±11 7

TABLE 6 (continued) IJ

In A Phase

System

IY.

a

b

I BaMg 2

hexagonal cubic

Ba 6 Mg 23 Ba2Mg11

rhombohedral hex. cell

Ba N d 2 S1

cubic

BaNd 2 Se 4

cubic

Ba 5Pb 3

tetragonal or thorhombic rhombohedral hex. cell

BaPb (L. T .) BaPb 3

BaPd 2

cubic

BaPo BaPr 2 S.1

cubic cubic

BaPr 2 Se 4

cubic

c/a,

Structure type

MgZn 2 (C14) Mn 23 Th 6 (D8. ) Th2Zn17

6·649

I

or

/3

Density in g/cm 3

M

D,

D..

C

Atomic positions Space group Atoms

I

10·676

1 ·606

4

P63 /mmc

4

Fm3m

I

p~~t I

y

X

I

z

I

> d





15·263

2·52

8·793

4

143d

9·120

4

143d

Ba --1- Nd 12(a)

15·593

9·03 8 5·29

16·843 12·60

1 ·462

2·25

1 ·864

3

6·31

4·78

9·565

7·18

R3m

4

14 / mcm 16 Ba

4

8 Pb 4 Ba 4 Pb

Cmcm

16(/) 8(/z) 4(c) 4(c)

..,

> >

1/ 3 1/ 3 1/2

z

1/ 6 097

randomly randomly

~

;:,

a

!2

.., ►

3323 ± 10 1194 ± 10

"'"O

1505 ± 13

~

00

1266 ± 8 4198 ± 3

IY.=44°47'

7·287

Cu 2 Mg (C15) NaCl (B l ) P 4 Th 3 (D7 3) P 4 Th 3 (D7a)

('"'

6(c) 9 Mg 9(d) 18 Mg 18(/) 18 Mg 18(h) 6Mg 6(c) Ba --1-Nd 12(a)

10·664 P 4 Th 3 (D7 3) P 4 Th 3 (D7 3 ) Cr5B3 (D8 l) C rB (B1 )

2·58

"'"'

z ►

25·77

9·57

9

7·953 7·119 8·817

6·3

9·1 50

R3m

3 6 9 18

Ba Ba Pb Pb

~

3(a) 6(c)

21 77 ± 13

00

;;;..,

9(e) 18(h)

1866 ± 13

8

Fd3m

4 4

Fm3m 143d

Ba+Pr

12(a)

rando mly

4

143d

Ba + Pr

12(a)

randomly

1102 ± 4

~

,v::,

-..... B a Pt 2

cubic

BaPt 5

hexagonal cubic

B aRh 2

Bas B aS 3

B aS 3Ti B :t 2S3Zn

cubic orthorhombic

hexagonal orthorhombic

C u 2Mg (Cl5) C aCu 5

7·920 5'505

Cu 2 Mg (C15) N aCl (Bl)

BaN iO 3 K 2 CuC13

6·386 8·34

cubic NaCl (Bl ) hexagonal AIB 2 (C32) cubic N a Cl (B l) hexagoCaln 2 nal cubic 4·090 ortho10·78 rhombic

B lZll13

cu bic

B ~1a Ca

cubic

:13Ce

cu bic

di stor ted perovski te

N a Zn 13 (D2 3 ) N a Zn 13 (D23) NaZ n13 (D2 3)

4·320 9·66

6·75 8 12·05 12·65

B ,Se B ,Si 2

B 1Zn 5

l

P6/mmm

8

Fd3m

4 4

P2 1212

16·22

7·852

tetragonal

B 1Zn

0·789

Fd3m

(D2d)

B 1S3 Zr ,.T .)

B !Te B !Tl2

4 ·342

8

4·990 or 9·950 6·600 4· 39 7·004 5·220

4·83

5·778 4·21

5·088

4·50

1 ·02

4·23

4·52

4· 26

9·983 4·83 8·437

1-1005

3·87

5·32

3·99

1 4 2

l ·61 6 4·92 6·37

I

..,

Fm3m

P63 mc Pnam

2 Ba 2 Ba 4S 4S 4S

2(a) 2(b) 4(c) 4(c) 4(c)

25 25 124

25 50 309

4Ba 4Ba 4Zn 4S 4S 4S

4(c) 4(c) 4(c) 4(c) 4(c) 4(c)

3265 9885 247 366 059 723

0185 8255 303 448 360 792

0 0 0 50 382

4

>

CD

C:

r

..,>

m 0 0

> ~ 0

"'

..,mz ;:,

:s: [3

1 8 4

5·0 8·44

2 4

I

;;;> Fm3m P6 /mmm Fm3m P63 /mmc Cmcm

"O

:t

>

0,

"' 0,

2 Ba 4TI

2(b)

4 Ba 4Zn 8 Zn 8 Zn

4(c) 4(c) 8(e) 8(g)

z

4(f)

456 ± 2

0

33 5 426 204 191

> r r -(

"'en-(

..,

w

266

;,:

12·33

8

Fm3c

10·312

8

Fm3c

Be

1769 ±2

11 23 ± 2

10·376

8

Fm3 c

Be

~ 178

~ 11 2

"'

O'\

w

TABLE 6 (continued) .i,.

In A Phase

System

Struct ure typ e

a t etragonal cubic cubic cubic Be 1 .,Co 0 •8 MI1 cubic

Be12Co Be5Co (?) Be 21 Co 5 BeCo

tetragonal

Be12 Cr

Mn 12 Th f.c. D8 1_ 3 CsCl (B2) Cu 2 Mg (C15) Mn 12Th

hexagonal cubic

Be 2C r Be 2 Cu y-BeCu y"-BeCu (metastable)

y' -BeCu (metas table)

/3-BeCu 2 Be 13Dy

cubic monoclinic tetragonal cubic cubic

Be13Er Be13Eu Be12 Fe or Be 11 Fe (?)

Be~Fe Be 13 Gd Be13 Hf C

I"'

397 ±5

"'~

v.,

>-! r.o

297 ±10 164±4

;;::

994± 3 1599 ±4

R3m

9

4·72

~

16(c) 16(d) 48(/) 96(h) 8(b) 8(/) 8(i) 8(j) 2(a)

R3m

3

10·84

7·495 4·561

3·13

8

334± 2

~~_:-,:

cubic

Be 21 Ni 5 BeNi Be13Np

7·271

MgZr 2 (C14) /3-W (A15) CrSi 2 (C40) Mn 12Th

rhombohedral hex. cell

Be 2Nb

Be13 Nd

11 ·636

Mn 12Th

rhombohedral hex . cell

-

Be13Pu

Zn 22 Zr

Cu 2Mg (C15) Si 2U 3

cubic

NaZn 13 (D2 3) cubic D81-a CsCl (B2) cubic cubic NaZn 13 (D2 3) cubic Be17Ru 3 cubic Mn 2O3 (D5 3) tetragonal Mn 12Th cubic AuBe 5 (C15 b) CsCl (B2) cubic cubic ZnS (B3) cubic NaZn 13 cubic (D2 3) tetragoMn 12Th nal cubic D82-a hexagonal NaZn 13 cubic (D2 3) cubic Zn 22 Zr

.

6·535 6-49

3·35

0·517

5·28

8

Fd3m

6·99

2

P4/mbm

10·36

8

7·625 2·621 10·226

1 8

11-342 10·17

8 16

7·271 5·994

18(h) 3(a) 6(c)

504±10

4 Be 2Nb 4Nb

4(g) 2(a) 4(h)

383±5

496±10 082 ± 1 1402 ± 2

-l ►

1794±3

C:l

Fm3c

C:

r >

-l

4·251

2·234

2·25

4·56

3·18 4·62 ·

0·585

2 4 1

2·819 10·33 5·838 10·37 7·237

18 Be 3 Nb 6Nb

Pm3m Fm3c lm3 la3

"' 0 96Be

96(i)

1806

1192

0

>

-l ►

0

48 Be 24 P

14/mmm 16 Be F43m or F23 Pm3m

48(e) 24(d)

~ 385 ~0

~ 145

~38 0

z

-l m

;,:,

16(e)

;::

625

"'

0

>'-l

"'

>,;j

7·3 4·252

0·588

4·53

4 8

F43m Fm3c

2

14/mmm

:i:

► v.,

"'"'

z ► t"

r:'

22·13 10·282 11 ·561

27·12 0

4·35

96(i)

-
-l

;

V,

"'

en

z

r►

5-< "'-
~

~>

tr.•

~

R3m

z ►

3 2 3

P63 /mmc R3m

9 8

Fd3m

8

Fm3c

8

Fm3c

~ -


c:J

~

> ...;

"'

361 277

0

0

> >

-l

,,.0 ,

z

...;

"' ;,, ~

"'0 ►-l

"'"Ci !; 96Be

96(i)

178

11 2

"'

"'"'

z >

r

r

0

> -l >

0

>,:J

30·00

4·781

0·953

8·53

0·73

8·84

8·95

4 2

Fm3m P4/nmm

~

"';,,

2Bi

2(c)

38

~3

a

0

►...; ,,;

~

V,

hexagonal

ilrS

cubic

ilrSe

cubic

ilrTe i2K

cubic cubic

-BiK 3 ,.T.) -BiK 3 I.T.)

6·137

4·92

hexagonal cubic

InNi 2 (B8 2) NiSSb (F01) NiSSb (F01) FeS 2 (C2) Cu 2 Mg C(15) AsNa 3 (D01,) BiF3 (D0 3 )

5·496

6·579

1-197

2

"'

P6 3 /mmc

6·143

4

P2 13

6·290

4

P213

4 8

Pa3 Fd3m

"'

z > r

~

6·500 9·501 6·190 8·805

6·908 10·955

1·770

2·98

2

P63 /mmc

3·17

4

Fm3m

-< "'-< ~

C!l

:;;:

4K

4(f)

583

"'

-.I

,-...

-

TABLE 6 (continued)

- .J

N

In System

Phase

A

Structure type a

c ja, rt. or /3

b

C

I

I BiKS 2 BiKSe 2

cubic cubic

NaCl (Bl) NaCl (Bl)

BiLa rt.-BiLi (L.T.) BiLi 3 BiLiMg

cubic tetragonal

NaCl (Bl) 6·578 AuCu I 4·76 4·256 0·894 (at 48·6 at.% Li) (Llo) BiF3 (D0 3) 6·722 (at. 78 at. %Li) · AgAsMg

cubic cubic

6·02 5·923

Density in g/cm 3

Atomic positions ]'vf

Dm

I

Dx 2 2 4 2

7·39 5·03

4·98

4 4

Fm3m Fm3m 2Bi + 2K 4 Se Fm3m P4/mmm Fm3m F43m

4Bi 4 Li 4Mg 2 Li+ 2 Bi 4S 2Bi 2 Mg 4Bi 4Mg 4Ni

(Clb)

BiLiS 2

NaCl (Bl)

cubic

rt.-Bi 2 Mg 3 ·(H.T.) BiMgNi

trigonal

La 2 0 3 (D5 2) AgAsMg (Clb)

cubic

Bi 2 Mn ( ?) tetragonal (at 90·2 wt % Bi) Bi 3Mn 2 (?) orthorhombic hexagonal BiMn (L.T.) BiMn hexagonal (H.T.) tetragonal BiNa

Bi2Pb 2 S5 (cosalite)

I orthoI rhombic

I

orthorhombic

I

a

randomly



"''ti

235 63

~

"'~ >

8>< ~

"':,:

P6 3 /mmc 10% Mn 2(d)

AuCu I (L1 0)

4·91

4·81

0·980

2

P4/mmm

5·459

9·674

6·63

6·71

2

5·15 6·46

2 2

Fm3m Fm3m

5·320

2

Pm3n

6-42 9·01

4 4

Fm3m Pnma

2

P63 /mmc

1·772

3·479

5·77 5·852

11 ·44 5·36

4·069

10·1

10·7

1-317

4

6·21 4

{ 3·5031

5·7912

1·6532

3·5084

5·7169

1 ·6295

14·59

4·10

(at 27·0 at.% A = 2 Bi) (at 28 ·8 at.% Bi) 4

2Bi+ 2Na 4 Se

4·061 1

8

I

I

I 4(/) I 4(a)

583

I randomly

4(b) -l

,,,► C r'

~

"'0 0

>

-l ► 0

..,,

P2 1 3

z-l

P6 3 /mmc

"',,

:,:

"'0 Pnam

I I 19·101 123·913 1

"'

P6 3 /mmc l 4Na

3-70

- --- - -

-

~

"'.,:

2

11·79

,-J

"':,:

6·321

1 ·376

(F01 ) A3

z

0·917

5·975

4·1

0

,-J

4·341

NaCl (Bl) cubic orthorhombic hexagonal AsNi (B8 1) cubic NiSSb



....► "' 0

4(b) 2(d) 2(d) 4(d) 4(c) 4(a)

P6 3 /mmc

/J-W (A15)

....

""c;r'

randomly

4(a) 4(c) 4(d) 4(a)

2

cu bic

Bi PbS (galenobismutite)

5·256

z

I

I

~

1·427

BiNb3 (metastable?) BiNd Bi3N i

4

5·361

F43m

y

X

>

6·116

cubic cubic

2

4

P3ml

I

4(a) 4(b)

4·286

BiNaS 2 BiNaSe2

hexagonal

1

1 ·586

Fm3m

p~~~t

AsNi (B8 1 ) (B8 1 _ 2 )

AsNa 3 (D0 1 ,) NaCl (Bl) NaCl (Bl)

~ BiPb3

2

6·166

4·317

hexagonal

BiNiSe

7·416

4·675

5·845

Bi N a 3

BiNi

5·29

5·603

I

Atoms

4·77 6·49

4·57

Space group

I Pbam

I

4 Pb 4Bi 4Bi 4S 4S 4S 4S 4M 4M 4M 4M 4M 4M 4M 4M 4S 4S 4S

4(c) 4(c) 4(c) 4(c) 4(c) 4(c) 4(c) 4(c) 4(c) 4(c) 4(c) 4(c) 4(c) 4(c) 4(c) 4(c) 4(c) 4(c)

2479 ±2 0675 ± 2 1043 ±2 3307 ±9 2609±9 0550 ± 9 0181 ± JO 982 093 274 035 091 186 383 293 476 029 413

6513 ± 1 3901 ±1 9056 ± 1 0141 ± 7 2997 ± 7 0927 ± 7 7120±7

155 302 040 433 011 171 206 374 138 230 998

1/4 1/ 4 1/4 1/4 1/4 1/4 . 1/4 I /4 1/4 l /4 3/4 3/4 3/4 1/4 1/4 3/4 3/4 1 /4

(Continued on page 175)

:; -l "' >,:! ~



"'"'"'

z ►

~

0 >


-l

>

.,,

0

z

> -l m

,,;;

;

en

m

See text, p. 713 4Bi 4Bi 4Pd 4 Bi 2 Pd 4Bi 4Bi 8 Bi 4 Pd 4Pd 8 Pd

4(i) 4(i) 4(i)

156 576 226

"' z

321 796 820 363

4(e)

>

r r

0

-< -


/3-Bi 2Rh (H.T.) BiRh BiRhS

mono15·93 clinic hexagonal, AsNi (B8 1 ) 4·0740 cubic NiSSb 6·138 (FO1) cubic NiSSb 6·283 (FO1) cubic FeS 2 (C2) 6·504 orthoSb 2S3 11·29 rhombic (D5 8 )

BiRhSe BiRhTe Bi 2S3 Bi, r r 0
r-

637 280

5 -


-l

1

a7Ge

cubic

9-45

2·825

4

a2 Ge

orthorhombic

PbCI? (C23)

7·734

CrB (B1 )

4·575 10·845

l ln2S4

orthorhombic rhombohedral cubic cubic cubic hexagonal cubic

1J r 2

cubic

CaSi 2 10-49 (C12) CsCI (B2) 3·751 BiF 3 (?) 7·860 CsCI (B2) 3·856 4·895 normal spine! (H1 1) Cu 2 Mg (C15)

:;;:

.; G

"'

4 2

2·196

1111 2

z

I

:-:;i

Pm3m

10·19

aHg 1 3In iln

y

,,i

1

cubic

1Ge2

I

> -l

a33 Ge

aGe

l(b) 2(c) l(a)

X

0

6 2

-----------iiiiiiiiiiii-a-a-a=--- _,_..,._.,..=a:..=--"'2--,.=----- --·~ acct aCd 2

1 Bi 2 Te 1 Tl

I

>

9·350

6·233 10·2

R3m

Point set

>

12·36

NaCl (Bl)

1

I

--l

3·99 4·914 (at 79·9 at.% Tl) 6·192 4·445 8·908 2·004

11-12

Atoms

Cl= 13°24'

4·519 4·492

b.c.

Atomic positions Space group

M

I

19·37 Cu 2Sb (C38) P 4Th 3 (D7 3)

Density in g/cm 3 D,.

C

--.J

10·796 7·545

4·834

9·069

4

4·001

4

a=21 °42'

2 4 1 2

Pm3m Fm3m Pm3m P6 3 /mmc

8

Fd3m

8

Fd3m

j

3·1 7·750

l ·583

5·6 4·10

4·198

Fd3m

32(e) 16(c) 4(b) 24(d) 4(a) 4(c) 4(c) 4(c) 4(c) 4(c)



1/4 randomly

z-i

845 978 245

074 676 107 364 076

"';, ,:: "'0 ►

>-l

"'>,:; z> "' p

z > r-

t"''

2Ca 4 In 32 S

2(b) 4(!) 32(e)

455 ±2 < 393

~

"'s:. "'

--.J

TABLE 6 (continued) 0

In A Phase

System

Structure type

c/a, O'. or {3 a

CaLa 2 S4

cubic

CaLi 2

b

I

C

I

Density in g/cm 3

Atomic positions Space group

M Dm

I

D,

. 143d

8·687

hexagonal

P 4 Th 3 (D7 3) MgZn 2 (Cl4)

CaMg 2

hexagonal

MgZn 2 (C14)

6·23

10·12

1 ·62

4

P6 3 /mmc

CaMgZn

hexagonal

MgZn 2 (C14)

5·91

9·65

1 ·63

4

P6 3 /mmc

CaNd 2 S~

cubic

P 4 Th 3

4·48

6·261

4·52

Atoms

1·637

10·25

4 4

I p~~~t I

X

I

y

I

z

>

,;;;

C

Ca + La

12(a)

r >

randomly

8

P6 3 /mmc

C)

> >

-l 0 ..,,

z

-I

"'~ m 0

· 8·533

4

143d

Ca + Nd 12(a)

>

randomly

~

(D73)

CaNi 5

hexagonal

Ca 3Pb

cubic -

Ca 2Pb

orthorhombic

Ca 5Pb 3

CaPb 3

CaCu 5

3·948

0·796

8·29

1

"'~>

P6/mmm

(D2 d)

AuCu 3 (L1 2 ) PbCl 2 (C23)

hexagonal

cubic

4·960

~

r-l

4·853 9·647

8·072

5·100

16·23

AuCu 3

5·58

7·04

1

Pm3m

4

Pbnm

6

4·901

"'

z

P6 3 mc

4 Ca 4 Ca 4 Pb 6 Ca 6Ca 6Ca 12 Ca 6 Pb 6 Pb 6 Pb

4(c) 4(c) 4(c) 6(c) 6(c) 6(c) 12(d) 6(c) 6(c) 6(c)

Ca+Pr

12(a)

067 683 111 421 913 244 1/3 130 203 463



~

655 513 250

~ V,

280 780 776 0 740 250 74!)

0

-< V, ,.; m ,::

V,

Pm3m

l

(Ll2)

cubic

AuCualike AuCu 3 ~ P b 8Tl 8 cubic like cubic Cu 2 Mg CaPd 2 (C15) cubic NaCl CaP o (Bl) cubic P 4 Th 3 CaPr 2S4 (D7 3) cubic Cu 2 Mg CaPt 2 (C15) Ca 2Pt 7 and other similar phases see hexagoCaCu 5 CaPt 5 nal (D2d) cubic Cu 2Mg CaRh 2 (C15) cubic NaCl CaS (Bl) cubic P 4 Th 3 CaS 4 Sm,

Ca 2P b3 Sna

4·825 4·856

8

I Pd3m

4

Fm3m

8·578

4

l43d

7·598

8

Fd3m

1

P6/mmm

7·525

8

Fd3m

5·6948

4

Fm3m

8·472

·4

I

7·665 1

6·0

6·514

text, p. 733 5·322

4·368

0·821

>

0

randomly

C: t< > ,.; ,r!l;

0 0

► -l ► 0

"'z: -l

"',:,

Ca + Sm 12(a)

143d

::· ""2

randomly

>-l

(D7 3)

orthorhombic orthorh ombic cubic orthorhombic

CaS4 Y 2 (L.T.)

CaS 3Zr case Ca 2Si Ca Si

I ortho-

CaSi2

.I rhombo-

Casi, II

I

S4Yb 3

rhombic

12·94

13-08

3·86

13-07

9·58

14·05

NaCl (Bl) PbCl 2 (C23)

5·924 7·667

4·799

CrB (B1 )

4·59

10·795

C12

10·4

3-61

3·52

~

4

:g

16 2·12

9·002 3·91

2·34 0'.=21 °30'

4 4

Fm3m Pnma



Cmcm

2

R3m

4Ca 4 Ca 4 Si 4Ca 4 Si 2 Ca 2 Si 2 Si

hedral

~e;rago-

I

I 6·23 I

I 4·52 I

I 2·76

2·75

3

4(c) 4(c) 4(c) 4(c) 4(c) 2(c) 2(c) 2(c)

845 978 245 36 07

I

074 676 107

083 185 352

,

(formed under high pressure and temperature and retained at room temp. after removal of pressure) I I __ I I I I I I I I

1

cc

TABLE 6 (contin ued)

co N

In Phase

System

A

Structure type

c/a, a

a or f3

b

C

I

I

Density in g/cm 3

Atomic positions Space group

M Dm

D,

Atoms

I

I

p~~~t I

y

X

z

I

I

~

"'

C

Ca 2 Sn

orthorhombic

PbCl 2 (C23)

9·562

CaSn

Ca 2Sn 3 Tl 3

cubic

CrB (B,) AuCu 3 (Ll 2) AuCu 3 like NaCl (Bl) CsCl (B2) AuCu 3 (Ll 2) CeCu 2

4·821 11 ·52

CaSn 3

orthorhombic cubic

CaTe

cubic

CaTI

cubic cubic

CaTl 3 CaZn 2

CaZn 13

orthorhombic hexagonal cubic

Cd 11 Ce

cubic

CaZn 5

Cd 6 Ce

cubic

Cd 3Ce

cubic

CaCu 5 (D2d) NaZn 13 (D2 3) BaHg11

7·975

trigonal

CdCe CdCr2 Se4

cubic cubic

Cd13CS

cubic

s-Cd 3 Cu

hexagonal cubic

o-Cct 8 Cus

Cd 3Cu 4

4·349

4·28

4·742

6·12

cubic

4

Cmcm

1

Pm3m

4 Ca 4Ca 4 Sn 4Ca 4 Sn

4(c) 4(c) 4(c) 4(c) 4(c)

067 683 111

~

655 513 253 367 084

-l

0

>

~ -I

4

Fm3m

6·33 9·65

1 1

Pm3m Pm3m

~

4-40

4

lmma

1

P6 /mmm

8

Fm3c

3

Pm3m

6·358 3·855 4·804 4·591

7·337

7·667 4·191

5-416

0·774

12·15 8·36

9·319

8·472

"' g >

-,;

4 Ca 8 Zn

4(e) 8(h)

057 ± 1

553 ± 2 0165 ± 2

8·06

_ --

4

Fm3m

> ~

0

l(b) 1 Cd 8(g) 8 Cd 12 Cd . 12(i) 12 Cd 12(j) 3(d) 3 Ce

-


a>

Fm3m P4 2 /ncm

120 8 P6 3 /mmc

:--!

-I

or y-Cd3CU4

,,,~ "',,,

8·261

7·228

Cdl 2 · 5·073 (C6) CsCI (B2) 3·865 normal 10·72 spinel (Hl 1) NaZn 13 13 ·92 (D2 3) 8·10 D8 2

Pbnm

"':,,,:

15·780 BiF3 (D03)

4

4·767

.

Cd 2 Ce

5·044

-!

4 Cd 4Cd 4Cu 6 Cu 6 Cu 4 Cd 6 Cu

4(e)

3/ 52 27 / 32 1/ 8

4(!) 4(f)

6(K) 6(/i) 4(!) 6(h)

"'-,; ~

"';:;,r,.i "'

z

1 /6 ~ 063

>.

~ 833

"'-:.

..a -j

"',: "'

......

co

-

TABLE 6 (continued)

In A Ph ase

System

Structure type a

CdCuSb CdCuZn Cd GDy Cd 6 Br CduEu Cd 6Bu CdGa 2S4 CdGa 2Se4 CdGa 2Te 4

cubic cubic cubic cubic tetrago nal cubic tetragonal tetragonal tetragona,J

or CdGaTe 2 Cd 6 Gd CdGd CdGeP 2 Cd 4GeS 6 Cd 2GeS 4 ( ?)

cubic cubic tetragonal monoclinic rhombohedral ( ?) hex. cell

c/a, er. or f3

AgAsMg (Clb)

6·275

Cu 2Mg (C15) Cd 6 Ce Cd 6Ce BaCd11

7· 16

I

15·472 15·431 11 ·93

b

I

.i,.

Density in g /cm 8

Atomic positions

M

Space group

D.,. \ Dx

C

Atoms \ 4

8·00

8

4Cd 4Cu 4 Sb

F43m

:d 2GeSe 4

·cct-Hg

7·65

:d 6Ho :d 3ln H.T.) :dln 2 S4 :dln 2Se 4

:d 11 La :ct. La :dLa ' -Cd 3 Li lt 23 at. ~ Li) -CdLi

cubic trigonal cubic hexago nal cubic

' -CdLi 3 :d 6 Lu

cubic cubic

AJ 2 CdS 4 (E3) NaZn 13 (D2 3) BaHg11 Cdl 2 (C6) CsCI (B2) A3 NaTI (B32) Al Cd 6Ce

I

z

C

~ _,

4(c) 4(a) 4(d)

,,; 0 0

~

0

z

14ifamd

-l

:;::

2

14

8S

8(g)

27

26

14

l ·87 0

6·2 8

5·326

2

14

8 Se

8(g)

25

26

13

1 ·93 8

5·63

5·771

2

14

8 Te

r:,

110°2'

35·1

4·59

4·51

3·82

4·116

36 ·2 2·89

5·19

> -l ~

:;;

8(g)

26

27

135

>

"'~ z

,.>r

1 2

Pm3m 142d

"'~

4

Cc

"'

8·862

f3 =

0

142d

2·0

1·878

;: C:

8·167 4·032

10·819

-Cdln 2Te 4 tetragonal y -Cdln 8Te13 cubic -Cdln 30 Te 46 cubic cubic ;d1aK

y

3·9,

cubic tetragonal

I

1_·80 8

15·450 9·0 4·5131 (at l 65°C, alloy 74·5 at. % Cd)

normal spine! (Hl 1)

X

,,;

4

0·641

monocliCd 4 GeS 5 nic rhombohedral ( ?) hex. cell hexagonal or tetragonal b.c. cubic Cd 6Ce cubic f.c.

7·41 3·93

\

Fd3m

-l

:;::

-

: d 4 GeSe5

p~~~t

9·005 9·128

15·917 Cd 6 Ce 10·0 8 5·57, Al 2CdS 4 (E3) 10·7 3 5·743 Al 2CdS 4 (E3) ll ·81 6·093 Al 2CdS 4 (E3) or 6-035 CuFeS 2 (El 1) 15·522 Cd 6 Ce CsCl (B2) 3·748 10·776 5·738 CuFeS 2 (El 1) 12·303 7·056 12·333

7·1 3

0 ::,

'\

. , ~ ...

"'

5·444

0·734

A=2

(at 50 at.%)

-l

> o; C:

4·93

r > _,

9·070

d

0

4·93 4

8

Fd3m

32 S

32(e)

0

386

>

-l

>

5·81, 6·205

5·817 12·41

1·00 2·00

5·54 5·8 8

5·54 8 5·924

6·197 (Cd-rich boundary, ~ 80 mo!. % n 2Te 3) 6·180 (Cd-rich boundary, ~ 94 mo!. % ln 2Te3) 13 ·81 3

1 2

P42m 14

1 Cd 2 In 4 Se 8 Te

l(a) 2(1) 4(n) 8(g)

.,, 25 26

24

25 13

z -l ;:, "' s: "' 2 >

-l

8

Fm3c

96 Cd

96(i)

183

117

~

>

V;

9·339 5·075 3-905 3·089

3·458

0·681

4·899

1·586

8·409 7·825 7-50

6·701

5·20

4·259 15·376

2·79 9·311

3 Pm3m P3ml 1 Pm3m 1 A=2 P6,/mmc 8

Fd3m

1

Fm3m

"'

,..,..> "'j -l

""s: "'

00

TABLE 6 (continued)

In A Phase

System

Structure type

c/a,

a

I

b

I

r:x.

00 0\

Density in g /cm 3

Atomic positions M

or {J D .,

c

1

Space group

Dx

Atoms

I Point set

y

X

z

-l

>

"'C Cd 3 Mg

hexagonal orthorhombic hexagonal cubic cubic

CdMg CdMg 3 Cd 11 Na2 Cd 2 Na

Ni 3 Sn (D0 19 ) AuCd (B19) Ni 3Sn (D019 ) Mg 2Zn11

5·045010·8093

6·233 5

2

P6 3 /mmc l 6 Cd

r

833

6(h)

>

-I

m

2

5·0051 13·221715·2700 5·074 I 0·8038

6·313

2

Pmma

122 Cd I 2(/) 2(e) Mg

P6 3 / mmc 6 Mg

L- □ 11 1'

V,

"'

V,

z >

r

r
r,j 0

9·675

0 ►

8·764 5·29 5·27 10·73 5·678

5·19 12·82

12-30

1·404

5-60

8

19·74

3·73

4·19

8

7·66 {3=80°32' 9·93 10·431

l ·83 7

3-90

2

3-80

3·68

4

3·97

3·998

4

5·035 3·83 0

1 2 7·2 8·512 8·413

3·466 0·688

..,,0

z

-l

P2 1 /c

2 Cd 4P 4P

Pbn or Pbnm 142d

"'

~

2(a)

4(e) 4(e)

259 398

295 897

750 403

m

0

> -l ..,"' 0::

>

"' m

"' z

9·960 (at 82·5 at. % Cd) 9·935 I I 3·254 (at 58·8 at. % Cd) 4·286 3· 622 0·845 6·665 9·306 15·689 7-200

~

P4 2 /nmc

7·978

4 3

> r

lm3m P4/mmm

!"'

0


..., ►

..,, 2 -l

"';,;;: "'0 2S

2(b)

375



-l m

"'

(at 88·5 kb)

~

V,

"'

V,

3·83 8·253

13·54

11 ·49

fJ= 106°

8·526

4·15

4·28

2

C2/m

6·92

6·83

8

Pbca

2·358 6·17 /3=100°14'

6·727

4·853

7·7

8 Cd 8 Sb

8(c) 8(c)

456 136

119 072

872 108

7·54

2

P6 3 /m mc

1

Pm3m

4

F43m

2

P6 3mc

4

Fm3m

3

Pm3m

4

Fm3m

6Cd

6(h)

5-


"' ~ "'~

4

5·663

1 7·010

9·291 15·569 7·233 4·940

Atoms

I

24H 4·291 84·3 NaCl (Bl) 5·49 (at 32 kb) BaHg 11 Cd 6 Ce BiF3 (DOa)

Atomic positions Space group

Dx

I

3·977 AuCu 3 ( ?) (L1 2) BaHg 11 9·282 cubic Cd 11Pu 15·59 cubic Cd 6Pu Cd~Ce 13·91 cubic NaZn13 Cd 13Rb (D2 3) ZnS (B3) 5·832 cubic CdS 4·160 hexagonal ZnS (B4) 4·62 hexago24 H polytype nal NaCl 5·27 cubic CdS II (Bl) (high pressure form) 12·70 monocli- S1Ys CdS 7Y 4 nic 6-471 orthoCdSb Be rhombic and? 4·09 hexagonal 7·21 monocliCd 3 Sb 2 (metanic sf able) Ni 3 Sn 6·330 hexago• Cd 3Sc nal (D010) CsCl (B2) 3·513 cubic CdSc cubic

C

Density in g/cm 3

9·897 (at 83·9 at.% Cd) 4·174 3·186 ! ~-914

cubic

CdSe

c/a, Cl or fJ

-l

>

"'C,.. ~

0·708

r,i

Ci

c:i

3·0024 0·9287

>

-l

(at l 71>°C, alloy 4·89 at. % Cd)

>

0

BaCd11

12·02

7·69

0·640

CsCl (B2) 4·011 Cd 6 Ce 15·494 ZnS (B3) 6·477 12H poly• 4-60 45·1 type NaCl (Bl) 5·81 (at 36 kb) 5·92 (at 40 kb) Cl-Sn (AS)

5·62

2·96

5·06 8·8

7-91

4

14 1 /amd

"'z

5·15 8·928 5·866

1

Pm3m

4

F43m

"';;:;, "' 0

4

-l

> -l

"'>-:I

Fm3m

~ "' ~

7·66

z

0·526 (at 200 kb)

,...> AIB 2 5·005 (C32) CuTi (?) 2·904 (Ell) MoSi 2 (?) 2·865 (Cl lb) Cd 6 Ce 15·411

3·514 0·702

1

P6 /mmm

5 -< u,

8·954 13·42

3·083

7·07

7·05

2

P4/nmm

4·684

6·28

6·28

2

14/mmm

2Cd 2 Ti 4Ti

2(c) 6(c) 4(e)

130 608 324

-


-l

~

9·182

00

'O

TABLE 6 (continued)

Phase

In A System

cubic cubic cubic trigonal cubic cubic tetragonal

f]-W (Al5)

cubic hexagonal

f.c.

CeC0 2

cubic

CeCo 5

hexagonal

CeCo 3Pu4

CeCu CeCu 2 CeCu 4 CeCu 5 CeCu 0

hexagonal tetragonal orthorhombic orthorhombic orthorhombic hexagonal orthorhombic

CeFe 2

cubic

CeFe 5

hexagonal rhombohedral hex. cell hexagonal hexagonal

Ce2Fe11 CeGa 2 Ce5 Gea

I

b

Atomic positions Space group

M

I

Dx

Atoms 2

I

Poi~t se

I

X

y

I

I

Pm3n

z

C

I

I

..,>

i I

3·500

0·717[ ?]

l 1

P3ml Pm3m

2 Cd

I 470[ ?]

2(d)

8·821 4·3008

;'

"'r

I

II

8·202

m 0 0

..,

> >

.,,

0

0·9734

..,z w :e

4·3768 9·587

Cu 2 Mg (C15) CaCu 5

Density in g/cm 3 Dm

C

I

4·943 Cd 6 Ce 15·479 3·587 Cdl 2 (C6) 4·879 CsCJ (B2) 3·707 Cd 6Ce 15·644 b.c. 4·4184

21 ·825

2·277

7·59

7·1596 4·026

4·922

0·818

2

7·67

P63 mc

6(c) 6(c) 6(c) 6(c) 6(c) 6(c) 6(c)

6 Ce 6 Ce 6 Ce 6 Ce 6 Ce 6 Ce 6 Ce 4 Ce 2Ce 2 Ce 6 Co 6 Co 6 Co 4 Co 2Co

9·338

8

Fd3m

8·54

j

P6/mmm

2011 ± 7 2016±8 2029±6 2065±8 4580±6 4586±5 1245±6

0 1628 ± 6 4414 ±6 7091 ±6 3057 ±6 574.8 ± 6 8542 ±6 8647 ±8 2070 ± 10 0562 ±1 2 2762 ± 12 5881 ± 15 9290 ± 12 0845 ±27 4326 ± 22

4(b) 2(a) 2(a)

6(c) 6(c) 6(c)

1456± 19 1503±21 4819 ± 16

4(b) 2(a)

.,, :i:.

> ;,,

m

"' z > r r

0

-
r

6Ce 6 Ge

5-< 6(g) 6(g)

25 61

~ ~

m

:,:

' \0

TABLE 6 (continued)

A

In Phase

System

a

CeHg CeHg 2 CeHg3

tetragonal and orthorhombic cubic hexagonal hexagonal

CeHg 4 Celn 3 Celr2

cubic cubic cubic

CeGe 2

CeMg CeMg 2 CeMg 3

Ce 2 Mg 17 CeMg ~s r/-Ce Mg 9 CeMg12

I

o:-Si 2Th (CJ

4·21

a-GdSi 2

4·36

CsCI (B2)

3·816 4·946 6·755

Ni 3 Sn (D0 19)

b

I

Atomic positions Space ' group

M D"'

C

14· 182 4·26

Density in g/cm 3

c/a, a or fJ

Structure type

\D

I

D,

Atoms

7·54

3·37

14·07

4

14ifamd

4

lmma

0·717 0·734

CeNi CeNi 2 CeNi8

Ce 2 Ni 7

orthorhombic cubic

7

:::'.eOs 2 :::'.eP

cubic

'CePb 3 " (Misch metal+ Pb) :::'.ePd 3

cubic

:::ePt

orthorhombic

cubic

9·92

CrB (B1 )

3·783 10·372

Cu 2 Mg (Cl5)

7·202 4·98

hexagonal

4·98

CaCu 5 (D2d) Cu 2 Mg (Cl5) NaCl (Bl) AuCu 3 (£1 2 ) AuCu 3 (£1 2) CrB (B1 )

y

z

I 415

8(e)

-l

► 0

► -l

-l

.,,

2

P63 /mmc

7·92

l 8

Pm3m Fd3m

1 8

Pm3m Fd3m

4

Fm3m

6·33

0·992

4·875

2·41

2-42

2

"'

z

P6 3 /mmc 4Mg 12 Mg 12Mg

4(!) 12(j) 12(/c)

11 1 /3 1/ 6

0

"'-! "',::

0

I

(supercell of Mn 12Th structure, see text, p. 767)

I

I I

I

0·638

7·12

7·12

2

7·5

3·32

7-85

8·87

8·55

0·823

8·72

I -~·c_.~ -~

P63 mc

4

Cmcm

8

Fd3m

6 P6afmmc

4 P63 /mm c ( ?)

1 P6/mmm

7·593

8

Fd3m

5·909

4

Fm3m

I

Pm3m

4·874

.,,

~

CJ>

24·52

4·010

~

(pseudo cell?)

4·286

16·54

"',::;o "'0

>

(Dl0 2)

hexagonal

hexagonal cubic

CeNi5

3

I

z-l

I ·Fe Th

X

Pm3m

1 3·545 4·957

10·934 AuCu 3 (?) 4·688 7·571 Cu 2 Mg (C15) CsCI (B2) 3·912 cubic Cu 2 Mg 8·733 cubic (C15) Mg 3 Pr cubic (B32) or BiF3 (D0 3 ) 10·26 10·35 hexagonal Ni 17Th 2 10·28 14·54 b.c. tetragonal (?) 14·604 cubic(?) 5·96 10·33 tetragonal Mn 12Th or 10·33 10·3 3 77-5 orthorhombic

hexagonal

8 Ge

\



I

Ce 7 N i3

I p~~~t

10·8

001 - a r

2 Ce 6 Ce 6 Ce 6 Ni 4 Ce 4Ni

2(b)

2 Ce 4Ce 2Ni 2Ni 2Ni 12 Ni 4Ce 4 Ce 2Ni 4Ni 4Ni 6Ni 12 Ni

2(c) 4(/) 2(a) 2(h) 2(d) 12(/c) 4(f) 4(!) 2(a) 4(e) 4(!) 6(h) 12(/c)

6(c) 6(c) 6(c) 4(c) 4(c)

.. , •

7888 ± 24 0 8011 ± 12 0496± 26

1250±5 5391 ± 5 8118±11 139 ± 2 428±4

i 0

0418

~

> -l

0

0

8334

1272 0302 ± 2 1747 ± 2 1670 ±4 8334 ±4

8351±18 8338± 14

0854 ± 2

> >

-l 0 ',:I

z -l

"'::_'

;,

@;

► -l

"'~ ,...

...z ► r:

-< ·"' -< 4·136

1

Pm3m

3·921 10·920 4·524

4

Cmcm

-l "' "';;:;

'O t.,.J

TABLE 6 (continued) -

- - - - ---

~ --

-

-~

In A Phase

System

a C !Pt 2

cubic

C !Pt 5

hexagona l orthorhombic cubic

C !Rh C !Rh 2

C !RU2

cubic

C !S Ce 2 S3

cubic cubic

C e2S4 Sr

cubic(?) or tetragonal ( ?) tetragonal (?) cubic

C eSb

cu bic

C eSe

cubic

C e3 Se 4

cubic

C !S2

C eSSb

c/a, rx. or fJ

Structure type

Cu 2 Mg (Cl5) CaCu.,

5·369

(D2. ) CrB (81 )

3·852

I

b

I

C

I

4·385

Space group

D,

7·723 0·817

Atoms 8

Fd3m

I

P6 /mmm

4

Cmcm

p~~~t I

I

X

I

y

z

I

"° C

s:

I

-I m 0

0

>

10·986

4·152

5·25

4·96

8·12

8

Fd3m

8

Fd3m

4

Fm3m 143d

5·93 5·186

A=

5·07

16S +101 Ce 8

-l

>

.,, z

;;1 ;;,

,:;

B !Of Ce 16 S

12(a) 16(c)



-l ::;

.,,

083

J;

>

"' r,,

"'

z >

5-


Ce 2Se 4

P 4T h 3

.;,.

Atomic positions M

Dm

Cu 2Mg 7·538 (Cl5) 7·5364 Cu 2 Mg (Cl5) NaCl (Bl) 5·778 8·6347

LaS 2

Density in g/cm 3

5·982

6·55

8·973

6·72

6·76

12(a)

"' -
~

0 0

-c = - c ~

1

18-930 1·788 4·561 0·522

4·002

;!

c:;

! I

A=53

0·810

z

I

i

3·988

I

4(g) 397 8(i) 537 129 8(i) 066 260 8(i) 316 250 K & W 1956 4(g) 3984 8(i) 5373 1291 S(i) 0654 2596 8(i) 3174 250 DD & T 1956 origin at centre (mmm)

Fd3m

___'\..

7·952

y

I

159 8

8·705

R-Co-Cr-Mo orthorhombic hex. cell 10·587 tetragoa phase 8·736 nal (D 8b) hexagoMgZn 2 4·856 nal (C14) cubic A!Cu 2 Mn 5-98 (L21) hexagoCaCu 5 4·926 nal (D2d) cubic Cu 2Mg 7·187 (Cl5) hexagoCaCu 5 4·885 nal (D2a) cubic Cu 2 Mg 7·144 (Cl5) cubic CsCI (B2) 2·8571 hexago3·978 InNi 2 (B8 2) nal cubic Co 0 S 8 9·943 (D8 9)

Co 3 Cr 3 ~i2

I

;

--,

)(-Co.Cr3 Si 2 cubic

I

A=

3·92

X

C

%Mo on site 11 0 0 0 11 0 I 62 I 53 76 100 100

74°27·5'

19·342 10·903 hex. cell (at 51 ·3 at. % Co, 18·3 at. % Cr, 30·4 at. % Mo) spine! 9· 93 cubic (H1 1) 3·62 11 ·62 /J= 1110110Cr3 S4 6·27 90°45 ' clinic

I Point I set

0

> -I

i



.,, z-I

0

I

i

;:, "'

:;::

"'2

► -I

"' ,,; :c >

4 (Co+ 4(b) Fe) 32(Co+ 32([) Fe) 8S 8(c) 24 S 24(e)

Fm3m

"'"'"'

z >

1259

~ -
-l >

,,,0 ;:,

~

::.: >

0-,

"'

Ch

Th 2 Zn 17 CaCu 5 (D2a)

12·454 1 ·456 3·973 0·799

8·553 4·974

6·02

5·47

1-10 Cl.=41 °3 2'

4·80 Cu 2 Mg (Cl 5)

cubic orthorhombic orthorhombic

8·80

8·80

3 1

8·50

8·38

2

9·15

[CrB?

,

8 ,..,~

7·255 7·98 3-90 3·90 5·17

z

R3m P6/mmm

9·56 8·95

9·60 8·94

8·50

8·52

~

Fd3m

.

6

2 4] 2

,:-~-~

Co 1. 70 Ge (H.T.) CoGe

Co 6Ge 7

CoGe 2

I hexago-

InNi?

tetragonal

I ortho-

Co 2 GeMn

cubic cubic

Co 3GeMn 2 hexago(H.T.) nal CoGeMn hexagonal (Co, Ge), Mo I liexagonal E-CoGeNb ortliorhombic Co 16 Ge 7 Nb 6 cubic Co 1 . 5 Ge 0 . 5 Nb hexagonal Co 10 Ge 7Ta 6 cubic E-CoGeTa orthorliombic

5·014

1l ·64 8

I

I [ C,

rliombic

Co 16 Ge 7 Hf6

3·933

ens;)

nal monoclinic

7·64

3·807

I

2

I

I

5·81

I

8

I

,

I

P6 3/mmc

2(a) 1 2 Co 2(c) 2 Co 4(i) 4Co 4(i) 4 Ge 4(i) 4 Ge 2 14mm 1 2 Co 2(a) ( ?) 8(c) 8 Co 2(a) 2Ge 4(b) 4Ge 8(d) 8 Ge 7 Co {4(a) [A=16 1 Aba2 ran4(a) Ge + 7 Co domly 8(b) 8 Ge 8(b) 8 Ge Fm3m 4 Fm3m 4

4·945 /3=101·10 3 ° 8·24 I

[ 5·68 1 [ 5·681 [ 10·81 8 [

11 ·5 66 A1Cu 2 Mn 5·73 (L21) MgZn 2 4·803 (Cl4) 4·042 InNi 2 (B8 2) MgZn 2 4·80 (Cl4) E-NiSiTi 7·18 (C23 ?) Cu 16 Mg6 Si 7 11 ·476 MgZn 2 4·860 (C14) Cu16 Mg6 Si 7 11 ·420 7·16 E-NiSiTi (C23 ?) Cu 16 Mg6 Si 7

1·275

C2/m

32 84 74 50 00 94 96 21 012 238

20

18 433 72 243

> 0

158 250

342 250

125 875

"'z -l

"';;:, ~

0

7·739

1-611 1 ·299

2

P6 3 /mmc

7·73

1 ·61

4

P6 3 /mmc

~

"'"'"'

z >

t""

1 ·612

4 4

Fm3m P6 3 /mm c

4

Fm3m

11·32

I

in

-0

8·61

7·832 5·30

►~

P6 3 /mmc

5·252

11-25

5·33

I

4

I

I

I

I

I

I

t"" 0

..:

I

"',..,!:::l s:

I I

I

I

.....

\0



TABLE 6 (continued) .

N 0 0

Density in g/cm 3

In A Phase

Structure type

System

a Co 1 •5 Ge 0 • 5 Ta

Co 2 GeTi E-CoGeV Co 1 0 Ge 7Zr 6 E-CoGeZr Co 2 Hf CoHf CoHf2 Co 16 Hf6 Si 7 Co 5 Ho Co 2 Ho Coln 2 S4 Co 5 La CoLa 3 Co 2Lu

hexagonal cubic

MgZn 2 (Cl4) A1Cu 2 Mn (L21 ) orthoE-NiSiTi rhombic (C23 ?) cubic Cu 16 Mg,Si 7 orthoE-NiSiTi rhombic (C23 ?) cubic Cu 2 Mg (C15) cubic CsCI (B2) cubic Ti 2Ni (£93) cubic Cu 16 Mg 6 Si 7 hexagoCaCu 5 nal (D2d) cubic Cu 2 Mg (C15) cubic in verse s pinel (Hl 1) hexagoCaCu 5 nal (D2d) orthoFe 3 C (D0 11) rhombic cubic

Cu 2 Mg (C15)

c/a, rx or fJ

I

b

4·875

I

Atomic posi tions M

Dm

C

I

Dx

Atoms

1·603

7·817

5·823 7·02 l 1·618 7·41

5·16

y

X

I

I

z

...,

g> r

P6 3 /mmc

...,►

4

Fm3m

"'0 0



~

11·11

,.,,0

Fm3m

z

11 ·55

6·918

8

Fd3m

3·165

1

12·1036

32

Pm3m Fd3m

4 1

Fm3m P6/mmm

8

Fd3m

l l ·404 4·910

I p~~~t I

4

4 5·52

Space group

3·996 0·814

9·15

7·168 10·58 0

4·60

5·108

3·976 0·778

7·279 10·088

6·578

6·48

4·726

6·54

7·122

8

Fd3m

1

1'6/mmm

4

Pnma

8

Fd3m

~

~ 8 ►

-l

"'>,;J ~

V,

"' V,

z ►

32 S

4Co 4 La 8 La

32(e)

4(c) 4(c) S(d)

~ -< V, -< ~ 0

384

3829±9 0461 ±3 1688 ± 2

0685 ±2

9396± 10 1434 ±4 6727±2

"':s: "'

I

---- --~--Co 2 Mg CoMgNi R-Co-Mn-Mo

CoMnSb Co 2 MnSi

Co 3 Mn 3 Si 2

,,..,__.co 4 Mn 3Si2

E-CoMnSi R-Co-Mn -Si

Co 2 MnSn CoMnSn 0 ~Co 4 Mo (H.T.) Co 3 Mo

hexagonal hexagonal rhombohedral hex. cell (at 31 ·5 at. cubic cubic

MgZn 2 (C14) MgZn 2 (C14) R-phase

4·86

7·92

1·63

4

P6 3 /mmc

4·846

7-901

1·631

4

P6 3 /mmc

10·99 19·47 % Mo, 36·5 % Mn, 32 % Co) Cl 5·900 A1Cu 2 Mn (L21) or CsCl (B2)

5·670

l

2·833

MgZn 2 (C14)

4·748

hexagonal orthorhombic rhombohedral hex. cell

MgZn 2 (C14) C23

4·740

cubic hexagonal hexagonal

4

Fm3m

4 Co f4Mn+ l 4 Sb

4(a) 8(c)

t"'

► -l

randomly

"'0

Fm3m

0

>

hexagonal

cubic

4

-l ► o; C:

2

7·467

1·572

7·514

1·585



(at 22·5 at.% Si)

5·8543 6·8526 3·6853

4

1 Co Pm3m ½Mn + \ ½ Si J P63 /mmc 4Mn ½Mn+} 4½Co+ 3 Si P6 3 /mmc

-l ► 0

l(a) l(b) 4(() 2(a) + 6(h)

.,,

z -l

randomly 1/ 16

"';, :s:

"'v 5/6

...,►

"'... ~

Pnam

"'"' V,

z

R-Co-Cr-Mo

10·755 19·126 (at 20 at. % Co, 53 at. % Mn) A!Cu 2 Mn 5·989 (L2 1 )

1·778

► t"' t"'

R3

4

-


C,

C

11.-Co 7 Mo 0

rhombohedral

7-Co 2 Mo 3

hex. cell tetragonal

CoMoSi Co 3 Mo 2Si Co 3Nb Co 2 Nb Co 16 Nb 6 Si 7

hexago- nal hexagonal hexagonal cubic cubic

Co 3 Nb 2Si

hexagonal

E'- CoNbSi

orthorhombic

Fe 7 W 6 (D8 5)

a phase

MgZn 2 (C14) MgZn 2 (C14) MgNi 2 (C36) Cu 2Mg(C15) Cu 16 Mg 6 Si 7

Cu3 Mg 2Si (ordered MgZn 2) E-NiSiTi (C23 ?)

8·970

a= 30°47'

25·615 4·8269

4·762 9·2287

1

0·5230

R3m

A=30 P4 2 /mnm

6 Co 2 Mo 2 Mo 2Mo

6(h) 2(c) 2(c) · 2(c)

0895±2 1655±3 3483±3 4518 ±3

2 Co 8 Co 1 Co+ 7Mo 4Mo l Co+ 7Mo

2(a) 8(i)

0670±3

2550±3 1283 ±2

4(g)

5365 ±2 3973±2

S(j)

3180± 1

2500 :c1

8(i)

5895 ± 2

r

~

Ci

> --; >

.,,

0

z_, ci

~

"'2 > _,

4·745

7·570

1·596

4

P6 3 /mmc

4·70

7·67

1·63

2

P6 3 /mmc

>

4·740

15·45

P6 3 /mmc

z

Fd3m Fm3m

0

:I;

8·90

6·770 (at 32-6 at. % Nb) 11 ·235

4· 794 7·04

7·760 5·24

8·91

9·00

8 4

l ·619

2

~

> r

r

32 Co 32 Co 24 Nb 4 Si 24 Si P63 /mmc 6Co 4Nb 2 Si

32(/) 32(!) 24(e) 4(b) 24(d) 6(h) 4(/) 2(a)

168 377 192

-< -


-l

>

I

z""

,-j

"' ~

g 4Co 4 Co 4P 4Co 4P

4(c) 4(c) 4(c) 4(c) 4(c)

0647 ± 3 6657 ± 3 1249 ± 7 1984 ± 2 581 4 ± 6

8560±4 9685±4 2461 ±8 0007±2 1917 ±6

>

,-j

"'".! Pi:

>

"'"'""

z

>

!

4 Pd 32 Co

4(b) 32(!)

I

rr

0

-


4(a)

r

4(c) 4(d)

0

,,-
-l

c:,

.,,

:: >

"' "' "' z > ,r

0

-


1·780 1·630

c:,

4

AuCu 3 (Ll 2)

11·47

3·971

"'C, 0·794

5·17.

1·260

5·209

0·3177

8·58

4

Fm3m

l

P6/mmm

8

Fd3m

l

P63 /mmc

C,

> -l >

.,,

0

z -l

"'"';:: "' C,

> -; "''"O ::

>

5·209 4·258 0·8066 5·452 0·8571

"' ~ 8·51 7·75

8·61

3 ~4 4 4

5·994 3·647

~-;

P6 3 /mmc

P6/mmm 14 /mcm Fm3m Fm3m

(L 2S

x-Co 3T a (metastable)

4Co 32Co 8 Se 24 Se

I p~~t I

--=_.-...,__....i,- = --.,.....- ---....

MgZn 2 (C14) orthoE-NiSiTi 7·27 5·44 (C23 ?) rhombic Cu 1 6 Mg 5Si7 ll ·417 cubic (D8.) hexagonal CaCu6 5·004 (D2a) Cu 2 Mg cubic 7·260 (C15) hexagon al InNi 2 4·11 (B8 2) hexagol6·39 nal ( ?) or ortho8·20 7·09 rhombic(?) 5·279 hexagonal B3 5 6·361 tetragonal Al 2CU (C16) AICu 2 Mn 6·059 cubic (L2 1) cubic

6·799

Atoms

2 8

""'1 --

Co 1 •1 Si 0 • 9V hexagonal

I

Space group

Dx

AsNi (B8 1 ) 3·621 5·289 1·460 defect 10·2 spine! 6·1863 3·5805 5·2503 (3 = 90·90° (at CoSe1.2s)

FeSi 4·4426 (al 32·6 wt % Si) (B20) cubic CaF 2 (CJ) 5·365 orthoE-NiSiTi 6·98 5·26 11 ·l 1 rhomb ic (C23 ?) cubic C u16Mg 6Si 7 l 1·198 (D8 0 ) tetragona l 4·015 9·760 2·431 orthoE-NiSiTi 7·04 5· 20 11·04 rhombic (C23 ?) cubic Cu16 Mg 6Si 7 11-201 (D8 0 ) cubic A!Cu 2 M n 5·659 (L2 1) cubic CsCJ (B2) 2-807 cubic a -Mn(A12) 8·747

es

Atomic positions M

Dm

C

cubic

0Si 2 -CoSiTa

Density in g/cm 3

(at 50·6 wt % Ta)

12·25

l

z 8 Sn

8(h)

8 Co 4 Sn 4Ti 8 Co 4 Sn 4V

S(c) 4(a)

167 (Nial) 158 (Wallbaum)

> ,-

§ "'-< "'-l "';::

4(b)

8(c) 4(a)

"'

4(b)

Pm3m

I

t5

-.J

TABLE 6 (continued) 0

D ensity in g/cm 3

In A Phase

System

Structure type

c /a, c,;

a

'a

/3

'"o·s Cl

a

/3

a

C

i

hexagonal hexagonal hexagonal cubic

(]

f.T.)

C

(

C

2

C C

h

C

hexagonal hexagonal hexagonal cubic hexagonal trigonal orthorhombic monoclinic · hexagonal pseudo hexagonal ( ?) orthorhombic

I

b

or

M

/3

C

D ,.

I I15-50

9"411 1 l ·647 (at 50·6 wt % Ta) 3·281 MgNi 2 4·7001 115·42 ( C36) (at 52·7 wt % Ta) MgZn 2 4·7971 7·827 l ·632 (C14) (at 60·5 wt% Ta) Cu 2 Mg 6·778 1 (C1 5) (at 60·5 wt% Ta) MgZn 2 4·982 8·140 l ·634 (Cl4) MgZn 2 4·893 7·909 l ·616 (Cl4) CaCu 5 4·947 3·982 0·805

CaCu 5

12·73

4

P6 3 /mmc

> -l >

12·75

8

Fd3m

,,,

4

P63 /mmc

"';o

4

P63 /mmc

w 0

1

P6/mmm

"'

8

Fd3m

~

P6 3 /mmc

5·414 3·890

1·428

1 2

P3m1 Pnnm

3·74

99°6' 3·987 0·797

10·88

::;:

,-;

~

"'g] )>

/3=

4·879

z -l

s:

2

24·54

~

C,

"'0

3·792 5·312 6·311

5·03

z

P6 3 /mmc

l ·383

5·005

I

8

5·378

6·32

y

I

?

3·890

8·46

X

12·36

7·206

9·62

I p~~~t I

24

2

C2 / m

1

P6/ mmm

2 Te 4 Te

2(d)

4(g)

~ 25 22

36

r

r

0

-


;}.

.,,

8 Co SU ! 4/mcm SU !6U 3 Co P 6m2 3 Co 6 Co 6 Co IV IV 2V 2V .

1213

S(a) 8(a)

8(/z) 16(k) 3(i) 3(k) 6(n) 6(n)

294 0347 406 214 1/2 1/2 1/6 5/6

l(a) l(b) 2(/z) 2(i)

6·71

2 2

P m 3n P6afmmc

"';o:;:: "' 2

102

>

1/6 1 /3

.,,

:r >

"'"'"'

z

1 /3 1/6

A=30 P4imnm

a -phase

z-l

>

~ -


-l

317

tn

0

356

042

089

278

0

> --i >

.,,0 ...,z

32(e)

32 S

"';:,

384

I._

/3=90°49' (as cast alloy)

11 ·85

>

J43m

--i tn

.., ::i:

4·78 0

8·232

0·507

1-625

~

=

'¥ ◄ ,

Pm3n 14/mcm

4 8

P21 3 Fd3m

2

P6 3 /mmc

> r r

0

-


R3m(?)

-!

W.&K. (1957)or:

z-!

2(a)

"',::;:, "'0

4(g) 8(i)

s.

&



w. (1964)

'0

:i:

8(i)

>

"' "' "'

8(j)

2(•)1

4(!) 8(i) 8(i) 8(j)

>

r

C

A. & S. (1960)

-< ~

"'',:: "'

Pm3n 2 A=30 P4 2 /mnm disordered

i

I

3-826

AsNi (B8 1)

5·9131 6·089 /3101 °36' l ·64 (at 570°C) 3-44 5·63 (at 50 at. % Cr) 5·763 1·664 3·464 11 ·509

5·982

trigonal

5·973

monoclinic

1·924

3-432 11-361 /3= 91 °9'

5·939

trigonal

11 ·192

4·239

4

C2/c 2

4·303 A = l¾ P3ml Cr+2S 4·261

4·167

2

2

4

l ·884

2

rhombohedral

4Cr 4S

4(a) 4(e)

1 Cr 3/4 Cr 2S 2 Cr 2 Cr 2 Cr 4 Cr 12 S 2 Cr 4 Cr 4S 4S 2 Cr 2 Cr 4 Cr 12 S 1 Cr 1 Cr 2 Cr

l(a) l(b) 2(d) 2(a) 2(c) 2(b) 4(!) 12(i) 2(a) 4(i) 4(i) 4(i) 2(c) 2(b) 4(!) 12(i) l(b) l(a) 2(c) 6(!) 3(b) 3(a) 6(c) 18(/)

5·937 (at Cr-rich boundary)

orthoS4Ya rhombic monoclinic S 7Y 5 spine! cubic (H1 1)

hexagonal orthorhombic

AsNi (B8 1) FeS 2 (C18) -

12·52 12·61 9·8

12·52 3-80

4·135 6·020

6·877

6

16-698

P3lc

12/m

P31c

R3

R3

3 Cr 3 Cr 6 Cr 18 S

25



333

0

3·91

3·99

2

0 375

> -!

g 0

>

988 355 320

263 3635 876

~

..,,

~

;,,

0

333 333 25

0

375

,::,

"' E ~

"' ~

7 /12

11 / 12

.~

>_

0

33 3 25

z

333

,
-l 022 336 329

240 866 379

,.,,"' ~

V,

"'

12 /m

V,

2

12 /m

>

5·61 0

8

Fd3m

5·6

5·9

2 4

Pm3n 14/mcm

2

4-607

"'t:,

2

5·32

0·676

vacancy 4(a) 4(b) 4 Cr 8(e) 8 Cr 8(h) 8 Cr S(i) 8 Cr 8(i) 8 Se 8(i) 8 Se 16(j) 16 Se vacancy 2(a) 2(c) 2 Cr 4(c) 4 Cr 4(i) 4 Se 4(i) 4 Se

z

r

32 Se

32(e)

4 Cr 16 Cr 4 Si 8 Si

4(b) 16(k) 4(a) 8(/i)

r -< 00 -


V,

8 7·927

"'Q (Ti

1 ·54

6·940 4·900

4

020 N \J:)

.,,.,.,

TABLE 6 (continued) Density in g/cm 3

In A Structure type

System

Ph ase

c/a, C( or fJ a

w- Cr-Ti 1

nti nued)

: rZn 13 ( ?) ·2

Zr

:G e

cubic

;Pb

tetragonal cubic

b LT.?]

, 3S

;Si

b

I

Dm

C

Dx

Atoms

I

p~~t I

y

X

z

I

I

-;

>

g > -;

6·203 6·489 13·63

"'0 0

-

-

~

5·24

0

8·239

5·102

1:615

4

7·208 4·28

13·67

A!Cu 2 Mn 8·615 (L2 1 ) NaPb 12·26

19·99

1·63

5·92

4·28

6·01

3·48

·Fd3m

32

P43n

4

Fm3 m

32

14 1 /acd

32

3-48

Fd3m P43n

.

i

"'

P6 3 /mmc

8

4

NaTl 9·147 or BiF 3 (D0 3 ) ( ?) GeK 13 ·50

cubic

I

Space group

r

or orthorh ombic (?) .m onocli- ,-CoZn 13 nic MgZn 2 hexago(C14) • .. nal and cubic .. Cu 2 Mg (C15) GeK cubic

1K 2Sb

I

Atomic positions ,\ 1

,.,z

8 Cs 24.Cs 8 Ge 24Ge

8(e) 24(i) 8(e) 24(i)

332 336 067 060

142

064

318

426

"'ti;>

"' "'

z"'

• 8(a) 8 Cs 4 Cs+} 8(b) 4 Sb 8(e) 8 Cs 24(i) 24 Cs 8(e) 8 Si 24 Si 24(i)

"';o ,:. "'0 ~ "'

~

r

0

-


r

I ZnS (B3) (?)

r -
Cu-G a



"':i:;

4·26

6

4·03

4

5·93

R3m or R3m Pnma

4

► V,

m

V,

4Cu 8 Fe 4S 8S

4(c) S(d) 4(c) S(d)

125 125 25 25

083 083

417 917 083 583

Fm3m

I

cubic D83 at 31 a t. % Ga cub ic D 81-a cubic D81- a tetragonal hexagon al

~ Cu 2GaMn

hexagonal

(H.T.) Cu1 • 5 Ga 0 • 5 Mn

cubic

Cu1·25Gao•7 5Mn

hexagonal

CuGaNb

hexagonal

CuGaS 2

tetragonal

CuGaSe 2

te tragon al

CuGaTe 2

tetra gonal

CuJ .2 5 Ga 0 . 7 6 Ti

hexagonal

Cu 5Gd

hexagonal

(L.T.)

0

-


>-!

8·267

"' 'd

6·892 5·375 5·317

12-550 1 1-821

~

m "'

I F~3m

4-45 1 4·36

4/3 4/3

4·46

4·43

4/3

~ 0 -
-!

P4 1 32

0·980

superstructme distorred B3

CuHf2

z

y

IP6 3 /mmc

6·273

sub cell

tetragonal sub cell

X

I

A=2 1P63 /mmc 4 P6 3/mmc 1Cu + Ge l 2(a) Cu + Ge 6(h) 4 Mg 4(f)

superstructure distorted B 3

Cu 2 GeTe 3

I Point I set

(at 700°C, 25·1 at.% Ge) A=2 I Im3 m

superstructure ! distorted ZnS

tetragonal

Atoms

Dz

(C14)

(H.T.)

tetragonal

C

b

AZ (at 27 at. % Ge)

(J-Mn (Al3) Cu 58 Ge~2Ni15 I cubic y-brass like Cu 25 Ge 28 Ni47 hexagonal As 2 Ni 5 Cu Ge 2 P3 cubic ZnS (B 3) Cu 2 GeS 3 cubic ZnS (B3) Cu 2 GeS3 (L.T.) Cu. GeSe 3

I

Atomic positions Space group

M

a or (3

I 4·17 I

hexagonal I A3 hexagonal MgZn 2 (C14)

Cu 1'! SGeo•75 Mg

A

"' ~

Density in g/cm 3

I 3·1695

11·1333

2

I 9·425

13·10

114 /mmml

4 Hf

4(e)

34

A= 49·5

._,.

.

801-d ·~

C U5HO

hexagonal

C U2HO

orthorhombic cubic cubic

CsCI (B2) 3·445 A2 3·0461 (at cJ-rich boundary)

cubic

D81-s

tetragonal ( ?) or hexagonal (?) or cubic ( ?) hexagonal cubic

related to D8i - a

C uHo (3 Cu 4 In ( ·LT.) Cu-In ·LT.) Cu~In

'Y/ Cu 1. 81 In

u 4 InMg

cubic

u 2InMn

cubic

: u,In) 2 Mn

hexagonal tetragonal tetragonal tetragonal cubic or cubic hexagonal

uinSe 2 uinTe 2 u 2InTi u5 La

4·960 4·280

4·016 6·759

0·814

1

7·290

I

9·20

I

P6/mmm

4

Imma

1 A=2

Pm3m Im3m

..,

>

9·2503 (at 650°C, 29·6 at. % In)

c:,

c:;

u 6In 3 Mn

ulnS 2

CaCu 5 (DZ. ) CeCu 2

• !~

8·99

9·16

r

..,

1·020

>

m

C,

C,

> >

...j

InNi 2 (B8 2) Cu 4 MgSn

18· 15 4·278

0

5·249

1·227

7·059

Cu 2Mg 7·15 (Cl5) A1Cu 2 Mn 6·1865 (at Cu2·0G In 0.97Mno·ss) (L2i) MgZn 2 4·973 7·936 (Cl4) CuFeS 2 5·528 11·08 2·005 (El 1) CuFeS 2 11·57 2·001 5·785 (Eli) CuFeS 2 6·179 12·365 2·000 (Eli) AlCu 2 Mn 6·222 (L2i) CsCl (B2) 3·02 CaCu 5 5·184 4·112 0·793 (D2d)

2

P6 3/mmc

4

F43m

16 Cu 4 In 4Mg

16(e) 4(c) 4(a)

"'z ;;;,,

518

s:

m

C,

> -;

Fd3m

4·71

4·75

4

Im3m

4

P6 3/mmc

4

142d

m

'd

s"' "' "' z

8S

8(d)

>

20

r r

0

5-65

5·77

6·00 - 6·10

4

142d

4

142d

4

Fm3m

8 Se

S(d)

8 Te

S(d)

-
r

P6/mmm

to 0

4

142d

0

9·88

4

lmma

:;!

5·76

1 8 16

Pm3m Fd3m Fddd

1·92

>

4·245

6·627

7·220

.,,

0

3·390 7·048 9·07

5·72 18·25

5·284 5·4 7·888

5·92

4 2

1 ·573

4

5·57

11 ·65

7·044

4

16 Cu 16 Mg 16 Mg F43m 4Cu 4Mg 4 Sb P63 /mmc 6 Cu 4 Mg 2 Si

Fm3m

F43m

4

P6 3/mmc

6·097

4

Fm3m

6·066

4

F43m

Cu 4 MgSn A!Cu 2 Mn (£2 1} A3

6·988 6·173

4 4

F43m Fm3m

Cu 2 Mg (CI5) Cu 3 S4V (H2 4 )

6·966

6·226

MgNi 2 (C36) MgNi 2 (C36) A!Cu 2 Mn (L2 1) AgAsMg C(l.)

5·135

16·85

3·283

5·12

16·58

3·24

2·74

4·35

32 Cu 32 Cu 24 Mg 4 Si 24 Si 32 Cu 32 Cu 24Mg

32(!) 32(!) 24(e) 4(a) 24(d) 32(f) 32(/) 24(e)

4Cu 4Mg 4 Sn

4(a) 4(c) 4(d)

cubic

C

cubic

2

Ni Sn

m

128

;a

s:m g

161 411

.,>

"'

""> "' "'"' ~

z > r

l

5-
-,

"' "':I: ► "'"'

V,

3·652

6·085

1·666

z r►

10·1 5 6·392

3·853

1·659

5-


"'m "'

z

)>

r r

$

"'>< ~ ::

4 Cu 4Cu

4(c) { 4(/J) randomly 16(e)

"' 67 and 33 fo r ¾ of these C u

4(a)

I

I ....__...--.....

17·25

78

B3

cubic tetrago n al cubic hexagon al cubic

Cu 3S4V 5·664 CuFeS 2 5·844 11 ·65 1·995 (£ 11) Cu 3 S4V 5·569 A3 2·5603 4· 184 8 1·6345 (at 12·5 at. % Si) A2 (?) 2·854 (at 7·2 wt % Si)

5·696

5·94

5·690

I

I

R3m

4 Se

superstructure cubic subcell cubic

ZnS (B3)

y

169 415 505 104 180 337 170

0

I

14·26

I

C

Various structures , see text, p. 885

I

I P~~~t I

0·980

5·86

I

Atomic positions

Space group

DX

4·32 0

5·504

.T.)

i·9Se

I

Density in g /cm 3

5·79

5·22

I

I

7·08

6 Cu 6Cu 6 Cu 6Cu 2Cu 6 Se 6 Se 6 Se 6 Se 2 Se 12 Cu 12 Cu 12 Cu 12 Cu 4 Cu 12 Se 12 Se 12 Se 12 Se 4 Se

(h1) (h2) (h 3) (h4) (c) (h.1) (h,2) (h,a) (h,4) (d) Ci1) Ci2) (i 3) (i4) (f) Ci,1) Ci,2) (i,3) (i,4) (e)

7

39 4

39

16 19 "391 a 2 "39-

39

14

39

23 39" 11

-39 2

a

2

39 14

39

23 -3911 "39 2

a 4

··1:f 3 Ta 2

1 4

5

39 14

-39 17 "39-:92 -3-

_ 7~

39 10 ""3922 -3919 3"9 1 -3_7_ _

39 10 -3922 "39 19 "39 1 a 1 -13 _L 13 _]_ 13

1 1

4

- 4-

..L

4 4 1 -.r 1

..!.

4

l

4

1

-4· I

-,1 1

4" Z1

Z2 Z3 Z4 ZJ

Ta

13

0

Z,1 z,2 Z,3 Z,4

0

Zso

·13 7

5

g ? ij )>

0

)>

~ 0

""

z

...; m ;:,

s:

m

0

►...;

m

"';I; )>

"'m

"'

z >

4/3 1

7·11

P6 3 /m ( ?)

i:::

F43m P43m 142d

2Cu+ Sn

4(a)

8 Se

8(d)

0

randomly

-
r

2 Cu 2 Ti 4Ti

10 65 339

2(c) 2(c) 4(e)

0

> -l >

.,,0

1

P6/mmm

8·438

6·336

0·751

2

P63 /mcm

;;,

4·112 10·81

3·924

4

Cmcm

m 0

4

14ifamd

m >-.;

1

P4/mmm

1 1

Pm3m Pm3m

13·65

4·602

4·945

1 ·075

3·78 66 4·583 3·786 11 ·246

1 2

Pm3m 143m

7·57 31

8

Fd3 m

12· 361

4

Fm3m

FeB (B27)

7·043

Cu2 Mg (C15) CaCu 5

7·155

z-l

"' ~

~

g:en

"'en z

>

r

5-< en

-< ::j m ~

"'

3-1 1

4·40

-

12·679

iU-a--~

>

;}

=-=-

.._

~

.rt

-

~ -'- r

s-


c:,

C:

( -Dy 2Se 3

DySe1•.10

orthorhombic cubic subcell cubic

S3 Sc 2 NaCl-like

5·79

6·76

6·40

P 4Th 3

8·662

7·94

7·97

orthorhombic

D ySi1·1 (H.T.) ~ Dy 2 Si 3

tetragonal hexagonal hexagonal cubic

DyTc 2 DyTe Dy 2Te 3

-l

"'0

4/3

0

>

(D7a)

D ySi 1.4 (L.T.)

r >

Fddd

GdSin

-l

143d

>

or

0

8·622 4·04

7·94 3-95

13·33

8·08 6·30

-,;

..,z

Imma

4

"';:, s:

Si 2Th (C,) AIB 2 (C32) MgZn 2 (C 14) NaCl (Bl) orthorhombic S3SC2 cubic pseudo f.c.

4

I4ifamd

1 ·073

1

P6/mmm

1·646

4

P63 /mmc

4

Fm3 m

4·03

13·38

3·32

3·83

4·11

5·365

8·830

5·95

m

~

..,>

"'-0 ;:i:

6·092

>

"' "'

"'

z > r

Fddd

5-
"' "' "'

P4n2

> r-

P6/mmm

z

5 < < en u,

4

5·854 5·777 5·070

8·250

1 ·627

9·848

4·144 0·4205

.

Fm3m

4

Fm3m

2

P63 /mmc

-l

~

"'

N

.I>,

w

TABLE 6 (continued)

1-.l .I>, -

Density in g/cm 3

In A Phase

System

Structure type

c/a, b

I Fe 17Gd 2

rhombo hedral hex . cell

Fe 2 Gd

hexagonal hexagonal hexagonal ortborhombic rhombohedral hex. cell cubic

Fe3 G d 2 Fe 13 Ge 3

cubic cu bic

Fe3 +xG e

hexagonal hexagonal cubic

Fe17 Gd 2 Fe5Gd Fe4 Gd Fe 7Gd 2 Fe3 Gd

c:-Fe 3 Ge (H.T.) £ 1 -Fe 3 Ge (L.T.) Fe1. 67 Ge

hexagonal

~ -

hexagonal tetragoFeG ~ nal FeG eMn hexago• rial (Fe,Ge) 2 Mo hexagonal FeGeNi hexagonal £ -FeGeTa orthorhombic Fe 2 Hf hexago(H .T .) nal Fe 2H f cubic (L.T.) als o report- hexagoed nal w-Fe-Hf hexagonal FeHf2 cubic

I

C

Dm

I

I

Space group At oms

Dx

I

Point set

I

I

X

I

I

Th 2Zn 17

R 3m

8·536 12:429 (at 19·2 at. % Gd)

1·456

Ni17 Th 2

8·50

8·35

0·984

CaCu 5

5·0

4·1

0·82

8·18

5·15

6·64

1·29

8·52

8·54

2

8·40

8·44

2

y

II

I

I

z -l

--

r > -l

'

"'0

i i 2 1

0

► -l

:

P6 3 /mmc

5·71

6·78

7·15

8·728 5·148 7·389

Cu 2Mg (Cl5)

8·25 5·763

Ni 3 Sn (D01s) Ni3 Sn (D0 19) AuCu 3 (L l 2) InNi 2 (882)

CoSn (B 35)

Al 2Cu (C16) InNi 2 (B8 2) MgZn 2 (Cl4) InNi 2 (B8 2 ) E-N iSiTi (C23 ?) MgZn 2 (Cl4) Cu 2 Mg (C15) MgNi 2 (C36)

C(=34·31 ° 24·62



..,,

z-l

P6/mmm

5·1 69 3·668



-l

"'

"' :r ► ti>

"'ti>

8·55

8 8·52

6

Fe Fe Ge

4·226010·8160

(at Ge-rich boundary) 4·222 I 0·817 I (Ge-rich boundary) (Ge-rich boundary)

I

·, . . ,

5·027 I l ·25o

i1&.' S3 -

_....

7·93

2

P 63 /mmc

6

P6 3 /mmc

1

Pm3i11

2

P6 3 /mmc

a

~

~

5·911

4·962

0·839

4·1 04

5·223

1·273



P6i/mmc

4·83

7· 86

1·63

4

P 63 /mmc

4· 016

5·082

1 ·266

2

P6 3 /mmc

1 ·632

4

P6 3 /mmc

8

Fd3m

8

P63 /mmc

4·980

-l

"'s: "'

3 7·3 6

3·82

~

· 5Ciij::.

P6/mmm 14/mcm 8 Ge

8(/z)

158

;;j a,

C

r :'.j

11 ·47 8·125

"'0

7·025 4·968

±¼,¾,¾; ± ¾,¼,¾ !), 0,0,0; t ,½..½-;0,½,½0 0,0,1 1), I .

.

4·055 0·8105

5·30

> r r 0 -< ti> -< ti>

I

5·00 3

7·27

z

Fd3m

(at 19 at.% Ge)

16·167

4·55

Ti 2 Ni

s:

"'0

4·782

I

4·021

n

~

8·43 8·22

5·1784

2·86

3·254

0

>

;! 0

"1

z

"',::;:,

0·63

12·055

32

:;:

Fd3m

-l

(£93)

Fe5 Ho Fe 2 Ho FeHo 4 S 7 Fein 2S4

hexagonal cubic monoclinic cubic

F e-Ir (L.T.) hexagonal FeKS 2 monoclin:ic

CaCu 5

4·86

4·10

0·84

1

P6/mmm

8

Fd3m

8

Fd3m

"'"d ~

(D2a)

Cu 2Mg (C 15) S 7Y 5-like inverted spine! (Hl 1)

7·300 12·570

"'"' ti>

z

3·778 ll ·341 /3=105 ·70

r►

r

10·619

A3

2·635 (at 40 at. % Ir) 7·05 11·28

4·48 4· 242

l ·61

5·40 /3= 112°30'

4·671

32 S

cubic

Cu 2 Mg (C15)

7·222

32(e)

0

384

~

~

A=2 P6 3 /mmc

4

C2/c

"':::: 4 Fe 4K

8S Fe 2 Lu

> 00

C

(D2a)

35iiif •

FeGe

Atomic positions

M

C( or ,8 a

.I>,

8

Fd3m

4(e) 4(e) S(f)

.195

"'

992 355 111

10



;i,.. Vl

..,.

TABLE 6 (continued)

In A Phase

System

Structure type a

i FeLu 2 S,1 s-Fe-Mn (L.T.) metastable R-Ie52rvtn16Moa2

Fe 2 Mo Fe 71'vlo 6

cubic hexagonal

normal spine! (Hl 1 ) A3

hexagonal R-phase hexago- MgZn2 na l (C14) rhombo- D80 hedral

c/a, rx. or /3

I

b

C

I

Density in g/cm 3 Dm

10·807

Atomic positions

M

I

Space group

D,

5·62

At oms 8

Fd3m

32 S

FeMoSi

hex. cell tetragonal

hexagonal

2·530

4·079

10·983

1·612

19·398

8·49

~ Fe.i1Nb19 (H.T.)

'7-Fe2 Nb 3 £ -FeNbSi Fei 7Nd 2 FeNi 3 Fe4 Ni 4 PdS 9 Fe 4 Ni 4RhSs

Fe4 Ni 4RuS8

cubic cubic

cu bic

Fe0 • 92 Ni 0 • 13S

cubic

4·751 phase 9·218 (D8b ) (at 50 at. % Mo)

Co 9 S8 (D89) Co 9S 8 (D89)

Co 9 S8 (D8 9 )

D8 9

cubic

25·68 4·813

4·751

7·662

4·8 17

1

~

-

8·95

Fei 1Ni 0 Si4

cubic

z





C,

r

~

I;)

.,,0 z

R3m

-j

6 Fe

7·11

6('1) 2(c) 2(c) 2(c)

~09 ~167 ~346 ~448

1·613

"';,;: w

0

> -j

A=30 P4 2/mnm W & S (1963) give : 2 Fe 2(a) (A) With B & S (1954) (B) 1 Fe + 4(!) (JFeCr parameters 3 Mo (C) 2Fe+ 8(i) 6Mo 8 Fe 8(i) (D) 2Fe + (E) SU) 6Mo B & S (1954) gave a different distribution. See 1, p. 178 4 P63 /mmc

-

7-872

~ 59

3

0· 522

3 >

m "'

z"' >

,-r' -< -
-j

8·59 3·5 523

12·47

1·451

10·2163

3 1

R3m Pm3m

4

Fm3m

4

10·0872

4

10·046 1

10·149 (Fe-rich boundary)

3·676 spine) (H11)

I

376±4

""0 0

>

:j

(L1 2)

tetragonal

(mi nera l) FeNi 2 S4

y

>

Fm3m

Fm3m

4Pd Fe+Ni 4 Rh 32 (Fe +Ni) 8S 24 S 4Ru 32 (Fe +Ni)

ss

(Fe, Ni) 9S8

I

;!

2W

(J

hexa gonal MgZn 2 (C14) tetragonal (J phase (D 8b) cubic 17 carbide Ti.Ni (£93) ortho£ -NiS iTi rhombic (C23 ?) rhombo- Th2Zn17 hedral hex. cell cubic AuCu 3

X

A= 159 R 3 4 P6afmmc IX= 30°38'

-Fe,Nb

32(e)

I

A=2 P63 /mmc

2W

MgZn 2 (Cl4)

Point set

"' 0

2W cr-FeMo

I

4

5·032

P4/nmm

9·445 6·148

Fm3m

4·75 7-30

8

24 S 4 (Fe, Ni) 32 (Fe, Ni) 8S 24 S

4(b) 32(!) 4(b) 32(!) 8(c) 24(e) 4(b) 32(!)

.,,

z ~

125 5

;;o

;:

""8 > -;

2540

"''"Ci

1257

~

V,

8(c) 24(e) 4(b)

2499

32(!)

1/8

"'"' z >

r

-
,

--.J

TABLE 6 (continued) -

In A Phase

System

Structure type

c/a, rx or f3 a

cubic hexagonal cubic

Cu 2 Mg (C15) MgNi 2 (C36) Cu 2 Mg (C15)

b

I

C

Atomic positions M

Dm

I

D,

Atoms

16·430 3·033 3 (Fe-rich boundary)

7·054

8

Fd3m

8

P6 3 /mmc

8

Fd3m

Ni 3 P (DO.)

9·108

4·455

0·4891

6·92

8

14

hexagonal

C22

5·930

3·453

0·5885

6·83

3

P62m

cubic

3·59

MnP (B31) FeS 2 (C18) AuCu I (£1 0 ) AuCu 3 (Ll

cubic tetragonal cubic

4·01

p~~t

I

X

y

I

I

z

5-668 2·7305

5·07

3·860 3·731 (at'51 ·9 at. % Pd) 3-851

0·9664

4

Pnma

2

Pnnm

2

P4/mmm

1

Pm3m

~

r

~

"'0 '- !

>

1

Pm3m

2

P4/mmm

1

Pm3m

8 Fe 8 Fe 8 Fe 8P 3 Fe 3 Fe 2P 1p 4 Fe 4P 4P

8(g) 8(g) 8(g) 8(g) 3(f)

3(g) 2(c) l(b) 4(c) 4(c) 4(g)

0793 ±2 3605 ± 2 1717±2 2921 ±4 256 594 0016±2 1913 ± 5 16

1059±2 0310±2 2195 ±4 0454±4

"'i,:;:,

2006±2 5684 ±4

z

37

I

r

""

,


3·861 3·788 (at 45·88 at.% Fe)

(L1 2)

~

233 8±8 9860±8 7548±8 4903±14

;;l ~

2)

AuCu 3 (L l 2 ) AuCul (Llo) AuCu3

..,

;;

4·32

5·191 3·099 5·792 4·985

I

I

6·717 4·973 8

Space group

orthorhombic tetragonal

orthorhombic orthorhombk tetragonal

y

I

Density in g/cm 3

0·981

I

·"' 1''e2PU

cubic

FePu 6

tetragonal

Cu 2 Mg (Cl5) MnU 6

7·1 89

12·5

10·405

5·349

(D2 ,) y' Fe-Re

Fe3 Re 2

T-Fe 5 , 7 Re 6Sir 8

FeR h FeRh 2S4 FeS (H.T.) rx-FeS (L.T.) rx" -FeS FeS (macki nawite) FeS (pyrrhotite)

cubic

tetragonal

rhombohedra l hex. cell cubic cu bic hexagonal hexagonal hexagonal tetragonal monoclinic

rx-Mn (A12)

a phase (D8 0 )

8·978

12·92

Fd3m

4

14 /mcm

A= 58·1

9·02

8

4·69

0·52

(at 26·5 wt % Fe)

Fe 7 W 6 (D8 5) CsCl (B2) normal spine!

4-67 25·69 2·987 (at 20°C at 53 at. % Rh) 9·80

1 8

143m

2 Re 8 Re 8 Re+ 16 Fe 24 Fe P4 2/nmm 2 Fe 4 Re 4 Fe+ 4Re 8 Fe 4 Fe+ 4 Re

2(a) 8(c) 24 (g)

24(g) 2(a) 4(/) 8(i) 8(i) 8(j)

l

as rx-Mn

► i:!

(A) (B)

(C)

[atomic parameters?]

~· t,

Cl

>

>-3 i>

(D) (E)

>,j

z>-3

"'

7" ~

R3m Pm3m Fd3m

"" 2; >

--l

"'-"':I

(H l 1)

~

BS , (at l 77°C)

.00 >

5·968

AsNi (B8 1) PbO (Bl0)

..,>

""

(7-1

11-74 (at Fe1 • 0 S)

3-449

5·780

1·676

3-68

5·03

1-37

12

(at Fe 0 •952 S)

P62c

2

P63 /mmc

2

P4/nmm

12 Fe 2S 4S 6S

12(i) 2(a) 4(!) 6(h)

360

040

125 016

2/3

0

> r

8 > -l

= >

_8

"' "'

"'

z

P3 1 6·42

6·59

2

6·58

6·59

2

>

r

s-


;! 0

>,j

z--l

P4dmnm 6·98

2

P4/nmm

2 Te

2(c)

285

"':,,;;:: "' 2 >

...;

3·846

BS

840

6·661

3·8162

5·641

/3=90·2°

5·6548

1 ·4818

8·56

6·46

7·633

/3=

99°20'

i►

A= P6 3/mmc 1·99Te +1 ·33 Fe 2 Pnnm

6·2655 5·2619 3·8743 9·68

"'

2

C2/m

"' "' "'

z. ►

4 Te

4(g)

2 Fe 4 Fe 4 Fe 4 Fe 4Fe 8 Fe 8 Fe 4Th

2(d) 4(e) 4(g) 4(i) 4(i) 8(j} 8(j) 4(i)

225

C"

365

8 -


-
Cl

C

~ Ga Ge4 Rh 5 Ga 3 Hf Ga2Hf Ga 3 Hf2 G a 3Hf 5 GaHf2 G aHfNi 2 Ga 2HgS 4 Ga 2 HfSe4 ~ Ga 2HgTe4 Ga 3Ho Ga 2Ho Gair Ga 3 Tr (H. T .)

cubic tetra gon al tetragonal

FeSi (B2O) Al 3 Ti (DO22)

orthorhombic

Al 3 Zr 2

5·472

hexagon al tetragonal cubic

Mn 6 Si 3 (D8 8 ) Al 2CU (Cl 6) A!Cu 2 Mn (L2 1) Al 2CdS 4 (£3) Al 2CdS4

7·970

CuFeS 2 (£11) AuCu 3 (Ll 2) AIB 2 (C32) CsCI (B2) CoGa3 .

tetragonal tetragonal tetragonal cubic hexagonal cubic tetragonal

4·832 3·881 4·046

9·032

2·327

25·446

P2 1 3 14/mmm

8

141 /amd 8 Ga 8 Ga 8 Hf 8 Ga Fdd2 16 Ga 16 Hf P6 3/mcm 6 Ga 6Hf 14/mcm

8

9·402 13·630

E "'

4 2

5·686 0·713 (al 37·5 at. % Ga) 5·295 0·792 6·686

2

5·945

4

Fm3m

4

8(e) 8(e) 8(e) 8(a) 16(b) 16(b) 6(g) 6(g)

250 414 074 62 50 00 610 25

12 054

185 182

GaLi

hexagonal hexagon al cubic

GaLi 3 P 2 Ga 3 Lu

cubic cubic

GaLaSa

GaMg 2 Ga 2 Mg5

hexagonal 3 a 0 • 4 MgNi 1 . 6 cubic Ga 3 Mn 3a5Mn 2 ~ GaMn

:H.T.) > GaMn , G a-Mn 3aMn 3 :H.T.) Ga M nNi 2

cubic tetragonal rhombohedral hex. cell cubic hexagonal hexa gonal cubic

0

',;

z-l ~

~

>,;

5· 50,

10·23

1·86 0

4·95

5·002

2

/4

8S

S(g)

275

265

139

s"'

5·71 5

10·78

l ·886

6·10

6·18 5

2

14

8 Se

8(g)

25

25

125

>

6·025

12·050

2·0

"'

"' z

(E3)

AIB 2 (C32) AILaS3 NaTI (B 32)

>-

-l

"'>,; ~

v.,

"'

V,

5·591 8·803

2·694

0·306

2 2

1432 P4/mbm

z

r> r

Al 8Cr 5 (D810) y-brass Ni 3 Sn (DO 10) A3 AuCu 2 Mn (L2 1)

9·028

12·58, 16·070 8·992 (62 at.% Mn) 5·406 I 4·360 0·807 (at 71 ·4 at.% Mn) 2·698 4·344 1·61 0 5·86

0

rx=88 °24'

>< "'>


2 2

Pm3n 14/mmm

6·922

3·500

0·5056

8·28

2

P4/mbm

5·171 5·958

2 4

Pm3n Fm3m

z

4·882

7·885'

1-615

4

P63 /mmc

,::

5·22 8 4·27

4·27

1·00

2 1

Pm3n P6/mmm

-l

"'0 0

~ -l

6·98 6·92

8·423 4·060

1·206

7·94

2·8919 (at 51 ·3 at.% Ga) I 4·9831 1-245 4·000 (at 36 at. % Ga) 0·903 3·38 3·76

8·53

4·897

7·873

8·63

;,,

"'g >

-l

"',,; :I;

A=31 1

P3m1

1 1

Pm3m P6 3 /mmc

625 13 8

2(d) 2(d)

2Ga 2Ni

Pm3m

"'-< "'-l

4

Fm3m

"'

4

P63/mmc

4

Fm3m

"':;:

I

I

1·040

10·003

1·556

7·27

z.

1

I

6·748

~

§

A=4 F4/mmm

1·614

>

"' "' >

4

Fm3m

4 4 4

P4n2 F43m 14/mcm

4

4Ga 16 Ga 4 Pd

I

4(c) 16(1) 4(a)

15

14

~

Im3m

d

C!

r

4· 89 5·42

7·814

10·51

5·493

4·03

4·064 4·195

AIB 2 {C32)

4·272

4·298

15·946 12-034

10·76

1·006

6·51

6·85

4

P213

2

Pham

4

Pbnm

4

Cmcm

1

P6/mmm

~

2Ga 4Ga 2 Pd 4Pd 4Pd 4Ga 4Pd 4 Pd 4Ga 4 Pr

2(a) 4(h) 2(c) 4(g) 4(h) 4(c) 4(c) 4(c) 4(c) 4(c)

0 t;;;1

34±1

15±1

>

090±5 315±5 39 07 79

232±2 393±2 29 33 96 356 075

0

10·70 5·18

4·91 7·440

,::

m

g > ;;l ~

"'Cl

5·923

8·031

;

8·866

8·799

4·23

~

.,,

.":!

4

lm3m

4

Fm3m

1

P3m1

4

P21 3

2

Cmmm

:2 r►

§

(H.T.)

G a 3 Pt 2

z

8·28

4·452 11 ·331

Al 3Ni 2 (D5rn) FeSi (B20)

I

2-30

CrB (B1)

Ge 7Ir3 (D8 1 ) CaF 2 (Cl)

Atoms

Dm \ D,

C

8·715

3·5823 AuCu 3 (Ll 2 ) A!Cu 2 Mn 5·933 (L2 1) 4·872 MgZn 2 (C14) A!Cu 2 Mn 5-880 (L2 1)

Ge 7Ir3 (D81) FeSi (B20) Ge3Rh 6

Space group

4·943 3·789

AICu 2 Mn 5·806 (L21 ) tetragonal CoGa 3 6·48 8 ZnS (B3) 5·4504 cubic tetrago6·448 nal

cubic

GaPr

{J-W (Al5) AICu 2 Mn (L2 1) MgZn 2 (C14) {3-W (A15) A1B2 (C32) D81-a Al 3 Ni 2 (D51a) CsCl (B2) InNi 2 (B8 2) A6

I

b

Atomic positions

M

cubic

GaPd

GaPd 2

{3-W (A15) A1 3 Ti (D022) Si 2 U 3

Density in g/cm 3

a or f3

a

GaMo 3 G a3N b

A

00

3·948

1·223

2 Ga 2 Pt

633 160

2(d) 2(d)

~ ~

V,

2Ga 4Ga 2 Pt

4 Pt 4 Pt

2(a) 4('1) 2(b) 4(e) 4(j)

1/4

0

1/2

0

225

50

N u, \I:)

TAiii1:fi'r(conitiziied)

C,

C >

A

In P hase

Structure type

System

c/a, rx. or fJ a

b

I

Density in g/cm 3

I

I

Atomic positions

M

I

Dm

C

.. Space group

D,

Atoms

I p~!~t I

I

X

y

I

z

I

>-l

>

d

C:

cubic

GaP t 4

mon oclinic tetragonal pseudo cell 7·742 Ni 3 Sn hexagonal (DO19) 10·001 r hombohedral 6·178 hex. cell

Ga 3 Pu (L.T .)

Ga 3 Pu (H.T.)

Ga 3Rh GaRh Ga 3Ru Ga 2 Ru GaRu GaS oc-Ga 2S3

{J-Ga 2S3 (H.T.)

y-G a 2S3 (L.T.) Ga S3Y G a 2S4 Zn GaS b GaSb II (H .P.) Ga 3 Sc5 GaSe

AuCu 3 (Ll 2)

3·892

GaP t3

tetragonal cubic tetragonal orthorhombic cubic hexagonal

CoGa 3 CsC! (B2) CoGa 3

6·48 8 3·01 6·47

Si 2Ti (C54) CsCl (B2)

8·184

defect ZnS (B4)

hexagonal

cubic hexagonal tetragonal cubic tetragonal hexagonal rhombohedral hex. cell

.,

0

7·855

>

--!

>

.,,0

O:= 35°59' 9,3

28·031

4·749

6·553

1·01 0

6·7 3

1·040

9·63

9·45

8·696 15 ·50

4·323

10·4 3·86 3·916

7·03 8 /3= 121·22°

6·411

3·685

6· 028

9·64

6·11

0·634

Al 2 CdS,t ( ?)(£3) ZnS (B3) /3-Sn (A S)

5·27 4

10·4i

1·979

2· 973

8·074

5·951

18 18 6 6

R3m

4 1 4

P4n2 Pm3m P4n2

2

Fddd

1 4 4

3·65

l ·636

5· 181

6·0961 5·348

12

Ga2Se 3 GaSe3 Sm Ga 2 Se4 Zn Ga 2 Sm G a 4 Sr G a 2Sr Ga2Ta 3

18(h) 18('1) 6(c) 6(c)

4791 ±3 5011 ±4

1247 ± 1 2915 ±2 12977 ± 8 28798±9

z--!

~ ;;::

"'0 ►--!

"'.,. s:' .,,, "' ;z,

z

2S + 1 ·33 Ga

Pm3m P63 /mmc

4Ga 4S Cc 4Ga 4Ga 4S 4S 4S P6 3 /mc 1·33 Ga 2S

4 s+ F4-3m 2·66Ga P6 3 or P§. 3 /m 3·808 2 14(?)

3·7 5

4(/) 4(f) 4(a) 4(a) 4(a) 4(a) 4(a) 2(b) 2(b)

17 60 130 ±2 120±2 983 ± 4 012 ±3 004 ± 5 0 375

043±1 400±2 204±1 935±2 998±2 081 ±5 177±1 580±3 339±2 090±6 randomly

8S

8(g)

25

25

2

~

~

:::

0,

125

4 F4 3m A=4 14 1 /amd

0·549 (High pressure form) 0·737

>< V.•

I

P6:;/mcm

6 Ga 6 Sc

6(g) 6(g)

3 Ga 3 Ga 3 Se 3 Se 4Ga 4 Se

3(a) 3(a) 3(a) 3(a} 4(!) 4(f)

4Ga 4.se-

4(f) 4(f)

~ C, c r >

61 25

;;l 0 (j

>

3·747

23 ·910

6

R3m

and Gase

Ga Ga Pu Pu

>. ,...

defect ZnS (B3 ) AILaS 3

Mn 5Si 3 (D8 8 )

r ..>

Pm3m

"'0

3·010 3·585 l 1· 140

monoclinic

1

hexa gonal

GaS

ZnS (B3)

cubic hexagonal tetragonal hexagonal tetragonal hexagonal tettagonal -

Al 2CdS 4 (?)(£3) AIB 2 (C32) Al 4 Ba

3·755

15·94

5·429

4

4·92

10·30 5·49 6

6·25 10·99

4·238

2·00

4·187

P63;mmc

A=4 F43m Se+ 2·66Ga 5·28 12 /4(?) 2 5·2i5

r

5·203

5· 13 7·39

1

4·437

2

4·732

6·817

1 ·09 3·471 0·509

-

-

-

-··-·-·-·

8·28

- ··- · -- --·-···-· -



---·

·-

P6/mmm

2

P4/mbm

>

-!

"',.. ~

8 Se

8(g)

25

25

125

>

i:::

~

4Ga

14/mmm

1

\il ::: "'g

z

4(e)

378

2·41 4·344

.,, z '- !

!iii >

P6/mmm

10·70



>

0

V,

0·988

(Dl 3 )

AIB 2 (C32) Si 2 U 3

5·03

050 950 767 567 180±5} 590±5 J & H (1961 ; 90 A&P 177 (1956)

~

"' :::

"'

4Ga 2 Ta 4Ta -

4(gj ~389 2(a) 4(g)

, _

,_,131 - ··-· -··

--• -

-- -

· - ·-

-

0..

TABLB6 (continued) In Phase

System

A

c/a, rx or /3

Structure type

a

I

b

I

C

0\ N

Density in g/cm1

Atomic positions M

Dm

J

Space group Atoms

_Dz

I

Point set

I

X

1

y

I

z

I

-l

>

t>

C

Ga 3Ta 5

Ga 2Tb GaTe

Ga 2Te3

tetragonal W 5 Si 3 (T1) or (D8m) tetragoCr 5 B3 (D8,) nal hexagoAIB 2 (C32) nal monoclinic

also hexagonal orthorhombic also cubic

also cubic bexagonal Ga 2Te,Zn tetragonal or

Gase

ZnS (B3)

J a 2Th Ja 3Ti

tetragonal tetragonal tetragonal

3 a 2Ti

tetragonal

Ga3Ti 2

tetragonal

GaTi Ga,Ti1

Ga 3Ti 5

GaTi 2 x2 -GaTi 3 Ga 3Tm

tetragonal hexagonal hexagonal or tetragonal hexagonal hexagonal cubic

Ga 3 U

cubic

Ga 2U

hexagonal

5·166

6·58 8

11 ·92

4·209

4·095

0·501 1·81 0·973

17·37

4·074 10·44

4·06

14/mcm

1

P6/mmm

12

23·6 0

4

12·52

8 5·57

5·886

5·75

. I

8 Ga 16 Ta

8(h) 16(k)

17 074

r

67 223

;'.j

"'0

.

0

>

~

.,,

C2/m

P63 /mmc

5·937

11·87

2·00

CuFeS 2 (El 1) Si 2Th (C,)

5·94 8

ll ·892

2·0

4·243

14·690

5·51

5·67,

2

/4(?)

4

142d

4

141 /amd

2

14/mmm

or 3-931 3-929

8·109 2·063 24·366

8

14ifamd

0·638

2

P4/m

3·970

7·861

5·452 0·694

5·288

4(!) 4(!)

0

i 2

0 0 .l. 2

0817 4196 3007 3223 3236 0528 170 898

z-l

"';:, s: "'0 ~

"' ~ "' "' "' 2 > r "";j

r

0

~

"',< ~

8(g)

8 Ga

8(e)

25

25

125

393::i:S

al

2

P4/mmm

2

P63 /mcm

2

0·695

5·054 0·495 W5 Si,(Tl) 10·218 (at 37·5 at.% Ga) (DB m) 5·501 1·22 lnNi 2 4·514 (B8 2) 4·645 1·61i Ni 3 Sn 5·752 (D0 19 ) 4·188 AuCu 3 (Ll 2) 4·2475 AuCu 3 (Ll 2) 4·01 0·954 4·21 AIB 2 (C32)

8 Te

;!

1·00

3-970

7·604

4Ga 4 Te

0620 1379 2380 0399 3415 1574

"'

8·734 2-305

4·010

4(i) 4(i) 4(i) 4(i) 4(i) 4(i)

A=4 F43m Te+ 2-66 Ga

3·789

6·284

4Ga 4Ga 4Ga 4Te 4Te 4Te

"'s:

Al 2CdS 4 (?)(£3)

Mn 5 Si 3 (D8 8 )

4

16·96

2-21

AuCul (Ll 0 )

14/mcm

104°12'

(thm films) 14·20

Ga 2 Hf

7·89

/3 ==

10·32 6·43

Al,Ti (D022)

14·3

4

0

4·17

Ga2+zTe 3 GaTe 3

JaTe 2Zn

10-208

5·66

P6 3 /mcm

2

14/mcm

2

P63 /mmc

(at 24 at.% Ga) 2

P6 3/mmc

1

Pm3m

1

Pm3m

1

P6/mmm

8 Ga 8 Ga 8 Ti 1 Ga 1 Ga 4 Ga 4Ti

8(e) 8(e) 8(e) l(a) l(d) 4U) 4(k)

2 Ga 6 Ga 4Ti 6Ti 6Ga 6Ti

2(b) 6(g) 4(d) 6(g) 6(g) 6(g)

250 414 074

C

r

:;

"' 0

0

>

186 309

391 125

;;l

.,,

0

z

62 29 605 24

i m

Sl >

,-J

"''"O

:I;

>

"' "' "'

z > r r

0 - -l >

300 29368 3197

r >

o,j

56030

z-l "' 2 ::'; rd

-::

~

"'"'

V>

4Ga 2 Yb

4(f) 2(b)

2 Ga 2 Ga 4Ga 4Zr

2(a) 2(c) 4('1) 4(g)

176 351

8 Ga 16 G a 16 Z r

8(a) 16(b) 16(b)

62 50 00

8 Ga 8 Zr

8(e) 8(e)

4Ga 2 Zr 4 Zr

4(g) 380 2(a) · 4(h) 180

456 ± 4

z > r

5


~

.,,

0

..,z

""'s: "'0

:;...,

"',., ~

"'"'

R3m

"'

Pm3m Fd3m

5

26·482 (at 69·9 at. % Gd)

z >

1 8




7·31

4

Fm3m

7·724

8

Fd3m


< "'>


"'Cr

..,

4

>

4

Pnma

4

143d

"'0 0

Gd+Sr

12(a)

>

;;:

randomly

(D7a)

GdSi 1 , 4 (H.T.) GdSi1' 4 (L.T.)

tetragonal orthorhombic

Si 2Th (C.)

GdTc 2

hexagonal monoclinic or cubic orthorhombic tetragonal cubic cubic

MgZn 2 (C14)

GdTe Gd 2Te 3 GdTe1 , 75 GdTI GdTl 3 GdZn Ge 2 Hf

cubic orthorhombic

GeHf

orthorhombic

0

4·10 4·09

NaCl (Bl) S3 Sb 2 (D5 8 ?) PbFCI (£01) CsCI (B2) AuCu 3 (L1 2 ?) CsCI (B2) Si 2 Zr (C49)

13·61 4·01

5·397 9·053

6·139 11 ·98

4·29

5·71

4

5·92

4

. Imma

4

P63 /mmc

1·646

hexagonal tetragoGeHf2 nal 3e 7Hf6Ni 16 cubic 3eHg 2S4 rhombohedral hex. cell 3eHg2Se4 tetragonal 3e3 Ho 2 hexagonal 3e41r hexagonal 3e 7lr3 cubic 3eslr4

:Jelr GeK

Ge 4K Ge 2 La

Ge3La 5 Ge4 Lii.1

tetra gonal orthorhombic cubic

cubic(?) tetragonal and orthorhombic hexagonal cubic

Cu 18 Mg 0 Si 7

"';o;;:: "'0

> -l

"'"O

s:

11-75

f;l

7·42

7·66

2·079

z

Fm3m Pnma

4 4

>

p 0

P4/nmm

2

-


D81

4

8·735 5·64

16 Ge 12 Ir

16(/) 12(e)

156 342

4Ge 4 Ir 8 Ge 24 Ge 8K 24K

4(c) 4(c) 8(e) 24(i) 8(e) 24(i)

185 010 071 064 332 336

8 Ge

8(e)

.,,

0

z-l

18·24

MnP(B31) 5-611 3·4895

"' ;,,

6·281 2·78

12-78

r,.-Si 2Th (C,)

Im3m

13-9 4·33

2-85

4

Pnma

32

P43n

4

14·23

14ifamd

590 192

s:

"'0

> -l

320

422

"'

142

064

>

41

z

~

"'~ >

r

r,.;-GdSi 2

4-41

Mn 5 Si 3 (D8 8 ) Cu 15Si, (D8 6)

8·958 10·783

4·30

4

14·19 6·795

0·759

3·72

2

2·13

4

Imma

4Ge 4Ge 4 La P6 3 /mcm 6 Ge 6 La 16 Ge 143d 12 Li 48 Li

4(e) 4(e) 4(e) 6(g) 6(g) 16(c) 12(a) 48(e)

786 964 375 61 25 2084±2 129±4

r -< ,z. -< V-·

;;l ,::

154±3

960±4 N

0.

~

TABLE 6 (continued)

-..j

0

In Phase

System

a cubic cubic hexagon al cubic

G G G

il •G

G

16

l5

cubic cubic hexagonal

:· 6.S

hexagona l

G 7/

' (

f;

(

f;

cubic

:•25

hexagonal

,,.

tetragonal

jl ' 3

hexagona l

( G

G

1•e:ts

G G

2

,.

G

cubic

A

I

b

I

Cu 2Mg (C l5)

e 3 Mo 6

tetragonal

eMo 3

cubic

eNa

monoclinic

I

5·392

Space group

Dx

A toms

3·086

3·091

7·12

4

Fm3m

8

Fd3m

4 2 2

Fm3m F43m P63 /mcm

y

I

z

I

> ;; 0 0

>

--1

>

.,, z ;;j ;o

i::

"'

0

~

~

>,:

0·951

2 7'46

>

P63 /mmc

"' Bl

z

A=4 F4/mmm

1·572

2(a) P63 /mmc 2 (Ni + G e) 6 (Ni+ 6(h) Ge) 4(f) 4Mn (Ni+ 16(d) 8 • Fd3m Ge) 8 Mn 8(a ) 1·8 P63 /mmc 4 Fm3m

> r"

4

1·326

5 >
>

--1 -,j

(

6(g)

(

6(g)

Ge Nb 14/mcm l G e 1( Nb Pm3n

S(h) 16(k)

615 250 17 074

z

--1

"';o ;;:; "'0

277

> -'

.

cri

~ N

Fm3m P63 /mmc

7·879

1·616

4 4

13·904

3·292

4

141 /amd 8 G e

8(e)

4

Pnma

4 Ge 4 Ni

4(c) 4(c)

2

P6 3 /mmc

1

Pm3m

4 4

Fm3m Fm3m

5-811 (at 53 wt 5·046

;: "'?

0

11 ·25

1·287

% Ge)

(Ll 2)

11 ·600 11 ·446

I

:;:

0·8165

(Mo-rich boundary) 6·70 11·42 /3= 119·9° 12·33

Cu 16 Mg6 Si 7 Cu 16 M g6 Si 7

X

;;:i

' '

e 7N i 16 Sc 6 cubic e 7 Ni 16Ta 6 cubic

I

A = 42

4

3·313 MoSi 2 (Cll b) W.,Si 3 (Tl) 9·837 (D8m) {J-W (Al5) 4·9330

CrSi 2 4 ·967 (C40) 7·71 8 e 3 Nb.(C) hexagonal Mn 5Si 3 (D8 8) tetragonal W 5 Si 3 (Tl) 10·148 e 3 Nb 6 (D8m) {J-W 5·1743 cubic eNb 3 (A15) £ -N iSiTi 7-20 E -GeNbNi orthorhombic (C23 ?) Cu 18 Mg8 Si, 11 ·425 e 1Nb 8Nl 18 cubic e0 • 5 Nb Ni1 • 5 hexagonal MgZn 2 4·875 (C1 4) tetragoCG-Si2Th 4·224 e 2Nd (C,) nal MnP 5· 38 1 orthoeNi (B31) rhombic InN i2 3·920 hexagoeNi1 • 70 (B8 2) nal AuCu 3 3·566 cubic eN i3

Point set

?>:

'

e 2N b

I

16 F23 A=12 Fm3m 1 P6/mmm

1·057

l ·82 0

Atomic positions

M

6·762

~---------~-~~-~-~~ .-. .tetragonal

Density in g/cm 3

D,.

C

Li 22Pb 5 18·86 CaF 2 (Cl) 5·89 AIB 2 3·83 4·05 (C32) CaF 2 (Cl) 6·387 (at 5~·74 wt % Ge) Cu 2 Mg 6·911 (Cl5) Cu 1 6 M g 6 Si 1 ll ·532 ZnS (B3) 5-65. Mn 5 Si 3 7·184 5·053 (D8 8 ) 13-08 7·186 (at 2 ·4 a t. % G e) N i3 Sn 5·3471 I 4·374 (D0 19) (at 23 ·8 at.% Ge) A6 3·80a I I Hl3 (at 22·7 at. % Ge) M gZn 2 4·856 7·635 (C14)

hexagonal InNi2 (B8 2) 4·066 cubic A!Cu.Mn 5-69 (L2 1) cubic Cu 16 M g6 Si 1 11 ·41

,Ge2Mo

c/a, a. or /3

Structure type

"'

z

188 005

> r

41 2 ±3

§

583 190

~s:

"'

N

-..j

--:

TABLE 6 (continued) '1

Phase

System

In A

Structure type

rx

a Ge 0 . 5 Ni 1 . 6Ta

E-GeNiTi Ge 7 N i 10Ti 7

E-GeN iV

Ge 2 Ni 5 V3 E-GeNiZr Ge,Ni,Gzr.

Ge 2Os GeP 2 Zn GePd GePd 2 Ge 2Pr GePr

Ge 2 Pt

hexagonal orthorhombic cubic orthorhombic cubic orthorhombic cubic monoclinic

MgZn 2 (Cl4) E-NiSiTi (C23 ?) Cu 1 6 Mg6 Si 7

E-NiSiTi (C23 ?) rx-Mn (Al2} E-NiSiTi (C23 ?) Cu 16 Mg 6 Si 7

[As 2Nb?]

b

4·845 7·16

I

C

Dm

orthorhombic

GePt

Atoms

1·617

CaCl 2 (C35)

4

GePt 2 GePt3

Ge3Pu

X

y

I

z

I

~

-l 0

0

11 ·421 7·04

4

5·14 11·19

>

Fm3m

-l

> 0

>,j

8·92 7·39 l l ·689 8·995

5·51

"'

11-70

3·094 7·685

5·46 5·7.82

~ '

/1=

10·76 3·481

6·67 4·253

11·1

1·97

4·04

4 4

11-9

142d

6·259 (at 43 wt % Ge)

4

Pnma

3·39

3

P62m

0·507

13-940 3·277

5·767

4·14

Fm3m C2 /m

4

4-474 11 ·098 4·064

6·186

z ,-i

l43m

4(i) 4(i) 4(i)

399 357 154

4Ge 4Pd

4(c) 4(c)

190 005

4

141 /amd 8 Ge

8(e)

6·78

7·03

4

Cmcm

2

Pnnm

4(c) 4(c) 4(c) 4(c) 4(g) 2(a)

..

.,_;i

6·221

4

Pnma

orthorhombic orthorhombic

MnP (B31}

5·733

3·700 6·088

4

Pnma

7· 544

6·846 12·236

4

Amma

hexagonal monoclinic

Fe 2P (C22)

cubic

AuCu 3

3

0·528

4 Ge 4 Pr 4 Ge 4 Pr 4Ge 2 Pt

Ge 3Pu 2 Ge 4 Rb GeRb

Ge4 Rh 3 GeRh Ge 3Rh 6

tetragonal hexagonal cubic cubic

tetragonal orthorhombic orthorhombic

GeK

5·520 fJ=44·72°

4

4·223

"'

~

"'

z

575 188

r> r

0

"'-
"' "'

319

424

142

064

"'

z >

191 007

564 202

388

152

152 330

220 393

8 -< "'-
r t""·

Q 871 104

~ ~

"':;::

"' 2Ge 2 Se 2 Zr

2(a) 2(c) 2(c)

620 263

" ' ~ ~ = 1..< -----

8 Ge

8(e)

4 Ge 8 Ge 4 Ta 16 Ta 14/mcm 4 Ge 8 Ge 4Ta 16 Ta P6/mcm 6 Ge 6 Ta P6/mmm

4(a) 8(h) 4(c) 16(/) 4(a) 8(h) 4(b) 16(k) 6(g) 6(g)

41

3/8 16

15

17 074 61 25

--l

> c:J

c:: r

► __,

a

277

0 ►

;! 0 .,;

z

Fm3m

;;l ;o

rx= 88·35° 8·599

6·20

6·29

2

2·224

4·160

8·44

:;::

4

4

"'0 P4/nmm Cmmm

4·223 16·911

"'!i

lo~

13 ·81 0

ZrSi 2 (C49)

ieTh

Fdd2

5·49

orthorhombic

,e1 .~Th

24

5·52

10·82

ie2Th

ie1 • 62 Th

P2 1 3 Pnma

4·18 3

hexagonal ,e 3 Tb 2 hexagonal ieTe(H.T.) cubic - ·T.)

3·43

4

rx-Si.Th

cc:> CrSi

4 Ge 4Rh 4Rh

X

0

tetra gonal hexagonal tetragonal

ie3TaiC)

-GeTe

Pnma

3-85

4-40

~~

-GeaT a 6

16 4

3·26 2·212

re2Ta

4

I Point I set

~

3·01

8·019

,e2 Sm

11·2

0·813

5·436 3·626

cubic tetragonal

Atoms

Dx



9·27 0

ZnS (B3) PbFCI (£ 01)

GeSe 4Zn2 GeSeZr

I

Space group

4·650 0·814

cubic tetragonal

GeSe2

Atomic positions M

11·4

7·57

GeS 4 Zn2 GeSZr

GeSe

Density in g/cm3 Dm

I

-..J

.;,.

4·052 14·193

8·64 3·456

5·885

5·859 14·219 (at 61 at. % Ge)

6·989

8·432

8·136

8·66

4

Cmcm

10·47

4

141 /amd Fddd

9·44

9·45

9·15

9·17

4

Pccm or Pcc2 Fm3m

2Ge 2 Te 2 Zr 2 Ge 2 Ge 4 Ge 4Th 4 Ge 4 Ge 4Th 4Th 8 Ge

2(a) 2(c) 2(c) 2(b) 2(d) 4(h) 4(g) 4(c) 4(c) 4(c) 4(a) 8(e)

>

628 249

@ ~

~

"'"'

z

3005±6 1396±2

>

~

7490±3 4512±6 1037 ±1

0

~

~ 42

~

--i

"';: Ch

N

-..J Lil

TABLE 6 (continued)

In A P hase

System

""C

~

;;j 0 0

4

[4 /m cm

>

8

Fddd

..,,0 ...,z "';:,:;:: "'0

~

4

7·537

5·223

0·693

2

P6 3 /mcm

3-8 8

4·07

1 ·05

1

P6/mmm

10·37

l

Pm3m

10·26

4

Cmcm

4·2062

I

6 Ge 6Ti

6(g) 6(g)

60 23

~ "',,; ~

V,

4·12

15·13

3·98

5·87

9·88

8·98

Mn 5Si 3 8·58 5·79 (D8 8) W 5 Si 3 9·57 4·84 (at 38 at. % Ge) (Tl) (D 8'" ) Mn 5Si 3 7·27 7 I I 4·963 (DS 8 ) (at 38 at. % Ge) {3-W 4·769 (A15) Mn 5Si 3 6·350 8·471 (D8 8 )

"' z

V,

>

~

0·676

13·14

12·7

P63 /mcm

2

0·506

4

14/mcm

0·682

2

P6 3 /mcm

2

Pm3n

2

P6 3 /mcm

0·749

5-40

5·57

6 Ge 6U

6(g) 6(g)

0

62 24

-< -
-l

6Ge 6V 6Ge 6Y

6(g)

"' :;::

61 25

6(g)

6(g)

V,

61 25

6(g)

I

~

3eaYb2

Ge 5Yb 3

hexa gonal hexagon al

AlB 2. (C32) Pt 5 Th 3

3·96

4·18

1 ·056

6·803

4·166

0·612

Ge 2Z r

orthorhombic

Si 2Z r (C49)

Ge3Zr5

hexagonal hexagon al hexagonal

Mn 5Si 3 (D8 8) Mn 5Si 3 (D8 8 )

8·46

Hf3Ir

cubic

3·935

Hf2Ir

cubic

AuCui?) (Ll 2) NiTi 2 (£93)

GeZr 3 r-Hf5 (In 0 . 5 Sb 0 •6) 3

orthorhombic orthoHflr1+ rhombic tetragoHflr2LU nal Hf.(I r ,Ni) cubic (19·3 %Ni, 14%Ir) H f 4lr 5 Sc tetragonal (Hf0 . 5L u 0 . 5)Ni cubic ~ Hf M n cubic HfM n 2 (L.T .) Hf M n 2 (H .T . ?)

hexagonal hexagonal

3·7893 14·975 3·7606 7·993 8·14

Hf47Irsa

NbRu

8·77

5·597

0·700

7-17 0·880 (at 20·9 wt% Ge) 5·79 0·684

6-8~

6·48

1

P6/mmm

1

P62m

4

Cmcm

2

P6 3 /mcm

I

2 Ge 3 Ge 3 Yb 4Ge 4 Ge 4 Zr 6 Ge 6 Zr

2(d) 3(g)

3(!)

747 1 ±37 3604±10

4(c) 4(c) 4(c)

6(g) 6(g)

750 441 106 61 25

5

~

cl C:

t"

> >i

"' 0

2

P6 3 /mcm

1

Pm3m ( ?)

6 Hf 6 (In+ Sb)

6(g) 6(g)

0

~ 24 ~615

► -l ►

>,;

z,.., ""

:,0

::: 4·740

4·680

3·045

4·21

4·16

3-68

y-CuTi 3·36 6·36 1·89 (Bll) 12·184 NiTi 2 (£9 3) y-C uTi 3·32 6-22 1-88 (Ell) CsCI (B2) ' 3•244 N iTi 2 11 ·812 (at 50 at. % Hf) (£93) 1 ·64 MgZn 2 4·995 8·213 (Cl4) MgNi 2 16·367 3·263 5·016 (C36)

"'0 -► -l co

P4/nmm

'ii:>"" "'g:J

A=96 Fd3m ►

P4/nmm

~

0

>(

1

P m3m Fd3m

~

4

P6 3 /mmc

"'

8

P6 3 /mmc

"' z

tv

-..J, --.J,

TABLE 6 (continued)

N

-..J

00

In A Phase

System

a HfM0 2 (I-LT.) 17-HfM0 2 (LT.) Hf2 N i

hexagonal cubic

-

HfNi 5

tetragonal orthorhombic orthorhombic cubic

Hf(Ni, Os)

cubic

Hf(Ni, R h)

cubic

H f ,Ni 10 HfNi

Hf(Ni, Ru) HfGNi1GSi, HfOs

cubic cubic cubic

c/a, rx or {3

Structure type

I

b

C

5·341 1 I 17.347 (a t 35 at. % Hf) 7·560 / I (at 35 at. % Hf) 6·743 5·58 12·275

9·078

9·126

CrB (B1)

3·220

9·820

4·12

A uBe 5 (C15b) NiTi 2 (£93) N iTi 2 (£93) N iTi 2 (£93)

6·683

Cu 1 6 Mg 6 Si 7

CsC I (?)

12· 179

I

HfP

Hf2P d ~ f Pda

HfPt

Hf,Pt, HfPt~ '{J- HfRe HfR e 2 Hf5 Re 24

HfRh1+ x Hf4 6 Rh 54 Hf42 Rhss (H. T.) Hf2Rh 3 HfRh 3 H fRu Hf2S3 HfS 2 HfS 3 HfSe, Hfse; Hf2Si Hf6Sia(C)

hexagonal hexagonal tetragonal hexagonal

Space group

D,

3·248

Atom s 8

I Point set I

X

I

y

I

z

11·4

11-39

"'

C

r

P6 3 /mmc

>

8

Fd3m

"' 0

4

14 /mcm

;>

4

C2ca

4

Cmcm

4

F43m

0

0·828 11·96

11·97

0

"'~

~

s:

~

>

F23 (a t 23·3 at. % N i, 10 % Os)

>-l

Fd3m

12·202

"'-,;

~ "'

Fd3m

V,

ti)

12· 173

Fd3m

11 ·39 3·239

4 1

,

z r>

Fm3m Pm3m

5-
--!

(B2) Hf0s 2

Atomic positions

M

Dm

I

MgNi 2 (C3 6) Cu 2 M g (Cl-5) A!Cu 2 (Cl6) Ni 10Zr 7

Density in g / cm3

9·78

3· 150

"'

14/mmm 4 15-90 17-75

P6 8 /mmc

A=58 17·85

4 4

1 3·268

;;;"' --! "'s:

;;!

P6 3 /mmc 143m

Pm3m

0·964

830 317 356 089

"'r

C

>

--!

"'0 0

042 278

> >

--! 0

"'

z -l

4·392

4·306

"'

3·470

~ ,.,► 0

2

P4/mmm

3·9 11

1

Pm3m

"',,;

3·225 3·63 5

1 5·837

1 ·606

7-50

Pm3m P63 /mmc

"' "'"'

3·635 5· 100

1 ·606

6·03

1

P3ml

r►

3·59,

5·837 8·992

3·72

98· l 6° 6·1 59 1 ·643 9·47 f3= 98·3 °

4·35

3·451

0·793

/3 =

=ll

P2 1 or

6·48

5·21

0·805

4

P2 1 /m P3 m l P2 1 or P2t lm 14/mcm

7·89 0

5·558

0·7045

2

P63 /mcm

3·748 5·48

7·46

1

>

z ~

"'Ct.:• ~

·~

-;::

'"°

'-l

\0

TABLE 6 (continued)

In A Phase

System

a

I Hf3Si!

HfSi

HfSi 2 Hf5Sn 3 Hf5SD4 HfSn

(metas table)

Hg11 K Hg2K Hg7Ks

HgK

Hg4 La Hg3 La Hg 2La HgLa Hg3 Li HgLi

z

~

'E

~

Cmcm

5·823 0·694

2

P6 3 /mcm

5·91

2

P6 3 /mcm

Ga 4Ti 5

8·74

3·753 5·191 12·60

t: >

1-84

(D S, )

0·676 11 ·27

FeSi (B20) 5·59, 7· 62 5 1·39 0 CrS i2 5-487 (C40) (Sn-rich bounc ary) CsCl (B2) 3·270 MgZn 2 5·200 8·616 1·657 (Cl 4) a-Mn (A l2) 9·603 (at 12·5 a t. % Hf) 6·635 1·681 B8-C6 3·947

I

4

P21 3

3

P6 222

1 4

Pm 3m P6 3 /mmc

4(c) 4(c) 4(c)

4Hf 4 Si 4 Si 6 Hf 6 Sn

106 750 441

~

"'IO

. 235 61

6(g) 6(g)

~

~ >,::') ~

4(a) 4(a)

4Hf 4 Sn

~

->

155 845

;z

""'"-

~ :,< ;z·

>

~

C

12·39

6·195 9·6455 8·10

5·16

8·77

10·06

19-45

8·34

2·0 12·46

[ 6·59 [ 6·76 [ 7·06

6·61

I

6·51

2

142d

3 4

Pm3m lmma

4

Pbcm

4

Cl =

Pl

106°5' /3= 101 •52' y=92°47' D81 _ 3 10·990 4·960 0·727 6·822 Ni 3 Sn(?) (D019) 3-640 0·734 4·958 AlB 2 (at ~25·8 wt% Ca) (C32) CsCI (B2) 3·8451 (at 41 ·4 wt % La) Ni 3 Sn( ?) 6·253 I 4·8041 o-16s (D0 19) (at 24·1 at. % Li) CsCI (B2) 3·294J (at 50·9 at. % Li)

I

I

r > -;

"'0 8 Hg 4K 8 Hg 8 Hg 8 Hg 4Hg 4K 4K 4K 4K 4K 2Hg 2Hg 2K 2K

8(i)

190

4(e) 8(e) 8(e) 8(e) 4(c) 4(d) 4(d) 4(d) 4(d) 4(d) 2(i) 2(i) 2(i) 2(i)

1994±5 6790±4 3737±4 8701 ±8 559± 4 538±3 174±3 009±4 896±3 198±5 877 281 ± 50 675

087 703 0646 ± 16 5708 ± 15 5708 ±16

0274 ± 5 1194 ±4 1399 ± 5

.,,0

z-;

"';:;:, "'0

220±4 017±4 210±3 398±4 083±3 101±5 303 653± 50 794

>

-;

"',,; :!:

286 ±5 049 489 ±50 166

>

"'"' "'

r

r -
-; >

0

P6 3 /mmc

0,

12·45

1

P6/mmm

12-3

1 2

Pm3m P6 3 /mmc

9·28 (ati52·1 atj % Li)

1

> ~

P63 /mmc

"'0

6-016 10·71 12-80

Ni3 Sn ( ?) (D019)

2

0·621

15·6

3-825 0·910 (at. 49·3 at. % Hg) I I

"'

~

Pm3m /432

1

P4/mmm

2

P4/mmm

8 Hg 2 Pt 2 Hg 1 Pt

8(c) 2(a) 2(e) l(a)

"'a: "'

Iv

00 (.;>





.,.

TABLE 6 (continued) In Phase

System

Hg 11 Rb HgS cinna bar HgS metacinnabarite H gS 7 Sb 4 livingstonite

cubic hexagonal cubic trigonal

Hg 4U Hg 3 U

cubic

ZnS (B3)

BaHg11

B9

I

Density in g/cm 3

c/a, o: or

a H & Pu Hg3Pu

A

Structure type b

Atomic positions 1v[

fJ

Space group

Dm I Dz

C

I

Atoms \

p~~~t

\

X

I

y

z

I

>

"'C

s"'

9·734 4·146

9·497

2·291

12·38 8·176 8·198

5·8717

0 0

,.,►

Pm3m

3 3

P3 121

4

F43m

3 Hg 3S

3(a) 3(b)

720 485

> ;,;

• 7·67

triclinic

10·84

4·0

O:=

5·0

4·88

a

1

99°12'

Ci'

►..,

fJ=

102°01'

y=

~

73°48' cubic

HgSc

-

Hg3Sc HgSe HgSe II [H.P.] Hg 4 Sm Hg 3Sm Hg 2Sm HgSm

hexagonal cubic hexagonal cubic hexagonal hexagonal cubic

CsCl

(B2) Ni 3Sn (D0 19) ZnS (B3) HgS (B9) Ni 3 Sn (D0 19) CsCI (?) (B2)

1

3·48 0 6·369

4·762

0·74 8

6·085 4·32

9·68

2·24

10·820 6·632

4·909

0·740

4·853

3·520

0·725

8·239 8·25 (at 15 kb pressure)

"""'

Pm3m

2

P6 3 /mmc

4 3

P 31 21

2

P6 3/mmc

l

Pm3m

"'

6 Hg

6(h)

Hg-Sn HgSn 6

H g11 Sr H gSr H gTe H gTeII ( l.P.) H g3 Th H gTh ( LT.) H gTi y HgTi 3 c5 HgTi 3 ( LT.) H g5Tl 2 H g4U

H gaU

H g2U H gY H gaY H g3Zr H gZr H gZra

z

833

>

i

F43m

cc,

':< ~

3·7445

( ?)

"' ·- -

-==

/3

;.,.

simple hexagonal simple hexagonal cubic cubic cubic hexagonal hexagonal cubic tetragonal cubic cubic cubic pseudo cubic hexagonal hexagonal cubic hexagonal cubic tetragonal cubic

3·2115

3·0066

0·9275

A=1

(at

I I

188°C) 3·2127 2·9917 (at 7·19 a t.% Hg)

0·9312

BaHg 11 CsCI (B2) ZnS (B3) HgS (B9)

9·5099 3·9.30 6·430 4·46

9·17

2·056

A3

3·364

4·907

1 ·459

f.c.

4·80

AuCu I (L1 0) {J-W (A15) AuCu 3 (Ll 2) f.c.

AIB 2 (C32) CsCI (B2) Ni 3 Sn (D0 19 ) AuCu 3 (Ll 2) AuCul (L1 0) {J-W (A15)

3·009

A=l

7·77

13·29 7·88

(at20kb press.) 14·39

3 1 4 3

>

,;;

C: t"'

>

P3 1 21

§

A=2 P6 3 /mmc 2

4·041

Pm3m Pm3m · F43m

0

~

Fm3m

0 ;,;

1·343

1

P4/mmm

z ,..,

5·1888

2

Pm3n

4·1654

1

Pm3m

~ "' 8

4·673 3·63

(at 0°C, at 29 %Tl)

13·16

13·11

4·888

1·47

4·976

3·218

0·65

1

P6/mmm

3·682 6·541

1 4·87

0·745

2

Pm3m P6 8 /mmc

1

Pm3m

1

P4/mmm

2

Pm3n

3·15 5·5583

4·17

1·32

:~ ~

"" rn ;;,-:,

3·327

4·3652

?i

Fm3m

14·88

z

s >

-,;

6 Hg

6(h)

833

"'' -< "',., "'~ "'

N

00

VI

TABLE 6 (continued) In A Phase

System

a

Hol n 3 H oir H olr 2 HoMg HoMg 2 Ho 5 Mg 24 H0Mn 2

cubic cubic cubic cubic hexagonal cubic cubic

c/a, rt. or f3

Structure type

AuCu 3 (Ll 2) CsC\ (B2)

Cu 2 Mg (C15) CsCl (B2)

I

b

I

Density in g/cm 3

Dm

C

· Atomic positions M

I

Space group At oms

Dx

4·573

1 8

Pm3m Fd3m

1 4

Pm3m P63/mmc

Ti 5 Re 24 ll ·233 (iz-Mn ,A l2) Cu 2 Mg 7·507

2

143m

8

Fd3m

Mn 23 ThG 12·324

4

Fm3m

MgZn 2

3·776 6·01

9·76

1.624

(C14)

(Cl5)

Ho 6 Mn 23

cubic

HoM~5

orthorhombic monoclinic orthorhombic

(D8.)

Ho 4 MnS 7 HoNi HoNi 2

cubic

7-10

S 7Y 5 like CrB (B1) or FeB (B27) Cu 2 Mg

12·637

4·36

4·198

4·140

5·435

7·022 7·136

HoP Ho0 • 0 , Pd 1 • 90

HoPd 3 HoPt HoPt 3 HoRh HoRh 2

hexagonal cubic tetragonal

cubic orthorhombic cubic cubic cu bic

CaCu 5

3·966

4·871

HoS Ho 5 S 7 HoSb

hexagonal cubic monoclinic cubic

9·44

4

Cmcm

4 8

Pnma Fd3m

0·814

9·34

1

P6/mmm

cubic

AuCu 3

5·626 9·45

13-43

l ·421

4 7

Fm3m 141 /a

HoSi 2 H0Tc 2 HoTe

hexagonal orthorhombic hexagonal cubic

>

-l

"'0

'

0

>

~

>

,.,,

~

ce, ~

I

"' 0

~

"'"° > rr

0

,


6·130

4

Fm3m

0

5·680

4

Fm3m

:.-,

1

P6/mmm

s:·

3·816

4·107 . 1·076

4·03

3·97

>:l

z

,,, ~

(C32)

iz-GdSi 2

~

--l

"'0 >

104·83°

NaCl

>

Cl

C

(Bl)

HoSi1 . 5

~

Cl

(D2d)

NaCl (Bl)

(Bl)

HoSe

z

z:

/3=

(Cl5)

H0Ru 2

I

"" "'

(Cl5)

HoNi 6

y

""

105·48°

3-705 10·110

I



3·09

3·786 ll ·436

X

Pm3m

1

3·383 7-490

I Point set I

~

> ·- l

13·31

C,

MgZn 2

5·353

NaCl

6·049

8·813

1·646

4

P63 /mmc

4

Fm3m

1 4

Pm3m

(Cl 4)

(Bl)

~

>

"'"'co

z

CsCl (B2) CoGa 3

3,547 6·99

In3 La

cubic tetragonal cubic

f.c. (L1 2)

4·732

1

Pm3m ( ?)

"'~

InLa 3

cubic

AuCu 3

5·07

1

Pm3m

;;:

6·800

8

Fd3m

4·544

1

Pm3m

HoZn 1n3 Ir

7·20

1 ·03 0

>

P4n2

~

to

"'

(B32) (Ll 2) N

ex, --..I

TABLE 6 (continued) In A Phase

System

a l n 2 • 5 Mg

cubic

Jn 2 Mg Jn Mg2

cubic hexagonal

ln 2Mg5 ln21Mg19

orthorhombic rhombohed ral hex.cell

lnMg 3 (H.T.) I nMgNi 2

cubic

l n 2MgS 4

cubic

l n Mn 3 InMnNi 2

cubic cubic

cubic

c/a, rx or f3

Structure type

AuCu 3 (Ll 2)

Ga 2 Mg5

I

b

I

cc

Density in g /cm3

Atomic positions

M D.,

C

0:

I

Space group Atoms

D,

1

4·54

I Point I set

X

I

y

I

z

..,;

> t-

Pm3m

~

!,:

>ti

4-60 8·27

14·23

3·42

3

0·413;

4

6·19

7·36

P62m

1 In 2 In 3 Mg 3 Mg

l(b) 2(c) 3(f) 3(g)

0 '>

~

25 59

C

-~

.

lbam

~

A= 48 R3

31 ·06 0

6·323

4·49 (24 at. % In) AuCu 3 (Ll 2) AuCu 2Mn 6·167 (L2 1) inverted 10·709 spine! (H1 1) 9·446 (Mn-rir h) D81-s A!Cu 2 Mn 6·051 (L21)

1

Pm3m

4

Fm3m

8

Fm3m

4

lm3m

3 In 3 In 31n 3 In 9Mg 9 Mg 9 Mg 9 Mg

3(a) 3(a) 3(a) 3(a) 9(b) 9(b) 9(b) 9(b)

1/2 1/6 5/6 1/2

1/2 5/6 1/6 1/2

e

> .,;

0 1/4 5/ 12 10/ 12 0 1 / 12 1/6 1/4

,..

.;

~

',:"a"

z ,>

"'..,

\Z,\

4·01

4·132

I

Q";

""

32 S

4 In 4Mn 8Ni

32(e)

~ "'

384

4(a) 4(b) 8(e)

~ of · dV ~ U I

In 2 MnS 1

cubic

InNa

cubic

InNaS 2

rhombohedral

InNaSe 2

hex. cell rhombohedral

InNb 3 In 3 Nd 'l)-In 72Ni 28 In 2 Ni (?) o' -In 3Ni 2 o-InNi c-lnNi

4·45

7·312

4·70

3·803

19·89

3·995

distorted (Cl) Al 3Ni 2 (D51a) CsCI (B2) CoSn (B35)

InNi 2Ti

cubic

InP

cubic

4·015

8

Fd3m

8

Fd3m

1

R3m

5·159

3 2

6- 199

6·128

0·988

4·396

5·21

1·206

1

4·353

0·958

1 3

InNi 2 (B8 2) 5·331 Ni 3 Sn (DO 19) 10·485 inverted spine! (H1 1) A!Cu 2 Mn 6·099 (L2 1 ) or CsCI (B2) 3·03 ZnS (B3) 5·8687

4·349 0·834 5·131 1·228 4·251

384

In Na 2S

l(a) l(b) 2(c)

260

In Na 2 Se

l(a) l(b) 2(c)

-!

>

C,

R3m

~

t""

>

-l

260

"'0 0

Pm3n

> -l >

A=lO Ni + 27In 4

3·099 4·545 or 5·211 4·179

32(e)

32 S

3 1

tetragonal trigon al cubic hexagonal

4·45,

NaCrS 2 (F5 1) 3·972 5·07 20·89 {3-W (A15) 5·303 (prepared at lligh pressure) f.c. 4·655 D8 1 _ 3 9·20 7·79

In 2NiS 4

y-InNi 3

10·716

hex. cell cubic cubic cubic

hexagonal hexag.o nal cubic

/3-InNi 2

spi ne! (H1 1) NaTI (B32) NaCrS 2 (F5 1)

0

"' z

-l

"';:;:, P3ml

2 In 2Ni

2(d) 2(d)

641 135

Pm3m P6/mmm

"'0

> -! ~

~

"'"' 8·93

2

0·798 4·69

4·794

P63 /mmc

2

P63 /mmc

8

Fd3m

4

Fm3m

1 4

Pm3m F43m

z >

6Ni 32 S

6(/z)

84

32(e)

384

t"" t""

0

-


16 In 12 Pt

16(/) 12(e)

158 342

"'' ~ ~ ;;:

4·53

5·51

1·125

4·45

5-60

1·26

3·93

3·87

0·985

~ :

P6 3 /mmc

1

P4/mmm

-..

4·6096 4·811

4·538

0·943

11·17

4·703 7·01 4·443 10·642

7·15 3·940

l ·O20

5·37 7·61

1

Pm3m

11 ·19

2

P4/mmm

13-3

1

Pm3m

4 4

P4n2 Pnnm

4 In 4S

4(g) 4(g)

125 995

A=4S F43m +2·66 32·24

4·613

In 16



► ,:;; d

121 355

I"'

.., ►

"'C) ti ► -i

141 /amd

>

y-Al 20 3

rhombohedral hex. cell

cubic hexagonal simple cubic

X

0·92685



In 3Pu

I Point I set

-

AuCua(?) 4·6705 (L1 2 ) Ge 7lr3

Space group

5·514(?) (formed at high pressure)

cubic

lnPd 2

Dm

i

Atomic positions

M

C

I I

[nPII RP.) v-In-Pb

(L.T.)

Density in g/cm 3

c/a, a or f3

10·746

3·85 0

ZnS (B3) ZnS (B4)

6·4788 4·57 3·05

A=21f Fd3m In+ 32 S

32 S

32(e)

0 -~

386

..,z "'~

s:

"'ti

37·06

7·47

4·38

3

4 1·63 (found in thin films) 4

R3m

F43m P6 3 mc

3 In 3 In 3S 3S 3S 3S 3 Zn

3(a) 3(a) 3(a) 3(a) 3(a) 3(a) 3(a)

166 931 040

29, 459 872 396

> ➔

...."'

~



"' co ~ '

z

rr> -< "'-< 0

"'~

,::

"'

Iv

\0

TABLE 6 (continued) In Phase

System

a

InSb II (H. P.)

ln 4SbTe3

InSc 3 InSe a-I11 2 Sea (L.T.)

/3-In 2 Se 3 (H .T .)

y-In 2Se 3 (H.T.) In 2Se4 Zn In 3 Sm

tetragonal

cubic hexagonal

/3-Sn (A5)

or NaCl(?) (Bl) NaCl (Bl) N i3 Sn (D0 19)

hexagonal hexagonal

hexagonal

I

b

Density in g/cm 3

c/a, a or /3

I

5·92 or 5·537 or 5·72

Dm 0·51 7 0·536

2·970

Atomic positions M

C

3·06

I I

Space group

Dx

Atoms

p~~~t I

I

X

I

y

z

I

> C1 C:

7-09

2

,.,>r

14ifamd

c:,

(at pressure) 7·54

3'18

0

...,>

(at 77 K, atmos. pressure)

>

0

""z

5·84

7-88

4

6·128 6·421

7·0

1 2

Fm3m P6 3 /mmc 6 Sc

157 4(!) P6 3 /mmc 4 In 102 4 Se 4(/) 90 Se in 15 sets of 6(c) with x and y being 1 /12, P6 3 2/12; 4/12, 2/12; 7/12, 2/12; 1/12, 5/ 12; and 1/12, 8/12; z being 0, 0·320, or 0·680 6 Se in 3 sets of 2(b) with z = 0, 0·320 or 0·680 60 In in same positions as Se, but different z 4 Ii1 in 2(a} with z=0-130 or 0·450 138 P6 5 ( ?) 6 In 0 1 /3 138 6 In 0 1 /3 0 0 6 Se 1 /3 0 6 Se 0 1/3 0 6 Se 2/3 2/3

5·1 83

0·820

4·05

16·93

4

16·00

19·24

32

6

19·30

7·11

cubic tetragonal cubic

A

Structure type

Fm3m

~

~

6(h)

~

833

"' 0 ► ►

0-,

"'

0-,

z

,..>. r

~

"'-< "' ~

3:.

'""

10·10 Al 2 CdS 4 (£3) f.c.

11·42

5·711

2·00

5·44 3

5·36

2

8 Se

8(g)

1

P6/mmm

2

4(f) 2(b)

1

P6 3/mmc 4 In 2 Sr Pm3m

8

14 /mcm 8 Te

8(h)

4

Fm3m

1

R3m

3

R3m

14

26

13

22

4·621

---/3-In 3 Sn y-InSn,

In 2 Sr In 3 Tb InTe InTe II (H.P.) In3Te 4

a-In 2Te3 (L.T.)

,'5 -111 2 Tea (H.T.) ln 2Te 3 II (H.P.)

pseudo b.c. 3·472 4·39 1·26 tetragonal hexago3·2177 2·9988 0·9320 nal hexagoCaln, 5·000 8·021 1·60, nal cubic AuCu 3 4·588 (LJ,) tetragoTJSe 8·437 7·139 0·845 6·29 6·34 nal (B37) cubic NaCl (Bl) 6·177 (at 50 at.½ In, after removal of pressure) rhomboAs 3 Sn 4 13·85 hedral hex. cell 4·27 -(prepared at high pressure) cubic

or orthorhombic or tetragonal cubic rhombohedral hex. cell

Cl=

17·73 °

40·9

18·50

4·359 13·078

5·79

2

36

6·165

F43m

454 ± 2

j d

180 ± 5

C:

r

>



~

0

3 In 6 In 6 Te 6 Te 24 In 48 In 4Te 16 Te 16 Te 24 Te 48 Te

3(a) 6(c) 6(c) 6(c) 24(!) 48(h) 4(c) 16(e) 16(e) 24(g) 48(h)

> ..., >

1/3 1/6

4273 ±8 1284± 6 2908 ± 9 0

,,,

z ~

";$

:,:

e"' ►

11 /12 7 / 12 11 / 12 1/12

➔ r-J

"-'

~ ►

3/12

"' "'"-'

z

lmm2

>

14mm

~

!""'

13·078

6·165

0·471

iZI

>< 0:,

ZnS (B3)

6·158

5·729

5·798 A = 4 F43m Te+ 2·66 In

Bi2 Te 3 (C33)

3

4·28

29·5 (pressure removed)

'

I

I

-i

"':,: "'

R3m 'O

TABLE 6 (continued) In Phase

System

a In 3Te 5 (H.T.)

Jn 2Te4 Zn

hexago nal

13-27

tetragon al

Al 2CdS 4 6·122 (£3) or CuFeS 2 6·132 (El,) 4·695 AuCu 3 . (Ll 2) 7-050 Cu 2 Mg (?) (C 15) Al,Cu 7·787 cc16) 10·094

ln 8Th

cubic .

In 2Th

cubic

InTh 2

tetragonal tetragonal

In 4Ti 3 InTi 3

cubic

lnTia + x In 3Tm

hexagonal cubic

In 3 U

cubic

In 3Y

cubic

ln 3Yb

cubic

In 2Yb InZr 3

hexagonal cubic

Ir 2 La

cubic

IrLu

cubic

CIr-Mg

cubic hexagonal cubic tetragonal cubic

IrMg 3 {J-IrMn {J'-IrMn y'-IrMn 3

Ir3 Mo e-Ir-Mo TrMo Ir 8 • 5 Mo 21 •6

IrMo 3 a-Ir 3 Nb

hexagonal hexago nal orthorhombic tetrago nal

cubic cubic

A

c/a, rt. or fJ

Structure type

AuCu 3 (L1 2) N i3 Sn (D0 19) AuCu 3 (Ll 2) AuCu 3 (L1 2) AuCu 3 (L1 2) AuCu 3 (Ll 2)

I

b

C

3·56 12·24

D ensity in g /cm 8

0·27 2·00

Atomic p ositions

M Dm

I

.,.

'O

5·87 5·82

I

Space group At ' oms

D" 3-20 (A = 16 Te) 2 14 5·826

Point set

I

X

I

y

z

I

> r >

el

"' 0 8 Te

8(g)

25

25

125

0

~

> 0

12·264

142d

"'

1

Pm3m

8

Fd3m

"':,:;:, "'0

10·36

4

14 / mcm

§..,,

6·44

2

P4bm P4b2 P4/ mbm

"'el

2·0 9·25

6·113

0·785

3·052

0·302

6·42

~

:.:>

z

4·22 5·89

>-,l

§

5-68

>

4·76

1

Pm3m

2

P6 3 /mmc

1

Pm3m

1

Pm3m

1

Pm3m

l

Pm3m

~

0·81 (at 21 at. % In)

4·554 4·601 3

~

>-,l

m :,:

10·12

4·597 4·620

Caln 2

4·889

AuCu 3 (?) (L l 2) Cu 2 Mg (C15) CsCI (?) (B2)

4·461

1

7·688

8

Fd3m

3·332

1

Pm3m

7-630

l ·561

20·12 (at 50 wt % Ir, Mg-rich ooundary) 4·549 8·229 l ·809 6·0 5·99

AsNa 3 (D0 18) CsCl (B2) AuCuI 2·7258 3·6436 1 ·3367 (L1 0 ) (at 49·44 at.% Ir) AuCu 3 3·794 (at 70 at. % Mn) (L1 2) Ni 3 Sn 5·487 4·385 0·7992 (D0 19) A3 2·770 4·424 1·597 (at 51 at.% Ir) A uCd 4·429 1 2·752 4·804 (B19) a phase 9·631 4·957 0·515 (DS.) (at 72 at.% Mn)

{J-W (Al5) AuCu 3 (Ll 2)

I

4·965 3·890 (at 74·7 at.% Ir)

2

2

P63 /mmc 4Ga 2 Yb Pm3m

A~400 P63 /mmc 4 Mg

4(1) 2(b)

456 ± 2

;i 4(!)

~583

"'Cr

>

>-,l

"'0 0

1

P4/mmm

,..,>

1

Pm3m

0

>

':j

2

z ,..,

P63 /mmc

,,,

m

A = 2 P6 3/mmc 2

:,:

m: 0

> ,..,

Pmma

r:l

I

2 1

P4 2/mnm 1 Mo + I Ir 4Mo 8 Mo 1·5 Mo + 6·5 Ir 7Mo +1 Ir Pm3n Pm3m

,,;

2(a) 4(g) 8(i) 8(i)

:.:>

C

D

"'r., "'

z

> r r

0

8(j)

-
Cl ~

P4dmnm

9· 87

5·335

X

Pm3m

A=l2 Pmcm

7·524 5·386

I p~~t I

A=4

5·159 0·5196 (at 25 at. %Ir)

3·930

Space group

(D2 d)

Fe 3 Th 7 (Dl0 2) AuCu 3 (Ll 2) tetragonal AuCuI (Ll 0 )

I

c/a, ci: or /3

Structure type a

cubic

A

Density in g /cm3

-"~ - - --

A=4 P4/mmm

3·463 /3=90·92° -!

AuCul (LI 0) CsCl (B2) or superstructure /3-W (Al 5) CsCl ( ?) (B2) AuCu 3 (LJ 2) Cu 2 Mg (C15) AuCu 3 (L1 2)

3·39

4·20

A=2

3·125

~

9·375

0

~

5·0101 3·353

2 ]

Pm3 n Pm3m

4·023

1

Pm3m

~

8

Fd3m

""'

1

Pm3m

;;l

8

Cmcm

19·62

7·5090 3·812 2·796

AuCul (Llo)

3·887 (at lr 1 • 04V 0. 96) 4·7854

3·65 1

(Al5) A3

2·765

AuCd (B1 9) a phase (D8b) Cu 2 Mg (Cl5)

?l

Pm3m

8

6·756

/3-W

> t:,

A = 4 P4/mmm

0·807

5·791

4·452 9·70 7·500

0·9393

1 ·615 4·465 (at 45 at.% W) 2·7601 4·811 1 4·99 0· 516 (at ~70 at.% W)

0

-,;

,. "'

~

>

4 Ir 4V

4(j) 4(g)

~ 22 ~ 28

"

2

P4/mmm

"'m "'

2

Pm3n

r►

A = 2 P6 3 /mmc 2

Pmma P4 2/mnm

8

z § ~

~

"':c{

V.•

Fd3m N

'O

'O

TABLE 6 (continued) 0 0

Phase

System

In A

Structure type a

Ir3Zr

cubic

Ir 2 Zr

cubic

Ir Zr 2(0 ?)

cubic

IrZr3

tetragonal hexagonal hexagonal

KNa 2 K 2 NaSb KNa 2Sb K 3P

hexagonal tetragonal hexagonal cubic hexagonal

KPb KPb 2 K2S K2S2

K8 S4 V

= ·--·•

cubic

K Sl,

2 Se Si

b

I

C

AsNa 3 (D01s) NaPb MgZn 2 (Cl4) CaF 2 (Cl) Na 20 2

1

Pm3m

8

Fd3m

32

Fd3m

10·78

5·618

7·50

12·29

5-610

10·932

Zn 13

cubic

1Mg

cubic

1Mg 2

cubic

1Mg 3

cubic

l2Mg17

hexagonal

l ·64 (at - 10°C) 1·949 2·937

2·985

D 03

Ni 17Th2

4

P63 /mmc

2

P63 /mmc

4

Fm3m

1·776

1·74

l ·75

2

P6 3 /mmc

11 ·50

18·76

1·63

5·20

5·27

32

I4i/acd

6· 66

10·76

1·614

4

P6 3 /mm c

7-408 8-49

5·84

0·687

9·107 9·143

1·809 l ·89

l ·802

2·22

2·24

l ·942

4

:I 4

y

I

z

I

;!

1::1

§ 0

>

;! ,-,;

z ,...;r::1

Fm3m P62m

Pmcm

2 Na 4K 2 Sb 4K 8 Na 4 Sb 4K

§

2(b) 4(f) 2(c) 4(b) 8(c) 4(a) 4(!)

>:,

t6

'.?

J,.,14

6·037 (a t 74·0 at. 0 0 K) 6·97 13-40 7-18

1·775

fl=

3· 52

2·35

2

P63 /mmc

3·53

8

P2 1 /c

13·4 11 ·42

1·76

1-78

4 32

Fm3m P43n

,,,> "' Q".J

z

7/ 12

>

s >


-1

"'0 0

141

064

318

427

> >

-1 0 ,,j

z

-;

18·57

1·63

3·38

3-46

8·164 12·360

~6·23

32

I4ifacd

4

Fm3m

8

Fm3c

3· 963

1

Pm3m

8·787

8

Fd3m

137

931

►"1

"',,:

as NaZn13

~

>

"'"'"' ~ >

'"' 8

7·509 7-480 (35·7 wt % Mg) 10·36 10·24 0·988

"' :::. "' 0 ;,

>


"',... C: ~

"'0 b

>

~

(D2 a)

Cu 2 Mg (C15) NaCl (Bl) AuCu 3 (Ll 2) P 4 Th 3 (D7 3 ) AuCu 3 (Ll 2 ) CrB (BJ)

0

7·737

8

z"" ,.

Fd3m

-' r,j

4

Fm3m

1

Pm3m

"'S!

4

143d

"'-,;

l

Pm3m

3·974 11-037 4·558

4

Cmcm

Cu 2 Mg (Cl5) CaCu 5

7·774

8

Fd3m

l

P6/mmm

CrB (B1)

3·986 11-144 4·245

4

Cmcm

Cu 2 Mg (C15) Cu 2 Mg (C15) NaCl

7·646

8

Fd3m

7-702

8

Fd3m

5·854

4

Fm3m

6·025 4·903

10·50 10·71

:;:: >

8·773 4·235

-

5·386

4·378

0·815

-
"'f;l

z >

§,,, -


~

4

.,,

0

4

143d

4-62

4

14 1 /amd

5·05

5·14

4

I4ifamd

~7·15

7·516

1

Pm3m

4

Fm3m

Sr+La

12(a)

z-


1 1

6·62

6·64 or 6·266 7·4400 CaF 2 (Cl) 5·977 5·88g

AsNa 3 (D01s)

X

R3m

(Clb)

LiM g2Tl

I

''" 0

6·714 CsCl (B2) 7·16 CaCu 5 (D2") 7·27 0·643 6·87 BaCd 11 10·68 NaZn 1 3 12·079 CaF 2 ( ?) 6·023 (Cl) 6·781 (at 5·71 wt % Li, 9·99 wt % Mg) D0 3

AgAsMg

Point set

I

I

26 ·70 (at 52· 1 at. % Y) 6· 696 4·225 0·778

3·699 3·76 0 5·427

I

C

I

Sm

Space group

P321 P3 P3ml P43m Fm3m C2 /m

,ie- =

-~

~ ~• - -

randomly Li + V 8(c) 4(d) 4 Li 4(a) 4P 4(c) 4Zn 16(e) 16 Pb 9141 ±3 16(e) 16 Pb 6641 ±3 24 Pb 24(!) 3211 ±3 24(g) 24 Pb 0711 ±3 approximate Li positions are 4(a) 4(b) (4c) 4(d) 6 x 16 Li 16(e) with x=l/12, 1/6, 1/3, 5/12, 7/12,5/6 24(/) 24 Li 1/6 24(g) 24 Li 7 /12 48(h) 48 Li . 5/6 0 1/6 48(h) 48 Li 0 2/3 1/6 48(h) 48 Li 1/4 1/12 1/12 48(h) 48 Li 1/ 12 3/4 1/12 2Li 2(d) 11 /12* 2(d) 2 Li 7 / 12 2(c) 2 Li 1/ 3 1 Li l(a) 2 Pb 2(d) 1/4 as A1 4 Cu 9 : Pb in 12(i) 4(i) 4(i) 4(i) 4(i) 2(a) 4(i)

4Li 4 Li 4 Li 4 Li 2 Pb 4 Pb

1/ 11 9/ 11 6 / 11 3/ 11

4 / 11 3/11 2 / 11 1 / 11

4/ 11

5/11

Pm3m (*misprinted as 1 /2 in paper)

I

I

\.

t;

~

""z

B

? ~

:>.

;J >

iz

"" \:.0

~




d

390 150 208 11 15 291

~ >

-l

"'0 37

0

> >

-l

.,,

0

"':,:;

s:. "' 0

> -l

1

"'s;:1

A=2·8

a; >

,z,

4·3 94

1·576

6·58

"" "'

A=2 P6 3 /mmc

1 2

Pm3m 143m

8

Fd3m

4

P63 /mmc

>

' , -l >

C

6(/) 6(i) 3(b) 3(d) 4(e) 4(/) 6(h) 4(/) 4(c) 4(a) 4(d) 4(b) 8(c) 4(a) 4(b) 8(c) 4(a)

11i 167

z

-i

"' ~

0 94 844 167 125

r.: Ci

~rr.

.,,

:t

>

"'"'er. z >

;:: ~

,< -✓•

-


In Phase

System

c/a, o:. or f3 a

b

I Mg 2Pb ( -Mg~ 6Pd

cubic cubic

A

Structure type

CaF 2 (Cl)

C

Density in g /cm 3 Dm

I . I

6·813 I 20· 182 (at 60·7 wt '¼ Mg)

Atomic positio ns Space group

M

I

5·487 2·804

Dx

Atoms

5·374

4

2

Fm3m Fm3m F43m F432" P6 3 /mmc

A=

P6 3 /mmc

A= 398

o-Mg3Pd y-Mg 2 • 7 Pd

MgPd Mg 0 . 9 Pd 1 . 1 MgPd3 MgPo Mg12Pr

hexagonal · hexagonal cubic tetragona! cu bic hexagonal tetragonal

Mg 3 Pr Mg 2 Pr

cubic cubic

MgPr ( -Mg~ 6 Pt

cubic cubic

AsNa 3 W01a)

4·613

8·41 0

l ·823

3·859

8·644

8·160

0·944

4·073

~

bexagonal or

CsCI (B2) A uCul (Ll 0 )

3·17 3·03

(at 22 wt '¼ Mg) I 3·42 I 1·13

M gPt M gPt 3

M gPt 7 M g,Pu M gPu 2 M gRh M gS M gS4SC2 M gS4Y2 M gS 7Y 4

M gS 4 Yb 2 er; -

\.fg3Sb2

M g24SC5

M gSe M g2Si M gaSm M g2 Sm M gSm M g2 Sn M g1,Sr 2

y

X

I

I

z

3·920 (at 7·4 wt '¼ Mg) As Ni (B8 1) 4·345 7·077 1 ·629 Mn12Th 10·34 5·98 0·578

9·40

c:: r

> -;

"'0 0

>

;; :-=;

z-;

6·7

N30 D0 3 ? Cu 2 Mg 8·689 (Cl5) CsCI (B2) 3·885 (-Mg 6Pd 20·11

2 2

4 8

AsNa 3 (D018)

4·577

.

CuTi 3 (L6 c)

FeSi (B20) AuCu 3 (L1 2)

8· 322

1 ·818

- --

3 88

""-

I

5·92

.__.,_.....__ ,,_.

3-72

.

5·90

~-

I 0-96

4·863 3· 906 (at 28 ·4 at. '¼ Mg)

I

2

-~ ---,--' .........__,,. .....

.

....:.

> -; "',,;

'-' '-.---

l

P4/mmm

4 1

P21 3 Pm3m

I

cubic 7·824 (at 14 at. '¼ Mg) 13·8 hexagonal 9·7 0·70 CaF 2 (Cl) 7·34 cubic CsCI (B2) 3·099 cubic NaCl {Bl) 5·1913 cubic normal 10·627 cubic spine! (Hl 1) S4 Y 3 12·66 12·72 . 3·77 orthorhombic S 7 Y 5 -like 12·67 monocli3-80 11 ·47 /3= 105·5° nic normal 10·957 cubic spine! (H11) La 2 0 3 4·582 trigonal 7·244 l ·581 (D5 2) 9·65 o:.-Mn cubic (A12) NaCl (Bl) 5·463 cubic CaF 2 (Cl) 6·351 cubic Mg 3 Pr 7-327 cubic (D0 3 ?) 8·622 cubic Cu,Mg (Cl5) CsCl (B2) 3·810 cubic CaF 2 (Cl) 6·7630 cubic 10·342 0·982 hexagonal Ni 1 7 Th 2 10·533 ,,

:i:

Pm3m Fm 3m F43m F432 P63 /mmc 4 Mg

1

A=

4·00

"';,

Fm3 m P6 3 /mm c !4 /mmm 8 Mg 8 Mg 8 Mg 2 Pr Fm3m Fd3m

1

;}

c;

P6 3 mc P62c Pm3m P4/m mm

1 1

AI

\_

tetra gonal cubic cubic

I

27·9

402 Mg3Pt

p~~~t

I

~

V,

r,,

8(!) 8(/) S(j) 2(a)

z

361 277

>

,...t"' 0

-


~

4

... z -;

0

3-61

2

C2/m

5.04'

8

Fd3m

32 S

32(e)

~

377±4

""0 1

4·09

P3ml

4 4

Fm3m Fm3m

8

Fd3m

1 4 2

Pm3m Fm3m P6 3 /mmc

2 Mg 2 Sb

2(d) 2(d)

63 235

s; ,- ; m

"'z > "'"'"' z > ~

3.·662 1-91

3·59

~

4Mg 6Mg 12 Mg 12 Mg 2 Sr 2Sr

4(!) 6(g) 12(}) 12(k) 2(b) 2(d)

11

1/3 1/6

0 0

~ "'

w

TABLE 6 (continued)

N

In Phase

System

A

Structure type

a

I

c/a, rx. or f3

b

C

I

Density in g /cm3

Atomic positions Space group

M Dm

I

Dx

A toms

I p~~~t I

X

I

y

z

I

-'

~

C

hexagonal

28·362

10·511

2·11

2·03

18

12(k) 6(h) 4(e) 4(!) 4(!) 6(g) 6(h) 12(k) 12(k) 12(k) 12(k) 32(!) 32(!) 24(e)

P6 3/mmc 12 Sr 6 Sr 4Mg 4Mg 4Mg 6Mg 6Mg 12 Mg 12 12 Mg 12Mg 12Mg Fm3m 32 Mg 32 Mg 24 Sr P63 /mmc

...

cubic hexagonal cubic cubic cubic hexagonal cubic

M M

cubic (H

hexagonal orthorhombic

M (L

M

2·15

14·914

Mn 23 Th 6 (D8 0 )

10·494

MgZn 2 6"439 (C14) CsCI (B2) 3-908 11-283 Ti 5Re 24 . (o: Mn, A12) CsCI (B2) 3·796 ZnS (B4) 4·54 Mn 2sTh 6 14·27 (D8. ) 8·570 Cu 2 Mg (Cl5) 6·086 MgNi 2 (C36) Ga 2Mg5

--

..

7·39

cubic cubic

CsCl(B2) 3·749 1 l ·257 Re 24Ti 5 (rx. Mn, Al2) 5·9 11·0

MgZn 2 Mg 2Zn 11

a Mn-Mo

~{ni8 Mo 3Si1 9

Mn.a1·5M 0 2:s 8i21 ·5

tetragonal

rhombohedral hex. cell hexagonal

0

I

.1.

1177 ±5 0546 ± 5 1540 ± 5 1897 ± 5

2

7679± 11 8323±10 1772 ± 10 3741 ±42 1774±41 2041 ±12

5·18

9·10 a phase (D8b) (at 63·7 at. %Mn)

,::

"'

:;

..,

>

,,, "" ""

1 2 4

Pm3m P6 3 mc Fm3m

8

Fd3m

!

8

P63 /mmc

I

I

% Mg)

I 2

Pm3m /43m

1 2

Pm3m /43m

II

-

.

I 24 Mg 24Mg 2Tm 8Tm

24(g) 24(g) 2(a) 8(c)

042 278

356 089 317

:;!

"'C r >

-l

m 0

Cmcm Cmc21

9·8

8·52 (at 6·39

1·644

% Mg)

4·74

5·20 6·16

0·521

4 3

A= 19·1 Mn + 10·9 Mo

R phase

0

> -l >

P63 /mmc Pm3

4Mg 6Zn 6Mg 1 Zn 6Zn 6 Zn 8 Zn 12 Zn

062

4(f) 6(h) 6(j) l(b) 6(e) 6(g) 8(i) 12(k)

830 32

19·18 7·75

1·77 1·63

4

z

-l

"'0

> -l 243

P4;/mnm

0..,,

;, "' s:

235 160 222 343

"',.; z



"'"' V,

z > r

5 -< "'-< "'m-l

R3

~

10·85 4·77

~ ;,

-l

3-80

8·552

MgZn 2 (C14)

"1

8989 ± 15

z

......

CsCI (B2) 3·635 (at 49·8 at. 11 ·208 Re 24Ti 5 (o: Mn, A12)

CsCl (?) (B2) C14

>

-l

1580 ± 11 037 3 ± 1C 0> 8573 ± 1C -l >

Pm3m 143m

1



"'0

2

- -·- -,-

MgTm Mg24Ys

v-MgY

3·85

0625 ± 1

I

MgTI \1g24TITI5 .

orthorhombic simple cubic hexa gonal cubic

3-80

3·1'. 3

19·64

GaMg 2

~ MgsY2

1·63

4

4

1·628 3·11

hexagonal cubic cubic

Mg 2Tl

2·18

1369 ± 4 0478 ± 5

P6sfmmc

,::

(,0

-

- - - - - - - - - - -- -

~

TABLE 6 (continued)

.;:.

In Phase

System

I Mn 2 Nb

A

Structure type a

b

c/a,

I

0,

C:

MgZn 2 (C14) R phase

Mn 23 Nd 6

Atomic positions M

hexagonal rhombo 11edral hex.cell cubic

Mn 79 Nb 6 Si 16

4·891

Density in g /cm 3

~

4 P6 3 /mmc

1·629 (at 29·85 wt % Nb)

-l

co

0

0

)>

Mn 23 Th 6

10·89 12·657

19·28

1·77 4

-l

R3 - • Fm3m

)>

0

"1

(DS.)

z-l

4 P63 /mmc

"'~ '

1 Im3m 1 P4 /mmm

"'S? )>

1

Pm3m

4

F43m ,

~

... ~

V,

r:;i

(Cl.)

MnNi 2 Sb

cubic

(Mn,Ni) 7Si 8

rhombo hedral hex.cell cubic

Mn 3Ni 2Si

A!Cu 2 Mn (?) (L2 1) R phase

6·013

0

17 carbide

10·81 10·757 4·762

MnNi1•55Sio,45

cubic

Cu 2 Mg (C15)

6·687

_________ ...._

cubic cubic

(Mn, N i) 2 U

hexagonal tetragonal

Mn 2 Pd 3 (L.T.)

hexagonal orthorhombic cubic tetragonal tetragonal

MnPd 3 MnPdSb

AuCu 3 cubic

MnP {J-MnPd Mn 2 Pd 3

M0Pd 2 Sb Mn 2 Pr Mn 3Pt

19·28

1-78 6·77

6·62

(E9 3)

Mo 6 N i16Si 7 MnNi 2 Sn

cubic hexagonal cubic

{J'-MnPt (L.T.) {:1-MnPt (H.T.) MnPt3

tetragonal cubic

Mn 2 Pu

cubic

cubic

z

Fm3m

rr

hexagonal MgZn 2 (C14)

Mn 2 P

4

>

Mn 3 N i3 Si 2

Mn 3P

8·25

7·507

1·576

""'-----

4 4

6·074

3·454

5·258 3·172

5·918

0·5687

CsCI (B2) 3·16 AuCul 1·263 2·867 3·62 (Ll 0 ) (at 40 at. % Mn) AuCu I 5·76 1 I 7·40 1·25 substructure one-dimensional antiphase domain structure AgAsMg 6·25 (?) (Cl 0) A!Cu 2 Mn 6·38 (?) (L2 1) MgZn 2 1·63 5·61 9·16 (Cl4) AuCu 3 3·836 (at 74·5·at. % Mn) (Ll 2) 1·2950 AuCul 2·8299 13-6647 (L1 0 ) (at 50·7 at. % Pt) CsCI (?) (B2) AuCu 3 3·898 (at 10 wt % Mn) (Ll 2) Cu 2 Mg 7·292 (C15)

~

185 835

-l

"',: "'

1/6 5/6

-

-

--

Fm3m Fm3m

8 P6 3 /mmc

%Mn)

8

/4

(DO,)

Fe 2 P (C22) B31

,: n

48(f) 48 Mn 32(e) 32 Ni l6(d) 16 Si 4(f) l ·5 P6afmmc 4Mn 0·5 Mn} { 2(a ) 4·5 Ni 6(h) 3 Si 8 Fd3m

16

-,_ -------

Cu 16 Mg6 Si 7 11 ·15 A!Cu 2 Mn 6·057 (L2 1) MgNi 2 3·300 4·9861 16·4533 (C36) (at 50·9 at. % Ni, 15·8 at. Ni 3 P 9·181 4·568 0·4975

-


1965 ± 2 5686±5

-l m Cl

Cl )>

-l )>

.,,

0

z

(at 40 at. % Mn)

-l

;,, "'

s:

m Cl

41 4

F43m Fm3m

4 P63/mmc 1

Pm3m

1 P4/mmm

I

11-95

1

Pm3m

I

Pm3m

8

Fd3m

►-l

"'...

a:)>

"'t,, "' z > ~ -< -l m

s: "'

u,

(.;}

.....

TABLE 6 (continued)

0\

In A Phase

System

a

Mn 3Re 2

c/a, rx or /3

Structure type

tetragonal

rT

phase (D8b)

I

b

9·14

I

Atomic positions M

Dm

C

4·75

Density in g /cm 3

I

Space group Atoms

Dx

P4 2/mnm

0·52

.. J

Mn 3 Rh

cubic

MnRh MnRh

cubic tetragonal cubic cubic hexagonal cubic cubic

(L.T.)

rx-MnS /3-MnS y-MnS

MnS., MnS~Sc 2 MnS 7Tm 4

MnS 4 Y 2 MnS 7 Y4 MnS 4 Yb 2

3·812 (at 75 ·2 at. % Mn) AuCu 3 (Ll 2) CsCl (B2) 3·044 ~ 3·56 l ·28 (at ! 0°K) AuCul ~2·78 (Ll 0) NaCl (Bl) 5·222 ZnS (B3) 5·606 6·438 l ·615 ZnS (B4) 3·987

monoclinic orthorhombic monoclinic cubi c

FeS 2 (C2) 6·097 10·623 normal spinel (H1 1) 12·519 S1Ys S4 Yba

12·64

S1Y5

12·636

normal spine! (Hl 1 )

10·949

3·03

I Point I set I

For 2Mn 4Re 6 Re + 2 Mn 8 Mn 6Re + 2Mn

X

I

I

y

I

z

-l

>

"'C

~

Mn 14Re 16 2(a) 4(f) 8(i)

-l

"'0 0

>

-l

>

.,,

8(i) 8(j)

0

z

-l

I

Pm3m

"'

I 1

Pm3m P4/mmm

2

im >

-l

"'-:,

4 4 2

Fm3m F43m P6 3 mc

2S

2(b)

4 8

Pa3 Fd3m

8S 32 S

8(c) 32(e)

z.

v>, ~

375

z 4040±5 385±4

> r

s-< "'

~

3·755 1 l ·357 /3=105·40° 12·71

"' "'

:l:

4

3·76

3·790 l l ·443 /3= 105·45 °

3·89

4·00

5·36

2

C2 /m

8

Fd3m

32 S

32(e)

375±4

_.....__

MnS 7Yb 4 Mn 2Sb MnSb Mn 2Sc rx-MnSe /3-MnSe -MnSe MnSe 2 Mn 6 Si Mn 3 Si Mn 5 Si 2

(L.T.)

Mn 5Sia MnSi Mn 4Si 7 Mni 9 Si 16 Ta 5

Mn 2Si 2Th Mn 79 Si 10 Ti,

Mn , 8 Si 19 W

monoclinic tetragonal hexagonal hexagonal cubic cubic hexagonal cubic rhombohedral hex . cell cubic

S1Ys

12·473

Cu 2Sb 4·078 (C38) AsNi 4·139 (B81_ 2) MgZn 2 5·033 (Cl4) NaCl (Bl) 5-45 ZnS (B3) 5·83 ZnS (B4) 4·] 3 FeS2 (C2) R phase

3· 745 11 ·3 15 /3= 105·20° 6·557

1·608

2

P4 /nmm

5·754

l ·390

2

P6 3 /mmc

8·278

l ·645

4

P6afmmc

1·63

4 4 2

Fm3m F43m P6 3 mc

4

Pa 3

6·73

2 Mn 2 Sb

2(c) 2(c)

2897 ±6 7207 ± 2

~

"'C r >

-l

"'0 0

6·417

8 Se

8(c)

>

393

~

.,, z

0

10·874 5·722

19·177

tetragonal hexagonal cubic tetragonal rhombohedral hex. cell tetragonal

8·910 (at 16·8 % Si) D8 8 6·910

8·716

0·978

4·814

0·697

rhombohedral hex. cell rhombohedral hex. cell

R phase

BiF3 (D0 3 )

FeSi (B20)

4·558 5·506

l ·764 4 6·34

6·35

Fm3m

;;i

~

8 2 4 4

17·522

R3

~

P6 3 /mcm

6Mn 6 Si

6(g) 6(g)

~ "'...

2358±6 5992 ± 15

:i:

P21 3 P4c2

>

"' !;; z

R phase

> r

10·86 4·021

19·19 10·493

1·77 2·610

7·67

7·79

2

R3 14 /mmm

R3 10·87

19·23

1·77

10·86

I 9·22

1-77

4Mn 4 Si 2 Th

4(d) 4(e) 2(a)

s< 386

"'< ~

"':l: V,

R phase

I

R3 -...i

,._,

TABLE 6 (continued) In Phase

System

a

Mn 3 SiW 2

hexagonal cubic

Mn 23 Sm 6 Mn 3 • 67 Sn

Mn 0 . 5TaV1 •5

hexagonal hexagonal tetragonal hexagonal cubic

Mn23Tb G

cubic

Mn 2Tb

cubic

Mn 1 • 77 Sn MnSn 2 Mn 2Ta

MgZn 2 (C14) Mn 23 Th 6 (D8. ) Ni 3 Sn (D0 19) InNi 2 (B8 2) Al2CU (C16) MgZn 2 (C14) Cu 2 Mg (C15) Mn 23 Th 6 (D8.) Cu 2 Mg (C15) a phase (D8b) AsNi (B8 1 ) N aCl (Bl)

tetragonal hexagonal cubic

MnTc MnTe (L.T.) MnTe (H.T.) MnTe, Mn12Th

A

c /a, a or f3

Structure type

cubic tetragonal

FeS 2 (C2) D2b

I

b

4·76

I

C

Density in g/ cm 3 Dm

7·75

Atomic positions

M

I

Space group Atoms

Dx

1·63

4

12·558

4 4·529

0·798

4·39 8

5·516

l ·25,

6·9

6·660

5·445

0·817

7·9

4·864

7·947

1·634

Fm3m

4

14/mcm

4

P63 /mmc

7·008

8

Fd3m

12·396

4

Fm3m

7·620

8

Fd3m

M

Mn

hexagonal io·l7 rhombohedral hex. cell

MgZn 2 (C l 4) R phase

a Mo-Ni

M M



6Mn

6(h)

~ 833

8 Sn

8(h)

160

--> 0 "" z. d ~

s: "' 0

> -l ~

> "' "'

z

19·446

1·767

7-900

1·640

12·81

4

5· 24

4·34

-


R3

e:, C

r >

4

-l

P63 /mmc

8 0

1·564 4

8·565

,...

A;£:¥~ ~

4

1·635

1·63

0·509

8·924 4·61 9 0·5176 (D8 b) (at 24-4 at.% V) CsC! (B2) 2·904 [Mn12T h ?J 8·541 4·785 0·560

j

I

P4 2 /mnm

2

a phase

ortborhombic

y

>

( ?) 4, 818 MgZn 2 (C14)

-l >

Fm3m

4

P6 3 /mmc

12·57

8

Fd3m

17·8

4

14 /mcm

0

..,,

z-l

"'

~ 8

8U 16 U

8(h) 16(k)

406 214

> -l

102

"'

"':i:>

A = 30 P4 2/mnm

1

"'"'"' z

Pm3m 14/mmm 142 14mm 142m or I4m2

>

r

l;,l'j


-I

1

P6 3 /mmc l 4 S

4(/)

629

"' 0 Ci

>

3·163

3

18·37

3·288 4·890 9·62

12·9001 3·923

7·286

5·002 1 0·687

3·203

4·90

7·855

6·98 8·97

6·9 8·4

0·509 8·14

R 3m

2 2 4

P63 /mmc Pm3n 14 /mcml see W 5 Si 3

2

P6 3 /mcm

3(a) 3(a) 3(a) 4(/)

0

252 414 ~5 /8

· I

I

13·974

3·972

·1

7·681

I

7·784

P6 3/mmcl

z-I

"'~

m

4(e)

333

tc:

>

"' "'"'

z >

("'

r0 < "'< ~

I

2

"-:j

8 ...,>

1 P6 3 /mmc MgZn 2 5·37 0 I I 8·58 2 I 1·598 11·56 I 11-75 (C1 4) 2 Pm3n {J-W (A15) 5·094 A=8 Pm3n {J-W (A1 5) 4·9408 1(at 54 at.% Tc) (at 70 at.% Tc)I P4 2 /mnm a phase 9·5091 I 4·94481 0·520 (D8b) 6·33 1 3·469 113 ·86 ,fJ=93 °55' Pm MoS 2 (C7) 3·5182

~

0

m i-::

14/m mml 4 Si

2

2·452

3 Mo 3S 3S 4 Se

4 Te

4(!)

621 ± 1

"'~

w N w

TABLE 6 (continued) In Phase

A

System

b

I

Mo -U 11arten tic) ' Mo-U 11artentic) ," M o- U 11arten tic) [o ~

-MoZ r ireta-

able)

aaP ia Jb4 :auPb~ :~Pl>.r(?) -I.T.)

ort horh ombic

6·231

tetragonal

MoSi 2 (Cllb) b.c.

cubi c

tetragonal (at 12· 10 at. % Mo)

I

3·427

9·834

I

tetrago nal

NaP b3

cubic

Na.S a -Na 2S 2

cubic hexa go na l

2·871

16·63

16·00

2

hexago na l

AuCu 3 (Ll J CaF 2 ( CI) N~O~

~ i: ~

4·953 /3=91 °20'

6·38

::;

Fd3m

,: ,o

""

z

1·45

>

8·815

1 ·767

1·74 3·298

P6 3 /mmc

2

48 Na 16 Pb P6 3 /mmc 2 Pb 4 Pb 4 Pb

2

40·39

23·15

2

(at temp. above 190°C)

4Na

143d

3

R3m

2

P6 3 / mmr;

6 Pb

583

4(/) 48(e) 16(c)

12 208

16

"'-< ;:j "',,

96

·;;:

2(a)

05 13

4(/) 4({)

07

6(c)

I

~-=---

-

30·41 l 7·746

32

l ·6773

4(e) 4 Pb 05 4 Pb 4(/) 30 l4ifacd 16 Na 16(e) ~ 125 16 Na 16(!) ~ 125 32 Pb 32(g) 0696 ± 13 1186± 12 9383 ± 8 origin at a centre of symmetry

4 4

Fm3m P62m

"' 0

5·394

4-494

6·80

0·707

2·01

2·023

10·228 9·515 12·48

6·34

2·276

2·05

l ·773

/3= 117·6°

2·057

2

P6 3 /mmc

2·67

2

P63 /mmc

4·03

8

P21 /C

me

CaF 2 (Cl) Liz02

>

6-536 7·629

I Li.,0 "

--l C

C

As Li

6·813 4·685

1Q·53

12· 19

11-18

6·55

2·248

/3= 119·0°

3·35 1·76

3·382 1·77

4 2 16

Na 15Sn 4

z

Pm3m

I monocli-

tetragonal orthorhombic

>

l

~aSb

N aSi 2

;;

4·884 (at 28-4 at. % Na)

5·366

monoclinic

328 ±2

4(e)

~

10·580

'

I A:N~3 (D01s)

N aSi

z

I

I

0·4910

8

5-47

I hexagonal

cubic hexagonal

I

'

Na;iSb

Na.Se Na;se 2

4U

14/mmm

see text, p. 1107

5·765

y

X

I

6·9244

3·3998

I

(in alloy with 14 % Mo)

I

/J-Na.S.

p~~~t

see text, p. 1107

-----==•---==-=...::-.: ,. ., ... . .-4 --

:'\aPb

I

6·88 (at 13-94 at. % Mo)

5· 54

. hexagonal pseudo cell

Atoms

I

I

:Sa,Pb,.

Space group

D,

Dm

C

6·500 13·52

2·865 m~nocli- 1 me at 8· 3 at. % Mo) cubic Cu 2 Mg 7·596 (Cl5) tetrago 4-40 mil (alloy wi th5·4 % Mo) bexago4·990 AsNa 3 nal (D01s) cubic 13 ·32 Cu 15 Si 4 (DSG) hexago5·51 na l rh om bohedral bex. cell

Atomic positions

M

a or f3 a

w -Mo -Ti 11etaable} -MoU 2

Density in g/cm 3

c/ a,

Structure type

4·985

16·73

9·81 22·83 5·57 (at 79·17 at.% Na)

I

I

3·36

1·12 2·278

~4

Fm3m P6 3 /mmc

C2 /c

~

--l

3(/) 3(g) 2(c)

3 Na 3 Na 2S 4S 2 Na 2 Na 4S 4Na

4(f) 4(f)

4 4 4 4

Na Na Sb Sb

4(e) 4(e) 4(e) 4(e)

Na Na Se Na Na 8 Si 8 Si

2(c) 4(f) S(f) 8([) 8([) 8(f)

4 4 4 8 8

315 650

0

>

301 199

4(h) 2(a)

--l )>

0

.,,

.

z

2(c)

--l

645 ~ 583 2108 ±69 2179 ±70 3076 ± 10 293 2 ± 10

3892 ± 55 6725 ± 56 8994± 7 1599 ± 8

325 1 ±2 2 0409 ±2 2 2954±4 105 1 ± 4

"',,,: ~

~

"'

~ >

"' w "'

z

2(a)

351 632 440 597

662 900 210 463

637 358 45 5 314 357

> r

5 -


--i

6

Pm3n

2·032 ,

"'

2

Immm

0

2

14/mmm

6

Pmmn

2 13·0

~

143d

1 1 2

2·06 0·517

::

A =30 P4 2/mnm

0·52

3·886

5·13

;

>

10·2

8·00

~



195 835

3-65 5·11

8·376

6Nb 6 Nb 6Nb 18 Ni 2 Nb 2Ni 4Ni

,._;.,,_

Pm3n P4d mnm

~ "" ~ "'0 ;:;

/43m

2 4·23

+½Ni

.~~===== 11 ·59

5·063

Pmmn

½Nb+

3(a)

Pm3n Pm3n 14/mmm Pm3n P4 2/mnm

"'

,:

~

> ~

i

2 Nb 4 Nb 2 Pd 4 Pd 4 Pd 8 Pd

2(a) 4(e) 2(b) 4(e) 4(f) S(g)

~0 ~0

~0 ~2 / 3 ~0 ~ 1/3 ~ 1/2 ~ 1/6

>

co

~ 11 / 12

"'

~ 1/ 12

> r r

~ 11 /12

z 0

-< -
«tr

a -Mn (A12)

4 ·75 Nb + 3·25 Re

9·693

17·6

17·2

A = 58 I43m

2 Nb 8 Nb 4'5 N b + 19·5 R e

3

N b-Rh

Nb-Rh 'l.T .) I

5

N b-Rh

cubic {J-W (A15) 5·120 tetragoa -phase 9·835 5·083 0·5168 nal (DS. ) (at 34·9 at. % Rh) 4·019 tetrago- r AuCu I 3·809 0·947, nal (?) (Ll 0) (at 51 ·3 at. % Rh) 2·827 4·770 13·587 ortho1 a Rh-Ta rhombic (at 55 ·9 at. % Rh) 2·813 4-808 4·510 orthoAuCd rhombic (B19) (at 58 ·8 at. % Rh) monocli2·806 4·772 20·25 a=90°3 1·5' nic pseudo cell? (at 62·3 at. % Rh)

24 Re 2

Nb-Rh

I

13 ·405

2·445

- --,--- ------

S(i)

C

S(i)

D

} S(j) 2(a) 8(c)

} 24(g) 24(g)

z-l

"' ~ :,::

"'0 ►-l

"'-0 ::i:

>

"' "' "'

z

> r r -< "' -< 0

~

"':,:: "'

314 360

040

096

277

.,_

;' co

?> ;;j 0

0

2

;i P4 /mmm

.,,0

z

-l

A=12 Pmcm

"':,, ~

0

A=4

Pmcm

A = 18 P2 /m ,

~2 N b ~ 2Rh N b,Rh 2 (Nb, Rh)

2(e) 2(/)

6

P6m2



182± 5 672 ± 5

-l

"'>

l (a) 2(m)

2(m) 2(m) 2(m) 1(e)

2(n) · 2(n) 2(11) 2(n)

5·483

~ 1/24 5/24 9/24 13/24 17 /24 21 /24 ~ 23/24 19/24 15 /24 11 /24 7 /24 3/24 ~ 1/24 5/24 9/24 13 /24 17 /24 21/24

>

I

hexagoCo 3 V nal (at 69 ·2 at.% Rh)

' - ~

Pm3n P4 2 / mnm

Rh 2Rh

6

~

,,,

2(a)

::::tx;.L,'-

8 Re

2-N bRh

~0 0 0 0 0

~ 1/3 0 0 2/3 2/3 1 /3 ~2 /3 0 0 1 /3 1/3 2/3 ~ 5/6 1/2 1/2 1/6 1/6 5/6

>

4(a )

4"75 N b+ } 3·25 Re

-N b3 Rh a -N b 2Rh

337 ± 1

I

:~ - - -

cubic

-l

>

~ -l

0

Al 3 Ti (D022) a phase (D8 b)

z

I



4(g)

4 Pt

or tetragonal tetragonal

y

I

~

2 Pt

-N bR e3

X

Pmma

4·564

4·87 0 27•33

I p~~~t I

~ ~ ~ ~

2/3 0 2/3 1/3

~ 1/6 ~ 1/2 ~1/6 ~ 5/6

~ ~ ~ ~

1/9 2/9 3/9 4/9

"'~ z > rr

0

-


12·65

3·31

I

3·390

2

3·33

not MoS 2 type ex MoS 2

Atoms

1·067

like . Nb~ 1·4S2 3·31

Space group

Dx

3-857 (at 74·5 at.% Rh)

5·130 3·104 0 (at 45 at. 0 Ru) I 4·364 4·227 (at 50 at. ¼ Ru) 2·750 A3

Atomic positions M

Dm

C

I

o,

Density in g/cm 3

17·81

P6 3 /mmc P6 3 /mmc

R3m

P6 3 /mmc



2(a) or random vacancies 2(b) Taking formula Nb 1 + xS 2 Nb 2(b) 2x N b 2(a) 4(/) 4S Taking formula Nb1+ , S 3 Nb 3(a) 3x Nb 3(a) 3(a) 3S 3(a) 3S 2 Nb 2(b) (or 2(a) possibly) 4(/) 4S

:;% ;s;:

oc

0

"'~ ~ 1/ 8

0 ~ 5/6 ~ 1/4 ~ 5/ 12

"'"' r-

~ 1/8

R3m

~

N bS 3 N bS 4 Tl 3 Nb 3 Sb N b 5Sb 4 NbSb 2 Nb 0 Se4 NbSe Nb 3 Se4 N bSe 2 N bSe 2

N bSe 2

NbSe3

monoclinic cubic cubic tetragonal monoclinic

Se 3 Zr (?) S4Tl 3V

hexagonal

6·74

Ti 5Te4

7·65 5·2643 10·314

As 2Nb

10·239 3·6319

{3-W (A l5)

tetragonal Ti 5 Te 4 hexagonal Nb 3 Te4 hexagonal hexagonal rhombohedral hex. cell

4·94

2HNbS 2 (C7) 3R

9·871 3·437 10·012 3·442

3·439

6·71

tetragonal

N bSe4Tl 3 Nb 4 Si

cubic hexagonal

S4T1 3V

Nb 3Si

cubic

AuCu 3 (Ll 2)

/3 =97·5 ° 8·83 8·17

2 2 2

/43m Pm3n 14 /m

8·333 /3= 120·07° 8·22

4

C2

3·5 566

3·4529 13 ·030 3·4707

0·3448

2

0·3498 0·3467

6·70

2

12·54

2

4Nb 4 Sb 4 Sb

4(c) 4(c) 4(c)

343 096 142

1/2 1/2 0

14 /m P6 3/mmc 6Nb P63 /m 2 Se 6 Se P6 3/mmc 2 Nb 4 Se

6(h) 2(c) 6(h) 2(b) 4(/)

49

IO

34

27

304 393 027

>

0

>



l I 6::::: 1 ➔

3·459 4H

18· l

7·85 3·59 4·211

18·77

3

25·188

6·43

4·46

6·3

6·46

4

0·958 2 l ·24 6·82

1

3 Nb 3 Se 3 Se P6m2 1 Nb (or 1 Nb P63 /mmc 2 Nb ?) 2 Se 2 Se 2 Se 2 Se P4/mcc R3m

P4cc 143m P6 32 P6 3 mor P63 Pm3m

3(a) 3(a)

3(a) l(a) l(d) 2(g)

2(h) 2(i) 2(i) 2(g)

0 088±3 243 ±3

~ ~

0

► ➔

""::?

250 ± 1 066 ± 2 185 ±4 318 ±4 432 ±2

>

~

_,,

z ►

~

-
I:; z IZI

3073 ± 3

3957 ±2

256±2 7061 ± 3 1682±3 1268 ±1 1687 ±2 41 74±1

;:::

/43m

8·419

6·00

6-036

1

or

Te 4Ti 5

= = ==- --=:::..::...::=- -....::..:·:.. n•w

"fe

10·231

3·7194

0·3635

2

14/m

• ..:·

I rhombo-

~

~

·2-=--==----::-:·

=--

I

I

'

bedral hex. cell

10·904

20· 11 9

bexago-

5· i 5

7·62

1·477

nal hexagona l

10·671

3·6468

0·3418

I

R 3m

0

ibTei-, Nb 1Te4 N I e2 0

N Ie 2 N I e3 bTe2 ·aa - 4

Nb I e 4

orthorhombic rhombohedral hex. cell tetragonal tetrago nal tetra go nal

19·39

( s

>le)

a:

r cc~Nb-U

(X

Nb-U '1b-U

N Zn 2

o rthorhombic

9·36

2

f3 = 134°15'

P6 3 /m

6 Nb 2 Te 6 Te

6(h) 2(c) 6(h)

4886

1039

3389

273 ]

>

1:::1

C2/m 0

b.c. (at N bTe 3)

10·904 6·51

19·888 6·85

1 ·052

9·10

21 ·35

2·346

12·998

20·511

6·499

6·837

7· 6

6·88

7·62

6·94

27

R3 m {P4/ mcc P4cc

~. z

24

"'

0

subcell -T i ~ta -

3-64

7·20

1·052

3·166 4·854 4·652 (at 20 at.% Nb quenched from f3 field)

2

P4cc

2 Nb 8 Te

2(a) 8(d)

1425

33 16

~ 1/4 0

Cmcm

$'

.,..

~

iZI

orthorhombic mon oclinic tetragonal hexagonal

I 2·8741 5·83214-980 I (at 6·2 at.% Nb, quenched from y field) I 2-9001 5·757 I 4·985 1/3 = 91 ·99° , (at 13 at. % Nb, quenched from y field) I 6·969 / I 3-406 / 0-489 (at 17·3 at. % Nb, quenched from y field) MgNi 2 5·05 16·32 3·23 (C36)

>-

8 P63/mmc 4Nb 4Nb 6Zn 6Zn 4Zn

4(e) 4(/) 6(g) 6(h) 4(f)

0920 ±6 8408 ±6 1717±15 1220 ::::: 9

TABLE 6 (continued)

-~

--Phase

a

I (J

ibZn3

cubic

i Nb-Z r

hexagonal orthorhombic cubic

'{dN i .,rctNi 2 -.'dN i5

-TdP .:/dPb 3

hexagonal hexagonal cubic cubic

.:/dPd 3

cubic

.:/dPt

orthorhombic cubic

-TdOs 2

~dPt 2 sJdPt 5

'ldRh 2

hexagonal orthorhombic cubic

'ldRu 2

cubic

'ldS

cubic

sidRh

I Density in

In A

I, Structure System type

I

b

I

I

D,

I

I X

y

I

I

--,;:

4

Cmcm

8

Fd3m

1

P6/mmm

4

P6 3 /mmc

5·838 4·852

4 1

Fm3m Pm3m

4·130

1

Pm3m

4

Pnma

8

Fd3m

1

P6/mmm

~

4

Cmcm

"-

7·564

8

Fd3rn

7·614

8

Fd3rn

5·715

4

Fm3m

7·83

3-977

4·948

8·61

0·804

(D2d)

8·926

5·368

7·256

4·551

1 ·663

5·675

7·694

Cu 2 Mg (Cl5) CaCu 5

1

p~~~ t

C

7·270

MgZn 2 (C14) NaCl (Bl) AuCu 3 (Ll 2) AuCu 3 (Ll 2) FeB (B27)

I

Pm3m

3·089 0·615 5·01 9 (at 12 wt ( ?) % Nb, on quenching from fJ fie d) CrB (B1) 3-801 10-444 4·338 Cu 2 Mg (C15) CaCu 5

Atoms 1

3·934

AuCu 3 (Ll 2)

Space group

M Dm

C

Atomic posi tion s

g/cm 3

c/a, rx or fJ

>

>

I

s: ~ ,.__

I

.::

> ;..:

c,c

I

24·35 13· l

uJ.'+$¥,; :~.:::; -- --'. ~

Fd3m

0·817

r:t.=33 °44'

5·00 7·141

10·3

1

-

c,:

--l

"'~

,zi•

I

I

I

I I

'

-.J

TABLE 6 (continued)

In A Phase

System

a tetragona l or cubic rh ombohedral hex. cell orthorhombic ( ?) hexago-nal (?) hexagonal rhombohedral

cc-N i3 Si (L.T.) N i6S 5 N i9S 8 ,8-N iS (R.T.) u-N iS (L.T.) millerite

hex. cell cubic

N i3 S4 (L.T.) N iS 2 +. N iSSb ullmannite N i3 Sb (H.T.) N i3 Sb (L.T.) N i,Sb

b

I

i P-Ni 3 Sr (R.T.)

c/a, rx or (3

Structure type

I 6·23 1 0·818 I ,

f.c.

I

I 12-12 (at 47·06 at.% S) AsNi 3·439 (B8 1) B13 5·646

7·141 3·28 11-30 5·347

Space group At oms

Dx

2 1

y

X

~

I

I

1·244

3 4

5-60 0·932

6

1 ·555

2

0·328

3(e) 2(c)

25 25

I I

I

3

R3m

>

9 8

Fd3m

4 4

Pa3 P213

3 Ni 3S

3(b) 3(b)

0 714

32(e)

365

8(c) 4(a) 4(a) 4(a)

395 976 390 625

264 361

BiF3 (D0 3)

5·96

(at 950°C)

4

Fm3m

orthorhombic tetragonal

Cu 3Ti

5·35

4·30

2

Pmmn

8S 4Ni 4S 4 Sb

z

·- l

"',:

1 ·036

~

I 5· 1421 H l l (at 50 ·95 at. % Sb) 6·314 3·838

N SbSe

hexago n al orthorhombic cubic

N SbTi

cubic

N SbV

cubic

AgAsMg (Clb)

5·785

4

F43m

N iSC

cubic

8

Fd3m

N Sc N Sc 2 N 1sSC 6 Si 7 (,(, '1'i 3 Se 2

cubic cubic cubic rhombohedral hex. cell hexagonal (?) hexagonal (?) hexagonal rhombo hedral hex. cell hexagonal

Cu 2 Mg 6·926 (C15) CsCI (B2) 3·171 Ni 2Ti(E9 3) 12·120 Cu 16 Mg6 Si 7 11.·429 Ni 3 S2 4·2375

1 32 4 1

Pm3m Fd3m Fm3m R32

N Sb 2

:sfi 6 Se5

N 21Se20 (L T.) (3 sfiSe (H.T.) y ~iSe (L T.) (3 NiSe (H .T.)

N iSe4

1

monoclin ic

AsNi (B8 1) FeS 2 (C18) N iSSb (F01) AgAsMg (Clb)

2

,P6a /mmc

2

Pnnm

6·090

4

P213

5·872

4

F43m

3·924 5·180

~

"' 32 S

\

N Sb

~

0

P6 3 /mmc

cubic

4·53

.> 0

3 Ni 2S

Cmcm Cmc or Ame

cubic cubic

6·94

d

,..e

I

F43m R32

9·610 spine! . 9·476 (Hl 1) FeS 2 (C2) 5·6880 F 01 5'8 81

6·00

I

I

116°37'

5·785

Point set

I

r:t.=

3·148

I

(at 40 at. % S)

5·2 (at 640°C, 40 at. % S) 4·073 Cl. = 89°30'

5·742 11·24 16·60 (at 45·45 at. % S)

Atomic positions

M Dm

C

I

7·62

Density in g/cm 3

r:t. =

90°42'

6·029 7·249 1·202 15·89 4·202 3·78 (at 45 ·45 at. % Se) 1·227 7·97 I 9·78 (at 48·8 at. % Se) AsNi 5·354 1 ·4615 3·662 (BS 1) NiS (B13) 5'8834 r:t.=116°31 ' 3·333 0·3331 10·007 AsNi su10·671 1·4637 7·291 perstruc- (at 52·35 at.% Se) ture 3·633 10'45 /3=149 °22' Cr 3 S 4 12·1 5

' 8·78

8·57

7·85

7-20

7·287

I

I

4 Sb

I 4(g)

4Ni 4 Sb 4Ti 4Ni 4 Sb 4V

4(a) 4(c) 4(d) 4(a) 4(c) 4(d)

~-

-

. :,,,:'

l

22

36

Cl t;,

>:

z

3 Ni 2 Se

3(d) 2(c)

-l

250±5 260±5

"" "" 0 ,.,. ►

:;;, ~

3

§ > r.;o

2 7·114

3

P6 3 /mmc R3m

·9 16

P6 3 /mmc

2

C2/m

2Ni 4Ni 4 Se 4 Se

2(a) 4(i) 4(i) 4(i)

-l "' "',,,:..:: .

25

00 333 333

458 958

'O

.....

-

TABLE 6 (co ntinued) I I

In A

I

Phase

Structure I type

System

a

I NiSe2 N iSeT e /'1 1 -Ni;iSi

cubic trigonal cubic

Ni 5 Si 2

trigonal

Dm

C

I

I

I

Density in g/cm 3

c/a, a or fJ

b

.;,. 0

I

Atomic positions Space group

M Dx

Atoms

I 6·792

FeS 2 (C2) 5·9604 5·15 CdI 2 (C6) 3·70 3·5040 AuCu 3 (at 13 wt % Si) (Ll2) 12·332 6·670 (Si-rich boundary)

6·720

l ·39

7-905

4 1 1

Pa3 P3ml Pm3m

6

b-N i2Si

orthorhombic

PbC1 2 (C23)

hexagonal

3-805 (at 24 wt % Si)

5·00

7·04

3·73

7·23

4

6·85

2

P6 3 m

~

0 -N i2Si (H. T .) N i3 Si 2

1')-NiSi

orthorhombic

orthorhombic

4·890

5·18

MnP (B31)

- --

6·74

16

Cmc2 1

4

3·34 1 5·62

-

"-

1 ·285

6·924

12·229 10·805

"'7'¥9:.,

- ' = -~

8 Se

p~~~t 8(c)

y

X

\

I

z

I

-I ►

"'c; r' ►

384

-I

"'0 0



P3ml P3ml or P321 Pnma

l ·849 ,

(L.T.)

I

,.

------



s .-is..

Pnma

--l ►

.,,

z-l

4Ni 4Ni 4 Si 2Ni 2Ni 2 Si 8 Ni 8 Ni 8 Ni 8Ni 4Ni 4 Ni 4Ni 4Ni 8 Si 8 Si 8 Si 4 Si 4 Si 4Ni 4 Si

- _.,,.,

063 703 114

825 958 236

2(b)

1732 1723 1972 1824

8(b) S(b)

120 152 151

4(a) 4(a) 4(c) 4(c)

006 170

"x:.-

-._,.

"'.;:,;:;

e

> -l "'~

2(c) 2(d) 8(b) 8(b) 8(b) 8(b) 4(a) 4(a) 4(a) 4(a) 8(b)

---Q5! ~

rtt:::aea.

rt

4(c) 4(c) 4(c)

518 900 217 225 0 024 400 714 214 506 920 712 218 184 580

1177 1189 2467 4975 0 2345 2330 3814 059 344 343 157 409

> en m en

z ► r' t"'

0

>


4

2

~

6 Ni

."d

833

-~

"'

"'

.. 2Ni 4Ni 4 Sn 4 Sn 8Ni 4 Sn 4Ti

Fm3m

6(h)

2(a) 4(i) 4(i) 4(i) 8(c) 4(a) 4(b)

220 428 180

0,

z

350 675 800



~ -


3

~

2

~

;,

~

3 3

::c

.;

6 4 6

"-~

3·268

9.937

6·477

4-101 ·

7·43

7·47

4

5·24 1

7·28

7· 281

4

4 10·86 10·67 10-43 (at 375°C) (at 19 wt % Np) 10·6 3·86 110·3

S3 Sb2 (D5 8 ) Si 2Th (C,) 3·97 13-70 3·45.2 CPu-U 10·55 (at 25 wt% U) FeS 2 5·098 5·898 2·918 (C18) AsFeS 5·78 5·78 5·83 f3 = 110·9° AsFeS 5·98 5·94 6·00 f3 = 111 ·4° Cu 2 Mg 7·663 (C15) MgZn 2 5·368 8·945 1·666 (C14) MgZn 2 5·337 8·682 1·627 (C14) FeS 2 5·6188 (at OsS 2 -orn) (C2) FeS 2 5·912 6·653 3·196 (C18) AsFeS 6·21 6·15 6·22 i'1=111·7° (C18) MgZn 2 (Cl4) FeS 2 (C2)

2

16 Ni 4Zr 4Zr 4Zr 8 Zr 8 Zr 8 Ni 8Ni 8Ni 8Ni 8 Ni 4 Zr 8 Zr 8 Zr 8 Zr 8 Ni 8 Ni 8 Ni 8Ni 8 Ni

:,.,

P4Tha

FeS 2

~

I

1·037

(D73)

ortborhomb ic orthorh ombic tetragonal cubic orthorhombic monoclinic monoclinic cubic

~

t"

Ni 4 Zn 81

( C l6)

NJ>8P4

""'

I

5:

metric)

N i#llS

I

:>:

4

9·156

z

y

X

A=52 2 for

6·702

12·386

orthorhombic

I

Pm3m

(Cl5b)

Ni 111Zr 7 (stoichio-

p~~~t

~ =2

or tetragonal(?)

Atoms I

C

CsCl (B2) 2·9142 (at 890°C)

cubic

Space group

M

5·281

6·404

4·046

Cmcm

'

14/mcm

4 Ni 4 Zr 8 Zr

4(c) 4(c) 8(h)

0817 ± 1 3609 ±8 1629 ± 25

143d

I I I

~ 54

'

9·48

8·8

4

Pnma

9·03

4

14ifamd

2

Pnnm

4 4 8

P21/C P2dc Fd3m

4

P6 3/mmc

4

P63 /mmc

!

8 Si

I 411

S(e)

I

>~

'~

i

z -i-1 ~ "' 9

...> ""...

9·57

4

Pa3

8S

S(c)

375

11·45

2

Pnnm

4 Sb

4(g)

18

4

P2ifc

2

Pnnm

4

P63 /mmc

~

> 00

11·4

10·58 10·79

36

"''°

z >

~

5·179 5·945

8·484

1·638

4

Pa3

-
bZn

P, d

p

d d7 L)

p p p p p

13

4·729 2·960

1

Pm3m

~2

I p

\

p

h

8·962

0·8032

5·58

4·48

0·803

3·00

OsGe 2 [As 2 Nb?]

8·77

X

14 87

4(a) 4(a)

I I

y

~I

MgZn 2 (C1 4) a phase (D8b) u.-Mn (A12) FeS 2 (C2) Cu 2 Mg (Cl5) Fe 3Th 7

5·336

fJ =

7-38

9·934 (at 75 % Ta) 9·68 81 (at 25 at.% Ta) 6·3985 7·7050

8·879

i -664

5·189

0·522

~4

I

I

i

4

0·628

I 8· 786

i.656

8·526

l ·643

13·27

NaCl (Bl) 5·872 FeS 2 (C2) 5·6956 NaCl (Bl) 5·644 PbCl 2 5·540 (C23)

cubic

As 3 Co (?)

::l >

"'

I

4 8

Pa3 Fd3m

2

P6 3 mc

1

Pm3m Fd3m

8

8 Te

8(c)

38 I

~

I

I

~

I

I

I

l

fJ=

5·631

P 63/mm c

4

P6 3 /mmc

1 4

Pm3m Pbn or Pbnm Jm3

4

111 ·80° 110·12° 0·590

4 4 4 4 4

9·87 16-4

2·939 10·040

7·996

(D0 2)

5·7429 5·7942 5·837 0

12 /a

I

I

I '

i

..,

>

C>

C

r > -l

::,

0

8P 4 Pd

x,y,z

1886 :J:e 9

±(¼,¾·,¾) ..

1237 ± 9

3537 ±1 4

fJ=

112·919 °

0

> -l >

2

Cl.=

7·04 5·1 66

P m3m P4Jm nm:

4

8 5·874

"''

:-6..

9·87

7·28

cubic cubic cubic orthorhombic

;:,-

i I

P4 2/mnm

Is·OOlol 0·51775 i (at 27 ·0 a t. % Os)

7·445

~. ,..,

I

C2 /m P6 3 /mmc

___....

11 ·94 5·971

...z

I I

C2 , Cm

or

19·42

DIC

C0Sb 2

-

143m

6·296

10·031

(D8b)

Fe 3 C (D0n)

--

'

118°30'

i

monoclinic

h

\

i

11-1 58

esa {B2) 3--010 a phase 9·659 0

I rh ombohedral hex. cell orthorh ombic

4 Os 4 Si

I p~~ft

R uSi 1 . 5

(Dl0 2)

nal

I

Atoms

Dx

P21 3

hexago- I MgZn 2 5·307 nal (Cl 4) hexagoMgZn 2 5·189 nal (Cl4) ! cubic CsCJ (B2) 3·263 ' ortho10·57 12·72 I rhom bic , cubic As 3 Co 7-705 (D0 2) II monocli. 6·207 5·857 •

t

I

Space group

4

CsCJ (B2) 3·07 7·51 25 Cu 2 Mg (C15)

cubic teuago-

I

p

Atomic positio ns M

D ,.

C

"'-

Os r Os- w

D ensity in g/cm 3

or fJ

Cl.

a

_L

cubic cubic

~Tii

c/ a,

type

OsSi cubic (stabilized by Al or 0) orthoOs~Si3 rhombic pseudo hex.or tetragonal OsSi 2 • 0 monoclinic (stabilized by Al or 0) hexagoO~Sm nal tetragoa Os-Ta nal cubic ;1, Os-Ta OsTe.

In A

I

I"'"""" I

System

cubic

OsSi

I

I

.,,

0

Pnma Fm3m Pa3 Fm3m Pnma

8

lm3

4

P21 /c

4P 8 Pd 4Pd

4(c) 8(d) 4(c)

8834±11 1783 ± 2 0636 ± 3 0264 ± 4

SP

8(c)

38

4P 4Re 4Re 24 P

4(c) 4(c) 4(c) 24(g)

395 8295 8520

4550 ± 11 3373±3 8700 ±4

110 0655

~3 4.

7850 ~ 137

.z .., co ~

:s: g

~

> ~ :: >

"'"'"'

z

>

r r 0 -


~

761 9 9212 0792 11 72 5696 4059 2911

3763 1273 3704 0270 2717 0647 2945

c:: r >

"'0 0

>· -l >

,,,

z-!

"';:;::, "'0 ~ "':? 4P 4 Ru 4Ru

4(c) 4(c) 4(c)

2455 ± 10 8585 ±3 9780±3

11 35 ± 8 0736 ±3 65 86± 3

>

,:,.,:,

~

z > ,..

,;-

-l

P4 2 /n

4

Fm3m

2

P4/nmm

4

143d

(?)

"'0 0

>

-!

>

3·808

7·778

2·043

8·214 5-600

1

(red)

'

tetragonal

AsNi (B8 1 )

3·18

6·22

1·96

e 1 -Fe 3 (P , B)

9·387

4·756

0·5067

4

Fm3m

4·72

5·00

2

P63 /mmc

2P 2U

2(c) 2(c)

636 280

-l

;:

~

"' "' "' z

4·973

4

Cmc2 1

MnP (B31)

5·734

3·249

6·222

4

Pnma

6·79

4

Fm3m

5·554

4

Fm3m

8

P4 1212 P4 3 212

18·59

>

4P 4W

4(c) 4(c)

20 0

62 175

1·097

5·661

5·08

>

-l

"',.,

:.:

3·166 11 ·161

6·19

3·536

z

"';::

P4 2 /n

M oP 2

NaCl (Bl) NaCl (Bl)

-!

>

"' C

(B l)

p

\

AsTi (B 1)

>

,-r -

8(h)

8 Pb

158

z >

r

7·09 8·442 5·57 /3= 71 ° (at 65 ·8 wt ½ Pb) 5·7040 l ·2750 4·4652

InNi 2 (B8 2) 4·0216 AuCu 3 (Ll 2) NaC l (Bl) 6·590 4·867 Au Cu 3 (Ll 2)

10·60

9·6 10·98

1

P6 3/mm c

"'

1

Pm3m

"'~

4 1

Fm3m Pm3m

;.,

I

-,._

~ ~61 -dY -.,

tetragonal

6·666

PbPt3

hexagonal cu bic

Pb3 Pu

cu bic

PbRb

tetragonal tetragonal cubic

AsNi 1 4·259 (B8 1 ) AuCu3 ( ?) 4·053 (L1 2) AuCu 3 (?) I 4·808 (L l 2) NaPb 111·84

Pb4 Pt

PbPt

Pb 2 Rh PbS PbS II (H.P.)

orthorh ombic triclinic

Pb5 S,.So,Sn 3

(frankeice) PbS!Sn

5·978

2

; P4 /nbm

8P b

Al 2Cu

5·467

19·42

6·664

5· 865

1·2837

1 ·64

2

IP6 3 /mm c

1

I Pm3m

12·86

1

I Pm3m

5·59 I 5·71

32

I /4 1 /acd

4

14/mcm

4

Fm3 m

4

Pnma

8

Pl

2

Pnma

0·880

I

I



e:, C

r

~

8 Pb

8(h)

158

(C l 6)

N aCl 5·935 (Bl) GeS (816) (at pressure > 24kb) 46 ·9

5·82 I 17·3

C(=

~6·0

5·88

rhombic

94°40'

11-35 4 1 4·04 3

I

4.-34 9

6·363

(Pmmn?)

ti

z,.., (given in original. paper, seep. 1166 for refe rence)

/3= GeS (Bl6)

""0 >-

y = 90°

I ortho-

I

8(,n) 175 255 2(a) __ (origin at 422, at ¾,¾,O from centre 2/m)

2 Pt

1

'

0 ·897

Pb + Snl 4(c)

I randomly

~

~

> ~

>

PbSe PbSe II (H .P.)

Pb 3 Sr PbTe

PbTe

cubic orthorhombic tetragonal cubic simple cubic

N aCl (Bl) GeS (B16) CuTi 3 (L6o) NaCl (Bl)

6· 122

4

(at pressure > 43 k b) 4·465

5·035 1

l ·014

9· 12

6-460

Fm3m

~

z

4

Pnma

1

P4/mmm




r

"'

~

3·21 I (found in thin films)

"

TABLE 6 (co ntinued) I I

Phase

In A

i

a

I orthorhombic cubic

PbTh

tetragonal hexagonal hexagonal

PbTi 4 Pb3 U PbU

I

b

I

P bT e II (H .P.) P b 3 Th

P b 3Ti 5

c/ a, ri or fJ

Structure type

System

I

.;.

D ensity in g /cm 3

Atomic posi tions

M D ,.

C

Dz

I

I

(at pressures >41 kb) GeS (B 16) AuCu 3 ( ?) 4·855 (Ll 2) for f.c. cell 4 ·545 5·644 1·24 (the structure may however be ordered) Mn 5Si 3 0·687 8·5281 5·862 (D8 8) 4·846 0·8096 Ni 3Sn 5·9851 (D010) (at 62 ·5 wt% Ti)

Atoms

12·31

4

Pnma

1 2

Fm3m ( ?) P4/mmm

2

P63 /mcm

2

I

I

1

p~~~ t

X

I

I

y

z

-l

I

0

I

AuCu 3 (?) 4·7915 (Ll 2) 5·259 tetragonal for f.c. cell 4·579 (the structure may however be ordered) or 11 ·04 10·60 PbV 3 {3-W (Al5) 4·937 cubic Pb 3 Y cubic 4·823 A uCu 3 (L12) Pb 3Zr5 hexagonal Mn 5 Si 3 8·528 5·862 (D8 8) PdRh 8 S 8 cubic Pd 17 Se 15 9·9301 {3-NbPd 3 5·492 4·829 13 ·54 o rtho(Pda,92 Rho·os)3 Ta rhombic (P0 .,,.Rh 0 • 225) 3Ta(?) hexagonal N i3 Ti 5·517 8·978 (D0 24 ) (H. T.)

Space group

cubic

1-15

'=:.

z

12·93

1

P63 /mmc 0·4Ti+} 2(c) 1·6 Pb 6Ti 6(h) Pm3m ?

13·27

2

P4/mnm

randomly

-;:-

e:.

833

~

'"' iZ,

"""' 2

0·961 2 1 2

9·69

0·687

1·627

Pm3n Pm3m

2

P63 / mcm 6 Pb 6 Zr Pm3m

4

P6 3 /mmc

' 6(g) 6(g)

61 25 ~

I

I

I

.I

I

'-

(Pcl,,.,.Rho..Ja I a

rhombohedral hex. cell

5·517

Co 3 V Ni 3Ti (D0 24) hexagonal Co 3 V cubic AuCu 3 (Ll 2) cubic CsCl (B2) tetragonal Pd 4Se

Pd,S Pc!S

tetragonal

A=36

B34

22-43

PdSSb

I

orthorhombic cu bic

~ Pd 5 Sb 3

orthorhombic hexagonai

PdSb PdSb, PdSbSe

hexagonal cubic cubic

PdSSe

-

'

I



R3m 9(Pd 0 •72 Rh 0 • 28 ) 18(Pd 0 . 72 Rh 0 . 28 )

5·530 5·525

13·493 9·027

A=40 P6 3 /mmc . 6(Pdo ·G1Rh o,d 12(Pd 0 . 01Rho,aa) 12(Pd 0 •67 Rh 0 •33) 2 Ta 4 Ta 4 Ta 6 P 6m2 4 P63 /mmc

2·440 1·624

PdSe2

9(e) 18(/i) 3(a) 6(c) 6(h) 12(k) 12(k) 2(b) 4(/) 4(f)

:

I ~ 2/9

~ l /2

~ 2/ 9 ~ 1/2 ~5 /6 ~ 1/6

~ 3/20 19/20

~

~ 3/20

~ 19/20 z

'

5·509 3-893

13·44

2·440

P6m2 Pm3m P m3m P421C P4,1/m

3·444 5· 1147

5·5903

l ·093

1 2

6·44

6·64

1 ·03

8

5·460

5·541

7·531

4·833

NiSSb (F0 1) PdSe 2

6·185

InNi. (DS;) AsNi (B8 1) FeS 2 (C2) NiSSb (F01 )

4· 45

5·83

1-3 1

4 ·078 6·4 52 6·323

5·593

1 ·374

5·595

5·713

7·672

4·98

4

·1 (at 660°C)

P2 1 3

4

Pbca

;,;)

!

~

;;; 8 Pd 2S 4 Pd 8S 4Pd 8S

P bca

4

""

I

I

8(e) 2(a) 4(j) 8(k) 4(a) 8(c)

358

230

15 5

475 20

250 32

22

107

112

::;:

"'

r.:i

Ii

425

00

z

> r

I

i

A= 2 P63 /mmc i Sb 2 P6 3 /mmc l 4 Pa 3 4 P21 3

9-4

~

i

6 1

I

PdS 2

i

I

20·26

5·52 0

hexagonal hexagonal

PdRuY !

I

1 63 Ta Ta

hexagonal

Pdo·sRho,5)3Ta (Pd0 . 78 Ru 0 • 22 J3Ta (H.T .) (Pb0 . ,.Ru 0 • 25 ) 3 Ta (Pd0 . 5 Ru 0 .,) 3 Ta •

'

I

i )'-{Pd0 •6 7Rh 0 • 33)3 T a

I Sm

I

I 8 Sb

8(c)

"' '- l

"'f'°

38

I

i

II

'

V, V,

TA"BLE 6 (continued) In Phase

System

A

Structure type

c/q, ex or /3

a

I

b

I I

Pd 4Se Pd 17 Se1,

cubic

PdSc PdSc 2

cubic cubic

PdSe

6·73

PdSe2

ort horhombic trigonal orthorho mbic

5·741

PdSeTe Pd3 Si Pd.Si PdSi Pd 8 Sn

3-90 5·735

CdI 2 (C6) Fe 3 C (D0 11)

.hexagonal Fe 2P (C22) orthoMnP rhombic (B31) cubic CuA u 3 (?) (Ll 2)

1·027

5·866

7·69 1

7·555

4·98 1 ·28 5·260

Atoms

2 8·34

6·91

6·77

2

7·87

8

6·78

4 1 4

6·49 3·43 0·528 5·599 3·381 6·133 (at 1% wt % Si)

3 4

I

l

3·9701

Space group

D,

I

4 1 1 1 32

10·606

tetragonal PdS (B34)

Atomic positions M

I

Dm

C

FeS 2 (C2) 6·533 (disordered ?) 3-981 AuCu 3 (L 12 ) cubic CsCI (B2) .3·283 12·427 cubic Ni 2T i (E9 3) 5·2324 5·6470 1 ·079 tetragonal

PdSbTe Pd 3 Sc

Density in g/cm 3

(at 24 at. % Sn)

I p~~~t I

X

y

I

Pa3 Pm3m Pm3m Pm3m Fd3m

p,

ll•

\

.f

p,

'•

.)

.

5 2

3

4

r

tetragonal orthorhombic

. 5·65

6· 18

3· 93

6·490 CoGe 2 (C,)

orthorhombic

6·491

6·38

1J · 14

>



8 Pd 2 Se Pm3m 1 Pd (P43m or 3 Pd P432) 6 Pd 24Pd 6 Se 12 Se 12 Se 4 Pd P4 2 /m 8 Se Pbca 4Pd 8 Se P3ml 4 Pd Pnma 8 Pd 4 Si P62m 4 Pd Pnma 4 Si Pm3m P42 1c

1·288

4

Pnma

10·2

1

P6 3 /mmc

9·4

4

Pnma

/3 = 88·5 °

8(e) 2(a) l(b) 3(d) 6(e) 24(m) 6(f) 12(i) 12(j) 4(j) 8(k) 4(a) 8(c)

374

232

2378±12 3521 ± 3 2571 ± 16 2297 ±7 1684±7 235 455 325 20 112

6·397

6·426 11 ·495 4·416

0·81 6

9·266

(D2d)

p

r

cubic

a

tetragonal

a

ortho2·896 rh ombic tetragonal y-CuTi 3·279 (Bll ) tetrago nal a phase 9·978 (DS.) tetragonal 9·60 hexagonal AsN i 4·13 5 (B8 1) trigon a l CdI 2 (C6) 4·0365

\ Ta 3 0T b 5 •1 0

:

·•

Cu 2 M g (C15) Al 3Ti (D022) M oPt 2

7-800

l4ifacd 16 Pd 16 Sn 16 Sn Aba2 A= 4 Pd 16Sn 4 Pd + 7 Pd 8 Sn 8 Sn 8-49 8 Cmca 8 Pd 8 Sn 16 Sn 4 Aba2 see PtSn 4 1 P6/mmm

8·474

3·880

7·978 8·397

2·056

3·790 6·036

4 Pd 4 Sn

16

6·491 12· 179 (at 69· 1 ¾ Sn)

5·411

·::

CZ'

"" "' z

. >

117

4(c) 8(d) 4(c)

0053 ±5 1810±2 0508 ±3 897 6 ±2 0

4(c) 4(c)

007 190

·"' < ~

c:,

0

,::

I

4(c) 4(c)

1·841

8

Fd3m

2

14/mmm

2

Jmmm

2

P4/nmm

0·522

13·58 5·674

1-415 l ·372

5·1262

1·2700

~

007 182

16(d) 16(e) 16(1) 4(a) 4(a) 8(b) 8(b) 8(d) 8(/) 16(g)

182 590 ,: ,

\

141 /a P6 3 /mmc

1

P3ml

r

> -;

342 250 084

158 250

010 238 12 875

168

17 33

33 17

> -l >

z-;

"'"' :i:

C,

0

> -;, .,,

~ "' "' "' 4 Pd

4(g)

33 9

,..> 5 < .;r-,

~

P4 2 /mnm 7 2

592

250 158

\

5·208

~

~

24· 378

17·20 6·47 1 6·50 (at 26 at. % Pd)

orthoPtSn 4 rhom bic (Dl ,) hexagonal CaCu 5

~

I '

I 4·31 I 8·] 2

4·399 5· 666 (at 42·5 wt % Sn) 6·13 3·87 6·32

>

""s

>

'-·~"""'

. l'bCJ . · onnorhombic (C23) hexagonal InNi. (BS;) orthoMnP rhombic (B3 1) monoclinic

z

I i

I

d.,S 11

I

-;

"':i: "' 2 Te

2(d)

25

-J

._,

TABLE 6 (continued)

Vl 00

I

Density in g/cm 3

In A System

Phase

Structure type

c/a, a or f3 a

Pd 4Tb

cubic

AuCu 3 (Ll 2) hexagonal N i3Ti (D0 24 ) hexagonal Pt 5Th 3 (at 63 at.

Pd 3Th PdsTha

4·119 5·856

I

b

D ..

C

I

I

PdTh, Pd 3T i PdTi PdTi 2 Pd 3Tl PdtTl PdT m Pd1 U Pd 3 U

tetragonal Al 3 Ti (D0 22 ) Pd,V ortho M oPt 2 (L.T.) r hombic or tetragonal PdV 3 cubic {3-W (A15) Pd 3Y cubic AuCu 3 (Ll 2) Pd 2Zn orthoPbCl 2 r hombic (C23) Pd,Zn cubic ~CsCl (H .T.) (B2) 0-PdZn tetragonal AuCu I ( ?) (Ll 0) (Zn-rich boundary) P1-Pd,Zn3 cubic (at 61 ·4 a t. % Zn) ;, Pd-Zn D8 1 _ 3 I cubic (at 81 ·6 at . % Zn) 1'/"Pd.Zna c.p. hexagonal 1 Pd3 Zr hexagonal N i3Ti

3-899

0·545

PdZr 2 PoSr PoZn Pr Pt PrPt 2 PrP t 5

11·84

Pm3m

4

P63 /mmc

1

P62m

p~~~t

I

I

y

X

I

I

z

-i

;,,,

"'Cr ►

~

0 0

7·753 8·250

3·89o 4·816 4·074 5·35

3(f)

3(g) 4(c) 4(c) 8(h)

4·14

3·055 (32-5 a t. 4·100

0

780 ±2 350 ±2 030 ±3 180± 2 160

"' 630±3 124 ± 2

~

4

Pnma

11-9

4

14/mcm

4

P63/mmc

i~

2

Pmma

"'~

2

!4/mmm

1

P4/mmm

2

P6 3 /mm c

1

Pm3m

1

Pm3m

1

Pm3m (?)

""

t/l

i

4Ti

4(e)

34

"'""

z >

s ..,:

~

""~

~, ------

2·015

3'751 3·737

~

2(c)

.::

3·847 2·750

2 Pd 3 Pd 3 Th 4Pd 4Th 8 Th

11-60

2

14/mmm

2

Immm

2 1

Pm3n Pm3m

g

4

Pnma

A=2

Pm3m

?;,,, -i ""0

2

P4/mmm

4 Pd

4(g)

340

0·96,

7·65

% Zn) I 3·295 0·816

10·1

10·2

i::,

~ 0

3·049

(partly ordered)

A=2

Pm3m

4

P6 3 /mmc

"'z

I

9·111 1-55 5·612

9·235

1·646

(D0, 4 )

tetragonal M oSi 2 (Cll.) tetragonal MoSi 2 (Cll•) cubic NaCl (Bl) cu bic ZnS (B3) orthoFeB (B27) rhombic cubic Cu 2Mg (C15) hexagonal CaCu 5 (D2a)

1

I

;>

7·149 % Pd)

i

Pd 2Zr

Atoms

I

I

'

Pd2 V

I

Space group

Dx

(at 79 at. % Pd) 9·826 1·678

FeB (B27) 7·249 4·571 5·856 orthorhombic 7·33 0 5·93 0 0·809 tetragonal Al 2 Cu (Cl6) 5·489 8·964 1·635 hexagonal Ni 3 Ti (D0 24 ) 4·56 2·81 4·89 orthoAuCd (BI9) rhombic 3·090 10·054 3·254 tetragonal M0S i2 (Cl lb) 4·12 3·84 0·93 tetragonal CuTi 3 (L6 0 ) 4·54 1 ·25 5·67 hexagonal lnNi 2 (B8 2) 3·440 CsCl cubic (B2) 4·063 AuCu 3 cubic (at 20·0 at. % U) (L l 2 ) 4·7834 cubic · AuCu 3 (LI,) ( ?)

PdTh

I

Atomic positions

M

3·407 3·306 6·796 6·309 7·294

8·597 2·523 (at 65 at. % ld) 10·894 3·295 6·3 7·2 4·560

5·698

7·709 5·353

4·386

0·819

2

14/mmm

2

14/mmm

4 4 4

Fm3m F43m Pnma

8

Fd3m

1

P6/mmm

"'>,; ~

;>

"'

""

4Zr

4(e)

~33

z"'

>

s ..,:

"'

~s: "'

w

V,

. '°

TABLE 6 (continued) 0

In A Phase

System

Structure type

c/a, . 870°C) Pt,S i3

tetra gonal tetragonal

SiU 3

l-363 1 1-31

9·53

Dz

9·59

/J=

88·11 °

primitive

Fe 2P (C22) ZrH 2

5·46

7· 86

13·395

5·54

6·440

1·44

Atomic positions

Space group Atoms

I

PtSe 2 PtSeTe Pt 3 Si (L.T .)

Pt 2 Si (H.T. hexago>695°C) nal Pt 2 Si tetrago'.L.T.) nal Pt 6 Si 5 monoclinic

D ensi ty in g/cm 3

1 1 8

4

P3~1 P3ml F2 /m (C2 /m)

2 Se

2(d)

8 Pt 8 Pt 8 Pt 8 Si

8(g) 8(h) 8(i) 8(i)

14/mcm

A-

PtSi Pt-Sm

PfsSn PtSn ~D3

orthorhombic orthorhombic cubic

hexa gonal hexagonal

3·573

0·555

3·933 5-910 (at 34 at. % Si) 15·462 3·499 6·169

1·503

MnP (B3 1) FeB (B27) AuCu3 (Ll 2) AsNi (B81 )

5·59

3·603

3

/J=

7·152

4·525

5·932

2

14/mmm

2

P2 1 /m

1-323

2

P63 /mmc

2·9905

2

P63 /mmc

6·39, 6·426 11 ·38, (at 70·9 wt % Sn)

bexagonal cubic

CaCu5

PtTb PtTe 1 . 00 PtTe 2

10·77

5·397

1/4 0 1/4

0 1/4 3/10 0

3 0

z 15 ~ 4Pt 2 Si 2 Pi

4(d) 2(a) 6 X 2(e)

5 X 2(e)

:~ "' "'

002 178 174 281 449 424 112 057 337 287 426

1/4 1/4 3/4 3/4 3/4 1/4 3/4 1/4 1/4 1/4 3/4

194 287 660 995 148 527 042 542 251 682 748

4·364

0·8086

16·14

4

Fm3m

4

Aba2

4 Pt 4 Si

4(c) 4(c)

010 195

!

.z >

"' ~ -,l

"':ii:

I

195 590

~

4 Pt 2 Sn 4 Sn

4(f) 2(b) 4(!)

4 Pt 8 Sn 8 Sn

4(a) 8(b) 8(b)

I I

17 3 32,

143 930 0 12, 87,

32,

17,

7·742

orthorhomb ic tetragonal

Au 2V (?)

13-65

3-91

7·94

5·538

4·874 4·560

5·537

4·869

27·33

8·403

4·785

4·744

2·03

"' ...,► 0 ►

~

P6/mmm

z

8

Fd3m

"';:,:;::

2

14/mmm

2

Pmnm

12

P2ifm

4

Cmcm

1

-,l

(D2d)

Cu 2 Mg (C15) tetragoAl3Ti na l (D022) ortho/J-Cu 3Ti rhomb ic (DO, ) mon oclinic ,8-N bPt 3

orthorhombic ortborh ombic tri gonal

Pnma

Pm 3m

D lc

a Pt-Ta

4

1

orthorhombic

Pt 2Ta

1/5 1/4 0 0

P62m

3·99 3 (at Pt-rich boundary) I 5.439 4·illl · (at 37·8 wt % Sn) 4·334 12·96 0

Pt Sn 4

/J-Pt 3T a

0

250

,-,i

"' r

.::

Pnrna

6·426

et-Pt 3T a

!

z

~

4

CaF 2 (CI)

Pt:Ta

I

"';:,

5·626

cubic

P4Sr

y

le:.=...:.iit-~~~~~~:....C......__,--~:::::=~'!::~='.'!:~~~:.:::::..__ . . _ ~x,_~:::=:::::::=~::c..- -~

PtSn2

Pt,Sr

I

52 Pt + 22 Si

86·32°

p

X

A~

2 Si

E '

I p~~~t I

;:;:

,.....

I

>

I

""~ to

/J=

!:5

I

.5z

90°32·4'

a phase 9·93 5·16 (at 70 at. % Ta) (D8b) FeB (B27) 7·018 4·494 5·561

5·2209

1·2968

8(g) 4(c)

~ 1/6

>

~ 72 ~ 22

P4 2/mnm 4

6·6144 5·6360 ll ·865 Cdl 2 (C6) 4·0259

18 ·15

0·520

8 Pt 4Ta

12·01

12·11

10

10·16

10·20

1

-


38 17

0 50

>
l) 1Ru

-l

~

~

CrB (B1) isotopic with lr 3 Zr5

hexagonal cubic

CsCl (B2)

4·471

5·552

>.

-l

tl t:l

~

0

tetragonal

p i+xZr ( .T.) p Zr

4·770

(L1 2 )

p Zn

y :'t-Zn p 3Zr

2-692

4·03, 3·473 (at 47·2 a t. % Zn) 2·745 4·11 1

0·860 0·668

2 12·27

3·409 10·315

P4/mmm P321

(at 81 ·1 at.% Zn) 9·235 1·635

4

P63 /mmc

1

Pm3m

4

4·277

"rj

Cmcm

z -l l(a) 1 Pt 3·4/ 3 Zn Z(d) 50 1·7 /3 Zn 3(/) Zn randomly on sites

m

45

~

tl

> ;;l ... ~ "'m "'

z )>

b

0

--
< >< ~

18 ·95

A = 58

10·5

8

Fd3m

6

P6m2

3· 123

8·50

s

~

It

0·618

"""

11-18

1·779

2·912 2·99 3·29 3·30

4 2

Fm3m P6 3/mm c

3·64

4

Fd3m

8·84 13·04

13·4 11 ·71 13-7

2·73

2·72

9·53

P43n

~--

1 Zr 2 (Pu + Zr)

l(a) 2(d)

4 Rb

4(/)

8 Rb 4Rb + 4 Sb 8 Rb 24 Rb 8 Si 24 Si

8(a) 8(b)

,.______ ~

-i

583 >

randomly

0

C

8(e) 24(i) 8(e) 24(i)

331 336 066 061

141

064

316

429

> '"l

>

19·09 10·24 (or 5·5 ?)

1·63 0·7474

4·03

4·14 5·16

32 10

-i

2

8·592

4·81

141 /acd

"';::J

9·65

5·271

32

:i:.

r

A=3 P6/mmm

l ·630

4

6·7272 6·6065 6·7196 tX= 11 8·937 ° 9·237 fJ = 91 ·826 ° y =1 04·93 0 °

9·211

15·4

0·505

4

4

I43 m

24Re 24 Re 2 Sc 8 Sc

24(g) 24(g) 2(a) 8(c)

042 278

356 089 317

0

>

'";I

P63 /mmc

Pl

a ;;j :i:: ►

2Re

2 X 2(i)

2 Se

4 X 2(i)

4937 4943 2228 2220 7089 7089

3038 7474 4875 9830 4893 9893

3020 3027 3600 3620 1221 1221

14/mcm

"' "' "'

z rr►

0

-





V,

"' z

V,

CsCl (B2) PbCI 2 (C23) InNi 2 (B8 2) FeSi (B20) AI 2Cu (C16)

3·464 5·520 4·220 8·208 4·340

5·553

11 ·27 1·280

1 4

Pm3m Pnma

1

P63 /mmc

as GaPd 2

>

,..r

0

-< -


.,,-i >

:j ~

25 362

"' ;::, s: 0 "' s;'

""~

I

00

co "'

I

z >

r

4·220

6·293 10·028 (at 83·3 % Th)

0·627 5

3·822 4·11

r

0 0

5·085 3·866 11 ·24

>

cl

C:

.,,

1·419

3·92

-!

~917

I

1 2

5·66

~55 ~817 ~05 ~3 17

2(!) 4U) 2(e) 4(i)

P4 2 /mnm

a-phase (D8 b) Cu 2 Mg (Cl5) CsCl (B2) AsNi (B8 1) Cdl 2 (C6)

Ta 2

a

:

11 ·5

11-7

4

Cmcm

2

P6 3 mc

1

Pm3m

2

P4/mmm

4Rh 4Th 6Rh 2Th 6Th 6Th

4(c) 4(c) 6(c) 2(b) 6(c) 6(c)

815 126 544

410±4 I 140±4

I I

31 06 25 03

"'-< "'oi.a i::

"'

I

3·36

0·82

'

II

-.J

TABLE 6 (continued)

·-.I

-

In Phase

System

a

orthorhombic tetragonal cubic tetragonal cubic cubic cubic

Rh

cubic hexagonal cubic hexagonal hexagonal cubic

R

c/a, o: or fJ

b

I

NbRu

4·15

AuCul (Ll 0) CsCI (B2) M0Si 2 (Cllb) Cu 2 Mg (C15) CsCI (B2) AuCu 3 (Ll2) AuCu 3 (Ll 2) A3

4· [7

Density in g/cm 3

A

Structure type

4·11

I

I

R1

R Rh y R

Rh R

R

Point set

.

I

3·354 0·80 9·81

I

I

i

I

X

I

y

I

z

I I

~

I

1:

I 2

P4/mmm

l

Pm3m l4/mmm

2

3·21

8

7·417 3·358 3·992

14·27

3·795

0::

I I

C

!

' C

Fd3m

1 1

Pm3m Pm3m

J

Pm3m

2 2

C

!

I

I I

~

I

I

i

I

z

'

Ii

I

I

I

A=2 P63 /mmc

{J-W (A15) 4·7855 Ni 3 Sn 5·453 4·350 0·7977 (D010) A3 2-708 4·328 1·598 (at 19·2 at. °/4W) Cu 2Mg 7·459 (C l 5) CsCI (B2) 3·407 cubic cubic D8 1- 3 cubic AuCua(?) 3·927 (Ll 2) FeS 2 (C2) 5·6093 cubic 6·18 6·14 6-19 //=111 ·7° monoclinic AsFeS

Rh Rh

I

I

3-40

3·11 3·06

At oms

D.

Dm

C

I

Atomic positions Space group

M

I .>

I

"'' =

I

I

Pm3n P6 3/mmc

'""

II

z

0

A=2 P6 3 /mmc

;z_

8

Fd3m

J

Pm3m

1

Pm3m ( ?) Pa3 P2ifc

4 4

I ! 8(c)

8S

iI

375

" L·

~

_.

RuSb2 RuSbSe R uSbTe R u 2Sc RuSc RuSe2 RuSeTe Ru 2Si R uSi RuSi Ru 2Si 3 R u 2Srn

.-,...._,,_....._ -:~ - ~%

orthorhombic monoclinic monoclinic hexagonal cubic cubic cubic orthoi;hornbic \ cubic cubic tetragonal cubic

RuSn 2 Ru 3 Sn 7

cubic cubic

Ru 55Ta 45

tetragonal orthorhombic tetragonal cubic (at 30 at.

RuTa Ru 2 Ta 3 R uT a 2

I

·-

~

- ~ -

,_,I,

FeS2 (Cl 8) AsFeS

5·942

6· 650

3· 174

6-36

6·31

6·40

AsFeS

6·56

6·61

6·64

MgZn 2 (C14) CsCI (B2) FeS 2 (C2) C2 PbCl 2 (C23)

5·119 (at Sc 1.2Ru2) 3·203 5·933

CsCI (B2) FeSi (B20)

5·279 2·909 4·703 or 4·73 11·075

4·005

8·542

0

8·954

7·580

f.c. (NbRu) distorted CsCI Cs Cl-li ke % R u)

4· 351 4·199 3·388 (at 50 at. % Ru) 3·l l4J I 3·270 (at 43 at. % Ru) I 3·201 1

_~

...

==---

2

Pnnm

fJ=ll3·4°

4

P21 /C

fJ= 113·6°

4

P2i/c

, 8·9

1·669

7·418

Cu 2Mg (C15) FeS 2 (C2) Ge 7Ir 3 (D81) f.c.

0·808

9·351 4·271

~

~.::±:::= -

6·93

1

9·13 I

'-~

4

P6 3/ mmc!

1 4

Pm3m Pa3

4

Pnma

1 4

Pm3m P213

------

· Sea

-

•liifz

s-=

8 Se

8(c)

4Ru 4Ru 4 Si

4(c) 4(c) 4(c)

0650- ,-., 7119::::::'.:.

8319 ::: 3

I 9820 ::: 3 2964::!:13

1013 :::: ll

I

I I

I

4 4

Pa3 lm3m

I

3

i

Fd3m

-

=-=i

i

16 8

.~ u

3·395 0·795

I

II

~

~ >

·~z

z > -;

1·050

0,0,0 A=2 P4/mmm Ta Ta + Ru ½,½,½

.,,

-,,

'::'

"':;::

i:;.,:

-l

TABLE 6 (continued)

InA System

Phase

Structure type

c/a, rx or fl a

Ru 2Tb RuTe 2 Ru 2Th RuTh Ru 3Th, RuTi RuTm Ru 3U

hexagonal cubic cubic orthorhombic hexagonal cubic cubic cubic

RuZr

monolicnic tetragonal cubic (at 60 at. tetragonal hexagonal cubic

Ru 2 Zr (H .T .)

hexagonal

RuU 2 RuV Ru-V ~ Ru 2W 3 Ru 2Y

I

b

5·263 MgZn 2 (Cl4) FeS 2 (C2) 6·3903 7·649 Cu 2 Mg (Cl5) 3·878 11·29 CrB (B1) Fe 3 Th 7 (D l 0 2) CsCI (B2) CsCI (B2) AuCu 3 (Ll 2) distorted CsCI CsCI (B2) % V) a phase (D8b) MgZn 2 (C14) CsCl (?) (B2) MgZn 2 (C14)

Density in g/cm 3

8·869

I

1 ·685

6·302

0·632

11 ·82

3·070 3·373 3·988 3·343

Atoms \ Point set 4

P6 3 /mmc

4 8

Pa3 Fd3m

8 Te

Cmcm

4Ru 4Th

2

14·24 5·202 /J=96°9·6' 17·00 16·92

4

P2/m P2 1 /m

9·554 1 4.972 (at 40 at. % Ru) 5·256 8·792

0·520

y

I

z >

:;

38

~

>_

4(c) 4(c)

>

41 14

z t,:.

;::

C

> ~

>

z

Pm3m P4 2/mnm

1·673

3·253 1·655

8·509

8(c)

I

l;r.

1

I

X

;;::

Pm3m Pm3m Pm3m

1·062

I

P6 3 mc

1 1 1

2·945 3·128 (at 50 at. % V) 2·9971

5·141

Space group

D~

4·071

9·969

13· 106

Atomic positions

M Dm

C

I

,.,.

·-J

4

P6 3 /mmc

1

Pm3m ( ?) P6 3 /mmc

4

"'

"' 330°C) S,S bT l cub ic SaSCz orthorhombic

SSeSn

trigonal

S 2Si

ortho• rhombic tetragonal

SSiZr Ss•s~Sm 2 Ss-;9SID2

s.srn

y:S3SID2

S4SID3 SSm S4 Sm2Sr s . sn s ;s n2 SS n SSn SS r

4(c) 4S 4S 4(c) 4S 4(c) 4 Sb 4(c) 4 Sb 4(c) Also see 1, p . 210 different setting

880 055 I /4 441 131 3/4 189 214 1/4 326 030 I /4 036 149 3/4 for different paramc:ters

(at 348°C ?)

Ill

.> C

CdI 2 ( ?) (C6) C42 PbFCl (£01)

6·40 22·05

7·39

6·050

3·716 5·61

5·54

l ·63

9·57 8·055

3·544

2·273

cubic 7·97 tetragonal 7·89 cubic LaS 2 7·97 1·010 7·96 cu bic 8·448 cubic P 4Th 3 8·556 (D7 3) cubic NaCl (Bl) 5·967 cubic P 4 Th 3 8·595 (D7 3) trigonal Cdl 2 (C6) 3·646 5·880 1·613 ortho8·864 £24 rhombic 14·020 3·747 ortho11-20 GeS rhombic (B16) 4·34 3·99 cubic ZnS (B3) 5·445 cubic NaCl (Bl) 6-020 (thin film sample)

I

I

2 16

1

P3m 1

4

l bam

2

5·56 5·56 5·87

5-60 5·71 5·66 5·83

Fm3m Fddd

4 4 8 16/3 4

P4/nmm

16 S 32 S 16 Sc · 16 Sc

16(/) 32(h) 16(g) 16(g)

1231

3783

3697 4561 0408 3761

~ :;

> ..;

>

C

4 Si 8S 2S 2 Si 2 Zr

4(a) 8(j) 2(c) 2(a) 2(c)

z 119

-

~

208 622 ±2 272 ±1

;::

>

..;

~

> z ~

143d

z >

4·87

3·643

4 4

Fm3m 143d

1 4

t"

Sm + Sr

12(a)

P3m1 Pnam

2S

2(d)

4

Pnma

4S 4 Sn

4(c) 4(c)

4 4

F43m Fm3m


,j

'z "' ~ "'0

or 7·3 6

8· 61 7

( C2.3)

I11-086

C:

c

~

6·90

6·92

1·87

10·15

5·43

P bO.

6

-


5/24 3/8 11 /24 5/8 1/12 l 1/ 12

2,

S4Tl 3V NaCl (Bl)

S3 Sb 2 (D 58)

3(a) 3(a) 3(a) 3(a) 3(a) 3(a) randomly arranged

I

I

(R)

3(a)

I

r 3•295

Nbi .. ~

I [~CaSi C l 2]

3x l-80

5·99

1 92

3S 3S 3S 3S 3 Ta 3 Ta Ta + S

R 3m

6

6 x 1·792

35·85

3·3 35

~ 5/ 12 ~ 7/ 12 ~ 1/6

3(a) 3(a)

3S 3S 3 Ta

R3m

3

3 X l ·80

17·9

3·32

7·73

0·3617

4·010

1

7' 65

P6 3 / m

I

10·85

cubic

NaCl (Bl)

I 5·6821

monoclinic

Se 3 Zr

I 4·973\

(0 stabilized ?)

Dm

3·296

13·49

hexagonal

I orthorhombic

6·590

5·707

tetragoI nal I

fJ

I

hex . cell S 4TaT l3 STb

I

Atomic positions Space group

M

C

5·707

11 ·41

hexago- . nal

'"Ta1-.s

I

b

6·59 0

rhombohedral hex ..ce!l

(r

Density in g/cm 3

3·96

7·87

10·99

I

3-433'\ 8· 714! (3

I

1 9·56

97 _740 I 3·20 I

P nma

4

I

I

4

I

068 680 125

850 965 250 514 23 5

4(c) 4(c) 4(c)

4S 4S 4Th 6S 6S 1 Th 6 Th 4S 4S 4S 4 Th 4Th

6(h) 6(h)

2(a) 6(h) 4(c) 4(c) 4(c) 4(c)

375 0

4(c)



z ►

I

Fm3m

,a

::i:,

"'"' "'

71 7

153 053 871 230 978 300

~ i::i

878 561 206 31 4 51 9

"'~ "'

I P21/m or P2 1

I

I

I

I

--.l

TABLE 6 (continued)

·--

0:

In A c/a, rx or /3

Struct ure type

System

Phase

a S2 Ti S3Ti 2 (S4 TiL ,)

I

b

I

Density in g /cm 3

D ,.

C

Atomic posi tions

I

D,

Atoms

trigon al Cdl 2 (C6) 3-408 5·701 1 ·673 I l l · 4338 (at TiS 1.52) hexago pseudo 3·602 3·4245 nal cell (monoclinic or hexagonal superstructures, see text , p. 1224) monocli 3·440 10·14 /J=95 °40' 3·798 5·98 nic or hexago3·336 3·75 3·87 3·431 11 ·44 nal

S.1Ti 3

Space group

M

P3ml

1

I

2S

p~~f t

I

I

X

I

y

=

I

25

2(d)

~ ~

~ 2 1

P63 /mmc

2S 2S 3 Ti

2(a) 2(d ) 3(!)

2S 2S 2 Ti

2(b) 2(a) 2(b) 2(b)

•.

r ho&

H ar 1 i :> der (1 956)

rand oml y

C

"'-

z

~

ic::. C

P68mc

xTi

31/8/8]Wads!ey 3/4 0

( 1957)

~

;_

:;

> ,;r.

"' C


3·287

3·210

0·9765

3·272

6·440

1·968 rx=21 ·8°

9·04 26·5

3·417

4·05

1

P6m2

3

R3m

''

9

4·4.

3S 6S 3 Ti 6Ti

'

-.. ffio,;

I

I

or rbornbobedral hex . cell

I

---

.,L- ~

~ STi 6

hexagonal orthorhombic orthorhombic tetragonal rhombohedral hex.cell

S5 Tl 2 (black) S5Tl 2 (red) ST! STl 2

II

26·493

3-425

R3m

9

I

i

WC (Bh)

3·214

3·273

6·66 B37

7·7869

cubic

S 7T m 5

monoclinic cubic

STm

12·628

NaCl (Bl)

5·97

II

I

'

I

2765

I

1175

I:

> ,.., C

Pbcn

5·1 9

5·12

12

16·75

5· 15

5·19

4

P21 2121

7·61

7·59

8

14/mcm

6·52

6·8071

0·8742

~

'...,z 8S

8(h)

179

it,: ~

ct = 82° 18·21

-~ 8· 40

6·16 3·761 11·462

.;

1::; ;,_

7·51

S1Ys

I

I

I

1 Ti 0, 0, 0 . 1 0·25 Ti } +0 .63 S 1 / 3, 2 / 3, l /2 randomly

4·46

8·877 10·57

13·64 12· 22

3(b) 6(c) 3(a) 6(c)

I

i

14·50

2·967 23·45

0·983

3S 6S 3 Ti (6 - x)Ti

... ti

'' I

I

8·39

27

R3

9 Tl

9S

S4T l3V

~--

!

I

hexago nal

378

i

I

I

i

S0 • 5 T i

226

~~~----=-----

'

l

3(a) 6(c) 3(b) 6(c)

6·22

2

I43m

4

Fm3m

8S 6Tl 2V

6 X 9(b)

3

X

9(b)

S(c) 6(b) 2(a)

12 12 12 23 23 23 1/ 3 2 /3 0 l 75

20 20 20 . 09 09 09 l /3 0 2/3

0 l /3 2/3 152::: 2 485 819 243 576 910

e:.

~ > ':::

c;:

'z '> II'."

- "" ""'r.:c

8V 8V

12·362

C

4(b) 16(k) 2(a) 8(/z) 4(c) 4(c) 4(c)

B

12·11

4·680

4S 16 S 2U SU 4S 4S 4U

3 4

11·29 /J=91°31'

s.w

SY S 3 Yb 2

Atoms

Dx

6·65

hexagonal /J-MoS 2 3·154 (C7) rhombo1X-M0S 2 3·162 hedral tetragonal 7·71 monocli12·768 3·803 nic NaCl (Bl) 5-480 cubic 1X-Al 2 0 3 rhombo7·240 (D5 1 ) he-l

"'0 t, ► >-l

P6 3 /mmc

>

18·50 7·89 11 ·550

R3m

1·023

fJ=

4·18 4-10

4·24 4·09

4 2

0

""z >-l

""

C2/m

;:; :;::·

Fm3m R3c

>

104·75° 4

IX= 55 °

2

"'

0

>-l I"

46' 18·28 3·84

""

~

6·72

6·74

► ca

4

c:i

6·2610

1·6378

4 2

Fm3m F43m P6 3 mc

8·986

/J=97·15 °

2

P2 1 /m

18·3

/J=98·1 °

P2 1 /m or P'?:_1 P3ml

4

5·813

L-587

3·66

3·63

4

3·79

3·82

1

"'z 2S

2(b)

I

I

371

►· rr-

C

"' -


Density in g/cm 3

In A Phase

Structure type

System

c/a, a or

a S4.Z ra

cubic

I

b

I

fJ Dm

C

10·25

I

Atomic positions

M

I

D,

4·34

Atoms

7

(range S 3 Zr 2 to SZr) SZr

S2Zr 3 SbSc Sb 2Sea

Sb 2Se4T1 2 SbSn

Sb 2SnT e4

s~ Ta

cubic NaCl (Bl) or tetragonal y-CuTi (Ell) hexagonal WC (B1,)

5·250

cubic NaCl (Bl) 5·838 orthoS 3 Sb 2 11·68 rhombic (D5 8)

rhombohedral or cubic rhombohedral hex. cell

6·136 (at 5 '·4 at.

monocli-

me

NaCl (Bl)

s oTi s oTi 1 , 2 s JTi 1 , 7

5·81

12·00

6·988

C(

% Sb)

5·25

5·14 5·33 5·93

7-08

= 89·38°

2 1/3 4 4

1

I

Fd3m 32 S also given as P4 1 32 16 Zr or 16 Zr P4 332

. 10·2218 ' 3·6447 8·2915 {3 =120· 39° 10·53

4·25

rhombohedral

NaCrS 2 (F5 1)

8·177

tetragonal cubic

Cu 2Sb (C38) P 4Th 3 (D73) NaCl (Bl) Al 2Cu (C16) AsNi (B8 1)

4·353

cubic tetragonal hexagonal orthorhombic orthorhombic

3·5460 0·3460

10·58

12·25

a=31 °24' 7·26 9·172

5·817

0·873

4·1 15

6·264

1 ·560

16·34

32(e) 16(c) 16(d)

I

I X

I

y

I

8·346

P4/nmm

fJ

SbTi 3

I

SbTi 3

tetragonal

10·465

>

P6

I Zr

l(a) l(d)

4 4 4 4 4 2 4 2

Sb Sb Se Se Se Sb Se Tl

4(c) 4(c) 4(c) 4(c) 4(c) 2(a) 4(h) 2(c)

6 3 6 6

Sb Sn Te Te

6(c) 3(a) 6(c) 6(c)

4 4 4 8 2 8

Sb Sb Ta Sb Ta Ta

4(c)

10

4(c)

14 34 ~06

Pmna

Fm3m

3

R3m

4

2(c)

2(c)

69 19 [not accepted description of WC structure] 0305 3522 0534 8698 2132

3280 539 7 8732 5566 1935 50

C2

!4/m

2 4

Pm3n Fm3m

3

R3m

4(c) S(h) 2(a) 8(h)

~3 1

I

5 0 l /2 ~28



.::

>

"' !2 :z.

272

6-137 6·070

I

432

I

146 28 4

39 03 30

~38

..,

>

~

6(c)

9·55

4

9·32 7·53

4 4

Fm3m 14/mcm

2

P6 3/mmc

"'

Pbam

z

7·34

1 2

400

3(a) 6(c) l(b) 2(c) l(a) 2(c) 2(c) 16(c)

211 243

-,;

z

637 275 082



"'"" "' 0

,::

> ...

8 Sb

8(h)

158

r,:i

~

>

Pba2 Pmma Pmc2 1

0·5030

z :;::,

I

2

7·135

5·2639

C,

::; ..,,,

[P6m2?]

4

5·31

(J-W (Al5) 5·2186

cubic

::;

g

+random vacancies

2S 2Zr 2/3 S

Fm3m Pnma



> Q

I

,

·

256

(D73)

SeSn or SeSn

~ ..,

626

R 3m P63 /mmc

>

~ 0

"' Q'. ~

i

4 Se 2 Ta

4(/) 2(b)

4 Se 4 Se 2 Ta 2 Ta

4(!) 4(!) 2(a) 2(b)

'

I

i

11 8 ± I

-3

065::!:: I 184:::1

r.:::,

:>

...;

s 0

37·77 6 X 1·822 12·746 3·721

4

~ >

P6 3 /mm c

0

Se rb Se , . 5 Th Se ,Th

S4 T1 3 V

NaCl (Bl) cubic tetragona l S2-oTh orthorhombic

PbCI2 (C23)

7-88 5·741 5-629

10·764

7-610 4·420 11 ·569

Se 2Th1 (0 stab iiiz d ?)

hexagonal S12Th 7

s

orthorhombic

S3 Sb 2 (?) 11 ·57 (D58)

cubic

NaCl (Bl)

5·87 5

trigonal

Cdl 2 (C6)

3·535

,Th 2 (O stabiliz d ?) s fh (0 stabiliz d ?) s ,Ti

7·28

9·064 4·23

4·27

1·912

8·21 8·2

7·56

8·34 8·5 8·7

0·366

1·698

5·26

4 4 4

143m Fm3m P4 2 /n or P4 2/nm c Pnma

1

P6 3 /m

4

Pnma

10·20

4

Fm3m

5·26

1

P3mI

11·34

6·004

2

8 Se 2 Ta 6Tl

8(c) 2(a) 6(b)

"'

18

z

-;J

.~

.;:

ij

> ~

4 Se 4 Se 4Th 6 Se 6 Se 2 Th 6 Th

4(c) 4(c) 4(c) 6(h) 6(h) 2(a) 6(h)

88 97 25 51 24

07 68 125 38 00

15

72

>a'

~

""""'

,z

a::

"' 2 Se

2(d)

25 ...;i

TABLE 6 (continued) In Phase

System

c/a , Cl or fl a

Se3 Ti 2

hexagonal Cdl 2-AsNi 3·595

Se 8Ti 5

monoclinic

[H.T.) (L.T.)

Se4 Ti3 SeTi

Se0 . 95T i 5¾Ti3

SeTI sen%

Se4 Tl 3 V SeTm

Se 8 V5

Cr3 Se4 monoclinic hexagonal AsNi (B81 ) or hexagonal or rhombohedral hex. cell orthorhombic hexagonal AsNi (B8 1) tetragonal STI (B37) tetragonal

cubic cubic

A

Structure type

S4Tl 3V NaCl (Bl)

I

b

Density in g/cm3

1 ·667

5·994

Atomic positions

M Dm

C

I

0: 0:

5·29

I

Space group

Dx 5·48

Atoms

I p~~~t I

X

I

y

2/3 P6 3 /mmc

I!

..,

z

>

C

6·19 3·57

11 ·94 fl= 90°22' (at Se1 . 58 Te) 12·04 fl= 90°42' 6·23 8

3·566

11·99

7·149

1 ·748

5·52

1·679

5·4.

Cl=42•04°

10·04

6· 14

I

2 2

P2/m /2 /m

2

~



P63 /mm c

""s ,>c

5·59 >

7·202 6·222

27·4 1 3·494 6·462

3·574

6·322 7·01 12·71

8·04 8·54

5-80 I ·768

5·54

0·873

8·175 8·62

6·122 5·997

8·31

7· 74 5·640

36 4

4 Se 4Ti 2/3 P6 3/mmc 1·6Se+} 0·4 Ti , 2 Ti 8 14/mcm 8 Se 10 2 Se P4 /n 8 Se 4Tl 8 Tl 8 Tl 2 143m 4 Fm3m Pcmn

4(c) 4(c)

58 19

2(c)

randomly

2(a) 8(h) 0 ½z

Xx¾

>

' C

["'

'-"

179 randomly 340 148 140

""5:

0

O½z xyz xyz

z

22 01

148 148

i.

t

405 081

--SeaU %~

~u y-Se2 U Se 5 U3 Se3 U 2 Se4 U 3 Se Se 2V Se8 V 5

7·25 5·68 4·06 19·26 fl = 80°30 ni 10·73 8·89 tetrago aJi Cl-S 2U 6·59 (a t 62· wt % U) orthoP bC1 2 7·26 4· 26 8·98 9·08 (C23) rhomb C (at 62·80 wt % U) 0·548 hexago al y-S 2U 9·07 7·68 4·21 ortho7·73 8·49 12·43 9·04 SsUa r homb C (at 64·8 at. % U) orthoS3 Sb 2 9·42 11·33 110·9, 1 4·06 (D5 8 ) rhomb C P 4 Th 3 10·07 cubic 8·804 (D7 3 ) (at 69-6 wt %U) NaCl (Bl) 5·751 cubic Cdl 2 (C6) 3·353 trigonal 6·101 l ·82 (at VS I •96) monoc 11-86 6·96 11·74 fl= 91 °20' nic monocli

I I

7·21

4

8·66

10

9·23

4

9·15 9·04

3 4

9·40

4

Pbnm

10·02

4

143d

11 ·07

4 1

Fm3m P3m1

4

F2 /m

14/mcm Pnma

C,

0

>· ~ 0

'"'

8 Se 8 Se 16 Se 4V SY 8V holes

Se4 V 3 SeV Se4V 5 Se 2 W

monocl - Cr3 Se4 nic hexago al AsNi (B8 1) tetrago al Te 4Ti 5 ( ?) hexago al MoS 2 (C7)

or 11 ·86 or 5·964 6·17 3·689 9·294 3·280

8·25 ~=134°38'

2

C2/m

3-495 l 1 ·840 fl=91 ·25° 3·44 11 ·86 fl=91 °34'

2

12/m

6·96

5·986 3·417 12·950

1 ·623 0·368 3·948

2 2 9·0

9·40

2

P6 3 /mmc 14 /m P6 3 /mmc

8(i) 8(i) 16(j) 4(a) 8(h) 8(i) {4(b) 4(e)

~ 1/6 ~2/3 ~ 5/12

~ 1/4 ~ 1/4

~1 /2

~ 1/8 ~1 /8 ~ 1/8

..,z

;:::I

.~ ~

~ 1/4

~ "=I

~

IZ \

:z

TABLE 6 (cont inued) C

I Phase

i I

I

System

orthorhombic subceil cubic orthorhombic subcell cubic cubic hexa gonal cubic monoclinic

seY -Se 3 Yb 2 eYb s eZn s eZn s eZn s e3 Zr

A c/a, (1. or fJ

a

lI

.., -S~ Y 2

In

Structure type

I

b

I

D ensity in g/cm 3 Dm

C

Atomic positions M

I

D,

Atoms \ p~~~lt

s e2Zr 3 s i 1 .,Sm ( -I.T.) s i1.4Sm ( J,T.)

X

I

y

(NaCl) NaCl (Bl) S3 SC 2

5·75 5·703

(NaCl) NaCl (Bl) ZnS (B3) ZnS (B4) NaCl (Bl) S3Zr

5·66 5·879 5·656 3·996 6·239 5·42

4·81

7·05 6·626 3·76 19·0

3·76

9·5

4·85

7-10

1·658 /J=97-60

5-62

5·646

/J=97·6°

P2 1 /m or P21

1 2

P3m1

I trigonal CdI 2 (C6) hexagonal rhombo hedral subcell hex. subcell hexagonal WC (Bh) tetragonal (1.-Si 2Th (CJ orthoGdSi 1 . 1 rhombic

3·771 3·757 5·337

6·148 18·63

7·50~ 3·546 4·08

9·338 3·614 13·51

1·63 0

4·75 6·11

., ~

I

!

0

I

":l

► ~

i i

Fm3m F43m P6 3 mc Fm3m P2rfm or P2 1

2

z

I

4/3 4 Fm3m Fddd 4/3 4 4 2 4 4

I! I

Fddd

I

s e4 Zr3

I

I

s.sc2

or 5·42

s e2Zr s e3 Zr 2

Space group

z

~

:;::1 :,:'

> ~ ,;:,

2(e) 2(e) 2(e) 2(e) 2(d)

2 Se 2 Se 2 Se 2 Zr 2 Se

764 455 888 715

~75 ~75 ~75 ~ 25

553 175 169 343 25

> co ~ z ~ r

0

~

°"

~ ;z, ,-?

Cl=89 •39°

2i:'

4·1 05

1 ·245 1·019 3·31

5-60

4

R3m P6m2 141 /amd

5·73

4

lmma

5·98

4·035 13·46

I '

SiSr

CrB (B 1) ortboI rhombic hexagonal CrSi 2 (C40) tet ragonal Si 3 W 5 (D8,.) tetra gonal Cr 5 B3 (D8 1) hexagonal Mn 5 Si 3 (D8 8) tetragonal Al 2Cu (C16) hexagonal Ni 3 Sn (D0 19)

4·83

11 ·33

4·04 I

3·39

3·47

4

Cmcm

9·072

3 4

P6 2 22 14/mcm

4

14/mcm

C

S~Ta Si3 Tas Si3 Ta 5

Si3 Ta 5 (i mpure) SiTa 2 Si 0 . 12Ta a,2 8 { (Si 0 .a Ta 0 .,.)Ta 8 }

Si 2Tb Si2 _. Tb SiTe 2 SiTeZr ex-Si.Th

orthoCl-GdSi2 rhombic hexagonal AIB 2 (C32) (at ~ 60 at.% Si) CdI 2 (C6) trigonal tetragonal PbFCI (£01 ) tetragonal

C,

4·7821 9·88

6·5695 1·3738 5·06 0·512

6·516

11 ·873 1·822

7·474

5·226 0·699

6·157

5·039 0·818

6·105 4·045

4·919 3·96

1·612

12-4 12'7

13-38

13·54 12·8 6

2 P6 3 /mcm 4

14 /mcm

4(c) 4(c) 6(j) 8(h) 16(k) 8(h) 16(/) 6(g) 6(g) 8(h)

066 360 ~ 167 ~17 ~074 375 166 61 25 167

~223 15

~ ►

;;j 0

2 P63/ mmc 0·72Si+} 2(a) randomly 0·28 Ta 6 Ta 6(h) 826

0

► >-l

► 0

4·146 1·078

4·28 3·692

6·71 1·567 9·499 2·573 14·375 3·476

z "''"-;,

1 P6 /mmm 4·39

7-63

l 2

4

P3ml P4 /nmm 14 1 /amd

2 Te 2 Si 2 Te 2 Zr 8 Si

2(d) 2(a) 2(c) 2(c) 8(e)

265 636 225 4165

(H.T.)

/J-Si 2Th (L.T.) SinTh 6 Si 5Th 3 SiTh Si 2Th 3

AIB 2 (C32) hexagonal AIB 2 (C32) hexagonal defect AIB 2 (C3 2) FeB (B27) orthorhombic tetragonal Si 2 U 3

hexagonal

4·136

4·126 0·9976

4·013 3·987

4·258 1 ·061 4·204 1 ·054

7-88 7·829

4·148

5·896 4·149

"'

~

;,;

3·847

4·135

11·6 13-06

4 Si 4 Sr 6 Si 8 Si 16 Ta 8 Si 16 Ta 6 Si 6Ta 8 Ta

0·530

2 P4/mbm

~



"'

z

s ►

P6/mmm 1/3 P6/mmm Pnma

"'"d "'"'

1 P6/mmm

4

I >


~

440 146 61 25

0

-


,;,:

4·7085 3·81 3

c,:

I

5·276 6· 328 (atx = 0)

I

4·37 I 4·48 11·59 (at 20 kb pressure) 4·7181

8·8 1

1 2 4

Pm3 m Pm3n Fm3 m

7·21

4

Pnma

9· 30

1

Pm3m

2

[P6 3 /mm c

,A'J'

!N"! l(M r IA

PTTA S IN A L Y SYS'I'. M '

-fl ,,.., ,,..,

,,

---

11

0 M

-------JJ. /\PT

"'

V)

C

~ _ _ _ _ _ _ _ _ __ _ __ _ _ _ __ - - - - - - - - -- -IM

._g ·;;;

'-'

0 0.

"'...

0

H

(.)

·a

"' (.)

0




I

5·99 8

ll ·207

1· 868

4

14 /mcm

1653±8 37.;

1388 ±4

a lo

.:,..

A

TABLE 7 (continued)

' P hase

I

System

c/a,

a or a

I

b

N:

cubic

/3

tetragonal orthorhombic cubic(?) orthorhombic

CaB 6 (D21 ) Si 2U 3 (D5a) CrB (B1)

o rth o r hom bic

Space group Atoms

Dx

N i 6Si 2B

N i21Sn 2B 6

Ni 5TaB 2 N i 19-5Zn3.5B6

OsB 1.0 OsB 2 OsB 2 Os 2B 5 PB (H .T .) PB (L.T.)

cubic

cubic, f.c. cubic cubic orthorhombic

p~~~t

>

C:i

I

X

I

y

Pm3m

2

P4/mbm

3·165

4

Cmcm

4Nb 4B

4(c) 4(c)

146 444

3·137

2

lmmm

4Nb 4B 4B

4(g) 4(g) 4(h)

180 376 444

I

z

>



0

>

-,!

6·192

0·531

3·289

► .,;

3·292

8'713

3·305 14·08

Ta 3 B 4 (D7b)

0

0

s

1·050

1

P6/mmm

11 ·6 8

l ·832

4

14/mcm

5·265

2

0·6944

2· 925

F 2P (C22)

6·105

Cr 23 C 6 (D8 4)

10·598

(Cr 23 C 6 ?) Cr2aC6 (D8 4) RuB 2



hexagoAIB 2 nal (C32) hexago- - W 2B 5 nal (DS,,) hexagoZnS (B4) nal cubic ZnS (B3)

~ z

P6 3 /mcm

-~

4·1020

0·568

4

P4/mbm

1

Pm3m

4

Pbnm

6

"'"' ,►

4·86 5·211

6·619 4·245

0·851

4·882

4

14 /mcm

4

Pnma

7·396

7·4

/J=

2·996 2·895

a 4Ni SNi 4B 8 Ni

4(c) S(d) 4(c)

4Ni 4Ni 4Ni 4Ni 4B 4B 4B 8 Ni 8Ni SB 4B 4Ni 4B 1B 2 Si 3 Ni 3 Ni 4Ni 32 Ni 48 Ni 8 Sn 24B

4(c) 4(c) 4(c) 4(c) 4(c) 4(c) 4(c) 8(/) 8(/) 8(/) 4(e) 4(c) 4(c) l(b) 2(c) 3(!) 3(g)

S(h)

864 347 433 167

028 178 llo

061

a ra

-

6·584

7-818

8·02

7·57

7·43

4

C2/c

103 °18'

CrB (B,)

"'

~7:J

?'

I 11·9731 2·985 (a t B-rich boundary)

6-430

>

;:o

"'8 ~

4·990

Al2CU (C16)

3·266



orthohombic hexagonal

I

4·210

or monoclinic N iB

-l

1

--- ~-

Ni.tB,

I

2·11

hexagoAlB 2 . 3·1lo (C32) nal (at 66 at. % B) tetrago- \ Cr5Bs 6·385 (D8 1) nal (at 62 at.% Nb, 10 at. % B) hexago- \ Mn5Si 3 17·579 nal (D8 8) (at 54·5 at.% Nb, 12·5 at. % B) 7·219 tetragoThB 4 (Dl,) nal cubic CaB 6 4·1260 (D2 1 ) orthoFe 3 C 4·389 (D0 11) rhombic tetragonal

Dm

)

Atomic positions

M

fJ

C

I

I

~-

Density in g/cm 3

In A Structure typ e

,:..

0·4742

7·13

4

Cmcm

7·45

1

P62m

(at 69·5 at. % Ni, 6·75 at. % Sn)

4

10·565 10·555 (at 63·0 a t. % Ni, 12·0 a t. % Zn)

-

7·04 4·6832 2·8717 4·0761

12·83

Fm3m

1486 449 8 1997 3763 47 3 037 265 0435 2029 23,

250 568 091 08 8 146 440

9903 7511 3780 167 5 43 0 481 673 4839 2877 44 3

r >

~

~ 0

;;► .,,

0

to 0

;:,

6

247 608

-"'()"'

380 170

"'6

4(a) 32(!) 48('1) S(c) 24(e)

;; '

"" C

>

;:,

"' Y'

~275

>,


z

0

4·534

2·97

"'"'

-.... V,

~

TABLE 7 (continued) In Phase

Structure type

System

A c/a, r;. or f3

I

a

b

I

I

Density in g /cm 3

M

Dm

C

I

)

Ato mic positions Space group Atoms

Dx

I p~~~t I

X

I

y

I I

z

"'0

I

"B4 C"

rbombohedrai hex. cell orthorhombic

P, B13 Pd 3 B

Pd, B 2

5·984 5·463

Fe 3 C (D0 11 ) Mn 5 C 2

n1onoc1i-

(/.=

5·231 11·850 7·567 4·852

12·786 4·955 (at Pd .2 8B 2)

nic

5·472

69·50° 1 ·980

1

hexa gonal cubic

PrB,(x-

I

y

I

z

>

=

C



'

u.

Pbam

3-440

C

1":':!f

"B 4 C''

6·319

"B 4 C"

12·713

6·330 2·829

2·012

2-44

2·010 l ·684

12·736 4·765

14·3920 18·2673 9·885 22

1

2·47 2-45

2·64

1

2·43

2·39

40

9

R3m

6 Si 18(Si,B) 18(B)

6(c) 18(h) 18(h)

1075 15 80

40 31 8779 025!

8925 8420

>

Pnnm

) C "'C: C'

!::.

3·276

8·669

3·284 13·98 3·088

(at 89·2 % T a, 10· 5 % B) I 7-0691 (DlJ ,:-1020 CaB. (DZJ 7-504 UBu

F e 3Tb 7 (D l0 2 ) R eB 2

4(c) 16(/) 4(a) 8(h)

4

2·89 1

9 · 161

3·157

14·0

14·29

4

Cmcm

3·129

13·50

13-60

2

Immm

3·241

1 ·050

4·008

0·567

11-70

12·60

4Ta 4B 4Ta 4B 4B

4(c) 4(c) 4(g)

4(g) 4(h)

146 440 180 375 444

C

C:

c ""

1

P6/mmm

~

4

P4 /mbm

c

1

Pm3m

g,

4

Fm3m

.36-

4

Cmcm

"'>

~

0

~

'Z

7· 246

rhombic

Tc.J3.i

16 V 4 (Si,B) 8 (Si,B)

1 14/mcml 4 V

5·7795

rnE,

.{D21) R eaB

1·858

-- ---

7·417

4·777

0·644

2

P6 3 mc

2·892

7·453

2·578

2

P6 3/mmc l

cc:,

'Z C

E1

I."::.

'i!:.

.,. "::

TABLE 7 (continued)

In A Phase

Structure type

System

c/a, rx or

a ThB 4

tetragonal

fhBs

cubic

ThB 2C

hexagonal monoclinic

ThWB 4 Ti2B TiB

DI,

CaB 6 (D21) C32-like

tetragonal ( ?) cubic(?)

fm.B4 TmB 6 fmB12

cubic

TiB 2 Ii!B 5 ~ Ti 0 • 5WB

UB~

j hexagonal

UB,

tetragonal

UBC

orthorhombic (at 35 at.% tetragonal orthorhombic ortho r hombic hexago nal tetragonal orthorhombic tetrago nal , hexagonal

V3B2 VB

V3 B~ ~

w~ WB (H. T.) o-WB (L.T.) c-W 2 B 5 WB4 WB 12

YBx (x~ 3)

3·810

6·10 (atl8 ·6% B) NaCl (?) 4·21 0 (Bl) FeB (B27) 6· 12 3·06

4·53

AlB 2 (C32) W2Bs (D8h) like CrB

3·228

8·45

4

P4/mbm

Pm3m

13·98 8-462

7·05 4·120

(at C-rich boundary)

.8=104·1 °

5·6

2

0·742

4

Fm3m

4·5 6

4

Pnma

1

P6/mmm

4·3 8

4 ·67

2

P63 /mmc

1

Pm3m

4

Fm3m

3·9893

1 ·2748

3·979

0·562

9·32

9·3 8

1

P6 /mmm

4

P4/mbm

4 4 2

P4 /mbm

2·966

4

Cmcm

3·062 13·21

2·981

2

Immm

AIB, ( C32)

2·991

3·050

1 ·01 97

1

P6/mm m

Al.Cu ( C:16) CrB (B1)

5·564

4·740

0·852

4

14/mcm

T a 3B 4

z

4Th 4B 4B 8B 6B

4(g) 4(e) 4(h) 8(j) 6(/)

Th

0,0,0

313±2 212 087 170 207

042

""

~

4Ti 4B

4(c) 4(c)

177 029

123 603

,.,~

;:,

0 ?i

0·566

7·4773

5·65 3·346 3·026 8·043

I

P2 P 2/m or Pm

5·26

7-476

B, 35 at. 0 0 C) Si 2 U 3 5·728 (DS.) CrB (B1) 3·058

y

X

3·071 3·99

3·598 11 ·97

I

4

4·56

2·98 3·1 80

0·985

1·064

Point set

0

0·567

5·09

3·028

I

I

Fm3m or subgroup Cmcm

0·5283

4U 4B 4B SB 48 B

4(g) 4(e) 4(h) 8(j) 48(i)

4U 4B 4C

4(c) 4(c) 4(c)

310 21 4 086 174 166

-l

~

v

>

132 465 328

J ..,, ::I

~ > ;o ;'!

·16·72

SW

8(h)

...V'.1

170

z

-


042

(D7b)

I MoB (B,)

tetragonal hexagonal tetragonal

3·868

6·14

D21

At oms

Dx

1

AlB 2 13·1293 (C32) (a tB- rich bo undary ThB 4 7·075 (DJ ,)

cubic

I

4· 1132

3-75

CaB 6 (D21) UB12 (D2,)

Space group

M Dm

0

Atomic positions

fJ

C

4·113

1

UBu

I

7·256

12·25

orthorhombic hexagonal hexagonal orthorhombic hexagonal cubic

TiB1,1

b

I

L~

Density in g/cm 3

3·78

__

,

(

3·060

4

Cmcm

16·93

15·3

16·0

8

I4ifamd

13 ·87

11 ·0

13· 1

2

P63 /mmc

4·50

0·71

3· 174

0·7947

3·55

0·93 9

8· 3

8·40

4

,,

0

SW SB 4W 4B

S(e) S(e) 4(/) 4(/)

196 352 139 972

?; -! ;:,

arz>

0

a

~

f:s

i

~ TABLE -7 (continued) Density in g/cm 3

In A Phase

System

Structure type

c/a, a or /3 a

I

b

Atomic posi tions M

D ,.

C

I

I

D,

Space group

I

At oms

I

Point set

I

X

I

YB ,

, tetragonl)I ' cubic

YB1!

\ cubic

YB 4

YbB,

YbB 6

tetragonal tetragonal cubic

YbB12

cubic

(x-< 4)

YbB4

ZrB (H.T.) ZrB 2

cubic hexagonal cubic

ZrB12

rhombo hedral

Al4Ca

ThB 4 (Dl,) CaB 6 (D21) UB12 (D21)

ThB 4 (Dl,) CaB 6 (D2 1) UB 12

A1 6 C 3 N 2

4·012

0·5662

4·128

3·64

3·77

3·56

0·944

7·01

4·00

0·571

4·1468

3·5291

l · 144

T -A1Co3 C 0 • 09

H-A1Cr 2 C A1Fe3C

1

Pm3m

4

Fm3m

7

I

I I

6B

6(!)

~207

I'

'

i

I

4

P4 /mbm

1

Pm3m

4

Fm3m

4 I

Fm3m P6/mmm

;,:;

5·7

6·7

3·7

3·63

4

Fm3m

2·99

I

R3m

3· 039

3 2

P6 3 mc

3·04

3·076

3

R3m

3·046

3·102

2

P6 3 mc

4

Cmc2 1

6B

6(!)

48 B

48(i)

,::,

~207

,:;

;

I C'l

= 28°28' 1 2· 93

24·99 21 ·67

3·332 3·281

I 2·99

2Al 2 Al 2C

2(c) 2(c) 2(c)

167 293±2 128±2 217±4

I

3·248

I

40·03

I

i

AlsCaN4

P4 /mbm

I

I

I

NaCl (Bl) 4·65 AIB 2 3·1687 (C32) 7-408 U B12 (D21) (at 44% Zr) D7 1 8·55

4

I

I y

II

7·469

i

AI,CaN3

3·633

I

(D21)

hex. cell hexagonal rhombobedral hex. cell

Al 5C 3N

7·086

I

hexagona1 eqwvalent orthorhombic cell

rhombohedral hex. cell cubic

A1 Mn 3 C

cubic

Aii Mo 3 C

cubic

Al 2Nb 3 C H-A1Nb 2C

cubic hexagonal

31 ·70

3·226

5·589 31 ·70

3-2ll (subcell ?)

hexa gonal cubic

3·226

55 ·08

3·05

3·133

3

5·23

2

-3

all atoms in 4(a) 4Al 4Al 4AI 4 Al 4Al 4 Al 4Al 4N 4N 4N 4C 4C 4C

334±1 000 ± 1 333 ± 1 001 ±1 333 ± 1 001 ±1 333 ±1 333±2 005 ±2 333±2 000±2 333±2 001 ± 2

0299 ±2 1085 ± 2 1844 ± 2 2615 ±2 3166±2 3915 ± 2 4659± 2 0939±4 1686 ±4 4069 ±4 0009 ±6 2448 ±6 3267 ±6

12·82

4-483

CaTiO 3 (£21)

3·758 (at 15·7 at.% C)

CaTiO 3 (£2 1) like /3-Mn

3·869

6·866 (at Al-poor boundary)

Al2Mo 3C H-AlCr 2C

7·065 3·103

I

I

13·83

4·464

P6 3 /mm c Pm3m

I

Pm3m

7·24

4

P4 132

6·49

4 2

P4132 P6 3 /mmc

2AI 4 Cr (2- x)C 1 Al lC 3 Fe 8 Al 12 Mo 4C 4C

2(d)

~

~

>

E

4(/)

086

2(a)

0

,;i;i

z

l(a) l(b) 3(c) 8(c) 12(d) 4(a) 4(a)

>

-3

.,,,s .... ~

R3m

3-70 2·86 0

> ~

:~ ;:,

6

f

061 206

~

,.,,

I

.i,.

L TABLE 7 (continued)

In Phase

System

A

Structure type

c/a, ex or f3 b

a

I A1Ni3 Cz (x= 0 29) AIPt 3 Cz cx-Al 4SiC 4 Al2 Ta 3 C A1Ta 2 C A!Ti2 C AlT i3C AlV.C AlY;c Ba C 2 Be,C CaC, I Ca C 2 II Ca C 2 III

cubic

(subcell ?)

3·62

cubic

CaTiO 3 (?) (£21)

3·893

hexago nal ( ?) cubic hexagonal hexagonal cubic

Ce 2C 3 CeC 2

Co 3GaCx Co 3GeC 0 • 25

tetra gonal orthorhombic orthorhombic cubic cubic

Co 3InC0 . 75

cubic

Co3 MgC,, Co!Mn!C

cubic tetrago nal

Co 2 Mo 4 C

cubic

CoNb,(C,N, O),

cubic

Co 3SnC 0 .,

cubic

Co 3C Co 2 C

Space group

Dx

I 1

1·65

Al 2 Mo 3 C H-A1Cr 2 C

7·039 3·07 5

13 ·8:i

4·498

4 2

P4 1 32 P6 3 /mmc

H-A1Cr 2C

3·04

13-60

4-47

2

P6 3/mmc

11 ·59

4·22 13 · 14

4·51

7·07

1 ·603

6· 37

1-64

Pu 2C 3 (D5,) CaC 2 (Clla) Fe 3C (D0 11) Co 2N f.c. CaTiO 3 (£2 1 ) CaTiO 3 (£21 ) (subcell ?)

5-880 3·09g

1

Pm3m

2 1

P6 3 /mmc Pm3m

3·75

3-90

2

14/mmm

~2 ·3 2·1

2·44

4 2

Fin3m 14 /mmm

ex= 93·4° /3=92·5 ° y=89·9°

2·17

4C

~0

4(a) ;::, ~

0

~

4C

4(e)

39

!::"

z

q 4C

-

......~

8

Pl

4Ca 4Ca 4C 4C 4C 4C

4(e)

4067 ±7

~

!!!!ii

--

all atoms in 4(i) 375 875 066 187 660 590

----------......,._

--• ---.::,•

141 109 124 126 090 160

717 783 317 192 192 317

lo

---------

\ 22·87 (at 477°C) 14·41

4· 653

6·969

8

5·586

2

16 Ce 24C 14/mmm 4C

4·483

4

Pnma

4·4465 4·3707 2·8969

2

Pnnm

8·4476 3·878

6·488

6·731

1 ·673

5·23

P6 8 /mmc

;,; c::1

143d

3·647 3·61

1

Pm3m

3·86

1

Pm3m

77 2 carbide 11-25 (£9 3) 77 carbide 11 ·64 (£93) CaTiO 3 3·78 (£21)

~ ~

i:::,

2

3-82 3·79

I

3

6·10

5·033

I

z

""

3·94

______. .,_,._.

(C2?) H -A!Cr 2 C

y

X

22·31

::;;

23 ·40

I P~~~t I

Pm3 m

10·80

3·028

8

Atoms

7-15

---

CaC. IV CdTi2C

Atomic p ositions

M D'"

I

CaTiO 3 4•15G (£2 1) hexagon al H-A!Cr 2C 2·913 cubic CaTiO 3 4·878 (£2 1) tetragoCaC 2 4·41 nal (Clla) cubic CaF 2 (Cl) 4·34 tetragoClla 3-88 nal tetragonal 23·40 (containing~ 2 % N) triclinic 8·42 11 ·84

or tetrago nal (?) cubic hexagonal cubic

C

~

Density in g/cm 3

4Co 2C

16(c) 24(d) 4(e)

0505 2995

4(g) 2(a)

347

4011 ±3

258

~

v

d

fo >

G 3·79

1-00

~

7·32

1

P4/mmm

16

Fd3m

32

Fd3m

1

Pm3m

1 Mn 1 Mn 2 Co 1C

l(a) 1(c) 2(e) l(d)

s

"'

t

.:,.

TABLE 7 (continued) Density in g/cm 3

In A Phase

System

Structure type

c/a, rx or /3 a

\

Co 3 W3C

cubic

Co!W,C

cubic

Co 3 W 9 C 4

hexagonal

Co 3 ZnC~i·o cubic

b

I

Atomic positions M

Space group

D.. / D.

C

I

Atoms

I

p~~~t

'-l ►

I

y

X

§

z

r

I

I

► ..; en

0

'f/1 carbide 11 ·0l

(£93) ½ carbide 11 ·210 (£93) 7·826

CaTiO 3 (£2 1) D8 4

10·659

D5 10

14·01 5·53

7·826

1·000

14·8

15·05

3·73

16

Fd3m

16

Fd3m

2

1

Cr2aC6

cubic

Cr 7 C 3 Cr 3 C 2

trigonal orthorhombic

;i-Cr-Fe-W-C

cubic /3-Mn 6·374 (at 26·4 wt% Fe, 48 ·4 % Cr, 24·4 % W, 0·8 % C) hexagoH-A1Cr 2C 2·886 12·616 4·37 0 nal

Cr 2 GaC

tv

4·532 2·827 11·48

0·324

4

Fm3m

6·9

8 4

P31c Pnma

2



P6 3/mmc 3 Co + 3W 3 Co+ 3W 12 W 2C 6C Pm3m

6·97

6·78

0

► ...;

P6afmmc

6(h)

890

6(h)

555

12(k) 2(c) 6(g)

205

.,,0 "'0 ~

0 m

,"' 075

()

I m

JI'

48(h) 32(!) 24(e)

48 Cr 32 Cr 24 C

~

165 385 275

0

8 m

JI'

4(c) 4(c) 4(c) 4(c) 4(c)

4 Cr 4 Cr 4 Cr 4C 4C 4 Cr 4 Ga (2-x)C

z

406 770 930 204 952

030 175 850 092 228

~m

"' z►

0 0

4(!) 4(d) 2(a)

~

086

g.i

I

I

~.............,,

CrtGeC

I, hexagonal

H-A!Cr 2C

Cr 3 Nb3 C

\ cubic

'f/i carbide 11 ·49

Cr.-.,Si3 .yc , +v hexa go-

CrU C 2

CsCi 6 D y3 C

nal orthorhombic

hexagonal cubic

D y2C3

cubic

DyCt

tetragonal cubic

Er3 C ErCt EuCt iFe-Cmartensite Fe~C FeaC (meta stable)

tetragonal tetragonal tetra gonal cubic orthorhom bic

(£93) Mn 6 Si 3 (D8 8)

2·95,

0

0

D0n

4·091

6·86 :

6·99 3

4·726

5·433

3·232 10·637

4·95 defect NaCl (Bl) Pu 2 C 3 (D5,) CaC 2 (Cll defect NaCl (Bl) CaC. (Cli G) c a c. (Ci°l L' 2

12·08

18·55

0·676 11·2

3·747

P6 3 /mmc

16

Fd3m

2

P6 3 /m cm

4

Pnma

A=

086

~

4 Cr 4U 4C 4C

4(c) 4(c) 4(c) 4(c)

350 083 ~50 72

860 143 04 ~0

1 ·683

7· 38

7·450

2

A=

3·620

6·094

1 ·683

4·045

6·645

l ·643

7·70

0

0

~

.,, to

Fm3m

0

8m

JI' ()

I

14/mmm

)

5·034

~ :=i m

0

4 D y+ 1· 3 C 143d 8

8·198 (at Dy-rich boundary) 6·176

4(f) 2(d) 2(a)

4 Cr 2 Ge (2- x ) C

4

5·079

3·669

2

..,. '

m

Fm3tn

JI'

4Er + 1·3 C 7·954 2 14/mmm

~

>

I

.i:,.

.;,.

TABLE 7 (continued) In A Phase

System

Structure type

c/a, C( or f3 a

~ GaM0 2 C hexagonal Ga 3Nb 5Cx hexagonal hexagoGaNb 2C nal cubic f.c. GaNi 3C, tetragoGaPt 3C, nal hexagoGa 3Ta 5 Cx nal hexagoGaTa 2 C nal hexagoGaTi 2C nal hexago~ GaV 2C nal cubic Gd 3C Gd 2C 3

cubic

H-A!Cr 2C . 3·017

Ge 3 H f5 Cx

tetragonal hexagonal

Ge l1n3½•0 cubic Ge ~i3C.•1s

cubic

Gea'Ta~C,,

Hf, ?:n 3C

hexago nal hexagona l hexagonal cubic hexagonal hexagonal hexagonal hexagonal cubic

H

cubic

Ge -i!C

G

l!C

Hf '0•97 Hf, :nc Hf, :'bC Hf, , nC Hf,

nc C

I

C

13· 18

7·72 5·27 Mn 5Si 3 (D8 8) (5-10 at. % C) H -AICr2C 3·131 13 ·565 L6 0

3·597 3·92

7·71

4· 332

H Ca H I

✓2

b 2C iaCo-5

In :laCx In tac.

rhombohedral cubic tetragonal hexa_gonal cubic cubicf.c. cubic

I p~~~t I

X

II

y

I

z

I I

P6 3 /mmc

2

3-88

0

>

,-'j

>

P6 3 /mcm

2

P 63 /mmc

0·99 2

0·6892

P6 3 /mcm

r::

E

t,:

4·371

13-01

2

P6 3 /mmc

!:-

5·45

2

P6 3 /mm c

t

2

P6 3 /mm c

A=

Fm3m

H-AICr 2C

2·93 8

12·84

defect NaCl (Bl) Pu 2C 3

5·126

4·370

8·3407 (at C-ricb boundary) 6·275 3·71 8

l ·688

5·537

0·702

6·93

....

~

~ ti

j

4Gd + 1-3C 8·024 8

143d

6·939

2

!4/mmm

2

P6 3 /mcm

c ~

~ ~ "-'

CaTi0 3 3·87 (E21) CaTi 0 3 3·58 (£21) Mn 5 Si3 7·586 5·217 (D8,) (5-10 at . % C) H -AICr 2C 3·079 12·93 3·001

12·25

0·6877

1

Pm3m

1

Pm3 m

2

P6 3 /mcm

I

4· 199

5·64

2

P6 3 /mmc

4Ti

4(!)

086

4·083

5·76

2

P 63 /mm c

4V

4(!)

086

Fm3m P6 3/mm c

0 ~

NaCl (Bl) 4·6395 H-A1Cr 2C 3·307

14·73

4·455

11-51

4 2

H-A1Cr 2C

3·35 8

14-47

4·30 8

13 ·54

2

P6 3 /mmc

H -A1Cr2C

3·312

14·39

4·344

2

P6 3 /mmc

H -AICr2C

3·322

14·63

4·40,.

2

P6 3 /mmc

ll ·957

12

Fd3m

5·061

A=4 Ho + 1·3 C

Fm3m

17 carbide

(£93) defect NaCl

13·62

10·1458

Pu 2C 3 (D5 c) CaC 2 (Cll.) H-AICr 2C

8·176

CaTi0 3 (£21) CaTi0 3 (£21)

4 Hf

4(/)

086 r::.

fl'-

i:

(Bl)

H C

Atoms 2

0·682

13·305 4·342

H-A1Cr 2C

I

Dx

4·369

3·064

7·883

M D .,

H-AlCr 2C

CaC 2 I (Cll 0 ) Mn 5Si 3 (D8 8)

Atomic positions Space group

-

Mn 5 Si 3 5·28 0 7·661 (D8 8) (5- 10 at. % C) H-A!Cr 2 C 3·104 13·57

(D5 ,)

GdC 2

I

b

Density in g/cm 3

C

~

~~

::.·----'--=-=-

-MgNi3 C

=

r.:.

(D 5,)

LaC 2 (L.T.) Lac . (H.T.) Li2 C 2

Space group

Dx

3·34,

8·817

Pu 2 C 3

I

4·49 0

14·06

H-A1Cr 2C 3·132

D ensi ty in g/cm 3

I CaTiO

3

3·73 (at 23 a t. % Mg, 9 at. % C) 3·904

? "S I

I

Pm3m

I

(E21)

.tiJ.C ~c

,tn 3 C

tetragonal

I cubic

ortborhomb ic also 1 hexagona l triclinic •1nsC3 11so see below) lfn 5 C 2

Mn 8 C3

J

Mn,C 3 lfn 7 C 3

lfn 3 Mo 3 C

tn,.,.sn•.••c '1o 3W 3 C

, Mn-W-C ;,in 3 ZnC ,1n 3 ZnC L.T.) v!o 2 C

I Cr2sCG (D8 4 ) Fe3 C (D0 11)

monoclinic rhombo hedral hex. cell hexagonal Cr 7C 3 orthorhombic 171 carbide cub ic (£93) CaTiO3 cubic (£21 ) 171 carbide cubic (£93) hexagonal Co 3W 9 C4 CaTiO 3 cubic (£ 21 ) ordered tetragonal f. c. orthorhombi c hex. subeel!

10·57

7·66 10·585 6·772

5·080 5·48 11 ·06

1·38

7·35

7·35 7·487

4·5 30 6·71

-

1·224

6· 8

-

-

6·73

5·086 4·573 11 ·66

12 4

Fm3m

4

Pnma

3

4

t=

C2/c

~

:;co ..o

4·55 4· 54 6·959 11 ·979

13·90 13 ·90 4·546

0·327 0·327

6·84

7·10

11 ·l 3

7 8 16

3·967 11 ·13

7·756 3·9249

7·75 6

1·000

3·921

3·899

0·9947

(at - 196°C)



a ~

P31c Pnma

t,

Fd3m

1

Pm3m

16

Fd3m

2 1

P6 3/ mmc Pm3m

z



;;::,

s.,,

"' z>

1

Ol

6·004

4·724

3·0028 4·7288 l ·575 (at 93· 82 % Mo, 5·66 % C)

I

I

4

5·1 99

II

9·167

Pbcn

8 Mo 4C

S(d) 4(c)

1/4

1/8 3/8

1/ 12

~ 0

"'"" .;..

I

.;,. .;,.

TABLE 7 (continued) In Phase

System

Structure type

a a -Mo 3C 2 ("cr.-MoC" ) (H.T .) T/ Mo 3 C 2

("17-MoC")

y' MoC (metastable) y-MoC Mo 4 Ni 2 C Mo 3 Ni 3 C Mo 5 _.zSi 3 _yCx +y

MoUC 2

NaC 64 Nb 2C

cubic

I

b

A c/a, a or /3

I I

Density in g/cm 3

Atomic positions M

D .,

C

Atoms

D,

NaCl (Bl) 4·2810

I Point I set

X

I

y

z

I

>.., '~

Fm3m

'>

~

hexagonal

3·013

hexagonal

AsTi (Bi)

2·932

hexagonal cubic

WC (Bh)

2·898

17;carbide 11·25 (£9 3) cubic 17 1 carbide 11 ·05 (£9 3) hexagoMn 5 Si 3 7-28 nal (D8 8) (at Mo-rich boundary) ortho5·625 rhombic hexagonal hexagoe-Fe 2N nal pseudo cell L 3'

9·82

14·64

10·97 2·809

2

P6 3 /mmc origin at centre (3ml) 2(b) 2Mo 4Mo 4(!) C 2(a) 4(f) C P6 3 /mmc 4Mo 4(!)

083 667 125

4

0· 969

l

P6m2

::"

16

Fd3m

-


3: C

~ ~

z

...

X

'½ -•

cubic

~c ~c,,

hexa.gonal cubic



cubic

N IC2 N iC (m etas table) N iC

(Bl)

tetragonal orthorhombic (?) rhombohedral hex.cell

N 3WaC

cubic

N 5W 6 C N 3WsC2

cubic cubic

X '1i3W 16C 6

hexagonal cubic

N 3ZnCo-1 N 6Zn 3 C

cubic cubic

0 C

hexagonal cubic

N >C

p Pt 3 C, p Ti 2C

Na Cl

hexagonal

4·4691 (at NbC 0.92 )

H-AlCr2C 3·245 17 carbide (£93) Pu 2Ca (D5 ,) CaC 2 (Cll.) Fe 3C (DO 11 )

13 ·77

N aCl (Bl) WC(B1,)

Fm3m

2

P6 3 /mmc

32

Fd3m

.I I

....

>

I: C:

'

8·5478

(Nd-rich)

6·902

8

143d

5·970

2

14/mmm

~

,,;

3·823

6·405

1 ·675

5·93

C: C:

.::; >

C

4·553

CaTi0 3 (£21)

8·37

11 ·746

5·505

171 carbide (£9 3) 17 carbide ase Co-W-C Co 3W 9 C,

4·243

4

Cl=

12·92

53 °39' 2·837 (thin films)

6 16

11·17

C

1/3

.?>

;;::

e

ii

,..

7·8180

Pm3m

3·64 5·004

4

Fm3m

l

P6m2

1

Pm3m

2

P6 3/mmc

2·8217

0·9705

-
.; "'0

10

4

0

~

Fm3m

F43m 4 an d rhombohedral polytypes have been determined, see p. l 378 A=4 Fm3m Sm+ 1-3C 8 143d 7·477

6·434

2

14/mmm

6·35

2

P6 3/ mmc

2

P6 3 /mm c

2

!4/mmm

l

P6, / m111c

3·26

5"

>

;o Q -,

0 !"'

~

0

~

0

4C

39

4(e)

r ~ ;:,

ti

z0>

Fm3m

A= 4 Tb+ 1·3 C 8·335 8

::::

Fm3m i

143d

16 Tb 24C

16(c) 24(d)

0

0516 2999

I

-l

...

TABLE 7 (continued)

(,>

:: x

In Phase

Structure type

System

a TbC2 TcC (?) ThC ThC2 TiC1 - , TiC 2 (?) Ti 3TIC Ti 2TlC fi 2ZnC, f!Zr 2C fm 3C fmC 2

tetragonal cubicf.c. cubic monoclinic cubic

cubic

J C 2 (L.T.)

tetragonal

I

b

c/a, or /3

C

I

M Dm

6·217

1·685

I

7·09

7·176

Atomic positions

Space group Atoms

D,

2

14/mmm

I Point I set

4C

I:

X

I

y

z

I

C

~

...;

4(e)

3960::!::7

C

~

>

4·231

6·744

/3=

9·5

4 4

Fm3m C2 /c

4

Fm3m

103°50'

4·329 (at TiC 0 . 95 )

4 Th SC

4(e) 8(!)

202±3 290

132

082

@ t,:.

ce

CaTiO 3 (£21) H-AICr2 C 17 carbide

(£93) H -AICr 2 C

hexagonal cubic

U2Ca

NaCl (Bl)

3·985 5·346 6·691

rx.

3·13

hexagonal cubic

UC

3·690

NaCl (Bl)

simple cubic cubic

tetragonal cubic

CaC 2 (Cll.)

A

Density in g/cm 3

defect NaCl (Bl) CaC 2 (Cl1 0 ) NaCl (Bl) Pu 2 C 3 (D5.) CaC 2 (Cll 0 )

1 ·5 -1 ·8 13·98

see text, p . 1389

8·02

1

Pm3m

8·59

2

P6afmmc

32

Fd3m

2

P6afmmc

,,...

4·209 3·15 8

1

4·426

11·558 (at Ti 5ZnsC) 3·363

14·79

4·398

9·16

1·680

A=4 F'm3m Tm+ 1·3 C 8·175 2 14/mmm

5·016 3-600

6·047

4·9598 (sample 95·3 wt % U, 4·64 % C) 8·0885

4

Fm3m

12·88

8

143d

(9·43 wt% C)

2

12·7

3·5206

5·9823

1·699

= C

......."'

"'~ C C

t:::

c;:

.., ~

I

5 ~

c;:

>

'Z C C

;,,·

16 U 24C 14/mmm . 4C

16(c) 24(d) 4(e)

E

050±3 295±3

~

3881±6

I

~

.,_c Ci_. V3 Zr 3 C

.

~ c •

I onho-

.rhom.bic

I

bexagonal cubic

I cubic

W 2 C (L.T.) hexagonal

W 2C(H.T.) cubicf.c. WC hexagonal Y3 C cubic

I

Iii.:

CaF!

5·475 (at l 900°C)

{CI) C'rU½

5·634 ,.,,

10·••

1

2·8841 4·568 (at 31 at. 0 0 C) 4·1686 (atVC 0 • 923 )

NaCl (Bl) 1)1 carbide 12·12 (£93) 2·9948 4·7262 3 (also said C6 type in thin films) ~4·27 (B1.) 2·9063 2·8368 (at 6·13 wt % C) defect 5·127 (at YC 0 • 40 ) NaCl

L'

4

Yb 3 C

2 I tetragoI CaC nal (Cll cubic

ZnZr 2C,

tetragonal cubic

ZrC

cubic

4U

4C

1·584

1·5781

3·664 0

6·169

P63/mmc

4

Fm3m

16

Fd3m

1

P6 3 /mmc

I

«c) 4{c) 4(:c)

4

033

40 ~50

n.

I ~-~ ~0

I

CaC 2 (Cll.) 17 carbide . (£93) NaCl

6·109

12·16 0 (atx = l)

I

4·6986 (at ZrC 0 . 97 )

I

-=

I

I

t:: C C

:::

""'

,: C

§ t,:.

C:

0·9749

1

~ E I:

P6m2

~

1·684

4·78

4·993 3·637

-"

>

~

A=4 Fm3m Y+ 1·6 C 2 4·528 14/ mmm

.......

~

"'C 4C

4(e)

t::

3967 ::!::2

)

defect NaC l

(Bl)

1

I

~

(Bl)

YbC 2

Pr:ma

4C

(Bl)

YC 2

:.al

I

4V.y

IL ' d:fect

~-

~

l ·680

7·97

A= Fm3m 4Yb+ 1-3C 8·097 2 14/mmm 32

Fd3m

4

I Fm3m

C

I:,:.

r.r-

~

g 4C

4(e)

3947 ::':

>:

6 t,:,

"" ~

TABLE 7 (continued) T

ill

Ph

S t ase

AcH 2

ys em

cubic f.c.

Structure type

CaF 2. (?)

_ __ 1

a

A.

_ __

I

b

Al4 Th 8 H x AsH 3 8-BaH 2 (H.T .)

z-BaH 2 (L. T.) BaLiH 3 CaH 2 ~-CeH 0 . ,

tetragon~ tetragonal cubic cubic b.c. (?) orthorhombic cubic orthorhombic cubicf.c.

CeH 2 v- CeH ~, ( ?) CeH 3 _,

cubic cubic f.c. cubic

CeSbH 0 . 20 CeTeH, .41

cubic tetragonal (?) hexagonal

CrH

_

1

c/a,

1

rx or f3

Dm

C

I

5·6701

(Cl) Al, ( CezTh, - xl 8 H, _ 16

_

I

~

Density in I 3 gem _ __ _ __

I

A

M

Space group

Dx

Atoms

. .. tom1c pos1t10ns

I Point set

I X

I

y

I _ £

? > -i

"'0

8·35

0

> ...

Al 2Cu-like see F ig. 189, p. 1402

I

>

;::



,

Al 2 Cu-like 7·6324 16-5305 0 ·8555 (at phase limit, x = 15·4)

I

6·41 (at -186°C) 9·465 (at 600°C)

1

l4/mcm

4 Al 8 Th 15·4 H

'

4(a) S(h) 16(/)

e:l

162 368

137 ;:,

PbCl 2 (C23) CaTiO 3 (E2 1) PbCl 2 (C23) N aCl(?) (Bl) CaF 2 (C l )

6·802

4·175

7·845

4·21

4·023

4·15

4

Pnma

3·756

1

Pm3m

l ·90

4

Pnma

"'a

(seeCaH 2)

"'

!" ~

5·948

3·607

6·852

1·7

4 Ca 4H 4H

5·04

4(c) 4(c) 4(c)

260 875 941

110 065 688

0

Z: 0

f-:_JI

z

q

5· 581 5·645 BiF3 5·52 (D0 3 ) (at CeH 2 •93 ) N aCl (Bl) 6·42 4·45

4

e

Fm3m Hin oct. and tetr. sites

4

"'

Fm3m Fm3m

9·10

2·045

AsNi (B8 1 )

2

P6 3 /mmc

2 Cr 2H

2(c) 2(a) I

OHi.-,-. ~

O!H

Dy~ DyH 3

ErH~ ErH~ EoD!

GdH 2 GdH 3 HfH 1-o (L.T.)

HfH, .64 HoH ! HoD 3

KH LaH 2 La H 3 LaTeH 0 . 91 LiH Li D LiSrH 3

LuH, LuH 3

,~

p;~ aibic h exagonal cubic hexago nal orthorhombic cubic hexagonal tetragonal cubic f.c. cubic

ZcS (33} • 3-8605J ZDS { ~

6-389 2 ·899

CaFi,(Cl) HoD 3

5·201 6-359

CaF2 (?) (Cl) HoD 3

5·123

PbCl 2 ( ?) (C23) CaF 2 (Cl) HoD 3

6·21

CaF 2 (?) CaF 2 ( ?) (Cl)

I hexagonal I [Cu P no., ?J 3

I cubic

NaCl(?) (Bl) CaF 2 (Cl) BiF 3 (D0 3 )

A= I F43m

1

j 4 Cr 3·42

4-61

1-595

I 6·615

1·040

I

.

6·272

6·526 3·77

3·41 ' 6·3 8

1·040

7·16

4 2

P6 3 mc

4 6

Fm3m P3cl

6

P3cl

4

Pnma

r:;

I

I

I

I

0

I

► ~

"'

0

~

5·303 6·46 4·70 4·702 5·165

4 6

7·08 6·71 4-68

fl •039 0 ·996

0

Fm3m P3cl

."' to'

0

>

~

"'0 ""

~

6·308

6·560

6

1·040

cubic 5·667 5·604 cubic 4·50 tetragonal NaCl (Bl) 4·0834 cubic cubic NaCl (Bl) 4·0864 3·833 cubic CaTiO 3 (£21) cub :c (CaF 2 ?) 5·033 (Cl) hexagonal HoD3 6·163 1

4 4 9·15

6 Ho 2D 4D 12D

6(/) 2(a) 4(d) 12(g)

.:I:

>< 0

356

167 096

028

4

1 ·47 I 1 ·43

5·711

P3cl

I

I 2·8771

4 4 1

8

"'

.;G'

z

~

Fm3m Fm3m

;:,

a :0

"' > z

2·03 0·816

:,,,

Fm3m Fm3m Pm3m

I

'

I 6·443 I 1·045

6 I

I P3cl

I

I

I

I

A .i,. ......

TABLE 7 (continued)

-

~

N

In Phase

System

c/a, a

MgH 2

tetragonal

TiO 2 (C4) 4·516 8

NaH NbH, :at X = 0·73) NbH 2 NdH 2 NiH ~o·s NiH ( ?)

cubic orthorhombic cubic cubic c ubic f.c. hexagonal orthorhombic

NaCl (Bl)

NiZrH 3 -

,

PaH 3 )( PdH

ex or

I

4·890 4·827

Density in g /cm 3

A

Structure type b

I

/3 D,.

C

3·0205

0·669

I

1·45

D,

Atoms

I ·419

1-38 4·869

Atomic positions Space group

M

P4 2/mnm

2

l ·36

3·425

pha se limit)

JuH 3 'lbH

CaF 2 (Cl) CaF 2 (Cl) like CrB (at NiZrH2-7)

4·55 5·470 3·721 2·645 3·53 10·48

4·312 4·30

I ·63

;mH 2 ;mH 3 ;rH 2

4(/)

( ,o,

6·76

10·4

4 4

Fm3m Fm3m

4

Cmcm

4

Fm3m

4

Fm 3m Fm3m

4

I ·79

TbH 2

306 ±3

__ __/

4Ni 4 Zr 4H 8H

4(c) 4(c) 4(c) 8(f)

tetragonal

j 3-37 1

6·779 7·358

l ·035

3·26

3·397 !'

'I

~

'>

z

Cl

Fm3m

4

Fm3m P3 cl Pnma (see CaH 2) I

-6

3·27

4

"'

---

-~

l ·008

1

I

I

1

I

I

orthorhombic cu bic

4·728 1 4·7781 3·4281

I

I

tetragonal

Th 4 Hib

cubic

8D

(at 25 °C or 78°K )

I

(a t

I

0 •8)

4

{

rand omly 1

I

8(c) 8(c)

l

--------·---,_ .:---...

1/8 5/8

1/4

0

0

1/-t

0,0,0; ½,2,½ ½,¼,0 ; -¼,¾,0} + 0,0,0 ; randomly { ¾,½,O; ¾,½,O ½,½-,½

i4

TfH

rz ""

= z

4

3·3 7 I (at 53 °C by neutron diffraction)

TnH 2

507 ± 4

Fm3m

4

2·851

6·74 (at room temp . by neutron diffraction)

TbH 3 T hH (?)

;:

( ?)

pseudo cubic cell pseudo cubic cell

CaFi ?) (Cl) hexagonal HoD 3 cubic f. c. NaCl( ?)

430 ± 1 140± 1 956±2 298± 1

z

9· 61 2·59

2·60

__________ - --------

P!-Ta~D ( o·s

I

.,,

____........___ .-T,

I

z

7·37

UH 3 type(?) defect 4·038 (a t 14·6 atm. press. and 206°C) NaCl (Bl) cubic CaF 2 (Cl) 5·517 tetragonal 4·42 2·05 cubic CaF 2 (Cl) 5·395 cubic BiF3 (D0 3 ) 5·34 (at Pu 2 , 5 ) hexagonal 3·78 cubic NaCl( ?) 6·049 (Bl) cubic CaFz(?) 4·783 1 (Cl) cubic CaF 2 (Cl) 5·376 hexagonal HoD 3 6·551 orthoPbCl2 6·377 3-883 rhombic (C23)

kH 2

y

t:,

cubic cubic

PrH 2 PrTeH 1 •39 ?uH 2 JuH2'7 6

0

X

2(a)

2Mg 4H

Fm3m F222

4 4

>

I Poin t I set

2 Ta I D

F 222

t-o 0

5·246 6·409 5·4893

6·6581 1·039

6

P3cl

2

14/mmm

4

143d

(Bl)

b.c. L ' 2b f.c. cell

5·7348

4·97061 0·8667

TiH , (H.T. cubic CaF 2 ( Cl) I 4·454l(at 315°K) >3f0°K) 4·279 TiH 2 (L.T.) tetragonal [ L ' 2 b (?) 4·528 cubic CaF 2 ( ?) 5·090 T mH 2 (Cl) 6·498 6·234 T ml-1 3 hexagonal I HoD 3 c,-UH 3 4·161 cubic (L. T. ?) 6·6310 cubic /1-UH 3

(L.T .) V 4D 3

tetragona l b.c. cubic b.c.

V4 D a (L.T.

cubic

/J-VH 0 . 46 _ 0 •8

6 g

Al atoms in 4(a)

a JO

> ;;j

2·64

,::;

10·81

6·85

7·67

16

a

Ia3

"' J>

(D5 3 )

5·021 3·73,

4

z

Fm3m

4Co IN

4·606

4·346

0·9435

2·746

4·322

1·574

4·6056 4· 3443 2·8535

7·1

>
-! > 0

~

4·438

0·933 6·1

5·9

4

P6 3 22 or P312 Fm3m

1

Pm3m

.::,;

~

'-----;;,

;,:,

Fm3m 6·12

5·835

1

Pm3m

1

Pm3m

4

Fm3m

t-::i

~

3 ~

?-1

z



(Bl)

cubic

EuN a.' Fe-N martensite

cubic tetragonal

a." -Fe16 N 2 '

tetragonal

~

"'0

Pm3m

hexago4·760 nal (at N-poor boundary) NaCl cubic 4·148 (Bl) cubic CaTiO 3 3·8755 (E2 1 ) cubic CaF 2 (?) 4·739 (Cl) cubic ReO 3 3-815 (D0 9) cubic CaTiO 3 3·906 (E2,) cubic NaCl 4·894

ErN

c:.

;;:,

NaCl (Bl) NaCl (Bl) L'2

4·836 5·007 2·844

5·720 (at 8·6 at.% N)

4

Fm3m

1 ·09

4 A=2

Fm3m

3·100 6·292

1-100

1

14/mmm

a .,,

"' Fe

I

N 4 Fe 4Fe 8 Fe 2N

~

0,0,0; ½,½,½ with random · displ acement, see text, p. 1425 randomly on 0, O,½; ½, ½, 0 4(d) 4(e) 31 8(h) 25 2(a)

0

r-;i

,:----., ----">-~~~-,..

r -Fe,N " F¾_ 3 N

cubic hexa gonal hexagonal

Ni4 N 1 disordered AsNi (BS ,) ordered N i3 N

3· 79701

Fe2N

F ~3 tvfo 3 N

orthorhombic cubic

F ~;Mo 13 N 4

cubi c

F ~aNiN

cubic

F ~N iN

tetragonal

F ::3PdN

cubic

F ~3 PtN

cubic

F ffa 2N 2 • 80

cubic hexagonal

I

I

1 ·596

1

P63/m m c

4·787 4·418 (at N-rich boundary)

0·923

3

P31m

I

I

_

magnetic 9·468 4·3965 (at Fe 3 N 1 • 17) cell (For various superstructures see 1, p. 231) 5·525 4·827 4·422 (at N-poor boundary, ~ li ·05 wt % N)

I

16

Fd3m

{J-Mn 6·6948 metal arrangement CaTiO 3 3·790 (E21 ) 2·830

1

P41 32

CaTiO 3 (E21) CaTiO 3 CaTiO 3 (£2 1)

CoTa 2 N 2 • 5

3·90

6 Fe 1N 2N

0,0,0;±,,t,0,) : ½,½,½ I 2(c) ! ~ 25 2(a) randomly but with dou ble probability for 0,0,0 6(k) 1/3 1/4 l(a)

I

~~

C

r'

>

-i

"'0 0

> -l >

.,, ::,

:::

4N

0

4(a)

"' y.

3 ·713

l ·31 2

I I I I (at66·5at. % Fe,16·5 % Pt,17·0 %N) I I I I (at 60·6 at. % Fe, 20·2 % Sn, 19·2 %N)

1

Pm3m

1

P4/mmm

1

;, ~

Fe Ni N

~

0,0,0 ½, ½,½ ½,½,0

~

0 ~

Pm3m

0 C,

!"

l

Pm3m

1

Pm3m

z

:i ~

C,

_

5·156

-l

>

C,

>

3·866 (at 60·6 at.% Fe, 20·2 % Pd, 19·2 % N) 3·857

Fe N 2 Fe 1N

I

'f/1 ca rbide 11 ·065 (£93)

(£2,)

F ~3 SnN

'

2·768 4·417 (at N-rich boundary)

I

"

'

10·31

2·000

11 ·9

12·71

4

P62m

4 Fe 2 Ta 3 Ta 3 Ta

4(h) 2(e) 3(/) 3(g)

25 25 333 667

"'> z 0

0 ~ 0

"'

0,

.l'>, .l'>,

--J

TABLE 7 (continued)

Phase

System

I II hexa

G

a

07

b

o-

nal · cubic 1

G

In A

Structure type

ZnS (B4)

3·186

E9,1

9·613

Ga

cubic

3·898

G

CaTiO 3 (£21)

hexagonal cubic trigonal hexagonal cubic

H-AICr2 C

3·00,

NaCl (Bl) a:-Si 3N 4 {3-Si3 N 4

4·98 0 8·202 8·038

G C(

(3 G

Ge ~

cubic hexagonal cub ic cubic

!'!:t

~

Hf.

I I

c/a, ci or (3 b

I

C

5·1 76

13·30

Density in g/cm 3

I

Atoms

6·11

2

3·35

3·54

16

4·42 8

,-l

D~

6·095

P63 mc Ia3

1

Pm3m

5·73

2

P6 3 /mmc

5·25 5·28

4 4 2

Fm3m P31c P6 3 /m

2·98

32/3

/

Atomic positions

Space group

M

Dm 1·625

~

I p~~~t I

2N

2(b)

16 Ga 48 Li 24 N

16(c) 48(e) 24(d)

X

I

y

I

"°C

z

'>

,-.j

"'I;; 375

117 152 215

0

> -l ►

381

11 4

-,

t,;

a

"' .!" (")

5·941 0·724 3·074 0·3824

9·614

2-95

>

1'

"'6 "' .!"

In ge+ } 16(c)

la3

48 Li SN 24 N

CaF 2 (Cl) 4·75 Ni 3 Sn 5-60 4·52 0·806 (D0 19) NaCl (Bl) 4·518 (at 49 ·8 at. % N) TJ carbide l 1·966 (at Hf:Zn :N = 5 :3 :1) (£9 3)

48(e)

~ ,
-3

"'0

I

(i

2(d) 4(/) 8(e)

4(a)

I randomly

,. .,_, 125 258± 3

~

1 Mo l (a) 3 Mo 3(c) 1N l (b) 1N 3(d) P6 3 /m mc 2 Mo . 2(b) 6 Mo 6(h ) N unplaced P3ml see text,r 1437

g

~

> :,:,

I

I

t::

e !:el

489

IP ,.,..,

~ a "" .:"'

I

P3ml

see text,' p. 1437 : I

7·90

4

~ > t:'

I

Pm3m

0

U-MoN

4 Mn \

1N

l

8·0101 1-907

I

l

h

P6 3 /mmc l~ l ·4Mol 2(a) 2 Mo 2(b) 4N

4(/)

125

~ iZI

~

~

·

TABLE 7 (continued) In Phase

System

Structure type

c/a, a or f3 a

I P..Nb 2 N y -NbN~o-7 7 (t.ernary Nb-N -O phase?)

hexagonal tetragonal f.c.

A

L 'a

b

I

3·0561 (at NbN 0.5 1) 4·386

NaCl (Bl) 4·3880 (at NbN 0.920 ) hexagonal WC (Bh) 2·950 hexagoAsNi 2·968 (B8 1 ) nal b:exagosaid not 2·9591 nal to be AsTi (B,) type earlier reported tetrago4·370 nal cubic N aCl (Bl) 4·373 cubic 'f/ carbide ll ·541 (£93) NaCl (Bl) 5·151 cubic 3·72 cubic

NbN o·s-0•9 o' -N bN 0.98 (H.T.) £-N b 1 _,N

NbNo,600,2 N bN 0.90 0.1 Nb 2ZnN, NdN Ni 4 N I

tetragonal

NiiN II

8·33 1

4·335

0·988

(at NbN 0. 79 ) 8·06

0·940 l ·87

11·2714

3-809

Space group

~

At oms

D,

1·425

1

I Point set I

hexagonaJ

~

bexa go na l

r ~ NN-5

hexagonal cubic

(N io,aT io,;)N

T ~i -Zn-N N p p p

cubic cubic cubic cubic cubic f.c. cubic

>N

N, N N

R ~ - aN N ~1'1),, '%

mo □ o cli -

2·94

WC (Bh)

3·75 and 3·67 NaCl (Bl) 4·897 CaF 2 (Cl) NaCl (Bl) 5·165 NaCl (Bl) 4·9060 3·93 NaCl (Bl ) 4-45 9· 65

8·26

4

Fm3m

1 2

P6m2 P6 3 /mmc

r;: 0

;:

5

~ 2(c) 2(a)

2Nb 2N

iia~i

7·748

4 32

Fm3m Fd3m

4

Fm3m

~ C

co

1·957

0·9342

2·005

0·985

12·2

2·93

12-60

2·74

4

1

14·2 14·2 6·47

/3= 104·9°

5·617

0·7250

3·19

3· 184

Si 3 N 4

P6 322 or P312 P62m

4

Fm3m Cc or C2 /c P 3lc

I

also given

as P3l c

7-608

hexago nal

2·9107

0·3826

3·19

3·187

2

0

~

I 4(h) 2(e) 3(/) 3(g)

4 Ni 2 Ta 3 Ta 3 Ta

25 25 333 667

P6 3 /m

>

~

> --i \:!

P6m2 \ I Pm 3m · Fm3m Fm3m Fm 3m Fm3m

4

C

~

4 4 4 4 16 (SeN)

>z

0,0,0; ½,½,Or., ½,½,½ I f.c. sites of 2 cubic cells along c 0,0,¾ ; ½,-½-,¾

Ni N Ni N

I

/3

tS E e:.

4

CaTi0 2 (£2 1)

n.ic hex.a go naJ

:::·

c

2·89

9·73

I

,,,,_

4·295 0·983

10·36

5·168

I

;:.

4·304

4·607

ordered

z

y

X

P6 3/mmc

--:--: ,N

> r;:

!;'-

7·28

3·72

I

4·996

2·772 5·549

Atomic positions

M D ,.

C

cubic

b"-N bN 1 +.

Density in g/cm 3

0 ► --i ►

0

~ 0

"'

I

.:"

> :=

I

6 Si 6 Si 2N 2N 6N 6N 6 Si 2N 6N

I

d

6

6(c) 6(c)

' 2(a) 2(b) 6(c) 6(c) 6(h)

2(c) 6(h )

t

l /6 1 /3 1/3 172

1/ 12 1 /4 0 1 /3 769

½

0 0 3/4 0 l /4

"' .:" ~

0

~ 0

"' J"J z --i

~

333

033

0

h •

"'

z>

0

.

"'"' .:,. V,

TABLE 7 (continued)

; In P hase

c/a, ci:

a

i

ixN

A

Structure type

System

I hexagonal

I

b

I

4·534

i2 N O

orthorhombic mN cubic a 21 N (?) cubic hexago a~ 2N nal hexago-Ta N o·s -o·e nal TaN hexagonal l2 N o·as 0 o·ss hexagonal T aN 0.9O0, 1 hexagonal 1No·rn 0 0•2,5 hexagonal T 1N a,ss 0 o·a5 hexagonal T aNo,5O0,5 hexagonal T aZrNO hexagona l

5·498

Dm

4·556 8·877

..,.

u,

Density in g/cm 3

or (J

C

- ~

Atomic positions Space group

M

I

I

At oms

Dx ·sli

£-Ti,N

' cubic cubic cubic trigonal

TiN1_ x

tetra gonal cubic

Ti 3TlN

cubic

Ti 2ZnNx

cubic

TmN U 2Ns

cubic cubic cubic

U2N 3

trigonal

UN. V-N?

cubic tetragonal b.c. hexagonal cubic hexagonal

UN

P - VN0 ' 37-0 '43

VN1- x {;lJ W2N

> i::

I

X

I

y

z

I

i:t,:'

C

1·005

C ;>

;:;:

4·853

C

NaCl (Bl ) 5·0481 10·11 L's 3·0476 (at TaN 0.5) WC (Bh) 2·938 1 (at TaN 0.8) CoSn 5·1904 (B35) 3·055 ordered ordered ordered pseudo cell

4·9187

l ·6107

15·46

"" ,:

4

Fm3m

1

P6 3 /mmc

1

P6m2

3

P6/mmm P6 3 /mmc

N

15-86

,~ ~ C

in tetrahedral holes ( ?)

1::: -~;,.

10·34 5·988 10·34 5·939

2·883

0·981

2·9106

0·567 7

4·928

1·613

1

5·802

0·561

24

cC

2·879

0·481

4

:"'

2·864

0·277

12

:,:::f::

2·866 0·483

4

13-6

:>

se :::

3?~ C

"''

0

r-

el:

:>

3·645

3·881

1 ·065

10·6

11·24

P6m2

l

T bN TcN 1 _ ,. ThN Th2 N 3

I Point set

NaCl (Bl) 4·936 'I NaCl (Bl) 3·980 Na Cl (Bl) 5·20 3·883 6-187 1·593 La 2Oa (D5 2) (C4) 4·9428 3·0357 0·6141 4·86 (at TiN 0.49) NaCl (Bl) 4·2259 (at TiN 0. 71 ) 5·02 4·246 (at TiN) 4·73 CaTiO 3 4·191 (£21) 7/ carbide ll ·496 (at Ti: Zn: N = 5 : 3 : 1) (£93) N aCl (Bl) 4·809 N aCl (Bl) 4·8899 (94·1 % U, 5·30 % N) 14·0 M n 20 3 10·699 (D5 3) La 20 3 3·69 5·83 1-58 (D5 2) CaF 2 (Cl) 5·32 3·395 1·143 2·970 (at5 % N) 4· 541 0 ·924 ordered 4·913 (a t 8·8 % N) NaCl (Bl) 4·1 398 (at VN 1 • 00) 2·89 22·85 (in thin fl ms)

I

_.........,

z

l(d) l(a) 1(/) l(c)

-

C C

""'

d"" ,.. >

•·l

e=:i

v

> .., :>

"'

d

~

24 u 48 N

24(d) 48(e)

982 ~385

v

~ 145

~3 80

"'"' ::,.

§

4 Fm3m A=2V

-"'

A=6V P6 322

v

4 3

Fm3m P3

~

~

2

2 2

w w w

1N 2N

2(c) 2(d) 2(d) l(b)

0607 2726 3940

2(d)

154

~

;o

"'::,. z

a "'"'

.:,.

-----

TABLE 7 ( continued) Density in g/cm 3

In A Phase

System

Structure type

a

,, N o-s ,- 1-0

0

1/1 ·a.;- 1 'H>N

w -N ()

1

W1 ,1,N

cubic hexagonal hexagonal rhombohedral hex. cell

N ( ?)

[j

[j

hexagonal l W2•5 6N4 hexagonal 'Wo,sN

0 WaNs

NaCl (Bl)

WC (B1,)

hexagonal

\'

Na·e: Oo-as>

cubic

(N,O) cubic

I (N,0 ) (H. ) YN Yb Zn~ !

cu bic f.c.

ZnZr !N x

cubic

[~

cubic cubic

I - x

· XN

cubic • cubic cubic

defect NaCl (Bl) defect simple cubic

I

wt

D,.

2·89

23·35

I

At oms . Point set

Dx

I

X

y

I

I

~

z

•' >:

10·80

16·40

15·7

4 Fm3m A=4N P6 3 /mmc

Cl

,;:;,

2W :

2(c) 4(!) 4(!)

06 835 !;:I

(in thin films)

2·893 2·826 0·977 (at W-rich boundary) 2·89 11·0 (in thin films)

-

I

Space group

1

1. 0 : in thin films) I 15·46 (in thin films)

30·92

.....

Atomic positions

M

C

2·885

2·89

---------------

I

4·14 / (at 2·885 (at W1.35 N)

2·89

rhombohedral hex. cell

c/a, 11. or fJ

I b

~

I

(in thin films)

13·6

11·0

A= 2W 1

I

- - -·-"\

NaCl (Bl) 4·877 NaCl (Bl) 4·7852 Mn 2 O 3 9·763 6·22 (D5 3 ) T/ carbide 12· 131 (at Zn : Zr : N = 1 : 2 : I) (£93) I I NaCl (Bl) 4·57, (at 49·8 at.% N) NaCl (Bl) 4·550 (at x=0·l88)

5·89

4.__ 4 16

Fm3m Fm3m la3

32

Fd3m

4 4

Fm3m Fm3m

~ 0 > ... > "';::i

...

::-'

A A A A

3

II

trigonal

La2Os (D5 2)

4·08

cubic trigonal

Cup (C3) Cdl 2 (C6)

4·73 3·072

cubic

4·816

6·30

4· 941

I ·545

1

P3ml

1 ·608

2 1

Pn3m P3ml

9·5 7·44

9·53 7·37

4

· F43m

2Ac 10 20 2Ag 10 4 Ag 40

2(d) l(a) 2(d)

235 63

2(d) 25 l(a) DAN, 152, 853. 4(a) 4(c) Coll. Czech. Chem. Comm., 24, 1416.

I

>

;:;

a

y., "' ..::...

;;:,

6

"" ?; ~

s

"'"' z>

ti

s "'

V,

.jS. V,,

--.J•

TABLE 7 (continued) In A Phase

System

Structure type

c/a, et. or f3 a

AgO

monoclinic

I

5·852

b

3·47 8

I

Density in g/cm 3

Dm

C

Atomic positions Space group

M

I

D.

Atoms

I P~~t I

/3=

7-80

7-70

4

2

also Ag 20 3 stabilized by Cl, F, Nor ,5: cubic a~9·9, M= 16 AJ ,O 1 ·61 hexagonal 3·10 4·99 o;-A.12 0 3 rhombo- D5 1 5·1272 Ct.= 55°16·7' hedral 12·991 hex. cell 4·7589 also y-A120 a

y-Al20 3 (also called o) y'-Al20 3 77-Al2 0 3 0-Al 2 0 3 x-Al2 0 3

cubic

spine] with vacancies

tetragonal

2·74 3·99

2·76 3-96

I I

I

4Ag 60

Pn3m

I

I

I

1 2

R3c

6

R3c

cubic hexagonal monoclinic hexagonal

f.c.

3·96 9·71 11 ·24

I cubic

.:Os

cu bic

i I

3520

BeO (L.T.) /3-BeO (I-L T.)

~

;::,

0

Y-1 "'

>

;::I

-(

0

8

"' :t=i

z

;:i

i

;,,

I

0·98

6

"' > z

5·72

11-74 13-44

1·84

0 X

8

/3=

NaCl

I

(Bl) Mn 20 3

(D53) (type C) CaF 2

~

1' • Jh. Miner. Abh., 95, 1.

103°20' 2-42

P6/mmm or P6 8 /mmc

·.:::::

5·053

4

11 ·03

16



·

e

:::xc-

I

I

I

I I

I

I

I

II

I

........--- - -- •'">ii'=""----.::c.a~~•- - -~ ~~==-- -

Fm3m la3 -l

5· 393

4

Fm3m

16

Fd3m

~

C

11·07

mon oclinic

5·26

4·55

/3=

4-15

4·29

4

93 °49'

monoclinic cubic

12·90

7-99

4·57

9·11

/3=

4·02

4

78°19'

NaCl

P2 1 /n

32As 48 0 4 As 4 As 40 40 40

32(e) 48(/) _4(e) 4(e)

~

-l

897±1

258 363 4(e) 45 62 4(e) 4(e) 95 AM. 36, 833.

175±10 102 352 22 41 16

"'0 040 007 03 18 13

tetragonal hexagonal tetragonal

CaC 2

.,,

C,

0

~

"'

.l" 0

► ;,,

Fm3m

5·672

4

F4 /mmm

80

8(e)

3911

"' .l"

2Be 20 40 4 Be

2(b) 2(b) 4(f)

0 378

0 ;,,

r::,

8

5·384

6·841

1·271

2·698

4·379

1·623

3·01

2

P6 3mc

4·75

2·74 0·577 (at 2100°C)

2·69

4

P4 2/mnm

(Cll 0 )

ZnS (B4)

~

0

4

5·5391 5·43

0 ►

0

P2 1 or P2

(Bl)

Ba0 2

~

;,

(Cl)

clauderi te II BaO

-l ►

0

17·86

I 5·56

' cubic

AmO,

As 2 0 3



V-1

cabic

ar.;enolite ~ 03 auderite I

~

0 0

_Bl ·:r

I

7·79

r

0

I

!

7-95

=

2

DAN, 80, 751. 4(c) 356 6(e) 553 12(c) 18(e) 306

4Al 60 12Al 18 0

21 t Al Fd3m +320

7·859

~~•

0

I

z

I I 2(a) 2(d) ' 1 230 4(e) 295 350 I Ric. Sci., 30, 1034. j 4(e) I 3/4 1/4 1/4 J. Inorg. Nucl. Chem., 13, 28 . 1• 4(b) 6(d) Coll. Czech. Chem. Comm., 24, 1581.

2Ag 2Ag 40

P2ifc

107°30'

4·904 - 4·963

cubic

y

I

5·495

40 Ag20 a

X

-l ► C

4(g)

310 336

:z -(

8

"'

.l"

z

=i

;,,

a,.,, m

z►

0 0

::5 0

"' "' ~

Vl \,:)

i,

TABLE 7 (continued)

.;:. C,

C

In A Phase

System

Structure type

a

ct-Bi 2 O 3 {J-Bi2 O 3 (H. T.)

I

C

Density in g/cm 3

Atomic positions Space group

M Dm

I D,

Atoms

cubic cubic

CaO

cubic

CdO

cubic

CdO 2

cubic hexagonal

5·84

8·16 . 7-50

10·95

b.c. defect CaF2

5·63

fJ=

67·07 ° 0·514

10·245 5·665 at 750°C

9·22

NaCl 4·7990 (Bl) NaCl 4·691 9 (Bl) FeS 2 (C2) 5·3 13 Laz0 3

3· 88

9·195

9·167

9·35 8·51

X

y

I

P2ifc

8

P4b2

Fm3m

4

Fm3m

4

Fm3m

4

Pa3

16 Bi 80 80 40 40 4Bi 60

~

I

i:

z

I

>

--3 t=:I

C:

AC., 18,393. Positions given in Z. Krist., 103,274. 16(i) 135 8(g) 02 8(h) 02 4(c) 4(b) ZA C, 328, 44.

IO

115

250 I:

c· v

> ,:J e,

4(a) 8(c) randomly Angew. Chem., 75,67 5.

6

I

"'::: ,:J

8·15 6·36 6·06

4

13 2

I p~~t I I

I monoclinic tetragonal

y-Bi 2 O 3 o-Bi 2O 3 (H.T.)

Ce 2 O 3

I

b

c/a, rx or fJ

1 ·561

1

(D5 2 )

P3ml

.

(type A)

5 $"

4Cd 80 2Ce 10 20

4(a) 8(c) 4192 JACS , 81, 3830. 2(d) l(a) 2(d)

z

~ ~

235 63

z>

0

6 C,

"'

' cubic CeOru rhombo6-CeOt-n hedral hex. cell rhom bo,..ceo]• ', S hedral hex. cell iJ-Ce01-s1 rh ombohedral hex. pse udo cell a:~CeO2,oo cubic Cm 2 O 3 cubic CmO 2 cu bic CoO cubic coo (L.T.) tetragonal CoO cubic

ZnS (B3)

4·55

CoO

ZnS (B4)

3·21

Co 3 O 4 Cr3 O ( ?) CrO Cr 3 O 4 Cr 2O 3

CrO 2

hexagona l spine] (Hl 1 ) cubic cubic tetragonal rhombohedral hex. cell tetragonal

type C

11·11 8

I 3·912

3-91 3·889 CaF 2 (Cl) 5·409 Mn 2O 3 ( ?) 11 ·00 CaF 2 (Cl) 5·372 NaCl (Bl) 4·2603 4·2638

9·655

2·468

9·50

2·43

9·54

4·2143

5·24

{J-W (A15) 4·544 NaCl (Bl ) 4·16 f.c. 8·72

I

l

2-45

Fm3m

4 4

Fm3m Fm3m

4

F43m

2

P6 3 mc

8

Fd3m

2 4

Pm3n Fd3m

.;

"=

J. lnorg. Nucl. Chem., 1, 49.

>

@ C C:

~

>

"'::c t,:

!?-

E

} Nature, 193, 867.

1·63 6·07

7-50

4

0·9884

8·0827

i

0·86

ff:-

320

32(e) 3895 (Sutarno and Knop, private comm.)

'< IC

§· "'" ~

rx-Al 2O 3 (D5 1 ) 4·9607 TiO 2 (C4) 4·4218 or 4·421

13·599

6

2·9182

0·660

2·917

0·660

2 4·83

R3c

12 Cr 18 0 P4 2 /mnm 40

12(c) 18(e) 4(/)

3475 306 301 ±4

"'>· z:

6

4·89

r-:i

J. Appl. Phys., 33, 1193.

-

I

I

.i,.

TABLE 7 (continued)

In A Phase

System

Structure type

c/a, rx. or {J a

Cr 2 O5

Cr 0 O1 2 C ·Oa

orthorhombic

I

8·47

orthorhombic orthorhombic

12·04

b

12·88

8·21

I

M D.,

C

I

10·09

I

5·743 8·557 4·789

Atoms 12

3·68

~4

2-70

2·82

Atomic positions

Space group

Dz

3·34

8·18

c:.

Density in g/cm 3

4

Cmcm C2cm or Cmc2 1

I P~~~t

C 20

rhombohedral hex. cell

8·78 CdCl 2 (C19)

7·52

6·79

0·856

2·73

2·74

rx.=36°32'

4·256

18·99

2 1

4-60

4·72

I

orth orhom bic

Rb 2O 2

C¾J >s

cubi c

CsO !

tetragonal cubic monoclinic

P 4Th 3 (D7 3) CaC 2 (C11 .) C3

~ )

Cu

D

) 3

cubic

Er 'a

cubic

Eu Eu

cubic orthorhombic monoclinic

)4

Eu >a E Fe Fe F F (L

)3

cubic

(H.T.j cubic (L.T.)

'4 '4

.)

4·322

7·517

Mn 2 O 3 (D5 3 ) (type C) NaCl (Bl)

rhombohedral spinel(Hl 1 ) cubic rhombo hedral(?) orthorhombic(?)

4·47

4·74

9·88

Ama2

P6 3 /mcm

R3m

6·29 4·261 4·662

14·06 or 14·123 10·860

2

7·21

1-145

3·41 7 5·118 {3=99 °29'

> '::.

,:= ;::

E

4 Cr 40 40 40

4(b) 4(a) 4(b) 4(b)

4 Cr 40 40 40 6 Cs 20 2 Cs 10

403±3 222 ± 13 278 ± 13 origin of z axis at Cr 398

4(b) 4(a) 4(b) 4(b)

233 442

S.R., 19, 368. 4(b) 500 400 4(a) 833 0 4(b) 800 342 4(b) 433 225 Chem. Zv. Czech. , 14, 165. 6(g) 250±1 2(b) JPC, 60, 345. 2(c) 256 l(a) JPC, 60, 338.

3-80

4

F4/mmm

~6 6·45

6·14 6·569

2 4

Pn3m C2 /c

3·500

3-605

8·813 /3=100·13°

> :,;

s

0 62 5 133 683 1 /4 0 1/4 1 /4

z:

"'"' >

z

a

~

!

.l 4

383

~ 80

8(e)

4 Cu 40

4(c) 4(e)

Ia3

see Mn 2O 3

16

Ia3

see Mn,O 3

4

8·80 /J=l00·15°

I

4(g) 4Cs 40 4(c) ZAC, 291, 12.

""

!:-

p:-

I

16

4

806 444 0 5

143d

3-80

8·20

3-601

Immm

~

c ~

I

I

3

4

10·6647 Mn 2O 3 (D5 3 ) (type C) 10·5473 Mn 2O 3 (D5 3) (type C) NaCl (Bl ) 5·1439 10·094 12·068 type B

6·430

z

I

I

,,

I

!

I

~

;:

I

Pbcn

C2cm

hexagonal

y

Nature, 203,967.

4Cr 40 40 40

C 30

I

I· X

405

0

584 or 916

~

I

> 9

;>

Fm3m Pnam ( ?)

0

""

~'

~

0

_;:;,

16

Ia3

0

see Mn 2 O 3

,.,

_,

4·28 to 4·309 3·0210 to 3·0550 8·3940 5·940 5·912

4

!:'

Fm3m

I I 0(=59°59·5' at 90°K to ,

....

TABLE 7 (continued)

.;...

In Phase

c /a, IX or /3 a

a:-Fe2 O3

rhombo hedral hex. cell

/3-Fe 2O 3

cubic

y-Fe 2O3

cubic

o-Fe 2O 3 (?) t:-Fe 2O 3 1X-Ga 2O3 /3-Ga 2 O3

A

Structure type

System

IX-Al 2O 3 (D5 1) Mn 2O3 (D5 3)

hexagonal monoclinic rhombohedral monoclinic

Density in g/cm 3

I

b

I

M D ,.

C

5·4271

Atomic positions

I

D.

Atoms \ 2

IX=55°15·8'

5·0345

Space group

13·749

6 16

9·40

4 Fe 60 12 Fe 18 0

R3c R3c

p~~t I 4(c) 6(e) 12(c) 18(e)

cubic cubic hexagonal

~ Os

monoclinic cubic

J

=

>

I

i

355 542

-

> :,.:

I

I

300

355

I I

P2 13 described in terms of Fd3m

8·320

4·42

5·10 12·97

10·21

8·44

0·866

5·32

4·7

/3 =

2

8 Fe l3¼Fe

I

8(a) 16(d)

:'

2J vacancies rand omly arranged on ¼,¼, ¾; t ,¾,t; ¾, ¾,¾; i , t,t 32 0 32(e) 375 J. Phys. Soc. Japan, 17, Supp. j B.II, 39 1. various models have been proposed, but this one results from a neutron diffraction study. I

> -~ -< ;:

:-

-

I

4·78

20

6·44

2

R3c

5·94

4

C2 /m

c

95 °20' 1X-Al 2O 3 (D5 1 )

5·32

IX =

4 Ga 60 4 Ga 4 Ga 40 40

55°50' 12·23

3·04

5-80

/3=

103·7°

l

La 2 O 8 (D5 2) (type A) type B Mn 2O 3 (D5a) (type C) TiO 2 (C4) quartz

ZrO 2

8·35 9· 52 3-76 14·061

5-89 3·566

8·760

5·18

4·98

8·22

8·33

/3=

z

I

C

~

i; 1:1!

i

!

4·987

5·652

1·133

5·14

5·25

1·02

Ia3 P4 2/ mnm

6·28

2·860 0·651

=

AC, 11,746.

6 16

10·8122

5·1156 5·1722 5·2948

>

7948 6857 1011 255 3 4365

1·57

100·10°

4·395

~ :Z

4(c) ~3 5 6(e) ~ 55 4(i) 0904 4(i) 3414 4(i) 1674 4(i) 4957 4(i) 8279 J CP, 33, 676.

I

~Oa

I

I

y

la3

40

~o.

X

P 3221

see Mn 2 O 3 2 Ge 40 3 Ge 60

~

I

;

Ii

2(a) 4(!) 307 AC, 9,51 5. \

.,.

!

:;,

(x,0,0; x=0·4513 ±1)

6(c) 3969±5 AC, 17,842.

0909 ± 4

3021 ±5

!"

at 1920°C

/3 =99° 11 '

4

( baddeieyite type)

~

~

,;;

P21 /c

g

¥'

11-3

6·6121 5·5201 3·521 3

3·3 11

or 5·526

11 ·2

3·526

4

Pnma

4 Hg 40

4(c) 115 4(c) 365 AC, 9,685; ACS, 10,852.

245 585

2

Imm2

2 Hg 20

2(a) 2(b) AC, 9, 277. 3(a) 745 46 3(b) ACS, 12, 1297.

0 170

,, HgO

trigonal

3·577

:t-HgO 2

rhombohedral

4·74

8·681

2·427 1Z =90°

11 ·14

11 ·2

3 3

P3121

or P 3221

3 Hg 30

I

s~"'

y-,

z

~ ~

"'"'

I

~

X

a

!)l

,l>-

I

I

I

0\

.p.

TABLE 7 (contin ued)

Phase

Sys tem

/J-Hg0 2

orthorhombic

Ho~O 3

cubic

Structure type

I

I

a

In A b

I

c/a, C( or /3

c

Density in g/cm 3

Atomic positions Space group

M Dm

I

-l

Atoms

D,

Pbca

4

6·0801 6·0101 4·800 Mn 20 3

°' °'

I 10·6065

16

Ia3

(type C) Mn 20 3 I 10·1178 (D5 3)

16

Ia3

I Point set

>

I

I

4Hg 80

y

I

X

"'Cr

z

> -!

0

I 07

4(a) 8(c) 07 Ark. Kemi, 13, 515. see Mn 20 3

0

> -! >

41

.,, "' 0 0

(D5 3)

cubic

ln2Os

tetragonal cubic orthorhombic

lr0 2

K.O

K;o

2

-KO 2 (LT.)

5·704

cubic

6·09

8(b) 24(d) 969 ± 2 48Ce) 390±1 Z . Krist., 118,473. 4(1) I 311

I

24 In 48 0

TiO 2 I 4·50 I 3·15 I 0·700 (C4) CaF 2 (C l )I 6·449 6·7361 1-001 I 6·479

tetragonal! CaC 2 (Cll.)

8 In

6·6991 1· 174

2-40

I

2-40

2·1581 2·166

2

P4 2 /mnm

4 4

Fm3m Cmca

4

F4/mmm

40

8(e) 8(!) ZAC, 291, 12.

80

8(e)

0

I

153±1

386±2

latOa

D5 2

cubic

Mn 20 3 \ 11 •40 (D5 3) (type C) CaF 2 (Cl) I 4-628

.T .) cubic

.o,

6·1301 1·56

3·937

hexagonal

P3ml

(type A)

;i:

160 088

-< 0 . C:

934

0

I

0954

7·650

2·439

2·33

2·30

2

P6

!

I

I

"' JI' z

::i ~ 8 "' "'

~

235

2(d)

10 l (a) 20 2(d) see Mn 2 0 3

0

63

~

0

t;l

Fm3m

4

3· 142

hexa gonal !

l a3

16

2 La

> §

-"'

AC, 8,503. K0 1 (H. T.) la20a (H.T .)

·"'"'(')

8 m

I

I

8K 80

::;

l

1 Li 1 Li 2 Li 20 20

l(a)

l(d) 2(i)

250 401 099

2(g) 2(h)

ZAC, 291, 12.

-!

>

E -l

0

tetra gonal cubic

L ,o! L !0 3

cubic cubic

gO g02

no

cubic rhombohedral tetragonal

no (L .T.)

n3O4

0304 ( ?)

{J Mn 20

3

Mn 2O 3 MnO 2 yptoelane

orth orho mbic cubic ' tetragonal

tetrago• nal

7·736

5·445

1·421

2·66

2·26

16

10·3907 Mn 2O 3 (D5 3) (type C) NaCl (Bl) 4·208 FeS 2 (C2) 4·839

4

4 4

NaCl (Bl) 4·4445 8·873

D5 3 defect Mn 3O 4 f.c. cell

.la3 Fm3m Pa3

~ .,,0

see Mn 2O 3

4Mg 80

""

~

4(a) 8(c) 411±1 Ark. Kemi, 14, 99.

j;l

Fm3m

(')

>

cx = 90°26' (at 4·2°K) 9·44

5·76

5·801

m 0 0

8

6·356

4

1·638

141 /amd origin at 4Mn 8 Mn 16 0

9·472 16

9·408 8·1

9·4

1· 16

9·8 15

2·847

0·290,

!a3

8 Mn 24 Mn 48 0

4m2 4(a) 8(c) ~ 25 16(h) J. A. Ceram. Soc., 43 , 620. 8(b) 24(d) 48(e)

i m

JI'

~375

s~ m

JI'

970 385

z

:::j

145

380

~

8 m

"'> z

8

14m

8 Mn 80 80

500 150 330 000 160 205 000 160 458 /zv. Akad. Nauk, Ser. Fiz., 15, 179.

0

0 X

6

"'

.p.

I

°'

-J

...

TABLE 7 (continued) In Phase

P-Mn02 pyrolusite y-MnO 2 ramsdellite

I

Sys tem

II

a tetragonal

TiO 2 (C4)

orthorhombic

c/a, a or /J b

4·397 9·27

Density in g/cm 3

A

Structure type

I

M

I

D ,.

C

2·873

Atomic p ositions

0·653

I

5·167

2·866 4·533

4·84

Space group

u. Atoms II 'omt I set

D,

5·194

2 4

4·83

P4 2 /mnm / 40 Pmna

4(f)

I

Mo 3 O (?)

MoO 2

MoO 2

Mo O 2

hexagonal cubic

2·786

4·412

4Mn 40 40

monoclinic

5·549

P63 /mmc

(Cm)

tetragonal

TiO 2 (C4)

(H .T.)

orthorhombic

I

"'C

=

I

s:

I

0 0

>

I



> ,.,

.,,

5;:,

I

0

J:

140 020 ¾ 035 21 0 ¾ 285 31 0 ¾ lzv. Akad. Nauk, Ser. Fiz., 15, 179.

> ;;, !:! 'T

8·6

8·66

3

Fm3m

5·526 tl= 119·62° ~6· 4

6·51

4

P2 1

0

~

z

5·584

4·87

4·843

4·842

5-608 tl=120·94°

4

2·796 0·573

lb 15

2

- ~·

24·54 I 5·4391 6·701 l,'l = 94·28°

~~~-·--

"'

2Mo 2Mo 20 20 20 20 4Mo P21 /c 40 40 idealized P4dmnm 40 I

I

~i!t,ag

4

P2 1 /a

2(a) 965 500 2(a) 465 0 2(a) 84 18 2(a) 12 78 2(a) 34 28 2(a) 62 70 4(e) 232 000 4(e) 11 21 4(e) 39 70 positions ACS, 9, 1378. 4(!) 291

I

24·49

I 5·4571 6·752

4

Pn2 1a

;:j

232 232 39 11 39 11 017 24 30

1: 0 r-,

"'

I

•\,

4- -

I

LS

~

~

......... , ~4

·~

'

I All atoms in 4(e) 04325 ±6 21 434±26 3139, = 10168 + 6 73691 ±21 1657 13 .L 22 16310 6 22622 ± 23 99590 ;; 23 22091 ±772936 ±22 33434± 28 0 0251 ±6 7447 ±25 7811 ±22 0 0616±6 4412 ±24 4932±25 0 051 9 ±5 9228±21 4262±21 0 0876±5 2324 ±22 1230±20 0 1278±6 5164±22 8271 ±22 0 1200±6 0121 ± 23 7862 ±23 0 1539±6 7290±26 4930 ±22 0 1899± 6 450i±22 1730±22 0 1822 ± 5 9590 ±22 1361 ±21 0 2185±5 2292 ± 20 8322 ± 22 0 2488 ± 6 9966 ± 22 4852±24 Ark. Kemi, 21,365. all atoms in 4(a) Mo 20535±5 2638±4 87214±18 Mo 14690±5 7419 ± 4 197 15 :::: 18 Mo 08714±52477 ± 5 52144±18 Mo 02852±67466±5 84123±20 0 9979±7 9766 ± 28 011 2±26 0 0608±6 0203 ± 26 6849 ±21 0 9326± 7 0141 ± 29 3365 :::::23 0 1247±6 9702 ± 28 3603±21 0 8712±6 9685 ± 29 6815±21 0 I 1872±6 0356±28 10387:::::23 0 8064+6 0499± 28 0138-'---22 , ' 0309 + 5 .2567 .L45 13425 ~ 17 0 0 0943±5 17648;;40 10 179;;17 0 I 1645+ 5 12379-'-3 5 6593 ±] 0 2240±5 :7318 ±3 5 '3203:!:18 ACS, 18 , 1571.

Mo Mo Mo Mo

M o4O11



I

JI

5·019 5-610

monoclinic

, monocli- I

1

302 ± 4

I I I

-